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Abstract

This dissertation presents a work related with image analysis and 3D ob-
ject pose estimation. A wide variety of object’s types and pose estimation
methods have been addressed along this PhD manuscript. Multiple pose
estimation systems have been implemented with improvements that outper-
form state-of-the-art methods. The comparison is carried out in real-world
and synthetic benchmarks where the ground-truth is known and error mea-
surement mechanisms are provided.

This dissertation is structured in four main parts:

In the first part, an overview of the state-of-the-art is exposed. We re-
view the di↵erent camera representations used in computer vision systems.
We continue with a description of the di↵erent computer vision features
and the algorithms for their extraction. In the final part of this section we
define the pose estimation algorithms that use the camera’s representation
and the extracted visual features to compute the object pose estimation.

After the literature’s overview, we continue with a second part that
states a generic architecture for object pose estimation. This architecture
defines a development environment for further contributions. We develop
a pose detection system that uses single-frame information and is based on
state-of-the-art methods. We combine this system with tracking methods
that use temporal information in order to implement a robust and accurate
pose estimation system. A comparison with the literature’s systems is

1



Abstract

carried out using a synthetic benchmark that has been produced specifically
for this comparative study.

Following the generic architecture defined in the previous part, the third
section explains one of the main contribution related with articulated ob-
ject detection. A detection system for articulated object is described where
features, models and algorithms are adapted for this purpose. A synthetic
benchmark for articulated objects was developed along with error measure-
ment methods that allow comparing the system to state-of-the-art algo-
rithms.

Another main contribution of this work are improvements adopted in
pose estimation systems that enhance performance in terms of accuracy,
execution time and robustness. The improvements involve object’s model
simplification and environmental knowledge adaptation to the pose esti-
mation process. Using augmented reality systems and depth cameras, we
create a benchmark for real-world rigid object tracking that allows the com-
parison with alternative methods. We also extend the system applications
to diverse situations such as camera pose estimation.

In conclusion, this dissertation implements multiple pose estimation sys-
tems for di↵erent types of objects in real-world scenarios. Proposed systems
are compared with alternative methods through the developed benchmarks.
The di↵erent methods evaluation aims remarkable results.

2



Resumen

Esta tesis presenta un trabajo relacionado con el análisis de imágenes y la
estimación de pose de objeto 3D. A lo largo de esta tesis se hace referencia
a una amplia variedad de tipos de objetos y de métodos de estimación de
pose. Se ha realizado la implementación de múltiples sistemas de estimación
de posición con mejoras que superan a los métodos disponibles en el estado-
de-la-técnica. Los métodos son comparados en benchmarks del mundo real
y sintéticos donde conocemos la pose de los objetos que se encuentran
en la escena. Mediante los mecanismos de medición del error de la pose
aportados, podemos realizar un estudio y comparación de los diferentes
sistemas.

Esta tesis se estructura en cuatro partes principales:

En la primera parte, se expone una visión general del estado-de-la-
técnica. En este apartado, se revisan las diferentes representaciones de
cámaras utilizadas en los sistemas de visión por computador. Continuamos
con una descripción de las diferentes caracteŕısticas (features) de visión
por ordenador y los algoritmos empleados para su extracción. En la parte
final de esta sección, se definen los algoritmos de estimación de pose que
utilizan las representaciones de las cámaras definidas y las caracteŕısticas
visuales extráıdas de la escena, con el fin de calcular la estimación de pose
del objeto.

Después de la revisión general de la literatura, se continúa con una se-
gunda parte donde se define una arquitectura genérica para los sistemas de

3



Resumen

estimación de pose. Esta arquitectura define un entorno de desarrollo, el
cual, es usado para las contribuciones aportadas en este trabajo. En esta
sección desarrollamos un sistema de detección de pose donde no se hace
uso de información temporal y que se basa en los métodos del estado-de-la-
técnica. El sistema desarrollado es combinado con métodos de seguimiento
de objetos, que emplean información temporal, con el fin de implemen-
tar un sistema de estimación de posición robusto y preciso. Se realiza
una comparación con los sistemas disponibles en la literatura mediante un
benchmark sintético que ha sido generado para este estudio comparativo.

Tras la arquitectura genérica definida en la parte anterior, en la tercera
sección de esta tesis, explicamos una de las contribuciones principales que
está relacionada con la detección de objetos articulados. En el sistema de
detección de objetos articulados realizamos una adaptación de las carac-
teŕısticas visuales, modelos y algoritmos para este propósito. Al mismo
tiempo, un benchmark sintético para objetos articulados fue desarrollado
junto con los métodos de medición de error, lo cual permiten la comparación
del sistema con los algoritmos de estado-de-la-técnica.

Otra contribución principal de este trabajo está relacionada con las
mejoras adoptadas en los sistemas de estimación de pose, que tienen por
objeto una mejora de la precisión, el tiempo de ejecución y la estabilidad
del sistema de seguimiento. Las mejoras incluyen la simplificación de los
modelos de los objetos y la adaptación de información del entorno al pro-
ceso de estimación de pose. Utilizando sistemas de realidad aumentada
y cámaras de profundidad, se crea un benchmark del mundo real para el
seguimiento de objetos, que permite la comparación con otros métodos.
También extendemos las aplicaciones del sistema a diversas situaciones,
como la estimación de la posición de la cámara.

Como conclusión, esta tesis implementa múltiples sistemas de estimación
de pose para diferentes tipos de objetos en escenarios del mundo real. Los
sistemas propuestos son comparados con métodos alternativos a través de
los benchmark desarrollados. La evaluación de los diferentes métodos pro-
porciona notables resultados.

4



Chapter 1

Introduction

1.1 Computer Vision

The history of this problem goes back decades beginning with Leonardo da
Vinci (1452-1519) who in a very elegant way says:

”Perspective is nothing else that the seeing of an object be-
hind a sheet of glass, smooth and quite transparent, on the sur-
face of which all the things may be marked that are behind this
glass. All things transmit their images to the eye by pyramidal
lines, and these pyramids are cut by the said glass. The nearer
to the eye these are intersected, the smaller the image of their
cause will appear”.

These words introduce the concept of perspective and flat image plane
that led to the development of photogrammetry in the mid-nineteenth cen-
tury. The photogrammetry is defined as the science of measurement from
optics. The photogrammetry is considered the predecessor of modern pho-
tography. The evolution of this art and the introduction of computers led
to computer vision’s creation when in 1957, Gilbert Hobrogh introduces

5



Chapter 1. Introduction

the first analog machine for corresponding points correlation in two images
[1]. Its patent from 1960 is shown in Fig. 1.1.

This domain combines knowledge from computer science, electrical engi-
neering, mathematics, physiology, biology and cognitive science. Computer
vision is the science that aims scene understanding inspired by human vi-
sion. The scene understanding is carried out from sensed image data using
computer software and hardware. The image data can represent many
forms of information such as video sequences, views from multiple cameras,
depth cameras or multi-dimensional data from medical scanners.

The computer vision discipline is hierarchically structure in three levels
of complexity:

• Low-level Vision: They are the basic features extracted from im-
ages such as edges, corners, optical flow, appearance features, stereo-
vision, depth, etc. Some low-level vision examples are shown in
Fig. 1.2.

• Intermediate-level vision: This refers to 3D scene interpretation
using low-level vision features as input. Some interpretations are re-
lated with object tracking, face detection, plane segmentation, ego-
motion, etc [2, 3].

• High-level vision: Creates an interpretation of low-level and intermediate-
level vision information. The high-level inferred knowledge from the
scene and analyzes the activity, interaction and behavior of the dif-
ferent elements of the environment.

The di↵erent vision levels are combined with the goal of solving a wide
variety of computer vision tasks. These objectives are classified into the
following classes:

• Segmentation: The image data is divided into meaningful parts
that simplify the environmental representation. Tasks such as planes
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1.1. Computer Vision

Figure 1.1: Stereo Machine. Gilbert Hobrogh introduces the first machine to locate
correlating corresponding points in two images. Pixels are illuminated in both images
with a determined displacement. Their intensities are compared. If the intensity values
match, they are considered a correspondence. Otherwise, one of the image shifts its
position [1].
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Chapter 1. Introduction

Figure 1.2: Low-level vision. A Original image. B Edge subtraction. C Corner subtrac-
tion. D Appearance features.

segmentation, background subtraction or element segmentation, try
to classify image regions by associating a particular meaning (planes,
objects, static elements, etc.).

• Reconstruction: This topic refers to tasks that model the 3D world
from image data. Multiple views of an object, light changes in a
scene or structural models, provide valuable information that is used
for environmental reconstruction.

• Recognition: An understanding of the di↵erent scene’s elements is
vital in computer vision. Classification and tracking algorithms give
a general idea of what is happening in the scene at every moment.

• Control: Accurate environmental control leads to improved decision
capabilities that are used in many scopes such as obstacle avoidance,
object grasping, planning motion trace, visual servoing, navigation,
etc.

Every computer vision concept works together towards the goal of achiev-
ing human vision functionality with artificial systems.

1.2 Pose Estimation Recognition

This introduction brings us to the subject of this dissertation that is re-
lated to computer vision science. The presented work is focused on the
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recognition field and in particular, the study of pose detection and track-
ing in the 3D world. The pose estimation covers di↵erent object’s classes
by extending the object’s topology. This extension allows multiple object
tracking such as articulated objects. Pose detection and tracking is used in
multiple scenarios and it is also applied in many di↵erent situations such
as navigation tasks.

3D object detection and tracking is key for a correct scene understanding
[4]. This research field is also related with multiple computer vision tasks
such as object reconstruction, scene segmentation, feature detection and
model generation. All of which are addressed in the course of this thesis.

1.3 Objectives

The scientific objectives defined at the beginning of the thesis were related
with object tracking and detection referred in the previous section. In
particular, the stated main goals are the following:

• The pose estimation tasks in the dissertation are oriented for a real
world environment with real objects. Therefore it is required to im-
plement an application that extract the required object data that is
used in its tracking.

• Development and implementation of a platform for synthetic sequence
generation. The synthetic sequences have the functionality to recreate
scenarios where detection and tracking methods can be tested.

• Study applicability of the state-of-the-art methods in rigid object de-
tection and their applications. The main purpose is to develop a
system capable of rigid objet tracking in real-time and in real scenar-
ios.

• Improvement in rigid object detection. A system extension to artic-
ulated object detection represents a challenge that requires an adap-
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tation from model representation and from the synthetic scene gen-
eration.

• Improvement in rigid object tracking. A simplification of the object
tracking requirements and a system performance improvement rep-
resent a significant advantage in computer vision recognition and for
the research project framework in which this thesis is developed.

• Finally, we proposed a study of possible system applications that
enforce the advantages of the presented research.

1.4 Projects Framework

This dissertation was developed within the framework of the European
project TOMSY, a national (Spanish) project called DINAM-VISION and
a Project of Excellence from Junta de Andalusia named VITVIR.

1.4.1 TOMSY

TOMSY, Topology Based Motion Synthesis for Dexterous Manipulation,
EU project IST-FP7-Collaborative Project-270436.

Project Description. The aim of TOMSY is to enable a generational
leap in the techniques and scalability of motion synthesis algorithms.

We propose to do this by learning and exploiting appropriate topolog-
ical representations and testing them on challenging domains of flexible,
multi-object manipulation and close contact robot control and computer
animation.

Traditional motion planning algorithms have struggled to cope with
both the dimensionality of the state and action space and generalisability
of solutions in such domains. This proposal builds on existing geometric
notions of topological metrics and uses data driven methods to discover
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multi-scale mappings that capture key invariances - blending between sym-
bolic, discrete and continuous latent space representations. We will develop
methods for sensing, planning and control using such representations.

TOMSY, for the first time, aims to achieve this by realizing flexibil-
ity at all the three levels of sensing, representation and action generation
by developing novel object-action representations for sensing based on ma-
nipulation manifolds and refining metamorphic manipulator design in a
complete cycle. The methods and hardware developed will be tested on
challenging real world robotic manipulation problems ranging from primar-
ily ’relational’ block worlds, to articulated carton folding or origami and all
the way to full body humanoid interactions with flexible objects.

The results of this project will go a long way towards providing some
answers to the long standing question of the ’right’ representation in a
sensorimotor control and provide a basis for a future generation of robotic
and computer vision systems capable of real-time synthesis of motion that
result in fluent interaction with their environment.

1.4.2 DINAM-VISION

DINAM-VISION, Spanish national research project, DPI2007-61683.

Project Description. This project aims at developing a real-time
vision system, capable of dynamically adapting the inherent characteris-
tics (for example, the dynamic range of the spatio-temporal filters used in
the low-level vision) of the used model(s) in order to improve information
extraction. First stage of the system deals with low-level visual cues (e.g.
local contrast changes and related magnitude, orientation and phase), while
in the second stage these primitives are fused into multimodal disperse en-
tities. The system has feed-back loops that allow feeding back information
from later stages to the earlier stages, so that optimal functionality at each
stage is achieved. Real-time processing is achieved by utilizing massively
parallel platforms, such as FPGAs.
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The project will explore potential use of the system in di↵erent applica-
tion areas, where the group has expertise, such as driver assistance systems.
The system will be tested in both daylight and night-time scenarios, using
cameras working in the visible light and infrared wavelengths. We will
concentrate on IMOs (independently moving objects) and ego-motion.

1.4.3 VITVIR

The project Tridimensional Vision for Interactive Video Analytics and Aug-
mented Reality (VITVIR), Project of Excellence from Junta de Andalusia
(TIC-8120), is focused on the development of a vision system to extract
3D information from a scene by means of information provided by di↵erent
cameras or 3D sensors such as ToF cameras. The objects in the scene are
classified as static (walls, columns, etc.) or dynamic (mobile furniture, peo-
ple, etc.) in order to resolve the actions to perform in di↵erent application
fields such as video surveillance, augmented reality or domotics.

1.5 Tools and Methods Used

We define MATLAB as the development environment used to implement
and test the di↵erent algorithms in this work. MATLAB allows e�cient
development in a dynamic environment where it is easy the visualization
of any type of information. These qualities make MATLAB a perfect envi-
ronment for computer vision system development.

In order to increase MATLAB potential, we extend implementations
with MEX (Matlab EXecuable) code that allows external C/C++ code
execution.

Part of our work is based on object modeling and synthetic sequence
generation. Therefore, it is required a powerful rendering engine. In this
case, we use OpenGL through C++ code. The OpenGL rendering engine
can be used in MATLAB by MEX code.
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1.5. Tools and Methods Used

We use Blender as a professional tool for object geometry modeling
that we combine with OpenGL in order to generate the required model and
sequences.

Native MATLAB code is processed as an interpreted language and
therefore its execution is known to be slow. However, MEX code used
precompiled sources that have better execution time performance.

Nevertheless, we use MATLAB environment for an initial algorithm de-
velopment. Since we aim for a real-time execution system, once algorithms
performances are tested, we migrate the di↵erent systems to C++ code.

For the algorithms implementation, we take advantage of the state-of-
the-art methods implemented in OpenCV (Open Computer Vision) library
for 2D computer vision algorithm and PCL (Point Cloud Library) for 3D
computer vision algorithm. We use these libraries for e↵ective developing
or comparison purpose.

We extend our algorithm implementations with CUDA code that al-
lows GPU computation. Executing parts of the algorithm’s code in the
GPU provides a speed up of the execution time and therefore improved
implementation performances.

The real-world sequences are recorded with standard cameras for 2D
data information or RGB-D cameras (Microsoft Kinect) for 3D data in-
formation. We use OpenCV (2D data) and OpenNI (3D data) as sensing
libraries.

All the code integration was carried out with Qt project developer and
CMake that ease code compiling, particularly, when there is a high number
of dependencies (GPU code, OpenGL code, OpenCV code, PCL, OpenNI,
etc.).
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Figure 1.3: Dissertation Structure. This scheme shows the di↵erent parts that composed
this thesis and the relations between chapters.

1.6 Dissertation Outline

This dissertation is structure in four main parts that represent the evolution
of this work:

• Chapter 3 - State-of-the-art: This chapter reviews the computer vi-
sion literature in object tracking and detection. The overview analy-
ses the di↵erent visual sensors and computer vision cues used in
pose estimation. In this chapter is also addressed the state-of-the-
art methodology for object pose estimation based on computer vision
cues.

• Chapter 4 - Rigid Pose Estimation: After the literature outline, a
generic architecture for object tracking is defined in Chap.4. The
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1.6. Dissertation Outline

generic architecture aims a robust and accurate pose estimation that
obtains competitive results. This architecture defines the basis of this
work and states a development environment for further contributions.
Therefore, the generic architecture shows the evolution and connec-
tion between further chapters. The pose estimation scheme described
in this chapter defines the input data source, the object model and
the pose estimation methodology based on the state-of-the-art study.

• Chapter 5 - Articulated Pose Estimation: Starting from the develop-
ment environment established with the generic architecture, Chap. 5
describe the improvement in the object class domain. The exposed
contribution extends object pose estimation from rigid object to ar-
ticulated object. This chapter describes the modifications carried out
in the generic scheme such as object model adaptations. It is also
presented the novel methodology for articulated object detection.

• Chapter 6 - Improved Pose Estimation: In Chap.6 a redesign of the ar-
chitecture is carried out. Modifications in every pose estimation stage
are described in order to improve the pose estimation performance.
These improvements also involve object and visual cues simplifica-
tion, and the incorporation of environmental knowledge to the pose
estimation process. In this chapter, the pose estimation methodology
moves from object detection to object tracking algorithm in order to
aim precise pose estimation.

This structure is described in Fig. 1.3, where the relations between
chapters are highlighted. After the four parts, the dissertation ends with a
conclusions chapter (Chap.7) where the main contribution are stressed and
the future work is proposed.
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Caṕıtulo 2

Introducción (Español)

2.1 Visión Artificial

La historia de este problema se remonta décadas, empezando con Leonardo
da Vinci (1452-1519), quien, de una manera muy elegante dijo:

”La perspectiva no es otra cosa que observar un objeto a
través de un trozo de cristal, liso y transparente, en cuya su-
perficie podemos marcar los elementos que vemos tras el cristal.
Todas los objetos transmiten su imagen al ojo mediante lineas
piramidales, las cuales son cortadas por dicho cristal. Cuanto
más cerca al ojo se intercepten las lineas, más pequeña será la
imagen formada.”.

Estas palabras introducen el concepto de perspectiva y de plano de
imagen, lo cual, llevo al desarrollo de la fotogrametŕıa a mediados del siglo
diecinueve. La fotogrametŕıa se define como la ciencia que realiza medi-
ciones a través de la óptica. La fotogrametŕıa es considerada como la pre-
decesora de la fotograf́ıa moderna. La evolución de esta ciencia y con la
introducción de los ordenadores llevo a la creación de la visión artificial
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cuando en 1957 Gilbert Hobrogh introdujo la primera máquina analógica
para identificar puntos correlativos en dos imágenes [1]. La patente de 1960
se muestra en la Fig. 2.1.

Este campo de la ciencia combina conocimientos de ciencias de la com-
putación, ingenieŕıa electrónica, matemáticas, phisioloǵıa, bioloǵıa y cien-
cias cognitivas. La visión artificial es la ciencia que busca el entendimiento
del entorno y se inspira en la visión humana. El entendimiento del entorno
se lleva a cabo con datos de imágenes y mediante el uso de software y
hardware de ordenador. Los datos de imágenes pueden hacer referencia a
distintas informaciones de sensores, como por ejemplo, secuencias de video,
vistas desde múltiples cámaras, cámaras de profundidad o datos multidi-
mensionales de escáneres médicos.

La disciplina de visión artificial se estructura jerárquicamente en tres
niveles de complejidad:

• Visión de bajo nivel: Son las caracteŕısticas básicas que se extraen
de una imagen, como por ejemplo, bordes, esquinas, flujo óptico, ca-
racteŕısticas de apariencia, visión estéreo, profundidad, etc. Algunos
ejemplos de las caracteŕısticas de bajo nivel se muestran en la Fig. 2.2.

• Visión de nivel intermedio: Esto hace referencia a la interpretación
3D de la escena empleando las caracteŕısticas obtenidas en la visión
de bajo nivel. Algunas interpretaciones están relacionadas con el
seguimiento de objetos, detección de caras, segmentación de planos,
ego-motion, etc [2, 3].

• Visión de alto nivel: Crean una interpretación de la información
obtenida por la visión de bajo nivel y la visión de nivel intermedio.
La visión de alto nivel infiere conocimiento de la escena y analiza la
actividad, interacción y comportamiento de los distintos elementos
del entorno.
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2.1. Visión Artificial

Figura 2.1: Máquina estéreo. Gilbert Hobrogh introdujo la primera máquina para lo-
calizar puntos de correspondencia en dos imágenes. Los pixeles son iluminados en ambas
imágenes con un desplazamiento determinado. La intensidad es comparada y si los valo-
res coinciden, son considerados una correspondencia. En otro caso, una de las imágenes
desplaza su posición [1].
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Figura 2.2: Visión de bajo nivel. A Imagen original. B Extracción de bordes. C Ex-
tracción de esquinas. D Caracteŕısticas de apariencia.

Los distintos niveles de visión se combinan con el propósito de resolver
un amplio rango de objetivos. Existe una gran variedad de objetivos que
pueden ser clasificados en las siguientes clases:

• Segmentación: La información de la imagen es divida en parte con
un significado asociado que simplifica la representación del entorno.
Tareas como la segmentación de planos, la substracción de fondo o
segmentación de elementos, intentan clasificar las regiones de la ima-
gen con un cierto significado (planos, objetos, elementos estáticos,
etc.).

• Reconstrucción: Este tema hace referencia a tareas de modelado
del mundo real a partir de imágenes. Múltiples vistas de un objeto,
cambios de iluminación en una escena o modelos estructurales aportan
información valiosa que es usada para una reconstrucción del entorno.

• Reconocimiento: Un entendimiento de los distintos elementos que
componen una escena es vital en visión artificial. Los algoritmos de
clasificación y seguimiento dan una idea del tipo de objetos que pode-
mos observar en un entorno y una idea general de qué está pasando
a cada momento.

• Control: Un control preciso del entorno conlleva una mejora en las
capacidades de decisión que son usadas en muchos ámbitos, tales como
evitación de obstáculos, manejo de objetos, planificación de rutas de
movimiento, control visual, navegación, etc.
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2.2. Reconocimiento de la Estimación de Pose

Cada uno de los conceptos en visión artificial tiene como objetivo con-
seguir un sistema artificial con una funcionalidad similar a la conseguida
con la visión humana.

2.2 Reconocimiento de la Estimación de Pose

Esta introducción nos lleva al tema tratado en esta tesis, el cual está rela-
cionado con la ciencia de la visión artificial. El trabajo que se presenta,
se centra en el campo del reconocimiento y en particular, en el estudio de
la detección de pose y el seguimiento 3d de objetos en el mundo real. La
estimación de pose trabaja con distintas clases de objetos mediante la ex-
tensión de la topoloǵıa del objeto. La detección y seguimiento de poses se
usa en diversos escenarios y situaciones, como por ejemplo navegación y
localización de la posición de la cámara.

La detección y seguimiento de objetos 3D es clave para una correcta
compresión de la escena [4]. Este campo de investigación está relacionado
con múltiples tareas de la visión artificial, como por ejemplo, reconstrucción
de objetos, segmentación de escenas, detección de caracteŕısticas y genera-
ción de modelos. A lo largo de esta tesis haremos referencias a todas estas
tareas.

2.3 Objetivos

Los objetivos cient́ıficos definidos al inicio de esta tesis están relacionados
con la detección y seguimiento de objetos que se hace referencia en la sección
anterior. En particular, los objetivos principales definidos son los siguientes:

• Las tareas de estimación de pose se orientan a un ámbito en el mundo
real donde se trabaje con objetos reales. Por tanto, se requiere la
implementación de una aplicación que extraiga los datos necesarios
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de los objetos. Dichos datos son empleados para el seguimiento del
objeto.

• Desarrollo e implementación de una plataforma para la generación
de secuencias sintéticas. Estas secuencias sintéticas poseen la fun-
cionalidad de recrear escenarios donde los métodos de detección y el
seguimiento pueden ser probados

• Estudio de la funcionalidad de los métodos del estado-de-la-técnica
en detección de objetos y sus aplicaciones. El objetivo principal es el
desarrollo de un sistema capaz del seguimiento de objetos ŕıgidos en
tiempo real en un entorno real.

• Mejora de la detección de objetos ŕıgidos. Una extensión en el sistema
de detección de objetos ŕıgidos a objetos articulados representa un
gran desaf́ıo que requiere una adaptación del modelo de representación
y de la forma de generar escenas sintéticas.

• Mejora en el seguimiento de objetos ŕıgidos. Una simplificación de
los requisitos de seguimiento de objetos y una mejora del rendimiento
del sistema representan una ventaja importante en el campo de re-
conocimiento de la visión artificial y en el marco del proyecto de
investigación en el que se a desarrollado esta tesis.

• Por último, proponemos un estudio de las posibles aplicaciones del
sistema que adapten las ventajas de la investigación presentada a
entornos reales.

2.4 Marco de Proyectos

Esta tesis se ha desarrollado en el marco del proyecto europeo TOMSY,
un proyecto nacional (español) llamado DINAM-WISION y un proyecto de
Excelencia de la Junta de Andalućıa llamado VITVIR.
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2.4.1 TOMSY

TOMSY, Topology Based Motion Synthesis for Dexterous Manipulation,
proyecto europeo IST-FP7-Collaborative Project-270436.

Descripción del Proyecto. El objetivo de TOMSY es permitir un
salto generacional en las técnicas y la escalabilidad de los algoritmos de
śıntesis de movimiento.

Proponemos hacer esto mediante el aprendizaje y la explotación de las
representaciones topológicas adecuadas y ponerlas a prueba en ámbitos
complejos de flexibilidad, manipulación de varios objetos y un estricto con-
trol del contacto del robot y la representación por ordenador.

Algoritmos de planificación de movimientos tradicionales han luchado
para hacer frente tanto a la dimensionalidad del espacio de estados, del
espacio de acción y la generalización de soluciones en estos ámbitos. Esta
propuesta se basa en las nociones geométricas existentes de indicadores
topológicos y utiliza datos impulsados métodos para descubrir correla-
ciones multi-escala que capturan invariantes claves - la mezcla entre repre-
sentaciones espaciales simbólicas, discreta y continua. Vamos a desarrollar
métodos para la detección, planificación y control mediante el uso de dichas
representaciones.

TOMSY, por primera vez, tiene como objetivo lograr esto mediante
la realización de la flexibilidad en todos los tres niveles de la percepción,
la representación y la generación de la acción por el desarrollo de nuevas
representaciones de objetos de acción para la detección basados en la ma-
nipulación de múltiples elementos y el perfeccionamiento de manipuladores
metamórficos. Los métodos y hardware desarrollados se pondrán a prueba
en problemas de robótica del mundo real que irán desde problemas simples
con objetos ŕıgidos geométricos, a elementos de cartón plegable y articula-
dos y llegando a las interacciones humanas con objetos flexibles.

Los resultados de este proyecto contribuirán en gran medida a propor-
cionar algunas respuestas a la pregunta de la correcta representación en un
control sensoriomotor y servir de base para una futura generación de sis-
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Caṕıtulo 2. Introducción (Español)

temas de visión robótica e informática capaces de realizar śıntesis en tiempo
real lo cual resultad en una interacción fluida con su entorno.

2.4.2 DINAM-VISION

DINAM-VISION, Proyecto nacional de investigación, DPI2007-61683.

Descripción del Proyecto. Este proyecto tiene como objetivo desa-
rrollar un sistema de visión en tiempo real, capaz de adaptar dinámicamente
las caracteŕısticas inherentes (por ejemplo, el rango dinámico de los filtros
espaciotemporales utiliza en la visión de bajo nivel) del modelos utilizados
con el fin de mejorar la extracción de información. La primera etapa de
los sistemas trabajo con señales visuales de bajo nivel (por ejemplo, cam-
bios de contraste locales y magnitud relacionada, la orientación y la fase),
mientras que en la segunda fase, estas primitivas se combinan en entidades
multimodales. El sistema tiene bucles de realimentación que permiten re-
finar la información de las etapas posteriores, de esta forma se consigue la
funcionalidad óptima en cada etapa. Procesamiento en tiempo real se logra
mediante la utilización de plataformas de computo paralelo masivo, tales
como FPGAs.

El proyecto explorará el uso potencial del sistema en diferentes áreas de
aplicación, donde el grupo tiene experiencia, como los sistemas de asistencia
al conductor. El sistema se pondrá a prueba tanto en escenarios nocturnos
donde se trabaja con cámaras de onda infrarrojas. Nos concentraremos en
la detección de IMOs (objetos en movimiento de forma independiente) y
ego-motion.

2.4.3 VITVIR

El proyecto Tridimensional Vision for Interactive Video Analytics and Aug-
mented Reality (VITVIR), es un proyecto de Excelencia de la Junta de An-
dalućıa (TIC-8120), se centra en el desarrollo de un sistema de visión para
extraer información 3D de una escena a través de la información prove-
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niente de diferentes cámaras o sensores 3D tales como cámaras TOF. Los
objetos de la escena se clasifican como objetos estáticos (paredes, columnas,
etc) o dinámicos (muebles, personas, etc.) con el fin de resolver las acciones
a llevar a cabo en diferentes campos de aplicación como la videovigilancia,
la realidad aumentada o la domótica.

2.5 Herramientas y Métodos Empleados

Definimos MATLAB como el entorno de desarrollo utilizado para imple-
mentar y probar los diferentes algoritmos implementados en este trabajo.
MATLAB permite el desarrollo eficiente en un entorno dinámico en el que
es fácil la visualización de cualquier tipo de información. Estas cualidades
hacen de MATLAB el entorno perfecto para el desarrollo del sistema de
visión por computador.

Con el fin de aumentar el potencial de MATLAB, extendemos las imple-
mentaciones con código MEX (Matlab EXecuable) que permite la ejecución
de código externo C/C++.

Parte de nuestro trabajo se basa en el modelado de objetos y la ge-
neración de secuencias sintéticas. Por lo tanto, se requiere un motor de
renderizado de altas prestaciones. En este caso usamos OpenGL a través
de código C++. El motor de renderizado de OpenGL se puede acceder
desde MATLAB mediante código MEX.

Utilizamos Blender como una herramienta profesional para el modelado
de objetos geométricos que combinamos con OpenGL con el fin de generar
los modelos y las secuencias virtuales.

El código nativo de MATLAB se procesa como un lenguaje interpretado.
Esto implica que su ejecución se realice de manera menos eficiente. Sin
embargo, el código MEX utiliza fuentes precompilados que tienen un mejor
rendimiento durante la ejecución.

Sin embargo, utilizamos el entorno MATLAB para un desarrollo inicial
de los algoritmos. Dado que nuestro objetivo es un sistema de ejecución en
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tiempo real, una vez que son comprobadas las prestaciones de los algorit-
mos, migramos los diferentes sistemas a código C++.

Para la implementación de algoritmos, empleamos los métodos del estado-
de-la-técnica implementados en la biblioteca OpenCV (Open Computer Vi-
sion) para algoritmos de visión artificial en 2D y PCL (Point Library Cloud)
para algoritmos de visión artificial en 3D. Utilizamos estas bibliotecas para
el desarrollo eficaz o con el fin de una comparación entre métodos.

Extendemos nuestra implementación de algoritmos con código CUDA
que permite la computación en GPU. Ejecutando partes del algoritmo en
la GPU proporcionamos una aceleración de los tiempos de ejecución y por
lo tanto la mejora de las prestaciones de la implementación.

Las secuencias reales se graban con cámaras estándar de datos 2D o
con cámaras RGB-D (Kinect Microsoft) para obtener información 3D de
la escena. Utilizamos OpenCV (datos 2D) y OpenNI (datos 3D) como
bibliotecas de captura de datos.

Todo la integración de códigos se llevó a cabo con el entorno de desarro-
llo Qt y CMake que facilitan la compilación de código, sobre todo, cuando
hay un gran número de dependencias (código de GPU, código de OpenGL,
código de OpenCV, PCL, OpenNI, etc.).

2.6 Estructura de la Tesis

Esta tesis se estructura en cuatro partes principales que representan la
evolución de este trabajo:

• Caṕıtulo 3 - Estado-de-la-técnica: En este caṕıtulo se revisa la li-
teratura de visión artificial para el seguimiento y detección de ob-
jetos. La revisión general analiza los diferentes tipos de sensores y
caracteŕısticas de visión artificial utilizados en la estimación de pose.
En este caṕıtulo también se aborda la metodoloǵıa del estado-de-la-
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Figura 2.3: Estructura de la tesis. Este esquema muestra las diferentes partes que com-
ponen esta tesis y las relaciones entre caṕıtulos.

técnica para la estimación de la pose de objetos basada en carac-
teŕısticas de la visión artificial.

• Caṕıtulo 4 - Estimación de pose de objetos ŕıgidos: Después de la re-
visión de la literatura, una arquitectura genérica para el seguimiento
de objeto se define en el Cap. 4. La arquitectura genérica tiene como
objetivo una estimación de pose robusta y precisa con el objetivo de
obtener resultados competitivos. Esta arquitectura define las bases
de este trabajo y establece un entorno de desarrollo para futuras con-
tribuciones. El esquema de estimación de posición descrito en este
caṕıtulo, define el tipo de datos de entrada, el modelo de objetos y
la metodoloǵıa de estimación de posición basando en el estudio del
estado-de-la-técnica.
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• Caṕıtulo 5 - Estimación de Pose Articulada: Desde el entorno de de-
sarrollo creado con la arquitectura genérica, el Cap. 5 describir las
mejoras realizadas en el dominio del tipo de objeto empleados. La
contribución extiende la estimación de pose de objetos ŕıgidos a obje-
tos articulados. En este caṕıtulo, también se describen las modifica-
ciones realizadas en la arquitectura general, tales como adaptaciones
del modelo de objetos. También se presenta la nueva metodoloǵıa
para la detección del objeto articulado.

• Caṕıtulo 6 - Mejoras en la Estimación de Pose: En el Cap. 6 se realiza
un rediseño de la arquitectura. Modificaciones en cada etapa de la
estimación de pose son descritas con el fin de mejorar el rendimiento
de estos sistemas. Estas mejoras también involucran simplificaciones
en el tipo de caracteŕısticas empleadas y la incorporación de infor-
mación del entorno en el proceso de estimación de pose. En este
caṕıtulo, la metodoloǵıa de estimación de pose cambia de detección
de objetos a seguimiento de objetos con el fin de mejorar la precisión
de la estimación de pose.

Esta estructura es descrita en la Fig. 2.3, donde se destacan las relaciones
entre caṕıtulos. Después de las cuatro partes principales, la tesis concluye
con un caṕıtulo de conclusiones (Cap.8), donde se destacan las contribu-
ciones principales y se proponen el trabajo futuro.
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Chapter 3

State of the Art

Object pose estimation has been study for many authors in the last decades
and it is an ongoing problem. Due to an extend literature, we aim to give
an outline to ease the reading of this work. Further literature can be found
that extends the algorithms and methods here addressed [4, 5].

This chapter reviews the di↵erent methods that have been developed for
object pose estimation. According to the hierarchical structure of computer
vision, we will describe the di↵erent techniques and algorithms related with
this topic.

In this chapter we review the most used camera representations for
standard cameras and depth cameras. We continue with a summary of
the most used computer vision cues subtraction algorithms. And we end
this section with the correlation between computer vision cues and camera
representations using camera pose and feature tracking algorithms.

3.1 Camera Representations

In this dissertation we refer to two di↵erent types of cameras: Standard
cameras and depth camera sensors.
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Figure 3.1: Pinhole camera model describes the mapping from a 3D scene to a 2D image
captured by the sensor.

3.1.1 Standard Cameras

The standard camera representation is based on the pinhole camera model
(Fig. 3.1). This scheme represents the vast majority of the cameras used in
computer vision, in particular, in object tracking systems.

The pinhole camera model represents a simplified optic model that de-
scribes the mapping from a 3D scene to a 2D image. The pinhole aperture is
assumed a point through which all projection lines must pass. The pinhole
model represents the perspective projection model and defines the image
formation as the projection from the 3D world to the image plane through
the camera’s pinhole. The reprojection is primarily a↵ected by the focal
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Figure 3.2: The camera coordinate system and the real world coordinate system define
a correlation between real world points (3D) and image points (2D).

length. The distance between the pinhole and the sensor (focal length)
defines the scene scaling and deformation onto the image plane.

Given a 3D point M with a 4-dimensional vector (x, y, z, 1) as the Eu-
clidean world coordinates system, the corresponding 2D point m with a
3-dimensional (u, v, 1) image coordinated can be computed by:

sm = PM (3.1)

Where s is a scale factor and P is a 3x4 projection matrix. The P matrix:

P = K[R|t], (3.2)
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is composed by the camera calibration matrixK and the transformation
from the world coordinates to the camera coordinates (See Fig. 3.2). R
represents the rotation matrix and t the translation vector.

In particular, the camera calibration matrix is defined by the following
matrix:

K =

2

4
↵
u

s u0
0 ↵

v

v0
0 0 1

3

5 (3.3)

where ↵
u

and ↵
v

are proportional to the focal length f and defined by:

↵
u

= m
u

f (3.4)

↵
v

= m
v

f, (3.5)

where m
u

and m
v

represent the pixel dimension in u and v direction
respectively. Therefore ↵

u

and ↵
v

define the focal length in pixel dimen-
sions. The 2D point c = {u0, v0} defines the principal point that represents
the intersection of the optical axis with image plane (See Fig. 3.2). The
parameter s refers to the skew parameter that is used if the image coordi-
nates axes u and v are not orthogonal to each other. The estimation of the
internal camera calibration parameters is done with calibration methods.
See [6, 7, 8] for more information.

The presented projection model does not include the possible camera
lens distortion. This deformation can be modeled as a 2D deformation of
the image and corrected in an un-distortion process [9].

Knowing the camera calibration matrix is crucial for an accurate trans-
formation between the image coordinate system and the real world coordi-
nate system using the transformation [R|t].
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Figure 3.3: Freedman et al, PrimeSence patent [10]. First RGB-D camera patent. The
image shows the projected pattern and its deformation according to the scene’s depth.

3.1.2 RGB-D Cameras

The second camera representation refers to depth sensors. RGB-D sensors
combine RGB color information with per-pixel depth information. The
sensor projects an infrared pattern that is captured by an infrared camera
in the sensor. Per-pixel depth is inferred from the deformation of the known
pattern. The astigmatic lens causes a projected circle to become an ellipse
whose orientation depends on depth [10] as shown in Fig. 3.3. An example
of the infrared pattern is shown in Fig. 3.4.

The Fig. 3.4 also shows the elements that compose the depth cam-
era. Beside the pattern projector and the infrared camera that capture
the pattern, the device also features an RGB camera. The depth informa-
tion is associated with the calibrated RGB camera that gives the per-pixel
RGB information and it is based on the pinhole camera model explained in
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Figure 3.4: Microsoft Kinect - RGB-D Camera [11]. The left image shows the sensor
with the di↵erent elements that compose the devices: Pattern projector, Infrared camera
to capture the pattern and a standard RGB camera. The right image shows an infrared
image of the projected pattern.

Sec. 3.1.1. The output of these cameras is defined as a point cloud that rep-
resents a collection of points in the three-dimensional space with an RGB
associated attribute.

3.2 Computer Vision Features

Computer vision methods, and specially 3D tracking methods, are based
on the available information that can be extracted from the images. The
extracted image information is defined as image features that represent an
abstraction of the scene data and which are used to simplify any computer
vision task. Depending on their origin we distinguish between synthetic
features and natural features.

3.2.1 Synthetic Features

Synthetic features refer to specific markers that are added to the environ-
ment and which are easy to locate (See Fig. 3.5). These markers allow an
accurate and reliable feature detection.
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Figure 3.5: Artificial features. The left image shows a motion capture system (MoCap)
that defines 2D coordinates on the image plane [12]. The right image shows a fiducial
object used in ARToolKit that defines 3D coordinates [13].

There are two synthetic features classes. The first class is defined by
point markers (Fig. 3.5). These features define a specific point on the
image plane that implies two degrees of freedom (DOFs). A combination
of multiple point markers shaped in a known structure can give an extra
information that determines the 3D location of the features and therefore,
defining six DOFs.

The second class is defined by planar markers (Fig. 3.5). Planar mark-
ers, also known as fiducials, are usually small figures that contain black
and white squares and they carry more information that the point markers.
They were designed for easy detection and they define a 3D position and
orientation with 6 DOFs. Also, multiple planar markers can be combined
with the purpose of increasing the information accuracy.

The main disadvantage of synthetic features is the requirement of adding
extra information to the scene that makes the scenario unrealistic. In some
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situations this option may not be feasible or even convenient such as outdoor
scenarios.

3.2.2 Natural Features

This type of features overcomes the above problems by using natural fea-
tures presented in the scene. Natural features do not interfere the scenario
but are harder to detect that synthetic features and the information pro-
vided is not as accurate. There are many di↵erent classes of natural features
and computer vision methods able to extract them from real world envi-
ronment. We can classify these features in two main classes:

3.2.2.1 Sparse Visual Features

Sparse visual features represent meaningful parts of the image that define
relevant information of the scene. This information refers to edges, corners,
planes, objects, etc; that are identified based on their appearance on the
image plane. Exist many di↵erent algorithms for sparse visual features
extraction. Some of the main approaches are described below.

3.2.2.1.1 Edge-Based Methods The first approaches for natural fea-
tures extraction were all edge-based methods because of their simplicity
and their computational e�ciency [14].

Edge features are pixels around which the image intensity information
defines a severe variation. Edges are caused by a variety of factors such
as surface normal discontinuity, depth discontinuity, surface color discon-
tinuity or illumination discontinuity. One of the main advantages of edge
features is the detection robustness in changing light conditions. Edges fea-
tures are very useful in computer vision tasks such as scene decomposition
and segmentation, camera calibration, motion analysis, etc.
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Figure 3.6: Edge extraction methods. A Original Lena Image, B Canny Edge Detector, C
Edison Edge Detector, D SUSAN Edge Detector, E Sobel Edge Detector and F Rothwell
Edge Detector.

The principal problem of edge-based methods is caused by noisy data
that can provoke false positives or leads to information loss by blurring
sharp intensity variations.

There are many di↵erent edge detector methods, Canny edge detector,
Sobel edge detector, Edison edge detector, Rothwell edge detector, SUSAN
edge detector, etc. Fig. 3.6 shows an example of di↵erent edge extraction
methods. The image shows in this example is the well known Image of
Lena Söderberg used in many image processing experiments. However, we
review the two first algorithms that define the principles in which the other
methods are based.
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3.2.2.1.1.1 Canny Edge Detector This method uses a multi-stage
algorithm to subtract edge information [15]. The algorithm is divided in
five separate steps.

1. Smoothing: The first step applies a blurring filter that removes
possible image noise.

2. Gradient detection: In this step, large gradient magnitudes are
selected as potential edges.

3. Edges sharpening: Edges blurred in the initial step are converted
to sharp edges.

4. Edges classification: A threshold is applied to classify edges into
strong edges and weak edges.

5. Edges connectivity: Strong edges are interpreted as certain edges
and weak edges are determined as certain edges if they are connected
to strong edges. Certain edges are defined as the final edge image.

3.2.2.1.1.2 Sobel Edge Detector The Sobel filter is a process for
edge detection that is divided in three steps. The two first steps apply 3x3
filter (kernels) that approximate the partial derivatives in x (horizontal)
and y (vertical):

D
x

=

2

4
+1 + �1
+2 0 �2
+1 0 �1

3

5 ⇤ I and D
x

=

2

4
+1 + �1
+2 0 �2
+1 0 �1

3

5 ⇤ I, (3.6)

where I represents the image data matrix. The results of these two
filters is D

x

(x, y) and D
y

(x, y). The final step is a gradient magnitude
approximation calls the Sobel Filter:

S(x, y) = sqrt((D
x

(x, y)2) + (D
y

(x, y)2)). (3.7)
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The Sobel Filter is applied on the horizontal and vertical partial deriva-
tives. The result of this filter defines the edge image.

In the literature is possible to find many variations to the algorithm
such as Logarithmic Image Processing (LIP-Sobel) [16] or Parameterized
LIP (PLIP-Sobel) [17].

Edge detection algorithms are usually extended as corner detection al-
gorithms that define a corner as the intersection between two detected edges
(See Fig. 1.2).

3.2.2.1.2 Interest Point-Based Methods Another types of sparse
visual features are interest points. The methods that extract this kind of
features are based on local appearance information. These methods rely
on matching individual features between images and therefore they present
a robust behavior in the presence of occlusion and clutter scenarios. The
interest point-based methods also reduce computational complexity and it is
possible to achieve robustness in light condition changes. These algorithms
are based on patches matching that is a task divided in two phases: features
extraction and matching.

Extraction:
The extraction phase handles the patches selection that can be done
manually or automatically. The selected patches should have specific
qualities such as textured patches that ease their identification. They
should be di↵erent from their neighbors in order to avoid incorrect
matches. And finally, patches that define repetitive patterns should
have a lower weight in the algorithm process since they may lead to
ambiguous features matching. The defined qualities assure a precise
and reliable feature pose estimation [4].

Many di↵erent approaches have been proposed to describe the invari-
ance of a selected pixel. Nowadays most of the methods rely on the
auto-correlation matrix Z [18, 19, 20].
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where Z’s coe�cients are the sum over a window of the derivative
I
u

and I
v

of the intensities values with respect to the pixel coordi-
nates [4]. The Z’s coe�cients are computed for every pixel in the
image and it is used as a measurement for candidate’s selection.

Matching:
The interest points selected in the first stage from one single image
define a set of features m

i

that can be matched to a di↵erent set of
featuresm0

j

extracted from a di↵erent image. Features in both sets are
matched between each other and their similarities are measured using
zero-normalized cross-correlation that is invariant to image intensity
changes. This quality makes the procedure robust to illumination
variations.

In the literature we can find a wide variety of interest point-based meth-
ods. The main algorithms are described below.

3.2.2.1.2.1 SIFT (Scale-Invariant Feature Transform) The SIFT
features are based on multiple orientation histograms, which tolerate sig-
nificant local deformations. SIFT is one of the most e↵ective feature rep-
resentations [21]. This method can robustly identify patches in challenging
situations such as clutter environments and partial occlusions. The scale-
invariant feature transform (SIFT) descriptors, which represent the image
patches (keypoints), are invariant to uniform scaling, orientation, partially
invariant to a�ne distortion and illumination change [22].

The significant invariance of the descriptors defined in SIFT is achieved
by the following stages:

Keypoint location and scaling:
In the first stage of the algorithm, the location and scale of the key-
points are precisely determined by the Di↵erence of Gaussian (DoG)
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function applied in scale space. The DoG function is an e�cient ap-
proximation of the Laplacian of Gaussian (LoG) and can be computed
through an image pyramid that reduces the image dimensions in each
level.

Keypoint stability:
The rotation invariance associated with each keypoint is achieved
through the assignment of an orientation to the feature. The keypoint
orientation provides stability under image rotations. The selected
orientation is determined by the peak in the histogram of the gradient
orientation within a region around the keypoint. The purpose of the
describe orientation selection pursuits the stability of this algorithm
against lighting condition changes.

Keypoint descriptor:
The keypoint descriptor is a feature’s associated information that de-
fines the 3D histogram of gradient locations and orientations of the
keypoint. The point’s neighborhood is divided into multiple subre-
gions (typically 4x4) which contents are summarized by an 8 bins
orientation histogram. Therefore, a vector with 128 elements (4x4
regions and 8 bins per region) defines the keypoint descriptor. The
final vector is normalized in order to reduce possible light alterations.

3.2.2.1.2.2 SURF (Speeded-Up Robust Features) Based on
SIFT method, SURF [23] was presented as speeded-up version of SIFT.
The main di↵erences between both methods are the region detector and
descriptor generation. Firstly, SURF keypoints are described based on a
Hessian matrix. In the case of descriptors, a vector of 64 elements is used
to described the keypoints and its information is based on Haar-wavelet
distribution. This type of descriptor is essential to provide a faster keypoint
subtraction.

3.2.2.1.2.3 KLT (Kanade-Lucas-Tomasi) Points The KLT points
represent an alternative for feature subtraction. Beside feature’s subtrac-
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tion from a single frame as in SIFT and SURF method, this algorithm track
features across a sequence of images [24]. Keypoints are extracted from an
initial frame and then the points are tracked in the following images.

Point tracking provides extra information by defining the feature po-
sition through the image sequence as a point trace. Acceleration, motion
behavior, etc; can be specify by knowing the feature’s trace. In the other
hand, this method also implies disadvantages. KLT points are less precise
than keypoints extracted with SIFT or SURF and features that disappear
in the frame sequence may lead to incorrect features location estimation.

3.2.2.2 Dense Visual Features

In the previous section, the computer vision algorithms refer to sparse infor-
mation that describes local information at a certain location on the image
plane. Dense visual features are a di↵erent class of computer vision features
that describe a specific attribute for every pixel in the image.

In the literature, there are many dense feature methods. The most
addressed methods define a velocity field (optical flow) or a depth field
(disparity). Here we give a brief overview of both methods.

3.2.2.2.1 Optical Flow Optical flow represents the apparent motion
of the image caused by the relative motion between the observer and the
scene [25]. The velocity of each pixel position is computed assuming con-
stant pixel intensity:

m0 = m+

✓
u̇
v̇

◆
dt, (3.9)

where m is the image projection of a point at time t, m0 represents
the pixel location at time t + dt and (u̇, u̇)T the apparent speed of the
2D motion [4]. The velocity field produced by the optical flow algorithms
has many di↵erent applications in several computer vision domains. One
of its applications is the combination of optical flow with sparse visual
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Figure 3.7: Stereo cameras set used for disparity computation. Typically, the separation
between cameras is similar to the human eyes distance.

features. Edge detector can benefit from optical flow information avoiding
error accumulation. KLT points computational time can be improve by
including pixel velocity that leads the matching search.

3.2.2.2.2 Depth Perception The depth perception of the scene de-
fines each pixel distance from the image plane to the real scene. There are
two main types of depth perception: based on passive sensors and based
on active sensors.

Passive sensors (Fig. 3.7) observe the scene in order to create the depth
estimation. This type of sensors are used in disparity algorithm. One of
the most common disparity algorithms that compute depth information are
stereo vision systems [21]. These stereo vision systems are bio-inspired in
human vision. Therefore, two cameras that are taking images from the same
scene are set at a certain distance creating a system fully calibrated. Images
taken from the di↵erent cameras at the exact same moment are compared.
The aim of this comparison is to determine correspondences between the
di↵erent images. With the di↵erent correspondences, the system performs
a scene reconstruction that allows depth estimation.
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In the other hand, active sensors performs a depth estimation based on
sensing data broadcast that is measured to compute the depth information
of the scene. There are many type of active sensor such as time-of-flight
cameras, laser sensor, RGB-D cameras, etc. In particular, RGB-D cameras
have become very popular in the recent years due to their performances,
prices and dimensions (See Sec. 3.1.2).

3.3 Pose Estimation

The main core of this dissertation is focused on computer vision pose esti-
mation tasks. The pose estimation aims to compute the state of an element
in a real-world scenario. The scene’s elements can represent objects, floor,
doors, camera, etc; and their states typically define the element 3D location
in the scene. Furthermore, the element’s states can be extended to more
complex states representation, such as internal object articulations, etc.

In computer vision, the hidden states of the elements are estimated
base on the visual features extracted by the di↵erent algorithms. This task
is usually called pose estimation that is responsible of transforming the
features information into accurate and robust state estimations.

Adding extra information about the scene such as CAD models, planes
or rough environmental models, ease the pose estimation task which aims
more e↵ective, robust and precise results.

In other to illustrate the connection between features and pose estima-
tion, we review the main algorithms used in computer vision pose estima-
tion.

Firstly, we have to distinguish between the two di↵erent types of pose
estimation methods:

Pose Detection:
The first type of pose computation refers to the computer vision meth-
ods that do not based their estimation in previous stages. In other
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words, no temporal information is used in the pose estimation pro-
cess. This restriction a↵ects the type of features that are used or the
type of algorithm’s input information. The main properties of these
methods are a less accurate pose estimation but in the other hand,
the algorithms are more robust in case of failure. Features such as
edge (without optical flow improvement), cornet, SUFT, SIFT and
depth information are suitable for pose detection algorithm.

Pose Tracking:
The second type of pose estimation is based on temporal information
that can be extracted through the frame sequence. Including tem-
poral information to the algorithms simplify dramatically the pose
estimation task. Temporal knowledge, such as traces or accelera-
tions, is used by these methods and requires a perfect tracking of the
elements through the frame sequence since the algorithm estimations
are computed base on previous state information. The advantage of
tracking methods is that they have a very accurate pose estimation.
By contrast, pose tracking drawbacks lie on the requirement of exter-
nal initialization and resetting systems. These external systems start
or restart the tracking system in case of non temporal information
available. These problems appear at the begging of the sequence and
in case of a misleading trace. Computer vision features such as optical
flow and KLT points are computed using a sequence of images and
therefore, temporal information. These methods can combine tem-
poral information with non-temporal information since no temporal
constrains are applied.

Based on this classification we distinguish between algorithms suitable
for pose detection or pose tracking. These algorithms are well known math-
ematical tools that can be adapted into computer vision pose estimation
task.

Here we are going to focus on some of literature methods that are ad-
dressed along this dissertation.
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3.3.1 Direct Linear Transformation (DLT)

This algorithm was the first addressed method for estimating the 3D lo-
cation of a scene’s element (matrix P from equation (3.2)). This method
estimates the object pose solving a linear system. Each feature defines a
point in the 3D space M

i

that has a 2D location on the image plane m
i

. We
assume that n correspondences between 3D points M

i

and their projections
m

i

are given. A perspective projection matrix P relates these two sets of
points projecting M

i

points on m
i

points (3.1).

The relation between the M
i

and m
i

defines two linearly independent
equations

u
i

=
P11Xi

+ P12Yi + P13Zi

+ P14

P31Xi

+ P32Yi + P33Zi

+ P34
(3.10)

v
i

=
P21Xi

+ P22Yi + P23Zi

+ P24

P31Xi

+ P32Yi + P33Zi

+ P34
. (3.11)

For simplicity’s sake, the equation can be rewritten as Ap = 0 where p
defines the coe�cients P

ij

of the P matrix. The solution is computed using
the Singular Value Decomposition (SVD) of A. This approach computes
P matrix that contains the calibration matrix K and the transformation
matrix [R|t]. Computing the entire P matrix will require a large number of
correspondences and therefore, a higher computational cost. The problem
can be simplified if the calibration matrix is given:

[R|t] ⇠ K�1P. (3.12)

This simplification of the problem aims more reliable results in pose
estimation scenarios [4].

3.3.2 Perspective-n-Point (PnP) Problem

Fischler and Bolles [26] introduce the term Perspective-n-Points problem
that solves the P matrix base on n-features points. The PnP is based on the
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DLP algorithm but instead of solving the P matrix, strictly solves the R and
t parameters independently. In order to compute the transformation pose,
four is the minimum number of correspondence points required. With four
points, the algorithm is able to find the unique solution. This algorithm has
no restriction in terms of point distribution, whether is possible to compute
the solution transformation with coplanar or non-coplanar points, as long
as they are not distributed in a single line.

They have been proposed several approaches to the PnP problem [26,
27, 28]. Some of these solutions cope the problem with a linear system,
such as P3P method, or approximating the estimation with an iterative
approach, such as POSIT method.

3.3.2.1 Perspective-3-Point (P3P)

The P3P is the most basic case of the PnP problem. In this approach, four
correspondences that define a 3D location in the object and a 2D location
in the image coordinate system are required (See Fig. 3.8).

The four points are used to determine the distances between the four
points and the camera origin O are computed as kOAk, kOBk, kOCk and
kODk and converted into the pose configurations.

Using the ABC triangle (Fig. 3.8), we can determine an equation for
each triangle side (AB,AC,BC) based on the law of the cosine. For in-
stance, the triangle determined between the side AB and the origin O with
u and v projection of the points A and B on the image plane (see Fig. 3.9),
it defines the next equation based on the law of the cosine:

AB2 = OA2 +OB2 � 2 ·OA ·OB · cos(↵
u,v

) (3.13)
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Figure 3.8: The four points (ABCD) required for the P3P algorithm are represented in
the 3D space. The ABC triangle is projected on the image plane defining a projected
triangle uvw. The camera origin is defined by the O point.

!

O 

B 

A 

u 

v 

Image Plane 
Figure 3.9: Triangle defined by the segment AB and the camera origin O. The A and B
points are reprojected on the image plane and denoted as u and v.
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The equations defined for each side give the following equation system:
8
><

>:

AB2 = OA2 +OB2 � 2 ·OA ·OB · cos(↵
u,v

)

AC2 = OA2 +OC2 � 2 ·OA ·OC · cos(↵
u,w

)

BC2 = OB2 +OC2 � 2 ·OB ·OC · cos(↵
v,w

)

(3.14)

The P3P equation system can be simplified (see [29]) and solved to ob-
tain the OA, OB and OC distances using the Wu Ritt’s zero decomposition
methods [30]. The 3D location of the points A, B and C can be obtained
using the following equation:

M
i

= m
i

kM
i

Ok (3.15)

Given the 3D points A, B and C, we want to determine the [R|t] per-
spective transformation that aligned the A, B, C points to the u, v, w
points. The solution to this problem was referred in [29] and represented
by:

m
i

= RM
i

+ t, (3.16)

where the R and t transformation align both point sets. The optimal solu-
tion to determine R and t is achieved in three steps:

• Find the centroid of both point sets and translate the point set to the
origin.

• Compute the optimal rotation (R) that aligns both point sets using
SVD.

• Compute the translation (t) based on rotation (R).

The described algorithm uses 3 points to compute [R|t] transformation.
In order to improve the robustness of the method the method is extended
with four points estimation (A, B, C and D) where the point set is group
in four possible triangles (ABC, BCD, CDA, DAB). Each triangle output
a rotation R and a translation t that are compared in order to select the
best solution. For more details see [31].
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3.3.2.2 Perspective from Orthography and Scaling with ITera-
tions (POSIT)

The POSIT algorithm [32] is another approach for pose estimation. Based
on correspondence points (M

i

 ! m
i

) where the minimum number of
correspondences is four as in the previous approach. The first step of the
algorithm computes an approximate solution of the rotation R and trans-
lation t by solving a linear system defined by the DLT algorithm (See
Sec. 3.3.1). In a second phase, a weight is assigned to each feature based
on the computed [R|t]. Each point coordinates are transformed based on
their weight. Iteratively, a new estimation is computed from the weighted
point coordinates until convergence. The drawback of this approach is high
sensitivity to noise and the impossibility that the method has for only use
coplanar points.

3.3.2.3 Robust Pose Estimation

In pose estimation, the appearance of erroneous points (outliers) due false
positive in feature detection methods is a very common problem. Includ-
ing outliers in pose estimation algorithms lead to severe pose estimation
errors. Both types of algorithm performance can be highly improved with
the combination of robust estimation mechanism.

One of the best-known algorithms for robust estimation is RANSAC
(RANdom Sample Consensus). Introduced in [26], this iterative algorithm
estimates the parameters of a mathematical model based on observed noisy
data that contains outliers (erroneous points). The course of the method
starts with a random selection of the minimum data subset. The size of
the minimum data subset is determine by the minimum number of data
elements with which it is possible to compute the model’s parameters. The
model’s parameters are matched with the rest of the data elements. An
error function determines if a data element suits the determined model’s
parameters (inliers) or otherwise (outliers).
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If the number of inliers is below the defined threshold, the model’s pa-
rameters are rejected and a new data subset is randomly selected. In case
that the number of inliers is above the defined threshold, the model’s pa-
rameters are considered valid and the outliers are removed from the data
set. Finally, a new model’s parameters estimation is computed but in this
case only using the inlier elements. In the PnP estimation, RANSAC al-
gorithm is used selecting the minimum number of correspondences that
are used to compute a [R|t] transformation (4 correspondences). For each
point, the computed transformation is applied to the data points and the
error between the transformed point projection and its expected location
on the image plane is computed using:

d(m
i

�R ·M
i

+ t), (3.17)

where d represents the Euclidean distance between the transformed M
i

point and the m
i

point. The distance error is used to classified each point
as an inlier or outlier based on a defined distance threshold.

3.3.3 Iterative Closest Point (ICP)

The ICP algorithm is a mathematical tool to minimize the di↵erences be-
tween two datasets:

X = x1, . . . , xn (3.18)

Y = y1, . . . , y
k

(3.19)

This algorithm can be used to solve many di↵erent problems and in-
put dataset can represent a wide variety of information. Particularly, in
computer vision the input data commonly are represented by correspon-
dences, that define a 2D image coordinates and a 3D world coordinates, or
by multiple point clouds that are composed by a collection of 3D points.
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The concept of the ICP algorithm is to iteratively estimate the rotation R
and translation t that minimize the distance error between both datasets.

The algorithm is divided in the following steps:

• The elements of one of the dataset (X) are associated with the el-
ements of the second dataset (Y ). The association is based on the
distance between points and it is computed using the nearest neighbor
algorithm [33].

• Based on the associated elements, a transformation [R|t] is estimated.
The computation is carried out with a mean square cost function:

E(R, t) =
1

N
p

NpX

i=1

kx
i

�Ry
i

� tk2, (3.20)

where x
i

and y
i

are corresponding points. This transformation aligns
both dataset minimizing the distance error between associated points.

• The positions of one of the dataset’s elements are updated base on
the estimated transformation.

• The estimated transformation error is computed with and error func-
tion and evaluated based on a stopping criterion. If stop conditions
are not fulfilled, the algorithm returns to the first step. Otherwise,
the final [R|t] transformation is given as output.

One of the disadvantages of the ICP algorithm is related with the initial
poses of the datasets with respect to each other. If the initial poses are very
di↵erent, the element association could lead to an incorrect transformation
that su↵ers from local minima.

3.3.4 Particle Filter (PF)

Particle filter algorithms are used to estimate the hidden state of a system.
The particle filter method is divided in two di↵erent steps. In the first step,
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the particle filter computes the system’s hidden state evolution, which is
represented by a state vector. The state vector x

k

, represents the system
state at any moment in time. The system’s state evolution is defined by:

x
k

= f
k

(x
k�1, vk�1) (3.21)

where f
k

is a nonlinear function that defines the evolution of the state
vector x

k

based on the previous x
k�1 estimated state and the estimated

noise vector v
k�1.

The second step of the PF algorithm computes the x
k

estimated state
error z

k

using the following function named validation function:

z
k

= h
k

(x
k

, n
k

) (3.22)

where h
k

is a nonlinear function and n
k

is the measurement noise vector.
The function (3.22) aims to estimate the error x

k

based on the set of all
available measurements z1:k = {z

i

, i = 1, . . . , k} up to k time.

The prediction of a state space model at time k + 1 can be obtained
based on the current state x

k

and the available observations z1:k. System
state estimation with particle filter is based on the recursive Bayesian ap-
proach, which recursively calculates an estimation of the state x

k

at time
k, taking di↵erent values and given the data z1:k up to time k. Many dif-
ferent approaches have been proposed that incorporate di↵erent evolution
function or validation function [34, 35].

In object pose estimation, PF hidden state is represented by six dimen-
sions vector that defines the object 3D location. Three parameters (x, y, z)
define the translation and three parameters (pitch, roll, yaw) represent the
rotation around axis X, Y and Z. The [R|t] transformation matrix can
be easily obtain from the estimated state vector. The evolution function
and the validation function is defined according to the type of element that
we are tracking and the type of features that we are using for the pose
estimation.
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3.3.5 Pose Estimation Summary

The presented mathematical tools have a direct application to the pose
estimation problem. Some of these methods use temporal information and
therefore, suitable for tracking system. Some other methods do not use
temporal information, hence, they are used in pose detection systems. The
Perspective-n-Point (PnP) problem is a pure detection methods, meanwhile
ICP can be used as a detection method but can be improved if temporal
information is added such as object pose trace or object acceleration in-
formation. In the other hand, PF is a pure tracking method since its
estimation is base on previous states estimation.
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Chapter 4

Rigid Object Pose
Estimation

In chapter 3, we have introduced the state-of-the-art in computer vision
object tracking and detection. In the current chapter, we focus on the
implementation of the state-of-the-art. In particular, we define the diverse
methodology for object modeling, feature extraction and pose estimation
related with the rigid object pose detection.

Pose detection is a specific class of pose estimation methods that does
not use temporal information in its estimation process (See Sec. 3.3).

Firstly we start with an overview of the state-of-the-art approaches in
computer vision rigid pose estimation. After the literature summary, a
generic architecture is defined for object pose estimation. The generic ar-
chitecture states the basis of our work and defines the environment where
experiments are carried out. Also in this chapter, we define the tools used in
the system’s implementation. In order to test the system’s performance, we
develop a benchmark that defines di↵erent challenging scenarios and allows
a qualitative measurement. Finally, we combine the pose detection imple-
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mentation with pose tracking methods that creates a robust and precise
combined system.

4.1 State of the Art

Based on the computer vision’s tools and features explained in chapter 3,
in this section, we continue the review of the literature related with rigid
object pose estimation.

Estimating the six DOFs (three translation and three rotation) pose of
rigid objects is critical for robotic applications involving object grasping
and manipulation, and also for activity interpretation. In many situations,
models of the object of interest can be obtained o↵-line, or on-line in an
exploratory stage. Since it is such an important ability of robotic systems,
a wide variety of methods have been proposed in the past. We only provide
a brief overview of the major classes of methods here. The most popular
methods match expected to observed edges by projecting a 3D wireframe
model in the image [36]. Many extensions have been proposed that exploit
also texture information and particle filtering in order to reduce sensitivity
to background clutter and noise [37, 38]. Detection approaches on the other
hand can recover the pose without requiring an initial estimate by using
sparse keypoints and descriptors with wide-baseline matching [4, 37]. A
di↵erent class of approaches relies on level-set methods to maximize the
discrimination between statistical foreground and background appearance
models [39]. These methods can include additional cues such as optical flow
and sparse keypoints, but at a large computational cost [40]. Most of the
above-mentioned approaches can exploit multi-view information, but dense
depth information is rarely used. Recently, due to the prevalence of cheap
depth sensors, depth information is being applied with great success in
various related problems, such as on-line scene modeling [41] and articulated
body pose estimation [42]. In this implementation we focus on the detention
methods since these methods are robust and do not require external method
for initialization or recover from failures. We are inspired in the detection
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Figure 4.1: Generic dissertation architecture. It is divide in five main blocks. The blocks
configuration defines the pose estimation system purpose.

approach presented in [37] that implement a referent method in computer
pose detection system.

4.2 Generic Architecture

In this section, we define a generic architecture that describes the estimation
system’s structure that is used throughout this dissertation. This generic
architecture allows modifications and improvements, advantages that are
used in the following chapters.

Fig. 4.1 shows the generic architecture diagram. The structure is di-
vided in five di↵erent blocks:

Input:
The state-of-the-art indicates multiple types of input data used by the
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pose estimation systems. The commonly used input data is captured
by standard camera sensors that yields monocular images of the scene.
Along this dissertation we also address the depth information as input
data that is obtained by stereo camera set up or RGB-D cameras.

Model:
Adding model information simplifies the pose estimation computa-
tion. These models can be generated in an o↵-line process or, in case
of tracking systems, on-line in an exploration stage at the beginning
of the tracking sequence. Beside the model generation process, there
are a wide variety of models that can represent multiple types of ele-
ments such as objects, planes, scene information, etc. Among other,
models can represent:

• Geometric models, which could be defined with edges, contour,
geometry shape, etc.

• Appearance models, that codify the object texture information
by feature descriptors. These descriptors are generated using
interest point methods such as SIFT, SURF, KLT, etc.

• Kinematic models, represent the mechanic behavior describing
the object’s motion without references to the forces that cause
the motion. This description brings extra information to the
pose estimation systems. Elements such as articulated objects
require a kinematic model (skeleton) that describes every ob-
ject’s independent part motion and constrains.

Features Extraction:
Features extraction is one of the basic blocks in the generic scheme,
which defines the types of features used. Computer vision features
state the feature extraction algorithm. The system’s input has to be
consistent with the type of used features. Throughout this disserta-
tion we design di↵erent architecture configurations based on di↵erent
feature classes, such as SIFT features or segmentation features.
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Pose Estimation:
The main core of computer vision pose estimation lies on the pose
estimation method. The type of method defines the system’s charac-
ter, outlining the system as a temporal approach (tracking system) or
as a single-frame approach (detection system). Therefore, the sensor
type, the object’s model and the feature class, have to be consistent
with the system’s temporal orientation.

Output:
The final stage defines the output yields by the estimation system.
The output describes the state of the object, which represent its 3D
scene’s location. In general, for rigid objects, the object state ⌧ is
described by its translation t = (x, y, z) and by its orientation ! =
(roll, pitch, yaw) that are Euler angles that represent X, Y and Z
axis rotation. In some scenarios with more complex object, some
extra parameters may be required. This is the case of articulated
objects where their internal articulations have to be described in the
object’s state. We use ✓ as a vector of parameters that describes the
articulated object internal configuration (See Sec. 5.3.1).

4.3 Pose Estimation Architecture for Rigid Ob-
jects

An adaptation of the generic architecture is done for rigid object detection.
Based on the literature review in Sec. 4.1, we implements a rigid object
pose detection that follows the scheme represented in Fig. 4.2.

Highlighted color boxes stress the modules configuration for this imple-
mentation. The scheme defines standard camera data as the input to the
system. Appearance and geometric object’s models are used; and pose de-
tection methods specific for object detection are explained in the following
sections.
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Figure 4.2: Rigid object architecture. The figure shows the generic architecture adapted
for rigid object pose detection. The highlighted color boxes represent the configuration
for each part of the scheme. The use of SIFT features and PnP pose estimation, define
single-frame approach and therefore a detection system.

4.3.1 Object Models

Pose estimation algorithms required an object model that eases the pose
estimation task. The object model generation is an initial process that can
be generated in an o↵-line process or in an on-line process at the exploration
stage.

In rigid object pose estimation, the object model can represent any
type of object’s information and every author defines and uses the object
model in di↵erent ways. Most commonly used object models can be defined
by its geometrical structure used in algorithms base on edge and contour
detection or by its appearance information that is extracted from the object
by appearance methods such as SIFT, SURT, KTL, etc.
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For rigid object detection, the used models represent a combination of
geometric information and appearance information. In the course of this
dissertation, the object representation has evolved from simple geometric
shape representation to complex shape representation.

4.3.1.1 Geometric Object Representation

The initial object representation was based on simple geometric objects
that their shapes were easy to model through manual vertex coordinates
definition. Each vertex defines a 3D coordinate in the model coordinate
system that is related with the real object dimensions.

The defined geometry is combined with the appearance information of
the object. Inspired in rendering engines, we define a single or multiple tex-
ture images that contain the appearance information. Geometric vertices
have an associated texture image coordinate that creates a link between
the geometry and the appearance. See Fig. 4.3.

The main disadvantage of this representation process lies on the man-
ual definition of every vertex of the model (3D coordinates and associated
texture coordinates). The manual vertices definition is not a problem in
object with simple geometric shapes but extending the tracked object’s set
to more complex objects, the process become unbearable.

4.3.1.2 Generic Object Representation

Due to the previous representation limitations, a generic modeling process
was proposed. This representation is based on commercial modeling tools
that generate standard 3D computer graphic models.

4.3.1.2.1 Blender Blender is an open source tool used for 3D modeling
[43]. This tool allows complex object modeling through a dynamic interface
that also allows texture object definition. Fig. 4.4 shows an example of an
object designed in blender and its associated texture image.
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Figure 4.3: Example of a simple geometric object and its representations. Left image,
picture of the real-world object. Right image, object’s decomposition in geometric model
and appearance model that is defined by six texture images.

Blender also provides mechanism to describe object’s kinematic defini-
tion. For instance, articulated object behavior is defined with an associated
skeleton (armature in Blender) that allows a description of the moving parts
of an object (See Chap. 5). Generated object models contain the geometry,
texture and skeleton information (if defined) that can be process by stan-
dard rendering engines. This tool allows the modeling of any kind of object
since we do not have any geometry limitations as in the previous approach.

4.3.1.2.2 123D Modeling Modeling tools, such as Blender, eliminate
the geometric restriction’s barrier, which allows any type of random shape
modeling. On the other side, this mechanism may result problematic mod-
eling natural objects in certain situations, e.g. when the model has to be
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Figure 4.4: Blender Object. Left image shows the designed 3D model with its texture.
Right image, shows the associated texture image.

realistic and accurate. In order to overcome this restriction, we address
123D free software that is a standard tool for objects reconstruction [44].
The tool uses as input a loop of several pictures in small increments about
the subject (between 20 and 30 pictures). Based on the object features
and the environment features, a registration of the 3D shape and texture
is created by the software (Fig. 4.5).

The reconstruction software is based on appearance features. Therefore,
restrictions as non-shining objects or untextured objects are required in
order to obtain an accurate and realistic model. These restrictions are not
problematic for our system since the pose detection is based on appearance
information and the same requirement must be applied for the detected
object.

As in the previous approaches, the generated object model contains
the geometry and texture information that can be process by standard
rendering engines. In comparison with Blender models, no articulation can
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Figure 4.5: 123D Modeling Process. The left image shows the 28 pictures taken around
the object. Center, shows the reconstruction of the camera poses for every picture. Right
image shows the generated 3D model.

be defined with this tool but the model can be exported to Blender where
the associated skeleton can be defined.

4.3.1.3 SIFT Feature Model

The implemented pose estimation approach uses computer vision SIFT fea-
tures. We select SIFT features over the other appearance methods since
they do not require temporal information as in KLT and the descriptor cod-
ification (based on 128 elements) are more robust and reliable that SURF
descriptor (based on 64 elements) (See Sec. 3.2.2.1.2). In order to have a
real-time performance, we use SiftGPU library that uses the GPU archi-
tecture to extract the SIFT features [45].

The SIFT methods rely on object appearance information that is defined
by its texture. The object’s texture is computed and the relevant keypoints
are extracted and converted into feature descriptor. Depending on the type
of model the appearance information is represented by a single/multiple
texture images or by a 3D textured object.
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4.3.1.3.1 Single/Multiple Texture Images In this case, a single or
multiple flat image planes compose the object’s texture. SIFT descriptors
are extracted from the images and a 3D model coordinate is associated
to each descriptor. Coordinates are interpolated base on the surrounding
vertices texture location.

4.3.1.3.2 3D Texture Object In more complex object, the object as-
sociated texture image may present deformations with respect to the actual
object’s appearance. In this case, texture is only visible in its 3D form. For
instance, object models generated with 123D modeling tool define texture
images with deformations. Since the SIFT algorithm only works on images,
we need a rendering engine that creates synthetic images of the objet from
di↵erent views. The exact location of every image’s pixel in the 3D world
coordinates is known for every synthetic image. The 3D coordinates of
every pixel is compute with the Z-bu↵er that contains the depth informa-
tion for every pixel. We use the equation (4.1) to compute the 3D feature
position.

P
w

(X,Y, Z) = (
xZ

f
,
yZ

f
, Z) (4.1)

Where P
w

(X,Y, Z) represents the feature 3D world coordinates, x and y are
the feature 2D image coordinates, Z represents the pixel depth information
and f the camera focal length.

Knowing the exact object orientation [R|t] in every synthetic frame and
the 3D feature coordinates, the features location can be reprojected into
the model coordinates system with the following equation:

P
m

= R�1(P
w

� t) (4.2)

where P
w

is the feature point in 3D world coordinates and P
m

is the
reprojection of the feature in the 3D model coordinates. The feature re-
projection is done with each feature in every synthetic view of the object,
resulting in a SIFT feature model where every descriptor has an associ-
ated 3D position in the model coordinate system. The described process is
graphically explained in Fig. 4.6.
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Figure 4.6: SIFT model generation process. Multiple synthetic views with an associated
transformation ([R|t]) are defined. The SIFT features are extracted from every view.
A final stage reprojects the extracted features into the model coordinate system, thus,
generating the SIFT model.
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For sake of reducing the number of synthetic frames, the rotation be-
tween successive frames is limited to 30 degrees. This ensures a lower num-
ber of model’s features without losing information [37]. The SIFT feature
computation are processed using the SiftGPU implementation [45].

4.3.2 Rigid Pose Detection

After the initial modeling phase described in the previous section, the ob-
ject can be detected due to its appearance model. Regardless of the model
generation process, the final object representation is defined with a SIFT
feature model (Sec. 4.3.1.3) that associates descriptor with 3D model co-
ordinates. Detecting the pose of a rigid object, according to the generic
architecture, is a task divided in two main internal processing steps:

4.3.2.1 Feature Extraction and Matching

The image that represents the scene is processed by the SIFT method that
extracts the scene’s features. The scene’s features and the SIFT model’s
features are compared in order to find the matches between the two feature
sets. The scene’s features extraction and the feature matching are carried
out by the SiftGPU implementation [45].

Fig. 4.7 shows an example where the scene feature are matched to the
SIFT model. For sake of a simplify demonstration, the figure shows the
di↵erent object’s texture sides and their matches association. Matches be-
tween both feature sets contain the associations between 2D image coordi-
nates (image features) and 3D model coordinates (SIFT model features).

4.3.2.2 Pose Estimation Computation

The second step of the internal processing is the pose computation based
on the detected feature matches. The 2D image location and the 3D model
location of the matches represent the input for the PnP pose estimation
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Figure 4.7: SIFT features matching. Both sets matches are defined by green lines that
connect the scene’s features to the model’s features.

algorithm (See Sec. 3.3.2). In the example shown in Fig. 4.7, we can notice
errors occurrence where is possible to detect some mismatched features.
Therefore, with the aim of robust pose estimation, it is crucial to combine
the PnP detection algorithm with RANSAC method (See Sec. 3.3.2.3).
This combination creates a system robust to outliers. The PnP method
combined with RANSAC is computed using the OpenCV library [46].

4.4 Detecting and Tracking Methods Combina-
tion

In the TOMSY project framework, the describe detection system was com-
bined with a tracking system [47].

The tracking system, designed by Karl Pauwels [47], combines dense
motion (optical flow) with stereo cues (depth). The visual cues are ex-
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tracted from a stereo video stream and combined with the object’s model
information to estimate the 6 DOFs pose. In turn, model information is
fed back to facilitate the cue extraction itself.

The tracking system use 3D models of arbitrary shape and appearance
to track. Dense motion and stereo cues are obtained using modified coarse-
to-fine GPU-accelerated phase-based algorithms.

The dense stereo cues are extracted with algorithms that perform a
limited disparity range and have di�culties detecting fine structures. These
problems are overcome by feeding the tracked object pose obtained in the
previous frame back as a prior in the stereo algorithm.

The optical flow algorithm integrates the temporal phase gradient across
di↵erent orientations and also uses a coarse-to-fine scheme to increase the
dynamic range. This optical flow is improved through a synthetic optical
flow (Augmented Reality (AR) flow) that includes feedback from the model
reprojection.

The method incorporates the improved dense motion and stereo cues
into a fast variant of the ICP algorithm to allow all the dense cues to
simultaneously and robustly minimize the pose error.

The goal of merging this two pose estimation methods is to combine
the benefits from the two di↵erent approaches (presented detection method
and a tracking system). Detection methods have a robust performance
in clutter scenarios, object occlusions and provide a great advantage by
allowing traces reset in case of system failure. On the other hand, tracking
methods provide an enhanced performance in pose estimation accuracy
and noisy scene. The aim of this combination is to create a system that
outperforms the state-of-the-art pose estimation systems.

The combined system carried out is shown in Fig. 4.8. Stereo video
is received as input. Stereo cues, optical flow, augmented reality flow and
keypoints (SIFT features for the detection system) are extracted from the
scene. The model pose estimation is computed an fed to the system in
order to improve the features extraction.
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Figure 4.8: Combined system diagram. Stereo video input. The cues are combined and
model information is fed back to facilitate the cue extraction.

The combined system computes the pose estimation from the detection
and the tracking methods. Both poses are virtually reprojected into the
scene and their pose errors are computed base on the same reprojection
error used in the tracking system [47]. We select between poses based on
the estimated error. The selected pose is assumed as correct and is fed to
the tracking system for the next frame computation.

The tracking method implementation and both systems combination,
was developed by Karl Pauwels (See [47] for further details).

4.4.1 Synthetic Benchmark

In the collaboration framework produced by TOMSY, a synthetic bench-
mark was also developed, which allows an accurate comparison with the
state-of-the-art methods. Taking advantages of OpenGL rendering engine,
camera distortions and background recreations were allows. We developed
multiple sequences with di↵erent object with a defined object’s trace that
allows knowing the object’s ground-truth for each frame.

Fig. 4.9 shows the di↵erent objects used in this benchmark and Fig. 4.10
shows the trace used for every sequence.
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Figure 4.9: Rigid object models used.

 

Figure 4.10: Ground-truth object trace in synthetic sequences.

4.4.1.1 Noise and Occluder

The synthetic scenario created with OpenGL allows the design of challeng-
ing scene, where di↵erent sequences are created corrupted either by noise
or an occluding object. For the noisy sequences, Gaussian noise (� = 0.1
intensity) is added separately to each color channel, frame, and stereo im-
age (Fig. 4.11B). To obtain realistic occlusion (with meaningful motion and
stereo cues), we added a randomly bouncing 3D teddy bear object to the
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Figure 4.11: Benchmark example frames. A shows an original frame (noise free) where
the tracked object (soda) is located relatively far from the camera. B shows a frame from
a noisy sequence. C-D show occlusion situation from two di↵erent camera poses.

sequence (Fig. 4.11C,D). The occlusion proportion of the cube object over
the sequence is shown in Fig. 4.12 for the left and right camera pose.

In this benchmark, every object is used in three specific sequences:
original, noisy (� = 0.1 intensity) and occluded sequence. Each sequence is
generated from two camera positions (Fig. 4.11C,D) that simulates stereo
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Figure 4.12: Proportion occlusion in the cube sequence.

vision, which is required by the tracking system. In total, the six objects
benchmark is composed by 18 sequences.

The developed benchmark has been released and it is now available at
http://www.leonardorubio.com/.

4.4.2 Error Evaluation

The synthetic benchmark allows pose estimation comparison with respect
to the ground-truth. To compute the error, we use the estimated [R|t] to
reproject the geometric model into the 3D scene and compare its location
with the ground-truth geometric model reprojection defined by [R

gt

|t
gt

].
Both reprojections define 3D locations for the vertices of each geometric
model. The larges distance between corresponding vertices v

j

is used as
the estimated pose error e

p

and computed with the following equation:

e
p

= max
j

k(Rv
j

+ t)� (R
gt

v
j

+ t
gt

)k, (4.3)

The error measurement presented in (4.3) is a novel error evaluation intro-
duced in [47].
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4.4.3 System Comparison

Using the synthetic benchmark and the error function defined above, we
compare the combined pose estimation system with two state-of-the-art
methods: BLORT [37] and PWP3D [39].

For the comparison, we use the 18 benchmark’s sequences. Defining an
error threshold of 10 mm that classify the pose estimation, we compute
the percentage of correct estimated frames for each sequence. The com-
puted percentage for the 18 sequences and di↵erent methods are shown in
Table.4.1.

Table 4.1: Tracking success rate(%) - orig = noise free; occl = occluded.

soda soup clown candy cube edge

orig noisy occl orig noisy occl orig noisy occl orig noisy occl orig noisy occl orig noisy occl

Combined mthd. 99 97 68 98 99 80 100 98 77 100 100 81 100 100 76 98 98 57

Tracking mthd. 100 98 67 100 99 74 100 100 70 100 100 75 100 100 71 98 99 57

Detection mthd. 61 37 44 93 74 77 92 71 74 96 91 80 98 96 79 0 0 0

BLORT 10k particles 76 65 54 77 66 63 88 82 76 77 76 64 93 94 76 72 91 68

PWP3D 84 84 44 96 96 44 96 89 44 84 84 39 84 74 38 63 63 50

BLORT 200 particles 58 60 45 47 54 40 56 62 48 46 49 41 53 54 39 63 63 50

In this table, the detection system presents a robust behavior in se-
quences with textured objects and dramatically fails when there is no tex-
ture at all, such as the edge object. In occlusion sequences, all the methods
reduce their performance in comparison with corresponding original se-
quence. In the detection system, the percentage reduction is less a↵ected
that the alternative methods. This occurs due to the SIFT features used
by the detection method, which are not a↵ected by partial occlusions. On
the other side, the detection system has a disadvantage when the sequence
object is relatively small and it is located at a considerable distance from
the camera. The region occupied by object in the frame is drastically re-
duced and so the number of correspondences between the object model and
the scene’s frame. A reduced number of correspondences is translated into
an unstable PnP estimation.
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This is the case of the soda sequences (see Fig. 4.11A) where the object’s
dimension is smaller in comparison with the rest of the object and the
detection system has an inferior performance.

As shown in the table, the combined method confirms the perfect syn-
ergy of both modules. The combined system retains the excellent per-
formance of the tracking method with greatly improved robustness to oc-
clusions due to the detection system estimation. The combined system
outperforms the state-of-the-art methods or even the tracking method and
the detection method individually.

4.5 Real-world Scenario

The synthetic scenario is a controlled environment that allows us to test
the pose estimation results. In the other hand, the disadvantage of these
sequences is the recreation of a non-entirely realistic environment that does
not represent a real scenario’s problems where the pose estimation becomes
a real challenge. Problems such as manipulator occlusion, illumination
changes, realistic noise, etc; are issues that cannot be easily represented
in a synthetic pictures. Therefore, the implemented method was tested in
di↵erent scenarios with di↵erent objects. Fig. 4.13 shows an early pose esti-
mation approach where the object model was generated manually and pose
estimation was performed by the detection system without combination. In
the Fig. 4.13, we can appreciate its accurate estimation although it shows
some di�culties with large occlusions and when the object is relatively far
from the camera.

Along enhancements were applied, the system’s performance was im-
proved. Enhancements such as complex objects with complicated texture
were used, multiple objects tracking or the combined system; lead to re-
markable pose estimation results. Fig. 4.14 shows an example of multiple
objects detection.
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Figure 3: Pose estimation results.

3

Figure 4.13: Early Pose Estimation Approach in Real-world Scenarios. The object’s
model was generated through a manual process.
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Figure 4.14: Multiple objects in real-world scenarios. The 3 first rows, the left side shows
di↵erent real-world objects and their estimated poses. On the right, an artificial scene
was rendered based on the estimated pose location. The forth row also shows real-world
objects and their estimated poses. On the right side, a depth image is generated based
on the object’s locations.
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4.6 Conclusions

We are focused on rigid pose detection since it is crucial for object pose
estimation and it can be easily improved by combining the method with
tracking methods as shown in this chapter. The detection method is based
on appearance information provided by the SIFT algorithm. SIFT features
are robust to illumination changes, occlusions, clutter scenarios, orienta-
tion, etc. These features are computationally e�ciency and do not con-
straint the geometric shape of the detected object as in contour or edges
based methods. The only restriction of using SIFT features is the require-
ment of textured on the tracked objects. This restriction is not a major
problem since common daily objects, natural object, etc; are textured ob-
jects.

In order to estimate the object pose base on appearance features, we
use the PnP approach since it is widely used in the state-of-the-art with
outstanding results. We combine the PnP algorithm with a RANSAC im-
plementation for performance improvement.

In the TOMSY project framework and thanks to the collaboration with
Karl Pauwels, a novel method for rigid object pose estimation has been
developed. The novel method perfectly combines detection and tracking
algorithms. The results outperform literature methods and yield a remark-
able performance in real-world scenarios.

This chapter has a great importance in the development process of this
thesis. The defined generic architecture states the structure for pose esti-
mation system and creates a developing environment whereby contributions
are developed. According to Fig. 1.3 diagram, chapters 5 and 6 expose the
main contribution lines based on the generic architecture.
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Chapter 5

Articulated Object Pose
Estimation

The implementation of a rigid pose estimation system (chapter 4) defines a
starting point for improvements. According to Fig. 1.3, in this chapter,we
present a novel contribution in the field of object detection, introducing a
novel system for articulated object detection.

The detection and tracking of real-world objects based on visual infor-
mation is an important task in several domains. In robotics, an understand-
ing of the surrounding elements and their distribution in the environment
is required in many applications such as grasping, manipulation, activity
interpretation, etc. This research field has been very active in the last
decades as far as rigid objects are concerned, and as a result impressive
results both performance- and precision-wise have been reported on rigid
pose estimation [47, 48].

Articulated objects are composed of multiple rigid parts connected by
joints that allow rotational or translational motion, or a combination of
both. Each joint thus introduces one or more degrees of freedom (DOF) in
addition to the six rigid DOFs that determine the object’s location and ori-
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entation. Articulated pose estimation can be considered a natural extension
of rigid pose estimation, and a wide variety of methods have been proposed
for this problem as well. In the next section we present an overview of the
major method classes. As a result of the large number of degrees of free-
dom, most articulated pose estimation methods are tracking methods that
rely on temporal information and can only handle small frame-to-frame
motion. In addition, once tracking is lost (as a result of occlusions or fast
motion) these systems can only recover with the help of an external method
that detects the pose. We present such a novel articulated pose detection
method in this chapter.

5.1 State of the Art

Rigid object pose detection methods estimate the six DOFs (three for trans-
lation and three for rotation) that define the state of a rigid object. The
state of articulated objects can be decomposed in terms of the six rigid
DOFs that define the object’s location and orientation and the DOFs that
describe each internal joint. Consider for example a robot arm composed
of di↵erent rigid parts connected by joints in a hierarchical manner. The
base of the robot arm constitutes the root of the hierarchy, and each joint
constrains the physical configuration of the articulated object.

Articulated pose estimation is a notoriously di�cult problem. The main
problem is the high-dimensionality that results from the large number of
DOFs and the corresponding parameters that need to be estimated. All
these DOFs can support complex configurations of articulated objects, the
projection of which can result in a large variety of shapes with many self-
occlusions. In addition, if we also consider uncontrolled environments, allow
for rapid object motion, and require high performance, it is clear that
articulated pose estimation is a very challenging problem [49]. A large
number of approaches have been proposed in the past for articulated object
pose estimation, as will be described in this section.
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A first distinction can be made between global and partial pose estima-
tion methods. Global methods estimate all the object parameters while
ensuring that all the constraints are satisfied. Partial methods, on the
other hand, do not enforce the constraints [50]. Instead they approach the
problem by considering every rigid part of the articulated object as inde-
pendent, each with its own six DOFs. These methods do not always aim
at estimating all the object parts but instead often focus only on the most
representative parts of the articulated object, such as the end e↵ector of a
robotic arm.

Another distinction can be made between methods that use temporal
information and those that don’t. The first group is referred to as tracking
methods. They refine an initial articulated pose estimate (usually obtained
on the previous frame) under the assumption that the object undergoes a
small motion. Some of these methods are based on low-level motion features
such as provided by the Kanade-Lucas-Tomasi feature tracker [51, 52, 53],
edges [54, 55, 56], silhouettes [57], color blobs [58], etc. If the motion is
su�ciently small, these systems can provide highly accurate estimates even
for a large number of DOFs. They are however unable to recover from
failures and need to be initialized by an external method or by hand. In
an uncontrolled articulated object pose detection scenario, such an initial
object pose may be di�cult to obtain and tracking loss will occur frequently
due to occlusions, mismatches or due to the object leaving the camera view.
For this reason, a second group of methods exists that does not rely on
temporal information. These articulated pose detectionmethods operate on
a single image frame and are typically less accurate than tracking methods.
This is however compensated by their capacity to recover from failures, a
critical ability of robust systems.

Some of these articulated pose detection methods divide the problem in
two stages [59, 60]. The first stage estimates the six DOFs of the base of
the object (considering it a rigid object) and the second stage estimates the
remaining internal joint hierarchy parameters. The largest and most visible
part is usually chosen as the base of the model. For instance, in the case of
an articulated robot arm, the actual base of the robot could be considered
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as the base of the model. The object’s edges are used in [59] to estimate the
joint parameters and refined using an iterative Newton-Raphson approach.
An exploration approach is used in [60] where all the possible poses are
reprojected on the scene and weighted according to how well the boundary
of the object matches the projection of the 3D shape. Both methods detect
the pose parameters iteratively through the hierarchical structure.

Although the vast majority of methods only use visual cues from a sin-
gle camera, there are some approaches that combine multiple cameras to
reduce the number of occlusions or to provide stereo information to the
detection methods. A probabilistic pose estimation is presented in [61, 62]
that estimates the pose using the 3D position of special markers that are
located on the object and registered by an (eight camera) motion capture
system [12]. In recent years, with the introduction of commercial RGB-D
cameras, depth information has been considered in many computer vision
problems. Such compact RGB-D cameras provide precise depth informa-
tion in real-time [11] and can be introduced in many scenarios in a non-
intrusive manner. For example, in [42] the 3D point cloud provided by an
RGB-D camera is matched to a database of articulated objects (generated
in a training stage). This database only allows detecting a specific type of
object though (human poses) and limits the joint motion in order to reduce
the solution space.

Although many contributions have been made on this topic, the problem
is still far from a stable and accurate solution. Therefore novel solutions
such as the presented work are required to support the large number of
computer vision applications.

5.2 Pose Estimation Architecture for Articulated
Objects

Based on the remarkable system described in Chap. 4 for rigid object pose
estimation, we present a novel approach for (single-frame) articulated ob-
ject pose detection that is invariant to the motion and shape of the object,

82



5.2. Pose Estimation Architecture for Articulated Objects

Pose Estimation

Sensor

Model

Standard 
Camera

RGB-D 
Camera

Geometric

Appearance

Kinematic

Feature Extraction

SIFT

Segmentation

Particle Filter

PnP

Articulated
τPose Parameters

t
ω
θ

Input Internal Pocessing Output

Figure 5.1: Articulated architecture configuration.

and that does not require temporal information. The method performs
highly accurate global pose estimation resulting in a precise 3D location
with millimeter accuracy in real-time. The proposed method is not limited
to a particular type of articulated object, such as hands or bodies, but can
instead handle arbitrary objects.

Using the defined generic architecture, we adapt its modules for artic-
ulated object detection (Fig. 5.1).

The method is model-based in that it relies on a 3D model of the artic-
ulated object. Alike rigid object models, we use the same modeling process
defined in Sec. 4.3.1 to build an object model that defines the geometry
and appearance of the object. In case of articulated objects, it is required
to describe the kinematic information that defines the motion behavior of
the articulated object. Kinematic information is described in details in
Sec. 5.3. This does not limit the types of object, but it helps predicting
poses in situations where the object is occluded [55].
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Sensor information data used in this system is provided by an RGB-D
camera [11]. The RGB-D data is used to compute the sparse appearance
and depth information used by the proposed system.

As mentioned, feature extraction module used sparse appearance fea-
tures. These features are extracted using the SIFT algorithm. As in rigid
object SIFT features, they are computed using the SiftGPU implemen-
tation but in this case, the features information is combined with depth
information extracted from the RGB-D camera.

The pose estimation stage, introduce a novel algorithm that computed
articulated object pose using the extracted features and depth. The method
combines a PnP pose estimation method with a novel algorithm that com-
putes the articulated parts parameters. The pose estimation method is
described in detail in Sec. 5.3.

We define the state of an articulated object as ⌧ = (t,!,✓ ), where t
and ! define the translation and orientation and ✓ describe the state of the
internal configuration of the object’s kinematic chain (see Sec. 5.3).

In the presented work, unlike most methods, whose performance de-
creases as the number of joints increases, the complexity of the problem is
not a↵ected by the number of joints in our method. This is due to the novel
way in which we decouple the rigid and non-rigid components of the pose
in our estimation. Unlike partial pose estimation techniques, the proposed
decoupling allows using the entire object (not just the base) to determine
the rigid pose components. Using an extensive comparative evaluation,
we show how the proposed method outperforms state-of-the-art alternative
methods. Finally, we demonstrate precise pose detection in challenging
real-world scenarios.

5.3 Proposed Method

The proposed method extends methods for rigid object pose detection,
described in chapter. 4, to articulated objects. The method operates on
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color and depth images obtained from an RGB-D camera and requires a
3D articulated model of the object under consideration. An overview of the
proposed method is shown in Fig. 6.2. The articulated model and the four
stages of the algorithm are discussed in more detail in the next sections.

5.3.1 Articulated Model

The model describes the object’s appearance, geometry, and the di↵erent
types of joints organized as a kinematic chain. An example model for a
simple chain-like object is shown in Fig. 5.3. We consider an articulated
object to be composed of n moving links and one base link. Both revolute
and prismatic joints (each with one DOF) are supported between links.
More complicated joints (cylinder, sphere, helix, plane) can be expressed
as a composition of revolute and prismatic joints with zero link length. An
example of the di↵erent joint types are shown in Fig. 5.4.

The articulated object thus consists of n joints with n DOFs. We define
the internal configuration of the object’s kinematic chain by ✓:

✓ = {✓1, ✓2, . . . , ✓n} , (5.1)

where ✓
i

represents the parameter value for the ith-joint. We use the same
notation for revolute and prismatic joints. The object’s base link on the
other hand is unconstrained and can thus have an arbitrary location and
orientation in the world. Its parameters consist of a translation vector
t = [t

x

, t
y

, t
z

] and a rotation axis vector ! = [!
x

,!
y

,!
z

]. Together they
define the complete pose of an articulated object:

⌧ = {t,!,✓} . (5.2)

The 3D articulated models are created using the open source tool Blender [43].
It allows the creation of objects with arbitrary geometric shape and tex-
ture. The vertices of each link are associated with its joint. The allowable
motion of each link is constrained by the joints.
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Figure 5.2: Proposed method overview. The method estimates the articulated object
pose parameters by combining color and depth images with a 3D model. See Section 5.3
for a discussion of the di↵erent stages.
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Figure 5.3: Articulated model with links hierarchy. The object’s joints are connected by
links that are organized in a hierarchy (right). Each link is associated with a rigid part
of the object (left). Link one (blue) is the root of the hierarchy and its transformation
represents the unconstrained 6DOF rigid translation and rotation of the object as a
whole. In this particular example, links two to four each have one DOF (red arrows) and
are attached to their parent links.

5.3.2 SIFT Features and Matching

The first stage of the algorithm (Fig. 6.2) is responsible for extracting the
visual cues. This system extracts SIFT features (Scale-Invariant Features
Transform) [22] from the grayscale image, and matches these with the fea-
ture codebook of the 3D model. This codebook is generated in a training
stage where features are extracted from keyframes of rotated versions of
the model (30� separation), and mapped to the surface model. The SIFT
feature extraction from the image, the model codebook construction, and
the correspondence matching between both are all performed using a fast
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Figure 5.4: Types of joints: A revolute, B prismatic, C plane, D cylinder, E sphere, F
helix.

GPU library [45]. As a result of this stage, each image SIFT feature is
either assigned to a specific part of the model (as shown in Fig. 5.5) or
discarded.

5.3.3 Joint Parameter Estimation

The algorithm’s second stage estimates the internal parameters ✓ of the
kinematic chain that define the transformation of the joints of the artic-
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Figure 5.5: SIFT features matched between the image and the 3D model’s codebook.
The matches are colored depending on the part they belong to. The matches in blue
and green will be used to compute the first joint’s angle, the matches in green and red
to compute the second joint’s angle, and the red and magenta matches to compute the
third joint’s angle.

ulated object. The novelty of the proposed method lies in its ability to
extract the parameters of a specific joint independently from the rest of the
kinematic chain. As input, the method requires image SIFT features that
are matched to the joint’s parent and child links of the model. Figure 5.5
shows an example of matched features, colored according to the link they
belong to.

Every SIFT feature that is successfully matched to the model can be
associated to a 2D location in the image, a 3D location in the model’s
coordinate system, and (using the depth camera image) also a real-world
3D location. Consider the two features p and q in Fig. 5.6A that belong
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Figure 5.6: Representation of features in image space (A), depth space (B) and 3D
model space (C). p and q are features of the articulated object’s left and right parts,
respectively. The real-world distance between the features, as measured by the RGB-D
camera, is represented by c. The distances between the features and the included joint,
as measured in the model, are represented by a and b.

to two parts connected by a joint. The proposed method derives the joint
parameters by comparing distances between such feature pairs in world
coordinates (c in Fig. 5.6B) to distances between these same features and
the included joint as obtained from the model (a and b in Fig. 5.7C).

Formally, let p = (p
x

, p
y

, p
z

) belong to link l
k�1 and q = (q

x

, q
y

, q
z

) to
link l

k

(Fig. 5.7). The Euclidean distance between p and q is equal to c. In
order to have the same parameter value between the pair of points and the
joint, we project the points onto the joint plane, XZ plane that contains q
in Fig. 5.7 example. Considering q in the XZ plane and p0 the projection
of p onto the XZ plane, the distance c0 between q and p0 is computed as
follows:

c0 =
q
c2 � (p

y

� q
y

)2 . (5.3)

At this stage each joint type requires a specific approach.
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Figure 5.7: Articulated object with two links (solid color and striped color) and one
included revolute joint. c is the distance between q and p and c0 the projection of this
same distance onto the XZ plane that contains q.

5.3.3.1 Revolute Joint

We first consider the 3D articulated model in its initial (reference) configu-
ration with ✓

i

= 0, 8i (Fig. 5.8). Given two points q and p0, c0
m

represents
the distance between both points and a and b represent the distances be-
tween the points and the included joint. All these distances are measured
in the model according to its initial configuration. The reference angle ↵

m

for this revolute joint (k) and this particular point pair is then obtained
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Figure 5.8: Initial configuration of an articulated object (revolute joint). ↵m is the
reference angle between points q and p0.

using the law of cosines:

↵
m

= arccos

 
a2 � b2 � c0

m

2

�2 b c0
m

!
, (5.4)

only considering the solution in the range [0,⇡]. Note that this angle is
not necessarily equal to zero in the initial configuration. Instead its value
depends on the shape of the parts.

Considering now the observed scene, we can compute this same angle
but now using the ‘real’ distance between q and p0, c0

r

, as measured by the
depth camera. Replacing c0

m

with c0
r

in (5.4) then leads to two possible joint
configurations as shown in Fig. 5.9. The joint parameter ✓

k

is expressed
with respect to this observed angle, ↵

r

, and therefore also has two possible
solutions:

✓
k

= {�1,�2} , (5.5)

�1 = ↵
m

� ↵
r

, (5.6)

�2 = 2⇡ � ↵
m

� ↵
r

. (5.7)
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A B

Figure 5.9: Two di↵erent point-pairs {p, q} illustrating how ↵r is used to obtain the two
possible solutions for the joint parameters {�1,�2}. The reference configuration is shown
in solid gray (cf. Fig. 5.8) and the striped area denotes the correct orientation of the link
lk�1.

Every point-pair provides two such possible solutions {�1,�2}, and the cor-
rect angle has to be decided upon. Figure 5.9 illustrates this situation for
two di↵erent point-pairs and the same joint parameter ✓

k

. Note how the
�1’s are identical in both cases and the �2’s are di↵erent. This occurs for
all point-pairs. Figure 5.10 shows an example of possible joint parameters
encountered in a real-world scenario for various point-pairs. To account for
noise, the median (�̃1, �̃2) and the standard error of each set of angles are
computed and the median of the set with the smallest standard error is
selected as the final ✓

k

value (�̃1 in Fig. 5.10).

5.3.3.2 Prismatic Joint

A similar approach can be used for prismatic joints (see Fig. 5.4). Given
two points q and p0 (with p0 the result of a projection as in Fig. 5.7),
the reference distance d

m

can be obtained from the distance between these
points, c0

m

, in the model’s reference configuration as illustrated in Fig. 5.11.
Considering now the distance d

r

between the points q and p0 as observed
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Figure 5.10: Possible joint parameters {�1,�2} encountered for multiple point-pairs in a
real-world scenario. The green line represent the median value for �1 and the magenta
line the median value for �2.Note how the deviation from the median is much smaller for
the correct parameter (�̃1) than for the incorrect parameter (�̃2).

in the scene (Fig. 5.12), the joint parameter ✓
k

is defined as:

✓
k

= d
r

� d
m

. (5.8)

In this stage of the algorithm, regardless of joint type, if there is not
enough information to determine the ✓

k

parameter of a joint (e.g. due to a
part being occluded), its value is set to the initial configuration (✓

k

= 0).
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Figure 5.11: Initial configuration of an articulated object with a prismatic joint. dm is
the reference distance between points q and p0.



 







Figure 5.12: The observed joint distance dr as derived from the distance between the
two points q and p0.
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5.3.4 Full 3D Model Construction

Once all the internal configuration parameters ✓ have been determined,
they are applied to the model’s kinematic chain (stage 3 in Fig. 6.2) and the
articulated model is geometrically transformed from its initial (reference)
configuration into the observed configuration by updating the 3D locations
of the model codebook features. The goal of this stage is to change the
shape of the model according to the observations. Note that the absolute
location of the model is still unknown. This is the aim of the next stage.

5.3.5 Rigid Pose Detection

In this final stage, the articulated model (with shape updated according to
the observations) is treated as a single rigid object. The updated codebook
locations now allow estimation of the rigid pose parameters {t,!} using
standard perspective-n-point algorithms [46, 48].

The proposed articulated object pose detection framework thus com-
putes the pose in a very similar manner as a rigid object pose detector
(with identical first and fourth stages) but adds intermediate stages that
adapt the shape of the articulated object to fit the rigid estimation scheme.

5.4 Experiments

We use a synthetic benchmarking dataset to compare the proposed method
to a number of state-of-the-art methods.

5.4.1 Alternative Methods for Comparison

In this section we briefly describe alternative method that we use to com-
pare with the proposed model.
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5.4.1.1 Articulated Iterative Closest Point (AICP)

The AICP-algorithm [63] is an extension of the standard iterative closest
point algorithm for rigid pose detection. The object’s base location needs to
be initialized reasonably accurate. This is done either manually or using an
external method [63]. We consider the object’s base as a rigid object and use
standard rigid pose estimation to estimate it’s location and orientation [46,
48]. With the base known, the algorithm then randomly iterates over the
di↵erent joints estimating and applying the minimal error transformation
that satisfies the joint’s constraints. The algorithm uses a 3D object model
and the scene depth extracted from the RGB-D camera.

5.4.1.2 Hierarchical Recognition (HR)

The HR-method estimates the articulated pose by evaluating a number of
pose hypothesis against visual cues [60]. For the purpose of the comparison
we adapt this method to the depth cues used here. As in AICP, the method
is initialized with the estimated base of the kinematic chain. It then iterates
through the hierarchy of links and creates hypotheses of possible poses that
satisfy the joints’ constraints. Each hypothesis is evaluated based on the
consistency with the depth information and the best one selected.

5.4.1.3 Post-Imposed Constraints (PIC)

Proposed systems are frequently compared to a naive unconstrained ap-
proach where every object part is considered an independent rigid object
with full six DOFs. We apply that idea here to construct a simplified ap-
proach of the proposed method. The PIC-method is a natural extension of
the rigid object pose estimation method. It is composed of three stages. In
the first stage every link is treated as an independent rigid object and no
constraints are enforced between the links. Therefore the articulated model
has six DOFs for each link, which are estimated using a rigid pose estimator
that processes each part as a separate rigid object. The next stage then
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enforces the joint constraints by computing the relative transformations
between connected parts and restricting the DOFs. The joint parameters
✓ that result from this operation are then used to modify the codebook of
the object (cf. stage 3 in Fig. 6.2). Finally, a rigid pose estimator is applied
to the updated model to estimate the rigid pose parameters {t,!} as in
the fourth stage of our method.

5.4.2 Synthetic Benchmark Dataset

To compare the di↵erent approaches we have generated a synthetic se-
quence using OpenGL. As described in Sec. 4.4.1, the rendering engine
allows camera distortion representation together with mechanisms, such
as shaders [64], that essay articulated object rendering. The sequence is
300 frames long and involves compressing and expanding the object from
Fig. 5.3, which is located 50 cm from the camera. The object is located
far from the camera in order to complicate SIFT feature detection for
the appearance-based methods. Since the ground-truth of these scenes
is known, the di↵erent methods can be compared with high precision. To
evaluate the robustness of the di↵erent algorithms, additional sequences are
created by corrupting the generated sequences either with Gaussian noise
or an occluding object. In the grayscale images, the noise is directly ap-
plied to the pixels’ intensity. The depth information on the other hand is
distorted as a function of the distance to the RGB-D camera [65]:

Z 0 =
f · b
d+ ✏

, (5.9)

where ✏ is the noise with standard deviation �, f and b are the focal length
and baseline of the sensor, and d is the disparity, defined as follows:

d =
f · b
Z

, (5.10)

with Z the ground-truth depth. Applying noise in the disparity rather than
the depth domain results in a more realistic situation where near objects
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are less a↵ected than far objects. To explore the methods’ robustness, we
introduce di↵erent levels of noise from � = 0.0 to � = 3.0. Fig. 5.13 shows
the e↵ects of image and depth noise.

For the occluded sequences we introduce occluding objects that obscure
a specific proportion of the articulated object (0%, 25%, 50%, and 75%).
This occluder is located 5 cm closer to the camera than the articulated
object. Some example frames with varying levels of occlusion are shown in
Fig. 5.14.

Note that in this synthetic benchmark, we pursuit the creation of a con-
trolled environment that tests the performance degradation against noise
and occlusion. Since we combine appearance and depth information, any
mismatch produced by a clutter background will be removed from the data
by algorithm based on its depth. Therefore, in this test scenario, we did
not focus on developing a realistic background, as in the previous chapter.

The developed benchmark has been released and it is now available at
http://www.leonardorubio.com/.

5.5 Results

We first compare the four di↵erent methods on the synthetic benchmark
with known ground-truth. Next, we demonstrate the reliability of the pro-
posed method on challenging real-world scenarios.

5.5.1 Synthetic Dataset

Fig. 5.15 shows some typical results obtained with the four di↵erent meth-
ods on the original (A), noisy (B), and occluded (C) sequences. Each image
of Fig. 5.15 contains a closeup of the area of interest, given the original
frames of Fig. 5.13 and Fig. 5.14. Although representative, this is only a
snapshot of the results.
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Figure 5.13: Example frames of the synthetic test sequences (Noise). The left column
shows the e↵ect of noise on the grayscale image. The left column shows the noise added
to the depth information (the noise-free and noisy depth are shown in blue and red,
respectively).

To quantitatively evaluate the performance of the di↵erent methods we
compare the estimated articulated pose parameters ⌧ to the ground-truth
pose ⌧ gt across the complete set of synthetic sequences. The di↵erent pose
parameters influence the object’s location in di↵erent ways. Instead of di-
rectly comparing their values it is therefore more meaningful to measure the
e↵ect they have on the 3D model. Both ⌧ and ⌧ gt are applied to the model
and the maximum Euclidean distance of corresponding model vertices is
used as the articulated pose error [47]. The validity of the estimated poses
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Figure 5.14: Example frames of the synthetic test sequences (Occlusion). The di↵erent
levels of occlusion are shown in the di↵erent images.

is then determined by thresholding this maximum distance and the pro-
portion of valid frames is used to summarize the performance on an entire
sequence. Figure 5.16 shows the percentage of valid frames as a function of
the distance threshold for each method for the original (A), 50% occluded
(B) and noisy with � = 3 (C) sequences. After fixing the distance threshold
to 10 mm (red vertical lines in Fig. 5.16), the performance on all the noisy
and occluded sequences can be represented more compactly as in Fig. 5.17.
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Figure 5.15: Example results obtained by the four methods in three di↵erent sequences.
The images are closeups of the area of interest. (A) original sequence, (B) noisy sequence
with � = 3, and (C) occlusion sequence with 50% occlusion.
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Figure 5.16: Comparative evaluation of the di↵erent articulated pose estimation methods
on the synthetic dataset. A–C show how the performance changes as a function of the
distance threshold. The vertical red lines represent the results for threshold fixed to 10
mm.

103



Chapter 5. Articulated Object Pose Estimation



   



Figure 5.17: Comparative evaluation of the di↵erent articulated pose estimation methods
on the synthetic dataset. A and B summarize the results obtained on all sequences with
the distance threshold fixed to 10 mm.

The proposed method significantly outperforms the alternative methods
in the noisy scenario (Fig. 5.17A), and keeps performing well even at very
high noise levels. The HR and PIC methods also perform very well at low
and medium noise levels but su↵er at high noise levels. AICP fails dramat-
ically regardless of noise level. Even greater improvements are achieved by
the proposed method in the occlusion scenarios (Fig. 5.17B). At 50% occlu-
sion the proposed method is only mildly a↵ected whereas both HR and PIC
su↵er significantly more. Even at 75% occlusion the proposed method can
still correctly estimate the pose on half the sequence. Also notable in this
scenario is that PIC performs better than HR. As in the noisy situation,
AICP performs very badly at all levels of occlusion.

5.5.2 Real-World Scenarios

We next evaluate the proposed method in a variety of challenging real-world
situations. We create 30 di↵erent poses for each object. We stress again
that the system is not provided with an initial position, nor does it rely
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Figure 5.18: Articulated models of the objects used in the real-world evaluation.

on temporal information (such as the previous frame’s pose) during pose
estimation. The 3D model of the objects used in this experiment are shown
in Fig. 5.18.

Some example results with a cluttered scene, occlusion, motion blur
and/or extreme poses are shown in Fig. 5.19 for the 4-link object and in
Fig. 5.20 for the articulated box. The system performs adequately across a
wide variety of articulation and environmental states. Fig. 5.19 shows the
performance of the method in multiple challenging real-world situations in-
volving strong deformation (A,B), self-occlusion (B), manipulator occlusion
(C) and third object occlusion (D–F). In Fig. 5.20 di↵erent object poses are
shown with strong deformations and occlusions. In general, the di↵erent
parts of the object are estimated correctly but some problems occur when
locating parts that are close to the image edges (Fig. 5.20B,F).

5.6 Discussion

The performance of AICP has been disappointing throughout the evalua-
tion. This is mainly due to two reasons. Firstly, since AICP su↵ers from
local minima, the initial pose needs to be su�ciently accurate. In this
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Figure 5.19: Real-world frames with the projection of the estimated pose in green for
the 4-link object. The frames show di↵erent scenarios: strong deformation (A,B), self-
occlusion (B), manipulator occlusion (C) and third object occlusion (D–F).

Figure 5.20: Real-world frames with the projection of the model according to the esti-
mated pose in green for the articulated box. The frames show di↵erent scenarios: strong
deformation, self-occlusion, and manipulator occlusion.
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sense AICP is more a tracking than a detection method. In comparison,
our method does not rely on such an initial configuration that can a↵ect the
method’s behavior. Secondly, since the errors are accumulated through the
hierarchical chain, the performance is lower for parts deeper in the hierar-
chy. On the other hand, AICP’s performance is una↵ected by the number
of children of a particular joint since the errors of the di↵erent children
are all independent of each other. AICP also has some strong points. The
accuracy of the base location does not need to be as high as in HR for
example, since AICP is able to refine the initial base pose. It also performs
quite well in the presence of noise. In Fig. 5.17A the (albeit very low)
AICP performance is almost una↵ected by noise. Provided the initial pose
is su�ciently close to the correct pose, the algorithm performs very well
here.

As in AICP, HR is a↵ected by the nature of the object’s kinematic
chain. Due to the accumulation of errors, a lower performance is achieved
on parts deeper in the hierarchy. HR also depends much more strongly
than AICP on the initial pose of the objects’ base. A very good initial
localization of the base is critical since the method does not refine it. As a
result the error accumulation that starts at the base is more severe than in
the other methods. The proposed method estimates each joint’s parameter
independently and is therefore not a↵ected by the kinematic chain. On the
positive side, HR does not su↵er from local minima since the algorithm
performs an exploration over the entire range of values. The number of
values that can be evaluated is of course limited by the computational
budget available to the system. Both AICP and HR are very sensitive to
occlusions which is problematic in real-world applications, where the object
can be occluded by hands, robot end e↵ectors, or by itself.

The PIC method outperforms both AICP and HR but su↵ers in chal-
lenging situations where an insu�cient number of image/model SIFT cor-
respondences are available.

The proposed method is much less sensitive to this for two reasons.
Firstly, it relies on depth information in addition to SIFT features. But
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secondly and more importantly, by decoupling the estimation of the joint
parameters from the rigid pose parameters, it requires fewer correspon-
dences. For example, one point-pair is su�cient to estimate a joint angle,
whereas PIC estimates the full 6DOF of both parts and thus requires at
least four matches in each part.

One of the drawbacks of the SIFT-based methods (PIC and proposed
method) is the requirement of textured objects in order to extract feature
information. This is not required by the AICP and HR methods.

In terms of computational complexity, the proposed method has signif-
icant advantages over the other methods considered here. HR’s computa-
tion time depends strongly on the depth of the object’s kinematic chain
(as does its performance). Due to the domain discretization, the compu-
tational complexity scales exponentially with chain depth. AICP is less
strongly a↵ected, but its iterative nature also increases the execution time
drastically. With an increasing number of parts (regardless of chain depth)
the complexity increases superlinearly since the joints need to be visited
multiple times to achieve accurate alignments. The computational com-
plexity of both the proposed and the PIC approach scales linearly with
number of parts. However, since the PIC approach performs a full 6DOF
pose estimation for each part of the object, its scale factor is much larger,
whereas we only need to estimate the joint parameters.

5.7 Conclusions

This chapter describes a novel methods for articulated object detection that
extents the rigid object pose detection system described in chapter 4.

The novel approach for articulated pose detection combines sparse SIFT
features with depth information. The method is not restricted in terms of
object shape or number of object parts and is highly accurate and robust
to occlusions and noise. Our method outperforms other alternative meth-
ods in highly noisy scenarios and in the presence of large occlusions. The
accuracy and robustness are achieved by decoupling the estimation of the
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joint parameters from the rigid part of the articulated object’s pose. This
makes the proposed method computationally much simpler and suitable
for parallel computing architectures. Since the existing articulated object
benchmarks are oriented towards body pose estimation, we have introduced
a novel benchmark dataset and ground-truth data in order to specifically
evaluate our model in noisy and occluded scenarios. Using this benchmark
we have shown how the proposed method greatly outperforms alternative
methods. Finally, the methods merit has been demonstrated on complex
real-world problems.
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Chapter 6

Improved Pose Estimation

The second scientific contribution presented in this dissertation aims an im-
provement in pose estimation systems by reducing its requirements without
decreasing performance at the same time. Using as starting point, the rigid
object pose estimation system, presented in Chap. 4, we design specific
enhancements that aim to reduce the tracking task requirements.

According to (Fig. 1.3), in this chapter we focus on object tracking
systems that is a complex task in computer vision that has been widely ad-
dressed in the recent years since it is useful in a large number of applications
(intelligent robots, monitoring surveillance, human-computer interfaces, ve-
hicle tracking, biomedical image analysis, etc.). Being able to understand
the environment in an e�cient and robust manner, provides the ability of
a correct interaction with the scene performing tasks such as planes track-
ing, object interaction, etc. These tasks require robust and e�cient scene
understanding [66, 67].
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6.1 State of the Art

Following the general overview of the literature about pose estimation de-
scribed in Chap. 3, in this section we continue the state-of-the-art review.
In particular, we focus on 3D object tracking systems. Di↵erent approaches
have been proposed for 3D object tracking. A number of methods operate
on 2D image sequences and establish temporal correspondences between
frames, using for example Kanade-Lucas-Tomasi feature tracking [24]. In
[36], a 3D wireframe model of the object is reprojected on the image and
the object pose is updated to minimize the di↵erences between projected
and observed edges. However, object tracking methods that operate on 2D
images su↵er from a low precision with regard to object movement in depth
[68].

More recently, due to the prevalence of cheap RGB-D cameras, many
methods have been introduced that exploit 3D data for object tracking.
Most of these incorporate some variant of the Iterative Closest Point (ICP)
algorithm [47, 69, 70]. ICP algorithms however are very sensitive to local
minima. This can result in error accumulation and greatly reduce the
tracker’s robustness [71]. Model-based techniques that combine appearance
and depth information yield more accurate estimations [47], but require
detailed appearance and shape information of the tracked object.

Methods based on particle filtering (PF) can overcome these issues [35,
38, 72, 73], but are limited by the number of degrees-of-freedom (DOF)
required to describe the tracked object’s motion. The computation time
typically scales very badly with increased DOFs [74]. To counter this, many
approaches have been proposed to reduce the problem solution space. Some
methods constrain the range of movement [75, 76] whereas others assume a
static camera [74, 77, 78]. Although these strategies are e↵ective in reducing
the solution domain, they also very strongly limit the object’s allowable
motion, and consequently, they cannot be used in more general real-world
scenarios.
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Hybrid search methods on the other hand estimate the parameters in
multiple steps, where the parameter values calculated in a previous step
constrain the solution space for the subsequent set of parameters [74, 79, 80].
Such a hierarchical search can greatly reduce computational complexity.

6.2 Improved Pose Estimation Architecture

In this chapter, we present a novel object tracking method that uses a
hybrid search strategy to separate the tracking problem into two di↵erent
phases: scene plane tracking and particle filtering. In domestic environ-
ments, objects are frequently located on planes such as tables, floors, walls,
shelves, etc. In the proposed method, the tracked object is associated with
the environment plane on which it is located. This associated plane is de-
tected and tracked through the sequence and its location is used to constrain
the solution space of the subsequent particle filtering phase. The system
provides highly precise 6DOF rigid object pose estimates in real-time on the
basis of depth information supplied by RGB-D cameras at 30 Hz [81]. We
also introduce a novel benchmark dataset consisting of real-world sequences
involving di↵erent tracking scenarios. Using it, we demonstrate improved
performance of the proposed method as compared to some state-of-the-art
methods.

According to this description, we create a modification that adapts the
generic architecture to the described system.

Fig. 6.1 shows the blocks configuration adopted for this chapter. The
input data is provided by an RGB-D camera sensor (see Sec. 6.3.1). The
models used are pure geometric models. In contrast to the appearance
models used in Chap. 4 and Chap. 5, the model used for the improved pose
estimation are simplified and only require 3D geometric shape information
(see Sec. 6.3.3). Therefore, no appearance features are extracted in this
chapter. Instead, the 3D scene in segmented in meaningful regions such as
planes and objects (see. Sec. 6.3.2). Since we are working with a tracker,
we define a new pose estimation method base on particle filter (Sec. 6.3.5).
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Figure 6.1: Improved Pose Estimation Architecture.

With this system, we are dealing with rigid object tracking, hence, the
object state ⌧ is defined with a translation t and a orientation !.

6.3 Proposed Method

The proposed algorithm uses a hybrid search strategy to combine particle
filtering with plane tracking. Tracking the planes that compose a scene
provides environmental information to the particle filter method. Decom-
posing the scene in its di↵erent planes drastically reduces the solution space
of the particle filter.

The method operates by relating an associated plane to the tracked
object (e.g. ground plane) and tracking both throughout the sequence.
Figure 6.2 contains a schematic overview of the proposed method. The
method can be divided in six stages, which are discussed in detail in the
next sections.
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Figure 6.2: Proposed method overview. The input point cloud is decomposed into planes
and used in each step of the algorithm. The steps represented as dashed blocks in the
Initialization Phase are only executed at the beginning of the tracking process. The red
dashed line represents the tracked plane information that will be used in the next frame’s
plane tracking phase.
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Figure 6.3: RGB-D camera data. Color (A) and depth (B) images at 640⇥480 resolution
together with the point cloud (C) generated from the depth image (307,200 points). Due
to the amount of data and the image size, individual points are di�cult to distinguish in
the point cloud.

6.3.1 Input

The RGB-D camera provides color images (Fig. 6.3A) and scene depth mea-
surements (Fig. 6.3B). The depth data consists of a point cloud (Fig. 6.3C)
composed of scattered 3D points that represent the scene’s depth informa-
tion. The proposed method only relies on point cloud data as input and
uses it in every step of the algorithm. The input point cloud is constructed
from a depth image of 640⇥480 pixel resolution (307,200 points). To im-
prove e�ciency, we downsample the input depth image to 320⇥240 pixel
resolution (76,800 points) (see Section 6.5.1).

6.3.2 Decomposition Phase

The proposed method extracts a simplified planar representation of the
environment and uses it together with the input point cloud in every phase
of the algorithm. This Decomposition Phase is performed at the beginning
of the algorithm and repeated for every input frame. The Planar Scene
Segmentation segments the point cloud into di↵erent scene planes based on
the normals associated with the points. Groups with more than 100 co-
planar points (allowing for up to 3� orientation di↵erence in the normals)
are considered scene planes. These specific parameter settings result in
the optimal segmentation for the environments considered in this work.
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Figure 6.4: Planar scene segmentation of the input shown in Fig. 6.3. Three planes are
detected in this scene. The di↵erent colors represent their approximate boundaries and
the red arrows represent each plane’s normal. Small planar regions and regions with
excessive variability in the normals are not considered planes and therefore not labeled
in this phase.

Figure 6.4 shows a scene composed of three planes. The boundaries of
the planes are shown in color and their normals are depicted by the red
arrows. The output of this Decomposition Phase consists of the detected
plane regions and their normals.
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6.3.3 Initialization phase

To maintain general applicability, the proposed system does not rely on
predefined object models or scene information. Rather, the tracked object
and its associated plane need to be selected by the user in an Initialization
Phase. This phase is executed once, at the beginning of tracking, and relies
on the point cloud together with the planes extracted in the Decomposition
Phase. The associated plane of interest is selected among the possible
planes through the user interface. Next, the points above this plane (using
the normal as a direction indicator) are subtracted from the point cloud
and grouped according to the Euclidean distance. A threshold equal to
two centimeters is used to determine whether a point belongs to a cluster
or not. This threshold correctly groups objects of the sizes considered in
this work. Figure 6.5 shows the same input scene as in Fig. 6.3 with the
three detected planes now represented in pastel color. The mustard-colored
plane is the selected associated plane. On top of this plane we can see six
di↵erent groups of point clouds. The group corresponding to the object of
interest is selected through a specifically designed user interface that allows
for manually selecting any object and plane in the scene. This selection
task could be automated as well.

Once the associated plane and object point group are selected, the Ini-
tialization Phase is complete.

6.3.4 Plane Tracking Phase

The Plane Tracking Phase is responsible for tracking the associated plane
throughout the sequence. The region corresponding to this selected plane is
allowed to move freely with six DOFs to accommodate for camera motion.

We define a plane as a set of n 3D points:

P = {M0, . . . ,Mn

} , (6.1)
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Figure 6.5: Scene point cloud with three detected planes represented in pastel color. The
selected associated plane is shown in mustard color. The points above this plane are
grouped together and shown in bright colors. A total of six di↵erent object groups are
detected here.

At time t, the new planar scene segmentation S is defined as:

S = {S0, . . . , S
k

} , (6.2)

where k defines the number of scene’s planes. The plane region selected
at the previous time t�1 is defined as P

t�1. The scene segmentation S and
the selected plane P

t�1, are used as input. Initially, at time t0, the selected
plane is provided through the Initialization Phase.
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Both the newly detected scene planes at time t and the selected plane
at time t � 1 are first transformed into the 2D coordinates of the image
plane using:

m
i

= KM
i

, (6.3)

where m
i

is a 2D point in the image plane, M
i

is a 3D point of the
scene and K is the reprojection matrix. The reprojection of the selected
plane P 0

t�1 and the scene segmentation S0 are compare in order to find the
tracked plane.

The amount of overlapping pixels between new and old plane regions
are then determined and the newly detected scene plane that maximally
overlaps with the plane selected at the previous time is computed using:

P
t

= max
i=0:k

f(P 0
t�1, S

0
i

), (6.4)

where f is the function that determine the number of overlapping pixels
between two planes and P

t

becomes the new associated plane at time t. At
the next time instance t+1, this new associated plane will then be used in
the same way to further update the associated plane region.

The selected plane is then determined by its normal n = (n
x

, n
y

, n
z

) and
a point on the plane X0 = (x0, y0, z0). In the remainder, all the coordinate
system transformations are described in relation to a camera system with
X-axis rightward, Y -axis upward and Z-axis backward. The normal (n)
of the selected plane P

t

is align with the Y -axis of the camera coordinate
system (u = (0, 1, 0)). We rotation between vector by the quaternion Q =
(w, x, y, z) that is defined by:

Q =
h
cos
⇣↵
2

⌘
, sin

⇣↵
2

⌘
v
x

, sin
⇣↵
2

⌘
v
y

, sin
⇣↵
2

⌘
v
z

i
, (6.5)

where the rotation axis v is defined by v = n⇥u and the angle between
vector is computed with:
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↵ = acos

✓
n · u
knk kuk

◆
. (6.6)

The quaternion Q is transformed into a rotation matrix using (6.7).

R =

0

@
1� 2y2 � 2z2 2xy + 2wz 2xz � 2wy
2xy � 2wz 1� 2x2 � 2z2 2yz + 2wx
2xz + 2wy 2yz � 2wx 1� 2x2 � 2y2

1

A (6.7)

After the rotation transformation R, we align the two planes (P
t

and
XZ-plane) with a translation defined by t = (0,�y0, 0). The final plane
transformation is represented by:

T
cp

= [R|t]. (6.8)

The points above the selected plane at time t now represent the spatial
domain in which the tracked object is assumed to be situated. The points
in this region are then extracted from the scene’s point cloud and, together
with the plane’s region at time t and its transformation, constitute the
output of the Plane Tracking Phase.

6.3.5 Particle Filter Phase

The proposed method links the tracked object to its associated plane. The
location and orientation of this plane guides the object search by constrain-
ing its solution space.

The Scene Transformation step aligns the region-of-interest obtained
from the Plane Tracking Phase with the camera coordinate system using
the associated plane’s transformation T

cp

. After this transformation, the
associated plane is aligned with the XZ-plane and the tracked object is
situated on top of this XZ-plane.

We use a particle filtering technique to track the object pose. Particle
filters can be used to predict the hidden state of a system based on temporal
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information and sensor measurement of the system. The probability density
of the state is represented by a set of particles with associated weights. Each
particle represents a di↵erent state hypothesis and its weight corresponds
to the current level of confidence associated with this hypothesis. At each
time step, the particles are updated according to the sensor measurements
and an evolution model that incorporates historical information. The state
can be estimated by combining all the particles according to their weights.
See [82] for more details.

In the case of object tracking, the particle filter’s state vector ⌧ :

⌧ = {t,!} , (6.9)

consists of a translation vector t = [t
x

, t
y

, t
z

] and a rotation axis vector
! = [!

x

,!
y

,!
z

]. The six parameters of the state vector ⌧ correspond to
the six DOFs of the object.

In the proposed method, the position and orientation of the associated
plane provides initial information about the object’s location. By trans-
forming the scene’s region-of-interest according to the plane’s transforma-
tion T

cp

, the object’s DOFs are reduced to three (x and z location on the
XZ plane and Y axis rotation). In this spatial domain, the object state
vector is defined by only three parameters. The particle hypotheses are
thus also generated for a three parameter state vector.

To determine the particle accuracy, the points associated to the object’s
group as defined in Section 6.3.3 are reprojected into the scene. The par-
ticle’s weight is then obtained by (6.10) that sums the Euclidean distances
between every point of the object’s group (M

i

) and their nearest point in
the point cloud (n

i

) which is computed using a fast k-d-tree algorithm [83].

e =
X

i=1:k

d(M
i

, n
i

). (6.10)

The particle filter combination leads to the optimal system state esti-
mation (⌧ = [t

x

, t
z

,!
y

]). The !
y

rotation is transformed into its quaternion
form:

122



6.4. Experiments

Q =
h
cos
⇣!

y

2

⌘
, 0, sin

⇣!
y

2

⌘
, 0
i
, (6.11)

and then, into a rotation matrix (R) using (6.7). The translation is
defined by t = [t

x

, 0, t
z

] and the transformation matrix between the tracked
object and the selected plane by:

T
po

= [R|t]. (6.12)

T
po

is the output of the Particle Filter Phase.

6.3.6 Output

In the final phase the tracked object pose is computed by combining the
plane orientation with the object location. The plane orientation defines the
transformation matrix T

cam�plane

between the camera coordinate system
and the plane coordinate system. The object location on the associated
plane defines the transformation matrix T

plane�obj

between the object and
the plane coordinate system. The final transformation between the object
and the camera coordinate system is computed with:

T
cam�obj

= T
cam�plane

· T
plane�obj

. (6.13)

The transformation matrix T
cam�obj

defined in (6.13) contains the 6
DOFs parameters {t,!} that define the tracked object pose in the 3D
space.

6.4 Experiments

We introduce a novel real-world benchmarking data set to compare the
proposed method to a number of alternative state-of-the-art methods.
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6.4.1 Alternative Methods

6.4.1.1 Iterative Closest Point (ICP)

ICP algorithms iteratively minimize a distance error function between the
scene point cloud and the object’s point cluster. Since correspondences are
unknown, at each iteration, each point of the object’s cluster is associated
with the nearest point in the scene’s point cloud. Using these hypothe-
sized correspondences, the algorithm then estimates and applies the cluster
transformation that minimizes the distances between these corresponding
points. The correspondences are then re-established and the process is re-
peated a number of iterations. To test the ICP algorithm with point cloud
data, we use the implementation included in the point cloud library [70].

6.4.1.2 Six Degrees-of-Freedom particle filter (6D-PF)

In this approach, a standard particle filtering technique is used, without
domain reduction. This method thus estimates a 6DOF state vector and
the generated particles are the full six-dimensional problem domain. The
6D-PF implementation using point cloud data is also implemented in the
point cloud library [70].

6.4.2 Real-World Benchmark Dataset

To compare the di↵erent approaches we have recorded a total of nine se-
quences in di↵erent real-world scenarios. Each sequence is between 400 and
800 frames in length, and was recorded at 30 frames per second (FPS) using
an in-hand RGB-D camera1.

For six of these sequences, we have used the Augmented Reality Toolkit
(ARToolkit) [13] to obtain ground-truth pose data. ARToolkit estimates
the position and orientation of physical markers in relation to the camera

1The benchmark sequences are available at http://www.leonardorubio.com/
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Figure 6.6: Pose estimation using ARToolkit. The left image shows the eight physical
markers used and the right image shows the estimated pose of the markers. Detected
markers are shown in blue and non-detected markers are shown in red.

(see Fig. 6.6). The marker’s poses can be estimated with millimeter accu-
racy [13], which is su�cient for our purposes. ARTookit and the proposed
method have di↵erent coordinate systems. Both are calibrated with respect
to each other in the Initialization Phase (Section 6.3.3) when the object-
of-interest is selected. In the six sequences recorded with ARToolkit we
move the camera rather than the object since the object needs to maintain
the same distance to the markers on the plane (Fig. 6.6) throughout the
sequence. Multiple objects, di↵ering in shape and material properties, fea-
ture in these sequences. The objects used are shown in Fig. 6.7. Example
frames of these ARToolkit sequences are shown in Fig. 6.8A–F.

An additional three sequences were recorded with more challenging sce-
narios involving high-speed camera motion, independent object motion,
occlusion, etc. Since the objects move independently in these sequences,
ARToolkit could not be used to provide the ground-truth pose. Example
frames of these sequences are shown in Fig. 6.8G–I.
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Figure 6.7: Di↵erent objects used in the real-world benchmark sequences. The objects
di↵er in terms of shape and material properties. From left to right: dino, car, cleaning,
milk, juice.

6.5 Results

We first analyze the e�ciency of the di↵erent methods and highlight the
factors responsible for their performances. We then quantitatively evaluate
the methods’ accuracies using the sequences with ground-truth pose, and
qualitatively compare the methods on the more complex sequences.

6.5.1 Computation Complexity

For particle filtering, each object point’s nearest neighbor in the scene point
cloud needs to be determined to evaluate the pose error. This needs to
repeated for each particle in order to compute its weight. With M and
n the number of object and scene points respectively, N

p

the number of
particles, and given that we use a fast k-d-tree algorithm of complexity
O (log(n))[83], the complexity of the particle filter used in the 6D-PF model
is then O (N

p

Mlog(n)).

The proposed method requires plane tracking as an additional step be-
fore the particle filtering. This stage has O (n) complexity [84], so the final
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Figure 6.8: Example frames of the di↵erent benchmark sequences. (A) car (517 frames),
(B) dino (516 frames), (C) juice (404 frames), (D) milk (786 frames), (E) multiple
objects (840 frames), (F) occlusions (464 frames), (G) independent car object motion
(319 frames), (H) complex scenario with high-speed camera motion and occlusions (512
frames), (I) camera motion sequence with high-speed motion and occlusions (512 frames).
(A)–(F) have ground-truth obtained through ARToolkit. (G)–(I) are more complex but
without ground-truth.

complexity for the proposed method is then O(n) + O (N
p

Mlog(s)) where
s is a subset of the scene’s point cloud.

ICP’s complexity is equal to O (N
i

Mlog(n)) [85] where N
i

the number
of ICP iteration, and M and n the number object and scene points as
before. As in the particle filter, the k-d-tree algorithm, with complexity
O (log(n)), is used to find each object point’s nearest neighbor in the scene’s
point cloud.
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6.5.1.1 Parameter Settings

Since the number of scene points n directly a↵ects the performance, we
down-sample the scene data to 76,800 points. With n fixed, the computa-
tion times depend on N

p

, N
i

and M . The parameters of each system are
tuned so that each can operate in real-time at the framerate of the RGB-D
camera, which is equal to 30 Hz. The same Intel i7-2600 3.4GHz with 8GB
RAM was used for all algorithms.

For the ICP method, we allow up to 20 iterations (N
i

) in order to
assure the algorithm has converged [86]. Given n = 76, 800 and N

i

= 20,
up to 250 object points (M) can be used in order to achieve 30 Hz. The
proposed method requires associated plane tracking and particle filtering.
With n = 76, 800 and M = 250, a maximum of 130 particles (N

p

) can be
used to achieve 30 Hz operation (plane tracking requires 10 ms and particle
filtering 25 ms). With the same n and M configuration, the 6D-PF system
on the other hand, can only accommodate up to 50 particles for 30 Hz
operation. The reason for this is that in the 6D-PF system the particle
filter needs to operate on the entire point cloud, as opposed to the much
smaller region-of-interest used by the proposed method.

The e�ciency parameters discussed in this section allow adapting the
proposed system to alternative platforms where the availability of resources
may be limited, such as mobile phones.

6.5.2 Quantitative Comparison

To quantitatively evaluate the performance of the di↵erent methods we
compare the estimated object pose ⌧ to the ground-truth pose ⌧

gt

. The
di↵erent pose parameters influence the object’s location in di↵erent ways.
Instead of directly comparing their values it is more meaningful to measure
the e↵ect they have on the 3D object points. Both the estimated ⌧ and
ground-truth pose ⌧

gt

are applied to the object points and the mean Eu-
clidean distance between corresponding points is used as the pose error [47].
The estimated pose is determined correct if this distance error is below a
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defined threshold. The proportion of correct frames can then be used to
summarize the performance of an entire sequence into a single value.

As discussed in Section 6.5.1, we use 250 object points and allow for 20
ICP iterations. For 6D-PF and the proposed method the maximal num-
ber of particles (e�ciency-wise) are 50 for 6D-PF method and 130 for the
proposed method. Since a lower number of particles decreases performance
we allow both methods to use 130 particles. In this way the comparison
is more interesting, but note that 6D-PF cannot process this many parti-
cles in real-time. Figure 6.9 contains pose estimates obtained by all three
algorithms for representative frames of the benchmark sequences.

We use a 15 mm threshold on the distance error between the estimated
⌧ and ground-truth ⌧

gt

pose to determine the correctness of each frame’s
estimate. Based on our experience, the particle filter methods are more
likely to recover from failures than the ICP method when the pose esti-
mation error is large. Since this greatly decreases the proportion correct
frames for the ICP method, we have cut the sequences once the ICP error
becomes too large. The sequences described in Fig. 6.8 are thus delimited
either by the length of the sequence itself or by the first frame where the
ICP error exceeds 10 cm.

The proportion correct frames obtained by the three methods on the
benchmark sequences are summarized in Fig. 6.10. The proposed method
significantly outperforms the alternative methods in all the scenarios. The
ICP method presents a substantially lower performance and is severely
a↵ected by small objects, clutter, and occlusions. In every scenario, the
6D-PF also performs worse than the proposed method even when using the
same number of particles. We would like to remind that this amount of
particles implies a much higher execution time for the 6D-PF method.
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Figure 6.9: Representative frames of the benchmark sequences. Each row shows the pose
estimates obtained by each method on the same frame. The object was transformed
according to the estimated (green dots) and ground-truth pose (red dots) and projected
in the image. In case the estimated and ground-truth dots overlap, they are colored
white.
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Figure 6.10: Quantitative comparison between the di↵erent methods. The bars show the
percentage of correctly tracked frames in the di↵erent sequences.

6.5.3 Qualitative Comparison

We now qualitatively compare the methods in more challenging scenarios.
Ground-truth could not be obtained here using the same procedure since
the object’s are moving in the scene.

Fig. 6.11 shows two representative frames of the object’s motion (Fig. 6.8G)
and complex scenario (Fig. 6.8H) sequences together with the pose esti-
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Figure 6.11: Pose estimates obtained in the more challenging scenarios. Two representa-
tive frames are shown from each sequence. The green dots represent the estimated poses
reprojected on the image.
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mates of each method. In the object’s motion sequence, the object is ini-
tially occluded and then moves at high speed from the left to the right side
of the floor. The proposed method is una↵ected by this high-speed motion
of the object or its occlusion. Even though the ICP and 6D-PF methods
do not su↵er much from the initial partial occlusion, they have more prob-
lems with the object’s fast motion. The second scene presents a complex
scenario with multiple moving objects, occlusions between the objects, and
an independently moving camera. All methods are a↵ected by the relative
movement between the camera and the object. Based on a visual inspec-
tion of the model point cloud reprojected in the image according to the
estimated pose, our method is more accurate than the other methods (see
Fig. 6.11).

6.5.4 Camera Motion Comparison

The proposed system can be used in various situations. The camera motion
(Fig. 6.8I) sequences present di↵erent scenarios where the camera rather
than the object pose is estimated with respect to its environment. The
furniture of the scene now represents the tracked object and its associated
plane is the floor. Figure 6.12 contains a number of frames of multiple
sequences where the camera is moving in the scene. In these scenarios, the
number of tracked object points (scene elements) needs to be increased in
order to avoid the loss of shape details. With 3,500 tracked object points
and 20 iterations, the ICP method achieves 4 Hz on the hardware mentioned
above. For fair comparison, we increase the number of particles to 800 for
the proposed method in order to match the 4 Hz frame rate.

In this scenario, for simplicity’s sake, we do not show the results related
to the 6D-PF method. Base on the experiments carried out, the method
has a lower performance than the proposed system. This is due to the use
of less particles (400 particles in order to match the 4 Hz frame rate) and
for not applying any domain reduction technique. We also test the 6D-PF
method with 800 particles, as in the proposed method, and the results also
showed a lower performance than the proposed method.
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Figure 6.12: Illustrative frames of the camera motion sequences. The complete frames
are shown in the left column and zoomed-in regions are shown in the right column:
(A) high-speed camera motion, (B) camera translation, (C) scene occlusion. The red
dots correspond to ICP’s pose estimates and the green dots to the proposed method’s
estimates. The image areas where the reprojection of both methods overlaps present the
combination of the two colors (yellow).
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Figure 6.12 shows some representative frames of the camera motion-
sequences. The reprojection of the estimated pose is again shown in the
frames. The red dots correspond to the ICP method and the green dots
to the proposed method. The image areas where the reprojections of both
methods match present the combination of the two colors (yellow). This
representation facilitates the comparison of both estimated poses. Both
methods perform very well on the occluded scene, but experience di�cul-
ties in the presence of high-speed camera motion. The proposed method
however yields more accurate results than ICP (see Fig. 6.12).

6.6 Discussion

As shown in the experiments, the proposed method achieves high accuracy
in real-time in all the proposed scenarios whereas the alternative methods
su↵er in certain situations.

The ICP algorithm estimates the current frame’s pose by initializing the
object at its previous frame location, and iteratively matching it to the cur-
rent frame’s scene. This only works with small inter-frame displacements.
ICP is also more likely to get stuck in a local minimum since only one pose
estimate is maintained. The particle filtering used in the proposed and
6D-PF methods on the other hand, maintains a number of di↵erent pose
hypotheses. This allows these methods to recover from failures. For these
reasons, ICP is more sensitive to occlusions, cluttered scenarios, high-speed
camera motion, and almost never recovers from large errors.

Unlike the proposed method, the 6D-PF method does not apply any
domain reduction technique that allows concentrating the processing on a
region-of-interest. This forces the method to process all the scene data for
every particle. The computation time for each particle is therefore higher
than in the proposed method, and, as a result, a much smaller number of
particles can be processed in real-time. Furthermore, since 6D-PF operates
in a six dimensional state space, a much higher number of particles are
required to obtain similar accuracy as the proposed method. Together,
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this higher number of particles and the increased execution time for each
particle render the 6D-PF not suitable for real-world scenarios involving
rapid motion, for which 30 Hz tracking is required.

One limitation of the proposed and alternative methods results from
the shape of the objects. The three algorithms are unable to correctly
estimate the pose of an object if a rotation of the object does not change
the perceived depth. This occurs with cylindrical or spherical objects, such
as cans or balls. This problem can be solved by including object appearance
information (color, texture, etc.) in the pose estimation process.

In the camera motion-sequences the performance of the ICP method was
much better, and closer to that of the proposed method, than in the object
tracking sequences. This is most likely due to the much larger number of
object points and the wider field-of-view that they cover. Note that this
large number of points also drastically increased the execution time of both
methods. The accuracy of both methods was very high even with occlusion
since the occluded part was relatively small compared to the object tracking
sequences. Nevertheless, the proposed method still outperformed ICP on
frames with high-speed camera motion.

6.7 Conclusions

The presented chapter extensively described one of the main contributions
of this thesis. We have presented a novel approach for object tracking that
combines plane tracking and particle filtering in real-time. The method
assumes that the object motion occurs on top of a plane (as is the case in
many movements, such as cars, etc.). This greatly simplifies the problem
and allows for reducing the pose parameters from six to three with respect
to the reference plane. The estimation of the plane and the estimation of
the object on the plane are separated, which allows for higher e�ciency
when tracking the object on the plane. Since the method does not rely on
object appearance or on certain shape primitives, a wide variety of objects
are supported.
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We have demonstrated the algorithm in di↵erent challenging situations,
such as high-speed motion, occlusion, cluttered scenarios and camera pose
estimation. Since there is no suitable real-world benchmark dataset avail-
able with scene depth information and ground-truth, we have developed
such a dataset and ground-truth data specifically for this problem. Us-
ing this benchmark we have shown that the proposed method outperforms
state-of-the-art methods.
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Chapter 7

Conclusions and Future
Work

This dissertation has presented our scientific contribution to the area of
computer vision. In particular, we focused on object pose estimation tasks.

In this final chapter we introduce a general overview of the contributions
achieved during the course of this thesis. We also present a proposal for
future work. Following, we include a list of publications and related works
derived from this dissertation. Finally, a summary of this thesis’s main
contributions is exposed.

7.1 General Overview

The detection and tracking of real-world objects based on visual informa-
tion is an important task for several domains. An improvement in this
field is relevant in many research areas. With this motivation, the Euro-
pean project TOMSY creates a collaborative environment and allowed this
thesis’s development.
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The first stage of this dissertation had the goal of developing a detec-
tion system that achieves similar performance in comparison with current
detection systems. The implementation of the latest algorithms, methods
and techniques contributed to a deep understanding of the computer vision
field. Furthermore, this first stage led to the implementation and design of
a generic architecture, which involved the establishment of an experimen-
tation environment for further research.

The generic architecture describes the required steps for a computer
vision pose estimation system. The same architecture’s modules can be
configured for di↵erent purposes, however, their configurations have to cor-
respond to a global system pose estimation class.

There are two main pose estimation classes that have been addressed
along this dissertation. The basic di↵erent between classes lies in the usage
of temporal information. The first class refers to detection systems where
no temporal information is used by the algorithms or the type of used
data. A second class describes tracking methods that rely their estimations
in temporal knowledge. Data, methods and algorithms that configured the
pose estimation architecture have to fulfill the temporal restriction defined
by the system temporal orientation (detector or tracking system).

The adopted architecture is defined by five steps that have to be con-
figured:

• Sensors: Type of sensors that capture the scene’s data. In this
dissertation, we use standard cameras (RGB image) and depth sensors
(RGB image and depth data).

• Models: Pose estimation task require a model of the tracked ob-
ject. In this work, we have developed di↵erent techniques for object
modeling. Thereby, we use di↵erent model representations with dif-
ferent complexity levels. Starting with manual representation models
and continue with automatic representations of complex shapes and
textures. We also explore o↵-line and on-line modeling processes.
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• Features Extraction: The extraction of features represents the
transformation of the scene’s data into meaningful information. Dis-
tinctive feature’s types were used along this work. Starting with ap-
pearance information based on SIFT features, we have extended the
scene understanding to data segmentation and classification. This ap-
proach classifies the information into meaningful parts that represent
planes and objects in the scene.

• Pose Estimation: Pose estimation methods directly work with scene’s
abstract information. Models and features are used by defined pose
estimation process for object’s state computation. Di↵erent methods
were implemented according to the features and temporal restrictions.
Methods such as a novel method for articulated object computation
or a novel improved PF were implemented, described and compared
in this thesis.

• Pose parameters: Finally, the pose parameters are the last part
of the architecture that has to be defined. This configuration is re-
lated with the type of objects that we are tracking. Therefore, the
object’s state ⌧ is adapted to fulfill the system requirements. In this
work, we define a translation (t) and rotation (!) vector for rigid
object representation. Moreover, we extend the representation with
an internal parameter chain vector (✓) that defines articulate object’s
configurations.

Therefore, the contribution of this work can be classified in two main
goals:

• Articulated object extension: Based on the implemented state-of-
the-art system for rigid object pose detection, we improve the defined
system to articulated object pose detection. This achievement ex-
pands the type of detectable object to articulated elements. We cre-
ate synthetic scenarios that simulate occlusion and noise situations
and where the exact error measurement is feasible. The synthetic
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sequences and the error measurement function, allow the comparison
of the proposed method with the state-of-the-art methods. The pro-
posed system was also tested in challenging real-world scenarios. The
final results show that the proposed system outperforms the state-of-
the-art methods and aims remarkable results in real-world scenes.

• Improved pose estimation system: The second main achieve-
ment describes the enhancements perform for the rigid pose estima-
tion system. One of these enhancements refers to simplifications in
the tracked object modeling process. A reduction of the information
contained by the object’s model is achieved. At the beginning of this
work, we focused on the used of complex appearance model. This
type of representation required an o↵-line exploration stage to gener-
ate the geometry and appearance information model. In this thesis,
we define a tracking system that uses basic geometric information in
its estimation process. The simplification on the system’s models en-
ables a modification on the exploration stage from an o↵-line model
generation to an on-line model acquisition. An additional improve-
ment incorporated to the pose estimation system, refers to including
environmental information to the pose tracking methods. Informa-
tion such as surrounding scene’s planes decomposition, significantly
improves the pose estimation process results. This additional infor-
mation involves an adaptation of the pose estimation methods to the
new data type. Both enhancement were implemented in a pose track-
ing system and compared with state-of-the-art methods. Accurate
comparison was doable thanks to an augmented reality tool (AR-
ToolKit). A benchmark with many di↵erent scenarios was developed.
The proposed method performs an accurate and robust pose estima-
tion that outperforms the alternative methods. The developed pose
tracking framework is extended to diverse tracking situations such as
camera pose estimation tasks.
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7.2 Future Work

The generic architecture can be extended in many diverse ways. The natu-
ral extension from rigid objects to articulated objects could be continued to
deformable objects. The deformable object representation could be defined
as an articulated object that is composed by a large number of articulated
parts, which are connected and constrained between each other.

Following the steps presented in the combined rigid pose estimation
system, we could develop a system that combines the proposed articulated
detection method with articulated tracking methods. As in the rigid ap-
proach, this combination will lead to an articulated combined system that
groups the advantages from both method’s classes.

The proposed improvement for the rigid object tracking could be applied
to the articulated object tracking, where the articulated object’s models
are simplified and environmental information added to the pose estimation
process.

Independent to the object pose estimation task, an alternative task was
introduced in the last chapter regarding camera pose estimation. This topic
refers to the compute vision ego-motion task. Ego-motion is responsible for
computing the camera motion (direction vector) in a frame sequence. Com-
bining and comparing ego-motion methods with the camera pose estima-
tion could improves the understanding of the camera trace and therefore,
enhancing the computer vision tasks that based their computation in the
direction vector, such as independent moving objects (IMOs) detection.

7.3 Publications

The published (or submitted) works related to this research are the follow-
ings:

• M. Vanegas, L. Rubio, M. Tomasi, J. Diaz and E. Ros, ”On-chip
ego-motion estimation based on optical flow”. 7th International Sym-
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posium on Applied Reconfigurable Computing (ARC 2011). Belfast
(United Kingdom).

• L. Rubio ”Interfaces Gestuales”, Book’s Chapter ”Perifericos Avan-
zados” A. Prieto, GARCETA GRUPO EDITORIAL, 2012.

• L. Rubio and R. B. Rusu, ”Point Cloud Library Tracking”. IEEE/RSJ
International Conference on Intelligent Robots and Systems: Work-
shop (IROS 2012). Vilamoura, Algarve (Portugal).

• K. Pauwels, L. Rubio, J. Diaz and E.Ros. ”Real-time model-based
rigid object pose estimation and tracking combining dense and sparse
visual cues”. Computer Vision Pattern Recognition (CVPR 2013).
Portland (United States).

• E.J. Fernandez-Sanchez, L. Rubio, J. Diaz and E. Ros. ”Background
subtraction model based on color and depth cues”. Journal of Ma-
chine Vision and Applications (JMVA 2013).

• L. Rubio, K. Pauwels, J. Diaz, E. Ros and R. Rusu. ”Hybrid search
of Particle Filter and Plane Tracking for Rigid Object Pose Estima-
tion in Real-Time”. SUBMITTED.

• L. Rubio, K. Pauwels, J. Diaz and E. Ros. ”Articulated Object
Pose Detection from Depth and Appearance by Decoupling Rigid and
Non-rigid Pose Components”. SUBMITTED to Image and Vision
Computing (IVC).

• K. Pauwels, L. Rubio and E. Ros.”Real-time Pose Estimation and
Tracking of Hundreds of Objects”. SUBMITTED to International
Journal of Robotics Research (IJRR).

• K. Pauwels, L. Rubio and E. Ros.”Real-time Model-based Artic-
ulated Object Pose Detection and Tracking with Variable Rigidity
Constraints”. SUBMITTED to Computer Vision Pattern Recogni-
tion (CVPR 2014).
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7.4 Main Contributions

We include here a summary of the main contributions achieved in this
dissertation.

• Benchmark sequences (available at http://www.leonardorubio.com/)

– A synthetic benchmark for rigid object pose estimation was devel-
oped. The rendering engine allows to know the ground-truth ob-
ject’s poses. The benchmark contains 18 sequences with 6 types
of object in the presence of noise and occlusion. The created
sequences were rendered from two camera positions that allow
disparity computation. Along with the frame data, ground-truth
depth is provided.

– A synthetic benchmark for articulated object pose estimation
was developed. The ground-truth of the articulated object pose
is known by the rendering engine. The benchmark contains 8
sequences with di↵erent levels of occlusion and noise. Along
with the frame data, ground-truth depth is provided.

– A real-world benchmark for rigid object pose estimation was
developed. Due to an external augmented reality tool (AR-
ToolKit), that provides accurate pose estimation, an approxi-
mated ground-truth pose is computed. Using RGB-D cameras,
the scene’s depth is measured. These two mechanisms allow the
creation of a real-world benchmark for rigid objects. We provide
6 sequences between 400 and 800 frames long, and with 5 di↵er-
ent objects. Image frames and depth information is provided in
the benchmark.

• Object Modeling

– We have incorporated techniques for real-world object model-
ing and we have implemented methods that adapt the standard
models intro pose estimation models. The adaptation implies
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appearance information generation and kinematic information
definition.

• Pose Estimation Systems

– Collaboration in the integration of a novel system that com-
bines detection and tracking methods for rigid objects was im-
plemented. The proposed system is able to work in real-time and
has a remarkable perform in real-world scenarios. This system
outperforms the state-of-the-art methods.

– A novel system for articulated object pose detection was imple-
mented. Based on the rigid object detection system, we have
implemented a novel method that outperforms the state-of-the-
art methods.

– A novel system that reduces the requirement and outperforms
the state-of-the-art system in rigid object tracking was imple-
mented. Improvements such as object’s model simplification or
environmental information were added to improve the rigid ob-
ject pose tracking methods.
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Caṕıtulo 8

Conclusiones y Trabajo
Futuro (Español)

En esta tesis se han presentado contribuciones cient́ıficas en el área de
la visión artificial. En particular, nos hemos centrado en las tareas de
estimación de la pose de objetos.

En este último caṕıtulo presentamos una visión general de los aportes
obtenidos a lo largo de esta tesis. También presentamos una propuesta de
trabajo futuro. Después, se incluye una lista de publicaciones y trabajos
derivados de esta tesis. Por último, se expone un resumen de las principales
aportaciones de esta tesis doctoral.

8.1 Discusión General

La detección y el seguimiento de objetos del mundo real basándonos en
información visual es una tarea importante en varios dominios. Obtener
una mejora en este campo es de relevante importancia para muchas áreas
de investigación. Con esta motivación, el proyecto europeo TOMSY, crea
un ambiente de colaboración que ha permitido el desarrollo de esta tesis.

147



Caṕıtulo 8. Conclusiones y Trabajo Futuro (Español)

La primera etapa de esta tesis doctoral teńıa el objetivo de desarrollar
un sistema de detección de objetos que logra un rendimiento similar al
de los sistemas de detección actuales. La implementación de los últimos
algoritmos, métodos y técnicas contribuyó a una profunda comprensión
del campo de visión artificial. Además, esta primera etapa condujo a la
implementación y al diseño de una arquitectura genérica, que supuso la
creación de un entorno de experimentación para el desarrollo de nuevas
contribuciones.

La arquitectura genérica describe los pasos necesarios para diseñar un
sistema de visión artificial de estimación de pose. Los módulos de la arqui-
tectura pueden ser configurados con diferentes propósitos, sin embargo, su
configuración de módulos debe ser consecuente entre śı y corresponde con
una clase de metodoloǵıa de estimación de pose determinada.

Existen dos clases principales de estimación de pose a las que se hacen
referencia a lo largo de esta tesis. La diferencia básica entre las distintas
clases radica en el uso de la información temporal. La primera clase se
refiere a sistemas de detección donde no se hace uso de información tem-
poral en los algoritmos o en el tipo de datos tratados. La segunda clase
describe los métodos de seguimiento que basan sus estimaciones en infor-
mación temporal. Datos, métodos y algoritmos que configuran la arquitec-
tura de estimación de pose tienen que cumplir con la restricción temporal
definida para el sistema (detección o seguimiento).

La arquitectura adoptada se define con la configuración de cinco blo-
ques:

• Sensores: Son los tipo de sensores que capturan los datos de la
escena. En esta tesis, se utilizan cámaras estándar (imagen RGB) y
sensores de profundidad (imagen RGB y datos de profundidad).

• Modelos: La tarea de estimación de pose requiere un modelo del
objeto que se está siguiendo. En este trabajo, se han desarrollado
diferentes técnicas de modelado de objetos. De este modo, se uti-
lizan diferentes representaciones de modelos con diversos niveles de
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complejidad. Desde modelos de representación manual, hasta mode-
los generados de forma automática con formas complejas y texturas.
También exploramos procesos de modelado o↵-line y on-line.

• Extracción de Caracteŕısticas: La extracción de caracteŕısticas
representa la transformación de los datos de la escena en información
significativa. Distintos tipos de caracteŕısticas han sido utilizadas a lo
largo de este trabajo. Partiendo de la información de apariencia que
describen las caracteŕısticas SIFT, hemos ampliado la comprensión
de la escena con segmentación y clasificación de datos. Este método
clasifica la información en partes significativas que representan planos
y objetos de la escena.

• Estimación de Pose: Los métodos de estimación de pose traba-
jan directamente con la información abstracta de la escena. Modelos
y caracteŕısticas son utilizados por el proceso de estimación de pose
para el computo del estado del objeto. En este trabajo se implemen-
tan diferentes métodos de acuerdo con las restricciones temporales.
Métodos tales como un método novel para la estimación de objeto ar-
ticulado o un filtro de part́ıculas mejorado, se describen y se evalúan
en esta tesis.

• Parámetros de Pose: Finalmente, los parámetros que definen una
pose son la última parte de la arquitectura que tiene que ser definida.
Esta configuración está relacionada con el tipo de objetos que estamos
siguiendo. Por lo tanto, el estado del objeto ⌧ se ajusta para cumplir
con los requisitos del sistema. En este trabajo, definimos un vector
translación (t) y rotación (!) para la representación del estado de los
objetos ŕıgidos. Además, extendemos la representación con un vector
de cadena de parámetros internos (✓) que definen configuraciones de
objetos articulados.

Por lo tanto, las contribuciones de este trabajo se pueden clasificar en
dos objetivos principales:
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• Extensión a objetos articulados: Partiendo de un sistema del
estado-de-la-técnica para la detección de la pose de objetos ŕıgidos,
realizamos una mejor el sistema definido para la detección de obje-
tos articulados. Esta mejora expande el tipo de objetos detectables
a elementos articulados. Creamos escenarios sintéticos que simulan
oclusión y ruido, y donde la medición de error de la estimación es
factible. Las secuencias sintéticas y la función de medición de error,
permiten la comparación del método propuesto con los métodos del
estado-de-la-técnica. El sistema propuesto también fue probado en
escenarios complejos del mundo real. Los resultados finales muestran
que el sistema propuesto supera a los métodos del estado-de-la-técnica
y produce resultados notables en escenarios del mundo real.

• Mejoras del sistema de estimación de pose: El segundo logro
principal se centra en las mejoras realizadas en los sistemas de es-
timación de pose ŕıgida. Una de estas mejoras se refiere a la sim-
plificación del proceso de modelado de objetos. Se consigue una re-
ducción de la información necesaria de los modelo de los objetos. Al
comienzo de este trabajo, nos centramos en modelos de apariencia
compleja. Este tipo de representación necesita una etapa de explo-
ración o↵-line para generar la geometŕıa y el modelo de apariencia.
En esta tesis, definimos un sistema de seguimiento que únicamente
utiliza información geométrica básica para el proceso de estimación
de pose. Una simplificación de los modelos utilizados en el sistema
permite la modificación de la etapa de exploración donde pasamos
de una generación de modelos o↵-line a una adquisición de modelos
on-line. Adicionalmente incorporamos al sistema de estimación de
pose una mejora relacionada con la inclusión de información del en-
torno al proceso de seguimiento. Información del entorno, como la
descomposición de los planos de la escena, mejora significativamente
los resultados del proceso de estimación de pose. Esta información
adicional implica una adaptación de los métodos de estimación de la
posición para este nuevo tipo de información. Ambas mejoras fueron
implementadas en un sistema de seguimiento y fueron comparadas con
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los métodos del estado-de-la-técnica. Una comparación precisa entre
sistemas fue factible gracias a una herramienta de realidad aumentada
(ARToolKit). Un banco de pruebas fue desarrollado donde se repre-
sentan una gran variedad de escenarios. El método propuesto realiza
una estimación precisa y robusta lo cual supone una mejora significa-
tiva frente a los métodos alternativos. El desarrollo planteado para
el seguimiento de objetos ŕıgidos se puede extender a diversas situa-
ciones, como por ejemplo, en tareas de estimación del movimiento de
una cámara.

8.2 Trabajo Futuro

La arquitectura genérica puede extenderse de muy diversas maneras. La
extensión natural de objetos ŕıgidos a objetos articulados podŕıa continuar
con la detección y seguimiento de objetos deformables. La representación
de objeto deformable se podŕıa definir como un objeto articulado que está
compuesto por un gran número de piezas articuladas, que están conectados
entre śı con un movimiento limitado por las articulaciones vecinas.

Siguiendo la metodoloǵıa empleada en el sistema combinado de esti-
mación de pose ŕıgida, se podŕıa desarrollar un sistema que combina el
método propuesto de detección para objetos articulados con métodos de
seguimiento de objetos articulados. Esta combinación dará lugar a un sis-
tema combinado articulado que agrupe las ventajas de ambas clases de
métodos.

La mejora propuesta para el seguimiento de objetos ŕıgidos se podŕıa
aplicar en sistemas de seguimiento de objetos articulados, donde se podŕıa
realizar una simplificación de los modelos articulados e incluir información
del entorno al proceso de estimación de la posición.

Independientemente del proceso de estimación de pose, hemos explorado
aplicaciones alternativas donde poder emplear el sistema desarrollado. En el
caṕıtulo anterior, el sistema de seguimiento fue aplicado para el seguimiento
de la estimación de pose de cámaras. Este tema está relacionado con el

151
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cálculo de ego-motion. El ego-motion es responsable de calcular la dirección
del movimiento de la cámara (vector de dirección) en una secuencia de
imágenes. Una combinación y comparación de los métodos de ego-motion
con la estimación de pose de la cámara podŕıa mejora la comprensión de
su movimiento y por lo tanto, mejorar las tareas de visión artificial que se
basan en el vector de dirección, como por ejemplo la detección de objetos
con movimiento independiente a la cámara (IMOs).

8.3 Publicaciones

Los trabajos publicados (o enviado para publicación) relacionados con esta
investigación son los siguientes:

• M. Vanegas, L. Rubio, M. Tomasi, J. Diaz and E. Ros, ”On-chip
ego-motion estimation based on optical flow”. 7th International Sym-
posium on Applied Reconfigurable Computing (ARC 2011). Belfast
(United Kingdom).

• L. Rubio ”Interfaces Gestuales”, Book’s Chapter ”Perifericos Avan-
zados” A. Prieto, GARCETA GRUPO EDITORIAL, 2012.

• L. Rubio and R. B. Rusu, ”Point Cloud Library Tracking”. IEEE/RSJ
International Conference on Intelligent Robots and Systems: Work-
shop (IROS 2012). Villamoura, Algarve (Portugal).

• K. Pauwels, L. Rubio, J. Diaz and E.Ros. ”Real-time model-based
rigid object pose estimation and tracking combining dense and sparse
visual cues”. Computer Vision Pattern Recognition (CVPR 2013).
Portland (Estados Unidos).

• E.J. Fernandez-Sanchez, L. Rubio, J. Diaz and E. Ros. ”Background
subtraction model based on color and depth cues”. Journal of Ma-
chine Vision and Applications (JMVA 2013).

152
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• L. Rubio, K. Pauwels, J. Diaz, E. Ros and R. Rusu. ”Hybrid search
of Particle Filter and Plane Tracking for Rigid Object Pose Estima-
tion in Real-Time”. ENVIADO.

• L. Rubio, K. Pauwels, J. Diaz and E. Ros. ”Articulated Object Pose
Detection from Depth and Appearance by Decoupling Rigid and Non-
rigid Pose Components”. ENVIADO to Image and Vision Comput-
ing (IVC).

• K. Pauwels, L. Rubio and E. Ros.”Real-time Pose Estimation and
Tracking of Hundreds of Objects”. ENVIADO to International
Journal of Robotics Research (IJRR).

• K. Pauwels, L. Rubio and E. Ros.”Real-time Model-based Artic-
ulated Object Pose Detection and Tracking with Variable Rigidity
Constraints”. ENVIADO to Computer Vision Pattern Recognition
(CVPR 2014).

8.4 Contribuciones Principales

Incluimos aqúı un resumen de las contribuciones principales logradas en
esta tesis.

• Secuencias de Benchmark (disponibles en http://www.leonardorubio.com/)

– Se ha desarrollado un benchmark sintético para la estimación de
objetos ŕıgidos. Mediante el uso de motores de renderizado pode-
mos conocer la pose real del objeto en la escena. El benchmark
contiene 18 secuencias con 6 tipos de objeto donde añadimos
ruido y oclusiones. Las secuencias son creadas desde dos posi-
ciones de cámara conocidas que permiten el cálculo de dispari-
dad. Junto con la secuencia de imágenes, se proporciona la in-
formación de profundidad de la escena.
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– Se ha desarrollado un benchmark sintético para la estimación
de objetos articulados. La pose real de los objetos articulados
es conocida gracias a los motores de renderizado. El bench-
mark contiene 8 secuencias donde se emplean diferentes niveles
de oclusión y ruido. Junto con las secuencias de imágenes, se
proporciona la información de profundidad de la escena.

– Se ha desarrollado un benchmark del mundo real para la esti-
mación de objetos ŕıgidos. Gracias a una herramienta externa de
realidad aumentada (ARToolKit), podemos estimar una aproxi-
mación precisa de la pose real de los objetos en la escena. Usando
cámaras RGB-D, podemos medir la profundidad de la escena.
Estos dos mecanismos permiten la creación de un benchmark del
mundo real para objetos ŕıgidos. Proporcionamos 6 secuencias
de entre 400 y 800 frames, y con 5 objetos diferentes. El bench-
mark proporciona las secuencias de frames y la información de
profundidad para cada secuencia.

• Modelado de Objetos

– Hemos incorporado técnicas de modelado de objetos del mundo
real y se han implementado métodos que adaptan dichos modelos
estándar para su uso en sistemas de estimación. La adaptación
implica la generación de la información de apariencia y la defi-
nición de la información cinemática del modelo.

• Sistemas de Estimación de Pose

– Colaboración en la implementación de un sistema novel que com-
bina los métodos de detección y seguimiento de objetos ŕıgidos.
El sistema propuesto es capaz de trabajar en tiempo real, y pre-
senta una notable mejora en escenarios del mundo real. Este
sistema supera a los métodos del estado-de-la-técnica.

– Se implementó un sistema novel para la detección los objetos
articulados. Basado en el sistema de detección de objetos ŕıgidos,
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hemos implementado un método novel que supera a los métodos
del estado-de-la-técnica.

– Se implementó un sistema novel que reduce los requisitos de
los sistemas estándar de seguimiento de objetos y supera las
prestaciones de los sistemas del estado-de-la-técnica. Se han
añadido mejoras relacionadas con la simplificación de los modelos
de objetos o la inclusión de información del entorno en el proceso
de estimación de pose.
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