Hindawi Publishing Corporation

The Scientific World Journal

Volume 2014, Article ID 490824, 11 pages
http://dx.doi.org/10.1155/2014/490824

Research Article

Hindawi

PhysioDroid: Combining Wearable Health Sensors and Mobile
Devices for a Ubiquitous, Continuous, and Personal Monitoring

Oresti Banos,' Claudia Villalonga,” Miguel Damas,' Peter Gloesekoetter,’

Hector Pomares,' and Ignacio Rojas'

! Department of Computer Architecture and Computer Technology, Research Center for Information and Communications
Technologies, University of Granada (CITIC-UGR), C/Periodista Rafael Gomez Montero 2, 18014 Granada, Spain

2 CGI Spain, Avenida de Manoteras 32, 28050 Madrid, Spain

’ Department of Electrical Engineering and Computer Sciences, Muenster University of Applied Sciences, Stegerwaldstrafe 39,

48565 Steinfurt, Germany

Correspondence should be addressed to Oresti Banos; oresti@ugr.es

Received 15 April 2014; Revised 7 August 2014; Accepted 20 August 2014; Published 10 September 2014

Academic Editor: Francesco Quaglia

Copyright © 2014 Oresti Banos et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Technological advances on the development of mobile devices, medical sensors, and wireless communication systems support a
new generation of unobtrusive, portable, and ubiquitous health monitoring systems for continuous patient assessment and more
personalized health care. There exist a growing number of mobile apps in the health domain; however, little contribution has
been specifically provided, so far, to operate this kind of apps with wearable physiological sensors. The PhysioDroid, presented in
this paper, provides a personalized means to remotely monitor and evaluate users’ conditions. The PhysioDroid system provides
ubiquitous and continuous vital signs analysis, such as electrocardiogram, heart rate, respiration rate, skin temperature, and body
motion, intended to help empower patients and improve clinical understanding. The PhysioDroid is composed of a wearable
monitoring device and an Android app providing gathering, storage, and processing features for the physiological sensor data.
The versatility of the developed app allows its use for both average users and specialists, and the reduced cost of the PhysioDroid
puts it at the reach of most people. Two exemplary use cases for health assessment and sports training are presented to illustrate
the capabilities of the PhysioDroid. Next technical steps include generalization to other mobile platforms and health monitoring

devices.

1. Introduction

Healthcare is a pending matter that challenges worldwide [1].
The severe socioeconomic situation suffered by an important
part of developed countries is providing greater pressure to
find more cost-effective solutions to the provision of health
and social care. Cuts in government spending, an increasing
population of pensioners and a growing unemployment rate,
are critical factors that add urgency to the need of finding new
healthcare solutions. Moreover, healthcare systems in devel-
oping countries confront serious difficulties in providing
care and assistance, mainly due to scarcity of personnel and
resources. Information and communications technologies
appear in this context to revolutionize this field and to provide

innovative, efficient, and affordable solutions. In fact, a strong
effort is being put by companies, research institutions, health
organizations, governments, and other entities all over the
world into promoting, showcasing, and catalyzing the use of
new technologies in healthcare. Current trends demonstrate
that the combination of the latest clinical knowledge with the
cutting-edge technology paves the path to a new dimension
of health and social care.

During the last years, several concepts have emerged
as part of the new healthcare era. Medicine 2.0, Health
2.0/3.0, ePatient, and eDoctor, among other more established
terms such as eHealth, telehealth, or telemedicine, are widely
disseminated examples of these concepts. Most of the ideas
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behind these novel domains are devoted to increase patients’
self-management, procure preventative care, and enhance
health professional expertise. Particularly fundamental to
this renovated healthcare paradigm is to make patients more
participatory of their care process. To that end, patients
should be equipped, empowered, enabled, engaged, eman-
cipated, equals, and experts [2]. As to other areas, the
Internet has been recognized to be the perfect medium to
support these essential capabilities. For example, an enhanced
access to health-related information on the web via seman-
tic and networked resources could facilitate an improved
understanding of common health issues [3]. Likewise, social
networking [4], social media [5], and virtual reasoning [6]
are meant to be primal enablers of the new health generation.
Personalized social networks may foster the definition of
supportive virtual communities, within which individuals
can help one another understanding and managing different
kinds of health-related issues. Moreover, these networks may
serve as a means for health professionals to facilitate access
to medical knowledge and improve timely communication
with patients, of particular interest to increase acceptance
and adherence to therapeutic treatments. Interaction through
social media stands out as a more “human approach” to
the individual seek of online health information. This idea
takes advantage of the collectivity to support patients and
family caregivers in their feelings of loneliness, reassure them
in their behavior and daily efforts, and validate adopted
medications, devices, and health services.

Although these innovative tools are truly interesting
to promote a more personalized and independent health-
care, a crucial aspect that may not be approached through
web technologies is corporeal monitoring. Body monitor-
ing deepens into the patients’ physiology, biological condi-
tions, and behavioral aspects, which are utterly necessary
to have a precise understanding of their status and par-
ticular necessities. According to the traditional health care
model, patients’ monitoring is normally relegated to sporadic
doctor visits or institutionalization, which goes against the
principles of proactivity, independence, accessibility, and
cost-effectiveness. Oppositely, embracing these principles
arises mobile Health (mHealth). mHealth is an emerging
and rapidly developing field that builds on a wide range
of mobile technologies such as smartphones, tablets, and
portable health devices to support community and clinical
health data retrieval, delivery of healthcare information,
or direct provision of care. Most interestingly, mHealth
covers technological solutions for the monitoring of patients’
behavior and vital signs. The potential of mHealth stems from
the capacity of making technology portable or even wearable
[7]. Accordingly, systems may be used in an ubiquitous
manner and provide seamless monitoring capabilities. As an
example, remote health monitors may continuously inform
caregivers or practitioners to respond fast in the event of
an emergency [8] or a change in the patients’ conditions
[9]. Furthermore, not only could these devices be useful to
enhance medical tasks but also to make them possible. These
systems may become much valuable in regions where the
trip to a care center takes several hours or a few doctors
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must assist thousands of patients. In this regard, mHealth
emerges as a means to provide greater access to healthcare
services to a broader segment of population. The evolution
of electronics, getting smaller and cheaper, is supporting the
access to more affordable solutions that satisfactorily over-
come traditional communication barriers stemming from
old-fashioned technologies. It is important to notice that even
when mHealth technologies may not be in principle expected
to be defrayable by low-income nations, reality shows that
there exists a rapid rise of penetration in these countries.
In fact, more than half of worldwide new smartphone users
belong to developing countries, owing to the expansion of
low-end smartphones, with the fastest growth on the Asian
continent [10].

From a technological perspective, one of the main lim-
itations of up-to-date portable health monitoring devices
are processing and storage capabilities. Monitoring devices
normally consist of a set of sensors that measure physiological
magnitudes and convert them into machine readable infor-
mation. Although some of these devices include dedicated
resources to process the information, these are very sparse
and limited. Conversely, mobile devices are the perfect
means to collect the data retrieved from health monitoring
devices, as well as to provide local processing capabilities or
even grant access to cloud functionalities (high performance
computation, large capacity storage, and data analytics) [11].
Through this, not only the data collected from the patient
could be consider for their health assessment and care, but
also the records from hundreds, thousands or even millions
of patients, that may potentially share similar necessities and
conditions. This massive collection and processing of health
data is seen to greatly boost the medical understanding, thus
leading to an optimal provision of care.

In this work, we present the PhysioDroid system, which
combines both commercial wearable health devices and
mobile devices to provide continuous and personalized
patient physiological monitoring. An application that runs
on the Android platform is implemented to enable the
collection, sharing, and exchange of physiological data
registered through the ubiquitous wireless health monitor.
Other features such as health data visualization, storage, and
alerts on conditions are further available from this. Firstly
introduced in [12], the PhysioDroid system is part of the
AdaBIO (Advanced Intelligent Systems for Biomedical and
Bioinformatics Applications) project and also contributes to
the WHM (Wireless Health Monitoring) and OPENi (Open-
Source, Web-Based, Framework for Integrating Applications
with Social Media Services and Personal Cloudlets) projects.
In these projects adaptive methodologies, expert models, and
ubiquitous interfaces are combined with noninvasive wireless
sensors for multimodal biomedical monitoring. Moreover,
it is aim of these projects to provide more robust wireless
systems, improve healthcare monitoring, and leverage mul-
tiple user physiological data to principally lead to an earlier
discovery, track of evolution, and trends prediction on patient
conditions.

The rest of the paper is organized as follows. Section 2
includes a brief summary of the latest ubiquitous health mon-
itoring systems and forefront medical apps. The PhysioDroid
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system is introduced in Section 3, while their constituent ele-
ments are fully described in Sections 4-6. Section 7 presents
a couple of use cases where the PhysioDroid system is devised
to potentially be exploited. Finally, main conclusions and
future steps are presented in the last section of this paper.

2. State of the Art

Looking at the market for state-of-the-art mobile health care
sensors, an estimated number of 16 million devices will be
sold by the year 2016, as predicted by ABI Research [13].
These devices, which have been extensively used during the
recent years in research for diverse appliances such as disease
tracking [14, 15] or analysis of human behavior [16-18], are
becoming more popular among end-users. The choice of
which device to use for certain applications boils down to
the features and incorporated sensors. Similarly, the way
these devices are worn is very different just as the way
they obtain data from the body or communicate with base
stations for further diagnosis and presentation. Some of
the manufacturers already provide software to examine the
collected data on a handheld device or desktop computer,
whilst others provide supervision of specialists from remote
servers. An extensive updated list of more than 240 different
mobile health devices is provided in [19].

Examples of specific purpose commercial health moni-
toring devices are the Irythm Zio Patch [20], a long-term car-
diac rhythm monitor specially designed to improve prognosis
of cardiac arrhythmias, the fitbit [21], for intake and activity
assessment or the Zeo Sleep Monitor [22], which is specially
indicated for sleep disorders analysis. The achievement of
full hospital-grade is now also possible with the release of
completely portable devices such as the Smartheart [23],
the first personal mobile 12 lead ECG for the detection of
ischemic cardiac events. Examples of more general commer-
cial health monitoring devices are the ViSiMobile [24], which
measures ECG, HR, oxygen saturation, BR, noninvasive
blood pressure, and skin temperature; the AVIVO MPM PiiX
[25], which is capable of monitoring fluid status, HR, BR,
posture, activity, and ECG; the Equivital LifeMonitor [26],
that collects ECG, BR, skin temperature, and acceleration
data along with other metrics such as galvanic skin response,
oxygen saturation, or geopositioning; the Zephyr Bioharness
[27], a garment that registers comprehensive physiological
data from medical-grade ECG, HR, and BR to motion; or the
RS TechMedic DynaVision [28], which incorporates ECG, HR,
plethysmogram, SpO2, and body temperature sensors.

The use of mobile medical applications has increased
over and over during the last years. Apple’s iOS platform has
been demonstrated to be much more mature in this field;
however, its use is tailored to a reduced and expensive catalog
of devices. As an alternative, Android provides its users with
a wider variety of systems of different prices and vendors
at the reach of a broader audience [29, 30]. This reduced
cost translates into a higher number of potential users from
which the diverse stakeholders, including patients, relatives,
caregivers, practitioners, institutions, and companies may
benefit.

The vast majority of medical apps have informative
and academic purposes, which make them specially recom-
mended to professionals and students. Medscape, Epocrates,
or Eponyms are popular examples of this category, particu-
larly intended to provide comprehensive and updated infor-
mation for medical procedures, disease monographs, drug
references, or practice guidelines [31]. Other applications are
most useful for primary care practitioners or generalists, such
as Calculate by QxMD, which provides them with medical
calculators and decision support tools that apply to General
Practice, Internal Medicine, Cardiology, Surgery, Obstetrics,
or Neurology, among others. Electronic reference manuals
are also close at hand, as is the case of Monthly Prescribing
Reference (MPR), an app that incorporates prescribing notes
and drug records to facilitate clinical practice and promote
the access to the latest advances in treatments [32]. Health
care applications are not just aimed at specialists, but also
at other sort of users. This is the case of DoctorMole, which
offers a first diagnosis of the malignancy of a given mole. To
do so, the app makes use of the smartphone’s built-in camera
to take a picture from the affected area and superimposes the
diagnosis directly on the picture through augmented reality.
Another application that takes advantage of the camera to
diagnose is uCheck. uCheck analyzes the color of the chemical
strips dipped in a sample of urine. This is subsequently
compared to a color-coded map and within a few seconds,
a full report containing levels of glucose, bilirubin, proteins,
ketones, or leukocytes is available to the user. Normally, the
information is presented in an easy to understand format,
which applies to both medical and general users interests.
This type of tools could be of worth to identify potential
diseases and track the evolution of detected illnesses. In turn,
this may translate into more precise and proactive monitoring
than usual quarterly/annual medical examinations.

Although there is a relevant number of medical apps
that apply to diverse health domains, there are very few that
support physiological monitoring. Examples of these scarce
apps are Instant Heart Rate or Cardiograph, which use the
smartphone’s camera to get an accurate heart rhythm reading
from the user fingertip. Mainly intended for entertainment
purposes, iStethoscope also turns the mobile phone into a
stethoscope, allowing the users to listen to their heartbeats
and visualize the heart waveform on the screen. One of
the major advantages of these apps, with respect to others,
is the fact of not requiring additional devices to the own
smartphone. However, they demonstrate inaccurate as well
as cumbersome for continuous monitoring. Moreover, there
exists almost no regulation for these apps, thus, making
their public embracement and use difficult, despite the high
interest shown by physicians and trainees [33, 34]. The use
of more precise, professional, and validated mobile health
care sensors, in conjunction with mobile devices, is then of
mandatory consideration. Although this area has been little
explored yet, some preliminary products such as iBGStar,
an electronic blood glucose meter for diabetes management,
or iSpO2, which measures the oxygen saturation level in the
blood and heart rate, let us envision a promising future for
mobile and ubiquitous health care.
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FIGURE 1: The PhysioDroid system. From right to left, the wearable monitoring device records the user’s vital signs and transmits them to the
mobile device. The application running on the mobile device provides functionalities such as visualization and interpretation of the collected
data, triggering of alarms and health alerts. The mobile device also serves as gateway to the remote persistent storage system, which provides
advanced health services based on the analysis of medical data from multiple users.

3. PhysioDroid

PhysioDroid is an advanced ubiquitous system for remote
and continuous monitoring of people’s physiological and
behavioral status. The PhysioDroid system builds on the com-
bination of wearable health sensors, capable of measuring
physiological and behavioral data, and mobile devices, in
charge of gathering and processing the collected information.
The system is particularly conceived to empower users in
their daily living, as well as to make them conscious and
participatory of their healthcare and well-being, through
the access to a simplified description of their health status.
PhysioDroid also provides track and alerts on conditions, as
well as mechanisms to trigger emergency procedures at the
point of need. Besides, the PhysioDroid system does not only
apply to individual users, but it is devised to leverage health
data collected from multiple users. This is seen to be a key
accelerator of medical and social knowledge, helping carers
to provide more efficient medical diagnoses, treatments and
proactive policies.
The PhysioDroid system consists of (Figure 1):

(i) a wearable monitoring device that records different
types of physiological data on a subject and transmits
them wirelessly;

(ii) amobile device, for example, smartphone, which runs
an app that acts as collector of the data delivered by
the vital sensor, support system for medical diagnosis
and health alerts, interface for user data inspection
and gateway to forward the data to a remote storage
for further analysis;

(iii) a remote persistent storage system to store data
from multiple users, particularly devised to support
advanced health services and analytics.

FIGURE 2: Equivital LifeMonitor device. It comprises the sensor
electronics module (SEM) and the monitoring belt. The SEM
contains a battery, electronics, and software, in order to process the
measurements from the monitoring belt. The monitoring belt holds
the SEM onto the body and contains fabric electrodes, which require
contact with the user’s skin to measure the body’s vital signs.

4. Wearable Monitoring Device

The monitoring of the user’s vital signs is performed through
the Equivital EQOI system (see Figure2). The EQO1 [35]
is a multiparametric, wireless, and portable health sensor
device, that collects and transmits vital sign information
measured from the body of the wearer to a smart computer,
server or base station. Through a Bluetooth connection, the
information may be sent over a network in close proximity to
the device. The EQO1 is attached to the body with the help of
a belt, which is strapped around the chest. Embedded on the
belt and the back of the device are sensors that rest directly
on the skin, to measure vital information through impedance
measurements. The EQO1 senses electrocardiogram (ECG, 2-
leads at 256 Hz, from which is derived the heart rate, HR),
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FIGURE 3: Screenshot from the application wizard to get started. (a) Registration. (b) Login. (c) Modules loading. (d) Main menu.

respiration (RESP, at 25.6 Hz through an embedded strain
gauge), motion (acceleration, ACC, at 25.6 Hz), and body
skin temperature (BODY TEMP). The device provides a very
limited proprietary processing of the information, including
filtering and low level knowledge extraction. Thus, for exam-
ple, the device is able to detect a reduced set of postures
(e.g., standing, lying) from the analysis of the measured
acceleration or extract the R-R interval for electrocardiogram
analysis. The sensor operation has been performance tested to
the American National Standard (ANSI/AAMI EC13:2002).
The performance results for this tests, as well as the models
implementation are disclosed in [36]. Moreover, the EQO1
provides system status information as part of its main
features. There are two operating modes available for the
EQO1, full disclosure (which includes the raw data delivery)
and partial disclosure (only calibrated data is provided). Here
the first mode is considered to keep all the information
registered by the system. The operational time of the device
is superior to 24 h, although the vendor recommends not
to wear the band more than a day at one time. For more
specific details regarding communication, storage protocols,
and information encoding, the reader is referred to the
product manuals and datasheets [36].

5. PhysioDroid Mobile App

The data measured through the EQOL1 is further transmitted
to a mobile device (e.g., smartphone or tablet). In particular,
Android devices have been here considered. Several advan-
tages of the Android operating system with respect to its com-
petitors were conclusive during the platform selection. These
include the greatest growing mobile market, opensource
framework, highest performance stability and security, and
continuous updates and upgrades of the application pro-
gramming interface (API), among others. Different mobile
devices have been tested during development and validation

of the system, including Samsung, HTC, LG, or Sony devices
for a representative selection of the various Android API
available versions (“Gingerbread” API 2.3 and newer). The
average battery lasting time for most of the evaluated mobile
devices, during full operation of the PhysioDroid system, is
above ten hours. In the following, the PhysioDroid app is
described.

5.1. App Usage. The process to get started on the app is
depicted in Figure 3. After launching the app, the user is
asked to insert name and password, to uniquely identify and
log into the application contents (Figure 3(b)). Registration
is only required for the first time access (Figure 3(a)). Here,
the user is asked to insert some data related to their personal
information and health profile, such as name, age, weight,
height, and gender. This information is then available for
some of the planned recommendations and alerts. Thereupon
the user is logged and the application modules loaded
(Figure 3(c)), the main menu is available (Figure 3(d)). The
principal items of this menu are “Monitoring,” “Database,”
“Configuration,” and “Help.”

By pushing the button “Monitoring,” the user starts the
monitoring procedure and gets access to some of its main
functionalities. First, the app triggers the process of binding
both mobile device and EQO1. To that end, the user is asked
to allow the Bluetooth connection. As soon as both mobile
device and EQO1 are bound, the application starts collecting
the data delivered by the wireless monitoring device. The
EQO1 raw data are encoded into the PhysioDroid proprietary
format to be used by other application functionalities. These
application functionalities principally enable data processing
and real-time visualization on the mobile device.

Two visualization modes are provided, one for the expe-
rienced analyst and other for the average user (see Section 7).
The expert view provides real-time representation of phys-
iological data waveforms. This is particularly suited for
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clinical specialists that may require a precise description
of the recorded information. Amongst others, the ECG,
acceleration, and respiration waveforms may be displayed, as
well as the skin temperature. A simpler presentation of the
health data is provided for the regular users. The user view
includes averaged values (HR, BR, and TEMP) and visual
indicators that inform about the status of the monitored
vital data (Figures 4(b)-4(c)). For a user-friendlier inspection
of the vital signs several status bars are defined. Each bar
refers to a numerical range that identifies the adequacy of
the measured physiological parameter. To do so, a number
of bars light up from left to right and green to red (green =
“OK; yellow = “warning,” and red = “danger”). From here, the
user may check and react to data, for example, by following
personalized clinical guidelines or recommendations. The
thresholding of these states (bars) is devised to be set by a
medical expert depending on the particular health conditions
of the user. In fact, the app has been defined in a way
that users only need to provide the URL of their health
care provider, through the “Configuration” menu. Therefore,
the app automatically connects to the health care provider
service, which provides the threshold values to be set in
the app for the particular patient characteristics. By default,
and for evaluation purposes, the app natively provides a set
of predefined threshold ranges, which nevertheless do not
strictly generalize to all people and conditions.

As a key feature, it has been implemented the possibility
of triggering an emergency call when a specific event occurs
(e.g., when a threshold is largely exceed). The phone number
to whom the calls should be addressed could be also set
through the “Configuration” menu. The emergency call is
directed to the “112” by default, in order to reach emergency
services. Given the costs of triggering a false alarm, and
although the EQO1 sensor holds various medical certifications

that supports its reliability, specific situations that may lead
to an erroneous alert have been especially considered. This
refers, for example, to the case when the user removes the
vital band before ending the monitoring process or the
communication between mobile and wearable devices is lost.

For the motion data interpretation, a stick that imitates
the identified posture or exercise is particularly used. At the
bottom of the screen the user also gets information about
the EQO1 battery status, apnea occurrence, vital signs, and
irregular heart beat events. All these events come from the
data provided by the EQOL.

The user may display some of the stored data through
the “Database” menu (see Figure 5). Nevertheless, this has
been rather defined for those users that wish to manually
upload the data to the remote persistent storage system or to
remove them whether necessary. By default, the PhysioDroid
app uploads the data automatically; however, this may be
changed through the configuration options. These kind of
functionalities are better thought for the sake of research.
Storage procedures are described in Section 6.

Apart from the functionalities already explained for
the “Configuration” menu, here the user may also change
other application settings such as data uploading interfaces
(WIFI/3G) or user profile updates. All functionalities and the
HowTo are neatly described in the manuals that can be access
through the “Help” menu.

5.2. App Implementation. The PhysioDroid app consists of
seven packages named according to the functionality they
provide: cache, drawing, login, monitoring, upload, storage,
and add-ons.

The cache package prototypes classes that implement a
cache memory based on a buffer. This allows the application
to perform on-the-fly data processing without requiring local
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permanent storage (e.g., microSD card). In fact, the use of a
persistent storage is observed to slow down significantly the
processing of the data or at worst prevent it.

The incoming data is managed and administered by the
monitoring package, which further supports the Bluetooth
connections between the vital monitor and the mobile device.
These connections are established through the Bluetooth
radio frequency communication protocol (RFCOMM, [37])
and the serial port profile (SPP, [38]), which emulates a serial
port connection.

The storage package manages local persistence processes.
The storage functionalities build on SQLite [39], which is a
popular database engine on memory constrained systems,
like mobile devices, since it runs in minimal stack space and
very little heap. SQLite defines a compact in-process library
that implements a stripped version of SQL.

The upload package controls remote storage functionali-
ties. The transmission to the remote storage is implemented
using a HTTP POST request method, which encloses in the
message’s body the SSL-encrypted representation of the data.

Graphs and general data presentation are implemented
through the drawing package. This package implements some
of the native functions provided by the Android API.

User login and registration are handled within the login
package. Here again, Android native functionalities are used
to implement authentication and authorization mechanisms.
Finally, the add-ons package contains classes that are not
essentially needed for the application core functionalities but

provide features to make the user experience more pleasant
(e.g., manuals, guidelines).

The implemented software is built on Android API levels
9 to 15 and makes use of the best practices recommended
by Google in order to improve user experience, reduce
power consumption, and optimize performance. The soft-
ware modularity also allows developers to easily include
new functionalities for signal acquisition, data storage, data
analysis, and data transmission as well as other add-ons
whether required. In fact, the PhysioDroid app has not been
defined as a closed application but as a primary tool that may
be specifically configured to approach different medical and
health-related problems.

6. Remote Persistent Storage System

The third component of PhysioDroid is the remote persistent
storage system. Physiological data collected by the wearable
monitoring device may be transmitted through the mobile
app to a remote storage component. The app can be operated
without making use of this remote component; however, in
this case the spectrum of value-added services would be more
limited.

Remotely-stored health data could be accessed by doctors
in order to control the patients vital information or by
any other authorized third party, for example, a clinician.
Moreover, the collected data could be further processed
to infer some knowledge about the users physiological



conditions, or even to determine behavioral patterns of a
certain demographic group, for example, elderly.

The current implementation of PhysioDroid uses a
remote server to provide the storage capabilities. An Apache
application server and a MySQL database enable the per-
sistent storage and allow the secure communication with
the mobile device. The connection from the PhysioDroid
app to the server is established in the upload package and
data is transmitted both via the WIFI or the 3G network, as
described in Section 5. The present prototype is deployed on
the AdaBIO testbed, at the University of Granada. However,
in a real setup, each health care provider, for example,
insurance companies or public health organizations, would
have their own server to which users’ data would be gathered.
Through authentication, only registered users can access the
server, and depending on the access policies defined by the
health care provider, authorization to access patients’ health
data is granted.

In case thousands of users made use of PhysioDroid, the
server would run into scalability issues. This problem would
get even worse if PhysioDroid became one of top Android
Apps in Google Play and gets millions of installs. One of the
main issues relates to the fact of having thousands of users
accessing the server simultaneously. A second important
matter refers to the storage of huge amounts of data, gener-
ated by a large number of users. Finally, the bigger the data
sets are, the higher the computational processing costs are.

Cloud computing [40] and big data [41] are cutting-edge
technologies devised to solve the aforementioned problems.
PhysioDroid could exploit the benefits of cloud comput-
ing and big data to ensure scalability. For example, cloud
providers offer load balancers, such as Amazon EC2 Elastic
Load Balancing [42] or Rackspace Load Balancer [43],
which would enable the distribution of PhysioDroid traffic
across several servers. For massive data storage purposes,
nonrelational cloud databases, such as Apache Cassandra
[44], CouchDB [45], and MongoDB [46], are particularly
suitable and also offered by most cloud providers. Moreover,
frameworks like Apache Hadoop [47] provide cloud storage
and large-scale processing functionalities, such as MapRe-
duce [48], and could be of worth use in PhysioDroid.

We are working at the moment on a new version
of PhysioDroid, which uses the Open-Source, Web-Based,
Framework for Integrating Applications with Social Media
Services and Personal Cloudlets (OPENi) (ICT FP7 Project
OPEN;, http://www.openi-ict.eu/) for the cloud storage of
collected physiological data and their management.

OPEN:i offers the Cloudlet platform to store users data on
the cloud. The OPENI Cloudlet platform provides application
users, like PhysioDroid users, with a single location to store
and control their personal data. The Cloudlet builds on the
cloud database MongoDB and empowers application users to
remain in control of their data. The control mechanisms are
inherently secure and trustworthy, assuring the users data are
not disclosed without their consent. Each PhysioDroid user
will have their own Cloudlet to store their data. The Cloudlet
functionalities will give the PhysioDroid users the maximum
control of their data and over third party access to their data.
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The PhysioDroid will use the Cloudlet API in order to
upload the collected physiological data to the user’s Cloudlet.
The OPENi Encryption functionality, which is based on AES
and one-time-keys, will allow on-the-fly encryption of the
data collected by the PhysioDriod application preserving its
confidentiality when uploading it from the mobile device to
the user Cloudlet.

Not only will the PhysioDroid data be securely trans-
mitted and stored into the user Cloudlet, but its secure
and trustworthy access will be also granted by the OPENi
Privacy and Security Framework. The OPENi permission
visualization functionality will allow the PhysioDroid user
to set up the data access rights via an intuitive graphical
user interface, thus, defining who can access their data. These
permissions and the authorization and authentication OPENi
functionalities will ensure that the user physiological data is
not disclosed to any malicious applications or users. Only the
authorized parties, for example, the doctor, the clinician, or
the family member, will be able to access the PhysioDroid
data available in the users Cloudlet.

Last but not least, OPENi will allow the easy development
of new applications that use the PhysioDroid data stored
in the users Cloudlet and any combination of independent
cloud-based services made available through the OPENi
API Platform, as well as the development of processing and
reasoning functionalities on the PhysioDroid data available
on the Cloudlet.

7. On the Use of PhysioDroid

Two practical use cases for both average users and specialists
in health and sports domains are described in the following.

One of the key features of the PhysioDroid system
is the ability of presenting and detecting risk conditions.
Some vital sign measures are easy to interpret, as they
reach critical or extreme values (e.g., no respiration, too
low/high skin temperature, or heart rate collapse). However,
the interpretation of these very data in a more ordinary
situation varies from patient to patient. For example, heart
rate measurements differ depending on personal factors such
as gender, age, weight, or height. The differences may be
even higher for patients that suffer from illnesses or health
conditions. Medical experts are capable of benefiting from
all this information to correctly interpret the patient’s vital
signs. This medical knowledge could be easily incorpo-
rated by the specialist into the PhysioDroid system. The
PhysioDroid app has been defined to allow specialists to
customize the interval of interest (normality/abnormality) for
each measured physiological sign, thus, adapting the visual
representation and alarms to them. Taking advantage of this
characteristic, a possible application could be referred to the
persistent evaluation of the user’s cardiac rhythm to detect
abnormal situations and further trigger proactive policies.
Once detected, and depending on the magnitude of the
abnormality, the patient could be directed to follow specific
guidelines provided by the doctor. Should it be required,
an automatic emergency call/message may inform the closest
clinical center.
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FIGURE 6: Examples of different intensity exercises monitored through the EQOI sensors. User (a) standing still, (b) walking, and (c) running.

In a clinical or emergency setting, the medical expert
may also benefit from the use of the PhysioDroid system to
accelerate the diagnostic. Patients often need to wait for some
time before the device to run, for example, an ECG test or
a respiration check, is available. The cost of these devices
determines that they are normally shared among various
specialists. The PhysioDroid system brings here a readily
avaijlable alternative for a practical vital sign monitoring.
Thus, for example, when the patient arrives to the clinical
center the doctor may connect the PhysioDroid app to the
wearable monitoring device to rapidly check the patient vital
signs. Moreover, the monitoring may also be continuously
performed in the ambulance on the way to the hospital or
clinical center.

The PhysioDroid system is not just limited to the medical
field but well-being, well-working, or other health-related
domains. Here, an example for its use in sports is presented.
Particularly, the idea is to assess whether the user reaches
the target or training heart rate (THR) during the exercising.
This has been shown to coincide with the phase when heart
and lungs receive the most benefit from a workout. The
approach basically consists of analyzing the heart rate while
the user performs diverse intensity activities (e.g., Figure 6).
HR ranges may be defined through diverse state-of-the-art
methods extensively used in sports and fitness disciplines.
From the literature, the Karvonen method [49], or more
recently, the Zoladz method [50], offers an empirical way
of defining diverse ranges regarding the intensity of the
performed activities. The latter is particularly preferred, since
it just requires to know the maximum heart rate (HRmax) to
derive the exercise zones. The Zoladz method proposes five
training heart rate zones or ranges (THR) that are respectively
obtained as follows:

THR = HRmax — Adjuster + 5bpm, 1)

where zone 1 (recovery (aerobic)) — Adjuster = 50 bpm;
zone 2 (endurance (aerobic)) — Adjuster = 40bpm;
zone 3 (stamina (aerobic)) — Adjuster = 30bpm, zone 4
(economy (anaerobic)) — Adjuster = 20bpm, and zone
5 (speed (anaerobic)) — Adjuster = 10bpm. To obtain
the HRmax several formulas based on the users’ age and
gender, information acquired by the PhysioDroid app during
the user registration process, are available from the literature.
Examples of these formulas are the one by Robergs and
Landwehr (HRmax = 205.8 — (0.685 x age), [51]), Lund
(HRmax (men) = 203.7/(1+exp(0.033 x (age —104.3))), [52];
HRmax (women) = 190.2/(1 + exp(0.0453 x (age — 107.5))),
[53]) or Gulaty (HRmax (women) = 206 — (0.88 x age),
[54]) among others. These formulas must be considered as
average approximations, which perform well in most cases,
but greatly depend on the user physiology and fitness. In
fact, these models are of limited use on people with cardiac
problems such as tachycardia, bradycardia, or arrhythmia
[55], thereby this approach is rather planned for healthy
people. In either case, all these formulas are automatically
calculated and adapted to the user by the PhysioDroid system.

The previous use case is not only devised for the amateur
user but for athletes and their coaches. Athletes may be
continuously monitored during their exercises while the
coach analyzes the measured information. This data could
be of worth to improve training routines or avoid injuries
normally caused from an inadequate warm up or cool down
procedure.

8. Conclusions and Future Work

In this paper, a portable physiological and behavioral mon-
itoring system devised for people health and wellbeing
empowerment is presented. The system consists of a wear-
able monitoring sensor, a mobile device, and an optional
remote persistent storage unit. The wearable monitoring
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device records diverse vital signs and transmits them to the
mobile device on which a specifically developed Android
app runs. The app acts as gateway supporting physiological
data gathering and local storage, as well as data uploading
to the remote storage for further processing. The application
also allows the users to visually inspect the vital signs
information collected through the wearable health sensor.
This information is presented according to the users’ level of
expertise. Simple alerts and emergency calls are also features
included as part of the app. Although the application has
been here defined for the Equivital EQO1 monitor, it has been
implemented in a way that little effort is required to make
it compatible with any type of Bluetooth interfaced health
monitor. Finally, a couple of use cases for the PhysioDroid
system has also been suggested as part of this work.

Next steps aim at incorporating sophisticated data analy-
sis and decision support techniques that may lead to a more
profound description of the users’ status and their evolution,
key information for a customized, and personalized health
care. As much as the number of users of the PhysioDroid
system increases, more powerful resources should be also
considered. The use of mainstream cloud solutions such as
the ones provided by the OPENI platform is within the scope
of current and future work. The authors also aim to shortly
grant full and free access to the app through the Google Play
store. Moreover, the source code will be also provided under
GPL license so the app may be adapted to the particular
requirements of the target problem.
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