
Research Article
A Procedure for Extending Input Selection Algorithms to
Low Quality Data in Modelling Problems with Application to
the Automatic Grading of Uploaded Assignments

José Otero,1 Ana Palacios,2 Rosario Suárez,1 Luis Junco,1

Inés Couso,3 and Luciano Sánchez1

1 Computer Science Department, Universidad de Oviedo, Sedes Departamentales, Edificio 1, Campus de Viesques, 33203 Gijón, Spain
2 Computer Science Department, Universidad de Granada, C/Periodista Daniel Saucedo Arana s/n, 18071 Granada, Spain
3 Statistics Department, E. U. I. T. Industrial, Universidad de Oviedo, Módulo 1, Planta 4, Campus de Viesques, 33203 Gijón, Spain

Correspondence should be addressed to Luciano Sánchez; luciano@uniovi.es

Received 11 March 2014; Revised 26 May 2014; Accepted 9 June 2014; Published 7 July 2014

Academic Editor: Anand Paul

Copyright © 2014 José Otero et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

When selecting relevant inputs in modeling problems with low quality data, the ranking of the most informative inputs is also
uncertain. In this paper, this issue is addressed through a new procedure that allows the extending of different crisp feature selection
algorithms to vague data.The partial knowledge about the ordinal of each feature is modelled bymeans of a possibility distribution,
and a ranking is hereby applied to sort these distributions. It will be shown that this technique makes the most use of the available
information in some vague datasets. The approach is demonstrated in a real-world application. In the context of massive online
computer science courses, methods are sought for automatically providing the student with a qualification through code metrics.
Feature selection methods are used to find the metrics involved in the most meaningful predictions. In this study, 800 source code
files, collected and revised by the authors in classroom Computer Science lectures taught between 2013 and 2014, are analyzed with
the proposed technique, and the most relevant metrics for the automatic grading task are discussed.

1. Introduction

Online courses are ubiquitous nowadays. Almost every insti-
tution, university, college, or high-school offers freely accessi-
ble online courses. Massive Open Online Courses (MOOCs)
and Distance Learning have a large impact in developing
countries, helping to improve education in poor regions.

Learning Management Systems or Content Management
Systems are used to provide the students with different kinds
of material and also allow students and teachers to interact
via lectures, assignments, exams, or gradings. However, the
resources needed for tracking students and taking exami-
nation are time consuming for the organizing institutions;
thus, there is demand for intelligent techniques that help the
instructor to manage large groups of students. In particular,
procedures that partially or completely automate the grading

process are sought, understood as taking standardized mea-
surements of varying levels of achievement in a course [1].

There are topics, however, whose qualification is trouble-
some. Think for instance of computer programming, where
the usual examination procedure consists in challenging the
students with a set of problems to be solved. In online courses,
the student’s solutions, comprising one or more source code
files, are uploaded to the platform, where the person at
charge scores the task. This needs a long time and it is also
difficult for the teacher to be objective and unbiased. If the
grading depends not only on the program output correctness
(using a set of sample data inputs) but also on the structure
of the solution (data types, control flow, ans efficiency) or
the documentation quality, the situation is even worse. In
addition to this, the students should follow the usual software
developing process and thus the solution of each assignment

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 468405, 11 pages
http://dx.doi.org/10.1155/2014/468405

http://dx.doi.org/10.1155/2014/468405


2 The Scientific World Journal

should pass through several stages until it reaches a maturity
level such that it can be submitted as a completed task.
Those intermediate stages could provide a valuable feedback
to the teacher, regarding individual students’ needs and also
teacher’s lectures, materials or strategies quality.

1.1. Automatic Grading in Online Courses. The automatic
grading is a problem that has been addressed by many
researchers. To name some, in [2] a semiautomated system
for task submission and grading is proposed, but the grading
itself must be done manually by the teacher.TheWebToTeach
system [1], on the contrary, is able to check submitted source
code automatically. Similar to this and focused on program-
ming, the methods in [3] or [4] achieve an automatic grading
by comparing the output of each student program with the
output of a correct program.There is no measurement of the
internals of the source code, which is labelled as correct if the
output is correct, regardless of the solution strategy.

The AutoLEP system [5] is more recent. One of the
salient points of this last work is a procedure to compare
any implementation of an algorithm against a single model.
Furthermore, in [6] a methodology is presented that accom-
plishes automatic grading by testing the program results
against a predefined set of inputs and also by formally
verifying the source code or by measuring the similarities
between the control flow graph and the teacher’s solution.
The parameters of a linear model are found that averages the
influence of the three techniques in order to match teacher’s
grade and automatic grading in a corpus of manually graded
exercises. Finally, in [7], softwaremetrics are used tomeasure
the properties of the students’ programs and a fuzzy rule-
based system is used to determine how close the programs
submitted by students and the solutions provided by the
teacher are, partially achieving an automatic grading.

1.1.1. Automatic Grading and Continuous Assessment. The
former approaches pay particular attention to exam grading.
In the problem at hand, this consists in comparing the outputs
of student programs to those of a correct program, but there
are secondary aspects about the internals of the source code
(i.e., code style, documentation, etc.) that must be assessed
too. In some cases, software metrics provide an additional
insight [7].

However, the purpose of following an online course is
arguably not to obtain a certificate but to acquire knowledge.
From the instructor’s side, it is important that an early
corrective action is taken if learning difficulties are detected
and therefore a continuous assessment of the student must be
carried out. In this case, the picture is completely different.
It is hard to combine MOOCs and continuous assessment;
however, it is clear that the evolution of each student could
not be tracked down to a single exam. Incremental mea-
surements of the levels of achievement of each programming
concept should be taken, with the help of the many different
assignments that the students upload to the server hosting the
course.The number and size of these assignments depend on
the student, and some of its elements might be missing; not

all the online students finish their tasks, and the amount of
work carried out by the students is largely different.

Therefore, different sets of assignments must be com-
bined and jointly considered by the grading system. The
combination procedure must be resilient to missing data and
incomplete assignments, as students will be graded on the
basis of sets of data of different sizes. Finally, if software
metrics are used to assess the quality of the assignments, not
all of them are equally informative for each programming
concept. Because of the mentioned reasons, in this paper,

(i) a method is proposed for building a fuzzy compound
value that summarizes the values of the software
metrics of different source files that are related to the
same programming concept. This compound value
takes into account both the average value and the
dispersion of the different metrics;

(ii) the relevance of the different metrics is assessed with
an extension of a crisp feature selection algorithm
to fuzzy data. It will be shown that the extension
described in this paper exploits the available data in
a real-world problem better than the alternatives;

(iii) a learning fuzzy system that can extract if-then rules
from interval and fuzzy data is used to build the rule
based system that performs the grading on the basis
of the metrics that are selected in the preceding step.

This paper is organized as follows: in Section 2, the
method for combining the values of a metric over a set of dif-
ferent source files and a method for ranking the importance
of the fuzzy aggregated values are described. In Section 3, the
rule learning algorithm is described. In Section 4, numerical
results are provided that validate the claims of this paper with
actual data collected in classroom lectures in 2013 and 2014.
Section 5 concludes the paper and highlights future research
lines.

2. Feature Selection for
Regression with Vague Data

As mentioned, the grading process is intended to determine
the level of achievement of each programming concept,
which in turn is assessed bymeans of a set of source code files
written by the students. The metrics of all files in these sets
are jointly considered. Given that these sets are of different
sizes for different students and some of its elements may be
missing, a robust combination method is needed.

The proposed combination is based on the assumption
that the application of a softwaremetric to a given source code
can be assimilated to the process of measuring the value of an
observable variable or item that provides partial information
to describe an unobservable or latent variable. In this case,
the latent variable is the degree of assessment of a given
programming concept. It is remarked that the information
provided by different items may be in conflict.

The conversion of a set of items into a compound value
that can be fed into a model has been solved in different
ways in other contexts. For instance, in marketing problems,
certain models have been designed where sets of items are



The Scientific World Journal 3

0 200 400 600 800 1000

0

1

2

3

Time

In
te

rv
al

-v
al

ue
d 

da
ta

−3

−2

−1

(a)

0.0 0.1 0.2 0.3 0.4

0.0

0.2

0.4

0.6

0.8

1.0

Mean

M
em

be
rs

hi
p

−0.1

(b)

Figure 1: Fuzzy representation of LQD. (a) 1000 instances of an interval-valued database. (b) Fuzzy (possibilistic) representation of the mean
value of the data in the left part. 𝛼-cuts of this fuzzy set are bootstrap-based confidence intervals of the interval valued data; that is, they are
the smallest intervals containing at least a fraction 1 − 𝛼 of the data.

preprocessed and aggregated into a characteristic value [8].
The most commonly used aggregation operator is the mean,
although many different functions may be used instead [9].

In [10], however, a different approach was used: it was
assumed that there exists a true value for the latent variable,
but also that this value cannot be precised further than
a set that contains it. In this respect, it is widely known
that uncertainty in databases encompasses probabilistic and
incomplete data, the former being a refinement of the latter,
but some categories of imprecise data are hardly addressed
in this framework, such as censored or interval-valued
data. Imprecise probabilities-based representations are better
suited for these problems, because the available knowledge
about the possible values of the data by means of families of
probability distributions.

Possibilistic representations are a particular case of these,
general enough for modeling a wide range of practical
problems: incomplete databases can be represented bymeans
of the vacuous belief function (the set of all probability
distributions) that models full ignorance, and other types of
uncertain data, such as the aforementioned interval-valued
or censored data can also be easily represented. Moreover, a
possibilistic view of uncertainty is compatible with the use
of fuzzy sets for describing partial knowledge about the data,
because the contour function of a possibility distribution is
a fuzzy set [11]. In this context, 𝛼-cuts of fuzzy sets may be
linked to confidence intervals about the unknown value of
the feature with significance levels 1 − 𝛼 (see Figure 1 and
reference [12]).This last property supports the use of intervals
or fuzzy data for modelling the following types of uncertain
or low quality data:

(i) unqualified sets of possible values, such as enu-
merations, {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑁
}, or interval-valued data,

[𝑥
1
, 𝑥
2
]. Note that missing data is represented by

intervals spanning the whole domain of the variable.
Censored data is represented in a similar way;

(ii) qualified sets of possible values, where each item
is associated with a probability value, an upper

probability, or an interval of probabilities. These
constructs often arise from the fuzzification interfaces
of fuzzy rule-based systems. For example, given two
membership functions related to the linguistic
concepts “Fast” and “Slow,” a crisp value “5” might be
mapped to a set {0.2/Fast + 0.8/Slow} and an interval
“[4, 5]” might be mapped to the interval-valued fuzzy
set {[0.15, 0.25]/Fast + [0.75, 0.85]/Slow} or to the
fuzzy set {0.25/Fast + 0.85/Slow}, depending on the
chosen method.

Following this section, a method for ranking the impor-
tance of the fuzzy aggregated metrics in relation to the
grading problem is presented that allows applying an arbi-
trary deterministic or random feature selection algorithm
to this problem. In short, each imprecise value in the
training database will be regarded as a set of possible values.
A standard feature selection algorithm will be repeatedly
launched over different selections of the sample that comprise
possible instantiations of the data. Each selection gives rise to
a different ranking, and all of these will be aggregated into a
fuzzy membership function, to which a possibilistic meaning
is assigned, as described before. Finally, a ranking between
these fuzzy memberships will be defined and used to select a
relevant subset of features.

2.1. Random Feature Selection Extended to Vague Data. In the
following, the grades and fuzzy aggregated metrics will be
regarded as random and fuzzy randomvariables, respectively.
A fuzzy random variable will be regarded as a nested family
of random sets:

(Λ
𝛼
)
𝛼∈(0,1)

, (1)

each one associated to a confidence level 1−𝛼 [13]. A random
set is a mapping where the images of the outcomes of the
random experiment are crisp sets. A random variable 𝑋 is a
selection of a random set Γ when the image of any outcome
by 𝑋 is contained in the image of the same outcome by Γ.



4 The Scientific World Journal

For a random variable 𝑋 : Ω → R and a random set
Γ : Ω → P(R), 𝑋 is a selection of Γ (written 𝑋 ∈ 𝑆(Γ))
when

𝑋 (𝜔) ∈ Γ (𝜔) ∀𝜔 ∈ Ω. (2)

In turn, a random set can be viewed as a family of random
variables (its selections.)

Let be 𝑀 + 1 paired samples (𝑋
𝑘

1
, 𝑋
𝑘

2
, . . . , 𝑋

𝑘

𝑁
) and

(𝑌
1
, 𝑌
2
, . . . , 𝑌

𝑁
), with 𝑘 = 1, . . . ,𝑀, from 𝑀 + 1 standard

random variables 𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑀 and 𝑌. In this particular
case, 𝑀 is the number of metrics and 𝑁 is the number of
students. It will be assumed that all universes of discourse are
finite. Let be assumed that a feature selection algorithm is a
random mapping between the 𝑀 + 1 paired samples and a
permutation 𝜎 of {1, . . . ,𝑀} that sorts the metrics according
to their relevance:

𝜎 (𝑋
1

1
, 𝑋
1

2
, . . . , 𝑋

𝑀

𝑁
, 𝑌
1
, 𝑌
2
, . . . , 𝑌

𝑁
, 𝜔) = (𝜎

1
, . . . , 𝜎

𝑀
) (𝜔) ,

(3)

where 𝑝
𝑖𝑘

= 𝑃(𝜎
𝑖
= 𝑘) = 𝑃(𝜔 | 𝜎

𝑖
(𝜔) = 𝑘) with 𝑖, 𝑘 =

1 . . . ,𝑀, is the probability that the 𝑘th random variable 𝑋
𝑘

is ranked as the 𝑖th most relevant feature. If the feature
selection criterion is deterministic (e.g., a correlation or
mutual information-based criterion [14]) then 𝑝

𝑖𝑘
∈ {0, 1}.

In other cases, successive launches of the feature selection
algorithm over the same sample will produce different per-
mutations (think for instance of random forest-based feature
importance measures [15]).

Now let 𝑀 + 1 be fuzzy paired samples (𝑋𝑘
1
, 𝑋
𝑘

2
, . . . , 𝑋

𝑘

𝑁
)

and an also paired crisp sample (𝑌
1
, 𝑌
2
, . . . , 𝑌

𝑁
) from 𝑀 + 1

fuzzy random variables 𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑀 and the random
variable 𝑌. Let the list of fuzzy numbers 𝜎̃ = (𝜎̃

1
, . . . , 𝜎̃

𝑀
) be

defined as

𝜇
𝜎𝑖
(𝑘)

= sup {𝛼 | 𝑃 (𝜎
𝑖
(𝑋
1

1
, 𝑋
1

2
, . . . , 𝑋

𝑀

𝑁
, 𝑌
1
, 𝑌
2
, . . . , 𝑌

𝑁
) = 𝑘) ≥ 𝜖

𝑋
𝑘

𝑖
∈ 𝑆 ([𝑋

𝑘

𝑖
]
𝛼
) , 𝑖, 𝑘 = 1, . . . ,𝑀} ,

(4)

for a given small value 𝜖. It will be shown later in this paper
that each fuzzy number 𝜎̃models our incomplete knowledge
about the possible ranks of each fuzzy aggregated metric
𝑋
𝑘; these metrics will be ordered according to a ranking

between fuzzy numbers. In Section 5 a detailed practical case
is worked.

3. Genetic Learning of Fuzzy Rules from
Imprecise Data in Modeling Problems

It was mentioned that an importance-based ranking of
features in fuzzy datasets is also uncertain. In the preceding
section, a method for dealing with this imprecision was
proposed. A secondary problem arises when the automatic
grading systemhas to be learnt from this vague data; however,
there exist machine learning algorithms that can be used with

this purpose. In this paper, the fuzzy rule learning algorithm
NMIC, introduced in [16], will be used. As this is not a widely
known method, it is recalled and briefly described in this
section for the convenience of the reader.

Fuzzy models, comprising 𝑅 rules with the form

If 𝑥 is 𝐴
𝑟
then 𝑦 is 𝐵

𝑟
with weight 𝑤

𝑟
, (5)

are used, where 𝑥 and 𝑦 are the feature and the output
vectors, respectively, and 𝐴

𝑟
are conjunctions of linguistic

labels, which in turn are associated with fuzzy sets. 𝐵
𝑟
is a

singleton. The output 𝑌̃ of the fuzzy model for a fuzzy input
𝑋 is defined through the membership function

𝑌̃ (𝑦) = sup{𝑋 (𝑥) | 𝑌 =

∑
𝑅

𝑟=1
𝑓
𝑟
(𝑥)

∑
𝑅

𝑟=1
𝐴
𝑟
(𝑥)

} , (6)

where each function 𝑓
𝑟
(𝑥) is a product 𝛽

𝑟
𝐴
𝑟
(𝑥). 𝐴

𝑟
(𝑥) is

the membership of 𝑥 to a linguistic expression whose terms
are labels of the linguistic variables defined over the input
variables, connected by the operators “AND” and “OR.” 𝛽

𝑟
is

the product of the centroid of 𝐵
𝑟
and the weight 𝑤

𝑟
assigned

to the rule.

3.1. A Michigan-Style Genetic Fuzzy Model for Imprecise Data.
The NMIC learning method is based on the hypothesis that
the best model will comprise rules that are in nondominated
sets under confidence and support measures [17]. An exten-
sion of the NSGA-II algorithm to fuzzy data is repeatedly
launched to obtain Pareto fronts containing nondominated
rules in terms of confidence and support. Every front is
regarded as a population of aMichigan-type algorithm,where
each individual is an antecedent of a fuzzy rule and the
whole population is a fuzzy model. Individuals (rules) are
weighted and selected by means of a procedure called SVD
select (explained later in this section). The pseudocode of the
NMIC algorithm is shown in Pseudocode 1. The codification
and genetic operators are described in [16].

The fitness of an individual has three components: the
support of the antecedent of the rule, its precision (dual
concept of the confidence in classification), and the weight
of the rule. The support is the fuzzy arithmetic-based sum
of the memberships of the antecedent for all the points in
the sample. The precision is understood as the inverse of the
(fuzzy) variance of the examples covered by the rule, that is,
all examples in the dataset, weighed by their memberships to
the antecedent of the rule.

The following expression is used to compute the precision
𝑝 of a rule (the lower the better):

⨁[𝑌̃
𝑛
⊖ 𝑝𝐴
𝑚
(𝑋
𝑛
)]

2

⨂𝐴
𝑚
(𝑋
𝑛
) ∃𝑛 | 𝐴

𝑚
(𝑋
𝑛
) > 0

⨁[𝑌̃
𝑛
]

2

otherwise,
(7)



The Scientific World Journal 5

Initialize P

Evaluate confidence and support in P

SVD select P

Create Intermediate Population Q

while iter ≤ maxiter

Evaluate confidence and support in P + Q

SVD select P + Q

non dominated sort P + Q

compute crowding distance P + Q

P ← selection of P + Q

SVD select P

non dominated sort P

Create Intermediate Population Q

end while

Output the nondominated elements of P

Pseudocode 1: Pseudocode of the NMIC algorithm.

where 𝑝 is the solution to the weighted least squares problem
defined by the centers 𝑋

𝑛
of the data:

𝑝 =

∑
𝑁

𝑛=1
𝑌
𝑛
𝐴
𝑚
(𝑋
𝑛
)

2

∑
𝑁

𝑛=1
𝐴
𝑚
(𝑋
𝑛
)

3
. (8)

Furthermore, observe that the cooperation of the rules
only arises if the sum of the fitness values of the individuals
is comonotonic with the fitness of the rule base they form.
Otherwise, the genetic evolutionwould not improve the error
or the model. The proposed precision and support measures
are not enough to achieve cooperation by themselves, as each
rule in the population models the part of the space covered
by its antecedent, but nothing prevents that more than one
rule covers the same area while other areas are uncovered.
Therefore, a SVD select procedure is introduced that consists
in assigning each rule in the Pareto front a weight, with the
purpose of obtaining a compact rulebase, while at the same
time these weights achieve the best matching between the
data and the model.

These weights will be obtained by least squares. Let 𝐴 be
the matrix of the memberships of the antecedents of all rules
in the Pareto front, at the centerpoint of the inputs. Let 𝑌 be
a column vector with the centers of the desired outputs of
the model, and let 𝑊 be another column vector formed by
the weights of these rules, those that we want to obtain. The
assignment ofweights thatminimizes the error (and therefore
solves the cooperation problem) is

𝐾 = (𝐴
𝑡
𝐴)

−1

𝐴
𝑡
𝑌 (9)

provided that the rank 𝑟
𝐴
of 𝐴 coincides with its number of

columns, the number of individuals in the Pareto front In
most cases, 𝑟

𝐴
is lower than this; therefore, 𝐶 = 𝐴

𝑡
𝐴 does

not have inverse. The common solution to this problem is to
apply a singular value decomposition𝐶 = 𝑈𝐷𝑉

𝑡, then cancel

the eigenvalues of 𝐷 lower than 10
−6 times the highest, and

take the inverse of the remaining ones, and by last define

𝐾 = [𝑉 ⋅ (

1

𝐷

) ⋅ 𝑈
𝑡
]𝐴
𝑡
𝑌. (10)

While this assignment solves the cooperation problem, it
does not solve the competition problem, because the redun-
dant rules are not discarded. The value of 𝐾 in the preceding
equation is that of minimum norm, but what we really need
is the definition of the matrix (1/𝐷) that produces the most
sparse definition of 𝐾, not that with the lowest weights. For
example, observe that the definition in (10) will assign the
same weight to identical rules, but we want one of them to
take all the credit. It is easy to purge the duplicated rules,
but it is difficult to remove rules that are (almost) linear
combination of others in the Pareto front.

As a matter of fact, the number of individuals we want to
assign weights different than zero is the same as the number
of not cancelled eigenvalues in 𝐷. Observe that the columns
of the matrix 𝑈 associated with null eigenvalues form a basis
of the nullspace of 𝐴 and that means that each individual
(each column of 𝐴), if expressed in the base formed by the
columns of 𝑈, will have at most 𝑟

𝐴
nonnull coefficients; that

is, we will not findmore than 𝑟
𝐴
independent elements in the

Pareto front. Therefore, we know that we can set to zero the
weights of all the rules but 𝑟

𝐴
.The problemhere is how canwe

determine which columns of 𝐴 will be set to nonzero weight.
The solution is trivial, but computationally intensive.

Since the minimum norm is not searched but we are inter-
ested in an sparse matrix𝐾 (thus the number of fuzzy rules is
kept as small as possible), in [16] it was proposed not to add
a regularization term, that is, not to take the inverse of𝐴𝑡𝐴 +

𝜆𝐼, but that the eigenvalues of all the submatrices 𝐴
󸀠 of 𝐴

formed by removing only one of its columns are computed.
When a submatrix 𝐴

󸀠 whose non null eigenvalues are the
same as those of 𝐴 is found, the column is removed and the
process restarted from𝐴

󸀠. At the end of the process, a matrix
with 𝑟

𝐴
columns and full rank is obtained and (9) can be

applied.

4. Numerical Results

In this section a real-world problem is worked; thus, the
benefits of the proposed approach can be compared to the
results of alternative approaches. A brief state of the art in
softwaremetrics is includedfirst; thus, the experimental setup
can be better understood. The experimental design and a
description of the field work follow, and the section ends with
some compared numerical results.

4.1. Software Metrics Used in This Experimentation. As men-
tioned, software metrics will be used to measure the quality
of the students’ submitted source code. It will be assumed
that better coding leads to higher scoring, but static analysis
is also used to obtain additional insights into the student’s
programs.There are many comprehensive surveys describing
the best known software metrics; see for instance [18] or [19].



6 The Scientific World Journal

According to [20], the most relevant software metrics in this
context are as follows.

(i) Number of lines of code: a naive measurement of the
code size.

(ii) Ratio between lines of comments and lines of code: a
measurement of code documentation.

(iii) Halstead metrics [21]: these metrics have been
reported to be useful to evaluate students programs
[22].

(iv) Cyclomatic number [23]: often related to complexity
measures and thus usually referred to as cyclomatic
complexity number, but there is not a full agreement
about the subject [22]. The cyclomatic number is
a graph theory concept that has been translated to
software because a program can be modeled as a
strongly connected graph [24].

Most of the software analysis tools (http://www.webappsec
.org/) provide these features and many other indexes. As
the number of software metrics increases, the odds that
some of them are closely related or overlap in the property
being measured increases too. For instance, it is hard to
conceive an increase of the cyclomatic number without a
simultaneous increase of the lines of code. Moreover, an
increase in the value of a metric is not always consistent
with an improvement in the code quality. For instance, it
may happen that the complexity of a given problem solution
is too low, because the student is unwinding a loop, or the
complexity may be greater than expected because the student
is using a quadratic algorithm for a problem with linear
solution. In either case, the dependence between the metric
value and the desired solution is highly problem dependent.
Because of this, some researchers propose to use feature
selection techniques for finding the best software metrics
for the problem at hand. In [25], a stochastic procedure
is employed to select the subset of quantitative measures
that bring out the best software quality prediction. Another
example is [26], where eighteen filter-based feature selection
procedures are tested against sixteen software datasets, in this
case searching for fault prone modules.

In this paper, a set of software metrics that are commonly
used to measure student’s source code properties [7] with
some additions from [27] for extracting information related
with style and structure will be used, and feature selection
techniques will be developed that help to select the best set
of metrics for each programming concept.

4.2. Experimental Design and Field Work. Forty-six volun-
teering students from the first course of an Engineering
Degree in Computer Science at Oviedo University, Spain,
participated in this study.ThePython programming language
was used. Students were allowed to upload as many source
code files as they wished, ranging from none to more than
a solution for each problem. 800 files were uploaded. Seven
programming concepts were studied: Standard I/O, Condi-
tionals, While loop, For loop, Functions, File I/O, and Lists.
The evaluation of the students comprised both theoretical and

Table 1: Most relevant pairs of software metric/programming
concept for the field study mentioned in the text. Observe that the
programming concepts in this subset of metrics are “Conditional”
and “File I/O,” meaning that the correlation between the scores and
“While loop,” “Functions,” “Lists,” or “Standard I/O” is weaker.

Programming
concept Description of the metric Rank 99% Rank 80%

Conditional COCOMO SLOC [29] 1 ± 0 11 ± 10

Conditional Number of tokens 2 ± 0 8.5 ± 7.5

Conditional Code ratio 4 ± 1 25 ± 24

File I/O Number of characters 4 ± 1 11 ± 8

Conditional Number of lines 7 ± 1 21 ± 19

Functions Number of characters 4 ± 1 43 ± 37

Conditional Number of keywords 7.5 ± 1.5 36 ± 33

Conditional Number of comments 17 ± 6 48 ± 44

File I/O Ratio of comments 17 ± 6 48 ± 44

File I/O McCabe Complexity [23] 17 ± 9 30 ± 24

File I/O Number of blocks 17 ± 9 31 ± 25

practice skills, with two exams each, at themidterm and at the
end of the term. The uploaded exercises were not part of the
exams and had no impact on the final grading. 23 software
metrics and properties were measured for each source file;
thus, the feature selection stage has to choose between 161
different combinations of programming concept and software
metric.

The feature selection algorithm to be extended is based on
the random forest feature importance measures [15]. A fuzzy
rank (see [28]) was used to sort the fuzzy rankings.

The most relevant pairs of found software metric-
programming concept are displayed in Table 1. This is the
subset for which the best model attained a minimum error;
details are given later in this section. Two 𝛼-cuts of their fuzzy
ranks are also given. In Figure 4(b), the whole membership
function of the fuzzy rank is plotted for two particular
metrics: “COCOMO SLOC” [29] and “McCabe Complexity”
[23]. It is remarked that a high degree of overlapping between
the memberships of the fuzzy ranks was found in this study.

Observe that the only programming concepts in this
subset of metrics are “Conditional” and “File I/O,” meaning
that the correlation between the scores and “While loop,”
“Functions,” “Lists,” or “Standard I/O” is weaker. This is
an unexpected result, since the latter five programming
concepts intuitively convey more information about the
grading than the two former ones, but this fact can be
explained nonetheless if the particular circumstances of this
experimentation are taken into account. Students uploaded
more exercises at the beginning of the course than at the end;
thus, the quality of the information about their capabilities
is better for the initial problems. The ranking algorithm has
therefore discovered that apparently relevant information
may be discardedwithout lowering the prediction capabilities
of the model and suggested to evaluate the performance of a
student with the eleven metrics shown in Table 1.

In Figure 2, the rank of the most relevant metrics,
according to the proposed algorithm, is graphically displayed.



The Scientific World Journal 7

0 10 20 30 40 50

0

50

100

150

Feature

Ra
nk

Figure 2: Supports (dashed lines), modal points (bars), fuzzy ranks
(abscissa), and crisp ranks (ordinate of the squares) of the 50 most
relevant metrics. Those metrics whose square is plotted below the
diagonal line occupy a more relevant position under the fuzzy rank.

Supports (dashed lines), modal points (bars), fuzzy ranks
(abscissa), and crisp ranks (ordinate of the squares) of the
50 most relevant metrics are displayed. Observe that those
metrics whose square is plotted below the diagonal line
occupy a more relevant position under the fuzzy rank than
they were assigned by the crisp feature selection algorithm.
Squares over the diagonal line, on the contrary, are assigned
more weight by the crisp algorithm than they are with the
fuzzy extension.

From a methodological point of view, the proposed
technique is robust and the available information is better
exploited with the combination of the fuzzy feature selection
and NMIC than it is with standard feature selection and
model learning algorithms. To prove this fact, regression trees
[30], neural networks [31], support vector machines [32],
random forests [33], and the NMIC algorithm were launched
over subsets sweeping the range between 10 and 20 metrics,
found by both the fuzzy extended feature selection algorithm
and the original crisp version operating on the centerpoints
of the aggregated data. In Table 2 these results are jointly
displayed. In Figure 3, test errors corresponding to the selec-
tion of the most relevant variables with random forest feature
importancemeasures (applied to the centerpoints of the fuzzy
data) are drawn with dashed lines.The proposed extension of
the same feature selection method to fuzzy data, followed by
a learning with the same centerpoints for Regression Trees,
Neural Networks, Support Vector Machines, and Random
Forest, but the whole fuzzy data for NMIC, are drawn with
solid lines. Observe that if the number of features associated
with the lowest test error is chosen as a quality index, the
proposed extension improved the accuracy of the grading
system in 4 of 5 cases (all but the Regression Tree, with
incidentally attained the worst results).

Table 2: Test error or the different regression methods for feature
sets ranging from 10 to 20 variables.

Features Multilayer SVM Regression Random NMIC
Perceptron Tree Forest

10 7.703 7.185 8.574 6.671 7.011
11 7.729 7.093 8.574 7.285 6.321
12 7.823 7.128 8.185 6.802 6.629
13 7.451 6.911 8.185 6.742 6.678
14 7.641 6.914 8.185 6.854 7.073
15 7.472 6.670 8.084 7.617 7.056
16 7.661 6.652 8.185 6.576 7.236
17 7.785 6.791 8.185 7.716 6.764
18 7.838 6.728 8.703 7.285 8.399
19 8.195 6.445 8.703 7.256 7.256
20 8.672 6.648 8.909 8.357 7.451

The combination of the NMIC algorithm with fuzzy
data was consistently better in all cases (statistically rele-
vant results, according to Friedman/Wilcoxon tests, 𝑃 value
better than 0.05). In Figure 4(a) a set of boxplots is drawn,
showing the statistical differences between the test error of
the combination of Neural Networks (NN), Support Vector
Machines (SVM), Regression Trees (RT), Random Forests
(RF), and NMIC with the feature set computed as described
in this paper. This last graphic is intended to show that
NMIC exploits the imprecision in the information better than
the alternatives, demonstrating that the fuzzy aggregation
loses less information than the alternatives and also that the
proposed method is able to exploit this extra information.

4.3. Comparison to Other Automatic Grading Systems. The
closest to this proposal automatic grading algorithm found
in the literature is [7]. In this reference, an online judge/tutor
is presented. The purpose of that system is to provide the
students of an introductory Computer Programming subject
with a quality measure of the submitted code and also with
some recommendations to improve it. The students interact
with the system via an Eclipse plugin, comparing their
solutions against the teacher’s ones. The comparison has two
parts: first a structural comparison is done; then an evaluation
of the correctness using a set of test cases is performed.

This paper is related to the first task, where a fuzzy
representation of the algorithm’s structure is used. For each
exercise the teacher writes his/her best solution and then
computes several softwaremetrics (McCabe cyclomatic com-
plexity, COCOMO SLOC, etc.). Three fuzzy sets (Low, Nor-
mal, and High) are defined in order to allow certain degree
of deviation with increasing penalization as the student’s
values depart from the teacher’s ones. For each software
metric and problem, the teacher manually defines each
set. Later, the same software metrics are computed for the
student’s submitted source code.The aggregatedmembership
to teacher’s fuzzy sets values is taken as a student’s solution
quality measurement. The aggregation function has several
manually selected weights to adjust the relative importance
of the different software metrics for each assignment.



8 The Scientific World Journal

6.0

6.5

7.0

7.5

8.0

8.5

9.0
Regression tree

Number of features

Te
st 

er
ro

r

10 11 12 13 14 15 16 17 18 19 20

Neural network

6.0

6.5

7.0

7.5

8.0

8.5

9.0

Number of features

Te
st 

er
ro

r

10 11 12 13 14 15 16 17 18 19 20

SVM

6.0

6.5

7.0

7.5

8.0

8.5

9.0

Number of features

Te
st 

er
ro

r

10 11 12 13 14 15 16 17 18 19 20

Random Forest

6.0

6.5

7.0

7.5

8.0

8.5

9.0

Number of features

Te
st 

er
ro

r

10 11 12 13 14 15 16 17 18 19 20

NMIC

6.0

6.5

7.0

7.5

8.0

8.5

9.0

Number of features

Te
st 

er
ro

r

10 11 12 13 14 15 16 17 18 19 20

Figure 3: Test errors for feature subsets of sizes 10 to 20.The results associated to a random forest feature importance-based selection, applied
to the centerpoints of the fuzzy data, are drawn with dashed lines. The extension of this method to fuzzy data, followed by a learning with
the same centerpoints for Regression Trees, Neural Networks, Support Vector Machines, and Random Forest, but the whole fuzzy data for
NMIC, are drawn with solid lines.



The Scientific World Journal 9

NNET SVM RT RF NMIC

4

6

8

10

12

14

(a)

0 20 40 60 80

0.2

0.4

0.6

0.8

1.0

Rank

M
em

be
rs

hi
p

(b)

Figure 4: (a) Boxplot showing the statistical differences between the test error of the combination of Neural Networks (NN), Support Vector
Machines (SVM), Regression Trees (RT), Random Forests (RF), and NMIC with the feature set computed as described in this paper. NMIC
exploits the imprecision in the information better than the alternatives. (b) Membership functions of the ranks of the first (solid) and 10th
(dashed) features, that is, COCOMO SLOC and McCabe complexity.

The main two differences between [7] and the method
described in this paper are as follows.

(1) Only one submission is allowed in [7] for each
assignment, and the solution to the problem must be
provided by the instructor. In this paper, the metrics
of a set of papers can be combined into a fuzzy value,
allowing for multiple submissions, missing data, and
partially incomplete assignments.

(2) The set of metrics is chosen beforehand in [7] but
chosen from a pool of metrics in this proposal.

In order to compare both approaches, each of the submit-
ted source codes was measured in five of the seven software
metrics proposed in [7]; two of them were not applicable
to Python and had to be removed. Some additional changes
were effected: since the method in this paper supports using
different source files vinculated to the same task, each source
file had to be matched with a solution to the problem chosen
by hand and also newly coded by the instructor.

A 10-cv experimental design was used, whose results
are graphically shown in Figure 5. It can be stated that the
proposed system is more accurate than [7]. This assert is
supported by a statistical test where the hypothesis “both
methods produce the same results” was rejected at the 95%
confidence level (Wilcoxon test, paired data, 𝑃 value = 0.036,
alternative hypothesis: true location shift is greater than 0).

5. Concluding Remarks and Future Work

A method for ranking software metrics according to their
relevance in an automatic grading system has been pro-
posed. The main innovation of the new method lies in the
development of a set of techniques that can make use of a

Fuzzy logic and test
cases [7]

0

5

10

15

20

25

30

Automatic grading systems

Er
ro

r

NMIC + ext. input
selection

Figure 5: Boxplot comparing the test results (10-cv) of two different
automatic grading systems: Fuzzy Logic and Test Cases [7], and
NMIC + Extended Input Selection (this paper), showing a statisti-
cally relevant difference between both groups.

fuzzy aggregation of the information contained in a variable
number of exercises about the same learning subject.

From a methodological point of view, the new algorithm
is a solid alternative.The combination of a learning algorithm
for vague data and the extended feature selection proposed in
this paper was shown to make a better use of the imprecision
in the information than any of the alternatives, demonstrating



10 The Scientific World Journal

that the fuzzy aggregation keeps valuable information and
also that the proposed method is able to exploit this. On the
other hand, from the point of view of the automated grading
techniques, it has been found that the most informative
metrics are some measures of the cost and complexity of
the code, followed by indicators related to the code size and
quality of the documentation. However, there is still a margin
for improving this knowledge, as the number of students
participating in the study was small and further work is
needed to build a larger corpus of hand-graded assignments.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by the Spanish Ministerio de
Economı́a y Competitividad under Project TIN2011-24302,
including funding from the European Regional Development
Fund.

References

[1] D. Arnow and O. Barshay, “On-line programming examina-
tions using Web to teach,” in Proceedings of the 4th Annual
SIGCSE/SIGCUE ITiCSEConference on Innovation andTechnol-
ogy in Computer Science Education (ITiCSE '99), pp. 21–24, 1999.

[2] K. A. Reek, “A software infrastructure to suppor t introductory
computer science courses,” in Proceedings of the 27th SIGCSE
Technical Symposium on Computer Science Education (SIGCSE
’96), K. J. Klee, Ed., pp. 125–129, ACM, New York, NY, USA,
1996.

[3] A. Kurnia, A. Lim, and B. Cheang, “Online judge,” Computers
& Education, vol. 36, no. 4, pp. 299–315, 2001.

[4] B. Cheang, A. Kurnia, A. Lim, and W. Oon, “On automated
grading of programming assignments in an academic institu-
tion,” Computers and Education, vol. 41, no. 2, pp. 121–131, 2003.

[5] T. Wang, X. Su, P. Ma, Y. Wang, and K.Wang, “Ability-training-
oriented automated assessment in introductory programming
course,” Computers and Education, vol. 56, no. 1, pp. 220–226,
2011.

[6] M.Vujosevic-Janicic,M.Nikolić, D. Tošić, andV.Kuncak, “Soft-
ware verification and graph similarity for automated evaluation
of students assignments,” Information and Software Technology,
vol. 55, no. 6, pp. 1004–1016, 2013.

[7] F. Jurado, M. Redondo, and M. Ortega, “Using fuzzy logic
applied to software metrics and test cases to assess program-
ming assignments and give advice,” Journal of Network and
Computer Applications, vol. 35, no. 2, pp. 695–712, 2012.

[8] J. Casillas, F. Mart́ınez-López, and F. Mart́ınez, “Fuzzy asso-
ciation rules for estimating consumer behaviour models and
their application to explaining trust in internet shopping,”Fuzzy
Economic Review, vol. 9, no. 2, pp. 3–26, 2004.

[9] J. Casillas andF. J.Mart́ınez-López, “Mining uncertain datawith
multiobjective genetic fuzzy systems to be applied in consumer
behaviour modelling,” Expert Systems with Applications, vol. 36,
no. 2, pp. 1645–1659, 2009.

[10] L. Sanchez, I. Couso, and J. Casillas, “Genetic learning of fuzzy
rules based on lowquality data,” Fuzzy Sets and Systems, vol. 160,
no. 17, pp. 2524–2552, 2009.

[11] H. Prade and D. Dubois, “Fuzzy sets—a convenient fiction
for modeling vagueness and possibility,” IEEE Transactions on
Fuzzy Systems, vol. 2, no. 1, pp. 16–21, 1994.

[12] I. Couso and L. Sanchez, “Higher order models for fuzzy
random variables,” Fuzzy Sets and Systems, vol. 159, no. 3, pp.
237–258, 2008.

[13] I. Couso, S. Montes, and P. Gil, “The necessity of the strong
𝛼-cuts of a fuzzy set,” International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, vol. 9, no. 2, pp. 249–
262, 2001.

[14] R. Battiti, “Using mutual information for selecting features in
supervised neural net learning,” IEEE Transactions on Neural
Networks, vol. 5, no. 4, pp. 537–550, 1994.

[15] Y. Saeys, T. Abeel, and Y. Peer, “Robust feature selection using
ensemble feature selection techniques,” in Machine Learning
and Knowledge Discovery in Databases, W. Daelemans, B.
Goethals, and K. Morik, Eds., vol. 5212 of Lecture Notes in
Computer Science, pp. 313–325, Springer, Berlin,Germany, 2008.

[16] L. Sánchez and J. Otero, “Learning fuzzy linguistic models from
low quality data by genetic algorithms,” in Proceedings of the
IEEE International Conference on Fuzzy Systems, pp. 1–6, July
2007.

[17] H. Ishibuchi, O. Kuwajima, and Y. Nojima, “Relation between
pareto-optimal fuzzy rules and pareto-optimal fuzzy rule sets,”
in Proceedings of the 1st IEEE Symposium of Computational
Intelligence in Multicriteria Decision Making (MCDM ’07), pp.
42–49, IEEE, Honolulu, Hawaii, April 2007.

[18] M. Abdellatief, A. B. M. Sultan, A. A. A. Ghani, andM. A. Jabar,
“A mapping study to investigate component-based software
system metrics,” Journal of Systems and Software, vol. 86, no. 3,
pp. 587–603, 2013.

[19] B. Kitchenham, “What’s up with software metrics?—a prelimi-
nary mapping study,” Journal of Systems and Software, vol. 83,
no. 1, pp. 37–51, 2010.

[20] I. Samoladas, I. Stamelos, L. Angelis, andA.Oikonomou, “Open
source software development should strive for even greater code
maintainability,”Communications of the ACM, vol. 47, no. 10, pp.
83–87, 2004.

[21] M. Halstead, Elements of Software Science, Elsevier, North-
Holland, 1975.

[22] A. Abran, SoftwareMetrics and SoftwareMetrology,Wiley-IEEE
Computer Society Press, 2010.

[23] T. J. McCabe, “A complexity measure,” IEEE Transactions on
Software Engineering, vol. SE-2, no. 4, pp. 308–320, 1976.

[24] A. H. Watson, McCabe Complexity, Software Development
Systems Management Development, Auerbach, 1995.

[25] N. Pizzi, A. Demko, and W. Pedrycz, “The analysis of software
complexity using stochastic metric selection,” Journal of Pattern
Recognition Research, vol. 6, no. 1, pp. 19–31, 2011.

[26] T. M. Khoshgoftaar, K. Gao, and A. Napolitano, “A comparative
study of different strategies for predicting software quality,” in
Proceedings of the 23rd International Conference on Software
Engineering and Knowledge Engineering (SEKE ’11), pp. 65–70,
July 2011.

[27] P. Sallis, A. Aakjaer, and S. MacDonell, “Software forensics: old
methods for a new science,” in Proceedings of the International
Conference on Software Engineering: Education and Practice
(SEEP '96), pp. 481–484, IEEE Computer Society, Washington,
DC, USA, 1996.



The Scientific World Journal 11

[28] G. Bortolan and R. Degani, “A review of some methods for
ranking fuzzy subsets,” Fuzzy Sets and Systems, vol. 15, no. 1, pp.
1–19, 1985.

[29] B. Boehm, B. Clark, E. Horowitz et al., “Cost models for
future softwa re life cycle processes: COCOMO 2.0.,” Annals of
Software Engineering, vol. 1, no. 1, pp. 57–94, 1995.

[30] L. Breiman, L. J. Friedman, A. Olshen, and C. Stone, Classifica-
tion and Regression Trees, Wadsworth, 1984.

[31] S. Haykin, Neural Networks: A Comprehensive Foundation,
Prentice Hall, New York, NY, USA, 2nd edition, 1998.

[32] A. J. Smola and B. Schölkopf, “A tutorial on support vector
regression,” Statistics and Computing, vol. 14, no. 3, pp. 199–222,
2004.

[33] L. Breiman, “Random forests,”Machine Learning, vol. 45, no. 1,
pp. 5–32, 2001.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence &
Neuroscience

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


