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1 Departamento de Estadı́stica, Universidad de Jaén, Paraje Las Lagunillas, 23071 Jaén, Spain
2 Departamento de Estadı́stica, Universidad de Granada, Avda. Fuentenueva, 18071 Granada, Spain

Correspondence should be addressed to J. Linares-Pérez, jlinares@ugr.es
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The least-squares linear estimation problem using covariance information is addressed in discrete-
time linear stochastic systems with bounded random observation delays which can lead to
bounded packet dropouts. A recursive algorithm, including the computation of predictor, filter,
and fixed-point smoother, is obtained by an innovation approach. The random delays are
modeled by introducing some Bernoulli random variables with known distributions in the system
description. The derivation of the proposed estimation algorithm does not require full knowledge
of the state-space model generating the signal to be estimated, but only the delay probabilities and
the covariance functions of the processes involved in the observation equation.

1. Introduction

Originally, signal estimation problems were addressed under the assumption that the sensor
data are transmitted over perfect communication channels, thus being received either
instantaneously or with a known deterministic delay at the data processing center which
provides the estimation. However, the use of communication networks for transmitting
measured data motivates the need of considering eventual transmission delays and/or
possible packet losses, due to numerous causes, such as random failures in the transmission
mechanism, accidental loss of some measurements, or data inaccessibility at certain times.
Often, these network uncertainties are random in nature and, hence, an appropriate model
for such situations consists of describing the sensor delay or multiple packet dropout by
a stochastic process, whose statistical properties are included in the system description.
Therefore, estimation problems with bounded random delays in the observations and packet
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dropouts are challenging problems in networked control systems and have attracted much
research interest.

Assuming that the state-space model of the signal to be estimated is known, many
results have been reported on systems with random delays and packet dropouts. For
example, Ray et al. [1] proposed a recursive linear filtering algorithm which modifies the
conventional one to fit situations where the arrival of sensor data at the controller terminal
may be randomly delayed. In [2], the state estimation problem for a model involving
randomly varying bounded sensor delays is treated by reformulating it as an estimation
problem in systems with stochastic parameters. More recently, Matveev and Savkin [3]
have proposed a recursive minimum variance state estimator in linear discrete-time partially
observed systems perturbed by white noises, when the observations are transmitted via
communication channels with random transmission times and various signal measurements
may incur independent delays. Wang et al. [4] have designed a robust linear filter for linear
uncertain discrete-time stochastic systems with randomly varying sensor delay. Su and Lu [5]
have designed an extended Kalman filtering algorithm which provides optimal estimates of
interconnected network states for systems in which some or all measurements are delayed.
Hermoso-Carazo and Linares-Pérez [6] have proposed a filtering algorithm based on the
unscented transformation to estimate the state of a nonlinear system from randomly delayed
measurements. All of the above mentioned papers on signal estimation from randomly
delayed observations assume that the random delay does not exceed one sampling time.
Recently, Hounkpevi and Yaz [7] have considered the estimation problem from observations
coming from multiple sensors with different one-step delay rates, indicating that the model
considered could be generalized to the case of multiple-sample delay.

For the packet-dropout problem, many recent papers can be mentioned. For example,
the optimal H2 filtering problem in networked control systems with random delays of one
sampling period, multiple packet dropouts, and uncertain observations are studied under a
unified framework in [8], and the optimalH∞ filtering problem in networked control systems
with multiple packet dropouts is addressed in [9]. The optimal linear minimum variance
estimation problem for linear discrete-time stochastic systems with possible infinite packet
dropouts and the steady-state estimators are studied in [10]. Also, for these systems with
possible infinite packet dropouts the optimal full-order and reduced-order estimators in the
linear minimum variance sense are obtained in [11]. In practice, the number of consecutive
packet dropouts cannot be infinite but bounded by a finite number and, consequently,
the above mentioned papers may lead to conservative results. A novel model to describe
the case when the number of consecutive packet dropouts is limited by a known upper
bound is considered in [12] and the linear filtering problem is addressed assuming that
the filter has a similar recursive structure to that of the Kalman one; hence, for assuming
the filter to have a fixed structure, it is only a suboptimal filter. This study is completed
in [13] by considering the optimal estimation problem (including filtering, prediction, and
smoothing) in the linear least-mean-square sense. In the above mentioned papers only packet
dropouts are considered; recently, Sun [14] has addressed the linear filtering, prediction, and
smoothing problems in discrete-time linear systems with finite random measurement delays
and packet dropouts, assuming that the delay and the number of consecutive dropouts do
not exceed a known upper bound.

On the other hand, when the state-space model of the signal to be estimated is not
available, it is necessary to use alternative information, for example, about the covariance
functions of the processes involved in the observation equation. In this context, the least-
squares (LS) linear and second-order polynomial estimation problems from randomly
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delayed observations based on covariance information have been addressed in [15, 16],
respectively, under the assumption that the Bernoulli random variables modeling the delays
are independent; also, linear and polynomial estimation algorithms from observations
featuring correlated random delays have been proposed in [17, 18], respectively. Recently, the
LS linear filtering problem of discrete-time signals using one- and two-step randomly delayed
observations coming from multiple sensors with different delay rates has been studied in [19]
using covariance information.

In this paper, the LS linear estimation problem in systems with bounded random
measurement delays and packet dropouts is addressed. The proposed estimators only
depend on the delay probabilities at each sampling time, but do not need to know if
a particular measurement is delayed or updated. Moreover, the estimation algorithm is
derived using only covariance information. Consequently, considering the case of sensors
with the same delay characteristics, the current study generalizes the results in [19]
to the case of measurements with bounded multiple-step random delays and packet
dropouts.

The paper is organized as follows. In Section 2 the observation model considered and
the hypotheses on the signal and noise processes are presented. The LS linear estimation
problem is formulated in Section 3, where also the innovation technique used to address
such problem is described. The LS linear estimation algorithm is derived in Section 4 which
includes recursive formulas to obtain the estimation-error covariance matrices; these matrices
provide a global measure of the LS estimators accuracy. Finally, in Section 5, a numerical
simulation example is presented to show the effectiveness of the estimation algorithm
proposed in the current paper.

2. Observation Model

In networked systems, such as telephone networks, cable TV networks, cellular networks
or the Internet, among others, the system output is measured at every sampling time
and the measurement is transmitted to a data processing center producing the signal
estimation. In the transmission, delays and packet dropouts are unavoidable due to eventual
communication failures and, to reduce the effect of such delays and packet dropouts
without overloading the network traffic, each sensor measurement is transmitted for several
consecutive sampling times, but only one measured output is processed for the estimation at
each sampling time.

In this paper it is assumed that the largest delay is upper bounded (the bound is a
known constant denoted byD); hence, the current study is a generalization of that performed
in [19] for the estimation problem from one- or two-step randomly delayed observations.
Note that this observation model includes bounded packet dropouts since, if a measurement
is not processed after D sampling times, such measurement is lost in transmission.

In this section, the observation model with bounded random measurement delays
and packet dropouts as well as the assumptions about the signal and noises involved, are
presented.

Consider a signal vector, zk, whose measured output at the sampling time k, denoted
by ỹk, is perturbed by an additive noise vector vk; that is,

ỹk = zk + vk, k ≥ 1. (2.1)
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The measured output ỹk is transmitted during the sampling times k, k + 1, . . . , and
k +D but, at each sampling time k, only one of the measurements ỹk−D, . . . , ỹk is processed;
consequently, at time k > D, the processed measurement can be either delayed by d = 1, . . . , D
sampling periods with a known probability p

(d)
k

, or updated with probability p
(0)
k

. At the
initial time k = 1, the measured output ỹ1 is always available (p(0)1 = 1) and, hence, the
processed measurement is equal to the real measurement y1 = ỹ1. At any time k ≤ D, the
processed measurement only can be delayed by d = 1, . . . , k − 1 sampling periods, since only
ỹ1, . . . , ỹk are available. Also, it is assumed that the delays at different times are independent.

Therefore, the following model for the processed measurements to estimate the signal
is considered:

yk =
min(k−1,D)

∑

d=0

γ
(d)
k ỹk−d, k ≥ 1, (2.2)

where, for d = 0, 1, . . . , D, {γ (d)k ; k > d} denote sequences of mutually independent Bernoulli

random variables with P[γ (d)
k

= 1] = p(d)
k

and
∑min(k−1,D)

d=0 γ
(d)
k

= 1.
This fact guarantees that if γ (0)

k
= 1, γ (d)

k
= 0 for all d /= 0, which means that, with

probability p(0)k , the kth measurement is received and processed on time. If γ (0)k = 0, then there
exists one and only one d = 1, . . . , D such that γ (d)

k
= 1, which means that the measurement

yk is delayed by d sampling periods with probability p(d)
k

. Note that the measured output ỹk
at any time k can be received on time, delayed, or lost in transmission. Also note that some
measured output can be rereceived, since the output at each instant is transmitted for D + 1
consecutive times (please, see Figure 1 in Section 5 for specific results when D = 3).

The signal estimation problem is addressed based on the following assumptions.

Assumption 1. The n-dimensional signal process {zk; k ≥ 1} has zero mean and
autocovariance function Kk,s = E[zkzTs ] = AkB

T
s , s ≤ k, where A and B are known matrix

functions.

Assumption 2. The noise process {vk; k ≥ 1} is a zero-mean white sequence with known
autocovariance function E[vkvTk ] = Rk, for all k ≥ 1.

Assumption 3. For d = 0, 1, . . . , D, {γ (d)
k

; k > d} are sequences of independent Bernoulli
random variables with P[γ (d)k = 1] = p(d)k and

∑min(k−1,D)
d=0 γ

(d)
k = 1.

Moreover, {γ (d)
k
, 0 ≤ d ≤ min(k − 1, D)} is independent of {γ (d)j , 0 ≤ d ≤ min(j − 1, D)}

for all k /= j.

Assumption 4. For each d = 0, 1, . . . , D, the processes {zk; k ≥ 1}, {vk; k ≥ 1}, and {γ (d)k ; k >
d} are mutually independent.

Remark 2.1. The estimation problem is addressed under the assumption that the evolution
model of the signal need not be available and using only information about the covariance
functions of the processes involved in the observation equation. Note that, although a state-
space model can be generated from covariances, when only this kind of information is
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available, it is preferable to address the estimation problem directly using covariances, thus
obviating the need for previous identification of the state-space model.

Remark 2.2. Although Assumption 1 might seem restrictive, it covers many practical
situations; for example, when the system matrix Φ in the state-space model of a stationary
signal is available, the signal autocovariance function can be expressed as E[zkzTs ] =
Φk−sE[zszTs ], s ≤ k, and Assumption 1 is clearly satisfied, taking Ak = Φk and Bs =
E[zszTs ](Φ

−s)T . Also, processes with finite-dimensional, possibly time-variant, state-space
models have semiseparable covariance functions, E[zkzTs ] =

∑r
i=1 a

i
kb

i
s, s ≤ k (see [20]),

and this structure is a particular case of that assumed, just taking Ak = (a1
k
, a2

k
, . . . , ar

k
) and

Bs = (b1
s, b

2
s, . . . , b

r
s). Consequently, this structural assumption on the signal autocovariance

function covers both stationary and nonstationary signals.

3. Problem Statement

Given the observation model (2.1)-(2.2) with random delays and packet dropouts, our
purpose is to find the least-squares (LS) linear estimator, ẑk/L, of the signal zk based on the
observations {y1, . . . , yL}. Specifically, our aim is to obtain the filter (L = k) and the fixed-
point smoother (k fixed and L > k) from recursive formulas.

The estimator ẑk/L is the orthogonal projection of the vector zk onto L(y1, . . . , yL),
the n-dimensional linear space spanned by {y1, . . . , yL}. Since the observations are generally
nonorthogonal vectors, we use an innovation approach, based on an orthogonalization
procedure by means of which the observation process {yk; k ≥ 1} is transformed into an
equivalent one (innovation process) of orthogonal vectors {νk; k ≥ 1}, equivalent in the sense
that each set {ν1, . . . , νL} spans the same linear subspace as {y1, . . . , yL}.

Since the innovations constitute a white process, this methodology allows us to find
the orthogonal projection of the vector zk onto {ν1, . . . , νL} by separately projecting onto each
of the previous orthogonal vectors; that is, the replacement of the observation process by the
innovation one leads to the following expression of the signal estimators:

ẑk/L =
L
∑

i=1

Szk,iΠ
−1
i νi, (3.1)

where Szk,i = E[zkν
T
i ] and Πi = E[νiνTi ].

Hence, to obtain the signal estimators it is necessary to find previously an explicit
formula for the innovations and their covariance matrices.

Innovation νk and Covariance MatrixΠk

The innovation at time k is defined as νk = yk − ŷk/k−1 where ŷk/k−1 is the one-stage linear
predictor of yk. Since the LS linear estimator ŷk/k−1 is the projection of yk ontoL(ν1, . . . , νk−1),
from (2.1) and (2.2) and model assumptions, it is clear that

ŷk/k−1 =
min(k−1,D)

∑

d=0

p
(d)
k (ẑk−d/k−1 + v̂k−d/k−1), k ≥ 2, ŷ1/0 = 0, (3.2)

where v̂i/j denotes the orthogonal projection of the vector vi onto L(ν1, . . . , νj).
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Similar that to (3.1), by denoting Svk,i = E[vkνTi ], the noise estimators are expressed as
follows:

v̂k/L =
L
∑

i=1

Svk,iΠ
−1
i νi. (3.3)

From the model assumptions, the noise vk is independent of {y1, . . . , yk−1} and hence, for i <
k, we have that Sv

k,i
= 0; thus, the one-stage predictor of the noise is v̂k/k−1 = 0. Consequently,

the innovation is given by

νk = yk − p(0)k
ẑk/k−1 −

min(k−1,D)
∑

d=1

p
(d)
k (ẑk−d/k−1 + v̂k−d/k−1), k ≥ 2, ν1 = y1, (3.4)

and it is necessary to obtain the signal predictor ẑk/k−1 and the estimators ẑk−d/k−1 and
v̂k−d/k−1 for d = 1, . . . ,min(k − 1, D), that is, the filters and the smoothers of the signal and
noise, respectively.

Remark 3.1. From the model assumptions, it is clear that Svk,k = p
(0)
k Rk and, consequently, the

filter of the noise is v̂k/k = p(0)k RkΠ−1
k νk.

To obtain the covariance matrix Πk, from (2.1), (2.2), and (3.2) and taking into account
that v̂k/k−1 = 0, the innovation νk is expressed as follows:

νk =
min(k−1,D)

∑

d=0

(

γ
(d)
k
− p(d)

k

)

zk−d +
min(k−1,D)

∑

d=1

(

γ
(d)
k
− p(d)

k

)

vk−d + γ
(0)
k
vk

+
min(k−1,D)

∑

d=0
p
(d)
k (zk−d − ẑk−d/k−1) +

min(k−1,D)
∑

d=1
p
(d)
k (vk−d − v̂k−d/k−1).

(3.5)

Using this expression and the model assumptions, we have

Πk =
min(k−1,D)

∑

d,d′=0

Cov
(

γ
(d)
k
, γ

(d′)
k

)

Kk−d,k−d′ +
min(k−1,D)

∑

d,d′=0

p
(d)
k
p
(d′)
k
Pzzk−d,k−d′/k−1

+
min(k−1,D)

∑

d=1

p
(d)
k

(

1 − p(d)
k

)

Rk−d + p
(0)
k
Rk +

min(k−1,D)
∑

d,d′=1

p
(d)
k
p
(d′)
k
Pvvk−d,k−d′/k−1

+
min(k−1,D)

∑

d=0,d′=1

p
(d)
k
p
(d′)
k
Pzvk−d,k−d′/k−1 +

min(k−1,D)
∑

d=1,d′=0

p
(d)
k
p
(d′)
k
Pvzk−d,k−d′/k−1, k ≥ 2,

Π1 = A1B
T
1 + R1,

(3.6)

where Pzzl,m/N = E[(zl − ẑl/N)(zm − ẑm/N)] and Pvvl,m/N = E[(vl − v̂l/N)(vm − v̂m/N)] denote
the estimation-error covariance matrices of the state and noise, respectively, and Pzvl,m/N =
E[(zl − ẑl/N)(vm − v̂m/N)] the estimation-error cross-covariance matrix between the state and
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noise. Hence, the filtering, and smoothing error covariance and cross-covariance matrices of
the state and noise must be calculated.

4. Recursive Estimation Algorithm

In this section we obtain the state predictor (Section 4.1), the filtering, and smoothing
estimators of the signal and noise (Section 4.2), and the filtering, and smoothing error
covariance and cross-covariance matrices of the state and noise (Section 4.3), which together
with (3.4) and (3.6) constitute the proposed recursive estimation algorithm.

4.1. Predictor of the Signal

From (3.1), to determine the signal predictor, ẑk/k−1, it is necessary to calculate the coefficients

Szk,i = E
[

zkν
T
i

]

= E
[

zky
T
i

]

− E
[

zkŷ
T
i/i−1

]

, i < k, (4.1)

so E[zkyTi ] and E[zkŷTi/i−1] must be calculated for i < k.
(i) On the one hand, using (2.1)-(2.2) and the model assumptions, it is clear that

E
[

zky
T
i

]

=
min(i−1,D)

∑

d=0

p
(d)
i E

[

zkz
T
i−d

]

=
min(i−1,D)

∑

d=0

p
(d)
i AkB

T
i−d = AkG

T
Bi
, 1 ≤ i ≤ k, (4.2)

where GBi =
∑min(i−1,D)

d=0 p
(d)
i Bi−d, i ≥ 1.

(ii) On the other hand, from (3.2) and taking into account that v̂i/i−1 = 0, we have that

E
[

zkŷ
T
i/i−1

]

=
min(i−1,D)

∑

d=0

p
(d)
i E

[

zkẑ
T
i−d/i−1

]

+
min(i−1,D)

∑

d=1

p
(d)
i E

[

zkv̂
T
i−d/i−1

]

, 2 ≤ i ≤ k, (4.3)

so E[zkẑTi−d/i−1] and E[zkv̂Ti−d/i−1] must be calculated for i = 1, . . . , k.

(a) Using (3.1) for ẑTi−d/i−1,

E
[

zkẑ
T
i−d/i−1

]

= E

⎡

⎢

⎣
zk

⎧

⎨

⎩

i−1
∑

j=1

Szi−d,jΠ
−1
j νj

⎫

⎬

⎭

T
⎤

⎥

⎦
=

i−1
∑

j=1

Szk,jΠ
−1
j S

zT
i−d,j , 2 ≤ i ≤ k. (4.4)

(b) Using (3.3) for v̂T
i−d/i−1, and since Sv

i−d,j = 0, for j < i − d, we obtain

E
[

zkv̂
T
i−d/i−1

]

= E

⎡

⎢

⎣
zk

⎧

⎨

⎩

i−1
∑

j=i−d
Svi−d,jΠ

−1
j νj

⎫

⎬

⎭

T
⎤

⎥

⎦
=

i−1
∑

j=i−d
Szk,jΠ

−1
j S

vT
i−d,j , 2 ≤ i ≤ k. (4.5)
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Substituting into (4.1) the expectations calculated in (i) and (ii), we obtain

Szk,i=AkG
T
Bi
−

min(i−1,D)
∑

d=0

p
(d)
i

⎧

⎨

⎩

i−1
∑

j=1

Szk,jΠ
−1
j S

zT
i−d,j

⎫

⎬

⎭

−
min(i−1,D)

∑

d=1

p
(d)
i

⎧

⎨

⎩

i−1
∑

j=i−d
Szk,jΠ

−1
j S

vT
i−d,j

⎫

⎬

⎭

, 2 ≤ i ≤k,

Szk,1 = AkG
T
B1
.

(4.6)

If we now introduce a function Ji satisfying that

Ji = GT
Bi
−

min(i−1,D)
∑

d=0

p
(d)
i

⎧

⎨

⎩

i−1
∑

j=1

JjΠ−1
j S

zT
i−d,j

⎫

⎬

⎭

−
min(i−1,D)

∑

d=1

p
(d)
i

⎧

⎨

⎩

i−1
∑

j=i−d
JjΠ−1

j S
vT
i−d,j

⎫

⎬

⎭

, i ≥ 2,

J1 = GT
B1
,

(4.7)

we conclude that

Szk,i = AkJi, 1 ≤ i ≤ k. (4.8)

Substituting now (4.8) into (3.1) for L = k − 1, the following expression for the state
predictor is obtained:

ẑk/k−1 = AkOk−1, k ≥ 1, (4.9)

where the vectors Ok are defined by

Ok =
k
∑

i=1

JiΠ−1
i νi, k ≥ 1, O0 = 0, (4.10)

thus satisfying the recursive relation

Ok = Ok−1 + JkΠ−1
k νk, k ≥ 1, O0 = 0. (4.11)

Hence, an expression for Jk must be derived.

Remark 4.1. By substituting (4.8) into (3.1), it is also clear that the l-stage predictors are given
by ẑk+l/k = Ak+lOk, k ≥ 1, l ≥ 1.

Expression for Jk

First, expression (4.7) is just rewritten for i = k:

Jk = GT
Bk
−

min(k−1,D)
∑

d=0

p
(d)
k

⎧

⎨

⎩

k−1
∑

j=1

JjΠ−1
j S

zT
k−d,j

⎫

⎬

⎭

−
min(k−1,D)

∑

d=1

p
(d)
k

⎧

⎨

⎩

k−1
∑

j=k−d
JjΠ−1

j S
vT
k−d,j

⎫

⎬

⎭

, k ≥ 2.

(4.12)



Mathematical Problems in Engineering 9

For k = 2, using that Sz2,1 = A2J1, S
z
1,1 = A1J1, and Sv1,1 = p(0)1 R1, and denoting r1 = J1Π−1

1 JT1 , it
is immediately clear that

J2 = GT
B2
− p(0)2 r1A

T
2 − p

(1)
2

{

r1A
T
1 + p(0)1 J1Π−1

1 R1

}

. (4.13)

For k ≥ 3, we examine separately the sums that appear in Jk as follows.
(i) Since Szm,j = AmJj , for j ≤ m, by denoting that rk =

∑k
j=1 JjΠ

−1
j J

T
j , we have that

min(k−1,D)
∑

d=0

p
(d)
k

⎧

⎨

⎩

k−1
∑

j=1

JjΠ−1
j S

zT
k−d,j

⎫

⎬

⎭

= p(0)
k
rk−1A

T
k + p

(1)
k
rk−1A

T
k−1 +

min(k−1,D)
∑

d=2

p
(d)
k
rk−dA

T
k−d

+
min(k−1,D)

∑

d=2

p
(d)
k

d−1
∑

i=1

Jk−d+iΠ−1
k−d+iS

zT
k−d,k−d+i, k ≥ 3.

(4.14)

(ii) Since Svm,m = p(0)m Rm, m ≥ 1, we have that

min(k−1,D)
∑

d=1

p
(d)
k

⎧

⎨

⎩

k−1
∑

j=k−d
JjΠ−1

j S
vT
k−d,j

⎫

⎬

⎭

= p(1)
k
Jk−1Π−1

k−1p
(0)
k−1Rk−1

+
min(k−1,D)

∑

d=2

p
(d)
k

{

Jk−dΠ−1
k−dp

(0)
k−dRk−d +

d−1
∑

i=1

Jk−d+iΠ−1
k−d+iS

vT
k−d,k−d+i

}

, k ≥ 3.

(4.15)

By substituting the above two sums in Jk, it is deduced that

Jk = GT
Bk
− p(0)k rk−1A

T
k −

min(k−1,D)
∑

d=1

p
(d)
k

{

rk−dA
T
k−d + p

(0)
k−dJk−dΠ

−1
k−dRk−d

}

−
min(k−1,D)

∑

d=2

p
(d)
k

d−1
∑

i=1

Jk−d+iΠ−1
k−d+i

{

SzTk−d,k−d+i + S
vT
k−d,k−d+i

}

, k ≥ 3.

(4.16)

Finally, note that Szk−d,k−d+i and Svk−d,k−d+i are the smoothing gain matrices (which will be
obtained in the next section), and the matrix rk is recursively obtained by

rk = rk−1 + JkΠ−1
k J

T
k , k ≥ 1, r0 = 0. (4.17)

4.2. Filtering and Smoothing Estimators of the Signal and Noise

Clearly, in view of (3.1) and (3.3), the filters and fixed-point smoothers of the signal and noise
are obtained by the following recursive expressions:

ẑk/L = ẑk/L−1 + Szk,LΠ
−1
L νL, L ≥ k, k ≥ 1,

v̂k/L = v̂k/L−1 + Svk,LΠ
−1
L νL, L ≥ k, k ≥ 1,

(4.18)
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with initial conditions given by the one-stage predictors ẑk/k−1 = AkOk−1 and v̂k/k−1 = 0,
respectively. Hence, the gain matrices Sz

k,L
= E[zkνTL] and Sv

k,L
= E[vkνTL] must be calculated

for L ≥ k.

Gain Matrices

Using (3.5) for k = L and the model assumptions, it is derived that

Szk,L =
min(L−1,D)

∑

d=0

p
(d)
L E

[

zk(zL−d − ẑL−d/L−1)
T
]

+
min(L−1,D)

∑

d=1

p
(d)
L E

[

zk(vL−d − v̂L−d/L−1)
T
]

, (4.19)

and, since the estimation-errors are orthogonal to the estimators, it is concluded that

Szk,L =
min(L−1,D)

∑

d=0

p
(d)
L Pzzk,L−d/L−1 +

min(L−1,D)
∑

d=1

p
(d)
L Pzvk,L−d/L−1, (4.20)

where Pzzk,L−d/L−1 and Pzvk,L−d/L−1 are the covariance and cross-covariance matrices of the errors
z̃k/L−1 = zk − ẑk/L−1 with z̃L−d/L−1 and ṽL−d/L−1 = vL−d − v̂L−d/L−1, respectively.

A similar reasoning leads to the following expression:

Svk,L =
min(L−1,D)

∑

d=0

p
(d)
L Pvzk,L−d/L−1 +

min(L−1,D)
∑

d=1

p
(d)
L Pvvk,L−d/L−1, (4.21)

where Pvvk,L−d/L−1 and Pvzk,L−d/L−1 are the covariance and cross-covariance matrices of the errors
ṽk/L−1 with ṽL−d/L−1 and z̃L−d/L−1, respectively.

Remark 4.2. Note that, from (4.8), the gain matrix of the signal filter is Sz
k,k

= AkJk and, from
(3.1), the filter is ẑk/k = AkOk.

4.3. Error Covariance and Cross-Covariance Matrices

From the recursive relations (4.18), the estimation-errors admit the following expressions:

z̃k/L = z̃k/L−1 − Szk,LΠ
−1
L νL, L ≥ k, k ≥ 1,

ṽk/L = ṽk/L−1 − Svk,LΠ
−1
L νL, L ≥ k, k ≥ 1.

(4.22)

Now, since the estimation-errors are orthogonal to the estimators, we have that E[z̃k/L−1ν
T
L] =

E[zkνTL] = Szk,L and E[ṽk/L−1ν
T
L] = E[vkνTL] = Svk,L, thus deducing the following recursive

expressions for the error covariance and cross-covariance matrices:

Pzzk,m/L = Pzzk,m/L−1 − S
z
k,LΠ

−1
L S

zT
m,L, L ≥ k,m, k,m ≥ 1,

Pvvk,m/L = Pvvk,m/L−1 − S
v
k,LΠ

−1
L S

vT
m,L, L ≥ k,m, k,m ≥ 1,

Pzvk,m/L = Pzvk,m/L−1 − S
z
k,LΠ

−1
L S

vT
m,L, L ≥ k,m, k,m ≥ 1.

(4.23)
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The initial conditions of these equations, the prediction error covariance and cross-
covariance matrices, are obtained as follows:

Pzzk+i,k/k−1 = Ak+i

[

BTk − rk−1A
T
k

]

, i ≥ 0, k ≥ 1,

Pvvk+i,k/k−1 = Rkδi,0, i ≥ 0, k ≥ 1,

Pzvk+i,k/k−1 = Pzvk,k+i/k−1 = 0, i ≥ 0, k ≥ 1,

(4.24)

where δ denotes the Kronecker delta function.
In fact, by writing Pzz

k+i,k/k−1 = E[zk+izTk] − E[ẑk+i/k−1ẑ
T
k/k−1] and using that ẑk+i/k−1 =

Ak+iOk−1 and E[Ok−1O
T
k−1] = rk−1, the expression for Pzzk+i,k/k−1 is immediate from

Assumption 1. Analogously, using that v̂k+i/k−1 = 0, for i ≥ 0, and Assumptions 2 and 4,
the expressions for Pvv

k+i,k/k−1, Pzv
k+i,k/k−1, and Pzv

k,k+i/k−1 are derived.

4.4. Computational Procedure

At the sampling time k, once the (k − 1)th iteration is finished and the new observation yk is
available, the proposed estimation algorithm operates as follows.

(i) Compute the innovation νk and its covariance matrix Πk by (3.4) and (3.6),
respectively.

(ii) Compute Jk by (4.16) and, from it, the filtering gain matrix Szk,k = AkJk.

(iii) Compute the filter ẑk/k = ẑk/k−1+Szk,kΠ
−1
k
νk and the filtering error covariance matrix

Pzz
k,k/k

= Pzz
k,k/k−1 − S

z
k,k

Π−1
k
SzT
k,k

.

(iv) To implement the above steps at time k + 1, we need to

(a) compute Ok = Ok−1 + JkΠ−1
k νk and, from it, the signal predictor ẑk+1/k =

Ak+1Ok,
(b) compute the noise filter v̂k/k = p(0)

k
RkΠ−1

k
νk,

(c) for d = 1, . . . , D − 1, compute the smoothing gain matrices Szk−d,k and Svk−d,k
from (4.20) and (4.21), respectively, and the smoothers ẑk−d/k = ẑk−d/k−1 +
Sz
k−d,kΠ

−1
k
νk and v̂k−d/k = v̂k−d/k−1 + Svk−d,kΠ

−1
k
νk.

Then, calculate the innovation νk+1. To obtain its covariance matrix, Πk+1, compute
the error covariance and cross-covariance matrices of the previous estimators of the
signal and noise (predictors, filters, and smoothers) using the formulas established
in Section 4.3. Finally, compute rk = rk−1 + JkΠ−1

k
JT
k

to calculate Jk+1 and, from it,
the filtering gain Szk+1,k+1, which provides the filter ẑk+1/k+1 and the error covariance
matrix Pzzk+1,k+1/k+1.

5. Computer Simulation Results

In this section, the application of the proposed signal estimation algorithm is illustrated by a
simulation example. Consider a zero-mean scalar signal {zk; k ≥ 1} with autocovariance
function given by E[zkzTs ] = 1.025641 × 0.95k−s, s ≤ k, which is factorizable according
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to Assumption 1 of the model just taking Ak = 1.025641 × 0.95k and Bk = 0.95−k. For
the simulation, the signal is supposed to be generated by an autoregressive model, zk+1 =
0.95zk +wk, where {wk; k ≥ 1} is a zero-mean white Gaussian noise with Var[wk] = 0.1, for
all k.

Using the proposed filtering and fixed-point smoothing algorithms, we have estimated
the signal from bounded random measurement delays and packet dropouts, assuming that
the largest delay and the maximum number of successive dropouts isD = 3. For this purpose,
we implemented a MATLAB program which simulates the values of the signal, zk, the real
measurements, ỹk, and the available ones, yk, considering different delay probabilities, and
provides the filtering and fixed-point smoothing estimates of zk, as well as the corresponding
error variances.

As in the theoretical study, it is assumed that, at the initial time, the available
measurement is equal to the real one, y1 = ỹ1; at time k = 2, the real measurement
may be one-step randomly delayed; at time k = 3 it may be randomly delayed either by
one or two steps and, at any sampling time k ≥ 4, the available measurement, yk, may
be randomly delayed by one, two or three steps. The random delays in the observations
have been simulated considering three independent sequences of independent Bernoulli
random variables, {ζ1

k; k ≥ 2}, {ζ2
k; k ≥ 3}, and {ζ3

k; k ≥ 4} with constant probabilities
P(ζi

k
= 1) = qi, i = 1, 2, 3, and defining the available measurements of the signal as

y1 = ỹ1,

y2 =
(

1 − ζ1
2

)

ỹ2 + ζ1
2ỹ1,

y3 =
(

1 − ζ1
3

)

ỹ3 + ζ1
3

(

1 − ζ2
3

)

ỹ2 + ζ1
3ζ

2
3ỹ1,

yk =
(

1 − ζ1
k

)

ỹk + ζ1
k

(

1 − ζ2
k

)

ỹk−1 + ζ1
kζ

2
k

(

1 − ζ3
k

)

ỹk−2 + ζ1
kζ

2
kζ

3
kỹk−3, k ≥ 4.

(5.1)

Hence, for d = 0, 1, 2, 3, the sequences {γ (d)
k

; k > d} in the theoretical study are given by

γ
(0)
k

= 1 − ζ1
k with p

(0)
k

= 1 − q1, k > 1, γ
(0)
1 = 1 with p

(0)
1 = 1,

γ
(1)
k = ζ1

k

(

1 − ζ2
k

)

with p
(1)
k = q1

(

1 − q2
)

, k > 2, γ
(1)
2 = ζ1

2 with p
(1)
2 = q1,

γ
(2)
k = ζ1

kζ
2
k

(

1 − ζ3
k

)

with p
(2)
k = q1q2

(

1 − q3
)

, k > 3, γ
(2)
3 = ζ1

3ζ
2
3 with p

(2)
3 = q1q2,

γ
(3)
k

= ζ1
kζ

2
kζ

3
k with p

(3)
k

= q1q2q3, k > 3.
(5.2)

If ζ1
k

= 0, then yk = ỹk and the kth measurement is updated; if ζ1
k

= 1, the kth
measurement is one-step delayed when ζ2

k
= 0 and two-step delayed when ζ2

k
= 1 and ζ3

k
= 0;

finally, if ζik = 1, for i = 1, 2, 3, the kth measurement is three-step delayed.
Note that q1 = 1 − p(0)k represents the probability of receiving a delayed observation

at each sampling time. Moreover, note that p(0)
k

, p(1)
k

, and p
(2)
k

are decreasing functions of q1,
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Figure 1: Processed observations for D = 3 when q1 = q2 = q3 = 0.5.

q2, and q3, respectively, while p(3)
k

is an increasing function of qi, i = 1, 2, 3. Actually, as q1

increases, p(0)
k

decreases, but the delay probabilities p(1)
k

, p(2)
k

and p
(3)
k

increase; as q2 increases,
p
(1)
k decreases, but the two- and three-step delay probabilities p(2)k and p

(3)
k increase; and, as q3

increases, p(2)k decreases, but the three-step delay probability p(3)k increases.
For k = 1, . . . , 25, Figure 1 displays the processed measurements, yk, taking qi = 0.5,

i = 1, 2, 3; that is, when the probability that the real measurement is used in the estimation is
p
(0)
k = 1 − q1 = 0.5 for k ≥ 2, the one-step delay probability is p(1)k = 0.5p(0)k = 0.25 for k ≥ 3,

and the two- and three-step delay probabilities are both equal p(2)k = p
(3)
k = 0.25p(0)k = 0.125

for k ≥ 4. This figure shows that, in fact, the measured output ỹk at time k can be received on
time, delayed or lost in transmission. Actually, the available measurement being processed is

(i) updated (yk = ỹk) at k = 1, 2, 4, 5, 7, 9, 11, 13, 15, 17, 18, 21, 22, 23, 25,

(ii) delayed by one sampling period (yk = ỹk−1) at k = 3, 8, 10, 20, 24,

(iii) delayed by two sampling periods (yk = ỹk−2) at k = 6, 12, 16, 19,

(iv) delayed by three sampling periods (yk = ỹk−3) at k = 14,

while ỹ3, ỹ6, ỹ8, ỹ12, ỹ16, ỹ20, and ỹ24 are dropped out, thus not being processed at any
sampling time. Also, it is worth noting that some measurements are rereceived, since the
output at each instant is transmitted for D + 1 = 4 consecutive times (for example, ỹ2 is
rereceived at k = 3, ỹ4 is rereceived at k = 6, and ỹ11 is rereceived at k = 14, among others).

Next, the performance of the estimators is analyzed by investigating the error
variances for qi = 0.5, i = 1, 2, 3. Figure 2 shows the error variances for the filter ẑk/k and
the smoothers ẑk/k+1 and ẑk/k+2. As occurs for nondelayed observations, the error variances
of the smoothing estimators are less than the filtering one; hence, the estimation accuracy of
the smoothers is superior to that of the filter and also improves as the number of iterations in
the fixed-point smoothing algorithm increases. The results of a simulated signal together with
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Figure 2: Filtering and smoothing error variances for q1 = q2 = q3 = 0.5.
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Figure 3: Signal zk as well as filtering and smoothing estimates, ẑk/k and ẑk/k+2, when q1 = q2 = q3 = 0.5.

the filtering and smoothing estimates, ẑk/k and ẑk/k+2, are illustrated in Figure 3. According
to the previous results, this figure shows that the evolution of this signal is followed more
accurately by the smoothing estimates.

To analyze the performance of the proposed estimators versus the delay probabilities,
the error variances have been calculated for different values of qi, i = 1, 2, 3, which
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Figure 4: Error variances versus q1, when q2 = 0.3, 0.5, and 0.7 and q3 = 0.5.

provide different values of the probabilities p(i)
k

, i = 0, 1, 2, 3. In all the cases examined, the
estimation-error variances present insignificant variation from the 15th iteration onwards
and, consequently, only the error variances at a specific iteration are shown here. Figure 4
displays the filtering and smoothing error variances at k = 100 versus q1 (for q2 =
0.3, 0.5, and 0.7 and q3 = 0.5). From this figure it is deduced that, as q1 increases (and,
consequently, the nondelay probability p(0)k decreases), the estimation-error variances become
greater and, hence, worse estimations are obtained.

On the other hand, for each value of q1 (keeping q3 = 0.5 fixed), the error variances
become smaller as q2 decreases, which means that the estimations are better. This was
expectable since, as q2 decreases, the one-step delay probability increases and the two- and
three-step delay probabilities decrease.

Also, as expected, this improvement is more significant as q1 increases (or,
equivalently, as the delay probability increases), being more appreciable for the filter than
for the smoother.

Next, we compare the filtering error variances at k = 100 versus q2, for q3 =
0.3, 0.5, and 0.7 and q1 = 0.9 (similar results are obtained for other fixed values of the
probability of delay, q1, but as indicated above, the comparison is clearer when such
probability is large). The results are displayed in Figure 5, which shows that, as q2 increases
(which means that the one-step delay probability decreases, but the two- and three-step delay
probabilities increase), the estimation-error variances become greater and, consequently, the
accuracy of the estimators is worse. Moreover, for each value of q2, the estimators perform
worse with the increasing of q3, which is reasonable since the three-step delay probability
increases with q3. Nevertheless, for small values of q2, the difference is almost imperceptible
since, as q2 becomes close to zero, the one-step delay probability tends to q1 (fixed), and the
two- and three-step delay probabilities both tend to zero. This consideration is confirmed
in Figure 6, where the filtering and smoothing error variances at k = 100 versus q3 (for
q2 = 0.3, 0.5, and 0.7 and q1 = 0.9) are displayed.
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Figure 5: Error variances versus q2, when q3 = 0.3, 0.5, and 0.7 and q1 = 0.9.
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6. Conclusions

In this paper, a recursive least-squares linear estimation algorithm is proposed to estimate
signals from observations which can be randomly delayed or lost in transmission, a realistic
and common assumption in networked control systems where, generally, transmission delays
and packet losses are unavoidable due to the unreliable network characteristics. The largest
delay and the maximum number of consecutive dropouts are assumed to be upper bounded
by a known constant D, and the random measurement delays and packet dropouts are
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described by introducing D + 1 sequences of Bernoulli random variables, whose parameters
represent the delay probabilities. Thus, the current study generalizes the results in [19] to the
case of multiple-sample delays in the observations.

Using an innovation approach, the estimation algorithm is derived without requiring
the knowledge of the signal state-space model, but only the covariance functions of the
processes involved in the observation equation, as well as the delay probabilities. To
measure the performance of the estimators, the estimation-error covariance matrices are also
calculated.

To illustrate the theoretical results established in this paper, a simulation example is
presented, in which the proposed algorithm is applied to estimate a signal from bounded
random measurement delays and packet dropouts, assuming that the largest delay and the
maximum number of successive dropouts is D = 3.
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