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Foreword

In this work we introduce an analytical model for square Gate All Around (GAA)

MOSFETs with rounded corners including quantum effects. With the model developed

it is possible to provide an analytical description of the 2D inversion charge distribution

function (ICDF) in devices of different sizes and for all the operational regimes. The

accuracy of the model is verified by comparing with data obtained by means of a 2D

numerical simulator that self-consistently solves the Poisson and Schrödinger equations.

The expressions presented here are useful to achieve a good description of the physics of

these transistors; in particular, of the quantization effects on the inversion charge. The

analytical ICDF obtained is used to calculate important parameters from the device

compact modeling viewpoint, such as the inversion charge centroid and the gate-to-

channel capacitance, which are modeled for different device geometries and biases.
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Chapter 1

Introduction

Multiple-gate (MuG) MOSFETs are considered a serious alternative for keeping up

with the continuous reduction in device dimensions described by Moore’s law. These

structures show promising possibilities in relation to the control of short channel effects

(SCEs) and the achievement of ideal subthreshold swing values [1, 2, 3].

Making use of technologies based on these new geometries, channel lengths could be

shrunk below 20nm accordingly to the latest edition of ITRS [1]. In this respect, their

capacity to reduce SCEs and the possibility of using undoped channels are essential

features for the achievement of this goal. The latter, in particular, is critical since

random impurity effects are by no means negligible in nanometric devices [4, 5]. These

effects produce a dispersion of fundamental parameters such as the threshold voltage

and the sub-threshold slope [4, 5, 6, 7]. Moreover, MuG MOSFETs are part of the

Silicon-On-Insulator (SOI) transistor family, which demonstrates unique features that

look promising for future mainstream CMOS technologies [3, 6, 7]. The use of ultra-thin-

body (UTB) and MuG SOI structures allows the fabrication of fully-depleted devices

that offer not only extremely good control of SCEs but also a very good behavior with

respect to drain-induced barrier-height lowering (DIBL), threshold voltage roll-off, and

off-state leakage [3, 6, 7].

Both square and cylindrical Gate-All-Around (GAA) MOSFETs are currently under

intense study from the simulation and modeling viewpoint [3, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17]. One key area in these structures is the study of quantum mechanical effects

(QMEs), since both structural and electrical confinement (produced by a square gate

in the quadruple-gate device and by a circular gate in the cylindrical one) make these

devices (nanowires FETs) quasi-1D transistors, where transport occurs in a set of loosely

coupled propagating modes.

In this work we focus on square GAA MOSFETs. These devices have not been subject

of many modelling efforts due to their particular geometrical complexities. The concen-

tration of inversion charge close to the corners of the silicon body makes a bi-dimensional
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4 Chapter 1

description of the inversion charge distribution and other important magnitudes imper-

ative from the compact modeling viewpoint. The analytical description of cylindrical

GAA MOSFETs is simpler since the symmetry of the structure around the rotation an-

gle allows a 1D description, accounting for just the radial component [11, 13, 10, 16]. In

the case of square GAA MOSFETs, other modeling strategies are necessary, moreover if

we take into account that real life devices are not perfectly square. When a square GAA

device is manufactured, the result is usually a rounded corner square shaped structure,

as can be seen in figure 1.1. Because of the manufacture process, the materials suffer

from chemical attacks which lead to the aforementioned shape. This effect, althought

undesired, is unevitable because of the collateral effects caused by the current technology.

For a better understanding of the manufacture of this GAA devices see [18].

Figure 1.1: Cross sectional TEM image of 3D-stacked square NW with HfO2/TiN
and W/H=15nm/15nm (reference [19]).

In order to develop an inversion charge analitycal model for this device, first of all, we

introduce a 1D analytical function f(x) that accurately reproduces the inversion charge

distribution function (ICDF) from the center silicon core to the device side, for different

device sizes and applied gate voltages. Secondly, we define a parametric function s(α)

(with α being the rotation angle as shown in 1.2(b)). This function defines the external

shape of the device to model. By combining f(x) and s(α) we are able to model a 2D

function f(x, α) that reproduces the ICDF in the active region of the structure as shown

in figure 1.2. As it will be shown below, we will make use of a numerical simulator to

accurately characterize f(x, α).

The resulting ICDF is related to the inversion charge density as follows, n(x, α) = Ninv |
f(x, α) |2, Ninv (cm−1) being the value of the total electron density integrated over the

square area of the silicon channel. Once we have the ICDF function, we will be able to

model the inversion charge centroid (ICC) and the gate-to-channel capacitance (CGC),

making use of this analytical function.

The paper is organized as follows: in chapter 2 we describe the main features of the sim-

ulator used. We deal with the ICDF modeling in chapter 3. The definition, calculation
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(b) Example of a parametric representation of the
shape of the device for a cylindrical GAA: s(α) =
1.

(c) f(x, α) = f(x)s(α) is a combination of both functions and
returns the parametric 2D model of the ICDF.

Figure 1.2: Example of the combination of the 1D model function with a parametric
representation of the external shape of the device, resulting in a 2D representation of

the ICDF.

and modeling of the ICC and the CGC are presented in chapters 4 and 5, respectively.

Finally, the main conclusions are given in chapter 6.





Chapter 2

Simulator description

The simulation data presented in this work have been obtained by using a simulator

developed within our research group [8, 12]. The geometry and cross-section of the GAA

MOSFET studied is shown in figure 2.1, where tins and tsi are the insulator thickness and

the silicon body thickness, respectively. It can be seen that the gate completely surrounds

the square silicon channel where conduction takes place. To reach a fast convergence,

the 2D Poisson and Schrödinger equations, the latter solved for each energy valley, have

been self-consistently solved using the predictor-corrector scheme proposed by Trellakis

et al. [20] including the energy valley degeneration of the silicon conduction band. The

simulator achieves accurate results for different structures, materials and gate voltages

if the number of energy levels and their corresponding wave functions employed in the

calculation is high enough to capture all the occupied levels.

tsi

tsin1
tsin2
tsin3

tins

Figure 2.1: Different parameters of the device.

The geometry of the device shown in figure 2.1 confines the electrons in the plane perpen-

dicular to the transport direction, which means that we are dealing with a 1D electron

gas. The quantum charge density is therefore obtained by evaluating the following ex-

pression [8, 20]:
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ρ(y, z) =
q

π

(

2mkBT

~2

) 1

2 ∑

n

Ψ2
n(y, z)ℑ− 1

2

(

EF − En

kBT

) [

C

cm3

]

(2.1)

where q is the electron charge, EF is the Fermi level, Ψn is the wave function belonging to

energy level En, ℑ−1/2 the complete Fermi-Dirac integral of order -1/2 and the remaining

symbols have their usual meaning.

The simulator uses finite elements for the discretization of the equations. More details

of the code can be found in the following references [8, 12, 21]. In all the simulated

devices, we have considered an undoped substrate (NA = 1014 cm−3), a metal gate

with a work-function of 4.61 eV and an insulator thickness of 1.5 nm. The tsi values

considered in our work were 10, 15 and 20 nm.



Chapter 3

Inversion charge modeling

3.1 1D modeling f(x)

As a first step, we propose a 1D analytical model to describe the ICDF of square GAA

MOSFETs (bidimensionality will be introduced later). To do so, we use the approach

followed by Ge et al. for the symmetrical Double Gate MOSFETs (DGMOSFETs)

(equation (4) in Reference [22]). In connection with this, for a perfect square device, in

[23], a 2D analytical model for the ICDF was presented as a generalisation of the 1D

eigenfunctions proposed by Ge el al. Following a similar approach, we will use the 1D

model proposed in [22], adapting it in a parametric approach as we will show in the next

chapter. The 1D model chosen was the following:

Ψ(x) ≈ f(x) = cosa
(

πx

tsin

)

cosh

(

xb

tsin

)

(3.1)

|Ψ(x)|2 ≈ f2(x) (3.2)

As we can see, this model depends solely on 3 parameters:

• tsin, distance from the center of the device to the oxide interface at a given angle

α, see figure 2.1. Note that tsin at α = 0 equals tsi
2 .

• b, a parameter that depends on the gate voltage V g and tsi.

• a, depends on the shape of the device. While in [23] it was used a = 1
2 for a

perfect square device, in [22] a = 1 is used for a 1D MOSFET device. For our

model, and for the shake of simplicity, we are going to assume a to be constant.

An intermediate value that minimizes the total mean square error when compared

with simulation data is chosen.
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10 Chapter 3

For the complete 2D model, we also need s(α), the parametric function introduced in

the previous chapter. By combining this function with our 1D ICFD model, we can

correctly reproduce the behaviour of the device.

3.2 Shape modeling function s(α)

By rotating 360 degrees the 1D Ψ(x) function we can model a circular device just using

the model for every angle.

For a cylindrical device, we just need s(α) = 1, as can be seen in figure 1.2. For a

non-circular shaped device, we must take into account that the distance from the center

of the device to the opposite side (the parameter we called tsin), depends on the angle

α. As the parameters of the model depend on tsin, we need to recalculate tsin and b (b is

dependant on tsi as well), for every angle. Because of that, in order to change the shape

of the device, we must model the boundaries of the device by reproducing the shape we

are going to deal with.

As we explained before, there are no perfectly square devices, the corners are rounded

because of the technological processes used in their fabrication. An example of a real

device is shown in figure 1.1.

We can quantify this ”rounding” by means of the curvature of the corners. We mea-

sure this curvature by the ratio between the minimum distance between the center of

the device to the oxide interface and the maximum (from now on tsinmin and tsinmax

respectively). For a square shaped device, we can find the minimum length at α = 0

and the maximum at α = π
4 . Supposing tsi = 1 the maximum length is

√
2, as can be

seen in figure 3.1.

Taking into account that for square devices tsinmin is by definition tsi
2 , we can calculate

the ”rounding” percentage C as the ratio between the difference of tsinmax and tsinmin

for a perfect square ( tsi2 (
√
2− 1)) and our shape ( tsi2 (

√
2− tsinmax)):

C =
100

tsi
2 (

√
2− 1)

(

tsi
2

·
√
2− tsinmax

)

(3.3)

With tsinmin and tsinmax being the length of the channel from the center to the oxide

for α = 0 and α = π
4 respectively. This equation gives us the curvature percentage of

the corners, so a 100% means that we get a perfectly rounded device and a 0% means a

perfect square device. For more information on this calculation, see appendix A.
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Figure 3.1: Distance between the center of the device to the oxide interface at angles
α = 0: tsinmin = tsi

2
; s(α = 0) = 1 and α = π

4
: tsinmax = tsi

2
· s(α = π

4
) = tsi

2
·
√
2. This

distances will give us the rounding of the device using equation 3.3.
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(c) C = 100%, n = 2

Figure 3.2: Representation of squircle model for different corners curvatures. Param-
eter n of function s(α) has been calculated for every curvature using 3.5.

Once we can characterize the roundness of the corner, we can model the device shape.

For this task, we use the superellipse formula. This formula allows a parametric rep-

resentation of a square with rounded corners, also called squircle, in terms of a few

parameters that control not only the curvature, but also the number of corners:

s(α) =

{∣

∣

∣

∣

∣

cos( sides4 · α)
ra

∣

∣

∣

∣

∣

n2

+

∣

∣

∣

∣

∣

sin( sides4 · α)
rb

∣

∣

∣

∣

∣

n3
}− 1

n1

(3.4)

Parameter sides control the number of corners, and ri the ratio between the height

and the width of the rectangle. Obviously, for a square device we use sides = 4 and

ra = rb = 1. Parameters ni control the curvature of the corners. For our model, we

will use n1 = n2 = n3, so we get a squircle. To calculate the ni parameters, we will use

equation 3.3. Then, working out n1 = n2 = n3 = n from equation 3.4 for α = π
4 (a
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square device), we obtain the relation between the parameter n and the percentaje of

corner rounding (equation 3.5). For more details, see appendix B.

n = n(C) =
Log[2]

Log

[

1
1+ 1

200
(−2+

√
2)C

] (3.5)

Once we have the parametric representation of the device shape, we can combine it with

our 1D modeling function for a complete 2D model of the ICDF, as will be shown below.

3.3 2D Modeling for different square GAA shapes

To get a complete 2D model, we adapt the 1D function given in equation 3.1 by cal-

culating every slice of the 2D model for every angle from the silicon core center to the

oxide interface. With the assumption that our 1D model solely depends on the distance

between the center of the device and the oxide interface, at any given angle, we can cal-

culate the ICDF once we know the tsin distance. This distance can be easily calculated

by multipliying tsi by our squircle function at the required angle:

tsin(α) =
tsi
2

· s(α) (3.6)

Consequently, Ψ(x) will be defined in the interval [0, tsin]. In this way, for every angle, we

will get different values of tsin. Because the other model parameters (b and a) also depend

on tsin, we will need to describe their dependencies. To obtain these dependencies, we

compare the simulated resuls with the the model, for different values of b and a. These

values have been selected to fit the simulation data using an iterative algorithm that

minimizes the quadratic error between the simulated and the modeled data.

For the a parameter, even though it depends on the shape of the device and the tsin

distance, we chose it constant to maintain the simplicity of the model. The final value,

after minimization of the cuadratic error is:

a = 0.65 (3.7)

For b parameter, we performed an empirical fitting to obtain an analytical expression

(see figure 3.3):

b = −0.45 + 0.15tsi + (0.001 − 0.00004tsi)N
(0.47+0.006tsi)
inv (3.8)
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(a) b parameter calculation for tsi = 10nm.
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(b) b parameter calculation for tsi = 20nm.

Figure 3.3: Parameter b for different values of tsi and Vg as calculated by equation
3.8.

Combining all the analytical expresions, we were able to describe the 2D model. In

figure 3.4, we plot few 1D sections of the ICDF.
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(a) parametric representation of s(α).
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Figure 3.4: ICDF of differents angles cuts for a squircle shaped device. tsi = 20nm,
V g = 1V and C = 75%.

Doing so, the resulting equation is:

f(x, tsin) = A

[

cos

(

πx

tsin

)]a

cosh

(

b · x
tsin

)

(3.9)



Inversion charge modeling 15

Note that f depends on α by means of tsin which is calculated tsin = tsi
2 s(α), A is the

normalization constant and b, a the parameters previously discussed.

Below, we can see a 2D representation of the ICDF:

Figure 3.5: 2D plot of the function given in equation 3.9 applied for αǫ[0, 2π]; C=75%

In the next figure, we plot the first cuadrant with the simulated data superimposed:

Figure 3.6: 2D plot comparison of first cuadrant between simulated (indicated with
the black dashed border) and modeled (indicated with the red lines) data. C=25%

As can be seen, the model function fits the simulated data very well even in the 2D

representation.
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3.4 Comparison with the simulation results

In figure 3.7 and 3.8, we can see a comparison between the modeled ICDF and the

simulated data. As can be observed, the fitting is better at middle and lower V g values.

As can be seen, the model reproduces reasonably well the simulation data for a wide

range of technological parameters and gate voltages.

In the following chapters, we will use equation (3.9) to model the square GAA MOS-

FET ICDF in order to deal with the inverse charge centroid and the gate-to-channel

capacitance modeling.
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Figure 3.7: Comparison of modeled and simulated data for a device with curvature
C=25% for differents values of tsi, Vg and α values.
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Figure 3.8: Comparison of modeled and simulated data for a device with curvature
C=75% for differents values of tsi, Vg and α values.
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Inversion charge centroid

calculation

The inversion charge centroid (ICC) is defined as the first momentum of the inversion

charge distribution in conventional bulk MOSFETs [24, 25, 26]. If we compare this

parameter with the physical gate insulator thickness, we can estimate the influence of

quantum mechanical effects (QMEs) on the inversion charge spatial distribution. The 1D

definition of the ICC is intuitive, as reported in [24, 25, 26], and its modeling was carried

out in bulk, double-gate and cylindrical surrounding gate MOSFETs [11, 24, 25, 26]

(note that cylindrical 2D devices can be analyzed as 1D by means of an appropriate

choice of coordinate system [11]). However, the definition of a useful ICC for square

GAA MOSFETs is not simple. Some attempts towards this definition have been made

previously [27, 28, 23].

To characterize the ICDF, its first momentum R(α) has been calculated (with α being

the angle discussed in the last chapter). The mathematical expression for the R(α)

calculation is the following:

R(α) =

∫ tsin
0 x2 · f2(x, α)dx
∫ tsin
0 x · f2(x, α)dx

(4.1)

where tsin is the distance from the center of the silicon core to the semiconductor-

insulator interface for each α value (note that due to the device symmetry, only 0 ≤ α ≤
π
4 has to be considered in the calculation of R(α)).

We calculate R(α) making use of the ICDF model introduced in the previous section. In

order to establish the accuracy of our model, we define an error function, Err(α), as the

relative difference between the R(α) values obtained with the simulator and the model:

19



20 Chapter 4

Err(α) =
∆R(α)

Rmax
× 100(%) =

|RModel(α)−RSim(α)|
tsi
2 · s(α)

× 100(%) (4.2)

For each applied gate voltage, we calculate the maximum Err(α) by solving:

dErr(α)

dα

∣

∣

∣

∣

α=αmax

= 0

for each tsi value. The results are given in table 4.1. As can be seen, the model works

well (in relation to the calculation of R(α)) for all the devices under study and for the

whole bias voltage range considered.

tsi 10nm 20nm

EMAX
rr (C = 25%) 1.10% 1.87%

EMAX
rr (C = 50%) 0.97% 1.88%

EMAX
rr (C = 75%) 1.92% 1.79%

Table 4.1: Maximum value of the Err(α) function for the GAA MOSFETs studied.

Also, in order to calculate the gate-channel capacitance, we will use the superellipse for-

mula again to calculate the distance between the charge centroid and the oxide interface

for all the values of α (∆I). This value will be necessary to calculate the gate-to-channel

capacity as wil be studied in the next chapter.

∆I =
1

2π

∫ 2π

0

(

tsi
2

· s(α)−R(α)

)

dα (4.3)

In the same way, the mean distance between the center of the device and the charge

centroid can be calculated:

RI =
1

2π

∫ 2π

0
R(α)dα (4.4)

In the next figures, we plot a comparison between the R(α) calculated using the modeled

and the simulated data.
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Figure 4.1: Centroid of modeled and simulated data for different curvatures, tsi and
Vg values.





Chapter 5

Gate-to-channel capacitance

modeling

After having developed the model for the ICDF we can use it for calculating other

interesting magnitudes. One important parameter is the gate-to-channel capacitance

CGC, which determines the transconductance of the transistor [29]. In 1D devices, CGC

can be calculated as the series combination of the gate insulator capacitance Cins and

the channel capacitance Cch [29, 30, 31, 32]:

CGC =

(

1

Cins
+

1

Cch

)−1

(5.1)

However, in the case of square GAA MOSFETs, several approximations are needed

to achieve our goal of developing a simple analytical expression for CGC. First, the

semiconductor-insulator interface is not isopotential, making equation (5.1) an approx-

imate expression [8, 21, 28]. Moreover, there are no closed analytical expressions either

for Cins or for Cch. For the insulator capacitance term, an empirical expression has been

obtained for these square GAA MOSFETs with rounded corners, following the line of

previous expressions for perfectly square devices [23] and SGT devices [33].

Cins =

P (tsi,C)
tsi

F (C)εins

ln
(

1 + F (C) tinstsi

) (5.2)

With P (t, C) = 4t(1 + C
100 (

π
4 − 1)) being the perimeter and F (C) = −0.3( C

100 )
2 +

1.05( C
100 ) + 1.25 a fitting function. It should be noted that if tsi >> tins, the Cins value

is that of a conventional bulk MOSFET.

Regarding the channel capacitance, an approximate expression can be achieved, using

the expression corresponding to DGMOSFETs [34], which can be calculated as:

23
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C−1
ch =

dφs

dQinv
=

d (φs − φc)

dQinv
+

dφc

dQinv
(5.3)

φs and φc being the electrostatic potential at the surface and the center of the silicon

body, respectively, and Qinv the inversion charge per unit length (Qinv = qNinv). The

former equation can be rewritten as [34, 35]:

C−1
ch =

xi
Wεsi

+
Qinv

Wεsi

dxi
dQinv

+
dφc

dQinv
=

1

Cinv
+

1

Cc
(5.4)

where xi is the charge centroid position, defined in [25], and W is the transistor width

(necessary to calculate the capacitance per unit length). A description of the physical

meaning of each of the capacitance terms can be found in [35].

In order to model the gate capacitance of the devices we are considering, a term equiva-

lent to each of (5.4) is needed. First, a model of the electric potential within the silicon

body is needed to calculate Cc. Due to the lack of symmetry of this kind of devices,

an alternative option is to make use of the similarities found between the potential be-

havior in cylindrical and square GAA devices [36]. It can be seen that the behaviour

of dφc/dQinv is almost identical between these two antagonist cases. Analytical models

for the electrostatic potential of cylindrical GAA devices are available in the literature

[9, 37, 38], and here we have modeled the potential at the center of a rounded cornered

square GAA MOSFET making use of the expression proposed in [9]. Thus, the Cc term

can be calculated as [35]:

C−1
c =

Q0kBT

qQinv (Q0 +Qinv)
(5.5)

where Q0 = (kBT/q)8πεsi and the remaining parameters keep their usual meaning. In

[23], it was shown that the derivative of the electric potential with respect to the inversion

charge at the center of the silicon body is approximately the same for a cylindrical and

a square GAA devices.

To calculate the inversion capacitance term in (5.4), Cinv, the DG MOSFET centroid

definition was first replaced by the one introduced in the previous section. Then, the

planar capacitance formula Wεsi/xi was replaced by its square quadruple-gate coun-

terpart (found from (5.2) where tins and tsi are replaced by ∆I and RI , respectively).

Finally a fitting parameter K replaced the channel width W in the second part of the

Cinv term, to appropriately take into account the 2D confinement effect. The resulting

expression for square GAA MOSFETs Cinv is:

C−1
inv =





P (2RI ,C)
2RI

F (C)εsi

ln
(

1 + F (C) ∆I

2RI

)





−1

+
Qinv

Kεsi

d∆I

dQinv
(5.6)
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We have chosen a K parameter (by means of an empirical fitting) whose value is of the

order of the one used in reference [23] (2 · 10−6cm). Nevertheless, for these devices,

the second term on the right in equation 5.6 does not contribute much to the final

capacitance value.
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Figure 5.1: Factors of gate-to-channel capacity (CGC) for tsi=20nm and C=25%.

In the next figures, the modeled gate-to-channel capacitance is compared with simulation

data. As can be seen, the Cc term controls the behavior of the device in the weak

inversion regime, while Cinv is responsible for the gate capacitance degradation with

respect to the ideal limit value Cins. A very good agreement between the model and the

simulated data is achieved.
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Figure 5.2: Gate-to-channel modeled capacitance CGC (blue line) versus simulated
data (red dots) for tsi=10nm and different curvatures.
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Figure 5.3: Gate-to-channel modeled capacitance CGC (blue line) versus simulated
data (red dots) for tsi=20nm and different curvatures.





Chapter 6

Conclusions

We have introduced an analytical model for the inversion charge distribution function of

square GAA MOSFETs with rounded corners where quantum effects have been taken

into account. The model has been tested by means of a comparison with simulation

data obtained by self-consistently solving the 2D Schrödinger and Poisson equations for

a wide variety of device sizes, corner curvatures and bias ranges.

We have also calculated the inversion charge centroid and gate-to-channel capacitance

by using the inversion charge distribution function developed previously. A very good

agreement between the simulated and modeled data was achieved both for the ICC and

the CGC for different device geometries and biases. The simplicity and accuracy of the

models presented are very promising from the compact modeling point of view since

GAA MOSFETs are considered good candidates for future sub-20nm integrated circuit

technologies.
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Appendix A

Rounding percentage calculation

Figure A.1: Definition by parts of a rounded corner in a square GAA MOSFET.

In this appendix we are going to prove that the definition of corner curvature used in

the numerical simulator is equivalent to the one based on equation 3.3, which is adapted

to be used in the squircle function definition. In the numerical simulator, the roundness

of the corners is defined as follows (see figure A.1):

tr =
C ′

100
· tsi
2

(A.1)

It can be seen that for C ′ = 100 we are considering a circular device and for C ′ = 0

it is a perfectly square device (this numbers are coherent with the definition based on

equation 3.3). In order to show the equivalence of both definitions, we are going to show

that the diagonal length of these devices calculated with the two different methods is
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the same. See the equation below, where half of the diagonal length is calculated with

the squircle formula.

tsi
2
s(
π

4
) =

√
2
tsi
2

+ tr(1−
√
2) (A.2)

On the left hand side, we have the diagonal length given by our superellipse formula.

On the right hand side the one given by the function defined by parts (deduced using

figure A.1 and equation A.1). Substituting equation A.1 in A.2

s(
π

4
) =

√
2 +

C ′

100
(1−

√
2) (A.3)

If we use the definition given in equation 3.3 and taking tsinmax = tsi
2 s(π4 ), we can see

that:

C =
100

tsi
2 (

√
2− 1)

(

tsi
2

·
√
2− tsinmax

)

=
100

(
√
2− 1)

(

·
√
2− s(

π

4
)
)

So, substituting A.3 in the equation above,

s(
π

4
) =

√
2 +

C

100
(1−

√
2) =

√
2 +

C ′

100
(1−

√
2) ⇒ C = C ′

However, we can use the definition used in the simulator to avoid unnecesaries com-

plications and easily calculate the perimeter. We can calculate the perimeter as the

combination of the perimeter of the sides of the square tsq and the one given by the

circle radius tr:

tsq = (1− C

100
)
√
2 cos

π

4
tsi = (1− C

100
)
tsi
2

(A.4)

tr =
tsi
2

− tsq (A.5)

So the perimeter can be calculated as:

P (C) = 2πtr + 8tsq = 4tsi(1 +
C

100
(
π

4
− 1)) (A.6)



Appendix B

Rounding parametric

representation

In this appendix we show in detail the steps to obtain the relation between n and the

percentaje of corner rounding C, given by Eq. (3.5). Let us point out that, for a square

shaped device, tsinmax = s
(

π
4

)

tsi
2 , where s(α) is the parametric representation of the

squircle given by Eq. (3.4):

s
(π

4

)

=
[{

cos
(π

4

)∣

∣

∣

n
+
∣

∣

∣
sin
(π

4

)∣

∣

∣

n}− 1

n

=

[

2

(√
2

2

)n]− 1

n

where we have taken into account that sides = 4, ra = rb = 1, and the parameters ni

which control the curvature of the corners are equal, n1 = n2 = n3 = n.

With this assumptions, the rounding percentage C (Eq. (3.3)) has the form

C =
100√
2− 1

(√
2− s

(π

4

))

=
100√
2− 1

(√
2− 2−

1

n

2√
2

)

=
200

2−
√
2

(

1− 2−
1

n

)

working out the term dependant on n,

2−
1

n = 1− 2−
√
2

200
C;
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− 1

n
log 2 = log

(

1 +

√
2− 2

200
C

)

;

So, the relation betwen n and the percentaje of corner rounding C is given by Eq. (3.5):

n = n(C) =
Log[2]

Log

[

1
1+ 1

200
(−2+

√
2)C

]
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[4] A. Craig, G. Roy and A. Asenov. Random-dopant-induced drain current variation in

nano-MOSFETs: a three dimensional self-consistent monte carlo simulation study

using ab-initioionized impurity scattering. IEEE Transactions on Electron Devices,

55(11) 3251 (2008).

[5] A. Asenov. Random dopant induced threshold voltage lowering and fluctuations in

sub-0.1 µm MOSFET’s: A 3-d atomistic simulation study. IEEE Transactions on

Electron Devices, 45(12) 2505 (1998).

[6] G. Celler and S. Cristoloveanu. Frontiers of silicon-on-insulator. Journal of Applied

Physics, 93:4955–78 (2003).

[7] J. P. Colinge. Multiple-gate SOI MOSFETs. Solid State Electronics, 48(6) 897

(2004).

[8] F. G. Ruiz, A. Godoy, F.Gámiz, C.Sampedro and L.Donetti. A comprehensive

study of the corner effects in Pi-Gate MOSFETs including quantum effects. IEEE

Transactions on Electron Devices, 54(12) 3369 (2007).

[9] B. Iñiguez, D. Jiménez, J. Roig, H. A. Hamid, L. F. Marsal and J. Pallares. Explicit

continuous model for long-channel undoped surrounding gate MOSFETs. IEEE

Transactions on Electron Devices, 52(8) 1868 (2005).
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