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1. Introduction

The signal estimation problem in time-delay stochastic systems plays an important
role in different application fields. For example, in engineering applications involving
communication networks with a heavy network traffic, the measurements available may not
be uptodate. Although the delay can sometimes be interpreted as a known deterministic
function of the time, the numerous sources of uncertainty make it preferable to interpret it
as a stochastic process, including its statistical properties in the system model. This fact must
be considered in the study of the signal estimation problem since the conventional algorithms
are then not applicable.

In the past few years, attention has been focused on investigating estimation problems
from measurements subject to a random delay which does not exceed one sampling time,
modeling the delay values by a zero-one white noise with known probabilities indicating
that the measurements either arrive on time or are delayed. In linear systems, Ray et al.
[1] first modified the conventional algorithms to fit this observation model and since
then many results based on this model have been reported (see, among others, [2–5] and
references therein). Literature on nonlinear filtering from randomly delayed observations is
less extensive. Recently, generalizations of extended and unscented Kalman filters, using one-
and two-step randomly delayed observations, have been proposed and compared in [6, 7],
respectively, for a class of nonlinear discrete-time systems with independent additive noises.
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In this paper, we address the problem of estimating from nonlinear measurements
subject to a random delay which does not exceed one sampling time, and when the last
available measurement is used for the estimation at any time. This situation is modelled by
considering Bernoulli random variables whose value of one indicates that the corresponding
observation is not updated. Concretely, we propose an extension of the unscented filter in [6]
to the case of correlated and nonadditive signal and measurement noises.

2. State and Observation Models

In this section, we present the nonlinear systems with one-step randomly delayed observa-
tions to be considered and we describe the assumption about the underlying processes.

The considered nonlinear discrete-time model is represented by the equations:

xk+1 = fk(xk,wk), k ≥ 0,

ỹk = hk(xk, vk), k ≥ 1,
(2.1)

where xk and ỹk are random vectors which describe the system state and output at time k,
respectively. The process {wk; k ≥ 0} is the state noise, {vk; k ≥ 1} is the measurement noise,
and, for all k, fk and hk are known analytic (not necessarily linear) functions.

We assume that at time k = 1 the real observation ỹ1 is always available for the
estimation but, as indicated previously, we go to consider the possibility that the current
observation at any time k > 1, yk, is either the current system output, ỹk, with probability of
1−pk, or the previous one, ỹk−1, with probability of pk (delay probability). Thus, the available
observations for k > 1 are

yk =

⎧

⎨

⎩

ỹk−1, with probability pk

ỹk, with probability 1 − pk,
(2.2)

and the delayed observation model can be described as [6]

yk =
(

1 − γk
)

ỹk + γkỹk−1, k > 1; y1 = ỹ1, (2.3)

where {γk; k > 1} are Bernoulli random variables (binary switching sequence taking the
values 0 or 1) with P(γk = 1) = pk, which model the delays in the observations. Indeed, if
γk = 1 (which occurs with probability pk), then yk = ỹk−1 and the measurement is delayed
by one sampling period; otherwise, γk = 0 implies that yk = ỹk or, equivalently, that the
measurement is updated (which occurs with probability 1 − pk).

In applications of communication networks, the noise {γk; k > 1} usually represents
the random delay from sensor to controller and the assumption of one-step sensor delay is
based on the reasonable supposition that the induced data latency from the sensor to the
controller is restricted so as not to exceed the sampling period.

To deal with the state estimation problem, the following assumptions about the
processes involved in (2.1) and (2.3) are considered.
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Assumption 1. The initial state in (2.1), x0, is a random vector with E[x0] = x0 and E[(x0 −
x0)(x0 − x0)

T ] = P0.

Assumption 2. The noises {wk; k ≥ 0} and {vk; k ≥ 1} are correlated zero-mean white
processes with E[wkw

T
k ] = Qk, E[vkvTk ] = Rk, and E[wjvk] = Skδj,k−1, with δk−1,k−1 = 1

and δj,k−1 = 0, j /= k − 1.

Assumption 3. {γk; k > 1} is a sequence of independent Bernoulli random variables with
known probabilities, P(γk = 1) = pk, for all k > 1.

Assumption 4. The initial state, x0, and the processes ({wk; k ≥ 0}, {vk; k ≥ 1}) and {γk; k >
1} are mutually independent.

3. Unscented Filtering Algorithm

The unscented transformation (see [8] for details) approximates the distribution of a N-
dimensional random vector X by sample distributions with the same mean and covariance,
̂X and PX . The distributions correspond to a set of 2N + 1 sigma-points defined as

χ0 = ̂X,

χi = ̂X +
(
√

(N + λ)PX
)

i

, i = 1, . . . ,N,

χi = ̂X −
(
√

(N + λ)PX
)

i−N
, i =N + 1, . . . , 2N,

(3.1)

(expression (P)i denotes the i-th column of the matrix P) whose mean and covariance are
̂X and PX , respectively, when the following weights, Wm

i for the mean and Wc
i for the

covariance, are used:

Wm
0 =

λ

(N + λ)
, Wc

0 =
λ

N + λ
+
(

1 − α2 + β
)

,

Wm
i =Wc

i =
1

2(N + λ)
, i = 1, . . . , 2N.

(3.2)

The parameters in (3.1) and (3.2) are λ = α2(N + κ) − N, where α is a scaling parameter
determining the spread of the sigma-points, and κ, β are tuning parameters. When the mean
and covariance of a nonlinear transformation g(X) are approximated by the sample mean
and covariance of the transformed sigma-points, g(χi), i = 0, . . . , 2N, weighted with Wm

i

and Wc
i , respectively, these approximations are accurate up to the second and first term of

their Taylor expansion series, respectively.
On the basis of this procedure, unscented filtering uses the state equation (which

provides xk as a nonlinear function of xk−1 and wk−1) to approximate the conditional mean
and covariance of xk given Yk−1 = Col(y1, . . . , yk−1) from those of xk−1 and wk−1. These
statistics are then updated with the observation yk using the Kalman equations to obtain
approximations of the conditional mean and covariance of xk given Yk.
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For the update, the mean and covariance of yk given Yk−1, and hence those of ỹk−1 =
hk−1(xk−1, vk−1) and ỹk = hk(xk, vk), are approximated using again the unscented procedure
and, for this purpose, the conditional statistics of the vectors xk−1, vk−1, xk, and vk must
be known. Therefore, in view of the requirements in the prediction and update steps, the
starting point for obtaining the filter of xk is the knowledge of the approximated conditional
mean and covariance of the vector Xk−1 = Col(xk−1, vk−1, wk−1, vk) given Yk−1; these statistics,
which are denoted by ̂Xk−1/k−1 and PXX

k−1,k−1/k−1, respectively, provide the approximations of
the conditional statistics of Xk given Yk which, in turn, provide those of xk. The procedure is
now detailed in the following two steps.

Prediction step

From the independence of the vectors Col(vk,wk, vk+1) and Yk−1 and the conditional
independence of Col(xk, vk) and Col(wk, vk+1), the conditional mean and covariance of
Xk = Col(xk, vk,wk, vk+1) given Yk−1 are given by

̂Xk/k−1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

x̂k/k−1

0

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, PXXk,k/k−1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Pxxk,k/k−1 Pxvk,k/k−1 0 0

Pvxk,k/k−1 Rk 0 0

0 0 Qk Sk+1

0 0 ST
k+1 Rk+1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (3.3)

and then, the problem is to obtain approximations for the conditional mean and covariance
of xk, x̂k/k−1 and Pxxk,k/k−1, as well as for the conditional cross-covariance of xk and vk, Pxvk,k/k−1.

Since xk = fk−1(xk−1, wk−1) and vk are both functions of the vector Xk−1, in
order to approximate their conditional statistics we use the sigma-points χi,k−1 =
Col(χx

i,k−1, χ
v
i,k−1, χ

w
i,k−1, χ

v
i,k
), i = 0, . . . , 2N, defined from ̂Xk−1/k−1 and PXX

k−1,k−1/k−1 as in
(3.1) (here N is the dimension of the augmented vector Xk−1), and the required statistics
are approximated by those corresponding to the transformed sigma-points, fa

k−1(χi,k−1) =
fk−1(χxi,k−1, χ

w
i,k−1), by using the weights defined in (3.2):

x̂k/k−1 =
2N
∑

i=0

Wm
i f

a
k−1

(

χi,k−1
)

,

Pxxk,k/k−1 =
2N
∑

i=0

Wc
i

(

fak−1

(

χi,k−1
) − x̂k/k−1

)(

fak−1

(

χi,k−1
) − x̂k/k−1

)T
,

Pxvk,k/k−1 =
2N
∑

i=0

Wc
i f

a
k−1

(

χi,k−1
)

χvTi,k .

(3.4)

Update step

As previously commented, the obtaining of ̂Xk/k and PXXk,k/k from ̂Xk/k−1 and PXXk,k/k−1 is carried
out by using the Kalman filter equations and hence, the mean and covariance of yk given Yk−1,
as well as the conditional cross-covariance of yk and Xk, need to be approximated; next, we
describe the approximation procedure.
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Taking into account (2.3) and since, from the independence, P(γk = 1/Yk−1) = pk, the
conditional statistics of yk given Yk−1 are expressed in terms of those corresponding to ỹk−1

and ỹk as follows:

ŷk/k−1 =
(

1 − pk
)

̂ỹk/k−1 + pk ˜ỹk−1/k−1,

P
yy

k,k/k−1 =
(

1 − pk
)

P
ỹỹ

k,k/k−1 + pkP
ỹỹ

k−1,k−1/k−1

+ pk
(

1 − pk
)

(

̂ỹk/k−1 − ̂ỹk−1/k−1

)(

̂ỹk/k−1 − ̂ỹk−1/k−1

)T
,

P
Xy

k,k/k−1 =
(

1 − pk
)

P
Xỹ

k,k/k−1 + pkP
Xỹ

k,k−1/k−1,

(3.5)

where again applying the independence hypotheses of the model,

P
Xỹ

k,k/k−1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

P
xỹ

k,k/k−1

P
vỹ

k,k/k−1

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, P
Xỹ

k,k−1/k−1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

P
xỹ

k,k−1/k−1

0

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (3.6)

As in the prediction step, the conditional statistics of ỹk−1 = hk−1(xk−1, vk−1) are

approximated from the sigma-points χi,k−1 associated with ̂Xk−1/k−1 and PXXk−1,k−1/k−1, by
defining ha

k−1(χi,k−1) = hk−1(χxi,k−1, χ
v
i,k−1):

̂ỹk−1/k−1 =
2N
∑

i=0

Wm
i h

a
k−1

(

χi,k−1
)

,

P
ỹỹ

k−1,k−1/k−1 =
2N
∑

i=0

Wc
i

(

hak−1

(

χi,k−1
) − ̂ỹk−1/k−1

)(

hak−1

(

χi,k−1
) − ̂ỹk−1/k−1

)T
,

P
xỹ

k,k−1/k−1 =
2N
∑

i=0

Wc
i

(

fak−1

(

χi,k−1
) − x̂k/k−1

)

(

hak−1

(

χi,k−1
) − ̂ỹk−1/k−1

)T
.

(3.7)

However, to approximate the statistics of ỹk = hk(xk, vk), which is a function of the
vector Col(xk, vk), we use the information given in (3.3) and (3.4) about their conditional
statistics. Thus, we consider a set of sigma-points, Col(ξxi,k, ξ

v
i,k), i = 0, . . . , 2M (M being the

dimension of the vector Col(xk, vk)), defined in a similar way to those in (3.1) for the two first
block components of ̂Xk/k−1 and PXX

k,k/k−1, with weights wm
i and wc

i defined as in (3.2), and the
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following approximations are used:

̂ỹk/k−1 =
2M
∑

i=0

wm
i hk
(

ξxi,k, ξ
v
i,k

)

,

P
ỹỹ

k,k/k−1 =
2M
∑

i=0

wc
i

(

hk
(

ξxi,k, ξ
v
i,k

)

− ̂ỹk/k−1

)(

hk(ξxi,k, ξ
v
i,k) − ̂ỹk/k−1

)T
,

P
xỹ

k,k/k−1 =
2M
∑

i=0

wc
i

(

ξxi,k − x̂k/k−1

)(

hk(ξxi,k, ξ
v
i,k) − ̂ỹk/k−1

)T
,

P
vỹ

k,k/k−1 =
2M
∑

i=0

wc
i ξ
v
i,k

(

hk(ξxi,k, ξ
v
i,k)
)T
.

(3.8)

The conditional statistics of ỹk−1 and ỹk are substituted in (3.5) and (3.6) to obtain
those of yk, which are used in the following equations providing the filter of Xk and the error
covariance:

̂Xk/k = ̂Xk/k−1 + P
Xy

k,k/k−1

(

P
yy

k,k/k−1

)−1
(

yk − ŷk/k−1
)

,

PXXk,k/k = PXXk,k/k−1 − P
Xy

k,k/k−1

(

P
yy

k,k/k−1

)−1(
P
Xy

k,k/k−1

)T
.

(3.9)

The initial conditions of the proposed algorithm are given by

̂X0/0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

x0

0

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, PXX0,0/0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

P0 0 0 0

0 0 0 0

0 0 Q0 S1

0 0 ST1 R1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (3.10)

which is easily obtained from the independence hypotheses and initial conditions of the
model.

Summarizing, given ̂Xk−1/k−1 and PXXk−1,k−1/k−1, the computation procedure of the
proposed unscented filter is as follows:

Step 1. Compute the sigma-points defined from ̂Xk−1/k−1 and PXX
k−1,k−1/k−1 as in (3.1), and

(i) compute x̂k/k−1, Pxx
k,k/k−1, and Pxv

k,k/k−1 by (3.4), and compute ̂Xk/k−1 and PXX
k,k/k−1 by

(3.3).

(ii) compute ̂ỹk−1/k−1, Pỹỹk−1,k−1/k−1, and P
xỹ

k,k−1/k−1 by (3.7).

Step 2. Compute the sigma-points defined from ̂Xk/k−1 and PXX
k,k/k−1 as in (3.1), and compute

̂ỹk/k−1, Pỹỹ
k,k/k−1, Pxỹ

k,k/k−1, and P
vỹ

k,k/k−1 by (3.8).

Step 3. Compute PXỹ
k,k/k−1 and P

Xỹ

k,k−1/k−1 by (3.6).
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Figure 1: RMSEk when p = 0.5 and S = 0, 0.3, 0.5, 0.7, 0.9.

Step 4. Compute ŷk/k−1, Pyy
k,k/k−1 and P

Xy

k,k/k−1 by (3.5).

Step 5. Compute ̂Xk/k and PXXk,k/k by (3.9).

Finally, by extracting the first block components of ̂Xk/k and PXX
k,k/k

, the filter of the
original vector xk and the error covariance are obtained.

4. Simulation Example

To illustrate the performance of the proposed unscented filter, we consider the following
logistic type of transition and measurement equations, used previously in [9] to compare
the performance of various nonlinear filters in the case of mutually independent noises and
nondelayed observations:

xk+1 =
exp(xk)

exp(xk) + exp(wk)
, k ≥ 0; ỹk =

exp(xk)
exp(xk) + exp(vk)

, k ≥ 1, (4.1)

where the initial state x0 is a random variable with uniform distribution between zero and
one; the state and observation noises are assumed to be zero-mean Gaussian joint processes
with Qk = 1, Rk = 1 and known Sk = S, for all k.

To apply the proposed algorithm, we assume that the observations available for the
estimation can be randomly delayed by one sampling period; that is,

yk =
(

1 − γk
)

ỹk + γkỹk−1, k > 1; y1 = ỹ1, (4.2)
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Figure 2: Mean of RMSEk when S = 0, 0.3, 0.5, 0.7, 0.9, versus p.

and that the noise {γk; k > 1} modeling the delays is a sequence of independent Bernoulli
variables with known delay probability P(γk = 1) = p, for all k.

We have implemented a MATLAB program which simulates the state, xk, and the real,
ỹk, and delayed measurements, yk, for k = 1, . . . , 50, for different values of S and p, and which
provides the unscented filtering estimates of xk. The root mean square error (RMSE) criterion
has been used to quantify the performance of the estimates.

Considering 1000 independent simulations and denoting by {x(s)
k , k = 1, . . . , 50} the

sth set of the artificially simulated states and by x̂(s)
k/k

the filtering estimate at time k in the sth
simulation run, the RMSE of the filter at time k is calculated by

RMSEk =

(

1
1000

1000
∑

s=1

(

x
(s)
k − x̂(s)

k/k

)2
)1/2

. (4.3)

Let us first examine the performance of the algorithm with respect to different values
of S; Figure 1 illustrates the RMSEk when the delay probability is p = 0.5 and different
values of S are considered; specifically, S = 0, 0.3, 0.5, 0.7 and S = 0.9; this figure shows,
as expected, that the higher the value of S (which means that the correlation between
the state and the observations increases) the smaller that of RMSEk and, consequently, the
performance of the estimators is better. Analogous results are obtained for other values of p
and S.

Moreover, in order to compare the performance of the estimators as a function of the
delay probability p, the arithmetic average corresponding to the 50 iterations of RMSEk was
calculated for p = 0.1, . . . , 0.9. The results of this are shown in Figure 2, from which it is
apparent that the means increase as p increases, the increase being greater when S is greater,
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Table 1: Mean of RMSEk for the proposed unscented filter (UF) and the extended Kalman filter (EKF)
when p = 0.3, 0.5, 0.7, 0.9 and S = 0.7, 0.9.

S = 0.7 S = 0.9
EKF UF EKF UF

p = 0.3 0.171999 0.171981 0.156515 0.146600
p = 0.5 0.192260 0.185108 0.186523 0.168968
p = 0.7 0.209041 0.194751 0.211315 0.183530
p = 0.9 0.224603 0.202314 0.233059 0.195062

and consequently, as expected, the performance of the estimators deteriorates as the delay
probability p rises. From this figure, it is also inferred that, for each fixed value of p, the
means decrease with increasing S, which extends the result in Figure 1 to different values of
p.

Finally, to compare the performance of the proposed and the EKF algorithms, the
latter was applied to the observation data of the simulation example for different values
of p and S. The results show that the proposed algorithm outperforms the EKF algorithm
and the improvement is greater when the delay probability p is greater and, also, when the
correlation S increases. Table 1, showing the means of RMSEk for both algorithms considering
p = 0.3, 0.5, 0.7, 0.9 and S = 0.7, 0.9, illustrates this fact.
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