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1. Introduction

In recent literature, several researchers have focused the attention on constructions and
stochastic orders among probability distribution functions with given marginals. These
problems are interesting especially for their relevance in finance and quantitative risk
management, like models of multivariate portfolios and bounding functions of dependent
risks (see, e.g., [1]).

If a random vector X = (X1, . . . , Xn) is characterized by a distribution function
(= d.f.) F with known univariate marginals, then upper and lower bounds for F were
given in early works by Fréchet. When, instead, we have some information about the
multivariate marginals of F, then the problem has not been considered extensively in the
literature, although it seems natural that for some applications one needs to estimate the joint
distribution F of X, when the dependence among some components of F is known. For this
discussion, we refer to Rüschendorf [2, 3] and Joe [4, 5].

In this paper, we aim at contributing to this problem by providing lower and upper
bounds in the class of continuous trivariate d.f.’s whose bivariate marginals are given, that
is, when we have full information about the pairwise dependence among the components of
the corresponding random vector. These new bounds improve some estimations given by Joe
[5].
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Wewill formulate our results in the class of copulas, which are multivariate d.f.’s whose
one-dimensional marginals are uniformly distributed on [0, 1]: see Joe [5]; Nelsen [6]. It is
well known that this restriction does not cause any loss of generality in the problem because,
thanks to Sklar’s Theorem [7], any continuous multivariate d.f. can be represented by means
of a copula and its one-dimensional marginals. Moreover, in order to obtain our results, we
use two constructions that, starting with two bivariate copulas, give rise to new bivariate
and trivariate copulas, respectively. These constructions can be seen as generalizations of the
product-like operations on copulas considered by Darsow et al. [8] and Kolesárová et al. [9].

2. Preliminaries

Let n be in N, n ≥ 2, and denote by x = (x1, . . . , xn) any point in R
n. An n-dimensional copula

(shortly, n-copula) is a mapping Cn : [0, 1]n → [0, 1] satisfying the following conditions:

(C1) Cn(u) = 0 whenever u ∈ [0, 1]n has at least one component equal to 0;

(C2) Cn(u) = ui whenever all components of u ∈ [0, 1]n are equal to 1 except for the ith
one, which is equal to ui;

(C3) Cn is n-increasing, viz., for each n-box B = ×n
i=1[ui, vi] in [0, 1]n with ui ≤ vi for each

i ∈ {1, . . . , n},

VCn(B) :=
∑

z∈×n
i=1{ui,vi}

(−1)N(z)Cn(z) ≥ 0, (2.1)

where N(z) = card{k | zk = uk}.
We denote by Cn the set of all n-dimensional copulas (n ≥ 2). For every Cn ∈ Cn and

for every u ∈ [0, 1]n, we have that

Wn(u) ≤ Cn(u) ≤ Mn(u), (2.2)

where

Wn(u) := max

{
n∑

i=1

ui − n + 1, 0

}
, Mn(u) := min

{
u1, u2, . . . , un

}
. (2.3)

Notice that Mn is in Cn, but Wn is in Cn only for n = 2. Another important n-copula is the
product Πn(u) :=

∏n
i=1ui.

We recall that, for C and C′ in C2, C′ is said to be greater than C in the concordance
order, and we write C � C′, if C(u1, u2) ≤ C′(u1, u2) for all (u1, u2) ∈ [0, 1]2. Moreover, for D
and D′ in C3, D′ is said to be greater than D in the concordance order, and we write D � D′,
if D(u) ≤ D′(u) and D(u) ≤ D′(u) for all u ∈ [0, 1]3, where D is the survival copula of D
defined on [0, 1]3 by

D
(
u1, u2, u3

)
= 1 − u1 − u2 − u3 +D

(
u1, u2, 1

)
+D

(
u1, 1, u3

)
+D

(
1, u2, u3

) −D
(
u1, u2, u3

)
.

(2.4)

For more details about copulas, see [5, 6].



Fabrizio Durante et al. 3

For eachCn ∈ Cn and for each permutation σ = (σ1, . . . , σn) of (1, 2, . . . , n), themapping
Cσ

n : [0, 1]n → [0, 1] given by

Cσ
n

(
u1, . . . , un

)
= Cn

(
uσ1 , . . . , uσn

)
(2.5)

is also in Cn. For example, if C3 ∈ C3, then we denote by C
(1,3,2)
3 the 3-copula given by

C
(1,3,2)
3 (u1, u2, u3) = C3(u1, u3, u2).

For the sequel, we need the following definition.

Definition 2.1. Three 2-copulasC12,C13 andC23 are compatible if, and only if, there exists C̃ ∈ C3

such that, for all u1, u2, u3 in [0, 1],

C12
(
u1, u2

)
= C̃

(
u1, u2, 1

)
,

C13
(
u1, u3

)
= C̃

(
u1, 1, u3

)
,

C23
(
u2, u3

)
= C̃

(
1, u2, u3

)
.

(2.6)

In such a case, C12, C13 and C23 are called the bivariate marginals (briefly, 2-marginals) of C̃.

In general, it is a difficult problem to determine whether three bivariate copulas are
compatible (for some preliminary studies, see [5] and the references therein). Notice that
Π2,Π2,Π2 are compatible, because they are the 2-marginals of Π3. Analogously, M2,M2,M2

are compatible, because they are the 2-marginals of M3. The copulas W2,W2,W2, however,
are not compatible.

If C12, C13 and C23 in C2 are compatible, the Fréchet class of (C12, C13, C23), denoted by
F(C12, C13, C23), is the class of all C̃ ∈ C3 such that (2.6) hold.

In the following result, we present a way for obtaining a 3-copula starting with some
suitable 2-copulas. This method can be considered as a direct extension of some results by
Darsow et al. [8] and Kolesárová et al. [9].

Proposition 2.2. Let A and B be in C2 and let C = (Ct)t∈[0,1] be a family in C2. Then the mapping
A�CB : [0, 1]3 → [0, 1] defined by

(
A�CB

)(
u1, u2, u3

)
=
∫u2

0
Ct

(
∂

∂t
A
(
u1, t

)
,
∂

∂t
B
(
t, u3

))
dt (2.7)

is in C3, provided that the above integral exists and is finite.

Proof. It is immediate that A�CB satisfies (C1) and (C2). In order to prove (C3) for n = 3, let
ui, vi be in [0, 1] such that ui ≤ vi for every i ∈ {1, 2, 3}. Since A is 2-increasing, we have that
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A(v1, t) −A(u1, t) is increasing in t ∈ [0, 1], and, therefore, (∂/∂t)A(v1, t) ≥ (∂/∂t)A(u1, t) for
all t ∈ [0, 1]. Analogously, (∂/∂t)B(t, v3) ≥ (∂/∂t)B(t, u3) for all t ∈ [0, 1]. Then, we have that

VA�CB

([
u1, v1

] × [
u2, v2

] × [
u3, v3

])

=
∫v2

u2

VCt

([
∂

∂t
A
(
u1, t

)
,
∂

∂t
A
(
v1, t

)] ×
[
∂

∂t
B
(
t, u3

)
,
∂

∂t
B
(
t, v3

)])
dt ≥ 0,

(2.8)

which concludes the proof.

The copulaA�CB is called theC-lifting of the copulasA andBwith respect to the family
C = (Ct)t∈[0,1] in C2. Given C ∈ C2, if Ct = C for every t in [0, 1], we will write A�CB = A�CB.
Notice that, if Ct = Π2 for every t ∈ [0, 1], then the operation �Π2 was considered by Darsow
et al. [8] and Kolesárová et al. [9]. We easily derive that the 2-marginals ofA�CB areA,A∗CB
and B, where

(
A∗CB

)(
u1, u2

)
=
∫1

0
Ct

(
∂

∂t
A
(
u1, t

)
,
∂

∂t
B
(
t, u2

))
dt (2.9)

is called the C-product of the copulas A and B (see [10] for details).
Aswewill see in the sequel, every 3-copula can be represented in the form (2.7). In fact,

aC-lifting C̃ can be interpreted asmixture of conditional distributions (see [5, Section 4.5] and
[11]). Specifically, C̃ is the d.f. of the random vector (U1, U2, U3), Ui uniformly distributed
on [0, 1] for i ∈ {1, 2, 3}, characterized by the following property: for every t ∈ [0, 1], the
conditional d.f.’s of [U1 | U2 = t] and [U3 | U2 = t] are coupled by means of the copula Ct.
For instance, if they were (conditionally) independent for every t, then Ct would be equal to
Π2 for every t.

Finally, we show a result that will be useful in next section, concerning the concordance
order between two 3-copulas generated by means of the C-lifting operation.

Proposition 2.3. Let C = (Ct)t∈[0,1] and C′ = (C
′
t)t∈[0,1] be two families in C2. For all A,B ∈ C2,

suppose that the copulas A�CB and A�C′B are well defined. If Ct � C′
t for every t ∈ [0, 1], then

A�CB � A�C′B.

Proof. It is immediate that Ct � C′
t, for every t ∈ [0, 1], impliesA�CB ≤ A�C′B in the pointwise

order. Thus, we have only to prove that A�CB ≤ A�C′B. To this end, notice that

(A�CB)(u1, u2, 1) = (A�C′B)(u1, u2, 1) = A(u1, u2),

(A�CB)(1, u2, u3) = (A�C′B)(1, u2, u3) = B(u2, u3).
(2.10)

Therefore A�CB(u1, u2, u3) ≤ A�C′B(u1, u2, u3) if, and only if,

(A∗CB)(u1, u3) − (A�CB)(u1, u2, u3) ≤ (A∗C′B)(u1, u3) − (A�C′B)(u1, u2, u3), (2.11)
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which, in turn, is equivalent to

∫1

u2

Ct

(
∂

∂t
A(u1, t),

∂

∂t
B(t, u3)

)
dt ≤

∫1

u2

C′
t

(
∂

∂t
A(u1, t),

∂

∂t
B(t, u3)

)
dt, (2.12)

and this is obviously true since Ct � C′
t for every t ∈ [0, 1].

3. Bounds for trivariate copulas

Given three compatible 2-copulas C12, C13 and C23, we are now interested in the bounds for
the Fréchet class F(C12, C13, C23) of all 3-copulas whose 2-marginals are, respectively, C12, C13

and C23.

Theorem 3.1. For every C̃ ∈ F(C12, C13, C23) and for all u1, u2, u3 in [0, 1], one has

CL(u1, u2, u3) ≤ C̃(u1, u2, u3) ≤ CU(u1, u2, u3), (3.1)

where

CL(u1, u2, u3) = max
(i,j,k)∈P

{(
Cij�W2Cjk

)(
ui, uj , uk

)
,
(
Cij�M2Cjk

)(
ui, uj , uk

)

+ Cik

(
ui, uk

) − (
Cij∗M2Cjk

)(
ui, uk

)}
,

CU(u1, u2, u3) = min
(i,j,k)∈P

{(
Cij�M2Cjk

)(
ui, uj , uk

)
,
(
Cij�W2Cjk

)(
ui, uj , uk

)

+ Cik

(
ui, uk

) − (
Cij∗W2Cjk

)(
ui, uk

)}
,

(3.2)

and P = {(1, 2, 3), (1, 3, 2), (2, 1, 3)}.

Proof. If C̃ ∈ F(C12, C13, C23), then there exist a probability space (Ω,F, P) and a random
vector U = (U1, U2, U3), Ui uniformly distributed on [0, 1] for each i ∈ {1, 2, 3}, such that, for
all u1, u2, u3 in [0, 1],

C̃(u1, u2, u3) = P(U1 ≤ u1, U2 ≤ u2, U3 ≤ u3). (3.3)

Moreover, C12 is the copula of (U1, U2), C13 is the copula of (U1, U3) and C23 is the copula of
(U2, U3). Then we have that

C̃(u1, u2, u3) =
∫u2

0
C

(2)
t

(
P(U1 ≤ u1 | U2 = t), P(U3 ≤ u3 | U2 = t)

)
dt, (3.4)

where, for each t ∈ [0, 1], C(2)
t is the 2-copula associated with the (conditional) distribution

function of (U1, U3) given U2 = t. But, by simple calculations, we also obtain that, almost
surely on [0, 1],

P(U1 ≤ u1 | U2 = t) =
∂C12(u1, t)

∂t
, P(U3 ≤ u3 | U2 = t) =

∂C23(t, u3)
∂t

. (3.5)
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Therefore we can rewrite (3.4) in the form

C̃(u1, u2, u3) =
∫u2

0
C

(2)
t

(
∂

∂t
C12(u1, t),

∂

∂t
C23(t, u3)

)
dt

= (C12�C2C23)(u1, u2, u3),

(3.6)

whereC2 = (C(2)
t )t∈[0,1]. If we repeat the above procedure by conditioning in (3.4)with respect

toU1 = t and with respect toU3 = t, we obtain that there exist other two families of 2-copulas,
C1 = (C(1)

t )t∈[0,1] and C3 = (C(3)
t )t∈[0,1], such that

C̃ = (C13�C3C32)
(1,3,2) = C12�C2C23 = (C21�C1C13)

(2,1,3). (3.7)

Since W2 � C � M2 for every C ∈ C2, Proposition 2.3 ensures that, for each (i, j, k) in P,

(
Cij�W2Cjk

)(i,j,k) � C̃ � (
Cij�M2Cjk

)(i,j,k)
. (3.8)

By definition of concordance order, for each (i, j, k) in P and u = (u1, u2, u3) ∈ [0, 1]3, we have
that

(
Cij�W2Cjk

)(
ui, uj , uk

) ≤ C̃(u) ≤ (
Cij�M2Cjk

)(
ui, uj , uk

)
, (3.9)

(
Cij�W2Cjk

)(
ui, uj , uk

) ≤ C̃(u) ≤ (
Cij�M2Cjk

)(
ui, uj , uk

)
. (3.10)

The first inequality in (3.10) is equivalent to:

1 − u1 − u2 − u3 + Cij

(
ui, uj

)
+ Cjk

(
uj, uk

)
+
(
Cij∗W2Cjk

)(
ui, uk

) − (
Cij�W2Cjk

)(
ui, uj , uk

)

≤ 1 − u1 − u2 − u3 + Cij

(
ui, uj

)
+ Cjk

(
uj, uk

)
+ Cik

(
ui, uk

) − C̃
(
ui, uj , uk

)
.

(3.11)

The second inequality in (3.10) is equivalent to:

1 − u1 − u2 − u3 + Cij

(
ui, uj

)
+ Cjk

(
uj, uk

)
+ Cik

(
ui, uk

) − C̃
(
ui, uj , uk

)

≤ 1−u1−u2−u3+Cij

(
ui, uj

)
+ Cjk

(
uj, uk

)
+
(
Cij∗M2Cjk

)(
ui, uk

) − (
Cij�M2Cjk

)(
ui, uj , uk

)
.

(3.12)

Easy calculations show that these inequalities are equivalent to:

C̃(u) ≤ (
Cij�W2Cjk

)(
ui, uj , uk

)
+ Cik

(
ui, uk

) − (
Cij∗W2Cjk

)(
ui, uk

)
,

C̃(u) ≥ (
Cij�M2Cjk

)(
ui, uj , uk

)
+ Cik

(
ui, uk

) − (
Cij∗M2Cjk

)(
ui, uk

)
.

(3.13)

Using these inequalities and (3.9), we directly get (3.1).
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Bounds of the above type are based on the so-called “method of conditioning”,
formulated for the first time by Rüschendorf [2] in a more general framework. Later, the
same method was adopted in [5, Theorem 3.11], where it was provided an upper bound FU

and a lower bound FL for F(C12, C13, C23) given by

FU(u1, u2, u3) = min
{
C12(u1, u2), C13(u1, u3), C23(u2, u3), 1 − u1 − u2 − u3

+ C12(u1, u2) + C13(u1, u3) + C23(u2, u3)
}

FL(u1, u2, u3) = max
{
0, C12(u1, u2) + C13(u1, u3) − u1, C12(u1, u2)

+ C23(u2, u3) − u2, C13(u1, u3) + C23(u2, u3) − u3
}
.

(3.14)

Here, a comparison with our bounds is presented.

Proposition 3.2. Let C12, C13 and C23 be three compatible 2-copulas. Then, for every u =
(u1, u2, u3) ∈ [0, 1]3, one has that CL(u) ≥ FL(u) and CU(u) ≤ FU(u).

Proof. Let u be in [0, 1]3. We have that

CL(u) ≥
(
C13�W2C32

)
(u1, u3, u2)

=
∫u3

0
W2

(
∂

∂t
C13(u1, t),

∂

∂t
C32(t, u2)

)
dt

≥ C13(u1, u3) + C23(u2, u3) − u3,

(3.15)

and, analogously,

CL(u) ≥ C12(u1, u2) + C13(u1, u3) − u1,

CL(u) ≥ C12(u1, u2) + C23(u2, u3) − u2.
(3.16)

Therefore, since CL(u) ≥ 0, it follows that CL(u) ≥ FL(u) for every u in [0, 1]3.
On the other hand, we have that

CU(u) ≤
(
C13�M2C32

)
(u1, u3, u2)

=
∫u3

0
min

(
∂

∂t
C13(u1, t),

∂

∂t
C32(t, u2)

)
dt

≤ min
(
C13(u1, u3), C23(u2, u3)

)
,

(3.17)

and, analogously, CU(u) ≤ C12(u1, u2). Moreover, for every u ∈ [0, 1]3, we have that

(
C12�W2C23

)
(u1, u2, u3) + C13(u1, u3) −

(
C12∗W2C23

)
(u1, u3)

≤ 1 − u1 − u2 − u3 + C12(u1, u2) + C13(u1, u3) + C23(u2, u3),
(3.18)

as a consequence of the fact that (C12�W2C23)(u) ≥ 0. Thus CU(u) ≤ FU(u) for every u in
[0, 1]3.
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While the bounds FL and FU come from inequalities involving three random variables,
the bounds CL and CU come from inequalities involving sets of two random variables,
applied over each value of the third variable. These last bounds can be considered, in fact,
as conditional Fréchet lower and upper bounds for the d.f.’s and the survival d.f.’s from each
of the three permutations (U1, U2) | U3, (U1, U3) | U2 and (U2, U3) | U1.

In general, CU is strictly less than FU (resp., CL is strictly greater than FL).

Example 3.3. Let us consider the copula C(u1, u2) = u1u2(1 + (1 − u1)(1 − u2)). We want to
determine the bounds for F(C,C,C). First of all, note that F(C,C,C)/=∅, because it contains
the copula

C̃(u1, u2, u3) = u1u2u3(1 + (1 − u1)(1 − u2) + (1 − u1)(1 − u3) + (1 − u2)(1 − u3)) (3.19)

(you can check that C̃ is a copula just by computing that its density is positive). Now, it is
easy to calculate that, for every u ∈ [0, 1],

FU(u, u, u) = min{C(u, u), 1 − 3u + 3C(u, u)},
CU(u, u, u) = min

{(
C�M2C

)
(u, u, u),

(
C�W2C

)
(u, u, u) + C(u, u) − (

C∗W2C
)
(u, u)

}
.

(3.20)

When u = 1/3, we obtain

FU(u, u, u) = C(u, u) =
13
81

>
17
243

=
(
C�M2C

)
(u, u, u) ≥ CU(u, u, u). (3.21)

Moreover, one has

FL(u, u, u) = max{0, 2C(u, u) − u},
CL(u, u, u) = max

{(
C�W2C

)
(u, u, u),

(
C�M2C

)
(u, u, u) + C(u, u) − (

C∗M2C
)
(u, u)

}
.

(3.22)

When u = 3/5, FL(u, u, u) = 147/625 and CL(u, u, u) ≥ (C�W2C)(u, u, u) = 1/3 > FL(u, u, u).

In the case of pairwise independence, CU and FU (resp., FL and CL) coincide.

Example 3.4. From Theorem 3.1, if C̃ is in F(Π2,Π2,Π2), then, for every u1, u2 and u3 in [0, 1],
we have

CL(u1, u2, u3) ≤ C̃(u1, u2, u3) ≤ CU(u1, u2, u3), (3.23)

where

CL(u1, u2, u3) = max
{
u1W2(u2, u3), u2W2(u1, u3), u3W2(u1, u2)

}
,

CU(u1, u2, u3) = min
{
u1u2, u1u3, u2u3, (1 − u1)(1 − u2)(1 − u3) + u1u2u3

}
.

(3.24)

It is easy to check that, in this case,CL = FL andCU = FU. These bounds were also obtained by
Deheuvels [12] and Rodrı́guez-Lallena and Úbeda-Flores [13] (compare also with [5, Section
3.4.1]). Moreover, CL and CU may not be copulas, as noted in [13].
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