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Abstract

Parameters to measure nonlinearity (nonlinear parameter β) in polymethylmethacrylate

(PMMA) and carbon fiber reinforced polymer (CFRP) materials have been determined

with nonlinear ultrasound (NLUS). The nonlinear parameter β has been determined using

the variation of the Finite Amplitude Method (FAM) with harmonic generation. Using

this as a reference, it has been deducted the experimental configuration necessary to mea-

sure this nonlinear parameter in a correct and feasible way. Excitation level, frequency of

the wave generated, number of cycles analysed and the distances transducer-specimen and

specimen-hydrophone have been determined in both materials. The second contribution

is a semi-analytical model that allows to obtain the real nonlinear parameter β in mate-

rials by removing water contribution and considering geometric and viscous attenuation,

using the measures obtained in an immersion tank. Finally, an application of this model

has been carried out in PMMA in order to determinate the real nonlinear parameter β in

this material.

Keywords: nonlinear ultrasound, nonlinear parameter β, Finite Amplitude Method (FAM),

harmonic generation, attenuation.



Resumen

Los parámetros necesarios para medir la no linealidad (parámetro β) en materiales como

polimetilmetacrilato (PMMA) y fibra de carbono (CFRP), han sido determinados uti-

lizando la técnica de ultrasonidos no lineales. Se ha determinado el parámetro no lineal

β usando el Método de Amplitud Finita con la generación de armónicos. Usando esto

como referencia, se ha deducido la configuración experimental necesaria para medir el

parámetro no lineal de una forma correcta y fiable. El nivel de enerǵıa, la frecuencia de

la onda generada, el número de ciclos analizados y las distancias transductor-espécimen

y espécimen-hidrófono han sido determinadas en ambos materiales. La segunda con-

tribución es un modelo semi-anaĺıtico que permite obtener este parámetro no lineal en

diferentes materiales, eliminando la contribución no lineal del agua y considerando las

atenuaciones geométrica y viscosa, usando las medidas obtenidas en un tanque de in-

mersión. Finalmente, se ha llevado a cabo una aplicación con el material PMMA para

determinar el parámetro no lineal β real de dicho espécimen.

Palabras clave: ultrasonidos no lineales, parámetro no lineal β, Método de Amplitud

Finita (MAF), generación de armónicos, atenuación.
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Chapter 1

Introduction

1.1 Context and Motivation

Nondestructive Evaluation is an emerging technique which aims to characterize the ma-

terial damage without altering the material analyzed. Ultrasound is a non-destructive

technique widely used today which is characterized by its low cost and potential for dam-

age detection.

Initially, ultrasonic techniques were used to characterize homogeneous and isotropic ma-

terials. Very reliable damage parameters were obtained with these techniques, although

numerous linear hypotheses were considered. These techniques are known as linear ultra-

sonic methods. When the need arose to address complex problems, consideration of these

assumptions became a problem. The situation led to the development of new models and

theories of nonlinear ultrasound (classical nonlinear elasticity, hertzian contact, nonlinear

dissipation ... [1]), known as nonlinear ultrasonic methods to characterize inhomogeneous

materials or materials with layers. Methods that not only use the first harmonic, but the

second and even third harmonic to quantify the damage in complex materials.

Within the field of ultrasonic nonlinearity, different experimental techniques have been

developed to measure the nonlinearity: Finite Amplitude Method (based on harmonic

generation [2]), Nonlinear Elastic Wave Spectroscopy (based on principles of resonance

[3]), including Nonlinear Resonant Ultrasound Spectroscopy (NRUS), and Nonlinear Wave

Modulation Spectroscopy (NWMS) and Dynamic Acousto-Elasticity (DAE) [4].

In this thesis, for determining the real nonlinear parameter beta in materials such as poly-

methylmethacrylate (PMMA) and carbon fiber reinforced polymer (CFRP), the method

of finite amplitude has been used. This method has been used for several reasons: (1)

is the most common method used for the determination of this parameter in solids and

1



Chapter 1. Introduction 2

fluids and for that reason, there are many references concerning the method in which to

draw and (2) it does not require the use of a complicated experimental setup, such as a

high-pressure cell.

The correct determination of the nonlinear parameter beta requires signals with little noise

as possible. This is essential to really know the nonlinear characteristics of any material.

Previous studies found too high beta parameter for PMMA, due to reflections inside

the PMMA sample [5]. Motivated by this, a parametric experimental setup is proposed

to measure the nonlinear parameter beta in polymethylmethacrylate and carbon fiber

reinforced polymer in an immersion tank. Currents methods for ultrasonically quantifying

the constitutive nonlinearity parameter beta in materials do not consider attenuation

in water. To overcome this, the nonlinear wave propagation equations are rigorously

presented and enriched with the concept of geometrical dispersion, in order to consider

viscous and geometric attenuation in materials (PMMA and CFRP) and fluids (water in

this case).
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1.2 Research Objectives

Damage prediction in materials is a very important issue today. Ultrasonic nondestruc-

tive evaluation allows to obtain parameters characterizing damage in homogeneous and

inhomogeneous materials. However, due to their complexity, inhomogeneous materials

such as layered materials require special care in signal interpretation. An appropiate

configuration to obtain the nonlinear parameter in materials is the ultimate goal of this

thesis. To approach this objetive, two concrete objetives are formulated on the basis of

some hypothesis to validate or falsify, listed below.

In the literature, the nonlinear parameter beta has been determinated in a immersion

tank under different configurations, some of which have as result incorrect values of this

parameter due to reflection inside the material.

→ Research hypothesis 1: measurements to obtain the nonlinear parameter in a immersion

tank can be obtained in a more correct way by eliminating any noise source.

Obtaining a correct nonlinear parameter in materials requires the elimination of the non-

linearity introduced by the medium used for the wave propagation, in this case is water.

→ Research hypothesis 2: the real nonlinear parameter beta could be more accurately

obtained by subtracting different nonlinear contributions in measures.
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1.3 Outline of Contributions

The thesis intends to provide suitable solutions to the two research questions outlined in

Section 1.2, with the main objetive of the determination of an appropiate configuration

to obtain the real nonlinear parameter in materials. The methods and experiments are

outlined in this chapter.

Research question 1:

Measurements to obtain the nonlinear parameter β in a immersion tank can be

obtained in a more correct way by eliminating any noise source.

To investigate this research question, an appropiate experimental configuration has

been found in order to obtain a signal without noise. In Section 2.1 an experimen-

tal set-up has been described. The devices used in the configuration are explained in

Section 2.2. In this thesis two materials (PMMA and CFRP (Section 2.3)) have

been studied to obtain the nonlinear parameter.Measured signals obtained have been

used to determine the effective nonlinear parameter β. This is an effective parame-

ter because have been considered water, electronic and material nonlinearities.The

theory to get this nonlinear parameter is shown in Section 1.5. Finally, PMMA

and CFRP results are explained in Sections 3.1 and 3.2 respectively

Research question 2:

The real nonlinear parameter beta could be more accurately obtained by subtracting

different nonlinear contributions in measures.

To deal with this question, a suitable scheme has been considered in order to remove

water contibution in parameter β (Section 2.6). The theory to obtain the param-

eter β, considering viscous and geometric attenuation is shown in Section 2.5.

Finally, an application example have been performed to obtain the real nonlinear

parameter β in a PMMA sample Section 3.3.
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1.4 Literature Review

Nonlinearity is a property of a medium by which the shape and amplitude of a signal at a

location are no longer proportional to the input excitation. In general, the propagation of a

finite-amplitude plane wave through an acoustic nonlinear medium introduces distortions,

resulting in the generation of higher harmonics. The acoustic nonlinearity observed as

appearance of a harmonics in ultrasound propagation is a consequence of the deviation

from perfect linear elasticity of the compressional mechanical constitutive law. There

are some kind of theories based on the nonlinearity of the ultrasound, and this could be

organized into [1] :

• Classical nonlinear elasticity. Which is based on the study of the second and third

harmonic of the ultrasonic wave.

• Bilinear stiffness, breathing carcks and clapping contacts. Based on the lateral mo-

tion of cracks faces leading to crack opening/closing.

• Hysteresis. It follows different stress-strain curves in loading and unloading.

• Hertzian contact. In such models, a crack is considered as a contact of two elastic,

frictionless half spaces.

• Nonlinear dissipation.

These theories have been developed by many researchers in order to get some clear conclu-

sion. Hysteretic theory has clearly been described by DAE (Dynamic Acousto Elasticity)

[6–11]. The hysteretic behaviour has been expressed in terms of a different curve followed

by the velocity propagation along the tensile-compression pump cycle. The higher the

pump amplitude, the larger the hysteresis cycle.

Global damage was determinated fast and efficient by Nonlinear Resonance Acoustic

Spectroscopy (NRUS) [3]. Zacharias et al. [12] used the vibro-modulation method, which

is based on the fact that a high-frecuency ultrasound wave is modulated by a low-frecuency

vibration to arrive at the next conclusion: osteoporotic bone exhibits enhanced nonlinear

behaviour compared to healthy bone.

Attending to the Classical Nonlinear Theory, used in this thesis, Finite Amplitude Method

has been choosen for the reasons given in Chapter “Context and Motivation”.

Measuring the amplitudes of harmonics is commonly referred to as the finite-amplitude

(FA) method, ,initially developed by Breazeale and Thompson (1963) [13]. The nonlin-

ear coefficients are usually determined by measuring the second-harmonic generation and
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sometimes higher harmonics, and can be used to characterize acoustic nonlinear prop-

erties of gases, liquids, and solids. For this technique, the through-transmission mode

in immersion is usually preferred. Instead of using two transducers, it is opportune to

replace the receiver by a needle hydrophone (with a nearly linear frequency response), in

order to conveniently measure the second and higher-harmonics. A finite-duration burst

of (nearly) pure tone - typically around 20 cycles long - is launched towards the specimen,

and the progress of some stationary peaks near the end of the tone-burst is followed and

selected to compute the Fast Fourier Transform (FFT), which then allows to obtain the

second and higher-order harmonics amplitude.

Different wave types have been investigated with this technique, such as shear waves,

surface acoustic waves (SAW), lamb waves [14], but above all longitudinal waves. Initially,

bulk exploration using nonlinear longitudinal waves has attracted the attention of many

authors. In the case of shear waves in pure isotropic materials, the second harmonic

is impossible [15], so early damage is detectable since it makes them arise. Bulk waves

experiences need double-sided access to the specimen, while SAW and lamb ones just need

a single-side access. Notwithstanding, the pulse-echo technique using longitudinal waves

has slightly been assessed in fluids [16], and metals [17, 18]. In such a case, the rebound on

a pressure release boundary in most NDT applications and the double interaction make

the signal interpretation particularly difficult [19].

The finite-amplitude technique has been shown to be useful for defect detection in ce-

ramics [20], concrete structures [15, 21], composites [22], fatigue cracks in metals, such

as steels, titanium, and aluminum alloys [23, 24]. Such defects are originated in inter-

nal stresses, micro-cracks, zero-volume disbonds, and usually precede the main cracking

mechanisms and the failure of the material. Therefore, a considerable number of authors

have been involved in laboratory experiments to show that cracks and imperfect interfaces

can behave in a nonlinear fashion [25, 26], and have thus opened new opportunities to

detect partially closed cracks that may not be identified by conventional linear methods.

The finite-amplitude method is a relatively straightforward technique to measure the

second- and higher harmonic peaks, and thus obtain nonlinear elastic coefficients of a

material. The low complexity of the experimental installation could make of this method

a low-cost and valuable technology for in-situ industrial applications. Nonetheless, a

practical extraction of the harmonics requires numerous efforts in minimizing the nonlinear

distortions from electronic devices and in optimizing the reproducibility of the experiment.

Indeed, several factors such as the size of the gap between the specimen and the receiver

or the geometrical dispersion of the transducers (inherently related to the focal distance)

may have a drastic influence on the measured nonlinear elastic coefficients, and should be

analyzed carefully.
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Using the Finite Amplitude Method (FAM), there are evidences about nonlinear param-

eter in fluids and PMMA, however there are little evidence in CFRP.

Nonlinearity in fluids has been investigated for a long time. The need to investigate this

aspect is that several disciplines are interesting in this aspect, disciplines as medicine,

engineering, etc. The first fluid that was investigated was air [27]. After that, some

investigators studied nonlinearity in other fluids.

Several parameters, in order to measure the nonlinearity in fluids and solids (PMMA),

have been developed, some of them are: β, B/A (A and B are parameters of the adiabatic

expansion of pressure and the coefficient of the quadratic, respectively), Γ, etc. These

parameters are based on the same principle, the relationship between the fundamental

harmonic and the second harmonic, concretely between the fundamental and the square

of the second harmonic (β).

Some researches have determinated the nonlinear parameter B/A in water, liquid mix-

tures, water with high pressure and temperature, biological media, etc [28–35]. Water is

the fluid that has been investigated more and it is the medium by which the wave propa-

gates in an immersion tank. The propagation of the wave through this medium causes the

generation of higher harmonics. Experimentally, the acoustic nonlinear parameter of wa-

ter was determinates, obtaining the following results: β = 3.5± 0.1 [31], B/A = 6.2± 0.6

[28] and B/A = 5.2 [30]. These values were determinated at atmospheric conditions. The

influence of pressure and temperature on the value was studied by Plantier et al. [32].

With high values of pressure, the nonlinear parameter increases and vice versa, also with

high temperature, it is higher.

Other materials have been investigated less as biological samples. W. K. Law [34] de-

terminated for solutions of bovine serum albumin, of dextrans, of sucrose, of hemoglobin

extracted from blood and for fresh whole blood the nonlinearity parameter B/A. Other

authors, Gong Xiu-fen et al. [33] measured the same nonlinear parameter for several bio-

logical samples (ethanol, acetone, ethylene glicol, procine whole blood and bovine whole

blood). The conclusion that all these authors obtained was that the value of the nonlinear

parameter B/A increase with solution concentration

Respect to polymethylmethacrylate (PMMA), there are few references about the non-

linear parameter β using the Finite Amplitude Method. Rus et al. [36] found β = 10

in undamaged PMMA. On the other hand, Renaud et al. [5] found β = 14 for Plexi-

glas (PMMA), whereas the usual value is 7.5. This overestimation was probably due to

reflections inside the Plexiglas sample.
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β values for the CFRP are hardly comparable, since this material may strongly depend

upon the manufacture process, on the properties of each component, and on the laminate

stacking sequence.

There is a gap within the experimental configuration in the measures in an immersion

tank [5]. This field has not been considered by the researchers yet it is a very important

subject. Idjimarene et al. [37] state that the nonlinear indicator is dependent on the

position of the receiver, and it is sensitive to the level of noise. If the excitation has

a small level the non-linearity observed is produced by the non-linearity of the noise

ahead of the excitation, so there is a threshold where the non-linearity of the excitation

is dominant. The configuration gained from the Rus et al. [34] paper is the basis of this

work.

Currents methods for ultrasonically quantifying the constitutive nonlinearity parameter

beta in materials do not consider attenuation in water [5, 36]. For this reason, there is

another gap respect to the estimation of the correct nonlinear parameter β.
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1.5 Theoretical Background

The aim of this chapter is to supply the theoretical basis for determining an effective

nonlinear parameter β with measured signals in an immersion tank (details can be found

in [36]). This theory will be used over the course of this thesis. Next, the theory to obtain

the formula for calculating the effective nonlinearity parameter is shown.

By adopting the one-dimensional nonlinear equation of motion up to first-order nonlin-

earity:

∂2u

∂t2
= c2p

∂2u

∂x2
· (1− 2β

∂u

∂x
− ...) (1.1)

where cp is the longitudinal wave velocity and β is the pressure-volumetric nonlinear

parameter of first order.

The wave displacement can be written as:

u = u1 + u2 + ... (1.2)

where u1 and u2 denote the zero-order and first-order perturbations solutions, respectively.

The zero order perturbation solution corresponds to the fundamental solution of the linear

wave equation (that is, when β = 0). When considering a monochromatic plane wave

propagating in a semi-infinite nonlinear elastic layer, the latter is given as:

u1 = A1sin(kx− ωt) (1.3)

where A1 is the constant amplitude of the plane wave, k is the wave number, and ω is the

angular frecuency. The fist-order perturbation equation is:

∂2u2
∂x2

− 1

c2p

∂2u2
∂t2

= 2β
∂2u1
∂x2

∂u1
∂x

(1.4)

The solution approach for the particular solution of u2 must be multiplied by a sufficiently

large power of x to become linearly independent. Thus, a particular solution may be

obtained by the method of variations of parameters,

u2 = A(x) sin (2(kx− ωt)) +B(x) cos (2(kx− ωt)) (1.5)
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where A(x) and B(x) represent space-dependent amplitudes of the first-order perturbation

solution.

Therefore,the solution of the first equation (1) in this section is:

u(x, t) = A1 sin (kx− ωt) +
1

4
βk2A2

1x cos (2(kx− ωt)) (1.6)

where the fist-order perturbation solution is generated by the fundamental waves, whose

amplitude accumulates with the propagation distance. From that solution, the nonlinear

parameter of first-order β is derived as,

β =
4A2

k2xA2
1

(1.7)

where A1 is the fundamental amplitude and A2 is the amplitude of the second harmonic, x

is the distance transducer-hydrophone (the distance x includes tres layers water-specimen-

water, for this reason the parameter β is an effective parameter) and k is the wave num-

ber. The two harmonic amplitudes have been determined using a variation of the finite

amplitude method with harmonic generation. The finite amplitude method provides in-

formation of the coefficient of nonlinearity, β, through the ratio between the amplitude of

the fundamental and the second harmonic amplitude.



Chapter 2

Methodology

In this chapter, the experimental setup (Section 2.1) used to measure in an immersion tank

is shown. After that, it is presented the devices description in Section 2.2. The specimens

used in this thesis have the characteristics indicated in Section 2.3. In Section 2.4 the

variables, in the context of the test, are described. Finally, the equation to determinate

the real nonlinear parameter β and a semi-analytical approach are presented in Sections

2.5 and 2.6 respectively.

2.1 Experimental Setup

The specimens were excited with a range of frequencies around the center frequency of

the transducer, to see how the nonlinearity varied with the range of frequencies. For each

frequency, the wave generator sent various excitation energies that were amplified before

reaching the transducer.

After that, the wave generated by the unfocused transducer (which transforms the electri-

cal signal into acoustic signal), travelling in the immersion tank through the water to the

specimen (PMMA or CFRP). This signal, which is attenuated by water and transmission

coefficient water-specimen, interacts with the nonlinearity of the material, generating a

wave rich in harmonics. After crossing the material, the wave travels back through the wa-

ter layer to reach the hydrophone, which converts acoustic signal (wave) into an electrical

signal, pre-amplified and displayed on the oscilloscope.

The specimen-hydrophone distance varies while keeping fixed the distance between the

transducer and the specimen. Finally, the recorded signal is processed to obtain an

apparent nonlinearity parameter which takes into account the electrical nonlinearity, water

nonlinearity and specimen nonlinearity (figure 2.1).

11
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The used method is called Harmonics Generation method, which consists on analysing the

first and second harmonics generated by the materials in which the wave is propagated.

Figure 2.1: Experimental set-up.
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2.2 Devices Description

The devices that have been used for conducting the tests are listed below.

• Wave generator: Agilent 33250 A, 80 MHz. (Figure 2.2)

Figure 2.2: Wave generator.

• Amplifier: Model 150 A 100 B, 150 Watts, 10 KHz-100 MHz. (Figure 2.3)

Figure 2.3: Amplifier.

• Oscilloscope: HDO 4034, 350 MHz, 2.5 GS/s. (Figure 2.4)

• Preamplifier: OLYMPUS ultrasonic preamplifier, Model 5676, 172 x 42.5 dB.

(Figure 2.5)

• Hydrophone: ONDA, Model HNR-0500. (Figure 2.6)

This hydrophone has a sensitivity curve, depending on the frecuency emitted, the

hydrophone has different sensitivity. The curve can be observed in Figure 2.7.
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Figure 2.4: Oscilloscope.

Figure 2.5: Preamplifier.

Figure 2.6: Hydrophone.
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Certificate of Hydrophone Calibration
Hydrophone: Onda HNR−0500  S/N: 1575
Cable/Adaptor: NONE
External Amplifier: NONE
Electrical Loading: OpenCircuit
Temperature: 23.3 deg C
Calibration Completed: 21−Jun−2011
Data File Name: HNR0500−1575_xxxxxx−xxxx−xx_xx_20110621.txt

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−270

−268

−266

−264

−262

−260

−258

−256

−254

−252

−250

Frequency(MHz)

dB
 re

. 1
V/

uP
a

Calibration Method: Stepped single frequency comparison to Reference Standard
Measurement Uncertainty: 1−15 MHz: 1 dB; 15−20 MHz: 1.5 dB

Signature: __________________________    Date: ______________

592 E. Weddell Drive, Suite 7, Sunnyvale, CA 94089  T: (408) 745−0383 F: (408) 745−0956
www.ondacorp.com

Figure 2.7: Hydrophone sensitivity curve.

• Transducer: Olympus panametrics-NDT, V310, 5 MHz/0.25”, 686665. (Figure

2.8)

Figure 2.8: Transducer.
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2.3 Materials Description

The completion of the trials was carried out with two specimens, polymethylmethacrylate

(PMMA) and carbon fibre reinforced polymer (CFRP).

The first, PMMA (Figure 2.9), whose molecular formula is C5O2H8, is the most trans-

parent plastic, with a transparency of about 93%, a thickness of 20 mm and a density

of 1190 kg/m3. Within two materials mentioned, this is a very homogeneous material

against carbon fibre.

Figure 2.9: PMMA specimen.

The second material is CFRP (Figure 2.10), with a stacking sequence which corresponds

to a [0/90]4s lay- up . It has a density of 1800 kg/m3 and a thickness of 2 mm. This pre-

vious CFRF plate was previously subjected to stress - fatigue load in tension-compression

(400,000 cycles).

Figure 2.10: CFRP specimen.
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2.4 Variables

The variables used in this work are described at this point. These are explained in the

context of the tests, and they are as follows:

• Excitation level. This is the excitation energy sent from the transducer to the

hydrophone, going through the specimen (PMMA or CFRP). This is produced in the

wave generator (Agilent 33250 A) and amplified 27.5 dB by the amplifier (Amplifier

Research 150A 100B). Three excitation levels were considered: 320 mV, 240 mV and

160 mV. This choice is based on the previous experience for generating nonlinearity.

• Frequency. It is generated in the transmitter transducer. It depends on the type

of transducer. The transducer used has a central frequency of around 5 MHz, so it

was decided to do a frequency sweep around this central frequency. This sweep was

done as follows: from 4 MHz to 7 MHz increasing that frequency by 0.1 MHz. It

was expected to get a accurate information about the correct frequency.

• Distance. The distance was varied between specimen-hydrophone, while maintain-

ing a fixed distance between the transducer-specimen. This last distance is estab-

lished because of the effects of the near field. The distance specimen-hydrophone is

varied from 0.5 mm to 50.5 mm. The step is defined in 1 mm. This movement can

be automatized because of the mechanical arm of the immersion tank controlled in

MATLAB with the correspondent libraries for controlling the step-by-step motors.

• Specimen thickness. This is important data for calculating the value of the non-

linear parameter β. This was measured with a gauge to ensure this variable with

more accuracy.

• Sampling. In the sampling, the acquisition card was adjusted with a number

of points for each cycles by which the sampling frequency was integer. This was

necessary because if this was not done, the FFT in MATLAB was not well done, and

may have problems like aliasing and leakage. With this adjustment these problems

were avoided.

• Window variation. This variable is the time window in which the ultrasonic wave

arrives to the hydrophone until a certain number of cycles. Different windows for

each frecuency were got. This was done because it was necessary to adjust the

number of points analysed by the acquisition card. It was taken the number of

points divided by 10 (the number of points that represent the wave) and it was got

the number of cycles that the windows are able to capture. The wave region varies
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in the distance, so the variance was established with an estimation of the retardment

with the wave arriving at the hydrophone.

• Wave region. The first part of the wave was analysed in that window, trying to

avoid undesired interferences which distort the value of the non-linear parameter β.

This region depends on the material, for PMMA it was analysed until 150 cycles,

nevertheless in the CFRP laminates it was analysed the firsts 30 cycles.

• Hydrophone sensitivity. In order to obtain a value of efficient beta (with water

and material), it is necessary to obtain the value of the fundamental and second

harmonic and each one has a different value of frequency (double), this was corrected

with the sensitivity curve of the hydrophone, and each harmonic was treated with

different value of this sensitivity.

• Alignment. It is important the correct alignment between transducer and hy-

drophone because a little misalignment causes variations in the nonlinear parameter

β.
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2.5 Theoretical Foundations to Determine the Real Param-

eter β Considering Geometric and Viscous Attenuation

The contibution that this section show is the determination of a relationship between

the nonlinear parameter β and the amplitude of the fundamental and second harmonic

in two points separated by a distance x, considering geometric and viscous attenuation.

The theory that is presented in this section is in preparation to publicate (”Dispersion

independent measurement of ultrasonic nonlinearity”, authors: Guillermo Rus Carlborg

and Nicolas Bochud).

In order to solve the wave propagated by a transducer along the center of the path, the

x1 axis is chosen as aligned with the propagation path, and the transversal components

of the displacements are neglected. Thus, the 3D problem of finding
(
u1(x1, x2, x3, t),

u2(x1, x2, x3, t), u3(x1, x2, x3, t)
)

is reduced to a 1D problem of finding the displacement

field
(
u1(x1, t), 0, 0

)
whose solution will be found analytically.

A strict application of the former simplification leaves out the effect of the geometric

dispersion on the propagation along the axis. This will be shown to be responsible for

large deviations that drastically reduce the validity of the formula that relates β with the

amplitude of the harmonics. To overcome this, a procedure to include the effect of the

geometric dispersion into the 1D formulation is presented. To this end, the compatibility

equation is modified to include the incoming or outgoing components from outside the

center of the beam, as depicted in Figure 2.11.

x
u

x

udispersion

uincoming

u

(a) 1D (b) 1D + geometric dispersion

u

Figure 2.11: Scheme of inclusion of out of beam components as geometrical dispersion.

The incoming displacement uincoming adds continuously a component to the original dis-

placement, both in the x1 direction. This can be expressed in the following differential

form, where the addition happens gradually by a proportionality factor 2αg,

dudispersion1 (x1, t)

dx1
=
du1(x1, t)

dx1
+ 2αg(x1)u1(x1, t) (2.1)
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This can also be interpreted as a rate of change of the displacement uincoming − u with

respect to the case without incoming wave, proportional to the amplitude u as,

d
(
udispersion1 − u1

)
dx1

= 2αgu1 (2.2)

The modified compatibility equation follows straightforwardly, including a new geometric

dispersion term,

ε11 = u1,1 + 2αgu1 (2.3)

The compatibility, constitutive and equilibrium equations become, after assuming direc-

tional propagation u2 = 0 = u3,

Compatibility: ε11 = u1,1 + 2αgu1 = ε = −3v, εij = 0 ∀(i, j) 6= (1, 1) (2.4)

Constitutive: σkk = −p = Kε+ 1
2βKε

2 + ηv ε̇, σij = 0 ∀i 6= j (2.5)

Equilibrium: ρü1 = σ11,1 (2.6)

The last four equations can be combined by substitution into a 1D nonlinear wave equation

that includes geometrical dispersion correction,

ρü1 = Ku1,11 + 2αgKu1,1 +
1

2
βK(u21,1),1 + ηvu̇1,11 +O(βδ) +O(ηδ) (2.7)

where higher order terms O(βδ), O(ηδ) are negligible, and the four relevant terms at the

right hand side are the linear compressibility, the geometrical dispersion, the nonlinear

compressibility and the viscosity. For the sake of compactness, the direction index 1 will

be dropped in the sequel, and the spatial derivative with respect to x1 will be denoted by

a tilde (i.e. u1,1 = u′).

2.5.1 Solution

The solution of equation 2.7 is sought as the sum of two attenuating traveling waves at

velocity c with frequency ω and 2ω respectively, that stand for the fundamental due to

linear propagation (u0), and the harmonic generated by the nonlinearity (u1, which will

be shown to be proportional to the degree of nonlinearity β). The complex exponential

notation is adopted, where the phase component is omitted without loss of generality,

u = u0 + u1

{
u0(x, t) = a(x)ei(kx−ωt)

u1(x, t) = b(x)e2i(kx−ωt)
(2.8)
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Substituting the decomposition above into equation 2.7 and neglecting terms of order

O(β2) yields,

ρ

K
(ü0 + ü1) = u′′0 + u′′1 + 2αgu

′
0 + 2αgu

′
1 +

1

2
β(u′20 )′ +

ηv

K
u̇′′0 +

ηv

K
u̇′′1 (2.9)

Recalling that the successive derivatives of the displacement components are,

ü0 = −ω2aei(kx−ωt)

u′0 = (ika+��
o

a ′)ei(kx−ωt)

u′′0 = (−k2a+ 2ika′ +��
o

a ′′)ei(kx−ωt)

u̇′′0 = (iωk2a− 2ωk��
o

a′ − iω��
o

a ′′)ei(kx−ωt)

(u′20 )′ = 2u′0u
′′
0 = 2(−ik3a2 − 3k2a��

o
a ′ + ika��

o
a ′′ + 2ik��

o
a ′2 + a′��

o
a ′′)e2i(kx−ωt)

ü1 = −4ω2be2i(kx−ωt)

u′1 = (2ikb+ ���
o

b ′)e2i(kx−ωt)

u′′1 = (−4k2b+ 4ikb′ + ���
o

b ′′)e2i(kx−ωt)

u̇′′1 = (8iωk2b− 8ωk���
o

b′ − iω���
o

b ′′)e2i(kx−ωt)

where some terms have been neglected since, for ultrasonic waves the wavenumber is much

larger than the viscous or geometric dispersions, k >> αg, α where the meaning of α and

its relationship with a′ and a′′ will be understood in short.

Equation 2.9 should be fulfilled independently for terms propagating as ei(kx−ωt) as for

terms as e2i(kx−ωt). This implies that the equation can be split into two equalities, of

which the first one is,

ρ

K
ü0 = u′′0 + 2αgu

′
0 +

ηv

K
u̇′′0 (2.10)

Given a fundamental excitation frequency ω, equation 2.10 is satisfied if ρ
K = k2

ω2 = c−2,

which defines the compressional wave velocity c and the wavenumber k. Equation 2.10

transforms into,

0 = 2ika′ + 2αgika+
ηv

K
ik2ωa ⇒ a′ = −

(
αg +

ω2ηv

2ρc3

)
a (2.11)

which is a differential equation of first order, whose solution is, recalling that K = ρc2,

and calling α = ω2ηv

2ρc3
,

a(x) = a(0)e−(αg+α)x (2.12)
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The second equality, which groups terms propagating as e2i(kx−ωt), is,

ρ

K
ü1 = u′′1 + 2αgu

′
1 +

ηv

K
u̇′′1 +

1

2
β(u′20 )′ (2.13)

which, by removing common factors transforms into,

b′ + (αg + 4α)b =
βk2a(x)2

4
(2.14)

which is a differential equation of first order, of the form y′ + fy = g, whose solution is

somewhat more complex of the form y = e−
∫
fdx
(∫

ge
∫
fdxdx+ c

)
.

b(x) = b(0)e−(4α+αg)x +
βk2a(0)2

4(αg − 2α)
e−(2α+2αg)x (2.15)

The nonlinear parameter β, considering geometric and viscous attenuation is:

β =
(b(x)− b(0)e−(4α+αg)x)(4(αg − 2α))

k2a(0)2e−(2α+2αg)x
(2.16)

However, if 2.13 is approximated by neglecting both viscous and geometric dispersion

terms, the following solution is recovered,

b(x) = b(0) +
βk2a(0)2x

4
(2.17)

If the initial amplitude of the second harmonic is assumed to be zero, the standard non-

linearity estimator from the literature is recovered,

β =
4b(x)

k2a(x)2x
(2.18)
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2.6 Semi-Analytical Approach

After determining the correct parametric configuration to measure in an immersion tank,

measures using the defined parameters have been carried out. The scheme used for de-

termining the real parameter β is shown in Figure 2.12.

Transducer
P

1

s-A
P

1

w-A

P
2

w-A
P

2

s-A

P
1

s-B

P
2

s-B

P
1

w-B

P
2

w-B

P
1

w-C

P
2

w-C

A B CWater layer 1 Water layer 2Specimen

H
yd

ro
p

h
o

n
e

d1 d2 d3

Figure 2.12: Semi-analytical approach used to extract the nonlinear material’s prop-
erties from the measurements.

P is the pressure of the fundamental (superscript ”1”) and second harmonic (superscript

”2”), ”w” subscript indicates water, ”s” indicates specimen and d1, d2 and d3 are distances.

The main aim is to determinate the fundamental and second harmonic pressure in A

and B inside the specimen. With this values, the real nonlinear parameter β will be

determinated. Before that, several steps are necessary.

The first step is to measure the fundamental and second harmonics pressure in A, B and

C without specimen. With this values in B and C and using equations 2.12 and 2.15 it will

be determinated the nonlinear parameter β in water and geometric attenuation in this

water layer (Figure 2.13). Where ”k” is the wave number, ”α” is the viscous attenuation

of water at the fundamental frecuency (α = 20 · 10−15 · f2) [38] and ”x” is the thickness

of water layer 2.
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Figure 2.13: Determination of the β parameter and geometric attenuation in water
layer 2 without specimen.

Then, using the same equations (2.12 and 2.15), geometric attenuation between A and B

point is obtained without the presence of the specimen. Now, ”x” is the distance between

A and B.

P
1

w-A

P
2

w-A

P
1

w-B

P
2

w-B

A BWater

x

Figure 2.14: Determination of the geometric attenuation between A and B points
without specimen.

The next step is to measure the fundamental and second harmonic pressure in C with

the presence of the specimen. With this values and the values of nonlinear parameter β

in water and geometric attenuation between B and C (previously calculated), it will be

determinated the amplitude of the fundamental and second harmonic in water and in B

point (Figure 2.15), using the equations below:

a(0) =
a(x)

e−(αg+α)x
(2.19)
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b(0) =
b(x)− βk2a(0)2

4(αg−2α)e
−(2α+2αg)x

e−(4α+αg)x
(2.20)

a(0)

b(0)

a(x)

b(x)

B CWater

x

Figure 2.15: Determination of the fundamental and second harmonic in B by propa-
gating this values from C to B.

The last step, before reaching the goal, is to obtain the values of the fundamental and sec-

ond harmonic in A and B in specimen by multiplying this values in water for transmission

coefficient water-specimen and specimen-water.

The transmission coefficient water-specimen and specimen-water are:

Tw−s =
2Zw

Zw + Zs
(2.21)

Ts−w =
2Zs

Zw + Zs
(2.22)

where Zw and Zs are the water impedance and the specimen impedance respectively.

Finally, with the values of fundamental and second harmonic in A and B in specimen and

taking specimen attenuation from literature and geometric attenuation calculated before

between A and B points, the real nonlinear parameter β in specimen, considering viscous

and geometric attenuation, is calculated as follows:
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β =
(b(x)− b(0)e−(4αs+αg)x)(4(αg − 2αs))

k2a(0)2e−(2αs+2αg)x
(2.23)

where ”x” is the specimen’s thickness.
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Results

This chapter presents the parametric configuration obtained with two specimens: PMMA

and CFRP (Sections 3.1 and 3.2). The final section of this chapter, Section 3.3, presents

an application of the semi-analytical approach (Chapter 2 - Section 2.6) with PMMA

specimen.

3.1 PMMA Results

3.1.1 Excitation Level

The excitation level was chosen in a first approximation with three different frequencies

(5 MHz, 5.5 MHz and 6 MHz) around the center frequency of the transducer and three

different energies (320 mV, 240 mV and 160 mV). A scan was performed in the wave

emission direction, between 0.5 mm and 50.5 mm from the specimen.

In the figure 3.1 it can be observed that the nonlinear parameter β in the first centimetre

has a very high variation. From there, variation is established around a value of beta

and this stays until the end of the scanning. Results show the same pattern with a fixed

frequency and for the different values of excitation level. By this reason, the excitation

level of 320 mV was chosen because with a high excitation level, more nonlinearity level

can be got, which implies that high order harmonics can be obtained with a higher level

of energy.

27
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3.1.2 Frequency

After choosing the excitation level, data from the tests with box-plots were studied. This

sort of plot performs a data processing showing the mean and different percentiles of a

group of data. In this case, it was analysed the value of the nonlinear parameter β in

different intervals of distance specimen-hydrophone: between 0-10 mm, 10-20 mm and 20-

30 mm, for 50 cycles1 analysed and for different frequencies (4-7 MHz) to get information

about which frequency has less variance around the central frequency of the transducer.

In the figure 3.2a it can be observed that there are a lot of dispersion (it can be appreciated

by the red crosses, which are so far from the mean). A lower level of dispersion in the

values of the nonlinear parameter β is shown in the figure 3.2b. The next figure 3.2c reveals

a similar level of dispersion to the previous figure. Attending to the center frequency of

the transducer, there are a range in which the beta mean is stable and the variance is low.

It is between 5.7 MHz and 6.1 MHz and it was selected 5.9 MHz because it is a central

value of this range and it is far from 6.2 MHz. In this last frequency the value of beta is

very different to the previous and posterior frequency.

In Figure 3.3 it can be observed a surface in which z-axis represents beta values for a

range of distances (0-30 mm) and a range of frequencies (4-7 MHz).

3.1.3 Cycles and Distance

With the excitation level and frequency fixed, it will be selected the distance between

specimen and hydrophone and the number of cycles analysed in which the measure is

suitable. In the figure 3.4a, with a distance between 0-10 mm from the specimen to

the hydrophone it can be observed something similar to the figure 3.2a. There is too

much dispersion because of the interferences caused by the proximity between specimen-

hydrophone. This figure does not provide important information.

The two next figures 3.4b and 3.4c have a similar pattern. The only difference between

them is that there are interferences observed with less distance (10-20 mm). This interfer-

ence affects from 100 cycles analysed. This provides that this material is very homogeneous

because it can be analysed a lot of cycles without interferences.

There is a wide range in which the mean of non-linear parameter is stable (between 50-80

cycles). It is reasonable to choose this range because there are not interferences and the

mean of the nonlinear parameter β is approximately constant.

1The number of cycles was elected because it was done this sort of plot with different number of cycles
and the pattern was the same for different number of cycles.
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Figure 3.2: Box-plot beta versus frequencies from 4 MHz to 7 MHz in steps of 0.1 MHz,
to different distances.
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Figure 3.3: Surface beta versus frequencies from 4 MHz to 7 MHz in steps of 0.1 MHz
and distance from 0.5 mm to 30 mm.

With the same box-plot it can be deduced the appropriate distance to do a feasible

measure. This could be fitted in the range of 10-30 mm because in this range, for the

number of cycles fixed previously, there are not interferences and the value of beta is

stable. Within this range, for a shorter distance the attenuation is lower than in a longer

distance. Therefore it is desirable to choose a distance near to 10 mm.

3.1.4 Selected Parameters

The parameters chosen for PMMA material are shown in the table below for the config-

uration established in this thesis:

Material Excitation level (mV) Frequency (MHz) Cycles Distance (mm)

PMMA 320 5.9 50-80 10-30

Table 3.1: Selected parameters to measure the nonlinear parameter in PMMA
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Figure 3.4: Box-plot beta versus cycles from 4 MHz to 7 MHz in steps of 0.1 MHz, to
different distances.
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3.2 CFRP Results

3.2.1 Excitation Level

As with PMMA material, the excitation level was chosen in a first approximation with

three frequencies (4 MHz, 5 MHz and 6 MHz), which are different from PMMA frequencies,

around the center frequency of the transducer and three different energies (320 mV, 240

mV and 160 mV). A scan was performed in the wave emission direction, between 0.5 mm

and 50.5 mm from the specimen.

In the figure 3.5 it can be observed that the nonlinear parameter β in the first two and a

half centimetres has a very high variation. From there, variation is established around a

value of beta and this stays until the end of the scanning. Results show the same pattern

with a fixed frequency and for the different values of excitation level. By this reason, the

excitation level of 320 mV was chosen by the same reason given with PMMA material.

3.2.2 Frequency

After choosing the excitation level, it was studied data from the tests with box-plots. It

was analysed the value of the non-linear parameter β in different intervals of distance

specimen-hydrophone: between 15-20 mm, 20-25 mm and 25-30 mm, for 4 and 20 cycles2

analysed and for the different frequencies (4-7 MHz) to get information about which

frequency has less variance around the central frequency of the transducer.

In the figure 3.6a it can be observed that there are a lot of dispersion with 4 and 20

cycles. In the next figure 3.6b, there is also dispersion although less than in the distance

of 15-20 mm. On the other hand, in the third image 3.6c, the dispersion is lower than in

the previous two images. It can be observed that with 20 cycles the values of nonlinear

parameter β varies greatly with different frequencies than with both frequencies. With 4

cycles the values of β with the frequency follow the same pattern for the three different

distances. For 4 cycles, the value of the frequency for which the value of beta converges

after several tests is 5.8 MHz.

In Figure 3.7 it can be observed a surface in which z-axis represents beta values for a

range of distances (0-50 mm) and a range of frequencies (4-7 MHz).

2The number of cycles was elected because it was done this sort of plot with different number of cycles
and the pattern was different for different number of cycles because of the interferences. With 4 cycles
there is not interference and with 20 cycles there is interference in the signal.
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Figure 3.6: Box-plot beta versus frequencies from 4 MHz to 7 MHz in steps of 0.1 MHz
and 320mV, to different distances.
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Figure 3.7: Surface beta versus frequencies from 4 MHz to 7 MHz in steps of 0.1 MHz
and distance from 0.5 mm to 50 mm.

3.2.3 Cycles and Distance

With the fixed excitation level and frequency, in the same way as PMMA, it can be selected

the distance between specimen and hydrophone and the number of cycles analysed in

which the measure is suitable. In the next three figures it can see, for different distances

(15-20, 20-25 and 25-30 mm from specimen) mean and percentiles of beta versus several

number of cycles analysed (3-30 cycles), figure 3.8.

Dispersion values decreases with increasing distance to the specimen and increase with

the number of cycles due to the interferences specimen-hydrophone. It was selected 4

cycles because with these cycles there is not interferences and the interferences are lower

than other number of cycles.

With the last box-plot it can be deduced the appropriate distance to do a feasible measure.

This could be fitted in the range of 25-30 mm because in this range, for the number of

cycles fixed previously (4 cycles), there are not interferences and the value of beta has

lower dispersion than with other distances. Within this range, for a shorter distance
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Figure 3.8: Box-plot beta versus cycles from 4 MHz to 7 MHz in steps of 0.1 MHz and
320mV, to different distances.
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the attenuation is lower than in a longer distance. Therefore it is desirable to choose a

distance near to 25 mm.

3.2.4 Selected Parameters

The parameters chosen for CFRP material are shown in the table below for the configu-

ration established in this thesis:

Material Excitation level (mV) Frequency (MHz) Cycles Distance (mm)

CFRP 320 5.8 4 25-30

Table 3.2: Selected parameters to measure the nonlinear parameter in CFRP

Parameters set in the table are advisory and more test have to be done as it is an

anisotropic material. Because of the frequencies used, bounces occur in the layers be-

cause the wavelength is similar to the thickness of each layer.
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3.3 Application of the Semi-Analytical Approach with PMMA

Specimen

An application of the semi-analytical approach has been developed in this section in order

to validate the method, comparing the results obtained in this method with the results

found in literature.

After determining the correct parametric configuration to measure in an immersion tank

with PMMA specimen, measures using the defined parameters have been carried out. The

scheme used for determining the real parameter β in PMMA is shown in Figure 3.9.

Transducer
P
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Figure 3.9: Semi-analytical approach used to extract the nonlinear material’s properties
from the measurements in PMMA specimen.

The distance between transducer and PMMA specimen is 100 mm in order to avoid the

near field. The near field distance (NF) is determinated as follows:

NF =
a2

λ

where a = 5mm is the radius of the transmitter and λ is the sound wavelength.

NF =
a2

λ
=

(5mm)2

1500 · 103mm/s

5.8 · 106Hz

= 96.6mm

The distance between specimen and hydrophone has been chosen considering the results

obtained in Table 3.1.

The values taken to measure in the immersion tank are: excitation level 320 mV, frequency

5.8 MHz, distance specimen-hydrophone 20 mm and 50 cycles were analysed.

The first step is to determinate the nonlinear parameter β and geometric attenuation

between B and C points with fundamental and second harmonics pressures in this points

without PMMA specimen.
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P 1
w−B = 8.7868 · 10−9m

P 2
w−B = 1.0985 · 10−9m

P 1
w−C = 7.5771 · 10−9m

P 2
w−C = 1.0131 · 10−9m

With this values and using the equations 2.12 and 2.15, it will be determinated nonlinear

parameter β in water and geometric attenuation (Figure 3.10). Water attenution value

was taken from literature (α = 20 · 10−15 · f2) [38].

P
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H
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ro
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Figure 3.10: Determination of the β parameter and geometric attenuation in water
layer 2 without specimen.

The values of beta and geometric attenuation are:

βw = 2.5929

αBCg = 6.7331 dB
m·MHz

The nonlinear parameter β obtained in water is (βw = 2.59). This value is similar to

values found in literature (βw = 3.5) [31].

Then, using the same equations (2.12 and 2.15), geometric attenuation between A and B

point is obtained without the presence of the specimen. Now, ”x” is the distance between

A and B.

The values of pressure in A and B points are:

P 1
w−A = 1.0255 · 10−8m

P 2
w−A = 1.1695 · 10−9m

P 1
w−B = 8.7868 · 10−9m

P 2
w−B = 1.0985 · 10−9m
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Figure 3.11: Determination of the geometric attenuation between A and B points
without specimen.

The value of geometric attenuation between A and B points is:

αABg = 7.0531 dB
m·MHz

The next step is to measure the fundamental and second harmonic pressure in C with the

presence of the PMMA specimen. This values of pressure are:

P 1
w−C = 1.9585 · 10−9m

P 2
w−C = 9.9917 · 10−11m

With this values and the values of nonlinear parameter β in water and geometric attenu-

ation between B and C (previously calculated), it will be determinated the amplitude of

the fundamental and second harmonic in water and in B point (Figure 3.12), using the

equations below:

a(0) =
a(x)

e−(αg+α)x
= 2.2711 · 10−9m (3.1)

b(0) =
b(x)− βk2a(0)2

4(αg−2α)e
−(2α+2αg)x

e−(4α+αg)x
= 1.2897 · 10−10m (3.2)
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B CWater
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Figure 3.12: Determination of the fundamental and second harmonic in B by propa-
gating this values from C to B.

The last step, before reaching the goal, is to obtain the values of the fundamental and sec-

ond harmonic in A and B in specimen by multiplying this values in water for transmission

coefficient water-specimen and specimen-water.

The transmission coefficient water-specimen and specimen-water are:

Tw−s =
2Zw

Zw + Zs
= 0.6365 (3.3)

Ts−w =
2Zs

Zw + Zs
= 1.3635 (3.4)

where Zw and Zs are the water impedance and the specimen impedance respectively.

Finally, with the values of fundamental and second harmonic in A and B in specimen and

taking specimen attenuation from literature and geometric attenuation calculated before

between A and B points, the real nonlinear parameter β in specimen, considering viscous

and geometric attenuation, is calculated as follows:

P 1
PMMA−A = 6.5277 · 10−9m

P 2
PMMA−A = 7.4444 · 10−10m

P 1
PMMA−B = 1.6657 · 10−9m

P 2
PMMA−B = 9.4592 · 10−11m
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β =
(b(x)− b(0)e−(4αs+αg)x)(4(αg − 2αs))

k2a(0)2e−(2αs+2αg)x
= 7.84 (3.5)

where ”x=20 mm” is the specimen’s thickness and αs = 4.64· dBcm is the PMMA attenuation

taken from literature [36].

The real nonlinear parameter β in PMMA obtained, removing water contribution and con-

sidering viscous and geometric attenuation is very similar to the values found in literature

(βPMMA = 7.5) [5].
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Conclusions and Future Works

Parameters to measure nonlinearity (nonlinear parameter β) in PMMA and CFRP mate-

rials have been determined by tests in an immersion tank with water as a medium. The

nonlinear parameter β has been determined using the variation of the finite amplitude

method with harmonic generation. Using this as a reference, it has been deducted the

experimental configuration necessary to measure this nonlinear parameter in a correct

and feasible way.

For the PMMA material the experimental configuration was deducted. The separation

between the transducer and the specimen was established as 100 mm, whereas the distance

between the specimen and the hydrophone was determined in a range of 10-30 mm,

but choosing the nearest values to the specimen to avoid problems associated with the

attenuation. It was found that the correct number of cycles to get a correct value of the

nonlinear parameter was between 50-80 and the frequency was fixed at 5.9 MHz.

On the other hand, in carbon fibre reinforced polymer (CFRP) plate the values of the

determined experimental configuration parameters are as follows. The distance between

the transducer and the specimen was established at 100 mm, the same as PMMA. This is

caused by the influence of the near field that it is wanted to avoid. The separation between

the specimen and the hydrophone was determined at a range of 25 mm to 30 mm, choosing

the nearest values due to the same reason as well as in PMMA material. The number of

cycles in this case descends to 4 cycles, because of the interferences produced inside the

material. If it is taken a higher number of cycles, the value of the nonlinear parameter β

has too much dispersion. And finally the frequency chosen to measure this material is 5.8

MHz. Due to the material nature, which is very inhomogeneous, anisotropic and random,

the configuration parameters in this material must be determined stronger than in this

work.

44
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After obtaining the correct configuration to measure the nonlinear parameter β in PMMA

and CFRP in an immersion tank, a semi-analytical approach has been developed in order

to determine the real nonlinear parameter in any material by removing water contribution

and considering viscous and geometric attenuation.

Finally, an application of the semi-analytical approach with PMMA material has been

developed in order to validate the method. The result of the nonlinear parameter β in

PMMA with this method is 7.84 and this parameter appears consistent with the value

found in literature, β = 7.5 [5].

The future lines of research are listed as below:

• Geometric Attenuation. In this work, geometric attenuation has been considered

constant with the distance and it has been found that it is not linear with the

distance. The objetive is to consider this attenuation nonlinear with the distance.

• Micro-cracks detection. The next step is to generate artificial micro-cracks in these

materials simulating very small scale defects in materials that unleash a higher

damage. The first step is to generate artificial micro-cracks in PMMA and then

determine the nonlinear parameter β. This is because PMMA is a transparent

material and the generation of micro-cracks can be observed easily. After analyzing

this material, the objetive is to determinate crack density in damaged bone basing

on the results in PMMA damaged as reference.
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Matlab Codes

This appendix provides a summary of the two algorithms developed for the research work

presented herein. The codes consist of a collection of Matlab files developed ad hoc in

conjunction with other Matlab functions. The code to determine the effective nonlinear

parameter β in the immersion tank is shown below.

1 % Guil lermo Rus Carlborg 2013−07−23

2 % Antonio C a l l e j a s and Serg i o Cantero 2013−11−12

3

4

5 c l o s e a l l ; format compact ; addpath ( [ pwd ’ / l i b ’ ] ) ;

6 addpath ( [ pwd ’ / l i b / a c q u i r i s ’ ] ) ; f=f i g u r e (1 ) ;

7 s e t ( f , ’ doub l ebu f f e r ’ , ’ on ’ , ’ Po s i t i on ’ , [ 400 200 1000 8 0 0 ] ) ;

8

9

10

11 % Var iab l e s Dec la ra t i on

12

13 rho = 1e3 ; % dens i ty [ kg/mˆ3 ]

14 c = 1500 ; % water v e l o c i t y [m/ s ]

15 c y c l e s = 100 ; nhar =5; % ( use for 5M,10M)

16 vcyc l e s 1 = [ 3 4 5 6 7 8 9 ] ; % number o f c y c l e s

17 vcyc l e s 2 = [ 1 0 : 5 : 3 0 ] ; % number o f c y c l e s

18 v c y c l e s = horzcat ( vcyc l e s1 , v cyc l e s 2 ) ; % number o f c y c l e s

19

20

21

22 % Frequencies , number o f po in t s and c y c l e s o f the wind

23

24 f r e q s 1 = [ 4 4 .1 4 .2 4 .3 4 .4 4 .5 4 .6 4 .7 4 .8 4 .9 ] ;

25 numbSamples1 = [3200 2940 3150 3010 3080 3150 2990 2820 3120 2 9 4 0 ] ;

46
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26 cyc lewind1 = [320 294 315 301 308 315 299 282 312 294 ] ;

27

28 f r e q s 2 = [ 5 5 .1 5 .2 5 .3 5 .4 5 .5 5 .6 5 .7 5 .8 5 .9 6 ] ;

29 numbSamples2 = [3200 3060 2860 3180 2970 3190 3080 2850 3190 2950 3 1 8 0 ] ;

30 cyc lewind2 = [320 306 286 318 297 319 308 285 319 295 318 ] ;

31

32 f r e q s 3 = [ 6 . 1 6 .2 6 .3 6 .4 6 .5 6 .6 6 .7 6 . 8 6 . 9 7 ] ;

33 numbSamples3 = [3050 3100 3150 3200 3120 2970 2680 3060 2760 3 1 5 0 ] ;

34 cyc lewind3 = [305 310 315 320 312 297 268 306 276 315 ] ;

35

36 f r e q s =horzcat ( f r eqs1 , f r eq s2 , f r e q s 3 ) ;

37 numbSamples =horzcat ( numbSamples1 , numbSamples2 , numbSamples3 ) ;

38 cyc lewind =horzcat ( cyclewind1 , cyclewind2 , cyc lewind3 ) ;

39

40

41 dutys = [ . 0 0 1 ] ;

42

43 % vo l tage at genera to r ( one for each non l in ea r energy )

44 volt waveg = { ’ 320mV’ ’ 240mV’ ’ 160mV’ } ;

45

46 % vo l tage range o f o s c i l l o s c o p e ( same s i z e as above )

47 v o l t o s c i l = [ 16 9 .6 6 .4 ] ;

48

49

50

51 % scanning l enght / step [mm] in x (0 ) a x i s : l e f t −r i g h t ( usuar io Lx , stepx )

52 Lx = 50 ; stepx = 1 ;

53

54 % scanning l enght / step [mm] in y (1 ) a x i s : rear−f r o n t ( usuar io Ly , stepy )

55 Ly = 0 ; stepy = 0 ;

56

57 % scanning l enght / step [mm] in z (2 ) a x i s : v e r t i c a l ( usuar io Lz , s t epz )

58 Lz = 0 ; s t epz = 0 ;

59

60

61

62 spac ingx= 2e−3∗100/2.64 ; % mm to machine un i t s in x/0 a x i s

63 spac ingy= 2e−3∗100/2.54 ; % mm to machine un i t s in y/1 a x i s

64 spac ingz= 10e−3∗100/2.667; % mm to machine un i t s in z /2 a x i s

65

66 % wait ing time for each mm

67 count =0; pausex =1; pausey =1; pausez =2; pa =.1 ; pauseread =.5;

68 % load l i b r a r y

69 l o a d l i b r a r y smc4dl l smc4dl l Import . h addheader newdef

70

71

72 % +=r i g h t d i r e c t i o n ( x )
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73 c a l l l i b ( ’ smc4dl l ’ , ’ SetDriverData ’ , 0 , 0 , 0 , 0 , 1 , 4 , . 0 01 , 1 , 1 , 0 , 36000 ) ;

74 % +=rea r d i r e c t i o n ( y )

75 c a l l l i b ( ’ smc4dl l ’ , ’ SetDriverData ’ , 1 , 0 , 0 , 0 , 1 , 4 , . 0 01 , 1 , 1 , 0 , 36000 ) ;

76 % +=up d i r e c t i o n ( z )

77 c a l l l i b ( ’ smc4dl l ’ , ’ SetDriverData ’ , 2 , 0 , 0 , 0 , 1 , 4 , . 0 01 , 1 , 1 , 0 , 36000 ) ;

78

79

80

81 c a l l l i b ( ’ smc4dl l ’ , ’STEP0 ’ ) ; % needed to i n i t i a l i z e

82 waveg 33250 openvisa ; % open o s c i l o s c o p e and wave generato r

83 th i ck=2e−3; % t h i c k n e s s [m]

84

85

86 % s e n s i b i l i t y for each f requency

87 f 1 = [ 4 : . 2 : 7 ] ; f 2 = [ 8 : . 4 : 1 4 ] ;

88 f=horzcat ( f1 , f 2 ) ;

89 s1 =[−257.5 −257.2 −257.5 −257.5 −257.5 −257.3 −257.1 −256.9 −257 −257.1

−257.3 −257.3 −256.8 −256.6 −256.5 −256.5 −256.5 −256.5 −256.5 −256.4

−255.8 −256 −255.8 −255.8 −256.1 −256.4 −256.5 −256.5 −257.3 −257.2

−257.6 −258];

90 fq = [ 4 : . 1 : 1 4 ] ;

91 s2=in t e rp1 ( f , s1 , fq ) ;

92 s e n s i b i l i t y =10.ˆ( s2 . /2 0 ) .∗1 e6 ;

93 s e n s i b i l i t y 1=s e n s i b i l i t y ( 1 : 4 0 ) ;

94 s e n s i b i l i t y 2=s e n s i b i l i t y ( 4 1 : 2 : 1 0 1 ) ;

95

96

97 % Scan

98

99 x=0; % i n i t i a l i z e x

100 for nz=1:Lz /( s t epz+eps ) +1, z=(nz−1)∗ s t epz ;

101 for ny=1:Ly/( stepy+eps ) +1, y=(ny−1)∗ stepy ;

102 for nx=1:Lx/( stepx+eps ) +1, x=(nx−1)∗ stepx ; time1 = [ ] ; s i g n a l s 1 = [ ] ;

103

104 % show coo rd ina t e s

105 di sp ( s p r i n t f ( ’ Coordinates (%d,%d,%d) ’ , x , y , z ) ) ;

106

107

108 % loop for f r e q u e n c i e s

109 for f r e = 1 : l ength ( f r e q s ) ; f r e q=f r e q s ( f r e ) ; w=2∗pi ∗ f r e q ∗1 e6 ;

110 for dut = 1 : l ength ( dutys ) ; duty=dutys ( dut ) ;

111

112

113 wave opt ions={ s p r i n t f ( ’ %1.8fMHz ’ , f r e q ) max( c y c l e s ∗2 , f l o o r ( f r e q ∗1 e3∗duty ) ) ’

5ms ’ }
114 wind=[ cyc lewind ( f r e ) / f r e q /1 e6 (0 .6776∗ x+66.50) /1 e6 ] ;

115
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116

117 % loop for e n e r g i e s

118 for en = 1 : l ength ( volt waveg ) ;

119 waveg 33250 write ( volt waveg {en } , wave options , ’ 0 ’ , hVisaw ) ;

120 pause (1 ) ; % wait v i b r a t i o n

121 [ time1 , s i g n a l 1 ]= g e t a c q u i r i s ( ’ ’ , wind (1 ) , v o l t o s c i l ( en ) , wind (2 ) , 1 , 1 , 1 ,

numbSamples ( f r e ) ) ; % f i l ename , per iod , vo l t , t imebase , volt waveg ,

wave options , hVisa

122 pause ( . 5 ) ; s i g n a l s 1 ( : , nx , f r e , dut , en )=s i g n a l 1 ( 1 : 2 600 ) ;

123 t imes1 ( : , nx , f r e , dut , en )=time1 (1 : 26 00 ) ;

124 aux=lpco s ( s i gna l 1 , time1 , f r e q ∗5∗1 e6 ) ;

125

126 aux ( 1 : f l o o r (60) ) =0; % to e l i m i n a t e no i s e

127 de l=r a i s e ( aux /75/1.4125 e−7/1e3 , time1 , . 1 , 1 ) ;

128

129

130

131 % i f −> to get the de lay in the mate r i a l

132 i f f r e ∗dut∗en==1

133 d e l s (nx , ny , nz , f r e , dut , en )=de l ;

134 end ;

135 p o s i t i o n=f i n d ( time1==de l ) ;

136

137

138 % loop to measure s e v e r a l c y c l e s

139 for k=1: l ength ( v c y c l e s )

140 a=1;

141 for i =1:(( numbSamples ( f r e )−1)−p o s i t i o n )

142 i f ( s i g n a l 1 ( p o s i t i o n+i )<0 & s i g n a l 1 ( p o s i t i o n+i +1)>0) p o s i t i o n 1 ( a )=

p o s i t i o n+i ; a=a+1;

143 end

144 end

145

146

147 time2=time1 ( p o s i t i o n 1 (5 ) : ( p o s i t i o n 1 (5 ) +(numbSamples ( f r e ) / cyc lewind ( f r e ) ) ∗
v c y c l e s ( k )−1) ) ;

148 s i g n a l 2=s i g n a l 1 ( p o s i t i o n 1 (5 ) : ( p o s i t i o n 1 (5 ) +10∗ v c y c l e s ( k )−1) ) ;

149

150

151 % convert V−Pa ( /7 5 : c o r r e c t for Acquir i s−preamp a m p l i f i c a t i o n+impedance )

152 s s=s i g n a l 2 /75/1.4125 e−7;

153 f r =0:1/( time2 ( end )+time2 (2 )−2∗time2 (1 ) ) : 1 / ( time2 (2 )−time2 (1 ) ) ;

154 f s=abs ( f f t ( ss , l ength ( s s ) ) ) / l ength ( s s ) ∗2 ; p har=f s ( v c y c l e s ( k ) ∗ ( 1 : nhar ) +1) ;

155

156

157 % g e t t i n g the phase : fundamental and second harmonic

158 fs comp=f f t ( ss , l ength ( s s ) ) / l ength ( s s ) ∗2 ;
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159 pos fund=f i n d ( f s==p har (1 ) ) ;

160 pos har=f i n d ( f s==p har (2 ) ) ;

161 f h a r (1 )=atan ( imag ( fs comp ( pos fund (1) ) ) / r e a l ( fs comp ( pos fund (1) ) ) ) ;

162 f h a r (2 )=atan ( imag ( fs comp ( pos har (1 ) ) ) / r e a l ( fs comp ( pos har (1 ) ) ) ) ;

163 f h a r s (nx , f r e , dut , en , k , : )=f h a r ;

164

165

166

167 % parameter beta , p r e s su r e o f f i v e harmonics and v a r i a b l e s s t o rage

168 beta=rho∗c ˆ3/( p i ∗ f r e q s ( f r e ) ∗1 e6 ) / ( ( x+100)/1 e3 ) ∗( p har (2 ) ∗1.4125 e−7/

s e n s i b i l i t y 2 ( cont ) ) . / ( p har (1 ) ∗1.4125 e−7/ s e n s i b i l i t y 1 ( cont ) ) . ˆ2

169 p hars (nx , f r e , dut , en , k , : )=p har ;

170 betas (nx , f r e , dut , en , k )=beta ;

171

172

173

174 % p l o t s

175 subplot ( 2 , 1 , 1 ) ; p l o t ( time2 ∗1e6 , s s /1 e3 ) ; y l a b e l ( ’ S i gna l [ kPa ] ’ ) ; x l a b e l ( ’

Time , {\ i t t } [\mu s ] ’ ) ; a x i s t i g h t

176 subplot ( 2 , 1 , 2 ) ; semi logy ( f r /1e6 , f s ) ; x l a b e l ( ’ Frequency , {\ i t f } , [MHz] ’ ) ;

y l a b e l ( ’ Pres sure [ Pa ] ’ ) ; drawnow ;

177 c l e a r ’ time2 ’ ;

178 end ;

179 end ;

180

181

182 % v a r i a b l e s s t o rage for each i t e r a t i o n

183 save ( [ f i l e n , ’ . mat ’ ] , ’ time1 ’ , ’ s i g n a l s 1 ’ , ’ p hars ’ , ’ betas ’ ) ;

184

185

186 % show v a r i a b l e s

187 di sp ( [ ’ Saturat ion r i s k ’ , s p r i n t f ( ’ %.3 f ’ ,max( abs ( s i g n a l s 1 ( : , nx , f r e , dut , en )

) ) . / v o l t o s c i l ∗2) ] ) ;

188

189

190 end ; cont=cont +1;

191 end ;

192

193

194 % movement to return to the o r i g i n o f x , y or z

195

196 i f Lx , c a l l l i b ( ’ smc4dl l ’ , ’MOVE’ ,0 , stepx ∗
spac ingx ) ; pause ( stepx ∗pausex+pa ) ; end ;

197 end ; inc=inc +1.3494e−07;

198 for nx=1:Lx/( stepx+eps ) +1, i f Lx , c a l l l i b ( ’ smc4dl l ’ , ’MOVE’ ,0 ,− stepx ∗
spac ingx ) ; pause ( stepx ∗pausex+pa ) ; end ; end ; % return to o r i g i n o f x
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199 i f Ly , c a l l l i b ( ’ smc4dl l ’ , ’MOVE’ ,1 , stepy ∗
spac ingy ) ; pause ( stepy ∗pausey+pa ) ; end ;

200 end ; for ny=1:Ly/( stepy+eps ) +1, i f Ly , c a l l l i b ( ’ smc4dl l ’ , ’MOVE’ ,1 ,− stepy ∗
spac ingy ) ; pause ( stepy ∗pausey+pa ) ; end ; end ; % return to o r i g i n o f y

201 i f Lz , c a l l l i b ( ’ smc4dl l ’ , ’MOVE’ ,2 , s t epz ∗
spac ingz ) ; pause ( s t epz ∗pausez+pa ) ; end ;

202 end ; for nz=1:Lz /( s t epz+eps ) +1, i f Lz , c a l l l i b ( ’ smc4dl l ’ , ’MOVE’ ,2 ,− s t epz ∗
spac ingz ) ; pause ( s t epz ∗pausez+pa ) ; end ; end ; % return to o r i g i n o f z

203

204

205 % f i n a l s t o r a t e o f v a r i a b l e s

206 save ( [ f i l ename , ’ . mat ’ ] , ’ d e l s ’ , ’ p hars ’ , ’ f h a r s ’ , ’ betas ’ , ’ vo l t waveg ’ , ’ t imes1

’ , ’ s i g n a l s 1 ’ ) ;

207

208

209 % Close the o s c i l communication

210 f c l o s e ( hVisaw ) ;

The code to determine the real nonlinear parameter β by removing water contribution is

shown below.

1 % Antonio Manuel C a l l e j a s Zafra 2014−05

2

3

4 c l e a r a l l ; c l c ;

5

6

7 % load harmonics

8

9 load ( ’ nl scan 140611 Water 59MHz 320mV 50cycles . mat ’ ) ;

10

11

12 % i n i t i a l i z i n g v a r i a b l e s

13

14 syms alphaw alphag ax bx k beta x a0 b0 ax bx

15

16

17

18 %%%% v a r i a b l e s %%%%

19

20 x=(20e−3) ; % x in [m]

21 k =1/(1500/(5.8 e6 ) ) ; % wavenumber

22 alphaw=(20e−15) ∗ ( 5 . 8 e6 ) ˆ2 ; % water a t t enuat ion −> Pinkerton et a l .

23 K=1000∗1500ˆ2; % c o m p r e s s i b i l i t y modulus
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24

25

26

27

28 %%% pass ing Pa to m %%%

29

30 % fundamental harmonic % d iv id e by (K∗k )

31 % second harmonic % d iv id e by (2∗K∗k )

32

33

34

35

36 % fundamental and second harmonic in water and B

37

38 a0=smooth ( p hars ( 20 , 1 , 1 , 1 , 1 ) ,100) /(K∗k ) /(1 .4125 e−7) ∗ (10 .ˆ ( −257 .3 ./20) .∗1 e6 ) ;

39 b0=smooth ( p hars ( 20 , 1 , 1 , 1 , 2 ) ,100) /(2∗K∗k ) /1.4125 e−7∗10.ˆ(−256.2./20) .∗1 e6 ;

40

41

42

43 % fundamental and second harmonic in water and C

44

45 ax=smooth ( p hars ( 40 , 1 , 1 , 1 , 1 ) ,100) /(K∗k ) /1 .4125 e−7∗10.ˆ(−257.3./20) .∗1 e6 ;

46 bx=smooth ( p hars ( 40 , 1 , 1 , 1 , 2 ) ,100) /(2∗K∗k ) /1.4125 e−7∗10.ˆ(−256.2./20) .∗1 e6 ;

47

48

49 % determinat ion o f beta and geometr ic a t t enuat ion in water between B and C

50

51 [ Salphag , Sbeta ]= s o l v e ( ax==a0∗exp(−( alphag+alphaw ) ∗x ) , bx==b0∗exp(−(4∗alphaw+

alphag ) ∗x )−(( beta ∗( kˆ2) ∗( a0 ˆ2) ) /(−4∗(−2∗alphaw+alphag ) ) ) ∗exp(−(2∗alphaw

+2∗alphag ) ∗x ) , alphag , beta ) ;

52

53

54 % eva luate beta and geometr ic a t t enuat ion

55

56 a l f a g=eva l ( Salphag )

57 BetaReal=eva l ( Sbeta )

58

59

60

61 % fundamental and second harmonic with PMMA in C

62

63 ax =1.763718284754227 e+04/(K∗k ) /(1 .4125 e−7) ∗ (10 .ˆ ( −257 .3 ./20) .∗1 e6 )

64 bx=1.585533605947481 e +03/(2∗K∗k ) /1 .4125 e−7∗10.ˆ(−256.2./20) .∗1 e6

65

66

67

68 %%%% propagated va lue s in B %%%
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69

70 a0=ax /( exp(−(alphaw+a l f a g ) ∗20∗0 .001) ) ;

71 b0=(bx−(( BetaReal ∗( a0 ˆ2) ∗k ˆ2) /(−4∗( a l f ag −2∗alphaw ) ) ) ∗exp(−2∗(alphaw+a l f a g )

∗20∗0 .001) ) /( exp(−( a l f a g +4∗alphaw ) ∗20∗0 .001) ) ;

72

73

74

75

76

77 %%%%%% values obta ined in AB %%%%%%%

78

79 betaAB=2.5929

80 alphagAB =6.7331;

81

82

83

84

85

86

87 %%%%%%% Transmiss ion C o e f f i c i e n t s %%%%%%%%%

88

89 % v e l o c i t y o f sound waves in water and specimen

90

91 c s =2700; % in [m/ s ]

92 c w =1500; % in [m/ s ]

93

94 % water and specimen dens i ty

95

96 rho s =1190; % in [ kg/mˆ3 ]

97 rho w =1000; % in [ kg/mˆ3 ]

98

99 % impedances

100

101 Zs=c s ∗ rho s ;

102 Zw=c w∗ rho w ;

103

104 % transmi s s i on c o e f f i c i e n t s

105

106 Tsw=2∗Zs /( Zs+Zw) ;

107 Tws=2∗Zw/( Zs+Zw) ;

108

109

110

111

112

113

114
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115 %%% Values o f the fundamental and second harmonic in PMMA and in A and B %%

116

117

118 % values o f fundamental and second harmonic in water and in A

119

120 aWaterA=9.235167174045643 e+04/(K∗k ) /(1 .4125 e−7) ∗ (10 .ˆ ( −257 .3 ./20) .∗1 e6 ) ;

121 bWaterA=1.855848309676050 e +04/(2∗K∗k ) /(1 .4125 e−7) ∗ (10 .ˆ ( −256 .2 ./20) .∗1 e6 ) ;

122

123

124 % values o f fundamental and second harmonic i n s i d e PMMA in A

125

126 aPMMAA=Tws∗aWaterA ;

127 bPMMAA=Tws∗bWaterA ;

128

129

130 % values o f fundamental and second harmonic in water and in B

131

132 aWaterB=2.271164417141681 e−09;

133 bWaterB=1.289727432533617 e−10;

134

135

136 % values o f fundamental and second harmonic i n s i d e PMMA in B

137

138 aPMMAB=aWaterB/Tsw ;

139 bPMMAB=bWaterB/Tsw ;

140

141

142

143

144

145

146 %%%%%%% Determination o f the r e a l non l i n ea r parameter beta %%%%%%

147

148 % i n i t i a l i z i n g v a r i a b l e s

149

150 syms alpham betaPMMA

151

152

153 % PMMA attenuat ion

154

155 alpham =0.8∗5 .8 ;

156

157

158 % r e a l non l i n ea r parameter beta in PMMA

159
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160 [ SbetaPMMA]= s o l v e (bPMMAB==bPMMAA∗exp(−(4∗alpham+alphagAB ) ∗20∗0 .001)−((

betaPMMA∗( k ˆ2) ∗(aPMMAAˆ2) ) /(−4∗(−2∗alpham+alphagAB ) ) ) ∗exp(−(2∗alpham+2∗
alphagAB ) ∗20∗0 .001) ,betaPMMA) ;

161

162

163 % eva luate beta

164

165 BetaReal=eva l (SbetaPMMA)
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