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Abstract. The Heisenberg and Fisher-information-based uncertainty relations
are improved for stationary states of single-particle systems in a D-dimensional
central potential. The improvement increases with the squared orbital hyper-
angular quantum number. The new uncertainty relations saturate for the isotropic
harmonic oscillator wavefunction.
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1. Introduction

A most important role for the quantum-mechanical description of the internal structure of
physical systems in D-dimensional spaces ([1]–[4] see also references herein) as well as for
the development of the quantum information and computation ([5, 6] see also references herein)
is played by uncertainty relations. There is not only the celebrated Heisenberg inequality [7, 8]
given by

〈r2〉〈p2〉 � D2

4
, (1)

and its moment generalizations [1], but also other similar relations based on more appropriate
uncertainty quantities such as information-theoretic measures like, in a chronological way, the
Fisher information [9, 10] and the Shannon [11, 12], Renyi [13, 14] and Tsallis [15, 16] entropies.
The corresponding uncertainty relations, which are more stringent than the Heisenberg one, have
been shown in [17, 18], [19]–[23], [1, 24] and [25] for the Fisher, Shannon, Renyi and Tsallis
measures, respectively.

In this study, the attention is centred around the Heisenberg and the Fisher-information-based
uncertainty relations. The Fisher information for a quantum-mechanical state of a single-particle
system characterized by the probability density ρ(�r) in the D-dimensional position space is
defined by

Iρ ≡
∫

R

ρ(�r)[ �∇D ln ρ(�r)]2dDr,

where �∇D denotes the D-dimensional gradient [26, 27]. The corresponding quantity for the
momentum-space probability density γ( �p) will be denoted by Iγ .

Unlike the rest of the information-theoretic measures published in the quantum literature,
the Fisher information has a local character due to the gradient operator. The higher this quantity,
the more concentrated the density and the smaller the position uncertainty of the particle [10, 28].
This information quantity has been used for a wide variety of quantum-mechanical concepts and
phenomena: to describe the kinetic [29, 30] and Weiszäcker [31, 32] energies, to characterize
correlation properties of two-electron systems [33, 34] and to identify the most distinctive
nonlinear spectroscopic phenomena (avoided crossings) of atomic systems in strong external
fields [35]. Moreover, the Fisher information is the basic element of the principle of extreme
physical information [10, 36], which has been used to derive various fundamental equations of
quantum physics [10, 37].

The uncertainty relation associated with the Fisher information for general systems
(i.e., IρIγ � constant) is not yet known despite the fact that it is the earliest found information
measure [9]. Recently, two contributions to find the general Fisher uncertainty relation have been
made. First, the inequality IρIγ � 4 has been proved for general monodimensional systems with
even wavefunctions [38]. Moreover, some authors [17, 18] have found

IρIγ � 4D2

[
1 − (2l + D − 2)|m|

2l(l + D − 2)

]2

(2)

for stationary states of D-dimensional single-particle systems with a central potential VD(r) with
the orbital and magnetic hyperangular quantum numbers l and m, respectively.
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Our aim, not yet been undertaken, is to improve the Heisenberg relation (1) for stationary
D-dimensional central potentials and to refine the Fisher-information-based relation (2). The
only related effort published in the literature, to the best of our knowledge, is the computation of
the Heisenberg uncertainty product for various specific three-dimensional (3D)central potentials
[39]. In section 2, the D-dimensional central force problem is briefly described and some concepts
and notation are explicitly presented. Then, the aforementioned D-dimensional uncertainty
relations are proved and examined in detail for some prototype systems in section 3. Finally,
conclusions and some open problems are given. Atomic units are used throughout the paper.

2. The D-dimensional problem for central potentials

The wavefunctions which describe the quantum-mechanical states of a particle in the
D-dimensional central potential VD(r) have the form �D(�r, t) = ψD(�r) exp (−iEDt), where
{ED, ψD(�r)} denote the physical eigensolutions of the Schrödinger equation

[− 1
2

�∇2
D + VD(r)]ψD(�r) = EDψD(�r).

The symbol �r is the D-dimensional position vector of the particle having the Cartesian
(x1, x2, . . . , xD) and the polar hyperspherical (r, θ1, θ2, . . . , θD−1) ≡ (r, �D−1) coordinates
respectively, where the hyperradius r denotes the radial distance r = (

∑N

i=1 x2
i )

1/2. The Laplacian
operator �∇2

D = ∑N

i=1
∂2

∂x2
i

can be expressed [18, 26, 27, 40] as

�∇2
D = 1

rD−1

∂

∂r
rD−1 ∂

∂r
− �2

D−1

r2
, (3)

�D−1 being the D-dimensional generalization of the squared angular momentum operator, which
only depends on the D − 1 angular coordinates �D−1 of the D-dimensional sphere in the form

�2
D−1 = −

D−1∑
i=1

(sin θi)
i+1−D

( ∏i−1
j=1 sin θj

)2

∂

∂θi

[
(sin θi)

D−i−1 ∂

∂θi

]
. (4)

This operator is known to fulfil [26, 27]

�2
D−1Yl,{µ}(�D−1) = l(l + D − 2)Yl,{µ}(�D−1), (5)

where the Y-symbol describes the hyperspherical harmonics characterized by the D − 1
hyperangular quantum numbers (l ≡ µ1, µ2, µ3, . . . , µD−1 ≡ m) ≡ (l, {µ}), which are natural
numbers with values l = 0, 1, 2, . . ., and l ≡ µ1 � µ2 � . . . � µD−2 � |µD−1| ≡ |m|. These
mathematical objects obey the orthonormalization condition

∫
SD−1

d�D−1Y∗
l′,{µ′}(�D−1)Yl,{µ}(�D−1) = δll′δ{µ},{µ′}. (6)
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With the ansatz

ψE,l,{µ}(�r ) = REl(r)Yl,{µ}(�D−1),

and keeping in mind (3)–(6), one obtains that the radial eigenfunction REl(r) satisfies[
−1

2

d2

dr2
− D − 1

2r

d

dr
+

l(l + D − 2)

2r2
+ VD(r)

]
REl(r) = EDREl(r).

As usual, to eliminate the first derivative, the reduced radial wavefunction

uEl(r) = r(D−1)/2REl(r),

is used. Then, the previous equation reduces to a 1D Schrödinger equation in the coordinate r:[
−1

2

d2

dr2
+

L(L + 1)

2r2
+ VD(r)

]
uEl(r) = EDuEl(r), (7)

where the grand orbital quantum number L is given by

L = l +
D − 3

2
, (8)

and l(l + D − 2) = L(L + 1) − (D − 1)(D − 3)/4. The physical solutions require that
uEl(r) → 0 when r → 0 and r → ∞. Moreover, the normalization to unity of the wavefunction
�D(�r, t) leads to the following property of the reduced radial eigenfunctions uEl(r):∫ ∞

0
u2

El(r) dr = 1, (9)

where the orthonormalization condition (6) of the hyperspherical harmonics has been taken into
account. For completeness, let us underline that the reduced radial Schrödinger equation of any
D-dimensional problem for central potentials, see (7), is the same as for D = 3 but with the
orbital angular momentum given by L according to (8). This essentially indicates that there
exists an isomorphism between the dimensionality D and the orbital quantum number [41], so
that D → D + 2 is equivalent to l → l + 1.

Finally, let us also point out that the kinetic energy 〈T 〉 is

〈T 〉 = 1

2

∫ ∞

0

[
−uEl(r)u

′′
El(r) +

L(L + 1)

r2
u2

El(r)

]
dr.

Then, since 〈T 〉 = 〈p2〉/2, a simple integration by parts leads to

〈p2〉 =
∫ ∞

0
[u′

El(r)]
2 dr + L(L + 1)〈r−2〉, (10)

which is used in the next section. The symbol 〈f(r)〉 denotes the expectation value

〈f(r)〉 =
∫ ∞

0
f(r)u2

El(r) dr. (11)
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3. Heisenberg and Fisher-information-based uncertainty relations for central potentials

Here, for states with an orbital hyperangular quantum number corresponding to a D-dimensional
single-particle system with any spherically-symmetric potential, we shall show that the
Heisenberg-type uncertainty relation

〈r2〉〈p2〉 �
(

l +
D

2

)2

, (12)

is fulfilled, and the Fisher-information-based uncertainty relation (2) is improved by

IρIγ � 16

[
1 − 2l + D − 2

2l(l + D − 2)
|m|

]2 (
l +

D

2

)2

. (13)

To obtain (12) we start from an inequality [42] related to the reduced radial Schrödinger
equation (7), modified in the form

∫ ∞

0

(
u′

El −
L + 1

r
uEl − λruEl

)2

dr � 0,

with uEl ≡ uEl(r) and λ being an arbitrary parameter. Taking into account (9)–(11) and that
∫ ∞

0
ruEl(r)u

′
El(r) dr = − 1

2 ,

this expression transforms into the quadratic inequation in λ:

〈r2〉λ2 + (2L + 3)λ + 〈p2〉 � 0,

whose discriminant is necessarily negative. This observation leads in a straightforward
manner to

〈r2〉〈p2〉 �
(
L + 3

2

)2
,

which yields the sought Heisenberg inequality (12) once we take into account (8) which defines
the grand orbital quantum number L.

Then, the use of expression [18]

IρIγ � 16

[
1 − (2l + D − 2)|m|

2l(l + D − 2)

]
〈r2〉〈p2〉,

which clearly manifests the uncertainty character of the product of the Fisher
informations in position and momentum spaces, together with (12) naturally produces the
relation (13).

Let us now discuss the new inequalities (12) and (13). Firstly, we observe that for
s states both of them reduce to the general known ones (1) and (2), respectively; so,
no improvement is achieved. However, the enhancement is notorious for states with l > 0
growing as l2.
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Secondly, both inequalities saturate, i.e. the equality is achieved, for nodeless isotropic
harmonic oscillator wavefunctions (e.g. the ground state) as shown below. Indeed, for the
oscillator potential V(r) = ω2r2/2 (mass = 1) one has [18]

ω〈r2〉 = ω−1〈p2〉 = η +
3

2
= 2nr + L +

3

2
= 2nr + l +

D

2
,

and

ω−1Iρ = ωIγ = 16

(
η − |m| +

3

2

)2

= 16

(
2nr + l − |m| +

D

2

)2

,

with the grand principal quantum number η = n + (D − 3)/2 = 2nr + L, l = 0, 1, 2, . . ., and
nr = 0, 1, 2, . . ., being the number of nodes of the wavefunction. So, the Heisenberg and Fisher-
information-based uncertainty products for the oscillator case are

〈r2〉〈p2〉 =
(

2nr + l +
D

2

)2

IρIγ = 16

(
η − |m| +

3

2

)2

= 16

(
2nr + l − |m| +

D

2

)2

,

respectively, which are equal to the new lower bounds (12) and (13) for nr = 0; otherwise they
have a larger value growing with n2

r .
Thirdly, for hydrogen atom V(r) = −1/r, one has [18]

〈r2〉 = 1
2η

2[5η2 − 3L(L + 1) + 1], 〈p2〉 = 1
η2 ,

and

Iρ = 4

η3
(η − |m|), Iγ = 2η2{5η2 − 3L(L + 1) − [8η − 3(2L + 1)]|m| + 1},

where η = n + (D − 3)/2, n = 1, 2, 3, . . . and l = 0, 1, . . . , n − 1. Then the uncertainty
products are

〈r2〉〈p2〉 = 1
2 [5η2 − 3L(L + 1) + 1],

for the Heisenberg case, and

IρIγ = 8

η
(η − |m|){5η2 − 3L(L + 1) − [8η − 3(2L + 1)] |m| + 1}

for the Fisher-information-based case. Notice that since n � l + 1, then η � L + 1, the values
of the two uncertainty products are larger than the corresponding lower bounds given by (12)
and (13), respectively.

Finally, the Heisenberg uncertainty product has the same value for the states of
D-dimensional systems with hyperangular momentum l + 1 and for the states of (D + 2)-
dimensional systems with hyperangular momentum l, according to the isomorphism previously
mentioned.
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4. Conclusions and open problems

Starting from an inequality directly associated to the radial Schrödinger equation, we have found
the Heisenberg uncertainty relation for time-independent D-dimensional central potentials, and
we have refined the recently discovered Fisher-information-based uncertainty relation for such
systems. These improvements follow a l2-law, where l is the orbital hyperangular quantum
number of the particle. In particular, these inequalities have been studied for the harmonic
oscillator and the Coulomb potentials obtaining that they saturate for the oscillator ground state.

These results suggest various important open problems: to find the uncertainty relations
based on the Renyi and Tsallis information measures, and the Cramer–Rao uncertainty inequality
for central potentials and, most importantly, to derive a Fisher-information-based uncertainty
principle for general systems. It would be an uncertainty relation of the same category, in the
quantum-mechanical literature, as the Heisenberg [7] and entropic (Shannon) [23] ones.

Acknowledgments

We are very grateful for partial support to Junta de Andalucı́a (under the grants FQM-
0207 and FQM-481), Ministerio de Educación y Ciencia (under the project FIS2005-00973),
and the European Research Network NeCCA (under the project INTAS-03-51-6637). RGF
acknowledges the support of Junta de Andalucı́a under the program of Retorno de Investigadores
a Centros de Investigación Andaluces.

References

[1] Uffink J B M 1990 Measures of uncertainty and the uncertainty principle PhD Thesis University of Utrecht
[2] Herschbach D R, Avery J and Goscinski O (eds) 1993 Dimensional Scaling in Chemical Physics (Dordrecht:

Kluwer)
[3] Lieb E 2001 The Stability of Matter: From Atoms to Stars 3rd edn (New York: Springer)
[4] Price W C and Chissick S S (eds) 2001 The Uncertainty Principle and Foundations of Quantum Mechanics

(New York: Wiley)
[5] de Vicente J and Sánchez-Ruiz J 2001 Phys. Rev. A 71 052325
[6] Gühne O and Lewenstein M 2004 Phys. Rev. A 70 022316
[7] Heisenberg W 1927 Z. Phys. 43 172
[8] Kennard E H 1927 Z. Phys. 44 326
[9] Fisher R A 1925 Proc. Camb. Phil. Soc. 22 700

Reprinted in Collected Papers of R A Fisher 1972 ed J H Bennet (South Australia: University of Adelaide
Press) p 15

[10] Frieden B R 2004 Science from Fisher Information (Cambridge: Cambridge University Press)
[11] Shannon C E 1948 Bell Syst. Tech. J. 27 379 and 623
[12] Shannon C E and Weaver W 1949 The Mathematical Theory of Communication (Urbana, IL: University of

Illinois Press)
[13] Hardy G H, Littlewood J E and Polya G 1934 Inequalities (Cambridge: Cambridge University Press)
[14] Renyi A 1961 Fourth Berkeley Symp. Math. Stat. Probability 1 547
[15] Havrda J and Charvat F 1967 Kybernetika (Prague) 3 1
[16] Tsallis C 1998 J. Stat. Phys. 52 479
[17] Romera E, Sánchez-Moreno P and Dehesa J S 2005 Chem. Phys. Lett. 414 468
[18] Romera E, Sánchez-Moreno P and Dehesa J S 2006 J. Math. Phys. 47 103504

New Journal of Physics 8 (2006) 330 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevA.71.052325
http://dx.doi.org/10.1103/PhysRevA.70.022316
http://dx.doi.org/10.1007/BF01397280
http://dx.doi.org/10.1007/BF01391200
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1016/j.cplett.2005.08.032
http://dx.doi.org/10.1063/1.2357998
http://www.njp.org/


8 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

[19] Everett III H, in deWitt B S and Graham N (eds) 1973 The Many-Worlds Interpretation of Quantum Mechanics
(Princeton, NJ: Princeton University Press)

[20] Beckner W 1975 Ann. Math. 102 159
[21] Hirschman I I 1957 Am. J. Math. 79 152
[22] Deutsch D 1983 Phys. Rev. Lett. 50 631
[23] Bialynicki-Birula I and Mycielski J 1975 Uncertainty relations for information entropy Commun. Math. Phys.

44 129
[24] Maassen H and Uffink J B M 1988 Phys. Rev. Lett. 60 1103
[25] Rajagopal A K 1995 Phys. Lett. A 205 32
[26] Avery J 2000 Hyperspherical Harmonics and Generalized Sturmians (Dordrecht: Kluwer)
[27] Louck J D 1960 J. Mol. Spectrosc. 4 334
[28] Stam A 1959 Inform. Control 2 105
[29] Sears S B, Parr R G and Dinur U 1980 Israel J. Chem. 19 165
[30] Massen S E and Panos C P 2001 Phys. Lett. A 280 65
[31] Parr R G andYang W 1989 Density-Functional Theory of Atoms and Molecules (NewYork: Oxford University

Press)
[32] Romera E and Dehesa J S 1994 Phys. Rev. A 50 256
[33] Romera E and Dehesa J S 2004 J. Chem. Phys. 120 8906
[34] Nagy A 2006 Chem. Phys. Lett. 425 154
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