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Abstract. This is an expanded version of the talk given at the conference “Constructive Functions Tech-04”.
We survey some recent results on canonical representation and asymptotic behavior of polynomials orthogonal on
the unit circle with respect to an analytic weight. These results are obtained using the steepest descent method based
on the Riemann-Hilbert characterization of these polynomials.
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1. Introduction. During the Fall Semester of 2003 I was visiting the Department of
Mathematics of the Vanderbilt University, where I had the opportunity to continue my collab-
oration with Ed Saff. I was very excited with the evolution of the Riemann-Hilbert approach
to the asymptotic analysis of orthogonal polynomials, and discussed extensively with Ed the
new perspectives. He was the one who posed the question: can this method tell us anything
new about such a classical object as the orthogonal polynomials on the unit circle (OPUC,
known also as Szegő polynomials), in particular, about their zeros? The question was more
on a skeptical side. I was aware of some previous work of the founders of the method, [1],
[3], but none of these papers was focused on the description of the zeros of the OPUC’s. So,
we started to work and realized that we were able to find curious facts even in the simplest
situations. Later on I visited Ken McLaughlin, at that time in Chapel Hill. A two-day discus-
sion at Strong Café (a recommended place) was crucial, and Ken joined the team. This paper
is a short and informal report on some of the advances we have had so far.

Let me introduce some notation and describe the setting. For ����� , denote �	� def
����������  ��� ��� , and � � def
����� �����  � 
 ��� . A positive measure � on �! has the Lebesgue-
Radon-Nikodym decomposition

(1.1) "#�%$ '&%
)( $ '& � "  �+* ",�.-
where �.- is the singular part of � with respect to the Lebesgue measure on �/ . Throughout,
we will consider measures satisfying the Szegő condition0�1�2,354#6 ( $ �& � "  � �87:9<;
allowing to define the Szegő function (see e.g. [19, Ch. X, = 10.2]):

(1.2) >?$ (�@A'& def
)BDCFEHG)IJ#K 0MLANO 3P4,6 ( $RQ�SPT & Q SUT * Q SUT 7  ",V,WYX
This function is piecewise analytic and non-vanishing, defined for

�  �[Z
 I , and we will denote
by >]\ and >]^ its values for

�  �_� I and
�  � � I , respectively, given by formula (1.2). It is

easy to verify that

(1.3) > \ G (�@[I W 
 I>]^`$ (�@a�& ; �  � � I ;b
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and for the boundary values we have

(1.4) ( $ '&%
 >]\c$ (�@A'&> ^ $ (�@A'& 
 I� > ^ $ (�@a�& � L ; d� �	 .X
The first equality in (1.4) can be regarded as a Wiener-Hopf factorization of the weight ( ,
which is a key fact for the forthcoming analysis.

For a nontrivial positive measure � on �! there exists a unique sequence of polynomialsegf $ '&h
�i f  f * lower degree terms, i f �j� , such that

(1.5) k 1�2 e f $ '& egl $ �& ",�%$ �&%
)m l f ;onp;Aq 
 �r; I ;+XsX+X
We denote by t f $ '& def
 egf $ �&auvi f the corresponding monic orthogonal polynomials. They
satisfy the Szegő recurrencet fvw  $ '&%
� t f $ '& 7 x f t �f $ �& ;yt O $ '&%z I ;
where we use the standard notation t �f $ '& def
8 f t f $ I u #& . The parameters x f 
 7 t fvw  v$R� &
are called Verblunsky coefficients (also reflection coefficients or Schur parameters) and satisfyx f � �% for q 
 �{; I ;}|F;sX+X+X . Furthermore, ��~ � x f � is a bijection; the map �)� � x f �
is an inverse problem, and it is known to be difficult. In [18] there is a thorough discussion
of several techniques to tackle this problem. Recently, the Riemann-Hilbert approach, not
described in [18], proved to be very promising in this context also (see [1], [3], [6], [13]).
The main goal of this paper is a further discussion of how this method can shed new light
on the study of the asymptotics of the Szegő polynomials. We are not going to provide
detailed proofs that can be found elsewhere (the references are included), the aim is to show
the method in action and to discuss some new results in two apparently simple situations.

The structure of the paper is as follows. Section 2 is devoted to the case when >?$ (�@+��& is
non vanishing and has an analytic extension across �/ . The main role here is played by the
scattering function1

(1.6) �:$ (�@a�& def
 > \ $ (�@A'& > ^ $ (�@A'& ;
meromorphic in an annulus, containing �/ , and which, via its iterated Cauchy transforms, al-
lows to write some canonical series representing e%f ’s. In this situation convergence is always
exponentially fast, and the Riemann-Hilbert analysis is particularly simple and transparent.
Only some of the multiple corollaries of the canonical representation are discussed; a more
thorough analysis is contained in [12]. In Section 3 we look at the situation when the orig-
inal analytic and nonvanishing weight has been modified by a factor having a finite number
of zeros on the unit circle. Now the behavior of the zeros of t f ’s is qualitatively different:
most of them cluster at �  , and only a finite number stays within the disc �  . The method of
Section 2 must be modified now in order to handle the zeros of the weight: a local analysis
plays the major role. The exposition here is much more sketchy; in this sense, more than a
detailed view this window gives us a glimpse of the possible techniques and results. At any
rate, the main goal is to persuade the reader that the Riemann-Hilbert analysis is a powerful
technique, that deserves to be in the toolbox of those interested in orthogonal polynomials on
the unit circle.

1Function �A�a� is denoted in [17] by � , and in [18, Section 6.2] by � . It corresponds also to the scattering matrix
in [9]. I prefer to follow the notation of [12].
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2. Analytic and nonvanishing weight. Any analysis of OPUC’s can be started either
from the orthogonality measure � or from the sequence of the Verblunsky coefficients � x f � .
Let us assume that the sequence of the Verblunsky coefficients has an exponential decay:

(2.1) � def
 3P�P�f,��� � x f �  �� f X
Nevai-Totik [15] proved that this situation is characterized by the following conditions on � :
in the decomposition (1.1), ��- 
 � , measure � satisfies the Szegő condition, and

(2.2) � 
 �P�F� � � � � � I � >]^�$ (�@a�& is holomorphic in
�  � �j����X

Taking into account (1.3) we see that the first identity in (1.4) can be regarded as an analytic
extension of the weight ( . With this definition of ( (which we use in the sequel) we can say
equivalently that

(2.3) � 
 �P�F� � � � � � I � I u�( $ �& is holomorphic in � ���  ��� I u ����;
and both circles ��� and �  A� � contain singularities of I u`( . In this situation the well-known
Szegő asymptotic formula 35�P�f,��� e �f $ �&%
 I>]\c$ (�@A'& ; d� �� �;
can be continued analytically through the unit circle �/ and is valid locally uniformly in �  a� � .
It shows that the number of zeros of � e%f � on compact subsets of �	 �� � � remains uniformly
bounded, and these zeros are attracted by the zeros of > ^ in � ���  �r� I (Nevai-Totik points
in the terminology of B. Simon [16]). Numerical experiments show that the vast majority of
zeros gather at the “critical circle” � � . This fact was justified theoretically by Mhaskar and
Saff [14], who using potential theory arguments showed that for any subsequence � qh�������
satisfying � 
 3P�5� � x f,� �  A� f#� ;
the zeros of � ehf,��w  �� distribute asymptotically uniformly in the weak-star sense on � � .

The behavior of the zeros inside � � can be intriguing. Although approaching in mass
the critical circle � � as predicted by Mhaskar and Saff, some of them still may remain inside
and follow interesting patterns. Even the convergence to the circle � � is different for different
measures. Can we give a full description of this behavior in terms of the weight of orthogonal-
ity? The answer is positive, and the description will involve a sequence of iterates of certain
Hankel and Toeplitz operators with symbols depending on the scattering function � intro-
duced in (1.6). It is a consequence of a canonical representation of the Szegő polynomials,
found by means of the Riemann-Hilbert characterization.

2.1. Steepest descent analysis and canonical representation for orthogonal polyno-
mials. The starting point of all the analysis is the fact that under assumption (2.1) conditions
(1.5) can be rewritten in terms of a non-hermitian orthogonality for e%f and e �f :k 1�2 e f $ �&� fF� � �  ( $ '& f " �
 �r; for   
 �{; I ;+X+XsXD;�q¡7 I ;k 1�2 e �f'�  $ �&� � ( $ '& f " �
£¢ �r;   
 �{; I ;sX+XsX�;�q¡7¤|r;¥ uvi f'�  ;¦  
 q¡7 I X
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Here and in what follows, all the circles �!§ , x£�¨� , are oriented counterclockwise; with
this orientation we talk about the “

*
” and the “ 7 ” side of ��§ referring to its inner and

outer boundary points, respectively. Analogously, © w and © � are the corresponding boundary
values on � § for any function © for which these limits exist. By standard arguments (see e.g.
[1] or [7], as well as the seminal paper [8] where the Riemann-Hilbert approach to orthogonal
polynomials started),ª $ '&%
¬«® t f $ �& I| K ¥ k 1�2 t f $°¯ &±( $°¯ & "#¯¯ f $°¯g7 �&7²| K i f'�  e �f'�  $ '& 7 i f'�  ¥ k 1�2 e �f'�  $R¯ &³( $R¯ & "#¯¯ f $R¯g7 '&

´+µµµ¶
is a unique solution of the following Riemann-Hilbert problem:

ª
is holomorphic in

� �`�· ,
(2.4)

ª w $°¯ &%
 ª � $°¯ &¸G I ( $R¯ &Au ¯ f� I W¹; d� �	 g; and
35�P�º ��� ª $ �&¸G  �[f ��  f W 
�» ;

where » is the |]¼¸| identity matrix.
This is the starting position for the steepest descent analysis as described in [7] (see

also [10]), which consists in performing a series of explicit and reversible steps in order to
arrive at an equivalent problem, which is solvable, at least in an asymptotic sense. Since
these steps are almost standard, they will be described very schematically. We will use the

following notation: ½�¾ 
¬G I �� 7 I W is the Pauli matrix, and for any non-zero ¿ and integern , ¿�À�Á 
 G ¿ �� I u ¿ W and ¿ l ÀsÁ 
 $°¿ l & ÀsÁ .
STEP 1: Define

(2.5) ÂÃ$ �& def
 ¢  �[f ÀsÁ`; if
�  � � I ;» ; if
�  ��� I ;

and put ÄÅ$ '& def
 ª $ '& ÂÃ$ '& . Then Ä is holomorphic in
� �`�� ; this transformation normalizes

the behavior at infinity:
3P�P� º ��� ÄÅ$ '&·
Æ» . The price we pay is the oscillatory behavior of

the new jump matrix on �� :Ä w $R¯ &%
 Ä � $R¯ &¸G ¯ f ( $°¯ &� ¯ �Çf WY;o¯ � �  X
We get rid of these oscillations in the next transformation, taking advantage of the analyticity
of its entries in the annulus.

STEP 2: Choose an arbitrary � , � � � � I , that we fix for what follows; it determines
the regions (Figure 2.1)È O 
��� �²�  �'� �#��; È � 
��� �²�  � � I u �#��;È w 
��� � � ���  ��� I �#; È � 
��� � I ���  ��� I u �#��X5X
Define ÉÊ$ '& def
 Ä�$ �&�Ë $ �& , where

(2.6) Ë $ '& def
oÌÍÍÍÍÍÍÎ ÍÍÍÍÍÍÏ
» ; if d� È O	Ð È � ;Ñ I � f u�( $ �& I+Ò �  ; if d� È w ;Ñ I �I u $  f ( $ '&�& I+Ò ; if d� È � X
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�	 � � �  �� �
È O È w È � È �

Ó
Ô�Õ Ó

Ô

FIG. 2.1. Opening lenses.

Then É is holomorphic in
� ��Öa�%� Ð �  Ð �  A� �s× . We have not modified its behavior at infin-

ity, but now É w $°¯ &%
 É � $°¯ &[Ø'Ù $°¯ & ;o¯ � Ö ��� Ð �  Ð �  A� � × ;
where

Ø'Ù $°¯ &%
 ÌÍÍÍÍÍÍÍÍÍÎ ÍÍÍÍÍÍÍÍÍÏ
Ñ � ( $°¯ &7 I u�( $°¯ & � Ò ; if ¯ � �  ;Ñ I �¯ f u�( $R¯ & IDÒ ; if ¯ � �%�`;Ñ I �I u $R¯ f ( $°¯ &A& IDÒ ; if ¯ � �  A� � X

The jump on � � and �  �� � is exponentially close to the identity, which is convenient to our
purposes. We have to deal now with the relevant jump on the unit circle.

STEP 3: The Szegő functions > \ and > ^ have been introduced in (1.2). Define

(2.7) Ú def
 I>Å\Û$ (�@ � & 
 > ^ $ (�@ 9 &�
)BDCFE G 7 IJ#K 0MLANO 3P4,6 ( $ÜQ SPT & "#V W �j�·X
Hence, if we introduce the geometric mean

(2.8) Ý!Þ (/ß def
�BDCFE?G�I| K 0 LaNO 354#6 Ö ( ÖcQ SPT × "#V × WY;
then Ú 
 $ÜÝ!Þ (·ßà& �  �� L .
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It is straightforward to check that the piece-wise analytic matrix-valued function

(2.9) áÃ$ '&h
 áÃ$ (�@A'& def
 ÌÍÍÍÍÎ ÍÍÍÍÏ
Ñ > ^ $ (�@A'&Au Ú �� Ú u > ^ $ (�@A'& Ò ; if

�  � � I ;Ñ � > \ $ (�@a�&au Ú7/Ú u > \ $ (�@a�& � Ò ; if
�  ��� I ;

is invertible, and has the same jumps on �/ as Éd$ �& . This motivates to make a new transfor-
mation, defining â/$ �& def
 Éd$ '& á �  $ �& . Matrix â is holomorphic in

� �r$R�	� Ð �  Ð �  �� � & ,35�P�º ��� â/$ '&%
�» ;
and

(2.10) â w $°¯ &�
 â � $R¯ &[Ø�ã $°¯ & ;ä¯ � � � Ð �	 Ð �  A� � ;
where

(2.11) Ø'ã $°¯ &%
 á � Ø Ù á �  w 
äÌÍÍÍÍÍÍÎ ÍÍÍÍÍÍÏ
» ; if ¯ � �	 �;Ñ I 7/¯ f �å$ (�@ ¯ &Au Ú L� I Ò ; if ¯ � � � ;Ñ I �Ú L u $R¯ f �:$ (�@ ¯ &�& I+Ò ; if ¯ � �  A� � X

Our main character, � , has entered the picture!
Summarizing, we have

(2.12)

ª $ �&%
 â/$ �& áÃ$ '&±Ë �  $ �& Â �  $ '& X
Here Â , Ë and á are explicitly defined in (2.5), (2.6) and (2.9), respectively. About â we
know only that it is piece-wise analytic and satisfies the jump condition (2.10)–(2.11). A
feature of this situation is that we can write a formula for â in terms of a series of iterates of
some Cauchy operators acting on the space of holomorphic functions in

� �r$R� � Ð �  A� � & with
continuous boundary values. Indeed, let us denoteâ 
 G â� A æâ. Lâ L  æâ LAL W ;
and look at the equations given by the jumps on �!� . According to (2.11), the first column
is analytic across this circle, while the second column has an additive jump equal to the first
column times 7/¯ f �:$ (�@ ¯ &au Ú L . So, if we define the operatorç \ f $c© & $ �& def
 7 I| K ¥ Ú L k 1Fè © � $R¯ & �:$ (�@ ¯ & ¯ f¯g7  "#¯Ç;
where © � denotes the exterior boundary values of the function © on � � , then taking into
account the behavior at infinity and Sokhotsky-Plemelj’s theorem we get thatâ� L 
 ç \ f $Üâ. A & ;yâ LaL 
 I *Mç \f $Üâ L  & X(2.13)
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Analogously, with ç ^ f $c© & $ �& def
 Ú L| K ¥ k 1 2cé è © � $°¯ & I�:$ (�@ ¯ & ¯ f $°¯g7 �& "#¯Ç;
where © � denotes the exterior boundary values of the function © on �  �� � , we have againâ. A 
 I *Ãç ^f $câ� L & ;yâ L  
 ç ^ f $Üâ LaL & X(2.14)

By (2.13), (2.14), functions â Sëê satisfy the following integral equations:$ » 7 ç ^ f�ì ç \ f & â� a 
 I ; $ » 7 ç \ f�ì ç ^ f & â� L 
 ç \ f $ I & ;$ » 7 ç ^ f ì ç \ f & â L  
 ç ^ f $ I & ; $ » 7 ç \ f ì ç ^ f & â LAL 
 I ;
where » is the identity operator. Straightforward bounds show that there exists a constantí ��� depending on � only, such thatîî ç \ f $c© & $ '& îî{ï í � f�ð © � ð 1Fè�5�  � 7ñ� � ; òu� � � ;� ç ^ f $c© & $ '& � ï í � f ð © � ð 1 2cé è�5�  � 7 I u � � ; òu� �  �� � ;(2.15)

where ð � ðDó is the ôAõ E -norm on ö ; in the sequel we use
í

to denote some irrelevant constants,
different in each appearance, whose dependence or independence on the parameters will be
stated explicitly. Thus, we can invert these operators using convergent Neumann series,â  a 
 Ñ �÷��ø O Ö ç ^ f ì ç \ f × � Ò $ I & ; â  L 
 Ñ �÷�Dø O Ö ç \ f ì ç ^ f × � ì ç \ f Ò $ I & ;â L  
 Ñ �÷��ø O Ö ç ^ f ì ç \ f × � ì ç ^ f Ò $ I & ; â LAL 
 Ñ �÷��ø O Ö ç \ f ì ç ^ f × � Ò $ I & X
In order to make this somewhat more explicit, let us define recursively two sequence of func-
tions: ©.ù O}úf def
 I ;ä©.ù  úf def
 ç \ f $ I & ; and ©.ù L � úf def
 ç ^ f $Ü©.ù L � �  úf & ;© ù L � w  úf def
 ç \ f $Ü© ù L � úf & ;y  � ��;û ù O}úf def
 I ; û ù  úf def
 ç ^ f $ I & ; and û ù L � úf def
 ç \ f $ û ù L � �  úf & ;û ù L � w  úf def
 ç ^ f $ û ù L � úf & ;y  � ��X
Then â� A v$°q @a�&%
 �÷��ø O © ù L � úf $ '& ;äâ L  v$Rq @A'&g
 �÷��ø O û ù L � w  úf $ �& ; for

�  ��Z
 I u ��;â  L $°q @a�&%
 �÷��ø O © ù L � w  úf $ '& ;äâ LAL $°q @a�&h
 �÷��ø O û ù L � úf $ �& ; for
�  ��Z
 �	X

All these series are uniformly and absolutely convergent in their domains. Moreover, straight-
forward bounds on the Cauchy transform show that there exists a constant

í ��� depending
on � only, such that for

¥ 
 I ;a| ,� â S  $ �& � ï í�5�  � 7 I u � � ; for
�  ��Z
 I u ��; and

� â S L $ '& � ï í�P�  � 7p� � ; for
�  �[Z
 ��X
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We emphasize that in each of the regions above functions â S�ê have their own meaning, and
are not obtained in general by analytic continuation from one domain to another.

Once we have computed â , we may replace its expression in (2.12) in order to find

ª
. It should be performed independently in each region. For instance, in the domain

È � ,áÃ$ �&%
 $Ü> ^ $ (�@a�&au Ú & ÀsÁ , Ë $ �&%
)» , ÂM$ '&%
� �[f À�Á , so that

ª $ '&h
 â·$ '& $  f >]^�$ (�@A'&Au Ú & À�Á
üG â  A $°q @a�&� f >]^`$ (�@a�&au Ú â  L $°q @a�& Ú u $  f >]^`$ (�@a�&A&â L  $°q @a�&� f >]^`$ (�@a�&au Ú â LAL $°q @a�& Ú u $  f >]^`$ (�@a�&A& W¹X
Analogous computations are easily completed in the rest of the regions.

All the information about the parameters of the orthogonal polynomials is codified in the
first column of

ª
: its $ I ; I & entry gives us t f , that evaluated at d
 � yields the Verblunsky

coefficients, while the $c|F; I & entry at �
 � is related to the leading coefficient of e�f'�  :ª L  $R� &·
 7²| K i Lf'�  . Hence, we have obtained the following theorem, that has been proved
in [12]:

THEOREM 2.1. Let ( be a strictly positive analytic weight on the unit circle �  , the
constant � as defined in (2.2)–(2.3), and constant � with � � � � I fixed. Then with the
notations introduced above, for every q � � sufficiently large the following formulas hold:¥ & t f $ �&h
 ÌÍÍÍÍÎ ÍÍÍÍÏ

Ú �   f > ^ $ (�@a�& â. A v$°q @A'& ; if
�  � � I u � @Ú �   f >]^`$ (�@a�& â  A $°q @A'& 7 Ú²â  L $°q @a�&> \ $ (�@a�& ; if � ���  ��� I u � @7 Ú/â  L $°q @A'&> \ $ (�@a�& ; if
�  �'� �!X(2.16) ¥Û¥ & x f 
 Ú L â  L $°q * I @ � & X(2.17) ¥Û¥Û¥ & i Lf 
 Ú L| K â LaL $Rq * I @ � & X(2.18)

REMARK 2.2. It is easily seen that the method we have just described is valid also if we
replace the condition of positivity of ( on �� by the requirement that its winding number on�	 is zero. In such a case we can assure that ý B 6 t f 
 q only for sufficiently large q ’s, but
the rest of the argument remains the same.

Before we analyze some implications of these formulas let us look more carefully at the
scattering function � and at the iterates of its Cauchy transforms used in the definition of â .
Following notation of [18, Section 6.2], let3P4,6 ( $ �&	
 ÷��þvÿ��� �  �
be the Laurent expansion (equivalently, the Fourier series) for

3P4,6 ( . Then straightforward
computation shows that�:$ (�@A'&�
�B+CFE Ñ w��÷��ø. � �� �  � 7 �� � �  � ��� Ò 
)BDCFE Ñ w��÷��ø  � �� �  � 7 �� �  � ��� Ò X
Let

(2.19) �:$ (�@a�&	
 w.�÷�Dø �Ç� $°� & �  � and I�å$ (�@a�& 
 w��÷��ø � � G I� W �  �
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SZEGŐ POLYNOMIALS: A VIEW FROM THE RIEMANN-HILBERT WINDOW 377

be the Laurent expansions of � and I u � in the annulus � ���  �{� I u � , respectively. Taking
into account that

� �å$ (�@a�& � 
 I on �  ,
(2.20) GÅI� W � 
 $°� & � � ; and

w��÷��ø �Ç� $°� & � w l $R� & � 
 ¢ I ; if n 
 �r;�{; if n ��� � � �'�%X
Denote by Â Lw the Hardy class, and Â L� def
 � L	� Â Lw . Let us denote by 
 w and 
 � the Riesz
projections onto Â Lw and Â L� , respectively, and ½ f $ �& def
� f �:$ (�@A'& . Then


 w $R½ f & $ '&�
 w��÷��ø �[f $à� & �  � w_f ; 
 � $R½ f & $ �&%
 ÷��� �Çf $°� & �  � w_f X
In particular,© ù  úf $ '&%
 ç \ f $ I &%
 ÌÍÍÍÎ ÍÍÍÏ

7 IÚ L 
 w $R½ f & $ �&%
 7 IÚ L w.�÷��ø �Çf $à� & �  � w_f � Â Lw ; if
�  ��� �!;IÚ L 
 � $Ü½ f & $ '&%
 IÚ L ÷��� �[f $R� & �  � w�f � Â L� ; if
�  � �j�!X

The series in the right hand side converge locally uniformly. Observe also that

(2.21) © ù  úf $R� &�
 7 IÚ L $R� & �Çf 
 7 IÚ L G]I� W f X
If we introduce the following composition of Hankel and Toeplitz operators, having ½�  f

as a symbol, � f � Â L���� Â L ; given by

� wf $c© &�
 7�
 w $R½ f 
 � $Ü½ �  f © &�& ;� �f $c© &�
 
 � $R½ f 
 � $R½ �  f © &A& ;
then © ù L � w  úf 
 ¢ � wf $c© ù L � �  úf���� & ; if

�  ��� �	;� �f $c© ù L � �  úf���� & ; if
�  � � �	;

where © ù L � �  úf���� represents the values of © ù L � �  úf in
� � �·� .

For û ù � úf we can obtain analogous formulas:û ù L úf $ '&%
 ç \ f $ û ù  úf &�
 ¢ 7/Ú � L 
 w $Ü½ f'û ù  úf & $ �&%
 7�
 w $Ü½ f 
 w $R½ �  f &A& $ '& ; if
�  ��� �	;Ú � L 
 � $R½ f'û ù  úf & $ �&	
 
 � $R½ f 
 w $Ü½ �  f &�& $ '& ; if
�  � � �	;

and û ù L � w L úf 
 ¢ � wf $ û ù L � úf���� & ; if
�  �'� �!;� �f $ û ù L � úf���� & ; if
�  � �j�!X

For instance, taking into account (2.20), for
�  �'� � ,û ù L úf $ �&%
 7�
 w $Ü½ f 
 w $R½ �  f &A& $ '&%
 7�
 w «® «® w��÷ê ø �Ç� $à� & ê  ê w_f ´¶ Ñ w��÷��ø f G I� W �  � �[f Ò ´¶
 7 ÷��� ê � ��� �[f $°� & ê $°� & �  ê � � 
 7 w��÷l ø O «® ÷��� �[f $°� & � w l $à� & � ´¶  l ;
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and by identities in (2.20) we can rewrite last formula as

(2.22) I * û ù L úf $ �&%
 w.�÷l ø O Ñ ÷��� �[f $°� & � w l $R� & � Ò  l ; �  ��� �!X
REMARK 2.3. There are some further relations and equivalent expressions that an in-

terested reader can easily derive. For instance, if we introduce the operator � f on
� L

with
kernel Ä f $ ¥ ;�� & def
 w��÷-³ø O $R� & � ù - w_f,w  w ê ú G I� W - w_fvw  w S 
 ÷��� �Çf'� ê $°� & � G I� W S � ê � � ;
then ç ^ f ì ç \ f $Ü© &%
£¢ 
 w � f $Ü© & ; if

�  ��� I u ��;7�� � � f $Ü© & ; if
�  � � I u ��;

and we can obtain expressions for © ù L � úf and û ù L � w  úf .

2.2. Asymptotic behavior of OPUC. Representation (2.16) is asymptotic in nature.
Using (2.15), it is immediate to show that for all sufficiently large q and for á 
 �r; I ;}|F;+XsX+X ,îîîîî â. A v$°q @A'& 7��÷��ø O © ù L � úf $ '& îîîîî ï í�5�  � 7 I u � � � ù L � w L ú f ; �  �[Z
 I u �!;
where the constant

í
depends only on � and á , but neither on q nor on  . Analogously,

(2.23)

îîîîî â� L $°q @a�& 7��÷��ø O © ù L � w  úf $ '& îîîîî ï í�5�  � 7p� � � ù L � w ¾ ú f ; �  �[Z
 �!;
where

í
has a similar meaning as above. These bounds show that (2.16) allows us to obtain

approximations of � t f � of an arbitrarily high order. We will concentrate only on the most
interesting domain including the critical circle � � and its interior (for a full analysis, check
[12]).

Let us discuss the consequences of truncating âg A and â� L in (2.16) at their first terms,â  a $Rq @A'&%
 I * � $R� L f & ;yâ  L $°q @a�&%
 7 I| K ¥ Ú L k 1rè �:$ (�@ ¯ & ¯ f¯.7  ",¯ *!� $°� ¾ f & ;
imposing some additional conditions on the analytic continuation of our weight ( (or function� ). We assume first that the critical circle � � contains only isolated singularities in a finite
number.

THEOREM 2.4 ([12]). Assume that there exists � ï ��" � � such that > ^ can be con-
tinued to the exterior of the circle � �$# , as an analytic function whose only singularities are
on the circle � � , and these are all isolated. Denote by %� �;sX+X+Xs;&%�' the singularities (whose
number is finite) of >d^ on ��� , � %  � 
��s�+��
 � % ' � 
 �:X
Then for � � � " � � there exist constants � ï md
Æm $°� " & � I and

í 
 í $°� " & ��* 9 such
that for � " ���  � ï � " and q � � ,
(2.24)îîîîî t f $ �& 7  f > ^ $ (�@a�&> ^ $ (�@ 9 & 7 > \ $ (�@ � &> \ $ (�@a�& '÷�Dø. )( B ô* ø,+ � G �:$ (�@ ¯ & ¯ f¯.7  W îîîîî ï í ÖÜ� f m f * � ¾ f × X
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Furthermore, for every compact set Ë ���%� there exist constants � ï m�
Ym $ Ëp& � I andí 
 í $ Ëñ& ��* 9 such that for Ê�¸Ë ,

(2.25)

îîîîî t f $ �& 7 > \ $ (�@ � &> \ $ (�@A'& '÷��ø  )( B ô* ø-+ � G �:$ (�@ ¯ & ¯ f¯g7  W îîîîî ï í ÖÜ� f m f * � ¾ f × X
If > ^ can be continued as an analytic function with a finite number of isolated singu-

larities to whole disc �	 , then we may take mH
 � in the right hand sides in (2.24)–(2.25).
Otherwise the right hand side in (2.25) may be replaced by an estimate of the form

í � f m f .
In order to isolate the zeros of t f , one must be able to analyze the approximation tot f afforded by (2.24) and (2.25). For example, zero-free regions may be determined by (i)

establishing zero-free regions for the approximation, and (ii) bounding t f away from zero
using the error estimates. Similarly, isolating the zeros can be done by first isolating the zeros
of the approximation, and then using a Rouche’ type argument for t f .

This theorem tells us that in general all the relevant information for the asymptotics oft f ’s in � � comes from the singularities of the exterior Szegő function > ^ on � � (that is,
from the first singularities of > ^ we meet continuing it analytically inside the unit disc), and
reduces the asymptotic analysis of t f ’s (at least, in the first approximation) to the study of
the behavior of the corresponding residues. In the case when all the singular points that we
met on ��� are poles, this analysis is more or less straightforward.

DEFINITION 2.5. Let % � �� be a pole of a function © analytic in
�  �F� I . We denote by� õ 3/. º ø-+g©g$ �& its multiplicity and say that % is a dominant pole of © if for any other singularity0

of © , either
� % � � � 0 � or

� % � 
 � 0 � , but then
0

is also a pole and� õ 3/.º ø,+ ©g$ �&21 � õ 3/.º ø-3 ©g$ '& X
In the sequel we use the following notation: for % � � and 4���� ,

(2.26) 576v$8% & def
8��d� � �²�  79% �'� 4��	X
THEOREM 2.6 ([12]). Assume that there exists � ï � " � � such that >]^ can be

continued to the exterior of the circle �	� # , as a meromorphic function whose only singularities
are on the circle Ä � . Denote by %  ;+X+XsXD;&% ' the poles (whose number is finite) of >Ê^ on �%� ,
and assume that the dominant poles of > ^ are %r �;+XsX+XD;:%<; , = ï!> , and their multiplicity is n .

Let 4]�j� . Then for � " ���  � ï �:7?4 , òu� Ð ' ��ø. 5 6 $@%F� & , and q � � ,
(2.27)t f $ '&%
 > ^ $ (�@a�&>]^�$ (�@ 9 &  f * > \ $ (�@ � &>]\Û$ (�@a�& ;÷��ø  G qn 7 I W % f'� l w  � > \ $ (�@ %F� &BA> ^ $ (�@ %F� &% � 7  *?C f $ '& ;
where A> ^ $ (�@ %'� &ò
 35�P� º � + � > ^ $ (�@A'& $  7D%F� & l ,   
 I ;+XsX+XD;E= . There exist a constant� ��íÆ��* 9 independent of q and 4 , and a constant � � m�
)m $F4 & � I , such that� C f $ �& � ï ÌÎ Ï

í ÖÜ� f m f * � ¾ f × ; if n 
 I ;í4 l �  q l � L � f ; if n 1 |�X
Furthermore, for every compact set Ë ��� � there exists a constant

í 
 í $ Ëñ& � 9
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such that for Ê�¸Ë , and q � � ,îîîîî Ú·> \ $ (�@a�&% fF� l w   G qn£7 I W �  t f $ '& 7 ;÷��ø  > \ $ (�@ %F� & A> ^ $ (�@ %F� &% � 7  Q LaN SRù f'� l w  ú T � îîîîî(2.28) ï ÌÎ Ï
í m f ; if n 
 I ;í q ; if n 1 |�;

where

(2.29) V, 
 I ; and Vv� 
 I| K $@G ( 6 %F�å79G ( 6 %F & ;   
 |F;sX+XsXD;H=hX
In particular, on every compact set Ë �)� � , for all sufficiently large q polynomials t f can
have at most =�7 I zeros, counting their multiplicities.

Observe that this result is applicable to weights of the form ( $ �&	
 � I $ '& â/$ �& � L , d� �! ,
where

I
is a rational function with at least one zero on � � (or one pole on �  �� � ), and â is

any function holomorphic and
Z
 � in any annulus, containing � � ï �  � ï I u ��� .

By means of (2.27) we may show also that under assumptions of Theorem 2.6 the vast
majority of zeros approaching the critical circle � � does it in an organized way, exhibiting
an equidistribution pattern: if zeros  ù f úê of t f can be numbered in such a way that, roughly
speaking, �  ù f úS � 
 � G I * Iq 3P4,6 G qn£7 I W *!� G Iq W·W¹;
and G ( 6 �  ù f úS w ê � 7JG ( 6 �  ù f úS � 
 | K �q * � GMIq L W
(again, we refer the reader to [12] for details). This is also an analogue of the interlacing
property of the zeros of orthogonal polynomials on the real line. Moreover, (2.28) allows us
to describe the accumulation set of zeros of � t f � ’s inside �h� . For instance, if all V � ’s in
(2.29) are rational, this set is discrete and finite. Otherwise, as it follows from Kronecker-
Weyl theorem, it can be a diameter of �%� or even fill a two dimensional domain.

The situation gets much more complicated if the first singularity that we meet contin-
uing >]^ analytically inside is more severe. Consider the simplest example of an essential
singularity on ��� :
(2.30) ( $°¯ &�
 îîîî BDCFE G I�Å7p¯ W îîîî L ;o¯ � �	 .;
with � � � � I . Observe that its inverse, I u`( , satisfies also the conditions of Theorem 2.4.
However, the behavior of the zeros of the OPUC for ( and I u`( is qualitatively different,
check Figure 2.2.

In a few words, the explanation for this phenomenon is the following. Observe that in
the case of an essential singularity of � the asymptotic behavior of the Cauchy transform© ù  úf $ �&%
 7 I| K ¥ Ú L k 1 è ¯ f �:$ (�@ ¯ &¯g7  ",¯
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FIG. 2.2. Zeros of KMLON for weights P (left) and �A�:P (right), with P given in (2.30) and QSRò�A�$T .
is not as simple as when the only singular points are poles. In fact, the leading term of the
asymptotics will come now from a dominant saddle point ofU f $R¯ & def
 3P4,6 ¯ * Iq 3P4,6 �:$ (�@a�&
lying close to the singular point of � , ¯ 
 ¯ w , which is the solution of the equation
(2.31)I ¯ 7 Iq * I G ¯��¯g7 I * I¯ 7ñ� W 
 � satisfying ¯ w 
 � *WV �q * I *�� G�Iq W¹;oq?� 9<;
where we take the positive square root. It is possible to show that the zeros of the orthogonal
polynomials (at least those not staying to close to �
 � ), will approach the level curve

(2.32) X B $ U f $ '& 7 U f $R¯ w &�&�
 Iq 3P4,6 G I|<Y K � ¾ �EZq ¾ �&Z WY;
and the error decreases with q . However, for the weight I u`( we will have two dominant
saddle points, and the different structure of the level curve (2.32) for weights ( and I u`(
explains the different result of the numerical experiments (see Figure (2.3)).

2.3. Verblunsky and leading coefficients. Let us finish this Section with some com-
ments about the behavior of the notorious coefficients related to the OPUC.

Evaluating the polynomial t fvw  or any of its approximations at the origin we obtain
information about the Verblunsky coefficients. For instance, a combination of (2.17), (2.21),
and (2.23) yields the following estimate of the Verblunsky coefficients x f :

PROPOSITION 2.7 ([12]). Let ( be a strictly positive analytic weight on the unit circle�  . With the notation introduced above and for each q � � ,

(2.33) x f 
 7 G I� W fvw  *!� $°� ¾ f & ;
where $ I u � & fvw  is the corresponding Laurent coefficient of I u � in (2.19).



ETNA
Kent State University 
etna@mcs.kent.edu
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FIG. 2.3. Left: zeros of KM_ for P given in (2.30) with Q`R �A�$T and a�Rcbed , along with the level curvesfMgihkj _ hmlonqprj _ hms \ n8n R9d , fMgehtj _ hklonuprj _ hms \ n@n Rwv_rxzye{�| v}O~ ��� Á é��_ Á é���� and �t� hkj _ hml�nup�j _ h/s \ n8n R9d .
Right: the same, but for the weight �A�:P . Observe that the level curve (2.32) has now two components.

This fact has the following reading: consider the generating function of the Verblunsky
coefficients, � $ '&%
 �÷f ø O x f  f X
Then the Maclaurin series of

�
and 
 w $�7 'u �:$ '&�& match up to the

� $R� ¾ f & term. In conse-
quence, we have

PROPOSITION 2.8. Function
� $ �& * �:$ (�@A'& ;

defined in a neighborhood of �� , can be continued as a holomorphic function to the annulusI �Æ�  �r� I u � ¾ . This fact has been established independently by Simon [17] and Deift and
Östensson [6].

If the only singularities on � � are dominant poles, we can use formula (2.28) in order to
derive the asymptotic behavior of x f ’s:

PROPOSITION 2.9 ([12]). Under assumptions of Theorem 2.6, the Verblunsky coeffi-
cients satisfyx f 
 7 ;÷��ø  G q * In 7 I W % f'� l w  � > \ $ (�@ %F� & A> ^ $ (�@ %F� & * ¢ � $R� f m f & ; if n 
 I ;� ÖRq l � L � f × ; if n 1 |�X

That is, in the situation when the first singularities of > ^ met during its analytic contin-
uation inside are only poles, the Verblunsky coefficients are asymptotically equal to a com-
bination of competing exponential functions with coefficients that are polynomials in q . We
can compare it with the case of the essential singularity considered before: for the weight (
given in (2.30),x f 
 7 I|<Y K¸¯ fw �:$ (�@ ¯ w & � �q � ¾ �&Z G I * � G Iq  A� L W²WY;oq?� 9<;
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where ¯ w � � is given by the equation (2.31).

A similar analysis can be carried out for the asymptotic expansion of the leading coeffi-
cients i f . By (2.18),i Lf 
 Ú L| K â LAL $°q * I @ � &g
 Ú L| K � I * û ù L úf,w  $Ü� & * � $R� Z f & � X
Taking into account (2.22), we arrive at

PROPOSITION 2.10. For the leading coefficient i f the following formula holds:

(2.34) i Lf 
 Ú L| K ÷��� �[f'�  � $°� & � � L * � $°� Z f &�
 Ú L| K «® I 7 ÷��� �[f'�  � $à� & � � L ´¶ * � $R� Z f & ;
where $°� & � ’s are the coefficients of the Laurent expansion of � in (2.19). Observe that we
can write this identity also in terms of the Riesz projections:i Lf 
 Ú L��� 
 � ÖÜ½ �  fvw  × �� L��� ù 1{2 ��� � º � ú *!� $°� Z f & X
Formula (2.34) shows that35�P�f i Lf 
 Ú L| K ; and i Lfvw  7 i Lf 
 Ú L| K � $°� & �Çf'�  � L *!� $°� Z f & ;
in accordance with (2.33) and the well known fact thatIi Lfvw  7 Ii Lf 
 7 � x f � Li Lf X

Summarizing, we see that the Laurent coefficients of � (or of I u � ) contain surprisingly
good approximations of two main parameters of the OPUC: they match asymptotically the
Verblunsky coefficients, and the partial sums of the squares of their absolute values represent
(up to a normalizing constant) the leading coefficient of the orthonormal polynomials.

3. Weight with zeros on �  . Let us analyze the change of the behavior of the orthogonal
polynomials if we allow zeros of the weight on the unit circle. In other words, we consider
now a weight of the form

(3.1) �¹$ '& def
�( $ '& l���ø. �  7�%F� � LH� � ; d� �! ;
where % � � �  , � � 1 � ,   
 I ;sX+XsXD;�n , and ( is an analytic and positive weight on �  ,
such as considered in Section 2. Without loss of generality we assume that ( is analytic and
non-vanishing in the annulus � ���  ��� I u � .

According to Nevai and Totik [15], the Verblunsky coefficients no longer have an expo-
nential decay, neither the bulk of zeros accumulate on an inner circle, but how many of them
stay inside? And for those approaching the unit circle, does the rate depend on the “orders”�[� ? And how can we extend the Riemann-Hilbert method, that so nicely worked for us in the
analytic situation, to the case of a weight of the form (3.1)?
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3.1. Steepest descent analysis. Matrixª $ '&%
 «® t f $ �& I| K ¥ k 1 2 t f $°¯ & �¹$°¯ & "#¯¯ f $°¯ 7 '&7²| K i f'�  e �f'�  $ '& 7 i f'�  ¥ k 1�2 e �fF�  $R¯ & �¹$R¯ & ",¯¯ f $R¯.7 '&
´+µµµ¶ ;

solves the Riemann-Hilbert problem (2.4), with ( replaced by � . It is the unique solution if
we add additional requirements at the zeros of the weight:

ª $ �&%
 � G I II I W ; as  ��%F�'; d� � �v�	 ';y  
 I ;+XsX+XD;AnpX
Nothing hinders performing Step 1: with Â defined by (2.5) we put Ä def
 ª Â , so that Ä
becomes holomorphic in

� �`�� (including the infinity) andÄ w $R¯ &%
 Ä � $R¯ &HG ¯ f �¹$°¯ &� ¯ �Çf W¹;o¯ � �  X
However, in order to get rid of the oscillatory behavior of the diagonal entries of the jump
matrix the lenses we opened in Step 2 of Section 2 are no longer valid, at least because �
has singularities on �  . Since they are in a finite number, we can modify this step by opening
lenses inside and outside �  , but “attached” to the unit circle at % � ’s (see Figure 3.1). This

� v
ö \ö ^

È O È w È � È ����

� v
� }

FIG. 3.1. Opening lenses.

deformation of the contours makes the definition of Ë in (2.6) consistent (after replacing (
with � ), in such a way that É def
 Ä Ë has the jumpsÉ w $°¯ &	
 É � $°¯ &[Ø Ù $°¯ & ;y¯ � ö \ Ð �! Ð ö ^ ;



ETNA
Kent State University 
etna@mcs.kent.edu
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with

(3.2) Ø'Ù $°¯ &�
 ÌÍÍÍÍÍÍÍÍÍÎ ÍÍÍÍÍÍÍÍÍÏ
Ñ � �¹$°¯ &7 I u �¹$R¯ & � Ò ; if ¯ � �  ;Ñ I �¯ f u �¹$°¯ & I+Ò ; if ¯ � ö'\Ü;Ñ I �I u $R¯ f �¹$°¯ &�& IDÒ ; if ¯ � ö ^ X

STEP 3: Our next goal is to handle the jump on �/ via the global parametrix á built
in Section 2 using the Szegő function. However, for � as in (3.1) the Szegő function is,
in general, no longer single-valued in the neighborhood of %�� ’s, and a short digression is
convenient in order to discuss briefly the form of this function and its multivaluedness.

For the sake of brevity we define the set of singularities of the weight, � def
�� %r �;sX+X+X+;&% l � .
We fix for what follows � � m � I 7¡� , such that additionally m �  ¾ �d�P� S��ø ê � % S 7�% ê � , so that
all neighborhoods 5��v$8%'� & (see definition (2.26)) are disjoint. Denote also

(3.3) � � def
���]� � �²�  79% � � 
�m ��;ä  
 I ;sX+XsXD;�n�;
as well as 5 def
 Ð l ��ø. 5 � $@% � & . Furthermore, given a subset   � � and a value % � � we will
use the standard notation % �   
8� %#¿ � ¿ �   � ; consistently, � �   def
 Ð l ��ø. $@% � �   & .

In order to construct explicitly the Szegő function for the modified weight � we intro-
duce the generalized polynomial

(3.4) ¡F$ �& def
 l���ø  $  7�%F� & � � � L
and select its single-valued analytic branch in

� ��$ Ð l ��ø. %F� � Þ I ; * 9 &�& by fixing the value of¡F$R� & . With this convention we can write the Szegő functions for the modified weight � :

(3.5) > \ $�� @A'&h
 ¡ L $ '&¡ L $R� & > \ $ (�@A'& ;ä> ^ $�� @A'&%
 > ^ $ (�@A'&¡ L $R� & ¡F$ I uq¢,& L X
In particular, > \ $�� @A'& is holomorphic in �  �� � ��$ Ð l �Dø. %F� � Þ I ; I u � &A& , > ^ $�� @A'& is holomor-
phic in ��d� � �²�  � �j�{�v��$ Ð l �Dø. % � � $R��; I ß°& , and

(3.6) I>]\c$�� @ � & 
 I>]\Ü$ (�@ � & 
 > ^ $8� @ 9 &�
 > ^ $ (�@ 9 &�
 Ú¡���/;
where Ú has been defined in (2.7). Furthermore, with the orientation of the cuts toward infinity
we have for   
 I ;+XsX+XD;An :Þ > \ $8� @A'&Ûß w 
 Q � LaN S � � Þ > \ $8� @a�&³ß � ; d� %F� � $ I ; I u � & ;Þ > ^ $8� @A'&Ûß w 
 Q � LaN S � � Þ > ^ $�� @A'&Ûß � ; d� %F� � $°�[; I & X(3.7)

By definition (1.6) and formulas (3.5) we have�:$�� @A'&%
 >]\c$8� @A'& >]^�$8� @a�&%
 Ñ ¡F$ '&¡ L $Ü� & ¡F$ I u£¢,& Ò L �:$ (�@a�& ;
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that is also analytic and single-valued in the cut annulus � � �¨�  �g� I u �{�v��$t� � $R��; I u � &�& ;
furthermore, with our assumptions on m , function

(3.8) A� � $8� @A'& def
 ¢ Q N S � � �:$�� @A'& ; if d� 5¤�,$8%F� & and G ( 6 $ �& �cG ( 6 $8%F� & ;Q � N S � � �å$8� @A'& ; if d� 5¤�,$8%F� & and G ( 6 $ �& � G ( 6 $8%F� & ;
is holomorphic in 5¤�v$8%'� & ,   
 I ;+XsX+XD;An . So, we can define¥ � def
 A�.�F$8� @ %'� &!� �¸;y  
 I ;+XsX+XD;AnÆX

Now let us get back to the global parametrix áÃ$ '&�
 áÃ$�� @A'& , given by formula (2.9),
that is well defined, has the same jumps on �� as ÉÊ$ '& , and by (3.6), it exhibits the same
behavior at infinity. Hence, ÉÊ$ '& á �  $ �& tends to » as  � 9 , and is holomorphic in� �F$°ö ^ Ð ö \ & . The jump on these curves is again exponentially close to identity, except in a
neighborhood of the zeros % � of the weight � . This is a new feature, and we have to deal
with this problem separately.

STEP 4: local analysis. Let us pick a singular point %{� � � . For the sake of brevity
along this subsection we use the following shortcuts for the notation: % def
 %F� , � def
 �Ç� ,0 def
 57�#$@%F� & , � def
 �+� (where �s� were defined in (3.3)), and

0 w def
���Ê� 0 � G ( 6 $ '& �¦G ( 6 $@% & � ,0 � def
���¡� 0 � G ( 6 $ �& � G ( 6 $@% & � . We also write AÈ ê def
 È ê2§ 0 , where � �M� � ; B ;A�{;}9�� , and
analogous notation for curves: A�! def
 �	 § 0 , etc.

The goal is to build a matrix � such that it is holomorphic in
0 �r$R�/ Ð ö \ Ð ö ^ & , satisfies

across A�	 Ð Aö \ Ð Aö ^ the jump relation � w 
 � � Ø Ù , with Ø Ù given in (3.2), with the same
local behavior as É close to p
 % , and matching á on � . This analysis is very technical,
and we refer the reader to [11] for details, and describe here the main ideas in a very informal
fashion.

ö \ö�\
ö ^

ö'^È O
È O

È � È �È ^
È ^

È \
È \¨ \

¨ ^
�

� v

FIG. 3.2. Local analysis in � .
As a first step we reduce the problem to the one with constant jumps. Let us denote¨ \ def
 % � $ I 7 m ; I & and

¨ ^ def
 % � $ I ; I * mv& , oriented both from ò
 % to infinity (see Fig.
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3.2). Let (  A� L $ �& and   �� L denote the principal holomorphic branches of these functions in0
, and �  �� L $ �& def
 ¡F$ '& ¡F$ I u #&'(  A� L $ �& , with ¡ defined in (3.4). Then �  �� L is holomorphic

in
0 �©% � $ I 7 m ; I * mv& , and according to (3.7),�  A� Lw $ �&�  A� L� $ �& 
 Q � N S � on

¨ \#; and
�  A� Lw $ �&�  A� L� $ �& 
 Q N S � on

¨ ^ X
Thus, if we define

ª $F� @a�& def
 ÌÍÍÍÎ ÍÍÍÏ
Q N S � �  A� L $ '&± f � L ; d� $ AÈ ^ Ð AÈ � & § 0 w ;Q � N S � �  A� L $ �&� f � L ; d� $ AÈ ^ Ð AÈ � & § 0 � ;Q � N S � �  A� L $ �&� �Çf � L ; d� $ AÈ \ Ð AÈ O & § 0 w ;Q N S � �  A� L $ '&± �[f � L ; d� $ AÈ \ Ð AÈ O & § 0 � ; ;

and set

(3.9)
I $ '& def
 �Ê$ '& ª $F� @a�& À Á ; �� 0 �r$ ¨ \ Ð ¨ ^ Ð �	 Ð ö \ Ð ö ^ & ;

we get for
I

the following problem:
I

is holomorphic in
0 �r$ ¨ \ Ð ¨ ^ Ð �S« Ð ö'\ Ð ö'^ & , and

satisfies the jump relation
I w $ '&%
 I � $ '&}Ø�¬ $ '& , with

Ø<¬ $ '&%
 ÌÍÍÍÍÍÍÍÍÍÍÍÍÍÍÎ ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÏ

Ñ � I7 I � Ò ; if Ê� A�  ;Ñ I �Q � LAN S � I+Ò ; if Ê� $ Aö'\ § 0 w & Ð $ Aö'^ § 0 � & ;Ñ I �Q LaN S � IsÒ ; if Ê� $ Aö \ § 0 � & Ð $ Aö ^ § 0 w & ;Ñ Q N S � �� Q � N S � Ò ; if Ê� ¨ \ Ð ¨ ^ X
Moreover,

I
has the following local behavior as  �% :
I $ '&%
 ÌÍÍÍÍÎ ÍÍÍÍÏ

� Ñ �  7�% � � �  7�% � � ��  7�% � � �  7�% � � � Ò ; if d�9AÈ O�Ð AÈ � ;� Ñ �  7�% � � � �  79% � � ��  7�% � � � �  79% � � � Ò ; if d� AÈ ^ Ð AÈ \cX
Consider in

� �r$±7:9);A� & the transformation

(3.10) ® 
 7 ¥.q | 3P4,6 $ Fu % & ;
(we omit the explicit reference to the dependence of ® from % and q in the notation), where we
take the main branch of the logarithm. This is a conformal 1-1 map of

0
onto a neighborhood

of the origin. Moreover, �! is mapped onto ¯ oriented positively,
¨ \ Ð ¨ ^ are mapped on

the imaginary axis, and we may use the freedom in the selection of the contours, deforming
them in such a way that ©g$ Aö \ & and ©g$ Aö ^ & follow the rays � G ( 6 ® 
�° N Z ° K � . After this
transformation we get a Riemann-Hilbert problem on the ® -plane that has been studied for
the local analysis of the generalized Jacobi weight on the real line. We take advantage of
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the results proved therein in order to abbreviate the exposition, and refer the reader to [20,
Theorem 4.2] where the solution

U $F� @ ® & is explicitly written in terms of the Hankel and
modified Bessel functions.

Since a left multiplication by a holomorphic function has no influence on the jumps, and
taking into account (3.9), we see that matrix � can be built of the form�Ê$ '&h
²± $ �& U $F� @ ® & ª $@� @A'& � ÀsÁ ;
where ± is any holomorphic function in

0
. An adequate selection of ± is motivated by the

matching requirement �Ê$ '& á �  $ �&]
 » *³� $°q �  & on the boundary � , and is constructed
analyzing the asymptotic behavior of the matrix-valued function

U $@� @ ® & at infinity. Let us
summarize the results of this analysis:

PROPOSITION 3.1. Let

(3.11) ± $ �& def
 Ñ Aâ_�r$8� @A'&Ú L ¥ % f Ò À Á � L IY | G ¥ I7 I 7 ¥ W ;
where Aâ � $�� @+��& has been defined in (3.8), and we take the main branch of the square root.
Then matrix �Ê$ �&%
 �Ê$@%[;E� @A'& ,
(3.12) �Ê$8%[;E� @a�& def
¦± $ �& U $@� @ ® & ª $@� @A'& � ÀsÁ ;
with ® given by (3.10), satisfies:

(i) Éd$ �& � �  $ �& is holomorphic in
0
;

(ii) for d� � ,
�Ê$ �& á �  $ '&%
:» * ¥ �|�® «® � 7/Ú � L % f A� $8� @A'&Ú L % �[f A� �  $�� @A'& 7B� ´¶ *!� GjIq L W¹X(3.13)

In particular, �Ê$ '& á �  $ '&%
�» *c� $Rq �  & for d� � .
STEP 5: asymptotic analysis. With the notation introduced in (3.3) and with �Ê$8%[;E� @a�&

defined by (3.11)–(3.12) let us take�Ê$ �& def
 �Ê$@%F�';&�[� @a�& for d� 5¤�,$8%'� & �F$Ü�	 Ð ö ^ Ð ö \ & ;y  
 I ;+XsX+X+;AnÆ;
and put â/$ '& def
 ¢ Éd$ '& á �  $ '& ; for d� � �r$@5 Ð �! Ð ö ^ Ð ö \ & ;Éd$ '& � �  $ '& ; for d� 5]�F$Ü�	 Ð ö ^ Ð ö \ & X
Matrix â is holomorphic in the whole plane cut along ö Ð í , whereö def
 $àö'^ Ð ö�\ & �´5 and

í def
 Ð l ��ø. � �
(see Fig. 3.3), â/$ '& � » as  � 9 , and if we orient all �s� ’s clockwise, â w $R¯ &/
 â � $R¯ &}Ø�ã ,
with Ø ã $R¯ &�
 ÌÍÍÍÍÍÍÎ ÍÍÍÍÍÍÏ

�Ê$ �& á �  $ '& ; if d� í ;Ñ I �Ú L u $  f �:$�� @A'&�& IsÒ ; if d� ö�^D�©5�;Ñ I 7  f �:$8� @a�&au Ú L� I Ò ; if d� ö�\°�©5�X
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ö \ö ^
µ �

µ v
µ }

FIG. 3.3. Jumps of ¶ .

It is clear that the off-diagonal terms of Ø ã on ö'\à�´5 and ö'^D�©5 decay exponentially fast. On
the other hand, by (3.13), Ø ã $ '&%
�» *?� $ I u q & for d� í . So the conclusion is that the jump
matrix Ø ã 
�» * · $ I u q & uniformly for Ê� ö Ð í . Then arguments such as in [4, 5, 7] lead
to the following conclusion:

PROPOSITION 3.2. Matrix â satisfies the following singular integral equation:â/$ '&%
)» * I| K ¥ 0 $ Ø�ã $R¯ & 7 »�& "#¯¯ 7  * I| K ¥ 0 $câ � $R¯ & 7 »'& $ Ø�ã $°¯ & 7 »'& ",¯¯.7  ;
where we integrate along contours ö Ð í with the orientation shown in Fig. 3.3. In particular,â/$ '&h
)» 7 l÷��ø  I| K ¥ k�¸ � $@�Ê$R¯ & á �  $R¯ & 7 »'& "#¯¯ 7  *!· G Iq L W
locally uniformly for d� � �F$°ö Ð í & X

Now formula (3.13) and the residue theorem yield for Ê� � �F$°ö Ð 5 & ,
(3.14) â·$ '&g
�» * Iq l÷��ø. % � � �%F�²7  «® � � 7/Ú � L % f � ¥ �Ú L % �[f� ¥ �  � 7B�Ç� ´¶ *!· G Iq L W�X
We are ready for the asymptotic analysis of the original matrix

ª
(and in particular, of its

entries $ I ; I & and $Ü|r; I & ).
Unraveling our transformations we have

ª $ '&%
 ¢ â/$ '& áM$ '&±Ë �  $ '& Â �  $ '& ; if d� � �´5�;â/$ '& �Ê$ �&�Ë �  $ '& Â �  $ '& ; if d� 5�X
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� v
ö \ö ^
È O È \ È ^ È �µ �

µ v
µ }

FIG. 3.4. Domains for the asymptotic analysis.

We must analyze the consequences of these formulas in each domain (see Fig. 3.4).
We will do it only for the interior domain

È O �©5 , whereáÃ$ '&%
¨G � >]\Û$8� @a�&au Ú7/Ú u >]\c$�� @A'& � W ; Ë $ �&h
 ÂÃ$ '&%
�» X
Hence,

ª $ '&%
 â/$ �& áÃ$ '& , so that
ª  a ,$ '&%
 7 Ú>]\c$�� @A'& â� L $ '& ;

ª L  v$ '&%
 7 Ú>]\c$8� @A'& â LaL $ �& X
Taking into account (3.6) and (3.14), and recalling that t f 
 ª  a we obtaint f $ �&h
 >Å\Û$8� @ � &> \ $8� @a�& Iq Ñ l÷��ø. � � ¥ �%F�:7  % fvw  � *¹· G Iq W Ò ;
valid uniformly in this domains. It shows in particular that for every compact set Ë �Æ�� 
there exists á 
 áÃ$ Ëp&:� � such that for every q 1 á , each t f has at most n<7 I zeros
on Ë , and these zeros should be asymptotically close to those of the rational fraction

(3.15)

l÷��ø. �[� ¥ �%F�²7  % fvw  � X
Evaluating t f $ �& at ¸
 � we can obtain asymptotics for the Verblunsky coefficients x f ; I
leave this as an exercise for an interested reader.

REMARK 3.3. Orthogonal polynomials with respect to non-analytic (but smooth) and
non-vanishing weights on �� were studied in [13], using a different (but complementary)
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method based on the º problem. There are very interesting similarities with our case. For
instance, both zeros of the weight and the jump discontinuities of its derivatives have the same
effect on the asymptotics of t f ’s inside the unit disk �� . More precisely, according to [13], if» 
 354#6 $�� &�� í  , and

» " " has jump discontinuities at %r� � �	 ,   
 I ;+XsX+XD;An , then with a
proper normalization, t f $ '& for  on compact subsets of �	 will be asymptotically close to
rational fractions of the form (3.15), with the basic difference that now coefficient �_� stands
for the magnitude of the jump of

» " " at %F� (cf. formula (3.23) in [13] and the fact that for the
scattering function on �� , �jÖ�� @ Q SPT × 
 Q�¼ ùPT ú ;
where

È
is defined by (1.21) in [13]). These similarities might have as a common ground the

duality of both cases: for � in (3.1), the imaginary part of
»

has jumps proportional to � � ’s,
while in [13] the finite jumps correspond to X B $ » " " & .

Finally, recall that the leading coefficient i f of the orthonormal polynomial e%f is ex-
pressed in terms of

ª
by

ª L  `$Ü� &�
 7²| K i Lf'�  . This yields immediately the following asymp-
totic formula: i Lf'�  
 Ú L| K Ñ I 7 Iq l÷��ø  � L� *!� G Iq L W Ò ;oq?� 9)X
This result has a consequence for the behavior of the Toeplitz determinants for � . If we
define the moments "'� def
 k º þ 1  �[f �¹$ �& � "  � ;
then the Toeplitz determinants are½ f $8� & def
 ý B .¤¾ $R" ê � S & fS � ê ø O�¿ X
It is known (see e.g. [18, Theorem 1.5.11]) that½ f $8� &½ f'�  `$�� & 
 Ii Lf X
Taking into account the asymptotics of i f , (2.8) and (3.6), we arrive at

THEOREM 3.4. Under the assumption above there exists a constant À depending on �
such that ½ f $�� &%
 À�$ � Þ | K (/ß°& f q,Á`Â �EÃ 2 � �� $ I *¹Ä $ I &�& ;oq?� 9<X
This formula is in accordance with the well known Fisher-Hartwig conjecture (see e.g. [2]),

proved for this case (but using totally different approach and giving an expression for À ) by
Widom in [21].
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