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Models with extra dimensions may give new effects visible at future
experiments. In these models, bulk fields can develop localized corrections
to their kinetic terms which can modify the phenomenological predictions
in a sizeable way. We review the case in which both gauge bosons and
fermions propagate in the bulk, and discuss the limits on the parameter
space arising from electroweak precision data.
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1. Introduction

Models with extra dimensions have received a lot of attention in the last
few years (see [1] for a review of their phenomenology). Besides being mo-
tivated by string theory, they provide new mechanisms to face longstanding
problems, such as the Planck to electroweak and electroweak to cosmolog-
ical constant hierarchy problems, the fermion flavour problem, symmetry
and supersymmetry breaking among others. The original brane world idea
in which only gravity propagates in the extra dimensions and matter and
gauge fields are bounded to a four-dimensional brane was soon extended to
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allow for gauge fields and even all matter fields propagating in the bulk of ex-
tra dimensions. Even in this case, lower dimensional submanifolds (branes,
domain walls, orbifold fixed points or planes, . . . ) are usually present in the
models. In Ref. [2] it was argued that in the original brane world model,
matter and gauge loop corrections to the graviton self-energy generate a cur-
vature term in the action localized at the position of the brane, which in turn
has striking phenomenological implications, with brane scientists observing
four-dimensional gravity up to cosmological distances even in the case of an
infinite flat bulk. Even if this particular model has strong coupling problems
problems [3], the idea of Brane localized Kinetic Terms (BKT) may have very
important phenomenological consequences not only for gravitational physics
but for any kind of bulk field. As a matter of fact, these terms are unavoid-
able in interacting theories with extra dimensions and lower-dimensional
defects. The reason is that translational invariance is broken by the defects,
and this allows for localized divergent radiative corrections, which must be
cancelled by the corresponding localized counterterms. In particular, BKT
are induced in this way. Their coefficients run with the scale, so they can-
not be set to zero at all energies. This suggests that one should include
them already at tree level, which means that they are not necessarily loop
suppressed. The generation of BKT by radiative corrections in orbifolds
without brane couplings at tree level was explicitly shown in a particular
example in [4].

A detailed study of the implications of general BKT for bulk fields of
spin 0, 1/2 and 1 has been carried out in Ref. [5]. There, it was shown that
some of the BKT one can write have a smooth behaviour as they get small,
whereas others give rise to a singular behaviour in the spectrum and have to
be dealt with using classical renormalization order by order in perturbation
theory. In the following, we discuss in a pedagogical manner the properties
and phenomenology of fermions [5, 6] and gauge bosons [7, 8], studying in
some detail the case in which both have BKT. (For a compendious review
of BKT with a more complete list of references, see [9].) For simplicity, we
will focus on BKT which do not need classical renormalization.

2. Brane kinetic terms for bulk fermions and gauge bosons

We consider a five-dimensional model with the fifth dimension y com-
pactified on an orbifold S1/Z2, that is to say, a circle of radius R with op-
posite points identified: y ∼ −y. The four dimensional subspaces y = 0, πR
are fixed under the Z2 action. From now on we will call these fixed hyper-
planes “branes”, although they are static non-fluctuating objects. As argued
in the introduction, the action contains in general kinetic terms localized on
these branes, besides the usual Poincaré invariant ones.
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Let us discuss fermions first. In five dimensions they are Dirac spinors
with two chiral components from the four-dimensional point of view: Ψ =
ΨL + ΨR, γ5ΨL,R = ∓ΨL,R. Invariance of the bulk kinetic term requires that
the left-handed (LH) and right-handed (RH) components have opposite Z2

parities. We choose the LH and RH components to be even and odd, respec-
tively. Taking into account possible BKT, the general kinetic Lagrangian
(with gauge couplings) for a fermion reads

L =
(

1 + aL
I δI

)

ψ̄Li 6DψL +
(

1 + aR
I δI

)

ψ̄Ri 6DψR −
(

1 +
bI
2
δI

)

ψ̄LDyψR

− bI
2
δI

(

Dyψ̄R

)

ψL +
(

1 +
cI
2
δI

)

ψ̄RDyψL +
cI
2
δI

(

Dyψ̄L

)

ψR , (1)

where a sum over I = 0, π is understood and δI ≡ δ(y − IR). The BKT
which contain y-derivatives, i.e., those proportional to bI and cI , give rise to
the non-analytical behaviour we have mentioned in the introduction, which
has its origin in the fact that the branes in our orbifold are lower-dimensional
subspaces, i.e., they have zero width. This situation may change at small
distances in a string theory construction, as the brane gets effectively a
microscopic substructure. Within an effective field-theoretical approach, a
smooth, well-behaved theory can be recovered implementing at the classical
level a renormalization which takes care of δ20-like singularities. We direct the
interested reader to Ref. [5] for the details. Here we simply disregard these
BKT setting b0,π = c0,π = 0. On the other hand, the terms proportional
to aR

I might naively be argued to vanish, based on the odd character of ΨR.
However, this is not necessarily so if ΨR is discontinuous at the branes, and it
turns out that this is the case when aR

I does not vanish. Nevertheless, in the
following we also take aR

I = 0, which is stable under radiative corrections,
to reduce the number of independent parameters in our analysis. Finally,
we work with massless fermions1. The spectrum in four dimensions can be
computed by inserting the Kaluza–Klein (KK) expansion of the field,

ΨL,R(x, y) =

∞
∑

n=0

fL,R
n (y)√
2πR

ψ(n)(x) , (2)

into the action, and requiring the kinetic terms to be diagonal and canoni-
cally normalized and the mass terms to be diagonal. This is achieved by the
following normalization and eigenvalue conditions:

πR
∫

−πR

dy (1 + aL
0 δ0 + aL

πδπ)
(fL

n )2

2πR
=

πR
∫

−πR

dy
(fR

n )2

2πR
= 1, (3)

1 In general, one could write Dirac mass terms with masses which are odd functions of

y. Such masses may arise from the vev of an odd scalar.
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and

∂yf
R
n = mn(1 + aL

0 δ0 + aL
πδπ)fL

n , (4)

∂yf
L
n = −mnf

R
n . (5)

The eigenvalue equations can be solved by iteration, which leads to a quad-
ratic equation for the even component,

∂2
yf

L
n = −m2

n(1 + aL
0 δ0 + aL

πδπ)fL
n , (6)

while the odd component can be obtained directly from Eq. (5). The result
is a massless zero mode only for the even component (therefore chirality is
recovered thanks to the orbifold projection) with a flat wave function,

fL
0 =

1
√

1 +
aL

0
+aL

π

2πR

, (7)

plus a tower of vector-like massive KK modes with oscillating wave functions

fL
n (y) = An[cos(mny) −

aL
0mn

2
sin(mny)] , (8)

and

fR
n (y) = An[sin(mny) +

aL
0mn

2
cos(mny)] . (9)

An is a normalization constant determined by Eq. (3). Notice that the BKT
make the odd component discontinuous across the branes. The masses are
determined by the following equation

(4 − aL
0a

L
πm

2
n) tan(mnπR) + 2(aL

0 + aL
π)mn = 0. (10)

As anticipated in the introduction, the presence of BKT modifies the spec-
trum. The modifications depend to a great extent on whether the sizes of
the BKT at both fixed points are comparable or not. If they are, the first
mode can be made arbitrarily light, with mass

m2
1 ∼ 2

aL
0 + aL

π

aL
0a

L
ππR

, (11)

and couplings to brane fields equal in size to the one of the zero mode
for aL

0,π ≫ R, whereas the rest of the massive modes have masses which
approach mn ∼ (n − 1)/R and decouple from the branes in that limit.
The wave function of the LH and RH components of the first KK mode
and the masses and relative couplings to the brane of the first four KK
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excitations of the even component are represented, respectively in Figs. 1
and 2 for the symmetric case aL

0 = aL
π . When one of the two BKT is

negligible with respect to the other, all KK modes behave similarly, with
masses approaching mn ∼ (n − 1/2)/R and couplings to the corresponding
brane increasingly small for large values of the BKT. In Figs. 3 and 4, we
represent the wave function of the first mode and the masses and couplings
to the brane of the first four KK excitations of the even component as a
function of aL

0 for aL
π = 0.
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Fig. 1. Wave function of the LH (left) and RH (right) components of the first KK

mode for different values of aL
0 = aL

π. The different lines correspond to a0/R =

0, 1, 2, 4 for f1(0) from top to bottom (on the left) for the LH component, and the

opposite for the RH one.
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Fig. 2. Masses (left) and LH couplings to the brane at y = 0 normalized to the

zero mode coupling (right) for the first few KK modes (n = 1, 2, 3, 4 from bottom

to top (left) and from top to bottom (right)) as a function of aL
0 = aL

π.

Let us now discuss the situation for gauge bosons in the S1/Z2 orb-
ifold [7]. The fifth component of a vector boson is forced to have Z2 parity
opposite to the one of the other components. Unless one is interested in
breaking (part of) the gauge group, the first four components must be taken
to be even. Breaking the gauge group by orbifold projections is a very in-
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Fig. 3. Wave function of the LH (left) and RH (right) components of the first

KK mode for aL
π = 0 and different values of aL

0 . The different lines correspond to

aL
0/R = 0, 1, 2, 4 for f1(0) from top to bottom (on the left) for the LH component,

and the opposite for the RH one.
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Fig. 4. Masses (left) and LH couplings to the brane at y = 0 normalized to the

zero mode coupling (right) for the first few KK modes (n = 1, 2, 3, 4 from bottom

to top (left) and from top to bottom (right)) as a function of aL
0 , when aL

π = 0 .

teresting possibility which has been exploited in GUT models [10], but here
we stick to even Aµ for definiteness. The most general kinetic Lagrangian is

L = −1
4(1 + aA

I δI)trFµνF
µν − 1

2(1 + cAI δI)trF5νF
5ν . (12)

In this case, gauge invariance forbids the most singular “b-like” BKT. The
terms proportional to cAI have no effect at all when treated in a non-
perturbative way, but give rise to singularities at high orders of pertur-
bation theory, which may be substructed by (classical) counterterms [5]. In
this second approach, a non-vanishing finite effect survives. Here, we simply
set cA0,π = 0 and focus on arbitrary coefficients aA

I . The gauge invariant KK
decomposition of (12) has been carried out in [5]. Working instead in the
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“axial” gauge A5 = 0 and expanding in KK modes the even components,

Aµ(x, y) =
∑

n

fA
n (y)√
2πR

A(n)
µ (x), (13)

we arrive at the same eigenvalue and orthonormality equations as the ones we
have obtained above for the even component of the bulk fermion when only
aL

0,π are non-vanishing [7]. The spectrum and wave functions are, therefore,
identical to the one we have just discussed for (even) fermions.

3. Phenomenology of brane kinetic terms

We have seen in the previous section how the presence of BKT affects the
masses and wave functions of the KK modes of bulk fermions and bosons.
To extract phenomenological implications, we need to compute the couplings
of the four-dimensional effective theory, which are given by the overlap of
wave functions (with are delta functions for fields on the branes) times the
five-dimensional couplings. The impact of BKT on Yukawa couplings can be
very relevant phenomenologically, as has been shown in [6]. Nonetheless we
will mainly concentrate on gauge couplings, as they affect directly the very
precisely measured electroweak observables, and have not been previously
studied when both bulk gauge bosons and bulk fermions have non-vanishing
BKT.

The gauge interactions of fermions can be obtained from the KK reduc-
tion of the fermionic Lagrangian, Eq. (1). They read

Lint = −
∑

mnr

gmnrψ̄
(m)
L γµA(r)

µ ψ
(n)
L , (14)

with effective gauge couplings given by

gmnr =
g5√
2πR

πR
∫

−πR

dy (1 + aL
I δI)

fL
mf

L
n f

A
r

2πR
. (15)

The phenomenologically relevant couplings are the ones of two fermion zero
modes to the KK excitations of gauge bosons,

g(00n)

g(000)
=

√

1 +
aA
0

+aA
π

2πR

1 +
aL

0
+aL

π

2πR

[

aL
0 − aA

0

2πR
fA

n (0) +
aL

π − aA
π

2πR
fA

n (πR)

]

. (16)

Note that these couplings vanish when aL
0 = aA

0 and aL
π = aA

π , and in partic-
ular in the limit of no BKT (due to KK number conservation).
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A fit to electroweak precision observables taking into account the mod-
ifications induced by the presence of the gauge boson KK modes results in
bounds on the compactification scale, as a function of the fermion and gauge
boson BKT. We adapt the methods of Ref. [8] to our particular case. Consid-
ering all gauge bosons to share the same BKT on each brane, with common
coefficient aA

I , and similarly for fermions, with coefficient aL
I , but allowing for

independent aA
I and aL

I , our model is described by the following parameters:
R, aA

I , a
L
I , g5, g

′

5 and v, where g5, g
′

5 are the gauge couplings of SU(2)L and
U(1)Y , respectively, and v is the vev of the Higgs boson, which we consider
localized at y = 0. The idea is to compute the corrections due to the extra
dimensions to all observables, fix three of our independent parameters in
terms of three observables and perform the fit as a function of the remaining
parameters. We fix g5, g

′

5 and v using α(Mz) ≃ 1/129, MZ ≃ 91.2GeV and
GF ≃ 1 × 10−5 GeV−2. All the observables are then expressed in terms of
them plus the compactification scale and the BKT. There are two types of
modifications due to the presence of extra dimensions, one is the usual four-
fermion interactions mediated by gauge boson KK excitations, the other is
due to the localized Higgs and can be traced to the different mixing of the
W and Z with their respective KK towers or, alternatively, to the fact that
if the KK expansion is performed including the localized Higgs vev, the Z
and W zero modes are no longer flat. All these modifications can be cap-
tured in the definition of effective oblique parameters Teff , Seff , Ueff (we call
them effective because they actually contain the leading non-oblique effects
as well). The localized Higgs effect only affects Teff whereas the others de-
pend on the couplings in Eq. (16) and therefore vanish in the limit aL

I = aA
I .

The KK contributions to S, T, U are determined by matching the effective
Lagrangian for zero modes, with fermion interactions rescaled to unity, to
the following generic Lagrangian with oblique corrections:

L = −1 −Π ′

WW

2g2
W+

µνW
µν
−

− 1 −Π ′

ZZ

4(g2 + g′ 2)
ZµνZ

µν (17)

−
(

1

4
√

2GF

+
ΠWW (0)

g2

)

W+
µ W

µ
−
− 1

2

(

1

4
√

2GF

+
ΠZZ(0)

g2 + g′ 2

)

ZµZ
µ ,

where g ≡ g5f
A
0 /

√
2πR, g′ ≡ g′5f

A
0 /

√
2πR and we have only represented

the relevant terms. The oblique parameters are defined in terms of the
“self-energies” above (including non-standard tree-level contributions) as

S = 16π

(

Π ′

ZZ

g2 + g′ 2
−Π ′

3Q

)

, (18)
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T =
4π

s2c2m2
Z

(

ΠWW (0)

g2
− ΠZZ(0)

g2 + g′ 2

)

, (19)

U = 16π

(

Π ′

WW

g2
+

Π ′

ZZ

g2 + g′ 2

)

, (20)

where Π ′

3Q is related to the Z − γ kinetic mixing which is zero in our case

and s ≡ g′5/
√

g2
5 + g′ 2

5 = sin θW + O(v2/m2
n) and c ≡ g5/

√

g2
5 + g′ 2

5 =
cos θW +O(v2/m2

n), with θW the Weinberg angle. We also have to take into
account non-oblique four fermion interactions, which can be parameterized
by

∆T = − 1

α

δGF

GF
= − 1

α

∑

n

(

g(00n)

g(000)

mW

mn

)2

. (21)

In order to include this non-oblique effect in the electroweak fit we redefine
T → T + ∆T and U → U − 4s2∆T [8]. The tree-level contribution of extra
dimensional physics to the resulting effective oblique parameters reads

Seff = S̄ = −8s2c2

α

∑

n

g(00n)

g(000)

fA
n (0)

fA
0 (0)

m2
Z

m2
n

, (22)

Teff = T̄ + ∆T =
1

α

∑

n

[

(

fA
n (0)

fA
0 (0)

− 2
g(00n)

g(000)

)

fA
n (0)

fA
0 (0)

m2
Z −m2

W

m2
n

−
(

g(00n)

g(000)

)2m2
W

m2
n

]

, (23)

Ueff = Ū − 4s2∆T =
4s2

α

∑

n

(

g(00n)

g(000)

)2m2
Z

m2
n

, (24)

where the bars indicate that only tree level contributions are included. Note
that, being already of order v2/m2

n, we can plug the experimental results for
s, c,mZ and mW in the above expressions. A global fit to the electroweak
observables gives [11]

Snew = −0.03 ± 0.11 , (25)

Tnew = −0.02 ± 0.13 , (26)

Unew = 0.24 ± 0.13 , (27)

for mt = 173 GeV and mH = 115 GeV and “new” here stands for beyond
the SM contribution. Requiring that the contribution to each of the three
effective oblique parameters remains within the 1-σ interval, we obtain the
bounds on the compactification scale shown in Fig. 5 as a function of the
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gauge boson (horizontal axis) and fermion (vertical axis) BKT, for BKT
equal at both branes and for BKT only at y = 0. In both cases there is a
band along the diagonal aL = aA where Ueff is too small to give a meaningful
bound on the compactification scale. The rest of the bands correspond to
Mc ≥ 2, 3, 3.5, 4 TeV for the case that aL

0 = aL
π , aA

0 = aA
π (left plot) and

Mc ≥ 1, 2, 3, 4, 5, 6 TeV when aL
π = aA

π = 0 (right plot). Note that in the
symmetric case the bounds are less strict, even though in that case the first
KK excitation is lighter. The reason is that the first KK mode decouples
when aL

0 = aL
π (see Eq. (16) and note that fA

1 (πR) = −fA
1 (0) when aA

0 =
aA

π ). Therefore, only a suppressed contribution to Teff ∼ (m2
Z − m2

W )/m2
1

effectively bounds Mc. In the case of BKT just at one brane the added
effect of all modes is much stronger. It is also apparent from the figures that
the dependence on the fermion and gauge boson BKT is highly asymmetric
in this case, with a stronger dependence on the gauge boson BKT than on
the fermion ones. Finally, we observe that the effect of decoupling from the
brane with BKT, which we pointed out in Section 2, is not very important,
as far as gauge interactions are concerned, in models in which both gauge
bosons and fermions live in the bulk.
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Fig. 5. Bound on the compactification scale as a function of aA (horizontal axis)

and aL (vertical axis) for BKT equal at both branes (left) and only at y = 0 (right)

respectively. The band along the diagonal aA = aL corresponds to Ueff being too

small to give a meaningful lower bound. The rest of the bands correspond, from

dark to light, to Mc ≥ 2, 3, 3.5, 4 TeV (left) and Mc ≥ 1, 2, 3, 4, 5, 6 TeV (right).

As we mentioned at the beginning of this section, Yukawa couplings
are also modified by the presence of BKT for fermions. Models with bulk
fermions have a non-unitary CKM matrix due to the mixing of zero and
massive KK modes [12]. In many models the Higgs lives on one of the
branes, say the one at y = 0, and then the departure from the SM is pro-
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portional to the mass of the quarks involved, i.e., it is most relevant for top
physics [13]. These effects give rise to stringent limits from the T parameter,
which become weaker when a0 ≫ aπ. Details can be found in [6].

4. Conclusions

We have seen that the BKT for bulk fields have a significant impact on
the phenomenology of compact extra dimensional theories when the corre-
sponding coefficients are comparable to or larger than the compactification
scale. This means that the parameter space of the theory without BKT is
enlarged, and this allows for a greater freedom in the construction of mod-
els which are consistent with present data (and possibly with implications
observable in future experiments). Of course, the price to pay is a reduction
of predictivity in a general effective approach.
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