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1 INTRODUCTION

In 1960, Hartman 1 (see also [2]) showed that the second order system
in [N

u" =f(t,u,u’) (0.1)
U(0) u0, u(1) u, (0.2)
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withf [0, 1] x [N X [N __> N continuous, has at least one solution u
such that [[u(t)[I < R for all [0, 1] when there exists R > 0, a contin-
uous function q "[0, +cx[- + such that

S-ds +cx (1)

and nonnegative numbers 7, C such that the tbllowing conditions hold:

(i) (x,f(t, x, y)) + [[y[[2 > 0 for all 6 [0, 1] and x,y N such that

[[xll R, (x, y) 0.

(ii) [[.f(t,x,y)ll <_ q(llyll) and Ilf(t,x,y)[[ <_ 2V((x,f(t,x,y)) + [[yll =)
+ C for all [0, 1]
and x, y [RN

such that Ilx[I _< R.

(iii) Iluoll, [[Ul[[ < R.

In 1971, Knobloch [3] proved that under conditions (i) and (ii) on the
(locally Lipschitzian in u, u’) nonlinearityj the existence of a solution
for the periodic problem arising from equation (0.2) was also ensured.
The local Lipschitz condition was shown to be superfluous in [8].
A basic ingredient in those proofs is the so-called Hartman-Nagumo
inequality which tells that:

IUx C2([0, 1], N) is such that

IIx(t)t <_ R, IIx"(t)ll _< tP(llx’(t)ll), and IIx"(t)
_< ,(llx(t)l[z)" / C, (t 6 [0, 11),

for some 99 satis.ing (1), some R > 0, />_ 0, C > 0, then there exists
some K > 0 (only depending on R, p, 7 and C), such that

[[x’(t)[[ < X (t [0, 1]).
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Recemly, Mawhin [6,7] extended the Hartman-Knobloch results to non-
linear perturbations of the ordinary vector p-laplacian of the form

(llu’ llp-2u’) f(t, u).

His approach was based upon the application of the Schauder fixed
point theorem to a suitable modification of the original problem,
whose solutions coincide with those of the original one.
Our aim here is to extend, at the same time, the Hartman-Knobloch

results to nonlinear perturbations of the ordinary p-Laplacian and Ma-
whin’s results to derivative-depending nonlinearities. In the case of Di-
richlet boundary conditions, we use the Schauder fixed point theorem to
find solutions to a modified problem, while in dealing with periodic
ones, our main tool is the continuation theorem proved in [6]. Both pro-
cedures strongly depend on the
extension of the Hartman-Nagumo inequality developed in Section 2.

For N 6 N and < p < +oo fixed, we denote by II" the Euclidean
norm in N and by the absolute value in , while (.,.) stands for the
Euclidean inner product in [v. By p’ we mean the Hrlder conjugate
of p (given by 1/p + 1/p’= 1). For q > 1, the symbol (q is used to
represent the mapping

{ Ilxllq-=x ifx # 0tq [N V, X---
0 if X 0.

Then, it is clear that bp and bp, are mutually inverse homeomorphisms
from [s to itself, and mutually inverse analytic diffeomorphisms from
Es\{0} to itself. Furthermore, an elementary computation shows that

v + v

for all x [s\{0}, all v [s and q > 1.
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2 A HARTMAN-NAGUMO-TYPE INEQUALITY FOR THE
p-LAPLACIAN

In this section, we extend the Hartman-Nagumo inequality [1,2] asso-
ciated to the second order differential operator x --+ x" to the p-Lapla-
cian case x --+ (qp(X’))’. We first need a preliminary result giving an
estimate on the Lp- noma of x’ when x is bounded in the uniform
norm and some differential inequalities involving (p(X’))’ hold. Let
us call, for brevity, p-admissible any C mapping x’[0, 1]---> [
such that qSp(X’) [0, 1] -- N is of class C.
LEMMA 2.1 Let B > 0 be given. Then, there exists a positive number
M > 0 (depending only on B) such thatfor each p-adlnissible mapping
x verifying, ,/br some C and convex r" [0, 1] --+ , the .following in-
equalities:

(i) IIx(t)ll, Ir(t)l < Bfor all [0, 1];
(ii) II(p(x’))’ll < r" a.e. on [0, 1],

one has

llx’(t)llZ’-dt < M.

Proof Condition (ii) implies that

IIz,(x’(s)) z,(x’(0)ll < r’(s)

and hence

IIz,(x’(s))ll < IIp(X’(t))ll + r’(s) r’(t),

(O<t<s< 1), (2)

(0 < < s < 1), (2.1)

IIp(X’(s))ll < IIp(X’(O)ll + r’(t) r’(s), (0 < s < t < 1). (2.2)
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Integrating inequality (2.1) with respect to s, we find

]]x’(s)llP-ds (1 t)llx’(t)llp- + r(1) r(t) (1 t)r’(t)

< (1 t)llx’(t)l[p-I + 2B (1 t)r’(t), (0 < < 1) (3.1)

while integrating inequality (2.2) with respect to s we get

llx’(s)llP-ds r(t) + r(O) +llx’(t) p-1 t/(t)

<_ tllx’(t)llp- / 2B 4- r’(t), (0 <_ t <_ 1). (3.2)

Adding expressions (3.1) and (3.2), we find

llx’(s)llp-lds ]]x’(t)l]p- + (2t- 1)r’(t)+ 4B, (0<t< 1), (4)

and we deduce that

llx’(s)llP-ds IIx’(t)llp- + Ir’(t)l + 4B, (0 < < 1). (5)

Now, the convexity of r means that r’ is increasing. Together with the
bound Ir(t)l < B for all 6 [0, 1], it implies that

Ir’(t)l<6B forall t6 [,], (6)

which, in combination with (5), gives us the inequality

IIx’(s) p- ds IIx’(t) p-1 ._ 10B forall te [,]. (7)

Following a similar process as before but integrating inequalities (2.1)
and (2.2) with respect to t instead of s, we get

Ilx’(s)llp-1 Ilx’(t)llp- dt + I/(s)l + 4B, (0<s< 1),
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which, after changing the names of the variables s and t, is the same as

IIx’(t)ll’- IIx’(s)llZ’-ds + Ir’(t)l + 4B, (0_<t_<l), (8)

and, again, using (6), gives

IIx’(t)llp- IIx’(s)llZ’-ds + 10B for all t 6 (9)

The information given by (7) and (9) can be written jointly as

IIx’(t)llp- IIx’(s)llP- ds _<lOB forall t [,], (10)

which clearly implies that

IIIx’(t)llz’- -IIx’(s)llp-II 20B forall t,sI,]. (11)

Suppose now that the conclusion of Lemma 2.1 is not true. This will
imply the existence of sequences {x..} in C([0, 1], s) and {r.} in
C([0, 1], [) such that Xn is p-admissible, rn is convex for all n 6 1,
and, furthermore,

(). IIx.(t)ll, Ir.(t)l n for all 6 [0, 1],

(ill "(bp(X.)) (t)ll _< rn(t) a.e on [0, 1],

,0

From (i’i) and (10) we deduce that IIx’(1/2)ll
or what is the same, that Ix,,()ll --+ +x as n --+ +oo. In particular, we
can suppose, after taking apart a finite set of terms if necessary, that

x,’,(1/2) - 0 for all n 6 N. From (11) we can conclude now that the se-
quence of continuous functions {llx’(.)ll’-/llx’,,(1/2)ll’- converges to
uniformly on [., ] as n ---> oo, or, what is the same, that the sequence

of continuous functions {llx’,,(’)ll/llx’(1/2)ll] converges to uniformly on

[1/2, ] as n --+
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Going back to (2) we can use (6) to obtain the inequalities

_< 12B (12)

for all 6 [1/2, l and all n 6 , and, if n is large enough so that x’n(t) 0
for all 6 [1/2, ], dividing inequality (12) by l](1/2)]]p- we obtain

Ilx’(t) p- (1/2__) 12Bx.(O x’. < (3)
Ilx,(1/2)l[p-1 Ilx’(n)(t)[[ IlXn()II IIX’n (1/2)IIp-

for all 6 [1/2, ], and we deduce that

(t) X’n(1/2) } -- 0
IIx’(t) IIx,(1/2)

as n c (14)

uniformly on [1/2, ]]. We can find, therefore, an integer no 6 such that
for any n > no,

x’(t) X’n(1/2) ) 1

llx’.(t)ll’ >
IIx()ll 2

for all 6 [1/2, ], what is the same as

) IIX’n(t)ll
IIx.()ll 2

(15)

for all t [1/2, ] and all n >_ no. To end the proof, fix any n, >_ no such
that

IIx’, (t)!1 > 12B (16)

for all t [1/2, ], and verify that, because of (15),

x’., (1/2))X’n, (t), IIX,, (1/2)11
> 6B (17)
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for all [1/2, ]. This inequality, integrated between 31- and ], gives

x, x,, IIx,, (1/2)11 (18)

Hence, using the Cauchy-Schwarz inequality, we obtain the contradic-
tion

(19)

The following lemma provides, under an extra Nagumo-type hypoth-
esis, an estimate for the uniform norm of x’.

LEMMA 2.2 Let B > 0 be given and choose the corresponding M > 0
according to Lemma 2.1. Let tp" [M, +x[---- [+ be continuous and
such that

ds>M.

Then, there exists a positive number K > 0 (depending only on B, M
and 99) such that for each p-admissible mapping x satisfying, for
some C convex fitnction r’[O, 1] --+ I, the jbllowing conditions:

1. IIx(t)ll, Ir(t)l <_ B for all e [0, 1];
2. II(p(x’))’ll <_ r" a.e. on [0, 1];

3. ll(4p(X’))’(t)ll _< q(llx’(t)llp-) .for all

IIx’(t) p- >_ M, one has

t6[O,l] with

Ilx’(t)ll < K for all [0, 1].

Proof Choose K > t’-x such that

q (s)
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We show that the thesis holds for this K. To this aim, fix any x, r
verifying the hypothesis of Lemma 2.2, and suppose that there
exists some to 6 [0, 1] such that Ilx’(to)ll > K, and hence
IIx,(t0)llP- >_ gp-1 > M. By definition of the constant M we have

fd [Ix’(t)llp-ldt < M, so that there must exist some tl 6 [0, 1] (we pick
the closest one to to), such that Ilx’(h)[[p- M.

Define

"[M, +c[---, [0, +[,
s,- - ds, (20)

and notice that (I) is continuous, (I)(M) 0, (I) is strictly increasing and
(Kp- !) M. Now,

M (Kp-) < <I)(llx’(to)llp-) --I([[x/(to)llp-1)l

IIx’(t)llp-
S

q(s)
as

Using the change of variables s= IIbp(X’(t))ll, t6[min{to, tl},
max{t0, tl}], (which is absolutely continuous because bp(X’) is C and
11.11 is Lipschitzian), we obtain, from hypothesis 3

tJto [[(])P(Xt(t))[I ((])p(Xt(t)), ((])p(Xt))t(t))
dt

q)([lp(X’(t))[[) bp(X’(t))

tit IIp(X’(t))ll" II(dp(X’))’(t)ll

Ji’ IIp(X’(t))lldt Ilx’(t)llp-1 dt[
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so that

IiM < I[x’(t)l[P-ldt <_ IIx’(t)llP-dt < M, (22)
Omin{t0,q}

a contradiction.
The following elementary result ofreal analysis is used in the proofof

the next Theorem.

LEMMA 2.3 Let z, h’[0, 1] -- [ be continuous.functions, non de-
creasing. Suppose that h exists and is nonnegative in the open set

{t El0, 1[: h(t) z(t)}. Then h is non decreasing on [0, 1].

Proof Suppose, by contradiction, that there exist s < in [0,1] such
that h(s) > h(t). There must be some x ]s, t[ such that h(x)= (x)
(otherwise, the Lagrange mean value theorem would give us the in-
equality h(s) <_ h(t)). Define

a := min{x 6 [s, t]" h(x) (x)}, b "= max{x 6 [s, t]" h(x) (x)}.

Again, by the Lagrange mean value theorem, we have the inequalities

h(s) < h(a) (a) <_ (b) h(b) <_ h(t),

a contradiction.
We can now prove the proposed extension of the Hartman-Nagumo

inequality.

THEOREM 2.4 Let R > 0, y _> 0, C >_ 0 be given and choose M > 0
as associated by Lemma 2.1 to B’=max{R, yR2 +C/2}. Let
q" [M, +cx[-- [+ be continuous and such that



HARTMAN-NAGUMO INEQUALITY 711

Then, there exists a positive number K > 0 (depending only on
R, p, 7, C, M and qg) such that, for any p-admissible mapping x satisfy-
ing the following conditions:

(i) Ilx(t)ll R, (0 < t < 1);

(ii) II(qSp(x’))’(t)ll T(llx(t)ll2)" + C for all

x’(t) 5 0;

(iii) ll(4p(X’))’(t)ll <_ q(llx’(t)]lp-) for all

IIx’(t)llp- >_ M, one has

6 [0, 1] such that

t6[0,1] such that

Ilx’(t)ll < g (t [0, 1]).

Proof From the chain role we know that x’-bp,(bp(X’)) is a C
mapping on the set {t E [0, 1]" x(t) 0}. Let us define

2

r’[0, 1] --+ , --+ ym(t) + C -, (23)

where m(t) Ilx(t)ll 2. It is clear that r is a C function. Moreover,

r’(t) 2(x(t),x’(t)) + Ct (t [0, 1]). (24)

It means that x’ does not vanish on the set {t 6 [0, 1] r’(t) Ct}, and
then, on this set, r is C2 and r"(t) ym"(t) + C > I[(dpp(X’))’(t)ll > O.
By Lemma 2.3 we deduce that r’ is non decreasing, what is equivalent

to say that r is convex. Also, it is clear that

IIx(t)ll, Ir(t)l B (t [0, 1]), (1)

and, to be able to apply Lemma 2.2 we only have to check that inequal-
ity

II(qbp(X’))’(t)ll r"(t) ()

holds for almost every t in [0,1 ].



712 J. MAWHIN AND A. J. URElqA

Notice, firstly, that our hypothesis (ii) says that (2) is true for all in
[0,1] such that x’(t)O. Secondly, in the interior of the set
{t [0, 1] x’(t) 0} we have

II(p(X’))’(t)ll 0 r"(t)= C.

It remains to see what happens on A := O{t [0, 1] x’(t) 0}. We will
prove that at every point 6 A ]0, 1[ such that (r’)’(t) r"(t) exists we
have the inequality

II(qp(x’))’(t)ll r"(t). (25)

Pick some point to 6 A t3 ]0, 1[ such that r"(t) exists. If to is an isolated
point of A, there exists some e. > 0 such that ]to, to + e.[ C ]0, I[\A.
Then, r’ and (#p(x’) are both of class C on ]to, to + e[ and we have
the inequality

II(p(x’))’(t)ll r"(t) (t ]to, to + ,[). (26)

It follows that ]ldpp(x’(t))- p(X’(S))ll < F(t)- r’(s) for all s, with

to < s < < to + e,, and letting s --+ to, that

IIp(X’(t)) hp(X’(to))ll r’(t) r’(to) (t ]to, to + e,D, (27)

from which we deduce that IIqSp(X’ff(to)ll 5 r"(to). If, otherwise, to is an
accumulation point of A, there exists a sequence {a,} of points from
A\{t0} converging to to. But x’(an)= 0 for all n N, which implies
that qSp(x’(an)) 0 and r’(an)= Can for all n [. We conclude then
that ’’(p(X )) (to) 0 < C r"(to).
Theorem 2.4. is now a simple consequence of Lemma 2.2.

3 NONLINEAR PERTURBATIONS OF THE p-LAPLACIAN

Let f:[0, 1] x [N X [N ___> [N be continuous, and consider the fol-
lowing system of differential equations

(Ckp(X’))’ f(t, x, x’), (0 <_ < 1). (28)
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Our goal in the remaining part of this work is to develop some existence
results for the solutions of (28) verifying either the periodic boundary
conditions:

x(O) x(1), x’(O) x’(1), (P)

or the Dirichlet boundary conditions

x(O) xo, x(1) x, (D)

where x0 and xl are some given poims of N. We need the following
two easy facts.

LEMMA 3.1 Let x be a p-admissible mapping. For each to E ]0, such
that Ilx(t0)ll maxt[O,ll [Ix(t)II, one has

(x(to), x’(to)) 0 and (x(to), (qp(X’))’(to)) + Ilx’(to)]lp < O.

Furthermore, the same conclusion remains true when to 0 or ifx is
assumed to verify the periodic boundary conditions (P).

Proof Suppose first that to E ]0, [. The equality

Ilx(to)ll-- max IIx(t)ll 2 (29)
tE[O, 11

implies that

d
2(x(to), x’(to)) - IIx(t)ll zIt=to O. (30)

Next, suppose by contradiction that

(x(to), (dpp(X’))’(to)) + Ilx’(to)l]p > O, (31)

what is the same as

d
Ix(t), p(X’(t)))lt=to > 0. (32)d
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As

(x(to), qSp(X’(to))) IIx’(to)llp-2 (X(to), x’(to)) O,

we deduce the existence of some e, > 0 such that ]to e, to + e[ C [0, 1]
and

(x(t), Cp(X’(t))) < O, E ]to e, to[ (33)

(x(t), Cfip(X’(t))) > O, ]to, to + e,[. (34)

Equivalently,

d
][x(t)[[ 2(x(t),x’(t)) < O, ]to -e, to[ (35)d

d
Ilx(t)ll 2 2(x(t), x’(t)) > O, ]to, to + el, (36)d

which implies that Ilx(t)ll attains a strict local minimum at to. Of
course, this is not compatible with our hypothesis and this first case
is proved.

If now x verifies the periodic boundary conditions (P) and

[[x(O)l[ Ilx(1)l[ max
t[O, 1]

define y" [0, 1] -+ []N by y(t) "= x(t + 1/2) if 0 <_ <_ 1/2, y(t) := x(t 1/2)
if 1/2 _< _< and apply the above result to y (at to 1/2) to obtain the de-
sired result.

LEMMA 3.2. Let f" [0, 1] [N N [N, (i- 1,2, 3,...), be a
sequence of continuous mappings, converging uniformly on compact
Sets tO f" [0, 1] U U U. Suppose that there exist positive
numbers R, K > 0 such thatfor every E there exist a solution xi of
the system

(qSp(X’)f f(t, x, x’)
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with

Ilxi(t)ll R, Ilxi(t)ll K (t s [0,

Then there exists a subsequence of{xi} converging in the space C [0, 1]
to some p-admissible mapping : [0, 1] -- N, which is a solution of
(28).

Proof The two sequences of continuous mappings {xi} and {qgp(X’i) }
are uniformly bounded together with its derivatives, so that, by the
Ascoli-Arzel/ Lemma, we can find a subsequence {z} of {xi} uni-
formly converging on [0,1] and such that the sequence {C#p(Zi)} is also
uniformly converging on [0,1 ]. As bp is an homeomorphism from N to
itself, we deduce that both {zi} and {z’i} are uniformly converging on
[0,1]. Finally, from the equalities

(d?p(Xl))’ f(t, Xi, Xti) (i 1, 2, 3,..., )

we deduce that also the sequence {(dpp(Z’i))’ converges uniformly on
[0,1 ]. The result now follows.
The following set of hypothesis on the nonlinearityf will be widely

used in the remaining of this work and will be denoted by (H):

There exist R > 0, : > 0, C > 0, M > 0 as associated by Lemma 2.1
to B := max{R, yR2 + C/2} and q9 [M, +o[ [+ continuous with

ds>M

such that

(a) For any [0, 1], x, y N such that Ilxll R, (x, y) 0, we have

(x,f(t, x, y)) + IlY[[p > 0;

(b) For any [0, 1], x, y N such that Ilxll < R and yllp-1 > M,

f(t,x, y)ll < P(IlYlIP-);
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(c) For any E [0, 1], x N with Ilxll R and y N,

yllll f(t, x, y)ll <_ 2/((p’- 2)(y,f(t, x, y)) (x, y) + ylla (x,f(t, x, y))

+ yllp/a) + cII yllp.

As we will see next, these assumptions onf will be sufficient to ensure
the existence of a solution for both the periodic and the Dirichlet pro-
blems associated to equation (28). However, in our approach to these
problems, we will have to assume first a slightly stronger set of hypoth-
esis, consisting in replacing

(a) by (h) For any t [0, ], x, y N such that [Ixll R, (x, y) 0, we
have

(x,f(t, x, y)) + Yllz’ > O.

The new set of hypothesis will be denoted by (It).
Notice, furthermore, that if there exist numbers R > 0, ), > 0, C > 0

and a continuous function qg" [0, +o[--+ [+ verifying the classical
Nagumo condition

+ s
ds +cxz,

o

such that (a), (b) and (c) are still satisfied for some M > 0, then, the
whole set of hypothesis (It) is ensured.

4 THE PERIODIC PROBLEM

We prove in this section the existence of a solution for the periodic pro-
blem associated to equation (28).

THEOREM 4.1 Let f [O, 1] N X N N be a continuous map-
ping satisfying (H). Then, the periodic boundary value problem (P)for
equation (28) has at least one solution x’[0, 1] u such that
IIx(t)l[ _< R for alttE [0, 1].
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Proof The theorem will be proved in two steps. In the first one, we
assume that the set ofhypothesis (17I) holds. To prove the theorem in this
more restrictive case, choose K > 0 as given by Theorem 2.4 for
R, , C,M and tp, and define

"= {x cl ([0, 1]) IIx(t)ll < R, Ilx’(t)ll < g for all

Our aim is to apply the continuation theorem 5.1 from [6] in our case.
First we have to prove is that for each 2 ]0, 1[, the problem

((x’))’ ;f(t, x, x’)
(P’)

x(0) x(1), x’(0) x’(1)
(38)

has no solutions on Of. Indeed, notice that

fi-- {x C[0, 1] IIx(t)ll R, IIx’(t)ll g for all 6 [0, 11}.
(39)

Now, fix any 2 6]0, 1[ and let 6 f be a solution of (P). Our hypoth-
esis (b) tells us that

II(qSp(’))’(t)ll 211 f(t, J(t), ’(t))ll
Ilf(t, Yc(t)),Yc’(t))ll qa(ll:7(t)llp-) qg(llqSp(’(t))ll)

(40)

for every 6 [0, 1] such that ]l(t)llp-1 M. That is the third hypoth-
esis needed in Theorem 2.4. The first one is obviously satisfied. Let
us check the second one. We can use () to find that

z, ffN, z =/= 0 ’p,(qbp(Z))V [Izll-P((p’- 2)(z, v)z + Ilzll2v).
(41)
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In our context, it means that, for each 6 [0, 1] such that :’(t) 0, :"(t)
exists, and furthermore,

"(t) (4,,(4,(’)))’(t) -’ -’4y(4,,,( (0))(4,,,0,)) (0
qS,,(d?p(YC’(t)))()f(t, Yc(t), ’(t)))
2l[’(t)l[-P((p 2)(Yc’(t),f(t, Yc(t), ’(t)))’(t)
+ [[Yc’(t)[[f(t, :(t), :’(t))), (42)

and consequently,

2(((t),."(t)) + II’(t)ll)
> 2(((t), ."(t)) + 211’(t)ll)

2211’(t)ll-P((p 2)(yc’(t),f(t, (t), ’(t)))((t), ’(t))
/ II’(t)llp+2 + ll.7(t)ll 2 (yc(t),f(t, yc(t), .7(t)))) (43)

for all t6 [0, 1] with :’(t)-0. It turns out that, if we define
r’[0, 1] E by r(t) II(t)ll 2, for each 6 [0, 1] such that ’(t) 0,
we can write, using hypothesis (c),

II(qSp(:’))’(t)ll 21If(t, (t), ’(t))ll
_< 22yll’(t)ll-P((p 2)(yc’(t),f(t, yc(t), J:’(t)))(J:(t), .’(t))

4- II’(t)ll 2 (Yc(t),f(t, yc(t), j’(t))) + II’(t)llp+2) / )0C

< )?r"(t) + 2C < 7r"(t) + C. (44)

Now, Theorem 2.4 tells us that

II’(t)ll < K (t 6 [0, 1]), (45)

and therefore, in order to see that 6 fl, it only remains to prove the
inequality

II(t)ll < R (t [0, 1]). (46)
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Suppose, otherwise, that there exists some point to 6 [0, 1] such that
II(t0)ll R. Then, II(t0)ll maxt[0,] II(t)ll, and from Lemma 3.1
we should have

((t0), (G(’))’(t0)) + II(t0)llp (Yc(to),f(to, Yc(to), 2’(to))) + II’(t0)llp

<0,

contradicting our hypothesis (h).
Finally, it remains to check that the equation

.T’(a) := f(t, a, O)dt 0 (47)

has no solutions on afghaN= {a [N" Ilall--R}, and that the
Brouwer degree

degB[, f (q [N, 0] degB[, [R(0), 0]

is not zero. But from hypothesis (h) (taking y 0) we deduce

(a,f(t, a, 0)) > 0 for all a , Ilall R, and all t [0, 1],
(48)

and, integrating from 0 to we get

a, f(t, a, O)dt) (a, 0r(a) > 0 for all a 0Ba(0), (49)

which, effectively, implies that deg[.T’, [g(0), 0] 1. This concludes
our first step. The theorem is proved assuming (h) instead of (a). And
the whole theorem follows now from a simple approximation argument
that we sketch below.

Fix some e, > 0 small enough so that, after defining

(p, := (p + e,,R, R, R, C, "= C + Re,,, , "= ,
B, := max R,, /R2, +-- M, "= max ,-ff M,
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(where, as the reader can easily check, M, has been carefully chosen so
that it satisfies the conditions of Lemma 2.1 for the parameter B,), we
still have the inequality

> M, (50)
s

ds, q,(s)

Next, choose a sequence {e,i}i -+ 0 with 0 < ei < e, (i N), and de-
fine

f [0, 1] [n X [N __+ [N, (t, x, y) - .f(t, x, y) + BiX

Now, it is clear that, for each 6 N,
(ai), For any e [0, 1], x, y 6 NN, such that Ilxll R,, (x, y) O, we

have (x,f(t, x, y)) + Ilyllp > O.
(hi), For any 6 [0, 1], x, y 6 [RN such that Ilxll _< R, and

]lyll’- >_ M,, 1l/7(t, x, y)ll _< q,(llyllP-).
(ci), For any [0, 1], x 6 [N such that Ilxll _< R, and y 6 N,

IlYlIPlI f(t,x, y)II --< IlYlIPlI f(t,x, y)II / IlYlIPe,R,
< 2,((p’ 2)(y,f(t, x, y))(x, y)

+ IlYllZ(x,f(t,x,y))+ IlYllp+z) + C, IlYllp

2,,((p’ 2)(y,f(t, x, y))(x, y)

/ yll z (x,f(t, x, y)) + yll’+z) / C, yll’
2r,((p’ 2)e,i(x,Y) 2 + eillxllZllyll)

< 27,((ff 2)0,’,f(t, x, y))(x, y)

+ IlyllZ(x,f(t,x,y)) + Ilyllz’+z) + C, Ilyllp. (52)

(because p’ 2 > 1).
We deduce, by the first step proved above, the existence for each 6 N
of a solution xi’[O, 1] NN of the periodic boundary value problem

(qp(x’))’ f(t, x, x’) + F,iX
(Pi) --=

x(O) x(1), x’(O) x’(1),
(53)

verifying Ilxi(t)ll < R,, IIx’i(t)ll < K, for all [0, 11. (K, being given
by Theorem 2.4 for R,, ,,, C, and M,).
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The existence of a solution to our problem is now a consequence of
Lemma 3.2.

5 THE DIRICHLET PROBLEM

Consider now the boundary value problem arising from equation (28)
together with the Dirichlet boundary conditions (D). For the reader’s
convenience, we reproduce here a result of [5].

LEMMA 5.1 Let xo,x U befixed. Then, for each h C[0, 1] there
exists a unique solution xh C [0, 1] to the problem

h
(Dh) =-- x(O) Xo, X(1) Xl

(54)

Furthermore, if we define/C: C[0, 1] --+ C[0, 1] by h ---Xh, the map-
ping 1C is completely continuous.

Proof Integrating the differential equation in (54) from 0 to we find
that a C mapping x" [0, 1] [N is a solution to this equation if and
only if there exist some a Nv
(necessarily unique) such that

dpp(X’(t)) a + 7-[(h)(t) (t e [0, 1]), (55)

where 7-[(h)(t)"= [ h(s)ds. This formula can be rewritten as

x’(t) ;l(a q- (h)(t)) (t [0, 1]). (56)
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Now, the boundary conditions imply that

x(t) xo + ;(a + (t [o, ]), (57)

I ;(a + 7-t(h)(s))ds x xo. (58)

We therefore conclude that there exists a bijective correspondence be-
tween the set of solutions to (54) and the set of points a 6 [N verifying
(58), given by x --+ p(x’(O)).

Following a completely analogous reasoning to that carried out in
Proposition 2.2 from [4], we find that

(i) For each h 6 C[0, 1] there exists an unique solution a(h) of (58).
(ii) The finction a C[0, 1] --+ [N defined in (i) is continuous and maps

bounded sets into bounded sets.

We deduce that for every h 6 C[0, 1], there exists a unique solution/C(h)
of (Dh), given by the formula

E(h)(O xo + ;(a(h) + (h)(s))as (t 6 [0, 1]). (59)

The continuity ofthe mapping a allows us to deduce the continuity of
/C. The boundedness of a on bounded sets of C[0, 1] has as a conse-
quence the compactness of/C on bounded sets of C[0, 1].

This lemma is now used to prove the following existence theorem for
the Dirichlet problem associated to (28).

THEOREM 5.2 Letf [0, 1] N X N ....+ N be a continuous map-
ping verifying (H). Let xo,x U with IIxoll, llx, II <_ R, Then, the
boundary value problem (28)-(D), has at least one solution
x "[0, 1] --, [U such that [Ix(t)l[ -< R for all e [0, 1].

Proof Define .T’: C’ [0, 1] C[O, 1] by

.T(x)(t) :--f(t, x(t), x’(t)), (t [0, 1]), (60)
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so that our problem can be rewritten as

X-- K,"(x), (x e cl[0, 1]). (61)

Notice that/CT" C[0, 1] --+ CI[0, 1] is a completely continuous map-
ping, so that iff were bounded, .T" and/C" would be bounded and the
Schauder fixed point theorem would give us the existence of a solution
of our problem. Thus, our problem is now reduced to finding some
f, :[0, 1] x N x [N _. [N cominuous, bounded and such that every
solution to the equation

f,(t, x, x’) (62)

verifying the boundary conditions (D) is also a solution to (28).
The following construction is essentially taken from [2]. As in the

periodic case, Lemma 3.2 can be used to see that it suffices to prove
the theorem assuming that f actually verifies the more restrictive set
of hypothesis (H). Let K > 0 be as given by Theorem 2.4 for
R, ,, C, M and tp. Choose some continuous function

p’[0, c[--- [+ (63)

such that

p(t)= l, (O <_ <_K), (64)

and

sup{p(llYll)llf(t,x,y)ll’t [0, 1], Ilxll _< R, y N} < ---(x) (65)
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For instance, p could be chosen as

if O<t<_K

+max{llf(t,x,y)l]’t [0, 1], IIxl] _< R, Ilyll _< t}
if t>K+l

(1 + K t)p(K) + (t g)p(1 + K)
if K<t<K+l

(66)

Define

[p(llyll)f(t(,x,Y)x )
if

f,(t, x, y) :=
P(II Yll)f t, R 11-, y if

Ilxll _< R

Ilxll >_ R.
(67)

It is easy to check that f, is still a continuous bounded function satisfy-
ing not only the same set (H) of hypothesis (for the same parameters
R, , C, M), but, moreover, (a,) For any 6 [0, 1], x, y 6 [N such that
[[xl[ > R, (x, y) O, we have

(x,f’,(t, x, y)) -k- IlYI(’ > O.

Also, it is clear that f.(t, x, y) =f(t, x, y) if Ilxll R and IlYll K.
So, let ’[0, 1] ---> NN be a solution to (62) verifying the boundary

conditions (D), where Ilxoll, Ilx _< R. Let us show that 112(011 _< R,
11.7(011 _< K for all [0, 1]. First suppose that there exists some point
to e [0, 1] such that II(to)ll > e. This point to can be taken so as
II.(to)ll --max,e[o,l] II(t)ll. As II(0)ll IIx011 _< R, II(1)ll IIx _< R,
we see that to 6 ]0, 1[. Now; using Lemma 3.1, we deduce that
((to), 2’(to)) 0 and

(x:(to), (45,(’))’(to)) + IIx’(to)llp (2(to),L(to, 2(to), :’(to)))
+ II.’(t0)llp _< 0,

which contradicts (a.). It means that II2(t)ll _< R for all [0, 1]. And,
in the same way as happened in the proof of Theorem 4.1, our hypoth-
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esis (b) and (c) onf (translated to jr,) make verify the second and third
hypothesis of Theorem 2.4. Applying it we obtain that II’(t)ll _< K for
all 6 [0, 1], so that is in fact solution to the system (28-(I))). The the-
orem is proved.
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