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with /[0, 1] x R¥ x R — R continuous, has at least one solution u
such that ||u(?)]] < R for all 1 € [0, 1] when there exists R > 0, a contin-
uous function ¢ : [0, +0o[— R* such that

+00 sd :
J, pde=roe M

and nonnegative numbers 7y, C such that the following conditions hold:

@)  (.f(x,p) +yI> =0 forall t €[0,1] and x, y € R such that
Iixll =R, {x,y) =0.

(i) 11/ x )N < o(lyl) and || £ x, )1 < 29(0x (5, x, ) + 7117
+ C for all t € [0, 1]
and x,y € RV
such that ||x|| < R.

(i) lluoll, flunll < R.

In 1971, Knobloch [3] proved that under conditions (i) and (ii) on the
(locally Lipschitzian in u, #') nonlinearity f, the existence of a solution
for the periodic problem arising from equation (0.2) was also ensured.
The local Lipschitz condition was shown to be superfluous in [8].
A Dbasic ingredient in those proofs is the so-called Hartman—Nagumo
inequality which tells that:

If x € CX([0, 1], RY) is such that

Ix()t < R, IX"ON < e(IX @), and |x"(?)
<y(IxOI? +C, (telo, 1)),

for some ¢ satisfying (1), some R > 0,y > 0, C > 0, then there exists
some K > 0 (only depending on R, ¢,y and C), such that

IXOll <K (€0, 1)).
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Recently, Mawhin [6,7] extended the Hartman—Knobloch results to non-
linear perturbations of the ordinary vector p-laplacian of the form

U P~2uY = f(t, ).

His approach was based upon the application of the Schauder fixed
point theorem to a suitable modification of the original problem,
whose solutions coincide with those of the original one.

Our aim here is to extend, at the same time, the Hartman—Knobloch
results to nonlinear perturbations of the ordinary p-Laplacian and Ma-
whin’s results to derivative-depending nonlinearities. In the case of Di-
richlet boundary conditions, we use the Schauder fixed point theorem to
find solutions to a modified problem, while in dealing with periodic
ones, our main tool is the continuation theorem proved in [6]. Both pro-
cedures strongly depend on the
extension of the Hartman-Nagumo inequality developed in Section 2.

For N e Nand 1 < p < o0 fixed, we denote by || - || the Euclidean
norm in R" and by | - | the absolute value in R, while (-, -) stands for the
Euclidean inner product in RY. By p’ we mean the Holder conjugate
of p (given by 1/p+1/p" = 1). For g > 1, the symbol ¢, is used to
represent the mapping

. mN N X9 2x ifxs£0
g1 RT—~ R, x"’{o if x = 0.

Then, it is clear that ¢, and ¢,, are mutually inverse homeomorphisms
from R" to itself, and mutually inverse analytic diffeomorphisms from
RY\{0} to itself. Furthermore, an elementary computation shows that

¢®umwﬁw»“">ﬁ+0 ©

for all x € R¥\{0}, all v e R" and ¢ > 1.
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2 A HARTMAN-NAGUMO-TYPE INEQUALITY FOR THE
p-LAPLACIAN

In this section, we extend the Hartman—Nagumo inequality [1,2] asso-
ciated to the second order differential operator x — x” to the p-Lapla-
cian case x — (d)p(x’))’. We first need a preliminary result giving an
estimate on the L”~! norm of x’ when x is bounded in the uniform
norm and some differential inequalities involving (¢I,(x’))’ hold. Let

us call, for brevity, p-admissible any C' mapping x:[0,1] — R"
such that ¢,(x') : [0, 1] - R" is of class C'.

LEMMA 2.1 Let B > 0 be given. Then, there exists a positive number
M > 0 (depending only on B) suck that for each p-admissible mapping
x verifying, for some C' and convex r: [0,1] — R, the following in-
equalities:

@) lIx@I, Ir@®] < B for all t € [0, 1];
(i) 1(p, ()| < 7" a.e. on [0, 1],

one has

|
J IXOIP~"dt < M.
0

Proof: Condition (ii) implies that

(X () = d,X DI < ¥ () =¥ (), (O=<t<s=<1), (2
and hence

gy < N, +7 () —r(®), (O=<t=<s=<1), @1

I3, < g’ + 7 () =7 (s), (0O=s=<t=1). (22)
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Integrating inequality (2.1) with respect to s, we find

1
j W@IP-ds < (1 = DIXOP +r(1) — (1) — (1 — D)
A=A +2B—(1 =070, (0=<t=<1) 3.1

while integrating inequality (2.2) with respect to s we get

Jt K ®IP~ds < X O = (1) + r(0) + 17 (2)
0
<K@ +2B+ (), (O0O<t<l1). (32)

Adding expressions (3.1) and (3.2), we find
1
J IX)IP~ds < IKXOIP~" + @t = DA +4B, (0<t=<1), 4
0
and we deduce that
1
j WGP ds < IKOIP + 1701 +4B, ©<t<1). (5)
0

Now, the convexity of » means that # is increasing. Together with the
bound |#(¢)] < B for all ¢ € [0, 1], it implies that

12
()] <6B forall te [3’3]’ 6)
which, in combination with (5), gives us the inequality

! 1
J I (IP " ds < |X@)P~' +10B forall te [3%] )
0

Following a similar process as before but integrating inequalities (2.1)
and (2.2) with respect to ¢ instead of s, we get

1
I~ < J I @IP~"dt + 1F ()| + 4B, (0O<s<1),
0
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which, after changing the names of the variables s and ¢, is the same as
1
IO < J IXIP'ds + [F()l +4B, (0<t<1), (8)
0
and, again, using (6), gives

X" < J IX'()IIP'ds + 10B forall te [; i:l 9

The information given by (7) and (9) can be written jointly as

<10B forall te [; i] (10)

W@ - J ()P ds

which clearly implies that
/ —1 / n—1 12
XN~ — Ix' ()P~ | <20B forall ¢,s€ 33 (11)

Suppose now that the conclusion of Lemma 2.1 is not true. This will
imply the existence of sequences {x,} in C'([0,1], R") and {r,} in
C'([0, 1], R) such that x, is p-admissible, r, is convex for all n € N,
and, furthermore,

@ IOl 1)l < B for all €0, 1],
() 1,0 D < 7y(5) ae.on [0,1],

1
(iii) J I (OI1P dt — +oo.
0

From (iii) and (10) we deduce that I, GNP~ — 400 as n — +o0,
or what is the same, that ||x;,(%)|| — +00 as n — +o00. In particular, we
can suppose, after taking apart a finite set of terms if necessary, that

(2) # 0 for all n € N. From (11) we can conclude now that the se-
quence of continuous functions {|lx,()IP~"/lx,G)I7~"} converges to
1 uniformly on [3 , 3] as n — 00, or, what is the same, that the sequence
of continuous functions {||x,(-)l|/llx, (DI} converges to 1 uniformly on
3 , 3] as n — 00.
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Going back to (2) we can use (6) to obtain the inequalities

8,000~ 0,(5(3))] <

forallz € [},2] and all n € N, and, if n is large enough so that x/ () # 0
for all € [1, 4], dividing inequality (12) by ||x,(3)|I’~" we obtain

1) — r(%)l <12B (12

P 0 66 12B %)
I, GIPT IEOT 1G]~ xGPT
for all € [§, 3], and we deduce that
LA AC)
- 0 14
{nx;,(t)n nx,,(%)n}_’ v 9

uniformly on [}, 4. We can find, therefore, an integer no € N such that

for any n > ny,
gk
f;,(t) ’ x’n(%) o1
e, O Ik, ~ 2
for all 7 € [}, 3], what is the same as

50\ _ Ikl
<x’n(t), e (%)"> > 2 (15)

for all ¢ € [§,3] and all n > no. To end the proof, fix any n; > no such
that

I, (1l > 12B (16)

for all ¢ € [}, 3], and verify that, because of (15),

o @)
<xm (t), m> > 6B (17)
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for all 7 € [}, 2]. This inequality, integrated between § and 3, gives

2 N x,@
<x”‘ (5) o (3) ux,,.(%)u> > 25 (19

Hence, using the Cauchy-Schwarz inequality, we obtain the contradic-

tion
2 1\ x,G3) 2 1
<x”' (5) o (3) uxn.(%)n> = ('3') o ('3')

The following lemma provides, under an extra Nagumo-type hypoth-
esis, an estimate for the uniform norm of x'.

<2B. (19)

LEMMA 2.2 Let B > 0 be given and choose the corresponding M > 0
according to Lemma 2.1. Let ¢ : [M,+oo[— R* be continuous and
such that

Then, there exists a positive number K > 0 (depending only on B, M
and @) such that for each p-admissible mapping x satisfying, for
some C' convex function r : [0, 1] — R, the following conditions:

L lxOl, IOl < B forall te]l0,1];

2. (NI <" aeon [0,1];

3. 1@, O < (X OIPY) forall t€]0,1] with
IXOIP~" > M, one has

X <K forall tel0,]1].

Proof Choose K > ”~/M such that
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We show that the thesis holds for this K. To this aim, fix any x,r
verifying the hypothesis of Lemma 2.2, and suppose that there
exists some f €[0,1] such that |[|xX'(f)|| >K, and hence
¥ (to)IP~! > KP~! > M. By definition of the constant M we have
fol X @)IP~dt < M, so that there must exist some ¢, € [0, 1] (we pick
the closest one to fy), such that ||x'(;)||P~! = M.

Define

@ : [M, +00[— [0, +00, ¢ 1—> Jt :p%;ds, (20)
M

and notice that @ is continuous, ®(M) = 0, ® is strictly increasing and
O(KP~!) = M. Now,

M = K" < O(IX t)IP™") = DX (L) P~ )]

¥ to) 1P~ @ ¢ @@
=J S s J —ds=j ().

M o(s) Wi @) lo,eenl P(S)
Using the change of variables s=|¢,(X'(1)l, ¢t [minfr, 1},

max{fg, #1}], (which is absolutely continuous because ¢,(x) is C! and
[l - || is Lipschitzian), we obtain, from hypothesis 3

I @l
M <

— ds
Jig,amn 90

" g, (D, (D), ($,()) () gt
Jo (p(||¢p(x/(t))||) Ol

<|[" 19,y ALLEVOL
e ¢(Il¢p(x“(t))||)
= I ”d)p(xl(t))”dtl = Jl "x/(t)llp—l dtl

Jip fo
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so that

max{to,t } 1
M< J W@OPdr < J WOPr-d <M, (22)
0

min{to,t}

a contradiction.
The following elementary result of real analysis is used in the proof of
the next Theorem.

LEMMA 2.3 Let a,h: [0,1] — R be continuous functions, o« non de-

creasing. Suppose that W' exists and is nonnegative in the open set
{t €]0, 1[: h(t) # a(t)}. Then h is non decreasing on [0, 1].

Proof Suppose, by contradiction, that there exist s < ¢ in [0,1] such
that h(s) > h(t). There must be some x €]s, [ such that s(x) = a(x)
(otherwise, the Lagrange mean value theorem would give us the in-
equality A(s) < h(?)). Define

a :=min{x € [s, 1] : h(x) = a(x)}, b := max{x € [s, {] : h(x) = a(x)}.
Again, by the Lagrange mean value theorem, we have the inequalities
h(s) = h(a) = a(a) < a(b) = h(b) < h(1),

a contradiction.
We can now prove the proposed extension of the Hartman—Nagumo
inequality.

THEOREM 2.4 Let R> 0,y > 0,C > 0 be given and choose M > 0
as associated by Lemma 2.1 to B:=max{R,yR* + C/2}. Let
¢ : [M,+oo[— R" be continuous and such that

+00 s
—ds > M.
JM ¢(s)
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Then, there exists a positive number K > 0 (depending only on
R,p,v, C, M and @) such that, for any p-admissible mapping x satisfy-
ing the following conditions:

@ IOl <R (©O=t=1)

(i) (b0 Ol < y(WOIY)" +C forall t€[0,1] such that
X(2) #0;

(i) 1, (N O < oD~ for all  t&[0,1]  such that
IXOIP~! > M, one has

I¥OI <K (¢ €0, 1]).

Proof From the chain rule we know that ' = ¢,(¢,(x')) is a C'
mapping on the set {¢ € [0, 1] : ¥'(#) # 0}. Let us define

2

r:[0,1] > R, t— ym@+C %, (23)

where m(t) = ||x(¢)||%. It is clear that r is a C! function. Moreover,

Y () = 2p(x(8), X (#)) + Ct (¢ €0, 1]). (24)
It means that x’ does not vanish on the set {¢ € [0, 1] : #(¢) # Ct}, and
then, on this set, » is C* and #'(f) = ym"(f) + C > [|(¢,(x)) (1) = 0.

By Lemma 2.3 we deduce that 7' is non decreasing, what is equivalent
to say that r is convex. Also, it is clear that

X, 15 < B (¢ € [0, 1]), %)

and, to be able to apply Lemma 2.2 we only have to check that inequal-
ity

(@, Ol < 7' () ®)

holds for almost every ¢ in [0,1].
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Notice, firstly, that our hypothesis (ii) says that (2) is true for all 7 in
[0,1] such that x'(f) #0. Secondly, in the interior of the set
{t € [0, 1]: X' (f) = 0} we have

(@, O =0 <r'(1)=C.

It remains to see what happens on 4 := 8{t € [0, 1] : X'(¢) = 0}. We will
prove that at every point 1 € 4 N ]0, 1] such that (*')'(¢) = #"(¢) exists we
have the inequality

(@, N DI < r"(2). 25

Pick some point o € 4 N ]0, 1] such that »’(¢) exists. If ¢, is an isolated
point of A4, there exists some & > 0 such that Jt, tp + &[ C ]0, 1[\4.
Then, " and ¢,(x') are both of class C' on Jto, to + ¢[ and we have
the inequality

I, N DN < 7"(1) (¢ € o, to + &D). (26)

It follows that ||¢,(x'(t)) — ¢,(x' (NIl = 7'(#) —r'(s) for all s, with
th <S§ <t <ty+e, and letting s — £y, that

I6,(X' () = ¢, (DIl <r'(6) =7 (te) (t€o,to+eD, (27

from which we deduce that ||</)p(x’))'(t0)|| < (). If, otherwise, £, is an
accumulation point of A4, there exists a sequence {a,} of points from
A\{ty} converging to fy. But x'(a,) = 0 for all n € N, which implies
that ¢,(x'(a,)) = 0 and 7'(a,) = Ca, for all n € N. We conclude then
that (¢,(x')) (t0) = 0 < C = r"(t).

Theorem 2.4. is now a simple consequence of Lemma 2.2.

3 NONLINEAR PERTURBATIONS OF THE p-LAPLACIAN

Let £ :[0,1] x RY x RY — R" be continuous, and consider the fol-
lowing system of differential equations

(6,(0) =7t x,x), (O=t=1) (28)
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Our goal in the remaining part of this work is to develop some existence
results for the solutions of (28) verifying either the periodic boundary
conditions:

x(0) = x(1), X (0)=x(1), ®)
or the Dirichlet boundary conditions
x(0) =xo, x(1)=x1, D)

where x, and x; are some given points of RY. We need the following
two easy facts.

LEMMA 3.1 Let x be a p-admissible mapping. For each ty € |0, 1| such
that ||x(to)|| = maxe,) [|x(¢)|, one has

(x(to), X (1)) =0 and  (x(to), (¢,(x)) (t0)) + X' () I” < O.

Furthermore, the same conclusion remains true when ty = 0 or 1 if x is
assumed to verify the periodic boundary conditions (P).

Proof* Suppose first that #, € |0, 1[. The equality
Ix(to)1I* = max [lx(r)]|* (29)
tel0,1]
implies that
/ d 2
2(x(t0), X (80)) = — I¥(Olljp=;, = 0. (30)
Next, suppose by contradiction that

(x(to), (6,(x)) (t0)) + X' (1)1l > O, (€2

what is the same as

& 0, 4, Oy > . (32
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As

(x(to), B,(x'(10))) = IIx'(t0)|I"~ (x(t0), X (t0)) = 0,

we deduce the existence of some ¢ > 0 such that )¢y — ¢, £y + ¢[ C [0, 1]
and

(x(1), o, (1)) <0, t€lto—e, tof (33)

(x(®), $,(x(1)) >0, te€lt,to+el. (34)
Equivalently,
d

y XD = 2(x(1), X(1)) <0, t€lty— e, tol (35)

LI = 260.X0) >0, €l o+el,  (36)

which implies that ||x(¢)|| attains a strict local minimum at ¢t = #,. Of
course, this is not compatible with our hypothesis and this first case
is proved.

If now x verifies the periodic boundary conditions (P) and

IX(O) = (DIl = max Ix(Oll,

t

define y : [0, 1] > RY by y(¢) := x(¢ +%) if0<t< %,y(t) = x(t ——%)
if § <t <1 and apply the above result to y (at fo = 1) to obtain the de-
sired result.

LEMMA 3.2. Let f;:[0,1] xRY xR¥ = RY,(i=1,2,3,...), be a
sequence of continuous mappings, converging uniformly on compact
sets to f:[0,1] x RY x RY — R". Suppose that there exist positive
numbers R, K > 0 such that for every i € N there exist a solution x; of
the system

(b, (X)) = filt, x,x')
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with
@I <R, |xOI <K  (<€l0,1]).

Then there exists a subsequence of {x;} converging in the space C'[0, 1]
to some p-admissible mapping % : [0, 11 = RY, which is a solution of

(28).

Proof The two sequences of continuous mappings {x;} and {¢, (x)}
are uniformly bounded together with its derivatives, so that, by the
Ascoli-Arzela Lemma, we can find a subsequence {z;} of {x;} uni-
formly converging on [0,1] and such that the sequence {(i)p(z )} is also
uniformly converging on [0,1]. As ¢, is an homeomorphism from R" to
itself, we deduce that both {z;} and {z;} are uniformly converging on
[0,1]. Finally, from the equalities

(@) =filt,xi,x) (=1,2,3,...,)

we deduce that also the sequence {(qﬁp(z;))'} converges uniformly on
[0,1]. The result now follows.

The following set of hypothesis on the nonlinearity f* will be widely
used in the remaining of this work and will be denoted by (H):

There exist R > 0,7 > 0,C = 0, M > 0 as associated by Lemma 2.1
to B := max{R, yR* + C/2} and ¢ : [M, +oo[ — R* continuous with

-+00 s
J —ds>M
u P0s)

such that

(a) Forany t€[0,1],x,y € RY such that ||x|| = R, (x, y) =0, we have
(x’f(t’ xvy)) + “y”p > 0;

(b) Forany t €[0,1],x,y € R such that |x|| <R and || y|P~! > M,

I £ x I < o(ylP~);
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(c) Forany te[0,1],x € RN with ||x|| <R and y € RN,

IYIPN £ x, DI < 29((P — 2. f(t, %, ) (., p) + [ 917 (6, £ %, 9)
+ Y172 + CllylP.

As we will see next, these assumptions on f* will be sufficient to ensure
the existence of a solution for both the periodic and the Dirichlet pro-
blems associated to equation (28). However, in our approach to these
problems, we will have to assume first a slightly stronger set of hypoth-
esis, consisting in replacing

(a) by (@) Forany t € [0, 1], x, y € RN such that ||x|| = R, (x,y) = 0, we
have

G St x, ) + yIP > 0.

The new set of hypothesis will be denoted by (H).

Notice, furthermore, that if there exist numbers R > 0,7 > 0,C >0
and a continuous function ¢: [0, +-00[ — R verifying the classical
Nagumo condition

00 s
—— ds = +00,
Jo o(s)

such that (a), (b) and (c) are still satisfied for some M > 0, then, the
whole set of hypothesis (H) is ensured.

4 THE PERIODIC PROBLEM

We prove in this section the existence of a solution for the periodic pro-
blem associated to equation (28).

THEOREM 4.1 Let f:[0,1] x RY x RY — R" be a continuous map-
ping satisfying (H). Then, the periodic boundary value problem (P) for
equation (28) has at least one solution x:[0,1] — RY such that
Ix(#)|] < R for all t € [0,1].
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Proof The theorem will be proved in two steps. In the first one, we
assume that the set of hypothesis (H) holds. To prove the theorem in this
more restrictive case, choose K > 0 as given by Theorem 2.4 for
R,y,C,M and ¢, and define

Q:={xeCL(0,1]): Ix()ll <R, |¥@®| <K forall tel0,1]).
(37

Our aim is to apply the continuation theorem 5.1 from [6] in our case.
First we have to prove is that for each A € ]0, 1], the problem

(¢p(x,))/ = )'f(t’ X, "d)

(F) = {x(O) — x(1), (0) = %(1)

(38)

has no solutions on Q. Indeed, notice that

Q={xeCHO,1]: |Ix(OIl <R, I¥®I <K forall ¢el0,1]}.
(39

Now, fix any 4 €]0, 1] and let ¥ € Q be a solution of (P;). Our hypoth-
esis (b) tells us that

(@, Ol = Al (2, x(2), X ()]
< LF @), XN < o(IF O = o(ld,F @)1
(40)

for every ¢ € [0, 1] such that |¥'(#)||’"! > M. That is the third hypoth-
esis needed in Theorem 2.4. The first one is obviously satisfied. Let
us check the second one. We can use () to find that

zZveRY, 2#£0 = ¢ (¢,@ = l2I77(P' = 2)iz, v)z + |z]*v).
(41)
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In our context, it means that, for each ¢ € [0, 1] such that X'(¢) # 0, X"(¢)
exists, and furthermore,

X'(0) = (X)) (1) = ¢, ($,F OB, (F)) ()
= ¢y (&, O (1, X(1), X' (1))
= AF O — DE ). £t 5(8), ¥ ()X (1)
+ IFON @, X0, X (1)), (42)

and consequently,

2((x(0), X'(0) + I¥ (0%
> 2((x(0), ¥ (1)) + AIF (D))
= 220X O ((p" — &' (). (1, X(0), X (1)) (%(1), X' (1))
+ IF O + ¥ O @), (¢, 50, X (1)) (43)

for all r€[0,1] with X'(f) #0. It turns out that, if we define

r:[0,1] = R by r(f) = ||x(t)||>, for each ¢ € [0, 1] such that ¥(¢) # 0,
we can write, using hypothesis (c),

(@, X)) Ol = A7 (2, x(2), ¥ D)l
< 2IF O — D @), 1 (2, %(1), X' () (xX(1), X' (2))
+ IF O &), £ 50, X (@) + IX O ) + 2C
<y"(t)+ AC < y"(H) + C. 44

Now, Theorem 2.4 tells us that
Xl <K (te[0,1)), (45)

and therefore, in order to see that X € €, it only remains to prove the
inequality

X1 <R (€0, 1)) (46)
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Suppose, otherwise, that there exists some point % € [0, 1] such that
IX(t)l| = R. Then, ||Ix(f)|l = maxepo,1j I¥(¢)ll, and from Lemma 3.1
we should have

(x(t0), (0,(x)) (t0)) + 11X (t)IIP = (X(t0). 1 (20, X(t0), X (£0))) + I (to)II”
<0,
contradicting our hypothesis (a).
Finally, it remains to check that the equation
1

Fla) = L f(t,a,0)dt =0 A7)

has no solutions on 3QNRY ={a € RY : |la]| =R}, and that the
Brouwer degree

degplF, QN RY, 0] = degp[F, Br(0), 0]
is not zero. But from hypothesis (a) (taking y = 0) we deduce

(a,f(t,a,0)) >0 forall aeR", ||la| =R, andall te]0,1],
(48)

and, integrating from 0 to 1 we get
1
(a, J f(t,a,0)dt) ={a, F (a)) >0 forall aedBg(0), (49)
0

which, effectively, implies that degg[F, Bg(0), 0] = 1. This concludes
our first step. The theorem is proved assuming (a) instead of (a). And
the whole theorem follows now from a simple approximation argument
that we sketch below.

Fix some ¢, > 0 small enough so that, after defining

(p* = Q + E*R, R* = R, C* = C +R8*’ ’Y* = Vs

C B\ B
By = max{R*, yRZ +—2—t}, M, = max{ (—B—*-) ,—Bfﬁ} M,
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(where, as the reader can easily check, M, has been carefully chosen so
that it satisfies the conditions of Lemma 2.1 for the parameter B,), we
still have the inequality

+00 s
J ds > M, (50)
M, ([)*(S)

Next, choose a sequence {&;};eny — 0 with 0 < &; < &, (i € N), and de-
fine

fi: 10,11 xRY xRY — RN, (t,x,p)— f(t,x,y) +ex (i eN).
(51
Now, it is clear that, for each i € N,
(a;), Forany t € [0, 1], x, y € R", such that ||x|| = R,, (x,y) =0, we

have (x,fi(t, x,y)) + llyIf’ > 0.
(b;), For any te0,1],x,yeR" such that |lx|| <R, and

IIP=" = My, it x9N < o, (1P,
(¢;), For any ¢ € [0, 1], x € R" such that ||x|| < R, and y € RY,
IIP 1 £t x < W PIPILLCE % I+ Iy IPesRy
< 29.((p" = 23, f(t, x, ) (x, )
+ Iy, St x, 9) + (9172 + Cull y I
=2y,((p" = 2)(y. fi(t, x, p)) (x, »)
F I fit x, ) + 1P + Gyl
= 20,((P' = 2)eilx, »)* + &illx P y1I%)
< 20,((p" = 2). S (t, x, »)) (x, y)
+ P12 6x, fit, x, 9)) + IV IPF2) 4+ CellyllP. (52)
(because p' —2 > —1).

We deduce, by the first step proved above, the existence for each i € N
of a solution x; : [0, 1] = R" of the periodic boundary value problem

P) = {(¢,,(x’)) =f(t,x,x) + &x (53)

(0) =x(1), x(0)=x(1),

verifying |lx;(9)|| < R, ||x',.(t)|| < K, for all ¢ € [0, 1]. (K, being given
by Theorem 2.4 for R,, y,, Cx and M,).
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The existence of a solution to our problem is now a consequence of
Lemma 3.2.

5 THE DIRICHLET PROBLEM

Consider now the boundary value problem arising from equation (28)
together with the Dirichlet boundary conditions (D). For the reader’s
convenience, we reproduce here a result of [5].

LEMMA 5.1 Let xo,x; € RY be fixed. Then, for each h € C[0, 1] there
exists a unique solution x, € C'[0, 1] to the problem

_ (@) =h

| x(0) = xo, x(1) =x;

(D) (54)

Furthermore, if we define K : C[0, 1] — C'[0, 1] by h —>xy, the map-
ping K is completely continuous.

Proof Integrating the differential equation in (54) from 0 to ¢ we find
that a C' mapping x : [0,1] — R" is a solution to this equation if and
only if there exist some a € R
(necessarily unique) such that

¢, @) = a+H(m)(@) (t€]0,1]), (55)
where H(h)(¢) := f(; h(s)ds. This formula can be rewritten as

X(t) = ¢, '@+ HE®) (¢ €0, 1)) (56)
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Now, the boundary conditions imply that

x(t) = xo + J; ¢, Ya+ H)(s)ds (t €0, 1)), 57)

T
JO ¢, " (a+ H(h)(s))ds = xi — xo. (58)

We therefore conclude that there exists a bijective correspondence be-
tween the set of solutions to (54) and the set of points @ € R" verifying
(58), given by x i—> ¢,(x'(0)).

Following a completely analogous reasoning to that carried out in
Proposition 2.2 from [4], we find that

(i) For each & € C[0, 1] there exists an unique solution a(k) of (58).
(i) The function a : C[0, 1] - R" defined in (i) is continuous and maps
bounded sets into bounded sets.

We deduce that for every & € C[0, 1], there exists a unique solution K(4)
of (Dy), given by the formula

t
K@) = xo + jo ;' (a(h) + HIY)ds (€0, 1).  (59)
The continuity of the mapping a allows us to deduce the continuity of
K. The boundedness of a on bounded sets of C[0, 1] has as a conse-
quence the compactness of K on bounded sets of C[0, 1].

This lemma is now used to prove the following existence theorem for
the Dirichlet problem associated to (28).

THEOREM 5.2 Let f:[0,1] x RY x RY — R" be a continuous map-
ping verifying (H). Let xo,x; € RY with ||xo||, ||x1|| < R. Then, the

boundary value problem (28)-(D), has at least one solution
x:[0,1] — R such that ||x(¢)|| <R forall t € [0,1].

Proof Define F : C'[0,1] — C[0,1] by

FE)@) = f(t, x(), X)), (t€][0,1]), (60)
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so that our problem can be rewritten as

x=KFE), (ecC'o,1]). (61)

Notice that KF : C'[0, 1] — C'[0, 1] is a completely continuous map-
ping, so that if /' were bounded, F and KF would be bounded and the
Schauder fixed point theorem would give us the existence of a solution
of our problem. Thus, our problem is now reduced to finding some
£ 110,11 x RY x RY — R" continuous, bounded and such that every
solution to the equation

(6 (X)) = fult, x, %) (62)

verifying the boundary conditions (D) is also a solution to (28).

The following construction is essentially taken from [2]. As in the
periodic case, Lemma 3.2 can be used to see that it suffices to prove
the theorem assuming that f* actually verifies the more restrictive set
of hypothesis (H). Let K >0 be as given by Theorem 2.4 for
R,y,C, M and ¢. Choose some continuous function

p : [0, o[- RT (63)
such that
p@ =1 (0=1=<K), 64
and

sup{p(l yIDIl (¢, %, »)Il : £ €[0,1], IIx| <R, y € R} < o0  (65)
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For instance, p could be chosen as

1 if 0<tr<K
1
| VA max{lf @ x )l 2 € 0,1], lixll < R, vl < 1)
pt) = 4 if t>K+1
(14K = Dp(K) + (t —K)p(1 + K)
if K<t<K+1

(66)
Define

(YIS, x, ) if x|l <R

67
p(MyH)f(tﬂﬁ,y) it =k

St x,y) = {

It is easy to check that f, is still a continuous bounded function satisfy-
ing not only the same set (ﬁ) of hypothesis (for the same parameters
R, 7y, C, M), but, moreover, (a,) For any ¢ € [0, 1], x,y € R" such that
Ilxll > R, {x,y) = 0, we have

(x, [t x, ) + IyllP > 0.

Also, it is clear that f,(¢, x, ) = f(¢,x,y) if ||Ix]] <R and |y} < K.

So, let ¥ : [0, 1] — R be a solution to (62) verifying the boundary
conditions (D), where ||xo|l, |lx;]] < R. Let us show that ||x(¥)|| <R,
IIX'(1)|l < K for all ¢ € [0, 1]. First suppose that there exists some point
to € [0, 1] such that ||x(#)]| > R. This point fy can be taken so as
1%(to) Il = maxrejo, 1 XD As IXO0)| = lIxoll < R, I¥(DIl = llxill <R,
we see that fy €10, 1[. Now, using Lemma 3.1, we deduce that
{X(t0), X'(t9)) = 0 and

{X(t0), (9,(X)) (t0)) + IIX' )" = (X(to), fi(t0, ¥(t0), ¥ (10)))
+ X' (t)IIP < 0,

which contradicts (a,). It means that ||x(f)|| < R for all ¢ € [0, 1]. And,
in the same way as happened in the proof of Theorem 4.1, our hypoth-
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esis (b) and (¢) on f (translated to f;,) make X verify the second and third
hypothesis of Theorem 2.4. Applying it we obtain that ||X'(¢)|]| < K for
all ¢ € [0, 1], so that % is in fact solution to the system (28-(D)). The the-
orem is proved.
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