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Abstract. In this work we study the effects of systematic and
random errors on the inversion of multiwavelength (MW)
lidar data using the well-known regularization technique to
obtain vertically resolved aerosol microphysical properties.
The software implementation used here was developed at the
Physics Instrumentation Center (PIC) in Troitsk (Russia) in
conjunction with the NASA/Goddard Space Flight Center. Its
applicability to Raman lidar systems based on backscattering
measurements at three wavelengths (355, 532 and 1064 nm)
and extinction measurements at two wavelengths (355 and
532 nm) has been demonstrated widely. The systematic error
sensitivity is quantified by first determining the retrieved pa-
rameters for a given set of optical input data consistent with
three different sets of aerosol physical parameters. Then each
optical input is perturbed by varying amounts and the inver-
sion is repeated. Using bimodal aerosol size distributions, we
find a generally linear dependence of the retrieved errors in
the microphysical properties on the induced systematic er-
rors in the optical data. For the retrievals of effective radius,
number/surface/volume concentrations and fine-mode radius
and volume, we find that these results are not significantly
affected by the range of the constraints used in inversions.
But significant sensitivity was found to the allowed range of
the imaginary part of the particle refractive index. Our re-
sults also indicate that there exists an additive property for
the deviations induced by the biases present in the individ-
ual optical data. This property permits the results here to be

used to predict deviations in retrieved parameters when mul-
tiple input optical data are biased simultaneously as well as
to study the influence of random errors on the retrievals. The
above results are applied to questions regarding lidar design,
in particular for the spaceborne multiwavelength lidar under
consideration for the upcoming ACE mission.

1 Introduction

The importance of atmospheric aerosol particles on Earth’s
climate and on environmental problems is widely recog-
nized. Particularly, the Intergovernmental Panel on Climate
Change 2007 (IPCC 2007) (Forster et al., 2007) stated that
atmospheric aerosol particles can produce a negative radia-
tive forcing that is comparable in magnitude, but opposite
in sign, to the forcing induced by the increase in green-
house gas concentration. However, according to the IPCC,
radiative forcing by atmospheric aerosol particles has greater
uncertainties (twice the estimated value of the forcing) due
to the large spatial and temporal heterogeneities of atmo-
spheric aerosols (e.g., Haywood and Boucher, 2000), the
wide variety of aerosol sources (e.g., Dubovik et al., 2002),
the spatial nonuniformity and intermittency of these sources
(e.g., Kaufman et al., 1997), the short atmospheric life-
time of aerosols (e.g., Seinfield and Pandis, 1998), processes
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occurring in the atmosphere (Eck et al., 2010) and aerosol
dynamics (e.g., Pérez-Ramírez et al., 2012).

Because of these challenges, the characterization of at-
mospheric aerosols is being achieved through intense ob-
servational programs using remote sensing techniques. For
example, NASA has led several spaceborne missions to
study aerosol properties worldwide (e.g., the MODIS instru-
ment on the TERRA and AQUA platforms). However, satel-
lite measurements possess lower temporal resolution than
ground-based systems. For example, the AERONET global
network (Holben et al., 1998) is providing large data sets
of high-temporal-resolution ground-based aerosol measure-
ments at more than 400 locations worldwide. But the aerosol
retrievals by AERONET and by many satellite platforms
only provide column-integrated properties. By contrast, the
lidar technique offers vertical profiling of aerosols, from the
first lidars in the early 1960s to the more sophisticated Ra-
man lidars (Whiteman et al., 1992; Ansmann et al., 1992) or
high-spectral-resolution lidars (HSRL) (Shipley et al., 1983;
Grund and Eloranta, 1991; She, 2001; She et al., 2001).
Moreover, the Nd:YAG laser has been used as the transmit-
ter for multiwavelength Raman lidar systems (MW), which
have permitted the retrieval of the profile of aerosol micro-
physical properties (e.g., Müller et al., 2001, 2004, 2005,
2011; Wandinger et al., 2002; Böckman et al., 2005; Noh et
al., 2009; Balis et al., 2010; Alados-Arboledas et al., 2011;
Tesche et al., 2011; Veselovskii et al., 2012; Papayannis et
al., 2012; Wagner et al., 2013; Navas-Guzmán et al., 2013).

The first attempts to obtain aerosol microphysical prop-
erties from MW Raman lidar measurements were done at
the Institute for Tropospheric Research (IFT) in Leipzig
(Germany) using the regularization technique (Müller et al.,
1999a, b, 2000). The first retrievals done at the IFT were
based on measurements from a complex lidar system provid-
ing six backscattering (355, 400, 532, 710, 800 and 1064 nm)
and two extinction (355 and 532 nm) coefficients. Following
these first efforts, a software capability based on the regular-
ization technique was developed at the Physics Instrumen-
tation Center (PIC) in Troitsk, Russia. The retrieval code de-
velopment at PIC has been further advanced and has incorpo-
rated a model of randomly oriented spheroids for retrieving
dust particle properties (Veselovskii et al., 2010). Müller et
al. (2001, 2004, 2005) and Veselovskii et al. (2002, 2004)
demonstrated the capability of the regularization technique
to retrieve aerosol microphysical properties from a lidar sys-
tem that provides just five optical signals using a tripled
Nd:YAG laser. The optical data provided by this system were
backscatter coefficients (β) at 355, 532 and 1064 nm and ex-
tinction coefficients (α) at 355 and 532 nm (hereafter this
configuration is referred to as 3β +2α). The inversion proce-
dure makes use of averaging the solutions in the vicinity of
the minimum of a penalty function (Veselovskii et al., 2002).
This averaging procedure increases the reliability of the in-
versions even when the input optical data are affected by ran-
dom errors (e.g., Veselovskii et al., 2002).

However, lidar systems are very complex and generally
possess both random and systematic errors. Random errors
arise naturally from the measurement process, and some pre-
liminary random error sensitivity studies were performed by
Müller et al. (1999a, b) and Veselovskii et al. (2002, 2004).
But, to date, there is a lack of studies of the effects of system-
atic errors on the microphysical inversions. Systematic errors
in lidar systems come from many different sources and need
to be considered. From the hardware point of view, system-
atic errors can be due to, for example, nonlinearity of a pho-
todetector or errors in calibration of the optical data or the
effect of depolarization due to optical imperfections in chan-
nels that are sensitive to polarized light. From the method-
ological point of view, systematic errors can be caused by, for
example, errors in the assumed atmospheric molecule density
profile, the selection of the reference level (an “aerosol-free”
region that may actually contain a small concentration of par-
ticles) or the use of an incorrect extinction-to-backscatter ra-
tio to convert backscatter lidar measurements to extinction.

In general, we expect that systematic errors such as these
can affect the retrieval. The aim of this work, therefore, is to
study the sensitivity of microphysical retrievals by the regu-
larization technique to systematic variations in the input op-
tical data provided by the 3β + 2α lidar configuration. Par-
ticularly, we will focus on the study of bimodal size distri-
butions widely found in nature (e.g., Dubovik et al., 2002).
We will show that the results obtained can also be used to as-
sess the sensitivity of the retrievals to random errors in a new
way. The study involves simulations based on three differ-
ent bimodal aerosol size distributions: one with a large pre-
dominance of fine mode, another with slight predominance
of coarse mode and the last one with slight predominance of
fine mode.

The procedure that we used is the following: first the op-
tical data consistent with the three aerosol size distributions
described above are generated using Mie theory. Then the
optical inputs are systematically altered to provide a known
amount of systematic error in each of the individual input
data. The inversion code is run using both the biased and un-
biased optical data, and the deviations in the retrieved aerosol
parameters are quantified. The methodology and the simula-
tion approach are presented in Sect. 2. Section 3 is devoted
to the results. Finally, in Sect. 4 we present a summary and
conclusions.

2 Methodology and simulation approach

2.1 Inversion technique

The optical characteristics of an ensemble of polydisperse
aerosol particles are related to the particle volume distri-
bution via Fredholm integral equations of the first kind as
follows (Müller et al., 1999a; Veselovskii et al., 2002):
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gj (λi) =

rmax∫
rmin

Kj,N (m,r,λi)n(r)dr, (1)

wherej corresponds either to backscatter (β) or extinction
(α) coefficients,gj (λi) are the corresponding optical data at
wavelengthλi , n(r) is the aerosol size distribution expressed
as the number of particles per unit volume betweenr and
r + dr, andKj,N (m,r,λi .) are the number kernel functions
(backscatter or extinction), which are here calculated from
Mie theory assuming spherical particles and depend on par-
ticle refractive indexm, particle radiusr and wavelengthλ.
Finally, rmin andrmax correspond to the minimum and max-
imum radius used in the inversion. The size distribution in
Eq. (1) can be written in terms of surface (s(r) = 4πr2n(r))
or volume (v(r) = (4/3)πr3n(r)) size distribution. The cor-
responding kernels are obtained by dividingKj,N (m,r,λi .)
by 4πr2 and(4/3)πr3, respectively, and are thus given by

Kj,S (m,r,λi) =
Kj,N (m,r,λi)

4πr2
, (2)

Kj,V (m,r,λi) =
3Kj,N (m,r,λi)

4πr3
, (3)

whereKj,S(m,r,λ) and Kj,V (m,r,λ) are the surface and
volume kernel functions, respectively. Generally, the volume
kernel functions are used in the retrieval procedure of aerosol
microphysical properties (Heintzenberg et al., 1981; Qing et
al., 1989). Thus, we perform the retrieval of volume size dis-
tribution using the volume kernel functions of Eq. (3). More
details about the computation of these volume kernel func-
tions from Mie extinction coefficients for spherical particles
can be found in the references (e.g., Bohren and Huffman,
1998).

The regularization technique used here to solve Eq. (1) has
been discussed extensively elsewhere (e.g., Veselovskii et al.,
2002, 2004, 2005), and thus we provide here only a brief
overview. The key point is to identify a group of solutions
that, after averaging, can provide a realistic estimation of par-
ticle parameters. Such identification can be done by consider-
ing the discrepancy (ρ) defined as the difference between in-
put datag(λ) and data calculated from the solution obtained.
The retrieval uses an averaging procedure that consists of se-
lecting a class of solutions in the vicinity of the minimum of
discrepancy (Veselovskii et al., 2002, 2004). Such an aver-
aging procedure stabilizes the inversion, as the final solution
for size distribution and aerosol parameters is an average of
a large number of individual solutions near the minimum of
discrepancy (Veselovskii et al., 2002). In general, we average
approximately 1 % of the total number of solutions in arriv-
ing at the best estimate of the particle parameters.

The inverse problem considered here is underdetermined,
so constraints on the inversion are needed. We consider a set
of possible values of the particle refractive index as well as a
set of possible radii within a certain size interval. In general,

the retrieval result will depend on the range of parameters
considered: the larger the range, the higher the uncertainty
of the retrieval as determined by the spread in the solutions
obtained. So the range of parameters should be chosen rea-
sonably. In our research, the real part of the aerosol refractive
index (mr) is allowed to vary from 1.33 to 1.65 with a step
size of 0.025, while the imaginary part (mi) varies over the
range of 0–0.01 with a step size of 0.001. The size interval
for the inversions was limited to 0.075–5 µm with a step size
of 0.025 µm. Tests revealed that reducing the step size of the
different parameters in the inversion does not decrease the
spread in the solution. Therefore, we take the step sizes used
as adequate for the purposes of the present sensitivity study.

2.2 Size distribution for the simulations

For these simulations, we used bimodal aerosol size distribu-
tions given as (Veselovskii et al., 2004)

dn(r)

dln(r)
=

∑
i=f,c

Nt,i

(2π)1/2 lnσi

exp

[(
lnr − lnrn

i

)2

2(lnσi)
2

]
, (4)

whereNt,i is the total particle number of theith mode, ln(σi)
is the mode width of theith mode andrn

i is the mode radius
for the number concentration distribution. The indexi = f ,
c corresponds to the fine mode and the coarse mode, respec-
tively. In the retrieval procedure, the fine mode is taken to
include all particles with radius between 0.075 and 0.5 µm,
while the coarse mode includes all particles with radius be-
tween 0.5 and 5 µm. On the other hand, the same distribution
can be written for volume concentrationv(r), which is usu-
ally preferred because both fine and coarse mode can be eas-
ily distinguished. Moreover, the standard deviations ofn(r)

andv(r) are the same when using the relationships between
radius and concentrations for each mode given by (Horvath
et al., 1990)

rv
i = rn

i exp
[
3(lnσ)2

]
, (5)

Vt i = Nt i

4

3
π

(
rn
i

)3exp

[
9

2
(lnσ)2

]
. (6)

We consider three types of aerosol size distributions for
the simulations, which we call type I, type II and type III.
These size distributions are used to approximate real aerosol
types found in the atmosphere. All types userv

f = 0.14 µm,
lnσf = 0.4, rv

c = 1.5 µm and lnσc = 0.6. These mode radii
and widths are representative of those provided by Dubovik
et al. (2002) in the AERONET climatology database and are
thus considered to represent a large fraction of naturally oc-
curring aerosols. The differences between type I, II and III
are the ratio of fine and coarse mode (Vtf/Vtc). Type I yields
Vtf/Vtc = 2 and represents a distribution with a predomi-
nance of fine mode. This type can be considered to repre-
sent industrial and biomass burning aerosols (e.g., Eck et al.,
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2003; Müller et al., 2004; Schafer et al., 2008). Type II yields
Vtf/Vtc = 0.2 and corresponds to a slight predominance of
the coarse mode over the fine mode. This type is consistent
with a mixture of dust/marine aerosol and those of pollution
or biomass burning (e.g., Smirnov et al., 2002, 2003; Eck
et al., 2005, 2010). Finally, type III yieldsVtf/Vtc = 1 and
corresponds to a slight predominance of fine mode over the
coarse mode (e.g., Xia et al., 2007; Ogunjobi et al., 2008;
Yang and Wenig, 2009; Eck et al., 2009). This type is rep-
resentative of predominance of pollution or biomass burning
but with considerable influence of dust particles. Figure 1 il-
lustrates the three size distributions used. For convenience,
the size distributions of Fig. 1 are normalized. Finally, if we
were to include a strong predominance of coarse mode (e.g.,
marine or dust aerosol) in 3β + 2α lidar measurements, then
the effects of polarization and nonsphericity should be taken
into account, and previous work indicates that the use of ker-
nel functions for nonspherical particles can improve the re-
trievals (Veselovskii et al., 2010). Here, however, our purpose
is to calculate sensitivities due to random and systematic un-
certainties, so we consider only spherical (Mie) kernels and
thus exclude a distribution with a strong predominance of the
coarse mode.

The simulation consists in generating the three backscat-
tering and two extinction coefficients for the 3β + 2α lidar
configuration using Mie theory for the three aerosol size dis-
tributions: type I, type II and type III. These optical data
are generated for six different configurations of aerosol re-
fractive indices (mr values of 1.35, 1.45 and 1.55 andmi
either 0.005 or 0.01). From previous studies (Müller et al.,
1999b; Veselovskii et al., 2002), error inmr was initially
established as±0.05, while error inmi was approximately
50 %. Moreover, the AERONET network provides refractive
indices with very similar errors (Dubovik et al., 2000). Thus,
the range of refractive indexes proposed for the size distri-
bution is enough to cover most of the values obtained by
AERONET (Dubovik et al., 2002).

The regularization inversion is then performed on these
data and we obtain the retrieved microphysical parameters
Mret. The next step consists of applying a systematic bias,
denoted as1ε, to one optical datum at a time. The bias varies
from −20 to+20 % in eight intervals. For each of these in-
duced biases, the inversion is performed and a new size dis-
tribution and set of microphysical parameters,Mbias, are then
obtained. The comparisons to be performed are expressed as
the percentage difference 100·(Mbias−Mret)/Mret. This pro-
cedure is applied to each of the five optical data used in the
3β + 2α lidar configuration.
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Fig. 1. Normalized size distributions used for computing the simu-
lated optical data. The ratio between the volume of fine and coarse
mode,Vtc/Vtc, is 2 for type I, 0.2 for type II and 1 for type III.

3 Results

3.1 Uncertainties in the retrieval of particle refractive
index

The 3β+2α lidar configuration permits the retrieval of parti-
cle refractive index, both real (mr) and imaginary (mi) parts
(e.g., Veselovskii et al., 2002), by the use of the regulariza-
tion scheme. But the inverse problem of Eq. (1) is underde-
termined and, as already stated, constraints are needed to per-
mit solutions to be obtained. Particularly, the selection of the
range of refractive indices permitted in the retrieval is impor-
tant. As commented, we limited the range ofmr to between
1.33 and 1.65 andmi from 0.0 up to 0.01. These ranges cover
most types of aerosol particles present in the atmosphere, ex-
cept for strongly absorbing particles such as black carbon.
Moreover, given that the longest wavelength measurement
used here is 1064 nm, the technique has reduced sensitivity
to the coarse mode of the aerosol distribution. Thus, to sta-
bilize the retrievals, the maximum radius of the retrieval in-
terval was set to 5 µm. Additionally, the kernel functions for
radius below 0.075 are very near to zero, and thus the min-
imum radius allowed was set to 0.075 µm. The behavior of
the kernel functions versus wavelength can be consulted, for
example, in Chapter 11 of Bohren and Huffman (1998).

In the analysis that follows, we do not present results on
the refractive index sensitivity analysis. The reason for this
is that we found that the retrieval of refractive index is very
sensitive to the range of permitted values for the imaginary
part of the refractive index. Changing the range of permitted
values of the imaginary part can change the retrieved refrac-
tive index significantly while not significantly affecting the
values of the other retrieved quantities. For example, com-
putations allowingmi to range up to 0.1 provide retrieved
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values ofmi of approximately 0.03 when the values ofmi
of the input size distributions where 0.01 or 0.005. There-
fore, keeping in mind that the retrieval is underdetermined,
we conclude that we can provide reasonable estimates of the
refractive index only with reasonable constraints formi . All
these results just magnify the point that refractive index re-
trievals are difficult with the MW lidar technique and that
some a priori knowledge of the aerosol absorption is help-
ful to constrain the inversion. A more detailed discussion
about the limitations of the averaging procedure used here
to retrieve accurate values of particle refractive index is in
Veselovskii et al. (2013).

3.2 Effects on the retrievals of systematic errors in the
optical data

For the scheme described previously, Fig. 2 presents the sen-
sitivity analysis for the retrieval of effective radius (reff). Ev-
ery point corresponds to the mean value of the six different
combinations of aerosol refractive indices used in generating
the set of optical data. The error bars shown are the standard
deviations of these mean values. Generally linear patterns are
observed for the deviation in the retrieved value ofreff for
differing biases in the input optical data for all of types I, II
and III aerosols. As the linear patterns pass through the ori-
gin, least-squares fits of the formY = aX were performed
for the points shown in the plot. Given the definition of
1reff = reff,bias− reff,ret, positive slopes indicate higher val-
ues ofreff when the optical data are affected by positive bi-
ases than when they are not affected by biases, while for neg-
ative slopes just the opposite occurs. Moreover, Fig. 2 reveals
the same general patterns for all of types I, II and III for each
optical channel, with only small changes in the absolute val-
ues of the slopes of the linear fits. It is quite apparent that the
retrievals are more sensitive to biases in the extinction coeffi-
cients. The lowest sensitivities are to biases inβ(355 nm) and
β(532 nm), while for biases inβ(1064 nm), the sensitivity of
the retrievals is in between those obtained for extinction and
backscattering coefficients at 355 and 532 nm. Figure 2 also
reveals that the linear patterns for different optical channels
have different signs of the slopes. Considering the parame-
ters to which the retrievals are most sensitive, the linear fit of
α(355 nm) gives negative values of slope (a = −1.68± 0.12
for type I,a = −1.74±0.03 for type II anda = −1.84±0.04
for type III), while for α(532 nm) the slopes are positive
(a = 1.51± 0.04 for type I,a = 1.82± 0.09 for type II and
a = 1.71± 0.10 for type III).

The Ångström law, either for the extinctionα(λ) = kλ−ηα

or for the backscatteringβ(λ) = kλ−ηβ , can be used to help
understand the sign of the slopes of Fig. 2. For the wave-
lengths used here, the Ångström exponentsηα andηβ char-
acterize the spectral features of aerosol particles and are re-
lated to the size of the particles: large values ofηα andηβ

are mainly associated with predominance of fine-mode parti-
cles, while low values are associated with a predominance of

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Percentage deviation of the effective radius as a function of systematic bias in the optical data 
(ε).  a) Type I. b) Type II. C) Type III.   
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coarse mode (e.g., Dubovik et al., 2002). Moreover, many
works (e.g., Alados-Arboledas et al., 2003; O’Neill et al.,
2005; Veselovskii et al., 2009) have found an inverse rela-
tionship between the Ångström exponent for extinction and
the effective radius: large values of the Ångström exponent
are associated with low values ofreff, while just the oppo-
site occurs for low values of the Ångström exponent. Con-
sidering this and given thatα(355 nm) is generally larger
thanα(532 nm), a positive bias inα(355 nm) increases the
spectral difference withα(532 nm) and would increase the
value of the Ångström exponent and thus would result in
a decrease in the retrieved particle radius. This agrees with
the negative slopes ofα(355 nm) observed in Fig. 2. On the
other hand, a positive bias inα(532 nm) reduces the spectral
difference withα(355 nm) and thus serves to decreaseηα.
Thus, we would expect an increase in the retrieved particle
radius, which agrees with the positive slopes observed for
α(532 nm) in Fig. 2. The slopes ofβ(355 nm) andβ(532 nm)
possess mostly the same sign as the corresponding extinc-
tion coefficient at each wavelength, and similar logic con-
cerning the relationship of the Ångström exponent and the
particle size given forα(355 nm) andα(532 nm) can be used
to explain this behavior as well. Finally, forβ(1064 nm)
we observe positive slopes (a = 0.791± 0.008 for type I,
a = 0.54±0.07 for type II anda = 0.84±0.02 for type III).
Positive biases ofβ(1064 nm) decrease the spectral differ-
ence betweenβ(355 nm) andβ(532 nm), indicating a de-
crease of the Ångström exponent, and thus we would expect
an increase in the retrieved particle size, which agrees with
the presence of positive slopes in the plot.

Figure 3 presents the sensitivity analysis for the retrieval
of number concentration (N ). From Fig. 3 we again gen-
erally observe linear patterns of the deviation in retrieved
value ofN for differing biases in the input optical data. Lin-
ear fits through the origin in the formsY = aX were also
performed here. Interestingly, the slopes of the linear fits
of the extinction coefficients present opposite signs to those
determined for the retrieval ofreff, with positive values for
α(355 nm) (a = 3.09± 0.12 for type I,a = 4.83± 0.22 for
type II a = 3.04± 0.13 for type III) and negative values for
α(532 nm) (a = −2.78± 0.17 for type I,a = −4.09± 0.23
for type II anda = −2.61±0.12 for type III). Therefore, we
see in the retrieved results, for example, that in order to com-
pensate for a radius enhancement due to biased input data,
the retrieval tends to decrease number density.

For the sensitivities ofreff andN shown in Figs. 2 and 3,
the absolute values of the slopes atα(355 nm) andα(532 nm)
are larger than 1, which indicates that the percentage devia-
tions in the retrievedreff andN using biased data are larger
than the percentage bias imposed on the input optical data.
Thus, the accuracy ofreff retrievals using 3β + 2α lidar is
strongly dependent on the accuracy associated with the ex-
tinction coefficients. Other slopes with absolute values less
than 1, as for example those obtained forreff as a function of
biases inβ(1064 nm), indicate that while the retrieval is still

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Percentage deviation of the number concentration as a function of systematic bias in the 
optical data (ε).  a) Type I. b) Type II. c) Type III.  
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Fig. 3.Percentage deviation of the number concentration as a func-
tion of systematic bias in the optical data (ε). (a) Type I, (b) type II
and(c) type III.
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Table 1. Percentage deviations in the aerosol microphysical properties as a function of systematic errors in the optical dataε. Particularly,
the slopesa of the linear fitsY = aX are presented, whereX is the systematic bias in the optical data andY is the corresponding deviation
in the microphysical properties. All these fits presented linear determination coefficientR2 > 0.90. For the cases when there is a difference
in slope between positive and negative biases in the input data, the slopes relating to the positive biases are indicated by (p), while those
associated with negative biases are indicated by (n).

1reff(%)
1ε(%)

1N(%)
1ε(%)

1S(%)
1ε(%)

1V (%)
1ε(%)

1rfine(%)
1ε(%)

1Vfine(%)
1ε(%)

α
(3

55
nm

)

Type I −1.68± 0.12 3.09± 0.12 2.08± 0.05 0.26 (p)/ −0.99± 0.11 1.59± 0.05
0.77 (n) ,± 0.07

Type II −1.74± 0.03 4.83± 0.22 1.77± 0.04 −0.37 (p)/ −1.27± 0.17 1.66± 0.17
0.35 (n) ± 0.05

Type III −1.84± 0.04 3.04± 0.13 1.95± 0.05 −0.47 (p)/ −0.64 (p)/ 1.56± 0.06
0.77 (n) ± 0.04 −1.51 (n) ± 0.07

α
(5

32
nm

)

Type I 1.51± 0.04 −2.78± 0.17 −1.07± 0.08 0.44± 0.12 1.17± 0.04 −0.28± 0.05

Type II 1.82± 0.09 −4.09± 0.23 −0.69± 0.03 1.18± 0.17 1.28± 0.07 −0.44± 0.04

Type III 1.71± 0.10 −2.61± 0.12 −0.92± 0.07 1.46± 0.08 (p)/ 0.98 (p) ± 0.01 / −0.20± 0.04
0.77 (n) ± 0.02 1.46 (n) ± 0.01

β
(3

55
nm

) Type I −0.63± 0.02 −1.25± 0.04 (p)/ −0.73± 0.04 −1.39± 0.04 −0.01 (p)/ −0.62± 0.03
−0.85± 0.15 (n) −0.06 (n) ± 0.01

Type II −0.54 (p)/ 0.19 (p)/ −0.22 (p)/ −0.48± 0.10 0.33 (p)/ 0.26 (p)/
−0.18 (n) ± 0.01 0.12 (n) ± 0.04 −0.04 (n) ± 0.02 0.06 (n) ± 0.03 −0.01 (n) ± 0.01

Type III −0.76 (p)/ −0.44± 0.08 −0.47± 0.06 −1.04± 0.08 0.10± 0.01 −0.39 (p)/
−0.43 (n) ± 0.01 −0.19 (n) ± 0.01

β
(5

32
nm

) Type I 0.27± 0.04 1.3± 0.09 0.50± 0.03 0.77± 0.05 −0.05 (p)/ 0.22± 0.02
−0.22 (n) ± 0.03

Type II −0.48 (p)/ 0.79± 0.11 (p)/ 0.05± 0.02 −0.38 (p)/ −0.11± 0.02 −0.11 (p)/
0.02 (n) ± 0.02 −0.37± 0.05 (n) 0.03 (n) ± 0.03 −0.34 (n) ± 0.01

Type III −0.03 (p)/ 0.70± 0.06 0.30± 0.03 0.48± 0.07 −0.16± 0.01 0.02± 0.02
0.38 (n) ± 0.05

β
(1

06
4

nm
) Type I 0.79± 0.01 0.37± 0.05 0.17± 0.02 0.92± 0.04 −0.17± 0.01 −0.04± 0.01

Type II 0.54± 0.07 0.29 (p)/ 0.04± 0.02 0.60± 0.05 −0.28± 0.02 −0.15 (p)/
−0.25 (n) ± 0.05 −0.34 (n) ± 0.02

Type III 0.84± 0.02 0.07± 0.03 0.08± 0.02 0.92± 0.03 −0.26± 0.01 −0.19± 0.01

quite sensitive to biases inβ(1064 nm), the deviations in the
retrieved parameters is less than the magnitude of the biases.
Finally, the slopes ofreff as a function of biases in the input
data forβ(355 nm) andβ(532 nm) are quite small, indicating
that biases in these optical parameters have relatively small
effects on the retrieval ofreff. However, for the retrieval of
number concentration, the effects of biases in the backscat-
tering optical data are not negligible, with absolute values of
the slopes of the linear fits between 1.3 and 0.3.

As with the effective radius and number concentration, we
have performed the sensitivity analysis for the other micro-
physical parameters obtained from the inversion of 3β + 2α

lidar data. For these studies, we have also observed generally
linear patterns when considering the differences in the re-
trieved microphysical parameters as a function of the bias in

the input optical data. Again, the linear patterns pass through
the origin, and we therefore assumed least-squares fits of the
form Y = aX. The results of the linear fits for all the param-
eters are summarized in Table 1, including also the slopes
obtained forreff andN in Figs. 2 and 3, respectively.

We note that for some parameters the linear fit possesses
different slopes for positive and negative biases1ε. For ex-
ample, in the case ofreff for type II,β(532 nm) has a slope of
−0.48±0.02 for positive biases and 0.02±0.02 for negative
biases. This is taken into account in Table 1, where, if there is
a difference in slope between positive and negative biases in
the input data, then the slopes relating to the positive biases
are indicated by(p), while those associated with negative bi-
ases are indicated by(n). We take this difference in slope to
be a reflection of the reduced sensitivity to the coarse mode
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of the distribution. From Table 1 we observe that the number
concentration is by far the most sensitive parameter to bias in
the optical data, particularly to those biases inα(355 nm) and
α(532 nm). Moreover, the sensitivities to biases atβ(355 nm)
are generally larger for type I than for type II (absolute values
of slopes are larger), with type III being in the middle. This
finding can be explained by the fact that, for the same total
volume, small particles (which predominate in type I) gener-
ally provide larger backscattering of light at the shorter wave-
lengths (phase function at 180◦ is larger) (e.g., Mischenko et
al., 2000; Liou, 2002; Kokhanovsky 2004).

From Table 1 the slopes calculated from the linear fits of
surface concentration (S) as a function of biases in the opti-
cal data present the same patterns (sign of slopes) between
types I, II and III. The difference in the absolute values of
slopes between the three types are then associated with the
differences in the size distribution and with the changes in the
kernel functions. The largest sensitivities ofS are found for
biases atα(355 nm) (absolute values of slopes∼ 2.0). Sen-
sitivities to biases atα(532 nm) (absolute values of slopes
between 1.07 and 0.69) are also important for type I, II and
III, while the sensitivity associated withβ(355 nm) is only
remarkable for type I (slope of−0.73± 0.04). Sensitivities
to biases atβ(532 nm) andβ(1064 nm) are quite low (abso-
lute values of slopes below 0.5).

Referring back to Table 1, we observe that the volume
concentration (V ) is the retrieved integrated parameter least
affected by bias in the input optical data, as indicated by
the fact that most of the slopes have absolute values below
1.0. However, we found differences among these three dif-
ferent aerosol types. For type I aerosols, the retrieval of vol-
ume concentration is most sensitive to biases inβ(355 nm)
(slope of−1.39), while for type II aerosols, retrievals are
most sensitive to deviations inα(532 nm) (slope of 1.18).
For type III aerosols the sensitivities to bias in the optical
data are important both atβ(355 nm) (slope of−1.04) and at
α(532 nm) (slope up to 1.46). These differences among the
aerosol types I, II and III demonstrate the different sensitivi-
ties of volume concentration retrievals when the aerosol size
distribution possesses different weights of fine and coarse
mode.

As the regularization scheme used here computes the size
distribution using the range of permitted radii of 0.075–5 µm,
the fine-mode part of the distribution (but not the coarse
mode) is completely covered by this inversion window, and
thus we study fine-mode volume radius (rfine) and fine-mode
volume concentration (Vfine). Table 1 also shows the sensi-
tivities of these two parameters to biases in the input opti-
cal data. From the slopes of the linear fits reported forrfine,
biases inα(355 nm) andα (532 nm) produce significant de-
viations in the retrieval, with absolute values of the slopes
approximately between 1.0 and 1.5, while the deviations in
the retrievals created by biases in other optical parameters
are almost negligible. This result would imply that accu-
rate retrievals ofrfine can tolerate rather large errors in the

backscatter data but not in the extinction data. The sign of the
slopes ofrfine as a function ofα(355 nm) andα(532 nm) can
be explained by the same reasoning given before for the ef-
fective radius: as extinction at 355 nm increases, it makes the
retrieved particle radius decrease. But asα(532 nm) increases
the retrieved particle radius increases. On the other hand, for
theVfine, the largest sensitivities in the retrieval are found to
systematic biases atα(355 nm), with slopes of 1.59± 0.05,
1.66± 0.17 and 1.56± 0.06 for types I, II and III, respec-
tively. For the other optical parameters, absolute values of
the slopes are below 0.5 (exceptβ(1064 nm) for type I with
slope of 0.62±0.03). These dependencies of the sensitivities
of rfine andVfine to biased input data are associated with the
different dependencies of the kernel functions on wavelength
and particle radius (e.g., Chapter 11 of Bohren and Huffman,
1998).

At this point we would like to mention that our simulations
(graphs not shown for brevity) showed some departures from
the linearity shown in Figs. 2 and 3 and Table 1 for systematic
errors larger than approximately±30 %, mainly when the ab-
solute values of the slopes are larger than 1. We take this to be
an indication that biases of approximately±30 % and larger
can cause the regularization routine to choose a different so-
lution space than the original retrieval based on data with no
errors. On the other hand, up to errors of±20 %, we find that
the same minimum in the solution space is generally found
by the routine, so the linear behavior seen in Figs. 2 and 3 is
taken to be a characteristic of a stable system that is displaced
from its minimum point. Therefore, we selected a threshold
value of±20 % where these results are applicable and stress
that larger errors in the input data can cause significant and
unpredictable deviations in the retrieved results.

Finally, we remark that the values given in Table 1 are av-
eraged for the particular size distributions used here. More
simulations performed (graphs not shown for brevity) chang-
ing the fine-mode radius between 0.08 and 0.20 µm, for
aerosol types I, II and III, revealed the same average lin-
ear patterns as those shown in Figs. 2 and 3 and in Table 1.
The only differences observed were in the absolute values of
the slopes with differences within 10 %. On the other hand,
no important departures from the linearity observed in Ta-
ble 1 were found by changing the widths of the fine mode.
Changes in the coarse mode were not tested because of the
difficulty to assess retrievals of the coarse mode with the
methodology used here.

3.2.1 Effects of the constraints used in the retrievals
on the sensitivity test results

The sensitivity tests applied to the different sets of data have
shown linear dependencies. The data presented in Table 1 of
the linear fits allow for the computation of the deviations in-
duced in retrieved quantities due to biases in the input data
in an easy and straightforward way. But the generality of the
results for different constraints in the inversion code needs
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although different combinations of over/under estimations are allowed. In these box diagrams the 
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Fig. 4. For the effective radius, box-and-whisker diagrams of the differences between the theoretical deviations computed with the slopes
of Table 1 and the simulated deviations. At least two optical channels have been simultaneously perturbed by biases of the same magnitude
although different combinations of over/underestimations are allowed. In these box diagrams the mean is represented by an open square. The
line segment in the box is the median. The top limit represents the 75th percentile (P75) and the bottom limit the 25th percentile (P25). The
box bars are related to the 1st (P1) and 99th (P99) percentiles, and the crosses represent the maximum and minimum values, respectively. We
used biases in the optical data of 1 (black diagrams), 2 (blue diagrams), 5 (red diagrams) and 10 % (green diagrams).

to be examined. For example, the results presented in Ta-
ble 1 have been based on a maximum radius in the inver-
sion (rmax) of 5 µm. Although for the aerosol size distribu-
tions studied here thisrmax makes the computation more ef-
ficient, the selection ofrmaxdepends on the user and becomes
a constraint in the inversion procedure. Thus, we performed
more simulations withrmax increased to a value of 10 µm to
study the influence of this change in constraint on the re-
trieved results. Another constraint in the inversion that must
be checked is the maximum value allowed formi . We re-
peated the simulations allowingmi to range up to 0.1 (con-
sistent with a very absorbing aerosol like black carbon). The
results of these studies were compared with a baseline re-
trieval obtained withrmax = 5 µm and with maximum value
of mi of 0.01. To compute the baseline microphysical param-
eters, no induced systematic errors were included. We also
computed the retrievals using the new constraints and intro-
ducing systematic errors in the optical data as done before.

The new simulations performed after changing the con-
straints forrmax and maximummi also reveal linear pat-
terns (graphs not shown for brevity). However, these linear
patterns do not pass through the origin, implying that there
are generally shifts in the retrieved values of the various pa-
rameters due to these changes in constraints. The analysis
reveals, though, that the signs of the slopes of the linear
fits remain the same and that very similar deviations in the
retrieved quantities are computed using the linear fits per-
formed. Therefore, while the selection of exact value of the
constraints forrmax andmi can change the mean values of the
different parameters, the sensitivity to induced biases in the
input optical data is generally unchanged by these changes in
constraints.

3.2.2 Additive properties of the effects of systematic
errors in the optical data

Thus far, the sensitivity tests that have been performed were
based on perturbing a single optical input at a time. But in
a real instrument, it is quite possible that two or more input
data might be influenced by biases simultaneously. There-
fore, we need to study the effects of the presence of multiple
simultaneous biases in the input data since the existence of
such biases would presumably not be known in a real ap-
plication. In other words, we wish to determine if the pre-
ceding results based on perturbing a single optical input at
a time can be generalized to predict the effects of multiple
input data being simultaneously biased. In particular, we will
now test if, when multiple inputs are simultaneously biased,
the results from Table 1 can be used to calculate deviations
that can simply be added to determine the total bias. In other
words, we now will test whether the results in Table 1 can be
considered additive.

To test the additive properties of the results shown in
Table 1, we performed a set of simulations where two or
more optical channels were perturbed simultaneously by bi-
ases of the same magnitude but allowing for different signs
(over/underestimation). For example, let us assume that we
have systematic errors of absolute magnitude of 5 %. Then
different combinations of±5 % are allowed, as for example
at α(355 nm) andα(532 nm), atα(355 nm) andβ(532 nm)
or atβ(355 nm),β(532 nm) andβ(1064 nm). This procedure
was repeated for different sets of biases of magnitude up to
10 %. The deviations noted as “baseline” were computed us-
ing the slopes of Table 1 and assuming that the deviations
are additive. We also performed the regularization retrieval
with the new set of data affected by two or more simultane-
ous biases, called “simulated deviations”. Later we computed
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the differences in the microphysical properties based on the
slopes given in Table 1 and those actually retrieved running
the code with the new biased optical data and then charac-
terized the differences. Using this procedure, we generated
for each absolute value of bias a statistical data set that in-
cludes many different configurations of the different optical
channels. Those data sets are analyzed using Bow–Whisker
diagrams as shown in Fig. 4 for the effective radius.

In these box diagrams the mean is represented by an open
square. The line segment in the box is the median. The top
limit represents the 75th percentile (P75) and the bottom
limit the 25th percentile (P25). The box bars are related to
the 1st (P1) and 99th (P99) percentiles, and the crosses repre-
sent the maximum and minimum values, respectively. From
Fig. 4, for biases of 1, 2, 5 and 10 %, mean values of the
differences in the effective radius are very small: 0.03, 0.34,
0.41 and 1.01 % for type I (Fig. 3a) and−0.62,−0.91,−0.49
and−0.18 % for type II (Fig. 3b). Values larger than the 25th
percentiles (P25) and lower than the 75 % percentiles (P75)
are found for the ranges from−1.8 to 1.3 % (type I) and from
−0.6 to 4.4 % (type II). Only two outliers are found with rel-
ative differences greater than 100 %. The latter occur when
all the optical channels exceptβ(355 nm) are either overes-
timated or underestimated. But for these particular cases the
baseline deviations are 0.009 or−0.009 %, while the simu-
lated ones are 0.557 and−0.557 %, respectively. These small
errors are within the uncertainties associated with the regu-
larization method, and thus these large relative differences
are a mathematical artifact created by dividing by small num-
bers. Tests have also been performed for the other microphys-
ical parameters, and we also found an additive property in the
deviations predicted by the results shown in Table 1. Further-
more, very similar additive properties were found for aerosol
type III (graph not shown for brevity). Therefore, for the bi-
modal size distributions used here that cover most of those
size distributions obtained by AERONET, we conclude that
the results of Table 1 can be reliably used to calculate the
deviations in retrieved quantities due to multiple simultane-
ously biased input data.

We take this result to be an indication that, as mentioned
earlier, the solutions found by the inversion technique gener-
ally define a local minimum in the multidimensional solution
space (e.g., see Fig. 1 in both Veselovskii et al., 2002, 2012).
The linear behavior of the deviations in the retrieval due to
small changes in the input parameters is a characteristic of
displacements from this minimum location. Multiple simul-
taneous displacements tend also to display this linear behav-
ior. The results here indicate therefore, for biases in the input
data of up to approximately 20 %, whether for a single chan-
nel or multiple ones simultaneously, that the solution space
possesses an average linear property and an additive behav-
ior can be assumed. For larger biases in the optical data (e.g.,
±30 %) the additive property is not assured, as under these
circumstances different minima in the solution space may be
found by the regularization algorithm.

3.3 Application to the sensitivity of retrievals to the
presence of random errors in the optical data

Up to this point, we have concerned ourselves only with the
effects of systematic biases in the input optical data on the
retrieved quantities. But in lidar systems, random errors are
also present due just to the measurement process itself. Any
specific set of 3β +2α data affected by random errors can be
considered as a set of biased measurements where the indi-
vidual biases for each of the data follow a normal distribu-
tion. Given the additive property of the systematic errors that
we have shown, we can assess the effects of random errors
in the optical data by generating random biases in the optical
data and computing their deviations in the microphysical pa-
rameters from the values given in Table 1. The sensitivities
of the regularization technique to those random errors com-
puted using the procedure just outlined will be compared
with previously published ones (e.g., Müller et al., 1999a,
b; Veselovskii et al., 2002, 2004).

To assess the sensitivity of the retrievals to random errors,
we use the additive properties of the systematic biases just
described. The procedure used consists of generating ran-
dom numbers distributed in a Gaussian way centered at zero
with width according to the value of the random error to
study. These random errors are applied to each optical chan-
nel of the 3β+2α configuration. This procedure was repeated
50 000 times for each parameter studied. Also, the initiation
of the random number generation is different for each chan-
nel in order to avoid the situation where all the random num-
bers are the same in every channel. Finally, we introduced
this random number for every optical datum and computed
the corresponding error in the retrieved microphysical pa-
rameter using the slopes provided in Table 1. For every set of
3β + 2α values, the final error obtained in the microphysical
parameter is the sum of the error obtained for each channel.
The study of the frequency distributions of the final errors
for this large number of simulations yields the effects of ran-
dom errors. If the frequency distribution is a normal one, the
standard deviation (full width at half maximum) provides the
final error in the microphysical parameter. Moreover, if the
normal distribution is not centered at zero it demonstrates an
interesting property: that the presence of systematic errors in
the retrieved microphysical property can be induced by ran-
dom errors in the input optical data. As an illustration, Fig. 5
shows the frequency distribution of the differences in the mi-
crophysical parameters studied here, for all aerosol size dis-
tributions type I, II and III, where 15 % random error is as-
sumed in all the optical data. Those differences associated
with the effects of random errors are in percentages and de-
noted as “deviation” in thex axis of the histograms.

From Fig. 5 we observe that the frequency distributions
possess the expected Gaussian shape for all the microphysi-
cal parameters. Most of the frequency distributions are cen-
tered essentially at zero, although some significant depar-
tures from this value are observed. The percentage changes
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Figure 5: Frequency distributions of the different microphysical parameters for 15% random 

errors in the optical data using 50000 random samplings of the systematic error sensitivities 

shown in Table 1. The ‘x’ axis represents the difference between microphysical parameters with 

no errors in the input optical data and those affected by random errors in the optical data. 

Random errors were simulated by a normal distribution centred at zero and with standard 

deviation of 15%. The random number generator is initialized at different values for each of the 

5 optical data used in the 3β + 2α lidar configuration. The mean value of the deviation between 

the microphysical parameter affected by random error and that unaffected by random error is 

included in the legend. 
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Fig. 5. Frequency distributions of the different microphysical parameters for 15 % random errors in the optical data using 50 000 random
samplings of the systematic error sensitivities shown in Table 1. Thex axis represents the difference between microphysical parameters
with no errors in the input optical data and those affected by random errors in the optical data. Random errors were simulated by a normal
distribution centered at zero and with a standard deviation of 15 %. The random number generator is initialized at different values for each
of the 5 optical data used in the 3β + 2α lidar configuration. The mean value of the deviation between the microphysical parameter affected
by random error and that unaffected by random error is included in the legend.

in the mean values of the distributions are shown in the leg-
end. A shift in the mean value due to the presence of random
error is explained by the different linear tendency for posi-
tive and negative biases for some input optical data, as dis-
cussed earlier to respect Table 1. For example, such depar-
tures from zero are observed for retrievals ofreff, N andV

for type II aerosols and are approximately−5, 1 and−7 %,
respectively. On the other hand, the FWHM – or standard de-
viations – of the normal distributions of Fig. 5 are represen-
tative of the sensitivities to 15 % random errors in the optical
data. Generally, there are many similarities in the standard
deviations between aerosol types I, II and III. We observe
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Table 2.Standard deviations of the frequency distributions of the deviation induced in the microphysical parameters due to random errors in
the optical data.

reff N S V rfine Vfine

Random Type Type Type Type Type Type Type Type Type Type Type Type Type Type Type Type Type Type
Errors (%) I II III I II III I II III I II III I II III I II III

5 12.5 13.1 13.7 22.5 31.8 20.5 12.5 9.5 11.2 9.8 7.2 9.5 7.7 9.2 8.4 8.7 8.8 8.1
10 24.9 26.2 27.2 45.0 63.6 40.8 25.1 19.1 22.3 19.6 14.4 19.0 15.5 18.4 16.8 17.4 17.6 16.1
15 37.2 39.2 40.8 67.6 95.2 61.4 37.7 28.5 33.4 29.5 21.5 28.5 23.3 27.6 25.3 26.1 26.3 24.1
20 50.0 52.6 54.8 90.1 127.3 82.1 50.2 38.2 44.6 39.3 28.8 38.0 31.1 36.9 33.8 34.9 35.2 32.2
10∗ 25∗ 70∗ 25∗ 25∗ – –

∗ From the previous work of Muller et al. (1999a, b) and Veselovskii et al. (2002, 2004).

Table 3. Mean of the differences (in percentages) in the retrieved microphysical parameters due to varying amounts of random error in the
optical data.

reff N S V rfine Vfine

Random Type Type Type Type Type Type Type Type Type Type Type Type Type Type Type Type Type Type
Errors (%) I II III I II III I II III I II III I II III I II III

5 0.0 −1.7 −1.6 −0.8 3.5 0.2 0.0 −0.4 0.1 −1.1 −2.3 −1.1 0.4 0.5 0.7 0.0 1.4 −0.3
10 0.0 −3.5 −3.0 −1.4 7.1 0.1 0.1 −0.7 0.0 −1.9 −4.4 −2.3 0.9 1.1 1.5 0.1 2.8 −0.8
15 −0.1 −5.3 −4.5 −1.9 11.1 0.4 0.3 −0.9 0.2 −2.8 −6.7 −3.1 1.2 1.4 2.1 0.2 4.2 −1.0
20 −0.3 −7.2 −5.6 −2.3 15.2 −0.6 0.6 −1.0 −0.4 −3.8 −9.0 −4.5 1.5 1.8 3.3 0.4 5.8 −1.9

clearly thatV , rfine andVfine exhibit the smallest sensitivity
to the imposed 15 % random errors with a 1-sigma spread
in the result of approximately 25 %. The effective radius and
surface concentration results show moderate sensitivity with
1-sigma values of∼ 30–40 %, while the retrieval of number
concentration has the highest sensitivity, with 1-sigma val-
ues of 67.6 % for type I, 95.2 % for type II and 61.4 % for
type III. As expected, these sensitivities to random error track
the results of the sensitivities to systematic errors, where the
most sensitive parameter was also found to be number con-
centration and the least sensitive were volume concentration,
fine-mode radius and fine-mode volume concentration.

Using the same procedure as for 15 % random error, Ta-
ble 2 reports the FWHM – or standard deviations – of normal
distributions obtained for other magnitudes of random errors
in the optical data ranging from 5 to 20 %. We observe, as
expected from the linear functions involved, that increasing
the random uncertainty increases the deviations found in a
linear fashion. Moreover, it is observed again that the largest
sensitivities are forN , while the lowest are forV , rfine and
Vfine. In the same way, Table 3 reports the means of the de-
viation of every microphysical property for varying amounts
of random uncertainty in the input data. As mentioned above,
the departures of these deviations from zero indicate that ran-
dom uncertainties in the input optical data can induce vary-
ing amounts of systematic bias in the retrieved properties.
This effect is found more with the type II aerosols that pos-
sess a higher fraction of larger particles. Such a population is
more likely to have different slopes in Table 1 due to positive
and negative biases in the input optical data because of the
reduced sensitivity of the MW technique to larger particles.
It is this reduced sensitivity to larger particles that, in gen-
eral, explains the shifting of the mean values in the retrieved

distributions due to varying amounts of random error in the
input data.

Müller et al. (1999a, b) and Veselovskii et al. (2002, 2004)
studied 10 % random uncertainties in the optical data in the
3β +2α lidar configurations by introducing random errors in
the optical data and running the regularization code repeat-
edly. These studies reported that the retrieved uncertainties
were on the order of 25 % forreff, V andS, 30 % forrmean
and 70 % forN . These values are quite similar to those re-
ported in Table 2 for our computations of 10 % random er-
rors. No evaluations forrfine andVfine were done in the stud-
ies of Müller et al. (1999a, b) and Veselovskii et al. (2002,
2004). The method shown here for assessing the sensitivity of
retrievals to random errors is generally consistent with these
earlier results but permits the influence of varying amounts
of random error to be studied. It also permits the influence of
random errors in different input optical channels to be quan-
tified. We will now apply this capability to the problem of
instrument specification.

Application to instrument specification

The upcoming spaceborne Decadal Survey ACE (Aerosol-
Cloud-Ecosystems) mission of NASA (http://dsm.gsfc.nasa.
gov/ace/) specifies a high-spectral-resolution lidar as a core
instrument to measure vertical profiles of aerosol extinction
and backscattering worldwide. These profiles will be used to
derive vertically resolved aerosol microphysical properties
such as effective radius, number concentration or complex
refractive index. The system is anticipated to use the 3β+2α

configuration and the regularization technique that has been
studied here. The first reports (http://dsm.gsfc.nasa.gov/ace/)
call for an accuracy of±15 % for all backscattering and
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extinction coefficients, and thus the results presented here
can be used to infer the anticipated uncertainties in the mi-
crophysical properties retrieved using the regularization tech-
nique on these 3β + 2α spaceborne data when all input data
possess 15 % uncertainties. However, the results already pre-
sented clearly indicate that, for most quantities, it is uncer-
tainties in the extinction coefficients that need to be con-
strained more carefully than those in the backscattering data.
Volume concentration is an interesting exception to this state-
ment whereβ(355 nm) for type I aerosols is the optical pa-
rameter requiring the smallest uncertainty budget to help re-
duce the uncertainties in retrievals. In this way, the results
obtained here can serve as a guide to hardware designers of
multiwavelength lidar instruments in the sense that if trade-
offs need to be made between the performance of one op-
tical channel versus another, the relative sensitivities shown
in Table 1 can be used to assess which channels would ben-
efit most from decreased uncertainty in the measurements.
Another application of the sensitivities derived here is to al-
gorithm development. Algorithms can introduce systematic
uncertainties in the optical data such as through an incor-
rect assumption of an aerosol-free region, an assumption of
the extinction to backscatter ratio or the use of an estimated
molecular profile. The results presented here can be used to
assess the tolerance for both random and systematic errors in
the input optical data due both to instrumentation and to algo-
rithms once uncertainty requirements in the retrieved quanti-
ties are established.

4 Summary and conclusions

We have presented the results of a study of the sensitivity of
the retrievals of aerosol physical parameters using the reg-
ularization technique to systematic and random uncertain-
ties in the input optical data. We have focused our study on
the set of data consisting of three backscattering coefficients
(β) at 355, 532 and 1064 nm and two extinction coefficients
(α) at 355 and 532 nm (3β + 2α configuration). These data
can be obtained by a lidar system that uses a Nd:YAG laser
and combines backscatter with Raman or HSRL channels.
Simulations have been done for different bimodal aerosol
size distributions that are representative of AERONET cli-
matologies. The values used for aerosol refractive indexes, as
well as mode radius and widths, were selected as representa-
tive of those climatologies as well. The selected aerosol bi-
modal size distributions include one with fine-mode predom-
inance (type I), another with predominance of coarse mode
but with significant presence of fine mode (type II) and an-
other with predominance of fine mode but with significant
presence of coarse mode (type III). Optical data consistent
with these bimodal size distributions were generated using
Mie theory. Retrievals were performed using these baseline
optical data. The optical data were then perturbed by system-
atic biases in the range±20 % to study the effects of biases

on the retrieved parameters. This threshold value of±20 %
is enough for many practical lidar applications. As the prob-
lem of the inversion of microphysical properties is underde-
termined, constraints are needed that, in principle, can influ-
ence the values retrieved by the algorithm. Particularly, we
have found that the range of radius and refractive index used
in the inversion did not have a large influence on the sen-
sitivities of the different microphysical particles. However,
our results showed that the maximum value ofmi allowed in
the retrieval had a significant influence on the value of the
refractive index retrieved, supporting earlier results that in-
dicate significant uncertainties in the retrieval of refractive
index using the 3β + 2α MW lidar technique studied here.

The microphysical parameters studied included effective
radius (reff) and volume (V ) as well as number (N ) and sur-
face (S) concentration. Also, as the inversion window ranged
from 0.075 to 5 µm, we were able to study the fine mode of
the aerosol size distribution (0.075–0.5 µm) separately, and
thus we have also presented the results for both fine-mode
radius (rfine) and volume (Vfine). From these sensitivity tests,
the percentage deviations of the microphysical parameters as
a function of biases in the optical data presented linear pat-
terns. Generally, these linear patterns presented the same sign
of slopes for aerosol type I, II and III and the largest sensi-
tivities were observed for biases in the extinction coefficients
α(355 nm) andα(532 nm). Moreover, the largest sensitivities
were found forN , while the least affected parameters were
V , rfine andVfine.

An important result is that we have found an additive prop-
erty for the deviations induced by the biases in the optical
data. This implies that if, for example, several optical data are
simultaneously affected by systematic errors, the total devi-
ation in the retrieved quantity can be well approximated by
the sum of those deviations computed when each optical in-
put was biased separately. From this additive property, we
have been able to compute the effects of random errors in the
optical data. Moreover, we have found some systematic dif-
ferences in the mean retrieved microphysical properties when
the retrievals are affected by random errors in the input opti-
cal data. The presence of these systematic differences is asso-
ciated with the different behavior (although with linear pat-
terns) between positive and negative biases in the input opti-
cal data, and is due to a reduced sensitivity of the retrieval to
the coarse part of the size distribution.

The results presented here cannot be generalized to every
possible size distribution as we only focused on bimodal size
distributions representative of those obtained by AERONET.
Studies of the sensitivities of the microphysical retrieval to
errors in the optical data for other size distributions such as
one showing trimodal behavior are still needed although the
results presented here for three differing bimodal distribu-
tions lead one to expect that similar results would be obtained
for trimodal distributions as well. The tests performed here
showed that the average linearity of the sensitivities in the
retrieval to random errors in the input data can be useful for
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a wide range of lidar applications, and thus can be used to es-
tablish acceptable error budgets in optical data if maximum
permissible errors in the retrieved quantities can be estab-
lished. Therefore, the values given here for the sensitivities of
the microphysical properties to systematic errors in the opti-
cal data can be useful for many lidar applications. For exam-
ple, for the Decadal Survey ACE mission, a multiwavelength
lidar is planned. Among their measurement requirements is
that the accuracy of the optical data be±15 %. If these un-
certainties are taken to be all random, we were able to use
the results here to estimate that this implies an uncertainty in
the retrieved microphysical properties by the regularization
technique of∼ 40 % for reff, ∼ 85 % for N , ∼ 25 % for S,
∼ 20 % forV , and 16 % forrfine andVfine, respectively. The
results also permit assessing the deviations in the retrievals if
the biases in the optical data are systematic and exist in only
one or more channels. In this way, trade-off decisions can be
made between the retrieval requirements and the hardware
configuration of a lidar system taking into account the differ-
ent sensitivities of the retrievals to biases in the optical data
of different channels. We hope these results aid the future de-
sign of multiwavelength lidar systems intended for retrieval
of aerosol microphysical properties.
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