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Abstract. In this work we study the effects of systematic and used to predict deviations in retrieved parameters when mul-
random errors on the inversion of multiwavelength (MW) tiple input optical data are biased simultaneously as well as
lidar data using the well-known regularization technique toto study the influence of random errors on the retrievals. The
obtain vertically resolved aerosol microphysical properties.above results are applied to questions regarding lidar design,
The software implementation used here was developed at the particular for the spaceborne multiwavelength lidar under
Physics Instrumentation Center (PIC) in Troitsk (Russia) inconsideration for the upcoming ACE mission.
conjunction with the NASA/Goddard Space Flight Center. Its
applicability to Raman lidar systems based on backscattering
measurements at three wavelengths (355, 532 and 1064 nm)
and extinction measurements at two wavelengths (355 and
532 nm) has been demonstrated widely. The systematic errok  Introduction
sensitivity is quantified by first determining the retrieved pa-
rameters for a given set of optical input data consistent withThe importance of atmospheric aerosol particles on Earth's
three different sets of aerosol physical parameters. Then eactlimate and on environmental problems is widely recog-
optical input is perturbed by varying amounts and the inver-nized. Particularly, the Intergovernmental Panel on Climate
sion is repeated. Using bimodal aerosol size distributions, weChange 2007 (IPCC 2007) (Forster et al., 2007) stated that
find a generally linear dependence of the retrieved errors iratmospheric aerosol particles can produce a negative radia-
the microphysical properties on the induced systematic ertive forcing that is comparable in magnitude, but opposite
rors in the optical data. For the retrievals of effective radius,in sign, to the forcing induced by the increase in green-
number/surface/volume concentrations and fine-mode radiuBouse gas concentration. However, according to the IPCC,
and volume, we find that these results are not significantlyradiative forcing by atmospheric aerosol particles has greater
affected by the range of the constraints used in inversionsuncertainties (twice the estimated value of the forcing) due
But significant sensitivity was found to the allowed range of to the large spatial and temporal heterogeneities of atmo-
the imaginary part of the particle refractive index. Our re- spheric aerosols (e.g., Haywood and Boucher, 2000), the
sults also indicate that there exists an additive property foiwide variety of aerosol sources (e.g., Dubovik et al., 2002),
the deviations induced by the biases present in the individthe spatial nonuniformity and intermittency of these sources
ual optical data. This property permits the results here to bee.g., Kaufman et al., 1997), the short atmospheric life-
time of aerosols (e.g., Seinfield and Pandis, 1998), processes
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occurring in the atmosphere (Eck et al., 2010) and aerosol However, lidar systems are very complex and generally
dynamics (e.g., Pérez-Ramirez et al., 2012). possess both random and systematic errors. Random errors
Because of these challenges, the characterization of atrise naturally from the measurement process, and some pre-
mospheric aerosols is being achieved through intense obliminary random error sensitivity studies were performed by
servational programs using remote sensing techniques. Favilller et al. (1999a, b) and Veselovskii et al. (2002, 2004).
example, NASA has led several spaceborne missions td®ut, to date, there is a lack of studies of the effects of system-
study aerosol properties worldwide (e.g., the MODIS instru-atic errors on the microphysical inversions. Systematic errors
ment on the TERRA and AQUA platforms). However, satel- in lidar systems come from many different sources and need
lite measurements possess lower temporal resolution thato be considered. From the hardware point of view, system-
ground-based systems. For example, the AERONET globaétic errors can be due to, for example, nonlinearity of a pho-
network (Holben et al., 1998) is providing large data setstodetector or errors in calibration of the optical data or the
of high-temporal-resolution ground-based aerosol measureeffect of depolarization due to optical imperfections in chan-
ments at more than 400 locations worldwide. But the aerosohels that are sensitive to polarized light. From the method-
retrievals by AERONET and by many satellite platforms ological point of view, systematic errors can be caused by, for
only provide column-integrated properties. By contrast, theexample, errors in the assumed atmospheric molecule density
lidar technique offers vertical profiling of aerosols, from the profile, the selection of the reference level (an “aerosol-free”
first lidars in the early 1960s to the more sophisticated Ra-+tegion that may actually contain a small concentration of par-
man lidars (Whiteman et al., 1992; Ansmann et al., 1992) orticles) or the use of an incorrect extinction-to-backscatter ra-
high-spectral-resolution lidars (HSRL) (Shipley et al., 1983; tio to convert backscatter lidar measurements to extinction.
Grund and Eloranta, 1991; She, 2001; She et al., 2001). In general, we expect that systematic errors such as these
Moreover, the Nd:YAG laser has been used as the transmitean affect the retrieval. The aim of this work, therefore, is to
ter for multiwavelength Raman lidar systems (MW), which study the sensitivity of microphysical retrievals by the regu-
have permitted the retrieval of the profile of aerosol micro- larization technique to systematic variations in the input op-
physical properties (e.g., Muller et al., 2001, 2004, 2005,tical data provided by the®B+ 2« lidar configuration. Par-
2011; Wandinger et al., 2002; Béckman et al., 2005; Noh etticularly, we will focus on the study of bimodal size distri-
al., 2009; Balis et al., 2010; Alados-Arboledas et al., 2011;butions widely found in nature (e.g., Dubovik et al., 2002).
Tesche et al., 2011; Veselovskii et al., 2012; Papayannis eiVe will show that the results obtained can also be used to as-
al., 2012; Wagner et al., 2013; Navas-Guzman et al., 2013). sess the sensitivity of the retrievals to random errors in a new
The first attempts to obtain aerosol microphysical prop-way. The study involves simulations based on three differ-
erties from MW Raman lidar measurements were done aent bimodal aerosol size distributions: one with a large pre-
the Institute for Tropospheric Research (IFT) in Leipzig dominance of fine mode, another with slight predominance
(Germany) using the regularization technique (Miiller et al., of coarse mode and the last one with slight predominance of
1999a, b, 2000). The first retrievals done at the IFT werefine mode.
based on measurements from a complex lidar system provid- The procedure that we used is the following: first the op-
ing six backscattering (355, 400, 532, 710, 800 and 1064 nmjical data consistent with the three aerosol size distributions
and two extinction (355 and 532 nm) coefficients. Following described above are generated using Mie theory. Then the
these first efforts, a software capability based on the regulareptical inputs are systematically altered to provide a known
ization technique was developed at the Physics Instrumenamount of systematic error in each of the individual input
tation Center (PIC) in Troitsk, Russia. The retrieval code de-data. The inversion code is run using both the biased and un-
velopment at PIC has been further advanced and has incorpdiased optical data, and the deviations in the retrieved aerosol
rated a model of randomly oriented spheroids for retrievingparameters are quantified. The methodology and the simula-
dust particle properties (Veselovskii et al., 2010). Mller et tion approach are presented in Sect. 2. Section 3 is devoted
al. (2001, 2004, 2005) and Veselovskii et al. (2002, 2004)to the results. Finally, in Sect. 4 we present a summary and
demonstrated the capability of the regularization techniqueconclusions.
to retrieve aerosol microphysical properties from a lidar sys-
tem that provides just five optical signals using a tripled
Nd:YAG laser. The optical data provided by this system were
backscatter coefficientg) at 355, 532 and 1064 nm and ex-
tinction coefficients ¢) at 355 and 532 nm (hereafter this
configuration is referred to a3+ 2«). The inversion proce-

2 Methodology and simulation approach
2.1 Inversion technique

! ’ : U The optical characteristics of an ensemble of polydisperse
dure makes use of averaging the solutions in the vicinity ofyq 50| particles are related to the particle volume distri-

the minimum of a penalty function (Veselovskii etal., 2002). ,tion via Fredholm integral equations of the first kind as

This averaging procedure increases the reliability of the in-¢,1ows (Miiller et al., 1999a; Veselovskii et al., 2002):
versions even when the input optical data are affected by ran- ' ' ’

dom errors (e.g., Veselovskii et al., 2002).
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Fmax the retrieval result will depend on the range of parameters
I ‘ _ considered: the larger the range, the higher the uncertainty
gj i) = / Kjn om.r, diyn(rydr, (1) of the retrieval as determined by the spread in the solutions
Tmin obtained. So the range of parameters should be chosen rea-

where j corresponds either to backscattg) br extinction sonably. In our research, the real part of the aerosol refractive
() coefficientsg; (A;) are the corresponding optical data at NdeX ¢ur) is allowed to vary from 1.33 to 1.65 with a step

wavelengthi;, n(r) is the aerosol size distribution expressed Siz€ of 0.025, while the imaginary part) varies over the
as the number of particles per unit volume betweemnd range of 0-0.01 with a step size of 0.001. The size interval

r+dr, andK y(m.r. 1;.) are the number kernel functions for the inversions was limited to 0.075-5 um with a step size

(backscatter or extinction), which are here calculated fromOf 0-025um. Tests revealed that reducing the step size of the
Mie theory assuming spherical particles and depend on pa,dlfferenfc paramete_rs in the inversion does not decr_ease the
ticle refractive indexn, particle radius- and wavelength. spread in the solution. Therefore, we take the step_s!zes used
Finally, rmin andrmax correspond to the minimum and max- &S adequate for the purposes of the present sensitivity study.

imum radius used in the inversion. The size distribution in
Eq. (1) can be written in terms of surfacgx) = 4 r2n(r))

or volume ¢ (r) = (4/3)7r3n(r)) size distribution. The cor-
responding kernels are obtained by dividikg y (m, 7, 1;.)

by 472 and(4/3)nr3, respectively, and are thus given by

2.2 Size distribution for the simulations

For these simulations, we used bimodal aerosol size distribu-
tions given as (Veselovskii et al., 2004)

2

_ Kjn(m,r ) dn (r) _ Nii ox (Inr —Inr") .

Kj,S (m7 r, )\-l) - 47T7'2 ’ (2) dln(r) izzﬁc (27_[)1/2"-]01 2(|n0'l)2 ( )
Kjv@m,ri)= M () whereN; ; is the total particle number of thigh mode, Irio;)

43 is the mode width of théth mode and is the mode radius

where K; s(m,r,A) and K; v (m,r, 1) are the surface and for the number concentration distribution. The index f,

volume kernel functions, respectively. Generally, the volumec corresponds to the fine mode and the coarse mode, respec-

kernel functions are used in the retrieval procedure of aerosdlively. In the retrieval procedure, the fine mode is taken to

microphysical properties (Heintzenberg et al., 1981; Qing etinclude all particles with radius between 0.075 and 0.5 pm,

al., 1989). Thus, we perform the retrieval of volume size dis-While the coarse mode includes all particles with radius be-

tribution using the volume kernel functions of Eq. (3). More tween 0.5 and 5pm. On the other hand, the same distribution

details about the computation of these volume kernel funcan be written for volume concentratioi), which is usu-

tions from Mie extinction coefficients for spherical particles ally preferred because both fine and coarse mode can be eas-

can be found in the references (e.g., Bohren and Huffmanily distinguished. Moreover, the standard deviations 0f)

1998). andv(r) are the same when using the relationships between
The regularization technique used here to solve Eq. (1) hagadius and concentrations for each mode given by (Horvath

been discussed extensively elsewhere (e.g., Veselovskii et ait al., 1990)

2002, 2004, 2005), and thus we provide here only a brief

overview. The key point is to identify a group of solutions 7; =17’ exp[B(Ino)Z], (5)

that, after averaging, can provide a realistic estimation of par-

ticle parameters. Such identification can be done by consider- 4 3 9 )

ing the discrepancyo( defined as the difference between in- Vii = Nn'g” (/') exp[z (Ino) } . (6)

put datag (1) and data calculated from the solution obtained.

The retrieval uses an averaging procedure that consists of s&éVe consider three types of aerosol size distributions for

lecting a class of solutions in the vicinity of the minimum of the simulations, which we call type I, type Il and type IIl.

discrepancy (Veselovskii et al., 2002, 2004). Such an averThese size distributions are used to approximate real aerosol

aging procedure stabilizes the inversion, as the final solutiontypes found in the atmosphere. All types u$e= 0.14 um,

for size distribution and aerosol parameters is an average dhoy = 0.4, r! = 1.5pm and I, = 0.6. These mode radii

a large number of individual solutions near the minimum of and widths are representative of those provided by Dubovik

discrepancy (Veselovskii et al., 2002). In general, we averaget al. (2002) in the AERONET climatology database and are

approximately 1 % of the total number of solutions in arriv- thus considered to represent a large fraction of naturally oc-

ing at the best estimate of the particle parameters. curring aerosols. The differences between type I, Il and Il
The inverse problem considered here is underdeterminedare the ratio of fine and coarse modé [ Vic). Type | yields

so constraints on the inversion are needed. We consider a s&/ Vic = 2 and represents a distribution with a predomi-

of possible values of the particle refractive index as well as anance of fine mode. This type can be considered to repre-

set of possible radii within a certain size interval. In general, sent industrial and biomass burning aerosols (e.g., Eck et al.,
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2003; Miller et al., 2004; Schafer et al., 2008). Type Il yields T T

Vir/ Vic = 0.2 and corresponds to a slight predominance of —— Type |
the coarse mode over the fine mode. This type is consistents —————T I
with a mixture of dust/marine aerosol and those of pollution N ype

or biomass burning (e.g., Smirnov et al., 2002, 2003; Eck @ -~ - Typelll
et al., 2005, 2010). Finally, type Il yield®;/ Vic =1 and §

corresponds to a slight predominance of fine mode over the 8 L JN 4
coarse mode (e.g., Xia et al., 2007; Ogunjobi et al., 2008; ~— P

Yang and Wenig, 2009; Eck et al., 2009). This type is rep- % ! ‘\ =N

resentative of predominance of pollution or biomass burning = I’ \ 4 X

but with considerable influence of dust particles. Figure 1 il- \; , \

lustrates the three size distributions used. For convenience, o ro-

the size distributions of Fig. 1 are normalized. Finally, if we e S0 \

were to include a strong predominance of coarse mode (e.g., 0.1 1 10
marine or dust aerosol) ing3+ 2« lidar measurements, then Radius (um)

the effects of polarization and nonsphericity should be taken
into account, and previous work indicates that the use of ker-

. . . . Fig. 1. Normalized size distributions used for computing the simu-
nel functions for nonspherical particles can improve the re- . : .
lated optical data. The ratio between the volume of fine and coarse

trievals (Veselovskii et al., 2010). Here, however, our PUIPOSE& e Vie/ Vic, is 2 for type I, 0.2 for type Il and 1 for type .
is to calculate sensitivities due to random and systematic un-

certainties, so we consider only spherical (Mie) kernels and
thus exclude a distribution with a strong predominance ofthe Results
coarse mode.
The simulation consists in generating the three backscat3.1 Uncertainties in the retrieval of particle refractive
tering and two extinction coefficients for thes 3- 2« lidar index
configuration using Mie theory for the three aerosol size dis-
tributions: type I, type Il and type Ill. These optical data The 3+ 2« lidar configuration permits the retrieval of parti-
are generated for six different configurations of aerosol re-cle refractive index, both reaby() and imaginary ;) parts
fractive indices £y values of 1.35, 1.45 and 1.55 ang (e.g., Veselovskii et al., 2002), by the use of the regulariza-
either 0.005 or 0.01). From previous studies (Muller et al.,tion scheme. But the inverse problem of Eq. (1) is underde-
1999b; Veselovskii et al., 2002), error in, was initially termined and, as already stated, constraints are needed to per-
established as0.05, while error irvnj was approximately — mit solutions to be obtained. Particularly, the selection of the
50 %. Moreover, the AERONET network provides refractive range of refractive indices permitted in the retrieval is impor-
indices with very similar errors (Dubovik et al., 2000). Thus, tant. As commented, we limited the rangemafto between
the range of refractive indexes proposed for the size distri-1.33 and 1.65 anet; from 0.0 up to 0.01. These ranges cover
bution is enough to cover most of the values obtained bymost types of aerosol particles present in the atmosphere, ex-
AERONET (Dubovik et al., 2002). cept for strongly absorbing particles such as black carbon.
The regularization inversion is then performed on theseMoreover, given that the longest wavelength measurement
data and we obtain the retrieved microphysical parametersised here is 1064 nm, the technique has reduced sensitivity
Miet. The next step consists of applying a systematic biasto the coarse mode of the aerosol distribution. Thus, to sta-
denoted agd\¢, to one optical datum at a time. The bias varies bilize the retrievals, the maximum radius of the retrieval in-
from —20 to+20 % in eight intervals. For each of these in- terval was set to 5 um. Additionally, the kernel functions for
duced biases, the inversion is performed and a new size digadius below 0.075 are very near to zero, and thus the min-
tribution and set of microphysical parametée¥h,ss, are then  imum radius allowed was set to 0.075 um. The behavior of
obtained. The comparisons to be performed are expressed #se kernel functions versus wavelength can be consulted, for
the percentage difference 1Q0pjas— Myet) / Mret. This pro- example, in Chapter 11 of Bohren and Huffman (1998).
cedure is applied to each of the five optical data used in the In the analysis that follows, we do not present results on
38 + 2« lidar configuration. the refractive index sensitivity analysis. The reason for this
is that we found that the retrieval of refractive index is very
sensitive to the range of permitted values for the imaginary
part of the refractive index. Changing the range of permitted
values of the imaginary part can change the retrieved refrac-
tive index significantly while not significantly affecting the
values of the other retrieved quantities. For example, com-
putations allowingn; to range up to 0.1 provide retrieved
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values ofm; of approximately 0.03 when the values maf
of the input size distributions where 0.01 or 0.005. There-
fore, keeping in mind that the retrieval is underdetermined,

we conclude that we can provide reasonable estimates of the —— (355nm) —¥— (532 nm)
refractive index only with reasonable constraints#gr All —+— (355 nm) —— [((532nm)
these results just magnify the point that refractive index re- —+— B(1064 nm)

trievals are difficult with the MW lidar technique and that
some a priori knowledge of the aerosol absorption is help-

ful to constrain the inversion. A more detailed discussion 60 ' ' ' i '
about the limitations of the averaging procedure used here 0 _ ]
to retrieve accurate values of particle refractive index is in
Veselovskii et al. (2013). 2 _ ]
3.2 Effects on the retrievals of systematic errors in the S 0

optical data 5’-;_ i )

L(1)

For the scheme described previously, Fig. 2 presents the sen-< 20F 7
sitivity analysis for the retrieval of effective radiusf). Ev-
ery point corresponds to the mean value of the six different 40 T
combinations of aerosol refractive indices used in generating
the set of optical data. The error bars shown are the standard 'gg
deviations of these mean values. Generally linear patterns are
observed for the deviation in the retrieved valuergf for 40 [
differing biases in the input optical data for all of types |, Il i [
and Il aerosols. As the linear patterns pass through the ori- 20 _ _

gin, least-squares fits of the forth=aX were performed
for the points shown in the plot. Given the definition of
Areff = Fef bias— Feff.ret, POSIitive slopes indicate higher val-
ues ofreff when the optical data are affected by positive bi- G
ases than when they are not affected by biases, while for neg- <
ative slopes just the opposite occurs. Moreover, Fig. 2 reveals
the same general patterns for all of types I, Il and Il for each
optical channel, with only small changes in the absolute val-

ues of the slopes of the linear fits. It is quite apparent that the -60
retrievals are more sensitive to biases in the extinction coeffi-
cients. The lowest sensitivities are to biaseg ({855 nm) and

—~~
(=]
> 0}
N

B(532 nm), while for biases if(1064 nm), the sensitivity of o

the retrievals is in between those obtained for extinction and [

backscattering coefficients at 355 and 532 nm. Figure 2 also 20 T

reveals that the linear patterns for different optical channels S [

have different signs of the slopes. Considering the parame- < or T

ters to which the retrievals are most sensitive, the linear fit of %

(355 nm) gives negative values of slope-£ —1.684+0.12 g 20 T

fortype l,a = —1.74+0.03 for type Il anch = —1.8440.04 [

for type Ill), while for «(532nm) the slopes are positive 40 - N

(a =1.51+0.04 for type l,a = 1.824+0.09 for type Il and I

a =1.7140.10 for type IlI). -60 _Z:O . _1'0 . (') . 1'0 . 2'0
The Angstrom law, either for the extinctien(x) = kA~

or for the backscattering(x) = k.=, can be used to help & (%)

understand the sign of the slopes of Fig. 2. For the wave-

lengths used here, the Angstrém exponeptand ng char- Fig. 2. Pe_rcg_ntage ﬁeviati'onlczjf the effe_lt_:tive Iratc;lius asli'sl fugction of
acterize the spectral features of aerosol particles and are r?yStemat'C las in the optical datg ((2) Type I, (b) type Il and(c)
! > ype Il
lated to the size of the particles: large valuesypfand g
are mainly associated with predominance of fine-mode parti-

cles, while low values are associated with a predominance of
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coarse mode (e.g., Dubovik et al., 2002). Moreover, many
works (e.g., Alados-Arboledas et al., 2003; O’'Neill et al.,
2005; Veselovskii et al., 2009) have found an inverse rela-
tionship between the Angstrém exponent for extinction and
the effective radius: large values of the Angstrém exponent
are associated with low values afi, while just the oppo-
site occurs for low values of the Angstrém exponent. Con-
sidering this and given that(355nm) is generally larger

—— (355 nm) —v— «(532 nm)
—+—[((355nm) ——[((532nm)
—+— (1064 nm)

than«(532 nm), a positive bias in(355nm) increases the 150 ————————— .
spectral difference witlx(532 nm) and would increase the I a) Type | .
value of the Angstrdm exponent and thus would result in 100 | -
a decrease in the retrieved particle radius. This agrees with L T

the negative slopes of(355nm) observed in Fig. 2. On the < 50 T 4
other hand, a positive bias #(532 nm) reduces the spectral é I =

difference witha(355nm) and thus serves to decreage of -
Thus, we would expect an increase in the retrieved particle 51

radius, which agrees with the positive slopes observed for 50 | -
(532 nm) in Fig. 2. The slopes @355 nm) ang3(532 nm)

possess mostly the same sign as the corresponding extinc- -100 |- -
tion coefficient at each wavelength, and similar logic con-

cerning the relationship of the Angstrém exponent and the -150 L
particle size given fow (355 nm) andx(532 nm) can be used 150 — T

to explain this behavior as well. Finally, fg8(1064 nm) - l b) Type Il

we observe positive slopes £ 0.79140.008 for type I, 100 (- .

a =0.54+0.07 for type Il andz = 0.84+ 0.02 for type IlI).
Positive biases oB(1064 nm) decrease the spectral differ- ~ 50
ence betweerg(355nm) andg(532nm), indicating a de- ™ I
crease of the Angstrém exponent, and thus we would expect or
an increase in the retrieved particle size, which agrees with [

(%

AN

the presence of positive slopes in the plot. 50 | .
Figure 3 presents the sensitivity analysis for the retrieval
of number concentration¥). From Fig. 3 we again gen- -100 - 7
erally observe linear patterns of the deviation in retrieved . . . . .
value of N for differing biases in the input optical data. Lin- '123 * * * *
ear fits through the origin in the forms =aX were also oo o
performed here. Interestingly, the slopes of the linear fits 100l c) Type Il i
of the extinction coefficients present opposite signs to those
determined for the retrieval ots, with positive values for 50 b ]
a(355nm) ¢ =3.09+0.12 for type |,a = 4.83+0.22 for |
type Il a = 3.04+ 0.13 for type Ill) and negative values for X ol J
a(532nm) ¢ = —2.78+0.17 for type l,a = —4.09+0.23 ~ I
for type Il anda = —2.61+ 0.12 for type Ill). Therefore, we % 50| i
see in the retrieved results, for example, that in order to com- I
pensate for a radius enhancement due to biased input data, 49 L J
the retrieval tends to decrease number density. I
For the sensitivities ofef and N shown in Figs. 2 and 3, 150 P T T T
the absolute values of the slopea&355 nm) andv(532 nm) -20 -10 0 10 20
are larger than 1, which indicates that the percentage devia- A (%)

tions in the retrievedes and N using biased data are larger

than the percentage bias imposed on the input optical dataig. 3. Percentage deviation of the number concentration as a func-
Thus, the accuracy ofe retrievals using B + 2« lidar is tion of systematic bias in the optical data.((a) Type I, (b) type Il
strongly dependent on the accuracy associated with the exand(c) type IlI.

tinction coefficients. Other slopes with absolute values less

than 1, as for example those obtainedrAgf as a function of

biases in(1064 nm), indicate that while the retrieval is still
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Table 1. Percentage deviations in the aerosol microphysical properties as a function of systematic errors in the opticBadatalarly,

the slopes: of the linear fitsY = a X are presented, where is the systematic bias in the optical data ahis the corresponding deviation
in the microphysical properties. All these fits presented linear determination coeftRdend.90. For the cases when there is a difference
in slope between positive and negative biases in the input data, the slopes relating to the positive biases are indidatetileytitose

associated with negative biases are indicated:hy (

Areit(%) AN (%) AS(%) AV (%) Aring(%) AViine(%)
Ae (%) Ae (%) Ae (%) Ae (%) Ae(%) Ae (%)
Typel  —1.68+0.12 309+0.12 208+0.05 0.26 p)/ ~0.99+0.11 1594 0.05
E 0.77 (), +0.07
5 Typell —1.74+0.03 4.83+0.22 1.77+0.04 —0.37 (p)/ ~1.274+0.17 1.660.17
3 0.35 (1) +£0.05
S Typelll —1.84+0.04 3.04:0.13 1.95+0.05 —0.47 (p)/ —0.64 (p)/ 1.56+0.06
0.77 ¢) £0.04  —1.51 () +£0.07
Typel  1.51+0.04 —2.784+0.17 —1.07+0.08 0.44+0.12 1.17+0.04 —0.28+0.05
€
~ Typell  1.824+0.09 —4.09+0.23 —0.69+0.03 1.18:0.17 1.28+0.07 —0.4440.04
[32]
L0
S Typelll 1.71+0.10 —2.614+0.12 —0.924+0.07 1.46:0.08 (p)/ 0.98 (p)+£0.01/ —0.2040.04
0.77 ¢) £0.02  1.46 ) +0.01
Typel  —0.63+0.02 —1.25+0.04 (p)) —0.73+0.04 —~1.39+0.04  —0.01 () —0.6240.03
B —0.85+0.15 ) —0.06 (2) £0.01
5 Typell —0.54 () 0.19 (p)/ ~0.22 (p)/ —0.48+0.10 0.33 p)/ 0.26 (p)/
3 —0.18 ) +0.01 0.124)+£0.04  —0.04 (2) +0.02 0.064)+0.03  —0.01 )+0.01
2 Typelll —0.76 (p)/ —0.44+0.08 —0.47+0.06 —1.044+0.08 0.10£0.01 —0.39 (p)/
—0.43 (2) 0.01 —0.19 () +0.01
Typel  0.27+0.04 1.3+0.09 0.50+0.03 0.77:0.05 —0.05 (p)/ 0.2240.02
€ —0.22 (1) £0.03
~ Typell —0.48 (p)/ 0.79+0.11 (p)/  0.054+0.02 —0.38 (p)/ —0.114+0.02 —0.11 (p)/
8 0.02 @) +0.02  —0.37+0.05 @) 0.03 () +0.03 —0.34 (2) £0.01
2 Typelll —0.03(p)/ 0.70+0.06 0.30+0.03 0.48+0.07 —0.16+0.01 0.02£0.02
0.38 (2) +0.05
= Typel  079£001 0.37£0.05 0.17£0.02 0.92+0.04 —0.174+0.01 —0.04+0.01
c
I Typell 0.54+0.07 0.29 p)/ 0.04+0.02 0.60+ 0.05 —0.28+0.02 —0.15 (p)/
=) —0.25 (2) £0.05 —0.34 (2) £0.02
S Typelll 0.84+0.02 0.07:0.03 0.08+0.02 0.92+0.03 —0.2640.01 ~0.1940.01

quite sensitive to biases (1064 nm), the deviations in the the input optical data. Again, the linear patterns pass through
retrieved parameters is less than the magnitude of the biasethe origin, and we therefore assumed least-squares fits of the
Finally, the slopes of¢; as a function of biases in the input form Y = aX. The results of the linear fits for all the param-
data forg (355 nm) angB(532 nm) are quite small, indicating eters are summarized in Table 1, including also the slopes
that biases in these optical parameters have relatively smathbtained fore andN in Figs. 2 and 3, respectively.
effects on the retrieval ofy;. However, for the retrieval of We note that for some parameters the linear fit possesses
number concentration, the effects of biases in the backscadifferent slopes for positive and negative biages For ex-
tering optical data are not negligible, with absolute values ofample, in the case @ for type Il, (532 nm) has a slope of
the slopes of the linear fits between 1.3 and 0.3. —0.48+0.02 for positive biases and@+0.02 for negative

As with the effective radius and number concentration, webiases. This is taken into account in Table 1, where, if there is
have performed the sensitivity analysis for the other micro-a difference in slope between positive and negative biases in
physical parameters obtained from the inversion @fto the input data, then the slopes relating to the positive biases
lidar data. For these studies, we have also observed generalfre indicated by p), while those associated with negative bi-
linear patterns when considering the differences in the re-ases are indicated k). We take this difference in slope to
trieved microphysical parameters as a function of the bias irbe a reflection of the reduced sensitivity to the coarse mode
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of the distribution. From Table 1 we observe that the numberbackscatter data but not in the extinction data. The sign of the
concentration is by far the most sensitive parameter to bias irslopes ofrine as a function o& (355 nm) andx (532 nm) can
the optical data, particularly to those biasea{855nm)and  be explained by the same reasoning given before for the ef-
(532 nm). Moreover, the sensitivities to biaseg@55nm)  fective radius: as extinction at 355 nm increases, it makes the
are generally larger for type | than for type Il (absolute valuesretrieved particle radius decrease. Bu&és32 nm) increases
of slopes are larger), with type 11l being in the middle. This the retrieved particle radius increases. On the other hand, for
finding can be explained by the fact that, for the same totalthe Vsne, the largest sensitivities in the retrieval are found to
volume, small particles (which predominate in type |) gener-systematic biases at(355 nm), with slopes of .59+ 0.05,
ally provide larger backscattering of light at the shorter wave-1.66+ 0.17 and 156+ 0.06 for types I, Il and Ill, respec-
lengths (phase function at 18 larger) (e.g., Mischenko et tively. For the other optical parameters, absolute values of
al., 2000; Liou, 2002; Kokhanovsky 2004). the slopes are below 0.5 (exceftL064 nm) for type | with
From Table 1 the slopes calculated from the linear fits ofslope of 062+ 0.03). These dependencies of the sensitivities
surface concentratior] as a function of biases in the opti- of rfine and Vsine to biased input data are associated with the
cal data present the same patterns (sign of slopes) betweddifferent dependencies of the kernel functions on wavelength
types I, Il and Ill. The difference in the absolute values of and particle radius (e.g., Chapter 11 of Bohren and Huffman,
slopes between the three types are then associated with tH998).
differences in the size distribution and with the changes inthe At this point we would like to mention that our simulations
kernel functions. The largest sensitivitiesHare found for  (graphs not shown for brevity) showed some departures from
biases atr(355nm) (absolute values of slopes2.0). Sen- the linearity shown in Figs. 2 and 3 and Table 1 for systematic
sitivities to biases a& (532 nm) (absolute values of slopes errors larger than approximatehy30 %, mainly when the ab-
between 1.07 and 0.69) are also important for type I, Il andsolute values of the slopes are larger than 1. We take this to be
I, while the sensitivity associated witB(355nm) is only  an indication that biases of approximateh30 % and larger
remarkable for type | (slope 6£0.73+0.04). Sensitivities  can cause the regularization routine to choose a different so-
to biases aB(532 nm) and3(1064 nm) are quite low (abso- lution space than the original retrieval based on data with no
lute values of slopes below 0.5). errors. On the other hand, up to errorsi#0 %, we find that
Referring back to Table 1, we observe that the volumethe same minimum in the solution space is generally found
concentration ¥) is the retrieved integrated parameter leastby the routine, so the linear behavior seen in Figs. 2 and 3 is
affected by bias in the input optical data, as indicated bytaken to be a characteristic of a stable system that is displaced
the fact that most of the slopes have absolute values belofrom its minimum point. Therefore, we selected a threshold
1.0. However, we found differences among these three difvalue of+20 % where these results are applicable and stress
ferent aerosol types. For type | aerosols, the retrieval of vol-that larger errors in the input data can cause significant and
ume concentration is most sensitive to biaseg(@®55nm)  unpredictable deviations in the retrieved results.
(slope of —1.39), while for type Il aerosols, retrievals are  Finally, we remark that the values given in Table 1 are av-
most sensitive to deviations (532 nm) (slope of 1.18). eraged for the particular size distributions used here. More
For type Ill aerosols the sensitivities to bias in the optical simulations performed (graphs not shown for brevity) chang-
data are important both g8(355 nm) (slope of-1.04) and at  ing the fine-mode radius between 0.08 and 0.20um, for
«(532nm) (slope up to 1.46). These differences among theerosol types |, Il and lll, revealed the same average lin-
aerosol types I, Il and Ill demonstrate the different sensitivi- ear patterns as those shown in Figs. 2 and 3 and in Table 1.
ties of volume concentration retrievals when the aerosol sizél'he only differences observed were in the absolute values of
distribution possesses different weights of fine and coarséhe slopes with differences within 10 %. On the other hand,
mode. no important departures from the linearity observed in Ta-
As the regularization scheme used here computes the sizale 1 were found by changing the widths of the fine mode.
distribution using the range of permitted radii of 0.075-5 um, Changes in the coarse mode were not tested because of the
the fine-mode part of the distribution (but not the coarsedifficulty to assess retrievals of the coarse mode with the
mode) is completely covered by this inversion window, and methodology used here.
thus we study fine-mode volume radiug.¢) and fine-mode
volume concentrationWine). Table 1 also shows the sensi- 3.2.1 Effects of the constraints used in the retrievals
tivities of these two parameters to biases in the input opti- on the sensitivity test results
cal data. From the slopes of the linear fits reported-fgs,
biases inx(355 nm) andx (532 nm) produce significant de- The sensitivity tests applied to the different sets of data have
viations in the retrieval, with absolute values of the slopesshown linear dependencies. The data presented in Table 1 of
approximately between 1.0 and 1.5, while the deviations inthe linear fits allow for the computation of the deviations in-
the retrievals created by biases in other optical parameterduced in retrieved quantities due to biases in the input data
are almost negligible. This result would imply that accu- in an easy and straightforward way. But the generality of the
rate retrievals ofine Ccan tolerate rather large errors in the results for different constraints in the inversion code needs
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Fig. 4. For the effective radius, box-and-whisker diagrams of the differences between the theoretical deviations computed with the slopes
of Table 1 and the simulated deviations. At least two optical channels have been simultaneously perturbed by biases of the same magnitude
although different combinations of over/underestimations are allowed. In these box diagrams the mean is represented by an open square. Th
line segment in the box is the median. The top limit represents the 75th percentile (P75) and the bottom limit the 25th percentile (P25). The
box bars are related to the 1st (P1) and 99th (P99) percentiles, and the crosses represent the maximum and minimum values, respectively. W
used biases in the optical data of 1 (black diagrams), 2 (blue diagrams), 5 (red diagrams) and 10 % (green diagrams).

to be examined. For example, the results presented in Ta3.2.2 Additive properties of the effects of systematic
ble 1 have been based on a maximum radius in the inver- errors in the optical data
sion (rmax) of 5um. Although for the aerosol size distribu-
tions studied here thisnax makes the computation more ef- Thus far, the sensitivity tests that have been performed were
ficient, the selection ofnaxdepends on the user and becomesbased on perturbing a single optical input at a time. But in
a constraint in the inversion procedure. Thus, we performed real instrument, it is quite possible that two or more input
more simulations withmax increased to a value of 10 um to data might be influenced by biases simultaneously. There-
study the influence of this change in constraint on the re-fore, we need to study the effects of the presence of multiple
trieved results. Another constraint in the inversion that mustsimultaneous biases in the input data since the existence of
be checked is the maximum value allowed far. We re-  such biases would presumably not be known in a real ap-
peated the simulations allowing; to range up to 0.1 (con- plication. In other words, we wish to determine if the pre-
sistent with a very absorbing aerosol like black carbon). Theceding results based on perturbing a single optical input at
results of these studies were compared with a baseline re2 time can be generalized to predict the effects of multiple
trieval obtained withrmax =5 um and with maximum value input data being simultaneously biased. In particular, we will
of m; of 0.01. To compute the baseline microphysical param-now test if, when multiple inputs are simultaneously biased,
eters, no induced systematic errors were included. We alsthe results from Table 1 can be used to calculate deviations
computed the retrievals using the new constraints and introthat can simply be added to determine the total bias. In other
ducing systematic errors in the optical data as done before. words, we now will test whether the results in Table 1 can be
The new simulations performed after changing the con-considered additive.
straints forrmax and maximumm; also reveal linear pat- To test the additive properties of the results shown in
terns (graphs not shown for brevity). However, these linearTable 1, we performed a set of simulations where two or
patterns do not pass through the origin, implying that theremore optical channels were perturbed simultaneously by bi-
are generally shifts in the retrieved values of the various paases of the same magnitude but allowing for different signs
rameters due to these changes in constraints. The analys{§ver/underestimation). For example, let us assume that we
reveals, though, that the signs of the slopes of the lineahave systematic errors of absolute magnitude of 5%. Then
fits remain the same and that very similar deviations in thedifferent combinations of-5 % are allowed, as for example
retrieved quantities are computed using the linear fits perat «(355nm) andx(532 nm), ate(355nm) andg(532 nm)
formed. Therefore, while the selection of exact value of theor at(355nm),5(532 nm) and3(1064 nm). This procedure
constraints formaxandm; can change the mean values of the was repeated for different sets of biases of magnitude up to
different parameters, the sensitivity to induced biases in thel0 %. The deviations noted as “baseline” were computed us-

input optical data is generally unchanged by these changes itig the slopes of Table 1 and assuming that the deviations
constraints. are additive. We also performed the regularization retrieval

with the new set of data affected by two or more simultane-
ous biases, called “simulated deviations”. Later we computed
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the differences in the microphysical properties based on th&.3 Application to the sensitivity of retrievals to the
slopes given in Table 1 and those actually retrieved running presence of random errors in the optical data
the code with the new biased optical data and then charac-
terized the differences. Using this procedure, we generatetlp to this point, we have concerned ourselves only with the
for each absolute value of bias a statistical data set that ineffects of systematic biases in the input optical data on the
cludes many different configurations of the different optical retrieved quantities. But in lidar systems, random errors are
channels. Those data sets are analyzed using Bow—Whiska&lso present due just to the measurement process itself. Any
diagrams as shown in Fig. 4 for the effective radius. specific set of B + 2« data affected by random errors can be
In these box diagrams the mean is represented by an operonsidered as a set of biased measurements where the indi-
square. The line segment in the box is the median. The toidual biases for each of the data follow a normal distribu-
limit represents the 75th percentile (P75) and the bottomtion. Given the additive property of the systematic errors that
limit the 25th percentile (P25). The box bars are related towe have shown, we can assess the effects of random errors
the 1st (P1) and 99th (P99) percentiles, and the crosses reprit the optical data by generating random biases in the optical
sent the maximum and minimum values, respectively. Fromdata and computing their deviations in the microphysical pa-
Fig. 4, for biases of 1, 2, 5 and 10 %, mean values of therameters from the values given in Table 1. The sensitivities
differences in the effective radius are very small: 0.03, 0.34,0f the regularization technique to those random errors com-
0.41 and 1.01 % for type | (Fig. 3a) ard.62,—0.91,—0.49 puted using the procedure just outlined will be compared
and—0.18 % for type Il (Fig. 3b). Values larger than the 25th with previously published ones (e.g., Miiller et al., 1999a,
percentiles (P25) and lower than the 75 % percentiles (P75; Veselovskii et al., 2002, 2004).
are found for the ranges from1.8 to 1.3 % (type 1) and from To assess the sensitivity of the retrievals to random errors,
—0.6t0 4.4 % (type Il). Only two outliers are found with rel- we use the additive properties of the systematic biases just
ative differences greater than 100 %. The latter occur wherdescribed. The procedure used consists of generating ran-
all the optical channels excep{355nm) are either overes- dom numbers distributed in a Gaussian way centered at zero
timated or underestimated. But for these particular cases thwith width according to the value of the random error to
baseline deviations are 0.009 -60.009 %, while the simu-  study. These random errors are applied to each optical chan-
lated ones are 0.557 ardD.557 %, respectively. These small nel of the 3+2« configuration. This procedure was repeated
errors are within the uncertainties associated with the regu50 000 times for each parameter studied. Also, the initiation
larization method, and thus these large relative difference®f the random number generation is different for each chan-
are a mathematical artifact created by dividing by small num-nel in order to avoid the situation where all the random num-
bers. Tests have also been performed for the other microphyders are the same in every channel. Finally, we introduced
ical parameters, and we also found an additive property in thehis random number for every optical datum and computed
deviations predicted by the results shown in Table 1. Furtherthe corresponding error in the retrieved microphysical pa-
more, very similar additive properties were found for aerosolrameter using the slopes provided in Table 1. For every set of
type 1l (graph not shown for brevity). Therefore, for the bi- 38 + 2« values, the final error obtained in the microphysical
modal size distributions used here that cover most of thosgarameter is the sum of the error obtained for each channel.
size distributions obtained by AERONET, we conclude thatThe study of the frequency distributions of the final errors
the results of Table 1 can be reliably used to calculate thdor this large number of simulations yields the effects of ran-
deviations in retrieved quantities due to multiple simultane-dom errors. If the frequency distribution is a normal one, the
ously biased input data. standard deviation (full width at half maximum) provides the
We take this result to be an indication that, as mentionedinal error in the microphysical parameter. Moreover, if the
earlier, the solutions found by the inversion technique genernormal distribution is not centered at zero it demonstrates an
ally define a local minimum in the multidimensional solution interesting property: that the presence of systematic errors in
space (e.g., see Fig. 1 in both Veselovskii et al., 2002, 2012)the retrieved microphysical property can be induced by ran-
The linear behavior of the deviations in the retrieval due todom errors in the input optical data. As an illustration, Fig. 5
small changes in the input parameters is a characteristic ahows the frequency distribution of the differences in the mi-
displacements from this minimum location. Multiple simul- crophysical parameters studied here, for all aerosol size dis-
taneous displacements tend also to display this linear behawributions type I, Il and Ill, where 15 % random error is as-
ior. The results here indicate therefore, for biases in the inpusumed in all the optical data. Those differences associated
data of up to approximately 20 %, whether for a single chan-with the effects of random errors are in percentages and de-
nel or multiple ones simultaneously, that the solution spacenoted as “deviation” in the axis of the histograms.
possesses an average linear property and an additive behav-From Fig. 5 we observe that the frequency distributions
ior can be assumed. For larger biases in the optical data (e.gpossess the expected Gaussian shape for all the microphysi-
+30 %) the additive property is not assured, as under theseal parameters. Most of the frequency distributions are cen-
circumstances different minima in the solution space may bdered essentially at zero, although some significant depar-
found by the regularization algorithm. tures from this value are observed. The percentage changes
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Fig. 5. Frequency distributions of the different microphysical parameters for 15% random errors in the optical data using 50 000 random
samplings of the systematic error sensitivities shown in Table 1.xTagis represents the difference between microphysical parameters
with no errors in the input optical data and those affected by random errors in the optical data. Random errors were simulated by a normal
distribution centered at zero and with a standard deviation of 15%. The random number generator is initialized at different values for each
of the 5 optical data used in thgg3- 2« lidar configuration. The mean value of the deviation between the microphysical parameter affected

by random error and that unaffected by random error is included in the legend.

in the mean values of the distributions are shown in the leg+for type Il aerosols and are approximatehp, 1 and—7 %,

end. A shift in the mean value due to the presence of randomespectively. On the other hand, the FWHM — or standard de-
error is explained by the different linear tendency for posi- viations — of the normal distributions of Fig. 5 are represen-
tive and negative biases for some input optical data, as distative of the sensitivities to 15 % random errors in the optical
cussed earlier to respect Table 1. For example, such depadata. Generally, there are many similarities in the standard
tures from zero are observed for retrievalsgf, N andV deviations between aerosol types I, Il and Ill. We observe
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Table 2. Standard deviations of the frequency distributions of the deviation induced in the microphysical parameters due to random errors in
the optical data.

reff N N \4 Tfine Viine

Random Type Type Type Type Type Type Type Type Type Type Type Type Type Type Type Type Type Type
Errors (%) | 1] 1} | 1] 1] 1l 1 | 1l 1 | 1l 1l | 1l 1l
5 125 131 137 225 318 205 12.5 95 112 9.8 7.2 9.5 7.7 9.2 8.4 8.7 8.8 8.1
10 249 262 272 45.0 63.6 408 251 191 223 196 144 19.0 155 184 16.8 174 176 16.1
15 37.2 39.2 408 676 952 614 377 285 334 295 215 285 233 276 253 26.1 263 241
20 50.0 52.6 548 90.1 1273 821 50.2 38.2 446 39.3 288 38.0 311 36.9 338 349 352 322
10* 25* 70* 25* 25* - -

* From the previous work of Muller et al. (1999a, b) and Veselovskii et al. (2002, 2004).

Table 3. Mean of the differences (in percentages) in the retrieved microphysical parameters due to varying amounts of random error in the

optical data.
Teff N N \4 fine Viine

Random Type Type Type Type Type Type Type Type Type Type Type Type Type Type Type Type Type Type
Errors (%) | 1l n | 1] 1l Il 1] | 1] 1l | 1l 1l | 1l 1

5 00 -17 -16 -0.8 35 0.2 0.0 -0.4 0.1 -11 -23 -11 0.4 0.5 0.7 0.0 14 -0.3

10 00 -35 -3.0 -14 7.1 0.1 0.1 -0.7 0.0 -19 -44 -23 0.9 1.1 1.5 0.1 2.8 -0.8

15 -01 -53 -45 -19 111 0.4 0.3 -0.9 0.2 -28 -6.7 -3.1 1.2 1.4 2.1 0.2 42 -1.0

20 -03 -72 -56 -23 152 -0.6 06 -1.0 -04 -38 —-9.0 -45 15 1.8 3.3 0.4 5.8 —1.9

clearly thatV, rine and Viine €xhibit the smallest sensitivity  distributions due to varying amounts of random error in the
to the imposed 15 % random errors with a 1-sigma spreadnput data.
in the result of approximately 25 %. The effective radius and Mdiller et al. (1999a, b) and Veselovskii et al. (2002, 2004)
surface concentration results show moderate sensitivity withstudied 10 % random uncertainties in the optical data in the
1-sigma values of 30—40 %, while the retrieval of number 38+ 2« lidar configurations by introducing random errors in
concentration has the highest sensitivity, with 1-sigma val-the optical data and running the regularization code repeat-
ues of 67.6 % for type I, 95.2 % for type Il and 61.4% for edly. These studies reported that the retrieved uncertainties
type lll. As expected, these sensitivities to random error trackwere on the order of 25% fog, V andS, 30 % forrmean
the results of the sensitivities to systematic errors, where thand 70 % forN. These values are quite similar to those re-
most sensitive parameter was also found to be number corported in Table 2 for our computations of 10 % random er-
centration and the least sensitive were volume concentratiomors. No evaluations fafiine and Vsine were done in the stud-
fine-mode radius and fine-mode volume concentration. ies of Muller et al. (1999a, b) and Veselovskii et al. (2002,
Using the same procedure as for 15 % random error, Ta2004). The method shown here for assessing the sensitivity of
ble 2 reports the FWHM — or standard deviations — of normalretrievals to random errors is generally consistent with these
distributions obtained for other magnitudes of random errorsearlier results but permits the influence of varying amounts
in the optical data ranging from 5 to 20 %. We observe, asof random error to be studied. It also permits the influence of
expected from the linear functions involved, that increasingrandom errors in different input optical channels to be quan-
the random uncertainty increases the deviations found in dified. We will now apply this capability to the problem of
linear fashion. Moreover, it is observed again that the largestnstrument specification.
sensitivities are fov, while the lowest are fo¥/, rfine and
Viine. In the same way, Table 3 reports the means of the deapplication to instrument specification
viation of every microphysical property for varying amounts
of random uncertainty in the input data. As mentioned above;rhe upcoming spaceborne Decadal Survey ACE (Aerosol-
the departures of these deviations from zero indicate that ranc|oyd-Ecosystems) mission of NASAt{p://dsm.gsfc.nasa.
dom uncertainties in the input optical data can induce varygoy/acey specifies a high-spectral-resolution lidar as a core
ing amounts of systematic bias in the retrieved propertiesinstrument to measure vertical profiles of aerosol extinction
This effect is found more with the type Il aerosols that pos-and backscattering worldwide. These profiles will be used to
sess a higher fraction of larger particles. Such a population igjerive vertically resolved aerosol microphysical properties
more likely to have different slopes in Table 1 due to positive gch as effective radius, number concentration or complex
and negative biases in the input optical data because of thgsfractive index. The system is anticipated to use fhe 2
reduced sensitivity of the MW technique to larger particles. configuration and the regularization technique that has been
It'is this reduced sensitivity to larger particles that, in gen- syydied here. The first reportst(p://dsm.gsfc.nasa.gov/age/
eral, explains the shifting of the mean values in the retrievedzg)| for an accuracy of-15% for all backscattering and
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extinction coefficients, and thus the results presented heren the retrieved parameters. This threshold valug-20 %
can be used to infer the anticipated uncertainties in the miis enough for many practical lidar applications. As the prob-
crophysical properties retrieved using the regularization techiem of the inversion of microphysical properties is underde-
nique on these B+ 2« spaceborne data when all input data termined, constraints are needed that, in principle, can influ-
possess 15 % uncertainties. However, the results already prence the values retrieved by the algorithm. Particularly, we
sented clearly indicate that, for most quantities, it is uncer-have found that the range of radius and refractive index used
tainties in the extinction coefficients that need to be con-in the inversion did not have a large influence on the sen-
strained more carefully than those in the backscattering datasitivities of the different microphysical particles. However,
Volume concentration is an interesting exception to this stateour results showed that the maximum valuempfallowed in
ment wheres (355 nm) for type | aerosols is the optical pa- the retrieval had a significant influence on the value of the
rameter requiring the smallest uncertainty budget to help rerefractive index retrieved, supporting earlier results that in-
duce the uncertainties in retrievals. In this way, the resultdicate significant uncertainties in the retrieval of refractive
obtained here can serve as a guide to hardware designers mfdex using the B + 2o MW lidar technique studied here.
multiwavelength lidar instruments in the sense that if trade- The microphysical parameters studied included effective
offs need to be made between the performance of one opradius (eff) and volume V) as well as numberX) and sur-
tical channel versus another, the relative sensitivities showrace (§) concentration. Also, as the inversion window ranged
in Table 1 can be used to assess which channels would berfirom 0.075 to 5 um, we were able to study the fine mode of
efit most from decreased uncertainty in the measurementghe aerosol size distribution (0.075-0.5 um) separately, and
Another application of the sensitivities derived here is to al-thus we have also presented the results for both fine-mode
gorithm development. Algorithms can introduce systematicradius ¢iine) and volume Viine). From these sensitivity tests,
uncertainties in the optical data such as through an incorthe percentage deviations of the microphysical parameters as
rect assumption of an aerosol-free region, an assumption cd function of biases in the optical data presented linear pat-
the extinction to backscatter ratio or the use of an estimatederns. Generally, these linear patterns presented the same sign
molecular profile. The results presented here can be used tof slopes for aerosol type |, Il and Il and the largest sensi-
assess the tolerance for both random and systematic errors tivities were observed for biases in the extinction coefficients
the input optical data due both to instrumentation and to algo« (355 nm) andx(532 nm). Moreover, the largest sensitivities
rithms once uncertainty requirements in the retrieved quantiwere found forN, while the least affected parameters were
ties are established. V., rfine and Viine.
An important result is that we have found an additive prop-

erty for the deviations induced by the biases in the optical
4 Summary and conclusions data. This implies that if, for example, several optical data are

simultaneously affected by systematic errors, the total devi-
We have presented the results of a study of the sensitivity oftion in the retrieved quantity can be well approximated by
the retrievals of aerosol physical parameters using the regthe sum of those deviations computed when each optical in-
ularization technique to systematic and random uncertainput was biased separately. From this additive property, we
ties in the input optical data. We have focused our study orhave been able to compute the effects of random errors in the
the set of data consisting of three backscattering coefficientsptical data. Moreover, we have found some systematic dif-
(B) at 355, 532 and 1064 nm and two extinction coefficientsferences in the mean retrieved microphysical properties when
(x) at 355 and 532 nm B+ 2« configuration). These data the retrievals are affected by random errors in the input opti-
can be obtained by a lidar system that uses a Nd:YAG lasecal data. The presence of these systematic differences is asso-
and combines backscatter with Raman or HSRL channelsciated with the different behavior (although with linear pat-
Simulations have been done for different bimodal aerosolterns) between positive and negative biases in the input opti-
size distributions that are representative of AERONET cli- cal data, and is due to a reduced sensitivity of the retrieval to
matologies. The values used for aerosol refractive indexes, athe coarse part of the size distribution.
well as mode radius and widths, were selected as representa- The results presented here cannot be generalized to every
tive of those climatologies as well. The selected aerosol bi-possible size distribution as we only focused on bimodal size
modal size distributions include one with fine-mode predom-distributions representative of those obtained by AERONET.
inance (type 1), another with predominance of coarse modestudies of the sensitivities of the microphysical retrieval to
but with significant presence of fine mode (type Il) and an-errors in the optical data for other size distributions such as
other with predominance of fine mode but with significant one showing trimodal behavior are still needed although the
presence of coarse mode (type Ill). Optical data consistentesults presented here for three differing bimodal distribu-
with these bimodal size distributions were generated usingions lead one to expect that similar results would be obtained
Mie theory. Retrievals were performed using these baselindor trimodal distributions as well. The tests performed here
optical data. The optical data were then perturbed by systemshowed that the average linearity of the sensitivities in the
atic biases in the range20 % to study the effects of biases retrieval to random errors in the input data can be useful for
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a wide range of lidar applications, and thus can be used to es- and Sun photometer data, J. Geophys. Res., 115, D08202,
tablish acceptable error budgets in optical data if maximum doi:10.1029/2009JD013082010.

permissible errors in the retrieved quantities can be estabBockmann, C., Miranova, ., Miller, D., Scheidenbach, L., and
lished. Therefore, the values given here for the sensitivities of Nessler, R.: Mycrophysical aerosol parameters from multiwave-
the microphysical properties to systematic errors in the opti-_ 1€ngth lidar, J. Opt. Soc. Am. A, 22, 518-528, 2005. _

cal data can be useful for many lidar applications. For exam-2°nren. C. F. and Hufiman, D. R.. Absorption and scattering of
ple, for the Decadal Survey ACE mission, a multiwavelength light by small particles, John Wiley & Sons, Inc., 1998.

L . ! . . Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J.,
lidar is planned. Among the_'r measurement requirements Is King, M. D., Tanre, D., and Slutsker, .: Variability of absorption
that the accuracy of the optical data £&5 %. If these un- and optical properties of key aerosol types observed in world-
certainties are taken to be all random, we were able to use ide locations, J. Atmos. Sci., 59, 590—608, 2002.

the results here to estimate that this implies an uncertainty ireck, T. F.,, Holben, B. N., Ward, D. E., Mukelabai, M. M.,
the retrieved microphysical properties by the regularization Dubovik, O., Smirnov, A., Schafer, J. S., Hsu, N. C., Piketh,
technique of~409% for refr, ~85% for N, ~25% for S, S. J., Queface, A., Le Roux, J., Swap, R. J., and Slutsker, I.:
~20% forV, and 16 % forrfine and Viine, respectively. The Variability of biomass burning aerosol optical characteristics
results also permit assessing the deviations in the retrievals if in southern Africa during the SAFARI2000 dry season cam-
the biases in the optical data are systematic and exist in only Paign and a comparison of single scattering albedo estimates
one or more channels. In this way, trade-off decisions can be T0M radiometric measurements, J. Geophys. Res., 108, 8477,
made between the retrieval requirements and the hardwar doi:10.1029/2002JD002322003.

. . ) L . Eck, T. F., Holben, B. N., Dubovik, O., Smirnov, A., Goloub, P.,
conﬁgurqt.pr! of a lidar sysFem taklngllnto qccount thg differ- Chen, H. B., Chatenet, B., Gomes, L., Zhang, X. Y., Tsay, S.
ent sensitivities of the retrievals to biases in the optical data ¢ ;i Q. Giles, D., and Slutsker, I.: Columnar aerosol proper-
of different channels. We hope these results aid the future de- ties at AERONET sites in central eastern Asia and aerosol trans-

sign of multiwavelength lidar systems intended for retrieval
of aerosol microphysical properties.
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