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Abstract. Two years of continuous measurements of net
ecosystem exchange (NEE) using the eddy covariance tech-
nique were made over a Mediterranean alpine shrubland.
This ecosystem was found to be a net source of CO2
(+ 52± 7 g C m−2 and + 48± 7 g C m−2 for 2007 and 2008)
during the two-year study period. To understand the rea-
sons underlying this net release of CO2 into the atmosphere,
we analysed the drivers of seasonal variability in NEE over
these two years. We observed that the soil water availability
– driven by the precipitation pattern – and the photosynthetic
photon flux density (PPFD) are the key factors for under-
standing both the carbon sequestration potential and the du-
ration of the photosynthetic period during the growing sea-
son. Finally, the effects of the self-heating correction to CO2
and H2O fluxes measured with the open-path infrared gas
analyser were evaluated. Applying the correction turned the
annual CO2 budget in 2007 from a sink (− 135± 7 g C m−2)
to a source (+ 52± 7 g C m−2). The magnitude of this change
is larger than reported previously and is shown to be due to
the low air density and cold temperatures at this high eleva-
tion study site.

Correspondence to:A. S. Kowalski
(andyk@ugr.es)

1 Introduction

The concentration of carbon dioxide and other greenhouse
gases in the atmosphere has been increasing since the indus-
trial revolution, and is believed to be causing global surface
temperatures to rise (Forster et al., 2007). Global warming
is a serious concern as it seems to be driving global climate
change (IPCC, 2007). The consequences of climate change
are far from being completely quantified, and of particular
concern is its impact on terrestrial ecosystems.

In recent decades, the eddy covariance technique (Baldoc-
chi, 2003) has emerged as one of the most reliable techniques
for quantifying mass and energy exchange. The eddy co-
variance technique is currently applied worldwide covering
many different terrestrial ecosystem types with the aim of
understanding the positive or negative feedbacks that climate
change will have on Earth’s surface. These sites have been
grouped into different continental networks assessing net
ecosystem exchange (NEE) such as EUROFLUX (Aubinet
et al., 2000), AmeriFlux (Pryor and Barthelmie, 1999), and
ChinaFLUX (Yu et al., 2006), forming the global FLUXNET
(Baldocchi et al., 2001). Nonetheless, gaps in knowledge re-
garding some ecosystems still lead to uncertainties in global
assessments.

In this regard little is known about high altitude sites
(Schimel et al., 2002). The mountain and alpine regions of
the world cover 10% of the Earth’s terrestrial surface (Spehn
and Körner, 2005). Understanding the patterns and drivers of
NEE in these environments is very important for accurate de-
terminations of the global carbon budget and for creating new
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perspectives in policymaking (Mountain Research Initiative;
Becker and Bugmann, 2001). However, there is scarce data
available to parameterize or validate models on alpine shrub-
lands.

The effect of climate change on the carbon balance of high
altitude ecosystems is a pressing subject of debate (Becker
and Bugmann, 2001). As global temperatures rise, an earlier
snow melt results in longer growing seasons which may lead
to increased carbon assimilation (Lafleur and Humphreys,
2007). However, this increase in the growing season may
result in reduced carbon sequestration, as a result of water
limitations (Hu et al., 2009). On the other hand, permafrost
melt in the tundra, a consequence of rising temperatures, is
enhancing soil microbial respiration to a larger degree than
photosynthetic carbon assimilation (Oechel et al., 1993). Un-
derstanding the complexity of biosphere-atmosphere interac-
tions and the drivers of seasonal changes in NEE in cold-
limited, high altitude ecosystems is far from resolved, partic-
ularly for high-altitude shrublands, where eddy covariance
measurements are still lacking.

Another factor adding uncertainty to NEE estimates of
cold ecosystems is related to the anomalous downward CO2
fluxes observed during off-seasons (Amiro et al., 2006a,
b; Grelle and Burba, 2007; Ono et al., 2008; Lafleur
and Humphreys, 2007) or during snow covered periods
when assessed by open-path eddy covariance (Skinner,
2007; Lafleur and Humphreys, 2007). Small photosynthesis
rates (< 0.1 µmol m−2 s−1) have been observed over snow-
covered vegetation (Starr and Oberbauer, 2003), if the snow-
pack is not too thick. However, the contribution of soil
respiration through the snow cracks (soil temperatures are
still high enough below the snowpack) should overcome any
small uptake by photosynthesis (Musselman et al., 2005;
Monson et al., 2006a). The recently-published Burba correc-
tion (Burba et al., 2008) rectifies such apparent net CO2 up-
take. The relevance of the Burba correction for the accurate
determination of the carbon balance in cold ecosystems re-
mains controversial. It has been experimentally observed to
be negligible at some sites (Haslwanter et al., 2009), but not
elsewhere where caution has been urged in its use (Blanken
et al., 2009).

In this study we present two years (2007 and 2008) of
CO2 fluxes over a Mediterranean alpine shrubland. The gen-
eral goals of this paper are: a) to identify the main variables
driving the annual behaviour of NEE, b) to examine, focus-
ing mainly on 2007, the explanations for seasonal and daily
changes in NEE and c) to assess the role of the Burba correc-
tion for accurate measurements of the carbon balance.

2 Experimental site description and methods

2.1 Site description

The area of study is situated within an endorheic basin
(2300 m a.s.l.) belonging to the Sierra Nevada mountain
range, in the southeast of Spain (37◦05′ N 2◦57′ W), 39 km
from the Mediterranean coast. The basin is an ancient cirque
stemmed by a moraine and subsequently remodeled in the
glacial age (Śanchez et al., 1988). Mean annual precipi-
tation is 800 mm and the mean annual temperature 5.5◦C
(Aguilar et al., 1986). The Sierra Nevada mountain range
does not belong to the permafrost zone, however, certain pro-
cesses occur that are also quite relevant to tundra: fluted and
polygonal soils as a consequence of frosting and defrosting
of the soil, and pipkrake processes (Gil-de-Carrasco et al.,
1997). Furthermore, Prieto-Fernández (1975) describes veg-
etation species found in Sierra Nevada that are typical of arc-
tic tundra. The site is usually snow covered from Decem-
ber to March. The subsequent snow melt causes water to
flow across the basin and accumulate at the bottom creat-
ing a small lagoon that usually remains for approximately
one month during the onset of the growing season. The flux
tower is situated on a gentle slope separated from the lagoon
by a fetch exceeding 150 m.

Festuca indigestaand Cytisus purgansare the dominant
plant species, reaching to 20 cm height and homogeneously
covering 45% of the ground. A remaining 35% corresponds
to litter and 20% is bare soil. The presence of other plant
species is intermittent throughout the year, and very sparse.
Measurements of leaf area index (LAI), assessed with de-
structive methods, provided an average value of 1.23 m2/m2

which is approximately constant over the seasons.
The soil is composed of sand (56%), silt (30%) and clay

(14%) with a bulk density of 1110 kg m−3, determined in
situ using soil cores. The permanent wilting point was es-
timated at a volumetric water content of 2.6%. Soil organic
matter ranged from 3.9% to 4.6% in the area around the flux
tower. Soil analysis were conducted following recommen-
dations from the American Society of Agronomy and Soil
Science Society of America (Klute, 1986; Sparks, 1996).

2.2 EC and meteorological and soil measurements

Carbon dioxide and water vapor densities along with the 3
components of wind speed were measured at 20 Hz using
an open-path infrared gas analyzer (IRGA, Li-7500, Lincoln,
NE, USA) tilted ca. 12◦ from the vertical (toward the north)
and a sonic anemometer (USA-1, METEK, Elmshorn, Ger-
many), mounted on a tower at 2.25 m above ground. Data
were saved as 5-s averages, variances and covariances by
a logger (METEK, Elmshorn, Germany) and subsequently
converted to half-hour bases following Reynolds’ rules. We
applied 2-D coordinate rotations (McMillen, 1988; Kowal-
ski et al., 1997), density corrections (Webb et al., 1980) and
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Table 1. Empirically determined linear relations used to estimate random errors (σ ) in fluxes as a function of the flux magnitude for the
Laguna Seca field site (see Richardson et al., 2006). Resulting standard deviations were used to add artificial noise following a Laplace
distribution. EveryR2 was greater than 0.83.

FC > 0 FC < 0 LE> 0 LE< 0
µmol m−2 s−1 µmol m−2 s−1 W m−2 W m−2

2007 Burba 0.80+0.042FC 0.79−0.061FC 15+0.12LE 15+0.035LE
2007 0.74+0.068FC 0.89−0.12FC 9.6+0.18LE 7.7−0.044LE
2008 Burba 0.81+0.056FC 0.81−0.073FC 17+0.13LE 16−0.25LE
2008 0.69+0.058FC 0.69−0.069FC 14+0.17LE 12−0.21LE

the Burba correction (Burba et al., 2008; Järvi et al., 2009)
as well as quality control checks with home-made MATLAB
routines. The IRGA was calibrated bimonthly (except when
weather limited site access) with gas standards of N2 for zero
and 479.5 ppm as a span CO2 reference.

Air temperature and humidity were measured by a ther-
mohygrometer (STH-5031, Geonica, Madrid, Spain) at 1.5 m
above the ground. Incident and reflected photosynthetic pho-
ton flux densities (PPFD) were measured by two quantum
sensors (Li-190, Li-cor, Lincoln, NE, USA), also at 1.5 m.
Net radiation was measured with a net radiometer (CN1-R,
Middleton Solar, Brunswick, Australia) at 1 m above the sur-
face. Rainfall was measured by a tipping bucket (0.2 mm)
rain gauge (PLUVIOM 52203, RM Young, Traverse city,
MI, USA). Three temperature and soil water content (EC-
20, ECH2O, Decagon Devices, Pullman, WA, USA) sen-
sors were also installed at 4 cm depth under both bare soil
and plant cover having a sensitivity of 0.1◦C and 0.2%, re-
spectively. These measurements were made at 1 Hz, but
then averaged to 10 min and stored in data loggers (Meteo-
data 3000c, Geonica).

2.3 Data quality control, gap filling and statistical
analysis

The 5-s data that did not satisfy a de-spiking routine were
eliminated. Half-hours statistics were not computed when
eliminated data exceeded 25% of the total. The subse-
quent processed half-hour statistics were also excluded from
further analysis when rain or condensation (including fre-
quent fog or dew) caused poor performance of the open-path
IRGA. Nighttime data below theu∗ threshold of 0.2 m s−1

were also rejected for not fulfilling the turbulence measure-
ment premise (Carrara et al., 2003; Wohlfahrt et al., 2005).
This threshold was determined by plotting the nighttime CO2
flux versusu∗, and determining a value above which there
was no dependence as described by Goulden et al. (1996).
There were 16% and 20% of gaps in the 2007 and 2008
datasets due to electronic malfunction, calibration, power
outages and poor performance of the anemometer and Li-
7500 during inclement meteorological conditions. Nights
with low turbulence resulted in 11% and 9% of data removed

from 2007 and 2008 dataset. Finally, 6% and 3% were also
rejected respectively from the two years due to spikes on
half-hour timescales, yielding a total gap fraction of 33% and
32%. To obtain a continuous dataset for assessing the annual
NEE, data were gap-filled following Falge et al. (2001) and
Reichstein et al. (2005;http://gaia.agraria.unitus.it/database/
eddyproc/index.html).

2.4 Uncertainty analysis

An uncertainty analysis established confidence intervals for
CO2 and water vapor balances. Random uncertainty and er-
rors introduced by the gap-filling process were jointly calcu-
lated by realizing Monte Carlo simulations (Richardson and
Hollinger, 2007). First, normally distributed random gaps
were created in continuous annual datasets. Second, artificial
noise was added to the remaining data following a Laplace
distribution with a site-specific standard deviation that scaled
with the magnitude of the CO2 and water vapor fluxes (see
Table 1; Richardson et al., 2006). Finally, these synthetic
datasets were gap-filled so that different annual sums were
obtained. Twice the standard deviation of such sums was
taken as our annual error.

2.5 Respiration fitting

Nighttime CO2 fluxes were fitted to the model following
Raich and Schlesinger (1992):

Reco= RrefQ
Ts−Tref

10
10

whereReco corresponds to the ecosystem respiration,Rref is
the respiration at the reference temperature (Tref), Q10 corre-
sponds to the change inReco for a 10◦C change in tempera-
ture andTs is the soil temperature. The reference temperature
was chosen as 8◦C, which is close to the annual mean tem-
perature.
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Fig. 1. Average daily environmental conditions in the alpine
Mediterranean shrubland located in Sierra Nevada mountain range
(southeast of Spain):(a) air temperature,(b) soil temperature,
(c) ratio of reflected to incident photosynthetic photon flux density,
(d) absorbed photosynthetic photon flux density.

3 Results and discussion

3.1 Meteorological conditions in 2007 and 2008

Both years showed very similar patterns of air and soil tem-
perature and PPFD (Fig. 1a, b and c). In fact, annual mean
air temperature was 5.8◦C in both years and PPFD averaged
435 µmol m−2 s−1 in 2007 and 410 µmol m−2 s−1 in 2008.
Annual rainfall was 402 mm in 2007 and 390 mm in 2008.
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Figure 1. Average daily environmental conditions in the alpine Mediterranean shrubland located in 

Sierra Nevada mountain range (southeast of Spain): a) air temperature, b) Soil temperature, c) 
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Figure 2. Average daily environmental conditions in the Mediterranean alpine shrubland 

located in the Sierra Nevada mountain range (southeast Spain): (a) soil water content, (b) 

precipitation and (c) net ecosystem exchange flux. The Burba correction was applied. 

Fig. 2. Average daily environmental conditions in the Mediter-
ranean alpine shrubland located in the Sierra Nevada mountain
range (southeast Spain):(a) soil water content,(b) precipitation and
(c) net ecosystem exchange flux. The Burba correction was applied.

Our precipitation measures are likely underestimated during
winter, since rain gauges are not designed to measure solid
precipitation. Furthermore, thirty-seven days of rain-gauge
measurements were missing during 2008, due to instrument
malfunction and inclement weather (25 mm were measured
during this missing period at a station 12 km distant). How-
ever, soil water content (SWC) at the end of this 37-day pe-
riod (DOY 129) was comparable for both years (12.6% for
2007, and 13.6% for 2008), suggesting that precipitation, at
least during the last days of this period, was comparable.

3.2 Winter/spring dynamics and the onset of the first
growing season

Although little differences were apparent in annual tempera-
ture or precipitation, we did observe important differences at
seasonal and weekly scales, which developed into large an-
nual NEE differences. For instance, some snow fall events
(Fig. 1d), assessed via the reflected/incident PPFD ratio, oc-
curred at different times of the year, and nearly three times
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as much rain fell during summer in 2007 (42 mm) as in 2008
(15 mm; Fig. 2b).

Differences in the time courses of precipitation and tem-
perature appear to have affected the onset of the growing
season as reflected in the temporal trends in NEE for both
years (Fig. 2c). The low values of NEE between the days 70
and 77 seem to indicate an early onset of the growing season
in 2007. However, a sudden rainfall (Fig. 2b) on day 78, en-
hancing soil respiration, and subsequent considerable snow
cover that began day 85, prevented growth development (see
Fig. 3). Indeed, favourable synoptic weather conditions in
early spring (days 125 to 150) appear to be fundamental,
marking the onset of the growing season and the transition
from source to sink of CO2.

The two years also presented different patterns in snow fall
and snow cover to which we attribute differences in NEE dur-
ing the days 77 to 110. During this time, air temperature and
PPFD were much higher in 2007 than in 2008 (Fig. 1a and
c), probably due to decreased cloudiness in the 2007 early
spring. Although the transition from source to sink of CO2
happens between days 125–150 in both years, the strength of
the CO2 sink is higher in 2007 than in 2008. This indicates
that air temperature and PPFD are key variables driving the
onset of the growing season. Water availability is seldom a
limiting factor during the alpine Mediterranean spring (SWC
was much higher than the permanent wilting point, around
15.4% in 2007 and 15.7% in 2008). In fact, there was more
rainfall and therefore higher SWC in 2008, as compared to
2007 (Fig. 2a and b) in this period, which supports the notion
that temperature and PPFD, and not precipitation, control the
onset of the growing season. Maximum daily CO2 uptake in
2007 was− 2.2 g C m−2, and took place around mid June
(DOY 167), whereas maximum daily CO2 uptake in 2008
was lower (− 2 g C m−2) and happened approximately one
month later (Fig. 2c).

3.3 Summer dynamics and the end of the first growing
season

Maximum ecosystem carbon assimilation occurred during
mid June (DOY 167) and mid July (DOY 200) in 2007
and 2008 respectively. During this period, the ecosystem
was characterized by mild air temperatures and high PPFD,
which would favour the photosynthetic period to continue.
However, after that time the lack of water resources (Fig. 2a
and b), which arises from the typical summer drought in
the Mediterranean, starts to limit photosynthetic activity, and
strongly constrains NEE (Fig. 2c).

3.4 Autumn dynamics and the onset of the second grow-
ing season

The lack of water resources limits biological activity by the
mid and late summers (from DOY 163 and 200 on) of 2007
and 2008, respectively. Even so, some photosynthesis con-
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Figure 3. Annual and daily evolution of NEE (µmol m-2 s-1) by the alpine Mediterranean shrubland 

located in the Sierra Nevada mountain range during (a) 2007 and (b) 2008. 

Fig. 3. Annual and daily evolution of NEE (µmol m−2 s−1) by the
alpine Mediterranean shrubland located in the Sierra Nevada moun-
tain range during(a) 2007 and(b) 2008.

tinues, as hydrological resources from the soil water stock
are still available. This trend continues until the last days of
summer when the first rains come after a long dry period.
These autumn rains were accompanied by soil remoistening
(Fig. 2a and b) that activated heterotrophic respiration, caus-
ing large, sudden releases of carbon (Huxman et al., 2004).
These new water inputs ease plant stress and foster tissue
repair and rehydration in the days following rainfall (Sala
et al., 1982). Such plant recovery, which may last up to 7
days (Sala et al., 1982), pushes NEE negative again, start-
ing a second growing season (around day 250 of Fig. 2c).
This phenomenon is characteristic of Mediterranean climates
(Wohlfahrt et al., 2008a) where the first rains after a long
drought period usually arrive either in the last days of the
summer or in the first days of autumn, and summer-like me-
teorological conditions continue afterwards for a while (the
so-calledVeranillo de San Miguel). The extended sunny pe-
riod that favoured the second growing season of 2007, right
after the first summer/autumn rains, did not take place during
2008.

3.5 Diurnal and monthly differences between 2007 and
2008

Some diurnal differences are encountered between the two
years. Figure 3a and b represents the daily evolution of NEE
throughout the year 2007 and 2008, respectively. We found
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2606 B. R. Reverter et al.: Analyzing major drivers of NEE in a Mediterranean alpine shrubland

 22

0 4 8 12 16 20 24
-6

-4

-2

0

2

F N
EE

 (µ
m

ol
 m

-2
 s

-1
)

Hour of day (h)

 May07
 Jun07
 Jul07
 Aug07

 

Figure 4a. Mean diurnal NEE flux during May, June, July and August 2007 in the 

alpine Mediterranean shrubland located in Sierra Nevada mountain range. 

 

Fig. 4a. Mean diurnal NEE flux during May, June, July and Au-
gust 2007 in the alpine Mediterranean shrubland located in Sierra
Nevada mountain range.
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Figure 4b. Mean diurnal NEE flux during May, June, July and August 2008 in the 

alpine Mediterranean shrubland located in Sierra Nevada mountain range. 

 

Fig. 4b. Mean diurnal NEE flux during May, June, July and Au-
gust 2008 in the alpine Mediterranean shrubland located in Sierra
Nevada mountain range.

that CO2 uptake follows PPFD throughout each year, except
during precipitation or water stress, which alter the relation-
ship between PPFD and NEE. The same figure also displays
asymmetry in NEE around noon. A higher daily uptake,
peaking around 10 h, is found in 2007 and between 9 h and
12 h in 2008. The means for months of higher photosyn-
thetic activity are displayed in Fig. 4, which further shows
such asymmetry: maximum uptake before noon and subse-
quent NEE reduction in the afternoon. This afternoon deple-
tion may also be observed in the daily relationship between
NEE and PPFD, such that NEE was more negative for a given
level of PPFD in the morning than in the afternoon (Fig. 5),
representing hysteresis. This could be due to a series of inter-
acting factors, which may be viewed as either environmen-
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Fig. 5a. Mean hourly NEE flux vs. PPFD during May, June, July
and August 2007. Hysteresis was found for every month, with the
temporal trend proceeding counterclockwise.
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Fig. 5b. Mean hourly NEE flux vs. PPFD during June, July and Au-
gust 2008. Hysteresis was found for every month, with the temporal
trend proceeding counterclockwise. May was removed for lack of
data.

tal or endogenous (that is, resulting from plant behaviour).
Temperature is typically higher in the afternoon than in the
morning for a given level of PPFD, which could stimulate
soil respiration. Figure 6a displays different nocturnal res-
piration trends as a function of temperature for different
classes of SWC. We found positive exponential trends for
every SWC class (R2 = 0.56 for SWC> 18%,R2 = 0.80 for
12%< SWC< 18% andR2 = 0.51 for 8%< SWC< 12%)
except for the lowest values (SWC< 8%), for which warm-
ing, such as that in the afternoon, does not increase soil res-
piration. When the light-response curve (Fig. 6b) is plotted
for such a dataset (SWC< 8%) a clear hysteresis cycle is ob-
served. Thus, afternoon NEE reduction appears not to be
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due exclusively to an enhancement of soil respiration in the
afternoon.

There are several factors that can potentially interact to
shape the observed hysteresis in the NEE-PPFD relationship.
First, as the Bowen ratio and VPD increase at midday, stom-
atal conductance drops to avoid runaway cavitation (Tyree
and Sperry, 1988), at the expense of diminishing carbon up-
take. Water stored within the stem xylem diminishes during
the day such that, after midday stomatal closure, plants are
not fully capable of recovering the level of stomatal conduc-
tance they had in the morning (Sperry et al., 2008; Hölttä et
al., 2009). Second, the accumulation of sugars within a leaf
may lead to a feedback inhibition of rubisco activity (Lam-
bers et al., 1998). Third, daily patterns of carbon assimila-
tion have been shown to undergo circadian regulation, such
that plants are “programmed” to have a higher carbon up-
take in the morning than in the afternoon, independent of
environmental factors (Webb, 2003; Dougthy et al., 2006;
Resco et al., 2009). Canopy conductance, computed using
the Penman-Monteith equation (Jones, 1992), shows a slight
decrease during the afternoon (data not shown), correspond-
ing to the decrease in carbon uptake evident in the light re-
sponse curve of Figs. 5 and 6b (hysteresis).

3.6 Annual differences between 2007 and 2008

Differences in the length and strength of the growing season
and in the timing of the rain and snow fall seem to be respon-
sible for general NEE disparities between the two years. The
study site is a net source of CO2 during both years. Annual
emissions of CO2 were + 52± 7 g C m−2 and + 48± 7 g C
m−2 for 2007 and 2008, respectively. These differences are
due mainly to disparities in carbon uptake during the growing
season. The growing season of 2007 was shorter and more
skewed than that of 2008 (Fig. 2c). It lasted longer in 2008
and presented a less steep slope, but ultimately with less area
and therefore less CO2 uptake. Rain pulse events following
long dry periods took place in both years bringing about large
emissions, but in different amounts depending on their tim-
ing. Both years presented large releases during the first 125
days contributing to the annual source of carbon. Each of
three events of snowfall and thawing during these 125 first
days of 2007 (Fig. 1d) may have contributed to net release
(Monson et al., 2006a). Snow inhibits the photosynthetic ac-
tivity covering the vegetation leaves, but not bacterial pro-
cesses since the snow cover prevents soil temperature from
falling excessively (Monson et al., 2006b). During snow-
covered periods respiration is expected to dominate NEE,
and therefore the timing of snows-thaws may also account
for annual differences between the two years.

Our Mediterranean alpine site was a carbon source for
both 2007 and 2008. It may be that high-altitude ecosystems
are undergoing a CO2 uptake depletion in the same manner
as tundra sites (Oechel et al., 1993). The study site may have
been a carbon sink in previous years, but the rise of the mean
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Fig. 6a. Mean nocturnal NEE in 2007 vs. soil temperature
for different soil water contents classes. Three classes of SWC
(those for SWC> 8%) were fitted to exponential dependency
with soil temperature (fine line: SWC> 18%; medium line:
12%< SWC< 18%; dark line: 8%< SWC< 12%). No good
agreement was found for SWC< 8%.
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• Page 7, figure caption 6b. The abbreviation PPDF is wrong. It should be written as 

PPFD. 
• Page 9. We would like to add the sentence: “VR was partly funded by the European 

Social Fund” at the end of the acknowledgement paragraph. 
• Page 10, Monson’s reference. The black box and the words “article number?,” 

should be removed. 
 
 
 
 
 
 
 
 

Fig. 6b. Mean hourly NEE flux vs. PPFD for SWC< 8% in 2007.
Clear hysteresis was found for lowest SWC values. NEE flux for
the lowest values of SWC does not present any increasing relation-
ship with temperature (Fig. 6a), however, it does present a clear hys-
teresis cycle indicating that afternoon soil temperature enhancement
(and soil respiration with it) is not the consequence of hysteresis.

global temperature and reallocation of the rain patterns as a
consequence of climate change might have caused a positive
feedback, at least temporarily, turning our ecosystem into a
net carbon source. There is therefore a pressing need to de-
velop longer time series to address how alpine shrublands
may respond to climate change.

www.biogeosciences.net/7/2601/2010/ Biogeosciences, 7, 2601–2611, 2010



2608 B. R. Reverter et al.: Analyzing major drivers of NEE in a Mediterranean alpine shrubland

 28

0 5 10 15 20 25 30 35 40 45
-1

0

1

2
F N

E
E
 (g

 C
 m

-2
 d

-1
)

Day of the year

 NoBurba
 Burba

 

Figure 7. The NEE flux during the first 45 days of 2007. Black line with squared points is 

the NEE flux with no correction. Black line with round points is the same NEE but 

corrected. Shades areas show periods when the ecosystem was snow-covered. Some 

snowed days have an apparent downward CO2 flux when not correction was applied. The 
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Fig. 7. The NEE flux during the first 45 days of 2007. Black line
with squared points is the NEE flux with no correction. Black line
with round points is the same NEE but corrected. Shades areas
show periods when the ecosystem was snow-covered. Some snowed
days have an apparent downward CO2 flux when not correction was
applied. The NEE flux corrected from Burba is always above the
non-corrected one.

3.7 The Burba correction

Although some have claimed the Burba correction to be
negligible (Haslwanter et al., 2009) or even problematic
(Wohlfahrt et al., 2008b), we found it to be very important
for our experimental site. Figure 7 shows daily NEE with
and without the correction during the first weeks of 2007.
The shaded areas indicate periods of snow cover. It is ev-
ident that the final Burba-corrected CO2 flux is larger than
the uncorrected CO2 flux. During the first week-long snow
period, an apparent net uptake of 0.38 g C m−2 is corrected
to yield an emission of 3.8 g C m−2, which seems much more
reasonable as the average air temperature during these 7 days
was just 3.4◦C and the ecosystem was completely snow cov-
ered. A second snowfall took place on day 23, where non-
corrected values estimated six days of implausible uptake,
which disappears once the correction is applied.

The Burba correction eliminates apparent uptake, and also
introduces a positive increment that strongly affects long-
term integrations. In fact, it is so important as to reverse
conclusions regarding the annual CO2 source/sink behaviour.
Figure 8a displays the cumulative NEE throughout the year
2007, yielding− 135± 7 g C m−2 without correction versus
a source of 52± 7 g C m−2 when applying the Burba con-
siderations. For the year 2008 applying the Burba correc-
tion converted an annual CO2 sink of −100± 7 g C m−2 to
a source of 48± 7 g C m−2 (data not shown). Thus there is
an increment in estimated annual carbon loss of 187± 14 g
C year−1 in 2007 and 148± 14 g C year−1 in 2008 when the
correction is applied. This annual magnitude of the Burba
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Figure 8a. Cumulative net ecosystem exchange (g C m-2) through the year 2007 (dashed 

line without and black line with the Burba correction applied). 
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Fig. 8a. Cumulative net ecosystem exchange (g C m−2) through
the year 2007 (dashed line without and black line with the Burba
correction applied).
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Fig. 8b. Cumulative evapotranspiration (mm) throughout the year
2007 (dashed line without and black line with the Burba correction
applied).

correction, higher than those previously reported (Burba et
al., 2008), is due to the fact the site is at 2300 m elevation.
For such an elevation, the 30% reduction in air density (and
thereby heat capacity), means that instrument heating causes
higher perturbations in temperature and density effects. Fur-
thermore, cool or even cold summer nights at such elevation
cause the Burba correction to be non-negligible for all sea-
sons.

Figure 8b shows cumulative evapotranspiration (ET) for
the year 2007. In contrast to the case for cumulative
NEE, the effect of applying the correction changes to a
lesser extent. The corrected data yield an annual ET of
386± 6 mm, versus a non-corrected value of 346± 5 mm.
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These small differences in ET are similarly reflected at
daily timescales (typically ranging between 1× 10−5 and
2× 10−4 g m−2 s−1). Because1ET/ET is 100 times lower
than 1FCO2/FCO2, the importance of the Burba correction
for ET on an annual basis is quite small compared to NEE,
consistent with the findings of Burba et al. (2008). Therefore,
the importance of the correction in ET on an annual basis is
quite small if compared to NEE.

4 Conclusions

Seasonal variability in NEE at this high-altitude ecosystem
seems to be mainly driven by the interaction between PPFD
and precipitation/snow and to some extent by one or more
environmental or endogenous factors on daily timescales.
When snow covers the site, respiration dominates over pho-
tosynthetic processes. During spring when snow melts,
moistening soil and roots, increases in temperature and PPFD
drive the beginning of the growing season. At this point fair
weather conditions are fundamental for development of the
growing season, not only for high uptake rates but also for en-
during uptake. The lack of water resources in the soil likely
halts the growing season, thus reducing the uptake period.
From then on, water limitation is the major driver of carbon
fluxes (Granier et al., 2007) until the first rains arrive after
a dry summer. Once the soil is remoistened, large respira-
tion rates occur followed by a second uptake season during
late summer or early fall if meteorological conditions permit.
Hysteresis was found in the light response curves that we at-
tributed to endogenous or environmental factors or to both of
them (see Sect. 3.5).

Although some have found a negligible effect when ap-
plying the Burba correction, it may have profound impacts
on annual budgets due to daily systematic error propaga-
tion (Moncrieff et al., 1996). Such bias may not be evi-
dent for ecosystems with great CO2 exchange potential, but
large relative changes are observed here. The Burba correc-
tion strongly affects annual NEE of CO2, converting con-
clusions about the system from sink to source, but influ-
encing the annual ET budget to a far lesser extent. Appar-
ently, this correction is necessary for achieving credible car-
bon exchange measurements in very cold conditions, partic-
ularly for ecosystems with near-neutral capacity as carbon
sources/sinks.
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ficiales, Investigacíon y Gestion, 3, 129–138, 1997.

Goulden, M. L., Munger, J. W., Song-Miao, F., Daube, B. C., and
Wofsy, S. C.: Measurements of carbon sequestration by long-
term eddy covariance: methods and critical evalution of accu-
racy, Global Change Biol., 2, 169–182, 1996.
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