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A complex number is no more absurd than a negative
number.

John Wallis (1616-1703), English mathematician.
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Preface

T his study represents an inquiry into developing a better and improved numerical method
for solving differential equations in general and the wave propagation problem in par-
ticular. We developed a numerical technique by generalizing a previous one and we

investigated its properties.
This work aims to make contributions to new knowledge of applications of new numerical

techniques on one hand, and to make advances in the understanding of the Finite Differences
method (FDM) in seismology and its generalizations to the use of imaginary numbers on the
other hand.

This thesis is divided into seven hapters: Chapter 1 gives an introduction to the most com-
mon numerical methods in seismology, standing out its importance over analytical methods.
Chapter 2 briefly explains the importance of complex numbers in sciences. Chapter 3 intro-
duces the fundamentals of the Finite Differences Method (FDM) applied to the wave equation;
from the most basic discretizations to the famous staggered grid. Chapter 4 generalizes the
Complex Step method (CSM) to the use of complex numbers in a strict sense, allowing high
order accurate results using compact stencils. Chapter 5 applies the CSM to the 1D, 2D and
3D acoustic wave equation in homogeneous medium, showing the methodology and feasibility
of the use of imaginary numbers in numerical modeling, in this Chapter the authors named it
the Complex Step Finite Differences Method (CSFDM). Chapter 6 examines stability and dis-
persion properties of the CSFDM applied to the 1D elastic wave equation in a heterogeneous
medium. Finally in Chapter 7, a general conclusions analysis of this work is made and also the
future direction of the introduced method is proposed.

Most of this work have been published in or submitted to peer-reviewed journals 1 2 3.
During the preparation of this work, the author also worked on a different topic 4 5 which

is not included in this monograph for the sake of uniformity.

1Rafael Abreu, Daniel Stich and José Morales. (2013). On the generalization of the complex step method.
Journal of Computational and Applied Mathematics, 241(0):84 - 102.

2Rafael Abreu, Daniel Stich and José Morales. (2013). The Complex Step Finite Differences Method Applied to
the Acoustic Wave Equation. Geophysical Journal International. Submitted.

3Rafael Abreu, Daniel Stich and José Morales. (2013). The Complex Step Finite Difference Method Applied to
the 1D Elastic Wave Equation: stability and dispersion analysis. Geophysical Journal International. Submitted.

4Rafael Abreu, Jeroen Tromp, Daniel Stich and José Morales. (2013). Micro-continuum forward and adjoint
equations and noise cross-correlation sensitivity kernels: Theory. Geophysical Journal International. To be submit-
ted.

5Rafael Abreu, Jeroen Tromp, Hom-Nath Gharti, Daniel Stich and José Morales. (2013). Micro-continuum
forward and adjoint equations and noise cross-correlation sensitivity kernels: Applications. Geophysical Journal
International. To be submitted.
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Resumen Extendido

E ste trabajo introduce una nueva técnica numérica para aproximar ecuaciones diferen-
ciales, el cual es desarrollado y probado con el propósito de calcular la propagación de
ondas en medios heterogéneos. Como primer paso se generaliza el Método del Paso

Complejo para calcular primeras y segundas derivadas desarrollado por Squire and Trapp
(1998) y se introducen nuevas formas de calcular aproximaciones de diferencias finitas, ha-
ciendo uso de variable compleja y/o pasos complejos para funciones analíticas y/o ecuaciones
diferenciales.

Las aproximaciones más simples y básicas de diferencias finitas para la primera y segunda
derivada son llamadas aproximación hacia adelante y aproximación centrada, las cuales viene
dadas por las siguientes expresiones respectivamente

f ′(x) =
f(x+ ∆x)− f(x)

∆x
+O

(
∆x
)
, (1)

f ′′(x) =
f(x+ ∆x)− 2f(x) + f(x−∆x)

∆x2
+O

(
∆x2

)
, (2)

donde ∆x es un numero pequeño llamado el paso diferencial (∆x → 0) y el símbolo O se
refiere al error de aproximación.

El MPC usa un numero imaginario puro (i2 = −1) para calcular primeras y segundas
derivadas de una función analítica haciendo uso de las siguientes expresiones respectivamente

f ′(x) =
Im(f(x+ i∆x))

∆x
+O

(
∆x2

)
, (3)

f ′′(x) =
2(f(x)−Re(f(x+ i∆x)))

∆x2
+O

(
∆x2

)
, (4)

donde los términos Im y Re son operadores que toman la parte imaginaria y real de una
función respectivamente.

Las aproximaciones de pasos complejos (PC) poseen un gran número de ventajas en com-
paración con aproximaciones de Diferencias Finitas (DF) convencionales: inestabilidades numéri-
cas relacionadas con errores de cancelación de la resta pueden ser evitados (note el termine
de resta en el numerador de la Ec. 1 está ausente en la Ec. 3), mayor precisión en la aprox-
imación (note que el error es de segundo orden en la Ec. 3 y de primer orden en la Ec. .1
teniendo ambos una sola perturbación ∆x) y por otro lado, las derivadas de segundo orden
pueden ser calculadas a un solo paso (Ec. 4).

Derivadas de segundo orden no pueden ser calculadas con el MPC usando la parte imag-
inaria de la función (Im) puesto que la unidad imaginaria desaparece después de la doble
diferenciación. Es mostrado en este trabajo que cuando se introducen pasos complejos desde
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un sentido estricto, es decir, tomando en cuenta las direcciones reales e imaginarias en la
aproximación de PC 3, podemos escribir lo siguiente

f ′(x) =
Im(f(x+ h+ iv))

v
+O

(
h, v2

)
, (5)

donde h, v ∈ R y h, v → 0, el MPC puede ser generalizado.

Aunque a primera vista, ésta aproximación de PC de primer orden (Ec. 5) es menos precisa
que la original (Ec. 3), este tipo de paso diferencial permite calcular derivadas de segundo
orden, lo cual no era posible con el MPC original.

Varias aproximaciones pueden ser encontradas, por ejemplo, la aproximación centrada
para la primera y segunda derivada viene dadas respectivamente por las siguientes expre-
siones

f ′(x) =
Im(f(x+ h+ iv)) + Im(f(x− h+ iv))

2v
+O

(
3h2 − v2

)
, (6)

f ′′(x) =
Im(f(x+ h+ iv))− Im(f(x− h+ iv))

2hv
+O

(
h2 − v2

)
, (7)

donde el error de aproximación es de 4to orden si v =
√

3h y h = v es respectivamente
elegido.

Para cada expresión diferente encontrada, una apropiada combinación de términos y apropi-
ada elección del tamaño del paso diferencial en las dirección real e imaginaria (h, v) debe ser
hecha, llevando en varios casos a obtener precisión de 4to orden, logrado de una forma simple
y compacta para derivadas de primer orden y de orden superior.

Varios tipos de aproximaciones para calcular derivadas de primer, segundo, tercero y
quinto orden son encontradas en este trabajo, donde la simplicidad de las ecuaciones en
relación con aproximaciones de DF comunes se mantiene prácticamente igual, con todas las
ventajas que conllevan los nuevos enfoques, tales como la no cancelación de términos en mu-
chos casos.

Todas las nuevas aproximaciones fueron validadas teóricamente y verificadas numérica-
mente haciendo uso de en código numérico escrito en lenguaje Fortran90, usando el compi-
lador gfortran con un formato de doble precisión para todas las variables, y a su vez usando
la misma función analítica usada por Squire and Trapp (1998), y subsecuentemente por mu-
chos otros autores, mostrando la superioridad de las nuevas aproximaciones sobre el MPC y
el Método de Diferencias Finitas (MDF).

Luego de desarrollada y validada la nueva técnica numérica, nos enfocamos en la apli-
cación en el contexto geofísico y sismológico.

Debido al gran crecimiento de tecnologías computacionales, la simulación numérica de
propagación de ondas ha estado en el centro de atención de sismólogos el las últimas cinco
décadas. Por muchas razones, la teoría de propagación de ondas sísmicas en medios acústi-
cos/elásticos heterogéneos es de gran importancia en el campo de la sismología. El desarrollo
de tecnologías computacionales facilita la aplicación de más precisas, eficientes y complejas
metodologías numéricas, ayudando al mejor entendimiento del planeta Tierra y sus procesos.

A pesar del gran incremento de poder de cómputo en los años recientes, las técnicas
numéricas aún requieren una cantidad inmensa de almacenaje de datos para la simulación
la propagación de ondas en medios realísticos y a gran escala. Por esta razón, la herramienta
numérica debería ser simplificada tanto como sea posible, tratando de mantener la precisión
y exactitud de las soluciones.
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Este trabajo tiene como principal objetivo el desarrollo de una nueva, simple, eficiente y
muy precisa herramienta numérica para la solución de ecuaciones diferenciales en general y
la ecuación de onda en particular.

El problema de propagación de ondas unidimensional (1D) está gobernado por dos ecua-
ciones básicas: la ecuación de onda unidireccional y bidireccional dadas por las siguientes
expresiones matemáticas respectivamente

∂u

∂t
= c

∂u

∂x
, (8)

∂2u

∂t2
= c2∂

2u

∂x2
, (9)

donde u = u(x, t) es el campo de desplazamiento y c = c(x) es la velocidad del medio.
En el contexto de problemas sismológicos, las dos ecuaciones anteriores son usadas con

diferentes propósitos. Mientras la ecuación de onda de primer orden (Ec. 8) ha sido amplia-
mente usada en el diseño de condiciones de borde no absorbentes (ej. Clayton and Engquist
(1980)) y migración geofísica (ej. Claerbout (1986), Tappert (1977)). La ecuación de onda de
segundo orden (Ec. 9) ha sido usada para propiamente resolver el problema de propagación
de onda. Esto es debido a la naturaleza intrínseca de los operadores de DF para las derivadas
de primero y segundo orden.

Las aproximaciones más básicas de FD para la primera y segunda derivada son dadas por
la Ec. 1 y Ec. 2 respectivamente. Las aproximaciones mas simples de DF para las ecuaciones
de onda de primero y segundo orden usando las Ecs. 1 - 2 son respectivamente dadas por las
siguientes expresiones

ut+∆t
x = Sutx+∆x +

(
1− S

)
utx +O

(
∆t,∆x

)
, (10)

ut+∆t
x = S2

(
utx+∆x + utx+∆x

)
+ 2

(
1− S2

)
utx +O

(
∆t2,∆x2

)
, (11)

donde S = c∆t
∆x es llamado el número de Courant y/o factor de estabilidad. Comúnmente el

número de Courant S es también representado por el símbolo λ.
La principal diferencia entre las discretizaciones 10 y 11 es que la primera propaga la

ecuación en una sola dirección (izquierda) mientras que la segunda en dos direcciones (izquierda
y derecha).

De igual manera que en el caso de DF, el uso de números complejos es muy inusual en
análisis numérico. Este trabajo extiende el MDF y muestra como aplicar los esquemas desar-
rollados para calcular primera y segunda derivadas para resolver el problema de propagación
de ondas.

Basados en el trabajo de Abreu et al. (2013b), se introdujo y dio nombre al Método del Paso
Complejo con Diferencias Finitas (MPCDF) como generalización del bien ya conocido MDF.

El MPCDF es simplemente la aplicación de aproximaciones basadas en pasos complejos
encontradas en Abreu et al. (2013b) para derivadas de primero y segundo orden de la ecuación
de ondas. Por ejemplo, podemos escribir aproximaciones de pasos complejos con diferencias
finitas (PCDF) para la ecuación de onda de primer orden usando las aproximaciones 5 and 6
como sigue a continuación

Im
(
ut+∆t+i∆t
x+i∆x

)
= SIm

(
ut+i∆t
x+∆x+i∆x

)
+O

(
∆t,∆x

)
, (12)

xv



Im
(
ut+∆t+i

√
3∆t

x+i
√

3∆x

)
+ Im

(
ut−∆t+i

√
3∆t

x+i
√

3∆x

)
= S

[
Im
(
ut+i

√
3∆t

x+∆x+i
√

3∆x

)
+ Im

(
ut+i

√
3∆t

x−∆x+i
√

3∆x

)]
+O

(
∆t4,∆x4

)
. (13)

También podemos construir una discretización para la ecuación de onda de segundo orden
(Ec. 9) usando la aproximación 7 como sigue a continuación

Im
(
ut+∆t+i∆t
x+i∆x

)
= S2

[
Im
(
ut+i∆t
x+∆x+i∆x

)
− Im

(
ut+i∆t
x−∆x+i∆x

)]
+ Im

(
ut−∆t+i∆t
x+i∆x

)
+O

(
∆t4,∆x4

)
. (14)

Se investigan propiedades de propagación de la onda tales como estabilidad y dispersión
de las aproximaciones de PCDF introducidas para las soluciones de las ecuaciones de onda
unidireccional y bidireccional (ej. Ecs. 13-14) y se comparan con esquemas de DF clásicos.

No existe un método numérico perfectamente preciso cuando nos encontramos en presen-
cia de heterogeneidad del medio (diferentes propiedades del medio en cada dirección) ya que
todos sufren de diferentes factores los cuales lo permiten que reproduzcan la solución real
(exacta) del problema. Uno de los análisis más comunes que ayudan a la comprensión de la
naturaleza de la discretización numérica, el cual nos permitirá decidir si el método puede o no
ser usado bajo ciertas condiciones, es el análisis de dispersión.

La base del análisis de dispersión en una onda plana de la forma siguiente

u(x, t) = Aei(kx+ωt), (15)

donde ω es la frecuencia de la onda, k es el número de onda y A es la amplitud.
Usualmente k y ω son variables dependientes. La relación entre ω y k es comúnmente

llamada la relación de dispersión.
En este trabajo se calculan propiedades de estabilidad y dispersión para los más comunes

esquemas de DF de la ecuación de onda de segundo orden en una forma estandarizada y
unificada. Se comparan los operadores de PCDF introducidos para la ecuación de onda unidi-
reccional con los esquemas de DF.

El MPCDF puede ser entendido como una técnica que complementa el MDF convencional.
Puesto que el método numérico introducido está basado en una generalización de DF, su im-
plementación es simple. Se compararon las ventajas del MPCDF sobre el MDF en relación a
la imposición de diferentes tipos de condiciones iniciales y se muestra su mayor precisión bajo
el mismo costo computacional y dispersión numérica.

Ventajas del MPCDF introducido es la separación entre velocidades y gradientes como
condiciones iniciales del problema de propagación de ondas. El método introducido ofrece una
nueva forma de intercambiar dispersión por disipación (y al revés) en ecuaciones diferenciales.
A pesar de que el método propuesto no presenta ningún aporte significativo en presencia de
medios heterogéneos sobre los populares esquemas de DF, estos también pueden ser usados
para la resolución del problema de la ecuación de onda.

Finalmente hemos encontrado una relación directa en el modelado de la ecuación de onda
de segundo orden (Ec. 9) haciendo uso de el MDF y el ecuación de onda de primer orden (Ec.
8) haciendo uso del MPCDF en medios 1D, 2D y 3D.
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Extended Abstract

T his work introduces a new numerical approach to approximate differential equations
(DE) that is developed and tested with the purpose of computing wave propagation in
heterogeneous media. It generalizes the Complex Step Method (CSM) for computing

first and second derivatives introduced by Squire and Trapp (1998) and introduces a new
way of computing Finite Difference (FD) approximations, making use of complex variables or
complex steps for analytic functions and/or differential equations.

The most basic and simple FD approximations for computing first and second order deriva-
tives are called the forward and centered approximations, given by the following expressions
respectively

f ′(x) =
f(x+ ∆x)− f(x)

∆x
+O

(
∆x
)
, (16)

f ′′(x) =
f(x+ ∆x)− 2f(x) + f(x−∆x)

∆x2
+O

(
∆x2

)
, (17)

where ∆x is a small number called the differential step (∆x→ 0) and the term O refers to
the approximation error.

The CSM uses a pure imaginary number (i2 = −1) for computing the first and second order
derivatives of an analytic function by the following equations respectively

f ′(x) =
Im(f(x+ i∆x))

∆x
+O

(
∆x2

)
, (18)

f ′′(x) =
2(f(x)−Re(f(x+ i∆x)))

∆x2
+O

(
∆x2

)
, (19)

where the terms Im and Re are operators that takes the imaginary and real part respec-
tively of the function .

Complex Steps (CS) approximations have a number of advantages compared to traditional
FD approximations: numerical instabilities related to subtraction cancellation errors can be
avoided (note the subtraction term in the numerator in Eq. 16 is absent in Eq. 18), higher
order accuracy (note the error is second order in Eq. 18 and first order in Eq.16 with both
having a single perturbation) and second order derivatives can be calculated with a single step
(Eq. 19).

Second order derivatives can not be computed with the CSM using the imaginary part of
the function (Im) because the imaginary unit disappears after double differentiation.

It is shown in this work when introducing complex steps in a strict sense, i.e., taking into
account both real and imaginary directions in the CS approximation 18, we can write the
following
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f ′(x) =
Im(f(x+ h+ iv))

v
+O

(
h, v2

)
, (20)

where h, v ∈ R and h, v → 0, the CSM can be generalized.

Although at a first look, this generalized CS first order approximation (Eq. 20) is less
accurate than the original one (Eq. 18), this kind of differential steps allow computations of
second order derivatives, not possible using the original CSM.

Many different approximations can be found, for instance, the centered approximation for
the first and second order derivatives are respectively given by the expressions

f ′(x) =
Im(f(x+ h+ iv)) + Im(f(x− h+ iv))

2v
+O

(
3h2 − v2

)
, (21)

f ′′(x) =
Im(f(x+ h+ iv))− Im(f(x− h+ iv))

2hv
+O

(
h2 − v2

)
, (22)

where the approximation error is 4th order if v =
√

3h and h = v is respectively chosen.

For each different kind of approximation found, an appropriate combination of terms and
appropriate choice of the step size in real and imaginary direction (h, v) has to be done, leading
in many cases to a 4th order accuracy, achieved in a very simple and compact stencils for first
and higher order derivatives.

Many different kind of approximations for computing first, second, third and fifth deriva-
tives are found in this work, where the simplicity of the equations in relation to the ordinary
FD approximations remains almost the same, with all the advantages that brings all the new
approaches, like non-cancellation of terms in many cases.

All the new approximations were validated theoretically and verified numerically by a nu-
merical code written in Fortran90 language, using the GNU Fortran compiler gfortran with
standard double precision format for all variables, and using the same analytical test func-
tion used by Squire and Trapp (1998), and subsequently by many other authors, showing the
superiority of the new approximations on each simulation over the ordinary CSM and Finite
Differences method (FDM).

After developing and validating the numerical tool, we focused on the application in the
geophysical-seismological context.

Due to the large increase in computational technologies, the numerical simulation of the
wave propagation problem has been at the center of attention of seismologists in the last
five decades. For many reasons, the theory of seismic wave propagation in heterogeneous
acoustic/elastic media is very important in the seismological field. The development of com-
puter technologies facilitates the application of more accurate, efficient and complex numeri-
cal methodologies, helping to better understanding of the Earth and its processes.

Despite the rapid increase of computing power in recent years, numerical methods still
requires a huge amount of memory for simulating wave propagation for realistic heterogeneity.
For this reason, the numerical tool should be simplified as much as possible, maintaining the
precision and accuracy of the solutions.

This work aims at the development of a new simple, efficient and very accurate numeri-
cal technique for solving partial differential equations in general, and the wave propagation
problem in particular.

The 1D wave propagation problem is governed by two basic equations: the one-way and
the two-way wave equations given by the following mathematical expressions respectively
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∂u

∂t
= c

∂u

∂x
, (23)

∂2u

∂t2
= c2∂

2u

∂x2
, (24)

where u = u(x, t) is the displacement field and c = c(x) is the velocity of the medium.

In the context of seismological problems, the previous two equations are used with very
different purposes. While the first order wave equation (Eq. 23) has been widely used in the
design of non reflecting (absorbing) boundary conditions (e.g. Clayton and Engquist (1980))
and geophysical imaging/migration (e.g. Claerbout (1986), Tappert (1977)). The second or-
der wave equation (Eq. 24) has been used in order to properly solve the wave propagation
problem. This is due to the intrinsic nature of the FD operator for the first and second order
derivatives.

The most basic FD approximations for the first and second order derivatives are given by
Eq. 16 and Eq. 17 respectively. The simplest FD approximations for the first and second order
wave equations using Eqs. 16 - 17 are respectively given by the following expressions

ut+∆t
x = Sutx+∆x +

(
1− S

)
utx +O

(
∆t,∆x

)
, (25)

ut+∆t
x = S2

(
utx+∆x + utx+∆x

)
+ 2

(
1− S2

)
utx +O

(
∆t2,∆x2

)
, (26)

where S = c∆t
∆x is called the Courant number and/or the stability factor. Commonly the

Courant number S is also represented by λ symbol.

The main difference between FD scheme 25 and FD scheme 26 is the first one propagates
the wave in a single direction (left) while the second one in two directions (left and right).

Like in the FD case, the use of complex numbers is very rare in numerical analysis. This
work extends the FDM and shows how to apply the developed schemes for computing first and
second order derivatives in order to solve the wave propagation problem.

Based on the work by Abreu et al. (2013b), we introduced and named the Complex Step
Finite Differences method (CSFDM) as a generalization of the well known Finite Differences
method.

The CSFDM is simply the application of the complex-step based approximation found in
Abreu et al. (2013b) to first and second order derivatives of the wave equation. For instance,
we can write CSFD discretizations for the one-way wave equation using approximations 20
and 21 as follows

Im
(
ut+∆t+i∆t
x+i∆x

)
= SIm

(
ut+i∆t
x+∆x+i∆x

)
+O

(
∆t,∆x

)
, (27)

Im
(
ut+∆t+i

√
3∆t

x+i
√

3∆x

)
+ Im

(
ut−∆t+i

√
3∆t

x+i
√

3∆x

)
= S

[
Im
(
ut+i

√
3∆t

x+∆x+i
√

3∆x

)
+ Im

(
ut+i

√
3∆t

x−∆x+i
√

3∆x

)]
+O

(
∆t4,∆x4

)
. (28)

Also a discretization for the second order wave equation (Eq. 24) using approximation 22
is given by
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Im
(
ut+∆t+i∆t
x+i∆x

)
= S2

[
Im
(
ut+i∆t
x+∆x+i∆x

)
− Im

(
ut+i∆t
x−∆x+i∆x

)]
+ Im

(
ut−∆t+i∆t
x+i∆x

)
+O

(
∆t4,∆x4

)
. (29)

We investigated properties of propagation, stability and dispersion of Complex Step Finite
Differences (CSFD) based approximations to the one-way and two-way wave equations (e.g.
Eqs. 28-29) and compared it to the classical FD schemes.

There does not exist a perfectly accurate numerical method in presence of a general hetero-
geneous media (different velocity values at different grid locations), but all numerical methods
suffer from different factors which do not allow them to reproduce the real (analytical) solu-
tion of the problem. One of the most common basis to understand the nature of a numerical
discretization, which will allow us to decide whether or not the method can be used under
certain conditions, is the stability and dispersion analysis.

The basis of the stability and dispersion analysis is a plane wave of the form

u(x, t) = Aei(kx+ωt), (30)

where ω is the frequency of the wave, k is the wave number and A is the amplitude.
Usually k and ω are dependent variables. The relation between ω and k is commonly called

the dispersion relation.
We computed stability and dispersion properties of the most common second order FD

schemes for the wave equation in a standard and unified way. We have introduced CSFD
difference operators for the first order wave equation and compared to the FD schemes.

The introduced CSFDM can be seen as numerical technique that complements the con-
ventional FDM. Because the introduced numerical method is based on a generalization of the
standard FDM, its implementation is rather simple and straightforward. We compared advan-
tages of the CSFDM over the FDM related to imposing different kinds of initial conditions and
showing its higher order accuracy under the same computational cost and numerical disper-
sion.

Advantages related to the introduced CSFDM is the separation between gradients and
velocities as initial conditions of the wave propagation problem. The introduced method
(CSFDM) offers a new way of translate dispersion by dissipation and the other way around
in differential equations. Although the proposed CSFD schemes does not bring any contri-
bution in presence of heterogeneous media over the popular FD schemes, they can also be
applied to solve the wave propagation problem.

We have found a direct relationship between modeling the second order wave equation (Eq.
24) by FDM and the first order wave equation (Eq. 23) by CSFDM in 1D, 2D and 3D media. We
also develop and present the numerical methodology in order to apply the introduced CSFDM.
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Chapter 1

Introduction

S eismology is a complex field in science which uses physics, geology, mathematics and
more recently numerical analysis techniques in order to make advances. Usually a
seismologist pursuits matching theoretical and/or computational results with experi-

mental seismograms of a determined region.

In the most basic fashion, we will try to explain why numerical methods are so important
nowadays:

Theoretical physicists describe our world naming physical variables like displacement,
time, forces, etc. and relating them by using mathematical relations which are functionals
like derivatives, integrals, transformations, etc. of the named variables.

From the mathematical point of view, a theoretical physicist deduces a functional relation
of different variables, which is supposed to describe a physical phenomenon. The exact so-
lution of this proposed functional is called the analytical solution. By finding this analytical
solution, for the general case or under certain conditions, physicist try to predict the behavior
of the physical system in study. The deduced functional relation and its solution will have to
reproduce the physical phenomenon in study, otherwise, it is said the theoretical model does
not match the reality of our world.

The main problem arises when the proposed functional, which often describes a complex
physical phenomenon, has an analytical solution which is extremely hard to find, sometimes
impossible for the mathematical tools we have nowadays. The fact that we can not find the
analytical solution of the functional does not mean the model is incorrect.

It is here were computers take so much importance. With the use of computers, scientist
are now often able to find the approximate solutions of the functional relations which describe
a realistic physical problem, avoiding the need of finding the analytical solution. This task
of finding numerical solutions really simplifies the problem and allow scientist to make faster
and high impact progress in all different fields of science.

In the specific case of seismology, scientist are mainly interested in having knowledge of
two ambits: Earthquake sources and Earth structure. Those have to be reconstructed from
recordings of ground motion (seismograms), usually following an earthquake, although studies
of Earth structure may be based on different seismic sources such as ambient noise or man-
made explosions. The relationship between source, Earth structure and ground motion can
be described as a linear filter, where perturbations from a seismic source are modified by a
number of propagation effects before being recorded at a seismic station. This point of view
is called the forward problem, leading to a prediction of ground motion for a given source and
given Earth structure.

A more realistic and challenging case is the inverse problem, that usually does not have a
unique solution. It arises when scientists have information on ground motion (seismograms)
and want to infer the corresponding Earth structure, the corresponding source characteristics,
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or both. The most common case is that one of this two unknowns (source or structure) is
inferred under certain assumptions about the other unknown (structure or source).

Both forward and inverse problems depend mathematically on the solution of the forward
problem, making the solution of the forward problem of great importance in seismology. The
solution of the forward problem or computation of synthetic seismograms is necessary for
the determination of Earth structure and earthquake source parameters. There are many
papers and a number of textbooks in the literature addressing this kind of problems. They find
analytical solutions for specific configurations of each problem. Usually these configurations
are simplifications of the physical model. Commonly as the problem gets more realistic, the
analytical solution becomes extremely complex from the mathematical point of view.

The most simple analytical solution for a synthetic seismogram, emanated from a point
source in a 1D medium consisting of two homogeneous half spaces, was found by Lamb (1904).
In the analytical solution, the spherical wave emanating from a point source is expressed as
a superposition of plane waves (the Weyl integral) and then as a superposition of cylindrical
waves (the Sommerfeld integral). In the interaction of the spherical wave with a plane bound-
ary between two different half spaces, the resulting wave systems can be naturally divided into
three mayor types: (i) waves that are directly reflected from or transmited through the bound-
ary, (ii) waves that travel from source to receiver via a path involving refraction along the
boundary at body wave speed (head waves), (iii) and waves of Rayleigh or Stoneley type, with
amplitude decaying exponentially with distance from the interface, Aki and Richards (2009).
Although, seismologists investigated and solved more elaborate versions of the Lamb’s prob-
lem over the next several decades, very little progress was made in developing any method to
calculate analytical seismograms for a more realistic Earth model, Clarke (1989).

Nevertheless, there are several widely used techniques for computing synthetic seismo-
grams of the Earth in a pseudo-analytical way. They all have in common that strong assump-
tions about wave propagation or model geometry are involved. In particular many of those
techniques assume 1D Earth models which means a strong simplifications of Earth structure
(horizontal and homogeneous layers).

In order to avoid clutter, it is important to recall what a 1D (one dimensional) model in a
3D (three dimensional) space is: imagine we are on the surface of the Earth (Fig. 1.1) and we
are able to dig a hole as deep as we want. In a 1D model on a 3D space, while digging, we are
always going to find the same discontinuities at the same depth, that is, it won’t matter our
location over the Earth’s surface, we will find the same discontinuities at the same depth. Fig.
1.1 illustrates a simplistic 1D model of the Earth.

Following Clarke (1989), the most popular methods for computing pseudo-analytical seis-
mograms for layered media are: The Frequency-Slowness domain, Reflectivity method, Gener-
alized Ray Theory, Full wave Theory, the WKBJ method and Normal Mode Summation. Such
analytical techniques usually involve the Fourier and/or Hankel transform of the equation of
motion and integrations in slowness or wavenumber domains that have to be evaluated nu-
merically, which is why they are often described as pseudo-analytical.

Commonly the expressions for the synthetic seismograms in heterogeneous media are
quite complicated, although the analytical solution may be based on significant simplifica-
tions and/or being given for a specific type of wave, only (P,S or surface wave). Nevertheless,
the fact that pseudo-analytical synthetic seismograms can be computed with reasonable effort
and precision for laterally heterogeneous media solves the theoretical problem, as long as 1D
Earth models appear to be sufficient to describe propagation effects for our purposes.

Pseudo-analytical synthetic seismograms can also be computed for laterally varying media
by the Geometric Ray Theory, Gaussian Beams, Maslov Theory and Normal Mode Method.
Seismic Ray Theory (SRT) is one of the most popular of these techniques.

Ray Theory (RT) is based on a high-frequency approximation of the elastic equations of
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Figure 1.1: 1D (one dimensional) model of the 3D (three dimensional) Earth. Figure by Halldin
(2013).

motion. The great significance of the Seismic Ray Method (SRM) is it universally, effectiveness,
conceptual clarity, and its ability to investigate various seismic high frequency body waves
independently of other waves in structurally complex media, Cerveny (2011). SRM is also
known as the Ray Series Method (RSM), the Asymptotic Ray Theory (ART) or Geometric Ray
Theory (GRT).

In case of global Earth models, 1D simplifications have been made for a long time. A
giant step was done with the first 1D (radially anisotropic) tomographic global Earth model
developed by Dziewonski and Anderson (1981) (see Fig. 1.2), which stayed as the predominant
global model for at least two decades. 1D Earth models have allowed for great progress in
science mainly because they provide a very reasonable approximation to true Earth structure,
that is dominated by the vertical differentiation of materials with different density (and wave
speed) in the gravity field of the Earth. However, when second order properties need to be
taken into account, we have to face the unpleasant truth that the Earth is not strictly 1D.

Actually, the Earth presents different properties in composition, temperature, density, elas-
tic parameters and anelastic properties in every direction of the three dimensional space. In
addition, some of those parameters may be anisotropic. We can blame this heterogeneity on
thermodynamics. It is the outcome of the dynamic evolution of the Earth, where mantle con-
vection and plate tectonics are working against the equilibrium case of lateral homogeneity.
The Earth has been revealed to be laterally heterogeneous everywhere, from the crust and the
mantle to the core, with scales from the size of rocks to the size of continents, Wu (1989). The
comparison of 1D models obtained from local and regional data in different parts of the world
gives clues on important lateral heterogeneity, such as the different characteristics of oceanic
and continental crust.

A widely used technique known as seismic tomography provides a systematic way of ex-
plaining the important deviations between observed and theoretical travel times of seismic
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Figure 1.2: Preliminary Reference Earth Model (PREM) developed by Dziewonski and Ander-
son (1981). Figure by Thorne et al. (2013).

waves with respect to 1D reference models. Classical tomography techniques try to find per-
turbations in wave speed that can be later superimposed on 1D models. The development
history of seismic tomography techniques is vast and extensive. Many important works has
been published since 1971, P. Bois at the French Institute of Petroleum was the first to sug-
gest the tomographic method in order to locate the causes of delays in seismic waves between
two bore-holes, Nolet (2011). Considering the forward problem, seismic Ray theory has been
the most popular technique in tomography (e.g. van der Hilst and Spakman (1989), Spakman
et al. (1993), Fig. 1.3 by Bezada et al. (2010)). For decades, the lateral variation of physical
properties within the different layers of the Earth was inferred by tomographic studies to be
relatively small (< 10%), Montagner (2011).

However, recent studies that explore better data coverage and involve more advanced
methodology give a completely different picture: Heterogeneity of several 10% is present in
the Earths’ crust (e.g. Tape et al. (2010)). This can be considered a surprising result given the
expectation of Scientists used to tomography images with anomalies of a few %, and a relevant
development for the purpose of this study in several ways. First, the use of 1D models appears
much less justified than a couple of years ago. Second, the case history of tomography has
shown the intertwinning of physical assumptions (small variations of wave speed, approximate
solution to wave propagation) and results that apparently confirmed these assumptions. The
lesson is that simplified Earth models and simplified theory should be treated with caution in
seismology.

This situation does not mean, of course, that average Earth models and pseudo-analytical
methods have to be banned from seismology. For many purposes, 1D models or ray theory
remain an appropriate framework, like for example in the inversion of earthquake slip maps
from teleseismic body waves. Even in the more complicate case of regional surface wave
propagation, suitable 1D models may be used to predict waveforms with reasonable accuracy,
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Figure 6

BEZADA ET AL.: SUBDUCTION IN THE SOUTHERN CARIBBEAN B12333B12333

8 of 19
Figure 1.3: P wave velocity anomalies from finite-frequency P wave tomography. In the east,
we image the subducting Atlantic slab, while in the west, we image a steeply dipping slab that
we interpret as a subducted fragment of the southernmost Caribbean plate. Figure by Bezada
et al. (2010).
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classes of focal mechanisms (Figure 1). We estimate source
depth and moment tensor from intermediate period (20 s to
50 s) waveforms recorded at seismic stations out to 6!
epicentral distance. We use a total of 19 stations in SW
Iberia, NWAfrica, and on Porto Santo Island in the Madeira
Archipelago (Figure 2). The inversion procedure and the
underlying regional lithospheric models are described by
Stich et al. [2003]. We compute fundamental fault Green’s
function with a reflection matrix algorithm [Randall et al.,

1995] and combine a linear least squares inversion of full
time domain displacement waveforms with a grid search
over centroid depth with 10 km increment. This permits to
identify the formally best combination of source mechanism
and depth, and to assess the depth resolution and stability of
the moment tensor estimate.
[6] Moment tensor inversion yields minimum misfit at 40

and 50 km depth (Figure 2). The corresponding solutions
are very similar, giving reverse to strike slip faulting style
with !N-S oriented P-axes. We report the deeper solution,
with lower non-shear-faulting component (1% CLVD),
scalar seismic moment of 9.9"1017 Nm (Mw = 6.0) and
nodal planes of the mechanism at N122!E/55!/147! and
N232!E/63!/40! (values for strike/dip/rake). Observed
and predicted waveforms match well at most stations
(Figure 2), and the upper mantle source depth as well as
the faulting orientation are consistent with near-real-time
moment tensor estimates provided by INGV, CMT and ETH
(Figure 1). In the same way, we estimate source parameters
for a nearby Mw = 4.7 earthquake on June 21st 2006,
00:51:25 UTC, which attracted our attention due to its very
similar regional intermediate period waveforms. In fact,
centroid depth (50 km) and mechanism (N122!E/57!/152!
and N228!E/67!/37!, 5% CLVD) are close to the 2007
earthquake.

3. Modelling Teleseismic Body Waves

[7] Source depth is not tightly constrained from regional
waveform inversion, achieving similar variance reduction in
a broad depth interval between 30 and 60 km. For a further
fine-tuning of our source estimate, we model the vertical-
component P-wave train in the distance range 30! to 90!.
Such waves are rather insensitive to heterogeneity in earth,
and the relative amplitudes and timing of the direct P-wave
and primary surface reflections have high resolving power
for faulting mechanism and source depth [e.g., Ammon et
al., 1998; Mancilla et al., 2002]. We select the recordings
that show less complicated waveforms in their respective
azimuth range, hereby excluding the waveforms that are

Figure 1. Shaded relief bathymetry (GEBCO 1-minute
grid, www.ngdc.noaa.gov/mgg/gebco), seismicity (m # 4,
ISC, www.isc.ac.uk) and major faults [Gràcia et al., 2003;
Zitellini et al., 2004; Geodynamic map of the Mediterra-
nean, http://ccgm.free.fr] in the Cape St. Vincent area. HAP:
Horseshoe Abyssal Plain, HF: Horseshoe fault, SVF:
St. Vincent Canyon fault, MPF: Marques de Pombal fault,
GB: Gorringe Bank, CPS: Coral patch Seamount, PB:
Portimao Bank. The 2007 epicenter (star) and near real time
moment tensor estimates are from EMSC (www.emsc-
csem.org).

Figure 2. Moment tensor inversion results. We show a map with station distribution and the best solution, fits between
observed (black) and predicted (red) intermediate-period waveforms at selected stations (radial, transverse and vertical
components from top to bottom, units in [s; 10$4 m]), as well as the depth-dependence of L2-misfit, source mechanism and
CLVD component (numbers above beach balls, in [%]).

L12308 STICH ET AL.: 2007 HORSESHOE EARTHQUAKE L12308

2 of 5

Figure 1.4: Moment tensor inversion results. We show a map with station distribution and
the best solution, fits between observed (black) and predicted (red) intermediate-period wave-
forms at selected stations (radial, transverse and vertical components from top to bottom,
units in [s; 10−4m]), as well as the depth-dependence of L2-misfit, source mechanism and com-
pensated linear vector dipole (CLVD) component (numbers above beach balls, in %). Figure
by Stich et al. (2007).

see Fig. 1.4. In many cases, routine seismology applications based on average 1D models or
smoothly varying models produced reliable and consistent data inventories over decades, such
as hypocenter or moment tensor catalogues (e.g. CMT catalogue, Dziewonski...) that should
be continued in the same way to assure the homogeneity of the catalogue. In general, due to
our incomplete knowledge of the Earth, any 3D models will contain inaccuracies just as their
1D counterparts, and introduce errors and artifacts in seismological methods. In this sense,
an advantage of 1D models is that many of these artifacts are well-known. An advantage of 3D
models is that the artifacts should be overall less important due to a better approximation to
the true Earth.

If we accept that 3D models can lead to more accurate predictions in many cases, then we
have to provide the tools to use 3D models in seismology. Considering realistic heterogeneity
of the Earth represents a huge challenge from the theoretical point of view. As seen before,
pseudo-analytical solution are not available for cases that are interested in full 3D heterogene-
ity and full solutions of the wavefield. The use of numerical techniques helps to circumvent
these limitations.

Numerical methods are essentially methods that are build directly on the very basic equa-
tions (which describes the physical model) and do not involve any mathematical representation
of specific boundary conditions to these equations, necessary to find analytical solutions for
specific cases such like plane layered media. For a general 3D Earth, no analytical solutions
to the elastodynamic wave equation can be given. On the other hand, a numerical solution
will be conceptually independent of the degree of heterogeneity (homogeneous, 1D, 2D, 3D),
as long as any heterogeneity is represented appropriately in the numerical Earth model.

Of course, not all is beautiful with numerical methods. There does not exist a perfect
numerical technique and different numerical techniques may be suitable for different type of
problems. In the following we give a very brief overview of the most commonly used numerical
methods to simulate seismic wave propagation.
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Figure 1.5: Left: Irregular mesh of the Marmousi2 model. Right: Regular mesh of the Mar-
mousi2 model. The elements of both meshes are represented by black lines. The background
color is the S-wave velocity values (varies from 0.5-3 km/s), which in the case of the regular
mesh are homogenized. Note the difference between the regular and irregular mesh: in the ir-
regular mesh all physical discontinuities are matched by a mesh interface while in the regular
mesh are not. Figures by Capdeville et al. (2010).

The Finite Differences Method (FDM) is one of the oldest, simplest and more power-
ful (in terms of computational cost) numerical techniques but has its limitations. The main
limitations are in general related to the restriction on regular grids (see Fig. 1.5), smooth
heterogeneity of the model, and difficulties to impose free boundary conditions for the elastic
wave equation.

FDM discretizes the strong form of the equations of motion by replacing partial derivatives
by difference approximations using local values. FDM is typically designed to be accurate for
low order polynomials, although the concept of derivative is a local property of the function,
many high order finite difference (FD) schemes, commonly applied to heterogeneous media,
invoke many function’s values far away from the point of interest.

Perhaps the most popular FD scheme in seismology is the staggered grid introduced by
Virieux (1984) and Virieux (1986) who used the idea of staggered grid implemented first in
seismology by Madariaga (1976) who in turn applied the famous Yee scheme (Yee, 1966) for
the elastic wave equations of motion.

The revolutionary idea of the staggered grid is based on the location of different variables
(velocity and stress) at different spatial points or grid points and at different time levels. This
brings down the elastodynamic wave equation to a system of first order differential equations
that are easier to handle in many ways. The stability condition and the P-wave phase velocity
dispersion curve do not depend on the Poisson’s ratio, while the S-wave phase velocity disper-
sion curve behavior is rather insensitive to the Poisson’s ratio, Virieux (1986). Also, the use
of different time levels for velocity and stress allow to significantly reduce the computational
cost of the simulations.

FD simulation techniques have been used in several fields of seismology, just to mention a
few: simulations of seismic scattering (e.g. Frankel and Clayton (1986)), seismic wave prop-
agation (e.g. Moczo et al. (2002), Moczo et al. (2004a), Aochi et al. (2013)), simulations in
viscoelastic media (e.g. Kristek and Moczo (2003), Galis et al. (2008)), full waveform inver-
sions (e.g. Fichtner et al. (2006), Abubakar et al. (2011)), rupture propagation (e.g. Virieux
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and Madariaga (1982), Rojas et al. (2009)) and surface wave tomography using adjoint tech-
niques (e.g. Peter et al. (2007)).

FDM schemes are conceptually closely related to the numerical technique presented in
this study and will be discussed in detail in the next chapter.

More recent methods like the Pseudo-Spectral method (PSM) (e.g. Yan and Wang (2008),
Sidler et al. (2013)), Finite Elements method (FEM) (e.g. Koketsu et al. (2004)), Spectral
Elements method (SEM) (e.g. Komatitsch and Vilotte (1998) Komatitsch and Tromp (1999)),
Discontinuous Galerking method (DGM) (e.g. Käser et al. (2008)), Boundary Element method
(BEM) (e.g. Chaillat et al. (2008)), Finite Volume method (FVM) (e.g. Tadi (2004)) and Hamil-
tonian Particle method (HPM) (e.g. Takekawa et al. (2012)), among others, can be applied for
more realistic configurations of the Earth structure (see Fig. 1.6).

The Pseudo-Spectral Method (PSM) can be seen as a liming case of increasing (spatial)
order FD methods. PSM unlike FDM present exponential convergence rate for the space
domain, that is, the space derivatives are calculated using orthogonal polynomials and the
time discretization is simply given by a FD approximation. Orthogonal polynomials are used
as basis of interpolation of the spatial field. The most common polynomials used are Fourier,
Chebyshev and Legendre polynomials.

In case of use of Fourier polynomials (trigonometric functions), the Fast Fourier trans-
form (FFT) is used to compute derivatives, that is, the space derivatives are calculated in the
wavenumber domain by multiplication of the spectrum with ik. Due the periodicity of the
FFT, its use is justified when the physical problem in study is periodic in space. In case of
non-periodic problems, Chebyshev or Legendre polynomials can be used. In this sense, PSM
is a global approximation in space, which makes the method virtually free of dispersion and
dissipation errors.

The orthogonal polynomials are either evaluated using matrix-matrix multiplications, FFT
or convolutions. The optimum spectral convergence depends on the optimum choice of or-
thogonal polynomials (periodic or non-periodic case), optimum collocation points (meshing)
and the global influence of the high-order polynomials over the whole domain.

The main difficulties with PSM is that any change of geometry or boundary conditions
requires a considerable change in the method. Also difficulties are related to parallelizing the
problems because global memory access is required for the computation of the Fourier and
Chebyshev transforms (e.g. Igel (1999)). However, for the simulation of turbulence in relative
simple domains are ideally suited (e.g. Hesthaven et al. (2007)).

The Finite Element Method (FEM) is a high-order accurate method and is suitable for
complex geometries but is implicit in time and has a large amount of numerical dispersion.
FEM belongs to the family of the so called Methods of Weighted Residuals (MWR). The first
step of the MWR is to take the PDE in study and multiply it by a general weighting function.
After this multiplication, integration by parts over each term of the PDE is performed in order
to reduce second order derivatives to first order (in case there are), and to obtain an explicit
expression for the boundaries of the PDE problem.

At this point we have an integral expression of the original PDE which, unlike FDM or PSM,
includes explicit expressions for the boundaries of the problem. This integral expression,
obtained after integration by parts, is called the weak formulation of the PDE. The strong
formulation of the PDE is given before the integration by parts.

The next step of the MWR is to choose the nature of the so called trial functions. Trial func-
tions are just approximations to our field variables (displacement, velocity, accelerations, etc.),
that is, the method chooses a general mathematical expression with unknown coefficients (to
be determined later), which is supposed to reproduce reliable values of the field variables.
For instance, we can choose the trial function to be the equation of a straight line with two
coefficients to be determined. This expression will give us approximate information of the field
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The Dynamics of Plate Tectonics
and Mantle Flow: From Local
to Global Scales
Georg Stadler,1 Michael Gurnis,2* Carsten Burstedde,1 Lucas C. Wilcox,1†
Laura Alisic,2 Omar Ghattas1,3,4

Plate tectonics is regulated by driving and resisting forces concentrated at plate boundaries, but
observationally constrained high-resolution models of global mantle flow remain a computational challenge.
We capitalized on advances in adaptive mesh refinement algorithms on parallel computers to simulate global
mantle flow by incorporating plate motions, with individual plate margins resolved down to a scale of
1 kilometer. Back-arc extension and slab rollback are emergent consequences of slab descent in the upper
mantle. Cold thermal anomalies within the lower mantle couple into oceanic plates through narrow
high-viscosity slabs, altering the velocity of oceanic plates. Viscous dissipation within the bending lithosphere
at trenches amounts to ~5 to 20% of the total dissipation through the entire lithosphere and mantle.

Mantle convection and associated plate
tectonics are principal controls on the
thermal and geological evolution of the

Earth. These processes are central to our under-
standing of the origin and evolution of tectonic
deformation, the evolution of the thermal and
compositional states of themantle, and ultimately
the evolution of Earth as a whole. Plate creation
and motion largely govern the loss of heat from
the solid earth (1), and the strength of plates may
control the energy dissipation and hence heat loss
over geological time (2). However, despite the
central importance of plate dynamics, there are
fundamental uncertainties on the forces resisting
and driving plate motions.

Although there is consensus that the 1- to 10-
cm-per-year motion of plates is driven largely by
the thermal buoyancy within subducted slabs (3)
and perturbed by upper-mantle solid-solid phase
transitions (4) and cooling of oceanic lithosphere
from ridge to trench, the importance of the aseismic
extension of slabs within the lower mantle (5)
remains unresolved. The strength of subducted
slabs probably regulates the velocity of plate tec-
tonics. The vast majority of available negative
buoyancy driving plates is within the transition
zone and lower mantle, and if slabs are strong,
then this force can be coupled directly into the
edges of oceanic plates at trenches (6). However,
if the oceanic lithosphere is strong during initial
subduction as it bends below the trench, then the

dissipation within the narrow high-viscosity slab
could limit plate velocity (7). Although the im-
portance of plate margin and slab strength has
been studied in two- and three-dimensional Car-

tesian models aimed at understanding the physics
of subduction (4, 8–11) and in limited regional
models that assimilate observed structure (12, 13),
the incorporation of realistic rheologies into mod-
els with narrow slabs and plate boundaries has
remained an elusive goal of global geodynamics.
Whether slabs are weak or strong remains un-
resolved (4).

With the incorporation of strong slabs and real-
istic treatment of plate margins, the ability to ob-
servationally constrain models would increase
substantially. Observations constrain the deforma-
tion of slabs andwill prove useful in global models:
Examples include the strain rate and state of stress
within slabs from deep focus earthquakes (14) and
the kinematics of slab rollback in subduction zones
with present-day back-arc extension (15). Large
fractions of Earth’s surface (~15% globally) do not
follow a rigid plate tectonic model but undergo
deformation close to trenches and farther from
plate margins (16). Some oceanic plates are de-
forming diffusively within their interiors, especial-
ly the Indo-Australian plates (17). The rich array
of geodetic, topographic, gravitational, and seismic
observations from local to regional scales con-
strains these deformations and could validate global
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Fig. 1. (A) Splitting of Earth’s mantle into 24 warped cubes. The effective viscosity field is shown; the
narrow low-viscosity zones corresponding to plate boundaries are seen as red lines on Earth’s surface. (B)
Zoom into the hinge zone of the Australian plate [as indicated by the box in (C)] showing the adaptively
refined mesh with a finest resolution of about 1 km. (C) Cross section showing the refinement that occurs
both around plate boundaries and dynamically in response to the nonlinear viscosity, with plastic failure
in the region from the New Hebrides to Tonga in the SW Pacific. Plates are labeled Australian, AUS; New
Hebrides, NH; Tonga, TO; and Pacific, PAC.
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Figure 1.6: (A) Splitting of Earth’s mantle into 24 warped cubes. The effective viscosity field
is shown; the narrow low-viscosity zones corresponding to plate boundaries are seen as red
lines on Earth’s surface. (B) Zoom into the hinge zone of the Australian plate [as indicated
by the box in (C)] showing the adaptively refined mesh with a finest resolution of about 1
km. (C) Cross section showing the refinement that occurs both around plate boundaries and
dynamically in response to the nonlinear viscosity, with plastic failure in the region from the
New Hebrides to Tonga in the SW Pacific. Plates are labeled Australian, AUS; New Hebrides,
NH; Tonga, TO; and Pacific, PAC. Figure by Stadler et al. (2010).
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variable of interest at certain spatial location and certain time level.

We emphasize the difference between the trial and the weighting functions: the trial func-
tion is the approximation to the field variable and the weighting functions is a function which
multiplies the PDE.

It is at this point where different methods like FEM are born. FEM (like many others)
chooses the weighting function to be the derivative of the trial function, that is, the method
multiply the PDE by an interpolation function of the field variables. Commonly, FEM chooses
the trial function to be a linear approximation. These kind of methods that uses the weighting
function to be the derivative of the trial function are called Galerkin methods.

The chosen linear approximation of he field variables by the FEM requires that such ap-
proximation gives accurate results of the field variables over the whole domain. In other
words, a linear approximation is performed over the entire domain. For this to work, the lin-
ear approximation has to be done several times, which in computational terms, is translated
into a discretization of the spatial domain.

To illustrate this, imagine the seismic wave propagation over the Earth produced by an
earthquake. We want to infer reliable information of the Earth movement (displacement, ve-
locity and acceleration) at certain location on the surface. We know that the most simple shape
of a general wave does not look like a straight line but rather like a high order polynomial.
Still, we want to use a linear approximation in order to solve the PDE. The way to attack the
problem is selecting the wavelength of interest (that we want to solve numerically) and then
dividing that wavelength into several parts, each part in which a linear approximation of the
waveform will be performed. This task of dividing the space domain into smaller parts where
the linear approximations will be performed is called the meshing (see Fig. 1.6).

Due to the complex shape of waveforms, higher order approximations are found to have a
much better efficiency towards numerical dispersion (e.g. Komatitsch et al. (2010)) than low
order. For this reason, FEM is more often to be used as a technique for computing seismic
responses of structures (e.g. Nour et al. (2003)) than for simulating seismic ground motion
(e.g. Koketsu et al. (2004)).

We have seen, a linear approximation is preformed over the space domain. For the case
of dynamic problems, which involves derivatives of the field variables respect to time, a FD
discretization in time is performed in order to solve the problem to the time level of interest.
In this sense, FEM can be seen as an hybrid technique which uses linear approximations if
space and FD discretizations in time.

The Spectral Element Method (SEM) is considered to be a high order FEM and a con-
tinuous Galerkin technique. It was implemented first in fluid dynamics by Patera (1984) and
later in seismology (e.g. Komatitsch and Vilotte (1998)). SEM is possibly the most popular
method to simulate wave propagation in media with realistic heterogeneity nowadays. Like
FEM, it is based on the weak form of the equations of motion. Unlike FEM, the fields (displace-
ment, velocity, acceleration, etc.) are approximated by Lagrange polynomials which gives to
the method spectral accuracy. In fact, in wave propagation simulations, a spatial sampling of
approximately 5 points per wavelength is found to be accurate (from a mathematicians per-
spective) when working with a polynomial of eighth degree, Komatitsch and Vilotte (1998),
and found to be accurate (from a seismologists pespective), when working with degree five
polynomials (Komatitsch and Tromp (2002a), Komatitsch and Tromp (2002b)).

The use of Lagrange polynomials for approximating the solution in conjunction with GLL
(Gauss-Lobatto-Legendre) points of integration produces a diagonal mass matrix, which makes
the problem tractable from a point of view of computational cost. High order accuracy and rea-
sonable computational requirements have made SEM the one of the most attractive numerical
methods in seismology.

SEM (unlike many others methods) has been able to simulate the elastic wave propagation
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over the entire Earth globe with considerable accuracy and modest computational require-
ments (e.g. Komatitsch and Tromp (2002a), Komatitsch and Tromp (2002b)). The method
decomposes the entire globe intro irregular hexahedra. This kind of Earth mesh is called the
cubed sphere (see Fig. 1.7). Different properties can be assigned over each element of the
cubed sphere. In fact, each element should contain a single value of a certain property (for
instance, Lamé elastic parameters), but in practice, the method allows to introduce small het-
erogeneities over each element. In case of strong discontinuities, the mesh must honor the
interfaces, otherwise, the numerical model is an insufficient representation of the physical
model. Therefor, recent efforts in global SEM include the appropriate translation of physical
Earth models into equivalent numerical models to be used on regular SEM grids (e.g. Fichtner
et al. (2010)), and sophisticated meshing techniques that approximate complex structures by
hexahedral elements in local SEM (e.g. Tromp et al. (2010)).

SEM like FEM commonly uses FD discretizations in time in order to solve the PDE to
the time level of interest. Unlike FEM, SEM can be easily designed to be explicit in time,
which significantly reduces the computational cost. The flexibility of SEM allows the use of
different time discretizations (explicit or implicit), which depending on physical requirements,
allow to simulate seismic wave propagation with considerable time accuracy over long time
periods. Clearly, the use of higher order accurate time discretizations leads to the increment
in computational cost.

The Discontinuous Galerkin Method (DGM) is perhaps one of the most complete nu-
merical methods. DGM is a Galerkin method just as FEM or SEM, with the difference that
the interpolation functions are piecewise continuous. The basis functions are combinations
of Jacobi-polynomials and form an orthogonal basis on triangles and tetrahedrons. Therefore,
the mass matrix is always diagonal. These kind of functions are suitable for simple and flex-
ible mesh design involving, for example, non/conforming tetrahedrons, and allowing to solve
problems with highly complex geometries and heterogeneity, of course, with the cost of the
increment in computational requirements. The method is also well-suited for parallelization
due to its local character of interpolation.

In seismology, DGM has proven to be a reliable method for simulations of high-frequency
wavefields over long propagation distances. It has been used in regional wave propagation
in unstructured meshes (e.g. Wenk et al. (2013)), Pelties et al. (2012), Käser and Dumbser
(2006), Dumbser et al. (2007b)), dynamic rupture simulations using unstructured grids (e.g.
Pelties et al. (2012)), wavefield modeling in exploration seismology (e.g. Käser et al. (2010)),
effective wave propagation in viscoelastic media (e.g. Käser et al. (2007)) and poroelastic
media (e.g. de la Puente et al. (2008)).

The Boundary Element Method (BEM) uses the integral formulation of the PDE. Unlike
Galerkin type’s methods, BEM uses the boundary expression of the integral formulation to
set numerical values, rather than values inside the spatial domain. In the 3D case, the sur-
face of the spatial domain (boundaries) is discretized into elements where the approximation
polynomials are used to find approximate solutions between the spatial points.

After imposing boundary values, the integral equation is used to compute numerically the
solution of the PDE at any interior point of the spatial domain and at any time level. Because
BEM is focused on imposing numerical values at the boundaries only, the method is well suited
for Earth configurations with special boundary conditions like cracks and rupture propagation.

The advantage of BEM over SEM, FEM, DGM and FDM is that only the boundaries of the
body need to be meshed, which in the case of SEM is a huge task. The disadvantage is, for
many physical problems, the method can be very computational expensive. As an example,
BEM has found widespread use in the sub-field of structural geology for solving problems of
deformation and propagation of opening mode and sliding mode fractures, Cooke (2011).

The Finite Volume Method (FVM) like Galerkin type’s methods, uses the integral form
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Figure 1.7: Figure on the upper left: S-wave velocity anomalies from the global tomographic
model s20rts (Ritsema and Van Heijst, 2000) are superimposed on the mesh. For parallel
computing purposes, the one-chunk SEM simulation is subdivided in terms of 64 slices. The
center of the chunk is at (38.5◦N, 137.5◦E), and the lateral dimensions are 30◦ x 30◦. Two
doubling layers are indicated at a depth of 25 km (PREM Moho depth) and a depth of about
1650 km. Shows full view of 25 neighboring slices. Figure upper right: Close-up view of the
upper mantle mesh. Note that the element size in the crust (top layer) is 13 km x 13 km, and
that the size of the spectral elements is doubled in the upper mantle. The velocity variation is
captured by NGLL = 5 grid points in each direction of the elements, Komatitsch and Tromp
(2002a), Komatitsch and Tromp (2002b). Bottom: each of the 6 chunks that constitutes the
cubed sphere is subdivided in terms of n2 slices of elements, where n ≥ 1 is a positive integer,
for a total of 6× n2 slices (and therefore processors). The figure on the left shows a mesh that
is divided in terms of 6 × 52 = 150 slices as indicated by the various colors. In this cartoon,
each slice contains 5× 5 = 25 spectral elements at the Earth’s surface. The figure on the right
shows a mesh that is divided over 6×182 = 1944 processors as indicated by the various colors.
Regional simulations can be accommodated by using only 1, 2 or 3 chunks of the cubed sphere.
One-chunk simulations may involve a mesh with lateral dimensions smaller than 90 degrees,
thereby accommodating smaller-scale simulations. Figures by Komatitsch et al. (2013).12



of the PDE. FVM first divides the spatial domain into discrete non-overlapping control volumes
(CVs) or non-overlapping elements, which in contrast to FDM, FEM, SEM and DGM, defines
the control volume boundaries, not the nodes. The usual approach is to assign the compu-
tational node to the center of each CV, however it is not a rule. The advantage of the first
approach is that the nodal point represents the mean over the CV, which is translated into
higher order accuracy. For control volumes that are adjacent to the domain boundaries the
general discretised equation is modified to incorporate boundary conditions. Then, the method
uses FD approximations to solve the derivatives inside the integral from of the PDE over each
control volume. The volume and surface integrals are approximated using quadrature rules,
thus the integration of the governing equation (or equations) over a control volume yields to a
discretized equation at its nodal point (mesh points). Depending on the approximation used,
the finite volume (FV) discretized equation may be the same obtained by the FDM. The most
simplest approximation to the integral is the midpoint rule, where the integral is approximated
as a product of the integrand at the center the cell-face and the are of the cell-face. The main
advantage of the FVM over FDM is regarding the integral expression for the boundaries of
the spatial domain, which in case of seismic wave propagation reduce the difficulty to impose
free surface conditions (zero traction at the surface).Also, unlike FDM, discontinuities of the
properties of the model are not a problem if the mesh is chosen to honor that discontinuities
(e.g. Dumbser and Käser (2007)), also, unlike Galerkin type’s methods, the method does not
require a coordinate transformation to be applied to irregular meshes.

FVM has been able to simulate seismic wave propagation on unstructured meshes with
high order accuracy (e.g. Dumbser et al. (2007a)). The method is sometimes called a discon-
tinuous finite element method or cell centered difference scheme.

The commonly called Meshfree Methods (MFM) are another family of numerical meth-
ods. FDM, FEM, SEM, DGM and FVM are numerical methods which require a certain kind of
discrete approximation of the space domain in order to solve the PDE, that is, they require the
meshing process. The meshing process may not be an easy task and usually requires mathe-
matical transformations that can be even more expensive than solving the PDE itself. Also, the
process of creating a mesh for complex geometries many times requires a significant human
effort. However, there are several numerical methods in the literature which do not require
the discretization of the space domain (MFM).

MFM provide accurate and stable solutions for integral equations of PDE (weak or strong
form) or for the PDE itself under all kinds of boundary conditions without using the concept
of a connected mesh among distributed nodes. MFM modify the structure of mesh based
methods like FDM and FEM to become more adaptive, versatile and robust. Advantages of
MFM are related to efficient performance over large deformations, since the positions of the
nodes can change with time.

In several applications it is more computational efficient to discretize the space domain by
only a set of nodal points, or particles, without caring about constraints. This kind of methods
are called Particle Methods (PM). PM may or may not be meshfree. Following Shaofan
and Wing-Kam (2002), PM can be classified based on physical principles, or computational
formulations. According to the physical modeling, they may be deterministic or probabilistic
models. According to computational modeling, they may be based on the strong or the weak
form of the PDE.

Mesh Free Particle Methods (MFPM) can be seen as a generalization of FEM and a
combination of MFM and PM. They are designed to be accurate and efficient because they
discretize the continuum by a set of nodal points or particles without the mesh constrain,
in other words, they adapt the changes of the topological structure of the space continuum.
There are many version of MFPM, for instance Meshfree Finite Difference Method (MFFDM)
(e.g. Liszka and Orkisz (1980)) and Smoothed Particle Hydrodynamics (SPH) (e.g. Gingold
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and Monaghan (1977)). SPH as one of the oldest MFM is capable of successfully dealing with
problems with free surface, deformable boundaries, moving interfaces as well as extremely
large deformations. Its applications are very wide, from micro to macro scales and from truly
discrete to discretized continuous systems.

A very popular and young family of MFPM are the so called Meshfree Galerkin Methods
(MFGM). MFGM offers considerable advantages over the traditional FEM in crack growth
simulation, because remeshing is avoided. Examples of MFGM are Element free Galerkin
method (EFGM) (e.g. Belytschko et al. (1994)) and Moving Particle Finite Element Method
(MPFEM) (e.g. Hao et al. (2002)).

MFPM has not been widely used in computational seismology, except for perhaps the
Hamiltonian Particle method (HPM). HPM is a meshless simulation technique in which
the space domain is approximated by discrete dynamics of a finite number of particles, Suzuki
and Koshizuka (2008). In HPM particles are connected by virtual springs and interact with
each other through both normal and shear forces at contact points. The particle motion is
computed based on the deformation gradient tensor estimated at each particle position. The
advantages of HPM are the simplicity and flexibility to create numerical models containing
arbitrary topography shapes and the simplicity of its data structure, Takekawa et al. (2012).
The method is also suitable for very heterogeneous models and non-linear problems.

As shown, the list of numerical methods to be applied in seismology is extensive nowadays,
but certainly the method which requires the smallest amount of computational resources is still
FDM. And although the family of numerical techniques is huge and there are many methods
being born nowadays, only a few of them are applied in the seismology field.

It is important to emphasize that for general seismological problems there does not exist a
best numerical method a priori, that would perform better than all others. The success of the
numerical method depends on the kind of physical problem to be addressed, and it is up to the
user of a numerical technique to choose the most suitable method for the physical problem
to be solved. Of course, there are cases when several numerical techniques can be applied
to the same problem; in that case, similar results can be obtained using different techniques,
see Fig. 1.8 (e.g. Chaljub et al. (2010)). In that situation the selection of the numerical tool
is based usually on our access to the numerical code and most importantly, the amount of
computational resources we have.

Today it is a reality that numerical techniques allow for finding approximate solutions to
very complex physical problems, however there are still many relevant problems that are be-
yond the reach of present computational resources. Like mentioned before, as the physical
configuration of the problem becomes more and more realistic and/or the scale of the prob-
lem becomes larger, the computational requirements become bigger. For instance, seismic
wave propagation on the entire Earth is a reality nowadays thanks to the use of the so called
computer clusters. The computer cluster is a set of interconnected computers working as a
unit. Like the Belgium national motto “unity makes strength”, scientist divide the numerical
task into the number of computers components of the cluster. Interchanging information dur-
ing the simulation, each computer of the cluster will solve a part of the problem, all of them
helping together to solve the whole numerical task.

There are several ways that scientist divide the numerical task to solve. Usually the way to
do it is by decomposing the domain in space and/or time. In the spatial domain decomposition,
the domain is divided into smaller non-overlapping sub-domains. Each sub-domain is then
assigned to a certain processor, trying to assign the same amount of information to each
processor in order to gain efficiency by giving the same amount of work to each one. In
time domain decomposition, several computers simultaneously perform work on the same
sub-domain region for different time steps.

In seismology, the use of computer clusters has allowed the application of very complex
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Figure 13 shows the TF misfits between the different
predictions of the S1-FLAT and W1-FLAT cases computed at
the 40 receivers in the frequency band 0.1–2 Hz. Each dot
corresponds to the total TF misfit averaged over the three
components of ground acceleration.

For the S1-FLAT case, the misfit between the different
predictions is almost everywhere lower than 0.4, which cor-
responds to the level of the excellent fit defined by Anderson
(2004). Note the high similarity between the predictions of
the FDM and SEM1 codes, despite the systematic amplitude
shift observed in Figure 9. This illustrates the importance of

Figure 11. Example of application of the TF misfit analysis to
the predictions of the NS ground acceleration at receiver R06 for the
S1-FLAT case. (a),(c) Panels show the time-frequency envelope
(TFEM) and phase (TFPM) misfits, respectively, taking the
SEM1 prediction as a reference. (b) Time series of acceleration
predicted by codes FDM (red) and SEM1 (black) are shown.
Single-valued envelope (EM) and phase (PM) misfits are obtained
by averaging the absolute values of TFEM and TFPM over time and
frequency. The total TF misfit is obtained by averaging the envelope
and phase misfits EM and PM.
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Figure 12. Comparison of results obtained with the TF misfit
(M) plotted against those using the similarity score (S). Both mea-
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linear trend (red line) with equation (10-S ! 5M) is found.
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Figure 10. (a) Time series of the NS ground acceleration computed at receiver R06 by 4 different codes for the strong motion case
S1-FLAT: DGM (green), FDM (red), SEM1 (black), and SEM2 (blue). The topmost trace (orange curve) was computed by the code
SEM1 including surface topography (S1-TOPO). (b) Goodness-of-fit as measured by the 10 criteria proposed by Anderson (2004).
The SEM1-FLAT prediction is used as reference in each case. The dashed lines indicate the levels of the global similarity scores for each
prediction. Note that the fit between different predictions of the same simulation case (S1-FLAT) is better than the fit between predictions of
different simulation cases (S1-TOPO and S1-FLAT) by the same code (SEM1).

Quantitative Comparison of Four Numerical Predictions of 3D Ground Motion in the Grenoble Valley 1443

Figure 1.8: Time series of the NS ground acceleration of the Grenoble Valley, France, com-
puted at receiver R06 by 4 different codes for the strong motion case S1-FLAT: DGM (green),
FDM (red), SEM1 (black), and SEM2 (blue). The topmost trace (orange curve) was computed
by the code SEM1 including surface topography (S1-TOPO). (b) Goodness-of-fit as measured
by the 10 criteria proposed by Anderson (2004). The SEM1-FLAT prediction is used as ref-
erence in each case. The dashed lines indicate the levels of the global similarity scores for
each prediction. Note that the fit between different predictions of the same simulation case
(S1-FLAT) is better than the fit between predictions of different simulation cases (S1-TOPO
and S1-FLAT) by the same code (SEM1). Figure by Chaljub et al. (2010).

and computational demanding numerical techniques like adjoint tomography. Unlike classi-
cal linear tomography, adjoint tomography is an interactive technique which uses the entire
information of the seismograms (full waveform). The method starts with a simplified model
of the Earth (see Fig. 1.9) and uses two simulations of the seismic signal at the same time,
one from the source (usually called forward simulation) and another from the receiver (usually
called backward simulation). The difference between the two signals is minimized by statisti-
cal techniques. There are several ways to measure differences between the two signals (e.g.
norm L2, differences in the Fourier domain, etc.). This minimization process updates the ge-
ological model features (density, elastic parameters, etc.) and computes Frechet derivatives
with respect to selected structural parameters, including density and the SH, SV, PH and PV
wave speeds of the heterogeneous medium. The final geological model is obtained when the
measure between the two signals is minimized (see Fig. 1.9).

The highly expensive adjoint tomographic techniques allows for resolving heterogeneities
of the Earth with unprecedented resolution using seismological data, but the scale of the
problem is still a challenge. Up to the present day, adjoint tomography techniques requires
incredible amount of computer resources in order to be applied to the entire Earth, although
simulations are being carried out by Jeroen Tromp’s research group at Princeton University
(e.g. Bozdag et al. (2013)), the process has been slow.

The use of adjoint tomografic techniques combined with SEM has proven to be a powerful
tool for Earth imaging in general (e.g. Luo et al. (2013)). Adjoint tomography techniques were
tested using the Marmousi model by Luo (2013). The Marmousi model, created in 1988 by
the Institut Français du Pétrole (IFP), consist on a profile through the North Quenguela in the
Cuanza basin, Angola. Fig. 1.9 illustrates the process of the adjoint method: starting from a
very simplified model, the method is able reproduce with high accuracy the target model.

Adjoint tomography combined with SEM has produced high resolutions images of the Eu-
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Chapter 4. Seismic Inversion

(a)

(b)

Figure 4.9: Inversion set-up of the Marmousi model. (a) Target model. (b) Initial model. Sources and
receivers are deployed on the free surface.
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Chapter 4. Seismic Inversion

(a)

(b)

Figure 4.10: Inversion results of the Marmousi model. (a) Inversion gets trapped in local minimum, if
we blindly back-project the waveform differences. (b) Inversion succeeds when we start from long period
dataset and early arrivals and gradually increase the frequency content and window length.
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Figure 1.9: Inversion set-up and inversion results of the Marmousi model. Sources and re-
ceivers are deployed on the free surface. Figures by Luo (2013).

ropean upper mantle, which are consistent with previous studies but helping to constrain the
details of both crustal and upper-mantle structure and revealing some hitherto unidentified
structures (Zhu et al. (2012), Fichtner et al. (2013)), see Fig. 1.10.

The importance and power of numerical techniques and computer clusters is in constant
growth nowadays. Ambitious projects showing the scope, feasibility and high impact in the
society have been carried out by many researchers around the world. Particularly in seis-
mology, astonishing projects like Tromp et al. (2010) (among many others) are currently in
operation: They have developed a near real-time system for the simulation of global earth-
quakes. The developed near real-time system automatically calculates normal-mode synthetic
seismograms (at periods of 8 sec. and longer) for the Preliminary Reference Earth Model, and
spectral-element synthetic seismograms (at periods of 17 to 500 sec.) for 3-D mantle model
S362ANI in combination with crustal model Crust2.0. The system also produces a number
of earthquake animations (through Princeton’s web page), as well as various record sections
comparing simulated and observed seismograms.

For all the reasons presented here (and many more), numerical analysis is an area of huge
importance and continuous growth is seismology. The huge family of numerical methods allow
to study in detail many different configuration of the Earth. Due to their very wide range
of applications (in seismology and practically the entire sciences), the use and development
of new and improved numerical techniques should be an active area of research in many
countries.

Scientist like Chin et al. (1984) refers: our principal conclusion is that there exists no single
method which can compute with efficiency and with uniform accuracy the response of an inho-
mogeneous elastic medium to an arbitrary source with a spectrum of frequencies. An efficient
and accurate general software package must be a hybrid of many computational procedures.
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Figure 3 |Vertical cross-sections of δlnβv for model EU30. a, Cross-section of the Adria–Dinarides and Vrancea slabs. b, Cross-section of the Hellenic slab
and a hole beneath Bulgaria. c, Cross-section of the Alpine subduction. d, Cross-section of lithospheric delamination beneath Scandinavia. e, Cross-section
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from −X% to X%; X= 3 in all cross-sections except e, where X= 2. h, Map locations of cross-sections a–g (A-a to G-g).

as documented in map views (Fig. 2e), vertical cross-sections

(Fig. 3b) and 3D view (Fig. 4). At 75 km depth, there is a fast spot

located east of the Hellenic arc, between the Cyprus and Anatolian

plates, which is correlated with the Cyprus arc (Fig. 2a). Similar to

the two previously discussed arc systems, the Hellenic arc involves

a prominent slow wave speed (∼−4%) for the Aegean Sea down to

nearly 100 km, a result of roll-back-induced back-arc extension
8
.

The Cenozoic Rift System, which is closely related to the central

and western European volcanic fields
6
, extends from the Valencia

Trough in Spain to theMassif Central in France, and then splits into

two segments: one goes through the upper and lower RhineGrabens

in Germany and extends northwestward to the Netherlands, the

other goes eastward to the Bohemian Massif in the Czech Republic,

terminating in the Central SlovakianVolcanic Field (CSVF; Fig. 2a).

At 75 km depth, we also observe the Middle Hungarian Line,

separating the CSVF and Tisza–Dacia (Fig. 2a). In the northern

part of the Rhine Graben, we discover a slow anomaly (∼−2.5%)

lying flat at a depth of approximately 300 km with a nearly vertical

conduit ascending to the surface. We interpret these features as a

slow-wave-speed reservoir connected through an upwelling plume,

thereby forming the Eifel hotspot (Fig. 3e).

The North Anatolian Fault separates the fast-wave-speed Black

Sea Basin and EEP to the north and the slow-wave-speed Anatolian

plate to the south. The prominent slow anomaly of the Anatolian

plate extends down to 220 km and overlays a large volume of fast

anomalies (∼+3%; Fig. 2d), which we interpret as remnants of an-

cient oceanic lithosphere related to the collision between the Anato-

lian and African/Arabian plates. Beneath central Turkey, at a depth
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Figure 1.10: Vertical cross-sections of δ lnβv for model EU30. a, Cross-section of the Adria-
Dinarides and Vrancea slabs. b, Cross-section of the Hellenic slab and a hole beneath Bul-
garia. c, Cross-section of the Alpine subduction. d, Cross-section of lithospheric delamination
beneath Scandinavia. e, Cross-section of the Eifel hotspot and its associated slow-wave-speed
reservoir. f, Cross-section of the Calabrian slab detachment. g, Cross-section of the central
Apennines and North Africa slab detachment. The dashed black lines in a-g denote the 220
km, 410 km and 660 km discontinuities. Perturbations range from −X% to X%; X = 3 in
all cross-sections except e, where X = 2. h, Map locations of cross-sections a-g (A-a to G-g).
Figure by Zhu et al. (2012).
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Such a package is yet to be developed. Three decades later, the seismological community
is a bit closer to that goal, there are available advanced, well-tested and well-documented
codes that make use of modern, large-scale computational infrastructures and can be applied
to a large range of problems in wave propagation. Especially the spectral element package
Specfem (www.geodynamics.org/cig/software/specfem3d) has become the dominant code in
the community. Bringing other numerical techniques to a level of completeness and user-
friendliness comparable to the Specfem package is a long-term developing goal that requires
considerable resources. Such an efforts would have to be justified by relevant advantages of
the chosen numerical method, which prompts the need for further basic research in the field
of computational seismology.

This thesis aims at contributing to this topic through the development of an improved
computational tool for wave propagation, based on the combination of different numerical
techniques.
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Chapter 2

Some remarks on complex numbers
in sciences

T he use of complex numbers in sciences has been crucial in the development of the
human civilization as we know it. Their use has been essential for the developing of
new fundamental theories and the finding of its solutions. For example, the joint use

of complex numbers and probability theory brought to live in the early XX century the theory
of quantum mechanics that gave to the world a new tool for describing processes at atomic
scale, allowing the development of numerous applications in engineering like transistors, mi-
crochips, lasers and many others. As another example we may cite elasticity, where the use of
complex variable theory provides a very powerful tool for the solution of many problems. Such
applications are most important for two-dimensional solutions. The technique is also useful for
cases involving anisotropic and thermoelastic materials. Employing complex variable methods
enables many problems to be solved that would be intractable by other schemes, Sadd (2005).
To show the superiority of the method, the theory of elasticity requires the fulfillment of the
differential equilibrium, the compatibility equations and the boundary conditions. By formu-
lating the problem using stress functions, the differential equilibrium is fulfilled by definition,
and one is left with the compatibility equations and the boundary conditions. However, by
employing the method of complex potentials, compatibility is also inherently fulfilled. Hence,
one is left with the boundary conditions only, Rand and Rovenski (2005).

Since the appearance of the imaginary unit (i2 = −1) for the first time in Ars Magna (1545)
by the italian mathematician Girolamo Cardano (1501-1576), the square root of minus one was
used as a mathematical tool rather than a physical entity. It was Carl Friedrich Gauss (1777-
1855) a german mathematician and physicist who introduced the concept of complex number
(a number formed by a real and imaginary components). He tried to give to the imaginary
number a different concept from the taken before, where the imaginary number is non an
impossible or useless entity but a different direction one just like +1 or −1.

Based on the concept of different directions for imaginary and real numbers, in 1843 the
mathematician Sir William Rowan Hamilton described the quaternion algebra H, as a more
general framework of the complex numbers. The Quaternion algebra is a 4 dimensional space
that uses three imaginary numbers and one real number as directions. Recent developments
have favored the geometric approach (geometric algebra) leading to an algebra (space-time
algebra) complexified by the algebra H ⊗ H where H is the quaternion algebra. The general
theory of relativity is developed within the Clifford algebra H ⊗ H over R. Furthermore the
algebra H ⊗ H constitutes the framework of a relativistic multivector calculus, equipped with
an associative exterior product and interior products generalizing the classical vector and
scalar products, Girard (2007). This kind of calculus is a generalization of the classical vector
calculus and allow to reproduce the relativity theory in a very easy way. Unlike the Clifford
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algebra the vector calculus described over R does not allow for describing the relativity theory.
For this reason, tensor calculus was introduced to describe more complex systems, but still the
tensor calculus does not allow a double representation of the Lorentz group and thus seems
incompatible with relativistic quantum mechanics. A third calculus is then introduced, the
spinor calculus, to formulate relativistic quantum mechanics. The set of mathematical tools
used in physics thus appears as a succession of more or less coherent formalisms. Is it possible
to introduce more coherence and unity in this set? The answer seems to reside in the use of
Clifford algebra, Girard (2007). For several reasons, the Clifford calculus seems to be the
calculus of the future, allowing to deal with more complicated and more realistic theories.

Not only realistic theories are based on the use of complex numbers. Futuristic technolo-
gies like quantum computers are also possible (from the theoretical point of view) thanks to
the use complex numbers. Quantum computing uses qubits (quantum bits) instead of bits as
their basic unit of information. A qubit unlike the bit can represent 0, 1 or a superposition of
both: Using bra-ket notation (Dirac notation) we can represent a qubit as a linear combination
of |0〉 and |1〉, where the weights are probabilities amplitudes which can be given by complex
values. This basic assumption of using linear combination of probabilistic complex values of
the bits’ basic units of information, allow to speculate (theoretically) that quantum computers
are able to solve problems much more faster than conventional computers. Although the pros
and cons that this kind of theories entails are still open problems.

To summarize, the use of complex numbers have a extreme importance to formulate gen-
eral mathematical theories of a physical or pure theoretical problem and their use to compute
the analytical solutions. However, a field of mathematics that remains yet to be deeply ex-
plored is the use of complex numbers in numerical modeling. In this work we do a step in this
direction and explore the idea to use complex numbers for the solution of the wave propaga-
tion problem in heterogeneous media.
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Chapter 3

Fundamentals of the Finite
Differences Method

T he study of integro-differential equations to model real or ideal problems is the most
powerful tool to predict the behavior of any known system. The exact solution of the
mathematical problem is called the analytical solution. Usually this analytical solution

is extremely difficult to find for realistic problems, for this reason the numerical solution takes
so much importance. As shown in chapter 1, the numerical solution gives an approximation to
the analytical solution usually transforming the continuous domain into a discrete domain that
can be later solved on a computer, e.g., Finite Differences method (FDM), Finite Elements
method (FEM), Finite Volume method (FVM) and Spectral Elements method (SEM) among
many others.

Given the importance of integro-differential equations, the concept of derivative is one
of the most important concepts in science and engineering. It can be described from two
equally valid points of view: the geometrical and the physical. From the geometrical point
of view, the derivative can be seen as the tangent line to a function in a certain evaluation
point. From the physical point of view, the derivative can be seen as a measure of the rate
of change of the function in this point. Most fundamental laws in physics are expressed in
differential equations involving the rate of change in space and/or time of some continuous and
differentiable function, bringing about the need for resolving the derivative for the majority of
modeling approaches. FDM specifically targets those derivatives.

The FDM is one of the most simple, intuitive and easy to implement numerical method. Its
origins dates back to the times of Isaac Newton (1642-1727) and Gottfried Leibniz (1646-1716)
who are recognized as the fathers of the differential calculus. In fact, the apparently modern,
numerical notion of finite differences was the historical basis for developing the concept of
derivative in mathematics. The FDM is based on the concept of the finite difference (FD)
operator, hence its name: Finite, because transform a infinite dimensional problem (continu-
ous problem) into a finite dimensional problem (discrete problem) and Differences, because
computes derivatives using subtractions. The FDM approximates derivatives of an ordinary
differential equation (ODE) and/or partial differential equation (PDE) by divided differences
defined at the so called grid points (refereed as spatial discretization).

Despite the FDM is one of the oldest technique remains as one of the most powerful (in
terms of computational cost) methods for solving differential equations nowadays. Despite its
limitations, the FDM remains one of the most popular methods due to its relatively straight-
forward and intuitively understanding from a physical point of view.
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3.1 Finite differences and the 1D one-way wave equation

The technique of differentiation was introduced independently by Isaac Newton (1642-1727)
and Gottfried Leibniz (1646-1716). Formally the slope of the tangent line at a point X is the
limit of the ratio of the change in the function to the change in the independent variable, as
that change approaches 0, i.e.:

f ′(x) = lim
∆x→0

f(x+ ∆x)− f(x)

∆x
. (3.1)

The quotient in 3.1 is referred to as the Newton quotient or the difference quotient. An-
other way of expressing the derivative of a function derives from its expansion in a Taylor
series, introduced by Brook Taylor in 1715. The Taylor series expresses any analytic function
by an infinite sum over its derivative terms:

f(x) = f(a) +
f ′(x)

1!
(x− a) +

f ′′(x)

2!
(x− a)2 +

f ′′′(x)

3!
(x− a)3 + ... =

∞∑
n=0

f (n)(a)

n!
(x− a)n. (3.2)

Hence, for an analytic function, differentiation is equivalent to evaluating terms of a Taylor
series.

Taking a = x + ∆x in 3.2 and reordering we can obtain an expression for the first order
derivative similar to 3.1:

f ′(x) =
f(x+ ∆x)− f(x)

∆x
+O

(
∆x
)
. (3.3)

An expression like 3.3 is called a Finite Difference (FD) approximation, in this case the first
order forward approximation for the first derivative, where the differential step is taken in the
positive direction. The symbol O expresses the error related to truncating the Taylor series in
the second order derivative. FD approximations are still the most classic, simple and intuitive
approach to approximate derivatives of a function, and are widely used in numerical schemes.
Based on the Taylor series 3.2, many different approximations can be made, for example the
backward approximation where we take the differential step in the negative direction (see Fig.
3.1):

f ′(x) =
f(x)− f(x−∆x)

∆x
+O

(
∆x
)
, (3.4)

or the centered FD approximation, where we take the differential step in both directions.
i.e.,

f ′(x) =
f(x+ ∆x)− f(x−∆x)

2∆x
+O

(
∆x2

)
, (3.5)

which is a second order approximation (O
(
∆x2

)
) by the price of using more information of

the function than the forward approximation, i.e., we need information at two points different
from (x+ ∆x and x−∆x) from the evaluation point x.

The FDM allows for computing higher order derivatives based on the same principle. For
example, if we want to compute the second order derivative, we can apply the centered deriva-
tive operator twice to find the following expression
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Figure 3.1: Geometric representation of the derivative.

f ′′(x) =
f(x+ ∆x)− 2f(x) + f(x−∆x)

∆x2
+O

(
∆x2

)
, (3.6)

where the error O
(
∆x2

)
is found by manipulating the Taylor series of f(x+ ∆x) and f(x−

∆x).
The basic nature of the FD method becomes clear from the comparison between equations

3.1 and 3.3: on one hand we have the limit ∆x→ 0 and on the other hand the truncation error,
which indicates that only in the limit when ∆x approaches zero the truncation error of the FD
approximation will vanish. Usually the order of the error in FD approximations is related to
the number of differential steps that we take, i.e., in 3.5 we take one step forward and one
backward, that is two steps unlike in 3.3 and 3.4 which have a single step. Consequently,
the accuracy of the centered approximation 3.5 is of second order, and the truncation error is
smaller than in the forward and backward approximations.

Taking into account a second layer of surrounding grid points, fourth order accuracy can
be achieved, of course at the price of increasing computational cost. Whatever the order of
accuracy, all FD approximations involve a truncation error depending on the step size ∆x, so
we should choose ∆x small to obtain accurate results.

Numerical analysis of the one dimensional (1D) first-order wave equation are one of the
basis for most of the numerical methods that are implemented in realistic media (acoustic or
elastic) in the geophysical field. The 1D first-order scalar wave equation, also called the 1D
one-way wave equation, is given by the following mathematical expression:

∂u

∂t
= c

∂u

∂x
, (3.7)

where u = u(x, t) is the displacement field, x is the space variable, t is the time variable
and c the propagation velocity.

To solve the partial differential equation (PDE) 3.7 we need an initial condition of displace-
ment. This initial condition can be given by the initial particle displacement (u(x, 0)) imposed
over the entire space domain (x), or over a single point (xs) as a time dependent function
(u(xs, t)), usually referred as a point source. Equation 3.7 in conjunction with its initial condi-
tion of displacement is called the initial value problem.

The most basic FD approximation to the one-way wave equation can be made by substitut-
ing the forward approximation (Eq. 3.3) at both sides of the equation. After rearranging we
can obtain the following expression,

ut+∆t
x = Sutx+∆x +

(
1− S

)
utx +O

(
∆t,∆x

)
, (3.8)
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where S = c∆t
∆x is called the Courant number and/or stability factor. The parameter ∆x is

refereed as the grid size and ∆t as the time step. Eq. 3.8 is a well known stable and con-
vergent FD discretization to the one-way wave propagation problem and is called the upwind
discretization and it is first order accurate in time and space. Now, if we use the centered
approximation (Eq. 3.5) at both sides of the one-way wave equation (Eq. 3.7), the following
expression is obtained:

ut+∆t
x = S

(
utx+∆x − utx−∆x

)
+ ut−∆t

x +O
(
∆t2,∆x2

)
. (3.9)

Equation 3.9 is the well known Leapfrog discretization to the one-way wave equation and
it is second order accurate in time and space (see Strang (2007) for further details).

Expressions 3.8 and 3.9 can be respectively written in a general operator form as follows

val
(
x, t+ ∆t

)
= S val

(
x+ ∆x, t

)
+
(
1− S

)
val
(
x, t
)
, (3.10)

val
(
x, t+ ∆t

)
= S

[
val
(
x+ ∆x, t

)
− val

(
x−∆x, t

)]
+ val

(
x, t−∆t

)
, (3.11)

where val
(
x, t
)

represents the numerical value of the displacement to be propagated.
Having a FD approximation to the wave equation is not enough, we are interested in know-

ing how the numerical solution can whether or not reproduce the exact (analytical) solution of
the problem.

The analytical solution to the one-way wave equation with an initial condition of displace-
ment over the entire domain (u(x, 0) = f(x)) is given by the following mathematical expression,

u(x, t) = f(x+ ct). (3.12)

Note that solution 3.12 is just a shift to the left of the initial condition function (f(x)).
When the displacement movement is generated by a time dependent function (source), the

one-way wave equation (Eq. 3.7) becomes,

∂u

∂t
= c

∂u

∂x
+ f(xs, t), (3.13)

where xs is the application point of the source. The analytical solution to problem 3.13 is
given by the following mathematical expression (see Strikwerda (2004) for further details),

u(x, t) =

∫ t

0
f(x− c(t− τ), τ) dτ. (3.14)

3.2 Finite differences and the 1D two-way wave equation

The 1D second-order scalar wave equation, also called the 1D two-way wave equation, is given
by the following mathematical expression:

∂2u

∂t2
= c2 ∂

2u

∂x2
. (3.15)

Subject to initial conditions of displacement and speed,
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u(x, 0) = f(x) and u̇(x, 0) = g(x). (3.16)

is called the initial value problem.

To illustrate how the FDM solves the initial value problem in the most simple way, let us
the centered approximation for the second order derivative (Eq. 3.6) to discretize PDE 3.15 to
obtain the following expression

ut+∆t
x = S2

(
utx+∆x + utx−∆x

)
+ 2

(
1− S2

)
utx − ut−∆t

x +O
(
∆t2,∆x2

)
. (3.17)

Equation 3.17 is a well known convergent and stable FD discretization called the Leapfrog
approximation for the second-order wave equation, Strang (2007).

To solve Eq. 3.15 by using FD discretization 3.17 we need two initial conditions; these
initial conditions are given by the initial displacement of the particle (u(x, 0)) and velocity
(u̇(x, 0)) and/or in case of a point source, only displacements at each time step over a space
location is required (u(xs, t)).

Like in the one-way wave equation case, we can write discretization 3.17 in a general
operator form as follows

val
(
x, t+ ∆t

)
= S2

[
val
(
x+ ∆x, t

)
+ val

(
x−∆x, t

)]
+ 2

(
1− S2

)
val
(
x, t
)

− val
(
x, t−∆t

)
, (3.18)

where val
(
x, t
)

represents the numerical value of the displacement referred in Eq. 3.17.

The general analytic solution for the second order wave equation was found by Jean le
Rond d’Alembert (1717-1783), and is called the d’Alembert formula. The d’Alembert solution
is based on the Characteristic method developed by Hamilton. Hamilton discovered that the
wave equation can be solved by integrating it along special curves that he called characteris-
tics. In the special case of the 1D scalar wave equation with constant velocity, these curves
are exactly the straight lines given by F (x+ ct) and G(x− ct), where F and G are C functions.
Particularly when this function is applied to the second order scalar wave equation with initial
displacement f(x, 0) and initial velocity g(x, 0) the formula becomes the d’Alembert solution,

u(x, t) =
f(x+ ct) + f(x− ct)

2
+

1

2c

x+ct∫
x−ct

g(ζ) dζ. (3.19)

In case of a point source s(xs, t) the solution becomes

u(x, t) =
f(x+ ct) + f(x− ct)

2
+

1

2c

x+ct∫
x−ct

g(ζ) dζ +
1

2c

∫ t

0

∫ x+c(t−ξ)

x−c(t−ξ)
s(η, ξ) dη dξ. (3.20)

Simulations to the wave equation can be carried out using different FD discretizations
and compared with the analytical solutions to determine whether or not reliable results are
obtained. Not all of the FD discretizations that can be made by combining different approx-
imations to the wave equation are useful. To determine whether a certain FD discretization
can be applied to the problem we have to use concepts of convergence, consistency, stability,
dispersion and dissipation of the numerical solution (see Chapters 5-6).
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Discretization to the one-way wave equation
(
∂u
∂t = c∂u∂x

)
Name

forward approx. in time = forward approx. in space Upwind

forward approx. in time = centered approx. in space Forward Euler

backward approx. in time = centered approx. in space Backward Euler

centered approx. in time = centered approx. in space Leapfrog

Table 3.1: Most basic finite differences schemes to the first order wave equation.

3.3 Finite differences discretizations

The most basic FD discretizations to the one-way wave equation are made by combining for-
ward, backward and centered FD approximations. All of this combinations are tested in order
to determine whether they produce a reliable solution to the initial value problem.

Table 3.3 show the discretization made and its respective name. Forward and backward
Euler are unconditional unstable but they can be modified to solve the problem efficiently
(Lax-Friedrichs method) (see Thomas (1995)).

3.4 Second order 1D wave equation as a first-order coupled sys-
tem of equations

The 1D acoustic second order equation can be written in a first-order system of two coupled
equations by introducing the velocity as follows

1

κ

∂u

∂t
=
∂v

∂x
+ F (x, t),

ρ
∂v

∂t
=
∂u

∂x
, (3.21)

where v = v(x, t) is the velocity field, ρ = ρ(x) is the density, κ = κ(x) is the elastic

parameter and F (x, t) =

∫ t

0
f(x, τ) dτ .

The velocity c of sound wave propagation is given by

c =

√
κ

ρ
. (3.22)

In case of absence of sources the equations are subject to initial conditions of displacement
and velocity

u(x, 0) = f(x), v(x, 0) = g(x).

The Leapfrog method is the simplest second order accurate FD method which is a one step
three time levels scheme.

Applying the centered FD discretization (Eq. 3.9) to Eqs. 3.21 we obtain the following,

1

κ(x)

ut+∆t
x − ut−∆t

x

2∆t
=
vtx+∆x − vtx−∆x

2∆x
+ F (x, t) +O

(
∆t2,∆x2

)
,

ρ(x)
vt+∆t
x − vt−∆t

x

2∆t
=
utx+∆x − utx−∆x

2∆x
+O

(
∆t2,∆x2

)
. (3.23)
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It is well known that the Leapfrog scheme for the first-order coupled equations (Eq. 3.23)
is non-dissipative, stable, consistent and convergent discretization, which has a dispersion-
dissipation relation given by the following expression (Moczo et al., 2004b)

sin2 ω∆t =
κ(x)

ρ(x)

(
∆t

∆x

)2

sin2 k∆x. (3.24)

3.4.1 Staggered grid scheme

Nowadays, perhaps the most popular FD discretization in the seismological context is the so
called staggered grid scheme often also called interleaved Leapfrog.

The staggered grid scheme is obtained by the use of the central difference approximation
evaluated over smaller grid distances and time steps. We can write it in the following way,

1

κ(x)

u
t+ ∆t

2
x − ut−

∆t
2

x

∆t
=
vt
x+ ∆x

2

− vt
x−∆x

2

∆x
+ F (x, t) +O

(
∆t2,∆x2

)
,

ρ(x)
vt+∆t
x+ ∆x

2

− vt
x+ ∆x

2

∆t
=
u
t+ ∆t

2
x+∆x − u

t+ ∆t
2

x

∆x
+O

(
∆t2,∆x2

)
, (3.25)

it also can be written in a equivalent form,

1

κ(x)

ut+∆t
x − utx

∆t
=
v
t+ ∆t

2

x+ ∆x
2

− vt+
∆t
2

x−∆x
2

∆x
+ F (x, t) +O

(
∆t2,∆x2

)
,

ρ(x)
v
t+ ∆t

2

x+ ∆x
2

− vt−
∆t
2

x+ ∆x
2

∆t
=
utx+∆x − utx

∆x
+O

(
∆t2,∆x2

)
. (3.26)

By observing discretization 3.26 it is clearly appreciated that we evaluate one variable at
regular space-time grid points while the second variable is evaluated at mid-space-time grid
points. The differencing over twice smaller grid distances implies that the leading term of the
approximation error is now four times smaller, Moczo et al. (2004b). Discretizations 3.25-3.26
should not be confused with a forward discretization in time-space for variable u, otherwise it
is not trivial to understand where the second order approximation comes from.

The staggered grid discretization comes from just discretizing both equations with a cen-
tered approximation evaluated over a twice smaller time-space grid distances. After this, just
relocate displacement variables to the next time-space mid point, i.e., replace t = t + ∆t

2 and
x = x+ ∆x

2 on the time derivative and the space derivative respectively. This change of variable
keeps the second order error term of the centered discretization.

The most important features of the staggered grid are that we keep the properties of
dispersion-dissipation of the Leapfrog approximation, that is, the dispersion-dissipation rela-
tion for the staggered grid discretization is the same of the centered discretization (Eq. 3.24),
and on the other and, due to the evaluation of different time levels for both variables,the com-
putational algorithm for propagating the wave can be written in a very simple form, allowing
to reduce the computational cost.

3.5 Finite differences schemes in heterogeneous media

FDM is also useful in presence of heterogeneous media. The main difference with homoge-
neous schemes is that the velocity (or density and elastic constants) values are not evaluated
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at the same grid point. In this sense we can write the staggered grid approximation in hetero-
geneous media as follows

1

κ(x)

u
t+ ∆t

2
x − ut−

∆t
2

x

∆t
=
vt
x+ ∆x

2

− vt
x−∆x

2

∆x
+ F (x, t) +O

(
∆t2,∆x2

)
,

ρ
(
x+

∆x

2

) vt+∆t
x+ ∆x

2

− vt
x+ ∆x

2

∆t
=
u
t+ ∆t

2
x+∆x − u

t+ ∆t
2

x

∆x
+O

(
∆t2,∆x2

)
. (3.27)

Commonly second order FD discretizations of the wave equation are not used in realistic
(heterogeneous) simulations of wave propagation. Instead higher order FD approximations
are included in space (or time) to get 4th or 6th order accuracy into the discretization.

For instance, the very widely used scheme in seismology is the staggered FD discretization
with 2th order of accuracy in time and 4th order of accuracy in space. The FD discretization
can be found by just introducing the FD fourth order approximation give by the following
expression

f ′(x) =
1

∆x

[
9

8

(
f
(
x+

∆x

2

)
− f

(
x− ∆x

2

))
− 1

24

(
f
(
x+

3∆x

2

)
− f

(
x− 3∆x

2

))]
+O

(
∆x4

)
.

(3.28)

Inserting approximation 3.28 into the space discretization of the first order coupled wave
equation (Eq. 3.21) we can get the FD24 staggered grid approximation

1

κ(x− ∆x
2 )

utx − ut−∆t
x

∆t
=

9

8

v
t−∆t

2
x − vt−

∆t
2

x−∆x

∆x
− 1

24

v
t−∆t

2
x+∆x − v

t−∆t
2

x−2∆x

∆x
+ F (x, t) +O

(
∆t2,∆x4

)
,

ρ(x)
v
t+ ∆t

2
x − vt−

∆t
2

x

∆t
=

9

8

ut
x+ ∆x

2

− ut
x−∆x

2

∆x
− 1

24

ut
x+ 3∆x

2

− ut
x− 3∆x

2

∆x
+O

(
∆t2,∆x4

)
. (3.29)

Note, the price of getting more accuracy in space is given by including more spatial points
into the dicretization.

Heterogeneous formulations (in 2D and 3D) for FD approximations using of the second
order wave equation (Eq. 3.15) are also widely used in seismology (see Cohen (2001)). This
kind of discretizations are well illustrated in Chapter 6 explaining the preferences of choosing
certain discretization over another based on the dispersion analysis.

In case of 2D and 3D elastic problems, the FD concepts of the discretizations presented
here do not change. Discretizations of the elastic wave equation in a 2D space are given by
adding into Eq. 3.29 the y or z coordinate and replacing the displacement field (u(x, t)) by the
second order stress tensor (σ). In a fully 3D elastic space all the coordinates are used into the
right hand side of Eq. 3.29 and also he displacement field is replaced by the stress tensor (see
Fig. 3.2).
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Figure 3.2: Regular staggered-grid system used in 3D velocity-stress FD method. v(vx, vy, vz)

and τ(τxx, τyy, τzz, τxy, τxz, τyz) denote the components of the particle velocity and stress tensor,
respectively. ρ the density; λ and µ, Lame parameters. The indices i, j and k represent values
of the spatial x, y and z coordinates, respectively. A left-handed coordinate system is used.
Figure by Kang and Baag (2004).
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Chapter 4

On the Generalization of the
Complex Step Method

4.1 Introduction

As discussed in the previous Chapter, the FDM expresses the geometrical definition of
gradients as the local slope of the original functions. As a consequence, working
with FD approximations of derivatives of analytic functions involves computing small

differential steps (∆x) to get close to Newton’s and Leibnitzs’ original definition (Eq. 3.1).
However, evaluating arbitrarily small steps is not feasible on a computer. FD schemes, as the
name suggests, involve some difference operator in the numerator, and this difference itself is
an intrinsic problem. For a given step size ∆x, and particularly for small steps, the differences
of the values of our function at successive evaluation points may become small, leading to a
loss of significant digits as we approach machine precision, and eventually a value zero for the
numerator and the derivative when the computer fails to recognize the difference between the
two numbers. This problem is known as subtractive cancellation or term cancellation. Since in
numerical simulations we often have little hints on the actual shape of the functions involved,
subtractive cancellation is not straightforward to control, which forces us into a conservative
choice of step size at the expense of larger truncation errors. This contribution readdresses
subtractive cancellation and other accuracy and stability issues in FD for the case that ∆x is
a complex number.

In this Chapter we generalize the well known Complex Step Method for computing deriva-
tives by introducing a complex step in a strict sense. Exploring different combinations of
terms, we derive 52 approximations for computing the first order derivatives and 43 for the
second order derivatives. For an appropriate combination of terms and appropriate choice
of the step size in the real and imaginary directions, fourth order accuracy can be achieved
in a very simple and efficient scheme on a compact stencil. New different ways of comput-
ing second order derivatives in one single step are shown. Many of the first order derivative
approximations avoid the problem of subtractive cancellation inherent to the classic finite dif-
ference approximations for real valued steps, and the superior accuracy and stability of the
generalized complex step approximations are demonstrated for an analytic test function.

4.2 The Complex Step Method

Most naturally, derivatives of real functions are evaluated using real numbers, but the less
intuitive idea of using an imaginary number in real functions differentiation has been shown
capable of overcoming the term cancellation inherent to the ordinary FD method, as well
as reducing the associated approximation error. The use of complex variables in numerical
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differentiation was introduced by Lyness and Moler (1967), describing a method for computing
the derivatives of any analytic function. The base of these methods is Cauchy’s theorem which
relates the nth derivative fn(0) of an analytic function f(z) at z = 0 to the value of a closed
integral, the contour C enclosing the origin once and remaining within a domain of analyticity
of f(z), Lyness (1968).

Later Fornberg (1981) presented a FORTRAN algorithm for computing derivatives of real
analytic functions evaluated in complex values. After that, the use of complex variables in
numerical differentiation apparently fell into oblivion until it reappeared in the scientific lit-
erature when Squire and Trapp (1998) presented the formally called Complex Step Method
(CS). Squire and Trapp (1998) use a purely imaginary number i (i2 = −1) for computing the
first and second derivatives of real functions, and their CS should be called the imaginary step
method more properly.

One of the limitations of the CS method is that only the first order derivative is accessible
using the imaginary part of the function, while second derivatives are proportional to i2 and
have to be evaluated by taking the real part of the function. These limitations were overcome
by the generalization of the method by using the complex representation of the Taylor series
by Lai and Crassidis (2008) and additional sample points in the complex plane and using
Fast Fourier Transform (FFT) by Bagley (2006), allowing to compute high order derivative
approximations with high accuracy. Major extensions of the method were made by Cerviño
and Bewley (2003) with an application to pseudospectral simulation codes which uses the
FFT. Optimization problems involving dynamical systems modeled as nonlinear differential
equations were carried out by Kim et al. (2005) and Kim et al. (2006), where the method is
applied to two robust performance analysis problems. Several new CS approximations based
on orthogonal complex numbers coupled with Richardson extrapolations were presented by
Lai et al. (2005) and successfully applied to a second order Kalman filter. Sensitivity analysis
using the CS method was carried out by Veer N. (1999), Martins et al. (2000), Burg and
Newman (2003), Anderson et al. (2001), Martins et al. (2003), Burg and Newman (2003),
DePauw and Vanrolleghem (2005), Gao and He (2005), Wang and Apte (2006), Voorhees et al.
(2009), Jin et al. (2010) and Voorhees et al. (2011). Recently the CS method has been applied
as a tool for computing Fréchet derivatives of a matrix function by Al-Mohy and Higham (2010)
showing its superiority over finite differences. Inverse problems in structural mechanics by
Dennis et al. (2011). In the field of geophysics it was Abokhodair (2007) and Abokhodair (2009)
who extended the CS method using central differencing in the complex plane; he referred to
the new method as semiautomatic differentiation (SD) and applied it for computing accurate
approximation of gradients, Jacobians and Hessians as well as 2D and 3D partial and cross-
partial spatial derivatives in the geophysical inversion and the geophysical source imaging
processes.

The CS method can be very easily derived from the Taylor series expansion of f(x + i∆x),
i.e.,

f(x+ i∆x) = f(x) + i∆xf ′(x) +
(i∆x)2

2!
f ′′(x) +

(i∆x)3

3!
f ′′′(x) + ... =

∞∑
n=0

(i∆x)n

n!
fn(x). (4.1)

Taking the imaginary part on both sides and reordering we obtain the CS expression for
the first derivative found by Squire and Trapp (1998),

f ′(x) =
Im(f(x+ i∆x))

∆x
+O

(
∆x2

)
. (4.2)

Note that, Im(f(x)) = 0 because x is set to be a real number.
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The second order term in the Taylor series expansion of f(x + i∆x) appears with a factor
of i2, meaning it is a real quantity. An expression for the second order derivative can be found
by taking the real part of 4.1 and reordering,

f ′′(x) =
2(f(x)−Re(f(x+ i∆x)))

∆x2
+O

(
∆x2

)
. (4.3)

Using the Taylor series expansion of f(x− i∆x), it can be verified that

Re(f(x+ i∆x)) = Re(f(x− i∆x)) and Im(f(x+ i∆x)) = −Im(f(x− i∆x)). (4.4)

Therefore, Eqs. 4.2 and 4.3 can be respectively written as

f ′(x) = −Im(f(x− i∆x))

∆x
+O

(
∆x2

)
, (4.5)

f ′′(x) =
2(f(x)−Re(f(x− i∆x)))

∆x2
+O

(
∆x2

)
. (4.6)

Eqs. 4.2 and 4.3 are the most basic equations that can be found using 4.1. The numeri-
cal advantages of the CS method are noticeable: Eq. 4.2 actually shows a single term in the
numerator rather than a difference, and hereby circumvents the instability related to term
cancellation inherent to all classic real valued FD approximations besides being more accu-
rate. Eqs. 4.3 and 4.6 allows to compute an approximation to the second derivative in a single
step that can not be achieved by any FD approximation.

Generalizations to high order derivatives made by Bagley (2006) and Lai and Crassidis
(2008) were done by converting the Taylor series into a Fourier series (Taylor expansion of
f(x+ ∆x eiθ)), i.e.,

f(x+ ∆x eiθ) = f(x) + ∆xeiθf ′(x) +
∆x2

2!
e2iθf ′′(x) + ... =

∞∑
n=0

(∆x)n

n!
eniθfn(x). (4.7)

In the expression 4.7 the imaginary step does not vanish with even powers of the Taylor
series which allows to compute high order derivatives by combining different ∆x steps values
and using the real or imaginary part without the limitations of the ordinary CS method. The
main limitation of this formulation is that the real and imaginary steps are set to be orthogonal
(eiθ = cos θ+ i sin θ) depending on a parameter θ, in other words we can not choose the relation
between real and imaginary step sizes which brings many advantages as discussed below.

4.3 Generalization of the Complex Step Method

In this work a very simple and straightforward generalization of all the previous variants of
the CS method is done. Interpreting the concept of the CS method in a more strict sense, we
introduce both real and imaginary differential steps together. Based on a function f(x+h+iv),
the corresponding Taylor series expansion is

f(x+ h+ iv) = f(x) + (h+ iv)f ′(x) +
(h+ iv)2

2!
f ′′(x) + ... =

∞∑
n=0

(h+ iv)n

n!
fn(x), (4.8)
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where h and v are real numbers related to the real and imaginary differential steps.

We explore the range of possibilities arising from the Taylor series expansion of f(x+h+iv),
f(x−h+ iv), f(x−h− iv) and f(x+h− iv), taking their real and imaginary parts, as well as the
Taylor expansions of f(x+h) and f(x−h). Note that unlike in the Taylor expansion for the CS
method 4.1, for the generalized CS the imaginary unit remains alive in the even terms of the
Taylor series 4.8, which allow us to extend the CS method to second order derivatives using
the imaginary part of the function in a very easy way. We want to emphasize that beyond the
possibilities considered here, many more different expressions for the first and second order
derivative approximations can be derived, for example using the terms f(x + 2h + 2iv) and
f(x + h + iv) to find an expression for the second order derivative. However, our intention
is to find expressions as close as possible to the evaluation point x that enable designing a
generalized complex step finite difference scheme on a compact stencil. Here, only one layer
of differential complex steps of magnitude h and v in positive and negative, real and imaginary
directions is considered.

In the following subsections we present a complete list of different kinds of approximations
for the first and second order derivatives on a compact stencil. After this exercise, we will test
the numerical performance of each approximation and discuss their behavior.

4.3.1 First Order Derivatives using the imaginary part

The first approximation that can be found by using 4.8 is

f ′(x) =
Im(f(x+ h+ iv))

v
+O

(
h, v2

)
. (4.9)

Note that the approximation error is expressed with a coma; this means the truncation
error related to the real and the imaginary step that are not in the same term of the Taylor
series. It is easy to see that letting h = 0, the Eq. 4.2 and the CS expression for the first
derivative 4.9 are equivalent.

f ′(x) =
Im(f(x− h+ iv))

v
+O

(
h, v2

)
. (4.10)

f ′(x) = −Im(f(x− h− iv))

v
+O

(
h, v2

)
. (4.11)

f ′(x) = −Im(f(x+ h− iv))

v
+O

(
h, v2

)
. (4.12)

f ′(x) =
Im(f(x+ h+ iv))− Im(f(x+ h− iv))

2v
+O

(
hv
)
. (4.13)

f ′(x) =
Im(f(x− h+ iv))− Im(f(x− h− iv))

2v
+O

(
hv
)
. (4.14)

f ′(x) =
Im(f(x+ h+ iv)) + Im(f(x− h+ iv))

2v
+O

(
3h2 − v2

)
. (4.15)
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f ′(x) =
Im(f(x+ h+ iv))− Im(f(x− h− iv))

2v
+O

(
3h2 − v2

)
. (4.16)

Eq. 4.16 was suggested by Lai et. al Lai et al. (2005), considering h = v =
√

2
2 .

f ′(x) =
Im(f(x− h+ iv))− Im(f(x+ h− iv))

2v
+O

(
3h2 − v2

)
. (4.17)

f ′(x) = −Im(f(x− h− iv)) + Im(f(x+ h− iv))

2v
+O

(
3h2 − v2

)
. (4.18)

f ′(x) =
Im(f(x+ h+ iv)) + Im(f(x− h+ iv))− Im(f(x+ h− iv))− Im(f(x− h− iv))

4v

+O
(
3h2 − v2

)
. (4.19)

Note that for the particular choice v =
√

3h in Eqs. 4.15, 4.16, 4.17, 4.18 and 4.19, the
truncation error becomes O

(
h4
)
. Also note that many expressions are equivalent by applying

Imf(x± h+ iv)) = −Im(f(x± h− iv)).

Now, by using f(x+ h) and f(x− h) in conjunction with the imaginary parts we can obtain
the following.

f ′(x) =
Im(f(x+ h+ iv)) + f(x+ h)− f(x)

h+ v
+O

(hv + h2

2

h+ v

)
. (4.20)

f ′(x) =
Im(f(x+ h+ iv))− f(x− h) + f(x)

h+ v
+O

(hv − h2

2

h+ v

)
. (4.21)

f ′(x) =
Im(f(x− h+ iv)) + f(x+ h)− f(x)

h+ v
+O

( h2

2 − hv
h+ v

)
. (4.22)

f ′(x) =
Im(f(x− h+ iv))− f(x− h) + f(x)

h+ v
+O

(hv + h2

2

h+ v

)
. (4.23)

f ′(x) =
f(x+ h)− f(x)− Im(f(x− h− iv))

h+ v
+O

( h2

2 − hv
h+ v

)
. (4.24)

f ′(x) =
f(x)− f(x− h)− Im(f(x− h− iv))

h+ v
+O

(hv + h2

2

h+ v

)
. (4.25)

f ′(x) =
f(x+ h)− f(x)− Im(f(x+ h− iv))

h+ v
+O

(hv + h2

2

h+ v

)
. (4.26)
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f ′(x) =
f(x)− f(x− h)− Im(f(x+ h− iv))

h+ v
+O

(hv − h2

2

h+ v

)
. (4.27)

If we set h = 2v in Eqs. 4.21, 4.22, 4.24 and 4.27 the truncation error becomes O
(
v2
)
.

f ′(x) =
Im(f(x+ h+ iv)) + Im(f(x− h+ iv)) + f(x+ h)− f(x− h)

2h+ 2v
+O

(2h3 + 3h2v − v3

2h+ 2v

)
.

(4.28)

f ′(x) =
Im(f(x+ h+ iv))− Im(f(x− h− iv)) + f(x+ h)− f(x− h)

2h+ 2v
+O

(2h3 + 3h2v − v3

2h+ 2v

)
.

(4.29)

f ′(x) =
Im(f(x+ h+ iv))− Im(f(x+ h− iv)) + f(x+ h)− f(x− h)

2h+ 2v
+O

(2h3 + 3h2v − v3

2h+ 2v

)
.

(4.30)

f ′(x) =
Im(f(x− h+ iv))− Im(f(x− h− iv)) + f(x+ h)− f(x− h)

2h+ 2v
+O

(2h3 + 3h2v − v3

2h+ 2v

)
.

(4.31)

f ′(x) =
f(x+ h)− f(x− h)− Im(f(x− h− iv))− Im(f(x+ h− iv))

2h+ 2v
+O

(2h3 + 3h2v − v3

2h+ 2v

)
.

(4.32)

f ′(x) =
Im(f(x+ h+ iv)) + Im(f(x− h+ iv))− Im(f(x− h− iv))

2h+ 4v

+
f(x+ h)− f(x− h)− Im(f(x+ h− iv))

2h+ 4v
+O

(2h3 + 3h2v − v3

2h+ 4v

)
. (4.33)

Making the expression 2h3 + 3h2v − v3 = 0, by selecting the right values of h and v, the

truncation error for Eqs. 4.28 - 4.33 becomes O
(

2h5+5h4v−10h2v3+v5

2h+2v

)
.

If we consider h = 0 in the imaginary part only we can obtain several approximations with
similar structure of equations 4.20 - 4.27 but only reaching to first order of accuracy without
having the chance of choosing values of h and v. The following approximation can reach to
higher order accuracy:

f ′(x) =
Im(f(x+ iv))− Im(f(x− iv)) + f(x+ h)− f(x− h)

2h+ 2v
+O

( h3 − v3

2h+ 2v

)
. (4.34)

Setting h = v the truncation error for Eq. 4.34 becomes O
(
h4
)
.
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4.3.2 Second Order Derivatives using the imaginary part

f ′′(x) =
Im(f(x+ h+ iv))− Im(f(x− h+ iv))

2hv
+O

(
h2 − v2

)
. (4.35)

Eq. 4.35 has been suggested by several authors: Abokhodair Abokhodair (2007),Abokho-
dair (2009), recommends choosing h � v, Cao Cao (2008) with h = v =

√
ε, where ε is the

machine accuracy. Lai et. al Lai and Crassidis (2008) obtain a similar approximation by con-
sidering orthogonal complex steps.

f ′′(x) =
Im(f(x+ h+ iv)) + Im(f(x− h− iv))

2hv
+O

(
h2 − v2

)
. (4.36)

Eq. 4.36 has been suggested by Lai et. al Lai et al. (2005), considering h = v =
√

2
2 .

f ′′(x) = −Im(f(x− h+ iv)) + Im(f(x+ h− iv))

2hv
+O

(
h2 − v2

)
. (4.37)

f ′′(x) =
Im(f(x− h− iv))− Im(f(x+ h− iv))

2hv
+O

(
h2 − v2

)
. (4.38)

f ′′(x) =
Im(f(x+ h+ iv))− Im(f(x− h+ iv)) + Im(f(x− h− iv))− Im(f(x+ h− iv))

4hv

+O
(
h2 − v2

)
. (4.39)

If we set v = h in Eqs. 4.35 - 4.39 the truncation error becomes O
(
h4
)
.

Now using f(x + h) and f(x − h) we can obtain (from the approximations 4.40 - 4.47 we
have to assume that h = v) the following.

f ′′(x) =
2(Im(f(x+ h+ ih))− f(x+ h) + f(x))

h2
+O

(
h
)
. (4.40)

f ′′(x) =
2(Im(f(x+ h+ ih)) + f(x− h)− f(x))

3h2
+O

(
h
)
. (4.41)

f ′′(x) =
2(f(x+ h)− Im(f(x− h+ ih))− f(x))

3h2
+O

(
h
)
. (4.42)

f ′′(x) =
2(f(x)− Im(f(x− h+ ih))− f(x− h))

h2
+O

(
h
)
. (4.43)

f ′′(x) =
2(Im(f(x− h− ih)) + f(x+ h)− f(x))

3h2
+O

(
h
)
. (4.44)

f ′′(x) =
2(Im(f(x− h− ih)) + f(x)− f(x− h))

h2
+O

(
h
)
. (4.45)
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f ′′(x) =
2(f(x)− Im(f(x+ h− ih))− f(x+ h))

h2
+O

(
h
)
. (4.46)

f ′′(x) =
2(f(x− h)− Im(f(x+ h− ih))− f(x))

3h2
+O

(
h
)
. (4.47)

f ′′(x) =
Im(f(x+ h+ iv))− Im(f(x− h+ iv)) + f(x+ h) + f(x− h)− 2f(x)

h2 + 2hv

+O
(h4 + 4h3v − 4hv3

h2 + 2hv

)
. (4.48)

f ′′(x) =
Im(f(x+ h+ iv)) + Im(f(x− h− iv)) + f(x+ h) + f(x− h)− 2f(x)

h2 + 2hv

+O
(h4 + 4h3v − 4hv3

h2 + 2hv

)
. (4.49)

f ′′(x) =
Im(f(x− h− iv))− Im(f(x+ h− iv)) + f(x+ h) + f(x− h)− 2f(x)

h2 + 2hv

+O
(h4 + 4h3v − 4hv3

h2 + 2hv

)
. (4.50)

f ′′(x) =
Im(f(x+ h+ iv)) + Im(f(x− h− iv))− Im(f(x− h+ iv))

h2 + 4hv

+
f(x+ h) + f(x− h)− 2f(x)− Im(f(x+ h− iv))

h2 + 4hv
+O

(h4 + 4h3v − 4hv3

h2 + 2hv

)
. (4.51)

Making the expression h4 + 4h3v − 4hv3 = 0, by selecting the right values of h and v, the

truncation error for Eqs. 4.48 - 4.51 becomes O
(

2h6+6h5v−20h3v3+6hv5

h2+2hv

)
.

4.3.3 First Order Derivatives using the real part

f ′(x) =
Re(f(x+ h+ iv))− f(x)

h
+O

(h2 − v2

h

)
. (4.52)

f ′(x) =
f(x)−Re(f(x− h+ iv))

h
+O

(h2 − v2

h

)
. (4.53)

f ′(x) =
f(x)−Re(f(x− h− iv))

h
+O

(h2 − v2

h

)
. (4.54)

f ′(x) =
Re(f(x+ h− iv))− f(x)

h
+O

(h2 − v2

h

)
. (4.55)

If we set h = v in Eqs. 4.52 - 4.55, the truncation error becomes O
(
h2
)
.
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f ′(x) =
Re(f(x+ h+ iv))−Re(f(x− h+ iv))

2h
+O

(
h2 − 3v2

)
. (4.56)

Eq. 4.56 has been suggested by Abokhodair Abokhodair (2007),Abokhodair (2009).

f ′(x) =
Re(f(x+ h+ iv))−Re(f(x− h− iv))

2h
+O

(
h2 − 3v2

)
. (4.57)

f ′(x) =
Re(f(x+ h− iv))−Re(f(x− h+ iv))

2h
+O

(
h2 − 3v2

)
. (4.58)

f ′(x) =
Re(f(x+ h− iv))−Re(f(x− h− iv))

2h
+O

(
h2 − 3v2

)
. (4.59)

f ′(x) =
Re(f(x+ h+ iv))−Re(f(x− h+ iv)) + Re(f(x+ h− iv))−Re(f(x− h− iv))

4h

+O
(
h2 − 3v2

)
. (4.60)

If we set h =
√

3v in Eqs. 4.56 - 4.60, the truncation error becomes O
(
v4
)
.

f ′(x) =
Re(f(x+ h+ iv)) + Re(f(x+ h− iv))− 2f(x)

2h
+O

(h2 − v2

h

)
. (4.61)

f ′(x) =
2f(x)−Re(f(x− h− iv))−Re(f(x− h+ iv))

2h
+O

(h2 − v2

h

)
. (4.62)

If we set h = v in Eqs. 4.61 and 4.62 the truncation error becomes O
(
h2
)
.

Note that many expressions are equivalent by applying Re(f(x+h±iv)) = −Re(f(x−h±iv)).
Now using f(x+ h) and f(x− h) we can obtain the following

f ′(x) =
Re(f(x+ h+ iv)) + f(x+ h)− 2f(x)

2h
+O

(
h, v
)
. (4.63)

f ′(x) =
Re(f(x+ h+ iv))− f(x− h)

2h
+O

(
h, v
)
. (4.64)

f ′(x) =
f(x+ h)−Re(f(x− h+ iv))

2h
+O

(
h, v
)
. (4.65)

f ′(x) =
2f(x)−Re(f(x− h+ iv))− f(x− h)

2h
+O

(
h, v
)
. (4.66)

f ′(x) =
f(x+ h)−Re(f(x− h− iv))

2h
+O

(
h, v
)
. (4.67)
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f ′(x) =
2f(x)−Re(f(x− h− iv))− f(x− h)

2h
+O

(
h, v
)
. (4.68)

f ′(x) =
Re(f(x+ h− iv)) + f(x+ h)− 2f(x)

2h
+O

(
h, v
)
. (4.69)

f ′(x) =
Re(f(x+ h− iv))− f(x− h)

2h
+O

(
h, v
)
. (4.70)

f ′(x) =
Re(f(x+ h+ iv))−Re(f(x− h+ iv)) + f(x+ h)− f(x− h)

4h
+O

(
2h2 − 3v2

)
. (4.71)

f ′(x) =
Re(f(x+ h+ iv))−Re(f(x− h− iv)) + f(x+ h)− f(x− h)

4h
+O

(
2h2 − 3v2

)
. (4.72)

f ′(x) =
Re(f(x+ h− iv))−Re(f(x− h+ iv)) + f(x+ h)− f(x− h)

4h
+O

(
2h2 − 3v2

)
. (4.73)

f ′(x) =
Re(f(x+ h− iv))−Re(f(x− h− iv)) + f(x+ h)− f(x− h)

4h
+O

(
2h2 − 3v2

)
. (4.74)

f ′(x) =
Re(f(x+ h+ iv))−Re(f(x− h+ iv))−Re(f(x− h− iv))

6h

+
Re(f(x+ h− iv)) + f(x+ h)− f(x− h)

6h
+O

(
h2 − 2v2

)
. (4.75)

If we set 2h2 = 3v2 in Eqs. 4.71 - 4.74 and letting h2 = 2v2 in Eq. 4.75, the truncation error
becomes O

(
h4
)
.

f ′(x) =
Re(f(x+ h+ iv)) + Re(f(x+ h− iv)) + f(x+ h)− f(x− h)− 2f(x)

4h
+O

(h2 − v2

h

)
.

(4.76)

f ′(x) =
2f(x)−Re(f(x− h+ iv))−Re(f(x− h− iv)) + f(x+ h)− f(x− h)

4h
+O

(h2 − v2

h

)
.

(4.77)

If we set v = h in Eqs. 4.76 and 4.77, the truncation error becomes O
(
h2
)
.
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4.3.4 Second Order Derivatives using the real part

f ′′(x) =
Re(f(x+ h+ iv)) + Re(f(x− h+ iv))− 2f(x)

(h2 − v2)
+O

(h4 − 6h2v2 + v4

h2 − v2

)
. (4.78)

f ′′(x) =
Re(f(x+ h− iv)) + Re(f(x− h− iv))− 2f(x)

(h2 − v2)
+O

(h4 − 6h2v2 + v4

h2 − v2

)
. (4.79)

f ′′(x) =
Re(f(x+ h+ iv)) + Re(f(x− h− iv))− 2f(x)

(h2 − v2)
+O

(h4 − 6h2v2 + v4

h2 − v2

)
. (4.80)

f ′′(x) =
Re(f(x+ h− iv)) + Re(f(x− h+ iv))− 2f(x)

(h2 − v2)
+O

(h4 − 6h2v2 + v4

h2 − v2

)
. (4.81)

f ′′(x) =
Re(f(x+ h+ iv)) + Re(f(x− h+ iv)) + Re(f(x+ h− iv)) + Re(f(x− h− iv))− 4f(x)

2(h2 − v2)

+O
(h4 − 6h2v2 + v4

h2 − v2

)
. (4.82)

Making the expression h4 − 6h2v2 + v4 = 0, by selecting the right values of h and v, the

truncation error for Eqs. 4.78 - 4.82 becomes O
(
h6−15h4v2+15h2v4−v6

h2−v2

)
.

Now using f(x+ h) and f(x− h) we can obtain the following

f ′′(x) =
2(f(x+ h)−Re(f(x+ h+ iv)))

v2
+O

(
h, v2

)
. (4.83)

f ′′(x) =
Re(f(x+ h+ iv)) + f(x− h)− 2f(x)

h2 − v2

2

+O
( v2h

h2 − v2

2

)
. (4.84)

f ′′(x) =
Re(f(x− h+ iv)) + f(x+ h)− 2f(x)

h2 − v2

2

+O
( v2h

h2 − v2

2

)
. (4.85)

f ′′(x) =
2(f(x− h)−Re(f(x− h+ iv)))

v2
+O

(
h, v2

)
. (4.86)

f ′′(x) =
Re(f(x− h− iv)) + f(x+ h)− 2f(x)

h2 − v2

2

+O
( v2h

h2 − v2

2

)
. (4.87)

f ′′(x) =
2(f(x− h)−Re(f(x− h− iv)))

v2
+O

(
h, v2

)
. (4.88)

f ′′(x) =
2(f(x+ h)−Re(f(x+ h− iv)))

v2
+O

(
h, v2

)
. (4.89)
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f ′′(x) =
Re(f(x+ h− iv)) + f(x− h)− 2f(x)

h2 − v2

2

+O
( v2h

h2 − v2

2

)
. (4.90)

f ′′(x) =
f(x+ h) + f(x− h)−Re(f(x+ h+ iv))−Re(f(x− h+ iv))

v2
+O

(
v2 − 6h2

)
. (4.91)

f ′′(x) =
f(x+ h) + f(x− h)−Re(f(x+ h+ iv))−Re(f(x− h− iv))

v2
+O

(
v2 − 6h2

)
. (4.92)

f ′′(x) =
f(x+ h) + f(x− h)−Re(f(x+ h− iv))−Re(f(x− h+ iv))

v2
+O

(
v2 − 6h2

)
. (4.93)

f ′′(x) =
f(x+ h) + f(x− h)−Re(f(x+ h− iv))−Re(f(x− h− iv))

v2
+O

(
v2 − 6h2

)
. (4.94)

f ′′(x) =
2f(x+ h) + 2f(x− h)−Re(f(x+ h+ iv))−Re(f(x− h+ iv))

2v2

− Re(f(x− h− iv)) + Re(f(x+ h− iv))

2v2
+O

(
v2 − 6h2

)
. (4.95)

If we set v2 = 6h2 in Eqs. 4.91 - 4.95, the truncation error becomes O
(
h4
)
.

f ′′(x) =
Re(f(x+ h+ iv)) + Re(f(x− h+ iv)) + f(x+ h) + f(x− h)− 4f(x)

2h2 − v2

+O
(2h4 − 6h2v2 + v4

2h2 − v2

)
. (4.96)

f ′′(x) =
Re(f(x+ h+ iv)) + Re(f(x− h− iv)) + f(x+ h) + f(x− h)− 4f(x)

2h2 − v2

+O
(2h4 − 6h2v2 + v4

2h2 − v2

)
. (4.97)

f ′′(x) =
Re(f(x+ h− iv)) + Re(f(x− h+ iv)) + f(x+ h) + f(x− h)− 4f(x)

2h2 − v2

+O
(2h4 − 6h2v2 + v4

2h2 − v2

)
. (4.98)

f ′′(x) =
Re(f(x+ h− iv)) + Re(f(x− h− iv)) + f(x+ h) + f(x− h)− 4f(x)

2h2 − v2

+O
(2h4 − 6h2v2 + v4

2h2 − v2

)
. (4.99)

f ′′(x) =
Re(f(x+ h+ iv)) + Re(f(x− h+ iv)) + Re(f(x− h− iv))

3h2 − 2v2

+
Re(f(x+ h− iv)) + f(x+ h) + f(x− h)− 6f(x)

3h2 − 2v2
+O

(3h4 − 12h2v2 + 2v4

3h2 − 2v2

)
. (4.100)
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Making the expressions 2h4−6h2v2 +v4 = 0 and 3h4−12h2v2 +2v4 = 0 by selecting the right

values of h and v, the truncation error for Eqs. 4.96 - 4.99 becomes O
(

2h6−15h4v2+15h2v4−v6

2h2−v2

)
and O

(
2h6−15h4v2+15h2v4−v6

3h2−2v2

)
for Eq. 4.100.

If we consider h = 0 in the real part only we can obtain the following approximations

f ′′(x) =
Re(f(x+ iv)) + Re(f(x− iv)) + f(x+ h) + f(x− h)− 4f(x)

h2 − v2
+O

(h4 + v4

h2 − v2

)
. (4.101)

f ′′(x) =
f(x+ h) + f(x− h)−Re(f(x+ iv))−Re(f(x− iv))

h2 + v2
+O

(h4 − v4

h2 + v2

)
. (4.102)

Setting v = h in Eq. 4.102, the truncation error becomes O
(
h4
)
.

f ′′(x) =
f(x+ h) + f(x− h)− f(x)−Re(f(x+ iv))

h2 + v2

2

+O
(2h4 − v4

h2 + v2

2

)
. (4.103)

Setting 4
√

2h = v in Eq. 4.103, the truncation error becomes O
(
v4
)
.

4.4 Numerical tests

The different kinds of approximations for the first and second order derivatives 4.9 - 4.102
show different truncation errors and - according to the structure of the numerator - either
avoid subtractive cancellation, or not. Note that a formal summation in the numerator is not
a sufficient criterion to decide this question, because the individual terms may have opposite
sign. To validate Eqs. 4.9 - 4.102, we use an analytic test function that has become an estab-
lished de-facto standard in numerical differentiation, used by Lyness and Sande (1971) and
subsequently by many authors:

f(x) =
ex

sin3(x) + cos3(x)
.

Consistent with previous work on complex variable differentiation, we evaluate the func-
tion at the test point x = 1.5, which has the following values for the first and second deriva-
tives: f ′(x) = 3.622 and f ′′(x) = 14.5683.

Simulations have been carried out in Fortran90 language and the GNU Fortran compiler
gfortran with standard double precision format for all variables.

Results are displayed systematically in tables where increment value h starts from 1e−1

decreasing geometrically to 1e−25, plotted in the left column of the tables. The v value is taken
as v = h, unless a better, specific choice of v versus h was adopted to increase the order of the
approximation error as indicated in the description of Eqs. 4.9 - 4.102 in the previous section.
In the Tables, all errors are relative errors. The tested approximations are identified in the top
row of the tables with the number of the respective equation.
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h Eq. 3.3 ERROR Eq. 4.9 ERROR Eq. 4.10 ERROR Eq. 4.11 ERROR Eq. 4.12 ERROR
0.1 4.4557 0.23016 5.2614 0.45262 2.35 0.35119 2.35 0.35119 5.2614 0.45262

0.01 3.6958 0.020374 3.7696 0.040744 3.4782 0.039698 3.4782 0.039698 3.7696 0.040744
0.001 3.6295 0.0020606 3.6366 0.0040276 3.6075 0.0040171 3.6075 0.0040171 3.6366 0.0040276

0.0001 3.6234 0.00036712 3.6235 0.00040236 3.6206 0.00040219 3.6206 0.00040219 3.6235 0.00040236
1e-05 3.627 0.0013782 3.6222 4.0236e-05 3.6219 4.0316e-05 3.6219 4.0316e-05 3.6222 4.0236e-05
1e-06 3.4542 0.046324 3.622 3.8184e-06 3.622 3.8532e-06 3.622 3.8532e-06 3.622 3.8184e-06
1e-07 4.3178 0.19209 3.622 4.7626e-07 3.622 4.8269e-07 3.622 4.8269e-07 3.622 4.7626e-07
1e-08 0 1 3.622 2.0979e-08 3.622 2.0979e-08 3.622 2.0979e-08 3.622 2.0979e-08
1e-09 0 1 3.622 4.3183e-08 3.622 4.3183e-08 3.622 4.3183e-08 3.622 4.3183e-08
1e-10 0 1 3.622 1.5497e-09 3.622 1.5497e-09 3.622 1.5497e-09 3.622 1.5497e-09
1e-11 0 1 3.622 1.8897e-08 3.622 1.8897e-08 3.622 1.8897e-08 3.622 1.8897e-08
1e-12 0 1 3.622 1.8897e-08 3.622 1.8897e-08 3.622 1.8897e-08 3.622 1.8897e-08
1e-13 0 1 3.622 3.2449e-08 3.622 3.2449e-08 3.622 3.2449e-08 3.622 3.2449e-08
1e-14 0 1 3.622 3.2449e-08 3.622 3.2449e-08 3.622 3.2449e-08 3.622 3.2449e-08
1e-15 0 1 3.622 1.1274e-08 3.622 1.1274e-08 3.622 1.1274e-08 3.622 1.1274e-08
1e-16 0 1 3.622 1.9612e-09 3.622 1.9612e-09 3.622 1.9612e-09 3.622 1.9612e-09
1e-17 0 1 3.622 3.1126e-08 3.622 3.1126e-08 3.622 3.1126e-08 3.622 3.1126e-08
1e-18 0 1 3.622 3.0913e-08 3.622 3.0913e-08 3.622 3.0913e-08 3.622 3.0913e-08
1e-19 0 1 3.622 1.7988e-08 3.622 1.7988e-08 3.622 1.7988e-08 3.622 1.7988e-08
1e-20 0 1 3.622 3.4144e-08 3.622 3.4144e-08 3.622 3.4144e-08 3.622 3.4144e-08
1e-21 0 1 3.622 4.6636e-08 3.622 4.6636e-08 3.622 4.6636e-08 3.622 4.6636e-08
1e-22 0 1 3.622 1.6473e-08 3.622 1.6473e-08 3.622 1.6473e-08 3.622 1.6473e-08
1e-23 0 1 3.622 1.5081e-08 3.622 1.5081e-08 3.622 1.5081e-08 3.622 1.5081e-08
1e-24 0 1 3.622 4.6403e-09 3.622 4.6403e-09 3.622 4.6403e-09 3.622 4.6403e-09
1e-25 0 1 3.622 4.6403e-09 3.622 4.6403e-09 3.622 4.6403e-09 3.622 4.6403e-09

Table 4.1: First order derivatives validation : f(x) = ex

sin3(x)+cos3(x)
, x = 1.5, f ′(x) = 3.622.

h Eq. 4.13 ERROR Eq. 4.14 ERROR Eq. 4.15 ERROR Eq. 4.16 ERROR Eq. 4.17 ERROR
0.1 5.2614 0.45262 2.35 0.35119 3.6006 0.0059312 3.6006 0.0059312 3.6006 0.0059312

0.01 3.7696 0.040744 3.4782 0.039698 3.622 6.3492e-07 3.622 6.3492e-07 3.622 6.3492e-07
0.001 3.6366 0.0040276 3.6075 0.0040171 3.622 2.4113e-08 3.622 2.4113e-08 3.622 2.4113e-08

0.0001 3.6235 0.00040236 3.6206 0.00040219 3.622 2.5651e-08 3.622 2.5651e-08 3.622 2.5651e-08
1e-05 3.6222 4.0236e-05 3.6219 4.0316e-05 3.622 1.638e-08 3.622 1.638e-08 3.622 1.638e-08
1e-06 3.622 3.8184e-06 3.622 3.8532e-06 3.622 1.6383e-08 3.622 1.6383e-08 3.622 1.6383e-08
1e-07 3.622 4.7626e-07 3.622 4.8269e-07 3.622 1.6382e-08 3.622 1.6382e-08 3.622 1.6382e-08
1e-08 3.622 2.0979e-08 3.622 2.0979e-08 3.622 3.6894e-08 3.622 3.6894e-08 3.622 3.6894e-08
1e-09 3.622 4.3183e-08 3.622 4.3183e-08 3.622 1.5653e-09 3.622 1.5653e-09 3.622 1.5653e-09
1e-10 3.622 1.5497e-09 3.622 1.5497e-09 3.622 3.3615e-08 3.622 3.3615e-08 3.622 3.3615e-08
1e-11 3.622 1.8897e-08 3.622 1.8897e-08 3.622 2.6478e-08 3.622 2.6478e-08 3.622 2.6478e-08
1e-12 3.622 1.8897e-08 3.622 1.8897e-08 3.622 1.3959e-08 3.622 1.3959e-08 3.622 1.3959e-08
1e-13 3.622 3.2449e-08 3.622 3.2449e-08 3.622 2.9608e-08 3.622 2.9608e-08 3.622 2.9608e-08
1e-14 3.622 3.2449e-08 3.622 3.2449e-08 3.622 4.8638e-08 3.622 4.8638e-08 3.622 4.8638e-08
1e-15 3.622 1.1274e-08 3.622 1.1274e-08 3.622 2.4186e-08 3.622 2.4186e-08 3.622 2.4186e-08
1e-16 3.622 1.9612e-09 3.622 1.9612e-09 3.622 6.3786e-09 3.622 6.3786e-09 3.622 6.3786e-09
1e-17 3.622 3.1126e-08 3.622 3.1126e-08 3.622 1.2724e-08 3.622 1.2724e-08 3.622 1.2724e-08
1e-18 3.622 3.0913e-08 3.622 3.0913e-08 3.622 1.2724e-08 3.622 1.2724e-08 3.622 1.2724e-08
1e-19 3.622 1.7988e-08 3.622 1.7988e-08 3.622 1.7124e-08 3.622 1.7124e-08 3.622 1.7124e-08
1e-20 3.622 3.4144e-08 3.622 3.4144e-08 3.622 3.5779e-08 3.622 3.5779e-08 3.622 3.5779e-08
1e-21 3.622 4.6636e-08 3.622 4.6636e-08 3.622 3.5779e-08 3.622 3.5779e-08 3.622 3.5779e-08
1e-22 3.622 1.6473e-08 3.622 1.6473e-08 3.622 3.5779e-08 3.622 3.5779e-08 3.622 3.5779e-08
1e-23 3.622 1.5081e-08 3.622 1.5081e-08 3.622 3.5779e-08 3.622 3.5779e-08 3.622 3.5779e-08
1e-24 3.622 4.6403e-09 3.622 4.6403e-09 3.622 1.3007e-08 3.622 1.3007e-08 3.622 1.3007e-08
1e-25 3.622 4.6403e-09 3.622 4.6403e-09 3.622 1.5459e-08 3.622 1.5459e-08 3.622 1.5459e-08

Table 4.2: First order derivatives validation : f(x) = ex

sin3(x)+cos3(x)
, x = 1.5, f ′(x) = 3.622.
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h Eq. 4.18 ERROR Eq. 4.19 ERROR Eq. 4.20 ERROR Eq. 4.21 ERROR Eq. 4.22 ERROR
0.1 3.6006 0.0059312 3.6006 0.0059312 4.8586 0.34139 2.9807 0.17707 4.4557 0.23016

0.01 3.622 6.3492e-07 3.622 6.3492e-07 3.7327 0.030559 3.5501 0.019852 3.6958 0.020374
0.001 3.622 2.4113e-08 3.622 2.4113e-08 3.6331 0.0030441 3.6149 0.0019619 3.6295 0.0020606
0.0001 3.622 2.5651e-08 3.622 2.5651e-08 3.6234 0.00038474 3.6219 3.5223e-05 3.6234 0.00036712
1e-05 3.622 1.638e-08 3.622 1.638e-08 3.6246 0.00070921 3.6269 0.0013379 3.627 0.0013782
1e-06 3.622 1.6383e-08 3.622 1.6383e-08 3.5381 0.02316 3.4542 0.046328 3.4542 0.046324
1e-07 3.622 1.6382e-08 3.622 1.6382e-08 3.9699 0.096047 4.3178 0.19209 4.3178 0.19209
1e-08 3.622 3.6894e-08 3.622 3.6894e-08 1.811 0.5 0 1 0 1
1e-09 3.622 1.5653e-09 3.622 1.5653e-09 1.811 0.5 0 1 0 1
1e-10 3.622 3.3615e-08 3.622 3.3615e-08 1.811 0.5 0 1 0 1
1e-11 3.622 2.6478e-08 3.622 2.6478e-08 1.811 0.50001 0 1 0 1
1e-12 3.622 1.3959e-08 3.622 1.3959e-08 1.811 0.50001 0 1 0 1
1e-13 3.622 2.9608e-08 3.622 2.9608e-08 1.8119 0.49976 0 1 0 1
1e-14 3.622 4.8638e-08 3.622 4.8638e-08 1.8208 0.49731 0 1 0 1
1e-15 3.622 2.4186e-08 3.622 2.4186e-08 1.7764 0.50957 0 1 0 1
1e-16 3.622 6.3786e-09 3.622 6.3786e-09 0 1 0 1 0 1
1e-17 3.622 1.2724e-08 3.622 1.2724e-08 0 1 0 1 0 1
1e-18 3.622 1.2724e-08 3.622 1.2724e-08 0 1 0 1 0 1
1e-19 3.622 1.7124e-08 3.622 1.7124e-08 0 1 0 1 0 1
1e-20 3.622 3.5779e-08 3.622 3.5779e-08 0 1 0 1 0 1
1e-21 3.622 3.5779e-08 3.622 3.5779e-08 0 1 0 1 0 1
1e-22 3.622 3.5779e-08 3.622 3.5779e-08 0 1 0 1 0 1
1e-23 3.622 3.5779e-08 3.622 3.5779e-08 0 1 0 1 0 1
1e-24 3.622 1.3007e-08 3.622 1.3007e-08 0 1 0 1 0 1
1e-25 3.622 1.5459e-08 3.622 1.5459e-08 0 1 0 1 0 1

Table 4.3: First order derivatives validation : f(x) = ex

sin3(x)+cos3(x)
, x = 1.5, f ′(x) = 3.622.

h Eq. 4.23 ERROR Eq. 4.24 ERROR Eq. 4.25 ERROR Eq. 4.26 ERROR Eq. 4.27 ERROR
0.1 2.6653 0.26413 4.4557 0.23016 2.6653 0.26413 4.8586 0.34139 2.9807 0.17707

0.01 3.5142 0.029775 3.6958 0.020374 3.5142 0.029775 3.7327 0.030559 3.5501 0.019852
0.001 3.6112 0.0029895 3.6295 0.0020606 3.6112 0.0029895 3.6331 0.0030441 3.6149 0.0019619
0.0001 3.6212 0.00021871 3.6234 0.00036712 3.6212 0.00021871 3.6234 0.00038474 3.6219 3.5223e-05
1e-05 3.6244 0.00064877 3.627 0.0013782 3.6244 0.00064877 3.6246 0.00070921 3.6269 0.0013379
1e-06 3.5381 0.023166 3.4542 0.046324 3.5381 0.023166 3.5381 0.02316 3.4542 0.046328
1e-07 3.9699 0.096046 4.3178 0.19209 3.9699 0.096046 3.9699 0.096047 4.3178 0.19209
1e-08 1.811 0.5 0 1 1.811 0.5 1.811 0.5 0 1
1e-09 1.811 0.5 0 1 1.811 0.5 1.811 0.5 0 1
1e-10 1.811 0.5 0 1 1.811 0.5 1.811 0.5 0 1
1e-11 1.811 0.50001 0 1 1.811 0.5 1.811 0.5 0 1
1e-12 1.811 0.50001 0 1 1.811 0.5 1.811 0.5 0 1
1e-13 1.8119 0.49976 0 1 1.811 0.5 1.811 0.5 0 1
1e-14 1.8208 0.49731 0 1 1.811 0.5 1.811 0.5 0 1
1e-15 1.7764 0.50957 0 1 1.811 0.5 1.811 0.5 0 1
1e-16 0 1 0 1 1.811 0.5 1.811 0.5 0 1
1e-17 0 1 0 1 1.811 0.5 1.811 0.5 0 1
1e-18 0 1 0 1 1.811 0.5 1.811 0.5 0 1
1e-19 0 1 0 1 1.811 0.5 1.811 0.5 0 1
1e-20 0 1 0 1 1.811 0.5 1.811 0.5 0 1
1e-21 0 1 0 1 1.811 0.5 1.811 0.5 0 1
1e-22 0 1 0 1 1.811 0.5 1.811 0.5 0 1
1e-23 0 1 0 1 1.811 0.5 1.811 0.5 0 1
1e-24 0 1 0 1 1.811 0.5 1.811 0.5 0 1
1e-25 0 1 0 1 1.811 0.5 1.811 0.5 0 1

Table 4.4: First order derivatives validation : f(x) = ex

sin3(x)+cos3(x)
, x = 1.5, f ′(x) = 3.622.
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h Eq. 4.28 ERROR Eq. 4.29 ERROR Eq. 4.30 ERROR Eq. 4.31 ERROR Eq. 4.32 ERROR
0.1 3.1888 0.11962 3.1888 0.11962 4.0931 0.13006 2.2844 0.36929 3.1888 0.11962

0.01 3.5953 0.007383 3.5953 0.007383 3.7191 0.026812 3.4714 0.041578 3.5953 0.007383
0.001 3.6207 0.00037869 3.6207 0.00037869 3.6342 0.0033481 3.6072 0.0041055 3.6207 0.00037869

0.0001 3.622 1.2671e-05 3.622 1.2671e-05 3.6234 0.00037533 3.6206 0.00040067 3.622 1.2671e-05
1e-05 3.6221 2.1946e-05 3.6221 2.1946e-05 3.6223 6.1545e-05 3.622 1.7653e-05 3.6221 2.1946e-05
1e-06 3.6207 0.00036481 3.6207 0.00036481 3.6207 0.000361 3.6207 0.00036862 3.6207 0.00036481
1e-07 3.6246 0.00070507 3.6246 0.00070507 3.6246 0.00070554 3.6246 0.00070459 3.6246 0.00070507
1e-08 3.6159 0.0017071 3.6159 0.0017071 3.6159 0.0017071 3.6159 0.0017071 3.6159 0.0017071
1e-09 3.6192 0.00079307 3.6192 0.00079307 3.6192 0.00079307 3.6192 0.00079307 3.6192 0.00079307
1e-10 3.6207 0.00036827 3.6207 0.00036827 3.6207 0.00036827 3.6207 0.00036827 3.6207 0.00036827
1e-11 3.6214 0.00017097 3.6214 0.00017097 3.6214 0.00017097 3.6214 0.00017097 3.6214 0.00017097
1e-12 3.6217 7.9363e-05 3.6217 7.9363e-05 3.6217 7.9363e-05 3.6217 7.9363e-05 3.6217 7.9364e-05
1e-13 3.6219 3.6845e-05 3.6219 3.6845e-05 3.6219 3.6845e-05 3.6219 3.6845e-05 3.6219 3.6839e-05
1e-14 3.622 1.7123e-05 3.622 1.7123e-05 3.622 1.7123e-05 3.622 1.7123e-05 3.622 1.7099e-05
1e-15 3.622 7.508e-06 3.622 7.508e-06 3.622 7.508e-06 3.622 7.508e-06 3.622 7.9369e-06
1e-16 3.622 5.8133e-06 3.622 5.8133e-06 3.622 5.8133e-06 3.622 5.8133e-06 3.622 3.684e-06
1e-17 3.622 4.4942e-06 3.622 4.4942e-06 3.622 4.4942e-06 3.622 4.4942e-06 3.622 1.71e-06
1e-18 3.622 4.2883e-06 3.622 4.2883e-06 3.622 4.2883e-06 3.622 4.2883e-06 3.622 7.937e-07
1e-19 3.6222 4.2699e-05 3.6222 4.2699e-05 3.6222 4.2699e-05 3.6222 4.2699e-05 3.622 3.684e-07
1e-20 3.6223 5.9974e-05 3.6223 5.9974e-05 3.6223 5.9974e-05 3.6223 5.9974e-05 3.622 1.71e-07
1e-21 3.6305 0.002332 3.6305 0.002332 3.6305 0.002332 3.6305 0.002332 3.622 7.937e-08
1e-22 3.5993 0.0062807 3.5993 0.0062807 3.5993 0.0062807 3.5993 0.0062807 3.622 3.684e-08
1e-23 3.7969 0.048281 3.7969 0.048281 3.7969 0.048281 3.7969 0.048281 3.622 1.71e-08
1e-24 3.5247 0.026862 3.5247 0.026862 3.5247 0.026862 3.5247 0.026862 3.622 7.937e-09
1e-25 0 1 0 1 0 1 0 1 3.622 3.684e-09

Table 4.5: First order derivatives validation : f(x) = ex

sin3(x)+cos3(x)
, x = 1.5, f ′(x) = 3.622.

h Eq. 4.33 ERROR Eq. 4.34 ERROR
0.1 3.1148 0.14003 3.6234 0.00038916

0.01 3.5932 0.0079692 3.622 4.6438e-07
0.001 3.6206 0.00039493 3.6221 2.3374e-05
0.0001 3.622 1.5898e-05 3.6223 8.2979e-05
1e-05 3.6221 1.0623e-05 3.6245 0.00067899
1e-06 3.6214 0.00018315 3.5381 0.023163
1e-07 3.6233 0.00035318 3.9699 0.096046
1e-08 3.6189 0.00085426 1.811 0.5
1e-09 3.6206 0.00039669 1.811 0.5
1e-10 3.6214 0.00018417 1.811 0.5
1e-11 3.6217 8.5492e-05 1.811 0.5
1e-12 3.6219 3.9683e-05 1.811 0.50001
1e-13 3.622 1.8426e-05 1.8119 0.49976
1e-14 3.622 8.5729e-06 1.8208 0.49731
1e-15 3.622 4.0261e-06 1.7764 0.50957
1e-16 3.622 1.7128e-06 2.2204 0.38696
1e-17 3.622 3.6392e-06 0 1
1e-18 3.622 3.8914e-06 0 1
1e-19 3.6222 4.2884e-05 0 1
1e-20 3.6223 6.006e-05 0 1
1e-21 3.6305 0.0023321 0 1
1e-22 3.5993 0.0062807 0 1
1e-23 3.7969 0.048281 0 1
1e-24 3.5247 0.026862 0 1
1e-25 0 1 0 1

Table 4.6: First order derivatives validation : f(x) = ex

sin3(x)+cos3(x)
, x = 1.5, f ′(x) = 3.622.
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h Eq. 3.6 ERROR Eq. 4.35 ERROR Eq. 4.36 ERROR Eq. 4.37 ERROR Eq. 4.38 ERROR
0.1 14.75 0.012476 14.5571 0.00076655 14.5571 0.00076655 14.5571 0.00076655 14.5571 0.00076655

0.01 14.57 0.00012088 14.5683 1.083e-06 14.5683 1.083e-06 14.5683 1.083e-06 14.5683 1.083e-06
0.001 14.5697 9.4661e-05 14.569 4.6748e-05 14.569 4.6748e-05 14.569 4.6748e-05 14.569 4.6748e-05

0.0001 14.5731 0.0003319 14.5707 0.00016596 14.5707 0.00016596 14.5707 0.00016596 14.5707 0.00016596
1e-05 14.6079 0.0027185 14.5881 0.001358 14.5881 0.001358 14.5881 0.001358 14.5881 0.001358
1e-06 13.2498 0.090501 13.8934 0.046326 13.8934 0.046326 13.8934 0.046326 13.8934 0.046326
1e-07 20.8722 0.43271 17.3667 0.19209 17.3667 0.19209 17.3667 0.19209 17.3667 0.19209
1e-08 0 1 0 1 0 1 0 1 0 1

: : : : : : : : : : :
1e-25 0 1 0 1 0 1 0 1 0 1

Table 4.7: Second order derivatives validation : f(x) = ex

sin3(x)+cos3(x)
, x = 1.5, f ′′(x) =

14.5683.

h Eq. 4.39 ERROR Eq. 4.40 ERROR Eq. 4.41 ERROR
0.1 14.5571 0.00076655 16.1149 0.10616 15.205 0.043704

0.01 14.5683 1.083e-06 14.7565 0.012918 14.6322 0.0043865
0.001 14.569 4.6748e-05 14.249 0.021913 14.4628 0.0072414

0.0001 14.5707 0.00016596 2.5529 0.82477 10.5664 0.2747
1e-05 14.5881 0.001358 -969.2175 67.5293 -313.3339 22.5079
1e-06 13.8934 0.046326 335600.8846 23035.4042 111875.7948 7678.4077
1e-07 17.3667 0.19209 -13915323.5895 955180.3014 -4638427.2817 318393.1453
1e-08 0 1 724406717.4498 49724915.408 241468905.8166 16574971.136
1e-09 0 1 7244066463.9557 497249114.3072 2414688821.3186 165749704.1024
1e-10 0 1 72440717930.2603 4972494810.0663 24146905976.7534 1657498269.3554
1e-11 0 1 724398297518.6703 49724338443.9144 241466099172.8901 16574779480.6381
1e-12 0 1 7243982975186.702 497243384448.1436 2414660991728.901 165747794815.3812
1e-13 0 1 72475356887596.23 4974872507484.301 24158452295865.41 1658290835827.434
1e-14 0 1 728306282448883.6 49992591374238.53 242768760816294.6 16664197124745.51
1e-15 0 1 7105427145842768 487732598773067.7 2368475715280922 162577532924355.2
1e-16 0 1 0 1 0 1

: : : : : : :
1e-25 0 1 0 1 0 1

Table 4.8: Second order derivatives validation : f(x) = ex

sin3(x)+cos3(x)
, x = 1.5, f ′′(x) =

14.5683.

h Eq. 4.42 ERROR Eq. 4.43 ERROR Eq. 4.44 ERROR
0.1 14.0379 0.036409 12.6135 0.13418 14.0379 0.036409

0.01 14.5055 0.0043074 14.3765 0.013164 14.5055 0.0043074
0.001 14.6756 0.0073668 14.8875 0.021911 14.6756 0.0073668

0.0001 18.5766 0.27514 26.5837 0.82477 18.5766 0.27514
1e-05 342.5233 22.5116 998.354 67.5293 342.5233 22.5116
1e-06 -111848.4365 7678.5298 -335571.8092 23035.4084 -111848.4365 7678.5298
1e-07 4638464.3483 318393.6897 13915351.3006 955180.2035 4638464.3483 318393.6897
1e-08 -241468905.8166 16574973.136 -724406717.4498 49724917.408 -241468905.8166 16574973.136
1e-09 -2414688821.3186 165749706.1024 -7244066463.9557 497249116.3072 -2414688821.3186 165749706.1024
1e-10 -24146905976.7534 1657498271.3554 -72440717930.2603 4972494812.0663 -24146905976.7534 1657498271.3554
1e-11 -241466099172.8901 16574779482.6381 -724398297518.6703 49724338445.9144 -241466099172.8901 16574779482.6381
1e-12 -2414660991728.901 165747794817.3812 -7243982975186.702 497243384450.1436 -2414660991728.901 165747794817.3812
1e-13 -24158452295865.41 1658290835829.433 -72475356887596.23 4974872507486.301 -24158452295865.41 1658290835829.433
1e-14 -242768760816294.6 16664197124747.51 -728306282448883.6 49992591374240.54 -242768760816294.6 16664197124747.51
1e-15 -2368475715280922 162577532924357.2 -7105427145842768 487732598773069.8 -2368475715280922 162577532924357.2
1e-16 0 1 0 1 0 1

: : : : : : :
1e-25 0 1 0 1 0 1

Table 4.9: Second order derivatives validation : f(x) = ex

sin3(x)+cos3(x)
, x = 1.5, f ′′(x) =

14.5683.
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h Eq. 4.45 ERROR Eq. 4.46 ERROR Eq. 4.47 ERROR
0.1 12.6135 0.13418 16.1149 0.10616 15.205 0.043704

0.01 14.3765 0.013164 14.7565 0.012918 14.6322 0.0043865
0.001 14.8875 0.021911 14.249 0.021913 14.4628 0.0072414

0.0001 26.5837 0.82477 2.5529 0.82477 10.5664 0.2747
1e-05 998.354 67.5293 -969.2175 67.5293 -313.3339 22.5079
1e-06 -335571.8092 23035.4084 335600.8846 23035.4042 111875.7948 7678.4077
1e-07 13915351.3006 955180.2035 -13915323.5895 955180.3014 -4638427.2817 318393.1453
1e-08 -724406717.4498 49724917.408 724406717.4498 49724915.408 241468905.8166 16574971.136
1e-09 -7244066463.9557 497249116.3072 7244066463.9557 497249114.3072 2414688821.3186 165749704.1024
1e-10 -72440717930.2603 4972494812.0663 72440717930.2603 4972494810.0663 24146905976.7534 1657498269.3554
1e-11 -724398297518.6703 49724338445.9144 724398297518.6703 49724338443.9144 241466099172.8901 16574779480.6381
1e-12 -7243982975186.702 497243384450.1436 7243982975186.702 497243384448.1436 2414660991728.901 165747794815.3812
1e-13 -72475356887596.23 4974872507486.301 72475356887596.23 4974872507484.301 24158452295865.41 1658290835827.434
1e-14 -728306282448883.6 49992591374240.54 728306282448883.6 49992591374238.53 242768760816294.6 16664197124745.51
1e-15 -7105427145842768 487732598773069.8 7105427145842768 487732598773067.7 2368475715280922 162577532924355.2
1e-16 0 1 0 1 0 1

: : : : : : :
1e-25 0 1 0 1 0 1

Table 4.10: Second order derivatives validation : f(x) = ex

sin3(x)+cos3(x)
, x = 1.5, f ′′(x) =

14.5683.

h Eq. 4.48 ERROR Eq. 4.49 ERROR Eq. 4.50 ERROR Eq. 4.51 ERROR
0.1 14.5602 0.0005573 14.5602 0.0005573 14.5602 0.0005573 14.5252 0.0029581

0.01 14.5683 1.3272e-06 14.5683 1.3272e-06 14.5683 1.3272e-06 14.5679 2.3839e-05
0.001 14.5692 6.1249e-05 14.5692 6.1249e-05 14.5692 6.1249e-05 14.5691 5.5095e-05

0.0001 14.5715 0.00021756 14.5715 0.00021756 14.5715 0.00021756 14.5711 0.00019649
1e-05 14.5942 0.0017811 14.5942 0.0017811 14.5942 0.0017811 14.5917 0.0016086
1e-06 13.6933 0.060063 13.6933 0.060063 13.6933 0.060063 13.7746 0.054478
1e-07 18.4581 0.26701 18.4581 0.26701 18.4581 0.26701 17.9971 0.23536
1e-08 0 1 0 1 0 1 0 1

: : : : : : : : :
1e-25 0 1 0 1 0 1 0 1

Table 4.11: Second order derivatives validation : f(x) = ex

sin3(x)+cos3(x)
, x = 1.5, f ′′(x) =

14.5683.

h Eq. 3.3 ERROR Eq. 4.52 ERROR Eq. 4.53 ERROR Eq. 4.54 ERROR Eq. 4.55 ERROR
0.1 4.4557 0.23016 3.3913 0.063692 3.4628 0.043954 3.4628 0.043954 3.3913 0.063692
0.01 3.6958 0.020374 3.6201 0.00053409 3.6202 0.00051425 3.6202 0.00051425 3.6201 0.00053409
0.001 3.6295 0.0020606 3.6222 4.1663e-05 3.6222 4.1307e-05 3.6222 4.1307e-05 3.6222 4.1663e-05

0.0001 3.6234 0.00036712 3.6226 0.00016594 3.6226 0.00016581 3.6226 0.00016581 3.6226 0.00016594
1e-05 3.627 0.0013782 3.627 0.0013581 3.627 0.001358 3.627 0.001358 3.627 0.0013581
1e-06 3.4542 0.046324 3.4542 0.046326 3.4542 0.046326 3.4542 0.046326 3.4542 0.046326
1e-07 4.3178 0.19209 4.3178 0.19209 4.3178 0.19209 4.3178 0.19209 4.3178 0.19209
1e-08 0 1 0 1 0 1 0 1 0 1

: : : : : : : : : : :
1e-25 0 1 0 1 0 1 0 1 0 1

Table 4.12: First order derivatives validation : f(x) = ex

sin3(x)+cos3(x)
, x = 1.5, f ′(x) = 3.622.

h Eq. 4.56 ERROR Eq. 4.57 ERROR Eq. 4.58 ERROR Eq. 4.59 ERROR Eq. 4.60 ERROR
0.1 3.5984 0.0065157 3.5984 0.0065157 3.5984 0.0065157 3.5984 0.0065157 3.5984 0.0065157

0.01 3.622 2.9289e-07 3.622 2.9289e-07 3.622 2.9289e-07 3.622 2.9289e-07 3.622 2.9289e-07
0.001 3.6219 3.4084e-05 3.6219 3.4084e-05 3.6219 3.4084e-05 3.6219 3.4084e-05 3.6219 3.4084e-05

0.0001 3.6222 3.4742e-05 3.6222 3.4742e-05 3.6222 3.4742e-05 3.6222 3.4742e-05 3.6222 3.4742e-05
1e-05 3.6147 0.00203 3.6147 0.00203 3.6147 0.00203 3.6147 0.00203 3.6147 0.00203
1e-06 3.7393 0.032383 3.7393 0.032383 3.7393 0.032383 3.7393 0.032383 3.7393 0.032383
1e-07 2.4929 0.31174 2.4929 0.31174 2.4929 0.31174 2.4929 0.31174 2.4929 0.31174
1e-08 0 1 0 1 0 1 0 1 0 1

: : : : : : : : : : :
1e-25 0 1 0 1 0 1 0 1 0 1

Table 4.13: First order derivatives validation : f(x) = ex

sin3(x)+cos3(x)
, x = 1.5, f ′(x) = 3.622.
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h Eq. 4.61 ERROR Eq. 4.62 ERROR Eq. 4.63 ERROR Eq. 4.64 ERROR Eq. 4.65 ERROR
0.1 3.3913 0.063692 3.4628 0.043954 3.9235 0.083235 3.186 0.12038 3.9593 0.093104

0.01 3.6201 0.00053409 3.6202 0.00051425 3.658 0.0099198 3.5851 0.010193 3.658 0.0099297
0.001 3.6222 4.1663e-05 3.6222 4.1307e-05 3.6258 0.0010511 3.6186 0.00096013 3.6258 0.0010509

0.0001 3.6226 0.00016594 3.6226 0.00016581 3.623 0.00026653 3.6223 6.5358e-05 3.623 0.00026646
1e-05 3.627 0.0013581 3.627 0.001358 3.627 0.0013681 3.6269 0.001348 3.627 0.0013681
1e-06 3.4542 0.046326 3.4542 0.046326 3.4542 0.046325 3.4542 0.046327 3.4542 0.046325
1e-07 4.3178 0.19209 4.3178 0.19209 4.3178 0.19209 4.3178 0.19209 4.3178 0.19209
1e-08 0 1 0 1 0 1 0 1 0 1

: : : : : : : : : : :
1e-25 0 1 0 1 0 1 0 1 0 1

Table 4.14: First order derivatives validation : f(x) = ex

sin3(x)+cos3(x)
, x = 1.5, f ′(x) = 3.622.

h Eq. 4.66 ERROR Eq. 4.67 ERROR Eq. 4.68 ERROR Eq. 4.69 ERROR Eq. 4.70 ERROR
0.1 3.2218 0.11051 3.9593 0.093104 3.2218 0.11051 3.9235 0.083235 3.186 0.12038

0.01 3.5851 0.010183 3.658 0.0099297 3.5851 0.010183 3.658 0.0099198 3.5851 0.010193
0.001 3.6186 0.00096031 3.6258 0.0010509 3.6186 0.00096031 3.6258 0.0010511 3.6186 0.00096013
0.0001 3.6223 6.5291e-05 3.623 0.00026646 3.6223 6.5291e-05 3.623 0.00026653 3.6223 6.5358e-05
1e-05 3.6269 0.0013479 3.627 0.0013681 3.6269 0.0013479 3.627 0.0013681 3.6269 0.001348
1e-06 3.4542 0.046327 3.4542 0.046325 3.4542 0.046327 3.4542 0.046325 3.4542 0.046327
1e-07 4.3178 0.19209 4.3178 0.19209 4.3178 0.19209 4.3178 0.19209 4.3178 0.19209
1e-08 0 1 0 1 0 1 0 1 0 1

: : : : : : : : : : :
1e-25 0 1 0 1 0 1 0 1 0 1

Table 4.15: First order derivatives validation : f(x) = ex

sin3(x)+cos3(x)
, x = 1.5, f ′(x) = 3.622.

h Eq. 4.71 ERROR Eq. 4.72 ERROR Eq. 4.73 ERROR Eq. 4.74 ERROR Eq. 4.75 ERROR
0.1 3.5726 0.013638 3.5726 0.013638 3.5726 0.013638 3.5726 0.013638 3.6135 0.0023583

0.01 3.6216 0.00013179 3.6216 0.00013179 3.6216 0.00013179 3.6216 0.00013179 3.622 1.1862e-06
0.001 3.6222 4.5408e-05 3.6222 4.5408e-05 3.6222 4.5408e-05 3.6222 4.5408e-05 3.6219 2.387e-05
0.0001 3.6226 0.00016591 3.6226 0.00016591 3.6226 0.00016591 3.6226 0.00016591 3.621 0.00027675
1e-05 3.627 0.001358 3.627 0.001358 3.627 0.001358 3.627 0.001358 3.6332 0.003095
1e-06 3.4542 0.046326 3.4542 0.046326 3.4542 0.046326 3.4542 0.046326 3.6638 0.011524
1e-07 4.3178 0.19209 4.3178 0.19209 4.3178 0.19209 4.3178 0.19209 3.0531 0.15706
1e-08 0 1 0 1 0 1 0 1 0 1

: : : : : : : : : : :
1e-25 0 1 0 1 0 1 0 1 0 1

Table 4.16: First order derivatives validation : f(x) = ex

sin3(x)+cos3(x)
, x = 1.5, f ′(x) = 3.622.

h Eq. 4.76 ERROR Eq. 4.77 ERROR
0.1 3.5548 0.018573 3.5905 0.0087038
0.01 3.6215 0.00013675 3.6216 0.00012683
0.001 3.6222 4.5497e-05 3.6222 4.5319e-05
0.0001 3.6226 0.00016594 3.6226 0.00016588
1e-05 3.627 0.001358 3.627 0.001358
1e-06 3.4542 0.046326 3.4542 0.046326
1e-07 4.3178 0.19209 4.3178 0.19209
1e-08 0 1 0 1

: : : : :
1e-25 0 1 0 1

Table 4.17: First order derivatives validation : f(x) = ex

sin3(x)+cos3(x)
, x = 1.5, f ′(x) = 3.622.
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h Eq. 4.78 ERROR Eq. 4.79 ERROR Eq. 4.80 ERROR Eq. 4.81 ERROR Eq. 4.82 ERROR
0.1 14.6682 0.0068618 14.6682 0.0068618 14.6682 0.0068618 14.6682 0.0068618 14.6682 0.0068618

0.01 14.571 0.00018444 14.571 0.00018444 14.571 0.00018444 14.571 0.00018444 14.571 0.00018444
0.001 14.5682 6.6845e-06 14.5682 6.6845e-06 14.5682 6.6845e-06 14.5682 6.6845e-06 14.5682 6.6845e-06

0.0001 14.5651 0.00021571 14.5651 0.00021571 14.5651 0.00021571 14.5651 0.00021571 14.5651 0.00021571
1e-05 14.5349 0.0022889 14.5349 0.0022889 14.5349 0.0022889 14.5349 0.0022889 14.5349 0.0022889
1e-06 13.9362 0.043387 13.9362 0.043387 13.9362 0.043387 13.9362 0.043387 13.9362 0.043387
1e-07 11.1013 0.23798 11.1013 0.23798 11.1013 0.23798 11.1013 0.23798 11.1013 0.23798
1e-08 0 1 0 1 0 1 0 1 0 1

: : : : : : : : : : :
1e-25 0 1 0 1 0 1 0 1 0 1

Table 4.18: Second order derivatives validation : f(x) = ex

sin3(x)+cos3(x)
, x = 1.5, f ′′(x) =

14.5683.

h Eq. 4.83 ERROR Eq. 4.84 ERROR Eq. 4.85 ERROR Eq. 4.86 ERROR Eq. 4.87 ERROR
0.1 21.2869 0.46118 8.2131 0.43623 19.8571 0.36304 9.643 0.33809 19.8571 0.36304

0.01 15.1457 0.039636 13.9944 0.039394 15.1313 0.03865 14.0087 0.038408 15.1313 0.03865
0.001 14.6252 0.0039077 14.5141 0.0037183 14.6278 0.0040846 14.5115 0.0038953 14.6278 0.0040846

0.0001 14.574 0.00039031 14.5723 0.00027347 14.5836 0.0010539 14.5626 0.00039008 14.5836 0.0010539
1e-05 14.5688 3.8385e-05 14.6469 0.0053973 14.6481 0.0054754 14.5677 3.8433e-05 14.6481 0.0054754
1e-06 14.5697 9.5694e-05 11.93 0.1811 11.93 0.1811 14.5715 0.00021763 11.93 0.1811
1e-07 14.7438 0.012045 27.0006 0.85338 27.0006 0.85338 14.9214 0.024238 27.0006 0.85338
1e-08 0 1 0 1 0 1 0 1 0 1

: : : : : : : : : : :
1e-25 0 1 0 1 0 1 0 1 0 1

Table 4.19: Second order derivatives validation : f(x) = ex

sin3(x)+cos3(x)
, x = 1.5, f ′′(x) =

14.5683.

h Eq. 4.88 ERROR Eq. 4.89 ERROR Eq. 4.90 ERROR Eq. 4.91 ERROR Eq. 4.92 ERROR
0.1 9.643 0.33809 21.2869 0.46118 8.2131 0.43623 14.3921 0.012091 14.3921 0.012091

0.01 14.0087 0.038408 15.1457 0.039636 13.9944 0.039394 14.5665 0.00012286 14.5665 0.00012286
0.001 14.5115 0.0038953 14.6252 0.0039077 14.5141 0.0037183 14.5683 1.1627e-06 14.5683 1.1627e-06

0.0001 14.5626 0.00039008 14.574 0.00039031 14.5723 0.00027347 14.5683 3.7228e-08 14.5683 3.7228e-08
1e-05 14.5677 3.8433e-05 14.5688 3.8385e-05 14.6469 0.0053973 14.5683 1.8053e-06 14.5683 1.8053e-06
1e-06 14.5715 0.00021763 14.5697 9.5694e-05 11.93 0.1811 14.5697 9.5694e-05 14.5697 9.5694e-05
1e-07 14.9214 0.024238 14.7438 0.012045 27.0006 0.85338 14.9214 0.024238 14.9214 0.024238
1e-08 0 1 0 1 0 1 0 1 0 1

: : : : : : : : : : :
1e-25 0 1 0 1 0 1 0 1 0 1

Table 4.20: Second order derivatives validation : f(x) = ex

sin3(x)+cos3(x)
, x = 1.5, f ′′(x) =

14.5683.

h Eq. 4.93 ERROR Eq. 4.94 ERROR Eq. 4.95 ERROR Eq. 4.96 ERROR Eq. 4.97 ERROR
0.1 14.3921 0.012091 14.3921 0.012091 14.3921 0.012091 -15.8045 2.0849 -15.8045 2.0849

0.01 14.5665 0.00012286 14.5665 0.00012286 14.5665 0.00012286 14.6081 0.0027324 14.6081 0.0027324
0.001 14.5683 1.1627e-06 14.5683 1.1627e-06 14.5683 1.1628e-06 14.5685 1.6162e-05 14.5685 1.6162e-05

0.0001 14.5683 3.7228e-08 14.5683 3.7228e-08 14.5683 3.1132e-08 14.5688 3.8029e-05 14.5688 3.8029e-05
1e-05 14.5683 1.8053e-06 14.5683 1.8053e-06 14.5683 1.1956e-06 14.5617 0.00045142 14.5617 0.00045142
1e-06 14.5697 9.5694e-05 14.5697 9.5694e-05 14.5697 9.5694e-05 14.7763 0.01428 14.7763 0.01428
1e-07 14.9214 0.024238 14.9214 0.024238 14.9214 0.024238 13.3766 0.081803 13.3766 0.081803
1e-08 0 1 0 1 0 1 0 1 0 1

: : : : : : : : : : :
1e-25 0 1 0 1 0 1 0 1 0 1

Table 4.21: Second order derivatives validation : f(x) = ex

sin3(x)+cos3(x)
, x = 1.5, f ′′(x) =

14.5683.
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h Eq. 4.98 ERROR Eq. 4.99 ERROR Eq. 4.100 ERROR
0.1 -15.8045 2.0849 -15.8045 2.0849 -12.0536 1.8274

0.01 14.6081 0.0027324 14.6081 0.0027324 14.7732 0.014067
0.001 14.5685 1.6162e-05 14.5685 1.6162e-05 14.5702 0.00012924
0.0001 14.5688 3.8029e-05 14.5688 3.8029e-05 14.5672 7.452e-05
1e-05 14.5617 0.00045142 14.5617 0.00045142 14.5607 0.0005212
1e-06 14.7763 0.01428 14.7763 0.01428 14.4635 0.0071902
1e-07 13.3766 0.081803 13.3766 0.081803 14.4642 0.0071443
1e-08 0 1 0 1 18.1843 0.24821
1e-09 0 1 0 1 10.2736 0.2948
1e-10 0 1 0 1 1027.36 69.5203
1e-11 0 1 0 1 102736.0013 7051.0316
1e-12 0 1 0 1 10273600.7974 705202.2077
1e-13 0 1 0 1 1027360121.3562 70520322.6315
1e-14 0 1 0 1 102736009534.4629 7052032183.6007
1e-15 0 1 0 1 10273600628301.27 705203196140.3755
1e-16 0 1 0 1 1027360103473255 70520322403972.8
1e-17 0 1 0 1 102736005266934576 7052031891667850
1e-18 0 1 0 1 10273601161742327808 705203232757976704
1e-19 0 1 0 1 1027359957412026384384 70520312378000539648
1e-20 0 1 0 1 102736008144499687555072 7052032089190431719424
1e-21 0 1 0 1 10273600194285087523602432 705203166349522364268544
1e-22 0 1 0 1 1027359941907906443532566528 70520311313762665728311296
1e-23 0 1 0 1 102736013570942885636664721408 7052032461673772825729564672
1e-24 0 1 0 1 10273600448649582757912212668416 705203183809676878772613152768
1e-25 0 1 0 1 1027359969161242251367171137470464 70520313184493303194179791224832

Table 4.22: Second order derivatives validation : f(x) = ex

sin3(x)+cos3(x)
, x = 1.5, f ′′(x) =

14.5683.

h Eq. 4.101 ERROR Eq. 4.102 ERROR Eq. 4.103 ERROR
0.1 15.6447 0.073888 14.5711 0.00019212 14.5703 0.00013494
0.01 14.5784 0.00069372 14.5683 9.8687e-07 14.5684 8.1679e-06
0.001 14.5679 2.7435e-05 14.569 4.6749e-05 14.5684 8.2108e-06
0.0001 14.5747 0.00044255 14.5707 0.00016597 14.5587 0.00065595
1e-05 14.6211 0.0036236 14.5881 0.0013601 14.6801 0.0076742
1e-06 15.0872 0.035619 13.9098 0.045202 14.4406 0.0087621
1e-07 22.7374 0.56074 17.9412 0.23152 23.5453 0.6162
1e-08 0 1 0 1 0 1

: : : : : : :
1e-25 0 1 0 1 0 1

Table 4.23: Second order derivatives validation : f(x) = ex

sin3(x)+cos3(x)
, x = 1.5, f ′′(x) =

14.5683.

4.5 Discussion

As expected from the different structure and formal accuracy of different CS approximations,
the corresponding numerical simulations for our test function show very different behaviors.
Following, we summarize and compare the Tables derived in the previous section. We divide
the discussion into first order and second order derivatives on the one hand, and approxima-
tions based on the imaginary or real part of the function on the other hand.

Numerical approximations for the first derivative based on the imaginary part of the func-
tion (Eqs. 4.9 - 4.34) and the classic first order forward FD approximation are shown in Tables
4.1 - 4.6. The forward FD approximation and the equations which use one real step only (Eqs.
4.20 - 4.27) eventually collapse due to term cancellation. A different behavior can be seen for
the group of ten equations 4.9 to 4.19, which do not collapse. For the group of equations 4.28
to 4.33, where numerical accuracy decreases for step sizes (h < 1e−18) and full collapse occurs
finally at (h = 1e−25) (except Eq. 4.32), we have to recall that this instability in detail depends
on the format of the variable and the particular compiler and compiler options, meaning that
the collapse may be pushed to smaller values of h, and meaning that we can chose a conser-
vatively large but still very small step size to perform stable and accurate simulations using
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Figure 4.1: Comparison of stability, accuracy and convergence for an ordinary first order
forward FD approximation and representative first order CS derivatives using the imaginary
part (corresponding equations in legend).

these approximations. For the different first derivatives based on the imaginary part, we can
further appreciate that the accuracy of different numerical simulations is consistent with the
formal accuracy of the corresponding approximations. For the groups of equations 4.9 - 4.19
and 4.28 - 4.33 with the same order of accuracy (using a smart choice of h− v for the second
group), convergence is faster in the first group.

Tables 4.12 - 4.17 show numerical validations for the first order derivative using the real
part (Eqs. 4.52 - 4.77). Although we can reach fourth order accuracy in this group, all the
real part based approximations collapse. This indicates a clear preference for imaginary part
based approximations for the first derivative.

Figure 4.1 summarizes stability, accuracy and convergence for representative imaginary
part based first order derivative approximations. Therefore, we classify non cancelling ap-
proximations into three groups considering their degree of accuracy: the first one related
to equations 4.9 - 4.14 (with error of O(h, v2)), the second one related to equations 4.15 -
4.19 (with error of O(3h2 − v2)) and the third one related to Eqs. 4.20 - 4.27 (with error of
O((h2/2 + hv)/(h + v))). A further group is related to collapsing approximations. This group
is plotted for comparison, and not further subdivided because of a lack of relevance compared
to non cancelling approximations; however we have shown previously that group of equations
4.28 - 4.33 still may be suitable for accurate numerical schemes. The first equation of each
group is shown in Figure 4.1. One interesting feature is that the group of equations 4.15 -
4.19 and Eqs. 4.28 - 4.33 have the same order of accuracy (fourth) but not the same rate of
convergence, being convergence faster in Eqs. 4.15 - 4.19. The classical first order forward
FD approximation is given for comparison in Figure 4.1, showing the better performance of
generalized CS schemes, and a very clear superiority of those particular approximations that
avoid term cancellation.

Second order derivative validations using the imaginary part and the centered FD approx-
imation correspond to Tables 4.7 - 4.11. All of the approximations collapse at some point,
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Figure 4.2: Comparison of stability, accuracy and convergence for the one step approximation
for the second order derivative using the real and the imaginary part (corresponding equations
in legend).

different from the non cancelling first order derivative approximations. All approximations
reach the minimum error at h = 1e−2. This behavior may appear surprising because many
approximations like 4.36 do not contain negative terms and should avoid subtractive cancel-
lation at first sight. However, they collapse because we are adding terms with different signs,
i.e., the imaginary steps are opposite in signs in all of the second order approximations un-
like in the first order approximations. The same sign in the imaginary step for the terms of
the numerator guaranties non cancelling schemes for the first order derivative, but not for
the second order. Despite serious instabilities, equations 4.40, 4.43, 4.45 and 4.46 have the
advantage to compute second order derivatives in a single real step, in other words, they
use the minimum amount of information of the analytic function for computing second deriva-
tives, which can not be achieved with any ordinary FD approximation. The group of equations
4.35 to 4.39 and 4.48 to 4.51, despite having different error expressions, have the same or-
der of accuracy for appropriate choice of real and imaginary step sizes (h and v) and show
very similar results. The group of equations 4.40 - 4.47 shows drastic numerical instabilities.
These instabilities are easily explained due to the cancellation between the terms f(x ± h)

and f(x) at some point. When these terms cancel, the only remaining term in the numera-
tor of the expressions is Im(f(x ± h ± iv)) which is proportional to h and not to h2, so when
h→ 0⇒ Im(f(x± h± iv))/h2 →∞.

Tables 4.18 - 4.23 show numerical validations for the second order derivative using the
real part (Eqs. 4.78 - 4.103). All the approximations collapse at some point just like the
imaginary part based approximations. However, the one step approximations given by the
equations 4.83, 4.86, 4.88 and 4.89 show much higher stability compared to the imaginary
part based one step, and achieve small relative errors of power 1e−5, which can be appreciated
in Figure 4.2. Eq. 4.100 shows particularly unstable results. This instability can be easily
explained by the remaining term 2f(x) which is proportional to h or v but not 3h2 − 2v2, so
when: h, v → 0 ⇒ f(x)/(3h2 − 2v2) → ∞, which produces the numerical instability similar
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Figure 4.3: Comparison of stability, accuracy and convergence for an ordinary second order
centered FD approximation and representative second order CS derivative using the real and
the imaginary part (corresponding equations in legend).

to the case explained before. Summarizing, while the imaginary part based approximations
are more stable for first order derivatives because they do not collapse, the real part based
approximations are more stable for second order derivatives, which can be appreciated in
Figure 4.3.
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Chapter 5

The Complex Step Finite Differences
Method Applied to the Acoustic Wave
Equation

5.1 Introduction

In this Chapter we extend the concept of the Finite Differences method (FDM) for solving
differential equations by using the generalization of the Complex Step (CS) method intro-
duced in Chapter 4. We recall that the generalization involves introducing the complex

step in a strict sense, which leads to many different possible approximations for the first and
second order derivatives of any complex valued analytic function using its real and imaginary
parts. Many of these approximations helps to avoid term cancellation inherent to classic fi-
nite differences (FD) approximations, as well as provide new ways of computing second order
derivatives in a single step and reaching fourth accuracy in compact three levels stencil.

Here, we integrate the results of Chapter 4 with classic FD and introduce the Complex Step
Finite Differences method (CSFDM) as a generalization of the well known FDM for solving
the 1D, 2D and 3D acoustic wave equation in a homogeneous medium. We also present the
numerical methodology in order to apply the new CSFDM. We illustrate the accuracy and
stability of the introduced method by solving the acoustic wave propagation problem in one,
two and three dimensions within a homogeneous medium. In Section 5.2 we formally introduce
the Complex Step Finite Differences method (CSFDM) applied to the one dimensional first
order acoustic wave equation. In Section 5.5 we apply the CSFDM to the 2D and 3D first
order acoustic wave equation. Appendix A.1 we apply the CSFDM to the second order one
dimensional acoustic wave equation, Appendix A.2 we apply the CSFDM to the second order
two dimensional acoustic wave equation and Appendix B we show further applications of the
CSFDM related to the translation between dispersion and dissipation in differential equations.

5.2 The 1D first order wave equation and the Complex Step Fi-
nite Differences method

The Complex Step method (CSM) was initially discovered by Squire and Trapp (1998); the
method uses a purely imaginary number i (i2 = −1) for computing the first and second deriva-
tives of real functions.

Recalling Chapter 4, the CSM can be easily derived from the Taylor series expansion of
f(x + i∆x) (Eq. 4.1). The generalization made by Abreu et al. (2013b) consisted in taking a
complex step in a strict sense, i.e., h + iv, where h and v are differential steps (h, v ∈ R and
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h, v → 0).
To illustrate how the CS method can efficiently solve the one-way wave propagation prob-

lem and formally introduce the Complex Step Finite Differences method (CSFDM), we will ap-
ply different approximations based only in the imaginary part of the function found by Abreu
et al. (2013b) to the one-way wave equation in a homogeneous medium.

We rewrite the approximations listed in Abreu et al. (2013b) (Chapter 4) and used in the
present Chapter, by omitting all the equivalent expressions by considering Imf(x± h+ iv)) =

−Im(f(x± h− iv)).

f ′(x) =
Im(f(x+ h+ iv))

v
− hf ′′(x) +O

(
h2 − v2

)
. (5.1)

f ′(x) =
Im(f(x+ h+ iv)) + Im(f(x− h+ iv))

2v
−
(

3h2 − v2

6

)
f ′′′(x)

+O
(

5h4 − 10h2v2 + v4
)
, (5.2)

where “Im” refers to the imaginary part of the function. Note that, Im(f(x)) = 0 because
x is set to be a real number.

Note that if we set v =
√

3h in Eq. 5.2, the approximation error becomes O
(
h4
)
. Equation

5.2 is able to compute fourth order accurate values of a first order derivative by requiring only
three levels of information of the function (x+ h+ iv, x− h+ iv and x+ iv).

Each first derivative approximation (Eqs. 5.1 - 5.2) can be applied and/or combined in
order to solve the first value problem.

In order to solve the one-way wave propagation problem, Eqs. 5.1 - 5.2 can be written
including the initial and/or center point to include more information of the function into the
discretization. Following this, we can write Eqs. 5.1 - 5.2 and a second order approximation
for the third order derivative respectively

f ′(x) =
Im(f(x+ h+ iv)) + Im(f(x+ iv))

2v
+O

(
h, v2

)
. (5.3)

f ′′(x) =
Im(f(x+ h+ iv))− Im(f(x+ iv))

hv
+O

(
h, v2

)
. (5.4)

f ′(x) =
Im(f(x+ h+ iv)) + Im(f(x+ iv)) + Im(f(x− h+ iv))

3v

−
(

2h2 − v2

6

)
f ′′′(x) +O

(
10h4 − 20h2v2 + 3v4

)
. (5.5)

f ′′′(x) =
Im(f(x+ h+ iv))− 2 Im(f(x+ iv)) + Im(f(x− h+ iv))

h2v
+O

(
h2 − 2v2

)
. (5.6)

Note that the CSFD expression for the third order derivative (Eq. 5.6) is just a simple three
levels scheme. We use this fact to approximate a more general and accurate expression for
the first derivative given by the following

f ′(x) =

(
1

2v
− 3h2 − v2

6h2v

)(
Im(f(x+ h+ iv)) + Im(f(x− h+ iv))

)
+

(
3h2 − v2

3h2v

)
Im(f(x+ iv)) +O

(
357h4 − 713h2v2 + 70v4

)
. (5.7)
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xx+ ∆xx

f(x+ ∆x)

f(x)

f(x)

f(x+ ∆x)− f(x)
≈ Im(f(x+ i∆x))

Figure 5.1: Geometric representation of the Complex Step.

f ′(x) =

(
1

3v
− 2h2 − v2

6h2v

)(
Im(f(x+ h+ iv)) + Im(f(x− h+ iv))

)
+

(
1

3v
+

2h2 − v2

3h2v

)
Im(f(x+ iv)) +O

(
238h4 − 475h2v2 + 70v4

)
. (5.8)

Note that in Eqs. 5.7 - 5.8 we can choose the weights of each term Im(f(x + h + iv)),
Im(f(x − h + iv)) and Im(f(x + iv)) and the approximation will remain 4th order accurate. If
we choose 357h4 − 713h2v2 + 70v4 = 0 and/or 238h4 − 475h2v2 + 70v4 = 0 in Eqs. 5.7 - 5.8
respectively, the error becomes O

(
h6
)
.

In order to have a physical interpretation of how the CSFDM can effectively solve the
wave propagation problem, we give a geometrical interpretation to the imaginary part of the
imaginary perturbation. Figure 5.1 shows that the imaginary perturbation can be represented
as an increment in the vertical axis. This approximation is just made by equating Eq. 3.8 and
Eq. 4.2.

5.2.1 Discretizations

The most basic FD discretizations to the one-way wave equation are made by combining for-
ward, backward and centered FD approximations (see Table 3.3). In this study we followed
a similar strategy: we combine different CS discretizations to the first order wave equation
and below we perform its respective convergence, stability and dispersion analysis. We only
considered explicit schemes in this study.

In the next Sections we focused our attention in discretizations made using Eqs. 5.1 - 5.5
at both sides of the one-way wave equation and with and without including the initial/center
point. We name our introduced discretizations Complex Step Finite Differences (CSFD) ap-
proximations to the one-way wave equation. Following we present a list of the mentioned
discretizations (with and without including the initial/center point):

Im
(
ut+∆t+i∆t
x+i∆x

)
= S Im

(
ut+i∆t
x+∆x+i∆x

)
+O

(
∆t,∆x

)
. (5.9)

Im
(
ut+∆t+i

√
3∆t

x+i
√

3∆x

)
+ Im

(
ut−∆t+i

√
3∆t

x+i
√

3∆x

)
= S

[
Im
(
ut+i

√
3∆t

x+∆x+i
√

3∆x

)
+ Im

(
ut+i

√
3∆t

x−∆x+i
√

3∆x

)]
+O

(
∆t4,∆x4

)
. (5.10)

Im
(
ut+∆t+i∆t
x+i∆x

)
= S Im

(
ut+i∆t
x+∆x+i∆x

)
+
(
S− 1

)
Im
(
ut+i∆t
x+i∆x

)
+O

(
∆t,∆x

)
. (5.11)
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Im
(
ut+∆t+i

√
2∆t

x+i
√

2∆x

)
+ Im

(
ut−∆t+i

√
2∆t

x+i
√

2∆x

)
= S

[
Im
(
ut+i

√
2∆t

x+∆x+i
√

2∆x

)
+ Im

(
ut+i

√
2∆t

x−∆x+i
√

2∆x

)]
+
(
S− 1

)
Im
(
ut+i

√
2∆t

x+i
√

2∆x

)
+O

(
∆t4,∆x4

)
.

(5.12)

Also by choosing the correct values of h and v we can write the following general approxi-
mation

A Im
(
ut+∆t+ivt
x+ivx

)
+ A Im

(
ut−∆t+ivt
x+ivx

)
= c

[
C Im

(
ut+ivt
x+∆x+ivx

)
+ D Im

(
ut+ivt
x+ivx

)
+ C Im

(
ut+ivt
x−∆x+ivx

)]
− BIm

(
ut+ivt
x+ivx

)
+O

(
∆t4,∆x4

)
,

(5.13)

where vt and vx refers to the imaginary differential perturbation and the weights A,B,C,D

are easily selected by choosing the correct values by using Eq. 5.7 and/or Eq. 5.8.

Note that Eq. 5.9 and Eq. 5.11 are special cases of Eq. 5.10 and Eq. 5.13 respectively.
Also note that Eq. 5.13 can be written respectively in a general operator form as follows

val
(
x, t+ ∆t

)
= c

C

A

[
val
(
x+ ∆x, t

)
+ val

(
x−∆x, t

)]
+
cD− B

A
val
(
x, t
)

− val
(
x, t−∆t

)
, (5.14)

where val
(
x, t
)

represents the values of Im
(
ut+ivt
x+ivx

)
to be propagated.

Note that Equations 3.18 and 5.14 are quite similar. If fact, Eq. 3.18 is a specific case

of Eq. 5.14 when cC
A = S2 and cD−B

A = 2
(

1− S2
)

. Both discretizations produce the same

operational computation with the distinction in the Courant number only.

5.2.2 Convergence, consistence and stability analysis

Based on the need to obtain reliable results in our approximate numerical solutions, we have
to make a choice between which FD discretization to use in order to solve the initial value
problem. To this end we use concepts of stability, consistency and convergence of the method.
It is extremely important for a user of FD techniques to understand precisely what kind of type
of convergence their scheme has, what kind of assumptions are made to get this convergence
and how this convergence affects their accuracy, Thomas (1995). The main goal of a FD dis-
cretization of a PDE is to reproduce a convergent, consistent and stable numerical solution of
the problem. Consistency of any FD discretization to the wave equation is already fulfilled by
the Taylor series definition. The Lax Equivalence Theorem states the relation between con-
vergence, consistence and stability in the following way: a consistent and stable FD scheme
converges with the rate equal to its order or accuracy, i.e., we only need to prove that the FD
scheme is consistent and stable in order to prove its convergence. In this study we are not
interested in proving the Lax Equivalence Theorem, the interested reader can refers to any
book of PDE’s with FD approximations or directly in Lax and Richtmyer (1956).

Courant-Friedrichs-Lewy stability condition

For stability analysis of FD discretizations, the Courant-Friedrichs-Lewy condition (CFL) is a
necessary but not sufficient condition of convergence, Strang (2007). The CFL condition is
given by
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c∆t

∆x
= S < C, (5.15)

where S is the Courant number and/or stability factor and C is a particular constant which
depends on the PDE equation to be solved and the FD scheme to be used in the discretization.

Von Neumann stability condition

The Von Neumann stability condition is a necessary but not sufficient condition of conver-
gence. Von Neumann stability analysis consider a complex exponential at the initial time, i.e.,
u(x, 0) = eikx, as the most general initial displacement of the problem. Any periodic function
can be expressed in terms of this solution. We have seen in previous sections that the ana-
lytical solution to the one-way wave equation can be understood as a translation of the initial
displacement. Assuming constant velocity and no boundaries at every time t, the solution will
remain a multiple of the initial displacement (eikx), i.e., u(x, t) = G eikx, where the term G is
called the growth factor or amplification factor, and will depend on the frequency ω and time
t, i.e., u(x, t) = G(ω, t)eikx. In other words, we separate time and space variables in the general
solution.

The main idea of the Neumann stability condition is to keep the magnitude of the growth
factor less than or equal than one in order to maintain the solution within bounds when t→∞,
i.e., the Von Neumann stability condition will be given by

‖G‖ ≤ 1. (5.16)

Since all discretizations are consistent (Taylor series definition), we apply Von Neumann
stability analysis to each combination in order to determine whether an approximation is con-
vergent (by Lax Equivalence Theorem). After this analysis we can determine its corresponding
Courant-Friedrichs-Lewy condition.

To illustrate this procedure, substitute u = G(ω, t)eikx into discretization 5.9,

Im(Gt+∆t+i∆teik(x+i∆x)) = SIm(Gt+i∆teik(x+i∆x+∆x)), (5.17)

solving,

Im(Gt+i∆teik(x+i∆x)(G∆t − Seik∆x)) = 0,

for the sake of simplicity we write t = 0 and ∆t = 1,

Im(Gieik(x+i∆x)(G− Seik∆x)) = 0,

we can write to ensure Von Neumann stability condition independent of kx,

Im(G− Seik∆x) = 0,

Re(G− Seik∆x) = 0. (5.18)

We conclude that discretization 5.9 is stable for S ≤ 1, i.e.,‖G‖ ≤ 1 if S ≤ 1.
Following the same procedure applied before, we can find the respective stability condition

for discretization 5.11,
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G + 1 = S(eik∆x + 1). (5.19)

which leads to‖G‖ = |S− 1|+ |Seik∆x| ≤ 1 if S ≤ 1.
Von Neumann stability analysis of discretizations 5.10 and 5.12 leads to the following ex-

pressions respectively,

G2 − 2S cos k∆x+ 1 = 0. (5.20)

G2 − 2
(

S cos k∆x+ S/2− 1/2
)

G + 1 = 0. (5.21)

Equations 5.20 - 5.21 are stable for S ≤ 1, i.e.,‖G‖ ≤ 1 if S ≤ 1.
Note for the particular case if k∆x = 2π, both roots are equal to one, i.e., G1,2 = 1, which

warranties the convergence of the scheme.
Von Neumann stability analysis of the general expression (Eq. 5.13) leads to the following

G2 − 2
(cC

A
cos k∆x+

cD− B

2A

)
G + 1 = 0, (5.22)

which Courant number will depend on the constants A,B,C and D.

5.2.3 Dispersion-dissipation analysis

In order analyze the behavior of stable discretizations to the wave equation, we have to intro-
duce concepts of dispersion and dissipation. Dispersion and dissipation are concepts related
to the analytic and numerical solutions of partial differential equations. Thomas (1995) de-
fines “dissipation of solutions of partial differential equations is when the Fourier modes do
not grow with time and at least one mode decays, and dispersion of solution of partial differen-
tial equations is when Fourier modes of different wave lengths (or wave numbers) propagate
at different speed”.

The properties of a PDE can be described by means of its effects on a single wave (plane
wave) or Fourier mode in space and time given by the following mathematical expression (Inan
and Marshall (2004))

u(x, t) = Aei(kx+ωt), (5.23)

where ω is the frequency of the wave and k is the wave number, related to wavelength, i is
the imaginary unit (i2 = −1) and A is the amplitude. Usually k and ω are dependent variables.
The relation written as ω = ω(k) is called as the dispersion-dissipation relation.

In order to facilitate the dispersion-dissipation analysis lets consider the dispersion-dissipation
relationship as a complex number in the following way ω = α+ iγ. By substituting the relation
into the discrete plane wave solution given by the following expression

u(x, t) = Aei(kn∆x+ωm∆t), (5.24)

where x = n∆x and t = m∆t, with n,m as positive integers, we obtain the following

u(x, t) = Ae−γm∆teik(n∆x−(−α
k

)m∆t). (5.25)
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Analyzing expression 5.25 and taking into account possible values of its real and imaginary
parameters (α and γ), can be inferred what will happen with the solution (see Thomas (1995)
for further details).

Parameter α:

• If α = 0 there is no wave propagation.

• If α 6= 0 there will be wave propagation with speed -αk .

• If -αk is a non trivial function of ω(k), the scheme will be dispersive.

Parameter γ:

• If γ < 0 the solution to the scheme will grow without bounds.

• If γ > 0 the solution the scheme is dissipative.

• If γ = 0 the scheme will be non dissipative.

Commonly odd order derivative FD approximations are related to dispersion properties
while FD approximations of even order derivatives to dissipation properties of the solution.
This is illustrated in Appendix B.

To illustrate how to obtain dispersion-dissipation relations, we substitute the plane wave
solution (Eq. 5.24) into discretization 5.9 and the following expression is obtained

eiω∆t = S eik∆x.

We can appreciate that the scheme is non-dissipative and dispersive. If we include the

initial point
(
ut+i∆t
x+i∆x

)
into the approximation we obtain Eq. 5.11. Substituting the plane wave

solution we get the following

eiω∆t = S eik∆x + (S− 1). (5.26)

Substituting the plane wave solution into discretizations 5.10 - 5.12 we get the following
dispersion relation respectively,

cosω∆t = S cos k∆x. (5.27)

cosω∆t = S cos k∆x+
1

2

(
S− 1

)
. (5.28)

for the general expression we have

cosω∆t =
cC

A
cos k∆x+

cD− B

2A
. (5.29)

Clearly the schemes are non-dissipative and dispersive.
If cD−B

2A = 2 and cC
A = S3, we can write the following equation

sin2 ω∆t

2
= S3 sin2 k∆x

2
, (5.30)
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which correspond to a discretization made using Eq. 5.6 in time and space, i.e., a dis-
cretization to a third order wave equation.

Equation 5.30 is the dispersion-dissipation relation of the Leapfrog scheme for the second
order wave equation, with the difference only in the power of the Courant number, i.e., third
order (S3) in Eq. 5.30 and squared (S2) for the conventional FD Leapfrog of the second order
wave equation. It is important to recall that the CSFD Leapfrog discretization 5.12 is symmet-
ric, this mean that the solution is non-dissipative; on the other hand it is fourth order accurate
in time and space for a homogeneous and regular grid.

5.3 Comparison between first and second order 1D wave equa-
tions by using CSFD and FD methods

Recall the general FD expression for the second order wave equation (Eq. 3.18)

val
(
x, t+ ∆t

)
= S2

[
val
(
x+ ∆x, t

)
+ val

(
x−∆x, t

)]
+ 2

(
1− S2

)
val
(
x, t
)

− val
(
x, t−∆t

)
,

and the CSFD expression (Eq. 5.10) for the first order wave equation written in a general
operator form as follows

val
(
x, t+ ∆t

)
= S

[
val
(
x+ ∆x, t

)
+ val

(
x−∆x, t

)]
− val

(
x, t−∆t

)
. (5.31)

Both expressions are equivalent for S = 1, that is, there is an equivalence for the maximum
Courant number in both expressions, reproducing same results by solving the second-order
wave equation with FDM and by solving the first-order wave equation with CSFDM.

5.4 Numerical examples: 1D one-way wave equation simulations

Numerical examples are presented using an initial function f(x, 0) and/or a point source
f(xs, t) as conditions of initial movement in a homogeneous media only. One of the main
advantage of the CSFDM over FDM is the order of accuracy at a single step and a two steps:
we can obtain second order of accuracy at at single step, i.e., using two levels of information
in time and in space, and fourth order of accuracy at two steps, i.e., using only three levels of
information in time and in space. Another advantage is related to the methodology applied to
impose initial conditions as it is shown in the next Section.

5.4.1 Numerical methodology

The numerical methodology presented here for using CSFD approximations to the wave equa-
tion is rather different from all previous known FD analysis. As mentioned before it is well
known that there are several FD discretizations to the wave equation which solves the problem
in a efficient way, for instance, Upwind, Leapfrog, Lax-Wendroff, Lax-Friedrichs, MacCormack
and Beam-Warming among many others. In the most basic way, all of this methods use a dis-
placement condition as an input to propagate the wave. These displacements are given as an
initial displacement (f(x, 0)) or a time dependent source (f(xs, t)). All of this different methods
are just simply difference operators (Eqs. 3.11 and 3.18) which solve the wave propagation
problem in a convergent, consistent and stable way.

In CSFDM, in order to propagate the imaginary part of the imaginary perturbation (in
time and/or space) of the displacement, we have to construct the initial condition equivalent
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t0

t0

f(x0) f(x1) f(x2) f(x3) → f(xn)

Im(f(x0) + i∆x)
Im(f(x1) + i∆x)

Im(f(x2) + i∆x)
Im(f(x3) + i∆x)

→ Im(f(xn) + i∆x)

Initial conditions of displacement

Spatial Coordinate - X

Initial displacement in
the Finite Differences Method

Initial imaginary perturbation of
the displacement in the Complex
Step Finite Differences Method

Figure 5.2: Initial conditions of displacement given in the conventional Finite Differences
Method and the Complex Step Finite Differences Method: A replacement of the displacement
f(x, t0) at initial time t0 given in the Finite Differences Method by its respective imaginary part
of the imaginary perturbation Im(f(x+i∆x, t0)) is made in the Complex Step Finite Differences
method as an initial step of the process.

to those given. In case of initial displacement (u(x, 0)), we just have to build its respective
imaginary part of the imaginary perturbation (Im(u(x + i∆x, 0))) at each corresponding grid
point (see Fig. 5.2). In case of a point source, we have a time dependent function evaluated
at certain spatial grid point (u(xs, t)), we have to build its respective imaginary part of the
imaginary perturbation (Im(u(xs, t+ i∆t))) at each time step.

It is important to recall that we are not doing any change of domain from the real space (R)
to the complex space (C). Grid points remains the same, the only change that we apply is the
numerical value to be propagated by using the selected difference operator. Based on this, it
is clear why we are able to obtain with CSFD discretizations to the one-wave wave equation
similar properties to FD discretizations.

The numerical methodology for using higher order CSFD discretizations is slightly differ-
ent from second order. In order to get higher order accurate solutions we have build the imag-
inary grid of the of the imaginary perturbation, i.e., Im(u(x+ ivx, 0)) and/or Im(u(xs, t+ ivt)),
where vx and/or vt are the correct values that produces the higher order accuracy into the
discretization (e.g. Eqs. 5.2 and 5.7).

Because the three time levels of some CSFD approximations, like the FD Leapfrog method,
we approximate the fist time step by a two time levels approximation when only an initial
displacement condition is imposed.

A basic feature of the FD technique applied to the one-way wave equation is to com-
pute/propagate displacements at each time step and to be able to compute velocities and/or
accelerations by using those displacement values. Unlike FD, the main feature of the CSFD
technique presented here is to compute/propagate the imaginary part of the imaginary pertur-
bation of the displacement and to be able to compute displacement, gradient, velocity and/or
acceleration values at each time step.

Figures 5.3 and 5.4 illustrate the one-way wave movement process of the imaginary part of
different displacement conditions (initial displacement and/or time dependent source) given
in the CSFDM.

To illustrate the one-way wave movement process, we have seen that Eqs. 5.9 - 5.12 can
be written in a general operator way, i.e., as an operator that takes values from one time
level and gives explicitly the next time level of values. Discretization 5.10 is just an operator
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Space

Time ↑

t0

t1

t2

↑

Im(f(x0 + i∆x)) ... Im(f(xn + i∆x))→

Ω

→
Initial imaginary
perturbation

Figure 5.3: One-way wave simulation process: Propagation of the imaginary part of the imag-
inary perturbation in space in case of initial displacement given.

that propagates values (i.e. the imaginary part of the perturbation) following an approximate
solution structure to the solution of one-way wave equation by the FD upwind method (Eq.
3.10). Figures 5.3 and 5.4 illustrate how operator 3.10 propagate values in case of initial
condition over the entire space domain and by a point source respectively.

Initial condition: plane wave

For the first example consider the following initial displacement,

u(x, 0) = sinπx, for 0 ≤ x ≤ 3π. (5.32)

The analytical displacement solution to the initial value problem is obtained by applying by
the d’Alembert general formula (Eq. 3.19),

u(x, t) = cos (πx+ πct), for 0 ≤ x ≤ 3π and t > 0, (5.33)

with analytical velocity

u̇(x, t) = −πc sin (πx+ πct), for 0 ≤ x ≤ 3π and t > 0. (5.34)

For numerical computations we use a regular grid: Total grid length 3π km. Number
of space discretizations 1000 (∆x = 0.0094 km) , number of time discretizations 500 (∆t =

0.0065 seconds) and wave speed equal to 1.450 km/s (Courant number equal to one (S = 1)).

Figure 5.5 show results (snapshot of time step equal to 250) using upwind discretization
and second order CSFD (Eq. 5.11). As mentioned in previous sections the methodology here
presented to compare results between FD and CSFD is simple: with FD we use Eq. 5.32 as
a initial movement, with CSFD we have to construct initial conditions similar to those given.
The idea is to compute for each
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Figure 5.4: One-way wave simulation process: Propagation of the imaginary part of the imag-
inary perturbation in time in case of a point source.
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Figure 5.5: Comparison of velocity calculations using forward finite differences (FD) approxi-
mation (Eq. 3.8) and its respective analogous complex step finite differences (CSFD) approx-
imation (Eq. 4.2) in one-way wave simulation process with initial condition: f(x, 0) = sinπx.
It can be appreciated how the CSFDM reproduces second order numerical values and the
conventional FD only first order by using two time levels velocity approximation.
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u(x+ n∆x, 0) with n = 0, ..., N, (5.35)

compute its corresponding imaginary part of imaginary perturbation

Im(u(x+ n∆x+ ni∆x, 0)) with n = 0, ..., N, (5.36)

as an initial step of the process. After that, discretization 5.11 can be used to propagate
the wave to the time of interest. At this point we compute velocity values using two time levels
for the FD case (first order approximation) and one time level for the CSFD case (second order
approximation).

Note that CSFDM mainly differs of FDM in setting initial conditions: Because we make
an imaginary perturbation in space with Eq. 5.36, by dividing by ∆x we get displacement
gradients at each time step. Boundary conditions will be related to displacement gradients
values. In order to get velocity values we have to use the first order wave equation (Eq. 3.7).

We compare velocity values instead of displacement values (see Fig. 5.5). The reason of
this is because we emphasize the fact that in order to compute velocity values using FDM we
need to use two time levels which is first order accurate and by using one time level we get
second order of accuracy in the CSFD case. Displacement values can be computed by the
following expressions

ut+∆t
x = utx + Im

(
ut+i∆t
x

)
+O

(
∆t2

)
, (5.37)

using the initial displacement utx and at each time level that the imaginary part of the
displacement is computed, we can obtain ut+n∆t

x . Or using

ut+∆t
x = ut−∆t

x + 2 Im
(
ut+i∆t
x

)
+O

(
∆t3

)
. (5.38)

Note that Eqs. 5.37 - 5.38 are simple numerical integration expressions to compute dis-
placements.

Continuing, as a second example we just use a slightly more complicated initial condition:

u(x, 0) = 3 sin 2πx+ 6 cos 3πx, for 0 ≤ x ≤ 3π. (5.39)

The analytical solution to the initial value problem is

u(x, t) = 3 sin (2πx+ 2πct) + 6 cos (3πx+ 3πct), for 0 ≤ x ≤ 3π and t > 0, (5.40)

with analytical velocity

u̇(x, t) = 6πc cos (2πx+ 2πct)− 18πc sin (3πx+ 3πct), for 0 ≤ x ≤ 3π and t > 0. (5.41)

Figure 5.6 shows how CSFD reproduces the same results as FD using one time level only
instead of three (FD velocity values are computed using centered approximation). It is here
where lies one of the advantages of the CSFDM over the FDM; we can obtain same order of
accuracy with less time levels for a homogeneous regular grid.
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Figure 5.6: Comparison of velocity calculations using centered finite differences (FD) ap-
proximation (Eq. 3.9) and its respective analogous complex step finite differences (CSFD)
approximation (Eq. 4.2) in one-way wave simulation process with initial condition: f(x, 0) =

3 sin 2πx+6 cos 3πx. It can be appreciated how the CSFDM reproduces second order numerical
values by using two time levels approximation like the conventional FD by using three time
levels velocity approximation.
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Initial condition: source (time dependent function)

In previous Sections we have seen that we can use the CSFDM to propagate an initial dis-
placement perturbation along the entire space domain to the time of interest. In this Section
we show that we can also use the CSFDM to place an input source (time dependent function)
on a single point to efficiently solve the source wave propagation problem.

The methodology for a single point source is similar to the previous case: with FDM, the
input data for a single point source are displacements at a certain spatial location over a
certain time lapse, i.e., u(xs, t), where xs is the source location. In the CSFDM case, the
idea is to compute for a certain time dependent function f(xs, t), its corresponding imaginary
perturbation in time Im(f(xs, t+ i∆t)), as an initial step of the process and later propagate the
wave by using any CSFD discretization just like initial displacement case.

Note that the FD time-space grid does not change by using CSFDM. This mean we make
an imaginary perturbation in time, and dividing by ∆t we get approximate velocity values at
each time step. The location of the source is the same initial location due to our FD grid has
not changed. Boundary conditions will be related to velocities (imaginary perturbations of
displacement in time). In order to get displacement gradients values we can apply the first
order wave equation (Eq. 3.7).

To illustrate this, we use a Ricker source

f(xs, t) = (1− 2f2
0 (t− t0)2) exp(−f2

0 (t− t0)2), (5.42)

where f0 is the dominant frequency and set to be in our example as f0 = 1/(40∆t), t0 is the
time delay (convenient to express it as multiple of 1/f0) and set to be t0 = 4/f0. We use the
same domain used in the initial displacement example.

Figure 5.7 shows results using one-way propagation scheme. We can appreciate how
CSFDM reproduces same velocity result as the FDM, i.e., FD velocity values are computed
using the centered approximation (Eq. 3.9) and CSFD velocity values using one time level
approximation (Eq. 4.2).

Figure 5.8 shows results using FD Leapfrog discretization (Eq. 3.9) and its analogous CSFD
Leapfrog approximation (Eq. 5.12). We can appreciate how CSFD reproduces the solution in
both directions without the parasitic root implicit in the Leapfrog Method to the one-way wave
equation and at the same time computes fourth order accurate velocity values by using only
three levels of information (regular and homogeneous grid). As many books in the literature
refers, the Leapfrog method for the one-way wave equation has two solutions, one corre-
sponding to the wave solution traveling in one direction and another one corresponding to the
parasitic solution traveling in the opposite direction, usually called the parasitic mode (more
information about the parasitic wave in the first order Leapfrog Method see Strang (2007)).
This mode induces rapid oscillation in time. We have seen that the difference operator 5.31
propagates values by following the approximate structure solution to the second order wave
equation given by the ordinary FDM (Eq. 3.18), that is why should be not surprising the
absence of parasitic modes in the CSFD solution.

Figure 5.10 shows results of the simulation of the second order wave equation compared
with the first order wave equation. As expected, both results are the same for the maximum
Courant number (S = 1), which allows to numerically describe two-way wave propagation with
a first order differential equation.

5.5 Higher dimensional acoustic wave equation

In order to introduce the CSFDM in a more realistic way used in the geophysical and many
other fields, in this section we adopt a more general expression for the acoustic wave equation
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Figure 5.7: Comparison of velocity calculations using centered finite differences (FD) approx-
imation (Eq. 3.9) and its respective analogous complex step finite differences (CSFD) approx-
imation (Eq. 4.2) in one-way wave simulation process with a Ricker source. It can be appre-
ciated how the CSFDM reproduces second order numerical values by using two time levels
approximation like the conventional FD by using three time levels velocity approximation.
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Figure 5.8: Comparison of velocity calculations using centered finite differences (FD) approxi-
mation (Eq. 3.9) and a fourth order complex step finite differences (CSFD) approximation (Eq.
5.2) in one-way wave simulation process with a Ricker source. It can be appreciated how the
CSFDM reproduces fourth order numerical values by using three time levels approximation
unlike the conventional FD by using three time levels velocity approximation.
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Figure 5.9: Comparison of velocity calculations using centered finite differences (FD) approxi-
mation (Eq. 3.9) and a fourth order complex step finite differences (CSFD) approximation (Eq.
5.2) in one-way wave simulation process with a Ricker source. It can be appreciated how the
CSFDM propagates the wave in two directions without the presence of a parasitic root unlike
the conventional FD Leapfrog Method. FD velocity values are displaced in the vertical axis in
order to make a better comparison of both methods.

71



-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  1  2  3  4  5  6  7

Ve
lo

ci
ty

 a
m

pl
itu

de

X - Coordinate 

CSFD Velocity
FD Velocity

 0.28964

 0.2899

 4.42962 4.42968

Figure 5.10: Comparison of velocity calculations using the second order wave equation solved
with FDM (Eq. 3.17) and the first order wave equation solved with CSFDM (Eq. 5.12) in a
homogeneous medium. It can be appreciated how the CSFDM propagates the wave in two
directions giving the same result of the conventional FDM.

72



than the 1D case presented in previous Sections.

The acoustic wave equation in a 1D, 2D or 3D medium describes a longitudinal movement,
i.e., the direction of the particle motion is the same of the direction of propagation. Gases
and liquids are states of the matter that, except for viscous stresses, do not respond to shear
strain. The restoring force responsible for wave propagation phenomena is due to a pressure
change (normal stress) in the body.

The multidimensional second order (two-way) acoustic wave equation is given by the fol-
lowing expression (Cohen, 2001),

1

κ(x)

∂2P

∂t2
(x, t)−∇ ·

(
1

ρ(x)
∇P(x, t)

)
= f(x, t), (5.43)

where P is the pressure, the operator ∇ =
(
∂/∂x1, ..., ∂/∂xd

)T
, ρ is the density and κ is the

bulk modulus, both strictly positive functions of position the vector x.

The velocity c of sound wave propagation is given by

c(x) =

√
κ(x)

ρ(x)
. (5.44)

In the absence of sources we must need to have initial conditions of displacement and
velocity

P(x, 0) = P0(x),
∂P

∂t
(x, 0) = P1(x).

The first order multidimensional wave equation or one-way acoustic wave equation in a “n”
dimensional space is given by the following expression

1√
κ(x)

∂P

∂t
(x, t)−∇ ·

(
1√
ρ(x)

P(x, t)

)
= f(x, t), (5.45)

In the absence of sources, with initial conditions of displacement

P(x, 0) = P0(x).

Equation 5.45 has not been widely used in numerical simulations of the wave propagation
problem in a 2D and/or 3D medium by the FDM, due to intrinsic limitations of the method to
propagate the wave in all directions. However, this limitations of unidirectional propagation
by the FD approximation to Eq. 5.45 in higher dimensions has been widely used in the design
of non reflecting (absorbing) boundary conditions (e.g. Clayton and Engquist (1980)). On the
other hand, paraxial approximations to the 2D and 3D one-way wave equation has been widely
used in geophysical imaging/migration (e.g. Claerbout (1986), Tappert (1977)). Exact one-way
wave equations in a 2D medium, has been used in the context of the Fourier domain, where
the factorization of the wave equation is easily made (e.g. Angus et al. (2004)).

Commonly, first order hyperbolic systems of coupled PDE are used to solve the wave prop-
agation problem (e.g. Virieux (1986), Moczo et al. (2004b)). That is not the case of Eq. 5.45,
which is a higher dimensional non-coupled PDE. We illustrate the limitations of the FDM to
solve the 2D one-way wave equation in all directions in the next Section.
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5.5.1 2D first order acoustic wave equation

The first order acoustic wave equation in a homogeneous two dimensional space is given by
the following mathematical expression

∂P

∂t
=

√
κ

ρ

(
∂P

∂x
+
∂P

∂z

)
+ f, (5.46)

where P = P(x, z, t).

The most common FD discretization is made by using the centered approximation to the
first derivative at both sides of Eq. 5.46, which leads to the following expression

Pt+∆t
x,z = ∆t

√
κ

ρ

(
Ptx+∆x,z − Ptx−∆x,z

∆x
+

Ptx,z+∆z − Ptx,z−∆z

∆z

)
+ Pt−∆t

x,z +O
(

∆t2,∆x2,∆z2
)
.

(5.47)

The CSFD discretization to Eq. 5.46 in homogeneous media is given by the following
expression

Im
(

Pt+∆t+i
√

3∆t

x+i
√

3∆x,z+i
√

3∆z

)
= ∆t

√
κ

ρ

[
Im
(

Pt+i
√

3∆t

x+∆x+i
√

3∆x,z+i
√

3∆z

)
+ Im

(
Pt+i

√
3∆t

x−∆x+i
√

3∆x,z+i
√

3∆z

)
∆x

]

+ ∆t

√
κ

ρ

[
Im
(

Pt+i
√

3∆t

x+i
√

3∆x,z+∆z+i
√

3∆z

)
+ Im

(
Pt+i

√
3∆t

x+i
√

3∆x,z−∆z+i
√

3∆z

)
∆z

]
− Im

(
Pt−∆t+i

√
3∆t

x+i
√

3∆x,z+i
√

3∆z

)
+O

(
∆t4,∆x4,∆z4

)
. (5.48)

Convergence, consistence and stability analysis

We apply Lax Equivalence Theorem and Von Neumann stability analysis to determine whether
an approximation is convergent and stable. Substituting P = G(ω, t)eik(x+z) into discretizations

5.47 and 5.48 and setting ∆x = ∆z and S = ∆t
∆x

√
κ
ρ , we get the following expression for

discretization 5.47

G2 − 4iS sin k∆xG− 1 = 0, (5.49)

with solutions

G = 2iS sin k∆x ±
√

1− 4S2 sin2 k∆x, (5.50)

if we call sin r = 2S sin k∆x we can write

G = i sin r ± cos r,

which is
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G1 = ei arcsin
(

2S sin k∆x
)
, (5.51)

G2 = −e−i arcsin
(

2S sin k∆x
)
. (5.52)

G1 and G2 are exactly on the unit circle. With‖G‖ = 1 there is no room to move, (Strang,
2007).

Note the particular case when k∆x = π, both solutions are different, i.e., the correct root
is G1 = 1 and the other strange root is G2 = −1, which is related to the rapid oscillations in
time of the parasitic mode (see Strikwerda (2004) for further details).

For Eq. 5.48 we get the following

G2 − 2
(
S cos k∆x

)
G + 1 = 0, (5.53)

with solutions

G =
(
S cos k∆x

)
±
√

S2 cos2 k∆x− 1. (5.54)

Note the particular case when k∆x = 2π, both solutions are equal. This ensures the
absence of numerical noise (parasitic waves) for certain wavelengths.

For both schemes to ensure‖G‖ ≤ 1 we get S ≤ 1/2.
In previous Sections we have seen the equivalence of modeling the second order wave

equation by FDM and the first order wave equation by CSFDM. This can be also appreciated
in the 2D case. The only difference is now the Courant number stability conditions which is
S ≤ 1/2 for the one-way wave equation and S ≤ 1/

√
2 for the two-way wave equation (see

Appendix A.2). This mean we get the same results for the maximum Courant number of both
schemes but over a different time scale, as long as the time dependent source is the same in
both schemes.

Dispersion and dissipation analysis

Introducing the plane wave solution into discretizations 5.47 and 5.48 and setting ∆x = ∆z

and S = ∆t
∆x

√
κ
ρ we get respectively

sinω∆t = 2S sin k∆x, (5.55)

cosω∆t = 2S cos k∆x. (5.56)

Clearly the schemes are dispersive and non-dissipative.

Numerical example

In order to illustrate the FD and CSFD disretizations to the one-way wave equation in a two
dimensional space, we present numerical simulations of a point Ricker source in a homoge-
neous medium: length in the x direction Lx = 2π km, length in the z direction Lz = Lx, number
of space discretizations nx = 200 and nz = nx (∆x = ∆z = 0.0314 km), number of time steps
nt = 200, wave speed c = 1.45 km/s, Courant number S = 0.5, time step ∆t = S∆x. The
Ricker source (Eq. 5.42) with parameters: dominant frequency f0 = 1/(10∆t) and time delay
t0 = 4/f0.
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Figure 5.11: One-way two dimensional acoustic wave equation snapshot simulation with Fi-
nite Differences and Complex Step Finite Differences. We can appreciate how the FDM only
propagate the wave in an angle of 45, 135, 225 and 315 degrees only unlike the CSFDM that
correctly propagates the wave.

It is well know that the FD upwind scheme in a two dimensional media propagates wave
in 45, 135, 225 and 315 degrees only. This fact is appreciated in Fig. 5.11, where the wave
propagates in a direction of 45, 135, 225 and 315 degrees only and the rest of the space is filled
by parasitic modes. Fig. 5.12 show seismogram comparisons of displacement and velocity with
a receiver located in an angle of 45 degrees. It can be appreciated how both solutions fit. Fig.
5.13 show seismograms comparison of the CSFDM with the analytical solution, as expected
with the maximum Courant number of 0.5 the method reproduces the analytical solution.

The superiority of the Leapfrog for the second order wave equation (discretization 5.48 in
homogeneous media) over the Leapfrog for the first order wave equation (discretization 5.47)
is regarding the presence of high order oscillations that does not affect the convergence of the
second order Leapfrog and it does for the first order Leapfrog. This is due to the extra initial
data in the discretization that restricts the amplitude of high frequencies that are growing
linearly (see Strikwerda (2004) page 195 for further details).

5.5.2 3D first order acoustic wave equation

In order have a physical interpretation of the 3D first order wave equation, we first derive
the equation of equilibrium in a infinitesimal medium due to an acoustic source perturbation:
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Figure 5.12: Finite Differences and Complex Step Finite Differences one-way two dimensional
acoustic wave equation simulation seismograms comparison at a receiver located at 45 de-
grees.
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Figure 5.13: Complex Step Finite Differences one-way two dimensional acoustic wave equa-
tion simulation seismograms comparison with the analytical solution.
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Figure 5.14: Three dimensional infinitesimal medium subject to a pressure force.

Consider the 3D medium given in Fig. 5.14. As mentioned before the acoustic movement is
only affected by normal stress or pressure (P = P(σxx, σyy, σzz)) = P(Px,Py,Pz)). The total
amount of energy accumulation due to the acoustic source is given by

(
σxx + δσxx − σxx

)
δyδz +

(
σyy + δσyy − σyy

)
δxδz +

(
σzz + δσzz − σzz

)
δxδy

+ f(σxx, σyy, σzz)δxδyδz. (5.57)

In case of total equilibrium we get

(
σxx + δσxx − σxx

)
δyδz +

(
σyy + δσyy − σyy

)
δxδz +

(
σzz + δσzz − σzz

)
δxδy

+ f(σxx, σyy, σzz)δxδyδz = 0, (5.58)

dividing by δxδyδz and taking the limit when δx, δy, δz → 0 we get the equation of acoustic
equilibrium

∂σxx
∂x

+
∂σyy
∂y

+
∂σzz
∂z

+ f(σxx, σyy, σzz) = 0. (5.59)

In case of non-equilibrium the total amount of energy accumulation must be equal to the
total flow of energy inside the body, i.e.,

(
σxx + δσxx − σxx

)
δyδz +

(
σyy + δσyy − σyy

)
δxδz +

(
σzz + δσzz − σzz

)
δxδy

+ f(σxx, σyy, σzz)δxδyδz =

√
ρ

κ

∂σ

∂t
δxδyδz, (5.60)

dividing by δxδyδz and taking the limit when δx, δy, δz → 0 we get the first order acoustic
wave equation in a homogeneous three dimensional space

∂σ

∂t
=

√
κ

ρ

(
∂σxx
∂x

+
∂σyy
∂y

+
∂σzz
∂z

)
+ f, (5.61)

by calling pressure P = P(σxx, σyy, σzz) we can write
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∂P

∂t
=

√
κ

ρ

(
∂P

∂x
+
∂P

∂y
+
∂P

∂z

)
+ f, (5.62)

with P = P(x, y, z, t).
The CSFD discretization to Eq. 5.62 in homogeneous media is given by the following

expression

Im
(

Pt+∆t+i
√

3∆t

x+i
√

3∆x,y+i
√

3∆y,z+i
√

3∆z

)
= ∆t

√
κ

ρ

[
Im
(

Pt+i
√

3∆t

x+∆x+i
√

3∆x,y+i
√

3∆y,z+i
√

3∆z

)
+ Im

(
Pt+i

√
3∆t

x−∆x+i
√

3∆x,y+i
√

3∆y,z+i
√

3∆z

)
∆x

]

+ ∆t

√
κ

ρ

[
Im
(

Pt+i
√

3∆t

x+i
√

3∆x,y+∆y+i
√

3∆y,z+i
√

3∆z

)
+ Im

(
Pt+i

√
3∆t

x+i
√

3∆x,y−∆y+i
√

3∆y,z+i
√

3∆z

)
∆y

]

+ ∆t

√
κ

ρ

[
Im
(

Pt+i
√

3∆t

x+i
√

3∆x,y+i
√

3∆y,z+∆z+i
√

3∆z

)
+ Im

(
Pt+i

√
3∆t

x+i
√

3∆x,y+i
√

3∆y,z−∆z+i
√

3∆z

)
∆z

]
− Im

(
Pt−∆t+i

√
3∆t

x+i
√

3∆x,y+i
√

3∆y,z+i
√

3∆z

)
+O

(
∆t4,∆x4,∆y4,∆z4

)
. (5.63)

Convergence, consistence and stability analysis

Substituting P = G(ω, t)eik(x+y+z) into discretization 5.63 and by setting ∆x = ∆y = ∆z and

S = ∆t
∆x

√
κ
ρ we get

G2 − 2
(
3S cos k∆x

)
G + 1 = 0. (5.64)

For‖G‖ ≤ 1 we get S ≤ 1/3.
Like the 2D case, the only difference modeling the second order wave equation by FDM

and the first order wave equation by CSFDM is the Courant number stability condition which
is S ≤ 1/

√
3 and S ≤ 1/3 respectively, which means we get the same results for the maximum

Courant number of both schemes but over a different time scale, of course as long as the time
dependent source is the same in both schemes.

Dispersion-dissipation analysis

Introducing the plane wave solution into discretization 5.63 and assuming ∆x = ∆y = ∆z we
get

cosω∆t = 3S cos k∆x. (5.65)

Clearly the scheme is dispersive and non-dissipative.

Numerical example

In order to illustrate the CSFD disretization to the one-way wave equation in a three dimen-
sional space, we present numerical simulations of a point Ricker source in a homogeneous
medium: length in the x direction Lx = 2π km, length in the y and z direction Lz = Ly = Lx,
number of space discretizations nx = 50 and nz = ny = nx (∆x = ∆y = ∆z = 0.0314 km),
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Figure 5.15: Complex Step Finite Differences one-way three dimensional acoustic wave equa-
tion simulation seismograms comparison with the analytical solution.

number of time steps nt = 100, wave speed c = 1.45 km/s, Courant number S = 1/3, time step
∆t = S∆x. The Ricker source (Eq. 5.42) with parameters: dominant frequency f0 = 1/(10∆t)

and time delay t0 = 4/f0.
Figure 5.15 shows comparison of CSFD seismograms results. As expected by using the

maximum Courant number of 1/3, the CSFDM reproduces the analytical solutions.
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Chapter 6

The Complex Step Finite Differences
Method Applied to the 1D Elastic
Wave Equation: stability and
dispersion analysis

6.1 Introduction

In this Chapter we investigate stability and dispersion properties of higher order finite
differences (FD) and complexs Step finite differences (CSFD) approximations to the one
dimensional acoustic/elastic wave equation. We compare stability and dispersion proper-

ties of the introduced CSFD schemes for the first order wave equation with the conventional
FD approximations for the second order wave equation.

This Chapter first introduces (Section 6.2) the 1D Finite Differences Method (FDM) for the
second order wave equation and the most common higher order schemes. In Section 6.3 the
1D Complex Steps Finite Differences Method (CSFDM) is introduced for solving the first order
wave equation in two directions. In Section 6.4 a complete stability and dispersion analysis
of the FD and CSFD schemes is done. In Section 6.5 explains the direct connection between
FDM and CSFDM.

6.2 Higher order finite differences approximations to the 1D
elastic wave equation

The study of 1D numerical partial differential problems correspond the basis of every 3D
numerical method design. We need first to analyze properties of the 1D problem in order
to establish the scope and application range of the numerical technique for 3D problems.
After having determined advantages and disadvantages, that is, having knowledge where the
numerical tool will reproduce reliable results, we can design the numerical experiment.

The mathematical expression for the 1D elastic wave equation is the same for the 1D
acoustic wave equation with the only difference in the velocity propagation term. Recalling
Chapter 3, the 1D acoustic/elastic wave equation in a homogeneous medium is given by Eq.
3.15, subject to initial conditions of displacement and speed is called the initial value problem.

In an elastic medium we can find different types of 1D waves, e.g., P, SV and SH waves. All
of this waves belong to the same mathematical expression (Eq. 3.15), with the difference in
the velocity expressions:
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c =

√
λ+ 2µ

ρ
for a P wave, (6.1)

c =

√
µ

ρ
for a SV and SH waves, (6.2)

where λ and µ are Lame elastic parameters and ρ is the density.
Generalization of Eq. 3.15 to non constant coefficients, i.e., taking into account variations

of speed (heterogeneous media), is given by the following expression

∂2u

∂t2
= ∇ ·

(
c(x)2∇u

)
, (6.3)

where the operator ∇ is the gradient and ∇· is the divergence. Note the velocity is non
longer constant and this change is taken into account by the divergence operator.

Equation 3.15 and/or Eq. 6.3 are called two-way wave equations: this mean they are dif-
ferential operator that propagates a wave in two directions (positive and negative directions).

If we rearrange and factorize Eq. 3.15 we can write the following

∂2u

∂t2
− c2 ∂

2u

∂x2
=

(
∂2

∂t2
− c2 ∂2

∂x2

)
u =

[(
∂

∂t
− c ∂

∂x

)(
∂

∂t
+ c

∂

∂x

)]
u = 0. (6.4)

The two differential operators in which the two-way wave equation (Eq. 3.15) can be
decomposed are called one-way wave differential operators. Following this, we can write the
one-way wave equation by the following expression

∂u

∂t
= c∇ · u. (6.5)

The one-way wave equation (Eq. 6.5) is also called the first order wave equation and
propagates the wave in one direction only (positive or negative). The first order and second
order wave equations are the basis of numerical experiments design in computational wave
propagation in seismology.

6.2.1 Higher order Finite Differences discretizations

The FDM is nowadays a powerful method in computational seismology. Its simplicity and low
computational cost despite its intrinsic limitations allow perform numerical experiments in
the most highest levels. In this Section we show the most common FD approximations to the
second order wave equation.

The most basic FD approximation to the second derivative is given by Eq. 3.6. High order
FD approximations to the second and fourth order derivatives are given by

f ′′(x) =
4

3

f(x+ ∆x)− 2f(x) + f(x−∆x)

∆x2

− 1

3

f(x+ 2∆x)− 2f(x) + f(x− 2∆x)

4∆x2
+O

(
∆x4

)
. (6.6)

f iv(x) =
f(x+ 2∆x)− 4f(x+ ∆x) + 6f(x)− 4f(x−∆x) + f(x− 2∆x)

∆x4
+O

(
∆x4

)
. (6.7)
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In order to avoid clutter in our study, lets introduce the following differential operators

∆+
x f(x) = f(x+ ∆x)− f(x), (6.8)

∆−x f(x) = f(x)− f(x−∆x), (6.9)

�1/2
x f(x) = f

(
x+

∆x

2

)
− f

(
x− ∆x

2

)
. (6.10)

In general we can write � operator as

�nxf(x) = f
(
x+ n∆x

)
− f

(
x− n∆x

)
. (6.11)

We can construct the second order derivative FD approximation (Eq. 3.6) as a convolution
of two first order operators, that is

D2
x =

∆+
x

∆x
◦ ∆−x

∆x
=
�1/2
x

∆x
◦ �

1/2
x

∆x
, (6.12)

where

D2
x =

f(x+ ∆x)− 2f(x) + f(x−∆x)

∆x2
. (6.13)

Also, the fourth order approximation for the second derivative (Eq. 6.6) can be written as

D24th

x =
4

3

(
∆+
x

∆x
◦ ∆−x

∆x

)
− 1

12

(
�x
∆x
◦ �x

∆x

)
=

4

3

(
�1/2
x

∆x
◦ �

1/2
x

∆x

)
− 1

12

(
�x
∆x
◦ �x

∆x

)
, (6.14)

where

D24th

x =
4

3

f(x+ ∆x)− 2f(x) + f(x−∆x)

∆x2
− 1

3

f(x+ 2∆x)− 2f(x) + f(x− 2∆x)

4∆x2
. (6.15)

In the same way, we can construct the fourth order derivative FD approximation (Eq. 6.7)
by

D4
x = D2

x ◦D2
x = −4

(
∆+
x

∆x2
◦ ∆−x

∆x2

)
+
�x
∆x2

◦ �x
∆x2

= −4

(
�1/2
x

∆x2
◦ �

1/2
x

∆x2

)
+
�x
∆x2

◦ �x
∆x2

, (6.16)

where

D4
x =

f(x+ 2∆x)− 4f(x+ ∆x) + 6f(x)− 4f(x−∆x) + f(x− 2∆x)

∆x4
. (6.17)

As we will see in the next Section, in general, the operator formulation of FD approxima-
tions is more convenient to express high order FD discretizations to the wave equation.
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Finite Differences discretizations in homogeneous media (constant coefficients)

The simplest FD discretization to the second order wave equation in homogeneous medium
(constant velocity, Eq. 3.15) is given by applying approximation 3.6 at both sides of the equa-
tion

ut+∆t
x − 2utx + ut−∆t

x

∆t2
= c2u

t
x+∆x − 2utx + utx−∆x

∆x2
+O

(
∆t2,∆x2

)
. (6.18)

If we do consider higher order derivatives in the Taylor’s approximation of Eq. 3.6 we can
write discretization 6.18 as follows

ut+∆t
x − 2utx + ut−∆t

x

∆t2
− ∆t2

12

∂4u

∂t4
= c2u

t
x+∆x − 2utx + utx−∆x

∆x2
− c4 ∆x2

12

∂4u

∂x4
+O

(
∆t4,∆x4

)
.

(6.19)

A popular discretization is seismology is given by considering a fourth order accurate ap-
proximation in space. Although this introduces numerical dispersion into the solution, it can
handle smooth heterogeneous media in acceptable way unlike discretization 6.18. The sec-
ond order accurate in time and fourth order accurate in space discretization is given by the
following expression

ut+∆t
x − 2utx + ut−∆t

x

∆t2
=

4

3
c2u

t
x+∆x − 2utx + utx−∆x

∆x2

− 1

3
c2u

t
x+2∆x − 2utx + utx−2∆x

4∆x2
+O

(
∆t2,∆x4

)
. (6.20)

Commonly, seismologist are not interested in discretizing the fourth order derivative in
time in Eq. 6.19 because it leads to more computational time consuming algorithms, so one
way to introduce more accurate time discretizations, is to express the time derivative as a
spatial derivative by considering higher order approximations in space. The modified equa-
tion approach, introduced by Dablain (1986), consist in expressing time derivatives as space
derivatives by considering the continuity of the wave equation as follows

∂4u

∂t4
=

∂2

∂t2

(
∂2u

∂t2

)
=

∂2

∂t2

(
c2∂

2u

∂x2

)
= c2 ∂

2

∂x2

(
∂2u

∂t2

)
= c4∂

4u

∂x4
. (6.21)

Based on Eq. 6.21 and using Eqs. 6.19-6.20 we can write a discretization fourth order
accurate in space and time as follows

ut+∆t
x − 2utx + ut−∆t

x

∆t2
=

4

3
c2u

t
x+∆x − 2utx + utx−∆x

∆x2

− 1

3
c2u

t
x+2∆x − 2utx + utx−2∆x

4∆x2
+ c4 ∆t2

12

∂4u

∂x4
+O

(
∆t4,∆x4

)
. (6.22)

finally, using approximation 6.7 we get

ut+∆t
x − 2utx + ut−∆t

x

∆t2
=

4

3
c2u

t
x+∆x − 2utx + utx−∆x

∆x2
− 1

3
c2u

t
x+2∆x − 2utx + utx−2∆x

4∆x2

+ c4 ∆t2

12

utx+2∆x − 4utx+∆x + 6utx − 4utx−∆x + utx−2∆x

∆x4
+O

(
∆t4,∆x4

)
.

(6.23)
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Equations 6.18, 6.20 and 6.23 are the most common basis for FD simulations of wave
propagation in seismology by using the second order wave equation. Another popular scheme
is called the staggered grid. This staggered grid schemes decompose the second order wave
equation into a coupled system of first order differential equations. In this study we only make
analyses of non-coupled PDE’s.

Equations 6.18, 6.20 and 6.23 can also be written in a general compact operator form
respectively as follows

D2
t u = c2D2

xu+O
(
∆t2,∆x2

)
, (6.24)

D2
t u = c2D24th

x u+O
(
∆t2,∆x4

)
, (6.25)

D2
t u = c2D24th

x u+ c4 ∆t

12
D4u+O

(
∆t4,∆x4

)
. (6.26)

Finite Differences discretization in heterogeneous media (non constant coefficients)

In the case of heterogeneous media, the wave equation is given by expression 6.3. In practical
applications is convenient to express the wave speed in terms of the density and the elastic
parameter. For instance, we can write the expression for a P wave as follows

ρ(x)
∂2u

∂t2
=

∂

∂x

((
λ(x) + 2µ(x)

) ∂u
∂x

)
, (6.27)

and/or for a S wave as follows

ρ(x)
∂2u

∂t2
=

∂

∂x

(
µ(x)

∂u

∂x

)
. (6.28)

Obviously, the fact that the coefficients of the equation vary in space explains that the main
difficulty comes form space discretization (Cohen and Joly, 1996). There are many different
approximations respect to the choice of the elastic parameter. In this study we just show the
most simple cases. The second order approximation in time and space is given by

ρx
ut+∆t
x − 2utx + ut−∆t

x

∆t2
=

1

∆x

[
µx+ ∆x

2

utx+∆x − utx
∆x

− µx−∆x
2

utx − utx−∆x

∆x

]
+O

(
∆t2,∆x2

)
,

(6.29)

where ρ(x) and µx+ ∆x
2

are defined by

ρx =
1

2∆x

∫ x+∆x

x−∆x
ρ(x) dx, (6.30)

µx+ ∆x
2

=
1

∆x

∫ x+∆x

x
µ(x) dx. (6.31)

The fourth order accurate in space FD discretization given by
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ρx
ut+∆t
x − 2utx + ut−∆t

x

∆t2
=

4

3

1

∆x

[
µx+ ∆x

2

utx+∆x − utx
∆x

− µx−∆x
2

utx − utx−∆x

∆x

]
− 1

3

1

2∆x

[
µx+∆x

utx+2∆x − utx
2∆x

− µx−∆x

utx − utx−2∆x

2∆x

]
+O

(
∆t2,∆x4

)
.

(6.32)

Note that the elastic coefficient µ is evaluated at point where the displacement is not
defined (x± ∆x

2 ).
In case of the first order wave equation the expression for heterogeneous media is given

by

∂u

∂t
= c(x)∇ · u. (6.33)

Because the first order wave equation does not involves velocity derivatives, FD discretiza-
tions are the same for the homogeneous case avoiding evaluation of velocity parameters where
displacements are not defined.

6.3 Complex Step Finite Differences approximations to the 1D
elastic wave equation

The Complex Step (CS) method was introduced by Squire and Trapp (1998) and generalized by
Abreu et al. (2013b). Based on this work Abreu et al. (2013a) introduced the called Complex
Step Finite Differences Method (CSFDM) applied to he acoustic wave propagation problem in
a 1D, 2D and 3D homogeneous medium. CSFDM can be seen as an extension to the complex
numbers of the original FDM. An important difference outlined by Abreu et al. (2013a), is
difference between the kind of wave equation that both method can be applied: CSFD can be
used to propagate in two directions the one-way wave equation which can not be done by FDM
without introducing parasitic modes.

The generalization made by Abreu et al. (2013b) consisted in taking complex steps in a
strict sense, i.e., h+ iv, where h and v are differential steps (h, v ∈ R and h, v → 0).

Follow, we list the CSFD approximations used in this study

f ′(x) =
Im(f(x+ h+ iv))

v
+O

(
h, v2

)
, (6.34)

f ′(x) =
Im(f(x+ h+ iv)) + Im(f(x− h+ iv))

2v
−
(

3h2 − v2

3!

)
f ′′′(x)

−
(

5h4 − 10h2v2 + v4

5!

)
fv(x) +O

(
7h6 − 35h4v2 + 21h2v4 − v6

)
. (6.35)

Note that we can choose values of v in order to be able to control the approximation error
in Eq. 6.35. For instance, if we set v =

√
3h, the approximation error becomes O

(
h4
)
.

Simple expressions for the second, third and fifth derivative are given by Eq. 4.35 and the
following expressions

f ′′(x) =
Im(f(x+ h+ iv))− Im(f(x+ iv))

hv
+O

(
h, v2

)
. (6.36)
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f ′′′(x) =
Im(f(x+ h+ iv))− 2 Im(f(x+ iv)) + Im(f(x− h+ iv))

h2v
+O

(
h2 − 2v2

)
. (6.37)

Note that the CSFD expression for the third order derivative (Eq. 6.37) is just a simple
three levels scheme, also if we choose h =

√
2v the error becomes O(h4).

f ′′′(x) =
Im(f(x+ h+ iv))− 2 Im(f(x+ iv)) + Im(f(x− h+ iv))

5h2v

+
Im(f(x+ 2h+ iv))− 2 Im(f(x+ iv)) + Im(f(x− 2h+ iv))

5h2v
+O

(
34h2 − 20v2

)
.

(6.38)

We can obtain the fourth order version of Eq. 6.38 by using the appropriate weights

f ′′′(x) =
(
16h2 − 8v2

) Im(f(x+ h+ iv))− 2 Im(f(x+ iv)) + Im(f(x− h+ iv))

72h4v

+
(
2v2 − h2

) Im(f(x+ 2h+ iv))− 2 Im(f(x+ iv)) + Im(f(x− 2h+ iv))

72h4v

+O
(

4h4 − 10h2v2 + 7v4
)
. (6.39)

fv(x) =
Im(f(x+ 2h+ iv))− 4 Im(f(x+ h+ iv)) + 6 Im(f(x+ iv))

h4v

+
−4 Im(f(x− h+ iv)) + Im(f(x− 2h+ iv))

h4v
+O

(
h2 − v2

)
. (6.40)

If we choose h and v to satisfy the equations 34h2 = 20v2 and h2 = v2 in Eqs. 6.38 and 6.40
the error becomes O

(
h4
)

respectively.
CSFD approximations can also be written in a general operator way by introducing the

following operators

Bxf(x) = f
(
x+ ∆x

)
, (6.41)

CBn
xf(x) = f

(
x+ n∆x

)
+ f

(
x− n∆x

)
. (6.42)

We can write Eqs. 6.34-6.38 and Eq. 4.35, 6.40, respectively as follows

f ′(x) =
Bx

v
Im(f(x+ iv)) +O

(
h, v2

)
, (6.43)

f ′(x) =
CBx

2v
Im(f(x+ iv))−

(
3h2 − v2

3!

)
f ′′′(x)

−
(

5h4 − 10h2v2 + v4

5!

)
fv(x) +O

(
7h6 − 35h4v2 + 21h2v4 − v6

)
. (6.44)

f ′′(x) =
∆+
x

hv
Im(f(x+ iv)) +O

(
h, v2

)
. (6.45)
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f ′′′(x) =
∆+
x ◦∆−x
h2v

Im(f(x+ iv)) =
�1/2
x ◦�1/2

x

h2v
Im(f(x+ iv)) +O

(
h2 − 2v2

)
. (6.46)

f ′′′(x) =
1

5h2v

(
∆+
x ◦∆−x +�x ◦�x

)
Im(f(x+ iv)) +O

(
34h2 − 20v2

)
=

1

5h2v

(
�1/2
x ◦�1/2

x +�x ◦�x
)
Im(f(x+ iv)) +O

(
34h2 − 20v2

)
, (6.47)

f ′′(x) =
�1/2
x

hv
Im(f(x+ iv)) +O

(
h2 − v2

)
, (6.48)

fv(x) =
1

h4v

(
�x ◦�x − 4 ∆+

x ◦∆−x

)
Im(f(x+ iv)) +O

(
h2 − v2

)
(6.49)

=
1

h4v

(
�x ◦�x − 4�1/2

x ◦�1/2
x

)
Im(f(x+ iv)) +O

(
h2 − v2

)
. (6.50)

Based on the previous approximations we can construct discretizations to the first order
wave equations in order to solve the wave propagation problem.

6.3.1 CSFD discretizations in homogeneous media (constant velocity)

Abreu et al. (2013a) showed the equivalence of propagating the second order wave equation
by the FDM and the first order wave equation by the CSFDM in homogeneous media. Unlike
the second order wave equation, the first order wave equation does not involves derivatives
of the coefficients in homogeneous and/or heterogeneous media. In this study we construct a
family of CSFD approximations considering the same procedure followed in the introduction
for constructing FDM schemes. Following we name the schemes as CSFD (Complex Step
Finite Difference) followed by two numbers referred as the error order in time and space. We
use operator formulation in order be compact in our notation.

CSFD22

The second order accurate in time and space CSFD approximation fo the first order wave
equation is given by the following expression

CBt Im
(
ut+i∆t
x+i∆x

)
=
cvt
vx
CBx Im

(
ut+i∆t
x+i∆x

)
+O

(
∆t2,∆x2

)
. (6.51)

We can write Eq. 6.51 including the higher order derivatives terms to obtain

CBt

2vt
Im
(
ut+i∆t
x+i∆x

)
−
(

3∆t2 − v2
t

3!

)
∂3u

∂t3
−
(

5∆t4 − 10∆t2v2
t + v4

t

5!

)
∂5u

∂t5

= c
CBx

2vx
Im
(
ut+i∆t
x+i∆x

)
− c3

(
3∆x2 − v2

x

3!

)
∂3u

∂x3

− c5

(
5∆x4 − 10∆x2v2

x + v4
x

5!

)
∂5u

∂x5
+O

(
∆t6,∆x6

)
. (6.52)

Because the CSFD expression for the third derivative is a three levels discretization (Eq.
6.37) we can use it in time and space in order to gain more accuracy into the discretization
without including more computational cost. We can also combine approximations 6.38 and
6.40 in order to find higher order CSFD schemes. Following this we can construct the next
four CSFD approximations.
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CSFD44A(
CBt −

3∆t2 − v2
t

3!

∆+
t ◦∆−t
∆t2

)
Im
(
ut+i∆t
x+i∆x

)
=
cvt
vx

[
CBx − c2 3∆x2 − v2

x

3!

∆+
x ◦∆−x
∆x2

]
Im
(
ut+i∆t
x+i∆x

)
+O

(
∆t4,∆x4

)
. (6.53)

CSFD44B(
CBt −

3∆t2 − v2
t

3!

1

5∆t2

(
∆+
t ◦∆−t +�t ◦�t

))
Im
(
ut+i∆t
x+i∆x

)
=
cvt
vx

[
CBx − c2 3∆x2 − v2

x

3!

1

5∆x2

(
∆+
x ◦∆−x +�x ◦�x

)]
Im
(
ut+i∆t
x+i∆x

)
+O

(
∆t4,∆x4

)
.

(6.54)

CSFD46A(
CBt −

3∆t2 − v2
t

3!

∆+
t ◦∆−t
∆t2

− 5∆t4 − 10∆t2v2
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1
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(
�t ◦�t − 4 ∆+
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))
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)
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x

3!
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x

5!

1

∆x4

(
�x ◦�x − 4 ∆+

x ◦∆−x

)]
Im
(
ut+i∆t
x+i∆x

)
+O

(
∆t4,∆x6

)
.

(6.55)

CSFD46B[
CBt −

3∆t2 − v2
t

3!

1

5∆t2
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t + v4
t

5!

1

∆t4

(
�t ◦�t − 4 ∆+
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Im
(
ut+i∆t
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)
=
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1

5∆x2

(
∆+
x ◦∆−x +�x ◦�x

)
− c4 5∆x4 − 10∆x2v2

x + v4
x

5!

1

∆x4

(
�x ◦�x − 4 ∆+

x ◦∆−x

)]
Im
(
ut+i∆t
x+i∆x

)
+O

(
∆t4,∆x6

)
.

(6.56)

6.4 Stability and dispersion analysis

Unfortunately there is no a perfect numerical method when we are in presence of heteroge-
neous media. All of different numerical methods suffer from different problems which do not
allow them to reproduce the real (analytical) solution of the problem. One of the most common
basis to understand the nature of a numerical discretization, which will allow us later to be
able to decide whether or not the method can be used under certain conditions, is the stability
and dispersion analysis.

The basis of the stability and dispersion analysis is a plane wave of the form

u(x, t) = Aei(kx+ωt), (6.57)

where ω is the frequency of the wave and k is the wave number, i is the imaginary unit
(i2 = −1) and A is the amplitude.
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Usually k and ω are dependent variables. The relation between ω and k is commonly called
the dispersion relation. If we substitute Eq. 6.57 into the two-way (Eq. 3.15) and/or the
one-way (Eq. 6.5 ) wave equations we obtain the following expressions respectively

ω2 = c2k2 and ω = c k. (6.58)

in the two directional case (two-way wave equation) we can express the velocity in terms
of frequency ω and the wave number k as

c = ±ω
k
. (6.59)

Note that we have two velocities in the two directional case, one propagating in the positive
direction (c = +ω/k) and the other propagating in the negative direction (c = −ω/k), hence its
name “two-way wave equation”. For the one-way wave propagation we have only the positive
branch of the velocity.

In both cases, we can appreciate the relation between ω and k can be decomposed into
linear functions. In other words, the true (theoretical) relation between ω and k is linear. As
we will see in later sections, the basic problem with FDM and the introduced CSFDM is the
relation between ω and k is not longer linear.

Note that is we substitute A = û in Eq. 6.57 then the relation ω = ω(k) is simply given by
the finite Fourier transform, hence by considering 0 ≤ kx ≤ π we obtain information on all the
modes present in the finite Fourier Transform representation of the solution, Thomas (1995).

In the next analysis we followed a similar methodology given by Moczo et al. (2014) and
Thomas (1995) and generalize it. Moczo et al. (2014) only considered the analysis of the
imaginary factors and Thomas (1995) only considered the true wave number.

To analyze dispersion properties of difference schemes, we first consider complex values
of frequency (ω = ωreal + iωimag) and the wave number (k = kreal + i kimag). We can express
a discrete plane wave (the discrete plane wave is given by substituting x = n∆x and t = m∆t

into Eq. 6.57) as follows

utx = A ei((kreal+i kimag)n∆x+(ωreal+iωimag)m∆t)

= A e−kimagn∆x−ωimagm∆tei(ωrealm∆t−krealn∆x), (6.60)

where n and m are positive integers.
Based on expression 6.60 we can infer what will happen with a wave propagating with

the numerical method of our choice. First we can assume the numerical method reproduces
the real frequency ω but not the wave number and/or we can assume the numerical method
reproduces the real wave number k but not the real frequency and/or finally we can assume
the numerical method dos not reproduces the real frequency or real wave number but gives
us a decent approximation of both. We separate the analysis in three cases:

Case 1: we assume the numerical method reproduces the real the wave number k but
not the frequency. The approximated frequency can adopt complex values, the corresponding
discrete plane wave will be given by

utx = A ei(kn∆x+(ωreal+iωimag)m∆t)

= A e−ωimagm∆teik(n∆x+
ωreal
k

m∆t). (6.61)

Analyzing expression 6.61 we can infer the following
Parameter ωreal:
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• If ωreal = 0 there will be no wave propagation.

• If ωreal 6= 0 there will be wave propagation with speed ωreal
k .

• If ωreal
k is a nonlinear function of ω(k) the scheme will be dispersive.

Parameter ωimag:

• If ωimag < 0 the solution of the scheme will grow without bounds with time.

• If ωimag > 0 the solution of the scheme will decrease with time (dissipative).

• If ωimag = 0 the solution of the scheme will not decrease with time (non-dissipative).

Case 2: we assume the numerical method reproduces the real frequency ω but not the
wave number. The approximated wave number can adopt complex values, the corresponding
discrete plane wave will be given by

utx = A ei((kreal+i kimag)n∆x+ωm∆t)

= A e−kimagn∆xe
ikreal(n∆x+ ω

kreal
m∆t)

. (6.62)

Analyzing expression 6.62 we can infer the following
Parameter kreal:

• If kreal = 0 there will be no wave propagation over the space.

• If kreal 6= 0 there will be wave propagation with speed ω
kreal

.

• If ω
kreal

is a nonlinear function of k(ω) the scheme will be dispersive.

Parameter kimag:

• If kimag < 0 the solution of the scheme will grow without bounds with spatial position.

• If kimag > 0 the solution of the scheme will decrease with spatial position (attenuative).

• If kimag = 0 the solution of the scheme will not decrease with spatial position (non-
attenuative).

Case 3: we assume the numerical method does not reproduces the real frequency or wave
number. In this case, both cases explained before are applied together in order to determine
how reliable the numerical approximation is.

6.4.1 Analysis of the dispersion relations

All dispersion relation can be written in a general form as follows

ϕ =
1

∆

(
π

2
− arcsinχ

)
, (6.63)

where {ϕ,∆, χ} correspond to {ω,∆t, ξ} and/or {k,∆x, ζ}, from which we can obtain ex-
plicit expressions for ω and k for all schemes.

Note all dispersion relation written in a general form (Eq. 6.63) are dependent on arcsin

function, that is, the real and/or imaginary values that ϕ can adopt are strictly conditioned by
values of the arcsin function, and this one conditioned by values of χ.
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By simple definition of the arcsin function, we investigate the case when χ is in the interval
[−1, 1] or outside the interval [−1, 1] and also when the imaginary part is different from zero.

We show in Appendix D if −1 ≤ ξ ≤ 1 then arcsin(χ) is pure real. If χ < 1 then arcsin(χ)

is positive real with negative imaginary part and if χ > 1 then arcsin(χ) is negative real with
negative imaginary part. In case of a complex χ then arcsin(χ) all the previous cases before
apply. This gives us a general rule to analyze the dispersion relations of FD and CSFD schemes.

6.4.2 Dispersion relations

In order to avoid clutter in our analysis, we show in Appendix C how to compute dispersion
relation for FD or CSFD approximations in a simple way. Following, we list by corresponding
names the FD and the introduced CSFD schemes in order to be able to make comparisons of
dispersion and stability properties.

Scheme FD22

The FD scheme second order in time and space is not commonly used in seismological re-
search due to its limitations in heterogeneous media. A complete dispersion study of this
scheme can be found in Moczo et al. (2014) and Taflove and Hagness (2005). In this study we
start to illustrate dispersion and stability analysis of FD24 and FD44 schemes in the following
Subsections.

Scheme FD24

The dispersion relation for the FD scheme second order accurate in time and fourth order
accurate in space (discretization 6.20) is given by the following expression

2 cosω∆t− 2 = S2

[
4

3

(
2 cos k∆x− 2

)
− 1

12

(
2 cos 2k∆x− 2

)]
, (6.64)

where S = c∆t
∆x is commonly refereed as the stability factor and/or the Courant number. By

using Eq. 6.64 we can find explicit expressions for ω and/or k.
Case 1: we assume the numerical method reproduces the real the wave number k but not

the frequency. The explicit expression for the frequency is given by the following expression

ω =
1

∆t
arccos

{
S2

[
−1

6
cos2 k∆x+

4

3
cos k∆x− 7

6

]
+ 1

}
. (6.65)

Denoting by

ξ = S2

[
−1

6
cos2 k∆x+

4

3
cos k∆x− 7

6

]
+ 1, (6.66)

note we can write Eq. 6.65 as the general expression (Eq. 6.63).
We are interested in finding values of S for which −1 ≤ ξ ≤ 1, that is, the interval for which

the FD scheme is stable.
We study boundaries of cos k∆x: when cos k∆x = −1 we have

ξ = 1− 8

3
S2, (6.67)

when cos k∆x = 1 we have ξ = 1.
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Figure 6.1: Courant number S as function of the spatial sampling Nλ, discriminating the stable
and unstable regimes of a wave with real wavelength.

It is clear always ξ ≤ 1, for the condition ξ ≥ −1 we obtain

S2 ≤ 2
1
6 cos2 k∆x− 4

3 cos k∆x+ 7
6

. (6.68)

Stability condition is given by using expression 1 − 8
3S2 ≤ ξ ≤ 1, which leads to: the FD24

scheme is stable if 0 ≤ S ≤
√

3
4 , otherwise the scheme is unstable. This stability condition can

also be found in Cohen (2001).
We can express the spatial sampling Nλ (Moczo et al., 2014) as Nλ = λ

∆x = 2π
k∆x , where λ is

the wavelength. We can express Eq. 6.68 as

S2 ≤ 2
1
6 cos2 2π

Nλ
− 4

3 cos 2π
Nλ

+ 7
6

. (6.69)

Fig. 6.1 shows values of the Courant number S, discriminating the stable and unstable
regimes of a wave with real (analytical) wavelength as function of the spatial sampling Nλ.

Case 2: we assume the numerical method reproduces the real frequency ω but not the
wave number. The explicit expression for the wave number is given by rearranging Eq. 6.64
as follows

− S2

6
cos2 k∆x+

4

3
S2 cos k∆x− 7

6
S2 + 1− cosω∆t = 0. (6.70)

If we set the indeterminate of the polynomial to be cos k∆x, then we can write Eq. 6.70 as
follows
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− S2

6
X2 +

4

3
S2X− 7

6
S2 + 1− cosω∆t = 0. (6.71)

Values of k are easily obtained in the following way

k =
1

∆x
arccos

{
root of Eq. 6.71

}
. (6.72)

We can write ω∆t = 2π
T ∆t = 2π

NT
, where the time sampling is defined as NT = T

∆t , we write
Eq. 6.70 as

− S2

6
cos2 k∆x+

4

3
S2 cos k∆x− 7

6
S2 + 1− cos

2π

NT
= 0. (6.73)

Denoting

ζ = root of Eq. 6.73. (6.74)

Following, we write the general case of the polynomial root as

a cos2 k∆x+ b cos k∆x+ c− cos
2π

NT
= 0, (6.75)

where a, b, c are constants. ζ will be given by

ζ =
−b±

√
b2 − 4a(c− cos 2π

NT
)

2a
, (6.76)

for the case −1 ≤ ζ ≤ 1 we have

− 1 ≤
−b±

√
b2 − 4a(c− cos 2π

NT
)

2a
≤ 1, (6.77)

after some algebra we find

a− b+ c ≤ cos
2π

NT
≤ a+ b+ c, (6.78)

substituting

1− 8

3
S2 ≤ cos

2π

NT
≤ 1, (6.79)

which implies

NT ≥
2π

arccos
(
1− 8

3S2
) , (6.80)

transformed into the frequency domain we have

94



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Courant number

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

non attenuative

attenuative

Finite Differences scheme (2,4)

Figure 6.2: Normalized frequency as function of the Courant Number S, discriminating the
attenuative and non-attenuative regimes of a single mode.

f =
1

T
=

1

∆tNT
≤

arccos
(
1− 8

3S2
)

π

1

2∆t
. (6.81)

Define the frequency fATT as

fATT =
1

T
=

1

∆tNT
≤

arccos
(
1− 8

3S2
)

π
fN , (6.82)

where fN is the Nyquist frequency fN = 1
2∆t . The frequency domain of condition 6.80 can

be written as f ≤ FATT . It is clear from Eq. 6.82 that only for S =
√

3
4 the FD scheme is

non-attenuative up to the Nyquist frequency.
To illustrate the relation between frequency and the Courant number, consider the normal-

ized frequency fnormalized = f∆t, we can define

fATT,normalized =
arccos

(
1− 8

3S2
)

2π
. (6.83)

We have identified two regimes of the scheme behavior with spatial position. The non-
attenuative regime is determined by condition 6.80 and the attenuative regime is determined
by its complement. The value of fATT discriminating the two regimes depends on S. Fig. 6.2
illustrates fATT,normalized as function of the Courant number.

In order to determine dispersion and dissipation properties of the FD24 scheme for differ-
ent Courant numbers, we plot graphics in terms of the normalized velocity (ratio factor). The
ratio factor (R) is the ratio of the numerical velocity cnum to the phase velocity c (true velocity),
that is
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Figure 6.3: Dispersion and dissipation properties of the FD24 scheme.

R =
cnum
c

=
ωnum
kc

=
ω∆t

k∆xS
. (6.84)

Fig. 6.3 shows dispersion and dissipation properties of the FD24 scheme. For computing R
values, we are only using real values of k∆x and ω∆t values are computed by using Eq. 6.65,
so the imaginary part of the ratio factor (R) only comes from the frequency ω values found
using Eq. 6.65. This is the reason why the real part of the Plot of k∆x vs R represents the
dispersion of the FD scheme, while the imaginary part represents the dissipation.

The ideal ratio factor will be equal to one, which physically means the numerical velocity is
equal to the real velocity. We can appreciate in the real part of the ratio factor plot (left graphic
Fig. 6.3) closest values to one are given by smaller Courant numbers, and all are non-linear
functions, which means the FD24 scheme is dispersive for all values of the Courant numbers.
Also note lower dispersion values are given by low values of the Courant number (which is
very convenient for heterogeneous media). The right-hand graphic shows a ratio factor equal
to zero which is translated into non-dissipation of the scheme. This is due to frequency values
found with expression 6.65 are all real (see analysis in beginning of Section 6.4).

FD44

The dispersion relation for the FD scheme fourth order accurate in time and fourth order
accurate in space (discretization 6.23) is given by the following expression

2 cosω∆t− 2 = S2

[
4

3

(
2 cos k∆x− 2

)
− 1

12

(
2 cos 2k∆x− 2

)]
+ S4 1

12

[
−4
(
2 cos k∆x− 2

)
+ 2 cos 2k∆x− 2

]
, (6.85)

which can be written as
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cosω∆t = S2 1

6

[
− cos2 k∆x+ 8 cos k∆x− 7

]
+ S4 1

6

[
cos2 k∆x− 2 cos k∆x+ 1

]
+ 1. (6.86)

Case 1: we assume the numerical method reproduces the real the wave number k but not
the frequency. The explicit expression for the frequency is given by the following expression

ω =
1

∆t
arccos

{
S2 1

6

[
− cos2 k∆x+ 8 cos k∆x− 7

]
+ S4 1

6

[
cos2 k∆x− 2 cos k∆x+ 1

]
+ 1

}
.

(6.87)

Denoting by

ξ = S2

[
−1

6
cos2 k∆x+

4

3
cos k∆x− 7

6

]
+ S4 1

6

[
cos2 k∆x− 2 cos k∆x+ 1

]
+ 1, (6.88)

we can write Eq. 6.87 as the general expression (Eq. 6.63). By following analysis of the
previous subsection, we are interested in finding values of S for which −1 ≤ ξ ≤ 1. We study
boundaries of cos k∆x: when cos k∆x = −1 we have

ξ =
2

3
S4 − 8

3
S2 + 1, (6.89)

when cos k∆x = 1 we have ξ = 1.

The case −1 ≤ ξ ≤ 1, that is, the interval for which the FD scheme is stable. It is clear
always ξ ≤ 1, the condition ξ ≥ −1 we obtain

S2

[
1

6
cos2 2π

Nλ
− 4

3
cos

2π

Nλ
+

7

6

]
+ S4 1

6

[
− cos2 2π

Nλ
+ 2 cos

2π

Nλ
− 1

]
≤ 2, (6.90)

where we have replaced k∆x = 2π
Nλ

.

Stability condition is given by using the expression 2
3S4 − 8

3S2 + 1 ≤ ξ ≤ 1, which leads to:
The FD44 scheme is stable if 0 ≤ S ≤ 1, otherwise the scheme is unstable. This condition can
also be found by the work of Cohen and Joly (1996) found by a different method.

Fig. 6.4 shows values of the Courant number S, discriminating the stable and unstable
regimes of a wave with real wavelength as function of the spatial sampling Nλ. Note Nλ values
are given until a smaller range than FD24 scheme (Fig. 6.1) this is because after certain limit
the Courant number only take complex values.

Case 2: we assume the numerical method reproduces the real frequency ω but not the
wave number. The explicit expression for the wave number is given by the following expression

cos2 k∆x

(
S4 − S2

6

)
+ cos k∆x

(
4S2 − S4

3

)
+

S4 − 7S2

6
+ 1− cos

2π

NT
= 0. (6.91)

Values of k are obtained in the following way

k =
1

∆x
arccos

{
root of Eq. 6.91

}
. (6.92)

Denoting

97



2 2.5 3 3.5 4 4.50

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

NL

St
ab

ilit
y 

Fa
ct

or
 S

Finite Differences scheme 4,4

Stable

Unstable

Figure 6.4: Courant number S as function of the spatial sampling Nλ, discriminating the stable
and unstable regimes of a wave with real wavelength for FD44 scheme.

ζ = root of Eq. 6.91, (6.93)

for the case −1 ≤ ζ ≤ 1 we obtain

2

3
S4 − 8

3
S2 + 1 ≤ cos

2π

NT
≤ 1, (6.94)

which implies

NT ≥
2π

arccos
(

2
3S4 − 8

3S2 + 1
) . (6.95)

Defining the frequency fATT as

fATT =
1

T
=

1

∆tNT
≤

arccos
(

2
3S4 − 8

3S2 + 1
)

π
fN , (6.96)

where fN is the Nyquist frequency fN = 1
2∆t , the frequency domain of condition 6.95 can

be written as f ≤ FATT . It is clear from Eq. 6.96 that only for S = 1, the FD scheme is
non-attenuative up to the Nyquist frequency.

To illustrate the relation between frequency and the Courant number, considering the nor-
malized frequency fnormalized = f∆t, we can define

fATT,normalized =
arccos

(
2
3S4 − 8

3S2 + 1
)

2π
. (6.97)
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Figure 6.5: Normalized frequency as function of the Courant Number S, discriminating the
attenuative and non-attenuative regimes of a single mode of FD44 scheme.

We have identified two different types of behavior of the scheme depending on spatial
position. The non-attenuative regime is determined by condition 6.95 and the attenuative
regime is determined by its complement. The value of fATT , discriminating the two regimes,
depends on S. Fig. 6.5 illustrates fATT,normalized as function of the Courant number.

Fig. 6.6 shows dispersion and dissipation properties of the FD44 scheme. Unlike the FD24
scheme, we can appreciate that in the real part of the ratio factor plot (left graphic Fig. 6.3) the
closest values to one are given by bigger Courant numbers, and only the curve corresponding
to S = 1 is a linear function, which means the FD24 scheme is non-dispersive only for a Courant
number equal to one. Also note that higher dispersion values correspond to small values of the
Courant number, which is not convenient for heterogeneous media. The right-hand graphic
shows a ratio factor equal to zero which means the scheme has no dissipation.

After analyzing several FD24 and FD44 schemes, we proceed to study CSFD schemes in
order to make a comparison between the two methods.

CSFD22

The dispersion relation for the most simple CSFD scheme with second order accuracy in time
and space (Eq. 6.51) is given by the following expression

cosω∆t = S cos k∆x, (6.98)

where the stability factor for the CSFD approximations is defined as S = c vtvx . We can write

ω =
1

∆t
arccos

(
S cos k∆x

)
and k =

1

∆x
arccos

(
1

S
cosω∆t

)
. (6.99)
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Figure 6.6: Dispersion and dissipation properties of the FD44 scheme.

Denoting

ξ = c
vt
vx

cos k∆x and ζ =
vx
cvt

cosω∆t, (6.100)

and using

arccosx =
π

2
− arcsinx, (6.101)

we can write

ω =
1

∆t

(
π

2
− arcsin ξ

)
and k =

1

∆x

(
π

2
− arcsin ζ

)
. (6.102)

Case 1: we assume the numerical method reproduces the true wave number k but not the
true frequency. By inspection of ξ (Eq. 6.100), using −1 ≤ cosx ≤ 1, it is straightforward to
see that −S ≤ ξ ≤ S, and the stability condition is 0 < S ≤ 1.

Case 2: we assume the numerical method reproduces the true frequency ω but not the
true wave number. For the case −1 ≤ ζ ≤ 1 we obtain

− S ≤ cos
2π

NT
≤ S, (6.103)

which implies

NT ≥
2π

arccos
(
S
) , (6.104)

Define the frequency fATT as
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Figure 6.7: Normalized frequency as function of the Courant Number S, discriminating the
attenuative and non-attenuative regimes of a single mode for the CSFD22 scheme.

fATT =
1

T
=

1

∆tNT
≤

arccos
(
S
)

π
fN , (6.105)

where fN is the Nyquist frequency fN = 1
2∆t . The frequency domain expression of condition

6.104 can be written as f ≤ FATT . It is clear from Eq. 6.96 that only for S = 1, the FD scheme
is non-attenuative up to the Nyquist frequency.

To illustrate the relation between frequency and Courant number, considering the normal-
ized frequency fnormalized = f∆t, we can define

fATT,normalized =
arccos

(
S
)

2π
. (6.106)

Again, we have distinguish two different type of behavior of the scheme with respect to
the position in space. The non-attenuative regime is determined by condition 6.104 and the
attenuative regime is determined by its complement. The value of fATT , discriminating the two
regimes, depends on S. Fig. 6.7 illustrates fATT,normalized as function of the Courant number.

In order to determine dispersion and dissipation properties of the CSFD22 scheme for
different Courant numbers, we plot graphics in terms of the normalized velocity (ratio factor).
Fig. 6.8 shows dispersion and dissipation properties of the CSFD22 scheme. We only obtain
non dispersion properties for the Courant number equal to one, otherwise the scheme is highly
dispersive. The right-hand graphic shows a ratio factor equal to zero which is translated into
non-dissipation of the scheme.
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Figure 6.8: Dispersion and dissipation properties of the CSFD22 scheme.

CSFD44A

The dispersion relation for the CSFD scheme fourth order accurate in time and space (Eq.
6.53) is given by the following expression

cosω∆t

(
1− 3∆t2 − v2

t

3∆t2

)
+

(
3∆t2 − v2

t

3∆t2

)
= c

vt
vx

[
cos k∆x

(
1− 3∆x2 − v2

x

3∆x2

)
+

(
3∆x2 − v2

x

3∆x2

)]
,

(6.107)

Case 1: we assume the numerical method reproduces the real the wave number k but not
the frequency. The explicit expression for the frequency is given by the following expression

ω =
1

∆t
arccos

{
3∆t2

v2
t

[
S

(
cos k∆x

(
v2
x

3∆x2

)
+

(
3∆x2 − v2

x

3∆x2

))
− 3∆t2 − v2

t

3∆t2

]}
, (6.108)

Denoting by

ξ =
3∆t2

v2
t

[
S

(
cos k∆x

(
v2
x

3∆x2

)
+

(
3∆x2 − v2

x

3∆x2

))
− 3∆t2 − v2

t

3∆t2

]
, (6.109)

we can write Eq. 6.108 as the general expression (Eq. 6.63). By following analysis of the
previous section, we are interested in finding values of S for which −1 ≤ ξ ≤ 1. We study
boundaries of cos k∆x: when cos k∆x = −1

ξ =
3∆t2

v2
t

[
S

(
3∆x2 − 2v2

x

3∆x2

)
− 3∆t2 − v2

t

3∆t2

]
, (6.110)
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when cos k∆x = 1

ξ =
3∆t2

v2
t

[
S− 3∆t2 − v2

t

3∆t2

]
, (6.111)

we have

3∆t2

v2
t

[
S

(
3∆x2 − 2v2

x

3∆x2

)
− 3∆t2 − v2

t

3∆t2

]
≤ ξ ≤ 3∆t2

v2
t

[
S− 3∆t2 − v2

t

3∆t2

]
, (6.112)

for ξ = 1→ S = 1,

for ξ = −1→ S = ∆x2

∆t2
3∆t2−2v2

t
3∆x2−2v2

x
,

we can conclude the scheme is stable if 0 ≤ S ≤ ∆x2

∆t2
(3∆t2−2v2

t )
(3∆x2−2v2

x)
≤ 1, otherwise the scheme

is unstable.
Case 2: we assume the numerical method reproduces the real frequency ω but not the

wave number. The explicit expression for the wave number is given by the following expression

k =
1

∆x
arccos

{
3∆x2

v2
x

[
1

S

(
cosω∆t

(
v2
t

3∆t2

)
+

(
3∆t2 − v2

t

3∆t2

))
− 3∆x2 − v2

x

3∆x2

]}
. (6.113)

Denoting

ζ =
3∆x2

v2
x

[
1

S

(
cosω∆t

(
v2
t

3∆t2

)
+

(
3∆t2 − v2

t

3∆t2

))
− 3∆x2 − v2

x

3∆x2

]
, (6.114)

we study boundaries of cosω∆t: when cosω∆t = −1

ζ =
3∆x2

v2
x

[
1

S

(
3∆t2 − 2v2

t

3∆t2

)
− 3∆x2 − v2

x

3∆x2

]
, (6.115)

when cosω∆t = 1

ζ =
3∆x2

v2
x

[
1

S
− 3∆x2 − v2

x

3∆x2

]
, (6.116)

we have

3∆x2

v2
x

[
1

S

(
3∆t2 − 2v2

t

3∆t2

)
− 3∆x2 − v2

x

3∆x2

]
≤ ζ ≤ 3∆x2

v2
x

[
1

S
− 3∆x2 − v2

x

3∆x2

]
, (6.117)

for ξ = 1→ S = 1,

for ξ = −1→ S = ∆x2

∆t2
3∆t2−2v2

t
3∆x2−2v2

x
,

we can conclude that the scheme is non-attenuative if 0 ≤ S ≤ ∆x2

∆t2
(3∆t2−2v2

t )
(3∆x2−2v2

x)
≤ 1, otherwise

the scheme is attenuative.
In order to determine dispersion and dissipation properties of the CSFD44A scheme for

different Courant numbers, we plot graphics in terms of the normalized velocity (ratio factor).
Fig. 6.9 shows dispersion and dissipation properties of the CSFD44A scheme by choosing
∆ = v in time and space. In fact, we can choose values between ∆ and v for both space and
time, and control stability and grid dispersion of the scheme, however, all results obtained in
different test for different values are very dispersive, which makes also this scheme unsuitable
for wave propagation in heterogeneous media.
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Figure 6.9: Dispersion and dissipation properties of the CSFD44A scheme.

6.4.3 CSFD44B, CSFD46A and CSFD46B

The dispersion relations for the schemes CSFD44B, CSFD46A and CSFD46B (Eqs. 6.54-6.56)
are given by the following expressions

cosω∆t

(
v2
t
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)
+

(
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)
[
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5

(
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(
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) ]}
, (6.118)
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(6.119)
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(
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∆x4
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. (6.120)

Unfortunately, the discretizations CSFD44B, CSFD46A and CSFD46B are highly dispersive
like 6.51 and 6.53, presenting very similar graphics. We only mention this results for the

104



Deriv. order Finite Differences Complex Step Finite Differences
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——
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)
Table 6.1: General overview of Finite Differences and Complex Step Finite Differences op-
erators used in this study. Note we have the same difference operator for both methods in
different derivative orders.

schemes (Eqs. 6.54 - 6.56) but do not show the figure, for the sake of shortness. Their high
dispersion does not bring any contribution for wave propagation in presence of heterogeneous
media.

6.5 Equivalence of Finite Differences and Complex Step Finite
Differences methods

After this analysis, we understand the analogy between CSFDM and traditional FDM schemes.
While FD schemes involve difference operators applied over a displacement field (utx), CSFDM
schemes involve difference operators applied over the imaginary part of the imaginary pertur-
bation of the displacement: Im(ut+i∆t

x+i∆x) in case of of the double perturbation, Im(ut+i∆t
x ) in

case of a time perturbation (time-dependent source) and Im(utx+i∆x) in case of a space per-
turbation (plane wave source). Depending on our needs, we can use any efficient difference
operator over the imaginary perturbation or the displacement field in order to propagate a
wave.

In Table 6.1 we give a final overview of difference operators for both methods used in
this study. The main observation here is that we have the same difference operator (in the
numerator) for both methods for a different derivative order.
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Chapter 7

General conclusions and future
research

T his work extends the well known Complex Step method (CSM) by introducing the com-
plex step in a strict sense. Simple and straightforward, this derivative concept allows
developing many different approximations for the first and second order derivatives

of any complex valued analytic function using its real and imaginary parts. We give a com-
plete list of generalized complex step (CS) schemes on a compact stencil, including ten ap-
proximations for the first order derivative that avoid term cancellation inherent to classic FD
approximations, as well as ways of computing second order derivatives in a single step. A su-
perior accuracy and stability of the new CS approximations over traditional finite differences
(FD) approximations have been demonstrated for an appropriate analytic test function that
has been extensively used in previous studies on numerical differentiation. For an appropriate
choice of step sizes in the real and imaginary directions, fourth accuracy can be reached in
a simple two step scheme. On the other hand, the generalized CS method is essentially as
computational efficient and easy to implement as the corresponding classic FD schemes. In
conclusion, generalized CS may provide a valuable alternative for accurate numerical model-
ing in many science and engineering applications, especially for problems that string together
many successive FD operations and are particularly susceptible to error propagation.

Based on the generalization of the CSM we have developed the Complex Step Finite Dif-
ferences method (CSFDM) to efficiently solve in two directions the acoustic one-way wave
equation in 1D, 2D and 3D homogeneous medium. Introducing the use of complex numbers
in numerical modeling of wave propagation, this work extends the well known Finite Differ-
ences method (FDM) to a wide range of applications, allowing more accurate results under the
same computational requirements. A theoretical analysis of stability dispersion-dissipation re-
lations of the introduced schemes has been presented. Advantages of the introduced CSFDM
is the separation between gradients and velocities as initial conditions of the wave propaga-
tion problem. The introduced numerical method is based on a generalization of the standard
FDM and therefore its implementation is rather simple and straightforward. We have explic-
itly established the relation between both methods. The introduction of complex numbers in
numerical modeling allow to translate dispersive discretizations in dissipative discretizations
and the other way around.

We have computed stability and dispersion properties of the most common FD schemes for
the second order wave equation in a standard and unified way. We have introduced several
Complex Step Finite Differences (CSFD) operators for solving the wave equation and com-
pared to general FD schemes. We have seen, the inclusion of more space/time information
into the discretizations (FD44 scheme, four order accurate in time and space) is not translated
into better discretizations for heterogeneous media, being the FD24 scheme (second order
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accurate in time and four order accurate in space) more appropriate than the FD44 scheme
in presence of non constant coefficients. From the methodological point of view, differences
between gradients and velocities as initial conditions, related to the imaginary perturbation in
space and/or time (related to plane waves or point sources) of the wave propagation problem,
has never been taken into account in a FD discretization. The introduced method (CSFDM)
offers a new way of translating dispersion to dissipation and the other way around in partial
differential equations. Although, the proposed CSFD schemes do not bring any contribution,
related to dispersion properties, in presence of heterogeneous media over the popular FD
schemes, they can also be applied to solve the wave propagation problem in order to separate
velocity and gradients as initial conditions of the problem.

This work has made advances in understanding the numerical solution of the wave prop-
agation problem using complex numbers on the one hand, and contributes to the knowledge
of numerical modeling of differential equations on the other hand. This study represent the
search for an improved and simpler difference scheme for solving the wave propagation prob-
lem in seismology. The introduced CSFDM can be seen as numerical technique that com-
plements the conventional FDM. The advantages of the CSFDM over the FDM are related to
imposing different kinds of initial conditions and showing its higher order accuracy under the
same computational cost and similar numerical dispersion.

In this study, the newly introduced CS approximations were developed and discussed in the
conceptual framework of finite difference schemes (FDM). However, like many numerical tech-
niques, CSM could be also applied to the integral form (weak or strong) of the PDE in study.
An obvious possible application is the generalization of the Finite Volume Method (FVM) (e.g.
LeVeque (2002)) by using complex steps. Further, we recall here that FD/CS approximations
are not restricted to spatial discretizations. Many methods common in seismology, like SEM,
FEM, DGM and others, use FD discretizations in time, meaning that a wide range of numerical
techniques can be reformulated by the use of complex steps in time. In this context, the higher
formal accuracy of CS schemes may be particularly useful for simulations of wave propagation
that involve a large number of time-steps, like for example the analysis of free oscillations of
the Earth.

Another obvious possible application is the development of implicit CSFD schemes, such
as variants of FDM like the alternating direction implicit (ADI) methods (e.g. Douglas (1955)),
where the main idea of ADI is to decompose the DE into simpler equations for which only
tridiagonal systems of linear algebraic equations need to be solved in each time-step and lead-
ing to unconditionally stable discretizations. Also compact FD schemes with higher accuracy
(e.g. Lele (1992)) and Multigrid methods (MGM) (e.g. Hackbusch (2010)) can be immediately
generalized by the CSM developed in this work.

In the authors’ opinion, the simple and intuitive structure of the CS approximations favors
that a wide range of CS applications may yet be explored in the future. In this work, we have
focused our attention on the acoustic/elastic wave equation, achieving significant results, but
realizing that further studies are required to design a proper CSFD solver for the numerical
simulation of wave propagation in realistic media. In a more general context, we would like
to better understand the complete potential of the use of the complex numbers in numerical
modeling. It is expected that the CSFD method can be naturally extended to find solutions
for many different differential equations that are relevant in Geophysics, such as the Navier-
Stokes equations, heat equation and shallow water equations among many others.
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Chapter 8

Conclusiones generales y trabajos
futuros

E n este trabajo extiende el bien conocido Método del Paso Complejo (MPC) intro-
duciendo un paso complejo en el sentido estricto. De forma simple y sencilla, este
concepto de derivada permite desarrollar varios tipos diferentes de aproximaciones

para la primera y segunda derivada de cualquier función analítica usando su parte real e imag-
inaria. Se muestra una lista completa de esquemas generalizados de paso complejo de forma
compacta, incluyendo diez aproximaciones para la primera derivada que evitan el problema
de cancelación de términos inherente a las aproximaciones clásicas de diferencias finitas (DF),
como también formas de calcular segundas derivadas usando un solo paso. Mayor precisión
y estabilidad de las nuevas aproximaciones de paso complejo (PC) sobre las tradicionales de
DF clásicas se demostró usando una función analítica de prueba, la cual ha sido usada ex-
tensamente en estudios previos. De diferenciación numérica. Se pudo alcanzar precisión de
cuarto orden en esquemas de dos pasos usando una elección apropiada en la dirección real e
imaginaria. Por otro lado, el MPC es esencialmente tan eficiente computacionalmente y fácil
de implementar como los correspondiente esquemas de DF. El PC generalizado puede proveer
una alternativa valiosa para modelado numérico de alta precisión en varias aplicaciones de
ciencia e ingeniería, especialmente en problemas que traigan consigo sucesivas operaciones
de DF y las cuales sean particularmente susceptibles a errores de propagación.

Basado en la generalización del MPC se desarrollo el Método de Paso Complejos con Difer-
encias Finitas (MPCDF) para de forma eficiente resolver en dos direcciones la ecuación de
onda acústica unidireccional en un medio homogéneo 1D, 2D y 3D. Introduciendo el uso de
números complejos en modelado numérico de la ecuación de onda, este trabajo extiende el
bien conocido Método de Diferencias Finitas (MDF) a un rango más amplio de aplicaciones,
permitiendo resultados más precisos bajo los mismos costos computacionales. Un análisis
teórico de estabilidad y propiedades de dispersión de los esquemas introducidos ha sido de
igual forma presentado. Las ventajas relacionadas en el MPCDF introducido es la separación
entre gradientes y velocidades como condiciones iniciales del problema de propagación de on-
das. El método numérico introducido es basado en una generalización del MDF estándar, por
lo tanto su implementación es simple y sencilla. En este trabajo hemos establecido la relación
entre ambos métodos. La introducción de números complejos en modelado numérico permite
el trasladar discretizaciones dispersivas en discretizaciones disipativas y de manera inversa.

Hemos calculado propiedades de estabilidad y dispersión para los más comunes esque-
mas de DF para la ecuación de onda de segundo orden de forma estándar y unificada. Hemos
introducido varios operadores de Diferencias Finitas con Pasos Complejos (DFPC) para la solu-
ción de la ecuación de onda y los hemos comparado con esquemas generales de DF. Hemos
visto como la inclusión de mas información espacio/tiempo dentro de la discretización (p.ej.
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el esquema de diferencias finitas FD44, cuarto orden de precisión en tiempo y espacio) no es
traducido en mejores discretizaciones cuando nos encontramos en presencia de medios het-
erogéneos, siendo el esquema FD24 (segundo orden de precisión en tiempo y cuarto orden
en espacio) más apropiado que el FD44 en presencia de coeficientes no constantes. Desde
el punto de vista metodológico, diferencias entre gradientes y velocidades como condiciones
iniciales, relacionados con la perturbación imaginaria en espacio y/o tiempo (relacionados
con ondas planas o fuentes puntuales) del problema de propagación de ondas, nunca ha sido
tomado en cuenta en una discretización de DF. El método introducido (MPCDF) ofrece una
nueva forma de intercambiar dispersión por disipación y de forma contraria en ecuaciones
diferenciales parciales. Aunque, los esquemas propuestos de PCDF no traen ninguna con-
tribución, en relación con las propiedades de dispersión, en presencia de medios heterogéneos
sobre los esquemas populares de DF, ellos también pueden ser aplicados en la resolución del
problema de propagación de onda para separar velocidades y gradientes como condiciones
iniciales del problema.

Este trabajo ha hecho avances en el entendimiento de la solución numérica del problema
de propagación de onda usando números complejos por un lado, y contribuye al conocimiento
del modelado numérico de ecuaciones diferenciales por otro lado. Este estudio representa
la búsqueda por un mejorado y más simple esquema numérico para la solución del problema
de propagación de ondas en la sismología. El introducido MPCDF puede ser entendido como
una técnica numérica que complementa el MDF convencional. Las ventajas del MPCDF sobre
MDF esta relacionado con la imposición de diferentes tipos de condiciones iniciales y su mayor
precisión bajo el mismo costo computacional y propiedades similares de dispersión.

En este estudio, las nuevas introducidas aproximaciones de PC fueron desarrolladas y dis-
cutidas en un esquema conceptual de esquemas de DF. Sin embargo, como muchas otras
técnicas numéricas, el MPCDF puede ser aplicado a la ecuación integral (débil o fuerte) de la
ecuación diferencial en estudio. Una posible aplicación es la generalización del método de los
Volúmenes Finitos (ej. LeVeque (2002)) usando pasos complejos. Además, recalcamos que las
aproximaciones de FD/PC no están restringidas a discretizaciones espaciales. Muchos méto-
dos numéricos, comúnmente usados en sismología, usan dicretizaciones de diferencias finitas
en el tiempo, significando que un amplio rango de técnicas numéricas puede ser reformulado
por el uso de números complejos. En este contexto, la mayor precisión de esquemas de PC
podría ser particularmente útil para simulaciones de propagación de ondas que involucren un
gran número de pasos de tiempo, como por ejemplo el análisis de modos fundamentales de
la Tierra. Otra aplicación obvia posible es el desarrollo de esquemas implícitos de PCDF, tal
como variantes del MDF como Método de Direcciones Alternates (ej. Douglas (1955)), donde
la idea principal es descomponer la ecuación diferencial en ecuaciones más sencillas por las
cuales sólo sistemas tridiagonales de ecuaciones lineales algebraicas necesitas ser resueltas
en cada paso de tiempo, conduciendo a discretizaciones incondicionalmente estables. También
esquemas compactos de gran precisión (ej. Lele (1992)) y Métodos Multigrid (ej. Hackbusch
(2010)) pueden ser inmediatamente generalizados por el MPC desarrollado en este trabajo.

En opinión de los autores, la estructura simple e intuitiva de las aproximaciones de PC
favorece que un gran rango de aplicaciones de PC pueda ser explorado en el futuro. En este
trabajo, nos hemos enfocado nuestra atención en la ecuación acústica/elástica, logrando resul-
tados importantes, pero entendiendo que muchos más estudios son requeridos para diseñar
un esquema de PCDF para la solución numérica del problema de propagación de ondas en
medios realísticos. En un contexto más general, nos gustaría entender con mayor profundidad
el completo potencial del uso de números complejos en modelado numérico. Se espera que el
MPCDF pueda ser naturalmente extendido a la solución de muchas ecuaciones diferenciales
relevantes en el campo de la Geofísica, tal como las ecuaciones de Navier-Stokes, la ecuación
de calor y las ecuaciones de aguas someras dentro de muchas otras.
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Appendix A

Further numerical simulations

A.1 The 1D second order wave equation and the Complex Step
Finite Differences method

To illustrate how the introduced CSFDM can solve the hyperbolic PDE 3.15, we will apply an
approximation based only in the imaginary of the function for the second derivative (Eq. 4.35)
found by Abreu et al. (2013b) (Chapter 4) at both sides of the equation to get the following
expression

Im
(
ut+∆t+i∆t
x+i∆x

)
= S2

(
Im
(
ut+i∆t
x+∆x+i∆x

)
− Im

(
ut+i∆t
x−∆x+i∆x

))
+ Im

(
ut−∆t+i∆t
x+i∆x

)
+O

(
∆t4,∆x4

)
. (A.1)

We can also use discretization 5.4 to get the following

Im
(
ut+∆t+i∆t
x+i∆x

)
= S2 Im

(
ut+i∆t
x+∆x+i∆x

)
+
(
1− S2

)
Im
(
ut+i∆t
x+i∆x

)
+O

(
∆t,∆x

)
. (A.2)

A.1.1 Convergence, consistence and stability analysis

Applying Von-Neuman stability condition to discretization A.1 we obtain the following

G2 + S22i sin k∆xG− 1 = 0, (A.3)

with solutions

G1 = ei arcsin
(

S2 sin k∆x
)
,

G2 = −e−i arcsin
(

S2 sin k∆x
)
.

G1 and G2 are exactly on the unit circle. With‖G‖ = 1 there is no room to move, (Strang,
2007). If we substitute S2 by S in Eq. A.3, it can be appreciated how it represents the stability
equation of the Leapfrog method for the one-wave wave equation, i.e., the centered approxi-
mation to the first derivative applied to the one-way wave equation, which is stable for S ≤ 1.

For discretization A.2 we obtain

G = S2eik∆x + 1− S2, (A.4)

Eq. A.4 is the stability equation for the forward FD scheme with the distinction only in the
power of the Courant number.
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A.1.2 Dispersion and dissipation analysis

Introducing the plane wave solution into Eq. A.1 and A.2 we get respectively

sinω∆t = S2 sin k∆x. (A.5)

eω∆t − 1 = S2
(
ek∆x − 1

)
. (A.6)

Clearly the schemes are non-dissipative and dispersive.
Note that if we substitute S2 by S, Eq. A.5 is identical to the the dispersion-dissipation

relation of the Leapfrog discretization for the one-way wave equation (see Inan and Marshall
(2004)). In other words, the CSFDM solves the second order wave equation by a discretization
that has equivalent dispersion properties of the Leapfrog discretization to the one-way wave
equation.

Numerical simulations to the second order wave equation by using the CSFDM will show
the parasitic root appreciated in Figure 5.9. The effects of the parasitic mode can be solved
by introducing numerical dissipation. To this end and following same approach done by the
Lax-Friedrich method (see Thomas (1995)) we construct the following approximation:

ut−∆t+i∆t
x+i∆x ≈ 1

2

(
ut+i∆t
x+∆x+i∆x + ut+i∆t

x−∆x+i∆x

)
, (A.7)

which is in fact the space mean of ut−∆t+i∆t
x+i∆x at the next time level, so discretization A.1 can

be written as

Im
(
ut+∆t+i∆t
x+i∆x

)
− 1

2
Im
((
ut+i∆t
x+∆x+i∆x + ut+i∆t

x−∆x+i∆x

))
= S2

(
Im
(
ut+i∆t
x+∆x+i∆x

)
− Im

(
ut+i∆t
x−∆x+i∆x

))
+O

(
∆t,∆x

)
. (A.8)

Discretization A.8 is identical to the analogous CSFD discretization to the popular Lax-
Friedrich method for the one-way wave equation. A clear advantage is that discretization
A.8 propagates the wave in one direction only, i.e., by using this discretization to propagate
the second order wave equation, there is no need of absorbing boundary conditions. Both
directions are obtained by just interchanging signs in the velocity term (c). The first order
CSFD approximation to the second order wave equation although the method is very robust
and represent a new way of propagate the second order wave equation in one direction, its
low accurate in space and time which make it unsuitable for most of realistic problems.

A.2 2D second order acoustic wave equation and the FD and
CSFD methods

The second order acoustic wave equation in a homogeneous two dimensional space is given
by the following mathematical expression:

∂2P

∂t2
=
κ

ρ

(
∂2P

∂x2
+
∂2P

∂z2

)
+ f(x, z, t), (A.9)

where P = P(x, z, t).
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The most common and simple discretization for Eq. A.9 is the well known Leapfrog dis-
cretization given by the centered approximation for the second order derivative (Eq. 3.6) at
both sides of the equation A.9, which leads to the following expression

Pt+∆t
x,z = ∆t2

κ

ρ

(
Ptx+∆x,z − 2Ptx,z + Ptx−∆x,z

∆x2
+

Ptx,z+∆z − 2Ptx,z + Ptx,z−∆z

∆z2

)
+ 2Ptx,z − Pt−∆t

x,z .

(A.10)

The FD discretization A.10 is a well known consistent, convergent, stable, dispersive and
non-dissipative discretization which propagates a wave in a two dimensional medium without
the presence of any parasitic wave. Its analogous CSFD discretization is given by

Im
(

Pt+∆t+i∆t
x+i∆x,z+i∆z

)
= ∆t2

κ

ρ

[
Im
(

Pt+i∆t
x+∆x+i∆x,z+i∆z

)
− Im

(
Pt+i∆t
x−∆x+i∆x,z+i∆z

)
∆x2

]

+ ∆t2
κ

ρ

[
Im
(

Pt+i∆t
x+i∆x,z+∆z+i∆z

)
− Im

(
Pt+i∆t
x+i∆x,z−∆z+i∆z

)
∆z2

]
+ Im

(
Pt−∆t+i∆t
x+i∆x,z+i∆z

)
. (A.11)

Note that discretization A.11 is the analogous FD discretization to the two dimensional
one-way acoustic wave equation (2D version of Eq. 5.45).

A.2.1 Convergence, consistence and stability analysis

Substituting P = G(ω, t)eik(x+z) into discretization A.11 and by setting ∆x = ∆z and S = ∆t
∆x

√
κ
ρ

we get the following

G2 − S24i sin k∆xG− 1 = 0, (A.12)

G1 = ei arcsin
(

2S2 sin k∆x
)
,

G2 = −e−i arcsin
(

2S2 sin k∆x
)
.

Equation A.12 is a two dimensional version of Eq. A.3, i.e., a two dimensional version
of the stability condition for the Leapfrog discretization of the one-way wave equation in a
one dimensional space. It is easy to appreciate that the grow factor does not grow in time.
To determine the stability condition we make use of the dispersion relation in the following
section.

A.2.2 Dispersion-dissipation analysis

Introducing the plane wave solution into discretization A.11 and assuming ∆x = ∆z we get

sinω∆t = 2

(
∆t

∆x

)2 κ

ρ
sin k∆x, (A.13)

which leads to
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Figure A.1: Second order two dimensional acoustic wave equation simulation with Finite Dif-
ferences and Complex Step Finite Differences.

2

(
∆t

∆x

)2 κ

ρ
≤ 1, (A.14)

or

S ≤ 1√
2

(A.15)

Note that the scheme is dispersive and non-dissipative.

A.2.3 Numerical examples

The computational domain and values are the same that used the section for the two dimen-
sional one-way wave equation with the difference in the maximum Courant number used that
is 0.7071. Figure A.1 show displacement and velocity values for one snapshot of the medium
with the FD and CSFD methods. We can appreciate that unlike the one dimensional medium,
the parasitic wave intrinsic to the one-way Leapfrog scheme in a two dimensional space de-
stroys the solution, making the scheme inappropriate for wave propagation simulations in a
two dimensional media.
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Appendix B

Connection between CSFD and FD
approximations

The one dimensional heat equation, also known as the diffusion equation, if given by the
following mathematical expression (see Strikwerda (2004))

∂u

∂t
= b

∂2u

∂x2
, (B.1)

where b is a positive number and u(x, t) gives the temperature at time t and location x

resulting from the initial temperature distribution.
The most common FD approximation to Eq. B.1 is given by the forward in time and cen-

tered in space finite differences scheme

uxt+∆t = utx +
b∆t

2∆x

(
utx+∆x − 2utx + utx−∆x

)
+O

(
∆t,∆x2

)
. (B.2)

As we have shown, any CSFD discretization that keeps the algebraic structure of a FD
approximation reproduces the same stability and dispersion-dissipation relations with the dis-
tinction only in the Courant number. Consider the following CSFD discretization analogous to
FD discretization B.2 given by an approximation forward in time and centered in space:

Im
(
vt+∆t+i

√
3∆t

x+i
√

3∆x

)
=

b∆t

2∆x

[
Im
(
ut+i

√
3∆t

x+∆x+i
√

3∆x

)
+ Im

(
ut+i

√
3∆t

x−∆x+i
√

3∆x

)]
+O

(
∆t,∆x4

)
. (B.3)

Equation B.3 is a CSFD discretization that correspond to the to the one-way wave equation
made by using Eq. 4.9 in time and and Eq. 4.15 in space. Eq. B.3 has the same properties
of dispersion-dissipation relations that the FD discretization to the heat equation B.2 for a
Courant number equal to one. This example illustrates that the introduced CSFD numerical
techniques offers a way of interchanging dispersion by dissipation and the other way around
in the finite discretizations. Depending on our needs we can make use of this techniques, for
instance, interchanging dispersion and dissipation in our discretizations in more complex PDE
like Navier-Stokes equations.

125



126



Appendix C

How to compute dispersion relations

Dispersion relations are commonly found by substituting the plane wave solution (5.23) into
the FD discretization. The problem arises when complex FD schemes are to be analyzed. To
overcome this, we employ the Fourier transform perspective of the dispersion relation.

We illustrate this computing the dispersion relation of the Leapfrog scheme for the second
order wave equation (Eq. 6.19). Lets lets recall with the forward, backward and centered
difference operators we can construct higher order FD operator as a convolution of these first
(see Section 6.2.1)

It is well known the convolution is equal to the multiplication in the Fourier domain, i.e.,

D̂2
x =

̂∆+
x

∆x
◦ ∆−x

∆x
=

̂�x
∆x
◦ �x

∆x
=

∆̂+
x

∆x

∆̂−x
∆x

=
�̂x
∆x

�̂x
∆x

. (C.1)

Based on this property, we can obtain the dispersion relation for the FD discretization 6.19.
For convenience, lets write Eq. 6.19 in a operator way as follows

D2
t u = c2D2

xu and/or ∆+
t ◦∆−t u = ∆+

x ◦∆−x u and/or �1/2
t ◦�1/2

t u =�1/2
x ◦�1/2

x u. (C.2)

Now, the discrete Fourier transform is given by

û =
∑
x,t

utxe
−i(kx+ωt). (C.3)

Taking the discrete Fourier transform of Eq. 6.19, i.e.,

∑
x,t

utxe
−i(kx+ωt)

(
eiω∆t − 2 + e−iω∆t

)
=
∑
x,t

utxe
−i(kx+ωt)

(
eiω∆x − 2 + e−iω∆x

)
, (C.4)

after simplification and by using the property: 2 cosx = eix + e−ix, we can write

cosω∆t− 1 = c2 ∆t2

∆x2

(
cos k∆x− 1

)
, (C.5)

finally by using: 2 sin2 x
2 = 1− cosx, we get

sin2 ω∆t

2
= c2 ∆t2

∆x2
sin2 k∆x

2
. (C.6)
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Expression C.6 can also been found in a simplest way: we know D̂2
x = ∆̂+

∆x
∆̂−

∆x , we can find
expressions for the Fourier transform for the operators ∆+ and ∆− in terms of space and time
derivatives, i.e., ∆+

t , ∆+
x , and ∆−t , ∆−x

∆̂+
t u

t
x =

∑
x,t

utxe
−i(kx+ωt)

(
eiω∆t − 1

)
, (C.7)

∆̂−t u
t
x =

∑
x,t

utxe
−i(kx+ωt)

(
1− e−iω∆t

)
, (C.8)

∆̂+
x utx =

∑
x,t

utxe
−i(kx+ωt)

(
eiω∆x − 1

)
, (C.9)

∆̂−x utx =
∑
x,t

utxe
−i(kx+ωt)

(
1− e−iω∆x

)
. (C.10)

The discrete Fourier transform using first order operators is given by

∆̂+
t ∆̂−t u

t
x = c2∆̂+

x ∆̂−x utx, (C.11)

substituting and simplifying the sum we get

(
eiω∆t − 1

) (
1− e−iω∆t

)
= c2

(
eiω∆x − 1

) (
1− e−iω∆x

)
, (C.12)

which after little algebra can be written as Eq. C.6.
The Fourier transform operator approach is more convenient for computing dispersion

relations when higher order FD approximations are involved into the discretization. For ex-
ample, recall the operator from of the FD44 scheme (Eq. 6.26). It is straight forward to check
the dispersion relation is given by

2 cosω∆t− 2 = S2

[
4

3

(
2 cos k∆x− 2

)
− 1

12

(
2 cos 2k∆x− 2

)]
+ S4 1

12

[
−4
(
2 cos k∆x− 2

)
+ 2 cos 2k∆x− 2

]
. (C.13)

Note

S4 1

12

[
−4
(
2 cos k∆x− 2

)
+ 2 cos 2k∆x− 2

]
= S4 1

12

(
2 cos k∆x− 2

)2
, (C.14)

which corresponds to

D2
x ◦D2

xu = −4

(
∆+
x

∆x2
◦ ∆−x

∆x2

)
u+
�x
∆x2

◦ �x
∆x2

u = −4

(
�1/2
x

∆x2
◦ �

1/2
x

∆x2

)
u+
�x
∆x2

◦ �x
∆x2

u.

(C.15)
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Appendix D

General analysis of dispersion
relations values

In this Section we show the values that χ can adopt in order to produce real or complex values
of ϕ given by the following equation:

ϕ =
1

∆

(
π

2
− arcsinχ

)
. (D.1)

Assume that χ is a complex number, we write

χ = Re(χ) + Im(χ)i, (D.2)

where Re(χ) refers to real part of χ and Im(χ) to its imaginary part.

Because we assume that our inverse sine function arcsin can take complex values, we can
write

z = arcsinχ, (D.3)

where z = a+ bi, with a, b ∈ R.

Equivalently by definition of the sine function we write

χ = sin z =
eiz − e−iz

2i
, (D.4)

if we multiply by eiz we get the following quadratic equation

e2iz − 2iχeiz − 1 = 0, (D.5)

with solutions

arcsinχ = z = −i ln
(
i
(
χ±

√
χ2 − 1

))
. (D.6)

Now we analyze different values that χ can adopt.
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D.1 Case when χ is real

It is straightforward to see in Eq. D.6 if χ is real and χ2 − 1 > 0 the argument of the logarithm
is pure imaginary. By using the property of a complex valued logarithm

log z = ln |z|+ iArg(z), (D.7)

where Arg is the common argument function used in complex variable calculus. We can
write for any pure imaginary number xi

log xi = lnx± i
π

2
, (D.8)

If χ is real and χ2 − 1 > 0 what is χ < −1or χ > 1 we have

arcsin±χ = ∓π
2
− i ln

(
χ±

√
χ2 − 1

)
, (D.9)

or written in a separate way:
If χ < −1 then

arcsinχ =
π

2
− i ln

(
χ±

√
χ2 − 1

)
, (D.10)

If χ > 1 then

arcsinχ = −π
2
− i ln

(
χ±

√
χ2 − 1

)
, (D.11)

otherwise when χ is real and −1 ≤ χ ≤ 1 then is straightforward to write

− π

2
≤ arcsinχ ≤ π

2
. (D.12)

D.2 Case when χ is complex

By using the algebraic formula for a square root of a complex number

√
z =
√
a+ ib =

√
r + a

2
+ i sgn(b)

√
r − a

2
, (D.13)

where r =
√
a2 + b2 with a, b ∈ R and sgn refers to the sign function.

Denoting χ = a+ ib we can write

arcsinχ = −i ln
(
iχ± i

√
χ2 − 1

)
= −i ln

(
i
(
a+ ib

)
± i
√(

a+ ib
)2 − 1

)
= −i ln

(
−b∓ sgn

(
2ab
)√rχ − aχ

2
+

(
a±

√
rχ − aχ

2

)
i

)
, (D.14)

where

130



rχ =
√

(a2 − b2 − 1)2 + (2ab)2 (D.15)

aχ = a2 − b2 − 1. (D.16)

By using Eq. D.7 we can write

arcsinχ = Arg(zχ)− ln |zχ|i, (D.17)

where

zχ = −b∓ sgn
(
2ab
)√rχ − aχ

2
+

(
a±

√
rχ − aχ

2

)
i. (D.18)

By simple inspection of Eq. D.17 we can see that whatever the value of zχ is, the imaginary
part of arcsinχ is going to be negative (simply because ln |zχ| > 0). So we can analyze all
different cases of the imaginary part in only one: when the imaginary part is different from
zero.

D.3 Case when Im(χ) 6= 0

The imaginary value when Im(χ) 6= 0 is simply given by the term

Im(arcsinχ) = − ln |zχ|. (D.19)

We can conclude that always when Im(χ) 6= 0 implies Im(arcsinχ) < 0.

131



132



List of abbreviations

ADI Alternating Directions Implicit
ART Asymptotic Ray Theory
BEM Boundary Element Method
CS Complex Steps
CSFD Complex Steps Finite Differences
CSFDM Complex Steps Finite Differences Method
CSM Complex Step Method
CV Control Volume
DE Differential Equation
DF Diferencias Finitas
DGM Discontinuous Galerking Method
EFGM Element Free Galerkin Method
FD Finite Differences
FDM Finite Differences Method
FEM Finite Element Method
FFT Fast Fourier Transform
FV Finite Volume
FVM Finite Volume Method
GRT Geometric Ray Theory
HPM Hamiltonian Particle Method
MDF Método de Diferencias Finitas
MFFDM Mesh Free Finite Difference Method
MFGM Mesh Free Galerkin Methods
MFM Mesh Free Methods
MFPM Mesh Free Particle Methods
MGM MultiGrid Methods
MPC Método del Paso Complejo
MPCDF Método del Paso Complejo con Diferencias Finitas
MPFEM Moving Particle Finite Element Method
MWR Method of Weighted Residuals
ODE Ordinary Differential Equation
PC Pasos Complejos
PCDF Pasos Complejos con Diferencias Finitas
PDE Partial Differential Equation
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PREM Preliminary Reference Earth Model
PM Particle Methods
PSM Pseudo-Spectral Method
RSM Ray Series Method
RT Ray Theory
SPH Smoothed Particle Hydrodynamics
SEM Spectral Element Method
SRM Seismic Ray Method
SRT Seismic Ray Theory
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List of symbols

A Amplitude of the wave
α Real part of the frequency
c Wave velocity
∆t Time step
∆x Differential step and/or grid size
e Euler constant
fN Nyquist frequency
fnormalized Normalized frequency
f0 Dominating frequency
G Growth factor
γ Imaginary part of the frequency
h, v Differential steps
ht, vt Differential steps in time
hx, vx Differential steps in space
H Field of Quaternions
i =
√
−1 Imaginary unit

Im Imaginary part of the function
k Wave number
kreal, kimag Real and imaginary parts of the wave number
κ(x) Bulk modulus
N Field of Integers numbers
N,n,m Positive integers
O Approximation error made by truncating the Taylor series
P(x, t) Pressure
π Pi constant
R Field of Real numbers
Re Real part of the function
ρ(x) Density
S Courant umber and/or stability factor
σ Second order stress tensor
t Time variable
t0 Time delay
u(x, t) Displacement field
u̇(x, t) Derivative of displacement field respect to time
v(x, t) Velocity field
val(x, t) Numerical value to be propagated
ω Frequency
ωreal, ωimag Real and imaginary parts of the frequency
x, y, z Space variables
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◦ Convolution operator
∆+,∆−,�,B,CB Differential operators
λ, µ Lame elastic parameters
∇ Gradient operator
∇· Divergence operator
ϕ, χ, ξ, ζ Dummy symbols
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