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Chapter 1
Objectives

The purpose of this work is to study a class of inverse problems arising in mechanics with emphasis
on the Boundary Element Method (BEM). An Identification Inverse Problem (IIP) means that
the unknown is a hidden part of the geometry (internal cavities, inclusions, etc.) instead of the
displacements or stresses. The search is performed with the help of additional data in form of
measurements of the mechanical response (nondestructive testing). The Boundary Element Method
is especially well suited because of a lower need of computational effort and a better adaptivity to
varying geometry.

The central point is a sensitivity integral equation with respect to the geometry, which provides
an useful gradient for minimization algorithms of cost functions.

The main objectives are summarized in the following points,

e Survey on IP strategies, clarifying the main benefits, drawbacks and areas of applications of
each one (see chapter 4).

e Direct derivation of sensitivity to geometry. This is the point in which most effort has been
invested. The derivation is done in an analytic and completely generic way, before any
definition of parametrization or discretization (chapter 5).

e Sensitivity by the adjoint variable method. This method extended to the derivation of the
sensitivity to a crack geometry in bidimensional elastodynamics by means of a boundary only
equation (chapter 6).

e Topological derivative. A method based on the linearized estimation of the presence of a
circular cavity or straight crack is presented. It appears to be extremely fast in comparison
with the solution of a whole direct problem and still give more than enough precision for
initialization or even detection purposes (see chapter 10).

e Comparison of the most interesting minimization methods in a systematic way in order to
reveal the scope of each one in a practical framework, within the limits of the impossibility
to demonstrate mathematically any property in this direction.

e All the developed methods are thoroughly tested numerically, including simulated errors,
control of distance from the exact solutions, and means to attain better convergence, in
order to provide ready-for-use techniques. Several parametrizations are suggested and tested
(see chapter 8; part III contains an abstract of the most revealing results).

e A very simple regularization formula for hypersingular integrals that does not require the
calculation of any derivative and only requires to program one loop. This is developed
together with a review in appendix B.

11
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e A programmable algebra for tensorial expressions with a high number of indices is developed.
The advantages are facility for the programming and lower likelihood of bugs and errors (see
appendix C).

e A generalized formula for the quarter point element is made to allow higher order elements
to represent accurately the /7 behaviour of crack tips, in chapter 7.

e A close relationship between the optimization methods and the observation equation ap-
proach was found in the form of an equivalence of both methods. This link will be widened
and may make it possible to interchange adjoint tools between each other. This is explained
in chapter 11.3.



Chapter 2

Introduction

2.1 The problem

The necessity for nondestructive detection appears in many fields of engineering and other applied
sciences:

e The great number of structures in civil engineering, architecture, and aeronautical engineering
during the economical growth of the last half century has left to our generation the need for
the sustainable maintenance, control and conservation of these complex elements during their
active life and to raise their longevity. This requires accurate and cheap massive techniques
to detect the appearance of defects during service loads. A critical example would be the
accurate detection of fatigue cracks in an aeroplane wing beam, lengthening its profitable life
and guaranteeing its safety.

Industrial production and civil engineering structures take immediate advantage of nonde-
structive methods in the stage of quality control, in the search of defects in materials and
structures (subsurface flaws, inclusions or cracks). This earns special relevance for high
performance advanced materials.

There is an emerging field in biomechanics, where these techniques are needed for tomography,
identification and even diagnosis of physically conmensurable abnormal elements.

The search of antipersonnel mines is also being developed by inverse problems in some Uni-
versities.

One of the most traditional fields of nondestructive detection comes from geotechnics and
geophysics, not due to the desire of leaving unaltered the structure but for the impossibility
to accede deep and extensive areas.

For instance, mineralogical prospection (detection of oil, water, configuration of layers, etc.),
which is traditionally divided into strategic operations (several hundreds of square kilometers)
and tactical operations (some dozens), is divided into three successive stages:

— Study of the terrain, mainly consulting the geological and geographical information.

— Search for source points by indirect methods, classified into teledetection, physical and
chemical methods.

— Control of source points, by cartography, physical and chemical prospection, and de-
structive drilling.

The main techniques used here are:

— Teledetection and aerial photography.

13
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— Geophysics, from air or ground, divided into radioactivity, magnetism, resistivity, grav-
ity, and structural discontinuities.

— Geochemistry.

— Drilling.

— Washing of alluvium.

— Other techniques based on geological knowledge.
The specific procedure of oil prospection is divided in two phases, one aimed at finding the
oil fields:

— by stratigraphy, sedimentology, tectonics, etc.;

— by teledetection;

— by magnetometry;

— by gravimetry;

— seismic or deep echography;

— stratigraphical drilling, in special cases.
The second phase consists in finding out the size of the field in order to decide its practical
exploitability and its profitability, besides finding a favourable drilling point.

At this point, there are two areas in which the procedure may be enhanced. The seismic
echography carried out from the surface is usually insufficient in practice. The second point
is that the determination of the size and shape of the field, at the very last stage, requires
drillings, which, apart of being expensive, do not allow for much precision.

In daily practice, the methods used for these issues are quite empiric and rudimentary, requir-
ing either approximations to get analytic solutions, or the interpretation of the measured data
(ultrasonic or X-ray plots, or gravimetry or condictivity measurements) by an experienced person
on observation, giving therefore poor quantitative data.

Some practical attempts to use sytematic identification algorithms have given promising results.
But the identification is a good example of ill posed problems: neither the existence nor the unicity
need to exist, and the result may be very sensitive to the measures. This makes it necessary to
find robust methods.

Currently, the main problems, which define the direction of the present work, are:

e need for a fast and accurate computation of gradients with respect to the geometrical varia-
tion,

small scope of convergence of the classical optimization algorithms, together with a

lack of criteria for the choice of algorithms, and

lack of criteria for the initialization of the algorithms,

need of a technique for global search in an affordable computing time.

It is important to note an effect of the multidisciplinarity of the subject: many of the contribu-
tions of this work (the discussed techniques for the derivation of the gradient, the survey on soft
computing, mathematical programming and some tests about them) as well as many of the tools
used here are common to structural optimization and design.
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2.2 What to measure

When seeking defects or flaws inside a body, any physical magnitude that propagates inside it and
that manifests on an accessible part of it may be studied in principle in order to obtain information
about what is happening inside. The identification can be based on propagation phenomena of
elastic properties (such as elastic deformation, wave propagation, acoustics, etc.), governed by
partial differential equations; electric, thermal or other flow measurements, described by similar
potential equations; or based on radiation (X-rays, reconstruction by photography, etc.). The
latter is actually a particular case of the first problem in large scales from the point of view of the
frequency (see [36]). The problems tackled here belong to the first type.

On the other hand another classification can be made distinguishing acoustic emission (where
the “sound” generated by the crack growth is monitored) from acoustic response (where the wave-
form transferred after a dynamic excitation is analyzed).

The present work concerns the study of the response of propagated elastic waves.

2.3 Concept of Inverse Problem

Due to its mathematical properties and conditioning this problem is classified inside the discipline
of so called inverse problems.

A direct problem can be stated as the calculation of the response (certain displacements u and
stress vectors ¢) in a specific body defined by its geometry €2, mechanical properties (k), behavior
model (operator L) and boundary conditions (some known values of 4 and ¢). As a counterpart of
this, an inverse problem is one in which we do not know part of the information above, for example
a part of the geometry, or its mechanical properties.

If a generic direct problem (not necessarily elastic) is defined as:

L(k)u=gq on
the nature of the unknown yields the following classification of inverse problems by Kubo [74]:

e Identification: a part of the geometry (2). This is the problem we are dealing with here.

Modelization: the mathematical equations that govern the behavior (L).

Reconstruction: the boundary or initial conditions.

External actions: q.
e Material properties: some parameters characterizing the material (k).

In order to find this data, supplementary information has to be provided, in form of some extra
measurements of u or ¢ made on an accessible area of the specimen.

2.4 How to measure

Although the present work regards mainly steady state harmonic elastic waves (and also static
response, as the simplified theoretical solution), there are other possibilites to study.

The use of static displacement or traction vector magnitudes is in general less useful than
steady state harmonic magnitudes and phase data. The reason is the higher error that may be
accumulated and, more important, the difficulty in the measurement, which would only be reliable
with laser transducers.

The measurement of steady state time-periodic excitation is used here mainly because of a
reduction in the amount of data involved, in comparison with the transient dynamic (pulse) testing,
without loosing the advantages of having a dynamical signal. This data may be read and produced
by means of usual piezoelectric transducers with an appropriate range of frequency response.
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A third choice would be to use the modal data of the specimen. But eigenvalues and eigenvec-
tors, as happens with static data, are not always significantly influenced by small changes of the
geometrical and stiffness data of a structure, leading to problems of low accuracy of the data de-
spite the high accuracy of the eigenfrequency measurement methods. Moreover, for large changes
of the crack quantities, besides the appearance of new eigenfrequencies, a change in the order of
the system’s eigenmodal quantities may arise (i.e. the first mode may become the second for a
certain change in the position of the crack). This would require an additional effort to trace these
changes. Contrarywise, in the case of small-scale specimens, it is not always efficient to perform an
accurate modal analysis test since the mass and stiffness of the required machinery are big enough
to influence the measured quantities.

Transient dynamics response (echo) to an impact-type dynamic loading (e.g. a hammer) is
based on the waveform matching techniques. The simple variant is based on using only the reso-
nance peaks and delay instead of a complete FFT (frequency-domain) or time-domain data. This
ultrasonic backscattering has been studied in the simplified way by Wooh [132] and Nakahata [90]
for experimental setups, and using the complete wave data by Stavroulakis [110], and earlier in a
partial manner by Takadoya [116] among others.

The steady-state analysis can be enhanced by the analysis of the harmonic waveform. If a
non-sinusoidal wave is applied at the excitation, i.e. containing several harmonics corresponding
to the same base frequency, the resulting steady state waveform will be able to be split into the
same harmonics, modified in amplitude and phase. This makes it possible to obtain very rich
information using one actuator and only one transducer for the measurement (at only one point,
if desired). This possibility is qualitatively tested at the end of the numerical tests. This has an
equivalence with the technique of measuring several load cases in the case of static or harmonic
detection.

An important limitation of the use of steady-state dynamic data for crack detection should be
pointed out here. In this work, no unilateral effects or contact phenomena are considered in the
crack for the following reasons:

e The frequency domain based postprocessing is usually not applicable anymore.

e The nonlinearities that appear on the model convert the optimization functions into non-
differentiable ones, making the choice of optimization algorithm very different from the ones
used for cavity and inclusion identification. The differentiation of the boundary integral
equation becomes a nontrivial task.

e The solution of the nonlinear problem as well as the optimization algorithm, which would
require bilevel techniques (a lower iteration level for the nonlinear system solution and an
upper one for the optimization), are dramatically more expensive computationally. This
moves the balance towards non-contact testing.

The absence of contact has its field of applicability when the crack is initially open and kept so
during the excitation. This happens as long as the small harmonic excitation load is applied on a
preloaded structure where the crack is already open, which will be the usual case, when the load
motivates the creation of the crack. This way, the specimen can be studied in service or working
conditions, and the small harmonic load will not alter the null contact conditions of the crack.

The case of crack identification with unilateral contact is thoroughly studied for the first time
by Stavroulakis (2000) [110].

At this point one may distinguish two ways of tackling the problem of identification: one
studying the exact problem solving direct ones in an iterative way (our case), and the deduction
of a simplified relationship between the excitation and the response (transition function) which
substitutes the solution of a direct problem (see Wooh et al. [132] or Bostrom et al. [21] [20]).



Chapter 3

Preliminary concepts

3.1 Boundary Element Method

In some class of Inverse Problems, the use of the Boundary Element Method (BEM) provides clear
advantages in comparison with the finite element method and others:

e It does not require a remesh of the domain of the body at each iteration. This reduces
both the computational effort and eliminates small but important perturbations due to the
changes of the mesh.

e The application of these methods to real problems may require many iterations, as well as big
precision in the intermediate solutions, so the use of finite elements would be very expensive.

e In the case of ultrasonic detection, the need to model small waves augments very much the
required number of degrees of freedom, which would increase with one more dimension in
the case of domain versus boundary discretization.

A conceptual approach to the BEM could be the following. The method is divided in two steps:

1. First of all we build an integral equation. It has to include the constitutive and continuity
equations and relate the unknowns. Integral equations are internal products with a kernel
evaluated at a pole. When solved numerically, they should be of the Fredholm second type!,
to avoid ill-conditioning. The advantage of the method comes when the integrals are evaluated
only on the boundary. The ones used for the elasticity BEM come from the reciprocity
theorem of Betti, and include in the kernels Green functions.

2. Secondly, we need to discretize the equation to be able to solve it numerically. Among the
methods available (collocation, BEM?, Nystrém? or Galerkin*), we are going to use the BEM.
This is done in two stages:

e We divide the boundary in elements and assimilate the geometry and the unknown
variables on each element by the product of base functions multiplied by discrete nodal
values (x = Y ¢ix;, u = > diu;, 9 = Y ¢;q;). This is called discretization.

e In order to get the necessary number of equations we evaluate the integral equation at
as many poles or collocation points as unknowns.

A description of the Boundary Element Method for static elasticity follows.

!Integral equation of Fredholm’s second type: f(£) = [ a(x, &) f(x)dz, where a is the kernel.

2BEM: the collocation points lie on the boundary.

3Nystrém method: the collocation points, unknowns and integration points are identical. This method is useful
for high kernel evaluation / equation system solving time ratio.

4Galerkin approach: involves a further modification of the integral equation. This method is not considered here
(see [15]).

17
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3.1.1 Governing equations for elasticity

In our problems, the basic magnitudes and equations in elastostatics at any point of a domain (2
enclosed by a boundary I', are the following (basic references on Timoshenko [102], Doblaré [35]
or Paris [94]):

o;; Stress tensor

€;; Strain tensor

u; Displacements

b; Body forces

g¢; Stress vector at a normal n; (g; = oi;n;)

Equilibrium equations:

oiji +bi=0 in Q (3.1)
Compatibility equations:
1
€ij = 5 (Ui +uj,) (3.2)
Constitutive equations:
Oij = Ajj€rk + 2p€;; (3.3)

d;; Kroenecker delta
A, 1 Lamé constants, that can be expressed in terms of:

E, v Shear modulus, Elasticity modulus and Poisson ratio

E vE

P ary) AT Axwa—m)

An elasticity problem consists of finding a solution of the equations above in a domain (2
bounded by T', with some boundary conditions on two non-overlapping partitions of I'y + I'2 =T,

{ uk(x) = Tk(x) xely
gk (x) = n;(X)0jk(x) = G(x) xely

3.1.2 Fundamental solution

We are going to restrict ourselves to plane strain (e33 = 0) for 2D elasticity. In order to solve a
plane stress problem, we just have to substitute the elastic constants by:
I/I = i
1+v

E' =E(1-v"?)

In order to fulfill the constitutive and compatibility conditions in the adjoint solution used in
the reciprocity theorem, we use as kernel functions the fundamental or Kelvin solutions.
Combining the three basic equations (3.1, 3.2 and 3.3) we get the Navier equation:

1 1
(E) Ujji + Uigj + ;bz’ =0

The Kelvin solutions are the displacement and the stress observed at x, due to a concentrated
load (¢ of Dirac) applied at the pole € towards the direction of the canonical vector ey,

bi = 6(x — &)e;
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The solution of this problem in 2D elastostatics is (see Dominguez [36], Brebbia [22] and Alarcén
[4], [99]):

. 1 1
u}c = m (3 — 41/) log ;5“3 =+ Tk
A ! 5 5 5
Ujk = m [(]. — 21/) { ikT,j + jkr’i — z’jr’k} + 2T,jT,jT,k]
i i -1
= kM (1 —o)r (1 =20) {GirT n + nari — i } + 2r 57 k7 515

where 7, = zp — &, v = /12 + 12,

3.1.3 Integral equation

The integral equation we use for the BEM is one that directly relates u; and p;. If we begin from
the equilibrium equation (3.1), we use the principle of the inner product or weak formulation,
defining a weight function w; (this principle is the origin of many numerical methods):

/(Uijyj -+ bz)’w,dQ =0
Q

If we choose the Kelvin solution u}c as the kernel function, and integrate it by parts twice the
first component, we obtain Betti’s reciprocity theorem:

/O';ijude-l-/ biuZdQ:—/ajknjuZdF+/a;knjude (3.4)
Q Q r r

The process followed so far is analogous to the proof of the Green theorem between two fields
ug, and uj, taking into account that oz ; + by = 0.

The advantage of our chosen fundamental solution is that the identity U;'k,j +d(x—&e; =0
converts the first domain integral into a puntual value, giving:

—Uz(£)+/ bkufsdﬂz—/ajknjuidl“—i-/aéknjukdl“
Q r r

Reorganizing the terms, and in the case in which we can neglect body forces, we get an integral
equation that we only need to evaluate at the boundary:

ui€) = /F (qet — ghug)dT (3.5)

3.1.4 Limit to the boundary

The former equation can be turned into a boundary integral equation if we take the pole to the
boundary. In this case the integrals can turn singular. To analyze it, we evaluate them with the
pole inside the domain, modified by a hemispherical protuberance of radius ¢ — 0 (figure 3.1). We
decompose the integral into the sum of a Cauchy Principal Value (avoiding the hemisphere) and a
analytic term (over the hemisphere):

fpsaw =t ([ sar) sty ([ gar) (36)

1. First integral (J(gxu)dl’) The first component (on I' —T.) is singular of order log (%), so
it should be numerically handled with care. The second component (on I';) tends to 0.
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Figure 3.1: Artifice to make the limit to the boundary.

2. Second integral (f.(—giux)dl') The first component (on I — I',) is also singular of order *.

The second one (on T'.) has the following limit:

. i _ i ki
i ([ o) ==t

where cz (x) gives the free term, which depends on the position of the collocation point &
(¢t =0if &€ € QUT; ¢i = 1if € € Q and its value depends on the local geometry of the
boundary if £ € T). If the boundary is smooth at the pole, ¢ = 1d;).

Hence, the integral equation 3.5 turns into:
ch(€)un(©) + 1k s () = ub(x: )ax(x)] dP(x) =0 (37)

where the integrals have the sense of Cauchy Principal Value. x is the integration or observation
point whereas £ is the pole or collocation point.

3.1.5 Steady state dynamics

The formulation above can be easily extended to the frequency domain dynamics with the aid of
a complex variable uy, or g, (being i = y/—1 the imaginary unit). If the excitation has a frequency
w, every magnitude (ug or gx) will accomplish,

up(t) = ud sin (wt + ¢) = A sinwt — By coswt = RE((Ay, + Byi)e™?) = RE(upe™?)
k

The only differences are that the equilibrium equation reads o;;; + b; = pii;, whereas the
reciprocity theorem is identical, as long as the phases coincide. The fundamental solution is now
sought to a point load that varies sinusoidally with frequency w yielding,

i

1
up = 2mp [W6ir — XT T k] (38)

Functions ¢ and x take the value:

b = Ko(z) + —[Ki(z) = 2K ()
Zs ¢
2 2 2
X = [Kolen) + 2 Ki(z))] ~ ElKolz) + 2K z)]
s P P
wwr wwr
Rg = —3Rs =

Cs Cs
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where K, (z) are the modified Bessel functions of order a, ¢, and ¢, are the S (shear or irrotational)
and P (dilatational or isovolumic) wave velocities, which depend on the Lamé constants A, u and
on the density p.

2 _A+2u 2
Cg = ——— o
p

ad
p

3.1.6 Hypersingular BEM

Another boundary integral equation can be obtained by applying Hooke’s law to the former one. It
is often used for crack modelization because of the problems that singular BIE give since necessary
terms vanish due to the coincidence of the geometry of both crack lips. Other authors also use it
on regular boundaries with Neumann conditions.

The following points and hypothesis have to be reviewed from the definition and treatment of
the BIE in the BEM in order to derive the sensitivity equations rigurously.

The displacement integral equation for an internal point is:

Suk(€) + /F (g (%; §)un (%) — uj,(x;€)qr(x)] dT(x) =0 for & interior. (3.9)

It is interesting to note that ¢}, can be written as:

0 (%,€) = 075, (%, )0 (%) = (AGjitin i (%, &) + p(u 5 (%, €) + uj 1 (%, €)))n; (%)

Since the fundamental solutions are C* we can apply the operator

(20528 )+ (A ) + A ) Y )

to the component i (referred to the collocation point &) of equation 3.9 ({eq}?), we obtain:

5t qn(€) +/1“ [d;k (%;€)n; (&) qr(x) — S;’kl (x;&)n;(&)ni(x)ur (x)] dl'(x) =0 for £ interior (3.10)
which can be written written as:
i (€)qr(€) —}—/F [di, (x; &) qr(x) — s, (x; €)ur(x)] dT'(x) = 0 for & interior

The kernels in this integral equation (stress BIE or gbie for short) are obtained from the ones
in 3.7 (referred to as ubie in the sequel) using Hooke’s law,

d,(x,8) = dj,(x,€)n;(8)

5p(%,6) = 85,(%,€)n;(8) = sk (x,&)n; (§)m(x)
dip(x,8) = Mijup', (x,€) + p(uf ;(x,€) + uf, ;(x,£))
s (,€) = Mioqt 1 (%,€) + ploy,; (x,€) + iy (%, €))

where the derivatives are performed with respect to the coordinates of x, and the fact that 8/90z,, =
—0/0&, for the kernels has been taken into account since they are functions of the distance r.

If we apply this equation on a cracked body defined by the boundaries ' =T, + 'y + T'_ (see
figure 3.2) we can make the following observations:

dzk(x+,€) = dj‘k(x_:ﬁ) since Ui,j(XJraﬁ) = UZ,,-(X‘,ﬁ)
S;k(x+7£) = _Sék(x_ag) since a'licl(x-{_:g) = U;.cl (X+7£) and n?_ = _nl_

Auy (xT) = wp(xT) —up(x7)
If we assume stress free or induced stress in cracks, which is the usual case,

Ag(xT) =0=qE") +ax") & @) =—-qkx")
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Figure 3.2: Definitions in a cracked body.

Expanding the integral extension into the former sum of boundaries, some terms happen to
vanish, and the unknowns can be grouped into the Aug(xT) only (crack opening displacement):

5ian(€) + / [ (3; €)1 (€)gr (%) — sy (x; €)1 (€ (X)ug (x)] dT(x)

e

+/ [—s;kl(x;g)nj (&)ny(x)uk(x)] dl(x) = 0 for £ interior.
ry

The reason why the g terms vanish and not the uy terms is that there is an intervention of
a normal vector n;(§) evaluated at the collocation point which keeps it from changing the sign
across the two crack lips.

If one defines an unique set of variables along all the boundaries as,

=T, = { u<u
q<q
u<+ Au
s [N
equation 3.10 is recovered
Ghan(©) + [ [ (5£)n, (10 = s (5 ) (Omu G0 (0] dT () = 0 (3.11)

for £ interior.

but nowI' =T, +T}.

The complex limiting process has to be done carefully to demonstrate the existence of this
integral equation at the limit to the boundary. In fact the equation in this form is only valid at
interior points or smooth boundary points where, again, c; = 1/26:. In this last case the integral
is understood in the sense of the Hadamard Finite Part:

L (E)qu(€) + 7[ [ (3 €) i (x) — s, (3 €)up (x)] dT(x) = 0 (3.12)

Important literature on the original development of these formulas and necessary considerations
about fracture mechanics are found in Blandford [10], Dominguez [80], Ewalds [42], Popelar [67],
Gallego [45], [46], Saez [103], Bonnet [17], Sensale [107], Cruse [32], Chirino [30], Elices [38], Broek
[23], Polch [95] and Young [134].

3.1.7 Discretization

Any of the equations above are valid for a continuum problem. As mentioned above we express
the continuum in terms of discrete values by

Th= Y Ok uk= Y bku; k= Y Oksd
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(or | | |
T =Y ¢, we =Y dul g =) &

depending on the structure of the data), which transforms any equation into algebraic one (see
figure 3.3). On the other hand, writing it for as many collocation points and directions as unknowns

Figure 3.3: Element discretization

allows to construct a defined system of equations.
Hu=Ggq (3.13)

where the coefficient matrices H and G are mounted adding

CZ@)%;‘ &+ / qi(x;&)qﬁkj (x)dI'(x) for the ubie

H = {hy} = : r (3.14)
Jr 5% (x5 €)drj (x)dI(x) for the gbie
G = {g} = /Fu}c (x; &) ¢ (x)dl(x) for the ubie (3.15)

¢t (€)Br; (€) + Jr dj,(x;€)drj (x)dl(x)  for the gbie

and the vectors u and q collect the displacements and tractions.

The boundary conditions basically imply that at each point either u or q is known. This permits
to multyply by its coefficients then known terms and perform the column addition yielding a system
vector b, whereas the other half of the unknown u and q are grouped with its coeflicients giving
the system matrix A and unknowns vector v.

Av=b (3.16)

3.1.8 Regularization of the integrals

As it usually happens with integral equation methods, the integrals have singularities of different
orders. After the limiting process the integrals are defined outside the “artificial ball” around the
pole, and divided into a first one that may have a singularity, and turns to be a Cauchy Principal
Value (CPV: f: = lim (fa_e +f6b)) or Hadamard Finite Part (HFP: ﬁ) = lim (fa_e +f€b —C%)),
and a second integreaTthat tends to a so called free term, calculated in the z;;pendix:

o=t (), sor) vt (] )
1 1

When some values at this point tend to infinite, the first term has singularities: log %, R
In order to be able to compute them numerically in an efficient way, we need to use a combination
of some techniques:

e Decomposing the kernel in a sum of a regular part (continuous and differentiable, and not
tending to infinite), which will be integrated numerically, and a simpler singular part, to be

integrated analytically (| = [, o0+ Jonatytic)-
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e Placing the collocation points a bit separated from the ends of the elements when necessary.

e Integrating by special gauss quadratures, as in the case of logaritmic kernels.



Chapter 4

State of the art

In this chapter, am ordered sample of strategies to tackle inverse problems is presented. In the
second part, a more extensive survey of authors is made focusing on the critical point of the method
for gradient obtention.

In the specific field of identification inverse problems by boundary integral equations, a brief
survey of the work done so far, to our knowledge, is presented.

The study of inverse problems in engineering has become an active area of research in the last
two decades (see Tanaka and Dulikravich [120]; Delaunay and Jarny [33]; Zabaras, Woodbury and
Raynaud [136], other authors: [40], [26], [106], [7], and edited proceedings and journals: [117], [118],
[120], [121], [119]). Recent and good surveys and works were written by Bui [25] and Stavroulakis
[110]. General surveys can be found by Kubo [74] or Nishimura and Kobayashi [93].

4.1 Strategies for solving Inverse Problems

There are several methods that can be used to solve IP. An approximate classification of them
depending on the scope of the convergence is shown in figure 4.1.

Global Local Setup

Techniques for _ Observation
................................................ Nonlinear Systems of Equations _ Equations
Optimization algorithms )
Gauss—Newton, Quasi—Newton, o
ecant, Least-Squares) Minimization of

Linear and Quadratic Programming cost functional
Kalman filter, Proyection filter

Genetic and Evolutionary Algorithms
Neural Networks; fuzzy inference
Random search

Simmulated Annealing

Topological Derivative Initialization

Figure 4.1: A classification of IP strategies.

The ideal algorithm should cover the whole scope, in order to start from a completely unknown
configuration and end up with any required approximation (1: accuracy). The way to achieve this
at an affordable computational cost (2: effectivity) and a good likelihood for a successfull solution
(3: convergence), is throughout several stages ranging global to local methods successively.

The methods treated here are the optimization algorithms, and in particular the Secant and
Least squares (local scope) for being the most suitable a priori.

25
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1. Observation equation methods

They are based on establishing a direct correspondence between computed and experimental
values,
F(z) = u®?
x is the parameter set (note that for simplicity reasons and congruence with usual literature,
the parameter set called P in the rest of the thesis is here denoted by z).
u is the data to compare (measurements, grouping displacements and stress vectors).
()¢®P refers to experimental data.
F is the operator that maps (implicitly) the parameters to the computed displacements /

stress vectors (direct problem).

The outline of this problem is tackled through a linearization of the relationship by the
following decomposition:

dF(u)
dx

F(ug) + ox ~ u*? (4.1)

zo
where dz is extracted for the update of z and the obtention of a hopefully better approxi-
mation.

The observation equations have been solved numerically in the following ways,

e Finite differentiation. If we denote Ax = b the discretized system of equations for
the behaviour of the supposed model, AZ = b the modified one, and dr = & — x the
sensitivity, we just have to solve both problems and substract the solution vectors.

e Analytical differentiation. This is the fastest and most ellaborated method. If we
write the modified model equations as a series expansion centered at the assumed one,
substract them and elliminate higher order terms, we obtain directly the variation vector.
This is the method treated most deeply in this work.

e It is possible to calculate this vector by finite differenciation as follows, which may
enlighten the meaning of the analytical method: A% —b = (A+6A)(z + dz) — (b+ 6b) =
Az —b+5Ax+ Adz+dAdx —6b. Substracting the equations of the modified and assumed
model, and neglecting second order terms, we get Adx = —dAx + db. The right term
does not need the solution of any system of equations, and the matrix A of the left term
is already factorized after calculating x.

e An easier numerical method, as it does not require the calculation of the variation of
0A, comes from the more straightforward expression Adx = Az — b.

2. Optimization theory

To tackle this problem with the optimization theory, we have to start with an initial guess of
the geometry z, and define a cost functional to miminize f = £ RTR where R = F(z) —u™
is the residual. This definition can be altered adding some term A(z), which would lead to a
regularization technique due to Tikhonov. The optimization problem is therefore defined as,

min f: " - R

The definition adopted for the cost functional as a least squares sum has a probabilistic
justification since it basically implies that the deviation from the exact solution will be
minimal. It can also be seen as the substitution of the vector R with a L? norm, which in
turn can be interpreted as the solution at the least distance from the exact one. Some gaussian
probabilistic interpretations of this definition were developed by Abdallah [1], Suzuki [115]
from a bayesian point of view and [86] for a general overview.
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The techniques for the minimization of the cost functional are very varied. In an attempt
to clarify a classification of them, from the surveys made on the subject and using as a
basis the incomplete set of methods that has been tested for identification inverse problems
together with the BEM, the following overview is made. A brief description is organized in
the following two big groups: soft computing and the classical mathematical programming,
and outlined on figure 11.1.

Special emphasis is made on some mathematical programming methods. The observation
equation methods are here shown to be closely related to the Gauss-Newton method in 11.3.

General surveys about optimization techniques applied to inverse problems are found on
Menke [86], Dennis [64] [34] and Hansen [60].

4.2 Derivation of the gradient

Many methods for IP require the gradient of the cost functional V f or the matrix of derivatives A =
%w(‘”). Such minimization can be performed by different techniques, but any efficient algorithm
would need an analytical computation of the gradient of the cost functional, when available. A
classification of them with respect to the computational cost may be the following,

Higher cost Lower cost
Finite differences Adjoint variable Direct derivation
(FD) (AVM) (DD)

e Finite differences imply solving an additional direct problem at a finite distance from the
original one (unless the use of central differences) for each term or vector of the matrix. The
drawbacks of this technique are the limited precision of the values and the high computational
cost since at least a new direct problem has to be solved for each parameter, at every iteration.

This approach has been extensively used as well, to regular, strongly, and even hypersin-
gular BIE (Mellings and Aliabadi [84], Bonnet [13]; Matsumoto et al. [83]; Nishimura and
Kobayashi [92]; Kirsch [69]). Bonnet [13] demonstrated that the differentiation formulas used
for regular integrals can be applied to strongly singular or hypersingular integration as well,
providing a firmer mathematical basis to the earlier works.

Mitra and Das [88] use minimization algorithms for a cost functional, where the gradient is
obtained by finite differences, and still require measurements on all the boundary. Mellings
and Aliabadi [84] and [85] apply a similar technique.

Nishimura and Kobayashi [92], [93] use a similar approach for the identification of cracks,
starting from the gradient of the ubie, which is solved by a Galerkin method. Very good
convergence was attained, although they needed measurements along the whole boundary
and the use of Tikhonov regularization. Nishimura [91] developed extensions to threedimen-
sional and curved cracks in transient elastodynamics. The gradient is obtained directly from
the discretized equations, which is only possible explicitly for constant boundary elements.
Neither special elements are used to capture /7 crack tip behaviour.

The direct use of optimization algorithms with finite difference gradient obtention is the most
extended: Bezerra and Saigal [9] for elastostatics, Zabaras et al. [105] for material properties,
Mura et al. [89] identify cavities, Kagawe [66] uses acoustics whereas Yao [133] uses elasticity,
Kassab et al. [68] perform experimental applications with laser speckel photography and
static elasticity for cavity detection. Bryan et al. [24] show experimental results on crack
reconstruction by impedance tomography.

e The advantage of the Adjoint variable method is that one only needs to compute the orig-
inal and the adjoint direct problems whatever the number of variables, and then making
some faster calculations to obtain each derivative. The problem of this method may be the
complexity of the formulation.
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This method has been employed by several authors in different applications, for example
Aithal and Saigal [3], Bonnet [11] for two-dimensional thermal problems; Bonnet [14] for 3D
inverse scattering problems by hard and penetrable obstacles; Meric [87] for shape optimiza-
tion in potential fields; Burczyriski [27] applied to stochastic shape sensitivity analysis; Lewis
[76] studied some numerical aspects of the approach to general problems. Bui [6] studied the
evaluation of the plane containing a three dimensional crack. Calvo [28] developed adjoint
problems for optimization of several different functionals.

Bonnet [11], [12], [13], [14], [17] has contributed giving many theoretical formulations and
useful ideas to understand the procedure, even for threedimensional acoustic scattering. His
later work relies on the obtention of the derivative of a complete cost function by the adjoint
variable method, first for closed boundaries and later for cracks [16], [19], [18].

The basis for the direct derivative came from the finite variations formulation used directly
for IP.

Zeng and Saigal [137] developed a formulation for potential fields based on variations, but
lack numerical treatment and implementation. Tanaka and Masuda [122], Tanaka and Yam-
agiwa [127] and Matsumoto and Tanaka [82] developed a similar approach years earlier using
Taylor expansions of the kernels and weights in the BIE, leading to a sensitivity equation to
the geometry variation. The proposed method requires the solution of three systems: the
direct problem, the sensitivity equations and an overdefined system for the parameters. An
important drawback is that internal stressed are required as measurements, for which the
derivated equation is the more complicated gbie. In these papers, the authors propose a
different approach from the minimization of a cost functional: the observation equations,
but failed to proof its reliability, due to mathematical inconsistences (Tanaka et al.[122])
or simply because no numerical application is carried out (Zeng and Saigal, [137]). Similar
partial solutions were provided later by Burczynski et al. [27].

Gallego and Suarez [114] developed the variation Boundary Integral Equation (§BIE) for
the two-dimensional potential problem in a rigorous way, through a series expansion of the
kernels and weights of the integral equation, followed by a rigurous limit to the boundary
before discretization, considering lacking terms in [137] and [122], and therefore achieving
better numerical results. Being the first attempt in this direction it still lacks some basis
regarding material derivative and optimization techniques. They presented some numerical
results using the observation equation approach in [49], [50], [48], [51], as well as Rus and
Gallego [100].

Automatic differenciation is performed automatically by recently developed software that
treats directly FORTRAN and C++ source code (see [39], [43]). Like explicit derivation
after discretization [84], both methods show inconsistencies while handling singular and hy-
persingular integration, besides not taking into account the appearance of free terms. An
additional problem of AD is the number of limitations imposed on the source code.
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Chapter 5

Direct Derivation of geometrical
sensitivity

The goal is to calculate the derivative of the displacements or stress vectors (grouped in v) with
respect to the geometrical change of the geometry (Cﬁ;—‘;). This variation will in principle be de-
scribed as a variation field dx in the sense that any point will move #; = x; + dx;(x). This field will
later be described in terms of a finite set of parameters P by a procedure called parametrization.

The definition of this derivative in a generic way, before parametrization, follows the steps:

1. The starting point will be the integral equations used for the regular boundary element
method (ubie and gbie).

2. The procedure starts defining the sensitivity of the whole equation to a generic variation of
the geometry.

3. As in the usual boundary element method, the resulting integral equation has to be taken
to the boundary (the variation equations dubie and dgbie). This step together with the
discretization needs some care due to the appearance of singular integrals.

4. Finally, this sensitivity equation is discretized by the usual BEM techniques, and the neces-
sary reorganization of the equations is carried out to extract the desired gl’;; .

The second point is the most complicated and its obtention, as shown in figure 5.1, is synthesized
in the following steps:

e Layout of problems to compare. We present two problems, one known (at a certain iteration),
and one perturbed, a part of whose geometry is altered by a differential deformation field §x.
The information of the former will be considered known since the direct problem is solved,
but not the perturbed one.

e Linear approximation of unknown terms by series decomposition. The perturbed geometry
involves terms which we do not know, and we will approximate them by known terms by
means of a series decomposition ”centered” at the analogous known term, and decomposed
with respect to the geometry variation.

e Variation integral equation. After substracting both equations and truncating the terms of
variation of the geometry variation to the first order (linearization), we obtain a variation
integral equation.

If the ofject to minimize were a generic cost or objective functional J defined as,

i) = [ puwar+ [ ey + | wear

q

31



32 CHAPTER 5. DIRECT DERIVATION OF GEOMETRICAL SENSITIVITY

Perturbed Known

Equation Equation
!—/
Series centered a )

]

decompositio

=

with respect to X

\ Subtract

L=

Linearize
gy

\{ Sensitivity Equatiom\

Figure 5.1: Procedure for the variation integral equation

its gradient could be obtained based on the sensitivity (,ﬁ;—‘; so that év = éf;—‘;éx) simply applying

the chain rule:

) = 9oy 9%y A
0J(T.) /Fq 5 dudl +/F" 3 oqdl’ + " oxdl

5.1 Preliminary concepts

5.1.1 Representation of some useful geometrical variation terms

Starting from a generic variation field 0x(x), that converts an assumed geomety domain, boundary
and points (€, T, x) into a varied one (Q,T,%), and with the aid of series expansion, one may rep-
resent explicitly all the needed geometrical variation terms that appear in the sensitivity equation
(see figure 5.2 for a simplified idea).

on
—
™

Figure 5.2: Sense of some geometrical definitions: fi = n + én and dT’ = (1 4 6J)dT

ol

The variations of some geometrical quantities needed later can be expressed in terms of the
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normal n and tangent t and some derivatives of the variation field with the help of a series
expansion and the following differential geometrical interpretations. Figure 5.3 shows the necessary
definitions: a point x and its surroundings (a differential §x x dy) on the boundary I is deformed
by 0x as a displacement (discontinuous line) and a distortion (dotted line).

OX(Xy+dy)
3x.2(x,y)dy ST ox(xdx y+dy)
dy /ot i
|_§_(_‘(Ly2 K /\_/5X,1(X,y)dx
X _=OX(x+dX,y)
dx
r n

OX(X+n, ,y+n,)—0X(X,y)dx ,n #x,n ,
Figure 5.3: Differential geometrical interpretations in the vicinity of &.

If én; is the variation in the normal to a boundary subject to dx, dJ is the unitary variation
in the length of that boundary, then

(57‘1 = 5:121—551

1
titier lim (—(5:1:,,({ + tE) — 0z (f))) = tjtlelpda:p,mtm
e—0t \ €

5nj

e—0t

6J = t; lim (%(&L‘l(f + te) — (S.Z‘I(E))) = tl&vl,mtm

0 1 .
€ = \_1 ¢ (permutation tensor)

5.1.2 Starting equations

The starting equations at an internal point and the names and indexes to be used in the sequel
are:

ug(x) Displacement vector in the real state (value at point x, component k).
gr(x) Stress vector in the real state (value at point x, component k).

uf6 (x,&) Displacement vector of the Kelvin solution (value at point x, component k of displacement,
when the fundamental load is applied at direction 7, point &).

q;(x,€) = 0¥y (x,€)n;(x) (Stress vector of the Kelvin solution (value at point z, component k of
stress when the fundamental load is applied at direction %, point &).

a;: p(%,&) (Stress tensor of the fundamental solution (value at point x, components jk (symmetric)
of stress when the fundamental load is applied at direction i, point £).

i Kroenecker delta.

x Integration point.

& Collocation point of fundamental load.
i Index for fundamental load direction.

k Index for component of any field.
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The displacement integral equation is (ubie):

Siug (&) + /Fq}'c(x,ﬁ)uk(x)dl"(x) :/uz(x,g)qk(x)df(x) for £ interior. (5.1)

r

and the stress integral equation is (gbie):
au(€) + / S50, (€ (<) (K)T () =

/dJk qr(x)dl(x) for £ interior. (5.2)

5.2 Derivation of the equation

5.2.1 How to obtain the gradient of a boundary integral equation

The derivation of the equation is made by the limiting definition of the derivative, §{eq} =
hm ({eq} {eq}) The term {eq} represents the original integral equation {eq} altered by an

1nﬁn1te51mal geometrical deformation field dx (see as an example figure 5.4), that only affects the
desired part of the geometry (the unknown flaw or the zone to be optimized). This altered state
need not be defined yet, giving more generality to the results. The alteration will be defined later

by means of a parametrization of the geometry.

example of linear deformation field
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Figure 5.4: Example of §x(x) field.

In order to be able to subtract the two equations in the limit, we have to express them in
common terms. This is done by doing a series expansion of the altered one with respect to dx and
centered at the original equation. This expansion has to be done by first expanding each of the
terms and then substituting them in the integral equation.

The other needed step consists of performing the limit to the boundary of the integral equations.
In practice, this implies studying the order of variation of each crossed terms (products of each of
the terms of the expansion) after the subtraction. This will lead to keeping all the first order terms
and eliminating the rest for the following reasons: (1) the order-zero terms will vanish identically
during the subtraction since they will be identical but of inverse sign, and (2) the second and
higher order terms will vanish since they will be very small in comparison with first order terms
when 6x — 0*. The order in which these limits are carried out may be inverted (see [13]). A
safe strategy would be to do the limit to the boundary after the limit to the derivative. This way,
the derivative is made of an internal equation with no singularities, but complicated free terms
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appear during the limit to the boundary. The opposite order may be applied when the collocation
point (pole of the integral equation) is placed at a smooth point. In chapter 5.3, both methods are
compared, yielding the same results at smooth collocation points.

A similar procedure, but taking into account terms of one higher term, can in principle be
carried out for the computation of the hessian instead of the gradient. This is not as interesting as
the gradient since the most powerful optimization algorithms for the identification problem only
work with gradients. The hessian or double derived equation would require all the kernels and
weights to fulfill one higher order of derivability.

The procedure for the obtention of the derivative is carried out as follows, for each of the
internal point equations.

5.2.2 Derivative of the ubie

The original and the altered integral equations ({eq} and {eq}) are:
fea:  w(e)+ / [, — ] dF = 0
r

{eq} : ui(€) +/F [ukgj, — ujq] dT =0

The displacements and tractions of the altered configurations are directly expressed in terms
of the original one, defining their difference as duy and dg (where the symbol § refers in general
to a difference in the magnitude between the two mentioned configurations):

Up = U+ oug

Gy = qr+0qk

whereas the kernels have to be expanded in a series in which only the first terms are important
for a differential perturbation. The series expansion is carried out differentiating with respect to
x (fij = g%). When doing the material derivative of uf(x, &), both x and £ are displaced. Only
the first term will be kept, denoting the rest as hot. (higher order terms).

dut, dut,

) dut dut
S St + hot. = u + kg Ok
day, 05m T g, O6m +hot. = uj, + 5 m0Tm — 5

since r = x — & and because of the radial nature of “2- In general,

@~ oul m + hot. = uj, + uj, 1, 0rm + hot.

@t o~ ul+ uz,mérm + hot.

d}; = &;kﬁj(x) ~ q}; + a;kénj (x) + a;'-k’mérmnj (x) + hot.
and finally, the variation of the normal n;(x) and the integral domain can be expressed by means
of the previously defined dn;(x) and §.J, as shown in figure 5.2:

fij(x) = nj(x) +dn;(x)
dl' = [1+6J]dT

The resulting Jubie after the substitution of the expansions above in {eNq} and the subtraction
to {eq} is:

5} buk(€) + / [0 (3, €)m; ()i (x) — i (x, )6 (x)] dT (x)
+ / [0 (3%, €)1 (X) i (%) — 0l (%, €))7 (3, €)
IN

+(0 (%, €)ny ()uk (%) — uj (x, €)ax) 37 (x)
—|—0§-k (x,&)ur(x)0n;(x)] dl(x) = 0 (5.3)

for & interior
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5.2.3 Derivative of the gbie

The original and the altered integral equations ({eq} and {eq}) are:
(b @@+ [ [ndi-sia] =0
r
{eg}: q:(§) -I-/F [qkdfc — s}cuk] dl'=0

The additional series expansions of the individual terms are:

n;(&) = n;i(€) +on;(€)
N;._k — d§k+d;k’m5rm+hot.

§;k = §§klﬁl(x) ~ sj-k + s?klénl(x) + s;-kl,mérmnl(x) + hot.

The resulting dgbie after the substitution and subtraction is:
G1000() + | [d54(x,€)n (€160 (0) = s (x, ) (€)m ()5 (x)] AT ()

+ / [(di (%, €)1 (€)5 (%) — 8y (%, €)1 (€ (X k)3T (x)
(i (5%, €) g — a5, €)mu (%) ()61 €)

(g (5%, €15 (€) 0 (%) = . (56, )11 (315 (€))7 (3, £)
_S;'kl(xag)nj(g)uk(snl(x)] T'(x)

for & interior

5.2.4 Derivation of kernels

The succesive terms of the series expansion yield some derivated terms in addition to the original
ones. The definition in terms of the fundamental functions of all the kernels involved in both
variation equations are:

dip(x,6) = Mijup . (x,€) + p(uf ;(x,€) +uj, ;(x,€)) (5.5)
st (%,6) = Moy, (x,8) + plog, ;(x,€) + Uiz,i(xag)) (5.6)
ik 06 €)= A0 UR (%, €) + (U, (%, €) + 1] 41, (%, €)) (5.7)
S im(5€) = A0 i (X,€) + 1Ok i (%, €) + Oy i1 (X, £)) (5.8)
where
U]'k(x7 6) = A(sjkuit,n()g E) + /‘L(u;,k(xa £) + uz,j (X, f))
oia(%,8) = Aajkuiz,nl(xa €+ N(Uj',kz (x,€) + u?c,jl(xa £))
]k m(%,€) = )\5jkufz,nlm(xa €+ N(u;‘,klm (x,€) + Ui,jlm(X, £))

The only needed term is the fundamental solution given earlier and its derivatives. In the
two-dimensional generic case of an harmonically dynamic load (which gives the static solution as
the limit to null frequency) the displacement field was given by (see equation 3.8 and following):

- 1
up, = — [Pk — xrr
k 27_‘_'” [¢ ik XT,i ,k]
For more compact expressions we can define the tensors:

€abij = 0ai0bj + Oajlpi
€abeijk = 0aiOhj0ck + 0ajO0pk0ci + Oakdpidc;
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Thus, the successive derivatives of the fundamental solution are:

a __ _1
Up 27

a 1
'U/b’c 2T

a —

U’b,cd — 2mp

a _ 1
ub,cde — 27

where 7, = 2, — &, 7 = /17 + 72,

T ab

T,abe

T, abed

It is interesting to see the order of singularity of each term with respect to r, by a Taylor

expansion to the first order:

[¥dab — XT,aT ]

[¢'5ab7‘,c - X'T,aT,bT,c - XeabijT,iT,jc]

["p”(sabr,cr,d + ¢15abr,cd - X”r,ar,b"',cr,d - Xlr,ar,br,cd
—eabij (X €cdriT i kT ji + XT icdT,j + XT,icT jd)]

(" Bapr T are + (=190 + ") 0abT cde — X'"'T 0T b7 cT a7 e
—X"[€abcijk€detmT,iT 3T k1T m + €abeijm? icT jT,dT,m]
—X'[€abeijk (T ieT b7 kd + T iT jeT kd + TiT jT kde)
+eabij(T,iT jeT de + €detm (T,imT jer 1))

—XE€abij [T ideT jc + T,idT jee + T,ieT jed + T jedeT,i]]

)

= 5. Therefore,
Za

and r,

Ta

T
1
;(5ab —T,alb)

-1
r €abeijkT,ij T,k

-1
T("',abcT,d + eabeijk (T ijaT & + 7,357 kd))

1

r = r
Toa = A+0(@rh)
Tab = B%+O(r0)
1 _
T.abe = Cr—2+0(r h
L,
T.abed = Dr—3+0(’f‘ )
—17l1 wr -1 iwr\] ¢ 5
Y = 7[[§+’Y+ln(2cs>]+[7+’Y+ln(%>] %]4'0(7')
_ 2
¢’=% = 71[1+Z—;]%+0(r1)
P
0? 1 c?
Qp”:a—:f = 5[1+C_2:|T_2+0(T0)
D
%Y gl 1 -1
@bm:W = —[14'%]_34'0(7“ )
1 2
X = 7[1_2—;]+0(r2)
P
Ox w? -1 iwr -1 wr
99X _ W |z 4 |1 W\ | 4 3
S N L
9%x w? [[3 iwr 3 iwr A
n_>X _ _* e 4 _ |2 hadel 4 2
-5 = e |l ()] e[ ()]s
i w(cp =€) 1
I,’:8—7~>3< = 45?)03 —+0(")
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where v ~ 0.5772157... is the Euler gamma. Therefore,

uf = (A+Bln(r)) +0(r?)
ug, = (A+Bln(r))%+0(r1)
U = (A+Bn() +00°)
Wae = (A+BIn() +06™)
ol — (A+B1n(r))%+0(r1)
ohy = (A+B1n(r))rl2+0(r0)
Ghoge = (A+Bln@)— +0¢™)
L= (A+BI(); +00")
o = (A+BIn()5 +06°)
Spea = (A+Bln(r))rl2+0(r0)
Spede = (A+Bln(r))rl3+0(r_1)

where the constants (A, B) are obviously not common.

One should notice that the next term in all the expansions is always two orders higher than the
first one. This property will be very important in the sequel, since in the hypersingular sensitivity
equation, two orders of the expansion are used: one that gives an infinity term and a second
that gives a free term. The mentioned fact allows to take into consideration only one term in the
expansion.

All the indices regarding directions of derivation can always be interchanged without any change
of value. For instance,

Up cde = Updee = Updec = ---(all 6 permutations)

5.3 Limit to the boundary

5.3.1 Boundary versus internal integral

There are two possibilities when deriving the boundary integral equation.

1. One may obtain the integral equation for an internal point, proceeding as explained with the
derivation, and later take the derived equation valid for an internal point to the boundary
limit. This choice is safer because it does not require to be careful with what happens with
every term at the boundary. Taking the equation to the limit is a dull process that will be
carried out in the rest of the chapter.

2. The other possibility is to derive directly the boundary integral equation, ie., after taking
the original one to the boundary limit. In the end it is shown that both techniques yield the
same results as long as the collocation point lays on a smooth boudnary (C).

In the smooth case, the kernels have an univocally defined value around the collocation point,
and so are the geometrical values dn;, §.J, dr;. Hence the substitution of the expanded terms
in the boundary integral equations, and their subtraction yield:
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ubie:
1. . .
pkus(©) + [ ghun) - uban()] AL =0
r
dubie:
L i i
§5k(5uk +/1“ [ajknj(x)éuk — u0qy,
+a§-k’mnj(x)uk5rm - uzvmqkérm + U;knj(X)dej - u};qde + O';'kUkénj (x)] dl = 0
qbie:
1._. ; .
3900©)+ [ shami €m(x)us (x) — djn; )0 ()] dP(x) =0
dqbie:

1. . )
oo+ [ [, (€)dm. = shun, (€ (x)6w

+d%n; (€) b T — sipymi (€)ni(X)urdJ + dipqrdn; (&) — s§mu(x)urdn;(€)
+d§-k,mnj(§)qk6rm — sj-kl,mnl(x)nj (&ugdry, — s;:klnj (©updny(x)]dl = 0

which are identical to the ones obtained by the limiting process after the derivation of the
internal equations in the case of a smooth collocation point.

5.3.2 Limit to the boundary of the internal equations

The equations in 5.2 are written assuming that the collocation point £ is placed at an interior
point in the domain 2 bounded by I'. In the usual BEM the equations are applied with £ on the
boundary I'. Hence we have to approach the point to the boundary through a limiting process. The
consequence of the limit is that the integrals are split into a Cauchy Principal Value or Hadamard
Finite Part, and some free terms.

The limit is usually done by modifying the boundary locally so that it never touches the
collocation point, but yields a definition capable to be taken to the limit. Some exhaustive works
on the artifices for the limit to the boundary can be found in [79], [55], [56] and [72]. Here we
decompose the boundary into a sector of a ball S, around &, that will yield the free terms, and the
rest of the boundary save for the ball I' — T';, which is by definition a Cauchy Principal Value if

the integrand is of the order % or a Hadamard Finite Part for T%

Figure 5.5: Artifice for limiting process. Left: x € T'.. Middle: x € ' after I'.. Right: case of a
non-smooth boundary.
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5.3.3 Order of singularity

The basic integral equations before the limit to the boundary (for £ interior) are the following,
and the order of each integrand when £ approaches x are studied for a correct treatment of the
integrals.

ubie:
5zuk(£)+/r[U;k(xag)nj(x)uk(x)_UZ(Xag)Qk(X)] dr(x) = 0
(¢ interior)
Integrand Order
G, w0 | !
uj, (%, €)gr(x) | In(r)
dubie:
Gitn(€) + [ 7. €m0k () — i x,€)d (0] aT ()
+ F[ ka ) k( )_ukm( E)qk)érm(x,f)
+(o jk(xag)nj (x)uk (x) — uj(x,€)qr)0J (x)
+05 (%, )ur (x)dn; (x)] dL(x) = 0
(& interior)
Integrand Order
U;kUk(Snj(X) r1
a;k’mnj(x)ukérm 1
oty (x)0uy rt
U}y Q0T m 0
—ulSqp In(r)
U;:knj(x)uk(SJ r=1
—ulqrpdJ In(r)
qbie:
5iqk(£)+/r[dj-k(X;&)nj(&)qk(X)—Sj-kz(xa£)nj(£)nz(X)uk(X)] df'(x) = 0
(& interior)
Ir}tegrand Order
85k (%, &)1 () (Xur(x) | 2
iy, (x,§)n; () qr (x) r
dqbie:

<5i<5qk(£)+/F (5. (x, €)nj (€)0ar (%) — 853 (x, €)n; (€)ru (x)du (x)] dI (x)

[ 105065610800 = b, s (€)m ()T
(5%, €)i — (3, €m0 ()i (3)) 3 (€)
(g (6, ) (€) () — 81 (5, €)1 (X103 (€))7 (3, €)
_sj'kl(xag) ()Uk‘snl( )] I'(x) = 0

)

(¢ interior
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Integrand Order
S?‘klnj (&)ugdny(x)
tj"kl,m ny (x)n; (§)ukdrm
S;'kl.nj (&)ny(x)duy,
_d;.'k,mnj (5)(]19 0rm
—djxn;(€)0qk

Sj'kl.”j (&) (x)ugdJ
—djn; (&)ardJ

S}kl.nl (x)u on; (€)
=110, (§)

|
N

|
N

|
N

|
-

|
—-

|
N

|
-

|
N

|
-

S (2333323

5.3.4 Free terms

The free terms are the analytically calculable integrals along S. that appear in the decomposition
of the boundary at the limit to the boundary. If the integral is made at a smooth point the
integration can be done without loss of generality between dx; = 0 and dzs = 7.

On the boundary S, the radius 7 and its derivatives become exactly (see figure 5.5):

ri = Ty

Ta

Ta = ? = 6aana
1 1

Tab = ;(5@ —TaTp) = - Caa€bpTialls
-1 -1

T.abce = Teabca'b’c’ Ta'b'T,e! = r_2€abca’b’c’ ea’aeb'ﬁ(scvnanﬁn"/
-1
T.abcd = r (r,abc"“,d + €abca’d’ ¢! (T,a’b’c’r,d + r,a’b’r,c’d))

where,n; = (cosd,sinf)” and 6,4 is the Kroenecker delta whereas €, is the permutation tensor.

The variations of the geometrical values can be expressed, in terms of the normal and the
tangent and some derivatives of the variation field, with the help of a series expansion and the
differential geometrical interpretations recalled from figure 5.6, where a point x on a boundary T’
has normal n and tangent t, the zone is distorted by a variation field dx, which is studied at a
differential area dr x dy.

OX(xy+dy)
3x2(x,y)dy ST ox(xdx y+dy)
dy /1 i
|_§_(_‘(,_y2 K /\_/5X,1(X,y)dx
X _=OX(x+dX,y)
dx
r n

OX(X+n, ,y+n,)—0X(X,y)dx ,n #x,n ,

Figure 5.6: Differential geometrical interpretations in the vicinity of £.

In S., the necessary considerations in terms of definitions and expansions of the terms in the
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integrals are the following. The range of the integral and its differential are,

dl' = rdf (the differential of line is converted into a differential of angle along the ball)
. = 6,—06, (limits of differentiation)
r = €

The value of the displacements and tractions in x can be expressed in terms of those in &, as
well as their variations,

ui(x) = ui(§) +ui;(§)rn;(x) + hot.
ai(x) oij (x)n;(x)
0i;(x) 0i;(€) + 0iju(§)rru(x) + hot.
dui(x) = oui(€) + dus,;(§)rn;(x) + hot.
6gi(x) = 60ij(x)n;(x) + 0ij(x)dn;(x)
00ii(x) = 004;(&) + doij(&)rn(x) + hot.

The value of the geometrical variations are also expressed as a series expansion in terms of their
values at €, and will therefore need more than one term in some cases:

dzi(x) = 0zi(§) + ox;;(8)(x; — &) + hot. =

orp = 0& mrny, + Jml’mnrznmnn + hot.
0z; ;(x) = dz;;(€) + 0z jprng + hot. =
onj(x) = t;(X)t(X)€r0Tp,m(§)tm (x) + 1t (X)t1(X) €1k 0Tk, mn (§)tm (X)11n (X) + hot.
5I(X) = 1)t ()501,m () + 7621 (€)1 ()t (X)1n () + .

0 1 .
€ = (_1 o (permutation tensor)

After a proper decomposition, the terms in O(r°) are regular integrals that can be evaluated
numerically by a standard Gauss quadrature. The terms in O(r~2) should vanish in order to have a
computable expression. This only happens if f(x) is continuous and derivable at 0, or f(0) € C1->.
The terms in O(r~!) may give a finite term in this case, called free term.

The free terms can also be calculated using the programmable transformation of the indicial
algebra. For instance, one of the free terms in the hypersingular variation integrals would be
computed as follows.

im, . s (€)ugdny(x)dl = lim, . Id9
Substituting the expansions ug(x) = ur(€) + up,n(§)rna(x) and dn; = ttmempdTpoto +

ttm€mpdTp,oqtong we get four terms in I. The term of order ! vanishes in the limit. The term of
order ! yields a number that tends to infinity. The integral of one of the two terms of order £°

is
I = sjun; (&) uk,nNntitm€mpdTp oto

Taking into account that all the terms are evaluated at the integration point x excepting n;(£),
one may define the free term DQ; kimn Tollowing figure 5.7. D() is named after the initials of dgbie.
We start from right to left we have eight indices (i, j, k,1,m,n, 0, p) corresponding to s;'-kl the four
first (which is decomposed into matrix ¢¢ multiplied by u*", as can be deduced from the Hooke
laws in equation 5.8 and following) and to n,, Ny, t,,; the rest. Internally, the indices are treated
as numbers, since they are redefined several times, and follow the lines in the flow chart. d45 is the
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Kroenecker delta between the fourth and eigth index, condensing them. We have therefore defined

the free term coefficient tensor in a matricial way as DQ’y;,...,

1"
= 48 X tt X u* X npnpt.ty, and

the new indices correspond to the terms on the left (direction,n,u’,x). This finally leads to the

term,

FTDQ, = Sag tt U

jkimn

directon—i — | |—
n—j——— | |—

k— J—
u¢, | (former p) —
ox{>m (former n

n (former o)

O~NO OIS WN P

n
n
t
t

P
n
o
v

Figure 5.7: Flow chart of the indicial algebraic transformation.

The resulting free terms are the following, in the case of a smooth boundary at the collocation

point.

Free terms for the ubie:

1.
. i 1 i i i 1
lim g (x,&ur(x)dl’ = =6Lur(€) = ur(§)U1,, Ul, = =dix
e—0t se 2 2
2.
lim ul(x,€)qr(x)dl = 0
=07t Jg.

Therefore, as expected,

30l€) + f [dhus () ~ k(] drG) =0 forg €T

Free terms for the dubie:

1.
lim, i olpukdn (X)dl = up(€)821,m (§) DU},
2.
lim, i O (X UrOrmdl = ug(€)6xim (£)DU2%,y
3.

) . . 1
lim oipni(x)0urdl = Suk(€)DU3, DU3j, = -0k

e—07t Jg, 2
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4.

s1_i>1(1)1+ 5 —ui,mqkdrmdf =0
d.

El_ig1+ 5 —uldqdl = 0
6.

lim, Sigéknj(x)uk(SJdF = uk(€)0x1,m(£) DUG},

7.

lim, : —ubqrdJdl = 0

It happens that DU1% , + DU2: .+ DU6:, , = 0.
The resulting boundary integral equations for smooth boundaries is simplified as follows,

300 €) +  [o34 0%, Em; ()6 () ~ u(x,€)60x (9] AT )

r

+]{ [0 (56, €)1 (X) 11 () — (%, £)g1) 67 (3, £)

+(0 (%, €)n; (x)up (x) — i, (x, €)ax) 0T (x)

—f—aj-k(x, &)ur(x)on;(x)]dl(x) = 0 (5.10)
fore el
Free terms for the gbie:
1.
. ; o1 .
Elj(r)ﬂr . 8511 (%, &) (§)mu (x)ug (x)dT = nlUjIngzslgngg + mu QLG
2.
Iim [ dip(x,€)n;(€)ax)dl = morQ2iy,
e=0% J,,

The terms nluj,lej.kl + nlaij2j.kl group into —%5};% (&) taking into account that g =
0k (X) = (Adjktm,m + p(up,j + ujk))n;(X).
In the gbie and dgbie there are some terms that tend to infinite when the radius ¢ disappears
(terms in 1_1>r51+§) Since all equations should take finite values in order to have a physical sense,
g

the sum of all those terms cancel out with similar divergent terms in the integral along I' — T..
The infinite terms are named with a starting initial I (e.g. IQ1 is the Infinite free term of the gbie
number 1).

39001(0) + 7 [shuns O (000 = dign; (O ()] dU(x) =0 for € €T,
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Free terms for the dgbie:

1.
: i i 1
51_1>I(1;1+ 8ipmg (§urdmy (x)dl' = "j“k‘sml,mIDQljklmsl_lngrg
10k, m021,n DQ Lk
+njuk6ml,mnDQ5;-klmn
2.
: i i -1
é_l_l)r(r)lJr 8ik1,mM (X)15 (§)updrmdl = ”j“k‘sml,mIDQijlmsl_lngrg
Se
+1jk,m 021, DQ2jkimn
+njuk6xl,mnDQ6}klmn
3.
. ; o1 )
1_1)I(I]1+ 8ipmg (E)m(x)0urdl = mu; Q15 1_1>I(I]1+g + nuj s DQ117%,
£ Se £
4.
lim —d;-k,mn]-(ﬁ)qk&rmdf = njakm6xl,nDQ8§-klmn
e—0t se
5.
lim [ —din;(€)dqdl = ndo;DQ12¢,
=0+ [, J J
+(5nlajkDQ13§kl
6.
. ; ; L1
51_1>I£l+ 5 8 () (x)updJdl = njukdxl,mIDQ3‘zjklmsl_l>r(I]l+E
+njuk5$l,nDQ7§'klmn
7.
51—i>H01+ —d;knj(g)qk(SJdI‘ = njakméwl,nDngklmn
8.
. ; o1 .
1_1)1(1)1+ $ipmu(X)urdn;(§)dl = Snu;IDQ4, 1_1,%14.2 + dnguj e DQ4Gy
£ Se £
9.
lim —dj-qudnj(g)dl“ = 5nlajkDQ10§-kl
e—0+ e

45

The terms dnyujx DQ4%y, + om0k DQ10%,, group into —56} 04 (€)dn(€) taking into account

that qr = 0jkn;(X) = (AdjkUm,m + p(uk,j + ujk))n;(X).
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Terms m;6u x DQ11%y, + 1,00, DQ12%,, also group into — 58} do (€)ni(€) for the same reason.
These last two grouped terms reduce further to —léi 7 0Gk-

The sum of terms in DQ8? iklmn> DQ9: DQ13 w1 should be equal to zero, although this has
still not been confirmed analytically.

Jklmn>

If the equation were to be used at a regular boundary, we will see that the equation would turn
into,

39600(6) + . [0 (x. 3 (©)30x) = s} . s (O (3ux ()] AT ()

+ 7[ [(di (5%, €)1 (€)gk (%) — 5y (%, €)1 (€)1 (%) )T (%)

(. (%, €) gk — 55 (%, €)mu(x)ug (x))0n; (€)

(g (%, €)1 (€) Gk (%) = 8511, (%, €)1 ()10 (€) )7 (%, €)
=k (%, €)n;(E)updny(x)] dl(x) = 0

for £ €T,

The so called hypersingular integral equation or stress integral equation 3.12 is transformed
into itself during the limiting process to a collocation point on the crack (as long as Ag = 0, since
g(zT) = q(z™)), since the domain exists on both sides of the crack boundaries, as if it were an
interior point. The free terms carried out above for a regular boundary do not count,

qbie:

Siqn(€) + jé [s;'-klnj(ﬁ)nl(x)uk (x) — dj-knj(ﬁ)qk (x)] dl'(x) =0 for £ e (5.11)
dqbie:
5.0qk(€) + 7{ [ (x, €)1 (€)1 (%) — 8551 (%, €)mj (€)ru(x)dup (x)] dI'(x)

+£[(d§k(x,€)"1(€)4k(><) = 8511 (%, €)1 (€)na(x)ur )8 (x

(i (%, €)qr — 854 (%, €)mu(x)up (x))0n; (€

(g (%, €)1 (€)@ (%) = 8510, (%, ) ()10 (€))7 (%, €
— %1 (%, &) (€) updny (x)] dT'(x

for £ e T (5.12)

)
)
)
)

with the following redefinitions,

=T, = u+u ou < ou
g+ q 0g+dq
u <+ Au Odu < 6Au
r=r
+= {q<—0 6g«+ 0

5.3.5 Non-smooth points

The first two equations can be written as follows, in the case of a cornered boundary. In this
case, the dubie has two somewhat more complicated terms. It would make no sense to do this
calculation for the stress boundary equations since they should be written for points within the
elements, which will be smooth.

ubie:

u(€)ULL + ][ lqf i (x) — uhge(x)] d0(x) = 0 (5.13)
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Component | Should be | Should be | Should be | Should be
(in ubie) | (in dubie) | (in gbie) (in dgbie)

U, CO,a CO,a Cl,a Cl,a

o bounded | bounded | C%® 0%

Ol _ CO,a Cl,a Cl,a

0xy — cte — c?e

5“1 _ CO,a _ Cl,a

5(1l _ CO,a _ Cl,a

&Tkl - - - Cl’a

Table 5.1: Conditions of derivability of each component

dubie:
Suk (§) DU}, + ug(€)dzs, ;(x, ) DUy,
+ 4 T o €)m; e () = k. )9 00] T ()

+ f [0 (36, €)1 ()t (%) — 0 (%, €))7 (3, €)

+(0 (%, €)ny (x)ur (x) — uj(x, €£)gr) 0T (x)
+U§k(x,§)uk(x)6nj(x)] dl(x) = 0 (5.14)

where the free term take some more complicated values, listed in the appendix.

5.3.6 Conditions of derivability

In the preceding integrals we have used a limited number of terms in the series expansions of
every term in the kernels. These terms can only vanish if all the terms fulfill some conditions of
derivability. From the conditions pointed out at each integral, one can list the conditions for every
component to be accomplished around the collocation point as in table 5.1. — means no conditions
to fulfill, C** means the Hélder condition, with 0 < a < 1. This implies that if u; € C**, then
uj(x) = uj(€) + ujn(§)(wn —&n) + O(r'+*).

These conditions have crucial importance in the discretization and collocation method used to
solve numerically the equations. This is discussed in chapter 7.

5.3.7 Remark on the singularity of the variation equations

The reason that the order of the variation equation does not increase with respect to the direct
equation is the following.

In the modified state we are changing both the position of the integration points at the same
time as the collocation points (material derivative). When we take the terms that vary in the
first order, there appear terms both in dx and in 6. Moreover, they appear with opposite signs
because of the radial nature of the fundamental solution, giving the possibility of grouping both
terms into dr. These new terms tends to zero as O(r), reducing in 1 the order of the whole kernel.
This compensates the increase in 1 order of the fundamental function.

The terms not depending on dz or 6§ have a non-derived fundamental function, having therefore
the same order as the origin.
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Chapter 6

Adjoint Variable Method

The objective here is to find the gradient of a cost functional J used for e.g. geometry identification,
with respect to the variation of the geometry by a set P of parameters (g—}J,).

The main advantage of this method is that there is no need to calculate any gradient of u or
q. It is obtained by solving the direct problem, an adjoint problem defined in a specific way, and

apply some simple formulas that yield the gradient of J.

6.1 Objective function
In an inverse problem like a crack detection, the goal is to find the optimum geometry in the sense

that the behaviour of the supposed problem fits our measurements on the real specimen, i.e. some

set of data (stress vectors and displacements g;, u;) equals the measured set (g;"*,u;"?). This can

be done choosing an objective function,

T T
J(T.) = / / udldt + / / pqdl'dt + / ydl (6.1)
o Jr, 0o Jr, r

where,
Yu = Pului, X, ) g = 9q(gi, %, t) Y =9(x)

The generic formulation achieved here will eventually be tested using the functions,

b f e T
“ 0 otherwise
b= @ - T
7 0 otherwise
v = 0 (6.2)

A perturbation of the crack boundary I' can be described by a transformation of the domain
Z; = x; + dx;(x), where P is a time-like parameter, and dx; an instantaneous velocity vector,
fulfilling that dz; = 0 on I',. This definition is equivalent to the former one, in which dz; =
©;4 Py, being dz; the variation field and the time-like parameter is generalized to a vector P, of g
parameters.

We are going to use the material or Lagrangian derivatives of the fields with respect to the
variable P, defined as 0 f; = g}’% 0P, + g;: 0.
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6.2 Adjoint variable method

6.2.1 Basics

Our problem is to express the derivative of the derivative of a cost functional with respect to some
geometrical parameters in an effective way. A detailed description of the full mathematical process
for a continuous problem is given by M. Bonnet in [16]. Another good overview can be found in
[28]. The basic ideas and process are the following, and can be presented from the reciprocity and
from the lagrangian approaches.

For the sake of simplicity, the sequel is written for a discretized generic problem A;;(P)u; = by,
instead of the continuous problem (¢} — 3)u; j; + cju;ij — pii; = 0.

Reciprocity approach

As stated above, we have a cost functional that depends directly on u and indirectly on some
geometrical parameter(s) P,
J(P) = J(u(P), P)

We are searching its derivative with respect to P,
0J = Jy; Ou; + J,pOP

Now, we can define a new problem with the same behaviour, which means the same system
matrix in the discrete problem, or the same constitutive equilibrium and compatibility equations
in the continuous problem, as A;;(P)u; = b;. For the discrete problem we can do the following
multiplications and subtraction, which are equivalent to the derivation of the Betti reciprocity
theorem for the continuous one. If we differentiate the problem definition,

Ai]'(P)uj =b = Aij(suj + JAijuj =0

and multiply by an adjoint state and a derived state, with the goal of elliminating the explicit
calculation of du;,

u;[AZJ(')'u] + (5A,~juj = 0] ' '
= 0 A, = —bdu;
Suil Aiy (Pyul; = 1] oty = o
With the particular choice of b} = —J,,,;, we can substitute this expression in the expression of

g—IJ,, giving
0J = ui(SAijug + J,p 6P
Lagrangian approach

This is the most convenient approach for the continuous problem. If we add to the cost function
a lagrangian term that vanishes as the direct problem is fulfilled, and derive it,

L=J+A=J+ u;[A,-juj — b,] = 0L = J,p 0P + J;ui ou; + u;[A”u; + (SA,']'U]' = 0]
Again, if we choose b, = —J,,,, and substitute it, we have
0L = uidAiju;- + J,p 6P

In this expression, neither u; or u; depend on P, which is the reason why there is only need
for calculating one adjoint problem. To complete the problem, the term Ui&AijU; can be treated
(apllying Gauss theorems and developing the crack tip terms, as shown in [16]), so as to have a
boundary integral in 0A4;;
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6.2.2 Adjoint problem

Following M. Bonnet [16], we define the following Lagrangian, involving the test functions u}, p}
which act as Lagrange multipliers.

T
L=J+A=J +/ / [Uijuéij + pﬁiu;]dﬂdt
0 Q

T T T
—/ / (u; — u;"")q;dTdt — / / qiusdldt — / / q; "Puidldt (6.3)
o Jr, o Jr, o Jr,

The adjoint problem will be defined now by the same governing equations 6.4, below, and the
boundary conditions, governed by the same field equations, elastic constants and angular frequency
w. It will be labeled using (').

(2 — cg)u;’jj + c%ug’ij —pii; =0
Op Oy
g =— 8u1:( onl,) u;= 8(;( onT,) ¢;=0(onT,) (6.4)

The total derivative of L with respect to a domain perturbation is deduced in [16],

T
0L = / (5:1:knk)/ [[a,-jugj - pu,u’z]]dtdl“
Tt 0 ’

1 T
—;/ (5.’L'kl/k)/ {(1—1/)[K[K}+K11K}[]+K111K;U}dtdr
6T, 0

1—v

T
/ (&L'knk)/ [K[K}I—I—KIIKHdtdF
H oT, 0

—|—/ [¢z5$z + ¢(6$z7, — n,-(ixi,jnj)]ch
.

where T, is the crack tip, [[f]] = f(z%) — f(z™) (discontinuity of f across I'), n; is the normal
on I' and X.. After the limiting process, v; denotes the unit outward normal to éT" lying on the
tangent plane to I'c, and N; is the normal to T'} (see figure 6.1).

6.2.3 Reduction to bidimensional cracks in frequency domain

The problem is going to be solved for an harmonic load at a single frequency w. The static case is
immediately deducted by obviating any complex components and the g factor at the beginning.
The values of displacements, stress vectors and stress intensity factors will therefore be represented
with complex numbers f(z) = [a(z) b(z)] = a(z) + b(z)v/—1 that fulfill f(z,t) = Re [f(z)e™?].

Taking into account the definition of the adjoint problem, the test functions, and reducing the
problem to a plane strain problem, we get the expression 6.5 for the gradient of the Lagrangian in
a more explicit way. The definitions are clarified in figure 6.1.

If we take into consideration the following points,

o u;(y,t) = Re [ui(z)e™!] 2i(y,t) = Re [gi(z)e™]

o Ku(y,t) = Re [Ky(z)e™!]

_2n
. fOT’ “ cos® wtdt = T fOT sin® wtdt = = fOT coswtsinwtdt =0
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Doing the following generic operation, we can transform the time integrals:

T T
/ F,(t)E} (t)dt = / (an, coswt — by, sinwt)(a,, cos wt — by, sin wt)dt
0 0
T T
= |apal, / cos® wtdt + b,bl, / sin? wtdt
0 0

T T
—anb!, / sin wt cos wtdt — bpal, / sin wt cos wtdt]
0 0

= L lanal, + bob] = ZRe [F,F7,,]
w w

T
T —
/ cijklu,-,j(x,t)u;c’l(x,t)dt = ;Re [cijklui,ju’k,l]
0
T . T —
/ pui(x, t)uls(x,t)dt = ;Re [pw?uu;]
0
T . o
/ K,(t)K.(t)dt = ERe [K,K',]
0

and we reach the expression,

6L = gRe [/ (6xknk)[[c,~jklui,jmk,l — pwzuimi]]df

c

1 — — S
- Z {—(537ka) {0 =»[KK'r + KiK' 11) + KiK' 111}

tips

1-— _ _
+TU(6$ka)[KIKIII + KIIK'I]H (6.5)

where @ stands for the conjugate of the complex value a.

Figure 6.1: Some definitions of the geometry

The term involving the gradient of the displacements can be calculated in terms of boundary
values only with the help of the expression 6.6, derived below. Vs means the surface gradient,
which is the proyection of the gradient onto the surface. div; is also the proyection of the divergence
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on the surface.

_ 2 _
o:Vu' = 'u{l v divsudivgu'

4

1 — — _
+§(VSU + VEu) : (Vsu' + Viu') — (nVSU)(nVSu’)}

diveu =
Vs'u = [ 0 0 :|
Un,t Ut
Ugp = Ui,ftij
— 2v — 1 ) ) )
OijWij = My T, Ut et T 5(2un,tu ot 2Ug Uy g) — Un U n
2 —
= a1 =) tietivieti (6.6)

6.2.4 Summary

The adjoint problem to solve for this particular case is finally defined in 6.8, with identical constants
and frequency to the direct one. The different parts of the boundary are shown in figure 6.2.

(free) T "y (constrained)

Figure 6.2: Generic definition of the boundary division

(6 = )i j; + ciuf;; = pii with, (6.7)
i - (e
q
(e
0 Ly /Tma

4 OonT,
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Chapter 7

Numerical treatment

7.1 Discretization

The boundary is divided into a number of elements, and at each one, the following variables are
defined as stated, in the known state and in the perturbed one (see figure 7.1):

N N N
x:Zq&nxn u:Z¢nun q22¢nqn
n=1 n=1 n=1
N N N
%= pnkn =Y fnii = $nln
n=1 n=1 n=1

¢n, Interpolation or base functions.

n Index for node at a certain element of order N —1 (n = {1, 2, 3} for quadratic elements, N = 2).

Figure 7.1: Element discretization

In fact, the perturbed geometry ~is never discretized, but only the variation, which can be
defined for u and x as,

N N
du = Z Pnduy, dq = Z $ndqn
n=1 n=1

The variation of the geometry dx can be defined in two ways:

N
0x = Z OndXy, where 0X, = O49(x,) P,
n=1
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or
N
0x = 04,(x)P, where X = Z OnXn
n=1
Both methods were tested, and the second was kept since it gave better results.

7.1.1 High order shape functions

A systematic procedure to obtain the shape functions and their derivatives of any order, easy to
implement, using Lagrange polynomials, is the following:

§=¢; de; §-& 1
b= || 7— = e
il;g& =& d§ #Zk#g#& =& & — &k

This has only been implemented for the direct derivation package.

7.1.2 Collocation

If a standard element method is used, the obtained conditions at different points of the boundary
are,

Component | Between elements | Inside elements
U (1) c*

ax (1) c=

Okt (1) c=

(5.’171 (2) (2)

6ul (1) C>

oq (1) =

dog (1) e

(1) It is C%@ if a standard discretization is taken. It is possible to choose some degree of
coincidence of some derivatives (tangential elements, by means of Overhouser elements [131] or
splines, etc.), giving C1:® or higher.

(2) It is C* if a continuous variation field is chosen, which is our case. This is an important
limitation in the choice of parametrization. Other choices such as a parametrization based on a
spline or dependent on the discretization should be studied for every particular case.

These results show that in neither the gbie nor dgbie the collocation points cannot be placed in
between elements, but displaced some quantity towards the center. In the Jubie, the collocation
points can be on interelemental nodes as long as the normal and geometrical definition satisfy the
continuity.

7.1.3 /r crack tips for high order elements

When the boundary element of any order is placed on a crack tip, one may prove that a particular
collocation of the nodes may be sufficient to express or model the /7 behaviour of the displacements
and stresses. The only condition is that the element must be straight.

In a straight element, the displacements/stresses (tangential and normal, or equivalently hori-
zontal and vertical) depend asymptotically on the distance from the tip, equivalent to the local z
direction as u = ¢v/x.

On the other hand, the discretization of the displacements/stresses is made by writing u =
> ¢i(§u-

If we are capable of defining a local variable n that varies from 7 = 0 at the tip, and n = 1 at
the end of the element such that z = L&2, and we use any set of shape functions that is capable of
modelling the identity, there will be some shape function or combination of them that will be linear:
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element

Figure 7.2: Definitions for the crack tip element.

¢ = n (any of the spaces of linear or higher order mentioned above). Substituting everything, we
obtain what we looked for,

u=cn=cyx
The necessary relationship z = Ln? is simply obtained by placing the nodes regularily spaced
in terms of the variable 7. Hence, in a three noded element the central element is placed at
n = 0.5, or equivalently at + = L0.5% = 0.25L, which is the defintion of a quarter point element.
In a higher order (n) element, the coordinates of the middle nodes are ¢ = [L, 2 "T’l] or r =

L2..
1 22 (n 1)
Loz, mms - J-

The further components of the shape function space will yield the terms of the displace-
ments/stresses:
u= {l,ﬁ,m,mg,xQ, e}
which are coincident with the series expansion of the analytical solutions at crack tips.
The goodness of these elements has been tried giving excellent results.

7.2 Applying the parametrization
If we substitute the desired parametrization (see chapter 8),
(5.’17,' = @iQJPg

where ©;, is the parameterization matrix, and P, the vector of discrete parameters, the following
expressions are derived,

0r; = (049(§) — Oiy(2))0Py;  0n; = titmti€mpOrg10Py;  0J = trtO1y 10 P,

Substituting 7.1 in 5.11 and 5.12, the systems of equations can be written as,
dubie:

ci du,(€) —}—/F [a;-k (x,&)n; (x)0ur(x) — ut (x, €)dqx (x)] dl'(x) = gUgi (&)oP,

i (€)6P, = — / [0 (3%, €)1 (XYt (%) — (%, €))7 (3, €)

+(0g (%, €)ny (x)ur (x) — uj(x, €)gr)0J (x)
+U§-k (x, &)uk(x)dn;(x)] dT'(x) (7.1)

dqbie:
¢ 9qx (€) +/F (5, (x, €)n;(€)0ar (%) — 551 (x, €)1 (€)na (x)dui (x)] d (x) = “Qy (€)6P,

9Q% (6)5P, = / [(di (%, €)5 (€) gk (%) — s (x, €)1 (€Y (%)) 8T (x

)
(i (%, )i — 81 (x, E)mu(x)ur (x))dm, (€)
+( ;k,m(xag)nj(g)qk( ) ]klm( £)TL[( ) (E)uk)(s ( )

=85 (%, O (&updny (x)] dT (%) (7.2)
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7.3 Organizing the equations

The discretization of either the singular or hypersingular variation boundary integral equation,
and the substitution of the variation of the geometry by the parametrization definition, yields the
following expression in matricial form,

Héu — Giq = ASP

where u and ¢ are the displacement and stress vectors and P is the parameter set. H and G
are identical to the system matrices in the usual BEM. A is a matrix that groups the rest of the
integrals, in which én, dJ and dr have to be substituted, and then §P becomes a common factor
to be extracted.

A= gU‘;: €3] for the dgbie
9Q4(6) for the dqbie

The application of the boundary conditions yield the same coefficients of the system matrix A
as the usual BEM, since the prescribed values have zero variation. These variations are therefore
not unknowns, as if they were prescribed:

Ajv = AdP

where dv groups the non prescribed terms of du and dq in the sequel, as done in the BEM. The
solutions of the latter system for each column of A can be performed and grouped into J, that will
later be called jacobian, so that it accomplishes,
dv:
V=JP = J={jiy} =2

dp,

From a computational point of view, this procedure is very cheap since the system matrix A
is already computed and factorized from the direct problem, so the remaining operations are the
successive substitutions of the columns of A.



Chapter 8

Parametrization

8.1 Why and how to parametrize?

The variation of the geometry during a step in the iterative inverse solution is always represented by
a so called parametrization, which means a representation of the geometrical definition by a finite
set of values. A generic and exact representation would need an infinite number of parameters.
When the problem is discretized for the sake of solving it numerically, the geometry is then defined
by some nodal coordinates. Taking as parameters each of these nodal coordinates, would yield the
complete parametrization of this geometry, involving a finite but big number of data.

In the approach to inverse and optimization problems there are two important points to be taken
into account at this stage. Both are related to the used iterative numerical methods for highly
nonlinear and ill-conditioned equations they deal with. The numerical optimization algorithms
used in these problems are never guaranteed to converge, but the ”probability” of convergence
highly depend on the number of parameters to optimize.

This ill-conditioning is rooted in the physical meaning of the problem, so this difficulty cannot
be avoided by purely mathematical manipulations. But there are some modifications in the global
strategy that allow to partly overcome this problem. The two aspects one can manipulate are the
regularization and the choice of parametrization. The regularization basically consists of adding
some a priori information on the expected solution. The second aspect directly consists of reducing
the number of parameters by expressing the geometry by a fewer number of data. Both can
eventually be related in the sense that in the reduced parametrization we are introducing assumed
information in the form of relationships in the values of the surplus nodal coordinates since they
are all expressed in terms of a few parameters.

8.1.1 Choice of parametrizacion

There is a great freedom in the choice and invention of parametrizations. The most usual ones are
based on a definition of the complete geometry by splines of all kinds and orders, (in aeronautical
shape optimization, usually cubic B-splines, NURBS, described often in the literature [5], or Bezier-
curves [130]). In identification problems, the geometry is usually defined by simple geometrical
entities, in turn defined by a few parameters (like ellipses defined by the coordinates of the center,
the axes length and an angle of orientation [9], [133] [85]).

Modification field

A more advanced concept put forward first by Gallego and Sudrez [48] consists in defining directly
the modification field instead of the geometry. This means applying a deformation field to some
initial geometry (as complicated as you want), that is capable of moving it until any possible solu-
tion. Now, it is this field which is defined by a set of parameters (for example a linear deformation
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field that in 2D is defined by 6 parameters, which has been used in [100], [114]). This field is only
non-zero for the sought part of the geometry (the flaw or the zone to be optimized).

Mesh-dependent parametrization

Another more conceptual strategy consists of a mesh-dependent parametrization, that can basically
be understood as grouping nodes or defining a superimposed mesh with a few nodes (= parame-
ters), more or less directly related to the model mesh (see [19] and [18]). This parametrization is
developed in detail in the next sections.

The choice of parametrization also has effects on the order of derivability or smoothness of the
boundary of the geometry.

Since every parametrization has advantages and disadvantages, and since this is a key point,
everyone should be beared in mind when approaching an identification or optimization problem,
in order to choose a proper one, or set of ones, in an harmonic global strategy.

8.1.2 Field of variation

In any parametrization the variation of the geometry can be derived from to the variation of the
value of each parameter.

In the case of the sensitivity equation the choice of a field of deformation is a good one. In this
work, this will be our choice. One reason is the congruence of the sense of the derivative of the
field, not only on the boundary but in its vicinity. Another reason is that a field can be applied to
any geometry without a change of parametrization.

The field of deformation dz; can be defined as a vectorial field, expressing the change of position
of each material point:

T = x;+0x;

The main advantge is that the field can be manipulated before defining any parametrization. This
allows to define and implement the main sensitivity calculation with complete generality with
respect to the choice of parametrization. In particular, the variation equation will only depend
explicitly on the terms,

ox; and 5.,

where they will have to fulfill some conditions, as shown in chapter 5.3.6. The parametrization is
defined as:

(5£L'i (X) = (")ig (5Pg

where dzx; is a continuous and finite vectorial field definition that depends, in a multiplicative sense,
on a parametrization matrix ©;, and on a vector P, of g parameters.

Global strategy and parametrization: big parameters

At a certain step k in the iterative optimization procedure, one may have a modified state by a
vector of parameters P} yielding a deformation field 6x* and a geometry I'*.

There is an important consideration related to the way different optimization techniques per-
form the iterations. There are two ways to use the parametrization:

1.

= b s

eig (xk’l)éPg

N O )

ox
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If one uses the observation equation approach, in which the only information used for a step
k is the setup in step k — 1, one may apply to the geometry k£ — 1 a parameter set that will
only last one iteration, and that will start and be applied to the geometry k¥ — 1. This may
be called incremental parametrization.

zF = 2%+ Axk(x%)

Ay ®ig(X0)Py

If the iterative method is more complicated one may need more information than just the
last step. Therefore one may not use a one step parameter as before, but some history. It
is possible to store artificially the necessary information, but there is a conceptually clearer
procedure, which is to use a parameter that evolves throughout the iterative method. This
parameter will be calculated from the initial geometry 0. This allows the parameter to be
treated independently, as a black box, by the optimization algorithm.

Both methods can coincide only in the case that, for any couple of iterations a and b, ©(x?) =
O(x%), which happens when the parametrization is obtained after integrating each incremental
one as a differential element. This can generally not be done because of a dependence of the
path followed by each simultaneous parameter. On the other hand this integration is generally
impracticable.

The global parametrization is more convenient for global optimization algorithms since they
require information about previous steps (during updates or line searches, for instance), and in the
case of a hessian update method, the latter is built in an additive sense from the initial one, based
on information of all the history of the parameter vector.

The incremental parametrization gives much more flexibility and more clarity to its definition
since it only regards the last step in order to construct a new field, besides breaking the limitations
of the initial configuration.

This has an important consequence on the definition of the geometrical terms with respect to
the parameter, as they take big values, referred to a geometry far from the current one, and in
which the geometry 0 and k—1 are qualitatively different. A simple example to show this difference
is depicted in 8.1. If we choose some initial geometry 0 that becomes k — 1, and the parameter is
for example the scaling magnitude, different values are needed to arrive at the same geometry k,
depending on the method.

The implications of this on the definition of the geometrical values appear in terms of the choice
of which terms of the expression relate to geometry 0 and which relate to geometry k& — 1. The
geometrical considerations are explained in figure 8.2. If we have an initial state 0 and a final one

fs

p o= 9T
b dgf
ox? dx? oz dx0 dx?
}i_r)r(l) (5rlf = l’]?jigl T4 l’]’g;(fﬁl dx:’n| “r? + hot. (when integrating singularities)
5] — dx{éa:?,mda:?n
|dz?||dz 7|

e — d;c;d;clfel,péa:g’mdx?n

I |dzf||dzS||dzf |

The equivalent expressions for an incremental parametrization (when the difference in 0 and f
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step 0 k-1 k

geometry size=1 size=2 size=3

parameter size(k)-size(k-1) 3-2 o5

(1-step method) size(k-1) o2
size(k)-size(0) 3-1

parameter _ -10

(big parameters) size(0) 1

Figure 8.1: Comparison of parametrization types.

OX(xsy+dy)
Sxa(xy)dy A /7 OX(xrdxy+dy)
dy : {0 i
dxo/ !"_I§___(>_<,y)_ | Kg_/éx,l(x,y)dx
0 1= ax(x+dx,y)
dx
ro n

OX(X+Ny,y+N, ) BX(X,y)=0X N1 $0X ;N ,

geometry O \\\7

Figure 8.2: Geometrical definitions.

is negligible) were obtained in chapter 5.1.1:

orr = 0xim(§)rm + 021, mn(&)rmrn + hot.
5nj = tjtlelp(Smp,mtm
0J = tléscl,mtm

The incremental parametrization has been used in this work with the direct derivation of
the sensitivity, with global optimization algorithms, althought the global parameters have also
been tested with the AVM gradient obtention. The reason for the eventual choice of incremental
parametrization is that it gives some more freedom in the possible deformations, since it is not
linked to the initial shape.
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The procedure to the use of incremental parametrization follows, as well as some considerations.
Two values of the parameters are used: an internal value P for the optimization algorithm, and an
incremental one 0 P as external for the gradient calculation and geometry variation (only geometry
k—1is stored, and is updated with § P*~1 = P*¥ — Pk—1)_ At each iteration we update the geometry
and reset the external parameter to zero. The variation of the geometry at the iteration is made
using as external parameter only the increment of internal parameter at the current step.

The drawback of this procedure is that there is not an univocal relationship between internal
parameter value and geometry, which may introduce some degree of unpredictability in the opti-
mization algorithm. The univocal relationship does not exist since, in general, ©(x*) # ©(x*~1).
One trick to overcome this, at least for the line searches, would be to recover the biyective rela-
tionshhip between internal parameter value and geometry by computing the geometry through a
numerical integration of the increment.

Cautions

A nonlinear variation field may alter the ratio in the positions of the nodes making the resulting
real shape functions become of a different order than the original. For example, a normal element
could in an extreme case turn into something similar to a quarter point element.

Conversely, the order of a quarter point element at the end of a crack can be modified to a non
/7 by an inconvenient relative displacement of the nodes. This can be overridden by identifying
the element and imposing a linear modification at that zone.

8.1.3 Relationship with discretization

There are two main ways to use the parametrization inside the discretized sensitivity boundary
integral equation:

e dx = dx(x) This means that at an integration point z, the value of the matrix dx is computed
once at x itself. This is the most close to the analytical definition.

e dx = ) 6x'¢" means that the value of the matrix dx evolves as the rest of the variables
following the interpolation by the shape functions ¢¢. Thus éx is only evaluated at the
nodes 1.

The first method has proved a better behaviour.

8.2 Tested parametrizations

The first five parametrizations are tested for the direct derivation sensitivity computation and
for the solution of complete identification problems. The remaining parametrizations are tested
together with the AVM, for both sensitivity and solution of inverse problems.

8.2.1 Basic linear deformation field

A linear perturbation field is described by a field of a constant deformation tensor plus a displace-
ment of the field (6 parameters).

A definition of more physical meaning, in the sense that it comes from a deformation tensor, is
the following:

1 0 I I Iy )
01 -1 229 —22 x1

6  _
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where x = x"¢® — x° (z with respect of the centroid of the flaw), i is the index for the direction
and g is the index for the parameter vector P, which gives each parameter a clear sense:

dzi? | First coordinate of the centroid of the flaw
dz? Second coordinate of the centroid of the flaw
ow Angle of rotation
Pg = = . .
O0€m Spheric strain
o€’ Horizontal elongation
| de1n | | Distortion |

One may see that this parametrization is the complete linear deformation by decomposing it
into a canonical set, in the sense that if we uncouple the directions ¢ we can write the polynomial
expansion of dz; around the two dimensions x1, zs:

dai day
] da?

6a§ 51’2 = |: 1 1T X2

(5:L'1=|:]. ry T

10.7:'1 0 D) 0

e8¢ =
v 0 1 0 Iy 0 Io

and the corresponding parameters are,
T
P, = [ éal day ba} da3 ba} dad ]

8.2.2 Fourier parametrization for cracks

Ideally, a crack should be able to be represented by a curved line with a higher order than just
quadratic, in order to adopt for example the shape of an S.

Besides, a lower number of parameters should be used as only deformations in the sense of the
normal should be needed, eliminating all the tangential components that would appear, in a field
defined with more generality in the z and y direction.

A parametrization based on a Fourier series decomposition has the following advantages:

e The ends of the crack are straight in the limit (zero curvature), maintaining the /7 behaviour
of the crack tips.

A Fourier series is capable of representing any shape with a sufficient number of terms.

It is very simple to add terms as the identification proceeds without need for redefining
previous parameters, as would happen with Lagrange polynomials.

e Fourier series have good properties from the point of view of the regularization (see [96]).
The suggested parametrization is the following;:

Qerack  _ 1-¢ 0 £ 0 —sinasinlaé —sinasin2ré .. —sinasinnaf
0 1-¢ 0 ¢ cosasinlné cosasin2né ... cosasinnwf
where ¢ is a normalized distance between the tips 4 and B, £ = (21 —af ()izl_;ﬁl)giE;Z _‘E; 2)(af —})
2
and n = 1...00. —sina and cos « are the director cosines of the segment that j joins the crack tips
(see figure 8.3).

@crack

_ l—i 0 2 —smacosnﬂfa ]
197 -

0 -2 9 ﬁ% COS (. COS n7r£
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Figure 8.3: Definition of the crack parametrization.

8.2.3 2-point by 6 parametrization

This idea is based on a linear combination of two basic parametrizations of six variables each
centered at two points. The linear combination is made proportional to the distance to each point.

0, = 5 (1-8+65
Ggpoz'nt — 1- E 0 ("L'Z - '7"23)(1 - E) E 0 (-'1:2 - $2B (6)
" 0 1-¢ —(@m-20)1-8.. 0 & —(z1—27)()

(21-22) (28 —a2) +(2—af) (2B —at)
(2P —2A)+(aF—24)? :

where the unitary distance A — B, £ =

8.2.4 Polar Fourier parametrization

This idea comes from a generalization of a segment-wise polar parametrization used by other
authors. This modification brings some advantages:

o It keeps continuity and infinite derivability at every formerly smooth point.
e A Fourier series capable of representing any shape with a sufficient number of terms.
o It is very simple to add terms as the identification proceeds without any need for redefining

previous parameters, as would happen with Lagrange polynomials.

flaw
p is decomposed as

..... a Fourier series alon(
o with period &

Figure 8.4: Definition of the Fourier polar parametrization.

The suggested parametrization is the following (see figure 8.4):

Qerack 1 0 cosa cosasinla cosacosla cosasinla cosacosla ... cosasinna €OSa COSNC
9 0 1 sina sinasinla sinacosla sinasinla sinacosla ... sinasinna sinacosna

where n = 1...00.

8.2.5 Uncoupled quadratic field

By expanding the canonical set up to the second order, we obtain the following base with 12
parameters,

@12:101‘10@0:313:2031&%0:3%0
9 1 0 zz 0 3 0 zi20 0 22 0 22
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8.2.6 Element-wise parametrization for cracks

This is based on the principle that the variation of the geometry of a crack is best defined in detail
by n, + 2 parameters, being n,, the number of nodes. The way they are chosen is shown in figure
8.5, aiming n parameters at the movement of the nodes perpendicularly to themselves, and 2 at
the lengthening of the crack at each tip.

n

s 13 . \
PREEES

41

S

Figure 8.5: Elementary parametrization

The parameter matrix ©;, can be defined as,

Oig = Y _ ¢gni 1<g<n
9
Oint1 = ¢V, 04 nq0 = #v; for the tip growth parameters

where n] and v; are the upper normal and tangent vectors (see 6.1). As shown in figure 8.6, ¢,
is the set of quadratic shape functions of value 1 at node g and 0 elsewhere. ¢® and ¢° are linear
shape functions that have value 1 at the corresponding node and decreases to zero at the opposite
one. All these functions have null value outside the varying crack (i.e. at known boundaries and at
further possible unknown cracks, which would be defined with another similar set of parameters).

We reduce the number of nodal parameters to one for every middle node, giving n, + 2 pa-
rameters (n. is the number of elements). Hence we avoid the possibility of curved crack end
elements. The combination of shape functions eventually used to ensure C* variation and straight
tip elements are displayed in figure 8.6.

for normal
for normal
1 2 n 1 :
n+1 n+2 n+l n+2

Figure 8.6: Shape functions for nodal parametrization (left) and elementary parametrization
(right).

For the simplified case of a regular initial mesh (with a constant jacobian), the relationship
between both sets of parameters is defined by the following n. + 2 by n,, + 2 matrix. There are
more complicated methods for general cases, as a modification of this one, the Overhouser elements,
[131], or the use of different types of splines [77]. The two latter increase the order of interpolation
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to cubic.
12 10 4 1 0 0 0 O 0 0 0 0 0 O
-4 -2 4 6 4 1 0 O 0 0 0 0 0 0
0 0 0 1 4 6 4 1 0 0 0 0 0 0
1 0 0O 0 0 1 4 6 0 0 0 0 0 0
0 0 0O 0 0 0 0 0 6 4 -2 —4 0 0
0 0 0O 0 0 0 0 0 1 4 10 12 0 O
0 0 0O 0 0 0 0 0 0 0 0 0 1 0
0 0 0O 0 0 0 0 O 0 0 0 0 0 1

8.2.7 Extension to superimposed mesh

We suggest an intermediate and very general solution with the benefits of the increased number of
parameters of the elementary parametrization and the convergence towards zero of the error with
an enhacement of the discretization. This method consists basically in defining two superimposed
but independent meshes for the parametrization and for the model, having the desired number

of parameters = pPerametrization 4 9 and a sufficient smooth mesh to ensure a good calculation

(nmodel)
4 .

We made a consideration to simplify greatly the implementation and ensuring a better be-
haviour, which consists of defining the superimposed mesh as a combination of the model mesh.
Hence, this is defined on the basis of the elementary parametrization by defining new set of h

parameters that depend on the g elementary parameters by,
del
O =D 84" (25) 05" (x5)
J

OF tips = @nggggl for the tip growth parameters

This means that there is a matrix Sy; that allow to dzf;" = S;;07°%!. Thus, in the AVM
calculation, the nodal parameter vector is expressed in terms of the parameters of the superimposed
mesh as Pt = S, T, PP erimposed and the gradient of this parametrization is expressed in terms
of the nodal one as L4 = Sy, ; Ty, L5“Peimposed,

It is possible to represent all of these parametrizations and many others in terms of the ele-
mentary parametrization, simplifying the programming tasks, and giving a sense of generality and
modularity to the method.
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Chapter 9

Sensitivity to material properties

Closely related to the IIP is the material identification problem (MIP) where the unknowns are
the physical constants of the material (mechanical, electrical,... depending on the application) on
the whole domain or a part of it (an inclusion for instance). Finite difference techniques have been
successfully applied by e.g. Schnur et al. [105] and Yuan et al. [135], and the adjoint variable
method by Constantinescu et al. [31].

The derivation and evaluation of the corresponding singular and hypersingular integral equa-
tions is much simpler for the case of the material properties. The structure of a the inverse problem
is very similar as above, but using the value of the different material properties of each material
used as a parameter. This vector of parameters can be appended to the vector of geometrical pa-
rameters. A global scaling of geometrical and mechanical values should prevent from any problems
related to ill conditioning related to this coupling.

The derivatives of the BIEs are simply carried out directly under the integral symbol, since this
and the derivative can be interchanged.

It should be noted that the following formulation has not been tested.

9.1 Derivative of integral equations

The two equations to derive are the singular and hypersingular ones, evaluated at smooth points:

ubie:
chu®) + [ {aiun (@) — vian(o)} dr(@) = 0 91)
qbie:
hau(©) + [ {thumy(©m (a)us (o) = dyn; (o)} T () =0 92)
Taking into account how the only material dependent terms vary with respect to a material
variable m:
d a
dy = ug+ %&n + hot.
ay ., = wup,.+ i om + hot
b,c b,c dm -
. dug .4
Ug g = Ufeq+ dT;: om + hot.
. dof
Gy, = Op,+ d;; dm + hot.
~a a da.l()lc,d(s hot
Obe,d = OpeaTt am 0" + hot.
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One may get, substituting and subtracting the altered and original equations:
dubie,:

ci duy, +/F {U;knj(w)(Suk — ulSqp

dot dut
+—25 i (@)updm — el grom »dl' =0 (9.3)
dm dm

dqbien,:

Czéqk + /F {t;‘klnj (§)mu(z)dur — d;‘k”j (£)dqr

tik djp
+dm ny(z)n; (€)urdm — am ™ (&)grdm p dT =0 (9.4)

9.2 Numerical treatment

The terms can be grouped after the discretization, the definition of the vector m = {m,} of m
material parameters, and the formation of the system of equations as,
dubiep,:

ci duy, +/ {oin;(@)dur — updqr } dU = ™U} (€)0mn,
r

. dc dut dot
"Up (&) = _dmk ug  + /r{ kg — -3 "j(w)uk}dr

dqbien,:

Cfc&lk+/F{tj'kl"j(f)”l(x)duk—d§k”j(§)5(1k}dr = ™ fn(f)(smm

i
dcy,

di ti
dmek + /F{ﬁnj(f)%—dJT’Zm(ﬂf)”j(ﬁ)uk}

In the case of a smooth collocation point, % is null. The complete definitions of every weight
and kernel can be found in the appendix.

The equations are again organized with the known data ux and ¢z, the measured data duy and
dqr, to the right hand side coefficient matrix, and dm as a vector with all the material properties

Q5 (§) = -

values at each material conforming the model.
Adu = "Adém

During an iteration, the system matrix A including the boundary conditions has already been
computed and factorized for the direct problem. As in the case of identification IP, the solutions
of the latter system for each column of ™A can be performed and grouped into ™J, so that it
accomplishes,

_du

ou="Jom = ™J=-—
dm

The iterative process will imply the recalculation of the direct problem with the new material
properties defined as m¥t! = m* + mP* at iteration k.



Chapter 10
Topological derivative

The concept of topological derivative consists in the infinitesimal variation of the response when
an infinitesimal flaw appears. This ”derivative” can be seen as the first order term in the variation
due to the sought flaw, and therefore a good approximation for small flaws in comparison to the
specimen dimensions:

du(0)

2
T A+ 0(64%) (10.1)

U(Afla'w) = U(O) +

where u(A) is the mechanical response when a flaw of volume A exists (4 = 0 means no flaw,
and therefore no discretization or modelization of it, and A = A4, means the real flaw). The
magnitude A is of the order r™ in R".

Very few works have been found in relationship with this idea. Theoretical work on elliptical
equations and synthetic overviews appeared recently from Sokolowski [109], [108] (dealing with the
topological derivative of energy in potential) and Masmoudi [81] (for the sensitivity to move an
infinitesimal part of the domain at the boundary).

10.1 Boundary integral equation

The topological derivative is computed considering a modified state that contains an infinitesimal
cavity. Since this cavity is small, the variables along its boundary can be computed by series
approximations in terms of their values at the center of the cavity. A linearization and integration
on the vanishing boundary of the ensuing expressions leads to the following definition.

In this chapter the expression of the topological derivative for a vanishing circular cavity and
a crack is presented, but more general forms are dealt with elsewhere (see Gallego and Rus [47]).

In a homogeneous domain 2 whose exterior boundary is I'c, and subject to a static load,
consider the appearance of a stress free circular cavity centered at point z and defined by its
boundary T, (see figure 10.1).

Figure 10.1: Boundaries for the topological derivative.
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The standard boundary integral equation of the BEM can be split into the two boundaries I',
and T',:

e (E)ur(€) + / (a4, (€, %)k (%) — wh (€, X)qi (%)] dT ()

r.

+ [ Tk 0u) — uh(€ (] drix) = 0

On the second integral (inside the flaw) we assume that there is no stress (g, = 0). We also
study the value of ug(x): it can be split into the sum of a rigid solid motion (a single common
displacement ui"”‘i) plus a deformation along x with respect to the former displacement. For some
choice of rigid solid motion, the latter component can further be assimilated to the deformation
ufc"f e (%) of a flaw in an infinite medium subject to a constant stress state at the infinite o;;
(see figure 10.2). This assumption is valid as long as the flaw is small enough, or conversely, far

enough from any external boundary or variation of the stress field from o;;. Hence,

infinite

Figure 10.2: A small flaw in a big medium and constant stress field.

up (X) — uzolz’d + u;'cnfinite (X) + hot.

Finally, g;(§,%) = 0%, (&,%)n;(x), where 0% (§,%) = 0%, (&,2) + hot. The second integral turns
therefore:

/F [4i (&, x)uk (x) — uj (€, x)gr (x)] dT (x) = /P (05 (&, x)m; (x)us (x)] dT'(x)

z

= U;k(gaz)/ I:nj(x)(ulsco”d + u;'cnfinite (X) + hOt.)] dF(X)

r.

=0l (€, 2)ui™™ | [n;(x)]dT(x) + 0l (€,2) [ |ny(x)ui ™ (x)| dT(x) + hot.
T, T

z

The first integral [;. [n;(x)] dT'(x) is exactly zero, meaning that the rigid solid motion of a flaw does
not affect the integral. The second integral can be solved analytically substituting in ufc”f inite (%)
the analytical solution of the flaw in the infinite medium. This has been done of the case of a circle
and a crack (see figure 10.3), yielding the tensor —K;(27) defined later.

In conclusion, generalizing to several circular cavities centered at a set of points 2%,

L (€)Pui(E) + / [gh (2, €)0uk (x) — ud(z, ©)gs ()] dT(z) = TH(=% )84, (10.2)

r

where,

Ui(2%;€) = 04y (2% ) Kji (27)
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circular cavity crack

Figure 10.3: Description of cavity and ccrack.

The size parameter 04, has the following definition for each case (see figure 10.3):

{ TOR? for a circular cavity
A, =

10.
da? for a straight crack (10.3)

e In the case of a circular cavity, K;x(2*) has the value,
(Kn K12> _ 1 (3011 — 022 4012 ) (10.4)
Ky Koo E 4o 3092 — 011 )
e In the case of a crack, K, (z7) is,

Ki K2\ _ 27(1—v?) (—0,4sinfcosf + oy, sinh? —ay,; sinfcosd — o, sin 6> 10.5)
Ky Koo E —0y,5in0cosf + 0yycos0%  +oy,sinfcosh —oyg cosf2 ]

. ’ .
where, in turn, o;; is the local stress on the crack reference system:

4 011+ 022 022 — 011 .
oy = 5 + 5 cos 20 — oy sin 20

: 022 — 011 .
019 = Tsm26+aglsm20

10.2 Numerical implementation
The discretization of the 10.2 leads to,
Adv =AA (10.6)

where A is the same system matrix than for the direct problem and év groups the variation values
corresponding to the non prescribed displacement and stress vectors. A = U is the matrix n x m
where n are the collocation points (number of equations in the direct problem) and m is the number
of estimated flaws. 0A is a vector with the volumes of these flaws. Solving A for each column of
YA we can define the derivative 1,

d’l}i

ty ¢ b7 — gt 1 —
AT ="A = J = {%i-} A,

(10.7)

10.3 Procedure for the solution

The identification procedure can hence be structured as follows. The difference between the mea-
sured response v®®P and the computed one without flaw v° is called Jv. The sought variables are
stored in vector x (including all the centroids z* and angles in the case of cracks). Any minimization
algorithm can be used to search x that minimizes the cost function f defined as f = %RTR (giving
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a the sense of the minimum distance of the residuals, or the highest similarity in the response),
where the residual is,

R = v(A) —v¥*? x4 d:;—j(f)éA — Ve = §v + J(x)6A(x) (10.8)

At this point §A(x) can be optimized directly in order to minimize f for the given x, by means of
its linearity, through least squares:
SA(zx) = (Ix)TI)Ix)ov (10.9)
This method is very useful for the following reasons,
e The direct problem (computation of v and A) is only done once for the whole search.
e Fach iteration is extremely cheap in comparison with the solution of a direct problem, since:

— A is already factorized and ready for substitution.

— K1 (z*) basically needs to compute the value of the stress at points z*. This is the most
time consuming step.

— The evaluation of 0%, (z*;€) is immediate.

e The number of parameters to search is drastically reduced since § A is computed in the inner
step, and only the centroid (and angle) of each flaw are allowed to vary.

The ability to easily search several simultaneous flaws gives the possibility of searching a un-
defined number of faults by allowing for a number of flaws in excess, and letting the non existing
flaws vanish by themselves. This intuitive principle has earlier been suggested under the name
of “bubble” technique, and was tested in [113] when comparing between the zero-one technique
(absolute existence or nonexistence), in another context.



Chapter 11

The solution of the Inverse
Problem

An overview of the most used methods in the literature for this task is presented in chapter 4.
In this work the Levenberg-Marquardt method is mainly used to minimize the least squares sum
of a residual vector with the gradient provided by Direct Differentiation, after having tested the
Gauss-Newton and BFGS too. The minimization of the cost functional, derivated by the Adjoint
Variable Method is minimized with the BFGS method.

An interesting unification of the strategies referenced in chapter 4, not seen by many authors,
is explained at the end of this chapter.

11.1 Minimization algorithms

The approximate classification of the usual methods for IP solution depending on the scope of the
convergence is recalled from chapter 4.2. 11.1.

Global Local Setup

Techniques for _ Observation
................................................ Nonlinear Systems of Equations _ Equations
Optimization algorithms )
Gauss—Newton, Quasi—Newton, o
ecant, Least-Squares) Minimization of

Linear and Quadratic Programming cost functional
Kalman filter, Proyection filter

Genetic and Evolutionary Algorithms
Neural Networks; fuzzy inference
Random search

Simmulated Annealing

Topological Derivative Initialization

Figure 11.1: A classification of IP strategies.

A description of the main unconstrained minimization methods follows, most of which have
been used in the present work (see Rus and Gallego [101]).

11.1.1 Mathematical programming

The natural evolution of the currently available methods from the most simple to the most sophis-
ticated ones is exposed here. A good survey on them was carried out by Dennis and Schnabel [64],
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and others [97], [63].
The only methods tested for having chances to be best in our Identification IP were the BFGS,
Gauss-Newton, damped Gauss-Newton and Levenberg-Marquardt methods.

Newton’s method

By a multivariable Taylor series expansion until the second term, we can define an affine model of
f(x) : R" = R as,

me(ze +p) = f(ze) + V() D+ %pTVQf(mc)p + hT he(p)
where!
Vif = a%fZ is the gradient.
ij f= %{z—j is the Hessian, which will be symmetric if twice continuous differentiable.
The error will be bounded by,

(V1) = P fEp < Lilp P

and + is the Lipschitz constant.
If the gradient and the Hessian are not available, they are best calculated with the approxima-
tions,

\i ~ f(w"'hei)z_hf(z_he") error < %h2 (11.1)

V2f o [othecthe)- [e=he)=f(a=he;)+f(2)) error < ? (11.2)

For a good numerical computation, the perturbation should be chosen of the order h; =
(machine epsilon) s maz{| z; |, typical z;}sign(z;).

The necessary conditions for the minimization are that Vf = 0 and V? f is positive semidefinite.
The sufficient condition for z to be the minimum is that V2 f is positive definite (which implies a
convex geometry for the hypersurface f).

Newton’s method consists in an iterative method in which from a starting guess xy we repeat
the following,

VA f(zr)se = —Vif(xr) (11.3)
Tpr1 = T+ Sk (11.4)

The interesting property for us is that this method is locally g-quadratically convergent, i.e.,
| Zhyr — zp |< cp | T — s [P

Quasi-Newton method
This method comes after redefining the Hessian of the former method, and reads,
1. Compute V f(zy)

2. Compute Hy, = V2 f(x})

INote that other possible notation for the expansion is,

me(ze +p) = f(ze)+ < Vf(ze),p > +% < V2f(x)p,p > + < p,p > €(h)
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3. Factorize Hj, and calculate the condition number. If it is ill-conditioned, perturb (Hy =
V2 f(xr) + prl, with gy, < minimum eigenvalue).

4. HkSk = —Vf(.’Ek)
5. Tp+1 = T + Sk or choose zy41 with a global strategy.

Line search is the most immediate of the so called global strategies (which here mean a some-
what larger scope, still far from the whole domain). The idea is that the step s; given by any of
the optimization algorithms may not lead to a better point (which often happens for big values of
Sk), but it is possible to guarantee that, since the direction of s; has a negative gradiend, a better
solution can be found in the line defined by that direction. It is defined as zx411 = z + Agsg. It
may be controlled by imposing two conditions that will define a permissible region (calling here

g(A) = f(z + Ap)):

9(A) < g(0) + arg'(0) (11.5)
g\ >84'0) B>a (11.6)

The exact value of A is chosen in a backtracking algorithm, based on the information of the
already evaluated points. Depending on the number of them and their relative relationships, there
are dozens of different more or less heuristic algorithms, which use quadratic, cubic or mixed models
of the line, when not bisection of any other technique. These are not described here (see [63]).

Model-trust region is the other big family of global strategies. They modify Hj, instead of Ag
such that si < d., i.e. s is within the trust radius d.. Primarily, the step may be chosen by the
“hook” step (by (H. + pl)s(u) = =V f(z.)), or, as in our case, by the double dogleg step, which
is the point located at a distance &, of the line joining the Newton solution (—H !V f) with the
Cauchy solution (7”—¥”i) Secondly, the trust region can be reduced by yet another backtracking of

flxy) < fze) +aVf(ry — ).

Secant methods

Broyden’s method, or the secant update method for unconstrained minimization, is computed
through the following steps,

1. yp—1 = Vf(zx) = Vf(zr—1)

2. Hy =Hp_, + (o1 Hieo1ob1)5hy

Sg—1sk—1
3. Hysp = —Vf(-’ﬂk)
4. Tp41 = Tk + Sk

The main advantage of these methods is that they do not require a calculation of the Hessian.
One theoretical explanation of the behavior of the method is that this update of the Hessian
involves the minimum change in the Frobenius norm of the affine model. The practical interesting
property of the method is that it converges g-superlinearly (| Zx+1 — 2 |< ¢k | Tk — T« |)-

For the initialization of the method, taking Hy = I uses to be a good choice. In this case, the
first iteration will become equal to the steepest descent.

During the second step, which is the secant update, two numerical techniques can be used
to perform this calculation, which can be interesting for bigger problems. The first one is a
factorization, that makes the computation faster, and the second one consists of working with the
inverse of the hessian directly, for the use with the third step.

There are other updates, such as the Powell-Symmetric-Broyden update, the Davidon-Fletcher-
Powell update, and the Inverse-Positive-Definite-Secant update. But the practice has stated the
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Broyden-Fletcher-Goldfarb-Shanno (BFGS) or Positive-Definite-Secant update as the best option.
Then, the update is made using,
Yk—1YF | Hig—18k—151 Hp—1

Hp,=Hp 1+
T T
Yp—15k—1 Sp_1Hp_18_1

Gauss-Newton method

This is not a further development of the former method, but another family that takes advantage
of the structure of the nonlinear least squares. Since f = %RTR, and calling J = J;; = ‘ZTR];", then
Vf=J'R; V2f =JTJ+ Y, R;V?R;. If the residual tends to zero at the optimum (R — 0) and
R is not too nonlinear, we can neglect the second term of the hessian definition and write,

1. JZJkSk = —J;{Rk
2. Ty =Tk + Sk

This algorithm converges quick g-linearly and even q-quadratically for a zero-residual problem.
The disadvantage is that it is not necessarily globally convergent, and that it is not well defined if
J does not have full column rank.

To overcome this there are two possible modifications:

Damped Gauss-Newton

1. Jngsk = —Jng
2. Tpe1 = T + Mg Sk

where ), is calculated with a line search similar to the ones described above. This makes the
method globally convergent.
Levenberg-Marquardt or Trust Region Approach

1. (JE Ty — peI)sk = —JL Ry, subject to || @41 — z, ||2< O
2. Tpy1 = Tr + S

This is performed as described above in the Model-Trust region. This improves the behaviour of
the algorithm for J with not full column rank, and for big second terms ), r; V2r;. A line search
can be added on this method, 11 = g + Agsk.

There is yet another method in which the second term ), r;V2r; is approximated by a secant
approximation update (A) and included in the algorithm,

1. Ay = A1 + (yil—l_Ak—lsk—l)yg_TlJl‘yk—l(yij_l_Ak—lsk—l)T_
Yp—15k—-1

_ <yl = Ak 18k—1,8k—1>Yk—1Yp_1
(y{_1sk—1)2

where yil | = Agsp_1
2. (J,ZJ]‘; + Ak)sk = _JERk

3. Tp41 = Tk + Sk

Filtering

These methods, originally developed for linear inversion, are aimed at incorporate information
about the noise in the measurements (basically shortening the step depending on that noise), and
the error in the measurements (putting more weight on the safer data). Although not originally
developed and grouped with the preceding algorithms, these methods are coincident with Gauss-
Newton in the case of zero and identity covariance matrices () and M respectively. These methods
have not been implemented with explicitly known covariance data.
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Some interesting applications of Kalman filter were done by Tanaka et al. [123], [124], Tosaka
[129] or Suzuki et al. [115].

Ezxtended Kalman filter. If a covariance matrix ) of the white measurement noise with zero
mean is given, and the error covariance of the measurements is M, the algorithm reads:

1. s = —[MJ,?(JkMJg +Q)_1]Rk
2. Tpy1 =z, + Sk

The matrix [M JI (Jy MJF + Q)] is called filter gain.
Proyection filter

1. s = —[(JEQ"_Jk)_ngQT]Rk
2. Tpy1 =z, + Sk

where the superscript + denotes the Moore-Penrose generalized inverse of a matrix.

Among other tested techniques, simulated annealing is used to stabilize the convergence pro-
cess ([75]), and linear and quadratic programming enclose efficient techniques for the addition of
constraints to local optimization algorithms.

11.1.2 Soft computing
Random search

This lies in solving the direct problem a number of times, each one with a different supposed
configuration chosen randomly.

Genetic and Evolutionary algorithms

One way to increase the efficiency of this and make it usable is through genetic algorithms (GA), or
evolutionary algorithms (in the case of real coding instead of gray coding). The main advantages
of this is the safety in the convergence, but the disadvantage is the enormous computing time
required.

Many specialized references can be found (Goldberg [52]), and among the attempts to identify
shapes with Boundary elements, one may cite [71], [41], [125], [113], [112] or [111].

Within the framework of genetic optimization, the set of parameters (z, “phenotype”) is en-
coded as a chain of variables (“chromosomes”). Furthermore, due to the stochastic nature of this
approach, a population of test flaws (“individuals”) is assumed. For each set, the error function
(e(x) = —log_ (ucemputed _ ye®P)2 hag been implemented in our case) is calculated and trans-
formed into a "fitness” to be maximized.

The problem is further inspired by Darwin’s principle of survival through natural selection.
In the “selection” step, individuals with better fitness values are given a higher probability to be
mated and to inherit their characteristics to the next generation. A “crossover” operator permits
parts of the encoding string of the parents to be exchanged within the reproduction step. Finally,
arbitrary parts of the information are changed at random (“mutation”) during the creation of the
new generation. Sometimes very good individuals are allowed to pass through the whole procedure
unchanged (“elitism”), i.e., they are copied as they are in the following generation.

Besides the facility to paralellize the computation, many other enhanced variants of the basic ge-
netic algorithm described can be taken into account, such as dominance-diploidy-abeyance (number
of chromosomes and the genotype to phenotype mapping), reordering (a mutation consisting in e.g.
an inversion of alleles), segregation /translocation, duplication/deletion, sexual differenciation, spe-
ciation, multiobjective optimization (Pareto optimality: (z < py) < (Vi)(z; < y:)& (i) (z; < v:)),
knowledge-based techniques, hybtid schemes (involving a local search in the place of each function
evaluation), or more sophisticated climbing algorithms, or struggling ones.

i
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Neural networks

An artificial neural network is composed if a certain number of processing elements which are
highly interconnected into a specified pattern and hierarchy. If to a given set of input data the
corresponding wished output data are known, the whole set of input-output learning paradigms
can be used to train the network (i.e. to adjust the variables which govern its behaviour) such as to
be able to reconstruct the implicit highly nonlinear mapping between input and output variables.

Let us consider a simple processing element (“perceptron”) where a given input vector z is
transmitted to the processing unit j from a number of input nodes i through connection lines with
synaptic weights w;;. The signal received by the processing unit (node j) reads r; = >, z;w;j.
The signal is processed in unit j through an activation function f; to produce an output (response)
zj = fi(rj)-

Now, if a set of input-output paradigms [x,y] is given, the weights w;; can be adapted so that
they represent the [z,y] relation. A simple “Hebbian” error driven iterative learning technique

reads wF) = wg-“_l) +ni(y — 20 (x))a:gk), where 7; is the learning rate at iteration k. This simple

2
“adaptiv]e linear combiner” is enhanced by a multilayer connection in a hierarchical structure,
making the resulting neural network capable of dealing with much more complicated objects.
The final goal is the determination of the values w;; during the “back-propagation” (denoting
a class of networks in opposition to “feed-forward” neural networks) of the errors y — 2(*) (z) in the
successive learning “epochs” (easily paralellized). Thus, when training is completed, the network
responses with appropriate model-free estimates of the output values for each set of input variables.
Among other specialized references it is possible to cite [61] or [111], who imspired most of this

description.

Fuzzy and neuro-fuzzy inference

Fuzzy inference methods are best suited for the processing of information where some existing
experience is available in the form of rules, and is very interesting for the automatization of existing
knowledge that cannot be integrated into a modelling environment but which is well documented
and tested from human operators or external tests.

11.2 Implementation issues and control

11.2.1 Error

It is possible to have a guess of the likelihood of = being the optimum. The matrix J ! itself gives
directly the rate of deviation of the solution x for the variation of each data, since J;; = gf; .
The variance-covariance matrix gives the variance/covariance of the answer = when the data has
some uncertainty, and is defined as o2(J% J) ! (see Bates and Watts [8]) where o is an appropriate
statistical constant. When no more data is known, it can be taken as o = %f_%%, being m and n

the number of measured points and geometry parameters respectively.

11.2.2 Scaling

The scaling of the problem means that the units and magnitudes of the different parameters
involved in the problem (for example the size of the hole with respect to the total size, or the
mixture of displacement and stress measurements) may affect the solution.

Whereas Newton’s and BFGS methods are unaffected by scaling, the steepest descent and
therefore the trust region models are affected. Therefore, the values introduced in the algorithms
should previously be modified by an scaling matrix D, in the form, & = D x.

There is a further effect that one should care. Too different magnitudes may also affect the
conditioning of the matrices due to the computer precision, not only in the optimization algorithms,
but also in the BEM calculations. The solution is similar as before.
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The best way to do this may be in the stage of the preprocessing, which will stabilize the steps
of communication between different modules besides lowering the risk of bugs in the codes due to
their simplification.

11.2.3 Stopping

Another issue is the stopping of the iterative algorithm. The main methods in numerical optimiza-
tion are,

e Gradient: || Vf ||< e. This can be improved so as it does not depend on the units, maz; |

V fimaz{|zi| typicalzi}
maz{|f[ typical f} |< tolerance

. |Zk—Tk—1]
* Step' maz{zy,typicalz}
local minima (or flat regions).

< tolerance. The drawback of this method is that it may be stuck in

e Residual: f < tolerance. The drawback of this method is that it requires the residual to
become close to zero.

A good option is a combination of e.g. the last two methods.

11.2.4 Reduction of the step

One of the simplest regularization procedures, in the sense of making safer the convergence, is to
affect the variation calculated at each step by a coefficient between 0 and 1: z*t! = z? + ada’.
The case of absence of regularization would be a = 1. We have defined a value of « that evolves
with the accuracy determined by the error (f = 1RTR), as a = ﬁ If 8 = 0, this criterium is
omitted, since a = 1, whereas the bigger § is the slower but safer will the search proceed. This

has only been implemented for the simple Gauss-Newton method in static cavity detection.

11.2.5 Banning impossible configurations

First of all, the easiest control is to ban every point of the flaws from crossing any boundary (this
would avoid for instance that flaws jump out of the model, or that they overlap each other). This
is done by checking that the segment defined by the variation vector of each point does not cross
any segment joining two consecutive nodes. If id would do, then, the variation segment will be
reduced until it does not cross. On the other hand, the variation parameters make all sense only if
their values are within a certain interval. This interval can be shortened further in order to reduce
the effect of the absence of second order effects. If the value of one iteration segment would surpass
it, we just truncate it’s value.

One procedure has been tested on all the examples for banning impossible configurations that
occur when the sought flaw or crack exceeds the expected range of locations, such as the boundary
or an area at a safe distance from it. It consists of a remapping of the parameter values which can be
seen as a constraint of their values to some virtual box of allowed positions of the flaws. It is based
on giving a legal value of each parameter regardless of the trial value of the optimization algorithm.
An important point is to give it continuity and derivability so as to have a good conditioning and
calculability of gradient and hessian. The suggested mappings of the value and gradient have the
following form, being z € [—00, 00] the trial parameter, y € [—r, ] the transformed parameter with
physical meaning, % and ‘;—f} the gradients of y and x with respect to the parameter p, and r the

oy
2 T

dy dxdy dx A
2= _ faded
dp _ dpda dy( +(2r)>

limiting range,

y = arctan

~
<
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11.3 Equivalence between Observation Equation and Gauss-
Newton method

A so called sensitivity equation has previously been used directly for the solution of IP through the
BEM by several authors ([122], [137], [114], [49], [50], [48], [51]). The method basically consisted in
writing the integral equation and deriving it with respect to a generic geometry variation through a
more or less complicated linearization and limiting process to the boundary. The resulting integral
equations gave, after the discretization, the relationships between the variation of the measured
displacements and the geometrical parameters (a system of equations called 6 BIE in the form
H(z)ou = A(z)dz = A(z)éx = du). These data are easily related to the residual R and the
geometrical description z respectively. The §BIE could be directly used in an iterative process
starting from an initial guess of the geometry xg,

1. Compute A(zy)

2. Solve the non-square over-determined system of equations A(zg)dzy = duy by least squares
(AzAkéask = A{(S'U/k)

3. Update the geometry zx11 = x + dzg

Now, since R = u —u®’? = JR = du and calling J = % = % = g—“ = A for a sufficiently small

x
iteration or within a linearized model, we can define a cost functional f = £ RT R. Gauss-Newton’s
method for this functional reads,

1. J;{Jksk = —Jng
2. Thy1 =xk + Sk

which is exactly the same as the process described above. This is yet another justification of the
good behaviour of Gauss-Newton’s method and unifies two methods formerly classified in different
families.

This link between the two theories may allow the adaptation of techniques of each one into the
other, opening a new area of research. Examples of possible study in this direction could be, to
begin with:

e use the benefits of the singular value decomposition of linear observation equations onto
minimization algorithms in order to damp higher singular values as a regularization technique
(see [86], chapter 7, and [60], chapter 2),

e or application of theory of factor analysis (see [86], chapter 10), both after an adaptation to
nonlinear theory.

e Application of truncated least squares techniques to the definition of the minimization func-
tional (see [60], chapter 3).

e Application of error and probability theories to minimization theories, preconditioning, etc.
(see [60]).
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Chapter 12

Sensitivity tests

12.1 Comparison with analytical solution. Direct derivation

12.1.1 Singular equation

In this point, we check the partial results corresponding to the sensitivity coefficients. A problem
with a calculable analytical solution and sensitivity is the one consisting in a plate of infinite
dimensions with a circular hole, and subjected to an uniform stress from the end as shown in
figure 12.1.

4 ¢elts

i
[

[
v
Relative error

16ielts

tr et
Vb

i
[

32 elts

. -5

Figure 12.1: Infinite plate with hole. Model and numerical error.
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The stress field was calculated by Kirsch [70] in 1898 and is confirmed by Timoschenko [102].
The exact solution of the displacements field can be derived, and yields:

ocosf(a*(1 + v) — a®(=3 + v)r? + 2r*t — 2a%(1 + v)(a® — r?) cos 20
2Er3
—o(a*(1+v) +a®(1 — 3v)r? + 2vrt + 2a%(1 + v)(a® — r?) cos 26) sin §
2Er3

Uy =

’U.y =

The sensitivity to the radius of the hole in terms of the material derivative is, evaluated at the

85
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boundary of the hole:

3o cost
Ug,a = E

—osinf
uy’a - E

In our process, we use this type of derivation, in comparison to the alternative used in previous
jobs, that would give,

—ao cos(—2a?(1 4+ v) + (=3 + v)r? + 2(1 + v)(2a® — r?) cos 20

Uz,a = Fir3
—ao(2a*(1 +v) + (1 — 3v)r? + 2(1 + v)(2a® — r?) cos 26) sin §
Yya = Er3

The errors on the numerical calculations of these values at point A are shown in figure 12.1,
for discretizations of the hole of 4, 8, 16 and 32 elements.

The following two graphics show the values of the two components of the variation vector for
all the nodes versus the analytical solution in the case of 4 and 16 elements (figure 12.2).

34

Figure 12.2: Variation along the boundary, 4 elements and 16 elements

12.1.2 Hypersingular equation

A similar example can be found for the case of the hypersingular equation applied to cracks. The
exact solution of a straight crack in an infinite medium subjected to an uniform stress from the
end as shown in figure 12.3 can be found in many fracture mechanics books.

o=1
bt

L I | L

a=1

A O A I A A A A A AR A |
Figure 12.3: Infinite plate with crack.

The displacements of the points on the lip of the crack follow,

u; = 0

u, = (10'2(1 —I/z)ﬂ

E
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being £ the local coordinate on the crack, which varies from —1 to 1.
The sensitivity to the semilenght of the crack a in terms of the material derivative is, evaluated
at the boundary of the hole:

Upoq = 0
o2(1 —v?)
Upa = — 5 V1-¢

The errors on the numerical calculations of these values at the middle point of the crack are
shown in figure 12.4, for discretizations of the crack of 2, 4, 8, 16 and 32 elements. The value along
the crack is also shown for a discretization of 4 elements.
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Figure 12.4: Numerical and analytical comparison.

Despite the simplicity of the model, the errors in the numerical figures keep very low and
converge properly as the mesh is refined.
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12.2 Comparison with numerical solution. Direct deriva-
tion

12.2.1 Methodology

The sensitivity tests are performed using a set of simple benchmark problems for the sake of
reproductibility and simplility of comparison. The external shape and conditions of the known
body are common, and the varying flaw differs depending on the type (crack or cavity) and on the
parametrization, which will permit different shapes.

The fixed contour consists of a 2 x 2 box of a material with constants £ = 1.0; v = 0.2, p = 1.0.
In the case of an inclusion, it is made of an identical material changing E = 0.5. As boundary
conditions the baseline is fixed and the upper side is subjected to an uniform unitary vertical stress.
The cavities and inclusions are defined (limited by the geometrical possibilities of the boundary ele-
ments) as an ellipse of center (—0.3,0.2) of semiaxes 0.41 and 0.22, at an angle of 39 degrees with the
horizontal. The crack is defined as x = —0.7+0.8);y = 0.3+ 0.4\ +0.2sin(27\), where the param-
eter A goes from 0 to 1. They are built from circle of radius 0.8 at the center, which is perturbed by
the six basic 6-parameter vector [—0.30,0.20, —0.50, —0.40, 0.20, 0.15] (see parametrization chapter
for an exact definition) and [—0.20, 0.20, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00] for the
case of special quadratic, two-point mixed and polar fourier parametrizations. The crack starts from
a straight and centered horizontal line of length 0.8, perturbed as well by the tip displacement and
fourier parametrization vector [—0.30, 0.30, —0.30, 0.70, 0.00, 0.20, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00].

The model is made of two subboundaries per side of the outer box, and eight subboundaries for
the circle or crack. If nothing else is specified, one quadratic element is used at each subboundary.
The collocation points are always placed at 0.2a from the edge of the element, being a the distance
between two geometrical, displacement or stress nodes.

Yavi

Figure 12.5: Real scale description of cavity benchmark, inclusion benchmark and crack benchmark.

Figure 12.6: Real scale description of cavity benchmarks for special quadratic, two-point mixed
and polar fourier parametrizations.
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12.2.2 Dependence of gradient value with frequency

To begin this section, the values of the gradients are shown a a couple of simple points, in order
to allow for the comparison. Four values are given for each benchmark problem:

1. (‘}gz is the variation of the horizontal displacement of the middle point on the upper side

when parameter n grows (see chapter 8).

2. gg” is the variation of the horizontal stress vector of the middle point on the lower side when

parameter n grows (see chapter 8).

These values were computed using 8 elements per subboundary, excepting the crack benchmark,
with 4 elements per subboundary. In the latter case, the distance for the finite differences had to
be increased to O'gﬁ instead of 0.001, because a divergence in finite differences was detected for
smaller values. The division by w is justified by the equivalent scaling that the change of frequency
implies in the fundamental solutions. The presence of eigenfrequencies, shown below each graphic,
gives a jaggy aspect to the graphics. An estimation of the same value using finite differences is
made, superimposing it by red dots. A perfect agreement is shown visually, proving that the right
value is being calculated. Therefore, the converging solution for refined meshes should give the
exact solution.
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Search for finite difference epsilon. Frequency 1 Problem benchcavity Parameter 1 Measure 15
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Figure 12.7: Frequency. Test of finite difference distance. Value versus finite epsilon. Cavity,
inclusion and crack problems respectively.
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Eigenfrequencies, Problem benchcavity
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Figure 12.8: Values of gradient. Cavity problem. Continuous line: analytical value by direct
derivation. Red dots: finite differences value. Each curve is the derivative with respect to the
horizontal (1) and vertical (2) parameters.

12.2.3 Integration precision

In order to have control over the sources of error we now study the accuracy of the integration of
the boundary integral equations. To do this we play with the Gauss quadrature.

From figure 12.11 the convergence of an hypersingular integral (first) and two benchmark
problems by increasing the number of integration points is confirmed. The reference value is an
integral with an extremely high number of points (2500 gauss points for the first and 10 gauss
points together with 8 times the actual number of elements).



92

CHAPTER 12. SENSITIVITY TESTS
Frequency sweep, Problem benchcavity
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Figure 12.9: Values of gradient. Cavity problem. Continuous line: analytical value by direct
derivation. Red dots: finite differences value. Each curve is the derivative with respect to the
rotation (3), dilatation (4), elongation (5) and distortion (6) parameters.
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Figure 12.10: Values of gradient. Above: inclusion problem. Below: crack problem. Continuous
line: analytical value by direct derivation. Red dots: finite differences value. Each curve is the
derivative with respect to the horizontal (1) and vertical (2) parameters.
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Figure 12.11: Integration precision. Above: relative error in a hypersingular integral. Below: Error
in the complete problem gradient calculation in the cavity problem and in the crack problem.

12.2.4 Order of elements

To continue the study of the integration accuracy, the size of the numerical problem is studied, by
playing with the number of nodes per element (order of interpolation).

In figure 12.2.4 the initial convergence and later divergence of the calculations depending on the
order of the elements is checked for a fixed 12-point gauss quadrature per element. The divergence
is caused by the limitation of the gauss quadrature precision in the case of functions of very high
order. The reference value is computed refining to x8 the mesh and keeping 4-order elements (this
order was chosen since a higer one would show some divergence).
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Figure 12.12: Order of elements. Relative error for various number of nodes per element. Static
cavity, static inclusion and dynamic cavity problems respectively.

12.2.5 Number of elements

To finish the study of integration accuracy, we here play with the number of elements in which the
boundaries are divided into.
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Figure 12.13: Number of elements. Evolution of the relative error as the mesh is refined. Static
problem. Cavity, Inclusion and Crack problems respectively.

The figures 12.2.5 prove a clear convergence of the solution by increasing the refinement of the
mesh. The reference value is taken from a much more refined mesh.
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Figure 12.14: Number of elements. Evolution of the relative error as the mesh is refined. Dynamic
problem. Cavity, Inclusion and Crack problems respectively.

12.2.6 Influence of frequency

From figure 12.2.2 the epsilon (finite difference distance) chosen for all the frequency comparisons

is 10~%.

The errors measured in 12.2.6 are the comparison between the analytic gradient and the one
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obtained by centered finite differencies. The eigenfrequencies are also represented to check the
relationship between the errors at the edge of the eigenfrequencies, which may cause the finite
difference calculations to diverge. It is seen that the errors are low even for frequencies far above
the first eigenfrequency.

Unlike in other examples, it is important to note that the reference value is not close to the
exact solution of the physical problem, but the finite difference estimation for the same level of
meshing. Here, cavity and inclusion problems show a very good agreement, but crack problems
show much higher discordancies. If one looks closer to the figure, one sees that this only happens
for the last parameters, which involve highly warped geometries. As seen in the next figures, there
are indeed high errors at a low number of elements, but all are rapidly reduced by a sufficient mesh
refinement. Another interesting effect is that the errors become higher at very low frequencies,
which may be due to the numerical difficulties for the numerical convergence of the dynamic
fundamental solutions of the BEM to the static ones in the 2D case.
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12.2.7 Complex parametrizations

This point is aimed at the verification of the convergence of the results of the gradient when
quadratic and other complocated parametrizations are used.
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Figure 12.17: Parametrizations. 2-point by 6 parametrization, polar Fourier parametrization and
uncoupled quadratic field parametrization respectively. Dynamic cavity problem.
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Finally, figure 12.2.7 shows the maximum errors and need for a more strict refinement in the case
of more complicated parametrizations. This is simply due to the higher warping of the geometry,
which needs elements capable to represent it. The convergence is anyway achieved successfully.
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12.3 Adjoint variable method

This section is aimed at the study of the reliability of the gradient of the cost function L with respect
to each parameter, taking into account all the variable points in the problem: the discretization, the
frequency, the number of given measurements, some variations on the model (boundary conditions),
and the chioce of parametrization.

12.3.1 Methodology

Methods to compare

Since we do not have access to the exact value of the sensitivity, we have to compare the results
of this formulation with another approximated one, which will be finite central differences.

1. Sensitivity by finite central differences (FD):

P~ i L@+ n9Oig) = Lzi) | L(i +1y0ig) — L(@i — 7y Oig)
9 = 1im ~
ng—0 779 27’9

T T
L = J+A:J:/ / cpudl“dt+/ / <p,,dfdt+/¢dr
o Jr, 0 u r

o | [ —wo@r —mjar + [ - po@r - poir |

where,

2. Sensitivity by the adjoint variable method (AVM):

*
L, using equation 6.5.

Boundary element calculations

The calculation of the direct problems that arise in both methods is made with bidimensional
quadratic boundary elements. The original code, that has been modified conveniently was de-
veloped by F. Chirino [29]. The discretization is made with interior collocation points placed at
0.8L/2 from the center for all the elements, in our examples. The crack is represented by the dual
formulation or mixed boundary element method, a combination of equations corresponding to the
integral representations of displacements and tractions - one for each lip. The crack tip is modeled
by a quarter point straight element, and the stress intensity factors are computed upon the crack
opening displacement measured at the quarter node of the tip element. Finally, the singular in-
tegrals are evaluated by dividing them into an analytically solved part, which only involves static
terms, and a regular part solved with constant standard 10-point Gauss quadrature.

In order to later integrate the expressions along the crack, we should ensure that the data at
the crack tips are exactly of the right order of singularity, eliminating numerical alterations of it.
This can be done by obliging the /r terms to be identical in the upper and lower lip of the tip. If
we represent the behavior of the data as,

ff=fo=atyr+ptr
fT=fo=a"Vr+p7r

at4a~
2

we will force them to behave as a = by a slight and convenient modification of value
at the extreme crack tip node.

Apart from the boundary element software written in fortran 77, which has eventually been
used as a black box, we have extensively checked the subroutines, written in both fortran 77 and
90, for the computation of the cost functional and all the formulae for the adjoint variable method.

All the calculations are made with double precision.
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Parametrization

We use the same parametrization definition for the calculation of the velocity fields in the AVM as
for the FD perturbation definition and for the future modification of the geometry throughout an
identification procedure. The latter is done by starting always from the initial uniformly meshed
crack, in the sense that the final crack will be represented by the initial one perturbed once by the
final parameters vector.

All the different parametrizations used with the AVM can be implemented by the use of a
generic algorithm that only works with nodal parametrization. The nodal parameter vector is
expressed in terms of any other parameter definition as Pf°¢ = Sy;T;,Py™Y, and reversely, the
gradient of this parametrization is expressed in terms of the nodal one as LZ"d = SpTjpLy™.

Models

The implemented code will be tested in two different models, a circular one and a square-shaped
one. The base definitions of both include some variable parameters with which we will play to
study their importance.

The first base model on which we work is a circular body of unity radius R = 1.0 with a crack
inside. The material constants are: Young modulus £ = 1.0, Poisson coefficient v = 0.2 and
density p = 1.0. The straight crack of semilenght a = 0.3 is placed as shown in figure 12.18, with
its center at the coordinates (0.3,0.2). The boundary conditions consist of a prescribed arc along
the boundary of variable length from zero (unconstrained circle) to the whole circle constrained.
The non constrained supplementary arch is loaded by an unity stress towards the exterior normal.
The measurements are the displacements along an arc of variable lenght on the unconstrained
boundary. These displacements correspond to the same problem but with the crack center at the
coordinates (0.1,0.1). The second base model consists of a 2x2 square with a crack in the same

=1.0 measurement
P 7~ Totthe
P MM A M displacements
10 inXandY
p=1. " directions
measurement 2[;”}&6“
of the (0.3,0.2)
displacements
in Xand Y o
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boundary

\// T oooofo0 00O
. - < < < < < < < <«
Stressp=1.0 0=1.0

Figure 12.18: Geometry definitions

position. The measurements are made on a fraction of the upper side, and the boundary conditions
are fixed as shown in figure 12.18.

These definitions ensure an unsymmetric solution with contribution of all fracture modes.

For the study of all the variable parameters of the geometrical definition, we start from two
basic models: a totally unconstrained circular shaped model and the square-shaped model. The
parametrization used is the multielemental parametrization for cracks, defined in chapter 8, with
two parameters for the crack tip growth, one more for the normal displacement at each variable
point along the crack. In both models, the measurements are taken over the whole measureable
boundary, the angular frequency of all the magnitudes are w = 1.0, and the sensitivity is calculated
with respect to the horizontal displacement of the crack (first parameter).
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12.3.2 Comparison with numerical solution

The distance for the finite differences is chosen so as to minimize the sum of the numerical error
at low distances and the nonlinearity of the cost functional at high distances. The choice has been
a distance of 1079, as figure 12.19 suggests (calculated with 36 + 12 + 12 elements, crack + each

lip).
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Figure 12.19: Effect of distance finite differences calculation.

The discretization of the crack, in oposition to the uniform mesh on the boundary, is biased
so as to concentrate the elements towards the tips according to the rule £ = %T;E(SSX)), where £
gives the adimensional coordinates of the nodes when x is divided uniformly. Both coordinates are
understood between —1 and 1. Although any value between s = 0.0 (uniform mesh) and s = 3.0

give good behaviour, our choice for a good improvement was s = 2.0.

Dependence on the discretization

In order to estimate the global errors and to assign the right degree of importance to the mesh. On
the pairs of figures 12.20, 12.21 and 12.22, the horizontal axis represents the number of elements on
the external boundary (sweeping from 12 to 192), and each curve has a fixed number of elements in
each lip of the crack (ranging from 4 to 64). As seen on the value (left figures) and the estimation
of the error (left), the values of the gradient or sensitivity appears to converge according to a
bilogaritmic law, as expected.
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Figure 12.20: Circular model with no displacement prescriptions. Measurements over the whole
circle. Sensitivity to horizontal displacement of the crack. (o) AVM calculation, (x) FD calculation.
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Figure 12.21: Circular model with no boundary prescriptions. Measurements over a third of the
circle. Sensitivity to horizontal displacement of the crack. (0) AVM calculation, (x) FD calculation.
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Figure 12.22: Circular model with no boundary prescriptions. Measurements over the whole circle.
Sensitivity to vertical displacement of crack. (o) AVM calculation, (x) FD calculation.

The estimate of the final value has been made from a bilogaritmic extrapolation of the values
of the more densely meshed models. The estimated limits for the three examples were 8.76, 4.46
and 1.238 respectively. The extrapolation of the AVM calculation and the finite differences were
in reasonable agreement.

Regarding the contour and crack meshes, note that the increase in one mesh independently of
the other provokes a blockage of the convergence; i.e. both meshes have to be improved to reach
the real value.

The most interesting fact that these graphics show is that both the AVM and the finite difference
converge to some value, which moreover appears to be the same. An explanation to why the
methods converge with different patterns could be that the AVM is not consistent in the sense that
it gives the sensitivity of the continuous problem, not the discretized one, as the finite differences
do. The reason is that the AVM equations are valid for a continuous before any discretization.
For solving them, we discretize the direct problem, the adjoint problem, and the integration of
the AVM formula, introducing errors in all of them. Although the values obtained converge to the
gradient of the continuous, they do not coincide with any value. The finite differences do express
directly the gradient of the eventually discretized problem.

10
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Dependence on the frequency

We will analyze how the frequency of the excitation affects the computation of the gradient, by
plotting the agreement between FD and AVM gradient for each frequency.

Figures 12.23, 12.24 and 12.25 show the relative gradient error versus the frequency, representing
each curve a different discretization in terms of a gradually growing number of elements for the
circle and each lip of the crack.
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Figure 12.23: Circular model with no displacement prescriptions. Sensitivity to horizontal dis-
placement of the crack.

In the sequel, the errors will be defined as the relative difference between the AVM calculation
(avm) and the finite difference (fd) as,

|avm — fd|
avm?+fd?
2

error =

The main point to notice is that the error, where the results make sense (outside the high error
peaks), regularly decays in accordance with the enhacement of the mesh.

The first problem one notes regards the lach of convergence at low frequencies. This is probably
due to a bad computation of the FD gradient, since the numerical errors due to the logaritmic
dependence of the fundamental solution to the frequency, become too big in comparison with
the epsilon chosen for the FD computation. The same logarithmic effect may affect the AVM
computation.

At certain frequencies, all graphics show a number of peaks in the errors showing invalid
solutions. The explanation could be the presence of eigenfrequencies at these points. To support
this hypothesis we have calculated for the problem in figure 12.24 the first eigenfrequencies by
finite elements (Abaqus, table on the right) and we have plotted the determinant of the system
matrix of the boundary element problem for a 24 + 8 + 8 discretization (figure 12.24), and the
same problem by the finite element method, which gives the data in the following table. These
data show an agreement in the values of the frequencies of minimum determinant, eigenfrequencies
and peaks in the sensitivity errors. The following table confirms the values of the eigenfrequencies
computed by the finite element method.

eigenfrequencies | 0.491 | 0.909 | 1.149 | 1.676 | 1.919 | 1.962 | 2.385 | 2.597 | 2.644 |
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Figure 12.24: Circular model with a third of the circle constrained and measurements on another
third. Top: sensitivity to vertical displacement of crack. Bottom: determinant of the BEM system
matrix to identify the eigenfrequencies.
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Figure 12.25: Square-shaped model with full measurements. Sensitivity to vertical displacement
of crack.
Dependence on the measurements

This section is aimed at studying how the number of data given to the problem (measurements)
affects the computation of the gradient.
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Figure 12.26 represents the error in the circular model on the left and the square on the right
for a range of the non-constrained boundary with measurements on = and y. In the circular model,
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Figure 12.26: Dependence of the relative error on an increasing number of measurements.

one third of the boundary is constrained and the frequency is fixed at w = 1.0 in both models.
The plot is made for a range of growing discretizations.
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Dependence on the boundary conditions

In order to catch a wider range of possible problems, we have found that the definition of the
boundary prescriptions provides interesting effects to the gradient.

Figure 12.27 represents a similar graphic as above for the circular model, but for a range of con-
strained arc, fixing the measured area at a third of the boundary. All figures show acceptable errors
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Figure 12.27: Dependence of the relative error on the fraction of constrained boundary.

with the exception of the peaks, probably originated again by the presence of eigenfrequencies.

Comparison of different parametrizations

The sensitivity has been calculated for the four first parameters, which are the only independent
ones for a straight crack, and for two more strange parameters, in order to demonstrate that the
choice of parametrization is free. The definition of the latter is defined in figure 12.28.
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-0.03 : : i

-01 -005 0 0.05 0.1 015

Figure 12.28: Free parametrization definition

The relative errors versus the mesh are represented for a fixed frequency of w = 1.5 and for all
parameters mentioned in figure 12.28 for both the circular and square model. The relative errors
appear to drop regularly as the mesh is improved.

In figure 12.30 the values of the gradient by the AVM and FD are represented on the right for
several discretizations, whereas the left side shows the relative error between them. The model
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Figure 12.29: Evolution of relative error with the mesh improvement. Circular model (left) and
square (right).

chosen in the sequel is the circular one, with a fixed frequency of w = 0.8 and a third of the boundary
constrained. The measures come from the same problem with the crack displaced 0.2 towards the
upper normal. As explained earlier, in the element-wise parametrization, the parameters consist
of the normal displacements at a set of shape functions centered at the middle of the elements,
and two more parameters representing the tip growth in its own direction.

10"
10° ° o
o ¢ g 89 : Ne of N° of | Geometric | Geometric
S0 8 g ) T : elements | para- average standard
§ M ; (crack) | meters | of error | deviation !
810 96 Quiii0 2 6 8 0.0905 0.0387
B . o8 8 10 0.0728 0.0499
107 o Q. 12 14 0.0549 0.0506
== geometric average | 16 18 0.0383 0.0285
10 ‘ 24 26 0.0303 0.0217
10" 10? 10°
ot oo e 32 34 0.0249 0.0172

Figure 12.30: Element-wise parametrization. Evolution of errors with the mesh. At each fixed
number of elements, each circle represents the discrepancy between AVM and FD of each param-
eter. Since the parametrization is mesh-dependent, there is a different set of parameters for each
discretization.

We should remark that there is not a correlation in the increasing mesh / gradients, since
the parameters are mesh dependent and therefore different for every one. On the other hand, an
increase in the density of the mesh should not imply an enhacement in the error since the integrals
involved keep sweeping a few elements each. For the case of a straight crack, the errors kept
reasonably low, at around 10% except for some peaks around the penultimate nodes from the tips.

Figure 12.31 shows the same figures for the significative parameters 1, 3, 5 and 7 at a fixed
discretization of 18 + 6 + 6 elements at a varying frequency.
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Figure 12.31: Relative errors for some parameters at a range of frequencies.

By the use of any superimposed parametrization mesh that will group these parameters, the
errors shown in this graph tend to average each other.

Figure 12.32 shows the convergence of the gradient values for the case of a curved crack. The
parametrization mesh is composed by three elements, besides the two remaining parameters for

tip growth.

This shows the convenience of using this strategy of separating the discretization and the

parametrization in order to have full control over both the desired robustness/detail of the parametriza-

tion and the accuracy of the calculations.
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Figure 12.32: Convergence of gradients for curved crack. Frequency w = 0.8. One third of the
circle constrained. Measures over another third of the boundary. Left: Discrepancy between FD
and AVM. Right: geometry of the specimen.
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Chapter 13

Optimization algorithms test

13.1 Methodology

The following tests are aimed at finding the advantages and disadvantages of the most suitable
optimization algorithms for identification IP in static 2D elasticity. The algorithms tested are,

Method Gradient (Gr) | Line search (LS)

1 Gauss-Newton .

2 (GN) . .
3 .
4 | Levenberg-Marquardt .

5 (LM) . °
6 .
7 BFGS . .
8 °
9 GN-Secant Update )

The problem is divided in three stages:

1. The first one consists in the calculation of a direct problem with the BEM. For this purpose,
a classical code for bidimensional elasticity with quadratic elements and collocation points
at the geometrical nodes has been implemented. The details of the formulation can be found
n [22], [36]. The code was written in Fortran 90 and run on an HP700 workstation. In all
the cases the excitation of the problem was static.

2. The second stage consists in the calculation of the A = J matrix (sensitivity matrix or
jacobian) that comes from the sensitivity equations (dbie). This implementation is merged
with the former code in order to take advantage of common calculations. The formulation is
detailed in [100].

3. Both calculations are repeated in each iteration of the optimization algorithm. This algo-
rithm has been taken from the Matlab Optimization Toolbox, version 5, with the proper
modifications so as to match the needs of the problem. It has run on the same workstation.

13.2 Description of problems

We have chosen a set of simple models that enhance different faces of the problem each, as well as
some from other authors for a comparison. They range from easy problems to more complicated
ones, although practical problems could become much more complicated. For each problem, we

115
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use every one of the algorithms. They are sketched in figure 13.1. The number of elements, free
parameters and measurements (data) are shown in the table.

Problems A to D consist of a 3 x 3 square external boundary with one or two circular flaws.
The points of measurements and the position of the assumed and real flaw are plotted on figure
13.1. Problem F was consists of a 100 x 50 rectangle with different boundary conditions and an
elliptical flaw. This problem was solved by Bezerra et al. [9]. Here only two parameters are allowed
from a starting circle, allowing horizontal and vertical displacement. The solution converges to a
circular configuration close to the real but not identical. Bezerra et al. solved this problem in 35
iterations by the BFGS algorithm.

final flaw
circular initial flaw

MMWM\M oo o e fine

0. 3.00 0.50 3.00 0.50 3.00
=% =% =%
x X x
[ T o

} 3.00 /} } 3.00 /} } 3.00 /}
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pett P ee e L eeeeefieeeer o et ¥
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0.40 3 =
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@ 040 X3 @ g =
g (3 s00 =
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D givr\{ﬁ%lftlg\rlmvesously) E F (Bezerra et al.)

Figure 13.1: Problem definition.

Problem A| B ]| C D E|F
Exterior Elements | 12 | 12 | 12 | 12 | 12 | 24
Flaw Elements 4 4 4 | 2x4 | 4 8
Total Elements 16 | 16 | 16 | 20 | 16 | 32
Parameters 5 2 2 4 5 2
Experimental data | 5 | 2 | 2 8 5 | 80

13.3 Results

In the following table we schematize the results in terms of function evaluations (iterations) and
gradient evaluations required. The problems have been sorted from easier to more complex, and
(-/-) means no convergence.
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Method | Gr | LS A B C D E F Mean Success
G-N . 8/8 -/- -/- 5/5 -/- 31/31 | 14.67/14.67 | 50 %
. o | 13/5| -/- -/- | 17/6 -/- 35/- 21.67/ 5.5 50 %

e | 10/0| -/- -/- | 41/0 -/- -/- 25.5 / - 33 %

L-M . /7| 6/6 | 6/6 | 7/7 | 17/17 | 15/15 | 9.67/ 9.67 100%
. o | 13/5| 14/5 | 23/8 | 17/6 | 42/13 -/- 218 /74 83 %

e | 10/0 | 23/0 | 34/0 | 41/0 | 64/0 | 40/0 424 / - 100%

BFGS | o | o | 9/3 | 20/6 | 23/7 | 21/5 | 61/17 | 35/- | 2817/ 7.6 | 100%
e | 12/0 | 32/0 | 37/0 | 64/0 | 61/0 -/- 41.2 / - 83 %

GN-SU | 5/5 | 6/6 -/- 4/4 -/- 12/12 5.0/ 5.0 67 %

The graphics of the evolution of the geometry and error defined as the value of the cost func-

tional are shown in the following figures.
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Figure 13.3: Example B.
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Figure 13.4: Example C. The nine minimization algorithms are used from left to right and then
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Figure 13.5: Example D. The nine minimization algorithms are used from left to right and then
up to down.
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Figure 13.6: Example E. The nine minimization algorithms are used from left to right and then
up to down.
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Figure 13.7: Example F. The nine minimization algorithms are used from left to right and then
up to down.
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Chapter 14
Identification inverse problems

From now on we will solve complete inverse problems by using the nonlinear optimization algo-
rithms just studied and supplying the different gradients developed in this work, to test their
accuracy and convergence properties, dependence on errors in the problem and other factors.

14.1 Other authors examples

We have compared the direct derivation together with the basic Gauss-Newton method with the
few examples proposed by other authors, achieving better results in all of the examples.

14.1.1 Panel with axial loadings

The first example was studied by L. M. Bezerra and S. Saigal [9]. His method is based on the
minimization of a functional defined as the integral of the quadratic difference between calculated
and measured displacements over the boundary, by a classical quasi-Newton method. This example
consists in a rectangle of 100 by 50 inches constrained horizontally at the left side, and vertically at
the lower side. It has uniform loads of 1000 psi outwards at the left and upper sides. The modulus
of elasticity is £ = 1.86 x 10% psi. The measurements are taken as the displacements all over the
boundary. The long side is divided into 8 quadratic elements, the short one in 4, and the circle
into 8. In order to obtain convergence, we had to try two regularization techniques, both of wich
worked properly. The first one, presented here, consisted in using a reduction of the steps defined
by 8 = 10 (see section 11.2.4). In the other method, like the author in others of his examples,
we had allow only the first two parameters (bidimensional rigid solid motion) variation until it
stabilized at the 10th iteration, and then release all the variables.

In figures 14.1 and 14.2, we show the original results from L. Bezerra and ours, respectively. We
obtained an error below 10~° at the 10th iteration, whereas L. Bezerra obtained good convergence
after 35 iterations.

14.1.2 Square plate

The second example is taken from S. C. Mellings and M. H. Aliabadi [85]. Their procedure is
almost identical to the one of L. Bezerra, but with the steepest descent method. The example
consists in a square plate subject to uniaxial tension with a elliptical hole. The stresses are known
at 16 internal sensors. The geometrical dimensions have been taken graphically from the plot.
In figures 14.1 and 14.2, we show respectively the original results from S. C. Mellings and M. H.
Aliabadi, who need 89 iterations for the exact location, and 10 for an approximate one; and ours,
where we need 9 for an error of 1076.
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107

6
iterations

Figure 14.2: Panel with axilal loadings

14.1.3 Two holes

The third example comes from the job of Z. Yao and B. Gong [133]. Using the same method as
the other two authors, this example consists in a square plate with a biaxial load: compression
vertically and traction horizontally. This time, we have two holes simultaneously, and the data
comes from the measured displacements over the whole boundary. The geometrical dimensions
have been taken graphically from the plot. In figures 14.5 and 14.6, we show respectively their
original results, with a need of 17 iterations for an error of 10™%; and ours, where we need 5
iterations for the same error, and 8 to reduce it to 10713,
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Figure 14.3: Infinite plate (Source: S. C. Mellings and M. H. Aliabadi).

iterations

Figure 14.4: Infinite plate.
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Figure 14.5: Square plate with two holes (Source: Z. Yao and B. Gong).
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Figure 14.6: Square plate with two holes.
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14.2 Convergence tests using Levenberg-Marquardt algo-
rithm and direct derivation

14.2.1 Methodology

The three benchmark problems used at the sensitivity test by direct differenciation are used for the
complete solution of an identification inverse problem using a least squares minimization algorithm:
the Levenberg-Marquardt method with line search and gradient supply.

The starting configuration or initial guess is the corresponding to figure 14.7. The final config-
uration to be sought was shown in figure 12.5.

The fixed contour consists of a 2 x 2 box of a material with constants £ = 1.0; v = 0.2, p = 1.0.
In the case of an inclusion, it is made of an identical material changing E = 0.5. As boundary
conditions the baseline is fixed and the upper side is subjected to an uniform unitary vertical stress.
The initial cavities and inclusions are defined as a centered circle of radius 0.8, and the final ones
are ellipses of center (—0.3,0.2) and semiaxes 0.41 and 0.22, at an angle of 39 degrees with the
horizontal (like the ones used for the sensitivity tests). The initial crack is a horizontal centered
segment of length 0.8, and the final crack is defined by = —0.74+0.8; y = 0.3+0.4X+0.2 sin(27 ),
where the parameter A goes from 0 to 1.

The model is made of two subboundaries per side of the outer box, and eight subboundaries for
the circle or crack. If nothing else is specified, one quadratic element is used at each subboundary.
The collocation points are always placed at 0.2a from the edge of the element, being a the distance
between two geometrical, displacement or stress nodes.

The used parametrization is, unless something else is specified, the basic 6-parametrer one for
cavities and inclusions, and the fourier crack parametrization for cracks, all of them defined in
chapter 8.

The models are discretized using 2 quadratic elements per subboundary (a total of 8 for the
external boundary plus 8 for the flaw). The measurements are the four complex displacements at
the four uncontrained nodes of the lower half of the right vertical side.

The identification is made increasing gradually the number of parameters. This is done in four
restarts of the optimization algorithm, with the parameters listed in the legend of each problem.
The maximum number of iterations per restart is limited to 20, and the maximum increment in the
value of each parameter is limited to 0.2 in order to limit possible divergences, using the arcTan
remapping. The stopping criteria is AP = 0.001.

Three plots are made for each benchmark problem: one corresponding to the search with static
data; one corresponding to the values at frequency w = 1.0, and a third graphic with simultaneous
data measured at frequencies w = {0.0,0.5,1.0,1.5,2.0}.

Figure 14.7: Description of cavity benchmark, inclusion benchmark and crack benchmark. Initial
guess.
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14.2.2 Relationship between convergence and distance

The idea in this section is to chech the scope of convergence for each problem at each frequency.
For this purpose we plot the number of iterations (when converged) for a number of distances from
the real solution. This distance is simply defined by scaling the parameter vector that defines the
initial configuration from the final one.
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Figure 14.8: Convergence with distance from actual flaw. Cavity problem.
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Figure 14.9: Convergence with distance from actual flaw. Inclusion problem.
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Figures 14.8, 14.9, 14.10 and 14.11 show the necessary iterations for the convergence placing
the initial guess at a proportional value between the zero-vector and the final parameter. In the
case of absence of convergence, the corresponding point is not plotted. It should be noted that the

convergence is not necessary to the real result. The partial results at each restart are plotted.

One may observe that the necessary iterations increase more or less gradually with the distance
and consequent difficulty of the search. A faster and more stable convergence is shown in the
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Figure 14.10: Convergence with distance from actual flaw. Crack problem.

case of inclusions, whereas the highest number of iterations is needed for the search of cracks,
even at simple parametrizations. Complicated parametrizations show some problems at the last
parameters.

Another interesting point is that, as expected, the success in a particular restart is critical for
the success of the following one. This justifies the used dosage of parameters.
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Figure 14.11: Convergence with distance from actual flaw. Complex parametrizations. Cavity

problem.

14.2.3 Dependence on the measurements

The number of data supply for an inverse problem is an important factor. Here we solve the
problems with a varying number of measurements: from a minimum of 8 (on the half right vertical
side), and increasing anti-clock-wise along the external boundary until 64.
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Figure 14.12: Convergence with different number of measurements and parameters. Cavity, inclu-
sion and crack problems respectively.

The graphics are all made for frequency w = 1.0, and for each benchmark problem. The starting
guess is placed at an equivalent distance of 0.2. An increasing number of parameters is also shown
at every graphic. The number of measurements does not seem to imply important effects in the
process of convergence. It should be noted that, unless special regularization techniques are used,
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the number of measurement data should be equal or higher than the number of parameters in
order to allow for the convergence to a realistic solution.
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14.2.4 Dependence on the errors

In order to simulate real cases, some errors are introduced in all parts of the model: measurements,
geometry (alteration of the coordinates of each node), elastic modulus, other elastic constants, and
frequency. The errors are defined by a normal distribution of zero mean and variance defined by
the percentage of error.
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Figure 14.13: Convergence with errors. Cavity problem.

Figures 14.13, 14.14, 14.15 and 14.16 show the final value of the geometrical invariants error
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0.12

(area, center of gravity, and the 2D intertias) when the problem has a particular value in the
error on the measurements, geometry, elastic modulus, other material constants or frequency. The
unitary value of the error is tested at values of 0, 0.005, 0.02, 0.05, 0.10, i.e., up to 10%. Lack of
convergence is represented by the absence of plot.

These examples show that the fitness of the final estimation is very fast distorted already at
small errors, but looking at the values of the error, the estimation may still be quite reasonable,
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taking into account the ill-posedness of the ITP problem.
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Figure 14.15: Convergence with errors. Crack problem.

Inclusion problems show again a much more stable convergence with a higher ratio of success,
as well as crack problems do. It is not easy to state the importance of the error in each part of the

model, due to a low correlation between different examples.



14.2. CONVERGENCE TESTS USING L-M AND DIRECT DERIVATION

geometrical invariant residual geometrical invariant residual

geometrical invariant residual

10

10

10

-1

-2

10

10

10

10

0

139

Error test. Frequency 1 Problem benchcavity-inv-4

T T T

/‘/O ?

0.12

—©— Error in measurements

—— Error in geometry

—+— Error in elastic modulus

—— Error in material constants |1
—4&— Error in frequency

1 1 1 T T
0 0.02 0.04 0.06 0.08 0.1
error
Error test. Frequency 1 Problem benchcavity—inv-5
T

-2

10

10

T T T

0.12

—6— Error in measurements
—— Error in geometry
—+— Error in elastic modulus
—— Error in material constants |/
—4&— Error in frequency

1 1 1 T T

0 0.02 0.04 0.06 0.08 0.1
error
. Error test. Frequency 1 Problem benchcavity—inv-6
T T T T

0 0.02

Il L Il

Error in measurements
Error in geometry

Error in elastic modulus ]
Error in material constants |1

Error in frequency
T

0.04 0.06
error

0.1 0.12

Figure 14.16: Convergence with errors. Complex parametrizations. Cavity problem.
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14.3 Convergence with BFGS algorithm using AVM sup-
plied derivative

14.3.1 Methodology
Use of parametrization

We use the same parametrization definition for the calculation of the velocity fields in the AVM
as for the modification of the geometry throughout the identification procedure. This is done by
starting always from the initial uniformly meshed crack, in the sense that the final crack will be
represented by the initial one perturbed once by the final parameters vector.

All the different parametrizations used can be implemented by the use of a generic algo-
rithm that only works with nodal parametrization. The nodal parameter vector is expressed
in terms of any other parameter definition as n°? = Sy,;Tjn, Y, and reversely, the gradient of
this parametrization is expressed in terms of the nodal one as Lp°? = Sp,; T, L3™.

Boundary element calculations

The calculation of the direct problems that arise in both methods is made with bidimensional
quadratic boundary elements. The original code, that has been modified conveniently was de-
veloped by F. Chirino [29]. The discretization is made with interior collocation points placed at
0.8L/2 from the center for all the elements, in our examples. The crack is represented by the dual
formulation or mixed boundary element method, a combination of equations corresponding to the
integral representations of displacements and tractions - one for each lip. The crack tip is modeled
by a quarter point straight element, and the stress intensity factors are computed upon the crack
opening displacement measured at the quarter node of the tip element. Finally, the singular in-
tegrals are evaluated by dividing them into an analytically solved part, which only involves static
terms, and a regular part solved with constant standard 10-point Gauss quadrature.

In order to later integrate the expressions along the crack, we should ensure that the data at
the crack tips are exactly of the right order of singularity, eliminating numerical alterations of it.
This can be done by obliging the /r terms to be identical in the upper and lower lip of the tip. If
we represent the behavior of the data as,

fr—fo=atr+ptr
fm=fo=a Vr+pr

at+a”
2

we will force them to behave as a = by a slight and convenient modification of value
at the extreme crack tip node.

Apart from the boundary element software written in fortran 77, which has eventually been
used as a black box, we have extensively checked the subroutines, written in both fortran 77 and
90, for the computation of the cost functional and all the formulae for the adjoint variable method.

All the calculations are made with double precision.

Banning impossible configurations

Two procedures have been tested for banning impossible configurations that ocur when the sought
crack exceeds the expected range of locations, such as the boundary or an area at a safe distance
from it. The first one is a remapping of the parameter values. It is based on giving a legal value of
each parameter regardless of the trial value of the optimization algorithm. An important point is
to give it continuity and derivability so as to have a good conditioning and calculability of gradient
and hessian. The suggested mappings of the value and gradient have the following form, being
z € [—00,00] the trial parameter, y € [—r,r] the transformed one with physical meaning, L the
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Figure 14.17: Geometry definitions

cost functional, and r the limiting range,

T\ 2r
y = arctan <—) —
2r/ T

oL OL L 2
-5 ()
Ox Oy 2r
The second procedure consists of imposing explicitly a constraint in terms of a nonlinear in-

equality and solve the problem using sequential quadratic programming, with the use of quadratic
programming at each step and the same BFGS method inside.

Models

The implemented code will be tested in two different models, a circular one and a square-shaped
one. The base definitions of both include some variable parameters with which we will play to
study their importance.

The first base model on which we work is a circular body of unity radius R = 1.0 with a crack
inside. The material constants are: Young modulus £ = 1.0, Poisson coefficient v = 0.2 and
density p = 1.0. The straight crack of semilenght a = 0.3 is placed as shown in figure 14.17, with
its center at the coordinates (0.3,0.2). The boundary conditions consist of a prescribed arc along
the boundary of variable length from zero (unconstrained circle) to the whole circle constrained.
The non constrained supplementary arch is loaded by an unity stress towards the exterior normal.
The measurements are the displacements along an arc of variable lenght on the unconstrained
boundary. These displacements correspond to the same problem but with the crack center at the
coordinates (0.1,0.1). The second base model consists of a 2 x 2 square with a crack in the same
position. The measurements are made on a fraction of the upper side, and the boundary conditions
are fixed as shown in figure 14.17.

This definitions ensure an unsymmetric solution with contribution of all fracture modes.

For the study of all those varying parameters, in a basic models we use the unconstrained
circle and, in both models, the measurements are taken over the whole measureable boundary, the
angular frequency of all the magnitudes are w = 1.0, and the sensitivity is calculated with respect
to the horizontal displacement of the crack (first parameter).
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Figure 14.18: Positions of the center of gravity as the distance grows.

14.3.2 Convergence tests

The following graphics show the convergence capabilities with respect to the distance of the initial
guess. The idea is to give an estimate of the likelihood of finding the crack as well as the precision
of that achievement. This is done by two curves: a curve with the number of iterations, that
shows gaps if the maximum number is exceeded without accomplishing the convergence criteria,
and below a measurement of the geometrical fitness to the real crack, measured as the square sum
of the relative difference of six geometrical parameters: length, center of gravity and inertia tensor
(approximating the integrals by sum of nodal values).

The bigger number of start guesses gives rather a probability of success than a single and quite
arbitrary result. The distance, on the horizontal axis, is taken into account only for the center of
gravity, leaving the other parameters (if any) unchanged from the real position (only at the initial
guess, since they will vary during the iterations). The direction is defined as in figure 14.18, giving
quite random and well ranged cover.

In the case of curved cracks, the distance is considered by displacing the crack that magnitude
along its upper normal.

The convergence criteria have been chosen as a tolerance of 10~? in the function value, and a
tolerance of 10~* in the parameter variation. This gives an average of at least three significant
digits in the final coordinates.
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2 Parameters in dynamics

The following examples start solving the identification of a simple crack in an exactly solvable case
with two parameters in various frequencies.
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Figure 14.19: Circular model. Static (w = 0.0). 2 parameters. No errors.
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Figure 14.20: Circular model. Dynamic (w = 0.5, close to an eigenfrequency). 2 parameters. No
errors.
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Figure 14.21: Circular model. Dynamic (w = 1.5). 2 parameters. No errors.

4 Parameters in dynamics
Here we solve a similar problem, but with a doubled number of unknowns.
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Figure 14.22: Circular model. Static (w = 0.0). 4 parameters. No errors.
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Figure 14.23: Circular model. Dynamic (w = 0.5, close to an eigenfrequency). 4 parameters. No
errors.
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Figure 14.24: Circular model. Dynamic (w = 1.5). 4 parameters. No errors.
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Measurements errors

The following examples introduce errors in the measurements, which is the typical error in inverse

problems.
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Figure 14.25: Circular model. Static (w = 0.0). 4 parameters. 2% random error in the measure-

ments.
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Figure 14.26: Circular model. Static (w = 0.0). 4 parameters. 2% random error in the measure-

ments. Relaxed convergence criteria (tolerances -10).
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Figure 14.27: Circular model. Static (w = 0.0). 4 parameters. 2% random error in the measure-
ments. Relaxed convergence criteria (tolerances -10). Refinement of discretization by a factor of
4.
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Figure 14.28: Circular model. Static (w = 0.0). 4 parameters. 2% random error in the measure-
ments. Relaxed convergence criteria (tolerances -10). Remapping of parameters to avoid impossible
configurations.

Other errors

The following examples introduce errors in the mechanical parameters and in the geometrical
definition of the external body, which are uncertainties that will appear in real problems too.
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Figure 14.29: Circular model. Static (w = 0.0). 4 parameters. 2% random error in the measure-
ments. Relaxed convergence criteria (tolerances -10). Remapping of parameters to avoid impossible

configurations. Improvement of mesh (by a factor of 4).
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Figure 14.30: Circular model. Static (w = 0.0). 4 parameters. 2% error in the mechanical

properties.

10
(%)
jot
i<l
IS
9 W —
101 Il Il Il Il Il Il
50 0.1 0.2 0.3 0.4 0.5 0.6 0.7
10 T T T T T T
a
0
f‘cj 10"
10’2 L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
distance

Figure 14.31: Circular model. Static (w = 0.0). 4 parameters. 2% error in the external geometry
(10% in terms of the crack semilength).
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Figure 14.32: Circular model. Static (w = 0.0). 4 parameters. 2% error in the external ge-
ometry (10% in terms of the crack semilength). Remapping of parameters to avoid impossible
configurations.
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Figure 14.33: Circular model. Static (w = 0.0). 4 parameters. 2% error in the external ge-
ometry (10% in terms of the crack semilength). Remapping of parameters to avoid impossible
configurations. Relaxed convergence criteria (tolerances -10).

Sequential Quadrtic Programming

These examples show an alternative to ban impossible configurations, which is the SQP, in which
we are allowed to put explicit nonlinear constraints in the parameters.
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Figure 14.34: Circular model. Static (w = 0.0). 4 parameters. 2% error in measurements.
Constrained solution using sequential quadratic programming.
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Figure 14.35: Circular model. Static (w = 0.0). 4 parameters. 2% error in measurements. Con-
strained solution using sequential quadratic programming. Relaxed convergence criteria (tolerances
10).

Error in crack shape

The following examples show the convergence to a curved crack while we only allow a straight one.
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Figure 14.36: Circular model. Curved crack through parameters [0.20 —0.10 0.00 0.00 0.00].
Only straight crack allowed (giving an estimated minimum at [0.0822 0.0437 0.7880 —0.0743]).
Static (w = 0.0). 4 parameters. No error. Remapping of parameters to avoid impossible configu-

rations.
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Figure 14.37: Circular model. Curved crack through parameters [0.20 —0.10 0.00 0.00 0.00].
Only straight crack allowed (giving an estimated minimum at [0.0822 0.0437 0.7880 —0.0743]).
Static (w = 0.0). 4 parameters. No error. Remapping of parameters to avoid impossible configu-
rations. Increased number of elements by a factor of 4.

Curve (quadratic)

The following examples show the convergence to a curved crack if the initial guess is close enough.
The convergence criteria is stronger now since the distances are smaller, and we have to find more

detail.



152 CHAPTER 14. IDENTIFICATION INVERSE PROBLEMS

L L
0 0.05 0.1 0.15 0.2 0.25
distance

Figure 14.38: Circular model. Curved crack through parameters [0.20 —0.10 0.00 0.00 0.00].
Static (w = 0.0). 5 parameters. No error. Convergence criteria: tolerances /10.
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Figure 14.39: Circular model. Curved crack through parameters [0.20 —0.10 0.00 0.00 0.00].
Static (w = 0.0). 5 parameters. No error. Initial guess from straight crack. Convergence criteria:

tolerances /10.

Curve (cubic)

The same procedure is tried for a crack represented by yet another degree of freedom.
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Figure 14.40: Circular model. Curved crack through parameters [0.20 -
0.10 0.00 0.00 0.00 0.00]. Static (w = 0.0). 6 parameters. No error. Start from
straight crack. Convergence criteria: tolerances /10.
10?
%]
s
5 j\_/_\/J
2
101 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25
10 T T T T
8
2107 E
10'4 L L L L
0 0.05 0.1 0.15 0.2 0.25
distance
Figure 14.41: Circular model. Curved crack through parameters [0.20 -
0.10 0.00 0.00 0.00 0.00]. Static (w = 0.0). 6 parameters. No error. Start from

quadratic crack ([0.20 0.00
/10.

Total strategy

— 0.06667 0.00 0.00 0.00]). Convergence criteria: tolerances

A strategy for achieving a complete search is proposed. It consists of a dosage of the number of
parameters, with the aim of having a big range of convergence in the beginning and achieving the
desired detail in the end. For the case of a starting distance of 0.2, the evolution of the residual
and the geometry of the cracks at the change of stage are shown in the following figures.
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Figure 14.42: Circular  model. Curved  crack  through  parameters

[0.70 0.20 0.20 0.54 0.10 0.10]. Static (w = 0.0). 2 - 4 - 5 - 6 parameters sequen-
tially. No error. Start from straight crack at distance 0.2. Convergence criteria: iterations allowed
and tolerances: (10,-1), (10,-0.1), (20,-0.01), (40, -0.001).
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Figure 14.43: Circular  model. Curved  crack  through  parameters

[0.70 0.20 0.20 0.54 0.10 0.10]. Static (w = 0.0). 2 -4 - 5 - 6 parameters sequen-
tially. No error. Start from straight crack at distance 0.2. Convergence criteria: iterations allowed
and tolerances: (10,-1),(10,-0.1), (20,-0.01), (40,-0.001). Crack discretization refined 10 times.

14.3.3 About the inconsistency of the AVM

The cubic line search often gets stuck near the solution, probably due to an inconsistence and
therefore divergence between the gradient provided by the AVM calculation and the gradient of
the cost functional after the discretization. This implies that the supplied gradient tends to drive
the algorithm towards a point that does not coincide with the minimum. The only way to solve
this is to allow a higher tolerance for the termination, which will give a lower level of certainty of
the final geometry. As an alternative to this, we have allowed a switch to finite differences after the
20th iteration. Figure 14.49 shows this incoherence between the gradient and the cost function,
for a close up of the field of two parameters [2cq,ycy] to an area of side 0.080, in the case of an
error of 2% in the measurements. Anyway, figure 14.48 shows a good agreement at a large scale.
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Figure 14.44: Circular  model. Curved  crack  through  parameters

[0.70 0.20 0.30 0.10 0.10 0.10]. Static (w = 0.0). 2 - 4 - 5 - 6 parameters sequen-
tially. No error. Start from straight crack at distance 0.2. Convergence criteria: iterations allowed
and tolerances: (10,-1),(10,-0.1), (20,-0.01), (40, -0.001).
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Figure 14.45: Circular  model. Curved  crack  through  parameters

[0.70 0.20 0.30 0.10 0.10 0.10]. Static (w = 0.0). 2 -4 - 5 - 6 parameters sequen-
tially. No error. Start from straight crack at distance 0.2. Convergence criteria: iterations allowed
and tolerances: (10,-1),(10,-0.1), (20,-0.01), (40,-0.001). Crack discretization refined 10 times.
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Figure 14.46: Circular  model. Curved  crack  through  parameters

[0.70 0.20 0.20 0.54 0.10 0.10]. Static (w = 0.0).

2 - 4 -5 - 6 parameters sequen-
tially. 10% error in the measurements. Start from straight crack at distance 0.2. Convergence

criteria: iterations allowed and tolerances: (10,-1),(10,-0.1),(20,-0.01), (40,-0.001).
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Figure 14.47: Circular  model. Curved  crack  through  parameters

[0.70 0.20 0.20 0.54 0.10 0.10]. Static (w = 0.0). 2 - 4 - 5 - 6 parameters sequen-

tially. 10% error in the measurements. Start from straight crack at distance 0.2. Convergence

criteria:  iterations allowed and tolerances: (10,-1),(10,-0.1),(20,-0.01),(40,-0.001). Crack
discretization refined 10 times.
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Figure 14.48: Value of the cost functional (contour lines), and gradient (vector plot).
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Figure 14.49: Left: close-up of value of the cost functional (contour lines), and gradient (vector
plot). Right: evolution of the cost function with AVM and finite differences.

Figure 14.49 shows the differences in the convergence for two supplies of gradient: AVM and finite
differences. The calculation starts at a distance of the parameter [z.4,y.,] of 0.02, in the case of an
error of 2% in the measurements and a discretization of 18 + 6 + 6. Figures 14.50 and 14.51 show
the same results for enhaced discretizations. Although this effect is reduced as the discretization
is improved, the AVM never reaches the minimum that the FD calculation does.
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About highly curved cracks

As seen in the latest examples with different shapes of cracks, and in the convergence versus distance
graphics for curved variation, it is possible to notice that the gradient of the local parameters is
very warped, leading to local minima even in a very local scope. This is not dependent on the
gradient calculation technique since the same behaviour is observed with FD and AVM. The only
way to solve this would be to use more global search methods, even in localized areas.
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Chapter 15

Topological derivative test

15.1 Verification of radius estimation

The first step in the topological derivative procedure is to determine the size-dependent constant in
it’s first-order approximation. Two benchmark problems will be used for this purpose, consisting
of an unsymmetrically loaded specimen (2 x 2 square) with either a cavity of radius 0.1 or a
crack of semilength 0.1 in the middle (figures 15.1). The boundary conditions are a displacement
constraint at the bottom and a parabolic load at the right vertical side of magnitude [1,1] on its
center and [0,0] on the edges. The measurements are made along the right vertical side in the
sequel. The discretization is made by four quadratic elements per bubboundary (16 elements for
the external boundary and 16 for the flaw, only during the calculation of the measurements; since
the topological derivative does not require the discretization of the flaw).

Figure 15.1: Geometry of benchmark problems for cavity and crack.

The correlation between real and estimated size (radius in the case of a cavity and semilength
in the case of a crack), is presented in figure 15.2. A perfect agreement is shown but for very
small values, due to numerical imprecisions, and for very high values because of the importance of
higher order terms. It is interesting to note that higher order terms are A%,Az, A%, ..., since the
topological derivative is expanded in terms of the area.

15.2 Residual

The second step consists in using the above estimated size-dependent constant to build a linearized
estimate of the corresponding measurements and give the residual composed from these estimated
measurements and the real ones. The exact procedure is explained thoroughly in chapter 10.
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Figure 15.2: Correlation of radius. Cavity and Crack benchmark.
In the sequel, a set of problems involving one or two simultaneous circular cavities and elliptical

ones are stidued. The graphics show the mentioned residual for each position of the center of the
cavity (fixing the second one if any, at it’s right value).

®

~

o o

EN

~log(residual)

Figure 15.3: Benchmark with one cavity. A precise, isolated and smooth optimum is seen.
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Figure 15.4: Benchmark with one crack. A similarly precise, isolated and smooth optimum is
found in this case.

—log(residual)
»

Figure 15.5: Benchmark with two distant cavities. A very sharp maximum is found. The equivalent
result with a more coarse mesh would give much worse results in this particular case.

15.3 Genetic algorithms

Once the topological derivative has been tested and shown, and due to the extremely low cost
of each computation, a suitable tool to climb to the optimal solution appears to be the genetic
algorithms.

A simple genetic algorithm has been programmed and plugged into the topological derivative,
giving the following results. The necessary coded was adapted from the one developed by J.

Haataja [59]. The objective to be maximized is —logresidual. The parameters used for all the
gentic algorithm runs are,
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Figure 15.6: Benchmark with two close cavities. More local extrema appear here.

4.5

—log(residual)

Figure 15.7: Benchmark with two close cavities. Measurements are made along the upper side too.

CHAPTER 15. TOPOLOGICAL DERIVATIVE TEST

A more precise maximum is found at this point.

Number of members in population 30
Number of generations 100
Probability of mutation 0.02
Probability of crossover 0.8
Tournament probability 0.7

Scale for mutations 01
Gens Real-coded
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Figure 15.8: Benchmark with two close cavities. Only one is allowed for the topology. A larger
area with low residual appears.
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Figure 15.9: Benchmark with one ellyptical cavity. The limitation of the circular shape does not

allow for a perfect fitness, and the residual map appears smoother, with large areas of low residual
and many local minima.
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—log(residual)

Figure 15.10: Benchmark with one ellyptical cavity. Only one circular cavity is allowed. A very
undefined and large area of low residual is found, among several maxima. It is interesting to see
that a particular solution far from the real one gives the best fitness.
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Figure 15.11: Benchmark with one circular cavity. 10% error in the measurement data. The
residual is worse and occupies a large area. The optimum does not appear exactly on the real
solution.
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Figure 15.12: Benchmark with one cavity. A very close solution (best gen) is found, with about

0.1% of geometrical distance.
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Figure 15.13: Benchmark with one crack. A similar result to the cavity is found.
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Figure 15.14: Benchmark with one crack. The angle is allowed as the third parameter.
convergence to the right values is attained correctly.
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Figure 15.15: Benchmark with two cavities. Four parameters are sought this time. The final values
show almost no correlation with the real solution.
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Figure 15.16: Benchmark with two cavities. The use of more measurement data, improves very
much. The final values appear to be about 10% of geometrical distance from the real ones.
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Figure 15.17: Benchmark with one elliptical cavity. Two cavities are allowed to compose the
solution. The first one fits reasonably good, with 15% geometrical distance, and the second one
appears very far.
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Figure 15.18: Benchmark with one cavity. 10% error on the measurements is introduced. A
solution acceptably near the real one appears.
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Figure 15.19: Benchmark with one cavity. 2 Cavities allowed. The first cavity converges correctly
to the right value (92% of the right area), whereas the second one moves randomly with a vanishing

radius (10% of the right area).
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Chapter 16

Demonstration examples

16.1 Detection of a subsurface inclusion

A single problem simulating a soil made of two layers is presented. An flatten inclusion in the
lower layer is sought by measuring the displacement of a set of 5 nodes, on the area shown in figure
16.1. The excitation of the body is a parabolic load beside the measurement zone. The mechanical
properties of the materials in the different layers and the inclusion are given. In addition, the
density is 1.0 and the damping ratio 10% throughout, for frequency w = 1.0. The model is made
of 13 quadratic boundary elements altogether (plotted in figure 16.1, in real-scale, from which the
geometrical magnitudes can be measured).

This may simulate the search of an oil deposit, a drainpipe or a hollow in piece of cast iron, for
instance.

0=1000  measurements
—

E=0.7, v=0.2
E=1.0, v=0.2

O initial guess
E=0.5.v=0.2

Figure 16.1: Definition of the model.

0.25

[ ()]
[ ()]
¢ @

difference in geometrical invariants

I I I I I
0 5 10 15 20 25 30 35 40 45
evaluations

0 I I I

Figure 16.2: Iterations and geometrical error.
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Figure 16.2 shows the succesive geometries during the iterative procedure. The real inclusion
is plotted in discontinuous red line, and the final guess is plotted in continuous blue line. The
problem mesh is refined to 26 elements altogether. The right graphic shows the geometrical error
in terms of the square sum of the difference of the geometrical invariants between estimated and
real flaws. 43 iterations are needed to reach a good estimation, and a fast convergence is shown
at the beginning. The iterative procedure has been divided in two steps: one allowing only the
displacement and radial growth of the circular guess (which converges after 13 iterations), and a
second step allowing the flattening too.

The same problem is repeated using an unique measurement: the vertical component of the
displacement at the point shown in figure 16.3. The data obtained is a sampling of the permanent
waveform, which is transformed into its harmonic amplitudes and their phase shift. The first six
harmonics are used for the detection, leaving the rest of the definitions as above.

0:1% measurement
E=0.7, v=0.2
E=1.0, v=0.2

O initial guess
E=0.5. v=0.2

Figure 16.3: Definition of the model.
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Figure 16.4: Iterations and geometrical error. Use of waveform analysis.

Figure 16.2 shows the iteration procedure and the geometrical error, as before. The convergence
is achieved in 13 + 11 iterations, being a somewhat worse solution the cost of a cheap experimental
setup with only one transducer.

16.2 Identification of delamination crack position and length
in a beam.

This sample problem simulates the search and control of a crack that appears on a bending beam
of 5 x 1 with the mechanical properties shown in the figure 16.5. A set of 5 nodes is analyzed, on
the area shown in the figure, when a parabolic load is applied beside. In addition, the density is
1.0 and the damping ratio 10% throughout, for frequency w = 1.0.

This may simulate the search of a delamination in an isotropic composite beam of an airplane
wing, for instance.
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Figure 16.5: Left: definition of the model and iterations. Right: Geometrical error.

In figure 16.5 the correct convergence is shown after 7+ 17 iterations in a first step that allows
horizontal movement, and a second step with all three parameters.

The wave analysis is used as before to this example, giving the results in figure 16.6. A very
good convergence is obtained after 11 4 15 iterations.
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Figure 16.6: Left: definition of the model and iterations. Right: Geometrical error.
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Chapter 17
Conclusions

This thesis has brought forward and tested the following main ideas:

e Direct derivation of sensitivity to geometry. The derivation is done in an analytic and com-
pletely generic way, before any definition of parametrization or discretization (chapter 5).

e Sensitivity by the adjoint variable method. This method extended to the derivation of the
sensitivity to a crack geometry in bidimensional elastodynamics by means of a boundary only
equation (chapter 6).

e Topological derivative. A method based on the linearized estimation of the presence of a
circular cavity or straight crack is presented (see chapter 10).

e Comparison of the most interesting minimization methods in a systematic way in order to
reveal their strengths and limitations.

During the development of all the ideas above some new techniques had to be developed:

e A simple regularization formula for hypersingular integrals that does not require the calcu-
lation of any derivative (appendix B).

e A programmable algebra for tensorial expressions with a high number of indices is developed
(appendix C).

e A generalized formula for the quarter point element for higher order elements (chapter 7).
Besides, some unexpected results arose:

e An equivalence between the optimization methods and the observation equation approach
(chapter 11.3).

17.1 About the gradient by direct derivation

A procedure for the obtention of the gradient or sensitivity of singular and hypersingular boundary
integral equations (the ubie and gbie used in the BEM) is developed. The sensitivity is obtained
analytically before discretization, and before parametrization (with respect to a generic differential
variation field of the geometry).

The conditions required by all the kernels, weights, discretization and parametrization are
studied, assuring the applicability. Besides, all the necessary tools for the numerical implementation
have been developed and tested.

The numerical values converge perfectly in statics and steady state dynamics, both in simple
and complex problems. The convergence of the gradient values while improving the discretization is
steady in every example, at similar rates to the solution of the direct problems. This fact together
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with a visually identical value in comparison with the gradient estimation by finite differences
guarantees that the correct values are being obtained.

In fact, the finite differences (FD) method seems to fail in the low frequency dynamic problems,
especially with cracks, since a big finite distance amplifies second order effects, whereas small values
are unstabilizing rapidly due to low frequency-related numerical inaccuracies in the direct problem.
This inaccuracy together with the much higher computational cost of FD recommends the use of
direct differenciation.

The functionality is confirmed by the application to the solution of complete inverse problems
by the Levenberg-Marquardt method. The test of convergence has been made including all the
possible errors: measurement, model, geometry and frequency, attaining reasonably good results.
The scope of convergence has been systematically studied by exploring the range of distances from
which the correct solution is reached, in order to show the capabilities and reliability of the method.

Finally, a technique for identification based on the study of the steady state waveform is pre-
sented. It simply consists on the harmonic decomposition of the response to a non-sinusoidal
harmonic excitation. This permints the measurement of only one point, and allows for much less
computing cost that transient analysis as well as more precision in the measurements and less
violent methods than the impact used in transient dynamics evaluation.

17.2 About the choice of optimization algorithm

Here we compare different methods taken from unconstrained nonlinear optimization and apply
them to identification IP in order to find the most profitable one. Besides, we test and run an
analytical derivation of the gradient.

From the point of view of the probability of arriving at a solution, it seems that the Gauss-
Newton is the worst, whereas there is not very much difference between Levenberg-Marquardt
and BFGS (as seen in the number of achievements in the results table). The use of a line search
does not improve very much the solution. A reason for this is the incompatibility of the line
search algorithms with the constrained character of the optimization that the ban of impossible
configuration brings (when a flaw touches a boundary). The same reason may alter the numerical
calculation of the gradient in some cases (e.g. test F).

The convergence speed makes emphasize the difference between BFGS and the two first meth-
ods. GN and LM are very similar for easy problems, but when the global strategies go into service
(e.g.test F), LM appears to be the fastest. The use of a line search is a critical choice. In easy
problems it retards very much the solution, but it becomes necessary for complex problems. A
good strategy would be to switch off the line search when the convergence is more or less assured.

The use of analytic gradient instead of finite differences reduces the computations as much
as one should expect: by 20-50% for complex cases, and by 50-80% when the line search is not
necessary.

To sum up, each method has shown some advantages and disadvantages. The Levenberg-
Marquardt method unifies both robustness and speed, but Gauss-Newton is best near the solution.
The global strategy is important in complex problems, but retards near the solution. The use of
analytic gradient regularly accelerates the calculation.

In addition, a relationship between the two main types of inverse problem layouts, the observa-
tion equation methods and the minimization methods has been found. In particular, it is proved
that the direct solution of the observation equation by a least square solution of the non-square
system of equations is identical to the simple Gauss-Newton method. This may unify the methods
allowing for transferring the advantages of one to the other.
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17.3 About the Adjoint variable method

A method for the calculation of the sensitivity with boundary only integrals and the adjoint variable
method has been adapted, implemented and checked for the case of bidimensional crack in statics
and frequency domain. On the other hand, several parametrization strategies have been proposed
and tested.

The main benefits of this method are that the computational cost of the calculations is minimal.
It only adds a fraction of the computation time of the direct problem, since the solution of the
adjoint problem is immediate as it shares the direct one’s factorized system matrix, and the further
integrals of the formula are unidimensional.

Regarding the numerical results, they are in agreement with the expectations and useful as
long as one cares about a few considerations. In particular, the method appeared to be especially
sensitive to the computation of the stress intensity factors, since some terms depend directly on
them, and on the discretization, especially for the aforementioned nodal parametrization. This
last point can be overridden by the proposed modifications, based on a parametrization of a
superimposed discretization. As in the case of other methods of sensitivity calculation, special
care should be taken in the vicinity of the eigenfrequencies.

It is interesting to notice that the AVM equations give the sensitivity for continuous problems
before any discretization. For solving them, we discretize the direct problem, the adjoint problem,
and the integration of the AVM formula, introducing errors in all of them. Although the values
obtained eventually converge to the gradient of the continuous, they are not consistent in the same
sense as the finite differences are, as they give directly the gradient of the discretized problem. It
can become necessary to use a high number of elements, especially on the crack, to minimize this
effect.

17.4 About the convergence of IP

Two main techniques have been used: the supply of the gradient of the measured displacements
by direct derivation together with a least-squares minimization algorithm, and on the other hand
a cost functional gradient supply by the AVM with a secant update minimization algorithm.

The supply of the gradient seems important for two reasons: it accelerates substantially the
computation, as well as improves the value given by finite differences in many cases, due to the
numerical difficulties related to the choice of finite distance.

The scope of convergence has mainly been studied with respect to the supplied data, the errors
in the model and the frequency of the excitation. The number of measurements has not shown
an important effect, as long as they are more than the number of unknowns. It is just important
when the error in them becomes important, in order to compensate the total error.

An important factor is the number of parameters or unknowns. A high number of them rapidly
unstabilizes the convergence and reduces the scope. An effective solution is to dose the parameters,
allowing a few to act at the beguinning and gradually increasing them as the minimization succeeds.
Another factor is that the choice of parametrization should give a good compromise between a good
approximation of the sought flaw and a low number of parameters.

The presence of errors in any of the parts of the model affects in a similar way both the
convergence and the reliability of the final solution. This can be enhanced by increasing the
number of data in form of measurement point and measurement frequencies.

17.5 About topological derivative

The topological derivative gives the variation in the response due to the presence of an infinitesimal
flaw (circular cavity or straight crack). This is in turn directly related to the linearized difference
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in response when the finite flaw does and does not exist. The main benefits rely on the following

points:

Only an unique direct problem computation is needed for the whole search. The direct
problem has moreover no flaw.

The computation of the topological derivative is based on the already factorized system
matrix of the direct problem and on a cheap computation of some values at the center of the
sought area, with a similar cost to the stress evaluation at that point.

The area of the flaws are optimized within the iteration step, reducing significantly the
number of parameters. This stabilizes and accelerates the search further.

It shows an excellent response to the presence of errors and to the search of non-circular flaws.
The ability to search several simultaneous flaws easily, gives the possibility of searching a
undefined number of faults by allowing for a number of flaws in excess, and letting the non existing

flaws vanish by themselves.

17.6 Forthcoming works

The most immediate work, already being made at present, regards the extension of the
topological derivative to steady state dynamics, and later to inclusions.

Less classical soft computing techniques are an interesting field still to be explored. They
seem especially well suited to the coupled use with the topological derivative.

Since the methods developed so far seem ready for use, the experimental confirmation is the
following natural step.

The geometrical and topological sensitivity formulas are to be extended to anisotropic ma-
terials, to fully enter the evaluation of advanced materials.

Functional software and numerical problems for comparison can be obtained from the author

at grus@ugr.es
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Appendix A

Kernels and limits

A.1 Expressions for the variation boundary integral equa-
tion for the 2D potential problem

As stated earlier, this equation can be deduced in a very similar manner for the potential problem.
Following the guidelines given above, the substracted process to obtain it is as follows:
The potential problem is defined as:

1. Statics:

U’ijO Vx € Q)

with some boundary conditions,

u=u Vrely qgq=9q VzxeTly
where,

ou
I'=T1+4+T> qz%zu,jnj

2. Steady-state elastodynamics:

w2
ujji+—su=0 VreQ
]

with some boundary conditions,

u=u Vrel; g=q VxeTl,
where,

Ou
F:F1+F2 q:p%:uﬂn]
u(t) = Real (ue™?) q(t) = Real(ge™")

A.1.1 Variation equation

The problems to compare are:
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Known geometry:

u = / {u*q — q*u} dl (A1)
r
Perturbed geometry:
i = / (@G — g*a} dr (A2)
r
Series expansion:
§ = q+dq
4 = u+du
dl = [1+6J]dT
o o~ ut+ Ou orm, + hot.
orm

G =~ ¢ +uon; + n-%ér + hot.
ST o, ™
The last two expansions are made taking into account the following considerations, and making
the product and grouping higher order terms in hot.

Sk ek * ko = .
g =u;mn; ¢ =u;n; fj =nj + on;

In order to simplify the expressions, we can define:

o = ou*  Ou”
N OYm B Orm
ou*;
* _ s3]
Uim = orm
(Smj = (5’!1]' + n](SJ

Subtracting the expanded and simplified versions of A.2 and A.1, we obtain the variation

equation A.3.
du = / [qu,*m&“m —wu’om; + qutdJ — uuly,nidrm + udq — q*ou] dl (A.3)
r
After taking equation A.3 to the limit (see below), we obtain A.4.

1
Edu = /F [qu,, 0rm — uw’;6m; + qu*6.J — uw’y,,n;0ry, + u*dq — ¢*éu] dU (A.4)

A.1.2 Definition of kernels

1. Fundamental solutions for 2D statics:

They are the solution to the Laplace equation when the body load is:

b = 6pole

Dirac

. L, (L

w = —liIn|(-

27 r

A

7 = 27r On

Gradient for 2D statics:
* _ -1 Tj )

i T oy (r

" _ 1 Tj T'm

Win = g (55 =)



A.1. EXPRESSIONS FOR THE 2D POTENTIAL PROBLEM

2. Fundamental solutions for 2D harmonic antiplane elastodynamics:

They are the solution to the Helmholtz equation with body loads,

2
w 1
u,jj+gu+—2b:0

5}
when the load is pb* = §02¢ it
1 ,
v o= YK, (ﬁ)
2T C2
N —iw Or iwr
¢ = T (2
2mwes On Co
Gradient for 2D harmonic antiplane elastodynamics:
—iw wr\ rj
ut = K [— )2
J 2mpcy ( ) > T
. . 2 . .
. w iwr w iwr iwr\| rjrm
i = K {— | — |Ko | — K{—]|| 2=
gm 27 pcs 1(02>Jm+4wuc§[0(02>+ 2(02)]7"7‘

A.1.3 Limiting process
Geometrical considerations

Taking into consideration figure A.1,

Figure A.1: Protuberance for limiting process

dl = rdf
Fé = 01 — 02
ry = T
TNn;
ri = =Mn;
r
n o — —cos@
v sin @
Tm = Tin;=nn; =1
ou
u@) = u@)+ g (o) = &) + hot. = u(®) +urm;
J
Jq
a@) = q(&)+ 5 (25 = &) + hot. = ¢(§) + ¢ 3rn;
J
r = €
ori = OupmTnm + Opmar’nmny + hot. ~ O iy,
1
6nj = tjtlflo(')o,mtm + Ertjtlflo(')o,mntmtn + hot. ~ tjtlelo(’)o,mtm
1
0J = tltm(‘al,m + riel,mntltmtn + hot. ~ tltm®l,m

0 1 .
i = (_1 o (permutation tensor)
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Limit of integrals

Statics
1.
lim ( / qu*mérmdf‘>
e—0 r. ?
" : -
= —0On hm/ nnyrdd =0
2T " e—=0 I.
2.
li_r)r(l) (/Fe —uufjmnjérmdf‘)
—u )
= g(am’l ) ll_I)I(l) [n]-nl (n]”er — T(Sj )] do
= _—qu,l NNy, do
2m .
|Q _ sin 26 |91 sin? § b
_~u 2 4 16, 2 0 . (')1,1 @1,2
2 m‘al |0 pain20® | "] O21 On
2 |, 2 4 o,
2
u
I, smooth = 1 (01,1 +O22)
3.
lim (/ qu*deI‘)
e—0 .
q . 1
=—=0J limrln-df =0
2 r, €0 r
4.
lim (/ —uu*jémjdf‘)
e—0 T, ?
u
= %(')o,m . (njtjtlelotm + njnjtotm)de
_v t1 tits | [ ©11 O
21 | tita 12 | ©21 Oap
0 sin29|91 sin” 0 01
i 2 4 10, 2 0 . [ @1,1 (")1,2 :|
2 sinZH‘ | 4 sin2e |91 | ©21 Oap
7 |, 2 T |6,
2
T, smooth = —Tu (01,1 + O22)
5.

lim (/ u*6qu)
e—0 T.

1 1
= —Jdq limrln—-df =0
2w 7 Jp, e=0 r
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6.
lim (/ —q*éudf)
e—0 r.
=15 / 1id0 = —L5u(6y — 05)
_2ﬂ_u Fen]nj —2ﬂ_u 1 2
1
I. smooth = §6u
Dynamics
1.
li_rf(l) (/n qu:‘mérmdl")
. Oy lim [ nn,r K, (zw_r) dd =0
27 pcs =0 Jp, (&)
2.
li_r)r(l) (/1“ —uu?‘jmnj(Srde)
= O / lim |njmdmKr | — ) r2| d6
2T pcs " Jr, =0 Ca
N . .
v uz/ lim njngnng, |:K0 (%) + K> <%>] r2s0
47r/,¢c2 €0 Co C2
|Q _ sin26 |91 sin2 g |
_u |12 1 oy 2 |, ) [ O1,1 91,2]
T o sinQH‘al |Q+ sin29|91 | ©21 O
2 |, 2 1 o,
r. smooth = —Tu (©1,1 +0O2,2)
3.
lim (/ qu*éJdI‘)
e—0 .
q : 1
=—4J limrln—-df =0
2T r, €0 T
4.

lim (/ —uu*jémjdf>
e—0 r. ?

wu wr
= ®l,m/ (njtitieiotm + njnjtotm) liII(l) rK; (—) df
r e—

© 27pcsy . ca
_u [ t] tita] [ ©11 Oip
21 | tita 12 | 7| ©21 Oap
9
|g _ sin26 |91 sin2g|""
U 2 4 16, 2 g, | ©11 O1p
= P :
27 sin29 |t | 4 sin20 61 ©21 O
2 |, 2 1 g,

T, smooth = —Tu (01,1 + O22)
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lim
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(f e wsqr

1 .
- —5q/ lim r K, (—W) do =0
277'/1/ r, 0 Co

lim (/ —q* 6udF>
e—0 r

€

—iw

a 271'62

wr

. -1
ou /1‘ nin; 6113(1] rKy <—> do = géu(& —05)

C2

1
T, smooth = §6u
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A.2 Expressions for the variation boundary integral equa-
tion for the 2D elastostatic problem

The expressions defined earlier using the programmable algebra, for the case of the static and
steady-state singular and hypersingular boundary integral equations can still be written in a read-
able and reasonably compact form for the case of the static singular JBIE.

A.2.1 Definition of the gradient of the fundamental Kelvin solution
Kelvin solution

The Kelvin solutions are the displacement and the stress due to a concentrated load applied at the
pole towards the direction of the canonical vector ey,

__ gpole
bk - 6Di7‘acek

The solution of this problem in 2D elastostatics is:

. 1 1
ul, = Sral— 1) (3 —4v)log ;(L-k + 7Tk
L= —1 b} b 5 2
Ujk = m [(]. — 21/) { z’k""’j + jkryi — z’j""’k} + T,»j’r,jr,k]
i i -1
K = 5Ny (1 —0)r [(X = 20) {dirrn + nars — Tk} + 2737 k7,10

Gradient

The derivative of the latter with respect to y; or r; are:

oul 1

o T By O Wk ur S = 2rarar]
6‘7;19 -1
B T (o vy (172 Gt dud = dudy

—2(51'167"]'7“71 — 26jk7',i"',l + 25ij7",k7',l}

+20u7 jr 8 + 2057 ;7 k + 20047 57 5 — 87 4T 5T kT 1]

hence,
dot -1
ks = (1 — 20) {6spny + Synp — Spyn
ory K 47 (1 — v)r? I V) {ikru + dank — Opami
—2(51'197‘,17'@ - QT’,Z'T"lTLk + 27"]97"171,'}
+2057 kT 5 + 2737 g1y + 200177 — 8T T KT T 0]
where,
L
T On
poo— O _mi
N
or; 1
rij = == (0 =)
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A.2.2 Limit of the integrals

We are going to evaluate the limits liII(l] ( Jr de‘) of every integral, where I, is a semicircle in the
e— €

case of the 2D problem.

1.

11_1}1(1] (/1“6 qz-u}'c’ltirldl")

lim
e—0

lim
e—0

lim
e—0

- % . e .
- 8ru(l—v) Ot,m !Ef(l) /1“5 Nt [—(3 — 4v)dikr,

+0ur g + Opar,s — 21577 ] dO =0

(/ —uia;k,lnjérldl“)
r.

Wi
= WI—I/)@l’m ‘/F€ [(1 — 21/) {511977/1 + duyng — Opiny;
—28;m — 20y + Zninknl}

+28unp + 2nyning + 20kn; — 8ningng] Ny dd

w
= Wz—y)Ql’m /1_‘5 [(1 - 21/) {_6iknl + (Silnk — 5klni}
+20umnk + 20n; — 6ningn] nmdf
N 1
= an(1-v) Ot mtikim
smooth = i

. mt',l
16(1 — ) Omlikim

(/ qiu};(SJdF)
r

€

- 4% . 3 1 | ~
~ 8mu(l—v) 0J I, !gr(l) [(3 4v)rlog r‘szk +rnng| dfd =0

(/ —uiaj-kémjdf>
r.

Usg
= m(‘)l’m /F‘E [(1 - 21/) {5zkn] + 5jkn,~ — (Swnk}

+2n,~n]-nk] (tjtofoltm + njtltm)dﬁ

U; 2

= @,
an(1 = v) Lmbiklm

smooth =

Uj

v t,~2
16(1 — v) Ormtikim

iy (], vionar)

1 . 1
méaij /1“ 1% [(3 — 4v)rlog ;éiknj +rnngn;| df =0
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6.
. _ 7 .
([ o)
-1
= m&h/r 1% [(1 —2v) {6 + ngn; — ning} + 2n;ng] do
_ -1 Suq fre(l —2v) + 2nyn,1df fré 2n1n2db
T An(1-v) | due Jr, 2non1do S (1 = 2v) + 2nan2df
-1 [ ouy T|[ 2-2v)0 + sin2e sin? 0 o
4r(1 —v) | dus sin? 6 (2 —2v)f — sin2f 6,
1
T, smooth = iéuk
where,
i k1 m tikim tikim tikim ikim
1 1 1 1| (+#3+2v)cc—6eeee | —3+4v | (+1—2v)ss —2cess | +3 —4v
2 1 1 1| (-1-2v)sc+ 6cees 0 (+1 —2v)sc + 2csss 0
1 2 1 1| (—=3+2v)sc+ beees 0 (=14 2v)sc + 2csss 0
2 2 1 1| (-142v)cc—6eess | —5+4v | (+1 —2v)ss — 2ssss | +5 — 4v
1 1 2 1| (+1-2v)sc+ 6eees 0 (+1 — 2v)sc + 2cces 0
2 1 2 1| (+3—-2v)cc—6cess | +3—4v | (—1+2v)ss —2cess | —3 +4v
1 2 2 1| (+1+2v)cc—6cess | —1+4v | (+1—2v)ss —2cess | +1—4v
2 2 2 1| (-=3—2v)sc+6ecsss 0 (+1 —2v)sc + 2csss 0
1 1 1 2| (—=3-2v)sc+ beees 0 (+1 — 2v)sc + 2cces 0
2 1 1 2| (+14+2v)ec—6cess | —1+4v | (+1 —2v)cc — 2cess | +1 — 4w
1 2 1 2| (+#3—-2v)cc—6cess | +3—4v | (—1+2v)ce — 2¢cess | —3 +4v
2 2 1 2| (+1-2v)sc+6esss 0 (+1 — 2v)sc + 2csss 0
1 1 2 2| (-142v)cc—6cess | =5+4v | (+1 —2v)ecc — 2ccec | +5 — 4v
2 1 2 2| (—342v)sc+ 6esss 0 (=14 2v)sc + 2cces 0
1 2 2 2 (=1-2v)sc+ 6csss 0 (+1 — 2v)sc + 2cces 0
2 2 2 2| (43+2W)cc—6ssss | —3+4v | (+1 —2v)cc — 2ccss | +3 —4v
91 : 2 01
ss = / sin@sinGdGz‘Q—sm b
02 2 4 (23
o 9  sin2g|’
cc = / cos @ cos0df = ‘— + =
01 .. 92 9 61
sc = / sin 6 cos fdf = | >
02 02
01 . .3 01
ssss = / sin § sin  sin 8 sin dO = 30 _ 3sinfcos _ sin” 6cosh
01 int 01
sssc = / sin 6 sin 8 sin 6 cos 0d6 = |
02 02
01 . . 3101
sscc = / sin @ sin 6 cos 0 cos 0df = ‘g + sinfeosf _ sin cos” 6
05 8 8 4 05
601 4 01
scce = / sin § cos 8 cos § cos 0df = ‘ _cos’6
02 4 02
o 30  3sinfcosd sinfcos® |
ccece = / cos f cos f cos f cos fdf = | = 4 20T COBY | YO8
95 8 8 4 0o
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dubie for nonsmooth boundary

In th case of a cornered boundary at the collocation point, the Jubie has two somewhat more
complicated terms.

ubie:
k(€U + ][ [ (x) — ugi(x)] dT(x) = 0 (A5)
dubie:
Suk (§)DUL, + ug(€)dx 5 (x,€) DU2Yy,
+ ][ [0 (3, €); (x)Bu (%) — 1 (x, €)3qi (%)] AT ()
N
+ ][ [0 (56, €)1 ()t (%) = 0 (%, €))7 (5, €)
(0 (%, &) (X)uk (x) — (%, €)4)T (%)
+05 (%, &)ur(x)dn;(x)] dl(x) = 0 (A.6)
where,

Free term number 1 in ubie and duie: ukU1§c and (Su;cDUlfc DU1L =U1i =

4(1—v)(w+02—01)+sin 201 —sin 26, cos 202 —cos 201
1-— __cos203—cos 201
87(1—v) 8m(1—v)
__cos 202—cos 20, 1— 4(1—v)(m+02—01)+sin 202 —sin 261
8w (l—v) 8m(1—v)
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Free term number 2 in duie: ukﬂl,jDUQj-kl DU2;-M =
1

{m(2(—5 + 6v)sin[26] + (—3 + 2v) sin[46;]—
2(—=5 + 6v + (—3 + 2v) cos[26,]) sin[265)),

(=3 + 2v)(cos[461] — cos[462])

327’(’(—1 —+ y) )

(=3 + 2v)(cos[46:] — cos[465))

- 327 (=1 + v) !
m@(_5 + 6v) sin[261] + (3 — 2v) sin[46,]+

2(5 — 6v + (—3 + 2v) cos[262]) sin[265]),

1

—m((cos[%l] — cos[263])
(8(—1+4v) + (=3 + 2v) cos[20:] + (—3 + 2v) cos[262])),

(=3 + 2v)(25sin[20,] + sin[46;] — 8cos[f:]” sin[6,])
27(-1+v) ’

(=3 + 2v)(25in[20,] + sin[46;] — 8cos[f:]’ sin[fs])
327(—1+v) ’

1
167(—1+v)
(2 —4v + (=3 + 2v) cos[2601] + (—3 + 2v) cos[262])),

1
T 16m(—1+v)

((cos[260,] — cos[263])

((cos[26,] — cos[265])

(=24 4v + (=3 + 2v) cos[2601] + (—3 + 2v) cos[265])),

(=3 + 2v)(25in[261] — sin[46;] — 8 cos[f,]sin[62]°)
327 (—1+v) ’

(=3 + 2v)(25in[261] — sin[46;] — 8 cos[#:]sin[6]°)
327 (—1+v) ’

m““’smﬂ — cos[26])

(—8(=1+4v) + (—3 + 2v) cos[261] + (—3 + 2v) cos[265])),

1

m(—2(—5 + 6v)sin[26] + (3 — 2v) sin[46,]+

2(=54 6v + (—3 + 2v) cos[26-]) sin[265]),
(—3 + 2v)(cos[46;] — cos[465])

27r(—-1+v) ’
(=3 + 2v)(cos[46;] — cos[465])
327T(—1 + 1/) ’
m(—Q(—5 + 6v) sin[26,] + (=3 + 2v) sin[46,]—

2(5 — 6v + (—3 + 2v) cos[265]) sin[26,]) }
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A.3 Kernels for material properties sensitivity

The definition in terms of the Kelvin functions of all the kernels involved in both variation equations

are:
dip(z,€) = Myup,(x,€) + pluj ;(z,€) +ui ;(2,8))
tia(@,&) = Aoy, (z,6) + plogy; (z,€) + oy ;(2,))
ddiy,(z,€) d\ du .
T amlitie(®.6) + d—( 1, (2,€) + i i, €)) +
)\62 k,O a] K]
7 dm + 1 dm + dm )
dt}y (@, €) dA o dp j
% = %&jo—kl,o(m’g) + %(Uu,j(ma@ + Uil,i(xag)) +
do—l?:l,o("l"; f) dO’i:l J (:L'; f) dail i(xa é.)
Adij dm + dm + dm )
where
O';k(.’li', ) = A(Sjkug,o(xaé‘) + I‘L(u;,k(xaé-) + uz:,j (xaé-))
U;k,l(wa ) = A‘Sjkug,ol(mﬂf) +M(u;,kl(w7€) +u;c,jl(w>£))
do’y,(z,&) x ., du ;
JdT = am ik Ug o (2,€) + %(Uj,k(ﬂfaf) + up (2, 8)) +
dui,o(xa §) du;,k ('1.7 g) du}g,] (.Z', §)
Adik dm + dm + dm
doty, (@, €) aX i ap , i
# = kU, o1 (T, &) + %(Uj,kl(maf) + up (2, 8)) +
dui o(7,6) du;- k(25 €) duz jl($7€)
Adij dm 1 dm + dm )
and,
duf — p -1 1 dzp dx
dm ~  dm 27r,u2 [¥8ap = Xrar ] + 27y [ dm Oab am "
e = [0/ 8abT.c — X'T.aT b7,c — X€aba'b'T,a'T b c)
dm dm 27‘1’ N ,al bl c aba ,a'T,b' ¢
-1 [dy' dy’ dx
271'/1/ |:d 6ab - %r,ar,br,c - %eaba’b’r,a’r,b’c
i ca - 2 (0" 8ap7 e a + V' 8abTca — X''T,aT pT,cd — X'T,aT b7 ca
dm dm 277///2 ab”,c ab’,c ,al bl ,cT, ,al b7 c
—€aba'ty (X' €cderdr T o' T o' T @t + XTarcdT b + XTa'cTb' d)]
1 ¢” d,(pl X” XI
+% [%&Lb’r,cr,d + %6abr,cd - %T’,aT,bT,cT,d - %r,a'r,br,cd
dx’ dx dx
_eaba’b’(%ecdc’d’r,a’r,c’r,b’d’ + %T,a’ch,b’ + %ra’ch’d)]
where,
[ de, ] dcs
ﬂ:[ﬂ 1«2] gm d_X:[izc ﬂ_] qn
dm deg dep ﬁ dm deg dep ﬁ
[ de, ] dcs
d_w’:[@ﬂ 11/1_] g d_X,=[4xi gx:] g
dm dcs dep ﬁ dm dcs  dcp ﬁ
d’(p” _ [ dwll dt/}” ] % dX” _ [ dXII qu ] %
dm deg dcp Z% dm dcg dcp ‘;%
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If we choose as material properties vector m = [E, v, p], the last derivatives become:

dcs _ / Ev2(v—2)2 E(v—1)
dm - [ 4FEp(1— 21/ Y(1+v) \/(u 1)(1+I/)3(1 2v)3p \/4p3(1+u)(1+2u) ]

% - [ \/3E0(1+V) \/8;)(1+V)3 \/8p3(1+u) ]
a [ Ein®) ]

dm (1+V)(1 2v) (I+v)Z(1—2v)2

dp [ o

dm 2(1+v) 2(1—}-1/)2 0 ]
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Appendix B

Regularization of integrals

When the collocation point is not placed on the integrated element, a regular Gauss quadrature
formula can be utilized.

B.1 Singular points

As it uses to happen with integral equation methods, the integrals have singularities of different
orders. After the limiting process the integrals are defined outside the ”artificial ball” around the
pole, and divided into a first one that may have a singularity, and turns to be a Cauchy Principal
Value (CPV: f: CPV = lim_, ( L+ féb)), and a second integral that tends to a so called free

term, calculated in the appendix:

JLrar =t ([ sar) i ([ sar)
1 1

When some values at this point tend to infinite, the first term has singularities: log %, e
In order to be able to compute them numerically in an efficient way, we need to use a combination
of two techniques:

e Decomposing the kernel in a sum of a regular part (continuous and differentiable, and not
tending to infinite), which will be integrated numerically, and a simpler singular part, to be

integrated analytically (/' = [, uar T Janatytic)-

e Placing the collocation points a bit separated from the ends of the elements when necessary.
As proved later, this will not be needed for this formulation as long as the varying geometry
is smooth.

e Integrating by special gauss quadratures:

/ln (i) f@d@) = 3wl fEn).g

g=gauss

The four different types of integrals that arise here are computed as follows:

B.2 Regular

This arises when the kernel of the integral is bounded and Holder continuous, with finite derivative
in the whole range. We use a simple gauss quadrature with a variable change:

/F f(s)ds = / I = Y Il (5(6)

g=gauss

207
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B.3 Log-Singular

This appears when the integral has the form [ f(s)+ g(s)logr(l—s)ds, where f and g are also bounded
and Holder continuous. We utilize the special gauss quadrature:

/F f(8)+g(s)log%ds= S T©wf(5(6,))

g=gauss
Ab —nod)J
s Y Tunase)iog (2o I0)
g=gauss
left in right In
ln ln ( )) In lng(s( 9 ))
+9 ;LSSJ l g g:%ssj ¢ log%

where J'*(£) = J(£)(1 + Abs(nod)), and nod is the value of zi where the singularity appears.

B.4 % Singular

This means that the integral has the form [ amma%ds where f is again bounded and Holder
continuous. Two methods are mainly used in the literature, one from Gallego [103],

bf(s f(s . bar 1
) / dd””a%@“

1‘1(5) y;i(s)

_ /b f(s) — f(:(();)m ds + f(so) (Ln(r(b)) — Ln(r(a)))

and one from Giuggiani [54]

b f(s) b f(s)  fs0)%E bd¢e 1
[ = (@‘ e Jase s [ g

_ M1 f(s0) -
= [(Z8 - S L) ) st ss0) (nle)] — L)

We propose a simpler variation of this technique inspired in the work by Fettis [44]. It is based in

two principles:

e The Cauchy Principal Value consists of evaluating the integral excluding a symmetric and
arbitrarily small boundary around the singularity. The singular kernel can be expressed in
terms of its series expansion, giving: f = % +b+cx + dz? + .... Using the property that the
terms of order 2n — 1 are antimetric, (r)2" ! = —(—r)?""!, we can decompose the integral
in two parts and do the specular range of one of them in order to get the antimetric terms,
which will vanish. Among these terms, the singular one £ is one of the vanishing terms:

/11 f(z)dz = :5 f(z)dz + /51 F(a)de =
/s1 f(—z)dz + /: f(z)dz = /:(f(a:) + fea))de

the terms involved are,

1
/ (f(@) + f(~2))dz =
/1«% +b+ca+de? +.) + (== +b—ca+do? - ..))do =

1
/ (2b + 2dz? + ...)dx
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which is bounded at the singularity and may be written as,

/1(2b +2d2”® +..)dx = /1(2b+ 2dz? + ...)dx = /1(f(a:) + f(—xz))dz
€ 0 0

e We apply a change of variable in order to center the singularity, transforming any collocation
point in natural coordinates into zero. The main property this change needs is to keep the
continuity and the derivability over the range, especially at the singularity. The simplest
change found is the following,

(1) = sign(€o) [1 = (1= [&)(1 = sign(&)g)e " i=learsion(co)]

The process can be schematized as follows in figure B.1 Therefore the integral is done as

_

=

CPV Regular

Figure B.1: Steps in the regularization of 1-singular integrals.

I = /F AdT = 1 ROHGES /0 F(t) — F(—t)dt
where,

_ _dr _dg
A= =% h=7
F(t) = A(&(8)J (1)1 (2)

£(t) = sign(€:) [1 = (1= &)(1 = sign(€)¢)e Hmitesion(eo)r]

Tit) = (1= 6D (L + gy (1 = sign(g)e” =lemon(cr

B.5 T%-Singular

Following the method for computation of hypersingular Kernels completely defined by Guiggianni
([54] and [55]), one may use the formulas,

B
I = I A ) + 2
Egg+{ / Ay <a:)+5}

2

T= % {/11 [F’"(n,O - (é__(nn))z + I?i(z))] %

m=1
2 Ym(m) 1
+F" (n)In|——|sgn(é —n) — F™ [sgn & — + =
(n=1for m =1, and n = —1 for m = 2) when the singularity is placed between two elements

and, in the case of a mid-node collocation point,

r [ - (£ Pt

—p | .y [ -1 1
+F1(n)ln‘—1—n‘_F ) [1—77 —1—77]
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(n € (—1,1)) where y and 7 are the collocation point in real and local coordinates, and x and £ are
the integration point in real and local coordinates (—1 < £ < 1). The terms 3, and ~,, account
for the distortion by the local coordinates transformation of the originally symmetric vicinity of
the collocation point:

F_ F
FL = Aw.s©)m(© = 20 + T o
1 1
ﬂm = =
Jm(,q) oz 2 Bzxo 2
\/ (a—s) +(a—s)
T1 21)1 To 2.’32 1 2(01 T2 2-752
Y = il e

2Jm(n)4 0e\2 (o2 \2)7
{ (%) + ()]
An alternative method was later proposed by Saez and Gallego [103], and reads in the case of
a collocation point inside the element,

1= [ 2 [ow - oteo - r 2 ar
400 | |+ e [
where,
Awy) = 6@)
o) = ola) +r 7 L o)
d¢(§fa) _ d¢(£wc) J(ic)sg" (dré;c))

We propose and use a development from the idea of Fettis [44] that yields the following formula,
whose main advantage is that it does not require the calculation of a further derivative of the kernel.
The main advantages of the change of variable is that it annihilates the free terms by its symmetry,
and moreover it simplifies the integrals to only a regular one without need for a second assymetric
one, as done in [44].

The integral is eventually implemented as,

Jar=[ 11 A(8)J(€)de
_ /1 F(t)—F(—t)dt_¢(xc) [L+ 1 ]

I

¢ r(l) - r(-1)
where,
¢ _dr _dg
A=5 T=F hb=%
G(E(t)) — Go(£(0) |52
F(t) = - J((#))J1(t)
GLEW) = ACOIE Gol€w) = 0(6:) ey

1

£(t) = sign(&:) [1 = (1 = |&)(1 = sign(g.)e)e e ion(@)]

Ji(t) = (1= &N+ Lnl%lg'u — sign(&:)§))e " =le sion (&t

dr

ar 71 t1 + T2t2
dr’

r
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The sign should always be nonzero for any argument.
This formula can be derived in the following way. The basic steps if the regularization itself
are shown in figure B.2. The Hadamard finite part is defined as an integral in which some infinite

_/

- D> ——

—

FP CPV Regular

Figure B.2: Steps for regularization of 2-singular integrals.

term is elliminated,

S / N (Z((S)) dr'(s)
r Sc—E€ Fs mY sf S
= lim [/ e+ /.. S =060 (25 + 1)

If we develop the kernel with a simplified notation,

FP FP ¢t®
I = AdF:/ 2 dr
t2
r r
2 2
_ /CPV%_% g_lcdr‘+ Fpﬂ d_r
T t2 r T2 dF

2
Here, G = %, doing the symmetric change of variable, doing the same considerations as for the
82 gci? | 4z
2| dT
t )

1 integrals, and defining F' = ==

2—7“2d_FJJ1dt

1,CPV ¢t* _ ¢ct® | dr
T
[, %

. 1 1 1
+limo. [r(—e)2 Cr(=1)2 0 r(1) r(6)2]

1 1 by FP definition
e [r(—e)z r(a)2]

- / OB, [(——11) * r(iv]

Some considerations are useful:
e (G is bounded and Holder continuous.

e F'is bounded and Holder continuous.

e The kernel of the integral w is bounded and Holder continuous, and the range of

the integral may be modified from t(¢) — 1 to 0 — 1.

More references about the basics on integration (Krommer [73], Lutz [78]), computation of
bessel functions (Abramowitz [53], Gradshteyn [2]) and regularization can be found, in order of
appearance, in Jun [65], Telles [128], Fettis [44], Guiggianni et al. [57] [58], Ridolphi [98], Sladek
et al. [104], Huang [62], Dumont [37] and Tanaka [126].
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Appendix C

Programmable algebra

The main problem of the methods for the gradient computation by analytical procedures and
the arguments to avoid them is precisely the high complications of the expression involved in the
integrals. Amidst the intention of systematizing this procedure, a way to obtain the values of these
expressions in a practical way is here presented.

The expressions obtained so far involve a high number of indices. Since they have to be
substituted into each other at several levels the resulting expanded expressions would have too
many terms to provide a reasonably long code and a low likelihood of bugs.

To our knowledge, there are not any commercial programs that are capable to combine the
manipulation of indices with a capacity of handling many such equations at an affordable speed.
Moreover, since the equations should be able to be programmed in many existent languages in which
the BEM is actually working, it becomes necessary to come up with some handy transformation
of these expressions.

In the code for the sensitivity of dynamics singular and hypersingular BIEs, the value of every
term in the kernel is calculated at each quadrature point, by the matricial form defined by means
of the transformation of the tensorial form.

C.1 Algebra

We propose a transformation of the indicial elements of the expressions into a systematic matricial
algebra by establishing the following rules and operators:

a,b,... > a,p,..
Ky, = 5ab[5ac---]

Ksz = daplday--]
dis = Susbralder.]
I = [boa]
g = daal0p-]
(I+dp) = easasldye]
(di2 +doz +di3) = eapcapy[dsd---]

The latter elementary operators defined between the indexes a, b, ... and a, 3, ... can be coupled
successively by multiplication (maintaining the order) and defining new sets of the same number
of indexes acting as intermediate ones to be contracted by inner summation.
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C.2 Proof

If we look at the tensor indices as a series of permutations &;jkim = Z12345 = 4 with A = {12345},
then the two basic operations performed are the interchange of permutations,
transformation T
Tijklm — Tjiklm

{12345} 7% {21345}

and contraction or its reverse expansion by inner summation.

transformation T
OimTijkim — Tijk

In either case the transformations can be expressed in terms of a combination of simpler transfor-
mations in a multiplicative sense as

g1 (A) = 02 (A)03(A)

This is possible since the transformations are always linear transformations in the sense that

T(xa) +T(ya)
kT (z4)

T(xa+ya)
T(kxa)

Since this condition is always accomplished in first order linear elasticity, every linear transforma-
tion can be represented in a matricial way.

Reversely, the transformations can be successively chained by doing the matrix multiplication
in the right to left sense.

C.3 Subexpressions

Using these definitions, and expanding and inserting the necessary indices, the needed subexpres-
sions can be written as:

di(2,8) = Ayup ,(x,) + p(uj (@, €) +uf, ;(z,£))
= [\K{5Kiados + p(I + dis)dasuf . = ddp.uf
j‘kl(maf) = Aijog.(z,€) + N(Gz:l,j (z,8) + Uél,i(m’f))
= [AK[Kiadosdsa + p(I + dio)dosdsaop, 4 = ttpa0%e.a
o (T,6) = A8 o (2, €) + p(Uf i (2,€) + 1 (2, €))
= [AK{5Kiadas + p(I + di2)daslug g = dditpeqtih ca
Eiktan (@) = A61j00 0 (@ €) + 10} i (2,€) + Ty 1 (7€)
= [AK{5Kiadosdss + p(I + di2)dasdsaloge ge = 5 imbedeThe,de
ol (2,8) = Ajrud o(2,8) + p(ul 4 (z, ) + uj ;(2,£))
= [MisK{5Kiadis + p(I + das)luf . = ddiy.uf .
O—;k,l(maé-) = MijZ,oz(w,f) + u(U§,kz($a€) + “fc,jz(%f))
= [MdisK{5Kidis + p(I + do3)up cq = ddﬂlbcduacd
U;:k,lm(mag) = Aéjkui,olm(%o + N(u;‘,klm (z,6) + u;;:,jlm (x,8))

= [MdisK{5Ki2dis + p(I + dos)ug g0 = dd5mpedctih cae
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where
Ug’ = ﬁ [w(sab - Xr,a,r,b]
= ﬁ WK{‘FZ - X7'17'2]
ug,c = ﬁ [wl(sabr,c - Xlr,a'r,br,c - Xeaba’b’r,a’r,b’c]
= ﬁ [¢IK1T2T1 - Xlrl"'27'3 - X(I + d12)7‘17’23]
Up g = ﬁ (0" 8apr o7 a + V' 8abTca — X' T,aT pT e d — X' aT b7 ca
—eabarty (X' €cde'd' T\ T,e' T b d + XT\alcdl b + XTar T d)]
= ﬁ [¢IIK1T2T1T2 + ¢’K1TQT12 — X"rirarsry — X'rirarss
—(I + di2)(X'(I + dsa)rirarad + xrizara2 + XT13724)]
ug,cde = ﬁ [wlll(sabT,cr,dT,e + (_T¢H + '(pl)(sab’f',cde - X”IT‘,a’f"b’f"c’r"d’I"e

_X”[eabca'b’c’eded'e’T,a’T,b’T,c'd’T,e’ + eabea’b’e’T,a’cT,b’T,dT,e’]

—X'[€abcarsr e’ (TareT BT ctd + T 0T b el crd + 70T b7 o de)

+eapart (T,a' T b e de + €dedare’ (T,arer T el ar))]

—X€aba't' [T a'deT b'c + T,ardT brce + Tarel b cd + T prcdeT,a’ ]
=L [W"K{rirars + (—ry" + ¢ Kiyrias — X"'rirarsrars

—X"[(d12 + di3 + do3) (I + da5)r17273475

+(d12 + dis + dos)T137T274T5]

—X'[(d12 + di3 + d23)(r15T2T34 + r1T25T34 + 71727 345)

+(I + di2)(r1rasras + (I + das)(r1572374))]

—X(I + di2)[r1a5723 + T14T235 + 157234 + T234571]]

C.4 Encoding

All the information of one tensor with n indices Aja3.. ., is stored in a vector containing 2™ elements.
They should be organized in a congruent way. For instance, in the case of n = 3 and R2,

A123 = [alll 021101210221011202120122 a222]

A transformation tensor T125™ with n input and m output indices that transforms A3,

into Bia3..,, is therefore encoded as a 2™ x 2™ matrix.

Obviously, a congruent number of indices is needed, making it necessary to append or prepend
mute indices in order to reach the necessary order (for instance a preposition of one index to A4; is
made so that A;; = Ay;).

The radius terms are defined as vectors - and multiplied element by element giving another
vector - in the following way:

poo T
Y
1 T
T12 = W(Km — T1T2)
-1
ri23 = W(dlz + dag + di3)r1273
-1
T1234 = W(T123T4 + (di2 + das + di3)(T12473 + T12734))
where
Ty .
rn = ( ) in the case of 2D.
Ty



