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Abstract 

Numerous experimental studies use a panel approach to analyze repeated 

experiments involving a large number of periods. They use “static” panel 

techniques and do not incorporate any temporal dependency (lags) of the 

dependent variable. This paper introduces dynamic panel data techniques to 

experimental economists. This is a standard tool in many other fields of 

economics and might also be useful in our discipline. It uses the lags of the 

dependent variable as explanatory variables. Although the coefficients on lagged 

dependent variables might be far from our interest, the introduction of these lags 

becomes crucial to control for the dynamics of the process. To show the 

advantages of this technique, we have compared two datasets using static and 

dynamic panel data. We conclude that the use of dynamic panel data models in 

the context of experiments allows to unravel new relationships between 

experimental variables and highlighting new paths in behaviors. 
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I - MOTIVATION  

Panel estimation methods are widely used in experimental economics.  Numerous 

experimental studies use a panel approach to analyze repeated experiments involving a 

large number of periods, such as repeated public good games (see for instance, Croson et 

al., 2005), bidding behavior (see Rassenti et al., 2003), ultimatum games (see Botelho et 

al., 2005; List and Cherry, 2000; Cooper et al., 2000), among the others. 

The advantage of panel data is that by using information about the intertemporal dynamics 

and individuals, it is possible to control for the effects of unobserved or missing variables. 

In experiments, this double dimension (individual/time) helps us to better capture the 

complexity of human behavior. For instance, Harrison (2007) shows that using panel data 

methods, “house money” in standard public good experiments may has an effect on 

behavior, in contrast to published results. 

All of the above-mentioned papers have used “static” panel techniques, i.e., they have not 

incorporated any temporal dependency (lags) of the dependent variable. On the other hand, 

dynamic panel data models use the lags of the dependent variable as explanatory variables. 

Although the coefficients on lagged dependent variables might be far from our interest, the 

introduction of these lags becomes crucial to control for the dynamics of the process. The 

correct behavior specification lets us discover new or different relationships between the 

dependent and independent variables. 

In this paper, we have presented this technique (Section II) as well as two examples 

(Section III and IV) of how results may change when the temporal structures of the 

dependent variable are included. Our results are detailed in Section V. 

 

II  - ECONOMETRIC TECHNIQUE 

II.A - Static models 

Static panel data regressions (Baltagi, 2008; Cameron and Trivedi, 2009) allow us to study 

individual behavior in a repetitive environment. If yit is our variable of interest, then static 

panel data models are described by 

(time) ,...,1,ls)(individua ,...,1,' TtNivxy itiitit ==++= αβ  
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where itx is the it-th observation on k explanatory variables, β is the parameter vector, iα  

denotes the unobserved individual-specific time-invariant effects, and the residual 

disturbance term itv  has zero mean, constant variance, and is uncorrelated across time and 

individuals. 

Depending on the nature of iα , two models can be distinguished:  

• Random Effect Model: It assumes that iα  are random variables (uncorrelated with 

itv ). In these models, the regressors itx  are uncorrelated with individual effects iα . 

We can unbiasedly, consistently, and efficiently estimate parameters β using 

Generalized Least Squares (GLS). Note that under the hypothesis of no correlation 

between regressors and individual effects, Ordinary Least Squares (OLS) 

estimators are unbiased and consistent, but not efficient. 

• Fixed Effects Model: It assumes that iα  are individual fixed parameters. In these 

models, it is not necessary to assume no correlation between regressors and 

individual effects. Usually, Within Group (WG) estimators, so-called “fixed effects 

estimators” are used to estimate the parameters. We can obtain them with an OLS 

estimation of a transformation of model (1) where individual effects are removed: 
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and consistent. 

All these methods (GLS, OLS, and WG) have alternative versions that are robust under 

heteroskedastic disturbances (Davidson and MacKinnon, 2004). However, none of them 

has acceptable properties when a dynamic structure is introduced in the model. 

 

II.B - Dynamic models 

Dynamic panel data models are useful when the dependent variable depends on its own 

past realizations: 

(2)(time) ,...,1,ls)(individua ,...,1,'
1, TtNivxyy itiittiit ==+++= − αβγ  
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In this model, itx  are the regressors1, iα  is fixed2 individual effects, and itv  has zero mean, 

constant variance, and is uncorrelated across time and individuals. 

As 1, −tiy is correlated with iα  because 1, −tiy is a function of iα , GLS and OLS estimators 

are biased and inconsistent. WG estimators are also biased and inconsistent, because in the 

transformed model, when using variable deviations from mean (see equation 1), the 

independent variable will be endogenous (iy  is correlated with iv ). 

An alternative transformation to remove individual effects iα  is the so-called “first-

difference” transformation: 

)3('
1, itittiit vxyy ∆+∆+∆=∆ − βγ  

Again WG and GLS estimators are inappropriate. The model suffers from an endogeneity 

problem, because by the dynamic structure of Equation (3), 1, −∆ tiy  are correlated with 

itv∆ To solve this problem, Anderson and Hsiao (1982) proposed to control endogeneity 

using 2, −∆ tiy  or 2, −tiy  as instruments for 1, −∆ tiy . In fact, lagged levels of the endogenous 

variable aw, three or more time periods before, can be used as instruments (Holtz-Eakin et 

al., 1988), and if the panel includes three or more time periods, we will have more 

available instruments than unknown parameters. 

Arellano and Bond (1991) proposed a method that exploits all possible instruments. Using 

the Generalized Method of Moments (GMM, Hansen, 1982), they obtained estimators 

using the moment conditions generated by lagged levels of the dependent variable 

2,( −tiy , 3, −tiy , …) with itv∆ . These estimators are called difference GMM estimators. 

Similar to all instrumental variables regressions, GMM estimators are unbiased. Arellano 

and Bond (1991) compared the performance of difference GMM, OLS, and WG 

estimators. Using simulations, they found that GMM estimators exhibit the smallest bias 

and variance. 

                                                 
1 Here itx will be strictly exogenous (itx are uncorrelated with itv ti,∀ ). Situations where regressors are 

predetermined or endogenous could also be considered. 

2 By construction, 1, −tiy is correlated with iα . It then makes no sense to use the random effects estimation 

method since one regressor is correlated with the individual effects. 
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II.C - Exceptions: Heteroscedasticity and time-invariant independent variables  

There are two situations where the difference GMM model does not provide good 

estimators. This might be relevant for our experimental data. 

• Under heteroscedasticity: When model errors are heteroskedastic, we do need a 

modified tool: two-step GMM estimators.3 These estimators are robust under 

heteroskedasticity, but their standard errors are downwardly biased. This problem 

was solved by Windmeijer (2005) who proposed a correction for two-step GMM 

estimators.  

• When using time invariant regressors. When a given independent variable does not 

change across time (e.g. gender), the variable is eliminated in Equation (3), making 

this method useless to estimate its associated parameter. Arellano and Bover (1995) 

as well as Blundell and Bond (1998) proposed an alternative method. In addition to 

differentiating the model equation (see Equation (3)) and using lagged levels of 

1, −tiy  as instruments of 1, −∆ tiy , they worked with the “original” model (Equation 

(2)) and used the difference 1, −∆ tiy as instruments of 1, −tiy . The estimators obtained 

in this way are called system GMM estimators. 

Originally, this method was developed to improve the behavior of difference GMM 

estimators when the autoregressive parameter γ  approaches unity. In this case, lagged 

levels of dependent variable are weak instruments. However, this method has another 

advantage: Time-invariant variables can be included as regressors (Roodman, 2006). In 

Section III we will use these estimators. 

 

II.D - Instrument validation 

Once difference or system GMM estimators are obtained, the validity of the model must be 

checked: 

• Arellano and Bond (1991) proposed a test to detect serial correlation in the 

disturbances. Note that the presence of serial correlation in the disturbances affects 

the validity of some instruments: If itv  are serially correlated of order 1, then 

                                                 
3 A first-step estimation is needed to obtain the covariance matrix of estimation error. 
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2, −tiy is endogenous to itv∆  (by the presence of 1, −tiv in the difference), and 

therefore, 2, −tiy  would be an invalid instrument. 

They tested serial correlation of disturbances using difference itv∆ , instead of level 

itv . To test serial correlation of order 1 in levels, we must check for correlation of 

order 2 in differences. When the null hypothesis of this test (no serial correlation) is 

not rejected, validation of the instrumental variables is obtained. 

• The Sargan test (Sargan, 1958) verifies the validity of instrument subsets. It is 

based on the observation that residuals should be uncorrelated with instruments 

(null hypothesis). When this hypothesis is not rejected, the validation of 

instrumentals is obtained. 

 

III  - EXAMPLE 1: GUILLEN P., FATÁS, E. AND BRAÑAS-GARZA, P. (2010) 

Guillen et al. (2010) reported evidence about cooperative behavior in a repeated public 

goods game. Subjects played 10 periods in groups of four players with constant group 

composition. So in the jargon of experimental economists, this is a “partners” design. In 

each period, players decided on how much to allocate to a public account (between 0 and 

50 units). The sum of contributions of the four players was multiplied by two and equally 

split between them. The subjects played 10 additional periods after a surprise restart, where 

the group composition remained the same as in the first 10 periods. Hence, this is the 

classical example of a lab experiment where subjects play for several rounds and have a 

feedback after each decision. 

Their study explored two main treatments: the baseline (which is identical to Croson et al., 

2005) and the threat. Under the threat treatment, the subjects were informed that there was 

a positive probability that they would play with a computer simulated subject that would 

cooperate until any group member contributed less than 45 units. The experiment was 

conducted at the LINNEX (Valencia) with 60 subjects. 

Using individual contributions as the dependent variable( )ity , they proposed a static panel 

data model where the explanatory variables were the Period and a dummy representing the 

Threat treatment: 
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1,...,10 1,...,60,210 ==++⋅+⋅+= tivThreatPeriody itiitit αβββ  

To estimate this model, they used random effects GLS regression with cluster-robust 

standard errors. 

Columns a.1 and b.1 in Table 1 replicate results shown in the original paper. They found a 

positive and significant effect of the threat on cooperative behavior. This was not only true 

for the first 10 rounds, but also for the second 10 rounds after the surprise restart. 

Columns a.2 and b.2 in Table 1 show the dynamic panel data estimations. It must be noted 

that the dummy Threat is time-invariant. As we explained in Section II, since difference 

GMM estimators remove this type of variable, we used system GMM estimators. To 

control for heteroskedasticity, we used the two-step version with the Windmeijer 

correction. We have also presented the associated p values for the Arellano-Bond serial 

correlation (of order 2 in difference) test and the Sargan test. The validity of the 

instruments has not been rejected. 

Table 1: Estimated parameters 

 First 10 periods Last 10 periods 

 a.1 a.2 b.1 b.2 

γ - 0.30 (0.00) - 0.35 (0.00) 

Periodt -2.47(0.00) -1.61 (0.00) -2.60 (0.00) -1.04 (0.00) 

Threati 12.44 (0.00) -13.18 (0.35) 14.94 (0.00) 26.52 (0.01) 

0β  29.51 (0.00) 31.51 (0.00) 29.02 (0.00) 15.43 (0.03) 

AB serial 

correlation test 

- 0.66 - 0.59  

Sargan test - 0.06 - 0.19 

Instruments - 46 - 52 

N 600 540 600 600 

Technique SPD DPD SPD DPD 

p-value in parenthesis  
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Now we will compare the results obtained with static and dynamic panel data methods. 

How do the results change due to the new methodology? 

• Along the first 10 periods, it can be observed that the dummy Threat is not 

significant (Threati=-13.18; p=0.35). There is not a treatment effect. Once we 

capture the dynamics in behavior, this dummy is not significant. 

• After the surprise restart, we found a very interesting result. Once all the players 

have already learnt to play the game, then the Threat dummy becomes highly 

significant and its coefficient doubles its value (Threati=26.52; p=0.01). 

Additionally, we obtained precious information from the autoregressive structure of 

behavior. The significant and positive value of the AR(1) coefficient4 indicates that 

although the trend (Period variable) is negative, the slope is smoothed by the positive 

coefficient γ . 

Therefore, the use of a dynamic panel data model allows us to properly identify the 

treatment effects and understand how these effects change across time and after a surprise 

restart. 

 

IV  - EXAMPLE 2: BRAÑAS-GARZA, P., BUCHELI, M. AND T. GARCÍA-MUÑOZ 

(2011). 

Brañas-Garza et al. (2011) reported a Dictator game with 88 dictators taking each of 16 

decisions about how to allocate 10 bills of 20 Uruguayan pesos (around 10 American 

dollars) between themselves and a random and unknown recipient. The authors assumed 

that the decisions are uncorrelated because there was no feedback throughout the game and 

only one of them (randomly chosen) was implemented at the end. 

All the games were identical in format, but framed. Besides a blind (baseline) game, they 

used three types of frames to generate 15 different environments that vary according to the 

information given about gender, income (poor/rich), and political preferences (right/left). 

Dictators were matched with a different recipient every single round, which is what 

                                                 
4 We tested for higher order correlation, but it was not significant. 
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experimental economists call a “random strangers” design, and the 16 tasks were presented 

to each subject in a different random order. 

Using individual donations as the dependent variable ( ijy ), they used a dynamic panel data 

model to estimate the donation in period t: 

1,...,16  1,...,88,'
1, ==++⋅+⋅= − tivxyy itiittiit αβγ  

where iα  is the fixed individual effects, the regressors itx  are three treatment dummies and 

a temporal trend (Period), and all regressors were strictly exogenous. 

To estimate this model, they used two-step5 difference GMM estimators with the 

Windmeijer correction. The results are presented in Table 2, columns a.2 and b.2 (the 

difference between these two models is the temporal trend that is included only in column 

b.2). To test for the validity of the instrument, p values of Arellano-Bond serial correlation 

test (of order 2 in difference) and Sargan test were presented, and the validity was not 

rejected. 

WG estimators provide a consistent estimator of static fixed effects models: 

 1,...,161,...,88,' ==++⋅= tivxy itiitit αβ  

Columns a.1 and b.1 in Table 2 show the results of the static model6. 

As in the previous example, we compared the results from static and dynamic approaches: 

• In models where the Period variable was included (e.g. a.1 and a.2), we found that 

the trend was never significant, but the dummies (treatments) were. 

• In dynamic models (e.g. a.2 and b.2), time series of donations followed a stationary 

AR(1) process with a negative coefficient. 

Why is this important? The latter signifies that in the subsequent periods, donations move 

around their mean, but display a very noisy behavior, constantly crossing their mean level. 

Hence, experimental subjects tend to balance in each round what they did in the previous 

round. 

                                                 
5 To control for possible heteroskedasticity 
6 To avoid heteroskedasticity, cluster-robust standard errors are used 
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The use of dynamic panel data makes it possible to uncover a result favoring an 

equalization behavior. The pattern of donations over time emerges as the result of a 

systematic equalization process: Moral licensing (being selfish after having been altruist; 

Merrit et al., 2010) or cleansing (altruistic after selfish; Sachdeva et al., 2009). However, 

the use of a static setting does not allow unraveling this result. 

Table 2: Estimated parameters 

 a.1 a.2 b.1 b.2 

γ - -0.07 (0.03) - -0.09 (0.00) 

Period 0.07 (0.67) 0.19 (0.43) - - 

Treatment 1 15.67 (0.00) 12.28 (0.00) 15.62 (0.00) 12.07 (0.00) 

Treatment 2 15.80 (0.00) 13.21 (0.00) 15.76 (0.00) 13.11 (0.00) 

Treatment 3 15.27 (0.00) 14.54 (0.00) 15.20 (0.00) 14.71 (0.00) 

0β  45.54 (0.00) 45.16 (0.00) 46.24 (0.00) 48.08 (0.00) 

AB serial 

correlation test 

- 0.49 - 0.42 

Sargan test - 0.83 - 0.80 

Instruments - 44 - 43 

N 1402 1220 1402 1220 

Technique SPD DPD SPD DPD 

p-value in parenthesis  

 

IV  - DISCUSSION 

We have shown that the use of dynamic panel data models in the context of experiments 

allows unraveling new relationships between experimental variables and highlighting new 

paths in behaviors. 

Dynamic panel data techniques allow controlling the dynamics of the process introducing 

in the regression equation temporal dependency (lags) of the dependent variable. Although 

the coefficients on lagged dependent variables might be far from our interest, the presence 
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of these lags in the regression equation discovers new or different results. In our first 

example (section III), we discover that the treatment effect is different after a surprise 

restart. This result is not unraveled when static panel data method is used. The second 

example (section IV), the use of dynamic panel data techniques allows to uncover an 

unexpected result: subjects equalize behavior across repetitions. 

One critical issue in these methods is the choice of the number of instruments to be used. 

These estimators generate moment conditions with the instrument count being quadratic in 

T. This may cause several problems in finite samples (Roodman, 2006). First, a finite 

sample may lack adequate information to effectively estimate such a large matrix and, 

second, the bias present in all the instrumental variables regressions becomes more 

pronounced as the instrument count rises. There is no general rule in the literature about 

how many instruments to use. Roodman (2006) offers a useful piece of advice: The 

instruments count must be smaller than the individual units in the panel.   
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