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créıdo que esto era posible y haber trabajado tanto para conseguirlo, y a Amelia Rubio

por su ayuda y generosidad.

A todo el Grupo de Electromagnetismo de Granada, en especial a Luis Dı́az Angulo, mi
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enseñado los métodos necesarios para poder estar por encima del sobresaliente.
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Quiero también agradecer a mis amigos de siempre y para siempre, en especial a Sergio,

por su enorme apoyo y comprensión, además de sus consejos.

Finalmente, a mis padres, Pedro y Pauli, papá y mamá, por su amor, infinito sacrificio
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Abstract

This dissertation deals with the development of efficient numerical techniques for the

analysis of realistic problems of electromagnetic propagation, radiation, scattering, and

coupling. For this purpose, the Discontinuous Galerkin (DG) methodology and its ap-

plication to solve Maxwell equations in time domain is investigated. The main contri-

butions are based on the combination of the efficient Leap-Frog (LF) time-integration

scheme, together with a Local Time-Stepping (LTS) algorithm, with the DG spatial

discretization method. The final approach is referred to as Leap-Frog Discontinuous

Galerkin (LFDG) algorithm.

The DG formulation, in its semi-discrete form, is developed in a general framework

which unifies different flux-evaluation schemes successfully applied to this method. A

wide range of functionalities are developed in the DG context, such as typical boundary

conditions (perfect electric/magnetic conductors, first-order Silver-Müller boundary con-

dition, material interface), anisotropic materials modelization, electromagnetic sources

(plane-waves, coaxial or waveguide ports, and delta-gap), and conformal uniaxial per-

fectly matched layer truncation condition. The LF scheme is applied to the semi-discrete

DG formulation, rendering the LFDG algorithm, and a fully explicit LTS strategy is pro-

posed in combination with the LFDG algorithm.

The DG semi-discrete scheme and the LFDG algorithm have been analyzed, and the

accuracy limits and the computational cost of the LFDG method have been assessed.

Firstly, the topic of spurious modes is revisited in the DG context, and the numerical

spectrums of both schemes are studied. Then, the numerical dispersion and dissipation

relationships, and the convergence and anisotropy of the errors of the DG and LFDG

methods are compared and analyzed. Finally, a computational cost vs. accuracy analysis

of the LFDG method is performed, including a comparison with the finite-difference

time-domain method.

The LFDG algorithm has been implemented in a scalable parallel manner, making use of

a hybrid OMP-MPI programming technique. The inherent DG parallelism is exploited,

showing the capability of the method to deal with electrically large problems, keeping

accuracy under control, and considering geometrical small details thanks to the use of

the LTS strategy. The LFDG method is applied to different kinds of electromagnetic

problems. Some of the results have been compared with measurements and others with

results found with other computational methods. The algorithm, finally, is validated

and the attractive properties of the LFDG method, which combines all the advantages

of time-domain and finite-element methods, are demonstrated.
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Chapter 1

Introduction and Previous Work

This dissertation is the product of the research conducted in the Department of Electro-

magnetism and Matter Physics at the University of Granada, and EMI/EMC Depart-

ment at Cassidian, EADS-CASA, both in Spain. The focus is on developing efficient

and accurate the discontinuous Galerkin time-domain method and its application to real

and practical engineering problems. A brief overview of the most relevant methods in

computational electromagnetics, from this standpoint, is provided in this introductory

chapter. In addition, the reasons, alternatives, and capabilities of the specific technique

chosen for the current research are discussed, together with the current state of the art.

1.1 Overview of Computational Electromagnetics

Prior to the 1960s, the computation of electromagnetic (EM) fields was almost con-

fined to analytical methods involving closed-form expressions or the solving-by-series ap-

proach. However, with the advent of powerful computers and the development of sophis-

ticated algorithms, the art of computational electromagnetics (CEM), as in many other

scientific disciplines, has undergone exponential growth during the last five decades.

Nevertheless, the EM community has lacked a unique and suitable method capable of

solving all real-world EM problems, such as radiation, scattering, coupling, or waveg-

uiding. Furthermore, there is a wide spectrum of engineering applications of CEM:

design and modeling of antenna and microwave devices, radar and communication sys-

tems, electromagnetic compatibility (EMC) (High-Intensity Radiating Fields (HIRF),

cross-talk, lightning strikes on large structures), nanophotonic devices, medical imaging,

etc.. As a consequence, the expertise of the user becomes crucial in choosing the most

appropriate method for a given problem.

1
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Figure 1.1: Classification of purely numerical 3D computational electromagnetic
methods.

Many different numerical CEM techniques have been proposed. A conceptual classi-

fication of the most relevant ones appears in Figure 1.1. These can be classified into

three different levels. At the highest level, we can distinguish between asymptotic and

full-wave methods. Asymptotic methods are based on simplified versions of Maxwell

equations or EM scattering models, typically formulated in frequency domain. They

require low computational costs and their solutions converge to the analytical ones as

frequency increases, thus making them useful for high frequency problems 1. Some of

them are: Physical Optics (PO) methods, which locally applies the equivalent principle

and computes an approximated solution of the EM currents, neglecting other effects.

Physical Theory of Diffraction (PTD), which is an asymptotic correction to PO applica-

ble to edged bodies. Geometrical Optics (GO) ray field, which consists of direct, reflected

and refracted rays, obeying the Fermat principle, not considering the diffraction of waves

around edges or smooth objects. Geometric Theory of Diffraction (GTD) methods was

systematically formulated by generalizing Fermat principle to include a new class of

diffracted rays, arising at geometrical and/or electrical discontinuities on the obstacle,

and added to the GO rays. Uniform Theory of Diffraction (UTD), which overcomes

some GTD singularities arising at GO ray shadow boundaries and ray caustics, in its

original form.

1In electromagnetics the term high or low frequency is always relative to the electrical size of the
structures under study.



Chapter 1. Introduction and Previous Work 3

Full-wave methods, however, rigorously solve Maxwell equations, and the sources of er-

ror come from their discretization, reaching convergence when the space and time are

infinitely refined. Full-wave methods can be classified in turn, according the form, into

integral and differential, depending on which Maxwell equations are solved. And accord-

ing to the treatment of the time variable, into frequency- and time-domain methods.

Integral methods start from Maxwell equations in integral form. A main advantage of

them is that only the surfaces and/or lines, where boundary conditions are enforced,

need to be discretized, thus reducing the number of unknowns compared to volumetric

methods, where also the space in-between is discretized. These methods make use of

the Green-function concept, to find the solution after solving an algebraic system of

equations found by applying the Method of Moments (MoM). The accuracy of integral

methods, is well-known to be very high. Their main drawbacks appear when dealing with

complex materials (composites, anisotropic, etc.) where the applicability of the method

becomes difficult. Also for solving electrically large problems, since the condition number

of the resulting linear system grows with the number of unknowns.

Methods based on differential equations are volumetric methods, and include those based

on fully structured meshes, such as Finite Difference in Time or Frequency Domain

(FDTD, FDFD), Finite Integral Technique (FIT) or Transmission-Line-Matrix (TLM);

or those based on unstructured meshes, such as Finite Volume (FV), Finite Element

(FE) or Discontinuous Galerkin (DG) methods. Among them, FE and DG methods are

especially attractive for their ability to combine different orders of the basis-functions,

to achieve fast convergence rates.

Both integral and differential methods, are found in Frequency Domain (FD) and in

Time-Domain (TD). FD methods are often computationally inefficient in the computa-

tion of wideband frequency responses, since one frequency needs one complete simula-

tion. This becomes especially critical for MoM or FEM methods, well-known for their

accuracy when dealing with large structures with electrically small details, since they

require the solution of a linear system of equations frequency-by-frequency. TD methods

are an attractive alternative in these cases. Though integral equations can be formulated

in TD, the matrix inversion or the solution of a linear system at each time step remains

computationally unaffordable for most practical cases (except for thin-wire structures).

The same consideration applies to differential methods based on FEM in TD methods

(FEMTD).

For this reason, TD formulations are typically combined with differential-based meth-

ods on structured meshes (like FDTD, FIT, TLM) to yield explicit marching-on-in-time

methods. They exhibit a high versatility to deal with arbitrary EM ultrawideband
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(UWB) problems, limited only by the computational resources. However, their struc-

tured nature impose significant constraints on the geometrical discretization of complex

objects, and on the accuracy and convergence of the methods. As mentioned above,

FEMTD methods constitute an attractive alternative though computationally unafford-

able. In this dissertation, alternatives to FEMTD based on Discontinuous Galerkin

Time-Domain (DGTD) methods, are analyzed in detail. DGTD has most of the ad-

vantages of FDTD, FIT and TLM: explicit advancing algorithm, simplicity, easy paral-

lelization, and memory and computational cost growing only linearly with the number

of elements. At the same time, DGTD schemes retain most of the benefits of FEM:

adaptability of the unstructured meshes and spatial high-order convergence.

1.2 Discontinuous Galerkin Time Domain Survey

In this section, we give a brief overview of the most relevant FEMTD literature, and a

state-of-the-art of the DGTD method, object of this dissertation.

1.2.1 Background

During the 1980s, advances in meshing technology together with the FEM made it pos-

sible to solve Maxwell equations in complex geometries by using an unstructured mesh

based on a tetrahedral tessellation. In this kind of mesh, complex objects, having arbi-

trary curvatures and intricate details, are accurately discretized. This is a major change

from cube-based space partitioning of the previous FDTD method, which appeared in

1966 [1], TLM method in 1971 [2] and FIT proposed in 1977 [3]. This novel approach was

initially applied in two-dimensions (2D) or axis-symmetric problems [4, 5, 6, 7], and later

in three-dimensions (3D) [8, 9, 10], but always to solve Maxwell equations in FD. Typical

applications of FEM in FD are S-parameter calculations, radiation pattern, RCS, etc..

They have shown to be ideal for low-frequency problems, highly resonant structures, and

eigenmode computations. However, time-domain methods, as FDTD, FIT and TLM,

are advantageous to deal with transient fields effects and arbitrary time-signal excitation

(lightning strikes, EMC coupling, UWB antennas), and non-linear behavior of materials

or components, where TD offer a direct and efficient approach.

During the 1990s, a variety of time-domain FEM schemes were proposed [11], these

methods being based on both, Maxwell curl-curl equation, and the hyperbolic system of

curl equations (Ampere and Faraday laws).

The second-order vector-wave curl-curl equation, typically solved by FEM in FD, can

also be solved by FEM in TD. For this, a single field, electric or magnetic, has to be
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computed. The major drawback is that a linear system of equations needs to be solved

at each time step. To reduce the number of time steps, unconditionally an implicit time-

integration schemes, like Newmark-beta, can be used, at the expense of yielding quite

ill-conditioned matrices. This family of methods has been widely studied by Lynch,

Mur, Lee, Gedney, Carpes, Jin et al., [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

Alternatives to the single-field scheme are found by employing the two first-order coupled

Maxwell curl equations, either formulated by considering the electric field intensity E

and the magnetic flux density B (E-B), or the electric field intensity E and magnetic

field intensity H (E-H). These formulations offer certain advantages with respect to the

single-field formulation, such as the possibility of using different expansion functions,

avoiding spurious solutions, or the fact that the first-order time derivatives allow the

use of a conventional leap-frog time-integration method, which do not need to save in

memory previous states. However, they still require to solve a sparse linear system at

each time step, resulting in a computational cost comparable to that of the single-field

scheme.

Current developments of the E-B methods can be found in [23, 24, 25, 26, 27, 28].

For the E-H formulation, two different families can be identified depending on how the

continuity of the tangential components of E and H fields is treated at the interface

between adjacent elements. If the continuity of the tangential components is enforced

in a strong way, we get the classical Continuous Galerkin (CG) methods (which present

the aforementioned limitation arising from the need to solve a linear system per time

step). A second family is found by relaxing the tangential-continuity condition, yielding

the so-called discontinuous Galerkin methods. For them, instead of continuity on the

tangential components, continuous numerical fluxes are defined at the interface, in order

to connect the solution between adjacent elements, in the manner used in FVTD, not

requiring the resolution of a complete linear system at each time step.

The main advantage of DGTD over FVTD is its higher-order approximation in space.

Over other FEM methods in TD the fact that the linear system to be solved becomes

block-diagonal, only requires a single inversion of M square matrices of Q×Q elements

(with M the number of elements and Q the number of basis functions per element) which

can be done frontally at the preprocessing stage, while the larger matrices ('MQ×MQ)

of FEM in TD require the solution of the system at each time step.

DGTD can be seen as a generalization of FVTD (which is a null-order DGTD method)

and also FDTD methods, [29]. Thus, many of the ideas already developed in FVTD

and FDTD can be adapted to DGTD.
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Since the beginning of this century, the number of scientific publications on DGTD

methods applied to CEM have been growing linearly, becoming a very active area of

research. The efforts on the application of DGTD methods to solve Maxwell equations

have followed two main different directions:

• Analysis of the different alternatives or improvements offered by the DGTD tech-

nique, and analysis of the method itself.

• Development of the capabilities and applications of the method, either adapting

those of FDTD or FVTD, or developing new ones to prove the applicability of the

method to real applications.

1.2.2 Analysis, Improvements and Alternatives of the Discontinuous

Galerkin Methods

Discontinuous Galerkin techniques have been broadly used in other disciplines. The

analysis, improvements, and alternatives of DG methods can be found mainly in the

mathematics community. Most authors referred to in this subsection belong to this

community.

The first DG method was introduced in 1973 by Reed and Hill [30] in the framework of

neutron transport. Lesaint and Raviart [31] were the first to place this method on a firm

mathematical basis. Since then, there has been an active development of DG methods for

hyperbolic and nearly hyperbolic problems. In the case of linear equations, the nature of

the method has been rigorously analyzed by Johnson and Pitkäranta [32], Richter [33],

Peterson [34], and Bey and Oden [35]. For nonlinear equations, a major development

was made by Cockburn, Shu and collaborators, in a series of papers [36, 37, 38, 39, 40], in

which they established a framework for easily solving nonlinear time-dependent hyper-

bolic conservation laws using explicit, nonlinearly stable high-order Runge-Kutta time

discretizations (RKDG). In 1997, Bassi and Rebay [41] introduced a DG method for the

Navier-Stokes equations, in Computational Fluid-Dynamics (CFD), and in 1998, Cock-

burn and Shu [42] introduced the so-called Local Discontinuous Galerkin (LDG) meth-

ods, extending their approach to deal with time-dependent scalar advection-diffusion

equation, and suggested how the approach could be applied to the Navier-Stokes equa-

tions, which generalize the original DG method of Bassi and Rebay. Around the same

time, Oden and Bauman [43] introduced another DG method for diffusion problems and

many other authors, since then, started to apply DG in CFD.

Lowrie et al. [44, 45] considered the space-time discontinuous Galerkin, which involves

discontinuous elements in both time and space. In [45] a Fourier analysis of the scheme
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was performed which shows a ”super-convergence” property; i.e., the evolution error is

O
(
h2p+1

)
if the order of the polynomial space used is p while h is a measure for the

size of elements. This property prompted Hu et al. to apply DG methods to advection

and linearized Euler equations, in computational acoustics, in [46] and continue the

analysis of DG applied to wave-propagation problems in [47, 48]. These researchers

studied the dissipation, dispersion, and anisotropy of the errors introduced by the space

discretization in the wave-propagation problem. The results of these analyses can be

easily extended to the electromagnetic case.

Since 2002, DG methods have begun to find their way into CEM. Kopriva et al. [49],

Perugia and Schötzau [50], and also Houston [51], or even Cockburn, Li and Shu [52]

proposed and tested methods in 2D, applied to simple numerical cases, where high-order

convergence of the semi-discrete spatial schemes were proved. However, it was Hesthaven

and Warburton in [53] who established the basis for lengthy analyses that were performed

before. For this, they employed nodal basis functions, upwind fluxes, and Runge-Kutta

time-integration schemes. These authors analyzed the eigenvalue problem [54], finding

results similar to those of Hu for the advection equation. The important point was

that non-physical solutions (spurious modes) appear with a centered flux-evaluation

scheme. These spurious modes are dissipative in case upwind flux or penalty terms

were considered, which are typical in DG methods for other applications. Warburton

and Embree give more details on this topic in [55], and Ainsworth et al. in [56, 57] and

Grote et al. in [58] investigated the properties of interior penalty discontinuous Galerkin

method considering the second-order wave equation.

Some convergence analyses were performed, also including the effect of the time-integration

scheme, by Chen, Cockburn, and Reitich in [59] and Sármány et al. in [60]. Chen pro-

posed the so-called mth-order, m-stage Strong Stability Preserving Runge-Kutta (SSP-

RK) scheme for the time marching. The idea is relating the time-integration order to

the spatial order, so that high-order convergence is assured. Sármány made an in-depth

study of the dispersion and dissipation errors of this scheme in [60].

A 3D scheme based on vector-basis functions in tetrahedral elements, non-dissipative

centered-flux evaluation, and second-order leap-frog scheme for advancing in time, was

introduced and analyzed by Fezoui et al. in [61]. Cohen et al. in [62] used a similar

scheme but with non-structured hexahedral meshes in order to save memory and also

introduced a local time-stepping scheme for leap-frog time integration. Cohen and Du-

ruflé in [63], and later Montseny et al. in [64] followed the same approach, but they

introduced dissipative terms in order to improve accuracy, reducing the spurious modes

present in centered flux schemes. Non-conforming locally refined grids were introduced
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in this scheme by Canouet et al. in [65]. Fahs et al. thoroughly analyzed this technique

in 2D and 3D in [66, 67, 68], and the use of curvilinear elements in 2D in [69].

Concerning the time integration, Runge-Kutta (RK) (traditionally used in CFD) and

Leap-Frog (LF) are the most commonly used schemes, although other ones have been

proposed and analyzed. Two main issues should be borne in mind when choosing a time

scheme: (i) once arbitrary high-order accuracy in space is provided by DG, arbitrary

high-order accuracy in time should be desirable; and (ii), local refinement of unstructured

meshes can lead to very restrictive and diverse time steps, in order to preserve the

stability of explicit time-integration schemes.

In relation to (i), Hesthaven and Warburton have made a detailed analysis of DGTD with

RK schemes in their book [70]. Diehl et al. in [71] compared different multi-step Low-

Storage Runge-Kutta (LSRK) methods of different orders. Chen, as mentioned above,

introduced the SSP-RK scheme with the idea of attaining high-order accuracy in time,

as well as in space. Dumbser et al. [72] introduced an arbitrary high-order scheme in

the spatial part (ADER-DG), that can be implemented together with RK methods [70].

The ADER scheme can also be used for the time integration, as an alternative to RK,

as proposed by Taube et al. in [73]. This method provides high-order accuracy in time,

using a single-step advancing algorithm, which does not require an intermediate-stage

calculation, as RK schemes do. In the case of LF methods, high-order in time, referred

to as LFN , was developed by Fahs in [74]. The implicit Crank-Nicolson time-integration

scheme was applied to DGTD by Catella et al. in [75]. Afterwards, Dolean et al. in

[76, 77] applied the same approach but locally, proposing a hybrid explicit-implicit time-

integration scheme. Another possibility, quite similar to LF, known as symplectic time

schemes originally developed for the numerical time integration of dynamical Hamilto-

nian systems [78] (molecular dynamics, astronomy, etc.), were introduced to CEM and

applied to the DGTD method by Piperno, [79, 80]. Piperno developed both solutions,

a locally implicit symplectic scheme and a multi-scale fully-explicit symplectic scheme.

Concerning the latter (ii) issue, there are basically two directions to cure this efficiency

problem. The first one consists of using a Local Time-Stepping (LTS) algorithm com-

bined with an explicit time-integration scheme, while the second approach relies on the

use of an implicit or a hybrid explicit-implicit time-integration scheme. LTS strategies

were introduced firstly by Flaherty et al. [81]. They have been also been tested by

Canouet et al. in [65] and Montseny et al. in [64].

Finally, structured and unstructured mesh-domain decomposition has been explored by

Davies et al. in [82] using triangles and cartesian elements in 2D. This idea has also

been tested in 3D, in the Finite Volume Time-Domain (FVTD) context, hybridized
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with FDTD in [83] by Edelvik and Ledfelt, splitting the geometry into regions of hexa-

hedral and tetrahedral elements, geometrically coupling all these regions with pyramidal

elements. A hybrid approach DGTD/FDTD was also discussed by Garcia et al. in [29].

1.2.3 Capabilities and Applications of Discontinuous Galerkin Time

Domain Methods

The extension of ideas already developed for FVTD, which can be seen as an 0th order

DGTD, and FDTD, has allowed the vigorous development of DGTD during the last

decade, and its application to the analysis of numerous electromagnetic problems. Some

of them are summarized below.

Absorbing boundary conditions

The truncation of the space to deal with open/radiation problems or port terminations

is a key point of all TD methods. Many techniques have been studied in depth in the

FDTD context, applied to FVTD, and can be straightforwardly extended to DGTD.

Firstly, Mohammadian, Shankar and Hall in [84, 85] proposed the simplest Absorbing

Boundary Condition (ABC) in the FVTD context, which simply sets the incoming flux

to zero, also known as first-order Silver-Müller ABC (SM-ABC). Kabakian in 2004, with

Shankar and Hall, [86], extended this idea to DGTD and applied the method to antenna

and scattering problems. The very well-known truncation technique, Perfectly Matched

Layer (PML), widely used in FDTD, was introduced to DGTD by Xiao in 2005, [87],

formulated on the cartesian coordinates. The Uniaxial PML (UPML) family has been

widely studied in the FDTD, [88, 89, 90, 91] and they are very appropriate for FVTD

and DGTD. The objective is to have a conformal PML layer in order to reduce the

computational domain. They have been successfully tested in FVTD by Sankaran et

al. in [92, 93, 94], and also used together by the same authors with SM-ABC with non-

additional computational cost. Dosopoulos et al. in [95] formulated UPML in DGTD

context for any conformal PML layer. Other implementations of UPML, based on the

cartesian coordinates, are, Lu et al. in [96] and Niegemann et al. in [97], in 2D, and

Gedney et al. in [98] in 3D using the so-called complex-frequency shifted PML in [99]. A

noteworthy analysis performed by Niegemann et al. of their 2D version appears in [71].

The typical implementation, in all cases, is based on the Auxiliary Differential Equation

(ADE) method.

Materials and sub-cell models

In 2004, Lu et al. [96], used also the ADE method to handle material-dispersion proper-

ties in 2D. Same authors in [100] applied the method to the Ground-Penetrating Radar

(GPR) in dispersive media, and the same approach is used in [97, 101] by Stannigel and



Chapter 1. Introduction and Previous Work 10

Niegemann et al., to study nano-photonic systems and metallic nanostructures, also in

2D. König in [102] developed the formulation for the 2D case for the anisotropic mate-

rial case. Thin-layer sub-cell models can be naturally modelled in FVTD and, therefore,

in DGTD. Mohammadian et al. in [85] introduced resistive sheets and impedance sur-

face models in FVTD. Following the same idea, Pebernet et al. in [103] proposed a

low-frequency resistive model for thin composite materials in DGTD. Recently, Chun et

al. in [104, 105] developed high-order accurate thin-layer approximations for DGTD for

general metal-backed coatings and thin transmission layers. Concerning the thin-wire

sub-cell models, Pebernet et al. in [103], and very recently Gödel in [106], introduced

the traditional approximation, widely used in FDTD, to DGTD methods. Dosopoulos

et al. developed models for lumped elements in [107].

High performance computing

DGTD method employs locally implicit, globally explicit space operator that provides

an efficient high-order accurate time-dependent solution. This fact makes algorithms

based on DGTD methods ideal for their implementation in highly parallel environments.

Bernacki et al. in [108, 109] showed a parallel implementation based on mesh partitioning

and message passing, demonstrating a good parallel speedup. Klöckner et al. in [110]

implemented a DG method to run on off-the-shelf massively parallel Graphics Processing

Units (GPU). Dosopoulos et al. in [95] showed the efficiency of the method, solving

electrically large electromagnetic problems as a complete aircraft.

Real applications

With all the above features, many EM problems have been addressed by DGTD methods.

In 2004, Kabakian et al. [86] used DGTD to deal with antenna and Radar Cross-Section

(RCS) EM problems. In 2005, Ji et al. studied 2D waveguide-coupled microring res-

onators in [111], and Lu et al. in [100] applied the method to GPR. In both cases,

high-order accuracy is desirable so DGTD proved superior to the traditional FDTD.

Chauvière et al. in 2006 [112], discussed computationally efficient ways of accounting

for the impact of uncertainty, e.g., lack of detailed knowledge about sources, materials,

shapes, etc., in computational time-domain electromagnetics, using DGTD in his anal-

ysis. Shi et al. in [113] simulated left-handed media in DGTD. Again, Ji et al. in 2007

[114], studied the cross-sections of coupled nanowires. In 2008, Pebernet et al. [103]

applied the DGTD method to EMC problems. In 2009, Niegemann, König, Stannigel

and Busch [97, 101] used DGTD method to study nano-photonic systems, and metallic

nanostructures. In 2010, Songoro et al. reviewed the main ideas of the DGTD method

in [115]. Finally, at the beginning of 2011, ANSYS released the first commercial software

based fully on the DGTD method.
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1.3 Motivation behind this work

This work was developed within the framework of several research projects in which the

Applied Electromagnetics Group of the University of Granada (UGR) participated with

Cassidian and Airbus Military (EADS), between 2008 and 2013. The project HIRF-

SE deserves special mention [116] supported by the 7th Framework Programme of the

European Union, led by Alenia Aeronautica with a total cost of over 23 MEuros, and

with the participation of 44 partners, including all major aeronautics companies and

academic institutions across Europe. This project has been focused on the development

of a synthetic framework for the integration and validation of mature numerical solvers

in CEM, to deal with the EMC assessment of air vehicles under HIRF conditions. The

author of this PhD dissertation, in conjunction with the dissertation advisors from the

UGR team, has been responsible for developing a high-performance parallel computer-

simulation tool based on the FDTD method, including all major state-of-the-art en-

hancements (subcell extensions, cable-bundle treatments, surface-impedance treatment

of composite materials, etc.), and its validation with measurements and other methods

provided by other partners. The tool built so far (UGRFDTD [117]) has passed all the

validation steps, and is being proposed as a simulation tool suitable to replace certain

tests in the HIRF certification of an air vehicle.

Since the FDTD method was firstly proposed by Yee in 1966 [1] for solving Maxwell

equations, it has become undoubtedly the most widespread method among physicists

and engineers, due to its simplicity and flexibility to deal with real problems. However,

its inability to effectively handle complex geometries, due to stair-casing error, and the

limitations in the accuracy (second order in space and time), prompted some scientists

to search for alternatives long ago, the FE being the obvious alternative. Among all the

schemes based on FE in the literature, DGTD approaches offer most of the advantages

of FDTD: spatial explicit algorithm, simplicity, easy parallelization, and memory and

computational cost growing linearly with the number of elements. In addition, DGTD

schemes retain most of the advantages of FE: adaptability of the unstructured meshes,

and spatial high-order convergence, enabling problems to be dealt with where the re-

quired precision varies over the entire domain, or when the solution lacks smoothness.

For these reasons, this dissertation has been focused solely on the DGTD method, with-

out including the developments made in FDTD, given that the latter is a rather mature

technique thoroughly described in the literature, while DGTD is still in its consolidation

phase, relatively novel in CEM, and still undergoing fundamental developments to reach

the maturity level of methods like FDTD.
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In any case, some of the FDTD developments made in parallel during this PhD, have led

to pioneer publications2, in collaboration with several international groups. In particu-

lar, those related to the development of new numerical models, such as a novel surface-

impedance boundary condition in [P4], modeling of graphene devices in [P9], and the

excitation of waveguides in Crank-Nicolson FDTD in [P15]. Other publications have

sought to show the applicability and validation of the FDTD method in real engineering

problems, such as [P8] in which some guidelines are reported for the generation of finite-

difference meshes, guidelines for the application of FDTD in the aerospace industry in

[P27], some validations comparing simulation and measurements in [P2,P12,P18,P22],

and a wide cross-comparison between different CEM methods and tools applied to a

complex geometry (a full aircraft), presented in [P21, P23]. Special mention deserves

some previous work of the author in the CEM field, specifically in Boundary Element

Methods (BEM). In particular, the participation in the development of a state-of-the-

art electromagnetic code (HPTESP-MAT), which is a fully industrialized Cassidian and

Airbus Military MoM tool, with Multilevel Fast Multipole Algorithm (MLFMA), and

the contribution to a hybrid method in FD, combining FEM, MoM and PO, published in

[P16, P31, P32]. Finally, it should be stressed that many ideas presented in this disser-

tation have benefited from the challenges faced during the development of UGRFDTD,

and comparisons with results found with this code, as well as frequent references to this

method, are included throughout this manuscript.

In this dissertation, a detailed description is given for the development, analysis, imple-

mentation, and application of a discontinuous Galerkin formulation, employing a leap-

frog time-integration scheme, and arbitrary order vector-basis functions in unstructured

meshes based on curvilinear tetrahedra. The simplicity of the time-integration method

has enabled the application of an efficient local time-stepping strategy. The generality

and flexibility of the resulting method permits its application in a wide variety of elec-

tromagnetic problems such as microwave devices, antenna modeling, radar cross-section

estimation, electromagnetic coupling, etc.. This technique has been implemented to be

executed in modern and powerful parallel computers, providing good scalability perfor-

mances. The capability of dealing efficiently with large differences in the element size,

thanks to the LTS, and maintaining the accuracy level throughout the computational

domain (by selecting different orders of the basis functions at each element), makes the

Leap-Frog Discontinuous Galerkin (LFDG) a promising method, which combines the

advantages of time-domain and finite-element methods. Moreover, the limitations of

the LFDG method have also been assessed, opening new paths and broadening current

knowledge in computational electromagnetics.

2In what follows, the publications derived from this dissertation will be numbered by prepending the
charater P to the reference number [Pxx].
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The method developed during this work has been implemented in a Fortran code called

SEMBA. This code is a fully parallelized (OMP-MPI) computational tool that has been

successfully applied to the above-mentioned kinds of problems. The resulting tool fills

a technological gap in computational electromagnetics, overcoming certain limitations

of the traditional time-domain methods (FDTD, TLM or FIT). In particular, these

include the stair-casing problem, which limits the geometrical discretization and the

anisotropy of the errors, and the poor convergence rate of the spatial discretization of

the electromagnetic fields.

Several publications have resulted from this work (others are still under submission

or in preparation). Some of these papers have been aimed at analyzing the DGTD

method and establishing the basis of the LFDG algorithm. In [P11] the topic of spurious

modes in the DG context is revisited, this analysis being extended to the analysis of

convergence, anisotropy of the errors, and computational cost of the LFDG in [P5]. The

LTS strategy for the LFDG method is described in [P6], and a novel casual LTS algorithm

for RK and LF is presented in [P3]. The formulation of the Conformal Uniaxial Perfectly

Matched Layer (C-UPML) is stated in [P7], the source and boundary implementation

in centered/upwind nodal/vector basis formulations of DGTD is described in [P14,P28],

and a hybrid approach FEMTD and DGTD was presented in [P29]. Concerning the

application of DGTD methods to real engineering problems, the LFDG algorithm is

applied in [P6] to antennas, in [P11] to waveguide filters, in [P7,P17] to the estimation

of HIRF transfer functions compared to FDTD, in [P13] to GPR, and in [P1,P19] to

RCS computation. Finally, the applicability of the LFDG compared to FDTD in the

aeronautic industry is presented in [P20,P24,P25,P26].

1.4 Organization of the manuscript

The rest of this manuscript is organized as follows. Chapter 2 briefly reviews the fun-

damentals of the finite-element methods for their application to time-domain schemes.

The bases for the implementation of a FEMTD method are drawn, considering the use

of vector-basis functions in tetrahedral elements. The most relevant FEMTD methods

are also reviewed.

Chapter 3 firstly presents the proposed spatial discretization scheme, which is based on

the DG method. The semi-discrete form is formulated in a general framework, which

unifies different flux-evaluation schemes successfully applied to DG methods. The main

electromagnetic capabilities, which have been developed for this method in 3D, are

described, such as boundary-conditions treatment, anisotropic materials, and absorb-

ing boundary conditions; the first-order Silver-Müller ABC, and the conformal uniaxial
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perfectly matched layer. Then, temporal integration schemes are applied to the semi-

discrete DG formulation (RK and LF). The leap-frog discontinuous Galerkin algorithm

and the proposed local time-stepping strategy are described in detail.

In Chapter 4, the spatial semi-discrete scheme and the LFDG algorithm are studied, an-

alyzing numerical dispersion and dissipation, spuriousness, stability, and the anisotropy

and convergence of the errors. The high-order convergence property of the DG semi-

discrete scheme is proven, finding the limits of the LFDG algorithm. A final assess-

ment of the computational cost vs. accuracy is performed, and compared to the FDTD

method.

Chapter 5 validates the LFDG method with microwave filters, antennas, scattering, and

electromagnetic compatibility problems, comparing the results with measurements and

other numerical techniques. Some important properties of the method are shown, such

as robustness, stability, versatility, efficiency, scalability, and accuracy.

Chapters 6 and B summarize the main conclusions of this dissertation and the future

lines of research and development.

Appendix A offers a description of the SEMBA simulation tool, which has been im-

plemented during this work considering High Performance Computing (HPC) concepts,

and validated in Chapter 5 with large and complex electromagnetic problems. Finally,

some information is included on the author of this dissertation, a list of his publications,

and his curriculum vitae.



Chapter 2

Finite-Element Time-Domain

Methods: Fundamentals

Finite-element methods, to solve general EM problems, have been traditionally used in

the FD. Today, modern computation and memory resources enable FEM to be applied

to real problems in the TD. Finite-element time-domain methods offer some major ad-

vantages over the classical approaches to TD computation in CEM; FDTD, FIT and

TLM. Firstly, the use of unstructured grids offers superior versatility in geometry dis-

crimination, and permits the application of mesh refinement (h-refinement) to increase

and control accuracy. Secondly, the Faedo-Galerkin procedure, used to develop the weak

statement [11], provides a natural way to deal with continuity conditions at material in-

terfaces, material properties such as anisotropy, different sources, etc.. Finally, the use

of Galerkin formulation provides an immense variety of different choices, related to basis

functions (p-refinement), including the use of different finite elements in the same mesh

(e.g. tetrahedra, pyramids, and hexahedra) or non-conforming meshes.

The disadvantages compared to FDTD (or FIT and TLM) are mainly operative features.

The increment in complexity of the algorithms makes it more difficult to apply some

computational acceleration techniques, such as vectorization, cache management, or

parallelization, which are very effective in FDTD. Moreover, in the case of analyzing

large and complex geometries, such as an aircraft, the generation of meshes requires more

simplified geometry for finite elements than for finite differences. Thus, the defeaturing

or geometrical cleaning process, prior to the mesh generation, is much more difficult for

FE, making the simulation setup more time consuming. Once the cell size, related to

the accuracy and the minimum wavelength analyzed in the problem, is chosen, a finite

difference mesher parses out what is electrically irrelevant, compared to the cell size, and

15
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naturally simplifies the geometry. However, a FE mesher meticulously tries to resolve

every detail, even irrelevant ones, from an electrical standpoint.

This chapter lays the basis for dealing with 3D Maxwell equations in the TD making

use of FE methods. Then, the most relevant FEMTD approaches for electromagnetic

modeling are reviewed.

2.1 Space Discretization

The numerical representation of a domain Ω under analysis by idealized cells determines

how well that volume can be approximated (curvature, location, interfaces, etc.) with

the materials and different objects inside. Any numerical analysis is limited by the

geometrical discretization.

Scalar mappings to define curved shapes are widely used in connection with the finite-

element solution of differential equations [118, 119, 120, 121, 122]. In this study, unstruc-

tured conforming meshes based on tetrahedral cells are used for the spatial discretization

of the geometries. For these, each of the four faces of a tetrahedron coincides exactly

with the face of some other tetrahedron. Non-conforming meshes relax this condition,

and have also been used in DG methods to add flexibility in the discretization of complex

domains or heterogeneous media. A detailed description of these approaches appears in

[65, 66, 67, 68].

With the application of scalar mapping, the local coordinate system (L1, L2, L3, L4,

with L1 + L2 + L3 + L4 = 1) is mapped to the global coordinate system (x, y, z),

by making use of Lagrangian expansion functions. In tetrahedra the reference cell has

the following vertices: V1 ≡ (0, 0, 0), V2 ≡ (1, 0, 0), V3 ≡ (0, 1, 0), V4 ≡ (0, 0, 1). For

the straight tetrahedron, the geometric transformation needs four first-order Lagrange

polynomials. If the tetrahedron is curved, the mapping from the reference one to real

cells makes use of Lagrange polynomials of higher orders. Higher-order cells provide

better accuracy, and permit larger mesh cells.

The mapping expressions are the following

x =

Nn∑
i=1

xiBi (L1, L2, L3, L4), y =

Nn∑
i=1

yiBi (L1, L2, L3, L4), z =

Nn∑
i=1

ziBi (L1, L2, L3, L4)

(2.1)

where (xi, yi, zi) are the node cartesian coordinates of the real tetrahedron and Nn the

number of Lagrange functions (4 for first order, 10 for second order, 20 for third order,

...) [118].
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Figure 2.1: Mapping from the reference tetrahedra to the real cells for first (O1),
second (O2) and third (O3) orders.

It is important to note that the same expressions can be used for mapping from the

reference triangle to each curved face of the tetrahedron; just one of the four local

tetrahedron coordinate will be zero, depending on the face.

The specific expressions for the tetrahedral cell in local coordinates for the biquadratic

mapping are

B1 = (2L1 − 1)L1 B6 = 4L2L3

B2 = (2L2 − 1)L2 B7 = 4L1L3

B3 = (2L3 − 1)L3 B8 = 4L1L4

B4 = (2L4 − 1)L4 B9 = 4L2L4

B5 = 4L1L2 B10 = 4L3L4

(2.2)

Let us recall some differential geometry basic concepts which will be needed for our

purposes. The Jacobian matrix is defined as

J =


∂x
∂L1

∂y
∂L1

∂z
∂L1

∂x
∂L2

∂y
∂L2

∂z
∂L2

∂x
∂L3

∂y
∂L3

∂z
∂L3

 (2.3)
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With it, the differential operator in the real coordinate system can be expressed as
∂
∂x
∂
∂y
∂
∂z

 = [J ]−1


∂
∂L1

∂
∂L2

∂
∂L3

 (2.4)

The differential volume in the real coordinate system is evaluated by making use of the

determinant of the Jacobian matrix,

dV = dxdydz = |J | dL1dL2dL3 (2.5)

The normal vector to one face of the tetrahedron can be expressed as the following

example for the face 3 (L3 = 0),

n̂ =
∇L1 ×∇L2

|∇L1 ×∇L2|
=

(
∂x

∂L1
x̂ +

∂y

∂L1
ŷ +

∂z

∂L1
ẑ

)
×
(
∂x

∂L2
x̂ +

∂y

∂L2
ŷ +

∂z

∂L2
ẑ

)
|∇L1 ×∇L2|

(2.6)

and the differential surface area is

dS = |∇L1 ×∇L2| dL1dL2 (2.7)

The magnitude of the cross product (2.6) plays the same role as the determinant of the

Jacobian matrix for the differential volume.

|∇L1 ×∇L2| =√(
∂y

∂L1

∂z

∂L2
− ∂z

∂L1

∂y

∂L2

)2

+

(
∂z

∂L1

∂x

∂L2
− ∂x

∂L1

∂z

∂L2

)2

+

(
∂x

∂L1

∂y

∂L2
− ∂y

∂L1

∂x

∂L2

)2

(2.8)

In this work, second-order (O2) tetrahedral cells have been used for the space discretiza-

tion. This kind of cells permits the discretization errors to be reduced in typical cases,

such as coaxial cables or double curved surfaces, compared to the commonly used straight

or first-order cells. In those kinds of problems, the space-discretization errors are critical

for the accuracy of the electromagnetic solution. Commercial software able to generate

good-quality second-order tetrahedral meshes is available [123].
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2.2 Vector-Fields Discretization

Two main families of basis functions, scalar and vector, have been generally proposed

to solve electromagnetic problems with finite-element methods. In both cases, different

piecewise polynomials are used to form the 3D vector space of order p to approximate

and test the space dependence. The typical choice, in the case of scalar basis, is the use of

Lagrange polynomials, giving rise to nodal finite elements. It is well known that when a

straightforward nodal continuous Galerkin finite-element scheme is used to approximate

Maxwell curl-curl equation in the frequency domain, nonphysical or spurious solutions

appear [124, 125]. The cause of these is the impossibility to guarantee zero divergence

in the solution of the curl-curl equation, not approximating the complete set of Maxwell

equations (electric and magnetic Gauss’ laws) [126, 127, 128]. To overcome the problem

of spurious modes, special vector-curl-conforming basis [129, 130] have been proposed

[126].

Currently, the dominant approach for finite-element frequency-domain methods is based

upon curl-conforming elements, also known as Nédélec or edge elements [20, 131]. This

approach guarantees weakly zero-divergence solutions. The main advantages of curl-

conforming basis in FEM, frequency domain, and continuous Galerkin are: (i) the

schemes are free of spurious solutions, (ii) boundary conditions are easy to implement,

(iii) normal discontinuity and tangential continuity between different media are auto-

matically satisfied, and (iv) the behavior is better in non-convex domains than nodal

scalar basis [132]. The main disadvantage is found in large problems with a high number

of degrees of freedom, where more ill-conditioned matrices result with curl conforming.

This drawback can be improved with the use of potentials or Lagrange multipliers, but

the number of unknowns increases by the presence of these scalar functions [133]. An-

other approach has been recently proposed in [134] based on nodal elements and the

regularized Maxwell equations. The advantages of this approach are that it provides

spurious-free solutions with well-conditioned matrices and, moreover, only the three

components of the electric (or magnetic) are the unknowns. A comparison of the latter

with the traditional approach (curl-conforming elements and curl-curl equation) appears

in [135].

In DG methods, there are two important differences to bear in mind, compared to CG

methods:

(a) The nature and solutions of the spurious modes in continuous and discontinuous

Galerkin approaches is different, and the lessons learned with the continuous case

are not straightforwardly extrapolated to the discontinuous case.

Spurious modes or non-physical solutions topic were analyzed in [54], based on
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nodal scalar functions. The conclusion was that spurious modes are not a problem

if upwind-flux evaluation, penalty or stabilization with purely dispersive terms,

are introduced into the formulation. In case that straightforward centered fluxes

are used, spectral pollution due to the presence of non-physical spurious modes is

found. Similar results have been reported in [64], also with nodal scalar functions,

where penalization of the centered fluxes by dissipative terms have also been in-

troduced to find more accurate results. In this dissertation, a similar analysis was

made (see Section 4.1.1) with vector-basis functions, giving similar results.

(b) The DG method needs only the inversion of M small matrices of Q×Q elements

(with Q the number of basis functions per element), while larger matrices ('
MQ×MQ) are involved in continuous Galerkin. Therefore, no difficulties related

to ill-conditioned matrices are expected in discontinuous methods.

Due to these two facts, it is not clear which kind of basis functions presents more

advantages or disadvantages, and both families have been successfully applied in DG

context, scalar [108] and vector [136] basis. In both cases, spurious modes can be

avoided, applying the same strategies. From an implementation standpoint, both kinds

of basis functions have advantages. In terms of matrix sharing between elements to save

memory, both sets of functions have matrices which are identical, regardless of the cell

size and aspect ratio, and can be shared among elements during the updating algorithm.

Some matrices, on the other hand, are different and need to be kept in memory for each

element. Consequently, there is no clear advantage for nodal- or vector-basis functions,

as there is for FEM in frequency domain.

In any case, in this work, the vector basis was used and, more specifically, hierarchical

high-order vector-basis functions, [136, 137, 138], which present some implementation

advantages in order to reduce computation and memory requirements.

2.2.1 Mapping Vector-Basis Functions to Curvilinear Elements

As noted above, vector-basis functions, hierarchical high-order ones in our case, are used

to discretize the vector fields (E and H). As has been introduced in Section 2.1, second-

order tetrahedra will be used for space discretization. Expressions (2.1) and (2.2) will

be used to map the reference cell to the curvilinear and real one. In the same way, a

local mapping has to be established for the basis functions [125].

Let the reference cell be defined by local coordinates, (L1, L2, L3, L4) with L1 +L2 +L3 +

L4 = 1, and the specific mapping in (x, y, z) space as (2.1). To define and manipulate
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vector quantities within a curvilinear cell, we introduce the base vectors

li =
∂x

∂Li
x̂ +

∂y

∂Li
ŷ +

∂z

∂Li
ẑ with i = {1, 2, 3} (2.9)

and the reciprocal base vectors

l′i = ∇Li =
∂Li
∂x

x̂ +
∂Li
∂y

ŷ +
∂Li
∂z

ẑ with i = {1, 2, 3} (2.10)

Note that the reciprocal base corresponds to the gradient of the local coordinates, and

both notations (l′i, ∇Li) are used indifferently.

In general, neither the base vector nor the reciprocal one are mutually orthogonal within

an element. Even the three vectors of each base are not orthogonal. However, they

always satisfy two important properties:

li · l′i = 1 with i = {1, 2, 3} (2.11)

li · l′j = 0 with i = {1, 2, 3} and j = {1, 2, 3} being i 6= j (2.12)

These properties enable us to express any vector B as a linear combination of any of

the two bases, just projecting that vector over the other base,

• covariant components of a vector

B =
3∑
i=1

(B · li) l′i (2.13)

• contravariant components of a vector

B =

3∑
i=1

(
B · l′i

)
li (2.14)

There are two kinds of vector-basis functions, known as div-conforming and curl-conforming.

Div-conforming basis functions keep a known value of the normal component at the

boundaries of the elements, being unknown the tangential components and depending

on the element aspect. In the case of curl-conforming, the tangential component at the

faces of the elements are known, independently of the element shape. Curl-conforming

basis functions are used when the curl operation of the discretized fields is necessary to

be evaluated, and div-conforming in the case of divergence operation. In our case, ∇×E
and ∇×H will be evaluated, so curl-conforming basis functions is the right choice.
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When a curl-conforming basis function is being constructed on a element, the appropriate

mapping is given by 
Bx

By

Bz

 = J−1


B∇L1

B∇L2

B∇L3

 (2.15)

J being the Jacobian matrix defined by (2.3).

Therefore, we need to define our basis functions expressed in covariant components. The

curl operation can be expressed also considering the covariant components of the basis

functions as

∇×B =
1

|J |

[(
∂B∇L3

∂L2
− ∂B∇L2

∂L3

)
l1 +

(
∂B∇L1

∂L3
− ∂B∇L3

∂L1

)
l2 +

(
∂B∇L2

∂L1
− ∂B∇L1

∂L2

)
l3

]
(2.16)

this giving a vector expressed in contravariant components. Thus, the right mapping

for curl operation is the following
∇×B|x
∇×B|y
∇×B|z

 = JT


∇×B|l1
∇×B|l2
∇×B|l3

 (2.17)

To summarize, defining vector-basis functions in covariant components, which is the

usual approach [138], and making use of Equations (2.5), (2.7), (2.15), (2.16) and

(2.17), we find that all the calculations to evaluate volumetric and superficial integrals,

needed in any FEM implementation, can be performed in the local coordinate system

(L1, L2, L3, L4).

2.3 Finite-Element Time-Domain Methods

The general procedure to develop numerical schemes for FEMTD is based on Faedo-

Galerkin weak solutions of the 3D Maxwell equations, supplemented with boundary

conditions, assuming that space-time variables can be separated. It can be applied to

both, the hyperbolic system of the two curl equations, and the vector-wave equation.

From this perspective, different approaches have been proposed [11], and the most rele-

vant for this dissertation are reviewed in this section.
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2.3.1 Single-Field Schemes

These schemes solve the second-order vector-wave equation, also known as double-curl

or curl-curl Maxwell equation [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. Let us assume

a material region Ω characterized by the electric permittivity tensor ¯̄ε and the magnetic

permeability tensor ¯̄µ (taking it lossless, electric and magnetic conductivity equal to

zero, for simplicity). The electric field E (a dual formulation could be expressed for H)

within the domain obeys the vector-wave equation given by

∇×
(
¯̄µ−1∇×E

)
+ ¯̄ε

∂2E

∂t2
= −∂J imp

∂t
in Ω (2.18)

where J imp accounts for the impressed currents.

The most common boundary conditions, perfect electric conductor (PEC), perfect mag-

netic conductor (PMC), and ABC for unbounded media are

n̂×E = 0 on ∂PECΩ (2.19a)

n̂×∇×E = 0 on ∂PMCΩ (2.19b)

n̂× (n̂×∇×E) =
1

c
n̂× ∂E

∂t
on ∂∞Ω (2.19c)

where (2.19c) is the well-known Silver-Müller truncation condition or first-order ABC

in free space.

Equation (2.18), in its variational form, can be expressed as∫
Ω

w ·
[
∇× ¯̄µ−1∇×E + ¯̄ε

∂2E

∂t2
+
∂J imp
∂t

]
dΩ = 0 (2.20)

∀ w ∈ W, being W the test space, and with the usual dot product for
(
L2 (Ω)

)2
.

The Galerkin procedure is the most common approach to obtain the numerical scheme.

It employs the same set of basis functions to expand the unknown vector field E and to

test the equation.

Assuming that Ω is divided into a set of non-overlapping elements, a continuity require-

ment is imposed between adjacent elements. This condition is applied in a strong way,

such that the following relations need to be satisfied,

n̂×E+ = n̂×E− (2.21a)

n̂×
(
¯̄µ−1∇×E

)+
= n̂×

(
¯̄µ−1∇×E

)−
(2.21b)

where the superscript + and − refer to adjacent elements.
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This is normally fulfilled by choosing vector-curl-conforming basis functions, where the

mapping is performed by using a covariant projection, and relating then unknowns

between adjacent elements.

The solution of the problem is a linear combination of the unknowns, and the expansion

functions,

Ẽ =
M∑
m=1

em (t)φm (r) = ET Φ (2.22)

where em are the unknowns and φm the vector-basis functions. E and Φ are column

vectors containing the M unknowns and basis functions, respectively.

Inserting (2.22) into (2.20) and using Φ as test functions, we find a semi-discrete system

of ordinary differential equations (ODE) as

M
d2

dt2
E + SE + J = 0 (2.23)

where

Mij =

∫
Ω

φi · ¯̄εφj dΩ (2.24a)

Sij =

∫
Ω

∇× φi · ¯̄µ−1∇× φj dΩ (2.24b)

Ji =

∫
Ω

φi ·
∂

∂t
J imp dΩ (2.24c)

The main advantage of the scheme (2.23), compared to dual-field schemes later described,

is that only one field has to be computed, which reduces the number of unknowns.

This scheme has two major drawbacks; the time-discretization of the second-order time

derivative requires storage of previous time-step values, and the spatial semi-discrete

scheme is implicit in space. The basis functions force continuity between elements,

because of (2.21), and thus a complete banded linear system of equations has to be

solved at each time step. A solution to find a explicit scheme is to invert the mass

matrix M. However, this can be very costly and the inverse mass matrix is, in general,

full. This makes the scheme non-applicable for electrically large problems.

2.3.2 Dual-Field Schemes

Two main different approaches can be found in the literature. Both solve the two

first-order coupled Maxwell curl equations given by Ampere and Faraday laws. In one

case, the electric-field intensity (E) and the magnetic-flux density (B) are computed
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[23, 24, 25, 26, 27, 28] and, in the other case, are the electric-field intensity (E) and the

magnetic-field intensity (H). In the latter case, both the CG approach [139], and the

DG approach, proposed in this work, can be used.

2.3.2.1 E-B Finite-Element Time-Domain Method

Again, let us take a lossless material region Ω characterized by the electric permittivity

tensor ¯̄ε, and the magnetic permeability tensor ¯̄µ. The electric field E and the magnetic

flux B within the domain obey the first-order coupled Maxwell curl equations given by

¯̄ε
∂E

∂t
= ¯̄µ−1 ∇×B − J imp (2.25a)

∂B

∂t
= −∇×E (2.25b)

with J imp being the impressed. The PEC, PMC, and Silver-Müller ABC now become

n̂×E = 0 on ∂PECΩ (2.26a)

n̂×B = 0 on ∂PMCΩ (2.26b)

n̂× (n̂×E) = c n̂×B on ∂∞Ω (2.26c)

Following the procedure described in [23, 24], let us expand the electric field E is terms

of Whitney edge basis functions (Whitney 1-form) w1
i , i = 1, 2, ...Ne, and the magnetic

flux B in terms of Whitney face basis functions (Whitney 2-form) w2
i , i = 1, 2, ...Nf .

The expression for the unknown fields become

Ẽ =

Ne∑
m=1

em (t)w1
m (r) = ET W 1 (2.27a)

B̃ =

Nf∑
m=1

bm (t)w2
m (r) = BT W 2 (2.27b)

where em and bm are the unknowns, and Ne and Nf are the number of edges and faces,

respectively.

We denote column vectors containing the unknowns as, E = [e1, e2, ..., eNe ]
T and B =[

b1, b2, ..., bNf
]T

, and the sets of basis functions as, W 1 =
[
w1

1, w
1
2, ..., w

1
Ne

]T
and W 2 =[

w2
1, w

2
2, ..., w

2
Nf

]T
.

By inserting (2.27) into (2.25), we realize that the second equation (2.25b) does not need

to be tested (if done, it would become a trivial identity). After testing the first Equation

(2.25a), according to the Galerkin procedure, the result is a semi-discrete system of two
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ODE,

[?ε]
d

dt
E = [d∗curl]

[
?µ−1

]
B − J (2.28a)

d

dt
B = − [dcurl]E (2.28b)

where the Nf × Ne matrix [dcurl] and the Ne × Nf [d∗curl] are (metric free) sparse curl

incidence matrices on the primal and dual grids, respectively, the elements of which

assume only {−1, 0, 1} values. The identity [dcurl]
T = [d∗curl] holds, in general, up to

boundary terms. The incidence matrices fulfill the following expression,

∇×W 1 = [d∗curl]W
2 (2.29)

J column vector corresponds with the source term,

Ji =

∫
Ω

w1
i · J imp dΩ (2.30)

The discrete Hodge matrices [?ε] (size Ne×Ne) and
[
?µ−1

]
(size Nf ×Nf ) in (2.28) are

given by the following integrals,

[?ε]ij =

∫
Ω

w1
i · ¯̄εw1

j dΩ (2.31a)

[
?µ−1

]
ij

=

∫
Ω

w2
i · ¯̄µ−1w2

j dΩ (2.31b)

It is important to notice that this strategy retains conformality to the discrete de Rham

diagram [140], this being the reason to choose B, instead of H as other schemes. This

fact avoids spurious solutions of the form t∇φ, which are present in the single-field

FEMTD [15, 141, 142], particularly restrictive for the use of PML.

The result is a scheme composed by two ODE with two fields as unknowns. Its compu-

tational cost is comparable to the single-field scheme. The Hodge (mass) matrices are

sparse, but not diagonal, and the solution of the associated linear system is the most

computationally intensive part of the scheme. The sparse linear-system solution is re-

quired only for the electric-field update in (2.28a), with (2.28b) being explicit. Therefore,

the size of the linear system to be solved is as large as the single-field scheme.

It is important to note that this scheme involves only first-order time derivatives instead

of the second-order ones of the single-field case. This allows the use of a conventional

LF time discretization which avoids to keep in memory previous states.
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The main drawback of this scheme, as for the single-field case, is that is very costly for

electrically large problems and becomes non-applicable in real problems.

2.3.2.2 E-H Finite-Element Time-Domain Method

Finally, let us take again the same simple lossless material region Ω, with permittivity

¯̄ε and the permeability ¯̄µ. The electric field E and the magnetic field H within the

domain obey the first-order coupled Maxwell curl equations given by

¯̄ε
∂E

∂t
= ∇×H − J imp (2.32a)

¯̄µ
∂H

∂t
= −∇×E (2.32b)

where J imp is the impressed current, source of our problem. Now the boundary condi-

tions, PEC, PMC, and Silver-Müller ABC are

n̂×E = 0 on ∂PECΩ (2.33a)

n̂×H = 0 on ∂PMCΩ (2.33b)

n̂× (n̂×E) = η0 n̂×H on ∂∞Ω (2.33c)

In the same way as in the E-B scheme, the electric and magnetic fields are expanded,

and Equations (2.32) are tested. In this case, the basis function sets for electric and

magnetic fields are the same. Thus, the expressions for the unknown fields, considering

vector-basis functions, take the following form,

Ẽ =
N∑
m=1

em (t)φm (r) = ET Φ (2.34a)

H̃ =
N∑
m=1

hm (t)φm (r) = HT Φ (2.34b)

where em and hm are the unknowns, φm represents the vector-basis functions, and N is

the number of degrees of freedom (dof) or expansion/testing functions. We denote col-

umn vectors containing the unknowns as, E = [e1, e2, ..., eN ]T and H = [h1, h2, ..., hN ]T ,

and the basis functions set as, Φ = [φ1,φ2, ...,φN ]T .

There are two different approaches depending on how the continuity between adjacent

elements is considered. It can be applied in a strong way, as it is in the single-field

scheme, or, otherwise, discontinuity can be allowed across the boundaries, forcing the

flux to be continuous.
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In the first case, where field continuity is forced, an equivalent requirement for the basis

functions such as (2.21) has to be established.

n̂×E+ = n̂×E− (2.35a)

n̂×H+ = n̂×H− (2.35b)

Inserting (2.34) into (2.32), and testing these two equations according to the Galerkin

procedure, we obtain the following semi-discrete system of ODE,

M¯̄ε
d

dt
E = S H − J (2.36a)

M ¯̄µ
d

dt
H = −S E (2.36b)

where

M ¯̄α ij =

∫
Ω

φi · ¯̄αφj dΩ, with ¯̄α = {¯̄ε, ¯̄µ} (2.37a)

Sij =

∫
Ω

φi · ∇ × φj dΩ (2.37b)

Ji =

∫
Ω

φi ·
∂

∂t
J imp dΩ (2.37c)

The mass matrices M ¯̄α are sparse and not diagonal, due to the (2.35) requirement, which

makes it necessary to share the same unknown in adjacent elements. Thus, the scheme

(2.36) is implicit in space and requires the resolution of two linear systems each time

step, making this approach computationally prohibitive for electrically large problems.

In the case that field discontinuity between elements were allowed, basis functions do

not have the (2.35) requirement. Electric and magnetic fields are expanded element

by element, and the solution is not forced to be continuous at the boundaries between

adjacent elements. Instead, continuous numerical fluxes are defined at the interface in

order to connect the solution between them in the manner used in FVTD methods,

which is the main idea of DGTD methods. As described in detail in the next chapter,

two common flux conditions are found in the literature: the centered flux [53], and the

upwind flux [85]. The latter is the one actually employed in FVTD, and in fact, FVTD

can be regarded as a special case of DGTD with this flux, and 0th order (constant)

scalar basis functions [75]. Apart from these two flux conditions, a generalized flux can

be expressed [54, 64] with a parameter that penalizes the jump of the vector tangential

components between the elements.
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The main advantage of DGTD over FVTD is its higher order in space, while over

continuous FEMTD, the advantage resides in the fact that the mass matrices (M ¯̄α)

become block-diagonal, and DGTD needs only the inversion of M square matrices of

Q×Q elements (with M the number of elements, and Q the number of basis functions

per element), while larger matrices ('MQ×MQ) are involved in continuous FEMTD.





Chapter 3

Discontinuous Galerkin

Time-Domain Methods: The

Leap-Frog Discontinuous Galerkin

Algorithm

This chapter begins with a description of the discontinuous Galerkin formulation, in

its semi-discrete form, in a general framework which unifies different flux-evaluation

schemes successfully applied to this method. The problem of dealing with anisotropic

materials in DGTD is also addressed, in a 3D general form, as well as the implementation

of conformal uniaxial perfectly matched layer-truncation conditions. Finally, the fully

discrete form is derived, and the most usual explicit temporal integration schemes are

presented. Full details are provided for the leap-frog discontinuous Galerkin algorithm,

and a specific local time-stepping strategy.

3.1 Discontinuous Galerkin Formulation

Maxwell curl equations in three-dimensions (R3) for heterogeneous isotropic linear media

without sources are

µ
∂H

∂t
= −∇×E − σmH (3.1a)

ε
∂E

∂t
= ∇×H − σeE (3.1b)

31
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with electric permittivity ε (r), electric conductivity σe (r), magnetic permeability µ (r)

and magnetic conductivity σm (r), all possibly varying in space.

Let Ω be a bounded finite region of R3 for which the boundary is ∂Ω, where a numerical

solution of Equations (3.1) is intended to be computed. The domain Ω is subdivided into

M non-overlapping and conformal cells (tetrahedra, as described previously in Section

2.1) which make up the computational domain, ΩM . The mth cell is defined by the

volume Tm, the boundaries ∂Tm, and the electric and magnetic parameters (ε (r), σe (r),

µ (r) and σm (r)).

Ω ' ΩM =
⋃
M

Tm (3.2)

Let us define, the local inner product, and norm at each finite element Tm as

〈u,v〉Tm =

∫
Tm

u · v dv, ‖u‖2Tm = 〈u,u〉 (3.3)

and also the local inner product over its boundaries ∂Tm

〈u,v〉∂Tm =

∮
∂Tm

u · v ds, (3.4)

In this section, a semi-discrete scheme, based upon the DG technique and vector-basis

functions, is developed. Firstly, the basic semi-discrete scheme is formulated. Then, the

implementation of the most common boundary conditions is described, which makes use

of the flux terms to apply them in a weak way.

3.1.1 Semi-Discrete Scheme Formulation

Let us define the set of Q local vector-basis functions, described previously in Section

2.2, which, in general, are different for each cell Tm (Q(m) ≡ Qm), as

Bm = {φm1 ,φm2 , ...,φmQm} , m = 1, ...,M (3.5)

These basis functions are used to expand the unknown vector-field quantities (E and

H), and to test Equation (3.1), as is usual in the Galerkin method. The weak form of
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Maxwell equations (3.1) is found after using the inner product,∫
Tm

[
µ
∂H

∂t
+∇×E+σmH

]
· φmq′ dv = 0 (3.6a)

∫
Tm

[
ε
∂E

∂t
−∇×H+σeE

]
· φmq′ dv = 0 (3.6b)

m = 1, ...,M and q′ = 1, ..., Qm

Applying some algebra to the curl terms, we obtain∫
Tm

(∇×U) · φmq′ dv =

∫
Tm

∇ ·
(
U × φmq′

)
dv +

∫
Tm

(
∇× φmq′

)
·U dv =

=

∮
∂Tm

(n̂m ×U) · φmq′ ds+

∫
Tm

(
∇× φmq′

)
·U dv

(3.7)

with U = {E,H}, and n̂m the outward unit vector normal to the element m.

Introducing (3.7) into (3.6), together with a tangential field continuity condition between

adjacent elements, we find the continuous FEMTD method [11]. Namely, adding the

superscript + to the fields at ∂Tm calculated in the element adjacent to m, the continuity

on the tangential field components on the common face ∂Tm of two adjacent elements

requires for continuous FEMTD that

n̂m ×Em+ = n̂m ×Em , n̂m ×Hm+ = n̂m ×Hm (3.8)

The main drawback of the resulting algorithm resides in its implicit nature, which re-

quires the solution of large systems of linear equations [121]. The core idea of DGTD

is to relax the continuity conditions to yield a quasi-explicit algorithm. That is, instead

of plugging (3.8) into (3.7) and (3.6), DGTD defines numerical values of the tangential

fields on ∂Tm, henceforth called numerical fluxes (n̂m ×Hm∗ and n̂m × Em∗), which

do not coincide with any of the values of the tangential fields on any side of ∂Tm but

depend linearly on them,

n̂m ×Em∗ = n̂m ×
(
f−E (Em,Hm) + f+

E

(
Em+,Hm+

))
(3.9a)

n̂m ×Hm∗ = n̂m ×
(
f−H (Hm,Em) + f+

H

(
Hm+,Em+

))
(3.9b)

where f±E and f±H are functions of the respective arguments.

This numerical flux is the one actually employed by any pair of adjacent elements to

calculate the surface (flux) integrals in (3.7), instead of n̂m ×Em and n̂m ×Hm.



Chapter 3. Discontinuous Galerkin Time-Domain Methods: The LFDG Algorithm 34

Table 3.1: Parameters in Equation (3.10) to yield centered, upwind, and partially

penalized numerical fluxes. Zm =
√

µm

εm = 1
Ym is the intrinsic impedance of the element

m, and Zm+ = 1
Ym+ is that of the adjacent one.

κme κmh νmh νme

centered 1
2

1
2 0 0

upwind Ym+

Ym+Ym+
Zm+

Zm+Zm+
1

Ym+Ym+
1

Zm+Zm+

partially penalized Ym+

Ym+Ym+
Zm+

Zm+Zm+
τ

Ym+Ym+
τ

Zm+Zm+

Three common choices for the numerical flux are reported in the literature (described

in Section 3.2). A general form for all of them is

n̂m ×Em∗ =n̂m ×Em + κme
[
n̂m × (Em+ −Em) +M s

]
+

νmh
[
n̂m × (n̂m × (Hm+ −Hm)− Js)

]
(3.10a)

n̂m ×Hm∗ =n̂m ×Hm + κmh
[
n̂m × (Hm+ −Hm)− Js

]
−

νme
[
n̂m × (n̂m × (Em+ −Em) +M s)

]
(3.10b)

where we have also included possible surface currents M s and Js, to be used, for

instance, in the implementation of Huygens sources1. Table 3.1 shows the expressions

for the κ and ν factors for centered, upwind, and partially penalized numerical fluxes.

The terms which are multiplied by ν factors are known as dissipative terms. These terms

introduce some dissipation to the scheme [60], but are essential to avoid the propagation

of non-physical or spurious modes in the computational domain. As will be shown

in Section 4.1.1, where dissipation rates are numerically evaluated in the eigenvalue

problem, the dissipation rates for the spurious modes are much higher than for the

physical modes [54]. In case of ν = 0 (centered flux), there is no dissipation for either

physical or spurious modes, at the cost of introducing spectral pollution to the method.

In between the upwind and centered fluxes, a family of partially penalized fluxes can be

defined [64], through the addition to the centered flux of dissipation terms that can be

tuned to attenuate the spurious modes, and improve the accuracy.

1These terms are the ones used to implement sources; plane-waves, waveguide ports, or delta-gaps.
Full details of sources implementation appear in Sections 5.2.1 and A.4.2.



Chapter 3. Discontinuous Galerkin Time-Domain Methods: The LFDG Algorithm 35

Plugging (3.10) into (3.7), the curl terms can be written as∫
Tm

(∇×Em∗) · φmq′ dv =

∫
Tm

(∇×Em) · φmq′ dv−∮
∂Tm

κme
[
n̂m ×

(
Em −Em+

)
−M s

]
· φmq′ ds−∮

∂Tm

νmh
[
n̂m ×

(
n̂m ×

(
Hm −Hm+

)
+ Js

)]
· φmq′ ds (3.11a)

∫
Tm

(∇×Hm∗) · φmq′ dv =

∫
Tm

(∇×Hm) · φmq′ dv−∮
∂Tm

κmh
[
n̂m ×

(
Hm −Hm+

)
+ Js

]
· φmq′ ds+∮

∂Tm

νme
[
n̂m ×

(
n̂m ×

(
Em −Em+

)
−M s

)]
· φmq′ ds (3.11b)

The semi-discrete DG algorithm is found by assuming that the space and time depen-

dencies of the fields can be separated. Thus, the spatial part is expanded, as stated

above, within each element in the sets of vector-basis functions equal to the sets of test

functions,

H ' H̃ =

Qm∑
q=1

hmq (t)φmq (r) (3.12a)

E ' Ẽ =

Qm∑
q=1

emq (t)φmq (r) (3.12b)

Finally, after expanding the vector magnitudes H and E, according to (3.12), and

introducing the curl terms (3.11) into (3.6), the final form of the semi-discrete algorithm

at the element m is

µMdtH
m+ (σmM− Fνh)Hm+ F+

νhH
m+=− (S− Fκe)Em− F+

κeE
m+−Msκ+Jsν (3.13a)

εMdtE
m+ (σeM− Fνe)Em+ F+

νeE
m+= (S− Fκh)Hm+ F+

κhH
m+−Jsκ−Msν (3.13b)

where we have assumed that the material properties are constant within each element,

and with:

• Hm and Em are column vectors varying in time with the field coefficients (dof) in

the element m, and Hm+ and Em+ with the field coefficients (dof) of the adjacent
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elements,

Hm =
(
hm1 (t) , . . . , hmQm (t)

)T
(3.14a)

Em =
(
em1 (t) , . . . , emQm (t)

)T
(3.14b)

• Msκ, Msν , Jsκ and Jsν are column vectors varying in time with the weak form of

the surface source terms in the element m,

Msκ =
(
〈φm1 , κme M s (r, t)〉∂Tm , . . . ,

〈
φmQm , κ

m
e M s (r, t)

〉
∂Tm

)T
(3.15a)

Msν =
(
〈φm1 , νme n̂m ×M s (r, t)〉∂Tm , . . . ,

〈
φmQm , ν

m
e n̂m ×M s (r, t)

〉
∂Tm

)T
(3.15b)

Jsκ =
(
〈φm1 , κmh Js (r, t)〉∂Tm , . . . ,

〈
φmQm , κ

m
h Js (r, t)

〉
∂Tm

)T
(3.15c)

Jsν =
(
〈φm1 , νmh n̂m × Js (r, t)〉∂Tm , . . . ,

〈
φmQm , ν

m
h n̂m × Js (r, t)

〉
∂Tm

)T
(3.15d)

• M is the mass matrix,

[M]q′q =
〈
φmq′ ,φ

m
q

〉
Tm

(3.16)

• S is the stiffness matrix,

[S]q′q =
〈
φmq′ ,∇× φqm

〉
Tm

(3.17)

• F are the flux matrices,

[Fκh]q′q=
〈
φmq′ , n̂

m× κmh φmq
〉
∂Tm

, [Fκe]q′q=
〈
φmq′ , n̂

m× κme φmq
〉
∂Tm

(3.18a)

[Fνh]q′q=
〈
φmq′ , n̂

m× n̂m× νmh φmq
〉
∂Tm

, [Fνe]q′q=
〈
φmq′ , n̂

m× n̂m× νme φmq
〉
∂Tm

(3.18b)[
F+
κh

]
q′q

=
〈
φmq′ , n̂

m× κmh φm+
q

〉
∂Tm

,
[
F+
κe

]
q′q

=
〈
φmq′ , n̂

m× κme φm+
q

〉
∂Tm

(3.18c)[
F+
νh

]
q′q

=
〈
φmq′ , n̂

m× n̂m× νmh φm+
q

〉
∂Tm

,
[
F+
νe

]
q′q

=
〈
φmq′ , n̂

m× n̂m× νme φm+
q

〉
∂Tm

(3.18d)

Notice that κ and ν factors, when the upwind flux is employed, are a function

of the electric and magnetic parameters of the material on the element m and all

adjacent elements m+, so that there is no a constant value for all [F]q′q coefficients.

In case of centered flux, κ factors are constant
(

1
2

)
and ν factors are equal to 0, so

that Fκh = Fκe, F+
κh = F+

κe and Fνh = F+
νe = F+

νh = Fνe = 0.

If we now use in the semi-discrete system (3.13), the space discretization described in

Section 2.1, together with the vector-basis functions of Section 2.2, we find that the

matrices S, Fκe, Fκh, F+
κe and F+

κh can be shared between the elements. That is, since

they are independent of the geometrical data, a large saving of memory is attained in

its computer implementation.
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Let us prove this for the S matrix. The expression of a basis-function φ in the 3D

reference cell can be written as

φ = f1 (L1, L2, L3)∇L1 + f2 (L1, L2, L3)∇L2 + f3 (L1, L2, L3)∇L3 (3.19)

where L1, L2, L3 are local coordinates. This can also be written with the following

notation,

φ = φ∇L1∇L1 + φ∇L2∇L2 + φ∇L2∇L1 = φxx̂ + φyŷ + φzẑ (3.20)

where φ∇Li = fi (L1, L2, L3), i = 1, 2, 3 are only polynomial functions.

For curl-conforming basis functions on curvilinear cells, the appropriate mapping is given

by the contravariant transformation (2.15),
φx

φy

φz

 = J−1


φ∇L1

φ∇L2

φ∇L3

 (3.21)

where J refers to the Jacobian matrix. The curl operation can be evaluated by making

use of the expressions (2.16) and (2.17), which can be written in a compact form as
(∇× φ)x

(∇× φ)y

(∇× φ)z

 =
JT

|J |


∂φ∇L3
∂L2

− ∂φ∇L2
∂L3

∂φ∇L1
∂L3

− ∂φ∇L3
∂L1

∂φ∇L2
∂L1

− ∂φ∇L1
∂L2

 (3.22)

Therefore, the S matrix does not depend on the geometrical information,

[S]q′q =

∫
Vm

φq′ ·
(
∇× φq

)
dV =

∫
L1

∫
L2

∫
L3

J−1


φ∇L1

φ∇L2

φ∇L3


q′


T

JT

|J |


∂φ∇L3
∂L2

− ∂φ∇L2
∂L3

∂φ∇L1
∂L3

− ∂φ∇L3
∂L1

∂φ∇L2
∂L1

− ∂φ∇L1
∂L2


q

|J | dL1dL2dL3 =

∫
L1

∫
L2

∫
L3

[
φ∇L1 φ∇L2 φ∇L3

]
q′


∂φ∇L3
∂L2

− ∂φ∇L2
∂L3

∂φ∇L1
∂L3

− ∂φ∇L3
∂L1

∂φ∇L2
∂L1

− ∂φ∇L1
∂L2


q

dL1dL2dL3

(3.23)

since the kernels of these integrals are a combination of polynomial functions that depend

only on local coordinates. For Fκe, Fκh, F+
κe and F+

κh matrices, a similar proof can be

performed.
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3.1.2 Boundary Conditions

The flux conditions which serve to connect adjacent fields, also serve to implement the

most common boundary conditions:

1. The interface between two elements with different ε and µ is handled in an indirect

manner in DG, thanks to taking the same tangential components of the fields

n̂m ×Em∗ and n̂m ×Hm∗ in the flux integrals for two adjacent elements.

2. The PEC condition on a face of an element m requires the tangential component

of the electric field employed in the flux integrals to be null, and the tangential

magnetic field to be continuous.

n̂m ×Em+ = −n̂m ×Em (3.24a)

n̂m ×Hm+ = n̂m ×Hm (3.24b)

This is easily fulfilled, in a weak form, by considering different κ and ν factors at

the face of the m element for which the PEC boundary condition is intended to

be applied.

κme PEC = 2 κme , νme PEC = 2 νme (3.25a)

κmh PEC = 0, νmh PEC = 0 (3.25b)

3. The PMC condition is the reciprocal of the PEC one,

n̂m ×Hm+ = −n̂m ×Hm (3.26a)

n̂m ×Em+ = n̂m ×Em (3.26b)

and the expressions for the κ and ν factors are

κmh PMC = 2 κmh , νmh PMC = 2 νmh (3.27a)

κme PMC = 0, νme PMC = 0 (3.27b)

Note that for the upwind flux, both for PEC and PMC, we must also assume

Y m+ = Y m and Zm+ = Zm.

4. Regarding the ABC, the first-order SM-ABC [143] is straightly based on consid-

ering that the fields outside the computational domain propagate as plane waves

normal to the interface, n̂× n̂×E = Z (n̂×H), n̂× n̂×H = −Y (n̂×E). For

the upwind flux, this is directly handled since it is equivalent to assuming that
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there is no contribution to the flux from outside the region of solution, with only

f−E,H remaining in (3.9).

Y m
(
n̂m ×Em+

)
= −n̂m × n̂m ×Hm+ ⇒ n̂m × f+

E = n̂m × YmEm++n̂m×Hm+

Ym+Ym+ = 0

(3.28a)

Zm
(
n̂m ×Hm+

)
= n̂m × n̂m ×Em+ ⇒ n̂m × f+

H = n̂m × ZmHm+−n̂m×Em+

Zm+Zm+ = 0

(3.28b)

In case of the centered and partially penalized fluxes, the SM-ABC is applied with

a slightly different expressions,

n̂m ×Em+ = − 1

Y m
(n̂m × n̂m ×Hm) (3.29a)

n̂m ×Hm+ =
1

Zm
(n̂m × n̂m ×Em) (3.29b)

In all cases the final formulation is the same. The SM-ABC, as the previous

boundary conditions, can be expressed as a function of the κ and ν factors,

κme SM-ABC = κmh SM-ABC =
1

2
(3.30a)

νmh SM-ABC =
1

2 Y m
, νme SM-ABC =

1

2 Zm
(3.30b)

SM-ABC provides an ideally null reflection coefficient for normal incidence. In

practice, its performance is reduced by the accuracy of the method, and depends

on the order of the expansion functions p, and on the size of the elements h.

Furthermore, its absorption characteristics rapidly degrade when the angle of inci-

dence changes from normal incidence [144]. In Section 3.4.1, C-UPML are provided

to overcome that limitation of SM-ABC. It is important to note that both ABC

(SM-ABC and C-UPML) can be combined [92, 93, 145, 146], improving the over-

all performance. This can be done with no cost in the DG framework, since the

implementation of SM-ABC removes only outside flux terms.

3.2 Numerical-Flux Evaluation

The flux concept appears in CEM in FVTD methods, [84, 85]. In FVTD, upwind-flux

evaluation is the usual way to exchange information between elements. Centered flux

has also been considered in DGTD due to its simplicity, versatility and efficiency, but

raises the issue of spurious solutions. In between these two flux conditions, a generalized
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flux can be found [54, 64] as a function of a parameter that penalizes the jump of the

vector tangential components between the elements (see Table 3.1).

Let us consider Figures 3.1(a), 3.1(b) with the general case of the interface of two

elements containing different materials (with/without surface currents), and let us focus

on the evaluation of n̂×E∗ and n̂×H∗ (so-called flux functions) for all points P located

in ∂Tm. These flux functions are needed to compute the flux coming from Tm+ to Tm
element, across the face ∂Tm (and reciprocally, n̂ × E∗+ and n̂ ×H∗+ flux functions

referring to the flux coming from Tm into Tm+).

The flux functions are found by solving exactly, as upwind does, or approximately, as

centered or partially penalized, a one-dimensional Riemann problem in the direction n̂

perpendicular to the face ∂Tm, where n̂×Em and n̂×Em+, and n̂×Hm and n̂×Hm+,

are allowed to be discontinuous.

In order to break down all expressions into normal (n̂) and tangential
(
t̂1, t̂2

)
components

at the face ∂Tm, we define a set of local coordinates, t1, t2 and n, and the associated

orthonormal local vector basis
(
t̂1, t̂2, n̂

)
as

t̂1 =
∂r

∂t1

∣∣∣∣ ∂r∂t1
∣∣∣∣−1

(3.31a)

t̂2 =
∂r

∂t2

∣∣∣∣ ∂r∂t2
∣∣∣∣−1

(3.31b)

n̂ = t̂1 × t̂2 (3.31c)

with transformation matrices, ¯̄R and ¯̄R
−1

, between the local vectorial base of (3.31) and

the cartesian vectorial basis being
x̂

ŷ

ẑ

 = ¯̄R


t̂1

t̂2

n̂

 ,


t̂1

t̂2

n̂

 = ¯̄R
−1


x̂

ŷ

ẑ

 (3.32)

Impressed electric and magnetic surface-current densities (Js and M s) at the face ∂Tm
(Figure 3.1(b)) can be accounted for through the discontinuity in the tangential field

components,

n̂× (E2 −E1) = −M s (3.33a)

n̂× (H2 −H1) = Js (3.33b)
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(a) Flux evaluation setup, without sources.
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(b) Flux evaluation setup, with sources.

Figure 3.1: Flux evaluation setups

Both tetrahedra are physically in contact, and have been represented separately only for clarification.

The subscript m in the local vectors t̂1, t̂2 and n̂ has been removed for the same reason.

with subindexes 1 and 2 corresponding to the semi-spaces at either side of the surface

where the currents are flowing: Js will produce a discontinuity in the vector n̂×H, and

M s will produce a discontinuity in the vector n̂×E.

3.2.1 Centered-Flux Evaluation

The centered flux [108] can be evaluated simply by averaging the solutions of the fields

at both sides of the interface. For instance, the expressions for the centered fluxes on

the outer boundary-face of the problem of Figure 3.1(a) are the following,

n̂×E∗ = n̂×E∗+ = n̂× E
m +Em+

2
(3.34a)

n̂×H∗ = n̂×E∗+ = n̂× H
m +Hm+

2
(3.34b)

For the problem including the surface currents (Figure 3.1(b)), the boundary conditions

(3.33) further impose,

n̂×
(
E∗ −E∗+

)
= M s (3.35a)

n̂×
(
H∗ −H∗+

)
= −Js (3.35b)
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Averaging the solutions at both sides of the interface we find

n̂×E∗ =
n̂×Em

2
+

n̂×Em+ +M s

2
=

n̂×
(
Em +Em+

)
+M s

2
(3.36a)

n̂×H∗ =
n̂×Hm

2
+

n̂×Hm+ − Js
2

=
n̂×

(
Hm +Hm+

)
− Js

2
(3.36b)

and for the reciprocal-flux,

n̂×E∗+ =
n̂×

(
Em +Em+

)
−M s

2
(3.37a)

n̂×H∗+ =
n̂×

(
Hm +Hm+

)
+ Js

2
(3.37b)

It is important to note that all the centered-flux functions expressed above do not depend

on the material parameters, so that these expressions are valid for any kind of material,

whether dispersive, anisotropic, etc..

3.2.2 Upwind-Flux Evaluation

A standard approach for developing numerical schemes for multidimensional and/or hy-

perbolic problems with source terms2 is to use a fractional-step or operator-splitting

method [147]. In this approach, simpler problems are somehow solved, and the combi-

nation of them leads to a global scheme that approximates the solution of the overall

problem.

Let us find the upwind-flux conditions for heterogeneous isotropic materials, only con-

sidering electric losses, by solving Maxwell time-domain curl equations as an initial-

boundary value problem,

µ
∂H

∂t
+∇×E = 0 (3.38a)

ε
∂E

∂t
−∇×H + σeE = 0 (3.38b)

The electric and magnetic field vectors are expressed in the local basis of vectors of

Figures 3.1 as: E = (Et1 , Et2 , En) and H = (Ht1 , Ht2 , Hn). The ∇ operator can be also

broken down into two terms,

∇ =
∂

∂n
n̂ +∇S (3.39)

2In this context, source terms will not only refer to current sources. In a extended manner, they
will include any term of the original formulation, except those strictly belonging to the hyperbolic
conservative problem. For instance, dissipative terms due to electric or magnetic conductivity, or new
terms included in the formulation for the treatment of special materials, like for dispersive or PML
media.
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where ∂
∂n = ∇ · n̂ and ∇S denote the normal and surface derivatives with respect to the

local coordinates, respectively. The breakdown of the term ∇ × E (and similarly for

∇×H) yields

∇×E =
∂

∂n
n̂×E +∇S ×E

∂

∂n
n̂×E = −∂nEt2 t̂1 + ∂nEt1 t̂2

∇S ×E = ∂t2En t̂1 − ∂t1En t̂2 + (∂t1Et2 − ∂t2Et1) n̂

(3.40)

(3.38) can be rewritten as

∂H

∂t
+

1

µ

∂

∂n
n̂×E +

1

µ
∇S ×E = 0 (3.41a)

∂E

∂t
− 1

ε

∂

∂n
n̂×H − 1

ε
∇S ×H +

σe
ε
E = 0 (3.41b)

The operator-splitting method for (3.41) can be applied by first splitting the system of

equations into two subproblems:

Problem A:

∂H

∂t
+

1

µ

∂

∂n
n̂×E = 0 (3.42a)

∂E

∂t
− 1

ε

∂

∂n
n̂×H = 0 (3.42b)

Problem B:

∂H

∂t
+ 1

µ∇S ×E = 0 (3.43a)

∂E

∂t
− 1

ε∇S ×H + σe
ε E = 0 (3.43b)

Problem A is a homogeneous conservation law, requiring the solutions of a discontinuous

Riemann problem at the interface between the elements, while Problem B is a fully

continuous problem, whose solution will not be needed for our purposes. In summary,

the spirit of this splitting is that different methods can be used to solve each subproblem,

and eventually combined afterwards to establish a global solution scheme.

It is important to mention that this separation can always be made, although other

source terms are considered in the formulation. The expressions derived below are

therefore valid in a broad sense for any isotropic mediua (dissipative, dispersive, PML

and so on), as soon as Problem A is identified. Other different subproblems could

have been defined; for instance, the source terms could also be extracted in a new

subproblem from Problem B. However, the proposed separation of the problems suffices

for our purpose, since only Problem A is required to derive the upwind-flux-evaluation

expressions.
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Let us solve Problem A in the scenario shown in Figure 3.1, allowing discontinuities

of the fields, and singularities in the normal derivative terms ∂
∂n . Problem A can be

rewritten as a first-order hyperbolic multidimensional system of four partial differential

equations (PDE),

∂tHt1 −
1

µ
∂nEt2 = 0 (3.44a)

∂tHt2 +
1

µ
∂nEt1 = 0 (3.44b)

∂tEt1 +
1

ε
∂nHt2 = 0 (3.44c)

∂tEt2 −
1

ε
∂nHt1 = 0 (3.44d)

where the normal components have been removed, since they are not part of Problem

A. These can be expressed in a compact manner as

∂tq̄ + Ān∂nq̄ = 0 (3.45)

with q̄ = (Ht1 , Ht2 , Et1 , Et2)T , and Ān matrix

Ān =


0 0 0 − 1

µ

0 0 1
µ 0

0 1
ε 0 0

−1
ε 0 0 0

 (3.46)

The system (3.45) is hyperbolic because the matrix Ān has 4 real eigenvalues (λp). We

refer to the corresponding set of 4 linearly independent right eigenvectors as (rp). Any

vector q̄ or (n̂×H and n̂×E) can be uniquely expressed as a linear combination of these

eigenvectors (distinct waves). The corresponding eigenvalues of Ān give the wave speeds

at which each wave propagates in the medium. There are two negative eigenvalues −1√
µε ,

and two positive ones +1√
µε (the minus sign accounts for waves coming into the element,

and the plus sign for waves going out),

λ1 = λ2 = −1√
µε ;

λ3 = λ4 = 1√
µε ;

r1 = (0,−Y, 1, 0)T ; r2 = (Y, 0, 0, 1)T

r3 = (0, Y, 1, 0)T ; r4 = (−Y, 0, 0, 1)T
(3.47)

where Z =
√

µ
ε = 1

Y .

It important to note that (3.45) corresponds to a piece-wise variable-coefficient linear

system. We can identify a matrix Āmn in Tm, and a possible different matrix Ām+
n

in Tm+. Solving the Riemann problem consists on enforcing the Rankine-Hugoniot
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Figure 3.2: Structure of the solution to the Riemann problem for homogeneous mate-
rials (variable-coefficient), in the space-time plane (n-t plane). ∂Tm shows the interface
between the two different elements. Each wave propagate at its speed in each material.

Between these waves there are two states q̄∗, q̄∗+.

jump condition [147] at both sides of ∂Tm. The Rankine-Hugoniot condition states that

the jumps on the solution at each side of the interface is a linear combination of that

side eigenvectors. This leads to two intermediate states (q̄∗ and q̄∗+) which constitute

the actual solution of the Riemann problem (Figure 3.2 shows the domains for these

solutions).

The expression of these jumps, between the intermediate states and the values at both

sides of ∂Tm, in terms of the eigenvectors associated with the negative eigenvalues, for

the element Tm, and the eigenvectors associated with the positive eigenvalues, for the

element Tm+, is

q̄∗ − q̄m = αm1 r
m
1 + αm2 r

m
2 (3.48a)

q̄m+ − q̄∗+ = αm+
3 rm+

3 + αm+
4 rm+

4 (3.48b)

for some scalar coefficients αm1 , αm2 , αm+
3 and αm+

4 . To solve the equation system (3.48),

we need a relationship between q̄∗ and q̄∗+. If no surface-current sources are present,

as in Figure 3.1(a), then q̄∗ = q̄∗+; otherwise, if there are surface-current sources, as

in Figure 3.1(b), the jumps introduced by the boundary conditions of (3.35) must be

considered.
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The results for the scalar coefficients without surface-current sources are the following,

αm1 =

(
Hm
t2 −H

m+
t2

)
− Y m+

(
Emt1 − E

m+
t1

)
Y m + Y m+

αm+
3 = −

(
Hm
t2 −H

m+
t2

)
+ Y m

(
Emt1 − E

m+
t1

)
Y m + Y m+

αm2 = −
(
Hm
t1 −H

m+
t1

)
+ Y m+

(
Emt2 − E

m+
t2

)
Y m + Y m+

αm+
4 =

(
Hm
t1 −H

m+
t1

)
− Y m

(
Emt2 − E

m+
t2

)
Y m + Y m+

(3.49)

Using Equations (3.48), we get the following solutions for each tangential field compo-

nent,

H∗t1 = H∗+t1 =
ZmHm

t1 + Zm+Hm+
t1
−
(
Emt2 − E

m+
t2

)
Zm + Zm+

(3.50a)

H∗t2 = H∗+t2 =
ZmHm

t2 + Zm+Hm+
t2

+
(
Emt1 − E

m+
t1

)
Zm + Zm+

(3.50b)

E∗t1 = E∗+t1 =
Y mEmt1 + Y m+Em+

t1
+
(
Hm
t2 −H

m+
t2

)
Y m + Y m+

(3.50c)

E∗t2 = E∗+t2 =
Y mEmt2 + Y m+Em+

t2
−
(
Hm
t1 −H

m+
t1

)
Y m + Y m+

(3.50d)

which can also be expressed as

n̂×E∗ = n̂×E∗+ = n̂×
Y mEm + Y m+Em+ + n̂×

(
Hm+ −Hm

)
Y m + Y m+

(3.51a)

n̂×H∗ = n̂×H∗+ = n̂×
ZmHm + Zm+Hm+ − n̂×

(
Em+ −Em

)
Zm + Zm+

(3.51b)

Finally, a general form of the solution of the Riemann problem, also including surface

electric and magnetic current densities, is

n̂×E∗ =
n̂×

(
Y mEm + Y m+Em+

)
+ Y m+M s + n̂×

[
n̂×

(
Hm+ −Hm

)
− Js

]
Y m + Y m+

(3.52a)

n̂×H∗ =
n̂×

(
ZmHm + Zm+Hm+

)
− Zm+Js − n̂×

[
n̂×

(
Em+ −Em

)
+M s

]
Zm + Zm+

(3.52b)

n̂×E∗+ =
n̂×

(
Y mEm + Y m+Em+

)
− Y m+M s + n̂×

[
n̂×

(
Hm+ −Hm

)
− Js

]
Y m + Y m+

(3.52c)

n̂×H∗+ =
n̂×

(
ZmHm + Zm+Hm+

)
+ Zm+Js − n̂×

[
n̂×

(
Em+ −Em

)
+M s

]
Zm + Zm+

(3.52d)
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3.2.3 Partially Penalized Flux Evaluation

The partially penalized flux [54, 64, 70, 71] generalizes both the upwind and centered-flux

concept. Two different terms can be clearly identified in the upwind-flux expressions.

Considering (3.52) (and similarly for (3.51)), and introducing the penalty parameter, τ ,

the general-flux-evaluation expressions is written as

n̂×E∗ =
n̂×

(
Y mEm + Y m+Em+

)
+ Y m+M s

Y m + Y m+
− τ

n̂×
[
n̂×

(
Hm −Hm+

)
+ Js

]
Y m + Y m+

(3.53a)

n̂×H∗ =
n̂×

(
ZmHm + Zm+Hm+

)
− Zm+Js

Zm + Zm+
+ τ

n̂×
[
n̂×

(
Em −Em+

)
−M s

]
Zm + Zm+

(3.53b)

n̂×E∗+ =
n̂×

(
Y mEm + Y m+Em+

)
− Y m+M s

Y m + Y m+
− τ

n̂×
[
n̂×

(
Hm −Hm+

)
+ Js

]
Y m + Y m+

(3.53c)

n̂×H∗+ =
n̂×

(
ZmHm + Zm+Hm+

)
+ Zm+Js

Y m + Y m+
+ τ

n̂×
[
n̂×

(
Em −Em+

)
−M s

]
Zm + Zm+

(3.53d)

where τ = 1 is equivalent to the upwind flux, and τ = 0 is the centered flux expression.

Observe that (3.53) with τ = 0 is not exactly (3.36) and (3.37), and some differences

appear in the media interfaces, but in practice both expressions may be considered

equivalent.

The penalty parameter plays the role of penalizing the jump terms (n̂ ×
(
Em −Em+

)
and n̂ ×

(
Hm −Hm+

)
). These terms stabilize the solution, and eliminate spurious

modes that appear with centered flux, introducing some dissipation much higher for the

spurious modes than for the physical ones. A complete analysis of this topic is performed

in Section 4.1.1.

3.3 Discontinuous Galerkin for Anisotropic Materials

The DGTD method can be straightforwardly extended to anisotropic materials, assum-

ing that proper flux conditions are found. The first approach reported in the literature

to deal with anisotropic materials in DGTD employed the centered flux [104], in spite

of supporting spurious solutions. Recently, in [102], an upwind flux for 2D systems was

derived. In this section, a generalized upwind-flux expression is found in 3D by using

the general framework described in the previous section [P10]. The scheme reported in

[102] could be seen as a special case of this.
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Let us consider Maxwell time-domain curl equations (lossless for simplicity) for anisotropic

media,

¯̄µ
∂H

∂t
+∇×E = 0 (3.54a)

¯̄ε
∂E

∂t
−∇×H = 0 (3.54b)

with electric permittivity and magnetic permeability tensors symmetric positive ¯̄ε and

¯̄µ, respectively.

3.3.1 Flux Evaluation

We can express ¯̄ε and ¯̄µ, and their inverse, in the local base of vectors described in Figure

3.1 as

¯̄ε =


ε11 ε12 ε1n

ε21 ε22 ε2n

εn1 εn2 εnn

 ¯̄ε−1 =


ε′11 ε′12 ε′1n

ε′21 ε′22 ε′2n

ε′n1 ε′n2 ε′nn

 (3.55a)

¯̄µ =


µ11 µ12 µ1n

µ21 µ22 µ2n

µn1 µn2 µnn

 ¯̄µ−1 =


µ′11 µ′12 µ′1n

µ′21 µ′22 µ′2n

µ′n1 µ′n2 µ′nn

 (3.55b)

Following the same approach as in the case of isotropic materials, an operation-splitting

method for (3.54) is applied by first splitting the equation system into two subproblems:

Problem A:

∂H

∂t
+ ¯̄µ−1 ∂

∂n
n̂×E = 0 (3.56a)

∂E

∂t
− ¯̄ε−1 ∂

∂n
n̂×H = 0 (3.56b)

Problem B:

∂H

∂t
+ ¯̄µ−1∇S ×E = 0 (3.57a)

∂E

∂t
− ¯̄ε−1∇S ×H = 0 (3.57b)

Again, with the same approach used in the isotropic case, we can derive the one-

dimensional Riemann problem of (3.45), where in this case the Ān matrix takes the

following form,

Ān =


0 0 µ′12 −µ′11

0 0 µ′22 −µ′21

−ε′12 ε′11 0 0

−ε′22 ε′21 0 0

 (3.58)
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and the expression for the four PDE are

∂tHt1 + µ′12∂nEt1 − µ′11∂nEt2 = 0 (3.59a)

∂tHt2 + µ′22∂nEt1 − µ′21∂nEt2 = 0 (3.59b)

∂tEt1 − ε′12∂nHt1 + ε′11∂nHt2 = 0 (3.59c)

∂tEt2 − ε′22∂nHt1 + ε′21∂nHt2 = 0 (3.59d)

Let us define some 2× 2 matrices to clarify the expressions:

¯̄ε−1
2 =

(
ε′11 ε′12

ε′21 ε′22

)
, ¯̄µ−1

2 =

(
µ′11 µ′12

µ′21 µ′22

)
(3.60a)

D2 =

(
0 −1

1 0

)
, D−1

2 = DT2 = −D2 =

(
0 1

−1 0

)
(3.60b)

Ān can be cast in a compact manner as

Ān =

(
O2 ¯̄µ−1

2 D2

¯̄ε−1
2 D−1

2 O2

)
(3.61)

where O2 is a 2× 2 matrix with all elements zero.

To solve the Riemann problem, we first diagonalize Ān, and find the 4 real eigenvalues

(λp) and the corresponding set of 4 linearly independent right eigenvectors (rp),

Ān = RĀnΛĀnR
−1
Ān

(3.62)

where each column of RĀn corresponds to one right eigenvector, and each element of the

diagonal of the matrix ΛĀn is the associated eigenvalue.

The eigenvalues of Ān are the solutions λ of

det
(
Ān − λI4

)
= 0 (3.63)

with det being the determinant, and In representing n× n identity matrices.

Operating with the block matrices defined above we find

det
(
Ān − λI4

)
= −det

(
¯̄ε−1
2 D−1

2
¯̄µ−1

2 D2 − λ2I2
)

= −det
(
M2 − λ2I2

)
= 0 (3.64)



Chapter 3. Discontinuous Galerkin Time-Domain Methods: The LFDG Algorithm 50

where we have defined a new matrix M2, for which the eigenvalues (c2
1 and c2

2) are the

square of the eigenvalues of Ān matrix (−c1, −c2, c1 and c2). If we define

C2 =

(
c1 0

0 c2

)
, M2 = ¯̄ε−1

2 D−1
2

¯̄µ−1
2 D2 (3.65)

M2 can be expressed as

M2 = RM2C2C2R−1
M2

(3.66)

Now, we are ready to diagonalize Ān, as stated in (3.62), and to identify the 4 eigenvec-

tors in the diagonalizing matrix from the expression,

Ān=

(
O2 ¯̄µ−1

2 D2

¯̄ε−1
2 D−1

2 O2

)
=

(
−Y2D2RM2 Y2D2RM2

RM2 RM2

)(
−C2 O2

O2 C2

)
1

2

(
−R−1

M2
Z2D−1

2 R−1
M2

R−1
M2

Z2D−1
2 R−1

M2

)
(3.67)

Operating with expression (3.67), we can easily find the expressions for two matrices,

referred to here as ”impedance” (Z2) and ”admittance” (Y2), which play a role equivalent

to the scalar impedance (Z) and admittance (Y ) magnitudes defined for the isotropic

case.

Y2 = ¯̄µ−1
2 D2RM2C

−1
2 R−1

M2
D−1

2 (3.68a)

Z2 = RM2C
−1
2 R−1

M2
¯̄ε−1
2 (3.68b)

Note that the condition of (3.67) is fulfilled, and also the following, Z2D−1
2 Y2D2 = I2.

We can identify a matrix Āmn in Tm and, in general, a different matrix Ām+
n in Tm+. The

solution of the Riemann problem, after requiring the fulfillment of the Rankine-Hugoniot

jump condition on both sides of ∂Tm, yields the intermediate states (q̄∗ and q̄∗+), whose

domain is shown in Figure 3.3.

Expressing the jumps between the intermediate states and the values at both sides of

∂Tm as, a linear combination of the eigenvectors associated with the negative eigenvalues

for the element Tm and the eigenvectors associated to the positive eigenvalues for the

element Tm+, we find

q̄m+ − q̄m =

 −Ym2 D2RMm
2

Ym+
2 D2RMm+

2

RMm
2

RMm+
2




αm1

αm2

αm+
3

αm+
4

 (3.69)
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Figure 3.3: The structure of the solution to the Riemann problem for anisotropic
materials (variable-coefficient), in a 3D representation of the space(2D)-time(1D) inde-
pendent variables. ∂Tm shows the interface between the two different elements. The
waves propagate at its speed in each material. Between these waves, there are two
states (q̄∗, q̄∗+), which are linear combinations of the right eigenvectors, rp and r+p

respectively.

which can be solved for the scalar coefficients, considering there are no surface currents,

finding
αm1

αm2

αm+
3

αm+
4

=

 −R−1
Mm

2
D−1

2

(
Ym2 + Ym+

2

)−1 R−1
Mm

2
D−1

2

(
Ym2 + Ym+

2

)−1 Ym+
2 D2

R−1

Mm+
2

D−1
2

(
Ym2 + Ym+

2

)−1 R−1

Mm+
2

D−1
2

(
Ym2 + Ym+

2

)−1 Ym2 D2



Hm+
t1
−Hm

t1

Hm+
t2
−Hm

t2

Em+
t1
− Emt1

Em+
t2
− Emt2


(3.70)

Finally, substituting the scalar coefficients α into Equations (3.48), the solutions for the

tangential components of the electric and magnetic fields are(
H∗t1

H∗t2

)
= D2

(
Zm2 + Zm+

2

)−1

[
Zm2 D−1

2

(
Hm
t1

Hm
t2

)
+ Zm+

2 D−1
2

(
Hm+
t1

Hm+
t2

)
−

(
Em+
t1
− Emt1

Em+
t2
− Emt2

)]
(3.71a)(

E∗t1

E∗t2

)
= D−1

2

(
Ym2 + Ym+

2

)−1

[
Ym2 D2

(
Emt1

Emt2

)
+ Ym+

2 D2

(
Em+
t1

Em+
t2

)
−

(
Hm+
t1
−Hm

t1

Hm+
t2
−Hm

t2

)]
(3.71b)
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or in electric and magnetic field format,

n̂×E∗ =
(

¯̄Y
m

+ ¯̄Y
m+
)−1 [ ¯̄Y

m
n̂×Em + ¯̄Y

m+
n̂×Em+ + n̂× n̂×

(
Hm+ −Hm

)]
(3.72a)

n̂×H∗ =
(

¯̄Z
m

+ ¯̄Z
m+
)−1 [ ¯̄Z

m
n̂×Hm + ¯̄Z

m+
n̂×Hm+ − n̂× n̂×

(
Em+ −Em

)]
(3.72b)

The new tensors are built from matrices defined by subindex 2 but completed to dimen-

sion 3 as follows,

¯̄A =

 A2
0

0

0 0 1

 , with ¯̄A =
{

¯̄Z, ¯̄Y
}

(3.73)

3.3.2 Semi-Discrete Scheme Formulation

Following the DG procedure, described in Section 3.1.1, with (3.54), we can find the

general semi-discrete algorithm at element m for anisotropic materials. Sources and

medium losses, which could be also anisotropic, have been omitted for simplicity,

M ¯̄µdtH
m − FνhHm + F+

νhH
m+ =− (S− Fκe)Em − F+

κeE
m+ (3.74a)

M¯̄εdtE
m − FνeEm + F+

νeE
m+ = (S− Fκh)Hm + F+

κhH
m+ (3.74b)

where:

• Hm, Hm+, Em and Em+ are column vectors with the dof varying in time defined

in (3.14).

• M ¯̄µ and M¯̄ε are the mass matrices,

[
M ¯̄µ

]
q′q

=
〈
φmq′ , ¯̄µφmq

〉
Tm

(3.75a)[
M¯̄ε
]
q′q

=
〈
φmq′ , ¯̄εφmq

〉
Tm

(3.75b)

• S is the stiffness matrix, which does not change from the homogeneous case (3.17).
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• F are the flux matrices,

[Fκh]q′q =

〈
φmq′ ,

¯̄R
(

¯̄Z
m

+ ¯̄Z
m+
)−1 ¯̄Z

m+ ¯̄R
−1 (

n̂m × φmq
)〉

∂Tm
(3.76a)

[Fκe]q′q =

〈
φmq′ ,

¯̄R
(

¯̄Y
m

+ ¯̄Y
m+
)−1 ¯̄Y

m+ ¯̄R
−1 (

n̂m × φmq
)〉

∂Tm
(3.76b)

[Fνh]q′q =

〈
φmq′ ,

¯̄R
(

¯̄Y
m

+ ¯̄Y
m+
)−1 ¯̄R

−1 (
n̂m × n̂m × φmq

)〉
∂Tm

(3.76c)

[Fνe]q′q =

〈
φmq′ ,

¯̄R
(

¯̄Z
m

+ ¯̄Z
m+
)−1 ¯̄R

−1 (
n̂m × n̂m × φmq

)〉
∂Tm

(3.76d)

[
F+
κh

]
q′q

=

〈
φmq′ ,

¯̄R
(

¯̄Z
m

+ ¯̄Z
m+
)−1 ¯̄Z

m+ ¯̄R
−1 (

n̂m × φm+
q

)〉
∂Tm

(3.76e)

[
F+
κe

]
q′q

=

〈
φmq′ ,

¯̄R
(

¯̄Y
m

+ ¯̄Y
m+
)−1 ¯̄Y

m+ ¯̄R
−1 (

n̂m × φm+
q

)〉
∂Tm

(3.76f)

[
F+
νh

]
q′q

=

〈
φmq′ ,

¯̄R
(

¯̄Y
m

+ ¯̄Y
m+
)−1 ¯̄R

−1 (
n̂m × n̂m × φm+

q

)〉
∂Tm

(3.76g)

[
F+
νe

]
q′q

=

〈
φmq′ ,

¯̄R
(

¯̄Z
m

+ ¯̄Z
m+
)−1 ¯̄R

−1 (
n̂m × n̂m × φm+

q

)〉
∂Tm

(3.76h)

¯̄R and ¯̄R
−1

are the transformation matrices from the local vectorial base to carte-

sian vectorial base defined in (3.32).

This semi-discrete scheme corresponds to the upwind-flux-evaluation case. In case of

partially penalized flux, the factor τ should be included in the terms Fνh, F+
νh, Fνe and

F+
νe. For the centered-flux scheme, the simpler expression (3.18) for the flux matrices

can be used, keeping (3.75) for the mass matrices.

3.4 Absorbing Boundary Conditions

Many problems appearing in CEM are posed in unbounded domains. To compute a

numerical solution to such problems, it is necessary to truncate the space, by introduc-

ing artificial boundaries and/or regions that define a finite domain. These boundaries,

known as absorbing boundary conditions, should simulate the extension of the domain

to infinity. ABC should ideally be non-reflecting, and computationally efficient in terms

of memory and computational time.

Many ABC types have been reported during the last three decades, most of them in

the FDTD world. Formerly based on Taylor series approximation of some analytical

conditions. Their computational cost increase with the order of the series and the

desired accuracy [148, 149, 150, 151]. A major advance on this topic, employing a totally

different approach, appeared in 1994 with the paper of J. P. Bérenger [152], describing
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a new technique called perfectly matched layer conditions. The idea was to add a non-

physical region to the computational domain, able to attenuate waves impinging upon

it with no reflection.

In this dissertation, two ABC types are employed: the first-order Silver-Müller ABC,

described in Section 3.1.2, and the conformal uniaxial perfectly matched layer, evolved

from Bérenger seminal work, described in this section [P7]. It is important to note that

both ABC (SM-ABC and C-UPML) can be used together [92, 93, 145, 146] to improve

the overall performance in practical problems.

3.4.1 Conformal Uniaxial Perfectly Matched Layer Formulation

PML consists on an artificial absorbing region designed so that waves incident upon this

region do not reflect back to the main domain, and are strongly absorbed inside it, along

a predefined direction.

Since Bérenger work many different implementations and types of PML have been re-

ported. Two of them are prevalent. The original one, known as non-Maxwellian PML or

split-field PML, is derived by splitting the curl operator into the different cartesian com-

ponents, and creating new nonphysical electric and magnetic pseudo-fields in the PML

region. The right combination of these recovers the original Maxwell equations. Once

these new components have been introduced, different electric and magnetic conductiv-

ities can be applied to attenuate the energy inside the PML while keeping impedance

continuity with the Maxwellian medium. The second kind of formulation, also called

Maxwellian PML or uniaxial PML, was proposed in [88], and it is described as an arti-

ficial anisotropic absorbing material, fulfilling Maxwell equations, also attenuating the

energy inside the PML without reflection.

Both formulations, split-field and UPML, were derived independently in an attempt to

avoid reflection of the incident field on the PML. However, both formulations were shown

to be equivalent, using the general approach of stretched spatial coordinates [89, 90, 91],

though the information inside the degrees of freedom differs in each case. In this section

we review the formulation of the UPML, implemented in the DGTD context of this

work.

Let us consider the setup of Figure 3.4 used for the conformal UPML problem. There,

the interface of the PML region with the non-PML medium is the surface S, and S′

is a surface conformal to S containing the PML internal point P ′, where we intend to

formulate the UPML. Considering the projected point P of P ′ on S, we can define local

coordinates ξ1,ξ2 and ξ3, so that both surfaces S and S′ can be expressed as functions
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Figure 3.4: Conformal UPML setup.

of these local coordinates,

S ≡ f (ξ1, ξ2) , ξ3 = 0 (3.77a)

S′ ≡ f (ξ1, ξ2) + ξ3 (3.77b)

The isoparametric locus of points of constant ξ3 correspond to parallel surfaces at a

distance of ξ3 to S.

An orthonormal local vector-basis can be defined as

û1 = u1 (ξ1, ξ2) =
∂r

∂ξ1

∣∣∣∣ ∂r∂ξ1

∣∣∣∣−1

(3.78a)

û2 = u2 (ξ1, ξ2) =
∂r

∂ξ2

∣∣∣∣ ∂r∂ξ2

∣∣∣∣−1

(3.78b)

û3 = û1 × û2 (3.78c)



Chapter 3. Discontinuous Galerkin Time-Domain Methods: The LFDG Algorithm 56

related to the cartesian basis through the basis-change matrix ¯̄R, and the principal radii

of curvature of the doubly curved surface S and S′,

r01 = r01 (ξ1, ξ2) , r02 = r02 (ξ1, ξ2) (3.79a)

r1 = r01 + ξ3, r2 = r02 + ξ3 (3.79b)

which are functions of the local coordinates.

The UPML consists of a change on the metric of the space to the complex space in the

vectorial base (û1, û2, û3) of the local coordinate ξ3 (û3 being the predefined direction

in which the outgoing waves are attenuated). In the imaginary part of the new complex

space, a conductivity (σ) is introduced to absorb outgoing waves in the û3 direction

but maintaining adaptation, that is, perfectly matched impedance compared to the

non-PML medium. Hence, the spatial coordinates inside the PML are mapped to the

complex variable domain through

ξ3 −→ ξ̃3 =

∫ ξ3

0
s (τ) dτ (3.80)

where s(τ) is the complex stretching variable. To reduce numerical reflection, we can

use different profiles for σ inside the PML [93, 153]. In this work, we have used the

following expression for s(τ),

s (τ) = 1 +
1

jω
σmax

(
τ

∆ξ3

)2

(3.81)

where ∆ξ3 is the PML thickness, and σmax is the maximum conductivity inside the PML.

These two parameters characterize the PML layer and determine the rate of decay of

the energy of the transmitter wave into the PML. Note that we have chosen a parabolic

dependence of the stretching variable; this means that the conductivity (σ) inside the

PML medium will grow with a second-order profile. This growing rate can be tuned

to minimize the reflection of the PML [152], but the optimum value is usually problem

dependent (the parabolic profile is a typical choice).

The analytical reflection coefficient depends on the incident angle (θ), and can be eval-

uated with the expression [88]

R0 (θ) = e−
2
3
σmax∆ξ3

c
cos(θ) (3.82)

where c = 1√
µε is the speed at which the wave travels along the direction of û3.
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The resulting expression of the spatial coordinate is given by

ξ̃3 = ξ3 +
1

jω
σmax

ξ3

3

(
ξ3

∆ξ3

)2

(3.83)

and the stretching curvature radii by

r̃1 = r01 + ξ̃3 = r1 +
1

jω
σmax

ξ3

3

(
ξ3

∆ξ3

)2

(3.84a)

r̃2 = r02 + ξ̃3 = r2 +
1

jω
σmax

ξ3

3

(
ξ3

∆ξ3

)2

(3.84b)

The following expressions define the metric coefficients,

h1 =
r1

r01
,

h2 =
r2

r02
,

h3 = 1,

h̃1 =
r̃1

r01

h̃2 =
r̃2

r02

h̃3 = s

(3.85)

The change of the space metric of (3.80) and (3.81) can be easily implemented as an

artificial anisotropic material [89, 90, 91], for which general metric tensor, in local coor-

dinates, can be expressed in terms of the metric coefficients as

¯̄Λ = û1û1

(
s
h1

h̃1

h̃2

h2

)
+ û2û2

(
s
h2

h̃2

h̃1

h1

)
+ û3û3

(
1

s

h̃1

h1

h̃2

h2

)
=


sh1

h̃1

h̃2
h2

0 0

0 sh2

h̃2

h̃1
h1

0

0 0 1
s
h̃1
h1

h̃2
h2


(3.86)

Inserting (3.79), (3.84) and (3.85) in (3.86), we can define three different conductivi-

ties, corresponding to each space direction, depending on the curvature radius and the

distance to the S surface,

σ3 (ξ3) = σmax

(
ξ3

∆ξ3

)2

(3.87a)

σ1 (ξ3) = σ3
ξ3

3r1
(3.87b)

σ2 (ξ3) = σ3
ξ3

3r2
(3.87c)
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Finally the expression of the metric tensor is

¯̄Λ =



(
1+

σ3
jω

)(
1+

σ2
jω

)
(

1+
σ1
jω

) 0 0

0

(
1+

σ3
jω

)(
1+

σ1
jω

)
(

1+
σ2
jω

) 0

0 0

(
1+

σ1
jω

)(
1+

σ2
jω

)
(

1+
σ3
jω

)


(3.88)

The UPML can be expressed in the frequency domain in a Maxwellian form, and in the

local basis as

∇×E = −jωµ ¯̄ΛH (3.89a)

∇×H = jωε ¯̄ΛE (3.89b)

Writing, for simplicity, only one component of (3.89a) (similar results can be found for

the other components and (3.89b)) results

(∇×E) |û1 = −jωµ

(
1 + σ3

jω

)(
1 + σ2

jω

)
(

1 + σ1
jω

) H|û1

= −jωµH|û1 − µ (σ3 + σ2 − σ1)H|û1 − µ
(σ3 − σ1) (σ2 − σ1)

jω + σ1
H|û1

(3.90)

Equation (3.90) can be solved by introducing an auxiliary field M for the last term, for

which the first component is

M û1 = µ
(σ3 − σ1) (σ2 − σ1)

jω + σ1
H|û1 (3.91)

An auxiliary differential equation is used to express Equation (3.91) in the time domain,

∂M

∂t

∣∣∣∣
û1

= −σ1M |û1 + µ (σ3 − σ1) (σ2 − σ1)H|û1 (3.92a)

µ
∂H

∂t

∣∣∣∣
û1

= − (∇×E) |û1 − µ (σ3 + σ2 − σ1)H|û1 −M |û1 (3.92b)
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Finally, the set of equations for the PML layer for the fields magnitudes E, H and the

auxiliary fields (polarization currents) M and J , can be written as

∂M

∂t
= − ¯̄A2M + µ ¯̄A3H (3.93a)

µ
∂H

∂t
= −∇×E −M − µ ¯̄A1H (3.93b)

∂J

∂t
= − ¯̄A2J + ε ¯̄A3E (3.93c)

ε
∂E

∂t
= ∇×H − J − ε ¯̄A1E (3.93d)

where all vector magnitudes are expressed in the cartesian basis (x̂, ŷ, ẑ). The tensors
¯̄A1, ¯̄A2 and ¯̄A3 take the form:

¯̄A1 = ¯̄R


σ3 + σ2 − σ1 0 0

0 σ1 + σ3 − σ2 0

0 0 σ2 + σ1 − σ3

 ¯̄R
−1

(3.94a)

¯̄A2 = ¯̄R


σ1 0 0

0 σ2 0

0 0 σ3

 ¯̄R
−1

(3.94b)

¯̄A3 = ¯̄R


(σ2 − σ1) (σ3 − σ1) 0 0

0 (σ3 − σ2) (σ1 − σ2) 0

0 0 (σ1 − σ3) (σ2 − σ3)

 ¯̄R
−1

(3.94c)

where ¯̄R and ¯̄R
−1

are the transformation matrices from the local vectorial base, defined

in (3.78), and the cartesian basis.
x̂

ŷ

ẑ

 = ¯̄R


û1

û2

û3

 ,


û1

û2

û3

 = ¯̄R
−1


x̂

ŷ

ẑ

 (3.95)

To solve (3.93), we need to evaluate σ1, σ2 and σ3 at every point inside the PML region.

According to (3.87), these conductivity values depend on the two principal curvature

radii r1, r2 of a general (doubly curved) surface and the distance to the PML border ξ3.

Finding these variables in a general problem is not easy, and some solutions have been

proposed in 2D [26, 89, 154]. In this work, solutions for canonical geometries have been

implemented, so that, in a particular problem, one or a combination of different canonical

geometries, can be applied to truncate the computational domain, as is depicted in

Figure 3.5. In this case, the space, which encloses the structure under analysis (Figure

3.5(a)) is truncated by a closed surface (S) composed of pieces of toroids and plane
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(a) Structure under analysis.

toroids 

plane 

(b) Definition of the surface S.

PML layer 

(c) Setup of the conformal UPML region.

Figure 3.5: Definition of a conformal UPML making use of canonical geometries.

surfaces (Figure 3.5(b)). After this frontier is established, the PML region is created

with the required thickness (Figure 3.5(c)).

3.4.2 Discontinuous Galerkin Semi-Discrete Scheme Formulation

The Galerkin procedure jointly with the DG spatial technique, of Section 3.1.1, can

be straightforwardly applied to (3.93), since the curl terms in Equations (3.93a) and

(3.93c) do not change from regular Maxwell equations. Hence, considering that the

auxiliary fields are expanded with the same set of basis functions, and auxiliary differen-

tial equations are tested following the Galerkin procedure, we find the following spatial
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semi-discrete scheme for the element m located in a PML region,

MdtM
m + MA2M

m=µMA3H
m (3.96a)

µMdtH
m+(µMA1 − Fνh)Hm+ F+

νhH
m+ =− (S− Fκe)Em− F+

κeE
m+−MMm (3.96b)

MdtJ
m + MA2J

m=εMA3E
m (3.96c)

εMdtE
m+ (εMA1 − Fνe)Em+ F+

νeE
m+ = (S− Fκh)Hm+ F+

κhH
m+−MJm (3.96d)

where:

• Hm, Hm+, Em, Em+, Mm and Jm are column vectors with the dof varying in

time as (3.14).

• M is the mass matrix defined in (3.16) and MA1 , MA2 and MA3 are mass matrices

but affected by the tensors defined previously in (3.94),

[MAi ]q′q =
〈
φmq′ ,

¯̄Aiφ
m
q

〉
Tm

with i = {1, 2, 3} (3.97)

• S is the stiffness matrix defined in (3.17).

• F are the flux matrices defined in (3.18).

3.5 Temporal Integration

The choice of the time-integration scheme is a crucial step for the overall efficiency and

viability of a numerical method. There are two major families: implicit and explicit

methods. Implicit schemes, such as Crank-Nicolson [75], require a system of linear

equations to be solved at each time step, which may become impractical in electrically

large problems. Usually, implicit methods are unconditionally stable, and an arbitrarily

large time step can be chosen, trying to properly resolve only the highest frequency under

analysis, thus reducing to the minimum the number of required time steps in a complete

simulation. On the other hand, explicit schemes usually are conditionally stable with

a maximum time step depending on the spatial discretization, possibly resulting into

a large number of time steps per simulation, with a low computational effort per time

step.

It should be borne in mind here, that the main advantage of DGTD, compared to

classical FEMTD, is the relaxation of the continuity conditions across elements, to yield

a simpler quasi-explicit algorithm. For the sake of this simplicity, only explicit time-

integration schemes will be considered in this dissertation. There are two main families of
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these usually employed in DGTD: (i) the well-proven and versatile Runge-Kutta schemes

[53], and (ii) the efficient leap-frog scheme, classically used in FDTD. Both are reviewed

in this dissertation, but the main effort is placed on LF, and an algorithm, henceforth

referred to as Leap-Frog Discontinuous Galerkin (LFDG), is described in detail in this

section. Finally, a fully explicit local time-stepping strategy is presented in combination

with the LFDG algorithm, designed to overcome unnecessary global constraints on the

time step.

3.5.1 Runge-Kutta Scheme

Explicit RK methods are particularly popular due to their robustness, flexibility, and

good performance [36, 37, 38, 39, 40]. The main advantage of RK schemes, compared

to LF, is that these schemes easily allow to adjust the order of time integration m to

the order p of the spatial discretization, in order to prevent the spoiling of the high-

order convergence of the global scheme. These schemes typically require the calculation

of the field at a number of auxiliary stages s (depending on the order), to calculate

the time derivatives. Two drawbacks appear: first, the results of all stages must be

kept in memory at each time step, leading to memory requirements proportional to

sN (N being number of the dof), which may become prohibitive for electrically large

problems. Second, the maximum allowed time step in each element becomes quite

restrictive, specially for higher orders.

In order to overcome these problems, several authors [53, 59, 155] have explored the use

of Low-Storage Runge-Kutta (LSRK) methods, reducing the memory required to 2N ,

independently of the number of auxiliary stages. Additionally, the use of a larger number

of stages s > m, is shown to permit a more relaxed stability condition. A disadvantage

is that such methods are only known up to order m = 4, though for most real problems

that is enough. The popular LSRK scheme derived by Carpenter and Kennedy [156],

with m = 4 and s = 5, is described in some detail below (an interesting comparison of

the different available RK methods applied to DGTD method in Maxwell equations can

be found in [71]).

Let us consider the matrix form of the semi-discrete system within each element m

without sources expressed as

dtH
m =

1

µ
M−1

[
− (S− Fκe)Em − F+

κeE
m+ + FνhHm − F+

νhH
m+ − σmMHm

]
(3.98a)

dtE
m =

1

ε
M−1

[
(S− Fκh)Hm + F+

κhH
m+ + FνeEm − F+

νeE
m+ − σeMEm

]
(3.98b)
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which can be written in a compact form as

dtU = F [t, U (t)] . (3.99)

with U = [H,E] containing the N dof of the problem.

The classical 4th-order 5-stage explicit RK scheme permits to advance a time step ∆t,

from tn to tn + ∆t, by

k1 =F (tn, U
n) (3.100a)

ki =F

tn + ci∆t, U
n + ∆t

i−1∑
j=1

ai,jkj

 i = 2, 3, 4, 5 (3.100b)

Un+1 =Un + ∆t
5∑
j=1

bjkj (3.100c)

where Un = U(tn) and Un+1 = U(tn + ∆t) and the fixed scalars ai,j , bj and ci are the

coefficients of the RK formula. Note that all intermediate stage quantities are used by

the last advancing equation (3.100c), thus requiring the storage of 2Ns values.

The LSRK method is found by reworking (3.100), to express each stage as a function of

the previous one as

dUnj =AjdUj−1 + ∆tF
(
tn + cj∆t, U

n
j

)
(3.101a)

Unj =Uj−1 +BjdU
n
j j = 1, 2, 3, 4, 5 (3.101b)

The final algorithm is self-starting, (A1 = 0), and only dUn and Un must be kept in

memory, thus only requiring the storage of 2N values. Table 3.2 shows the values of Aj ,

Bj and cj to get a 4th order scheme (see also [156] for other possible values).

3.5.2 Leap-Frog Scheme

The LFDG algorithm is based on the spatial DG operator described in Section 3.1.1,

integrated in time by the explicit LF scheme, well-known in the FDTD world [1].

A typical limitation of the LF time-integration scheme is the conditional stability cri-

terion, which imposes a maximum time step (∆tmMAX) element-by-element. The time

step is found to be dependent on the element electrical size, and on the order of the

basis functions employed in that particular element. The material of adjacent elements,

boundary conditions on its faces, aspect-ratio, and curvature (in case of quadratic ele-

ments) also influence the stability condition [64]. This fact, when we are dealing with
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Table 3.2: Coefficients for optimal 5-stage, 4th order, 2N-Storage RK scheme.
COEFFICIENT VALUE

A1 0.0

A2 − 567301805773
1357537059087

A3 − 2404267990393
2016746695238

A4 − 3550918686646
2091501179385

A5 − 1275806237668
842570457699

B1
1432997174477
9575080441755

B2
5161836677717
13612068292357

B3
1720146321549
2090206949498

B4
3134564353537
44814673103381

B5
2277821191437
14882151754819

c1 0.0

c2
1432997174477
9575080441755

c3
2526269341429
6820363962896

c4
2006345519317
32243100637761

c5
2802321613138
2924317926251

unstructured meshes, results in strong disparities in the required time steps among ele-

ments, leading to a global time step constrained by the smallest one, in order to ensure

global stability. This leads to a major waste of computational time in updating elements

at a rate much higher than its own maximum time step. To avoid this problem, a fully

explicit LTS strategy has been developed for the LF scheme [P6]. Other alternatives are

found in [64, 79, 80].

3.5.2.1 Leap-Frog Discontinuous Galerkin Algorithm

Let us consider the matrix form of the DG semi-discrete system of 3.13, within each

element m without sources which can be expressed as

µMdtH
m + σmMHm − FνhHm + F+

νhH
m+ =− (S− Fκe)Em − F+

κeE
m+ (3.102a)

εMdtE
m + σeMEm − FνeEm + F+

νeE
m+ = (S− Fκh)Hm + F+

κhH
m+ (3.102b)

The idea of the LF scheme is to sample the unknown fields in a staggered way: the

electric field is evaluated at tn = n∆t, and the magnetic field at tn+ 1
2

=
(
n+ 1

2

)
∆t. In

the same way, Equation (3.102a) is evaluated (or tested in time, if we think in terms of

a point matching testing procedure) at tn, and Equation (3.102b) at tn+ 1
2
.

The first-order time derivatives are replaced by second-order centered differences,

(dtH
m)n =

Hm
n+ 1

2

−Hm
n− 1

2

∆t
+O

(
∆t2

)
; (dtE

m)n+ 1
2

=
Emn+1 − Emn

∆t
+O

(
∆t2

)
(3.103)
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For the terms with the electric and magnetic conductivity, which require the identity

operation, an average approximation is used,

Hm
n =

Hm
n+ 1

2

+Hm
n− 1

2

2
+O

(
∆t2

)
; Em

n+ 1
2

=
Emn+1 + Emn

2
+O

(
∆t2

)
(3.104)

Notice that both approximations are of second order.

For the two extra dissipative terms arising from the upwind flux formulation, a back-

wards approximation (Hm
n ' Hm

n− 1
2

and Em
n+ 1

2

' Emn ) must be used, since an average

approximation, like (3.104), would yield a globally implicit scheme, due to the coupling

terms from the adjacent elements [95]. This fact introduces a slight penalization in the

stability condition.

For a purely upwind-flux evaluation, a quite smaller time step is required. The alterna-

tive is to use partially penalized fluxes [64]. When we choose an appropriate value of

the τ parameter, the effect in the stability of the scheme is small (analyzed in detail in

Section 4.2.2). If centered fluxes are used instead, the dissipative terms are null, and

problems arise in relation to spurious modes (see Section 4.1.1).

When the temporal approximations for the dof are inserted in (3.102) the resulting fully

explicit LFDG algorithm is

Hm
n+ 1

2

=αmH
m
n− 1

2

+ βmM−1

[
− (S− Fκe)Emn − F+

κeE
m+
n + FνhHm

n− 1
2

− F+
νhH

m+
n− 1

2

]
(3.105a)

Emn+1 =αeE
m
n + βeM−1

[
(S− Fκh)Hm

n+ 1
2

+ F+
κhH

m+
n+ 1

2

+ FνeEmn − F+
νeE

m+
n

]
(3.105b)

with

αm =
1− ∆tσm

2µ

1 + ∆tσm
2µ

, βm =
∆t

µ
(

1 + ∆tσm
2µ

) (3.106a)

αe =
1− ∆tσe

2ε

1 + ∆tσe
2ε

, βe =
∆t

ε
(
1 + ∆tσe

2ε

) (3.106b)

3.5.2.2 The LFDG algorithm in PML regions

The extension of the LF temporal integration scheme to the semi-discrete system of

(3.96) is straightforward. The auxiliary unknown field M must be evaluated at tn =

n∆t, as the electric field, and the auxiliary unknown field J , at tn+ 1
2

=
(
n+ 1

2

)
∆t, as

the magnetic field. In the same way, Equation (3.96c) is sampled at tn, as Equation

(3.96b), and the Equation (3.96a) at tn+ 1
2
, as (3.96d).
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Making the usual approximations (time derivatives replaced by central differences, iden-

tity operator by centered averages, and flux dissipative terms by backwards formula),

we can formulate the following fully explicit algorithm for the PML medium,

Mm
n =A2M

m
n−1 + µ∆tA3H

m
n− 1

2

(3.107a)

Hm
n+ 1

2

=A11H
m
n− 1

2

+

βmA12

[
− (S− Fκe)Emn − F+

κeE
m+
n + FνhHm

n− 1
2

− F+
νhH

m+
n− 1

2

−MMm
n

]
(3.107b)

Jm
n+ 1

2

=A2J
m
n− 1

2

+ ε∆tA3E
m
n (3.107c)

Emn+1 =A11E
m
n +

βeA12

[
(S− Fκh)Hm

n+ 1
2

+ F+
κhH

m+
n+ 1

2

+ FνeEmn−1 − F+
νeE

m+
n−1 −MJm

n+ 1
2

]
(3.107d)

where

A2 =

(
M +

∆t

2
MA2

)−1(
M− ∆t

2
MA2

)
(3.108a)

A3 =

(
M +

∆t

2
MA2

)−1

MA3 (3.108b)

A11 =

(
M +

∆t

2
MA1

)−1(
M− ∆t

2
MA1

)
(3.108c)

A12 =

(
M +

∆t

2
MA1

)−1

(3.108d)

3.5.2.3 Local Time-Stepping Algorithm

The fully explicit algorithm proposed in this section is directly inspired from the one

introduced by Montseny et al. [64], called Recursive Leap-Frog (R-LF) method. All

the mesh elements are arranged into L levels, and the different LTS levels communicate

among themselves by making use of average approximations (or linear interpolations)

when needed, instead of using magnitudes at unknown times by others evaluated at

different time instants, as in [64]. The time step for the level l is ∆tl = (2k + 1)l−1 ∆t1,

k being a positive real integer, and ∆t1 the effective time step for the first level (l = 1).

All the elements of the l level must fulfill the condition ∆tl < ∆tmMAX (being ∆tmMAX

the maximum ∆t for stability at the element m). For instance, k = 1 means that there

is a factor 3 between the time steps of consecutive levels.

First of all, at the preprocess stage, we classify all the mesh elements into (2L − 1)

possible sets requiring different treatment: L different levels plus the (L− 1) interfaces.

Let us illustrate the procedure for simplicity for the 2D example shown in Figure 3.6,

with two LTS levels (L = 2). The procedure can be easily generalized to any problem
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LEVEL 1 

LEVEL 2 

    INTERFACE 

Figure 3.6: 2D classification example of two LTS levels and the interface.

with L levels. We first define two updating expressions, one for the electric field and the

other for the magnetic field, from the LFDG algorithm of (3.105),

Hm
n+ p

2
=fH

(
p∆t1, H

m
n− p

2
, Hm+

n− p
2
, Emn , E

m+
n

)
(3.109a)

Emn+p =fE

(
p∆t1, E

m
n , E

m+
n , Hm

n+ p
2
, Hm+

n+ p
2

)
(3.109b)

where p is an integer value, which allows us to use the updating functions to compute

samples of the fields at any multiple of ∆t1.

time LEVEL 1 INTERFACE LEVEL 2 

(n-3/2)∆t1  H  H  H 

(n-1)∆t1 E      

(n-1/2)∆t1  H  H   

(n)∆t1 E  E  E  

(n+1/2)∆t1       

(n+1)∆t1       

(n+3/2)∆t1       

(n+2)∆t1       

(n+5/2)∆t1       

(n+3)∆t1       

Figure 3.7: Initial state of the electromagnetic fields for the three different sets of the
scenario of figure 3.6, (L=2).

The starting state for the full sequence is shown in Figure 3.7. The sequence of the

proposed LTS algorithm continues as follows (see also Figure 3.8):
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• Step 1. Update the magnetic field, fH , for the level 1 (Hn+ 1
2
), interface and level

2 (Hn+ 3
2
).

In case of level 1, p = 1 must be used, and for the level 2 and the interface, p = 3.

All En needed are all available.

• Step 2. Update electric field, fE, for the level 1 and interface (En+1).

In both cases p = 1 must be used. We need Hn+ 1
2
; this information is available

in level 1, but has to be evaluated in the interface, by averaging Hn+ 3
2

and Hn− 1
2
,

and in level 2, by interpolating Hn+ 1
2

= 2
3Hn+ 3

2
+ 1

3Hn− 3
2
.

• Step 3. Update the magnetic field, fH , for the level 1 (Hn+ 3
2
).

Clearly, p = 1 must be used. En+1 is needed, in level 1 and in the interface, both

available.

• Step 4. Update the electric field, fE, for the level 1 (En+2), interface and level 2

(En+3).

In case of level 1, p = 1 must be used, and for the level 2 and the interface, p = 3.

We need Hn+ 3
2
, which are available.

• Step 5. Update the magnetic field, fH , for the level 1 and for the interface (Hn+ 5
2
).

In both cases, p = 1 must be used. We need En+2; this information is available in

level 1, but has to be evaluated in the interface, by averaging En+1 and En+3, and

in level 2, by interpolating En+2 = 2
3En+3 + 1

3En.

• Step 6. Update electric field, fE, for the level 1 (En+3).

Obviously, p = 1 must be used. Hn+ 5
2

is needed, both in level 1 and in the interface,

both available.

This algorithm retains most of the advantages of R-LF method (full explicitness and

simplicity), but avoids the use of magnitudes at unknown times. Instead, they are

calculated from previous dof, by means of averages and interpolations (also requiring

the additional computation of certain states). Some specific differences appear in Steps

2 and 5, where we make the averaging operation at the interface, and we compute the

fields there, thus requiring an interpolation on the upper level; also in Steps 3 and 6,

where we use samples at known times, since they have been computed in the previous

steps. Notice that the algorithm requires storing two states of the electric and magnetic

fields in the interfaces, and in the highest level of that interface.

Concerning the stability of the scheme, as has been reported in [64, 95], the stability

condition must be strengthened in general. From our experience, we need to apply

a multiplicative factor 0.8 to the estimated ∆tmMAX of the non-LTS case, but only at

the interface and its neighboring elements. This means an extra stability condition
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time LEVEL 1 INTERFACE LEVEL 2 

(n-3/2)∆t1  H  H  H 

(n-1)∆t1 E      

(n-1/2)∆t1  H  H   

(n)∆t1
E     ∆t1  E        3∆t1 E    3∆t1 

(n+1/2)∆t1  H     

(n+1)∆t1       

(n+3/2)∆t1    H  H 

(n+2)∆t1       

(n+5/2)∆t1       

(n+3)∆t1       

time LEVEL 1 INTERFACE LEVEL 2 

(n-3/2)∆t1  H  H  H 

(n-1)∆t1 E      

(n-1/2)∆t1  H  H         1/3 

(n)∆t1
E  E         1/2 E  

(n+1/2)∆t1   ∆t1 H    ∆t1    

(n+1)∆t1 E  E         1/2     2/3 

(n+3/2)∆t1    H  H 

(n+2)∆t1       

(n+5/2)∆t1       

(n+3)∆t1       

(a) Step 1. (b) Step 2.

time LEVEL 1 INTERFACE LEVEL 2 

(n-3/2)∆t1  H  H  H 

(n-1)∆t1 E      

(n-1/2)∆t1  H  H   

(n)∆t1 E  E  E  

(n+1/2)∆t1  H     

(n+1)∆t1
E    ∆t1 E    

(n+3/2)∆t1  H  H  H 

(n+2)∆t1       

(n+5/2)∆t1       

(n+3)∆t1       

time LEVEL 1 INTERFACE LEVEL 2 

(n-3/2)∆t1  H  H  H 

(n-1)∆t1 E      

(n-1/2)∆t1  H  H   

(n)∆t1 E  E  E  

(n+1/2)∆t1  H     

(n+1)∆t1
E  E    

(n+3/2)∆t1    ∆t1 H   3∆t1 H   3∆t1 H 

(n+2)∆t1 E      

(n+5/2)∆t1       

(n+3)∆t1   E  E  

(c) Step 3. (d) Step 4.

time LEVEL 1 INTERFACE LEVEL 2 

(n-3/2)∆t1  H  H  H 

(n-1)∆t1 E      

(n-1/2)∆t1  H  H   

(n)∆t1 E  E  E  

(n+1/2)∆t1  H     

(n+1)∆t1 E  E    1/3  

(n+3/2)∆t1  H     1/2 H  H 

(n+2)∆t1
E   ∆t1   ∆t1   

(n+5/2)∆t1  H   1/2 H   2/3  

(n+3)∆t1   E  E  

time LEVEL 1 INTERFACE LEVEL 2 

(n-3/2)∆t1  H  H  H 

(n-1)∆t1 E      

(n-1/2)∆t1  H  H   

(n)∆t1 E  E  E  

(n+1/2)∆t1  H     

(n+1)∆t1 E  E      

(n+3/2)∆t1  H   H  H 

(n+2)∆t1
E      

(n+5/2)∆t1    ∆t1 H  H    

(n+3)∆t1 E  E  E  

(e) Step 5. (f) Step 6.

Figure 3.8: Sequence of the LTS algorithm for the scenario of Figure 3.6, (L=2). Leap-
frog steps are drawn in solid lines, and interpolation in dashed format. The required
samples for an updating step appear inside a circle, and the computed samples in bold.
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is imposed in those elements. The algorithm has been tested in long and complex

simulations in Section 5, exhibiting a robust late-time stability. No additional dissipation

(or spurious solutions) is introduced by the LTS algorithm, apart from that described

in Section 4.1.

The implementation of this scheme in a general multilevel (L > 2) case can be straight-

forwardly performed, just by assuring that the interface elements of different levels are

not in contact. This is a minor requirement for practical meshes and avoids the use of

a more restrictive multiplicative factor in the stability condition at the interfaces.

3.6 Summary

In this chapter, the semi-discrete DG method and the fully discrete LFDG algorithm

were described in detail. The spatial-discretization scheme is based on the high-order

discontinuous Galerkin methodology, employing curvilinear tetrahedra, and hierarchal

vector-basis functions (detailed in Chapter 2). Expressions were developed for the flux

evaluation, capable of easily dealing with the most common boundary conditions (di-

electrics, PEC, PMC, and SM-ABC), as well as with propagation inside anisotropic

materials. The formulation of the conformal UPML truncation condition was reviewed

and integrated into the DG semi-discrete scheme. Finally, a specific LTS strategy was

developed for the LFDG algorithm, to make the method efficient enough to deal with

real problems.

Three different schemes were proposed for the evaluation of the flux between adjacent

elements. These are listed next with a short rationale, which is further discussed and

analyzed in Chapter 4:

• The centered flux: the simplest method, but exhibiting problems with non-physical

solutions or spurious modes.

• The upwind flux: typically used in FVTD and including dissipative terms yields

a spurious-free method in which the spurious solutions dissipate more than the

physical ones. This flux is found by solving the Riemann problem at the discon-

tinuity of the tangential field components, obtaining a quasi-explicit semi-discrete

scheme in space (not fully explicit).

• The partially penalized flux: based on the upwind scheme by weighting the dissi-

pative terms by a factor, and also yielding a spurious-free method. This reduction

of the dissipative terms, responsible for the implicitness in space, permits a more

efficient use of the LF scheme, at the cost of a lower dissipation of spurious modes
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(compared to that of the upwind flux), but still much higher than for the physical

solutions, if conveniently tuned.





Chapter 4

Numerical Analysis: Accuracy,

Stability, Dispersion and

Dissipation

In this chapter, the numerical dispersion, stability, and anisotropy of the errors of the DG

and LFDG methods are analyzed. Unlike in FDTD, where closed analytical expressions

can be easily derived, thanks to its structured meshing [157], in FEMTD methods,

where unstructured meshes are used, these cannot in general be found. For these, the

relationship between the order of the basis functions (p), element size (h), and time step

(∆t) with stability, dispersion, dissipation, anisotropy, etc., is problem-dependent, and

must be found in a semi-analytical manner, by numerically solving eigenvalue problems

for simplified setups.

This process begins by the analysis of the DG semi-discrete scheme in 1D (with an

extension to 3D), where the spurious numerical spectrum, and numerical dispersion

and dissipation relations are found, and the nature of the errors are discussed. Then,

the fully discrete LFDG algorithm is analyzed based on the resolution of the eigen-

value problem on a canonical geometry, which can be used to easily compare to the

FDTD method, addressing stability, and numerical-spectrum topics. A convergence and

anisotropy analysis of the errors is performed both for the DG semi-discrete operator,

and for the LFDG algorithm, the conclusions of which can be considered general. Fi-

nally, a computational cost vs. accuracy analysis of the LFDG method is made, proving

that LFDG outperforms FDTD in these terms.

73
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4.1 General Analysis of the Discontinuous Galerkin Semi-

Discrete Scheme

The traditional approach to analyze the space-time accuracy, and dispersion and dissi-

pation errors, of DG methods is based upon the eigenvalue problem. Hu et al. in 2002

[48], presented a detailed study of the eigensolution of the DG method with uniform

and nonuniform grids applied to a system of hyperbolic equations in one-dimension. In

CEM, some studies appear in 2004 [54], describing the presence and behavior of spurious

modes in the DG operator. Ainsworth in [56, 57] studied the dispersive and dissipative

properties of the DG methods in the advection and second-order wave equation, respec-

tively. In 2006, Warburton and Embree [55] described the role of the penalty in DG

methods. Cohen and Duruflé, in 2007 [63] showed the need of dissipation terms to avoid

spurious modes in the DG schemes. Sármány et al. [60], also studied the dispersion and

dissipation errors, also considering the time-integration scheme.

Classical continuous FEM methods, both in curl-curl and in the mixed formulations, are

well known for supporting spurious modes, which are non-physical solutions arising in

the numerical approximation, and which are not present in the analytical problem. Espe-

cially harmful are non-divergent spurious modes (for divergence-free analytical problems)

excited at non-null frequencies, since they severely corrupt near-field solutions. Many

strategies to reduce them are found in the literature. For nodal (scalar basis) FEM,

regularization techniques including conditions on the divergence of the solution, have

been successfully employed [134]. For vector FEM, it is possible to use curl-conforming

elements for which the basis vectors respect the natural (dis)continuity of the electro-

magnetic fields1, only supporting spurious modes at null-frequency [27]. Higher-order

hierarchal basis functions were introduced in [138] with this purpose.

DGTD also exhibits the appearance of spurious modes [48, 54, 55, 56, 57, 60, 63].

However, an added advantage of DGTD over FEMTD resides in its discontinuous nature

that permits them to be removed by the use of upwind/penalized fluxes [55, 56, 57, 60,

63]. As stated in the previous chapter, these fluxes are characterized by the addition of

dissipative terms to Maxwell equations, and are proven to attenuate spurious modes in

space more strongly than physical modes. The suppression of spurious modes becomes a

critical issue for DGTD formulations of the PML truncation condition, since instabilities

appear otherwise [71]. Both DGTD approaches, for vector and scalar basis, are spurious-

free for penalized fluxes, and have been successfully developed by several authors [29,

53, 59, 61, 70, 87, 96, 98, 103, 109], finding comparable levels of accuracy.

1Continuity on the tangential components, and discontinuity in the normal ones.
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In this section, we revisit the topic of spurious modes for simple 1D and 3D problems in

DGTD, and the nature of the different errors (dispersion and dissipation) are identified.

The analysis shown in this section appears also in [P11].

4.1.1 Numerical Dispersion and Dissipation of the DG Semi-Discrete

Scheme

The dispersion and dissipation of the numerical method will be studied by searching

for plane-wave solutions of frequency ω and wavevector k, in general complex. These

functions, replaced in the original equations, lead to an eigen-problem, with eigenvalues

providing the numerical dispersion and dissipation relationships ω = f(k), and with

eigenvectors providing the numerical-structure relationships between the dof or field

components. For instance, the analytical Maxwell equations support plane-waves in free-

space with the well-known dispersion relationship ω2 = k2/c2, and eigenvectors related

by η0H = k̂ × E, with c and η0 being the free-space speed of light and impedance,

respectively.

A practical way to study the dispersion of a numerical scheme approaching Maxwell

equations consists of restricting the space of solution to a bounded region with periodic

boundary conditions (PBC), since they can be numerically enforced in an easy way. Let

us assume for simplicity a 1D-domain x ∈ [0,∆], and let us search for modes fulfilling

PBC in space,

Ψ(x = ∆, t) = e−jαΨ(x = 0, t) , ∀t , Ψ = {E,H} (4.1)

for arbitrary α ∈ [0, 2π). Plane-wave solutions of the form ej(ωt−kx) (leftwards k > 0

and rightwards k < 0) comply with the PBC condition (4.1) for a infinite numerable

spectrum of real wavenumbers kn (each oscillating at a complex frequency ωn),

kn = ±
( α

∆
+
π

∆
2n
)
, n = 0,−1,+1,−2,+2, . . .

ωn = f(kn) (4.2)

where we will refer to k0 = α
∆ as a fundamental mode, and to all other kn as harmonic

modes.

Let us apply this technique to the DG method in a semi-discrete form in space,

dtH
m =

1

µ
M−1

[
− (S− Fκe)Em − F+

κeE
m+ + FνhHm − F+

νhH
m+
]

(4.3a)

dtE
m =

1

ε
M−1

[
(S− Fκh)Hm + F+

κhH
m+ + FνeEm − F+

νeE
m+
]

(4.3b)
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which is a simplified version of (3.13) for the m element, formulated in free-space without

sources.

We define a column vector U =
[(
h1

1, ..., h
1
Q

)
, ...,

(
hM1 , ..., hMQ

)
,
(
e1

1, ..., e
1
Q

)
, ...,

(
eM1 , ..., eMQ

)]T
with all the dof of a given problem, and express the homogeneous semi-discrete DG

Equations (4.3) as

jωU = ADGU (4.4)

with ADG the semi-discrete DG operator. PBC are easily enforced in DG through the

flux conditions by setting

n̂m ×Ψm+|x=∆ = e−jα(n̂m ×Ψm|x=0) ,

n̂m ×Ψm+|x=0 = ejα(n̂m ×Ψm|x=∆) , Ψ = {E,H}
(4.5)

Plugging (4.5) into (4.4), we find a homogeneous algebraic system of equations, with

a number of unknowns equal to the number of dof. Nontrivial solutions correspond

to the eigenvectors of the semi-discrete space operator. Under the assumption that

the space operator is diagonalizable, there will exist a basis of eigenvectors Um, m =

(0, 1, . . . , dof− 1), each propagating with a complex frequency ω = k̃m, with k̃m its

corresponding eigenvalue.

It should be noted that the Shannon sampling theorem [158] establishes an upper limit

to the maximum wavenumber which can be sampled in a spatial domain discretized with

dof samples. For instance, let us assume a one-element domain in 1D-DGTD, solved

with pth-order polynomials [(p+1) electric dof plus (p+1) magnetic dof]. The analytical

bandwidth (4.2) which can be represented numerically is restricted to

|kn| =
∣∣∣k0 +

π

∆
2n
∣∣∣ ≤ π

∆
(p+ 1) , n = (0,−1,+1, . . .) (4.6)

That is, for each k0 6= π/∆ there2 are (p + 1) leftward analytical modes +|kn| plus

(p + 1) rightward ones −|kn|, which can be numerically approximated. Of course, nu-

merical eigenvalues k̃ fulfilling the Shannon sampling theorem are not necessarily proper

approximation of the analytical ones k. In a broad sense, we will refer to these numerical

modes which do not properly approximate any analytical one, as spurious or nonphysical

modes.

2See Figures 4.1 and 4.2 to see the case k0 = π/∆.
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Let us illustrate this for our simple 1D 1-element case solved by nodal-DGTD and

Lagrange polynomial pth-order basis. Figures 4.1 and 4.2 show the dispersion and dissi-

pation relation for 1st- and 2nd-order basis (with centered and upwind fluxes). We note

that, for p = 1, there appear one rightward and one leftward solution which approximate

the fundamental mode for well-resolved problems (L ≡ k0∆/(p+ 1)→ 0). Another two

modes (one leftward plus rightward) solutions are found, which should correspond to

the first harmonics (|k−1| = 2π
∆ − k0). Due to the coarse discretization of these modes,

close to their own Shannon limit for L → 0, the numerical phase speed is far from the

analytical one. These poorly sampled modes (for a well-resolved fundamental one) with

an undesired behavior are the spurious or nonphysical modes. It bears noting that, in

case of (L→ π), when |k−1| ≈ 0 and |k0| ≈ 2π
∆ , the situation is the opposite: the funda-

mental modes numerically propagate in a wrong way, providing a good approximation

of what has been defined as harmonics.

For p = 2, a similar analysis can be made. Apart from the two fundamental modes,

another four modes (two leftward plus two rightward) appear. In case of L→ 0, the first

harmonics (±k−1) can be distinguished in the numerical dispersion functions, but the

second harmonics ±k+1 present wrong behavior on the phase speed. For different inter-

vals of L, the different solutions, fundamental or harmonic modes, (±k̃0,±k̃−1,±k̃+1)

offer a better or worse approximation to the analytical solutions (±k0,±k−1,±k+1). In

case of upwind flux, much better approximation over more bandwidth is achieved than

for centered flux.

A noteworthy point here is to analyze the dissipation relationship of the upwind flux.

All modes propagate with an attenuation that is larger for poorly resolved modes than

for well-resolved ones. Clearly, for the fundamental mode, dissipation is minimum for

L→ 0. In the case of the harmonics, this situation takes place for different intervals of

L, where they are properly resolved. Furthermore, in all cases, good phase dispersion

corresponds to low dissipation, and poor phase dispersion corresponds to a high dissipa-

tion relationship. However, for the centered flux, the numerical modes do not attenuate

in any case, and poorly sampled analytical modes with wrong behavior (spurious) may

appear together with the well-resolved ones in a simulation.

The definition we use here of spurious solutions is broad in the sense that it provides in-

formation for the whole spectrum of the semi-discrete space operator (which constitutes

a basis for all possible solutions or diagonalizable operators): it provides criteria to dis-

tinguish physical from nonphysical behavior, just in terms of the correct approximation

between the analytical and numerical solutions. However, the qualification of spurious

mode actually depends on the analytical problem under study. For instance, if we excite

the PBC-analytical problem with the fundamental mode as initial values, we might not
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Figure 4.1: Numerical dispersion and dissipation ω = f(k̃n) as a function of L =
k0∆/(p + 1), for scalar 1D-DGTD. Analytical dispersion in red ω = kn = ((p + 1)L +
2nπ)/∆. Sub-index in k̃m has been added a posteriori according to the analytical mode
matched for some L region (no identification for k̃m has been guessed for p = 2 in the
centered case). Up: Centered p=1, Down: Centered p=2. The bandwidth allowed
by Shannon theorem is delimited with green lines, while dashed lines indicate modes
outside this band. Blue is used for numerical modes and red (magenta & brown) for

the analytical ones. (∆ = 1,µ0 = 1,ε0 = 1)
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Figure 4.2: Numerical dispersion and dissipation ω = f(k̃n) as a function of L =
k0∆/(p + 1), for scalar 1D-DGTD. Analytical dispersion in red ω = kn = ((p + 1)L +
2nπ)/∆. Sub-index in k̃m has been added a posteriori according to the analytical mode
matched for some L region (no identification for k̃m has been guessed for p = 2 in the
centered case) . Up: Upwind p=1, Bottom: Upwind p=2. The bandwidth allowed
by Shannon theorem is delimited with green lines, while dashed lines indicate modes
outside this band. Blue is used for numerical modes and red (magenta & brown) for

the analytical ones. (∆ = 1,µ0 = 1,ε0 = 1)
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∆ = 0.2 m 

Figure 4.3: Geometry under analysis for the 3D eigenvalue problem.

expect the appearance of any of the higher harmonics in its numerical counterpart. In

this narrow sense, any solution apart from that corresponding to the fundamental mode

might also be considered spurious (see [54]), even if it is well resolved in space. To illus-

trate this, we have projected the fundamental (rightward) analytical mode k0, expanded

in a p = 10 polynomial basis, into the basis of numerical eigenvectors. Since these are

not orthogonal, we cannot assume a modal separation of the energy, but we still find

that for a good resolution L = 0.005, the numerical mode propagates with k̃0 ≈ k0 with

an amplitude ∼ 572 times higher that of the next mode, whereas this ratio lowers to

∼ 28 for a resolution of L = 0.11.

4.1.2 Extension to Three Dimensions

Let us move to a 3D case solved with hierarchal vector basis that is complete up to order

p = 2, both for the gradient and the rotational spaces. We have meshed a cubic domain

in a symmetrical way composed of 24 tetrahedra, as is depicted in Figure 4.3.

The 3D-PBC in space can be expressed as

n̂×H|i+∆i = n̂×H|i e
−jαi ,

n̂×E|i+∆i = n̂×E|i e
−jαi with i = {x, y, z}

(4.7)

where αi is the phase shift in each direction of the space. Considering that k0 = k0xx̂ +

k0yŷ + k0zẑ is the fundamental mode, the phase shift can be evaluated by αi = k0i∆i.

In this case, we enforced PBC in the x-direction with αx = 2π∆, being ∆ = 0.2, and

PBC conditions at the Y Z and ZX-planes with αy = αz = 0 (no delay). An example

of the application of the 3D-PBC is depicted in Figure 4.4.

The numerical eigenvalue k̃ is plotted in Figure 4.5. There are 2MQ = 1440 modes

corresponding to the number of dof of the problem (M = 24 tetrahedra and Q = 30

dof per element). Again, we find that the spectrum of the DG operator depends heavily

on the flux-evaluation scheme. It can be seen that, for the centered scheme, none of
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Figure 4.4: Examples of the application of the 3D-PBC between contour faces from
elements located on opposite sides.

the modes supported by the numerical method has dissipation k̃imag = 0. Therefore,

all numerical modes, both well-resolved physical and poorly resolved spurious solutions,

could be present in a numerical simulation and propagate on the computational domain.

On the contrary, for the upwind case, we can clearly distinguish between well-resolved

physical modes3 and poorly resolved spurious modes by looking at their attenuation

k̃imag ≈ 0. Hence, poorly resolved spurious modes decrease exponentially with the

spatial position and do not propagate along the computational domain. It is important

to note that some undesirable dissipation also affects the well-resolved physical modes,

depending on their spatial resolution.

For the penalized flux with τ = 0.1, similar conclusions are drawn. The main difference

is that the dissipation of the spurious modes decreases compared to the upwind case.

However, the choice of the τ parameter also has an impact on the stability conditions of

the final numerical scheme, as appears following (Section 4.2.2) for the LF scheme and in

[71] for RK. In general, the upper limit of stability in ∆t becomes more restrictive when

τ increases. The use of partially penalized flux with small values of the τ parameter

has negligible effects on the stability of the scheme while keeping sufficient practical

attenuation in the poorly resolved spurious modes.

Finally, let us consider a more realistic case: a 1m-side cubic 3D PEC cavity meshed

with 5025 tetrahedra (see Figure 4.6). The fields in the cavity are then excited via

a electric-current source with a Gaussian pulse time signal, with 10dB bandwidth of

3Four fundamental rightward/leftward planewaves (two polarizations) and their corresponding har-
monics.
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Figure 4.5: Spectrum of the DG operator for a cubic domain (meshed with 24 tetra-
hedra) with PBC (k0 = 2πx̂, ∆ = 0.2 and p = 2). Upwind flux (upper left), Centered

flux (upper right), Partially penalized flux τ = 0.1 (lower).

approximately 400 MHz. The problem has been simulated up to a physical time of

0.5 µs by means of a fourth-order Runge-Kutta (RK4) time-integration scheme. This

problem was computed with centered, upwind, and partially penalized flux, with very

low τ = 0.025 with hierarchal vector-basis functions of complete order p = 2.

The electric field is sampled at one point and the Fourier transform performed for the

vertical component (see Figure 4.7). The power spectrum computed with centered flux

is noisy and shows spectral pollution due to the presence of nonphysical spurious modes.

In case of upwind or partially penalized flux (even for such a low value of τ), we can

clearly distinguish the different resonant frequencies.
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Figure 4.6: Cubic PEC cavity.
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Figure 4.7: Power spectrum of the vertical component of electric field sampled at a
point inside the cavity, computed using centered, upwind, and partially penalized (τ =

0.025) fluxes, 4th-order 2N-storage Runge-Kutta and p = 2.

A similar analysis appears in [54] with nodal functions, where the presence of spurious

modes, in case of centered flux, were reported as well. In case of upwind or penalized

schemes, the spurious modes are also present but have a significant dissipation associated

only with them (very little dissipation for the physical models depending on the level of

discretization), avoiding spectral pollution and the contamination of the solutions. This

fact, as demonstrated above, does not depend on the kind of basis functions used by

the scheme, as has been widely investigated in FEM in frequency domain, and it is a

remarkable difference in DGTD methods, compared to the continuous formulation.



Chapter 4. Numerical Analysis: Accuracy, Stability, Dispersion and Dissipation 84

4.2 Analysis of the Leap-Frog DG Algorithm

In order to characterize a FEMTD method both, the spatial semi-discrete operator

(element size (h) and order of the basis functions (p)) and the time-integration method

(time step (∆t)), have to be considered. In this section, we establish the basis to analyse

the LFDG algorithm. Firstly, the eigenvalue problem is formulated. Next, a simple

stability analysis is performed to support the choice of the ∆t. Finally, some results of

the eigenvalue problem are shown to understand the influence of the time-integration

method in the numerical spectrum, comparing to the ones shown in the previous section

for the semi-discrete case.

4.2.1 Eigenvalue Problem Setup of the LFDG Algorithm

The LFDG algorithm (3.105) for a lossless medium without sources is

Hm
n+ 1

2

=Hm
n− 1

2

+
∆t

µ
M−1

[
− (S− Fκe)Emn − F+

κeE
m+
n + FνhHm

n− 1
2

− F+
νhH

m+
n− 1

2

]
(4.8a)

Emn+1 =Emn +
∆t

ε
M−1

[
(S− Fκh)Hm

n+ 1
2

+ F+
κhH

m+
n+ 1

2

+ FνeEmn − F+
νeE

m+
n

]
(4.8b)

Let us define three column vectors with the magnetic and electric dof staggered in time,

Hn− 1
2

=

[(
H1
n− 1

2

)T
, ...,

(
HM
n− 1

2

)T]T
En =

[(
E1
n

)T
, ...,

(
EMn

)T ]T
Un =

[(
Hn− 1

2

)T
, (En)T

]T

Equations (4.8) can be expressed in a compact manner, for the whole spatial domain as

Hn+ 1
2

=

(
IMQ +

∆t

µ
Mνh

)
Hn− 1

2
+

∆t

µ
MSκeEn (4.10a)

En+1 =

(
IMQ +

∆t

ε
Mνe

)
En +

∆t

ε
MSκhHn+ 1

2
(4.10b)

where IMQ is the MQ × MQ identity matrix, and Mνh, MSκe, Mνe and MSκh are

MQ×MQ matrices, which are the result of assembling the element-matrices of (4.8).
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Inserting (4.10a) into (4.10b), the following fully explicit system is obtained,

Hn+ 1
2

=

(
IMQ +

∆t

µ
Mνh

)
Hn− 1

2
+

∆t

µ
MSκeEn (4.11a)

En+1 =

(
IMQ +

∆t

ε
Mνe +

(∆t)2

µε
MSκhMSκe

)
En +

∆t

ε

(
MSκh +

∆t

µ
MSκhMνh

)
Hn− 1

2

(4.11b)

which can be written in a compact manner as

Un+1 = ALFDGUn (4.12)

where the matrix ALFDG is the DG operator with the LF algorithm. It is the result

of assembling all the element-matrices of (4.11) into a 2MQ × 2MQ matrix. The ma-

trix ALFDG depends on the DG spatial discretization features, such as mesh size (h),

penalization factor (τ), and order of the basis functions (p), and also on the LF time-

integration scheme with a time step ∆t.

Following a procedure similar to that of Section 4.1 for the analysis of the DG spatial

semi-discrete scheme, let us consider a time-harmonic plane wave of the form ej(ωt−k0r̂),

where ω is the angular frequency and k0 is the physical wavevector, and let us seek for

plane-wave solutions. The relationship between Un+1 and Un becomes

Un+1 = ejω∆tUn (4.13)

with ejω∆t the so-called the amplification factor, which is found after solving the follow-

ing eigen-problem,

ejω∆tUn = ALFDGUn (4.14)

Finding the 2MQ eigenvalues (λmALFDG ,m = 1, ..., 2MQ), we obtain the complex-valued

numerical wave-vectors (k̃m = k̃mreal+jk̃
m
imag,m = 1, ..., 2MQ), related to the eigenvalues

by

k̃m = j
ln
(
λmALFDG

)
c∆t

, m = 1, ..., 2MQ (4.15)

4.2.2 Stability Analysis of the LFDG Algorithm

The LFDG algorithm is an explicit and conditionally stable scheme. Some stability

analyses appear in [61, 63, 64, 136], where heuristic or analytical sufficient-stability

closed conditions were derived. These analyses find a stability condition based on the

maximum eigenvalue that can be supported by the scheme. To avoid solving complex
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eigenvalue problems for each specific problem, a maximum limit for the highest eigen-

value can be estimated to ensure stability. Thus, a ∆tmax can be chosen a priori based

on geometrical properties of the elements. Following this procedure, larger ∆t does not

mean an unstable scheme, but shorter ∆t guarantees the stability of the scheme. For

the first-order p = 1, LFDG with τ = 0 or centered flux, in an homogeneous medium,

the following condition must be satisfied by all the m elements to achieve stability [64],

c∆t
8 +
√

40

3
<

4Vm
∂Vm

(4.16)

where Vm is the element volume, and ∂Vm the element perimeter or the sum of the

surface of all faces of the element.

In the case of τ 6= 0, this expression is not valid, and the stability condition becomes

more restrictive and difficult for an a priori estimation, [64].

In this work, a simple numerical-stability analysis has been performed on the 3D ge-

ometry (Figure 4.3) described in Section 4.1.2: a cubic spatial domain meshed in a

symmetrical way into 24 tetrahedra, with 3D-PBC conditions (4.7) at the box faces

(Figure 4.4). The maximum ∆t has been numerically found for different p orders, and τ

values. The numerical strategy is to solve the eigenvalue problem of (4.14) for different

∆t until we find the maximum value (∆tmax), which keeps all the complex-valued k̃m

with a negative imaginary part (k̃mimag < 0,m = 1, ..., 2MQ).
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Figure 4.8: Numerical stability analysis of the LFDG algorithm for the geometry of
figure 4.3 with k0 = 2πx̂ and ∆ = 0.2. (a) Dependence of ∆tmax with τ parameter.

(b) Relative penalization of ∆tmax with τ parameter.

Figure 4.8 shows the results. A
(
∝ 1

τ

)
dependence of the ∆tmax with the penalization

parameter can be guessed, as derived in [64]. The relative penalization of ∆tmax does



Chapter 4. Numerical Analysis: Accuracy, Stability, Dispersion and Dissipation 87

not depend on the order of the basis functions p. Higher values of the τ parameter

require lower ∆t values to maintain the stability. For this reason, it is desirable to keep

the τ parameter as low as possible so as not to penalize the stability condition, but high

enough to eliminate spurious modes: a tradeoff between stability and spurious-mode

reduction is required.

Table 4.1 shows some notable values taken from the results. The penalization for using

τ = 0.1 is about 9% in the ∆t. In case of τ = 1.0, upwind flux, the computation cost

would be increased by a factor of 2.25. The third column shows a estimation of the

increment in the number of time steps due to the reduction of time step when order p

is increased. This factor is about 1.6 from p = 1 to p = 2, and 2.5 from p = 1 to p = 3.

It is important to note that the computational cost for different orders does not depend

only on ∆t. If higher orders are used, the number of dof also increases and therefore the

computational cost per time step. On the other hand, accuracy is better for higher-order

p, so that the number of elements can be reduced by increasing h. For all these reasons,

a tradeoff is needed between the size of the mesh, accuracy, and order p. This analysis,

from the standpoint of computational cost, appears in Section 4.5.

Table 4.1: Results of the numerical stability analysis of the LFDG algorithm.
∆tmax(p,τ=0)

∆tmax(p,τ=0.1)
∆tmax(p,τ=0)
∆tmax(p,τ=1)

∆tmax(p=1,τ=0.1)
∆tmax(p,τ=0.1)

p = 1 1.08 2.25 1.00

p = 2 1.09 2.30 1.62

p = 3 1.09 2.28 2.44

4.2.3 Numerical Results of the LFDG Eigen-Problem

The results of the previous section permit the choice of the ∆t relative to ∆tmax, since

the eigen-problem depends on this value. Hereinafter, the following parameters have

been fixed: k0 = 2πx̂, p = 2, and ∆ = 0.2.

Figures 4.9 and 4.10 show the spectrum of the LFDG algorithm for different flux-

evaluation schemes and ∆t, respectively. The analyzed cases that appear in Figure

4.9 are similar to those of Figure 4.5 solved with the DG spatial operator. It can be

seen that the time-integration scheme has an impact on the eigenvalue problem, which is

slightly distorted, but the nature of the spectrum remains. Hence, the same conclusions

related to non-physical solutions or spurious modes made for the semi-discrete scheme

in Section 4.1.2, can be extended for the LFDG algorithm.

Figure 4.10 shows the spectrum of the LFDG algorithm for ∆t close to ∆tmax. It can be

seen that the spectrum of LFDG is not symmetrical respect to the real part. In the DG
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Figure 4.9: Spectrum of the LFDG operator for a cubic domain (meshed with 24
tetrahedra) with PBC (k0 = 2πx̂, ∆ = 0.2 and p = 2). Upwind flux (upper left),

Centered flux (upper right), Partially penalized flux τ = 0.1 (lower).

operator, for all the numerical wavenumbers i, defined as k̃i = k̃ireal + jk̃iimag, another j

wavenumber can be found which fulfills the following condition, k̃j = −k̃ireal+jk̃iimag. In

the LFDG case, this symmetry condition is not exactly fulfilled, and it is more clear in the

case of ∆t close to ∆tmax, and in the wavenumbers close to the instability limits (large

value of
∣∣∣k̃mreal∣∣∣ and k̃mimag close to zero, even positive in case of an unstable situation).

The reason for this phenomenon is that a backward approximation of the penalization

terms is being used, instead of central differences, this fact enables a fully explicit scheme

to be found. Hence, delayed samples of the fields are used instead of updated samples,

which drives to non-symmetrical eigenvalues. This fact makes the stability condition
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slightly more restrictive.
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(a) ∆t = 0.99∆tmax. (b) ∆t = 1.01∆tmax.

Figure 4.10: Results of the eigenvalue problem (spectrum of the LFDG operator) for
∆t close to ∆tmax, of the problem of Figure 4.3 with PBCs, with τ = 0.4, k0 = 2πx̂,

p = 2 and ∆ = 0.2.

4.3 Convergence of the Numerical Errors

In this section, an estimation is made of the convergence rates of the semi-discrete DG

operator and the fully discrete LFDG algorithm. The influence of the τ penalization

parameter, and ∆t is also studied [P5]. The convergence of DG methods has been

dealt with in a number of works [48, 56, 57]. In this case, the alternative strategy used

previously for the study of the spurious modes and the numerical spectrum is followed.

The convergence is analyzed by searching for numeric plane-wave solutions ej(ωt−kr) of

real frequency ω and complex wave-vector k, for the simple problem of Figure 4.3 with

PBC. The numerical wavevector compared to the analytical one will provide a measure

for the error of the numerical scheme.

For this analysis, we take αx = 2π∆, and no phase shift for the other directions αy =

αz = 0 (k0 = k0ẑ), since the convergence rates do not depend on the illumination

direction. The eigen-problem (4.4) is numerically solved for different h, to find the

numerical eigenvalue k̃m. We define h (a measure for the size of the elements) equal to

the dimension of the cube ∆ ≡ h. For the error analysis, we retain only the k̃m closest

to the analytical one k0 = ω
√
µ0ε0 (the rest can be considered spurious in the sense

discussed previously), referred to here as k̃0 = k̃real + jk̃imag.
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Three different Root Mean Square (RMS) error functions per wavelength (λ = 2π/k0)

can be defined:

RMS error per wavelength (dispersion):
∣∣∣e−jk0λ − e−jk̃realλ

∣∣∣ (4.17a)

RMS error per wavelength (dissipation):
∣∣∣1− ek̃imagλ∣∣∣ (4.17b)

RMS error per wavelength (global):
∣∣∣e−jk0λ − e−jk̃0λ

∣∣∣ (4.17c)

The first one measures the dispersion error (phase delay), depending on the real part of

the numerical eigenvalue (k̃real); the second one measures the dissipation error (decrease

in amplitude), depending on its imaginary part (k̃imag); and the third one measures the

global combination of both errors.

For the DG semi-discrete scheme, the RMS, for basis orders p = 1, 2, 3 and upwind flux

(τ = 1), and for five values of τ penalization parameter (from τ = 1, to τ = 0.025),

are shown in Figures 4.11 and 4.12 respectively, as a function of the spatial resolution

(h/λ = k0h/(2π)).

From Figures 4.11 and 4.12, we can derive the following conclusions:

• High-order convergence of the error is found in all cases. The phase error increases

as O
(
h2p+2

)
and the amplitude error follows O

(
h2p+1

)
, p being the order of the

polynomial space for the vector-basis functions [48, 56, 57].

• In general, most of the practical and real applications need an error of about 10−2.

Note that in this zone the convergence rate becomes exponential.

• Since the convergence rate for the dissipation error is worse than for the disper-

sion error (2p + 2 > 2p + 1), dissipation places higher constraints on the scheme

resolution (h/λ) than does the dispersion error. This fact should be considered

when choosing the time-integration scheme, to avoid the introduction of more dis-

sipation, keeping dispersion under control. For instance, Runge-Kutta schemes

optimize the stability region, while holding dispersion and dissipation fixed. It is

found [159] that maximizing dispersion minimizes dissipation, and vice versa. LF,

as shown below, does not add dissipation error, but only dispersion.

• The parameter τ has little influence in the dispersion and dissipation error of the

physical mode, considered here. However, it bears noting that the dissipation of

the spurious modes is strongly affected by the τ parameter, as demonstrated in

the previous sections, and also in the stability condition [64, 71], as analyzed in

Section 4.2.2.
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Figure 4.11: Convergence of the dispersion (upper left), dissipation (upper right) and
global (lower) errors of the physical mode for the DG operator with upwind flux. The

thicker line plots the function O(hn) corresponding to each case.

We now analyze the fully discrete LFDG scheme, and compare it with the previous

results of the spatial DG operator alone, and with the well-known FDTD method. Since

the influence of the τ parameter on the accuracy of the physical mode has been seen to

be negligible for the semi-discrete case, we have fixed a value of τ = 0.1. This value has

been chosen as a trade-off between stability and spurious-mode reduction.

Results for RMS errors are shown in Figure 4.13 for different orders p, taking ∆t =

0.7∆tmax. We have observed, from our experience that this choice avoids instabilities

due to other numerical aspects. Figure 4.14 also shows results for different ∆t < ∆tmax

(for p = 2).
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(a.1) Dispersion error. (a.2) Dissipation error. (a.3) Global error.
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(b.1) Dispersion error. (b.2) Dissipation error. (b.3) Global error.
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(c.1) Dispersion error. (c.2) Dissipation error. (c.3) Global error.

Figure 4.12: Convergence and influence of the τ parameter in the error of the DG
operator for different p orders. (a) p = 1, (b) p = 2 and (c) p = 3. The black

discontinuous line plots the function O(hn) corresponding to each case.

The expression to evaluate k̃0 for the FDTD case is the very well-known numerical

dispersion relation for this method, written below [157],

k̃0 =
2

h
arcsin

(
h

c∆t
sin(

k0 c∆t

2
)

)
(4.18)

and the stability condition

∆tmax =
h

c
√

3
(4.19)

We can conclude from Figures 4.13 and 4.14:

• The high-order convergence property of the DG spatial operator is maintained up
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Figure 4.13: Convergence of the dispersion (upper left), dissipation (upper right) and
global (lower) errors of the physical mode for the LFDG algorithm with τ = 0.1 and
∆t = 0.7∆tmax. Analogous curves for the DG operator and FDTD have been included
for comparison. In the case of the dissipation error, FDTD curve has been omitted,

since the error is zero, and notice that the LFDG and DG curves are superposed.

to an error limit where the convergence of the error becomes O
(
h2
)

dominated

by the LF time-integration scheme (only 2nd-order). This fact depends neither on

the order of functions p, nor on ∆t, and coincides with that found for the FDTD

method. Higher-order Leap-Frog (LFN ) schemes have been proposed to improve

this [68].

• Since LF is non-dissipative, only the dispersion error is affected. The dissipation

error coincides with that of the semi-discrete case.

• The limit between the zones where the error is dominated by the spatial discretiza-

tion and by the temporal integration methods, depends on ∆t, as shown in Figure

4.14. This limit can be improved by reducing ∆t, at the cost of increasing the

computational cost.
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Figure 4.14: Influence of ∆t in the dispersion (upper left), dissipation (upper right)
and global (lower) errors of the LFDG algorithm with τ = 0.1 and p = 2. Analogous

curves for the DG operator have been included.

• The typical 10−2 accuracy value is in the zone dominated by the spatial discretiza-

tion error for the LFDG method, for p=1, p=2 and p=3 and ∆t=0.7∆tmax with

resolutions ranging from ∼ λ
4.5 , ∼ λ

1.9 and ∼ λ
1.1 , respectively. This characteristic is

not expected to be fulfilled by higher orders that p= 3. In FDTD a resolution of

∼ λ
28.5 is required to reach a 10−2 accuracy4.

Notice that this analysis has been performed considering a plane wave traveling in a

homogenous medium. The conclusions to any general problem should be extended with

care. When we have geometrical singularities, as corners or vertices, the convergence

rate considerably decreases. These regions shall be dealt with h-refinement techniques.

It is important to note that, for these kinds of cases the temporal integration error

4Notice the resolution for FDTD is for the cubic spatial domain of Figure 4.3 meshed with one cell,
and for LFDG the same domain is meshed into 24 tetrahedra. The influence of the resolution is taken
into account in Section 4.5 to compare in terms of computational cost.
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loses influence, and the spatial discretization of the fields determines the accuracy of the

numerical method. The LFDG method becomes a very efficient method for these cases,

if combined with a local time-stepping technique (see Section 3.5.2.3), to avoid the use

of unnecessarily small time steps.

4.3.1 Numerical Experiment

A simple numerical experiment has been performed, in order to reproduce, with a real

simulation, some results from the previous analysis. A region of (0.6 × 0.6 × 12) m.

has been meshed into (3 × 3 × 60) cubes, each one equal to that used for the previous

eigenvalue analysis (Fig. 4.3, with ∆ = 0.2 m.). A y-polarized plane wave, propagating

along the z-axis, has been excited at the lower z-plane, by using perfect electric conductor

at the y-boundaries, and perfect magnetic conductor at the x-boundaries (which support

the plane wave propagation). Silver-Müller absorbing (impedance) boundary conditions

have been taken at the z-boundaries.

Two probes separated by L = 10 m. along z, have been taken to estimate the error in the

propagation of the y-component of the electric field (e0 (t) , eL (t)). The RMS dissipation

error per wavelength has been computed in the frequency domain (E0 (f) , EL (f)) by∣∣∣∣∣1−
[
|EL(f)|
|E0(f)|

] λ
L

∣∣∣∣∣ (4.20)

where we have taken into account the multiplicative effect along the propagation path, in

order to express it in terms of a per-wavelength error, and compare to Equation (4.17b).

For the RMS dispersion error per wavelength, we have computed the numerical phase

error, with respect to the analytical phase
(
−2πL

λ

)
, and normalized by the wavelengths

traveled by the wave
(
L
λ

)
, to compare with Equation (4.17a). Figure 4.15 shows this

comparison for two different ∆t. A good agreement is found for errors above 10−7.

Errors below this level happen at very low frequency, and are due to truncation of the

signals, and the presence of spurious modes (a further study of these has been performed

in Sections 4.1 and 4.2.3).

4.4 Anisotropy of the Numerical Errors

In this section, we analyze the anisotropic behavior of the errors in both schemes, the

semi-discrete DG operator and the fully discrete LFDG algorithm [P5]. A 2D analysis

for the wave propagation problem appears in [47]. In this case, we follow the same

strategy that used for the convergence analysis. Again, we have fixed a value of τ = 0.1,
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Figure 4.15: Convergence of the dispersion (left) and dissipation (right) errors of
the LFDG algorithm computed with the numerical test (NT) and with the eigenvalue
analysis (E). We have used in both cases τ = 0.1, and p = 2. Analogous curves for the

DG operator have been included for comparison.

and ∆t = 0.7∆tmax for LFDG. The anisotropic behavior of the error is analyzed by

solving the eigenvalue problems for different k0.

Figures 4.16, 4.17 and 4.18 show 2D plots of the anisotropic errors for different illumi-

nation angles (due to the symmetry of problems, θ = [0◦, 90◦] and φ = [0◦, 90◦] include

all the possible illuminations) and basis orders p = 1, 2, 3, respectively. 3D representa-

tions of the normalized real part of the numerical eigenvalue, referred to as dispersion

rate (notice that this magnitude is the inverse of the normalized numerical phase speed,

which is an alternative magnitude represented in some works, [47, 157]) and dissipation

rates have been included to show the shape of the anisotropy. In figure 4.19 has been

plotted cuts in θ angle of the dispersion error for φ = 45◦, comparing the DG operator

and the LFDG algorithm for different orders p.

From the present analysis, we can derive the following conclusions:

• The anisotropy of the error, both dispersive and dissipative, is given by the spa-

tial discretization. The LF temporal integration only introduces an offset in the

dispersion error in all directions, and no dissipation error (as expected).

• For conciseness, plots for different values of h and p have been omitted, but we have

observed, in general, that the shape of the anisotropy of the error (both dispersive

and dissipative) only depends on the order of the basis functions (p), while the

h-parameter mainly affects to the error amplitude.

• For the semi-discrete DG operator (as well as for LFDG algorithm if the error is

dominated by the spatial discretization), the numerical phase speed is higher than
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(a.1) Dispersion error (a.2) Dissipation error (a.3) Global error

   

(b.1) Dispersion error (b.2) Dissipation error (b.3) Global error

(c.1) DG dispersion rate (c.2) LFDG dispersion rate (c.3) Dissipation rate

Figure 4.16: Anisotropy of the error for τ = 0.1, p = 1 and h = 0.025. (a) DG
semi-discrete scheme, (b) LFDG scheme with ∆t = 0.7∆tmax (c) 3D representation.
The error has been amplified in order to represent the shape of the anisotropy. The

analytical solution has been represented in grey (sphere of radio 1).
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(a.1) Dispersion error (a.2) Dissipation error (a.3) Global error

   

(b.1) Dispersion error (b.2) Dissipation error (b.3) Global error

(c.1) DG dispersion rate (c.2) LFDG dispersion rate (c.3) Dissipation rate

Figure 4.17: Anisotropy of the error for τ = 0.1, p = 2 and h = 0.2. (a) DG
semi-discrete scheme, (b) LFDG scheme with ∆t = 0.7∆tmax (c) 3D representation.
The error has been amplified in order to represent the shape of the anisotropy. The

analytical solution has been represented in grey (sphere of radio 1).
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(a.1) Dispersion error (a.2) Dissipation error (a.3) Global error

   

(b.1) Dispersion error (b.2) Dissipation error (b.3) Global error

(c.1) DG dispersion rate (c.2) LFDG dispersion rate (c.3) Dissipation rate

Figure 4.18: Anisotropy of the error for τ = 0.1, p = 3 and h = 0.25. (a) DG
semi-discrete scheme, (b) LFDG scheme with ∆t = 0.7∆tmax (c) 3D representation.
The error has been amplified in order to represent the shape of the anisotropy. The

analytical solution has been represented in grey (sphere of radio 1).
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Figure 4.19: Cuts of the dispersion error comparing the DG operator and the LFDG
algorithm for different orders p and h. The Y axes have been broken in all cases,

maintaining the same spacing, in order to show the offset in the dispersion error.
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1.0 for some directions, and lower for some others. That implies that there are

dispersion-free propagation directions.

• For real cases, the natural inhomogeneity of the unstructured mesh will result in a

general reduction of the error anisotropy. It bears noting, that this reduction does

not occur for methods like classical FDTD, where the use of structured meshes

makes systematic this anisotropy.

4.5 Computational Cost vs. Accuracy Analysis

The differences in accuracy between LFDG and FDTD (apparently high from Figure

4.13) should be analyzed with both methods under fair comparison conditions. In this

section, we study the computational cost vs. accuracy, in order to draw an effective

application of the proposed scheme in real problems, and explore the limitations and the

efficiency of the method [P5]. The main trade-off involves the order of the basis functions

p, the mesh resolution h, and accuracy, with the aim of minimizing the computational

cost. We must take into account that:

• Increasing p improves accuracy, but requires shorter ∆t for stability, and the com-

putational cost per element is higher.

• Decreasing h improves accuracy, but requires shorter ∆t for stability for smaller

elements, and the number of elements increases.

To compare the different configurations of the method, a computational cost per λ3 and

picosecond (psec) has been defined. Firstly, we can establish that the computational

cost for one element of a DG scheme is proportional to the square of the number of basis

functions Q in that element,

Celement ∝ Q2 (4.21)

Then, the cost for one time step per λ3, will be approximately the number of elements

M per λ3 multiplied by the cost per element,

Ctime step

λ3
≈ M

λ3
Celement (4.22)

Finally, we can define the following figure of merit (CC) to measure the global cost of

the method, also including the effect of the ∆t taken for stability,

CC = K
M

λ3
Q2 1

∆t(in psec.)
(4.23)
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Table 4.2: Results of the computational cost analysis for an accuracy of 10−2 per
wavelength.

Q λ
h

Nelement
λ3

Nfunctions

λ3 c∆t 103 Celement ∝ C1iter
λ3 ∝ CC Gain

(
CC(p−1)
CC(p)

)
FDTD 3 28.5 23149 69447 14.1 9 208341 4432 –

p = 1 12 4.5 2187 26244 17.6 144 314928 9660 –

p = 2 30 1.9 165 4950 85.3 900 148500 3270 2.95

p = 3 60 1.1 32 1920 97.1 3600 115200 2260 1.45

with K being a factor that has been considered equal to 1 for the FDTD case, and equal

to 2 for the LFDG method (heuristically taken into account for the additional LFDG

terms). This simple estimation is based on the fact that FDTD can be seen as a kind

of FVTD method, which in turn is equivalent to a p = 0 LFDG, where the elements are

cubes instead of tetrahedra [29] (we will not consider here specific architecture-based

computer-optimized FDTD codes that might render K < 1).

The CC magnitude has been computed for the results of the convergence analysis of

Figure 4.13, and shown in Figure 4.20, where CC is on the X-axis and, accuracy is on

the Y-axis, on the upper side of the plot, and the resolution of the mesh, h, on the lower

side.

The numerical values of CC, for the 10−2 accuracy case, appear in Table 4.2. As

expected, for higher-orders p, the size of the elements to reach this accuracy
(
λ
h

)
can be

increased, and larger ∆t are allowable. Thus, the overall computational cost decreases

with higher-order p. However, if we require higher accuracies (< 10−3), this is no longer

true, as seen in Figure 4.20, because the global error is dominated by the 2nd-order

temporal integration method, and the high-order convergence behavior is lost. The same

reasoning explains that the gain for using p = 3 instead of p = 2 is not as high as the

gain from p = 1 to p = 2. We conclude that orders p > 3 are not efficient in practical

problems in the LFDG algorithm. This is a major limitation of the method, which

prevents us from taking full advantage of p refinement techniques. On the other hand,

the method has a comparable computational cost to FDTD for practical applications

(from the plane-wave analysis standpoint), but preserving most of the advantages of

finite-element methods (e.g. the conformal meshing or h-refinement in regions with

strong spatial variations of the fields, where time-integration errors are negligible).

We can summarize the results given in Figure 4.20 and Table 4.2 as:

• The computational cost of the LFDG method is of the same order of magnitude

as the traditional FDTD method. Therefore, it is expected that LFDG has all the

advantages of finite-element methods as a similar computational cost of the FDTD

method.
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Figure 4.20: Computational cost of the LFDG algorithm for τ = 0.1, ∆t = 0.7∆tmax
and different order of the basis functions p. CC is on the X-axis and, accuracy is on
the Y-axis, on the upper side of the plot, and the resolution of the mesh, h, on the
lower side. A similar curve of the FDTD method has been included for comparison.

• Due to the limitations of using a 2nd-order accurate time-integration scheme, it

will not be worthwhile to use basis functions of order p higher that 3.

• For the typical accuracy required in practical and real electromagnetic problems,

from 10−2 to 10−3 global error per wavelength, LFDG method is an efficient algo-

rithm. For higher accuracies, higher-order time-integration methods are required

to take greater advantage of the high-order convergence property of the DG oper-

ator.
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The information shown in this section is valuable for the setup of real simulations, since

it allows us to devise a priori a simple hp-refinement strategy. Figure 4.20 enables us

to chose the most efficient element size h (in terms of computational cost), establishing

a target accuracy. Once the mesh has been generated, Figure 4.20 again enables us

to choose the appropriate p order in each element, depending on its size and required

accuracy.

4.6 Summary

In this chapter, the topic of spurious mode reduction was revisited, and it was found that

they can be minimized by means of penalized fluxes. The attenuation on the spurious

modes appearing in DGTD is a remarkable difference with respect to the continuous

formulation of FEMTD, and does not depend on the kind of basis-functions used by the

scheme, making both the vector and scalar, spurious-free schemes for penalized fluxes.

Next, a semi-analytical eigenvalue analysis was used to study the convergence of the DG

semi-discrete scheme, comparing it with the fully discrete LFDG method. The semi-

discrete DG method with penalized flux was found to exhibit a high-order convergence

behavior, with a dissipative error increasing with the basis order p, more rapidly than

the dispersive one. When it is combined with the 2nd order LF scheme, dispersion (not

dissipation) is added, and corruption of the high-order convergence behavior occurs.

The anisotropy of the semi-discrete DG and the LFDG scheme was also analyzed. A

numerical plane-wave propagation experiment was employed to corroborate the results

found with the eigenvalue approach, and illustrate the appearance of other numerical

artifacts.

The accuracy limits and the computational cost of the LFDG method were explored,

providing efficient criteria to tune the simulation parameters. It was shown that, for the

typical accuracies required in practical problems, the LFDG method is efficient for orders

p ≤ 3. Higher accuracies could be achieved for p > 3 if combined with higher-order time-

integration methods. It was also shown that, even for the simple plane-wave propagation,

the computational costs of the LFDG method are in the same order of magnitude of

the traditional FDTD method, with similar accuracy. This makes the LFDG method an

especially attractive alternative to FDTD for realistic problems, thanks to its superior

accuracy when dealing with curved objects, and to the adaptability of the unstructured

meshes.



Chapter 5

Application and Validation

The LFDG method, presented in the previous chapters, has been implemented from

scratch into a parallel computer code further described in Appendix A. The solver can

handle different electromagnetic sources (waveguide ports, plane waves, etc.), isotropic

and anisotropic materials, PEC, PMC, and PML boundary conditions, etc..

In this chapter, this LFDG solver is validated with several electromagnetic problems.

Some of the results are compared with measurements, and some others with results found

with other computational methods. The problems were chosen to test the capabilities

of the method from different viewpoints:

• Microwave filters, which are ideal to show the robustness, accuracy, and stability

of the method due to their strong resonant behavior.

• Antenna problems considering different excitations, to show the versatility and

efficiency of the method.

• Radar cross-section of low-observable (LO) targets, to show the accuracy of the

approach.

• Response of electrically medium and large-structures under high-intensity radiated

field (HIRF) conditions, including a complete aircraft simulation, to prove the

efficiency, scalability, and robustness of the method.

• Anisotropic materials.

105
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Table 5.1: Number of elements (M) for each set of basis functions for the DMCWF.
GxRy stand for x order for the gradient space, y order for the rotational space

G1R1 G1R2 G2R2 G2R3 G3R3 Total

M 38988 2258 804 2734 15102 59886

dof 935712 90320 48240 246600 1927320 3248192

Table 5.2: Local time-stepping level distribution for the DMCWF.
L1 L2 L3 L4

M 7 13101 22556 24222

∆t (psg) 6.96 10−3 20.88 10−3 62.64 10−3 187.92 10−3

5.1 Microwave Filters

Waveguide filters are especially challenging problems for TD techniques traditionally

solved by methods in frequency domain, such as finite-element methods, integral-equation

methods, or analytical methods (like mode matching). Due to the strong resonances that

these structures present, two main features are required to deal with them in TD. One

is the stability of the method, since very long simulations are necessary. The other is its

accuracy, to maintain the coherence of the electromagnetic field throughout the struc-

ture. In this work, we use waveguide filters to provide a proof of the robustness and

accuracy of the LFDG method.

5.1.1 PEC Microwave Filter

A dual-mode circular waveguide filter (DMCWF) is discussed in this section, which has

been analyzed in detail in [160] and measurements are available. The filter is composed

of a circular cavity resonator that includes the input and output slots of a DMCWF.

Due to the symmetries of the structure, vertical perfect magnetic conductor-wall and

horizontal perfect electric conductor-wall symmetry were considered in the numerical

simulations, as is depicted in the simulation setup of the Figure 5.1.

It is important to note that a dense discretization of the slots is critical for accurate

results. This forces to chose small time steps in these elements to satisfy stability

condition. The use of curvilinear 2nd-order tetrahedra permits to have high geometrical

discretization accuracy in the cylindrical waveguide, without reducing element size. The

basis functions used in each tetrahedron element have been selected depending on its size

(see Section 4.5). Table 5.1 gives the number of elements for each set of basis functions,

while Table 5.2 gives the number of elements and time step for each level of the LTS

algorithm (see Section 3.5.2.3).

Three observables have been considered:
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Figure 5.1: Dual-mode circular waveguide filter dimensions and problem setup (Ez
results overimpose for both fluxes).

1. A field probe inside the rectangular waveguide to record the field evolution in time.

Figure 5.2 shows different results for partially penalized (τ = 0.025) and centered

flux cases. In the case of centered flux, and due to the spurious modes, Ey and

Ex are not null. No noticeable difference is appreciated between centered and

penalized for Ez.

2. The filter response in terms of the S21 parameter. No remarkable differences were

found between centered/upwind or LF/RK4 schemes. For instance, Figure 5.3

shows the comparison between measurement, centered, and partially penalized

(τ = 0.025) computed with LF and local time-stepping, with excellent agreement.

No influence on the S21 parameter appears to exist due to spurious modes, reaching

excellent agreement in all cases.

3. The evolution of the energy inside the structure. Figure 5.4 shows the curves for

the two cases referred above. It can be seen that the energy needs considerable

time to leave the filter, since the structure is very resonant. This leads to long

physical simulation times to achieve accurate results, as listed in Table 5.3. For

the centered flux, there is more energy inside the structure because of the spurious

modes. However, they do not have influence to find good and accurate results for

the S21 parameter, though some deviations are found in the computed near fields.

This behavior, i. e. no effect of spurious modes in average magnitudes (far field,

impedance, S parameters, etc.), has been systematically observed, not only in DG

methods, but in general finite-element methods as well.
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Table 5.3 summarizes the computational requirements of the different simulations per-

formed. It should be noted that the 2nd-order LF scheme, combined with a 5-level LTS

provide the algorithm about 8 times faster than do non-LTS schemes for this numerical

case.

Table 5.3: Computational requirements of the different cases (for a 8 processors AMD
OPTERON dual core 1.8GHz.). The computed physical time has been 35 nsec. Fluxes:

C=centered, U=upwind, P=penalized with τ = 0.025.
Flux Scheme ∆t (3) steps(1) memory CPU(2)

C RK4 24.5 - 24.5 1428572 2.0 GB 121.2 h

U RK4 24.1 - 24.1 1452282 4.1 GB 213.3 h

C LF 19.6 - 19.6 1785715 2.0 GB 63.5 h

P LF 19.2 - 19.2 1822917 4.1 GB 118.5 h

C LF,5L-LTS 6.96 - 187.9 186250 2.1 GB 8.9 h

P LF,5L-LTS 6.81 - 183.9 190320 4.3 GB 15.5 h

(1) Number of steps for the maximum ∆t in the problem.
(3) Minimum-Maximum values in units of 10−15 sec.

5.1.2 Microwave Filter with Dielectric Material

Next, we have simulated a microwave filter with dielectric materials. The filter is com-

posed of a single resonator based on a rectangular cavity loaded by a dielectric cylindrical

puck. This structure has been reported in [161] and measurements are available. Again,

the rectangular cavity is excited by two rectangular slots centered on opposite lateral

faces. The resonator is chosen with a high permittivity (εr = 29) (see setup in Fig-

ure 5.5). The TE10 mode is excited in the input port, by impressing surface magnetic

currents with its profile. The backwards propagated mode is absorbed by the PML,

and the forward-propagated one is the incident wave used to excite the structure. The

reflected wave required to evaluate the S21 parameter is computed by projecting the

computed electric fields with the TE10 profile at the output port. The energy (Figure

5.6) takes a long time to leave the cavity due to the presence of the dielectric puck, which

makes the structure very resonant. Excellent agreement in the S21 parameter between

simulation and the measurements is found in Figure 5.7. Only the results for a partially

penalized (τ = 0.025) flux are shown (similar results can be found with the centered

flux, since, as with the previous filter, spurious modes have no noticeable effect on the

transmission coefficient).

The computed physical time, as appears in Table 5.4, was 180 nsec, which corresponds

to 1980 cycles of the lowest frequency and 2880 of the highest frequency under analysis.

2nd-order LF with local time-stepping has been used with no instability problems. Due

to the marked differences in the size of the elements, up to 6 levels in the LTS have

been used, and the ratio between the shortest and largest time step was 729. Again,
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Figure 5.2: Dual-mode circular waveguide filter near fields computation.
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Figure 5.3: Dual-mode circular waveguide filter response. Measured and computed
data comparison.
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Figure 5.4: Evolution of the energy inside the dual-mode circular waveguide filter.
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Figure 5.5: Single resonator composed of a rectangular cavity loaded by a dielectric
cylindrical puck. Simulation setup.
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Figure 5.7: S21 response of the single resonator filter. Measured and computed data
comparison.

depending on the size of the elements, a different order p of the basis functions has been

chosen.

Table 5.4: Single resonator simulation description.
flux partially penalized (τ = 0.025)

time scheme 2nd-order LF (6-LTS)

number of elements 362706

number of d.o.f. 18505352

computed physical time 180.0 nsec.

LTS level 1 2 3 4 5 6

number of elements 2 26 390 177768 94036 90484

number of elements(%) 5.5 · 10−4 7.2 · 10−3 0.11 49.0 25.9 24.9

∆t (ps) 6.0 · 10−4 1.8 · 10−3 5.4 · 10−3 1.6 · 10−2 4.8 · 10−2 1.5 · 10−1

number of steps 297977292 99325764 33108588 11036196 3678732 1226244

order basis functions (G0,R1) (G1,R1) (G1,R2) (G2,R2) (G2,R3) (G3,R3)

number of elements 0 298113 9302 3535 27577 24177

number of elements(%) 0 82.2 2.6 1.0 7.6 6.7

5.2 Wideband Antennas

Wideband antennas are key components in many different applications such as short-

range and indoor ultra-wideband communication systems, sensors for electronic coun-

termeasure, or high-performance radar military systems. In these kinds of structures,

an accurate modeling is critical in zones with small geometrical details, such as feeding
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ports. Frequency-domain methods, such as MoM or FEM, are the usual choices for their

capability of accurately modeling fine geometrical details. However, FD methods may

become computationally inefficient for ultra-wideband analysis, since each frequency

needs a complete simulation, typically involving a linear system resolution.

When DGTD is applied to antennas with small geometrical details, such as the feeding

port, strong disparities among element size are found in the unstructured mesh, and,

hence, in the local time steps required for stability. For this reason, the LFDG algo-

rithm combined with the LTS strategy to deal with the high contrast in the element

sizes becomes a competitive method, for the electromagnetic modeling of these kinds of

structures.

Another essential aspect in the simulation of antennas by DGTD, is the numerical mod-

eling of their feeding. In practice, most antennas are fed by coaxial, waveguide, or

microstrip ports. The most simplified numerical model of the feeding port is known

as delta-gap. This model usually permits the accurate estimation of the antenna radi-

ation pattern, and in many cases also its input impedance, e.g. if the antenna is fed

by a matching network [21]. However, it presents limitations [162, 163] for accurately

predicting the S-parameters and the input impedance, when the actual geometry of the

port has a strong influence on the antenna behavior.

The aim of this section is to discuss efficient strategies to apply LFDG algorithm for

the accurate simulation of wideband antennas. We describe an alternative to the delta-

gap feeding model, based on simple coaxial port, where both the excitation and the

truncation of the port can be incorporated by making use of the flux terms at practically

no cost. Several numerical examples serve to illustrate the accuracy of our approach.

We demonstrate the affordability of DGTD methods for problems typically addressed

by MoM, permitting us to simulate the complete antenna system including the structure

where it is installed.

5.2.1 Antenna Feeding Models in DG

The implementation of transverse electric and magnetic (TEM) transmission lines in DG

can be easily carried out by making use of the flux terms, both for excitation and for

absorption. In case of a coaxial waveguide, the first TEM coaxial mode can be injected

into the coaxial port in a weak manner through the flux terms by introducing surface

electric and magnetic current-density sources of the form,

M s = n̂p ×Einc (5.1a)

Js =− n̂p ×H inc (5.1b)
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where n̂p is the unit vector normal to the port along the direction of propagation of the

injected TEM mode. This technique permits the total-field to be separated from the

scattered-zone as in the usual plane-wave generation. The incident fields, expressed in

cylindrical coordinates (ρ and φ), are

Einc = V inc (t)
1

ln (b/a)

1

ρ
ρ̂ (5.2a)

H inc = V inc (t)
1

η ln (b/a)

1

ρ
φ̂ (5.2b)

being a and b the inner and outer radii of the concentric conductors, respectively, with

the space between them filled with a dielectric of impedance η =
√

µ
ε . The time variation

of the excitation signal is V inc(t).

The coaxial port, considered in single-mode, is accurately truncated with a Silver-Müller

impedance boundary condition, making it unnecessary to use the PML. In addition, the

SM-ABC can be located in the same surface as the port, avoiding the use of the scattered

zone. The Silver-Müller condition, as shown in Section 3.1.2, is easily and costless applied

by slightly modification of the flux terms at the port surface.

We can evaluate the antenna impedance and S11 parameter from the computation of

total voltage V tot from the fields at the port surface. Notice that the space and time

dependencies are separated in Equations (5.2) and, once the TEM mode is projected on

the test functions, all the source-terms remain unchanged over the simulation, except

for a time-dependent common factor depending on the time instant.

A simple alternative to the coaxial port is the well-known delta-gap feed model, which

is computationally less costly than the first one, and which can be accurate in some

situations. Many implementations can be found in the literature [163]. In the present

work, we choose to establish the given excitation voltage V inc (t) across the points of a

surface gap (assumed to be PEC1) through surface magnetic currents (coupled into the

DG equations in the usual weak form). These are found from Einc = V inc (t) 1
∆ l̂g, where

∆ is the gap width, and l̂g the unit vector following the gap orientation (see Figure 5.8),

according to

M s = n̂g ×Einc = V inc (t)
1

∆

(
n̂g × l̂g

)
(5.3)

where n̂g is the unit vector normal to the gap. Notice that the space and time dependen-

cies are also separated in Equation (5.3). The PEC condition must be applied making

used of the flux terms as described in Section 3.1.2.

To evaluate the antenna impedance, we need only to compute the current flowing through

the delta-gap and divide it over the incident voltage.

1Commonly referred as hard-source [162, 163], similar approach could be applied to the soft-source.
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Figure 5.8: Delta-gap source model.

To illustrate this, we computed the input impedance and radiation patterns for some

frequencies of a conical antenna over an infinite ground plane. Figure 5.9(a) shows the

setup and dimensions of the two simulated cases, where the structure is excited by a

coaxial port and delta-gap. Notice that the impedance is not calculated at the same

physical point, since, between the radiating element and the coaxial port, there is a sec-

tion of coaxial waveguide of 9.6 mm, not considered in the delta-gap case. Figure 5.9(b)

compares the computed impedance, showing reasonable agreement at high frequency

and differences at low frequency, as expected, since in the coaxial case the low-frequency

impedance tends to open-circuit, while for the delta-gap it tends to short-circuit. De-

spite this, no significant differences are detectable in the radiation patterns of Figure

5.9(c), which demonstrates that the simplified delta-gap model can be used to predict

the antenna radiation performance.

5.2.2 Wideband Bicone Antenna

A biconical antenna was manufactured and measured to be used as a field sensor for

Low Level Swept Field (LLSF) measurements and it has also been simulated. The

main objective of a LLSF test is to evaluate the transfer function between external and

internal fields in a structure. This is a typical test in the aerospace EMC sector, to assess

the shielding effectiveness inside the fuselage in the equipment bays. Key requirements

for these antennas are: small size, since it must fit inside any kind of cavity, and wide

frequency band. The biconical antenna shown in Figure 5.10 fulfills these requirements.

It is formed by two cones, connected by two sections of coaxial waveguides. Figure 5.11

shows the geometry, and the simulation setup, where the high contrast of the elements

sizes in the mesh is evidenced. Figure 5.12 and Table 5.5 display the distribution of

∆tMAX with the elements and the different LTS levels for this simulation case.

The following aspects have been considered in the antenna modeling:
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Figure 5.9: Conical antenna simulation-case.
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Figure 5.10: Wideband biconical antenna. Left: antenna assembly. Right: antenna
wit radome.

Table 5.5: Number of elements (M) in each local time-stepping level and interface for
the biconical simulation case.

L1 (L1/L2) L2 (L2/L3) L3 (L3/L4) L4 (L4/L5) L5

M 5 19 96 166 10338 5839 44728 35732 123093

M (%) 0.01 0.01 1.42 2.46 96.10 2.46 96.10 2.46 96.10

∆t (fs) 6.2 18.8 18.8 56.3 56.3 169.0 169.0 506.9 506.9

• The antenna is meshed with quadratic (2nd) tetrahedra. This is a key point because

the geometry has revolution symmetry, so that all the surfaces are curved (e.g.

coaxial waveguide), and some of them doubly curved. Curvilinear cells significantly

improve the spatial discretization, and consequently the accuracy of the simulation.

• The order p of basis functions to discretize the electric and magnetic fields has

been chosen depending on the element size (see Section 4.5), in order to maintain

uniform accuracy throughout the spatial domain with reasonable computational

effort. We combined gradient spaces of reduced order p−1, with rotational spaces

of complete order p. The numbers of elements and dof per basis-function set are

shown in Table 5.6.

• A conformal UPML technique (see Section 3.4 and 3.5.2.2) has been used to trun-

cate the computation space. This technique is shown to be reflectionless for any

angle of incidence, polarization, and frequency. The conformity is used to reduce

the buffer space, and thus time and memory requirements of each simulation.
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Figure 5.11: Simulation setup of the wideband bicone antenna.
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Figure 5.12: Distribution of the ∆tMAX with the elements.
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• Due to the symmetry of the antenna, we have simulated one quarter of the an-

tenna, considering perfect magnetic conductor boundary condition in the symme-

try planes. This fact reduces by a factor of 4 the simulation times.

Table 5.6: Number of elements (M) for each set of basis functions for the biconical
simulation case. GxRy stand for x order for the gradient space, y order for the curl

space
G1R1 G1R2 G2R2 Total

M 177933 41906 177 220016

M (%) 80.87 19.05 0.08 100.00

dof 5260368 2392560 14220 7667148

dof (%) 68.61 31.21 0.18 100.00

The coaxial port is excited with a Gaussian pulse time signal, with 12 dB bandwidth

at 20 GHz. The problem has been simulated until a physical time of 1.0 ns. Some

screenshots of the simulation appear in Figure 5.13. The simulation time was 8.9 minutes

for 20 processors AMD OPTERON dual core 1.8GHz. A reduction of 32 times in the

CPU computational time is achieved by using the LTS algorithm, compared to the time

required without employing LTS.

The computed and measured S11 and input impedances are shown in Figure 5.14, where

excellent agreement between can be appreciated. The radiation patterns for different

frequencies were evaluated and are shown in Figure 5.15.

5.2.3 Onboard Antenna Modeling

In this case, we will use the LFDG method to analyze the effect in the radiation per-

formance of an antenna designed to work in the VHF and UHF bands, installed in the

leading edge of an aircraft fin, in comparison to its behavior with the antenna installed

on an infinite ground plane (Figure 5.16), assuming a delta-gap model for the feeding.

In order to keep the antenna size small, these on-board aircraft antennas are typically

fed by a matching network. Figure 5.17 shows the radiation pattern of the ground-plane

configuration. As expected, the loading structure on the top of the radiating element

causes some energy to be radiated in the cross-polar component, which slightly reduces

the antenna gain in the co-polar component. This effect is more discernible in the UHF

band.

The integration of this antenna in a leading edge of a generic aircraft fin is depicted in

Figure 5.18. As a preliminary approach we only simulated a piece of metallic tail, as is

depicted in the simulation setup of Figure 5.19. The antenna impedance, and radiation

patterns for two frequencies (132 MHz (VHF) and 312 MHz (UHF)) are shown in Figures

5.20, 5.21, and 5.22. We find relatively low degradation of the adaptation parameter
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Figure 5.13: Screenshots of the simulation of the wideband biconical antenna.

compared to the infinite ground case. However, as expected, major differences, due to

the masking effect of the fin, are found in the radiation patterns. For validation, we have

included impedance results in Figures 5.20 computed with HFSS commercial software.

A good agreement is found.

5.3 Estimation of the RCS of LO Targets

To validate and test the accuracy of the presented method, we find the radar cross-

section of a typical LO target: the NASA almond. This geometry is a benchmark of the



Chapter 5. Application and Validation 121

freq (GHz)

S
1

1
(d

B
)

0 2 4 6 8 10 12 14 16 18-30

-25

-20

-15

-10

-5

0

 

m e a s u r e m e n t 
s i m u l a t i o n 

freq (GHz)

o
h

m
s

0 2 4 6 8 10 12 14 16 18 20-50

-25

0

25

50

75

100
Real[Zin] (s)

Imag[Zin] (s)

Figure 5.14: S11 and input impedance of the wideband bicone antenna. Measurement
results of the S11 have been included for validation proposes.
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Figure 5.15: Radiation patterns of the wideband bicone antenna. The curves show
antenna gain for different frequencies in dBi.
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Figure 5.16: V/UHF antenna installed on an infinite ground plane.

(a) VHF (132 MHz) co-polar. (b) VHF (132 MHz) cross-polar.

(c) UHF (312 MHz) co-polar. (d) UHF (312 MHz) cross-polar.

Figure 5.17: Theta vs. phi radiation patterns with the V/UHF antenna installed on
an infinite ground plane.

Electromagnetic Code Consortium, for validation purposes. It is defined in [164] and

some measurements for a perfect electric conductor case are reported. Due to the low

RCS of this target, high accuracy is a must to deal with these kinds of EM problems, and

are typically solved with MoM in FD. In this work, for comparison, we have taken a MoM

Multilevel Fast Multipole Method (MoM-MLFMM) in-house Cassidian tool (HPTESP-

MAT), based on the Combined Current and Charge Integral Equation (CCCIE) [165,

166], which is able to deal with composed metallic and homogeneous dielectric structures.
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Figure 5.18: V/UHF antenna integration concept.
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Figure 5.19: Installed V/UHF antenna simulation setup.
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Figure 5.20: Input impedance with the V/UHF antenna installed on the leading
edge of the fin. The results of the antenna installed on an infinite ground plane have
been included. The same computations have been performed with HFSS commercial

software.

(a) Co-polar. (b) Cross-polar.

(c) Co-polar 3D radiation pattern.

Figure 5.21: Radiation patterns for the V/UHF antenna installed in the leading edge
of the fin at 132 MHz.
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(a) Co-polar. (b) Cross-polar.

(c) Co-polar 3D radiation pattern.

Figure 5.22: Radiation patterns for the V/UHF antenna installed in the leading edge
of the fin at 312 MHz.

The geometrical definition of the PEC structure appears below,

Half ellipsoid: for − 0.416667 < t < 0.0 and − π < ψ < π
x = d t,

y = 0.193333 d

(√
1−

(
t

0.416667

)2)
cosψ,

z = 0.06444 d

(√
1−

(
t

0.416667

)2)
sinψ,

(5.4a)

Half elliptic ogive: for − 0.0 < t < 0.583333 and − π < ψ < π
x = d t,

y = 4.833450 d

(√
1−

(
t

2.083350

)2 − 0.96

)
cosψ,

z = 1.611148 d

(√
1−

(
t

2.083350

)2 − 0.96

)
sinψ,

(5.4b)

where d = 2.5 m, is the length of the structure.

Figure 5.23 shows the geometry under analysis. Apart from the PEC case, two different

coated material cases have been studied, a perfect dielectric and a Radar Absorber
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Material parameters:
 

C1: Pecfect Dielectric: 
    εr = 4.0 σe = 0.0 
    µ r = 1.0 σm = 0.0 
 

C2: RAM: 
    εr = 4.0 σe = 5.56 10-3 
    µ r = 1.0 σm = 1.42 104 
 

coating thickness: 30 mm

Figure 5.23: Geometry of the NASA almond.

Material (RAM). These cases were part of a JINA 2006 test case [167]. Note that these

are complete double curvature geometries, where we can find, both smoothly and sharply

curved zones, as well as a singular point, the ogive vertex. The right discretization of

the curve surfaces (curvilinear 2nd-order tetrahedra), and also a care discretization of

the fields close to the vertex (low value of h) are critical to achieve accurate results.

Hence, small elements have been manually defined in the discretization of the vertex, as

an a priori level of h-refinement.

We have required an accuracy for our simulations of 10−2 for the maximum frequency

under analysis. Apart from the vertex, we have defined a maximum and optimal element

size h during the mesh-generation process, corresponding to the value of h
λ of p = 3 of

Table 4.2, which is the optimal in terms of computational and required accuracy. Once

we have generated the mesh, the order p in each element is chosen depending on the

element size, assigning the minimum p that meets the required accuracy. For instance,

in the simplest computed test (bistatic RCS at 1 GHz of the PEC case) the mesh was

composed of 2018928 elements, of which 785678 were p= 1, 523786 p= 2, and 709464

p=3.

Figure 5.24 gives some details of the simulation setup. First, a total-field region is defined

in a way to minimize the size of the computational domain. Then, the scattered-field

region is created. Finally, the conformal PML layer (see Section 3.4.1) is defined to close

the computational domain. The surface, interface between total-field and scattered-field

regions, is used to excite the problem in a weak way, through the flux terms, as Huygen

sources. The same surface is used to compute the near-to-far-field transformation and

calculate the RCS.



Chapter 5. Application and Validation 127

 

 

 

Unbounded Domain 
Huygen’s & 

Near to Far surface 

Total Field Region 

Scattered Field Region 

Conformal PML Layer 

Figure 5.24: Simulation setup for the NASA Almond. Starting with the unbounded
domain (upper left), a total-field region (with a conformal Huygen surface) is defined
(upper right). This surface is used for the near-to-far field transformation operation.
A scattered-field region is created (lower right) and, finally, the PML layer (lower left).

To reduce the computational cost, we have made use of the local time-stepping technique

described in Section 3.5.2.3. We have classified the elements according to the ∆tmax, and

we have employed different time steps for each level. The structures are illuminated with

a horizontal polarized plane wave, impinging on the almond at the vertex. The resulting

copolar bistatic RCS at 1 GHz, computed with LFDG and compared the results with

MoM, are shown in Figure 5.25 for the three cases analyzed. Excellent agreement is

found in all cases. The monostatic RCS from 500 MHz to 2 GHz are shown in Figure

5.26. Excellent agreement is again found both for PEC and C2 (RAM material) cases.

Minor differences are detected for the C1 (perfect dielectric) case. It is important to

note that this is a challenging case for MoM, where the required number of iterations

to solve iteratively the MoM linear system is quite high, and the number of unknowns

cannot be too high in order to have a solution with affordable computational costs. The

minor differences found so far are, in our opinion, due to the use of a coarse mesh in the

MoM computations.

In Figure 5.25, we have also compared the PEC case with FDTD simulations, found

with a 1.5 mm uniform mesh. Both for FDTD and LFDG, we use a padding of half

a wavelength at 1 GHz between the almond and the PML region, and we simulate 50

nsec of the transient response. The FDTD problem employes 750 MCells and requires

a CPU time of 24 hours in a 12 core Intel Xeon X5520 2.26Ghz architecture2, while the

2The UGRFDTD MPI/OMP parallel code [117] benchmarking around 12 Mcells/core, has been
employed.
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LFDG code only requires 18 hours. Results for the bistatic RCS at 1 GHz confirm the

superior accuracy of LFDG especially near the LO (monostatic) zone.

5.4 High Intensity Radiated Fields

The adverse effects caused by HIRF in any electronic device or in a very complex system,

such as an aircraft, is a challenging topic from the standpoint of computational electro-

magnetics. The typical approach to tackle this electromagnetic compatibility problem

is based mainly on testing. The development of efficient algorithms, able to deal with

electrically large structures, and accurate methods, capable of estimating transfer func-

tions between incident EM fields and internal fields, or induced currents in bundles, has

recently been attracting a great deal of interest in the aerospace industry.

In this section the capability of the presented method to deal with very complex elec-

tromagnetic problems in an accurate way is proven. Firstly in a medium-size 3D object,

where a wideband frequency response, considering a plane-wave illumination, is com-

puted. Then, a electrically large problem is analyzed in order to assess the scalability

of the method.

5.4.1 Medium size 3D Object

This validation geometry has been taken from a test-case proposed under the HIRF-SE

project [116] for cross-validation with measurements of several numerical solvers. It

consists on a 600× 500× 300 mm brass box, with the front face open (see Figure 5.27),

with a 30 mm wide flange around the edge. The box has two holes for N-type connectors

on the top, labeled A and B in Figure 5.27(a). Between these holes and inside de box,

a curved-wire is connected (see Figure 5.27(b)), made up of three semi-circles and two

vertical straight sections. Its endings are soldered into the N-type bulkhead connectors

A and B.

The box is illuminated perpendicularly to the open face using a linearly polarized plane

wave, with electric vertical polarization, in the frequency band 1 to 6 GHz. The power

received in the load of 50Ω at port A is taken for comparison (port B is grounded through

a 50Ω load).

The results found with the LFDG algorithm are shown in Figure 5.28. They are com-

pared to measurements, and FDTD simulations computed with the parallel UGRFDTD

package [117]. Excellent agreement is found for LFDG and measurements, and minor

deviations compared to FDTD. The main differences in the simulation of this test case
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Figure 5.25: Bistatic radar cross sections of the NASA almond at 1 GHz. Comparison
results between LFDG and MoM for the coated almond (upper), and LFDG, MoM and

FDTD for the PEC case (lower).
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Figure 5.26: Monostatic radar cross sections of the NASA almond. Comparison
results between LFDG and MoM.

with FDTD and LFDG methods is in the discretization of the curve cable, and in the

modelization of the coaxial ports. In case of the FDTD, the staircasing approximation

introduces errors in the geometrical discretization of the problem. For the LFDG, the

use of second-order curvilinear tetrahedra minimizes this effect. Considering the coaxial

ports, we have used a lumped 50Ω resistor to load the cable in the FDTD simulation. In

the LFDG, we have meshed the coaxial port itself, truncating the port with a SM-ABC

condition, where we have computed the received power. Fig. 5.29 illustrates this two

aspect giving some visual details of the meshes.

5.4.2 Aircraft Simulation Case

This problem consists of a 3D numerical test case based on a modified version of Evektor

EV55 metallic aircraft (see Figure 5.30), also taken as a workbench for cross-validation

of several simulators under the HIRF-SE project [116]3. The aircraft model consists on

a PEC skin together with a generic part of the cabling. The electrical dimensions at 1

GHz are (53.7× 47.4× 17.1)λ. The PEC shell is considered with zero thickness, and

the cable is modeled as a PEC cylinder of radius 3 cm. Some apertures exist in the

3The geometry files (both .igs and .gid format), disclosed by EVEKTOR, are publicly available
upon request in the frame of the CEMEMC’13 HIRF-SE dissemination workshop (full info under
www.cememc.org).
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Figure 5.27: Setup of the medium size 3D object.

aircraft shell, cockpit, and fuselage windows, which permit the electromagnetic energy

to couple into the airframe, where there are simplified models for some of the systems

and cavities. The aircraft is illuminated with a plane wave coming at 45◦ below its nose,

with the magnetic field in the horizontal plane (see Figure 5.30(a)).

Three different kind of probes have been chosen for comparison, for being representative

of different coupling scenarios (see Figure 5.30(b)):

1. O1. The electric field at a surface test-point on top of the cockpit hidden from

the illumination coming from underneath.

2. O2. The magnetic field in a point inside the airframe more weakly coupled to the

illumination, and more susceptible to internal resonances.
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Figure 5.28: Reception aperture of the medium size 3D object, the reception aperture
being the relation between the power received at port A, and the power density of the
plane wave illuminating the box. Measurements are compared with results computed

with LFDG and FDTD methods.

 

(a) Mesh used by FDTD method. The cable is

loaded by a lumped 50Ω resistor.

 

(b) Mesh used by LFDG method. The coaxial

ports have been meshed.

Figure 5.29: Screenshots of the meshes used for the computations. Only surface
meshes have been plotted to visualize the differences of the geometrical discretization.
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(a) External view and overall dimensions.
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(b) Internal view and observation points.

Figure 5.30: External and internal geometry of the aircraft-simulation case. There is
a cable modeled as a cylinder. There are some apertures in the aircraft shell, cockpit,

and fuselage windows, and also different structures and cavities inside the airframe.
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Figure 5.31: Simulation setup for the aircraft-simulation case. Starting with the
unbounded domain (upper left), a total-field region (with a conformal Huygen surface)
is defined (upper right). Then, from this surface, the conformal PML layer can be
created (lower). It should be noted that the scattered-field region is collapsed to the

conformal Huygen surface and is not needed, saving computational space.

3. O3. current at the termination of one of the grounded cables.

All these quantities have been found in time domain and computed in frequency domain

as transfer functions (normalized to the incident field).

The simulation setup is shown in Figure 5.31. A total-field region is defined directly

backed by the conformal PML interface. Thus, the scattered-field region is just the

PML, with the subsequent computational saving. The surface at the total-field/PML

interface layer is used to introduced the excitation as a Huygen source, through the flux

terms, as described in Section 3.2.

The plane-wave source uses a Gaussian pulse time signal, with 14 dB bandwidth at

1 GHz. The problem has been simulated up to a physical time of 1.0 µsec. Some

screenshots of the simulation appear in Figure 5.32 representing the total electrical

field, and results are shown in Figure 5.33, in comparison with those found with FDTD

(computed with UGRFDTD package [117]), reflecting very good agreement.
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t = 44.5 ns 

Figure 5.32: Screenshots of the aircraft-simulation case. Total electric field is repre-
sented on the aircraft structure and in a central plane.
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In case of the FDTD simulation, the cell size has been constant of 12 mm ( λ25 at 1

GHz). In both cases, the expected accuracy 4 is about 10−2 per wavelength at 1 GHz.

Details about the order of the basis functions used in this particular simulation appear

in Table 5.7, and about the LTS, in Table 5.8. A comparison between LFDG and FDTD

computational details is made in Table 5.9.

Table 5.7: Number of elements (M) for each set of basis functions for the aircraft
simulation case. GxRy stand for x order for the gradient space, y order for the rotational

space
G1R1 G1R2 G2R2 G2R3 G3R3 Total

M 96572 6018789 2729857 59 0 8845279

M (%) 1.09 68.05 30.86 0.00 0.00 100.00

dof 3764112 300664960 204819600 6570 0 509255242

dof (%) 0.74 59.04 40.22 0.00 0.00 100.00

Table 5.8: Local time-stepping level distribution for the aircraft simulation case.
L1 INTERFACE (L1/L2) L2 INTERFACE (L1/L2) L3

M 880 980 125602 217506 8500311

M (%) 0.01 0.01 1.42 2.46 96.10

∆t (ps) 1.59 4.77 4.77 14.32 14.32

Table 5.9: FDTD vs LFDG comparison
Method M(106)1 dof(106)2 min. ∆t max. ∆t steps3 memory CPU4 M(106)/sg5

LFDG 8.845 509.3 1.59 ps 14.32 ps 69837 256.6 GB 114 h 52.2

FDTD 703.704 4394.8 18.00 ps 18.00 ps 55556 36.1 GB 14 h 638.4
1 Number of elements (M) are 2nd order tetrahedra for LFDG and Yee-cells for FDTD.
2 Double precision (8 bytes per dof) for LFDG. Single precision (4 bytes per dof) for FDTD.
3 Number of steps for the max. ∆t. The computed physical time has been 1.0 µs.
4 CPU time corresponds to 10 processors Intel Xeon X5680 6 cores, 3.33Ghz.

Hybrid Open MP/MPI implementations are used in both cases.
5 Updated mega-elements per second for the highest LTS level.

Different orders p have been used for each cell (Table 5.7) for LFDG.

For this case, the memory and CPU time is about one order of magnitude larger for

LFDG than for FDTD. In case of FDTD, we use single precision variables since it is an

advantage of this method, the use of double precision does not usually improve FDTD

performance. However, double precision is recommended and used in case of LFDG,

where we are using high-order functions, LTS and PML, double-precision variables are

required to maintain accuracy and avoid instability due to rounding-off errors. Concern-

ing computational cost, three remarks are due:

• The simplicity of the FDTD algorithm makes it easier for the compilers to obtain

faster codes. Techniques such as vectorization and the better use of the cache

4Defining the accuracy as the L2-norm error per wavelength for a plane wave traveling in free space:∣∣∣e−jk0λ − e−jk̃0λ∣∣∣, λ being the wavelength, k0 the analytical wavenumber, and k̃0 the numerical one (see

Sections 4.3 and 4.5.)
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memory are key for speeding up FDTD algorithm. These techniques are not so

effective for DGTD.

• Local time-stepping, the presence of PML and the use of different order p elements,

make not only the workload prediction more difficult, but the workload balance

as well to optimize the parallelization. In one complete time step of the highest

LTS level, the workload is not constant across the mesh in the different steps of

the LTS algorithm. In case of FDTD, the workload balance can be made in an

almost perfect way.

• The mesh used in the FDTD computation is the simplest one, a uniform structured

mesh. Thus, quite high discretization errors are expected because of the staircasing

effect. Moreover, the FDTD mesh parses out what is irrelevant compared to cell

size, which can be an advantage, if it is also electrically irrelevant, or not. In this

case, for instance, a non-uniform mesh had been used, with a smaller cell (2.0

mm), the CPU time would have been very similar to that achieved with LFDG.

In the case of LFDG, where curvilinear 2nd-order tetrahedra have been used, the

discretization error is very small. Furthermore, the finite-element mesh resolved

every detail present in the geometrical model. This fact, concerning accuracy, it

is clearly shown in the first case presented in the previous test-case, where we

compare with measurements.

5.5 Anisotropic Materials

Finally, we validate the formulation developed in Section 3.3, where the flux terms and

the semi-discrete scheme for the anisotropic material case where derived. For compar-

ison, we have used two simple problems of scattering from a non–magnetic dielectric

sphere (µr = 1): the first one isotropic with εr = 3.0, and the second one anisotropic

with

¯̄εXY Zr =


3.0 0.0 0.0

0.0 3.0 0.0

0.0 0.0 4.0

 (5.5)

The sphere is illuminated with a x-polarized plane wave, and the bistatic RCS is com-

puted at a frequency for which the sphere diameter is D = 1.2λ, with λ being the wave-

length. For reference, results from [168], computed with a Finite Element-Boundary

Integral-Multilevel Fast Multipole Algorithm, and also computed with Ansoft HFSS

commercial software are used. Figure 5.34 shows a good agreement between results

found by all methods. The maximum difference found in the anisotropic case compared

to HFSS results has been of 0.35 dB.
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Figure 5.34: Bistatic RCS of an isotropic/anisotropic sphere (D = 1.2λ and λ = 1.0
m). LFDG results are compared to those appearing in [168], and computed with Ansoft

HFSS.

5.6 Summary

In this chapter, the LFDG algorithm was deeply validated with several EM problems. In

all cases, measurements or direct comparison with results computed with other numerical

methods were used. Concerning the computational cost, the required memory and CPU

time were evaluated when solving complex and electrically large EM problems, showing

the efficiency and competitiveness of the scheme.

Apart from the results shown in this chapter, SEMBA solver has been validated in the

Workshop ISAE Radar Signatures 2012 [P19], being some of the contributions considered

as reference results.



Chapter 6

Conclusion and Further Work

This dissertation has targeted two overall objectives: the first one, is to explore the

applicability, numerical errors and fundamental limits of the DG spatial discretization

to solve Maxwell equations in the time domain. The second one, is to implement, apply,

and validate a LFDG-based computer code with realistic complex EM problems. This

chapter first summarizes the main accomplishments and scientific contributions of this

work, and then discusses on future topics of research to render this promising technique

an all-purpose tool in electrical and electronic engineering.

6.1 Contributions

The main achievements of this work (most of them published or under submission in

peer-reviewed journals [P14, P11, P10, P7, P6, P5]) can be summarized as follows:

1. Formulation of the semi-discrete discontinuous Galerkin spatial dis-

cretization scheme. The formulation has been developed in a general frame-

work which unifies different flux-evaluation schemes successfully applied to this

method. The formulation includes the treatment of the common boundary con-

ditions, anisotropic materials, and absorbing boundary conditions, the so-called

first-order Silver-Müller ABC, and the conformal uniaxial perfectly matched layer.

2. Development of the leap-frog discontinuous Galerkin algorithm. The

well-known LF time-integration method has been applied to the DG semi-discrete

scheme, to obtain the LFDG algorithm. In this context, a local time-stepping

strategy has been successfully developed to overcome the critical limitation im-

posed by the stability condition of the LF explicit temporal discretization scheme.
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3. Analysis of the discontinuous Galerkin semi-discrete scheme, and the

leap-frog discontinuous Galerkin algorithm. The dispersion and dissipation

of the numerical methods have been studied. The topic of the spurious modes

has been reviewed. Additionally, the convergence rates of the dispersion and dis-

sipation relationships, and the anisotropy of the errors of both schemes have been

estimated and compared. In case of the LFDG algorithm, other topics have been

studied, such as stability and computational cost. Thus, the limitations of the

LFDG algorithm have been assessed, and an analysis of the computational cost

vs. accuracy has been performed, and compared to the FDTD method.

4. Parallel implementation of the leap-frog discontinuous Galerkin algo-

rithm. Taking advantage of the parallel nature of the LFDG, this algorithm has

been implemented by using a hybrid OMP-MPI programming technique. This

two-level parallelization fits well in modern computers (a number of medium/large

shared-memory multi-element nodes, interconnected with Infiniband, Myrinet or

Gigabit).

5. Validation and application of the leap-frog discontinuous Galerkin algo-

rithm. The LFDG algorithm has been validated with microwave filters, antennas,

and scattering problems, comparing the results with measurements and other nu-

merical techniques. The method has been applied to real engineering problems,

showing some important properties of the method, such as robustness, stability,

versatility, efficiency, scalability and accuracy.

6.2 Further Work

Although many different computational electromagnetic methods have been thoroughly

and widely developed to deal with most of the practical engineering problems, there are

still gaps for which new techniques need to be explored. In this dissertation, a method

that combines the advantages of finite-element methods, and explicit time-domain meth-

ods is implemented from scratch. To the discretion of the author, the following is a

(non-exhaustive) list of the most immediate research topics in this area:

1. Development of further capabilities. LFDG technique has many similarities

to FDTD. Hence, most of the capabilities fully assessed and validated in FDTD

solvers can be adapted to LFDG. Some of them are dispersive and/or anisotropic

thin-layer models, dispersive materials treatment, lumped circuit elements, thin

wires, thin slots, etc..
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2. Improvement of the temporal integration convergence rate of the LFDG.

Although the LFDG algorithm easily permits the selection of the order of the basis

functions for the spatial discretization element-by-element, the main limitation of

the method is the poor convergence rate of the temporal integration scheme. This

fact imposes a limit in the use of p refinement techniques. The temporal integration

algorithm should be improved to permit the selection, also element-by-element, of

the convergence rate of the temporal discretization. Different alternatives to local

time-stepping can be also explored to be closer to the optimum time step in each

element.

3. Improvement of the versatility of the FEMTD methods. Different alter-

natives could be developed to improve the versatility of FEMTD methods in real

applications. Some of them are the following: (i) the use of hybrid meshes with

different kinds of cells taking advantages of the different properties, for instance

tetrahedra in complex regions, hexahedra in regions without details, and pyramids

in the interface; (ii) the use of structured/unstructured meshes, saving memory in

the structured zones sharing the local matrices; or (iii) the use of non-conforming

locally refined grids, which can be very effective in the application of h-refinement,

and simulation of problems with high contrast in the material properties.

4. Development of hp-adaptability techniques. The electromagnetic problems

addressed in this work show the importance of the use of hp-adaptability. The

development of efficient hp-adaptability techniques in time-domain simulations

will allow the application of the method in a more automatic and blind way.

To this aim, a close integration of the mesher in the electromagnetic solver is a

crucial point. The development of dynamic spatial hp-adaptability and arbitrary

high-order in time, able to dynamically adapt the mesh and the time-integration

method during the simulation, can save a large amount of CPU time in a complete

simulation while maintaining the required accuracy.

5. Improvement of the applicability of the FEMTD methods. One of the

main difficulties expected for the applicability of FEMTD methods, compared to

the FDTD, for the analysis of very complex systems (e.g. aircraft) is the generation

of EM models and meshes. The starting point for these kinds of analysis is a

complete digital mock-up, which contains every detail of the real structure (bolts,

rivets, holes, etc.). The defeaturing of the digital mock-up to construct an EM

model, containing all the EM information, and ready to be meshed, requires a

huge amount of engineering work. This process has been developed for the FDTD

method for years, and there are commercial tools to carry out this work, the result

of which are finite-difference meshes of billions of cells. In the case of FEMTD,
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this process is not mature, and must be developed further in order to offer to the

industry tools to generate meshes of billions of cells in a reasonable amount of

time in both the generation of the mesh itself and the development of complex EM

models.

6. Multi-physics simulation. There is an increasing need of thermal-mechanical-

EM coupled solvers able to deal with the full complexity of real problems (e.g.

to predict the lightning effects in composite structures). DG methods based on

unstructured tetrahedral meshes permit an easy multi-physics coupling with other

numerical models that also use these kinds of meshes.



Appendix A

SEMBA: A parallel LFDG

Computer Code for EM Analysis

and Design

The leap-frog discontinuous Galerkin algorithm, including a LTS strategy, has been im-

plemented from scratch in a Fortran 90 MPI parallel computer code called SEMBA

(Simulador Electromagnético de Banda Ancha). Some implementation details and ca-

pabilities are described in this appendix.

A.1 Description of SEMBA

Some high-level details about the implementation are:

• It is programmed as a self-supporting Fortran 95 code. SEMBA does not make

use of any external library, except MPI.

• It employs a hybrid OMP-MPI programming technique, which is well suited for

the state-of-the-art computers composed by a number of medium/large shared-

memory multi-element nodes, interconnected with Infiniband, Myrinet or Gigabit.

• It is a highly optimized code, both in algorithm and in computing resources (mem-

ory & CPU). Matrices which are independent of the element geometry are shared,

while incomplete matrices are compressed.

• Most of the code uses double-precision variables. This makes ir possible to keep

the accuracy under control and avoids late-time instabilities.
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2nd Order Elements 

Figure A.1: Geometrical discretization.

A.2 Geometrical Discretization

The geometrical discretization is based on first- and second-order curvilinear tetrahedra.

The use of curvilinear elements offers two main advantages. One is the accurate repre-

sentation of curved boundaries and geometry, which introduces a dramatic improvement

in the accuracy of the numerical approximation, in most real applications. The other

advantage is the increment in the efficiency of the method, since curvilinear elements

reduce the number of the elements in order to accurately discretize a geometry: the

final mesh has bigger elements, allowing the use of larger time steps in the temporal

integration.

Another important point is the capability of generating complex meshes with these kinds

of elements. This requirement is fulfilled by most of the commercial CAD tools. In our

case GiD [123] is employed for geometrical modeling, meshing and some visualization of

the results.

A.3 Mesh Preprocessing

To increase the efficiency of the computations, and implement certain capabilities, before

starting a numerical simulation SEMBA performs some preprocessing tasks. First of all,

the mesh is distributed among the different parallel processes. Secondly, the order of the

basis functions for each element is chosen, according to the required accuracy. Finally,

the elements are organized into different sets, as required by the LTS algorithm.
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Figure A.2: Distribution of the mesh among the different MPI processes.

A.3.1 Mesh Distribution

One key advantage of discontinuous Galerkin methods is their simplicity for the par-

allelization in memory-distributed hardware architecture, making use of the Message-

Passing Interface (MPI) standard. The mesh is distributed among the M processes

available as depicted in Figure A.2. This is the first level of parallelization of the SEMBA

solver. From the outset, in the reading of the mesh, the algorithm is fully parallelized

among all MPI processes, achieving high scalability. The required geometrical infor-

mation for each process is its own geometry, and the topological adjacent elements of

the neighboring processes. This additional information will be used to compute the

flux coming from these adjacent elements to its own computational domain. Some in-

formation will be necessary to be interchanged between neighboring processes in the

numerical-simulation stage.
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A.3.2 Selection of the Basis Function

An a priori hp-refinement heuristic strategy has been developed to choose the size of

the mesh, and the order of the basis function in each tetrahedron. The objective is to

ensure a given accuracy level, minimizing the computational cost. The required accu-

racy could differ across the computational domain, which is an input for SEMBA. The

selection of the mesh size has to be made in the mesh-generation process, since there is

an optimum element size that minimizes the computational cost for a required accuracy.

The accuracy level, therefore, defines the optimum element size according to the results

shown in Sections 4.3 and 4.5. In real meshes, the element sizes vary throughout the

computational domain, and the accuracy is finally adjusted with the selection of the

order p. The current implementation of SEMBA exploits the hp-refinement techniques

by mixing different element sizes (h) and orders (p) following this a priori approach.

Therefore, once the mesh is generated, SEMBA selects element-by-element the order of

the basis functions, depending on their size, and the required accuracy in the region

where the element is located. The aim is to employ higher-order basis for larger tetra-

hedra, and lower orders for smaller ones. SEMBA combines gradient spaces of reduced

order p− 1, with rotational spaces of complete order p [132]. The choices are based on

the results found during this work, as those shown in Figure 4.20.

It bears noting that smaller elements need shorter time steps, but if lower orders are

used in these elements, the stability condition is relaxed. In the same way, longer time

steps can be used in bigger elements combined with higher orders. The combination and

mixing different orders of the basis functions depending on element size, makes the time

step among all the elements more homogeneous, reducing the number of levels required

for the LTS algorithm.

This step is fully parallelized, carried out by each MPI process over its own geometry

(an example is depicted in Figure A.3).

A.3.3 LTS Level Classification

The local time-stepping strategy described in Section 3.5.2.3 is implemented in SEMBA.

The method requires a classification of all the elements according to their maximum time

step (∆tmmax) in several levels, L. The interfaces between levels are to be identified, since

they need a special treatment in the numerical-simulation process. At each level l, a

different time step is used in the simulation, 3(l−1) ∆t1, ∆t1 being the time step for

the first level. This technique provides extraordinary savings in the CPU-time in real

problems, where unstructured meshes contain very small and distorted elements. Figure
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Figure A.3: Selection of the expansion function. RxGy stand for x order for the
rotational space, y order for the gradient space.
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Figure A.4: Example of a distribution of ∆tmmax in a real problem (validation case
described in Section 5.1.1). The choice of ∆tmin and the time steps for the different
levels (L = 4), have been included in the plot. The estimated average time step was
88.5 psg, compared to the minimum ∆tmmax (10.5 psg), a gain of about 8 is expected

due to the application of LTS.

A.4 shows the distribution of the maximum time step for all the elements in a real

problem. The right choice of ∆t1 is not the minimum ∆tmmax; this value is actually

tuned to provide the maximum average time step.

Finally, it should be pointed out that the proposed LTS strategy requires linear interpo-

lation to find the updated samples in the interfaces between LTS levels. This operation

is not exactly an average approximation, and second-order accuracy is slightly lost in

these zones. This fact has a local effect in the stability of the scheme. The solution to
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level 1          interface       level 2 

Figure A.5: Example of a LTS level classification with L = 2.

this problem is to penalize the stability condition only for the elements in the interfaces

of the LTS levels by a factor (typically 0.8, [64, 95]). This introduces some complexity

in the right selection of the ∆t1, which is the parameter that fixes the interfaces.

Although some information related to the levels assigned to adjacent elements needs to

be shared between MPI processes, this step can be carried out in parallel, each MPI

process with its own geometry. An example with L = 2 is shown in Figure A.5.

A.4 Capabilities

A.4.1 Materials and Boundary Conditions

Concerning the material-modeling capabilities of electromagnetic problems, SEMBA

includes the following possibilities:

• Isotropic dielectric and magnetic materials, with relative electric permittivity (εr)

and magnetic permeability (µr) properties.

• Isotropic lossy electric and magnetic materials, with electric conductivity (σe) and

magnetic conductivity (σm) properties.

• Anisotropic materials described by tensors: ¯̄εr, ¯̄µr, ¯̄σe and ¯̄σm.

• Perfect electric conductor and perfect magnetic conductor boundary conditions.

These conditions can be used to model geometry, infinite ground planes or sym-

metric planes.
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• Periodic boundary condition. In this case two boundary parallel surfaces are vir-

tually connected in a way that the flux coming out from one is introduced into

the other, and vice versa. This condition is used to model infinite replicas of a

geometry.

• Conformal uniaxial perfect match layer. The conformity of the PML geometry is

defined making use of canonical geometries: planes, spheres, cylinders, and toroids.

• First-order impedance boundary condition. This boundary condition can effec-

tively truncate TEM ports as coaxial, avoiding the use of PML. It can also be

used to truncate the space, resulting the so-called first-order Silver-Müller absorb-

ing boundary condition.

The treatment of the boundary conditions and material properties are included in the

element matrices stored in the memory. Following this approach, time-marching is a

very simple algorithm based only on vector-matrix products element-by-element.

A.4.2 Electromagnetic Sources

SEMBA makes use of the flux terms to excite the structures under analysis, following

the Huygens principle. The sources are surface-current distributions which weakly inject

the incident fields. This approach can be seen as the traditional incident-wave source

condition or total-field/scattered-field technique.

Let us consider that, inside a Total-Field Zone (TFZ), a known wave is propagating,

while outside of it (Scattered-Field Zone (SFZ)) the field is null. If Einc, H inc denote

the wave fields at each point of the TFZ/SFZ interface (see Figure A.6), the flux across

the face of an element m in the TFZ (with this face lying on the TFZ/SFZ interface)

needs to take into account the equivalent surface currents

M s =n̂m ×Einc

Js =− n̂m ×H inc

and if m is in the scattered field zone

M s =− n̂m ×Einc

Js =n̂m ×H inc

This technique can be applied to incorporate any incident field. The different sources

implemented in SEMBA are listed below:
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Figure A.6: Total field/scattered field decomposition. 2D representation.

• Plane-wave illumination.

• Coaxial port.

• TE10 rectangular waveguide port.

• TE11 circular waveguide port.

• Delta-gap port.

A.4.3 General Time-Marching Algorithm

The time-marching algorithm is based on the LTS LF scheme described in Section 3.5.2.3.

The different steps are summarized below for L = 2, completed with the required MPI

communications. The algorithm can be easily generalized to any problem with L levels.

• Step 1.1. MPI communication of the electric dof: level 1.

• Step 1.2. Update magnetic dof: level 1, interface and level 2.

• Step 2.1. MPI communication of the magnetic dof: level 1, interface and level 2.

• Step 2.2. Update electric dof: level 1 and interface.

• Step 3.1. MPI communication of the electric dof: level 1 and interface.

• Step 3.2. Update magnetic dof: level 1.

• Step 4.1. MPI communication of the magnetic dof: level 1.
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Figure A.7: MPI communication and updating schemes. The communication for the
MPI 1 process takes place between the MPI 2 and MPI 3 processes. MPI 1 and MPI
4 are not in contact, so that no communication is required between them. Within the
MPI processes, each thread updates the electromagnetic dof of a group of elements,

making use of the LFDG algorithm.

• Step 4.2. Update electric dof: level 1, interface and level 2.

• Step 5.1. MPI communication of the electric dof: level 1, interface and level 2.

• Step 5.2. Update magnetic dof: level 1 and interface.

• Step 6.1. MPI communication of the magnetic dof: level 1 and interface.

• Step 6.2. Update electric dof: level 1.

Prior to each step of the LTS algorithm, a MPI communication of the fields (magnetic in

case of electric-field updating, and vice versa), between adjacent MPI processes needs to

be performed. The amount of data to be exchanged differs for each LTS step (sometimes

no data), depending on the required samples, since not all elements are updated at each

LTS step. Each updating step is computed in parallel by N multiple threads by making

use of OMP directives (shared-memory multiprocessing), so that each thread takes care

of updating a group of element. This is the core of the two-level parallelization of

SEMBA (hybrid MPI/OMP) depicted in Figure A.7.

A.5 Postprocessing

SEMBA can provide the following postprocessing observables:
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• Near-to-far field transformation for radiation patterns and RCS computations.

• S-parameter computations in ports (coaxial, TE10 rectangular waveguide, TE11

circular waveguide, and delta-gap).

• Impedance computations in ports.

• Current and voltage computations.

• Time/frequency domain field probes.

• Surface-density fields (time animations).

It important to note that most of the postprocessing work is performed during the

simulation stage. The main advantages of doing so in this way are: (i) to avoid saving

a large amount of information in the hard disk and (ii) to preserve the parallelization

of the algorithm, since none of the MPI processes knows the whole geometry of the

problem. The postprocessing itself is also parallelized.

A.6 Performance

This section offers an overview of the performance of SEMBA and the difficulties of the

proposed scheme from this standpoint.

The scalability of the implementation is tested here both for the MPI, and for the OMP

parallelization levels, in two problems, one being a simple PEC sphere (of about 0.8

Mcells) and the other being the NASA Almond (with 3 Mcells) described in Section 5.3.

In Figure A.8 the scalability with MPI and OMP is shown.

The test of OMP shows good scalability up to 6 threads, which are the cores per CPU,

but poor scalability with 12 threads. This is the typical performance of the OMP

parallelization technique. When the number of threads increases, the scalability is lost

due to the cost of the management (creation and synchronization) of the threads. The

scalability of the NASA Almond case is slightly higher because there are more cells to

divide among the threads, and the weight of the management cost is slightly reduced in

the overall computational cost.

For the MPI case, there is good scalability for the sphere in all cases, since it is very

easy to distribute among all the processes due to the symmetry of the problem. In the

case of the NASA Almond (for instance with 8 MPI processes), a symmetric distribution

cannot be done, and there is no perfect scalability. There are crucial intrinsic features

in the proposed method that make the distribution of the mesh a difficult task. On the
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Figure A.8: SEMBA scalability. For the OMP case, two MPI processes have been
executed with different threads, and for the MPI case, six OMP threads where used by
each MPI process. The architecture of the computer was four nodes of two Intel Xeon

X5680 6 cores (3.33Ghz) per node.

one hand, the cost per element is not constant (it depends on the order of the basis

functions and whether it is PML or not), and, on the other hand, the LTS algorithm

causes the workload to vary along the computation domain.

In terms of memory requirements, SEMBA shares some matrices among all the elements

in a simulation, and others need to be kept in memory. Specifically, SEMBA needs to

store at each tetrahedron (either in free-space or in a homogeneous material): the dof,

one full local matrix, and two compressed matrices1. In case of a PML element, it needs

to store: the dof, four full local matrices, and one compressed matrix. The number of

double-precision real numbers per simulation can be estimated as follows,

Nreal =

MHOMO∑
m=1

[
2Qm +Q2

m + 2
Q2
m

3

]
+

MPML∑
m=1

[
4Qm + 4Q2

m +
Q2
m

3

]
(A.3)

with MHOMO and MPML being the number of elements in homogenous and PML do-

mains, respectively, and Qm the number of basis functions in the m element, which

depends on the order p. Some additional memory is required in the interfaces of the

LTS levels, but Equation (A.3) is a good estimation of the required memory. It is impor-

tant to note that the main memory cost is in storing the local matrices. The alternative

is the use of structured meshes in zones where there are no geometrical details, making

it possible to share all the local matrices, and saving a large percentage of the memory.

1Flux matrices can be compressed since are based on surface integrals, and some basis functions are
zero in some faces of the tetrahedron (see Section 3.1.1).
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Resumen de la Memoria

En esta Tesis se aborda el desarrollo de técnicas numéricas eficientes en el análisis

de problemas realistas de propagación, radiación, dispersión y acoplamiento electro-

magnético. Para este objetivo, se investiga la utilización de elementos discontinuos de

Galerkin (DG) y su aplicación a la resolución de las ecuaciones de Maxwell en el dominio

del tiempo. Las principales aportaciones están basadas en la combinación del esquema

de integración temporal del salto de la rana (LF) (junto con un algoritmo de avance

local en tiempo (LTS)), con el método de discretización espacial DG. Nos referiremos al

algoritmo propuesto como método discont́ınuo de Galerkin y salto de la rana (LFDG).

Se ha desarrollado la formulación espacial DG en su forma semi-discreta. La formulación

se plantea de una forma general, unificando diferentes esquemas de evaluación de flujos,

que han sido aplicados con éxito a este método. Se ha desarrollado un amplio rango

de funcionalidades en el contexto de métodos DG, como las condiciones t́ıpicas de con-

torno (conductor eléctrico/magnético perfecto, condición de contorno de Silver-Müller

de primer orden, interfaces entre materiales con propiedades eléctricas y/o magnéticas

diferentes), modelización de materiales anisótropos, fuentes electromagnéticas (ondas

planas, puertos coaxiales o en gúıa de onda, etc.), y condiciones de frontera conformes y

uniaxiales perfectamente adaptadas. El esquema de integración LF se ha aplicado a la

formulación DG semi-discreta, obteniendo el algoritmo LFDG. Además se propone un

esquema de LTS expĺıcito en combinación con el algoritmo LFDG.

Se han analizado el esquema semi-discreto DG y el algoritmo LFDG, y se han explorado

los ĺımites, en cuanto a precisión y coste computacional, del método LFDG. En primer

lugar se revisa el problema de los modos espurios en el contexto de DG, y se estudian

los espectros numéricos de ambos esquemas. Después, las relaciones numéricas de dis-

persión y disipación, y la convergencia y anisotroṕıa de los errores de ambos métodos

se comparan y analizan. Finalmente, se ha llevado a cabo un análisis en cuanto a coste
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computacional frente a precisión del método LFDG, incluyendo una comparación con el

método de diferencias finitas en el dominio del tiempo.

El algoritmo LFDG se ha implementado de forma paralela y escalable utilizando una

técnica de programación h́ıbrida OMP-MPI, en la que se explota la naturaleza par-

alela del algoritmo propuesto. Se demuestran las capacidades del método para calcular

problemas eléctricamente grandes, manteniendo la precisión controlada, y considerando

pequeños detalles geométricos gracias a la utilización del algoritmo de LTS. El método

LFDG se ha aplicado a diferentes tipos de problemas electromagnéticos, comparando

los resultados con medidas o con otros resultados obtenidos con diferentes métodos de

cálculo. Finalmente, el algoritmo se ha validado y se han mostrado las propiedades más

atractivas del método, que aúna las ventajas de los métodos en el dominio del tiempo y

de aquellos basados en elementos finitos.

B.1 Contribuciones Cient́ıficas y Futuras Ĺıneas de Tra-

bajo

Los objetivos principales que han guiado el desarrollo de esta Tesis han sido dos. El

primero ha sido explorar las posibilidades que ofrece la discretización espacial basada

en elementos discontinuous de Galerkin en la resolución de las ecuaciones de Maxwell

en el dominio del tiempo. El segundo ha sido proponer, implementar y aplicar una de

las alternativas de esta metodoloǵıa denominada LFDG. A continuación se destacan las

contribuciones cient́ıficas logradas a lo largo de este trabajo que sirve de resumen de los

resultados obtenidos. Después aparece una lista de las futuras ĺıneas de trabajo en esta

área.

B.1.1 Contribuciones Cient́ıficas

Podemos resumir abreviadamente los logros conseguidos en este trabajo de investigación

llevado en los siguientes puntos:

1. Formulación del esquema espacial semi-discreto basado en elementos

discontinuos de Galerkin. La formulación se ha desarrollado de una formal

general, unificando diferentes esquemas en la evaluación del flujo, que han sido

aplicados con éxito a este método. La formulación incluye el tratamiento de las

condiciones de contorno más comunes, materiales anisótropos y condiciones de

contorno absorbentes, en particular las denominadas de Silver-Müller de primer
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orden, además de las condiciones de frontera conformes y uniaxiales perfectamente

adaptadas.

2. Desarrollo del algoritmo LFDG. El método de integración temporal conocido

como salto de la rana se ha aplicado al esquema semi-discreto DG, obteniendo

el algoritmo final LFDG. En este contexto, se ha desarrollado con éxito una es-

trategia de avance local en tiempo (LTS) que resuelve la limitación impuesta por

la condición de estabilidad, cŕıtica en los esquemas de discretización temporal

expĺıcitos.

3. Análisis del esquema semi-discreto DG y del algoritmo LFDG. La dis-

persión y la disipación de los métodos numéricos han sido estudiadas. El tema

de los modos espurios ha sido revisado en detalle. Además, se han estimado los

órdenes de convergencia de las relaciones de dispersión y disipación y estudiado la

anisotroṕıa de ambos errores. En el caso del algoritmo LFDG, se han estudiado

otros temas como estabilidad y coste computacional. Se han explorado y evaluado

los ĺımites del algoritmo LFDG. Se ha llevado a cabo un análisis final estimando el

coste computacional frente a precisión, comparando los resultados con el método

de las diferencias finitas en el dominio del tiempo (FDTD).

4. Implementación paralela. Aprovechando la naturaleza paralela del algoritmo

LFDG, su implementación se ha llevado a cabo haciendo uso de una técnica de

programación h́ıbrida OMP-MPI. Estos dos niveles de paralelización son habit-

uales en los modernos ordenadores (número medio/alto de nodos, cada uno de

ellos multi-CPU con memoria compartida, conectados con Infiniband, Myrinet o

Gigabit).

5. Validación y aplicación del algoritmo. El algoritmo LFDG ha sido validado

con filtros en microondas, antenas y problemas de dispersión electromagnética.

Los resultados se han comparado con medidas u otras técnicas numéricas. El

método ha sido aplicado a problemas reales de ingenieŕıa, mostrando importantes

propiedades: robustez, estabilidad, versatilidad, eficiencia, escalabilidad y pre-

cisión.

B.1.2 Futuras Ĺıneas de Trabajo

Aunque muchos y muy diferentes métodos de cálculo electromagnético se han desarrol-

lado en profundidad para estudiar la mayor parte de los problemas prácticos que nos

encontramos en ingenieŕıa, todav́ıa existen vaćıos para los que se hace imprescindible

explorar nuevas técnicas. En esta Tesis, se ha desarrollado e implementado desde cero
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un método que combina las ventajas de los métodos basados en elementos finitos para

la integración espacial, y uno expĺıcito para la temporal. En opinión del autor, algunas

ĺıneas de investigación para ampliar las capacidades del método son:

1. Desarrollo e implementación de capacidades adicionales. La técnica LFDG

tiene muchas similitudes con FDTD. Por tanto, la mayor parte de las capaci-

dades extensamente evaluadas y validadas en el método FDTD pueden ser adap-

tadas a LFDG. Entre ellos: modelos de capa delgada dispersivos y/o anisótropos,

tratamiento de materiales dispersivos, elementos circuitales discretos, modelos de

hilo delgado, ranuras delgadas, etc..

2. Mejora de la convergencia de la integración temporal. Aunque el algoritmo

LFDG permite fácilmente la elección en cada uno de los elementos del orden de

las funciones base de la discretización espacial de los campos electromagnéticos, la

principal limitación del método es el bajo orden de convergencia del esquema de

integración temporal. Ello impone un ĺımite en el uso de técnicas de refinamiento

p. El algoritmo de integración temporal debeŕıa mejorarse para permitir la se-

lección, elemento a elemento, como en el caso espacial, del orden de convergencia

de la discretización temporal. Además, diferentes alternativas de LTS pueden ser

exploradas para aproximarse a la utilización del salto temporal óptimo en cada

elemento.

3. Mejora de la versatilidad en el uso de métodos de elementos finitos

en el dominio del tiempo (FEMTD), en general. Diferentes alternativas

podŕıan ser desarrolladas para mejorar la versatilidad de los métodos FEMTD en

simulaciones reales. Algunas son las siguientes: (i) utilización de mallas h́ıbridas

que contengan diferentes tipos de celdas, aprovechando las diferentes propiedades

de cada una de ellas, por ejemplo tetraedros en regiones complejas, hexaedros en

regiones sin detalles, y pirámides en las interfaces; (ii) utilización de mallas estruc-

turadas/no estructuradas, para reducir el uso de memoria en zonas estructuradas

donde las matrices locales pueden compartirse; o (iii) el uso de elementos no con-

formes que permitan refinar localmente la malla, muy efectivo en la aplicación de

técnicas de refinamiento h, y en la simulación de problemas con un alto contraste

en las propiedades de los materiales.

4. Desarrollo de técnicas de adaptatividad tipo hp. Los problemas electro-

magnéticos tratados en este trabajo demuestran la importancia de la utilización

de adaptabilidad tipo hp. El desarrollo de técnicas de adaptación eficientes tipo

hp en simulaciones en el dominio del tiempo permitirá la aplicación del método

de una forma más automática y ciega. Para ello, un punto crucial es una es-

trecha integración del mallador en el simulador electromagnético. El desarrollo de
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técnicas dinámicas de adaptatividad hp espaciales y de orden arbitrario en tiempo,

capaces de adaptar dinámicamente la malla y el método de integración durante la

simulación, pueden reducir notablemente los tiempos de cálculo de una simulación

completa asegurando la precisión requerida.

5. Mejora de la aplicabilidad de métodos FEMTD. Una de las principales di-

ficultades de aplicabilidad de métodos FEMTD, comparados con FDTD, para el

análisis de sistemas complejos (como un avión) es la generación de los modelos

electromagnéticos y las mallas. El punto de partida para este tipo de análisis es

una maqueta digital completa con todos los detalles de la estructura real (tornil-

los, remaches, agujeros, etc.). La simplificación de la maqueta electrónica para

construir un modelo que contenga toda la información electromagnética, listo para

ser mallado, requiere una gran cantidad de trabajo de ingenieŕıa. Este proceso

se optimizado para el método FDTD durante años, y hay disponibles herramien-

tas comerciales que facilitan la tarea. El resultado de este proceso son mallas de

diferencias finitas con miles de millones de celdas. En el caso de métodos FEMTD

este proceso no está maduro y debe desarrollarse para que la industria disponga

de herramientas capaces de generar mallas de miles de millones de celdas en un

tiempo razonable desde ambos puntos de vista, generación de la malla y desarrollo

de un modelo electromagnético complejo.

6. Simulación multi-f́ısica. Existe una necesidad creciente de simulaciones acopladas

térmicas-mecánicas-electromagnéticas capaces de manejar la complejidad de prob-

lemas reales (por ejemplo en la predicción de efectos de impacto de un rayo en es-

tructuras de materiales compuestos). El uso de mallas no estructuradas basadas en

tetraedros simplifica el acoplamiento multi-f́ısico de diferentes modelos numéricos,

que también utilizan este tipo de mallas.
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[152] J. P. Bérenger, “A perfectly matched layer for the absorption of electromagnetic-

waves,” Journal of Computational Physics, vol. 114, no. 2, pp. 185–200, October

1994.



Bibliography 175

[153] ——, “Numerical reflection from FDTD-PMLs: A comparison of the split PML

with the unsplit and CFS PMLs,” IEEE Transaction on Antennas and Propaga-

tion, vol. 50, no. 3, pp. 258–265, March 2002.

[154] K. P. Hwang and J. M. Jin, “Application of a hyperbolic grid generation technique

to a conformal PML implementation,” IEEE Microwave Guided Wave Letters,

vol. 9, no. 4, pp. 137–139, April 1999.

[155] J. H. Williamson, “Low-storage Runge-Kutta schemes,” Journal Computational

Physics, vol. 35, no. 1, pp. 48–56, March 1980.

[156] M. H. Carpenter and C. A. Kennedy, “Fourth-order 2n-storage Runge-Kutta

schemes,” NASA-TM-109112, pp. 1–24, 1994.

[157] A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain

Method. Boston: Artech House, 1995.

[158] A. J. Jerri, “The Shannon sampling theorem-Its various extensions and applica-

tions: A tutorial review,” Proceedings of the IEEE, vol. 65, no. 11, pp. 1565–1596,

nov. 1977.

[159] J. L. Mead and R. A. Renauty, “Optimal Runge-Kutta methods for first order

pseudospectral operators,” Journal of Computational Physics, vol. 152, pp. 404–

419, 1999.

[160] J. R. Montejo-Garai and J. Zapata, “Full-wave design and realization of multi-

coupled dual-mode circular waveguide filters,” IEEE Transaction on Microwave

Theory and Techniques, vol. 43, no. 6, pp. 1290–1297, June 1995.

[161] F. Alessandri, M. Chiodetti, A. Giugliarelli, D. Maiarelli, G. Martirano,

D. Schmitt, L. Vanni, and F. Vitulli, “The electric-field integral-equation method

for the analysis and design of a class of rectangular cavity filters loaded by dielec-

tric and metallic cylindrical pucks,” IEEE Transaction on Microwave Theory and

Techniques, vol. 52, no. 8, pp. 1790–1797, August 2004.

[162] C. E. Brench and O. M. Ramahi, “Source selection criteria for FDTD models,”

1998 IEEE International Symposium on Electromagnetic Compatibility, vol. 1,

no. 1, pp. 491–494, 1998.

[163] T. W. Hertel and G. S. Smith, “On the convergence of common FDTD feed models

for antennas,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 8,

pp. 1771–1779, August 2003.



Bibliography 176

[164] A. C. Woo, H. T. G. Wang, M. J. Schuh, and M. L. Sanders, “Benchmark radar

targets for the validation of computational electromagnetic programs,” IEEE An-

tennas and Propagation Magazine, vol. 35, no. 1, pp. 84–89, February 1993.

[165] M. Taskinen and P. Yla-Oijala, “Current and charge integral equation formula-

tion,” IEEE Transactions on Antennas and Propagation, vol. 54, no. 1, pp. 58–67,

January 2006.

[166] M. Taskinen and P. S. Vanska, “Current and charge integral equation formulations

and Picard’s extended Maxwell system,” IEEE Transactions on Antennas and

Propagation, vol. 55, no. 12, pp. 3495–3503, December 2007.

[167] Workshop EM JINA, Nice, France, November 2006.

[168] X. Q. Sheng and Z. Peng, “Analysis of scattering by large objects with off-

diagonally anisotropic material using finite element-boundary integral-multilevel

fast multipole algorithm,” IET Microwaves, Antennas and Propagation, vol. 4,

no. 4, pp. 492–500, April 2010.



List of Publications

Journals Papers

P1 J. Alvarez, J. M. Alonso-Rodriguez, H. Carbajosa-Cobaleda, M. R. Cabello, R.

Gomez-Martin, and S. G. Garcia, ”The NASA Almond: a benchmark for DGTD,

MoM and FDTD methods,” IEEE Microwave and Wireless Components Letters,

vol. (submitted), no. –, pp. –, Month 2014.

P2 G. G. Gutierrez, J. Alvarez, E. Pascual-Gil, B. Mauro, R. Guidi, V. Martorelli, and

S. G. Garcia, ”HIRF virtual testing on C-295 aircraft validated with FSV method,”

IEEE Transaction on Electromagnetic Compatibility, vol. (submitted), no. –, pp.

–, Month 2014.

P3 L. D. Angulo, J. Alvarez, F. Teixeira, A. R. Bretones, and S. G. Garcia, ”Causal-

Path Local Time-Stepping in the Discontinuous Galerkin Method for Maxwell’s

equations,” Journal of Computational Physics, vol. (submitted), no. –, pp. –,

2014.

P4 I. D. Flintoft, J. F. Dawson, S. G. Garcia, and J. Alvarez, ”Digital filter implemen-

tation of an anisotropic surface impedance boundary condition in FDTD,” IEEE

Transaction on Electromagnetic Compatibility, vol. (submitted), no. –, pp. –,

Month 2013.

P5 J. Alvarez, L. D. Angulo, A. R. Bretones, and S. G. Garcia, ”An analysis of the Leap-

Frog Discontinuous Galerkin method for Maxwell equations,” IEEE Transactions

on Antennas and Propagation, vol. (submitted), no. –, pp. –, Month 2014.

P6 J. Alvarez, L. D. Angulo, A. R. Bretones, C. M. Jong, and S. G. Garcia, ”An efficient

DGTD method including local time-stepping: application to antenna modeling,”

IEEE Transactions on Antennas and Propagation, vol. (submitted), no. –, pp. –,

Month 2013.

177



List of Publications 178

P7 J. Alvarez, L. D. Angulo, A. R. Bretones, and S. G. Garcia, ”A leap-frog discontin-

uous Galerkin time-domain method for HIRF assessment,” IEEE Transaction on

Electromagnetic Compatibility, vol. (accepted), no. –, pp. –, Month 2013.

P8 R. Jauregui, J. Alvarez, F. Silva, and S. G. Garcia, ”Mesh generation in FDTD:

guidelines and applications,” International Journal on Communications Antenna

and Propagation, vol. 2, no. 6, pp. 392–399, December 2012.

P9 H. Lin, M. F. Pantoja, L. D. Angulo, J. Alvarez, R. G. Martina, and S. G. Garcia,

”FDTD modeling of graphene devices using complex conjugate dispersion material

model,” IEEE Microwave and Wireless Components Letters, vol. 22, no. 12, pp.

612–614, December 2012.

P10 J. Alvarez, L. D. Angulo, A. R. Bretones, C. de Jong, and S. G. Garcia, ”3D discon-

tinuous Galerkin time domain method for anisotropic materials,” IEEE Antennas

and Wireless Propagation Letters, vol. 11, pp. 1182–1185, 2012.

P11 J. Alvarez, L. D. Angulo, A. R. Bretones, and S. G. Garcia, ”A spurious-free discon-

tinuous Galerkin time domain for the accurate modeling of microwave filters,” IEEE

Transactions on Microwave Theory and Techniques, vol. 60, no. 8, pp. 2359–2369,

August 2012.

P12 G. G. Gutierrez, S. F. Romero, J. Alvarez, S. G. Garcia, and E. P. Gil, ”On the

use of FDTD for HIRF validation and certification,” Progress In Electromagnetics

Research Letters, vol. 32, pp. 145–156, 2012.

P13 L. D. Angulo, J. Alvarez, S. G. Garcia, and A. R. Bretones ”Discontinuous Galerkin

time-domain method for GPR simulation of conducting objects,” Near Surface Geo-

physics, vol. 9, no. 3, pp. 257–263, June 2011.

P14 J. Alvarez, L. D. Angulo, M. A. Fernandez Pantoja, A. R. Bretones, and S. G.

Garcia, ”Source and boundary implementation in vector and scalar DGTD,” IEEE

Transactions on Antennas and Propagation, vol. 58, no. 6, pp. 1997–2003, June

2010.

P15 S. G. Garcia, F. Costen, M. Fernandez Pantoja, L. D. Angulo, and J. Alvarez,

”Efficient excitation of waveguides in Crank-Nicolson FDTD,” Progress In Electro-

magnetics Research Letters, vol. 17, pp. 39–46, 2010.

P16 J. Alvarez, I. Gomez-Revuelto, J. M. Alonso, L. E. Garcia-Castillo, and M. Salazar-

Palma, ”Fully coupled multi-hybrid FEM-MoM-PO method for scattering and ra-

diation problems,” Electromagnetics, vol. 30, no. 1 & 2, pp. 3–22, January 2010.



List of Publications 179

Conference Proceedings

P17 J. Alvarez, L. D. Angulo, A. R. Bretones, and S. G. Garćıa, ”A comparison of
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and F. Vipiana, ”HIRF interaction with metallic aircrafts. A comparison between

TD and FD methods,” Proc. EMC Europe 2012, Rome, Italy, September 2012.

P22 G. G. Gutierrez, S. F. Romero, J. Alvarez, S. G. Garcia, and E. Pascual-Gil, ”Strate-

gies for HIRF simulations using FDTD,” Proc. EMC Europe 2012, Rome, Italy,

September 2012.

P23 J. Alvarez, L. Angulo, M. Bandinelli, H. D. Brüns, M. Francavilla, S. Garcia, R.
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