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Abstract

Background: The turbot (Scophthalmus maximus) is a relevant species in European aquaculture. The small turbot
genome provides a source for genomics strategies to use in order to understand the genetic basis of productive
traits, particularly those related to sex, growth and pathogen resistance. Genetic maps represent essential genomic
screening tools allowing to localize quantitative trait loci (QTL) and to identify candidate genes through
comparative mapping. This information is the backbone to develop marker-assisted selection (MAS) programs in
aquaculture. Expressed sequenced tag (EST) resources have largely increased in turbot, thus supplying numerous
type | markers suitable for extending the previous linkage map, which was mostly based on anonymous loci. The
aim of this study was to construct a higher-resolution turbot genetic map using EST-linked markers, which will turn
out to be useful for comparative mapping studies.

Results: A consensus gene-enriched genetic map of the turbot was constructed using 463 SNP and microsatellite
markers in nine reference families. This map contains 438 markers, 180 EST-linked, clustered at 24 linkage groups.
Linkage and comparative genomics evidences suggested additional linkage group fusions toward the consolidation
of turbot map according to karyotype information. The linkage map showed a total length of 1402.7 cM with low
average intermarker distance (3.7 cM; ~2 Mb). A global 1.6:1 female-to-male recombination frequency (RF) ratio was
observed, although largely variable among linkage groups and chromosome regions. Comparative sequence
analysis revealed large macrosyntenic patterns against model teleost genomes, significant hits decreasing from
stickleback (54%) to zebrafish (20%). Comparative mapping supported particular chromosome rearrangements
within Acanthopterygii and aided to assign unallocated markers to specific turbot linkage groups.

Conclusions: The new gene-enriched high-resolution turbot map represents a useful genomic tool for QTL
identification, positional cloning strategies, and future genome assembling. This map showed large synteny
conservation against model teleost genomes. Comparative genomics and data mining from landmarks will provide
straightforward access to candidate genes, which will be the basis for genetic breeding programs and evolutionary
studies in this species.
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Background

The turbot (Scophthalmus maximus) is a flatfish of great
commercial value, which represents one of the most
promising marine species of European aquaculture. Pro-
duction reached 9,142 t in 2009 [1], and it is predicted
to double up in size in 2014. Turbot has also become
very popular in the Chinese market, and production in
this country has been reported around 50,000 t in 2006
[2]. Genetic breeding programs are being carried out by
several turbot companies supported by microsatellite
parentage tools [3]. Increasing growth rate, controlling
sex ratio (females largely outgrow males) and enhancing
disease resistance currently constitute the main goals of
genetic breeding programs in this species.

The small turbot genome (C value: 0.86 pg; http://www.
genomesize.com/fish.htm) is organized in 2n = 44 chromo-
somes with no sex-associated chromosome heteromorph-
ism [4, 5]. An important investment effort has been
devoted in the recent years to increase genomic resources
in this species to provide new molecular tools to support
genetic breeding programs. An Expressed Sequence Tag
(EST) database constructed using cDNA libraries from
immune tissues [6, 7] has been recently enriched using
new generation sequencing (NGS) technologies and cur-
rently contains 35,000 contigs and 65,000 singletons. This
database was used to design the first turbot oligo-
microarray [8], which enabled to identify differentially
expressed (DE) genes for pathogen resistance [9, 10]. Co-
localization of DE genes through comparative mapping
with disease-resistance QTL constitutes a primary goal to
identify candidate genes for resistance to pathogens [11].
EST databases are essential not only for functional annota-
tion, but also for the identification of gene-associated mar-
kers (type I [6]). New microsatellites and single nucleotide
polymorphisms (SNP) originating from the EST database
have recently been developed in turbot [7, 12, 13]. These
markers were used to identify candidate genes subjected
to divergent selection [14], and to begin constructing an
EST-linked genetic map in this species [12]. Finally, a 5X
BAC genomic library containing ~46.000 clones of
~125 kb on average has been constructed and it is being
exploited for physical mapping of specific genomic regions
(B. Pardo, unpublished data).

Genetic maps are essential tools to locate genomic
regions associated with productive characters, which can
eventually be applied in marker-assisted selection pro-
grams or used to identify genes related to specific traits
through fine mapping and/or positional cloning strategies
[15-17]. Additionally, they provide the support to study
genome organization and evolution through comparative
mapping, and provide useful landmarks for genome as-
sembly [18-24]. A first generation turbot consensus map
(242 anonymous microsatellites; 26 linkage groups (LG))
was reported by Bouza et al [25]. It has been used to
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identify QTL for sex determination [26], growth rate [27]
and resistance to pathogens [28, 29]. Recently, a new
microsatellite genetic map has been reported by Ruan
et al. [2] using 158 anonymous markers.

Genomic resources have greatly increased in aquacul-
ture species especially after the arrival of NGS, and several
genome projects are underway in several fish species
(http://www.genomesonline.org/cgi-bin/GOLD/index.cgi).
However, most comparative genomic studies still rely on
model species. Genome sequences with high coverage are
available in zebrafish (Danio rerio), fugu (Fugu rubripes),
Tetraodon (Tetraodon nigroviridis), medaka (Oryzias
latipes) and stickleback (Gasterosteus aculeatus) (http://
www.ensembl.org). Since gene-associated markers are
much more conserved than anonymous ones, they consti-
tute the preference target to go further on comparative
mapping and evolutionary genomics [24, 30, 31]. Com-
parative mapping also represents the best strategy to cap-
ture candidate genes at genomic regions associated with
productive characters in aquaculture species [32-35].

The aim of this study was to enrich the turbot genetic
map using EST-linked markers to create a more power-
ful tool for comparative genomic and evolutionary stud-
ies in turbot. This second-generation genetic map will
be useful for identifying candidate genes associated to
productive traits and for marker-assisted selection in
genetic breeding programs for turbot industry.

Results and discussion

Genetic markers and segregation analysis

The existence of a three-generation pedigree facilitated
the consistent detection of null alleles. Among the 463
informative mapping markers (Additional file 1: Table
S1), 20 loci (4.3%), 18 microsatellites (4.6%) and two
SNP (2.7%) showed null alleles in any of the eight dip-
loid families (DF and QF1-7), in accordance with previ-
ous data [3, 7]. Deviations from Mendelian expectations
were detected at 27.5% loci (P <0.05) mostly due to
SNP (24.7% over 91 tests, P <0.05) than to microsatel-
lites (10.8% over 916 tests, P <0.05) as previously
reported in turbot [7, 25]. As suggested [36], the exist-
ence of paralogous genes due to the teleost gene dupli-
cation probably interferes with SNP genotyping, hence
the higher proportion of Mendelian deviations observed.
However, this fact did not determine a lower mapping
success at deviated loci, showing a very similar propor-
tion of framework markers in the turbot map as the
non-deviated ones (74.8% vs 72.4%).

The turbot consensus map

The use of several mapping families has the advantage
of increasing the number of informative meiosis, espe-
cially useful for low polymorphic markers, and also
enables the comparison between genetic maps of
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different families or sexes. New genetic markers (mostly
EST-linked), in addition to those previously reported
[12, 25], were used to construct nine family maps to be
integrated in a new consensus map. A large set of com-
mon informative markers were used to anchor the differ-
ent family maps in order to integrate them into a single
consensus map (Additional file 2: Table S2). This map
consisted of 24 linkage groups named LG1 to LG24
(Figure 1). Markers in homologous linkage groups were
compared among family maps (Additional file 3: Figure
S1), full collinearity being observed at 13 linkage groups
and very minor discrepancies at the 11 remaining ones,
always involving closely linked markers (mostly < 3 cM).

The resulting consensus map (Figure 1) contained 438
out of 463 informative markers (94.4%), 180 EST-linked
(41.1%) and 258 anonymous (58.9%) (Table 1). Among
them, 336 were framework (72.4%), 63 mapped at LOD
<3 (13.6%), 39 accessory (84%) and 26 remained
unlinked (5.6%). The 24 linkage groups of the consensus
map represent a reduction from the previous 26 ones [25]
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in the way towards the expected 22 linkage groups accord-
ing to turbot karyotype (n=22; [4, 5]). Thus, groups LG4
and LG25 and groups LG10 and LG26, respectively,
merged into single groups named LG4 and LG10 in the
new consensus map (Figure 1). These two fusions had
been suggested only based on paternal segregation data by
Bouza et al. [25]. Additionally, some markers shared by
different linkage groups suggested two additional fusions
between LG8 and LG18 and between LG16 and LG19. If
these fusions were confirmed, it would represent the final
convergence to the expected 22 linkage groups.

The total map length (1402.7 cM) was very similar to
that previously reported [25], but intermarker distance
substantially decreased from 6.5 to 3.7 cM, thus the map
being among the most dense maps within non-model tele-
osts [23, 31, 38-40]. Only four terminal regions involving
non-framework markers at LG2, LG5, LG6 and LG12
showed distances higher than 20 cM, a threshold consid-
ered relevant for QTL identification [41]. The framework
map covered 1193.4 cM, thus approaching the total length
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Figure 1 Consensus turbot map. Framework markers in bold characters; accessory markers indicated by parentheses beside the closest marker
and listed at the end of Additional file 5: Figure S2; LOD < 3 markers in normal type.
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Table 1 Genetic markers and map and genome length in
the turbot maps

Consensus Paternal Maternal
Total markers 463 - -
Mapped markers 438 221 241
EST-linked 180 55 60
Anonymous 258 165 181
Framework markers 336 215 225
EST-linked 115 55 49
Anomynous 211 159 176
LOD < 3 markers 62 6 16
Accesory 39 - -
Unlinked 26 - -
Total length 1402.7 854.2 1369,1
Max. distance” 305 24,5 304
Mean distance® 37 44 6,3
Framework length 11934 781.7 1274
Max. distance 28.1 23 304
Mean distance 38 4.1 6.3
Gen. length? (total) 1530,8 10634 1596.1
Gen. length? (framew) 13758 979.2 15764

LG24 length was added to obtain total and estimated lengths of paternal and
maternal maps for comparison with consensus map. “Genome length was
estimated according to Hubert and Hedgecock [37]. ®Max. dist.: Maximum
intermarker distance (cM) in each map. ‘Average intermarker distance.

estimate. Considering the estimated genome size of the
turbot between 600-800 Mb [5, 42], the present map
would have on average a marker every ~2 Mb, thus repre-
senting a very useful tool for QTL identification and pos-
itional cloning strategies. Besides, this map will be
valuable for physical mapping starting from the available
BAC library and for genome assembling in future turbot
genome projects.
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Recombination frequency (RF) between sexes and
families

RF is a species-specific parameter, but also variable
within species according to sex, family, chromosome,
and genomic region [43]. These differences constitute an
important factor to be considered when constructing
genetic maps and when maps are applied for QTL iden-
tification and marker assisted selection (MAS) programs.
RF differences between sexes have been described in
most fish species when constructing genetic maps [20,
30, 31, 39, 44-48], including Pleuronectiformes [40]. Re-
combination differences between families have also been
reported, especially in humans and in domestic species
[49, 50], but few studies have been focused on this vari-
ation in fish and other aquaculture species [37, 45, 51,
52]. In turbot, we observed a 1.6:1 female: male (F:M)
RF ratio from a limited sample of common female/male
marker pairs in the previous turbot map [25], but no sig-
nificant RF differences between the two female maps
constructed. Ruan et al. [2] also reported a higher F:-M
ratio (1.3:1) in this species.

In the present study, the availability of a large number
of homogeneously distributed common markers in nine
mapping families (Additional file 2: Table S2) offered the
opportunity for a detailed study on RF among families
within sex, and between sexes. A global F:M ratio of
1.6:1 was observed (Figure 2A), thus corroborating our
previous estimate [25]. The F:M ratio was largely vari-
able among linkage groups (Additional file 4: Table S3;
Additional file 5: Figure S2), ranging between 0.93 at
LG15, the only linkage group with higher male RE, and
23.22 at LG21, where a suggestive sex-determining QTL
was previously reported [26]. These results support our
previous observation related to the differential crossing-
over patterns among turbot chromosomes when estimat-
ing gene-centromere distances [53]. RF differences
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among families within females (Figure 2B) were much
lower than within males (Figure 2C). Accordingly, RF
comparisons between females showed no significant dif-
ferences, while they were significant between males at
some cases. Inter-family RF differences have also been
documented in other aquaculture species [37, 52].

Comparative mapping

Similarity of turbot sequences against stickleback (Gac),
Tetraodon (Tni), medaka (Ola), fugu (Tru) and zebrafish
(Dre) genomes revealed large macrosyntenic patterns
(Figure 3; Additional file 6: Figure S3 and Additional file 7:
Figure S4). Total significant hits decreased from stickle-
back (~ 50%) to Tetraodon, fugu, medaka (~ 40%) and
zebrafish (~20%) genomes (Table 2), mostly in agreement
with the closer phylogenetic relationship of turbot to
stickleback, Tetraodon, medaka and fugu (Acanthoptery-
gii) than to zebrafish (Ostariophysi) [54]. The stickleback
(Gasterosteiformes) genome was the most informative one
in our study, despite that medaka (Beloniformes) has been
found to be more closely related to turbot (Pleuronecti-
formes) using mitogenome data [55]. This may reflect
phylogenetic discordances between mitochondrial and nu-
clear DNA markers, suggesting that both marker types
should be combined to provide more consistent relation-
ships among Acanthopterygii [56].

Gene-derived markers have demonstrated better per-
formance than anonymous ones for comparative mapping
[24, 30]. Accordingly, more EST-linked than anonymous
turbot markers matched against model genomes (Table 2).
Most unique hits were included in the turbot map, thus
being relevant to identify syntenic regions. Matches
showed high average identity (~90%), the length similarity
and identity increasing from zebrafish to stickleback and
being higher for EST-linked than for anonymous markers
(Table 2), as reported in teleosts [38, 47].

Macrosynteny between the turbot map and model teleost
genomes

Mapping of 180 gene-derived markers to the turbot map
has substantially improved previous comparative analysis
based on anonymous loci [25], allowing the assessment of
large syntenies between the turbot and the model fish gen-
omes (Figure 3; Additional file 6: Figure S3 and Additional
file 7: Figure S4). As expected, conserved syntenies (mul-
tiple significant hits regardless of their order) were higher
against Acanthopterygii (20 to 25 conserved syntenies
with four or more hits) than against zebrafish (only 14
small syntenies; Additional file 7: Figure S4) genomes. A
remarkable one to one correspondence between the turbot
linkage groups and the Acanthopterygii chromosomes was
observed (Figure 3), in agreement with previous compara-
tive mapping among model teleosts [21, 57]. Synteny con-
servation was particularly extensive between the turbot
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and stickleback genomes (Table 2; Figure 3; Additional file
8: Table S4), aiding to establish a predicted location for
most unlinked turbot markers from unique stickleback
chromosomes. However, gene order appeared less con-
served for most macrosyntenies (Additional file 8: Table
S4 and Additional file 9: Table S5) reflecting linkage map-
ping limitations and/or chromosome rearrangements over
evolutionary time [22, 30]. Collinearity appeared to be par-
ticularly conserved at microsyntenic scale (Additional file
9: Table S5), as reported for other teleosts [30].

Comparative mapping provided additional support to the
new LG4 and LG10, as well as to the fusion between LG8
and LG18, since they were syntenic to single chromosomes
in all model Acanthopterygii (Figure 3; Additional file 6:
Figure S3). By contrast, the independent syntenic relation-
ship observed for LG16 and LG19 against model genomes
(Figure 3) do not support the weak linkage signal observed
between them. Further work will be required to establish
the final merging on 22 linkage groups, both focusing on
these linkage groups and on the smallest ones, particularly
LG24. To achieve this goal, i) we are including new markers
from Ruan et al. [2] in the turbot map; ii) we are perform-
ing two-color in situ hybridization with BAC probes asso-
ciated to putative merging groups; and iii) we expect a draft
of the turbot genome to be completed in the near future.

Comparative mapping also suggested fusion events in
the stickleback (LG7 and LG16 merge into Gac4) and
Tetraodon (LG5 and LG7 merge into Tnil) lineages as
the most parsimonious hypothesis considering the an-
cestral n =24 teleost karyotype [58] (Figure 3; Additional
file 6: Figure S3). In accordance with the low rate of
interchromosomal rearrangements in teleosts [57], only
one turbot translocation between LG1 and LG22 was
suggested from comparison with model species

Overall incidence of multiple matches against the five
model teleost genomes was low, although higher from
EST-linked (~10-16%) than from anonymous (<4%) mar-
kers (Table 2). This is likely related to the higher retention
of duplication events on coding sequences along verte-
brate evolution [59], and particularly, to the fish-specific
(3R) whole genome duplication validated by comparative
studies [19, 21, 24]. Close to 40% of the duplicated hits
detected across model genomes in this study (Additional
file 10: Table S6) were congruent with the sets of ortholo-
gous and paralogous chromosomes identified between the
Tetraodon and medaka genomes, which have been essen-
tial to reconstruct the vertebrate protokaryotype [57, 60].
This information could capacitate to predict positions for
unallocated duplicated genes on the turbot map.

Anchoring the turbot map onto model and farm teleost
genomes

Our study confirmed the findings of previous comparative
mapping for farmed teleosts. Conserved synteny against
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Figure 3 Macrosynteny analysis between the turbot linkage map and model Acanthopterygii genomes. In gray background syntenies
with two or more significant hits. UL: unlinked markers in the turbot map; UN: unrandom genomic regions of the model fish species.

closely related model genomes has been shown, either
within Acanthopterygii (Tetraodon, medaka, fugu or
stickleback), such as in the halibut, tilapia, Japanese floun-
der, European seabream or seabass [32, 38, 40, 61], or
within Ostariophysi (zebrafish), such as in the catfish or
grass carp [23, 30]. Anchoring of several farm fish maps
against model teleost genomes is highly relevant to boost
in aquaculture technologies, providing straightforward ac-
cess to the gene content within specific syntenic regions
from model species. For instance, linking the advances in

the genomic analysis of commercially important pleuro-
nectiform and perciform species will be possible using the
stickleback as common anchoring genome given its in-
formativeness for comparative mapping in turbot, tilapia,
European seabream and seabass [32]. Also, the conserva-
tion of microsyntenies in the turbot map will be valuable
to search for candidate genes of productive traits around
QTL by data mining on the model fish genomes [33, 34].
For this task, although the stickleback genome has
demonstrated to be the most informative one, other model
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Table 2 Similarity of turbot EST-linked and anonymous
sequences against model teleost genomes

Model species Gac Tni Ola Tru Dre

Total hits 246 (54.4) 179 (39.4) 186 (41.0) 194 (42.7) 91 (20.5)
E<10™ (%)

Unigue hits? (%)

210 (48.0) 151 (33.3) 146 (32.9) 162 (35.7) 69 (15.5)

Multiple hits? %) 36 (79) 28(63) 38(84) 32(72) 22(50)
EST-linked sequences (E)
Unique hits? (%) 121 (60.8) 98 (49.2) 88 (44.2) 93 (46.7) 50 (25.1)
Unique_L-L° (%) 98 (49.2) 60 (30.2) 70 (352) 66 (33.2) 44 (22.1)
Multiple hits® (%) 25 (126) 21 (106) 32 (16.1) 25 (126) 19 (96)
Anonymous sequences (A)
Unique hits? (%) 89 (363) 53 (26.6) 57 (224) 69 (27.1) 19 (7.8)
Unique_L-L° (%) 78 (31.8) 40 (163) 53 (21.6) 66 (269) 17 (6.9)
Multiple hits® %) 11 43) 79 7@7) 729 302
Unique hits summary
Mean size 119.0 1064 1103 109.0 107.1
alignment bp
Mean size A-E? 1000- 91.8- 94.4— 94.7— 84.0-
bp 133.0 115.0 1194 119.8 1140
Maximum size 257-504 252-401 215-422 222-438 181-295
AE? bp
Mean E-value 14607 42E-07 36E07 40E07 6.1E07
Minimun E-value 1.0E-140 1.0E-116 1.0E-120 1.0E-119 2.0E-62

Identity % Mean 89.8 89.9 89.0 89.5 88.2
Identity % Range 79.4-100 80.4-100 79.9-96.7 794-100 80.3-96.2

Retained at 182 (87%) 122 (81%) 110 (75%) 129 (80%) 50 (72%)

E<107'° (%)

BLASTn matches of 454 turbot microsatellite and SNP flanking sequences (199
EST-linked to 255 anonymous ones) against the stickleback (Gac: Gasterosteous
aculeatus), spotted green puperfish (Tni: Tetraodon nigroviridis), medaka (Ola:
Oryzias latypes), fugu (Tru: Takifugu rubripes) and zebrafish (Dre: Danio rerio)
genomes at E < 107° threshold, most of which retained at E < 107'°. “Unique or
5Multiple hits: turbot sequences yielding a single significant match or >2
significant matches, respectively, against model species genomes. “‘Unique_L-L:
linked markers at the turbot genetic map having unique significant matches with
chromosome assignment on the model species genomes. “A-E: size alignment
figures in base pairs (bp) for Anonymous (A) to EST-linked (E) markers.

species within Acanthopterygii will also provide essential
information, particularly medaka, a closely related model
species to Pleuronectiformes [55].

Conclusions

A gene-enriched turbot consensus map has been con-
structed with a marker density in the range of those
described in farm fish species with large genomic
resources. The availability of multiple reference families
enabled us to obtain detailed data on RF between and
within sexes. The higher evolutionary conservation of
EST-linked markers allowed the detection of large
macrosyntenic patterns with model fish species. This
map provides essential information to identify genomic
variation and candidate genes associated to productive
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traits for further application in MAS programs. The
turbot map also provides useful landmarks for future
turbot genome assembling and for evolutionary studies
within pleuronectiforms and teleosts.

Methods

Mapping families

The haploid (HF) and diploid (DF) families from our
previous studies [12, 25], and seven additional families
used for QTL identification (QF1-7) [26-28] were used
to construct the new turbot map. DF was the main refer-
ence because of its higher marker density. HF was main-
tained in our analysis because a large set of anonymous
markers had only been mapped in this family [25], but
no new markers were added to this family. QF families
were used when markers were non-informative in DF
family. The seven QF families had been used for QTL
screening on sex determination, growth and resistance
to pathogens and thus, they were anchored by a com-
mon set of markers [26]. QF families were obtained from
the genetic breeding programs of the companies Stolt
Sea Farm SA and Insuifia SA, where a three-generation
pedigree was available for all of them. Grandparents,
parents and around 100 offspring (between 91 and 113)
were analyzed in each QF family.

Microsatellite and SNP markers

The following 463 markers (388 microsatellites and 75
SNP) were informative in the nine mapping families (HE,
DF and QF1-7) (Additional file 1: Table S1): i) 261
mostly anonymous microsatellites obtained from partial
genomic libraries (Sma-USC codes) or RAPD markers
(TUR codes) including: 248 from the previous map [25],
7 from Pardo et al. [62], 3 RAPD-derived from Liu et al.
[63], and 3 novel markers characterized in the present
work; and ii) 202 EST-linked markers, including 127
microsatellites: 43 from Bouza et al [12], 75 from
Navajas-Pérez et al. [13] (SmaUSC-E and Sma-E codes,
respectively), and 9 from Chen et al ([64]; SMAC
codes); and 75 SNPs from Vera et al. ([7]; SmaSNP
codes). For simplicity, hereinafter we shall refer to those
microsatellites derived from enriched-genomic libraries
or RAPD as anonymous microsatellites (despite some of
them being annotated), and to the other group as EST-
derived markers. Microsatellite and SNP genotyping was
carried out on an ABI 3730 DNA Sequencer. Primers
and PCR conditions for three new microsatellites were
described for the first time in this work (Sma-USC286,
Sma-USC287 and Sma-USC288; Additional file 1: Table
S1). Chi-square tests were applied to check for devia-
tions from Mendelian expectations (1:1, 1:2:1 and
1:1:1:1) at each locus and within each family analyzed.
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Map construction

Linkage analysis in mapping populations

A consensus genetic map was constructed using the nine
reference family maps. Also, female and male genetic
maps were constructed averaging via female and via
male segregation, respectively, with the same diploid
reference families. HF family was only used to build the
female map. The software JOINMAP 3.0 [65] was used
for map construction starting from all haploid and dip-
loid mapping populations (HF, DF and QF1-7). The gen-
otypes of the haploid gynogenetic progeny were coded
as JOINMAP type HAP population, with linkage phase
unknown. The segregation data from each parent of all
diploid families were also coded in HAP configuration
with known linkage phase to construct female and male
maps. Diploid family data (DF and Q1-7) were coded as
JOINMAP type CP population and analyzed within a
known-phase model. Clustering and order of markers, as
well as integrated linkage analysis to construct consen-
sus, female and male maps were carried out using JOIN-
MAP 3.0 with a LOD threshold >3.0 for framework
mapping, as previously reported [25]. The graphic maps
were generated using MAPCHART 2.2 [66].

Comparison of recombination frequency (RF) between sexes
and families

Only RF between framework markers (LOD > 3.0) was
considered for comparisons. Common marker pairs were
identified at each linkage group in the different mapping
families to compare RF between families within each sex
(ie. segregating in the male or in the female) and between
sexes. Comparisons between families within sex were per-
formed both for all family pairs and globally using infor-
mation of all families. Comparison between sexes was
performed by averaging RF of common marker pairs
across families within each sex. The mean and standard
error of RF differences (between-families within males,
between-families within females and between sexes) were
obtained. Comparison was performed for the whole gen-
etic map, but also for each linkage group. For these ana-
lyses, a minimum of 10 common marker pairs between
the evaluated families was considered. The significance of
RF differences for each pair of families was estimated
using t-tests. Normality of RF distributions was checked
using Kolmogorov-Smirnov tests. Non-parametric Mann—
Whitney rank-order test was applied to evaluate the sig-
nificance of RF differences between sexes.

Comparative mapping

Given the high percentage of anonymous sequences used
for linkage mapping in the turbot, NCBI-BLASTn was
used to compare turbot containing-marker sequences
against updated versions of model fish genomes down-
loaded from ftp://ftp.ensemblorg: Tetraodon nigroviridis
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v.8.61, Takifugu rubripes v.5, Danio rerio Zv9.6, Oryzias
latipes v.1.61 and Gasterosteus aculeatus v.1.61. BLAST
searching was performed by using a minimum alignment
length of 40 bp with a score >80 as recommended for
EST mapping across species and two E-value thresholds
(E<107! and E<107°) [26, 32, 67]. Turbot marker
sequences were also used as queries for analysis against
the stickleback ¢cDNA database, as the most informative
model genome in this study (see Results). We wrote a Bio-
Per]l BLAST parser to extract the desired hits including se-
quence similarity figures and genome location information
for each model species.

Additional files

Additional file 1: Table S1. Characteristics of the genetic markers
included in the turbot map.

Additional file 2: Table S2. Informative markers used to construct the
turbot consensus map.

Additional file 3: Figure S1. Correspondence between the nine family
maps used to construct the turbot consensus map.

Additional file 4: Table S3. Number of markers and map length for
each linkage group (LG) of turbot.

Additional file 5: Figure S2. Consensus, female and male genetic maps
of turbot.

Additional file 6: Figure S3. Comparative mapping between the turbot
map and the five model teleost genomes.

Additional file 7: Figure S4. Oxford grid showing syntenies between
the turbot linkage map and the zebrafish genome.

Additional file 8: Table S4. Putative syntenic markers (210) between
the turbot genetic map and the stickleback genome.
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