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Abstract

Understanding factors that shape biodiversity and species coexistence across scales is of utmost importance in ecology,
both theoretically and for conservation policies. Species-area relationships (SARs), measuring how the number of observed
species increases upon enlarging the sampled area, constitute a convenient tool for quantifying the spatial structure of
biodiversity. While general features of species-area curves are quite universal across ecosystems, some quantitative aspects
can change significantly. Several attempts have been made to link these variations to ecological forces. Within the
framework of spatially explicit neutral models, here we scrutinize the effect of varying the local population size (i.e. the
number of individuals per site) and the level of habitat saturation (allowing for empty sites). We conclude that species-area
curves become shallower when the local population size increases, while habitat saturation, unless strongly violated, plays a
marginal role. Our findings provide a plausible explanation of why SARs for microorganisms are flatter than those for larger
organisms.

Citation: Cencini M, Pigolotti S, Muñoz MA (2012) What Ecological Factors Shape Species-Area Curves in Neutral Models? PLoS ONE 7(6): e38232. doi:10.1371/
journal.pone.0038232

Editor: Stephen J. Cornell, University of Leeds, United Kingdom

Received October 27, 2011; Accepted April 30, 2012; Published June 4, 2012

Copyright: � 2012 Cencini et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Spanish MICINN project FIS2009-08451 and Junta de Andalucia, Proyecto de Excelencia P09-FQM4682. The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: mamunoz@onsager.ugr.es

Introduction

Species-area laws quantify the relation between area and the

number of species found in that area and represent one of the most

robust biodiversity patterns [1]. Clearly, larger areas harbor a

greater number of species, but the increase occurs in a remarkably

orderly way [2]. Typically, empirical species-area curves display

an inverted S-shape: at small (local) and very large (continental)

areas (A) the number of species (S) increases in a relatively steep

(nearly linear) way with the area, while the increase is shallower at

intermediate areas [3–5]. Whilst the two extreme regimes are

relatively easy to rationalize, the intermediate one remains

intriguing and has attracted much attention (see [1] and references

therein). Several fitting formulas have been proposed to describe

collected data [4,6], among which, the most widely adopted are

the logarithmic law S* ln (A) [7] and the power-law relation [8].

S!Az : ð1Þ

Data from many field studies tend to slightly favor the power

law fit (1) with values of the exponent z showing a dependence on

environmental variables, e.g., the latitude [1]. Moreover, body-size

seems to be an important factor in shaping SARs: with some

provisos on possible biases due to undersampling or taxa

identification [9,10], species-area curves for microorganisms are

typically shallower than those of larger organisms [11–13].

Different hypothesis have been put forward for the reduced

spatial diversification of microorganisms (see the review [10] and

references therein): enhanced dispersal rates due to large

population sizes and short generation times, decreased local

diversification due to low extinction rates (owing to large

population sizes), and to low speciation rates (because of horizontal

gene transfer and imperfect isolation). Despite the role of the local

population size in determining the mechanisms above, the effect of

its variations has not been tested (to the best of our knowledge) in

the context of individual based models.

Along with empirical studies, theoretical efforts have been

devoted to identify ecological mechanisms responsible for shaping

species-area curves [4]. Examples of these mechanisms include

trade-off and interspecific competition [14,15], or predator-prey

dynamics [16] (see [17] for a review). The Neutral theory [5]

emphasizes the role of stochastic mechanisms such as demographic

processes, able by themselves to generate nontrivial diversity

patterns. In particular, neutral models incorporate processes such

as colonization, dispersal, and speciation and assume, in contrast

with the niche paradigm [18], that all individuals, regardless of the

species they belong to, have the same prospects of death,

reproduction, etc.

Spatially implicit neutral models have been shown to produce

species abundance distributions (SADs) in remarkable good

agreement with empirical data [5,19]. This suggests that they

capture the essence of general and robust community-level

properties or, at least, promotes neutral theories to suitable null-

models [20]. Etienne et al. [21] showed that SADs remain

unaltered when breaking Hubbell’s [5] ‘‘zero-sum assumption’’,

postulating that the community size is strictly kept constant by

resource saturation. Then, the question arises of whether the
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spatial distribution of species is equally robust upon modifying

other ‘‘details’’ of the underlying neutral theory? (see [22]). If not,

what are the relevant ecological mechanisms/forces that, imple-

mented in a neutral model, are relevant for shaping the SARs and

thus the value of z as. For example, what is the relevance of body-

size?

Spatially explicit neutral models generate species-area curves very

similar qualitatively and, to some extent, quantitatively, to

empirical ones. They display power-law behaviors with an

exponent z in a realistic range [23,24]. Species-area curves in

spatially explicit neutral models are mainly shaped by the interplay

of dispersal limitation and speciation [23,25]. In particular, for

finite ranged dispersal kernels, regardless their specific form, the

actual value of z is mainly determined by the speciation rate

[26,27], which is however difficult (or impossible) to estimate.

Sensitive variations of the exponent value, at fixed speciation rate,

have been observed when the dispersal process couples distant

locations in the ecosystem, e.g. by considering fat tailed

distributions [28]. The influence of other factors was investigated

by Chave et al. [24] who mainly focused on violations of the

neutral assumptions, e.g., by introducing trade-offs.

In this paper, we study the effect of varying the number of

individuals that can live at a single ecosystem site on the species-

area curves generated by neutral spatial models. We consider two

kinds of variations: allowing for large local population sizes, by letting

each site host many individuals, as appropriate for describing

communities of microorganisms connected by dispersal, and

allowing for empty sites, i.e. changing the level of habitat saturation.

To explore these possibilities, we present extensive simulations

of the stepping stone model (SSM) [29,30], which incorporates

variable local population size by increasing the number of allowed

individuals per site, and the multispecies (or multitype) contact

process (MCP) [31], which is suited to study non saturated

habitats. These models have been not thoroughly explored before

in the context of spatial neutral theory: in particular, the MCP,

discussed by Durrett and Levin [23], was not, to the best of our

knowledge, previously simulated. The SSM is popular in the

context of population genetics but its predictions for species area

laws have not been explored before. To complete the picture, we

compare the species-area relationships generated by the above

models with those for the multispecies voter model (MVM), which

is possibly the most studied spatially explicit neutral model

[23,26,27]. We remark that the term ‘‘voter model’’ is often used

to denote the model with nearest-neighbor dispersal among sites.

In this paper, we use the same name also when more general

dispersal kernels are considered.

Common to all the above models is that individuals of different

species are placed at the sites of a two-dimensional lattice and

evolve according to basic demographic processes such as birth,

death, migration, and speciation. However, important differences

also exist. While the MVM and SSM describe saturated habitats

with a constant density of individuals, the MCP describes

fragmented systems where the density of individuals is irregular

both in space and time, with the presence of gaps. The models

differ also in the number of allowed individuals per site. In the

MVM and MCP each site can hosts one individual at most, as

appropriate to describe large organisms, such as trees. In the SSM,

each site represents a local community of M individuals, making

the model more suitable to describe, e.g., patches of microorgan-

isms connected by migration [32]. Indeed, as discussed by Fenchel

and Finlay [33], comparing larger and smaller organisms is

essentially equivalent to compare organisms with smaller and with

larger population sizes, respectively. For instance, it has been

estimated that one gram of typical soil can host 106{107 bacteria

[34].

We conclude that –together with speciation rate and the

dispersion kernel– the size of the local population is an important

shaping factor for neutral predictions on species spatial distribu-

tions and, hence, on SAR curves. On the other hand, mild

violations of habitat saturation – i.e. not as extreme as to break the

space into isolated regions – have little effect on the slope of SAR

curves on scales larger than the typical size of the gaps.

Methods

We now present the three aforementioned spatially-explicit

neutral models and discuss afterward their main similarities and

differences. The section is organized as follows. In the three first

subsections we introduce and motivate the models that will be the

subject of our study. Then we discuss their similarities, differences

and numerical implementation. The last subsection is devoted to a

discussion of the effect of the choice of the dispersal kernel.

Multispecies Voter Model (MVM)
The multispecies voter model is a spatial generalization of the

infinite allele Moran model used in population genetics (see, e.g.

[35]). Each site of a square lattice is always occupied by a single

individual: the habitat is thus saturated. At each time step, a

randomly chosen individual on the lattice is killed and immediately

replaced: with probability (1{n), by a randomly chosen copy of

one of the nearest neighbors (dispersal event); with probability v,

by an individual from a new species (speciation event). When nw0,

any species will eventually go extinct; speciation events compen-

sate extinctions so that a dynamical equilibrium eventually sets in

[23].

Stepping Stone Model (SSM)
In the previous model, each lattice site hosts a single individual,

as appropriate when modeling, e.g. a forest, where each site

represents the space occupied by a single tree. In such cases, the

limiting resources are indeed strongly related to space, so that it is

reasonable to model competition by simply assuming that when an

individual dies, a vacant site is left to be occupied by another

individual. Conversely, microorganisms, such as small eukaryotes

or bacteria, are often present in very large numbers below a scale

in which one can assume that all individuals share the same pool of

resources. Therefore, it is more appropriate to think of the habitat

as subdivided into small patches, connected by migration and each

hosting a large population of individuals that directly compete with

each other [32,33]. Such a setting is even more relevant when the

habitat is physically divided into patches, so that moving from a

patch to another is more difficult than moving within a patch, like

in the case of an island chain or of soil fragmented in different soil

grains. [36].

In this perspective, the stepping stone model, originally

introduced in population genetics [29], straightforwardly general-

izes the MVM by allowing each site to host a fixed (but arbitrary)

number, M, of individuals. At each time step an individual is

randomly selected, killed and then replaced: with probability

(1{n) by the offspring of an existing individual or, with

probability v by an individual of a new species. In the former

case, the parent is chosen with probability (1{m) among the

remaining M{1 individuals residing at the same site and with

probability m among those at a randomly chosen nearest neighbor

site. For M~1, the SSM recovers the MVM with (as detailed in

Appendices S1 and S2) v substituted by �nn~n=m, which is the

effective speciation-to-diffusion ratio in the SSM. Note that, in

Species-Area Relations in Neutral Models
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general, as dispersal occurs every 1=m time steps and not at every

time step as in the other models, one can show that comparison

should be done equating �nn~n=m (speciation-to-migration rate) to

the value of v used in the other models (see, e.g, [30]).

Multispecies Contact Process (MCP)
In the MVM, gaps left by deaths are immediately filled by

newborns leading to habitat saturation. This is tantamount to

assuming reproduction rates infinitely larger than death rates [23].

In the contact process [31], this assumption is relaxed and gaps

can survive for arbitrarily large times. In particular, each

individual dies at rate d and reproduces at rate b giving rise to a

newborn at a randomly chosen neighbor site. As each site cannot

host more than one individual, attempted reproduction is

successful only if an empty neighbor is chosen. When reproduction

is successful, the newborn belongs to the parent species with

probability (1{n) and to a new species with probability v. Thus,

the relevant parameters are the speciation rate v and the birth-to-

death ratio c~b=d, controlling the fraction of occupied sites in

steady state conditions. For large c, gaps are small and infrequent:

in the limit c?? the MCP recovers the MVM [23]. Conversely,

lowering c results in an unsaturated habitat with larger and longer-

lived gaps. Finally, at c *v 1:649, i.e. the CP critical point [37],

births become too infrequent, leading to global extinction.

Similarities and Differences between Models
We now discuss the main similarities and differences among

the above models, as summarized in Table 1. A key feature is

the maximum number of individuals allowed at each site: 1 for the

MVM and the MCP, M for the SSM. While the MVM and the

SSM describe a saturated habitat, in the MCP, as sites can be

empty, the habitat is not saturated. In all models, diversification is

implemented as point speciation [5], which of course should not be

regarded as a realistic speciation mechanism but rather as an

effective one [38]. In this perspective, the speciation rate v has to

be interpreted as a normalized rate (speciation over death rate).

Moreover, as said above, due to the different dispersal rule, in

SSM the proper quantity to set up a comparison with the other

two models is the speciation to migration ratio �nn~n=m.

Concerning the simulation scheme, the voter model and the

stepping stone model can be reformulated in terms of coalescent

random walkers [39], leading to approximate estimates of the

exponent z (that, for MVM, were put forward in [23,25]) and also

to very efficient numerical implementations [26,27,40]. One of the

main advantage of this method is that numerical simulations are

virtually free from boundary effect problems as if simulating a

portion of an infinite landscape [26]. Details on the coalescing

random walk analogy, the resulting numerical scheme and

analytical estimates are discussed in Appendices S1, S2 and S3.

Unfortunately, such reformulation does not easily extend to the

multitype contact process, which was simulated by means of a

standard algorithm [37] adapted to the multitype case. In this case,

periodic boundary conditions have been employed and tests to

minimize possible finite size effects performed. Appendix S4

details the numerical scheme.

To close this section, we remind that, while in this paper we

restricted our comparison to models in which competitive

interactions among individuals are present, recently, O’Dwyer

and Green [41] introduced a model in which individuals do not

compete (so that species are independent). In this case the number

of individuals per site is unrestricted; the advantage of this

simplifying assumption is that it allows for a full analytical

treatment of the problem.

Dispersal Kernel and Species-area Relationships
The above models have an additional degree of freedom related

to the choice of the dispersal kernel, which is, in general, important

to reproduce SAR curves similar to empirical ones. In particular,

nearest neighbor (NN) kernels generate biphasic SAR curves

rather than triphasic ones [24], because the steep-growth regime at

small areas cannot be reproduced. To observe triphasic S-shaped

SAR, similar to empirical ones, requires more general (finite-

range) dispersal kernels, acting on several sites. Moreover, the

resulting SAR curves do not depend on the shape of the kernel but

only on its range [26]. Fat-tailed dispersal kernels could also be

considered to model some dispersal mechanisms found in nature,

and have been found to quantitatively influence SARs both in

terms of the extension of the intermediate range and in terms of

the exponent z values [28].

In this paper we mostly explored the behavior of the species-

area curves by implementing the above described models with the

nearest-neighbor kernel. This choice is mainly dictated by its

simplicity and by the costs of simulating the SSM with large

lattices (as necessary if more general kernels are used) when the

local population size becomes large. Moreover, for the MVM, at

small areas SAR curves obtained with NN-kernel approximatively

behave as power laws and qualitatively match the behavior of the

intermediate (power law) regime of more general kernels [27].

However, to test the robustness of our main findings against the

kernel choice we also performed simulations by employing a finite-

range square kernel: a killed individual at a given site can be

replaced by any of the individuals present in a square centered at

that site and having side 2Kz1. We remind that for the MVM, as

soon as K *> 5, z does not depend on K and the entire curve can be

rescaled [26,27]. For this reason tests have been performed at

K~7.

Results

The speciation rate v determines most features of neutral

species-area curves, in particular, the interesting power-law regime

Eq. (1) [23,24,26,27,42]. Therefore, to discriminate the influence

of the different ecological mechanisms incorporated in the models,

we will compare species-area curves obtained by the above

introduced models at equal v.

Once v (and the dispersal kernel) are fixed, the MVM is fully

specified, while the SSM and the MCP need additional parameters

to be set. As previously shown, both the SSM and the MCP reduce

to the MVM for M~1 and large birth over death rate ratio

(c~b=d&1), respectively. Hence, to stay away from this limit, we

allowed for a large local community size for the SSM by choosing

M~100 with migration probability m~0:1 (holding �nn~n=m equal

to v in the other models, as specified above), and considered

habitat unsaturated conditions for the MCP by choosing c~1:68,

ensuring that only &0:095% of the available sites are occupied.

Table 1. Summary of models.

model local population saturation

MVM 1 Y

MCP {0,1} N

SSM M Y

Summary of the main features of the considered spatially-explicit neutral
models. Y/N stands for Yes/No.
doi:10.1371/journal.pone.0038232.t001

Species-Area Relations in Neutral Models
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To compare species-area curves generated by the three models,

we performed extensive numerical simulations of the MCP and

the SSM (see Appendices S2 and S4 for the numerical

implementation). Most of the simulations have been performed

by using nearest-neighbor kernels and tests on SSM and MVM

have been done using the square kernel discussed in Methods. For

the MVM we relied on already published numerical results [27].

Figure 1 shows the species-area curves generated by the three

models at v (�nn in the SSM) equal to 10{6. The curves are

qualitatively similar to each other. They display a shallower than

linear growth for small areas and become steeper, eventually

linear, at larger areas. The transition between these two regimes

occurs at a similar scale (shown to be O(1=n) for the MVM [23]) in

all models.

The interesting regime can be quantitatively scrutinized by

looking at the local slopes, d ln S=d ln A, shown in the inset of

Fig. 1 for small areas. A power-law range, as in Eq. (1), would

correspond to a region in which d ln S=d ln A&const~z. This is a

good approximation for the MVM and the SSM whose local

slopes are characterized by a shallow parabolic shape. As

customary in recent literature [26,27,41], in the following we

shall determine the exponent z as the minimum of this parabola;

equivalent (within error bars) results can be obtained fitting a

power-law as Eq. (1) on the species-area curve in the scaling range.

Local slopes and thus z display some variability among the three

models. In particular, the stepping stone model gives rise to

shallower curves with respect to the voter model, i.e. z
SSM

vz
MVM

.

On the other hand, no clear power-law range can be identified for

the MCP, as the local slope increases monotonically from zero at

increasing the area. We anticipate that this behavior is due to the

presence of gaps in the distribution of individuals (see the

subsection Multispecies Contact Process below).

Figure 2a shows the dependence of the exponent z on the

speciation rate v (~nn for SSM) for the MVM and SSM; MCP was

excluded because as seen in Fig. 1 no reasonable power-law range

exists for c close to cc. Let us start comparing the two models with

NN dispersal. As for the case n~10{6 (Fig. 1), the exponents are

different and the curves produced by the SSM are consistently

shallower than those generated by the voter model in the explored

range of v-values. In this figure we can see that the exponents for

the SSM with NN-dispersal appear to be close to (but not

coincident with) those of the MVM with the square-kernel (K = 7).

However, when comparing the exponents of the SSM and MVM

when the square-kernel (K = 7) is employed for both, we still

observe that the former is shallower (see also Fig 3 and its

discussion in the next section). Notice that increasing further K in

the MVM does not produce further changes in the exponent

[26,27]. Therefore, as the comparison with the same dispersal

kernel reveals, the decrease in the exponent z due to the increase

of the local population size is a genuine effect. We also observe

that the function z(v) is remarkably similar in the two models

(independently of the dispersal kernel employed), as demonstrated

in Fig. 2b where 1/z is shown as a function of ln n. In particular,

both models are fairly well described by the fitting formula [27].

1=z~qzm ln (n) , ð2Þ

where the constants q and m are model-dependent.

For the MVM (with NN-dispersal), some mathematical results

are available for z(n). Durrett and Levin [23] (see also [25])

provided the asymptotic estimate z
MVM

(n)&(2 ln ( ln (n{1)){
log (2p))= ln (n{1), which is consistent with the fitting formula

(2), but for a very slow variation of the slope m due to the

ln ln (n{1) term. The specific values of m and q obtained by the

Figure 1. SARs generated by the three models at n~10-6 (n=m~10-6 for the SSM) using nearest neighbor dispersal. The MVM and the
SSM are simulated on a 100061000 square lattice. In the SSM, we chose M~100 and m~0:1. The MCP is simulated on a 250062500 lattice with
c~1:68 adopting weighted averages (see Fig. 4 and related discussion). In all cases, we averaged over 5|102{103 independent realizations and
statistical errors are smaller than symbols’ size. To ease the comparison, S has been normalized by the average number of species S� at the smallest
sampled area. Inset: local slopes d ln S=d ln A of the four curves for areas smaller than 104.
doi:10.1371/journal.pone.0038232.g001

Species-Area Relations in Neutral Models
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numerical simulations are slightly different from those implied by

the asymptotic estimate (see Ref. citePigolotti2009 for a detailed

discussion). For the SSM, as described in Appendix S3, we derived

the approximate asymptotic formula

zSSM(n)&
z

MVM
(n) Mm%1

z
MVM

(n)=2 Mm&1

(
: ð3Þ

Consistently with our numerical results, the above estimate

predicts that in the limit of large local population sizes (Mm&1)

the species-area curves of the SSM are shallower than those of the

voter model, which are recovered in the limit of small local

population sizes (Mm%1). We also mention that the fitting

formula Eq. (2) is also compatible with the result of an exactly

solvable variant of the neutral model [41].

The following two sections focus on the SSM and the MCP, to

further elucidate the importance of local community size and

habitat saturation on the variability of SAR curves.

Multispecies Stepping Stone Model
Sensitive variations of z are indeed observed by changing M and

m, for fixed speciation to migration ratio �nn~n=m. In particular, the

exponent z decreases with m and M and seems to be mainly

determined by their product Mm, as shown in Fig. 3 for two

different values of �nn.

Figure 2. Exponent z as a function of v for the MVM and SSM. Panel (a) shows z vs v for MVM and SSM with NN- and square-kernel with K = 7.
The SSM is simulated for M = 100 and m~0:1. Due to computational limitation, simulations for the SSM at K = 7 have been performed at three
different values of v only. The system size has been chosen in each simulation in order to properly resolve the power-law regime. Panel (b) shows 1/z
vs ln (n) for the same data of (a). Dotted straight lines are best fits obtained using Eq. (2). Fitted values are: for the NN-kernel MVM m&{0:48
q&{1:4 and SSM m&{0:58 q&{1; for the square-kernel K = 7 MVM m&{0:72 q&{3:2 and SSM m&{0:78 q&{2:8.
doi:10.1371/journal.pone.0038232.g002

Figure 3. Exponent z for the SSM as a function of Mm at fixed �nn~n=m. The left panel shows the case �nn~n=m~10{8 for m~0:5,0:1,0:01 with
NN-kernel. The shaded area indicates the value z

MVM
(including the estimated error) of the exponent for the MVM with n~10{8 . For Mm&1 statistical

errors increase because a smaller number of realizations was used as simulations become very costly. The right panel shows the case �nn~n=m~10{6

for m~0:5,0:1 with NN-kernel. The shaded areas display the value of the exponent for the MVM with both the NN- and square-kernel (K = 7) and the
SSM with square-kernel (K = 7) for M = 100 and m~0:1 (i.e. Mm~0:1).
doi:10.1371/journal.pone.0038232.g003

Species-Area Relations in Neutral Models
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For Mm%1 the exponent z approaches the corresponding

value in the MVM, while at large Mm the exponent decreases in

a sigmoidal fashion and displays a tendency towards a different

asymptotic value. These two limits correspond to very different

regimes. When mM is very small, sites have a small local

population and species (individuals) exchanges among sites are

rare: most sites are not able to sustain diversity and contain only

one species (i.e. in this regime local fixation dominates). In this

limit, the SSM reproduces MVM behavior with the on-site

mono-dominant community in the former playing the role of a

single individual in the latter. Conversely, when mM is very large

and v is very small, the large local community size (buffering

local extinctions and fixations) and the frequent exchanges

among sites allow each site to host a large number of species on

average. A further consequence is that each species will be

statistically represented in a similar way at each site of a large

region. Also, distant sites can now host many common species.

This leads to shallower species-area curves, and thus to the

smaller z values shown in Fig. 3. It is worth remarking that

shallower SARs do not necessarily mean lower diversity as, for

Mm&1, the prefactor in front of the power-law (1) can be very

large (not shown here).

Remarkably, the above qualitative argument can be supported

by analytical estimates, see Eq. (3). By generalizing the calculation

of Durrett and Levin [23] (see also [25]), we have been able to

estimate that, for Mm&1, one should observe z
SSM

&z
MVM

=2 (see

Appendix S3 for details). The numerical results of Fig. 3 display

the correct tendency: for the largest values of Mm we could

explore, we observe that z is reduced by a factor &1:4 with respect

to z
MVM

. This behavior is also confirmed for varying values of �nn
(not shown). It would be very interesting to explore the

(numerically costly) larger values of Mm to test the theoretical

prediction.

We close this section observing that in the right panel of Fig. 3

we also show the value of the exponent z obtained by using the

square kernel for both the MVM and the SSM (we only show the

value for Mm~10 here as it is already close to the saturation

regime). As already mentioned while the MVM with the square

kernel is not far from the values of the exponent obtained with the

SSM with NN-dispersal, still the exponent for the SSM with

square kernel is sensitively smaller, confirming the robustness of

the effect of increasing the local population size.

Multispecies Contact Process
At fixed speciation rate and varying the birth-to-death ratio

c~b=d of the MCP, we can inspect how the level of habitat

saturation affects SAR-curves. For c&cc&1:649, the habitat is

close to saturation, as the density of occupied sites approaches 1,

and the MCP is equivalent to MVM. Indeed, as shown in Fig. 4,

the curves generated by the two models are essentially coincident

already for c~3.

For highly non-saturated habitats, i.e. for smaller values of c,

larger and larger areas with very few (or zero) individuals become

more and more probable. In this regime, SAR curves display a

strong dependence on the choice of the sampling procedure, as we

illustrate here with two examples.

The first procedure, that we dub ‘‘bare average’’, consists in

ignoring the non-saturation of the habitat and thus averaging over

many samples of fixed area A, regardless of the number of

individuals they host:

S(A)~

PN(A)
i si

N(A)
, ð4Þ

where si is the number of distinct species in sample i and N(A) is the

total number of samples of area A. With this procedure, S(A) will be

inevitably affected by the spatial variations of the density of

individuals. For instance, for A = 1 (i.e. on a single site), si = 1 or

si = 0 so that S(1), as given by Eq. (4), reduces to the average

density.

A second and more appropriate choice is to put less weight on

areas with a smaller number of individuals, where the number of

observed species is statistically biased to be small. In particular, by

denoting with ni the number individuals present in the area ai, we

Figure 4. SARs for the MCP for various c as labeled: (a) with weighted averages Eq. (5) and (b) with bare averages Eq. (4). Inset of (a):
for c~1:68, comparison among bare and weighted averages for n~10{5 with the bare average for v = 0. Notice the flattening of the weighted curve
at short scales and the equivalence of both averages at larger scales. Inset of (b): 1/z vs ln (n), the straight line shows formula Eq. (2) with fitted values
m~{0:36 and q~{0:86. The exponents z were estimated as the minimum of the local slopes of the species-area curves.
doi:10.1371/journal.pone.0038232.g004
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define the ‘‘weighted average’’ (which was used in Fig. 1) as

S(A)~

PN(A)
i siniPN(A)
i ni

: ð5Þ

SAR curves for different values of c are shown in Fig. 4a and 4b

for weighted and unweighted averages, respectively. For large c,

the dependence on the averaging protocol (if any) is mild, while it

is strong for small values of c. The strongest effects are observed at

small areas, where bare averages Eq. (4) are influenced the most by

local densities. This effect is demonstrated in the inset of Fig 4a,

where the black line is simply the fraction P(A) of regions of area A

occupied by at least one individual (of any species). For small

areas, the weighted average becomes very shallow without any

signature of power-law behavior (see inset of Fig. 1). Conversely,

the bare average almost coincides with P(A), demonstrating its lack

of sensitivity to the presence of more than one species at small

scales. At larger scales, where P(A)*1, the two averages coincide.

In contrast with weighted averages and similarly to the other

models in Fig. 1, the local slopes of bare averages display a

parabolic intermediate range with a well defined minimum, from

which we can extract an estimate of exponent z. Fig 4b shows 1/z

as a function of ln (n) for c~1:68; formula (2) fits well these data,

yielding values of z being larger that those for the MVM and the

SSM. However, as detailed in Appendix S5, in this case the

interpretations of these exponents is problematic as the power-law

can be induced by the spatial fluctuations of the density of

individuals rather than by species distribution.

Discussion

In this paper, we have studied the effect of changing the level of

habitat saturation and the local population size on spatial neutral

models. We have shown that species-area laws quantitatively

depend on these ecological features, which go beyond the

previously explored variations due to long-ranged dispersal kernels

[28]. Spatially explicit neutral models thus seem to be much richer

in structure than spatially implicit ones, where the species-

abundance distribution seems to be insensitive to implementation

details. Moreover, the observed variations of SARs suggest that

spatial neutral theories can explain part of the variability of the

exponent z observed in nature.

In spatially explicit neutral models, SAR curves typically display

a range of scales where they are well approximated by the power

law (1), in particular at small scales for NN-kernels and at

intermediate scales for finite range kernels. We have shown that,

generally, the inverse exponent 1/z is very well described as a

linear function of ln (n), the logarithm of the rate of the

introduction of new species v. The same kind of behavior was

analytically confirmed in an exactly solvable neutral model [41].

However, the coefficients of this linear relation and thus the actual

value of z are sensitive to the ecological factors implemented in the

model. The logarithmic behavior is a general and robust feature

related to two common features of all neutral models discussed

here: species originate with one individual (point speciation mode)

and then diffuse in space. Altering the speciation mechanisms in

spatially implicit models affects some aspects of SADs [43–45].

It would be interesting, in the future, to study how different

speciation modes reflect into the spatial variation of biodiversity, a

program which just started in the context of spatial models (see

[38] and references therein). In the context of the models

considered in this paper, assuming that variations in z are caused

by v variability among different taxa, amounts to say that the

diversification rate per capita per generation increases at

increasing body mass [27]. While this possibility cannot be

completely ruled out (owing mostly to the difficulty of estimating

such rates), organisms such as bacteria are characterized by high

mutation rates and genetic plasticity, rather suggesting a higher

rate of differentiation even when considered at the individual level.

Relaxing the hypothesis of habitat saturation –as occurs in the

multispecies contact process– does not greatly modify the behavior

of species-areas curves with respect to the saturated case –i.e. the

multispecies voter model–, unless the habitat becomes too

fragmented. In the latter case, species-area curves strongly depend

on the sampling procedure. In particular, using ‘‘weighted

averages’’ (which weight to the sampled area proportionally to

the population it hosts) the contact process generates SARs convex

in log-log scale, with no clearly detectable power-law regime.

Conversely, allowing for variations in the local population size –as

occurs in the stepping stone model– leads to a monotonic decrease

of the exponent z as the number of individuals per site M is

increased. For large values of M we numerically found a reduction

in the exponent z up to a factor 1.4 with respect to the M = 1, voter

model, value. Our analytical estimate (3) suggests that this factor can

be actually larger (up to a factor 2) when the community size M

becomes very large. This is a quite remarkable result in view of the

fact that microorganisms, for which a description in terms of very

large local communities is appropriate [33], do actually spatially

structure themselves with shallow taxa-area laws [11,12] charac-

terized by smaller values of z. For instance, a recent review [13]

reports results for salt-marsh bacteria, marine diatoms, arid soil

fungi, and marine ciliates and shows that, in contiguous habitats, z-

values for all these categories are roughly the half as those for larger

animals and plants, in surprisingly good agreement with our results.

It is worthwhile to remark that the reduced diversification of

microorganism has been sometimes ascribed to the possibility of

long distance dispersal [33]. However, numerical results of Ref. [28]

show that distant dispersal events increase rather than decrease the

local slope in the intermediate regime and thus the value of the

exponent z (while the local slope at larger scales decreases).

Therefore, it is unlikely that large distance dispersal events can –in

the absence of additional mechanisms– account for the observed

small value of the exponents in microbial communities.

More generally, the spatial variation of biodiversity observed in

the stepping stone model suggests an explanation for the observed

‘‘cosmopolitan’’ behavior of microorganisms [33,46,47], where

relatively small areas are found to contain significant fractions of the

species known in the entire globe. This phenomenon is remarkably

well captured by the SSM where, upon increasing the local

population size, each site tends to contain a considerable fraction of

the entire biodiversity found in a large area. In conclusion, the

results obtained with the stepping stone model add mathematical

support, within the neutral theory framework, to large population

sizes being one of the mechanisms for the shallower SAR curves

observed in microorganisms (as put forward by Fenchel and Finally

[33,46,47]). Specifically, the SSM shows that having a large

population size, within a well mixed patch, provides a buffer to

local extinctions and enhances the local fixations time, making inter-

patch migration more effective and the whole ecosystem closer to a

panmictic population with, consequently, a lowered spatial diver-

sification.

Supporting Information

Appendix S1 Here we briefly summarize the dual
representation of the multitype voter model.

(PDF)
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Appendix S2 This Appendix extends the dual represen-
tation to the Stepping Stone model and briefly sketches
its numerical implementation.

(PDF)

Appendix S3 This Appendix presents the derivation of
an asymptotic formula for the exponent z for the
Stepping Stone model, after recalling the main idea
developed for the voter model.

(PDF)

Appendix S4 Herein the numerical scheme used to
simulate the multitype contact process is briefly ex-
plained.

(PDF)

Appendix S5 This Appendix shows how spurious results
can come out for the species-area relationship in the
case of the contact process, when an improper average
is used.
(PDF)
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