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Abstract

Neurons react differently to incoming stimuli depending upon their previous history of stimulation. This property can be
considered as a single-cell substrate for transient memory, or context-dependent information processing: depending upon
the current context that the neuron ‘‘sees’’ through the subset of the network impinging on it in the immediate past, the
same synaptic event can evoke a postsynaptic spike or just a subthreshold depolarization. We propose a formal definition of
History-Dependent Excitability (HDE) as a measure of the propensity to firing in any moment in time, linking the
subthreshold history-dependent dynamics with spike generation. This definition allows the quantitative assessment of the
intrinsic memory for different single-neuron dynamics and input statistics. We illustrate the concept of HDE by considering
two general dynamical mechanisms: the passive behavior of an Integrate and Fire (IF) neuron, and the inductive behavior of
a Generalized Integrate and Fire (GIF) neuron with subthreshold damped oscillations. This framework allows us to
characterize the sensitivity of different model neurons to the detailed temporal structure of incoming stimuli. While a
neuron with intrinsic oscillations discriminates equally well between input trains with the same or different frequency, a
passive neuron discriminates better between inputs with different frequencies. This suggests that passive neurons are
better suited to rate-based computation, while neurons with subthreshold oscillations are advantageous in a temporal
coding scheme. We also address the influence of intrinsic properties in single-cell processing as a function of input statistics,
and show that intrinsic oscillations enhance discrimination sensitivity at high input rates. Finally, we discuss how the
recognition of these cell-specific discrimination properties might further our understanding of neuronal network
computations and their relationships to the distribution and functional connectivity of different neuronal types.
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Introduction

Since the beginnings of electrophysiology it has been observed

that neuronal firing rate in sensory systems carries information

about the presented stimulus [1,2]. Still, it has long been recognized

that the exact timing of neural firing carries additional information

beyond that provided by the mean firing rate (see, for example, [3–

6]). In addition to electrophysiological studies based on a stimulus-

response paradigm, precisely timed spiking patterns have also been

observed in the spontaneous activity of a variety of preparations [7–

9]. While these results might not apply universally in the nervous

system [10–12], they are clearly advocating for an important role of

precisely timed activity in neural network processing. The higher

information capacity offered by precisely timed firing patterns is

likely to be exploited by the nervous system, given that neurons are

sensitive to the exact timing of applied stimuli [13,14], and muscle

contraction depends upon the temporal pattern of activity of its

innervating motoneurons [15,16]. Nevertheless the dynamical

mechanisms underlying the sensitivity to temporally structured

inputs are not completely understood.

Many biophysical mechanisms have been proposed as feasible

candidates in decoding a temporal code. At the network level, a

combination of delay lines (possibly tuned by spike timing-

dependent plasticity) and an array of coincidence detectors allow

the recognition of certain sequences of Inter-Spike Intervals (ISIs)

[17,18]. At the single-cell level, the interplay between short-term

synaptic dynamics and intrinsic neuronal oscillations results in

selective transmission of input bursts with a frequency content that

matches the synaptic and intrinsic filtering properties [19].

When dealing with temporally selective neuronal mechanisms,

most attention has been drawn on the role of short-term synaptic

dynamics [20–22], based mostly upon mechanisms of vesicle

depletion and replenishment which in turn depend upon several

pre and post synaptic factors (for reviews see [23,24]). In

particular, it has been shown how the random but not

independent synaptic transmission between subsequent synaptic

event conveys information (in the formal sense of uncertainty

reduction) about the timing of previous presynaptic spikes [25,26].

The present study focuses on the other side of the engram [27],

that is, on the history-dependent processing capabilities offered by

intrinsic neuronal dynamics. These include ion channels activation

- inactivation kinetics, intracellular second messenger processes

involving calcium up-take and release from intracellular stores,

and in general any neuronal process located within or across the
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cell membrane that could possibly alter its excitability or input-

output mapping. The last decades have seen a renewed interest in

intrinsic neuronal properties, and in particular in intrinsic

oscillations [28,29]. It has been shown that subthreshold intrinsic

oscillations act as a neuronal band-pass filtering mechanism

[31,32] and shape the input-output relationship of single neurons

[33]. For example, a certain neuron will respond to a train of

synaptic events in a way that depends upon the precise temporal

structure of the input train and upon the neuron’s intrinsic

properties. This study investigates more deeply into the relation-

ship between intrinsic single-cell properties (in particular, intrinsic

oscillations) and the encoding - decoding of a temporal code.

In any moment in time, a neuron carries information about its

history of stimulation through its dynamical variables. In

particular, the history-dependence of ion channel dynamics has

long been recognized as a single-cell substrate for transient

memory [34–38]. Certain specific ionic currents have been

considered as molecular basis for single-cell memory, due to their

slow dynamics of activation or inactivation, or the complex

temporal profile of their responses [34,37,38]. The interplay

between calcium influx (through synaptic and voltage-gated

channels) and its diffusion and exchange through intracellular

stores has also been suggested as a candidate mechanisms for

single-cell memory [39,40]. The positive feedback required for

persistent activity can also be provided by a slow excitatory

synapse of a neuron onto itself, i.e. an autapse [41]. The slow and

non-linear dynamics of NMDA glutamate receptors, along with

the impedance gradient resulting from dendritic tapering, have

recently been proposed as a single-cell mechanism for the

discrimination of spatiotemporal inputs [42]. However, the

context-dependent computational capabilities of neurons might

be better understood when all the intrinsic neuronal processes that

influence its excitability are taken into account, and represented in

a dynamical system framework. In the case of a biological neuron,

the dynamical processes involved are very diverse in nature and

span several time scales, from few milliseconds in the case of fast

ion channels’ activation-inactivation kinetics, until days or months

in the case of neurite growth and protein synthesis. Computational

models are extremely useful in taming the enormous complexity

arising from such a picture, allowing the theoretical measurement

of the discrimination capabilities of simple dynamical mechanisms

which are general to several neuron classes.

In this paper we present a formal measure of the neuron’s state

directly related to spike generation, namely the History-Depen-

dent Excitability (HDE), which lumps the different history-

dependent dynamical variables of an arbitrary model neuron to

a single, scalar value that describes its propensity to firing in any

moment in time. This dynamical mnemonic trace allows the

interpretation of newly incoming information in the context of the

previously received inputs, and hence the discrimination of

information at the single-cell level. The comparison between the

HDE trajectories arising from different input histories quantifies

the intrinsic discrimination capabilities of single neurons, and their

dependence upon the input statistics and the neuronal dynamics.

Since different physiological processes can yield similar

dynamical effects, it is useful to consider general, dynamical

neuronal models which abstract from the specific molecular

mechanisms involved. In particular, we illustrate the concept of

HDE with two very general dynamical mechanisms: the RC

behavior of a passive membrane, captured by a simple Integrate

and Fire model, and the inductive RLC behavior of a neuron with

a resonant current, described in its simplest (linear) form by a

Generalized Integrate and Fire model (see Methods). These

models are based on analogies with linear electric circuits, a

formalism with a long and successful history in the phenomeno-

logical characterization of neuronal dynamics (for some early

examples, see [43–46]). Before particularizing our analysis to these

two simple cases, we will present a general mathematical

framework that allows the quantitative assessment of the history-

dependent modulation of HDE for arbitrary neuron models.

Results

History-Dependent Excitability (HDE)
In the most general mathematical framework a neuron is

described as a dynamical system:

d~xx

dt
~~ff (~xx,Isyn)

where Isyn is the sum of all synaptic currents flowing through the

neuron’s membrane. Every synaptic event will move the current

phase point according to the intrinsic and synaptic dynamics,

while in between synaptic events, the phase point will evolve

according to the intrinsic dynamics only. Since the outcome of a

synaptic event depends upon the intrinsic state vector ~xx(ts
i ) at the

time of the event, and ~xx(ts
i ) depends upon the state at the time of

the previous synaptic event ~xx(ts
i{1) and the time between events

ts
i {ts

i{1, the neuron acts as a dynamic encoder of its stimulus

history. That is, the neuron state vector will reflect the previous

history of stimulation, and will itself determine the following

evolution of the neuron as a dynamical system. This property is

particularly suited for the encoding of precisely timed stimuli. In

this article we analyze how the specific form of the system vector

field ~ff will determine the computational characteristics of the

dynamic encoding mechanism, such as its efficiency in the

presence of noise and its sensitivity to particular features of the

input.

The neuron’s state vector ~xx encodes stimulus history in an

implicit way: the actual values of the dynamical variables are

unknown, both to the experimenter and to other neurons in the

network. Their values can only be indirectly inferred through their

influence on membrane potential or intracellular calcium (the

main physiological quantities directly measurable though standard

experimental techniques) and, in particular, on spiking activity.

On the other hand the state vector ~xx, containing all relevant

information about the neuron’s dynamic state, directly affects the

way the neuron responds to incoming stimuli. From the simplest

point of view, input-output history modulates the neuron’s

excitability, or propensity to firing, as a function of time. More

generally, input-output history can affect single-cell processing by

varying the output repertoire a neuron can exhibit, for instance by

augmenting the probability of short burst emission versus single

spike emission in a certain time window. This phenomenon allows

for history-dependent information processing: the neuronal input-

output transformation is not a static map, but it is changing in time

in a history-dependent manner. The influence of the past history

on the current input-output transformation can be considered as a

cell-based substrate for contextualization of information in the

nervous system, or short-term memory [35].

Depending on the local context that the neuron ‘sees’ through

the synapses impinging on it in the immediate past, it will

differently treat the information it receives. As we will show in this

paper, this context-dependent processing is a very general

property of dynamical systems and it can be presented in its

simplest form with linear models such as the IF and GIF neuron

models.

Transient Memory in Single Neurons
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The state vector contains all relevant information about the

dynamic state of the neuron, hence it can be used to predict the

neuron’s response to an arbitrary stimulus. Nevertheless, it is not

easy to deal with directly. In a model neuron the state vector’s

dimensionality can be high, and obviously it depends upon the

specific model considered, making the comparison between

different neuron models difficult and somewhat arbitrary. In a

real neuron the state vector depends upon the description level one

wishes to adopt, and even when just a few channels’ activation-

inactivation kinetics are taken into account, it is impossible to

measure experimentally. Hence, it is useful to introduce a lumped,

functional and physiologically motivated measure of the neuron’s

state, directly related to spike generation. To this end we propose a

formal definition of History-Dependent Excitability (HDE) at any

moment in time as the minimal synaptic strength gthr of an

excitatory synaptic event that can make the neuron fire. This

measure is obviously dependent upon the synaptic kinetics

considered. In this work our focus is on intrinsic neuronal

dynamics, hence we decided to adopt the simpler synaptic

description: Excitatory Post-Synaptic Potentials (EPSPs) will be

modelled as instantaneous, voltage-independent shifts in the v
variable, representing the membrane potential. Numerical simu-

lations with more realistic models, i.e. conductance-based model

neurons with exponentially decaying synaptic conductances, yield

similar results. As we show in this work, the time evolution of HDE

gthr(t) carries information not only about the intrinsic properties of

the cell, but also about its input-output history.

Example of single-neuron discriminability in minimal
models

Traditionally the detection capabilities of neurons have been

assessed by observing how their output changes as a function of

their input. For example, two stimuli are considered to be

indistinguishable as long as they both result in a single postsynaptic

spike, or in the lack of it. We show that this is not necessarily the

case: two different input stimuli can still be distinguished if they

bring the neuron to a different internal state, and hence change its

response properties to future stimuli.

In the case depicted in Fig. 1, a GIF neuron with subthreshold

damped oscillations (see Methods) receives one of two different

input trains, comprising the same constituent ISIs, one long ISIl

and one short ISIs (Fig. 1A). Both input trains evoke subthreshold

responses only, hence no differential information about the input

history is delivered to other cells in the network. Importantly

though, the information about which of the two input trains has

been received is contained in the state variables immediately after

the last spike of the train, and can be extracted from the

subsequent free evolution of the state vector. The voltage v
variable after the last spike of the train is almost identical for both

inputs, because the internal variable w counteracts voltage

changes, while in the IF neuron the input with increasing

frequency evokes a greater depolarization (Fig. 1C). Nevertheless,

the different histories result in different values of w, which in turn

result in a history-dependent free evolution to the rest state

(Fig. 1D): the v variable decreases smoothly and with a shallow,

late sag after the (ISIs,ISIl ) triplet, while it decreases more abruptly

and with a deeper, earlier sag after the (ISIl ,ISIs) triplet. The black

line in Fig. 1A shows the correspondent evolution of the

instantaneous intrinsic discriminability (a measure of the difference

in the HDE trajectories, see next section for a formal definition),

which increases and then decreases, showing a maximum at a

certain time after the last input spike.

This history-dependent free evolution of the model neuron

allows for spike-mediated discrimination between the two different

histories by a synaptic event with proper time and amplitude: a

presynaptic spike with a time and an amplitude indicated by the

black filled diamond in Fig. 1A, upper panel, results in a

postsynaptic spike after history (ISIs,ISIl ), but only produces a

subthreshold oscillation after history (ISIl ,ISIs) (Fig. 1B). In this

example the stimulus time has been chosen at the time of the

maximal instantaneous discriminability between the two input

histories, and its amplitude as the middle point between the two

HDE gthr at that time. However, any input that lies in the space

between the two different HDE trajectories, corresponding to the

two different input histories, can in principle (disregarding the

effects of noise) discriminate between the two cases. This does not

mean than a single neuron actually discriminates between these

inputs, but that it could discriminate between them based on the

intrinsic memory brought about by its HDE trajectory. The actual

binary discrimination is only realized if some specific inputs are

received.

If the same input trains are delivered to an IF neuron with the

same membrane time constant, they are still distinguishable but in

this case the absolute difference between the two HDE trajectories

decreases exponentially after the last spike of the train (Fig. 1C).

Conversely, in the GIF model it first increases and then decreases,

resulting in an optimal time for intrinsic discriminability. Note that

the time of maximal intrinsic discriminability does not correspond

in general to the time of maximal probability of spike emission. In

the case shown in Fig. 1A, the time of maximal probability of spike

emission is at the end of the input train, and actually corresponds

to a near zero discriminability. Conversely, the time of maximal

discriminability is when the range of near-threshold inputs which

are suprathreshold after history Hi, but subthreshold after history

Hj , is maximal.

For these linear models, we are able to derive analytical

expressions for the discriminability between two input histories Hi

and Hj , which we will use extensively in the rest of the paper.

Instantaneous and cumulative discriminability
Living neurons in vivo typically receive synaptic signals from

thousands of presynaptic cells. It seems that the synaptic strengths

of the inputs converging to a given neuron are not exponentially

distributed, but might be better described by a log-normal

distribution [47]: this corresponds to the presence of a few, strong

inputs that emerge from a multitude of much weaker connections

[48,49]. The last observation, along with the fact that neurons are

extremely sensitive to correlations in their inputs [50,51], led us to

our operational approximation.

In this study, we consider the linearization of the neuron’s

dynamics around its ‘‘working point’’, determined by its intrinsic

properties and by the collective balance of the weak and

asynchronous synaptic events it receives. The synaptic events will

be considered as instantaneous, voltage-independent shifts in the v
variable. These can represent the synchronous arrival of many

weak EPSPs, as in thalamocortical connections [52], retinal

projections to the thalamus [3], or projections from the antennal

lobe to the mushroom body [5]. Equivalently, this formalism can

also represent the synchronous arrival of a few strong EPSPs, or

even a single, very strong EPSP. Hence, we consider the synaptic

kinetics to be much faster than the membrane time constant, or

the resonant current activation rate (in the GIF model).

This approximation allows us to calculate the neuron’s response

to a train of presynaptic events with an iterative formula, and to

calculate the discriminability based on intrinsic properties

analytically (see Text S1). The discriminability between two input

histories aims at measuring the difference in the corresponding

evolutions of the HDE. The most natural definition is then the

Transient Memory in Single Neurons
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square difference between the two HDE trajectories. In mathe-

matical terms, we define the instantaneous discriminability

between the input histories Hi and Hj , resulting in the phase

points (vi
0,wi

0) and (v
j
0,w

j
0) at time zero (which we set for

convenience immediately after the last spike time of the input

train), as

Di,j tð Þ~ gi
thr tð Þ{g

j
thr tð Þ

� �2

~ vj tð Þ{vi tð Þ
� �2

where the last equality is due to the fact that in these linear models

the firing threshold depends upon the voltage variable v only.

Substituting the analytical solutions in the case of the IF and GIF

models (see Text S1 for details) one obtains:

DIF
i,j (t)~ v

j
0{vi

0

� �2

e{2mt

DGIF
i,j (t)~ ael1tzbel2t

� �2

where m is the leak conductance in the IF model; l1 and l2 are the

eigenvalues of the GIF model, and a and b are coefficients that

depend upon the model parameters and upon the difference in

initial conditions Dv0~v
j
0{vi

0 and Dw0~w
j
0{wi

0.

In the case of an IF neuron the instantaneous discriminability is

an exponentially decreasing function of time, meaning that the

intrinsic memory about the previous history will quickly vanish,

and practically be lost after a few membrane time constants. In the

case of a GIF model with real eigenvalues, the picture does not

differ much, with the exception that now the exponential decay is

governed by more than one time constant. In the case of a GIF

model with intrinsic oscillations, that is a GIF model with complex

conjugate eigenvalues l1,2~{m+iv, the instantaneous discrim-

inability can be written more conveniently as

Figure 1. Illustration of the History-Dependent Excitability concept. Response of the GIF (A,B,D) and IF (C) model neurons to two different
input trains, composed of the same ISIs. A: Voltage (top) and HDE (middle) trajectories arising from two different input trains (on top of the voltage
traces). The instantaneous discriminability after the last spike of the train (black line) first increases and then decreases, resulting in an optimal time
for discrimination based on HDE (black diamond): a presynaptic spike with the strength and the timing indicated by the black diamond will be
suprathreshold after the red input triplet, but subthreshold after the green input triplet. B: As in A, but with the addition of a fourth presynaptic spike
with the timing and amplitude indicated by the black diamond in A. The intrinsic discriminability is not shown. C: The same as in A, for the IF model
neuron. For a purely passive neuron, the intrinsic discriminability is an exponentially decreasing function of time. D: Trajectories in the phase plane
(v,w) corresponding to the two input triplets in panel A. The trajectories are shown in dashed line before the last spike of the triplet, and in solid line
after it. Circles are drawn every 0.25 u.t. A rightward triangle is drawn at the time of maximal discriminability (corresponding to the black diamond in
A). Digits in A, D indicate the ordinal number of EPSPs in the train.
doi:10.1371/journal.pone.0015023.g001
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DGIF
i,j (t)~e{2mt a2zb2

2
z

a2{b2

2
cos 2vtzab sin 2vt

� �

In this case, the instantaneous discriminability is an exponential

decreasing function of time multiplied by a sinusoid. This means

that for certain input histories Hi and Hj , the maximal

instantaneous discriminability can be achieved for times greater

than zero, as in the example shown in Fig. 1.

The instantaneous discriminability is a measure of the square

difference between two HDE trajectories originating from two

input histories Hi and Hj in any moment in time. Its integral in

time from zero to z?, which we call cumulative discriminability,

is a measure of the information about the discriminability between

the two histories Hi and Hj that could be gathered by observing

the instantaneous discriminability for an infinite amount of time.

This measure can be geometrically interpreted as the square area

between any two HDE trajectories like those depicted in Fig. 1.

D?(i,j)~

ð?
0

gi
thr(t){g

j
thr(t)

� �2

dt ð1Þ

After some analytical calculations (see Text S1 for details) we get

DIF
? (i,j)~

(v
j
0{vi

0)2

2m
ð2Þ

DGIF
? (i,j)~{

l1l2(azb)2z(al2zbl1)2

2l1l2(l1zl2)
ð3Þ

If l1 and l2 are complex conjugate we can write the last

expression as

DGIF
? (i,j)~

a2zb2

4m
z

m(a2{b2)z2vab

4(m2zv2)

For both models the cumulative discriminability is a quadratic

function of the difference in the state variables at time zero.

It can now be appreciated that the discriminability between two

input histories Hi and Hj depends on the one hand upon the free

evolution from the difference in initial conditions (Dv0,Dw0), and

on the other hand upon the encoding properties of the model

neuron, that is, upon how the phase point (Dv0,Dw0) depends

upon the input histories.

In our analysis we considered two different measures of the

intrinsic discriminability: the cumulative discriminability and the

maximal instantaneous discriminability. We did not find impor-

tant differences between these measures, hence we present our

results using the cumulative discriminability (which we will denote

simply as D) for its analytical simplicity.

Discriminability between pairs of input trains
If the input history to a neuron can be considered as a sum of

stereotypical synaptic potentials, discriminability between pairs of

input trains can be computed analytically in a straightforward

manner for the linear models considered in this study. If input

history Hi is composed of synaptic potentials evoked at times

ti
1,ti

2,:::,ti
ni

, with ti
1ƒti

2ƒ:::ƒti
ni
~0 (without loss of generality we

set the time reference at the last spike of the input train), the

intrinsic discriminability between Hi and Hj can be written as

D(i,j)~

ð?
0

Xni

h~1

k(t{ti
h){

Xnj

h~1

k(t{t
j
h)

 !2

dt

where k(t) is the PSP kernel, reflecting the interplay between

intrinsic and synaptic properties. Hence, the only input spikes

which play a role in the intrinsic discriminability are those that do

not occur simultaneously in the input histories Hi and Hj . An

instructive example is when the two input trains are equal in the

number of spikes they are made of (ni~nj ), and in the spike times

of each of their constituent events, except one. In this case, the

previous expression reduces to

D(i,j)~

ð?
0

k(t{ti){k(t{tj)
� �2

dt ð4Þ

where we reindexed the spike times for simplicity. In this work our

focus is on intrinsic neuronal dynamics, hence we describe

synaptic potentials as instantaneous shifts in the voltage variable.

In this case the PSP kernels for the IF and GIF neurons are (see

Text S1 for details)

kIF (t)~Ae{mtH(t)

kGIF (t)~Ae{mt cos (vt)z
1{m

v
sin (vt)

� �
H(t)

with H(t) being the Heaviside functions, ensuring causality.

Substituting the above expressions in (4) yields:

DIF (i,j)~
A2

2m
emti {emtj
� �2 ð5Þ

DGIF (i,j)~
A2

4mv2 m2zv2ð Þ e2timze2tj m
� �

({1zm)2zv2
� �

m2zv2
� �

{
�

e2timm ({1zm)2mz({2zm)v2
� �

cos (2tiv){

e2tj mm ({1zm)2mz({2zm)v2
� �

cos (2tjv){

2e(tiztj )m {m ({1zm)2mz({2zm)v2
� �

cos (({ti{tj)v)z
�

({1zm)2zv2
� �

m2zv2
� �

cos ((ti{tj)v){

mv {1zm2zv2
� �

sin (({ti{tj)v)
�
z

mv {1zm2zv2
� �

e2tim sin (2tiv)ze2tj m sin (2tjv)
� ��

ð6Þ

Since we are considering linear neuron models, these results also

hold if the inputs are composed of the sum of the input trains

considered above, plus any term which is equal among different

input histories. This situation comprises a number of illustrative

cases, which we detail below.

Intrinsic discriminability between input pairs
Let input historyHi be composed of a pair of synaptic potentials

evoked at times ti
1ƒti

1zISIi~ti
2~0, and input history Hj at

ð6Þ

Transient Memory in Single Neurons
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times t
j
1ƒt

j
1zISIj~t

j
2~0. In this case the intrinsic discrimina-

bility is given by expressions (5) and (6), substituting ti~{ISIi,

tj~{ISIj.

Intrinsic discriminability between input triplets with the
same total duration

Let input history Hi be composed of a triplet of synaptic

potentials evoked at times ti
1ƒti

1zISIi
1~ti

2ƒti
2zISIi

2~ti
3~0,

and input history Hj at times t
j
1~t

j
1ƒt

j
1zISI

j
1~t

j
2ƒt

j
2z

ISI
j
2~t

j
3~0. In this case the intrinsic discriminability is given

by expressions (5) and (6), substituting ti~{ISIi
2, tj~{ISI

j
2.

Intrinsic discriminability between input trains that only
differ in the their second spike time

Let input history Hi be composed of a train of synaptic

potentials evoked at times ti
1ƒti

2ƒ:::ƒti
n~0, and input history

Hj at times t
j
1~t

j
1ƒt

j
2ƒt

j
3~t

j
3ƒ:::ƒt j

n~0, with ISI
i,jð Þ

k ~

t
i,jð Þ

kz1{t
i,jð Þ

k for k~1,:::,n{1. Let T be the total duration of the

input trains: T~
Pn{1

k~1 ISIi
k~

Pn{1
k~1 ISI

j
k. In this case the

intrinsic discriminability is given by expressions (5) and (6),
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Hence, in these linear models the intrinsic memory about the

input ISIs received further back in the past decreases exponentially

with time.

Figure 2 shows expressions (6) and (5) for our canonical GIF and

IF neurons (see Methods), as functions of ISIi = {ti and

ISIj = {tj . It can be seen that the discriminability decreases for

longer and more similar input ISIs in both models. While this

decrease is non-specific for the IF neuron, a more complex

structure is observed in the GIF neuron. Indeed, a local maximum

is observed for the GIF model at a certain value of (ISIi,ISIj ).

The position of the local maximum (ISI
opt
i ,ISI

opt
j ) as a function

of m and v cannot be obtained analytically. We performed some

numerical explorations varying m or v, one at a time, between 20

and 500% of their initial values, starting from a few representative

points in the (m,v) plane (Fig. 2C). Our results show that m and v
interact in a non-trivial way in determining the location of the

local maximum in the (ISIi,ISIj ) plane. In general, increasing m
shifts the position of the maximum towards the closer axis, in a

direction which doesn’t depend much upon v. Decreasing the

intrinsic frequency v correspondingly shifts the maximum to lower

input frequencies. This shift follows straight lines in the (ISIi,ISIj )

plane, but it bends towards the closer axis if m is high enough. This

is consistent with the intuition that a neuron with a high effective

membrane rate constant will poorly discriminate between low-

frequency inputs. In particular, ISI
opt
i scales linearly with the

intrinsic period of oscillations 2p=v with a slope smaller than one,

which decreases with increasing m (Fig. 2D).

The values of the discriminability on the bisectrix ISIi = ISIj is

zero, since identical input trains are not distinguishable. The

evaluation of the intrinsic discriminability (6) and (5) along lines

departing orthogonally from the bisectrix is especially interesting,

since it denotes the discriminability between pairs of input trains

with the same total duration, as the second-to-last spike is slightly

advanced or delayed (see Fig. 3A).

The evaluation of (6) and (5) along (ISIi = vISIw+DISI/2,

ISIj = vISIw{DISI/2) for different values of the mean ISI is

plotted in Fig. 3B. When the average input frequency is high (with

respect to the frequency of intrinsic oscillations), the discriminability

increases rapidly with DISI in both models, but the slope is higher for

the GIF neuron (mean ISIƒ1). When the input ISIs are so short, the

post-synaptic effects of subsequent spikes add almost linearly, and the

dynamic encoding mechanisms provided by the neuron’s intrinsic

properties play little role. In this case, the difference in discriminability

is mainly determined by the free evolution of the model neurons. In

this regime, higher input frequencies evoke stronger depolarizations,

which in turn result in free evolutions of greater amplitude and hence

greater discriminability.

For input trains with frequencies close to the GIF intrinsic

frequency, the discriminability increases faster for the GIF neuron,

where it reaches a plateau or local maximum (Fig. 3B). After this

plateau, discriminability will further increase only for very short

ISIs, which corresponds to almost linear summation of the

postsynaptic effects. For sufficiently long mean ISI (mean ISIw2)

2) and long ISI difference, the intrinsic discriminability reaches a

maximum value (independent of the mean ISI and of the ISI

difference) corresponding to the difference in initial conditions

corresponding to one and two EPSPs received at rest. Indeed,

when one of the constituent ISI is greater than a few membrane

time constants, the neuron has time to relax to its rest state almost

completely and hence loses all the information about its previous

stimuli.

In order to understand these observations one needs to take into

account the contributions of two different effects: 1) the dynamic

encoding of input history, which determines how subsequent

presynaptic spikes affect the dynamic variables of the model in a

history-dependent manner, and 2) the free evolution of the system

after the last spike of the train (see also Fig. 7).

Both these ingredients are represented in Fig. 3C, where the

trajectories in the phase plane (Dv,Dw) as the ISI difference is

varied are represented together with the cumulative discrimina-

bility isolines, for several values of the ISI mean. We have shown

before (expressions 2 and 3) that the intrinsic discriminability

between two input histories Hi and Hj is a function of the

difference in the dynamical variables after the last spike of the

input train (Dv0,Dw0)~(v
j
0{vi

0,w
j
0{wi

0). Hence, the dependence

of (Dv0,Dw0) upon input frequency and ISI difference determines

the dynamic encoding properties of the neuron. When the average

input frequency is high, Dw changes only slightly with the ISI

difference, and the trajectories lie close to the Dv axis: in this

regime the dynamic encoding mechanisms play little role. The

greater the ISI difference, the greater Dv and hence the cumulative

discriminability. When the average ISI is higher (mean ISIw1.5)

these trajectories acquire a curved shape, which indicates that the

dynamical encoding mechanism is giving a significant contribution

by modulating the slow variable w in a history-dependent manner:
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first the phase point leaves the origin in a direction that depends

upon the mean ISI, and then moves tangentially to the

discriminability isolines, which is consistent with the plateau in

discriminability observed in Fig. 3B. It is worth noting that the

plateau level does not depend upon the mean input frequency, but

only on the synaptic strength and the neuron’s intrinsic properties,

and arises as soon as one of the constituent ISI is around half the

intrinsic period of the model neuron.

These results suggest that the dynamical encoding mechanisms

provided by intrinsic oscillations increase the sensitivity of short-

long vs. long-short ISI discrimination. To clarify this point, we

made the hypothesis that D values above a certain threshold Dthr

allow a reliable discrimination between pairs of input trains, in

spite of the several non-deterministic phenomena observed in

neurons (which we do not model explicitly). Hence, we defined the

intrinsic sensitivity DISIthr as the minimum ISI difference such that

D§Dthr. This measure assesses the sensitivity of the HDE in

discriminating between ‘‘accelerating’’ and ‘‘decelerating’’ triplets

with the same average frequency (Fig. 3D–F).

In the case of the IF neuron, DISIthr can be calculated

analytically by inverting expression (5):

DISIIF
thr~

1

m
ln

2A2z2Dthre
2vISIwmmz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{4A4z {2A2{2Dthre2vISIwmmð Þ2

q
2A2

2
4

3
5

The corresponding expression (6) for the GIF neuron is not

invertible, hence we set Dthr arbitrarily at 0.5 (black horizontal line

in Fig. 3B) and calculated DISIGIF
thr numerically. For the GIF

neuron, discriminability curves as a function of DISI are not always

monotonic, and for specific parameter sets the discriminability

curves crossed the thresholdDthr more than once. In these cases we

did not define DISIthr and they appear as blank spaces in Fig. 3D–F.

Figure 2. History-Dependent Excitability discriminates between input doublets. A, B: Intrinsic discriminability between input doublets ISIi
and ISIj for the GIF (A) and IF (B) model neurons. Intrinsic oscillations enhance discriminability for input ISIs slightly shorter than the intrinsic period p.
Local maxima of D are indicated by red circles. Dashed lines indicate the bisectrix ISIi = ISIj , and the lines of constant mean ISI vISIw = 1 and
vISIw = 2, along which D is plotted in Fig. 3B. D values have been passed through the sigmoidal function 1= 1z exp 5(0:5{D)ð Þð Þ to improve
visualization. C: Local maximum of D as m or v are varied, one at a time, between 20 and 500% of their starting values. Shades from yellow to red
indicate decreasing values of m, shades from green to blue indicate decreasing values of v. Local maxima corresponding to starting values for the
parameters are indicated with circles. Brown Circle, (m,v)~(0:5,3); Red Circle, (m,v)~(1,2); Orange Circle, (m,v)~(2,1). D: ISI corresponding to the
local maximum of D as v is varied. If (ISIopt

i ,ISIopt
j ) is the position of the local maximum and ISIopt

i w ISIopt
j , ISIopt

i is drawn with a solid line, ISIopt
j with a

dashed line. Color code as in C.
doi:10.1371/journal.pone.0015023.g002
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Figure 3. Sensitivity of intrinsic discriminability to temporally precise inputs. A: Input trains (left) and correspondent HDE trajectories after
the last spike of the input train (right). As the input ISI difference DISI increases, the resultant HDE trajectories diverge and the cumulative
discriminability D (yellow shaded area) increases. Note that the total duration of the input train is held constant. B: Intrinsic discriminability D as a
function of DISI for the GIF (solid line) and IF (dashed line) neurons. The general trend is an increase in D with increasing DISI, but an oscillatory
component is superimposed on this trend in the GIF neuron. Shades from brown to orange indicate increasing mean ISI (see legend). The diamond
indicates the pair of ISIs used in Fig. 1. The threshold of putative physiological significance Dthr is depicted as a black horizontal line. C: Trajectories in
the phase plane (Dv,Dw) corresponding to the solid curves in B. Lines of constant discriminability are depicted as black ellipsis. D: Minimal ISI
difference DISIthr corresponding to an intrinsic discriminability above a threshold Dthr~0:5 as a function of m, for fixed v~2. Colors and line styles as

in B. E: DISIthr as a function of v, for fixed m~1. F: DISIthr as a function of v, scaling m in order to maintain a fixed
m

v
ratio of 0.5. Black arrows in D and E

indicate the default parameter set; the correspondent curve of discriminability vs. DISI is depicted in panel B. The gray arrow in D indicates the value

of m used in Fig. 4.
doi:10.1371/journal.pone.0015023.g003
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Decreasing m results in shorter DISIthr, and hence greater

sensitivity in the discrimination between different input trains

(Fig. 3D). This is an expected result since m is the rate of decay of

the model variables to the rest state, and determines for how long

the information about previous stimuli will be available in the

HDE trajectory. The sensitivity is better in the GIF neuron for m
smaller than a certain value, which increases with increasing input

frequency. While the sensitivity always improves with decreasing m
in the GIF neuron, it starts worsening at a certain, unrealistically

low value of m (which increases with increasing input frequency) in

the IF neuron. Indeed, when the effective leak m tends to zero, the

IF neuron acts as a perfect integrator, and its membrane potential

(and hence its HDE) comes to reflect solely the number of spikes

received, while the precise timing of the received spikes becomes

irrelevant. In this limit, DISIIF
thr tends to infinity. In the same limit,

the GIF neuron acts as an undamped oscillator, resulting in an

infinitely high cumulative discriminability as soon as the input

trains differ, and hence a vanishing small DISIthr (Fig. 4). At high

values of m, the post-synaptic effects decay very fast, and significant

discriminability values are achieved only when one of the two ISIs

is very small. Hence, DISIthr tends to the higher possible value of

twice the mean ISI.

The effect of the intrinsic frequency v is somewhat more

complicated (Fig. 3E). For high input frequencies, the sensitivity

improves with increasing v, because of both the increased

discriminability based on the free evolution and the greater

encoding capabilities resulting from intrinsic oscillations (see also

Fig. 7). When the intrinsic frequency v exceeds a certain threshold

(which increases with increasing input frequency), the profile of the

intrinsic discriminability as a function of the ISI difference

becomes oscillatory even at high input rates and can result in

very low values for specific input triplets, a phenomenon

conceptually remindful of destructive interference in classical

wave theory (see also Fig. 4). For lower input frequencies, the

minimal detectable difference DISIthr as a function of v is

oscillatory: it first increases until a certain value of v (which

depends only weakly on the input frequency), then decreases, and

then tends to stabilize through oscillations of progressively smaller

amplitude and higher frequency. As soon as the input frequency is

lower than a certain threshold, the neuron with intrinsic

oscillations is less sensitive than the IF neuron for every value of

v, suggesting that intrinsic oscillations improve the intrinsic

discriminability only for input trains with frequency close to, or

higher than, the intrinsic frequency of oscillations.

Note that as we increase the membrane rate constant m or the

oscillation frequency v, the damping coefficient Cdamp~e{2pm
v

(defined as the ratio between the second and the first peak in the

free evolution of the voltage variable from an initial condition

different than rest) also varies, and consequently the oscillating

character of the neuron.

In order to separate the effects due to m, v and to the damping

coefficient Cdamp, we performed some additional calculations

keeping a constant m
v ratio of 0.5, as in the canonical GIF model.

The results of this analysis are shown in Fig. 3F. Varying m and v
proportionally (thus maintaining a constant damping coefficient

Cdamp) has similar effects on the sensitivity DISIthr as varying m
while keeping v fixed: the GIF neuron exhibits a better sensitivity

(smaller DISIthr) than the IF neuron for m smaller than a certain

threshold, which increases with increasing input frequency. When

maintaining a constant damping coefficient Cdamp, though, the

increase in DISIthr with increasing m is smoother and the sensitivity

curves are generally below the correspondent curves in Fig. 3D,

where m was varied while keeping v fixed. This suggests that the

steep increase in DISIthr with increasing m observed in Fig. 3D is

also due to the decrease in the damping coefficient Cdamp, in

addition to the decrease in sensitivity resulting from a faster

convergence to the steady state.

The results exposed in this section can be directly applied to the

characterization of biological neurons, and might be used to test

the physiological relevance of the phenomenon for different cell

types and in different brain areas. For instance, from standard

electrophysiological measures such as a neuron’s (complex)

impedance, we could obtain estimated values for the neuron

parameters m and v (see for example [32] for a fitting procedure).

On the other hand, the variance of the membrane voltage due to

random fluctuations could be directly related to a value of Dthr,

above which discriminability values are expected to be efficiently

exploitable for contextualized information processing. Such

analysis could assess the robustness of the intrinsic discriminability

as a function of the input frequency, or the amount of coherence in

the presynaptic population needed to form a signal that could be

efficiently encoded through the intrinsic dynamical mechanism

described.

Intrinsic discriminability between random input trains
In the previous section, we analyzed the input discrimination

capabilities based on intrinsic single-cell dynamics between some

particular, well defined inputs. In this section, we wish to

generalize the previous analysis and characterize the intrinsic

discriminability as a function of input statistics and intrinsic

properties for random input trains. In particular we considered

input trains composed of exponentially distributed ISIs. This

distribution is particularly significant in neuroscience, since

neurons in many brain regions exhibit a firing statistics that is

well fitted by an exponential distribution with a refractory period

[53].

The average discriminability between pairs of input trains that

only differ in their second to last spike can be easily calculated by

integrating (4) over the exponential probability density:
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Expressions (8) and (7) are shown in Fig. 5 as a function of

vISIiw = 1=ri and vISIjw = 1=rj for our canonical GIF and IF

neurons (see Methods). For the GIF neuron the average

discriminability between random input doublets with the same

average frequency is almost as good as between random input

doublets with different average frequencies, and seems to depend

mainly upon the frequency of the faster input. Indeed, isolines of

ð8Þ
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constant discriminability are orthogonal to the bisectrix

vISIiw = vISIjw, and then run parallel to the main axes

(Fig. 5A). This behavior corresponds to sensitivity to input ISIs

rather than average rates, given that input doublets with different

rates are not better discriminated than input doublets with the

same rate. Conversely, the IF neuron shows a greater sensitivity to

input rate: pairs of input doublets with the same average rate yield

lower discriminability values than pairs of input doublets with

different average rate. In fact, for a purely passive neuron, the

isolines of constant discriminability are approximately parallel to

the bisectrix vISIiw = vISIjw (Fig. 5B). Rate sensitivity decays

for low frequency inputs, for which the average discriminability is

mainly determined by the frequency of the faster input. In this

regime the GIF and IF neurons behave similarly.

Evaluation of (7) and (8) along ri~rj returns the average

discriminability between input trains extracted from the same

exponential distribution, which we plot as a function of the mean

ISI in a semilog scale in Fig. 6A. The black line indicates the IF

model, while lighter colors refers to GIF models with increasing

values of the intrinsic frequency v (see caption). For both models,

the discriminability first increases and then decreases, showing a

maximum at an intermediate value of the mean ISI. For the

exponential distribution, the mean equals the standard deviation:

hence spike triplets with short ISIs are poorly discriminated

because they are composed of very similar ISIs. Indeed, analogous

calculations using gaussianly distributed ISIs (see Text S1) with a

very narrow (and constant) standard deviation shows a decreasing

trend for increasing mean input ISI (Fig. 6F), indicating that the

increasing trend at high input frequencies depends upon the

standard deviation of the input. The discriminability for long ISIs

is poor too: for such distributions most of the ISIs are longer than

the time span of HDE, the neuron relaxes almost completely to its

rest state and the dynamic trace reflecting its previous stimuli is

lost. The maximum is achieved when the variability is great

enough, yet the mean ISI is not longer than the time span of

intrinsic memory.

As the intrinsic frequency v increases, the intrinsic discrimina-

bility increases almost linearly for short input ISIs, and the peak of

maximal discriminability shifts to higher input frequencies. This

effect is due to two different mechanisms: on the one hand an

increase in v allows the intervention of the dynamical encoding

mechanisms at higher input frequencies, and on the other hand it

allows a better discriminability based on the free evolution of the

model neuron (Fig. 7). The former feature is reflected in the

distribution of (Dv0,Dw0) points, and the latter in the D isolines,

depicted in the panels of Fig. 7. As noted previously (expressions 2

and 3), the intrinsic discriminability between two input historiesHi

and Hj is a function of the difference in the dynamical variables

after the last spike of the input train (Dv0,Dw0)~(v
j
0{vi

0,w
j
0{wi

0).
Hence, the distribution of (Dv0,Dw0) points is an indicator of the

dynamic encoding properties of the neuron, that is, of how the

input statistics is transformed into a distribution of internal states

through the neuron intrinsic dynamics. Figure 7 shows the

probability densities of (Dv0,Dw0) for different input statistics and

neuron parameters. For high frequency inputs, the dynamic

encoding mechanism plays little role, and the (Dv0,Dw0) points

Figure 4. Intrinsic discriminability in the GIF and IF models for
slow effective membrane rate constant u. Top panel: Cumulative
discriminability as a function of DISI for input triplets of fixed duration
for the GIF (solid line) and IF (dashed line) neurons. Shades from brown
to orange indicate increasing mean ISI (see legend). The threshold of
putative physiological significance Dthr is depicted as a black horizontal
line. The symbols (red diamonds and red squares) indicate the pairs of
ISIs used in the lower panels, and the resulting cumulative discrimina-
bility. Lower panels: Voltage traces of the GIF (top) and IF (middle)
neurons in response to two different input trains, composed of the
same ISIs, and the evolution of their instantaneous discriminability
(bottom; black line for the GIF model and gray line for the IF model)
after the last spike of the input train. Note the different vertical scale for
the HDE in each panel. The black diamond indicates the time of
maximal instantaneous discriminability in the GIF neuron, which

correspond to the time of greater separation in the voltage trajectories
resulting from the two different input trains. Parameter set:
(m,v)~(0:1,2). Note that, as the membrane rate constant m approaches
zero, the IF neuron tends to reflect only the number of spikes received,
regardless of their timing. In the same conditions, the GIF neuron will
continue to oscillate indefinitely with a phase and amplitude that
depend upon the precise timing of the input train.
doi:10.1371/journal.pone.0015023.g004
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accumulate along a line. As the input frequency decreases, the

input trains interact with the intrinsic oscillatory dynamics and the

(Dv0,Dw0) points distribute over a larger area in the (Dv0,Dw0)
phase space. As the input frequency decreases further, most input

pairs result in (Dv0,Dw0) values close to the origin. Indeed, if the

input ISIs are long compared with the membrane time constant,

the phase point relaxes almost completely to the rest state in

between synaptic events and the intrinsic memory about previous

inputs is lost. In this low frequency input regime, the intrinsic

discriminability decreases slightly for increasing intrinsic frequen-

cies, but saturates at approximately v~1, so that an additional

increase in the intrinsic frequency does not affect discriminability

(Fig. 6A). Note that the input mean ISI that results in the greatest

spread of points in the (Dv0,Dw0) phase space, which corresponds

to the optimal input frequency for dynamic encoding, decreases

with increasing v. This is consistent with the shift to higher input

frequencies of the peak in the discriminability as v is increased

(Fig. 6A). In addition to this, increasing v results in a greater

average discriminability for (Dv0,Dw0) points in a circular region

centered at the origin, denoting a greater discriminability based on

the free evolution of the model neuron. Again, note that a higher

discriminability at high input rates in the GIF neuron does not

correspond to a higher probability of spike emission. Indeed, a

purely passive neuron will be more likely to generate action

potentials in this regime, because intrinsic oscillations counteract

voltage changes and tend to keep the voltage in a narrow range

around the resting potential. Conversely, a higher value for the

average discriminability in the GIF neuron means that in this

regime input trains will yield a more different evolution of History-

Dependent Excitability, and will hence result in more different

suprathreshold responses when the neuron is probed with near-

threshold inputs.

Increasing m results in an overall decrease of the cumulative

discriminability, which is more pronounced at low input

frequencies. The discriminability peak slightly shifts to higher

input frequencies (Fig. 6B). As in the sensitivity analysis carried out

in the previous section, this is an expected effect since m is the rate

of decay of the model variables to the rest state, so that greater

values of m result in faster forgetting of the previously received

stimuli. This effect is more pronounced at low input rates, because

the model neuron has time to converge almost completely to its

rest state in between synaptic events.

The standard deviation of the mean discriminability values

depicted in Fig. 6A,B is almost equal to the mean (not shown).

Indeed, a closer inspection of the distribution of discriminability

values (estimated numerically, see Methods) reveals that most ISI

pairs yield very small discriminability values, while a certain subset

clusters around a discriminability value that corresponds to the

plateau level in Fig. 3B (Fig. 6C). This phenomenon is exclusive to

the GIF neuron and it is not observed in the IF neuron, where the

distribution shows a peak at zero and a smooth decline for higher

values of the discriminability (Fig. 6D). We interpret this

phenomenon as a form of modulation of the intrinsic discrimina-

bility due to intrinsic oscillations: intrinsic oscillatory properties

push the discriminability values between certain input train pairs

above a certain threshold. If the threshold corresponded to a

physiological limit of intrinsic discriminability, determined by the

stochastic properties of neurons, this phenomenon would increase

the sensitivity of the intrinsic discriminability between ‘‘accelerat-

ing’’ and ‘‘decelerating’’ input trains. This is a direct consequence

of the steep rise to a plateau in the discriminability as a function of

the ISI difference depicted in Fig. 3B.

Note that as we increase the membrane rate constant m or the

intrinsic frequency v, the damping coefficient Cdamp~e{2pm
v

(defined as the ratio between the second and the first peak in the

free evolution of the voltage variable from an initial condition

different than rest) also varies, and consequently the oscillatory

character of the neuron. In order to separate the effects due to m,

v and to the damping coefficient Cdamp, we performed some

additional simulations keeping the damping coefficient fixed, and

Figure 5. Average discriminability between random input doublets. Discriminability between input doublets with ISI extracted from an
exponential distribution with mean values ISIi and ISIj , averaged over 10000 pairs. Isolines are drawn for D values of 1, 1.4, 1.5, 1.8, 2.8. In the range of
input ISIs which interact with the intrinsic neuronal dynamics, discriminability is higher between input doublets with different frequencies than
between doublets with the same frequency in the IF neuron. This is not observed in the GIF neuron, where the discriminability is mainly determined
by the frequency of the faster input.
doi:10.1371/journal.pone.0015023.g005
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Figure 6. Intrinsic discriminability as a function of input statistics for different model neurons. A: Mean discriminability between input
triplets with exponentially distributed ISIs, as a function of the input mean ISI, for the GIF and the IF neuron. Shades from brown to orange indicate
GIF neurons with increasing values of the intrinsic frequency v (see legend), while the black line indicates the IF neuron. The membrane rate constant
m was fixed at its canonical value of 1. B: The same as in A, but m has been varied while v was fixed at its canonical value of 2. Shades from brown to
orange indicate increasing values of m (see legend). GIF neurons, solid lines; IF neurons, dashed lines. C, D: Probability densities of the discriminability
between input triplets with exponentially distributed ISIs, as a function of the input mean ISI, for the GIF (C) and the IF (D) neuron. E: The same as in A

and B, but m and v have been scaled proportionally in order to maintain a fixed
m

v
ratio of 0.5. Lighter colors indicate greater values of m and v. F: The

same as in A, for gaussianly distributed input ISIs. Summarizing, increasing v increases the discriminability at high input rates, while decreasing m

increases the discriminability especially for middle and low frequency inputs.
doi:10.1371/journal.pone.0015023.g006
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ranging v and m accordingly. The results of this set of simulations

are depicted in Fig. 6E, where the membrane rate constant m and

the intrinsic frequency v has been changed proportionally,

maintaining a constant m
v ratio of 0.5. Increasing the intrinsic

frequency v and the membrane rate constant m in a fixed ratio

induces a slight increase in discriminability for high frequency

inputs (due to the increase in v), but also a substantial decrease in

discriminability for low input frequencies (due to the increase in m).

Also, it shifts the peak in discriminability to higher frequencies.

The value of the peak decreases substantially when the cumulative

discriminability is considered, but when the maximal discrimina-

bility is taken into account the decrease is minimal.

Taken together, these results can be summarized as follows: 1.

Increasing the intrinsic frequency v increases the discriminability

between high frequency inputs. This happens because a fast w
variable has time to activate in between synaptic events even at

high input rates, enabling a dynamic encoding of input histories.

In addition to this a fast intrinsic frequency increases the

discriminability based on the free evolution of the neuron model.

2. Decreasing the membrane rate constant m increases the

discriminability especially for middle and low frequency inputs,

because of the widening of the integration window of the neuron,

and because the slower exponential decay of the instantaneous

discriminability results in a stronger and longer-lasting memory of

the immediate past.

Discussion

Neurons are dynamical entities which act on several time scales;

this endows them naturally with a capacity for short-term memory

or context-dependent processing. The history of inputs to a neuron

is dynamically encoded in its state-dependent, time-varying

properties: each synaptic event induces some modifications in

the neuron dynamical state which depend upon the previously

received stimuli and their timing. In order to map intrinsic

neuronal state to a physiologically, spike-related measure, we

introduced the concept of History-Dependent Excitability (HDE),

which we define as the minimal strength of a synaptic event that

can cause the neuron to fire. As the neuron’s dynamics unfolds in a

history-dependent manner, the time evolution of the HDE carries

information about the history of stimulation in the immediate past,

allowing for context-dependent signal processing. This framework

allows us to compare the context-dependent processing capabilities

of different neuron types.

History-dependent discriminability for different
subthreshold dynamics

For the sake of illustration we considered linear models with a

fixed voltage threshold for spike generation, namely the IF and

(oscillating) GIF neuron models. Their simplicity is useful in

dissecting the relative contribution of very general dynamical

mechanisms (such as passive and inductive membrane dynamics)

to the emergence and properties of history-dependent processing.

The IF neuron, described by a single dynamical variable with a

single time constant, is a standard model of a passive membrane.

The GIF neuron is a natural extension of the single variable IF

model which includes an additional dynamical variable that varies

linearly with voltage, and comes to represent the (linearized) net

effect of voltage gated ionic currents. Of particular interest when

dealing with temporally selective dynamical mechanisms is the

oscillating GIF neuron, where the effect of the slow variable is to

counteract voltage changes and the model dynamics is character-

ized by a pair of complex conjugate eigenvalues, thus exhibiting

damped oscillatory responses to perturbing inputs. These simple

linear models allowed the use of iterative formulae for calculating

their response to input trains, and analytic expressions for the

calculation of the intrinsic discriminability between pairs of input

trains. The consequences and possible drawbacks of using these

models are discussed in detail in the section ‘‘Limitations of the

current approach’’.

Both the IF and the GIF neuron exhibit history-dependent

processing capabilities, which could allow the discrimination

between different input trains even when they share the same

average frequency or even the same constituent ISIs. In fact,

history-dependent responses are a general feature of any

dynamical system, and can be studied conveniently with any

dynamic description of neuronal behavior (for example, through a

set of differential equations). In this case, the neuron model does

not implement a static input-output transformation, but one that is

modulated by its state variables, which in turn reflect the previous

history of stimuli and responses. The GIF model, though, is

particularly sensitive to the precise timing of input stimuli, while

the IF neuron discriminates better between inputs with different

average frequencies (Fig. 5). This suggests that passive neurons are

better suited to rate-based computation, while neurons with

subthreshold oscillations are advantageous for information pro-

cessing in a temporal coding scheme. Since context-dependent

processing is observed even in these simple, linear models, we

expect it to be a general feature of neuronal computation.

Furthermore, we expect these history-dependent processing

capabilities to become more complex and modulable as more

realistic model neurons are considered, and as more time scales

come into play.

One of the most important differences between the IF and the

oscillating GIF model is that the intrinsic discriminability between

two different input histories decreases exponentially with time for

the IF neuron, while intrinsic oscillations result in an intrinsic

discriminability that is an exponentially decreasing function of

time multiplied by a sinusoid. This means that for certain input

histories and neuron parameters, the instantaneous discriminabil-

ity can reach its maximum a few u.t. after the last spike of the input

train (Fig. 1A). Thus, when a certain neuron ‘‘decides’’ to transmit

or block a certain piece of information depending upon the

current context in the immediate past, intrinsic oscillations allow

Figure 7. Intrinsic discriminability is determined by the interplay of the dynamic encoding and the free evolution. Probability
distributions of the difference in the dynamical variables immediately after the last spike of the input train (Dv0,Dw0) for different values of the
average input ISI, which increases along the rows (0.1, 0.2, 0.5, 1, 2, 3, 5). The isolines of the cumulative discriminability as a function of (Dv0,Dw0) are
represented as white lines. Isolines are drawn for discriminability values of 1, 2, 4, 8, 32 and 64, starting from the center. Probability densities are
normalized to the peak value in each plot. For each value of v, which increases along columns, the three higher D values are shown (the higher D
value is shown in red). For high frequency inputs, the dynamic encoding mechanism plays little role, and the (Dv0,Dw0) points accumulate along a
line. As the input frequency decreases, the input trains interact with the intrinsic oscillatory dynamics and the (Dv0,Dw0) points distribute over a
larger area in the (Dv0,Dw0) phase space. Note that the input mean ISI that results in the greatest spread of points in the (Dv0,Dw0) phase space,
which corresponds to the optimal input frequency for dynamic encoding, decreases with increasing v. In addition to this, increasing v results in a
greater average discriminability for (Dv0,Dw0) points in a circular region centered at the origin, denoting a greater discriminability based on the free
evolution of the model neuron.
doi:10.1371/journal.pone.0015023.g007
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the reverberation of this information a few u.t. after the last spike

of the input train which defines the context. Conversely, in passive

neurons this information exponentially wanes.

Another important difference between oscillating and non-

oscillating neurons regards the sensitivity to small differences in

the input histories. For instance, when the discriminability between

an accelerating and a decelerating input triplet with the same

constituent ISIs is considered, the discriminability as a function of

input ISI difference grows faster in the oscillating GIF neuron than

in the purely passive IF neuron (Fig. 3B). Hence, if discriminability

differences could be exploited as soon as they exceed a certain

threshold, the oscillating GIF would exhibit an increased sensitivity

in the discrimination between accelerating and decelerating triplets.

This increase depends upon the input statistics though: the

oscillating neuron discriminates better than the correspondent

passive neuron between input triplets with frequency higher than a

certain value, which decreases as the membrane rate constant m
decreases (Fig. 3D). These results suggest that while a passive neuron

can provide context-dependent processing capabilities in a broad

frequency range (which nevertheless depends upon the membrane

rate constant m), subthreshold oscillations enhance discriminability

at high input frequencies and short ISI differences. Considering that

discriminability differences below a certain threshold might not be

physiologically exploitable for context-dependent processing, sub-

threshold oscillations increase the sensitivity between different input

trains as a function of the difference between their constituent ISIs.

Finally, the theoretical framework provided by the History-

Dependent Excitability concept allowed the assessment of the

temporal extension of the intrinsic memory (section ‘‘Intrinsic

discriminability between input trains that only differ in the their

second spike time’’). As the neuron receives successive EPSPs in a

train, each EPSP drives the neuron’s dynamical variables so that

they come to reflect mainly the last input ISI, and the relative

contribution of previous ISIs to the HDE gradually wanes. In these

linear models the intrinsic discriminability of the first and second

ISIs in a train decreases exponentially with the train length, and the

rate of decay is not influenced by intrinsic oscillations. The

exponential forgetting is a consequence of the small number of

time scales interacting in these simple linear models (one for the IF,

two for the GIF neuron). It would not be surprising if a subthreshold

dynamics with multiple time scales might lead to a more gradual

forgetting, for instance a power-law forgetting, as it is observed in

multiple time scale synaptic models [54]. Indeed, a neuron model

with a multiple time-scale current efficiently encodes input history

over several time-scales [55]. Power-law forgetting curves could also

arise from the interaction among many heterogeneous linear

elements with exponentially decaying individual traces [56,57].

The originality of this work lies in characterizing the

discriminability properties of neurons based on their HDE

trajectories, and not on their spiking output. This is an important

shift in perspective because, as shown in Fig. 1, the HDE

trajectory, but not the spiking output, determines how the neuron

will respond to subsequent stimuli. Furthermore, our approach is

quantitative and allows the evaluation of the history-dependent

processing capabilities of different single-neuron dynamics, and

their dependence upon input statistics and neuronal parameters.

Computer simulations allow the assessment of History-Depen-

dent Excitability for arbitrary neuron models, and with arbitrary

accuracy. In the absence of an analytical description for the HDE, it

can be computed numerically by generating, in any moment in

time, multiple branches of a given simulation, corresponding to

different values of the conductance of an applied synaptic event.

This technique allows the numerical measurement of the HDE,

defined as the minimal conductance of a synaptic event capable of

generating a spike, in a certain instant. Iterating this procedure over

successive time steps allows the reconstruction of the HDE

trajectory with arbitrary temporal resolution. The measurement

of the HDE in living cells is constrained by the stability of the cell’s

properties, which will inevitably posit some limit upon the

achievable resolution. Nevertheless, we believe that the experimen-

tal confirmation of the ideas exposed in this work is possible. In

particular, an optimized dynamic clamp protocol [58] can be

established, which could be used to probe the intrinsic discrimina-

bility as a function of input statistics, or simulated network state [59],

with the minimum number of trials. These experiments will further

our understanding of the relationships between single-cell proper-

ties, network state, and the temporal discriminability properties of

single neurons. If the neuron considered exhibits chaotic dynamics

in the subthreshold regime, the integral which defines the

cumulative discriminability (1) might not converge. In this case,

the memory about the previously received inputs, intended as the

input-specific perturbation of the neuron’s trajectory, persists for an

infinite amount of time. This result is consistent with our

interpretation of intrinsic discriminability as a measure of the

amplitude and temporal extension of the transient mnemonic trace.

Limitations of the current approach
Even if the computational mechanisms outlined in this work are

general and apply to both living and model neurons, and might be

relevant even to non-neural systems with history-dependent

dynamics [60], the detailed analysis were carried out with linear

models with one (in the case of the IF neuron) or two (for the GIF

neuron) time scales. These models arise from a linearized

approximation around the stable state, and are useful to describe

the subthreshold response to weak inputs. Still, they might not be

adequate to study neuronal networks that can operate in different

regimes, or that exhibit local or global transitions between up and

down states [9,61,62]. For instance, when a real neuron (or a non-

linear neuron model) is clamped to different holding voltages with a

proper injected DC current, the jacobian matrix resulting from

linearization around this new stable state is in general different from

that obtained at equilibrium and in the absence of external currents.

This implies that its resonant and passive properties will strongly

depend upon the voltage the neuron is held at, or, in more

physiological conditions, on the state of the subset of the circuit

impinging on it [63]. We predict that the computational

consequences of History-Dependent Excitability could be especially

relevant in the down state, where the effective membrane time

constant is slow and the membrane potential is far from threshold.

In particular, we can speculate that the proposed mechanisms might

contribute to the selection of the subset of neurons which will take

part in the up state, depending upon the present context.

Another simplification adopted is the spike generation mecha-

nism, implemented as a fixed voltage threshold in the IF and GIF

models. It is possible that in certain conditions this simplification

might provide a biased estimate of the HDE (which depends on

both the synaptic dynamics and the spike generation mechanism).

For instance, the interplay between the spike generation

mechanism and the synaptic filtering properties can affect single-

neuron processing, especially at high input rates [64]. Moreover,

neurons that display intrinsic oscillations are likely to be

dynamically close to an Andronov-Hopf bifurcation, hence their

firing threshold might be better described by a curved manifold

rather than by a fixed voltage threshold. This issue will be

addressed in future work, where the influence of the spike

generation mechanisms and its interplay with synaptic kinetics will

be assessed by using computational models of increasing realism.
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In this work we have assessed the influence of subthreshold

damped oscillations arising from intrinsic neuronal dynamics upon

information discrimination. In several brain areas and functional

conditions sustained oscillations of the membrane potential have

been observed. These oscillations are thought to arise mainly

through network mechanisms [30], even if intrinsic oscillatory

dynamics at the single cell level can also play a role [28]. Since

membrane oscillations arising from network mechanisms are the

result of external oscillatory input currents, they do not affect

intrinsic discriminability in the linear subthreshold approximation

considered here (see Section ‘‘Discriminability between pairs of

input trains’’). Sustained subthreshold oscillations can also arise

from intrinsic mechanisms in the presence of a subthreshold limit

cycle or strange attractor. In this case intrinsic discriminability is

expected to depend upon the state vector at the time of each

applied synaptic potential, and its characterization can be

accomplished through numerical analysis.

In this article we considered an idealized scenario in which the

neuron sits at its stable point, receives a train of instantaneous

EPSPs with constant amplitude, and it is then free to evolve

according to its intrinsic dynamics alone. The adoption of linear

models guarantees that the presented results also hold if the input

histories include fluctuating currents (‘‘frozen noise’’), as long as

they are equal among different input histories. Furthermore,

intrinsic discriminability does not depend upon the neuron state at

the moment of input arrival in linear models. Nevertheless, it is not

clear whether intrinsic discriminability could still serve as a reliable

indicator of the current context in a complex, non-linear neuron as

the input histories include unknown time-varying components.

From a dynamical perspective, the consistent encoding of

incoming information could still be achieved if the neuron state

is driven to a restricted portion of its state space before receiving its

temporally-structured inputs. This task could be accomplished by

network oscillations [30,65]: periodic inhibition could format the

continuous stream of incoming synaptic events in blocks of fixed

temporal duration, by driving the neuron to a restricted portion of

its state space at each peak of the total inhibitory drive [66]. This

periodic ‘‘reset’’ would allow the consistent contextualization of

the EPSPs on a cycle-by-cycle basis. Periodic excitation could play

a similar role. For networks operating in an asynchronous,

irregular firing regime, results from random dynamical system

theory [67] reveal that in certain conditions a neuron injected with

a pseudo-random stimulus will soon forget its initial state and

converge to a stochastic, time-varying attractor [68,69]. Hence,

temporally structured inputs time-locked to the stochastic attractor

might be consistently encoded through the proposed mechanism

even in non-linear neurons. In this case, the transient memory

trace induced by the external stimulus would gradually wane as

the neuron trajectory converges to the stochastic attractor

corresponding to a given noise realization. Nevertheless, more

work is needed in the field in order to clarify the interplay between

sensitivity and reliability in neuronal network dynamics [70–72].

Recently, Branco et al. proposed a new mechanism for the

discrimination of spatiotemporal inputs based upon NMDA receptor

dynamics, along with the impedance gradient resulting from dendritic

tapering [42]. In their experiments, different spatiotemporal patterns

of synaptic potentials evoked on a dendrite via two-photon glutamate

uncaging resulted in PSPs of different amplitude at the soma. Their

work shows that neuronal morphology and non-linear receptor

dynamics, which were not taken into account here, are important

features in determining the spatiotemporal selectivity of neurons and

are surely expected to add a layer of complexity to the history-

dependent discriminability properties we described. On the other

hand, the neurons studied by Branco et al. seem to lack prominently

active dendrites, and the kind of selectivity they report can be

summarized as a consistently greater somatic depolarization in

response to centripetal, rather than centrifugal, patterns of stimula-

tion. Our work suggests an important role for active dendritic

properties in the discrimination of spatiotemporal inputs. In

particular, the distribution of active ion channels could be a key

ingredient in achieving greater flexibility and modularity in the

discrimination of spatiotemporal inputs at the single-cell level.

One last remark regards the definition of History-Dependent

Excitability as the minimal excitatory synaptic strength capable of

firing the neuron. In the translation from the state vector to a

scalar, spike-related measure of the neuron’s propensity to firing,

we defined HDE as the minimal excitatory synaptic strength

capable of firing the neuron. While such a translation is useful for

the comparison between different neuron types, the exact

definition we propose might sound arbitrary. For instance,

neurons receiving an intense barrage of EPSPs and IPSPs might

fire mostly because of a reduction in the total inhibitory

conductance, rather than because of an increment in the total

excitatory drive [73]. A generalization of the HDE that takes into

account post-inhibitory rebound spiking and more general

threshold manifolds will be necessary to gain insight into this

issue. While the exact definition of HDE is somewhat arbitrary,

the general concept presented is powerful enough to foster the

study of single-neuron discrimination properties, which has been

largely disregarded in the literature.

Consequences at the network level
The presence of an intrinsic memory in each processing unit is

likely to have profound consequences at the network level, and to

foster the emergence of complex functions in biological circuits. It

is now widely accepted that network function is not entirely

specified by the network connectivity, but depends upon its

neuromodulatory state, and its history of activity and afferent

inputs (see, for example, [59,74,75], reviewed in [76]). Sometimes

the same network can produce the same output in different

network states, which are only revealed if specific electrophysio-

logical or pharmacological manipulations are applied to the

network [74,77]. On the other hand, the state of the network

shapes the input-output transformation performed by its constit-

uent neurons, by setting the statistics of the synaptic currents that a

representative neuron in the network receives [59,63,78,79]. We

believe that the presence of context-dependent processing

capabilities at the single-cell level, or even down to the dendritic

domain level, coupled with the domain-specific interneuron

innervation [80], is a key feature in the emergence of multi-

functionality in neuronal networks.

The stimulation of some, but not all, cortical neurons can result

in global effects at the level of the whole animal, such as

behaviorally reportable perceptions, the generation of motor

actions and changes in the global brain state (recently reviewed in

[81]). These reports, together with the observation of sparse and

abstract representations in high order brain areas, suggest an

influential role for individual neurons in brain function which has

been largely disregarded so far. In particular, how downstream

areas can read out a sparse code is still not known. However, they

cannot rely solely upon spatial summation and coincidence

detection, but must use some efficient mechanisms for the

recognition of the identity of the activated neurons. The presence

of strong synaptic connections [47,49], sometimes targeting areas

in the postsynaptic neurons which are key for the generation of

action potentials (as in the case of mossy fibers innervation of

Purkinje cells [82]), is an important factor in achieving reliable

information transfer. Furthermore, the observation of cell-specific
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firing patterns in widely different systems [83,84] hints at the

presence of a multiplexed code where the neuron identity (‘‘who’’)

could be transmitted together with the circumstantial message

(‘‘what’’) [85]. The presence of complex history-dependent

processing capabilities with fine temporal sensitivity at the

subcellular level is likely a key feature for the interpretation and

transformation of sparse neuronal codes.

Traditionally, neuronal network computations have been

interpreted within a static framework. For instance, in associative

neural networks, the synaptic weights determine the set of

attractors toward which any initial network state will evolve, after

a transient which is thought to bear no relevant information [86].

However, working memory studies reported that individual

neurons can shift their tuning from a purely stimulus-driven

sensitivity to the encoding of prospective actions [87–91]. These

experiments have shown that working memory cannot be clearly

disentangled from perception, expectation, prediction, and other

cognitive computations, since they rely upon largely overlapping

neuronal networks. Instead, it seems that transient dynamics in the

brain underlie the joint representation of memory clues and what

the brain does with them (see also [92]).

In the last few years new theoretical paradigms have been

proposed, which are better suited to the interpretation of transient

and dynamical computation in neuronal networks (reviewed in

[93–98]). In particular, some authors have proposed that the

variety of time scales involved in neuronal network dynamics, and

their distributed nature among many constituent neurons and

synapses, form a general purpose computing substrate from which

the useful information can be extracted at any given time by

properly trained read-out neurons [99–101]. In these models

(commonly referred to as ‘‘state-dependent networks’’ or ‘‘liquid

state machines’’) the distributed synaptic dynamics encodes input

history in an analogous way as we discussed in this paper for a

single neuron: each input to the network will have an effect that

depends upon the previous network history. In contrast to the

linear, few dimensional single-cell models considered in this work,

liquid state machines retain some information about past stimuli

for periods of time that are much longer than the slower time scale

in the system. This behavior is due to their lack of attractors and

‘‘edge of chaos’’ dynamics [102], and to the reverberation of

activity through positive feedback. These characteristics make

them exquisitely sensitive to small perturbations, whose contribu-

tions linger for a long time in the network dynamics.

We believe that the contributions of this work to the theory of state-

dependent networks are twofold. On the one hand, the complex

dynamical entities in these models are the synaptic connections, while

the intrinsic neuronal dynamics is commonly reduced to a purely

passive description. We believe that intrinsic neuronal processes also

play a part in determining the complex dynamics of neural

microcircuits: as we showed in this paper, the intrinsic properties

determine the evolution of neuronal excitability as a function of the

previous history, and will eventually determine whether future stimuli

will result in a post synaptic spike or not. On the other hand, when the

network state is considered and related to network performance, only

the voltage variable of each neuron and the strength of each synapse

are taken into account, while internal variables are disregarded [101].

This work shows that the information contained in single-neuron

dynamics is not only that which is transmitted to other neurons in the

network through spike-mediated synaptic transmission, but also

includes the intrinsic subthreshold dynamics which affects the way a

neuron responds to incoming stimuli. Hence, an assessment of their

information processing capabilities should take into account all the

dynamical variables of the model (synaptic and intrinsic), this being

the only level of description that unambiguously defines the

microcircuit high-dimensional input-output mapping to an arbitrary

spatiotemporal stimulus.

In addition to this, there is a substantial heterogeneity in the

intrinsic properties of individual cells in several brain regions,

which goes beyond the categorization in neuronal subtypes

commonly accepted in the literature [103]. Nevertheless, most

theoretical approaches to neuronal network dynamics have

considered the individual cells as homogeneous, or divided in

two or few homogeneous populations (for example, excitatory and

inhibitory populations [104]). More recent studies have revealed

that neuronal heterogeneity might not be just an epiphenomenon,

but might serve specific computational purposes, like the

improvement of information representation in a population code

[105,106], or the generation of complex dynamics in recurrent

networks [107]. Furthermore, intrinsic neuronal properties and

synaptic connectivity are expected to be correlated, given that

intrinsic oscillations bias weight dynamics under spike-timing

dependent synaptic plasticity [108]. Hence we strongly encourage

the inclusion of a realistic level of heterogeneity in the intrinsic

properties of individual cells, as it is likely to highlight new

important roles for the wide diversity of intrinsic and synaptic

properties in the nervous system.

Methods

Neuron models
The first neuron model we consider is the integrate and fire (IF),

described by a single linear differential equation:

dv

dt
~{mvzIsyn ð9Þ

The model is endowed with an after-spike reset mechanism, so

that when v crosses a threshold vthr from below a spike is emitted

and the membrane potential is reset to a value vreset, and kept

there for a refractory time trefr. Since this work focuses on

subthreshold dynamics, the spike generation mechanism is

disregarded. In its normal form (where time has been properly

scaled) this model is described by a single parameter m, which is

the rate of the exponential decay to the rest state in the absence of

stimulation (Isyn~0). The canonical IF model that we used for

most of the paper has a decay rate m~1, but this parameter has

been varied in the simulations represented in Figs. 3D,F; 4; 6B,E.

Another simple model that linearly describes the subthreshold

dynamics is the Generalized Integrate and Fire (GIF) model. This

model includes an additional dynamical variable, which represents

the linearized effect of voltage-gated ion currents, and is described

by the following equations:

dv

dt
~{av{bwzIsyn ð10Þ

dw

dt
~v{w

with the same after-spike resetting as in the IF model for the v
variable, while no reset is applied to the additional dynamical

variable w. In this work only the subthreshold dynamics has been

considered, and the spike generation mechanism has not been

taken into account. In its normal form the model is parameterized

by an effective leak a and an effective coupling between the two

variables b. If bw0 the w variable opposes voltage change,

providing a negative feedback and reproducing the effect of
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resonance currents such as a Kz or h current. In this case, the

coupled dynamics can exhibit subthreshold resonance and even

damped oscillations. Conversely, if bv0 the w variable amplifies

voltage change, providing a positive feedback and mimicking the

effect of amplifying currents such as a Ca2z or Naz current. The

system (10) has proven particularly useful in studying neuronal

intrinsic oscillations [31,32,109]: in a certain parameter regime, it

is mathematically equivalent to a damped linear oscillator, and

thus constitutes an analytically amenable model for the description

of neuronal intrinsic oscillations, i.e., oscillations generated by

intrinsic ionic mechanisms as the activation of a resonant current

or the inactivation of an amplifying current [29].

The canonical GIF model that we used for most of the paper

has a~1 and b~4, resulting in complex conjugate eigenvalues

m+iv~{1+2i (see Text S1), but these parameters have been

varied in the simulations represented in Figs. 3D-F; 4; 6A,B,E,F; 7.

The presence of complex conjugate eigenvalues denotes an

oscillatory behavior with an angular frequency equal to v, the

imaginary part of the eigenvalues, while the real part m determines

the rate of decay to the rest state. Given the wide frequency range

of intrinsic oscillations observed in mammalian brains, which

spans at least two order of magnitude (from 0.5 Hz until 50 Hz

[29]), we preferred to keep our models dimensionless.

For the sake of simplicity, and for carrying out analytical

calculations, we consider

Isyn~
X

ts

Ad(t{ts)

This approximation reduces the synaptic dynamics to an

instantaneous and voltage independent shift in the voltage

variable. If the considered intrinsic dynamics is slow with respect

to the synaptic dynamics, and if the membrane voltage stays in a

narrow range with respect to the distance from the synaptic

reversal potential, this approximation is reasonable. The model

trajectories have been calculated with iterative formulae (see Text

S1).

Generation of random trains of synaptic events
In the simulations, random trains of synaptic events have been

generated by concatenating two or more ISIs generated from an

exponential distribution, using the Matlab routine ‘‘random’’. For

each value of the ranged parameters, 1000 different trials have

been simulated, and the corresponding results have been

represented in Figs. 6C,D and 7. In each block of simulations

the random number generator has been initialized with a different

seed in order to avoid spurious correlations between the random

realizations in different trials.

Supporting Information

Text S1 Appendix.

(PDF)
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structure of neocortical spontaneous activity in vivo. Proc Natl Acad Sci U S A
104: 347–352.

8. Mao BQ, Hamzei-Sichani F, Aronov D, Froemke RC, Yuste R (2001)
Dynamics of spontaneous activity in neocortical slices. Neuron 32: 883–898.

9. Cossart R, Aronov D, Yuste R (2003) Attractor dynamics of network up states
in the neocortex. Nature 423: 283–288.

10. Oram MW, Wiener MC, Lestienne R, Richmond BJ (1999) Stochastic nature

of precisely timed spike patterns in visual system neuronal responses.

J Neurophysiol 81: 3021–3033.

11. Baker SN, Lemon RN (2000) Precise spatiotemporal repeating patterns in
monkey primary and supplementary motor areas occur at chance levels.

J Neurophysiol 84: 1770–1780.

12. Johnson HA, Buonomano DV (2007) Development and plasticity of

spontaneous activity and up states in cortical organotypic slices. J Neurosci

27: 5915–5925.

13. Ripley SH, Wiersma CA (1953) The effect of spaced stimulation of excitatory
and inhibitory axons of the crayfish. Physiol comp et oeco 3: 1–17.

14. Segundo JP, Moore GP, Stensaas LJ, Bullock TH (1963) Sensitivity of neurones
in aplysia to temporal pattern of arriving impulses. J Exp Biol 40: 643–667.

15. Wiersma CA, Adams RT (1950) The influence of nerve impulse sequence on
the contractions of different crustacean muscles. Physiol comp et oeco 2: 20–33.

16. Zhurov Y, Brezina V (2006) Variability of motor neuron spike timing maintains

and shapes contractions of the accessory radula closer muscle of aplysia.

J Neurosci 26: 7056–7070.

17. Hooper SL (1998) Transduction of temporal patterns by single neurons. Nat
Neurosci 1: 720–726.

18. Abarbanel HD, Talathi SS (2006) Neural circuitry for recognizing interspike

interval sequences. Phys Rev Lett 96: 148104.

19. Izhikevich EM, Desai NS, Walcott EC, Hoppensteadt FC (2003) Bursts as a

unit of neural information: selective communication via resonance. Trends
Neurosci 26: 161–167.

20. Thomson AM, Deuchars J (1994) Temporal and spatial properties of local

circuits in neocortex. Trends Neurosci 17: 119–126.

21. Tsodyks MV, Markram H (1997) The neural code between neocortical
pyramidal neurons depends on neurotransmitter release probability. Proc Natl

Acad Sci U S A 94: 719–723.

22. Abbott LF, Varela JA, Sen K, Nelson SB (1997) Synaptic depression and

cortical gain control. Science 275: 220–224.

23. Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev
Physiol 64: 355–405.

24. Kavalali ET (2007) Multiple vesicle recycling pathways in central synapses and

their impact on neurotransmission. J Physiol 585: 669–679.

25. Fuhrmann G, Segev I, Markram H, Tsodyks M (2002) Coding of temporal
information by activity-dependent synapses. J Neurophysiol 87: 140–148.

26. Kleppe IC, Robinson HP (2006) Correlation entropy of synaptic input-output

dynamics. Phys Rev E Stat Nonlin Soft Matter Phys 74: 041909.

27. Zhang W, Linden DJ (2003) The other side of the engram: experience-driven
changes in neuronal intrinsic excitability. Nat Rev Neurosci 4: 885–900.

28. Llinás RR (1988) The intrinsic electrophysiological properties of mammalian

neurons: insights into central nervous system function. Science 242:

1654–1664.

29. Hutcheon B, Yarom Y (2000) Resonance, oscillation and the intrinsic
frequency preferences of neurons. Trends Neurosci 23: 216–222.
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