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Abstract

All animals flee from potential predators, and the distance at which this happens is optimized so the benefits from staying
are balanced against the costs of flight. Because predator diversity and abundance decreases with increasing latitude, and
differs between rural and urban areas, we should expect escape distance when a predator approached the individual to
decrease with latitude and depend on urbanization. We measured the distance at which individual birds fled (flight
initiation distance, FID, which represents a reliable and previously validated surrogate measure of response to predation
risk) following a standardized protocol in nine pairs of rural and urban sites along a ca. 3000 km gradient from Southern
Spain to Northern Finland during the breeding seasons 2009–2010. Raptor abundance was estimated by means of standard
point counts at the same sites where FID information was recorded. Data on body mass and phylogenetic relationships
among bird species sampled were extracted from the literature. An analysis of 12,495 flight distances of 714 populations of
159 species showed that mean FID decreased with increasing latitude after accounting for body size and phylogenetic
effects. This decrease was paralleled by a similar cline in an index of the abundance of raptors. Urban populations had
consistently shorter FIDs, supporting previous findings. The difference between rural and urban habitats decreased with
increasing latitude, also paralleling raptor abundance trends. Overall, the latitudinal gradient in bird fear was explained by
raptor abundance gradients, with additional small effects of latitude and intermediate effects of habitat. This study provides
the first empirical documentation of a latitudinal trend in anti-predator behavior, which correlated positively with a similar
trend in the abundance of predators.
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Introduction

The global distribution of biodiversity reflects higher degrees of

specialization and interspecific interactions at low latitudes. There

is a long tradition for linking these trends by viewing high tropical

biodiversity as a consequence of interspecific interactions [1,2].

For example, MacArthur [3] suggested explicitly that southern

distribution limits of many species in the northern hemisphere

likely depended on biotic interactions, while northern distributions

more often were determined by abiotic factors. Studies of

latitudinal trends in species diversity have shown consistent

decreases with increasing latitude that is also repeated in

predators, parasites and numerous other functional groups [e.g.

4–6]. Interestingly, not all groups show the same slope of species

richness with latitude, implying that the abundance and species

composition of different functional groups, and hence the intensity

of interspecific interactions such as predation or competition, may

change with latitude (reviewed by [7]).

Levels of defense are predicted to coevolve with levels of offense

along productivity gradients such as the gradient from the arctic to

the tropics [8]. Although predation constitutes an important

interspecific interaction, relatively few studies have investigated

latitudinal patterns in predation and anti-predator behavior [7].

Several studies have shown latitudinal changes in palatability [9]

or chemical or mechanical defenses of prey [10,11]. However,

many studies relied on a sample of individuals from a single

temperate and a single tropical site, thereby offering no replication

(i.e., a case of pseudo-replication) and thus increasing the risk that

between population differences were caused by factors unrelated

to geographical position (e.g. [12]; reviewed in [7]). Furthermore,

the generality of latitudinal gradients across taxa implies that

processes underlying them should have evolved repeatedly

through convergence. Recently, McKinnon et al. [13] showed a
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northwards decrease in nest predation rates of artificial nests along

a latitudinal gradient of more than 3000 km in North America.

Likewise, frogs Rana temporaria showed a strong latitudinal cline in

anti-predator behavior in Sweden [14], and Møller and Liang [15]

interpreted higher levels of fear (longer flight initiation distances -

hereafter: FID- when approached by a researcher; see below) in

Chinese as compared to European birds partly due to differences

in predation risk. Although these studies provide important

information, there is a need to extend them to include multiple

model species along wide latitudinal gradients to test for the

generality of patterns (i.e., meta-replication [16,17]). Furthermore,

it is also necessary to test the underlying assumption that

differences in anti-predator behavior are related to differences in

predation risk [18].

Animals in general show a range of fear responses that have

important implications for understanding habitat use, but also

life history, demography, interspecific interactions and conser-

vation [18–21]. Flight initiation distance (hereafter FID) when

approached by potential predators and other kinds of anti-

predator behavior pose a problem of optimization of benefits

associated with escape weighed against costs of disturbance (like

stop feeding and/or energetic costs of flight), which may vary

with ambient conditions. In general, FID constitutes a reliable

measure of risk taking because it correlates with susceptibility to

predation, even when the approaching potential predator was

the researcher who measured such distances (see validation of

flight distances as a meaningful proxy of risk taking in [22–24]).

In addition, FID is highly repeatable for individuals among

estimates [25,26].

Another important aspect of risk taking is the effect of

urbanization, especially given that several studies have found

differences in predator densities between urban and non-urban

habitats [27–31]. In fact, birds have considerably shorter FIDs in

urban than in rural habitats [32,33], mainly linked to differences

in risk of predation and duration since urbanization [26]. These

behavioral responses were largely independent of differences in

habitat structure between urban and nearby rural sites [26,34].

European species of birds with long FIDs have negative population

trends as expected if there are costs associated with frequent

disturbance by humans, dogs and other potential predators [34].

Thus, it is crucial to take this urbanization effect into account

when investigating latitudinal gradients in FID and its relation-

ships with predation risk.

The objective of this study was to test for the existence and

predictors of a latitudinal trend in FID of birds when being

approached by a human, taken here as a methodologically

proper surrogate for the risk of predation experienced by bird

populations. We studied FIDs at nine different pairs of nearby

rural and urban sites along a latitudinal gradient from Southern

Spain to Northern Finland (Figure 1), allowing for repeated tests

among independent populations within species. Bird census data

from these sites [35] were used to test whether raptor

abundance showed a similar latitudinal gradient. Because FID

differs consistently between rural and urban populations [32,33],

we also tested if the latitudinal trend was consistent indepen-

dently of habitat. Finally, we tested whether latitudinal gradients

in FID were related to parallel gradients in raptor abundance.

Overall, our main aim was to test whether different bird species

showed consistent latitudinal patterns of anti-predator behavior

in relation to spatial patterns of predation risk. If that was the

case, this would be the first empirical documentation of such a

latitudinal trend.

Methods

Ethic Statement
Recording of flight initiation distance does not require ethics

approval or legal permits because it does not involve any

important effect on animal welfare. The disturbance produced

to birds by our methodology did not differ from standard

‘‘background’’ disturbance caused by humans: birds in our study

sites, especially in the urban ones, are regularly flushed by citizens,

dogs, cats, cars, etc., and by tourists, pets, agricultural workers and

mushroom pickers in rural areas. Moreover, our presence in study

sites involved no alteration of the habitat and it was very brief in

time. We used public trails and roads, thus, there was no need to

ask land managers for approval.

Study Areas
Fieldwork was performed in nine cities, each paired with a

nearby rural area, located along a large latitudinal gradient across

Europe (Fig. 1). The distance between urban and rural study sites

was 1–20 km. The benefits of this approach are two-fold: (1)

neighboring study sites will share most potentially confounding

environmental characteristics including weather, altitude, soil and

many others; and (2) birds will not be prevented from moving

between neighboring urban and rural habitats for distance

reasons, although other factors such as philopatry and assortative

mating may prevent such movement. All urban study sites

included areas with multi-storey buildings, single family houses,

roads and parks, while nearby rural areas had open farmland and

woodland and did not contain continuous urban elements like

multi-storey buildings, one family houses, roads and parks. This

simple operational definition was also adopted in other studies

Figure 1. Location of the nine study sites for FID in Europe.
Major climatic zones (subtropical, temperate and continental-subarctic,
from darker to lighter shading) are also shown. For latitudes and city
names see Table S1.
doi:10.1371/journal.pone.0064634.g001
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[36–39], and our definitions of urban (percent of built-up area

.50, building density .10/ha and residential human density

.10/ha) and rural habitats (percent of built-up area 5–20,

building density 2.5–10/ha, and residential human density 1–10/

ha) follow the suggestion made by Marzluff et al. [39].

Flight Initiation Distance
We recorded FIDs of birds when approached by a human

during the breeding seasons 2009–2010 using a modified

technique of that used by Blumstein [21]. A full description of

the procedures and three different cross-validations of the data are

reported elsewhere [24,33,34]. We tried to obtain data from as

many species and individuals as possible by systematic searches of

the study areas; at the same time, we tried to avoid sampling the

same individual twice by moving to another site right after samples

were taken. If the same general area was visited, only individuals of

different species, sex or age than those sampled before were tested.

In brief, when an individual bird had been located with a pair of

binoculars, an observer moved at a normal walking speed towards

the individual bird, while recording the number of 1 m steps [22].

The distance from the observer to the bird when it first took flight

was recorded as the FID, while the ‘starting distance’ was the

distance from where the observer started walking up towards the

bird and the location of the bird. If the individual bird was

positioned in the vegetation, the height above ground was

recorded to the nearest meter (birds on the ground were assigned

a height of zero). While recording these flight initiation distances,

we also recorded date and time of day, and the sex and the age of

the individual if external characteristics allowed sexing and aging

with binoculars. Starting distances and FIDs were estimated as the

Euclidian distances that equals the square root of the sum of the

squared horizontal distances and the squared height above ground

level [21].

Previous studies have shown that starting distance is strongly

positively correlated with FID [21], thereby causing a problem of

collinearity. We eliminated this problem of collinearity by

searching habitats for birds with a pair of binoculars when

choosing an individual for estimating flight initiation distance. In

this way we assured that most individuals were approached from a

distance of at least 30 m, thereby keeping starting distances

constant across species.

We extracted information on mean body mass of adult birds of

each species from Cramp & Perrins [40], as FIDs are consistently

affected by bird size [27]. FID was weakly negatively related to

starting distance in a Generalized Linear Model that included

species, age, habitat, country and body mass as factors (partial

F = 34.99, df = 1, 12493, P,0.0001; FID and body mass log-

transformed), explaining less than 0.3% of the variance (see [26]

for a similar procedure). None of the results presented in this paper

changed statistically when including starting distance as an

additional variable, and we thus excluded this variable from all

subsequent analyses for simplicity.

FIDs varied significantly among species, using one-way analysis

of variance with log10-transformed flight distance as the response

variable and species as a factor (F = 29.58, df = 158, 12337,

R2 = 0.33, P,0.0001, repeatability (R) following Becker [41]

R = 0.27, SE = 0.03). Thus there was consistency in flight distance

within species.

Raptor Abundance
The breeding bird community at study sites was censused by

means of standard point counts with unlimited recording distance

[42]. Censuses were made during the springs 2009–2010 in both

urban and rural habitats in all study locations at the same sites

where FID information was recorded [35]. From these data we

derived an index of abundance of raptors (mostly hawks Accipiter

spp., kestrels Falco spp. and buzzards Buteo buteo) by summing the

numbers of individuals detected at each site divided by the number

of sampling points (data in [35]). Briefly, we placed 25–50 points in

each urban and rural site at distances of at least 100 m between

two consecutive points. The exact location of each point was

determined with a GPS, allowing us to make the second census in

exactly the same sites as the first census. The first census was made

in early April in Southern Spain, delaying the census at higher

latitudes so it was completed in Northern Finland in late May, and

the second census was carried out three-four weeks later. The

census started at local sunrise, while remaining five minutes at

each point recording all birds seen or heard. Censuses started on

separate days in urban and rural study plots ensuring that there

was no difference in timing of censuses between habitats. The

same observer made all surveys in each particular city and its

paired rural site. Vegetation cover (trees, shrubs, herbs and grass)

and cover with buildings and other man-made structures were

evaluated in the field within 50 m of each survey point. We

obtained very similar abundance indices when controlling or not

controlling for differences in coverage for the three vegetation

layers [35].

Statistical Analyses
We log10-transformed FID, body mass and raptor abundance to

achieve distributions that did not differ from normality. Differ-

ences in raptor abundance along the latitudinal gradient and

between urban and rural sites were tested by means of General

Linear Models (GLM). Relationships between FID and predictor

(latitude, urban-rural habitat, and raptor abundance) and

confounding (body size) variables were also tested by a GLM

approach using the mean FID obtained for all individuals of the

same species sampled in each study site. However, taxonomic units

such as species cannot be considered statistically independent

observations due to effects of common ancestry [43]. As species

occupy a variable number of study sites [35], latitudinal or habitat

effects could be partly due to phylogenetic effects mediated by

species composition. To control for the phylogenetic relationship

among the sampled species we used phylogenetic generalized least

square regression (PGLS) models as implemented in R statistical

environment (see [44,45] for a similar approach). We used the R

libraries ape, MASS and mvtnorm and the function pglm3.1.r. First,

we estimated the phylogenetic scaling parameter lambda (l), that

varies between 0 (phylogenetic independence) and 1 (species’ traits

covary in direct proportion to their shared evolutionary history;

[43]). Then, we calculated the phylogenetically corrected corre-

lation between the variables of interest after adjusting for

phylogenetic effects through the estimated l. We have used the

most recent and comprehensive bird phylogeny available [46],

after editing it to include different populations of the same species

as polytomies with a constant small genetic distance of 1?10210

between conspecific populations. This phylogeny considers Corvus

corone and C. cornix as conspecifics, so that we have also assigned a

genetic distance between them of 1?10210. The R script and the

edited phylogeny file are supplied as Files S1 and S2, respectively.

Sequential (type I) models were fitted, including first the effect of

body size to test for effects of latitude and habitat, and the

sequential effects of body size and raptor abundance to ascertain

whether latitudinal and habitat effects changed when raptor

abundance effects were included first.

We evaluated the magnitude of associations between FID and

predictor variables based on effect sizes and its 95% CI, as

computed from P values of t-tests according to Cohen [47].

Latitudinal Gradient in Flight Initiation Distance
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Cohen’s criteria were small (Pearson r ,0.10, explaining ,1% of

the variance), intermediate (r = 0.11–0.49, 9–24% of the variance)

and large (r .0.50, 25% or more of the variance) effect sizes.

Results

Summary Statistics for FID and Latitude
We obtained information on FID from 714 populations

belonging to 159 species, with the total number of individual

estimates of flight distance being 12,495 (Table S1). The number

of estimates per species ranged from 1 to 1474, mean (SE) = 79 (9).

There were 430 estimates from rural and 284 from urban

populations. Latitude ranged from 37uN to 66uN, or 29u6111 km

per degree = 3,220 km, with climate ranging from subtropical to

subarctic. Mean FID in the 714 populations ranged from 1 to

180 m, mean (SE) = 11.46 m (1.03; back-transformed from log10-

transformed data), with a highly significant effect of species

(F = 3.06, df = 158, 555, R2 = 0.47, P,0.0001).

Raptor Density and Latitude
The abundance of raptors decreased significantly with increas-

ing latitude when analyzing abundance at point counts (GLM;

F = 12.08, df = 1, 2425, P = 0.0005) and was smaller in urban than

in rural habitats (F = 5.51, df = 1, 2425, P = 0.019; least square

mean for rural habitats: 0.0659 birds/census point (SE = 0.0080);

least square mean for urban habitats: 0.0397 birds/census point

(0.0077)). Mean density of raptors at the nine sites showed a

significant trend with decreasing abundance at higher latitudes

(Fig. 2; GLM: F = 5.67, df = 1, 7, P = 0.032) with a large effect size

(r = 0.506; 95% CI: 0.052–0.787). This decreasing trend did not

differ among paired urban and rural sites (F = 1.19, df = 1, 7,

P = 0.293; Fig. 2).

FID and Latitude
Log-transformed mean FID of bird populations decreased with

increasing latitude (Fig. 3), with an intermediate effect size (ca. 5%)

after accounting for significant positive effect of body mass on FID

as well as for phylogenetic effects (Table 1). Thus, anti-predator

behavior decreased in intensity at higher latitudes. There was a

highly significant difference in mean FID between populations of

the same species from rural and urban habitats (mean (SE)

rural = 13.34 m (1.05); urban = 7.12 m (1.05); paired t-test,

t = 213.99, df = 229, P,0.0001), with a large effect size of 27%

after accounting for body mass and phylogeny (Table 1). Finally,

the difference in mean FID between rural and urban habitats

decreased with increasing latitude (Fig. 3), with a small effect size

(0.8%) after adjusting for the effect of body mass and phylogeny

(Table 1).

Log-transformed mean FID of bird populations increased with

increasing raptor abundance (F1,712 = 76.79, P,0.0001), with an

intermediate effect size (ca 10%; r = 0.315; 95% CI: 0.247–0.380),

after accounting for phylogenetic and body size effects by means of

a sequential PGLS model including body size and raptor

abundance. This model had the statistics F2,711 = 49.54, Adjusted

R2 = 0.12, P,0.0001, AIC = 301.99, and phylogenetic scaling

parameter (l) = 0.472, P,0.0001. Latitudinal and habitat effects

were still significant when accounting for the effects of raptor

abundance (Table 2), but effect sizes decreased to small and

intermediate, respectively (1.4 and 24%, respectively). The model

including raptor abundance, latitude and habitat fitted signifi-

cantly better to the data than the model not including this factor

(DAIC = 113.03–106.84 = 6.19; Tables 1 and 2) and the model

including only raptor abundance effects (DAIC = 301.99–

106.84 = 195.15).

Discussion

We have shown that flight initiation distance (FID) of birds

when approached by a human, which constitutes an important

component of anti-predator behavior, showed a clear-cut latitu-

dinal gradient in Europe, after accounting statistically for factors

influencing FID such as body size, habitat (urban or rural) or

phylogenetic effects. This behavioral gradient was consistent

among bird species and matched partially local changes in avian

predator abundance. Overall, our study thus provides the first

empirical documentation of a latitudinal trend in predator-prey

interactions. Such a gradient may potentially influence the

composition and structure of prey communities [7].

The latitudinal trend in anti-predator behavior paralleled

latitudinal changes in raptor abundance, and varied depending

on whether the study population was urban or rural, with smaller

differences between rural and urban habitats at high latitudes,

where overall raptor abundance was smaller. These findings show

that anti-predator behavior consistently varied with latitude,

apparently in response to latitudinal differences in predation risk

[12]. Additionally, they highlight that the observed changes in

anti-predator behavior detected in other studies due to the process

of urbanization [30,31] could depend on latitude too. However,

predation risk, as measured by local estimates of raptor

abundance, did not fully explain latitudinal and habitat differences

in anti-predator behavior, as the most parsimonious model also

included additional small effects of latitude per se and intermediate

effects of habitat. In fact, the relationship between predator

abundance and FID seemed to hold mainly for rural habitats

along the sampled latitudinal gradient, whereas latitudinal changes

in both FID and raptor abundance were much smaller in nearby

Figure 2. Mean (± SE) index of abundance of raptors in relation
to latitude. Data are for paired rural (closed circles, continuous line)
and urban (open circles, pointed line) sites. The index of abundance was
estimated as the mean number of individuals detected at 25–50 point
counts (depending on urban area size) each lasting five minutes. Lines
are linear regression lines based on mean values. Symbols have been
slightly displaced above (urban) and below (rural) real latitudes to
improve clarity.
doi:10.1371/journal.pone.0064634.g002
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urban sites (Figs. 2 and 3). We suggest that effects of other

predators may account for additional variance.

Urban populations had consistently shorter flight distances than

nearby rural populations, as found in previous studies of birds

[32,33], with the mean estimate being 7.1 m for urban birds and

13.3 m for rural birds, or an almost two-fold difference. There was

an independent positive relationship between flight distance and

body mass, with a large effect size after accounting for

phylogenetic effects (Table 1). While many traits are correlated

with body mass, thus making interpretation of this effect difficult, a

greater difference in flight distance in large species may be

attributed to smaller local population sizes, larger founder effects

and elevated probability of local adaptation to urban conditions.

Alternatively, large species have longer flight distances than small

species [33,48], and such large flight distances may be particularly

energetically costly due to the disproportionately high costs of

short flights that may reach a level 23 times higher than basal

metabolic rate [49]. Thus, selection for adaptation to urban

conditions will be particularly intense in large species due to

frequent disturbance and flight, and relatively large reductions in

flight distance of urban compared to rural populations in large

species are consistent with this interpretation. Incidentally, this

Figure 3. Mean FID (m) in relation to latitude for different populations and species of birds. Data are for paired rural (closed circles,
continuous line) and urban (open circles, pointed line) sites. Lines are linear regression lines. Symbols have been slightly displaced above (urban) and
below (rural) real latitudes to improve clarity.
doi:10.1371/journal.pone.0064634.g003

Table 1. Flight initiation distance in relation to latitude,
habitat (coded as 0 = rural or 1 = urban) and the interaction
between latitude and habitat in European birds, after
correcting for phylogenetic relationships among the sampled
species by means of phylogenetic generalized least square
regression (PGLS) models and for body size effects by mean of
sequential (Type I) Sum of Squares (SS).

Source df SS F P Effect size (r; 95%CI)

Body mass (log) 1 46.90 403.32 ,0.0001 0.603 (0.554–0.648)

Latitude 1 7.44 64.01 ,0.0001 0.219 (0.222–0.357)

Habitat 1 31.04 267.02 ,0.0001 0.524 (0.470–0.577)

Latitude6Habitat 1 0.55 4.72 0.0174 0.090 (0.020–0.162)

Error 710 82.54

The model had the statistics F = 88.10, Adjusted R2 = 0.33, P,0.0001,
AIC = 113.03. Phylogenetic scaling parameter (l) = 0.472, P,0.0001. Effect sizes
and their 95% CI were computed from P values of tests following [50].
doi:10.1371/journal.pone.0064634.t001
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body size effect contributes to explain why urban areas are safer

for prey, as avian predators are more affected by human

disturbance in cities than their smaller-sized prey [48].

We predicted that interspecific interactions as reflected by the

abundance of raptors are more important at southern latitudes, as

the relative importance of abiotic (i.e. climatic) vs. biotic factors

(i.e. competition, predation) on prey would decrease at lower

latitudes. The observation that differences in FID between rural

and urban habitats decreased towards the north (in the northern

hemisphere) supports this prediction. Thus, our findings suggest

that differences in abundance of raptors contributed to explain the

difference in FID between rural and urban habitats along the

latitudinal gradient across Europe. These findings are also

consistent with the original suggestions by Janzen, Connell and

MacArthur [1–3] that biotic interactions are important at lower

latitudes, while abiotic factors are more important at higher

latitudes.

In conclusion, we have shown that flight distance in birds, when

approached by a human (an important component of anti-

predator behavior) decreased with latitude, although varying

among species and between rural and urban sites locally.

Differences in flight distance between rural and urban habitats

decreased with increasing latitude Overall, we have demonstrated

for the first time a consistent spatial pattern of anti-predator

behavior over a wide latitudinal and land-use gradient, with

potential relevant effects on prey communities with different

susceptibilities to predation.
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