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Abstract

In recent years, several approaches to develop computer aided diagnosis (CAD) systems for dementia have been proposed.
Some of these systems analyze neurological brain images by means of machine learning algorithms in order to find the
patterns that characterize the disorder, and a few combine several imaging modalities to improve the diagnostic accuracy.
However, they usually do not use neuropsychological testing data in that analysis. The purpose of this work is to measure
the advantages of using not only neuroimages as data source in CAD systems for dementia but also neuropsychological
scores. To this aim, we compared the accuracy rates achieved by systems that use neuropsychological scores beside the
imaging data in the classification step and systems that use only one of these data sources. In order to address the small
sample size problem and facilitate the data combination, a dimensionality reduction step (implemented using three
different algorithms) was also applied on the imaging data. After each image is summarized in a reduced set of image
features, the data sources were combined and classified using three different data combination approaches and a Support
Vector Machine classifier. That way, by testing different dimensionality reduction methods and several data combination
approaches, we aim not only highlighting the advantages of using neuropsychological scores in the classification, but also
implementing the most accurate computer system for early dementia detention. The accuracy of the CAD systems were
estimated using a database with records from 46 subjects, diagnosed with MCI or AD. A peak accuracy rate of 89% was
obtained. In all cases the accuracy achieved using both, neuropsychological scores and imaging data, was substantially
higher than the one obtained using only the imaging data.
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Introduction

Dementia is one of the most common neurodegenerative

disorders in elderly and it is expected that its prevalence increases

in the near future, mainly due to the aging population in

developed nations [1]. An early and accurate diagnosis will allow

patients to benefit from new treatments or strategies that may

delay the progress of the disease [2–7]. In recent years, many

computer-aided diagnosis (CAD) systems for neurodegenerative

disorders have been presented [5,8–10]. Based on the assumption

that pathological manifestations of these disorders appear some

years before subjects become symptomatic [11,12], they try to

diagnose them even before the classical diagnosis procedure based

on neuropsychological tests does.

Several approaches have been used to develop a CAD system

for dementia. The most familiar approach to the neuroimaging

community is univariate statistical testing which analyzes sepa-

rately each voxel of the brain images, for example performed with

the Statistical Parametric Mapping (SPM) [13] package. Such

univariate processing can somehow also be used for diagnosis by

comparing the subject under study and the control group [4,6,14].

On the other hand, multivariate approaches analyze all the voxels

together, taking into account the relations between voxels to

output a prediction [10,15,16]. The growth of the multivariate

systems is mostly due to the recent advances on machine learning

[17] which provide more reliable statistical classifiers, with a

higher ability to address the small sample size problem [18]. This

problem can also be addressed by means of a feature extraction

technique that reduces the huge amount of data contained in a

brain image into a relatively small unidimensional vector. In this

case, the structure of the CAD systems based on neuroimaging and

machine learning is as follows: After the preprocessing of the

images (which involves the spatial registration and the intensity

normalization), an algorithm is applied to select and summarize

the relevant information. This information is rearranged in a

vector and used as feature for the classification step. Finally, a

classifier is used to separate pathological and control subjects. In

terms of neuroimaging modalities, researches have used both

structural [2,19] and functional data [9], including nuclear

imaging modalities such as PET [5,20] and SPECT [3,7].

In this work, we study the benefits of taking into account the

information derived from neuropsychological tests in the devel-

opment of computer systems to aid the diagnosis of dementia.
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Recently, some studies that combine data from different image

modalities, even that include biological measures such as

cerebrospinal fluid (CSF) assays [21] have been presented, but

the use of neuropsychological scores along the imaging data have

not yet been fully explored. We hypothesized that using such

information in the development of CAD systems for dementia will

improve their accuracy since neuropsychological testing is of great

importance for identifying the cognitive profiles characteristic of a

diagnosis [22] and, in fact, it has been classically used to diagnose

the dementia. In addition, neuropsychological tests are relatively

inexpensive and totally innocuous for the patients, compared to

nuclear medicine imaging. In order to validate this hypothesis, we

evaluated the accuracy of several CAD systems for AD.

Specifically, the developed systems attempt to distinguish patients

with stable Mild Cognitive Impairment (MCI) from those whose

disease evolves to AD in the next few years, who therefore may be

considered as ‘‘early AD’’. Several approaches were used to

combine the information from neuropsychological tests and

functional brain images. In addition, three dimensionality

reduction methods were applied to the images before the

combination, pursuing two goals. On the one hand, the reduction

allows to overcome the small sample size problem and, on the

other hand, it allows to address the large difference between the

dimensionality of one image and the number of neuropsycholog-

ical scores for one subject. By means of a leave-one-out cross-

validation scheme, the accuracy rates obtained by these systems

were estimated and compared with the ones obtained by similar

systems that only use the imaging data or the neuropsychological

scores in the classification.

Materials and Methods

Ethics Statement
Each patient (or a close relative) gave written informed consent

to participate in the study and the protocol was accepted by the

University Ethics Committee in Liege. All the data were

anonymized by the clinicians who acquired them before being

considered in this work. Nowadays, the data are hosted in the

Cyclotron Research Centre (Belgium) but they will be entered to

the European Alzheimer Disease Consortium database (please visit

www.eadc.info for further information) once published. That way

the data will be available for the scientific community.

Database
A database collected during a recent longitudinal study was used

to evaluate our proposed approach. It includes data from 46

subjects who were originally diagnosed with MCI (see the

demographic details in Table 1): one Positron Emission Tomog-

raphy (PET) image and five neuropsychological scores were

acquired per subject. In addition the Mini Mental State

Examination (MMSE) score [23] and the age of the patients were

considered. The acquisition of the PET images were performed 30

minutes after injection of the 18F-FDG radiopharmaceutical, by

means of a Siemens CTI 951 R 16/31 gamma camera. Three

neuropsychological scores were derived from a verbal cued recall

memory task, reflecting respectively the efficiency of memory

encoding (immediate recall), long-term episodic memory (cued

recall) and monitoring capacities (intrusions). This task, that

provides support at both encoding and retrieval, previously proved

to efficiently discriminate between healthy older adults and AD

patients, as well as between stable MCI and converters [24,25].

The other two neuropsychological scores were phonemic (letter P)

and semantic (animals) verbal fluency measures, as an index of

executive functioning. These measures were included as impaired

executive functioning and semantic memory are also sensitive

markers of decline in MCI [26,27].

The subjects were monitored during the following years and

neuropsychological tests were repeated periodically. Based on

these periodical tests, the diagnosis of some patients changed to

AD. In order to label the initial data (PET images and

neuropsychological scores from the first diagnosis) as pertaining

to stable MCI or (early) converter, and taking into account the fact

that even patients who were stable several years after inclusion

may develop AD at some unknown point in the future, a time limit

to consider the conversions should be fixed. Figure 1 shows the

evolution of the diagnosis of the studied subjects during the 6 years

after the database creation. As can be noticed, there were a lot of

conversions during the first 3 years but later on, the number of

MCI subjects decreased in a much slower way. The initial data

were therefore labeled using the diagnosis after 3 years: 26 subjects

were labeled as ‘‘MCI become AD’’ or ‘‘AD’’ for short, whereas

the remaining 20 subjects were labeled as ‘‘MCI stable’’ or simply

‘‘MCI’’. The study therefore focuses on early converters,

consistently with the interest of detecting relatively fast decline in

clinical practice.

After the acquisition and a proper reconstruction, all the PET

images were spatially normalized using the template matching

approach implemented in SPM5 [13,28,29]. In order to ensure an

accurate normalization of our images from old adults, the

normalization procedure was run twice. Firstly, using the template

provided by SPM5 (built with images from young healthy adults)

and, secondly, using an ad hoc template computed as the average of

all our images (after the first spatial normalization). The intensity

normalization was performed by scaling the intensities of each

image with respect to the intensity values obtained in the

cerebellum. According to a recent study [30], this method is

superior to global normalization in identifying dementia patients

in comparison to control subjects. The cerebellar region was

delimited by means of the automatic anatomical labeling atlas

(AAL) [31], in a way similar to the procedure performed in [32].

Image Dimensionality Reduction
An important issue that should be addressed in the computer-

ized analysis of neuroimages is the so called small sample size

problem [18]: The high dimensionality of that kind of images

related to the (relatively low) number of images included in the

studies can lead to overfitting and poor generalization perfor-

mances. This problem can be addressed by means of dimension-

ality reduction techniques that summarize the information

contained in the images [5,33,34]. In this work, three dimension-

ality reduction algorithms based on several classical techniques

were considered:

Table 1. Database details.

MCI stable
MCI
become AD

Between-group
differences

Age 65.5567.76 72.4265.91 t(44)~3:41, pv0:01

Education (years) 11.9563.44 11.3864.40 t(44)~{0:47, p~0:63

MMSE 27.1061.62 25.2662.76 t(44)~{2:63, pv0:05

Gender (M/F) 10/10 11/15 Chi2~0:27, p~0:60

Demographic details of the subjects who participated in this study. Average
and standard deviation are given respectively for age, education and MMSE.
doi:10.1371/journal.pone.0088687.t001

AD Diagnosis Using PET Data and Neuropsych. Tests
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Dimensionality reduction based on Principal Component

Analysis (PCA). PCA [35] is a mathematical procedure that

rotates the axes of data space along the lines of maximum

variance. The axis of greatest variance are called principal

components. The dimensionality reduction of 3D images based

on PCA may be performed as follows [7]: Let X~½x1,x2,:::,xN � be

a set of N functional brain images in vector form. After

normalizing the images to unity norm and subtracting the mean,

a new set Y~½y1,y2,:::,yN � is obtained. The covariance matrix of

the normalized vectors set is defined as:

C~
1

N
YYt ð1Þ

Then, the eigenvector C and eigenvalue L matrices are

computed as CC~CL. Since the image size is greater than the

number of images, diagonalizing YtY instead of YYt reduces the

computational burden and the eigenvectors/eigenvalues decom-

position is reformulated as [36]:

(YtY)W~WL� ð2Þ

C�~YW ð3Þ

where L�~diag(l1,l2,:::,lN ) and C�~½C1,C2,:::CN � are the first

N eigenvalues and eigenvectors respectively. Finally, the images

are modeled by projecting them over those eigenvectors (a.k.a.

principal components).

Dimensionality reduction based on Partial Least Squares

(PLS). PLS is a statistical method for modeling relations

between sets of observed variables by means of latent variables

[37]. The underlying assumption is that the observed data is

generated by a system or process which is driven by a small

number of latent (not directly observed or measured) variables. In

that sense, it is similar to PCA (in fact, both are based on the

singular value decomposition) however PLS performs the decom-

position so that covariance between the data and a set of

properties of the data is maximum. Mathematically, PLS is a

linear algorithm for modeling the relation between two data sets

X5RN and Y5RM . After observing n data samples from each

block of variables, PLS decomposes the n|N matrix of zero-mean

variables, X, and the n|M matrix of zero-mean variables, Y, into

the form:

X~TPTzE

Y~UQTzF
ð4Þ

where the T and U are n|p matrices of the p extracted score

vectors (also known as components or latent vectors), the N|p
matrix P and the M|p matrix Q are the matrices of loadings and

the n|N matrix E and the n|M matrix F are the matrices of

residuals (or error matrices).

PLS may be used for dimensionality reduction of PET images

by performing the decomposition of the intensity values (matrix X)

and the image labels (matrix Y). The x-scores in T are linear

combinations of the x-variables and can be considered as a good

summary of X. In addition, performing the composition that way

maximizes the covariance between the images and their labels,

thus x-scores contains the relevant information for a further

classification step [5].
Dimensionality reduction based on Independent

Component Analysis (ICA). ICA is a computational method

to express a set of random variables as linear combinations of

statistically independent component variables. Its main applica-

tions are blind source separation and feature extraction. In its

linear form, the problem consists on finding the sources S which,

when mixing using a weight matrix A, provide the vector X of

observed variables:

X~AS ð5Þ

where the sources S~(s1,s2,:::,sn) are assumed to be statistically

independent. In order to estimate both the mixing matrix A and

the sources S, ICA adaptively calculates the matrix W~A{1

Figure 1. Evolution of the patients’ diagnosis. Number of subjects whose diagnosis changed to AD during the 6 years after the beginning of
the study.
doi:10.1371/journal.pone.0088687.g001
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which either maximizes the nongaussianity or minimizes the

mutual information [34]. This technique has been successfully

applied to dimension reduction problems by projecting the data

into its independent components, performing that way the

reduction [34].

PCA-, PLS- and ICA-based methodologies allow the reduction

of a neuroimage to a vector of scores which size is related to the

total number of images used in the study. A further reduction of

the image dimensionality may be performed by selecting only the

most important scores or components. The importance of the

components may be estimated through several methods. In this

work, the importance of the PCA components was estimated by

their contribution to the total variance of the image set.

Specifically, we selected as few components as possible to gather

75% of the total variance. This threshold was estimated through

cross-validation to get the highest accuracy in the subsequent

classification procedure. Similarly, we used cross-validation to

select which scores/components would be taken into account with

the PLS and ICA approaches. However, in these methods, the

variance does not plays the same role as in PCA, thus we used the

Fisher Discriminant Ratio (FDR) instead. Specifically, we selected

as few components as possible so that the sum of the FDR of the

selected components is 85% of the total FDR (the sum of the FDR

value of all the components). As in the PCA case, this percentage

was selected through cross-validation.

FDR [38] is a separability criterion derived from Fisher

Discriminant Analysis (FDA) and widely used in pattern recogni-

tion problems [7,39,40]. Its main idea can be briefly described as

follows. Suppose that there are two kinds of sample points in a d-

dimension data space. FDR is a measure of the separability

between the points of two classes when you project the data over a

given direction in the original space. For feature selection

purposes, the following formula is first applied to each feature

and then the features with highest FDR value are selected:

FDR~
(m1{m2)2

s2
1zs2

2

ð6Þ

where mi and si denote, respectively, the mean and the variance

for the i-th class samples.

Combining PET Data and Neuropsychological Scores
Brain PET images and neuropsychological tests provide

information of different nature (values are in different range and

should be interpreted in a different manner) and the combination

of both sources should accounts for this. According to the

literature, the combination of heterogeneous data sources in a

classification procedure may be performed at three levels [41,42]:

before, during or after the classification step. These three

theoretical approaches, illustrated in Figure 2, have been

implemented in this work as follows:

Early integration. The information from both sources is

combined before the classification step into a single feature vector

per subject. This vector contains the neuropsychological scores

and the image features, i.e. the result of applying one of the

dimensionality reduction methods described above to the brain

image. Specifically, the feature vector is built by concatenating the

neuropsychological scores (including MMSE and age where

appropriate) and the image features:

Vi~(si1
,si2

,:::,sim ,fi1
,fi2

,:::fin ) ð7Þ

where Vi, (si1
,si2

,:::,sim ) and (fi1
,fi2

,:::,fin ) are, respectively, the

feature vector, the neuropsychological scores and image features

for subject i.

Figure 2. Data flow of CAD systems for neurodegenerative disorders. Comparison between the classical approach used in most part of CAD
systems for AD and the proposed approach, which consists of taking into account the neuropsychological test data along the brain images. Last
three rows show the differences between the ways of integrating in the system the data from the neuroimages and from the neuropsychological
tests.
doi:10.1371/journal.pone.0088687.g002
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Intermediate integration. In this approach, a.k.a. multi-

kernel classification [42], the combination is performed inside the

classifier by using two kernel matrices, one per data source. A key

question in this approach is the way in which the kernel matrices

are combined. Linear [43,44], non-linear [45,46] and data-

dependent [47,48] approaches have been proposed. Here, we

propose to apply a linear weighted function, which works fine in

experiments with small databases like the one used in this work.

The combination function is:

k(xi,xj)~
XP

m~1

wmkm(xm
i ,xm

j ) ð8Þ

where P~2 is the number of kernels; wm stand for the weight for

kernel km; xi, xj are two feature vectors and xm
i , xm

j are subset of

xi, xj with only the features used for kernel km.

Late integration. An individual classifier is used for each

data source, and the final output prediction is estimated by

combining the outputs of all the classifiers. This combination is

performed by considering the confidence of each estimation. Since

we used Support Vector Machine (SVM) [49] classifiers, the

confidence of the estimations were computed by means of the

distance to the maximal margin hyperplane. Specifically, two

classes, cs and cf , were estimated for each subject using

respectively the neuropsychological scores (si1 ,si2 ,:::,sim ) and the

image features (fi1 ,fi2 ,:::,fin ). Along the class labels, the distances to

the separation hyperplanes defined by the classifiers, ds and df ,

were computed. Finally, the class cx such that dx~max(ds,df ),

x[fs,f g was taken into account; the other one was discarded. In

the (very unlikely) case of ds~df , the class corresponding to the

classification with higher accuracy in individual experiments (using

only one data source) was selected.

Results

In order to not only measure the improvements of using

neuropsychological testing data along the images, but also find the

most accurate CAD system for early AD, all possible combinations

of dimensionality reduction methods and data sources integrations

were evaluated. For the classification step, a SVM classifier was

used as done for similar problems [5,7,9]. The accuracy rates,

gathered in the table 2, were estimated through a leave-one-out

procedure. In all cases, the parameters needed were computed by

maximizing the accuracy in a previous cross-validation loop. For

example, for the cost parameter of the SVM classifier, C, values of

C~2i with i[f{3,:::,5g were used. For the kernel, linear and

non-linear functions were tested. Except for the multikernel

approaches, the classifiers using a linear kernel always outper-

formed those with a non-linear kernel. In the late integration

approach, we used the classification parameters that had achieved

Table 2. Classification rates.

Approach
Dim. red.
method Accuracy Sensitivity Specificity Positive Negative

Likelihood Likelihood

Only images PCA 73.91% 76.92% 70.00% 2.56 0.33

PLS 78.26% 84.62% 70.00% 2.82 0.22

ICA 69.57% 76.92% 60.00% 1.92 0.38

Only psych. scores – 73.91% 73.08% 75.00% 2.92 0.36

Psych. sc.+MMSE+Age – 84.78% 84.62% 85.00% 5.64 0.18

Images and PCA 80.43% 84.62% 75.00% 3.38 0.21

psych. scores PLS 84.78% 88.46% 80.00% 4.42 0.14

(Early integration) ICA 76.09% 80.77% 70.00% 2.69 0.27

Images and psych. PCA 80.43% 84.62% 75.00% 3.38 0.21

scores+MMSE+Age PLS 84.78% 88.46% 80.00% 4.42 0.14

(Early integration) ICA 73.91% 76.92% 70.00% 2.56 0.33

Images and PCA 82.61% 92.31% 70.00% 3.08 0.11

psych. scores PLS 84.78% 88.46% 80.00% 4.42 0.14

(Interm. integration) ICA 82.61% 84.62% 80.00% 4.23 0.19

Images and psych. PCA 89.13% 92.31% 85.00% 6.15 0.09

scores+MMSE+Age PLS 89.13% 92.31% 85.00% 6.15 0.09

(Interm. integration) ICA 89.13% 92.31% 85.00% 6.15 0.09

Images and PCA 86.96% 92.31% 80.00% 4.62 0.10

psych. scores PLS 84.78% 88.46% 80.00% 4.42 0.14

(Late integration) ICA 80.43% 80.77% 80.00% 4.04 0.24

Images and psych. PCA 89.13% 92.31% 85.00% 6.15 0.09

scores+MMSE+Age PLS 89.13% 92.31% 85.00% 6.15 0.09

(Late integration) ICA 89.13% 92.31% 85.00% 6.15 0.09

Accuracy, sensitivity, specificity and positive and negative likelihoods for the systems implemented. These rates were estimated by means of a leave-one-out cross-
validation scheme and using the database described above.
doi:10.1371/journal.pone.0088687.t002
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the best results in the individual experiments (only images and only

neuropsychological scores) for each of the two classifiers.

All the experiments that involve the neuropsychological scores

were run twice: using only the five neuropsychological scores

described above and including the MMSE score and the age as

two additional neuropsychological scores. That way, it is possible

to measure the influence of those five neuropsychological scores in

the classification.

In order to highlight the difference between the solutions using

or not neuropsychological scores, MMSE score and age, a further

comparison was performed by means of the Receiver Operating

Characteristic (ROC) curves for the three approaches: using only

the neuropsychological scores, using only the imaging data and

using both the neuropsychological scores and the imaging data (see

figure 3). A ROC curve is a plot of the trade off achieved between

sensitivity and specificity for a classification procedure. The

optimal solution is located in the upper left corner and corresponds

to a sensitivity and specificity of 100%. Therefore the closer the

ROC curve is to the upper left corner, the higher the overall

Figure 3. Comparison of the trade off between sensitivity and specificity. ROC curves for the three cases analyzed: using only images, using
only neuropsychological scores and using both images and neuropsychological scores (including three approaches: early, intermediate and late
integration). The area under the curve (AUC) is shown in the legend.
doi:10.1371/journal.pone.0088687.g003

Figure 4. Histograms of the non-parametric test. Histogram of the accuracy rates achieved by using randomly generated neuropsychological
scores (1000 repetitions) and the late integration approach. Red lines are the accuracies associated with a p-value of 0:05. Blue lines are the accuracies
for the late integration approach reported in table 2.
doi:10.1371/journal.pone.0088687.g004

AD Diagnosis Using PET Data and Neuropsych. Tests
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accuracy of the procedure [50]. A value to measure this accuracy

is provided by the area under the curve (AUC).

Finally, a non-parametric test [51] was performed to assess the

statistical difference between the accuracy rates obtained by the

proposed and the previous approaches, i.e. by using neuropsy-

chological scores beside the imaging data or only the imaging data.

1000 sets of random neuropsychological scores (same range as the

original ones) were generated, then classifier was trained with these

random scores (and the image features) and the accuracy

estimated. The histograms for all the PCA-, PLS- and ICA-based

systems are shown in Figure 4. A p{value was then calculated as

the number of cases where the accuracy obtained with the random

scores was larger than that obtained with the true scores, divided

by 1000, i.e. the probability of obtaining a better accuracy with a

random score. As the result, p{values of 0:003, v0:001 and

0:002 were obtained for the PCA-, PLS- and ICA- based CAD

systems respectively.

Discussion

The aims of this work were, in the one hand, to measure the

advantages of using neuropsychological testing data in the

neuroimaging-based CAD systems (which usually use only imaging

data) for neurodegenerative disorders and, on the other hand, to

develop the more accurate CAD system for early AD to date. In

light of the results shown in table 2, we can say that taking into

account the information from neuropsychological tests improves

the accuracy of the analyzed CAD systems. That improvement is

achieved by using different ways of combining the data and does

not depend on the processing applied to the neuroimages, i.e. the

dimensionality reduction algorithm employed. For example, the

PCA-based systems provide an accuracy of 73.9% when only

images are used, and an accuracy close to 90% when neuropsy-

chological scores, MMSE and age are taken into account. Even

when MMSE and age are not used, the accuracy of the systems is

about 10% higher using both sources than using only imaging

data. This fact also corroborates the validity for the diagnosis of

the five neuropsychological scores described in the material and

methods section. It is worth noting that the improved accuracy is

due to higher value of both sensitivity and specificity rates,

achieving a good balance between these measures when the data

from both sources is included.

Regarding the comparison of using only neuropsychological

scores or using neuropsychological scores and imaging data, two

cases are considered. On the one hand, if the MMSE score and

the age are used in the classification, there is no large difference in

terms of accuracy between both approaches. In fact, the accuracy

rate for the early integration methodology is smaller or equal than

the one for using only neuropsychological scores. For intermediate

and late integration approaches, the inclusion of the imaging data

provides an increase of accuracy about 5%. The differences

between the combination methods are due to the nature of them.

Whereas in intermediate and late integration, both data sources

have a priori similar weights in the final decision, in early

integration the weight of imaging data is usually higher since the

number of features related to them is larger than the number of

neuropsychological scores (see equation 7). The high accuracy

rates achieved in general when MMSE and age are added in the

classification are due to the significant differences between our

groups that exist in these two variables (as shown in table 1). In

some sense, this is a limitation of the data used and unfortunately

cannot be corrected in a multivariate analysis [52]. On the other

hand, if the MMSE score and the age are not included in the

classification the combination of both, neuropsychological scores

and imaging data, provide an increase about 10% in the accuracy

of the systems.

The second objective is not easy to verify since the comparison

between the accuracy rates highly depend on the database used to

estimate them, and small differences may not be statistically

significative (in our case, all the AD subjects are borderline subjects

and, in fact, they had been diagnosed with MCI a short time

before). Nevertheless a rough comparison may be drawn with

some previous works. In [53] the authors classify MCI converter

versus MCI non-converter using magnetic resonance imaging

(MRI) and cerebrospinal fluid biomarkers. The accuracy reported

is about 60%, distinctly lower than the one achieved in this work.

In [54] a multimodal approach that uses MRI, diffusion tensor

and PET imaging to separate MCI and AD subjects is presented.

They obtained a peak accuracy of 73.5%, also far from the peak

accuracy rates achieved in this work. Finally, in [55] an accuracy

rate about 75–80% (with a maximum of 81.5%) is reported when

they classify MCI converter versus MCI non-converter from the

ADNI database. These results are near to the ones obtained here,

however the inclusion of the neuropsychological testing data

allowed to achieve average rates over 80% and higher peak values.

Regarding the combination approaches, we should evaluate

them not only in terms of accuracy but also in terms of efficiency

and simplicity. In terms of accuracy, the intermediate and late

integration methodologies yield similar rates, with peak values of

89%, whereas the peak value for the early integration approach is

close to 85%. Anyway, where the MMSE score and the age are

not considered the differences between three approaches are

smaller and the early integration approach has the advantage of

being the simplest one.

The ROC analysis (Figure 3) provides other way of measuring

the differences of using both data sources together. This figure

confirms the higher accuracy of the methods that consider the

neuropsychological testing data and shows that they provide an

adequate trade-off between sensitivity and specificity. The non-

parametric test allows to compute significance measures (p-values)

for the classification procedure. Specifically, it estimates if the

probability of the improvement achieved by introducing the

neuropsychological scores is due to chance. The obtained values

(0:003, v0:001 and 0:002 for systems based on PCA, PLS and

ICA respectively) discard this possibility and confirms the interest

of combining imaging and neuropsychological data for differen-

tiating our patients’ groups, instead of using only imaging data.
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