
Escuela Técnica Superior de
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Abstract

The main goal of this thesis is the development of visual techniques that

could be useful in order to establish a natural interaction between people

and robots. In this context, “natural” interaction means an interaction

similar to the ones existing between humans. Therefore, efforts were put in

making it possible for a robot equipped with a Stereo Vision (SV) system

to study and analyse the behavior of those people which are located in its

surroundings.

The motivation behind this goal is to give robots the ability to behave

and choose between actions as any human would do. This means performing

several tasks such as: being able to detect and track people on the surround-

ings of the robot and accurately detecting who is potentially interested on

the actions executed by the robot and/or responding to them. Furthermore,

by doing so, robots may use their resources more adequately and even im-

prove their decision capabilities and communication methodologies while

achieving a kind of behavior similar to the human behavior.

To achieve this kind of Human-Robot Interaction (HRI) different tech-

niques are detailed. These techniques contribute to solve several issues

inherent to this field. In particular, Soft Computing (SC) techniques are

employed to deal with uncertainty and vagueness as well as to represent

variables and rules in a human oriented way. Image analysis techniques are

also employed to extract relevant information from the scene. All of them

allow the enhancing of the socialisation of robots.

The purpose of this work is twofold. First, detection and tracking of

people that are located in the surroundings of the robot, are done. Second,

computing whether a person is interested in interacting with the robot, re-

questing its attention or responding to its actions, is carried out. This

is done by analysing typical interaction cues between humans such as: the

distance between interlocutors, head pose, arms shaking, head shaking/nod-

ix



ding and smiling.

To achieve the first goal, two different methods are presented: one based

in a probabilistic approach and a second one based on a “possibilistic” ap-

proach. The probabilistic method presents a novel approach for person

tracking which combines depth, color and gradient information based on

stereo vision. The degree of confidence assigned to depth information in

the tracking process varies according to the amount of stereo information

found in the disparity map. A novel confidence measure is defined for it

and the tracking is carried out using Particle Filter (PF) techniques. The

second method, based on a possibilistic approach, is employed to add more

information based on expert knowledge, when evaluating the particles, and

without being confined to the probabilistic models. This approach also uses

Fuzzy Logic (FL) when managing stereo information in order to improve

the people detection phase. Thus, in the people detection phase, two fuzzy

systems are used to filter out false positives of a face detector. Then, in the

tracking phase, a new Fuzzy Logic based Particle Filter (FLPF) is proposed

to fuse stereo and color information assigning different confidence levels to

each of these information sources. Information regarding depth and occlu-

sion is used to create these confidence levels. This way, the system is able

to keep track of people, in the reference camera image, even when either

stereo information or color information is confusing or not reliable.

Considering a robot as an intelligent system, the determination of some

typical interaction situations is an interesting ability to implement. There-

fore, to achieve the second goal, a method based in several cues, namely the

distance and angle towards the robot and the person head pose, is presen-

ted. The head pose is estimated in realtime by a view based approach using

Support Vector Machines (SVM) while a Fuzzy System(s) (FS) is used to

compute the final interest value, based on the three mentioned variables.

Whenever the level of interest achieves a high value, the person is analysed

in more detail to detect the position and the motions of the arms as well

as whether the person is shaking or nodding the head. This information is

managed by a fuzzy system in order to detect a possible interest demand

or the intention of the person to say yes or no using his/her head. Some

of the above mentioned sources of information are used together with smile

detection, in the last work mentioned in this thesis, to build a system based

on FL which is able to measure certain types of human response. As the re-

liability of the visual information detected by the system mainly depends on

the distance of the person towards the camera, we prioritise different visual

cues according to the distance of the user towards the robot. The human



response is computed by means of a hierarchical fuzzy system that is able to

deal with the uncertainty and vagueness of the measures depending on the

distance of person. This human response measure is used for detecting the

person or people which are responding to the social interactions proposed

by the robot and it might be also used to improve or adjust the interaction

skills of the robot in the future.

Keywords:

People Detection, People Tracking, Interest Detection, Human Robot Inter-

action, Human Response, Fuzzy Logic, Stereo Vision, Particle Filter
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Preamble

For an Artificial System to act in a “natural” way, there are certain steps

that should be performed analogously to the way humans behave. In this

work, it is assumed that the robot is completely immobile while the process

of interaction is carried out. The same condition applies to the stereo camera

which is static during that process. This supposition may be considered

acceptable as typically, a person who is analysing the behaviour of other

people and trying to understand their reaction to his or her interactions, as

it is the case of our robot, is usually immobile and paying attention to his

or her interlocutors. Obviously, that person may start moving during an

interaction, but it is not the aim of this work to make it possible for the

employed robot to move and to analyse the possible interaction demands

at the same time. Nevertheless, although the robot is immobile during the

interaction process, people may freely move in its surroundings.

The first step which is taken into consideration is the ability to correctly

detect and track people in its surroundings. People detection and tracking

can be done in various ways and with different kinds of hardware. When

computer vision is used, the system analyses the image and searches for

cues that provide important information for the detection of people. Those

cues could be, for instance, morphological characteristics of the human body

([HM03]) or dynamic skin colour models([SSA04]).

Nowadays, several methods employed for tracking people are based on

the colour information available from people cloths. Commonly, the first

step is to create a colour model of the person to be tracked. Then, through-

out a sequence of images, the position and size of the image region whose

colour model best matches the person colour model, is considered the new

position and size of that person. This technique is called adaptive tracking

and it is especially appropriate for tracking non-rigid targets, of which there

is no explicit model, or when the background estimation is not possible.
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As most of these techniques rely uniquely on colour information, they

present several drawbacks. The most important is the confusion between

two or more image areas that have the same colour distribution when they

are close to each other. Because there is no other information to distinguish

them, this issue can cause the system to confuse the objects being tracked.

This confusion can also happen with the background, if the tracker does not

have information about which parts in the image are part of the background.

In case background, or a part of it, has a colour distribution similar to the

person being tracked, the target can be lost. Finally, the situation where

the tracker assigns a subregion of the tracked person as the whole region

of the tracked person, may also happen. That becomes a problem when

determining the appropriate size of that person in the camera image, as a

part of the body of the person is identified as the whole person.

Some authors have proposed the use of stereo technology which nowadays

has been thoroughly studied and has become more common in computer

applications ([BBH03]). With the development of well consolidated techno-

logies and commercial hardware that deal with stereo computation issues,

this technique has turned out to be an important tool when developing com-

puter vision applications such as tracking algorithms. These algorithms can

take advantage of pixel distance information for solving problems that non-

stereo tracking algorithms present. Firstly, the possibility of knowing the

distance from the camera to the person can be of great help when tracking is

taking place. Secondly, distance information is less sensitive to illumination

changes than information provided by a single camera.

As soon as the problem of people detection and tracking is solved, other

problems should be studied in order to develop a robot with social capabil-

ities. By reading [FND03], one can acquire a general idea of how different

approaches contribute to solve the complex problem of making up a social

robot. As described in this reference, the range of issues that one has to

take into consideration varies from the design of the robot itself to its ac-

ceptation by the society, from the detection of emotions to the expression

of the robot emotions, from the possibility of simulating a personality to

the imitation of other personalities. In all cases, a social robot should be

prepared to communicate and analyse communication cues from its inter-

locutors to better accomplish these tasks. And it should do it the most

natural way, using natural cues.

Although different authors have contributed with several papers on this

field, as cited in [FND03] and in Section 1.3, there are still a wide range

of cues to explore which allow a more natural interaction between social



robots and humans. In this work, efforts are centred in recognising when

and how long a person is interested in establishing an interaction as well as

in determining the level of response of those people to the social interactions

proposed by the robot. In this task, several types of signals from the human

can be taken into account (both verbal and non-verbal). Some authors

[BFJ+05a] use sound source localization or speech recognition combined

with visual perception to detect which people are the most interested. In

other cases, facial expressions [SKKB01] or hand gestures [GNS+02] are

analysed. In this work a special interest is put in the analysis of a set

of typical interaction situations that can be integrated in a more complex

system in the future.

This work is based in one of the most important human senses used by

humans to percept its surroundings and to recognise interaction cues: vis-

ion. In addition, in order to properly work, this sensor does not oblige the

robot interlocutors to wear any special sensor, making it similar to the hu-

man way of perceiving actions. These different visual features are handled

by using another similar to human way of reasoning: fuzzy logic. More

specifically, various cues were defined in this work, which could naturally

indicate whether one or several people are interested or collaborating and

responding to an interaction. As visual cues to infer about interest detection

and human response, we use each detected person head pose towards the

robotic system, their arms shaking movement, as well as their smile. Fur-

thermore, in our opinion, people who try to interact with another person

avoid being occluded by other people or objects. In addition, a technique

to infer about basic shaking and nodding of the head (which might give

visual clues about an answer to a “YES” or “NO” type of question) is also

presented. As the reader may notice, these are “natural” types of cues that

are used on the daily routine of every person life when interacting with each

other.

In order to achieve our goals, several kind of restrictions had to be

taken into account. For instance, it is almost impossible to detect a smile

when someone is located at more than a couple of meters from the camera.

Another restriction is related to the impossibility to capture arm movement

whenever someone is too close to a fixed camera, as a considerable part of the

body is located outside the field of view of the camera. Therefore, it is simply

to understand that distance plays a key role when choosing which visual

features to privilege at each time. Thus, in the system hereby described,

the human response is computed by means of a hierarchical fuzzy system

that is able to deal with the uncertainty and vagueness of the measures



depending on the distance of person. By measuring this response, the robot

is potentially able to interact more naturally and to improve the proposed

activity.

Major Contributions

The work described in this thesis contributed with several advancements in

the area of Human-Robot Interaction (HRI). Different methodologies were

tested which may continue to be improved in the upcoming years. The main

contributions of this thesis are:

1. A novel method for people tracking based on Particle Filter (PF) that

integrates depth, color and gradient information to perform a robust

tracking. Since depth information cannot be always extracted because

of occlusions or absence of texture, our method is able to deal with

this problem by defining a certainty measure that indicates the degree

of confidence in depth information.

This contribution has been published in [MSAGSP07].

2. A system capable of detecting and tracking various people using a new

approach based on color, Stereo Vision (SV) and Fuzzy Logic (FL).

Initially, in the people detection phase, two fuzzy systems are used

to filter out false positives of a face detector. Then, in the tracking

phase, a new Fuzzy Logic based Particle Filter (FLPF) is proposed to

fuse stereo and color information assigning different confidence levels

to each of these information sources. Information regarding depth

and occlusion is used to create these confidence levels. This way, the

system is able to keep track of people, in the reference camera image,

even when either stereo information or color information are confusing

or not reliable.

This contribution has been published in [PAGSMS12].

3. A new fuzzy system that allows the visual detection of possible inter-

action demands and the shaking or nodding of the head. The level of

interest of a person to interact with the robot is calculated by analys-

ing his/her position, the pose of his/her head and their arms shaking

movement. The head pose is estimated in realtime by a view based

approach using Support Vector Machines (SVM).

This contribution has been published in [AGSG+07].



4. A system capable of measuring human response from people located

in the surroundings of a social robot using FL and SV. To achieve this

goal, the system analyses different visual cues which humans “natur-

ally” use on their daily routines and which may supply a feedback to

the activity proposed by the robot. The human response is computed

by means of a Hierarchical Fuzzy System(s) (HFS) that is able to deal

with the uncertainty and vagueness of the measures depending on the

distance of person.

This contribution has been submitted for publication in the Interna-

tional Journal of Human-Computer Studies (IJHCS).

Thesis Structure

This thesis is organised is several chapters, starting by an Introduction in

Chapter 1. Chapter 1 presents a review of the state of the art on different

fields of HRI in its first two sections. In its third and last Section, several

papers which address various topics related to this work are commented.

In Chapter 2, a description of the system configuration used on the dif-

ferent parts of this work is given, together with the basis of some of the

used techniques, namely stereo and colour modelling, Principal Component

Analysis (PCA), SVM and FL.

From Chapter 3 to 5 this work most important contributions are presen-

ted. On Chapter 3 two detection and tracking methods are presented. The

first one is primarily based on a probabilistic approach while the second one

is based on a “possibilistic” approach. On Chapter 4 a method for detect-

ing interest and attention request is presented. Finally, on Chapter 5, the

approach for human response detection is presented.

The concluding Chapter 6 features the conclusions and final consider-

ations while suggesting possible works to improve or continue the current

work.





Chapter 1

Introduction

Robotics and Artificial Intelligence (AI) are two different areas that, day by

day, are getting more connected to each other. Nowadays, it is possible to

see that robots are being assigned several kinds of tasks, in different areas

of our society. Most of these tasks could only be performed by humans,

because they required a certain know-how and intelligence that machines

didn’t have. However, the evolution of hardware, the results obtained in

AI research and its application to robotics, allowed robots to perform these

kinds of tasks. In the scientific community, researchers are attracted by the

fact that a machine can not only move in a real environment but also behave,

precept and think like a human does. In [Bro91] and [Yan08] it is possible

to read a review on different research works in the area of robotics. It is

also possible to read some comments about their influence in the area of AI

as well as to observe the relationship between last year’s focus of research

in AI and the subsequent developments in robotics. To sum up all these

ideas, we can say that “Robotics is where Artificial Intelligence meets the

real world, and supplies the necessary experience to validate any system”.

A robot should be able firstly, to detect and understand the environment

around it, and secondly, to act according to such perceptions and the goals

that it was conceived to. As a first challenge, it is necessary to make robots

precept their environment (which may be continuously changing), using the

different kinds of sensors at our disposal. However, sensors are affected by

errors and uncertainty. The second challenge is to use sensor information

in order to make robots able to act in their environment. At the same

time, they should accomplish their tasks in the most effectiveness way by

choosing, among several previously unknown options and possibilities, the
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most adequate one.

To achieve such a complex task, the designer of the control system of the

robot should develop a system able to continuously extract information from

sensors and to supply the necessary actions to the actuators, in real time.

Such a system is probably made of several different subsystems (like artificial

vision systems, trajectory generators, hardware controllers for sensors and

actuators, etc) working and exchanging information between themselves.

Thus, the designer should also be concerned about their integration as a

whole system, which implies tasks of coordination between the different

parts and the possibility of adding or changing the existent ones.

The definition of such robotic systems becomes more complicated as the

tasks assigned to the robot become more complex. This is due to the amount

of different agents and subsystems that are part of the whole system and are

essential for the robot to achieve its goal. Another problem is the diversity

of hardware pieces, sensors, actuators, control drivers, communication pro-

tocols, among others, that are also part of the system. Furthermore, the

difficulty of building robot systems increases when real time and robustness

constraints are required.

Research in this area has been mainly focused in autonomous indoor

and outdoor navigation, new software architectures for autonomous robots,

planning, manipulation and grasping, learning, perception, Human-Robot

Interaction (HRI) and robot-robot interaction. The results of research in

these fields have allowed the development of robots for several different ap-

plications like building cleaning, object grabbing, security and surveillance,

inspection, agriculture, garbage treatment and collection, submarine explor-

ation, planetary exploitation, among other areas.

Several authors have tried to put into a few words the definition of an

autonomous robot. An interesting definition is the one given by Ronald

C. Arkin [Ark98]: “An intelligent robot is a machine capable of extracting

information from its environment and, using its knowledge about the world,

act in a coherent and intended way”. Alessandro Saffiotti also resumes in a

few words the goal of mobile robotics in [Saf97]: “The goal for an autonom-

ous mobile robot is to be able to move and to achieve its goal without human

aid in real world environments that were not specially designed for them”.

In the next paragraphs, both the areas of robotics and HRI will be intro-

duced more in detail. Some fundamental topics in robotics like environment

representation, sensors and actuators, control architectures as well as the

contribution of Fuzzy Logic (FL) in this field, are first described. Then, the

use of computer vision applied to robotics is also emphasised as this is our

2



1.1. Autonomous Robots

system environment main perception method. Secondly, we will focus in

HRI as well as known Soft Computing (SC) methods employed in this area.

1.1 Autonomous Robots

In order to make robots behave like humans in a real environment, it is

important that they can understand the information around them, process

it, and act the most adequate way. To achieve this complex task, different

systems take part in the process. Environment perception has to be made

by means of sensors. These sensors could be considered the equivalent

to the basic five senses of the human being: “sight, hearing, smell, taste

and touch”. As said before, sight or vision is the main sense used in our

system, performing an important role in the robot perception of the real

world. Therefore a more detailed description is given in the last part of this

section. Then the robot has to represent the sensed environment and decide

what to do according to the environment and its objectives. These decisions

are made by the control system that indicates to the actuators what to do

at each moment. These systems can learn and sometimes be integrated by

means of SC methods like Genetic Algorithm(s) (GA), FL, etc.

1.1.1 Environment Perception

As previously indicated, robots have a sensing system that allows them to

extract important information from the environment. Sensors often produce

errors due to noise or to their own limitations. In [JF93] it is possible to

find some information about the characteristics and the properties of sensors

employed in mobile robotics. Each sensor has limitations that influence the

maximum distance at which they can work at, depending on their nature.

A brief explanation about the different kind of sensors available is given in

the next paragraphs:

• Ultrasonic sensors allow the detection of the echo of a sonar signal with

a precision which is enough for detecting obstacles (1% error) and a

range varying from 20 centimetres to 6 meters. It has some drawbacks

like the lack of accuracy when estimating the direction of the detected

object and the non reflection or non perpendicular reflections by the

objects in the environment. Besides, they present problems of echo

detection when objects are too close from the sensor.

3
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• Infrared sensors use an infrared light source instead of an ultrasonic

source and are capable of a higher angular precision regarding ultra-

sonic sensors. They are also capable of detecting closer objects. How-

ever their behavior is unstable in the presence of other light sources

like direct sun light. They also have a shorter range while needing a

previously and precise calibration phase.

• Laser sensors work like infrared sensors but with a laser signal. They

allow a higher angle precision and they are able to detect objects

within a larger distance.

• Touching sensors are able to detect collisions, although it could be

considered as a sensor of non desirable states because one does not

want the robot to be colliding with walls.

• Gyroscopes, accelerometers and compasses allow orientation and ac-

celeration detection, although sometimes they lack in accuracy.

• Visual information is one of the most important sensors that a robot

can have. Maybe it is even the most important for the human being

when interacting with other human beings, animals or objects. A lot

of work has already been done to improve this kind of sensors. At

the end of this section it will be given a deeper description about the

vision sensor.

• Microphones are able to detect sound sources although it is still very

difficult to detect with precision the position of those sources. Nev-

ertheless, it is already possible to distinguish the sounds and even to

detect what one is saying by using speech recognition software.

More information about the characteristics of the different available

sensors can be found in [JF93] and [SN04]. In [Spe13], the novelties

and updates concerning robot sensors and actuators can be found.

1.1.2 Computer Vision

Computer vision allows computers to understand the meaning of the multi-

dimensional data existing in images. Image data can have color or grayscale

information, and can be analysed as a stereo image (two or more images of

the same scene), video sequence, 3D images, etc.

Computer vision is usually studied as an area of AI, where usually one

image is supplied, instead of text, as the input for a given system, with the
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purpose of controlling the behavior of that system. Some of the learning

methods used in computer vision are based in learning techniques developed

under AI. A vision system can be divided into six different systems:

• Knowledge base: representing the knowledge about the problem to

solve using vision. It could be something like detailing the interest

regions of some image, reducing the area where a specific search is

going to be done.

• Image acquisition: system responsible for acquiring the image. It can

be a camera, radar, sonar, etc. As Stereo Vision (SV) is the main

acquisition method of the works presented in this thesis, more detail

will be given in this section and in Section 2.2.1 about this type of

sensor.

• Image processing: system that processes the image for some object-

ive. Examples are filtering, resampling, decomposition in frequencies,

border detection, estimate disparity in stereo images, etc.

• Segmentation: consists in separating the objects or parts of the image.

It is usually based in discontinuity or similarity criteria.

• Representation and description: usually comes after segmentation and

consists in representing one region using its internal (interior) or ex-

ternal (border) characteristics and describing it according to some

representation method previously adopted. An example of internal

representation is Principal Component Analysis (PCA).

• Recognition: is the process of classifying and labelling some object.

This classification can be done using Artificial Neuronal Networks

(ANN), Support Vector Machines (SVM), statistical methods, etc.

For more information about these systems, readers are referred to [RC08].

Stereo Vision

Stereopsis is the process in visual perception that allows the measurement

of the depth or distance of the objects in the image. Depth from stereopsis

is possible because of the slightly different positions that each of the human

eyes occupies in a human head. It was discovered by Charles Wheatstone in

1833, when he found out that each one of a person eyes sees the world from

slightly different places. This way, both projections of each visualised object
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are placed slightly differently in the horizontal axe, providing information

about the depth of the object. Wheatstone proved that the distance in the

horizontal axe, called disparity, was responsible for the feeling of depth.

This idea is the same used in SV. Two cameras capture slightly displaced

images that after a matching process are able to supply the information

about depth of some of the points in the scene. Readers that are interested

in obtaining more information about this process are referred to [BBH03]

and [Tor11]. Section 2.2.1 is also dedicated to SV.

Vision and Robotics

Vision is probably the most important sensor for humans and robots. It is

able to retrieve very useful information that can be of primordial importance

for robots. For that reason, vision has been applied to different problems

in robotics, like navigation, people and object detection, etc.

In particular, research in computer vision applied to robot navigation

has been carried out. Navigation systems that use vision can be classified

into two categories: Visual guided navigation in interiors or in exteriors. A

survey about this field can be found at [DK02] and a recent book devoted

to the theory and development of autonomous navigation of mobile robots

using computer vision based sensing mechanism is available at [AC13].

Vision is also of great importance for detecting and tracking people in

the surroundings of the robot and allows it to extract different features that

can be used to detect the level of attention, gestures, specific movements, etc.

The extraction of these features is of great importance for the establishment

of a natural interaction between robots and humans and for choosing the

adequate behavior towards those people. In section 1.1.7, a brief review of

the use of vision in HRI is given.

1.1.3 Environment Representation

To allow robots to move autonomously in their environment and to know

their position, it is desirable that they have some way of representing the

environment. These maps could be designed using three main approaches:

• Geometrical approaches [Elf89] are based in 3D models or cell maps

for environment representation. Cell maps are made of cells with a

previously assigned size and an occupancy value that tell whether

there is an obstacle or not.
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• Topological approaches [KW94] are based upon the detection of sev-

eral features in the environment and their relationships. Graphs are

used to represent this relationships and this kind of approach is much

more abstract than the geometrical one.

• Hybrid approaches [AG02] combine the advantages of both geomet-

rical and topological approaches.

1.1.4 Actuators

Actuators are mechanisms that allow robots to react accordingly to the dif-

ferent events occurring in their surrounding environment. A robot may have

different kinds of actuators, responsible for different tasks. Most of them are

used for locomotion and manipulation tasks. The most common are made

from electrical motors capable of generating movement from electricity. In

the book of Jones and Flynn [JF93], it is possible to find information about

the most used locomotion systems used in robotics. There are other kind

of actuators like hydraulic levers, pneumatic actuators, hydraulic pistons,

relays, comb drive, piezoelectric actuators, thermal bimorphs, etc., accord-

ing to the type of application to be executed. As previously mentioned, in

[Spe13], the novelties and updates concerning robot sensors and actuators

can be found.

1.1.5 Localization

One of the main problems in the development of mobile robots is the know-

ledge about the position of the system. Mobile robots should be able to know

their position so they can achieve their tasks, namely navigating in the en-

vironment. Precision required in localization depends on the application the

robot is performing and on the control architecture employed. While some

applications require exact location of the vehicle, others work with approx-

imated values. For instance, while geometrical environment representation

approaches require precise location of the vehicle, topological approaches

usually do not need such precision. Many authors have proposed different

techniques to solve this problem. A brief explanation about some of them

will be given in the next paragraphs. Readers interested in obtaining more

information about these techniques are referred to [Wil97].

• Odometry
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Odometry is the most used localization system used in robotics for its

low cost and its fast computing time. It is based in the measurement

of the linear distance traversed by the wheels of the robot. The main

drawback of this approach is the errors produced by the slipping of

the wheels.

• Inertial navigation

Inertial navigation uses gyroscopes and accelerometers to measure the

rotation and the acceleration of the robot during its movement. Accel-

erometers are still very sensible to inclination making them produce

some errors. Gyroscopes are nowadays more precise and cheaper than

some years ago and allow the correction of errors that appear in odo-

metry.

• Magnetic Compass

Magnetic Compass gives the robot the possibility of orientation ac-

cording to the earth magnetic field. The main disadvantage of this

approach is the distortion due to electrical wires existing everywhere.

This makes the use of this orientation method very unstable inside

buildings.

• Active Beacons

This method has been employed since the beginning of aeronautics.

Beacons can be detected very accurately, supplying very precise in-

formation about position. Furthermore, computing time is not ex-

pensive. The main problem is the expensiveness of installation and

maintenance. An example of how beacons may help on localisation of

mobile robots is available at [KV10].

• Global Positioning System

Global positioning system is a technique for navigation in open spaces.

It is made of several satellites that transmit coded signals using ad-

vanced trilateration methods. Sensors on earth are able to detect the

time that the signal takes to get to them. By knowing the distance,

they are able to calculate their latitude, longitude and altitude. An

example of how Global Positioning System (GPS) can be used on

mobile robots is available at [MK10].

• Positioning based on landmarks
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Positioning based on landmarks is based in the detection of marks

that help the robot to situate in the environment. An example of this

situation can be found in [HOP11].

• Positioning based on maps

Positioning based on maps also known as map matching is a technique

where robots use their sensors to build a local map of the environment

that is then used to match with a previously supplied global map of

the environment.

• Positioning based on wireless networks (mobile networks and Wi-Fi)

The popularity of this kind of positioning systems as increased over

the last years. This technique consists on using the mobile network

signal and/or Wi-Fi signal to increase the precision when determining

the position of objects. For instance, in mobile phones, the “A-GPS”

or “Assisted GPS” logo can be often found, which means that the mo-

bile phone not only uses the GPS signal to determine its localization

but also the mobile network signal. A paper comparing two methods

to estimate the position of a mobile robot in an indoor environment

using only odometric calculus and the WiFi energy received from the

wireless communication infrastructure is presented in [OnPS06]. An-

other paper presenting a mobile robot that autonomously navigates in

indoor environments using WiFi sensory data is available in [BV10].

1.1.6 Control Architectures

To ease the integration of the different modules that take part in a robotic

system, control architectures were developed. They represent the way these

modules are organised between them [DJ96]. There are different control

architectures that are more, or less adequate to different applications and

environments. Under a functional point of view, these architectures are cur-

rently grouped in three main categories: deliberative, reactive and hybrid.

Deliberative architectures, also known as hierarchical architectures, are

based in the hypothesis of a system based on symbols [NS76] and are usually

very well structured in a traditional bottom-up approach. The work of J.S.

Albus [Alb92, Alb99] is based in this architecture. Reactive architectures,

in contrast to deliberative ones, are very related to action. They are also

called as behavior based architectures [Ark98, Bro85, MWDM98]. Hybrid

architectures have some characteristics from both deliberative and reactive
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architectures. They provide very fast responses to changes in the environ-

ment as reactive architectures do, while achieving more complex tasks due

to their higher computational and representation power that are a character-

istic of deliberative architectures. It is possible to find examples of systems

that use this architecture in [Ark86] and [Gat91].

Under a topological point of view, these architectures are grouped in ho-

rizontal and vertical. In the horizontal architectures, all levels have access

to perception and determine the corresponding action. In vertical architec-

tures, there is a perception level and another one of actuation. The sensed

perceptions are processed in the different existing levels until an action is

finally taken.

During the last twenty years, the theory of agents has become more pop-

ular. An agent can be defined as a piece of software conceived for reaching

some goal. Agents encapsulate functionality, goals and intentions and they

communicate with other agents to establish some kind of cooperation. They

allow the creation of complex systems because one can create a distributed

system made out of several agents. They are also easily expandable and

changeable by adding, modifying or deleting one agent. More information

about intelligent agents can be found in [WJ95].

1.1.7 Soft Computing and Robotics

SC refers to a collection of computational techniques in computer science,

AI, Machine Learning (ML) and some engineering disciplines, which at-

tempt to study, model, and analyse very complex phenomena: those for

which more conventional methods have not yielded low cost, analytic, and

complete solutions. SC differs from conventional (hard) computing in that,

unlike hard computing, it is tolerant of imprecision, uncertainty, partial

truth, and approximation. In effect, the role model for SC is the human

mind. The guiding principle of SC is: Exploit the tolerance for impreci-

sion, uncertainty, partial truth, and approximation to achieve tractability,

robustness and low solution cost.

At this juncture, the principal constituents of SC are FL, ANN comput-

ing, Evolutionary Computing (EC), ML and Probabilistic Reasoning (PR),

with the latter subsuming belief networks, chaos theory and parts of learning

theory.

SC is nowadays broadly used in robotics in areas such as control sys-

tems, behavior arbitration, reinforcement learning, manipulation, collision
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avoidance and automatic design. More information can be found on books

[JF98] and [ATKTJ00].

FL has been applied to robotics research. This is due to the easiness

in dealing with the uncertainty and vagueness existing in the information

given by sensors and the possibility of defining expert knowledge by means

of “if-then” rules. Major works done in this area will be mentioned but

more interested readers are referred to [Saf97].

• Design and coordination of behaviours: due to the possibility of deal-

ing with uncertainty and vagueness using FL, it has been widely

employed in the design of behaviours. An example of this feature

is Shaphira’s architecture [KM97] made of a set of fuzzy behaviours

(coded with Mandani rules) capable of executing complex tasks. In

this architecture, the level of belief of the rule preceding is used to

compute its level of activation. Aguirre et al. [AG00a] adopted a very

similar approach when defining some basic behaviours (follow-wall,

navigate-in-walkway, avoid-obstacle, etc) used in fuzzy sets.

• Designing of maps: FL has been satisfactorily employed in the elab-

oration of maps, using both geometrical and topological approaches.

Gasós and Saffiotti in [GS99], propose a technique for the elaboration

of geometrical maps using sonar in which fuzzy borders are projected

into a map of cells. In a similar way, Aguirre et al. [AG00b] present

an hybrid approach (geometrical and topological) for the elaboration

of maps using fuzzy segments originated from the information of ultra-

sonic sensors. In [GSFVGG97] and [OUV98] other approaches using

fuzzy logic for the elaboration of maps are presented.

• Localization: FL has also been employed to compute the robot po-

sition using fuzzy measurements. Instead of representing the robot

position using probabilistic measurements, some authors have used a

possibility region to indicate the position of the robot. This approach

allows the easier integration of the fuzzy maps previously mentioned.

Some examples can be found at [GS99] and [SW96].

• Perception: FL has been used in the design of perceptual systems.

Howard et al. propose in [HST01] a method based in FL to analyse

the characteristics of a terrain in which a mobile robot is moving.

They used a visual system for computing characteristics like trans-

versability and discontinuity as fuzzy measures that were then used
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by the controller of the robot to compute the best strategy for the

movement. Le et al. show in [LJW98] a fuzzy visual system to detect

the borders of a road.

1.2 Human-Robot Interaction

HRI is the study of interactions between people (users) and robots. HRI

is multidisciplinary with contributions from the fields of Human-Computer

Interaction (HCI), AI, robotics, natural language understanding, and social

science (psychology, cognitive science and anthropology).

The basic goal of HRI is to develop principles and algorithms to allow

more natural and effective communication and interaction between humans

and robots. Research areas range from how humans will work with remote,

tele-operated machines to peer-to-peer collaboration with anthropomorphic

robots.

Many scientists in this field study how humans collaborate, interact

and use that information to motivate their research on how robots should

interact with humans. As the goal of researchers it to make robots think,

behave and react like an human does, psychology plays an important role

in this area.

HRI has been a topic of both science fiction and academic speculation

even before any robots existed. Because HRI usually depends on knowledge

about human communication, many aspects of HRI are an extension of

human communications topics that are much older than robotics.

In this work, efforts are centred in the area of HRI where robots are

provided with some kind of intelligence that gives them the possibility of

achieving human like behavior. The term “socially interactive robots” will

be used to describe robots for which social interaction plays a key role and

distinguish them from other robots that are based on “conventional” HRI,

such as those used in tele-operation scenarios.

In the next section a brief explanation about social robots will be given

followed in the succeeding sections by a description about different areas

that are part of HRI.

1.2.1 Social Robots

A social robot can be viewed as an autonomous robot which is able to

interact and communicate with humans by means of social behaviours and

rules. In [HMW+09] authors address several issues such as the meaning
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of “social robot”, the interdisciplinary research aspects of social robotics

and how these different aspects are interlinked. They also argue that form,

function, and context have to be taken systematically into account in order

to develop a model to help us understand social robots.

From a long time ago researchers have been fascinated by the possibility

of developing robots that could interact with other people and robots. In

the 1940s Walter [HW] built a robot capable of interacting with another in

a seemingly “social” manner, although there was no explicit communication

or mutual recognition between them.

Some years later, Deneubourg and his collaborators pioneered the first

experiments on stigmergy (indirect communication between individuals via

modifications made to the shared environment) in simulated and physical

“ant-like robots” [BHD94], [DGF+90]. This idea is based on the concept of

colonies of insects which are able to work for a common goal, although each

individual works alone.

Similar principles can be found in multi-robot or distributed robotic sys-

tems research [Mat95]. Such societies are anonymous, homogeneous groups

in which individuals do not matter. This type of “social behavior” has

proven to be an attractive model for robotics, particularly because it en-

ables groups of relatively simple robots to perform difficult tasks (e.g., soccer

playing).

Many researchers in this area have focused on “benign” social behavior.

This means that nowadays robots also play the role of assistants, compan-

ions or pets, in addition to the traditional role of servants.

Robots in individualised societies exhibit a wide range of social beha-

viours. In [Bre03], Breazeal defines four classes of social robots in terms of:

(1) how well the robot can support the social model that is ascribed to it

and (2) the complexity of the interaction scenario that can be supported.

Those classes are defined as follows:

• Socially evocative. Robots that rely on the human tendency to anthro-

pomorphize and capitalise on feelings evoked when humans nurture,

care, or involved with their “creation”.

• Social interface. Robots that provide a “natural” interface by em-

ploying human-like social cues and communication modalities. Social

behavior is only modelled at the interface, which usually results in

shallow models of social cognition.
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• Socially receptive. Robots that are socially passive but that can bene-

fit from interaction (e.g. learning skills by imitation). Deeper models

of human social competencies are required than with social interface

robots.

• Sociable. Robots that pro-actively engage with humans in order to

satisfy internal social aims (drives, emotions, etc.). These robots re-

quire deep models of social cognition.

Complementary to this list the following three classes can be added:

• Socially situated. Robots that are surrounded by a social environment

that they perceive and react to ([DO02]). Socially situated robots

must be able to distinguish between other social agents and various

objects in the environment.

• Socially embedded. Robots that are: (a) situated in a social envir-

onment and interact with other agents and humans; (b) structurally

coupled with their social environment; and (c) at least partially aware

of human interactional structures (e.g., turn-taking) [DO02].

• Socially intelligent. Robots that show aspects of human style social

intelligence, based on deep models of human cognition and social com-

petence [Dau95], [Dau98].

Robots that interact with people have to exhibit some characteristics:

• to express and/or to perceive emotions;

• to communicate with high-level dialogue;

• to learn/recognise models of other agents;

• to establish/maintain social relationships;

• to use natural cues (gaze, gestures, etc.);

• to exhibit distinctive personality and character;

• may learn/develop social competencies
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Social robots can be used in a wide range of applications like toys, edu-

cational tools, therapeutic aids, etc. A survey and taxonomy of current

applications is given in [FND03]. As they play different roles (often op-

erating as partners or assistants with different people) they have to show

flexibility and adaptability.

Social robots have different shapes and functions ranging from robots

whose sole purpose and only task is to engage people in social interactions

(Kismet, Cog, etc.) to robots that are engineered to adhere to social norms

in order to fulfil a range of tasks in human-inhabited environments (Pearl,

Sage, etc.) [Bre02], [NBG+99], [PMP+03], [Sca01].

Some of these robots use deep models of human interaction and pro-

actively encourage social interaction. Others show their social competence

only in reaction to human behavior, relying on humans to attribute mental

states and emotions to the robot [Dau97], [Duf03], [Pea01]. Regardless of

the function, building a socially interactive robot requires considering the

human in the loop: as designer, as observer, and as interaction partner.

Socially interactive robots are important for domains in which robots

must exhibit peer-to-peer interaction skills, either because such skills are

required for solving specific tasks, or because the primary function of the

robot is to interact socially with people. A discussion of application do-

mains, design spaces, and desirable social skills for robots is given in [Dau03],

[Dau02].

One area where social interaction is desirable is “robot as persuasive

machine” [Fog99], i.e., the robot is used to change the behavior, feelings or

attitudes of humans. This is the case when robots mediate human-human

interaction, as in autism therapy [WDOH01]. Another area is “robot as

avatar” [PC98], in which the robot functions as a representation of the

human. For example, if a robot is used for remote communication, it may

need to act socially in order to effectively convey information.

In certain scenarios, it may be desirable for a robot to develop its in-

teraction skills over time. For example, a pet robot that accompanies a

child through his childhood may need to improve its skills in order to main-

tain the child interest. Learnt development of social (and other) skills is a

primary concern of epigenetic robotics [DB99], [Zla01].

Some researchers design socially interactive robots simply to study em-

bodied models of social behavior. For this use, the challenge is to build

robots that have an intrinsic notion of sociality, that develop social skills

and bond with people, and that can show empathy and true understanding.

At present, such robots remain a distant goal [Dau97], [DB99], the achieve-
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ment of which will require contributions from other research areas such as

artificial life, developmental psychology and sociology [Res01].

Although socially interactive robots have already been used with success,

much work remains to be done in order to increase their effectiveness. For

example, in order to make socially interactive robots be accepted as “nat-

ural” interaction partners, they need more sophisticated social skills, such

as the ability to recognise social context and convention.

Additionally, socially interactive robots will eventually need to support

a wide range of users: different genders, different cultural and social back-

grounds, different ages, etc. In many current applications, social robots

engage only in short-term interaction (e.g., a museum tour) and can afford

to treat all humans in the same manner. But, as soon as a robot becomes

part of a person life, that robot will need to be able to treat him as a distinct

individual [Dau98].

1.2.2 Human Oriented Perception

Perceiving the world as humans do is a desirable ability to achieve for social

robots. In addition to the perception in conventional tasks such as naviga-

tion, localization, obstacle avoidance, they must be able to perceive things

similarly to humans.

Robots also need human oriented perception. This means that they

should be able to track people and human features such as bodies, faces,

hands and others, to interpret human emotions including affective speech,

discrete commands and natural language and to recognise facial expressions,

gestures and other kind of human activity.

Once a robot is able to recognise and track the people in its vicinity, it

should be able to detect their interest in establishing an interaction with

it. In that task, several types of signals from the human can be taken into

account (both verbal and non-verbal). Some authors [BFJ+05a] use sound

source localization or speech recognition besides visual perception to detect

which persons are the most interested. In other cases, facial expressions

[SKKB01], [CHF08] or hand gestures [GNS+02], [PL11] are analysed. Fi-

nally, other authors [KC03] propose the use of non-verbal signals present in

physiological monitoring systems that include skin conductance, heart rate,

pupil dilation and brain and muscle neural activity.
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People Detection and Tracking

In HRI, one of the basic tasks to solve has to do with the detection, identific-

ation and subsequent tracking of each of the interlocutors of the robot. First

of all, the robot should identify which objects in its environment are its po-

tential human interlocutors so it knows where the Region of Interest (ROI)

which may provide most of the interaction cues is located. Then, it should

be prepared to keep track of the history of each person, and “remember”

what they did and what actions they took in the past. To do so, it has to

be able to track the pre-detected people and to register their “actions”.

For HRI, an important challenge is to find efficient methods for people

tracking in the presence of occlusions, variable illumination, moving cam-

eras, and varying background. There is extensive literature about this topic

[Gav99], [LWT03], [SMC05] and [PAGSMS12]. In the next chapter, more

information about this topic, which represents one of the main focus of

research of this thesis, will be given.

Speech Recognition

Speech recognition (in many contexts also known as automatic speech recog-

nition or computer speech recognition) is the process of converting a speech

signal to a sequence of words, by means of an algorithm implemented as a

computer program. In terms of technology, most of the technical text books

nowadays emphasise the use of hidden Markov model as the underlying tech-

nology. The dynamic programming approach, the ANN based approach and

the knowledge-based learning approach have been studied intensively in the

1980s and 1990s.

Speech recognition can be divided into detecting who is the speaker,

what did he say and how did he say it [Bre02]. Depending on what inform-

ation the robot requires, it may need to perform speaker tracking, dialogue

management, or emotion analysis. Some applications of speech in robotics

include [MAF+99], [Oku01], [SAS01], [Bre02], [AST11].

Gesture Recognition

Humans usually use gestures while they communicate in order to clarify

the speech. For instance, when a speaker wants to call others attention, he

or she usually shakes his or her arm. Vision is the most adequate method

to recognise gesture recognition as it does not force people to wear some

specific hardware.
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Gesture recognition is human interaction with a computer in which hu-

man gestures, usually hand motions, are recognised by the computer. Re-

cognising gestures as input might make computers more accessible for the

physically-impaired and make interaction more natural for young children.

It could also provide a more expressive and nuanced communication with a

computer.

In this work specific gestures or expressions are also recognised. Other

methods can be found in [PSH97], [WH99], [PL11].

New HRI devices

Lately, in order to calculate depth information, others sensors such as the

Kinect [Mic10] are being used in Human-Robot Interaction. The hardware

that comprises the Kinect is different from the stereo camera used on this

thesis. The Kinect features a RGB camera, a depth sensor and a multi-

array microphone running proprietary software. Instead of computing depth

from a pair of stereo color images it uses an infrared projector and an

infrared camera which are able to compute depth. The IR camera and

the IR projector form a stereo pair with a baseline of approximately 7.5

cm. The IR projector sends out a fixed pattern of light and dark speckles.

The pattern is generated from a set of diffraction gratings, with special

care to lessen the effect of zero-order propagation of a centre bright dot

[Pri05]. Depth is calculated by triangulation against a known pattern from

the projector. More information is available in [Zha12].

Several tools as the openNI SDK and the NITE middleware [ope10] have

been developed to manage the depth, color, infrared and audio information

received from the hardware device. These tools allow to perform functions

such as hand location and tracking; a scene analyser (separation of users

from background); accurate user skeleton joint tracking; various gestures

recognition, and so on. Although the way of operating is different comparing

to a stereo camera, most of the algorithms presented in this thesis could be

adapted to this sensor and implemented in future works.

Due to the low cost of the device and the availability of tools to manage

it, it is more and more popular in the scientific field and several works have

been published, namely in the field of HRI. Among those works that use the

Kinect sensor, we will mention some which are somehow related with this

thesis. Some works [CV12], [FLW+12], [BJ11] try to solve robot navigation

and obstacle avoidance issues using fuzzy logic based controllers. Also, it

is used to build complete 3D models using soft-computing [VGRC12]. This
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method computes the movement performed by a mobile robot by means of

a 3D models registration algorithm.

Facial Perception

Face detection and recognition is also important to identify possible people

in the environment that wish to interact with the robot. Furthermore, gaze

direction and head pose are valuable pieces of information about the real

interest of people in communicating with the robot. Another important

feature is face expression, that can tell the robot about the emotional state of

the individual. In [LS00] basic approaches for facial expression recognition

are discussed.

In [LKH+03] a multi-modal attention system is shown. This approach

uses a pan-tilt camera for face recognition, two microphones for sound source

localization and a laser range finder for leg detection. Shifting attention is

carried out by turning the camera towards the person which is currently

speaking. In [BFJ+05b], the authors present a system that makes use of

visual perception, sound source localization and speech recognition to detect,

track and involve people into interaction. In [BFJ+05b] the goal is that the

robot interacts with multiple persons without focusing its attention on a

single person.

1.2.3 User Modeling

For robots to interact with people in a human-like manner, they have to

perceive human social behavior [Bre02]. To achieve this task they should

detect and recognise human action and communication as well as interpret

and react to their behavior. This is called user modeling.

User modeling can be quantitative, based on the evaluation of paramet-

ers or metrics. The stereotype approach, for example, classifies users into

different subgroups (stereotypes), based on the measurement of pre-defined

features for each subgroup [Lor95]. User modeling may also be qualitative

in nature. Interactional structure analysis, story and script based matching,

all identify subjective aspects of behavior.

User models usually describe a user or group of users. These models

can be static (previously defined) or dynamic (adapted or learnt). Informa-

tion about users could be done explicitly (direct questioning) or implicitly

(inferred through observation).
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User models help the robot understand human behavior and dialogue.

They also shape and control feedback to users and are useful for adapting

the robot behavior to accommodate users with varying skills, experience,

and knowledge.

Fong et al. [FTB01] employ a stereotype user model to adapt human-

robot dialogue and robot behavior to different users. Schulte et al. [SRT99]

describe a memory-based learner used by a tour robot to improve its ability

to interact with different people. Koo et al. [KPKK11] propose a dual-

layer user model to generate descriptive service recommendations for user-

adaptive service robots.

1.2.4 Intentionality

Some authors argue that humans use three strategies to understand and

predict behavior. The prediction based on the physical characteristics of the

object, the prediction based on the design and functionality of the artifacts

and the intentional stance that assumes that the system actions result from

its beliefs and desires.

For the robot to be able to interact socially, it should demonstrate that

it is intentional. For example, a robot could demonstrate goal-directed

behaviours, or it could exhibit the attentional capacity. If it does so, then

the human will consider the robot to act in a rational manner.

Humans use a variety of physical social cues to indicate which object

is currently under consideration. Scassellati [Sca03] doted its robot Cog

of gaze following, imperative pointing, and declarative pointing capacities.

Park et al [PL11] also present a real-time 3D pointing gesture recognition al-

gorithm for mobile robots, based on a cascade hidden Markov model (HMM)

and a particle filter. Kopp and Gardenfors [KG01] consider that attentional

capacity is a fundamental requirement for intentionality. After identifying

the relevant objects in the scene, the robot should focus its attention at one

of them and direct its sensors to it. Marom and Hayes [MH99], [MH01] con-

sider attention to be a collection of mechanisms that determine the signific-

ance of stimuli. Their research emphasises the development of pre-learning

attentional mechanisms, which help to reduce the amount of information

that an individual has to deal with.

Kozima and Yano [KY01a], [KY01b] support the theory that a robot

must have goal-directed behavior to be intentional. Breazeal and Scassellati

[BS99] describe how Kismet transmits intentionality through motor actions

and facial expressions. Schulte et al. [SRT99] discuss how a caricatured
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human face and simple emotion expression can transmit intention during

spontaneous short-term interaction. For example, a tour guide robot might

have the intention of making progress while giving a tour. Its facial expres-

sion and recorded speech playback can communicate this information.

1.2.5 Soft Computing Techniques for Human Robot In-

teraction

Soft-Computing techniques have also been used in HRI. As discussed be-

fore, HRI is an area where robots should be able to “think” like humans, to

learn new processes and to adapt themselves to the people in their surround-

ings. Therefore, SC techniques are important in order to improve many of

these characteristics. In [BS03] several SC techniques are applied to service

robotic systems for comfortable interaction and safe operation.

Genetic computation can be used as a powerful exploratory method to

acquire knowledge, with reduced efforts in human design. This approach is

nowadays one of the most popular ones: the simple biological metaphor at

the base of genetic processing has been widely acknowledged as an efficient

engine to design reactive, adaptive and evolving agents. The assumption

that GA are a promising approach to be used for modeling adaptive systems

has been successfully verified in many experiments and in different areas.

Schultz presents a method for learning robot behaviours using GA in [Sch94].

Wang Yan-ping and Wu Bing [YpB10] propose a method of mobile robot

path planning based on modified genetic algorithms to achieve its goals in

dynamic environments and to avoid obstacles.

ANN have also been employed to optimise agent behavior. The impact of

multi-agent strategies, often associated to evolutionary behavior have shown

to be beneficial for the transfer of knowledge across multiple functions and

for a successful learning of the systems. In [BBB+98], Boehme et al. use

ANN for gesture-based interaction between a mobile robot and its user.

Shuang et al. [LDX11] propose a hybrid recognition algorithm based on the

combination of rough set theory and ANN in order that a mobile robot is

able to recognise the shape of objects in dynamic surroundings.

FL is used as an inference engine for complex distributed, inference-

based applications. Here fuzziness is usually used to represent and reason

about vague knowledge with fuzzy productions rules. FL also “imitates”

human reasoning and could be used to give robots an human similar way of

“thinking”. FL can also be used for recognising facial emotional expression

and for coordinating bio-signals with robotic motions. In [KC03], several
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sets of fuzzy rules are used for estimating intent based on physiological

signals. In [ETNMT11], El-Teleity presents a control strategy in which four

different reactive behaviours are combined by means of a fuzzy supervisor

that controls the movement of an autonomous robot.

1.3 Related Work

1.3.1 People Detection and Tracking

Although people detection and tracking with a single camera is a well ex-

plored topic, the use of stereo technology for this purpose concentrates an

important interest. The proposal hereby described is intended to stereo

vision but it could be easily adapted to use other kinds of vision and depth

sensors. The availability of commercial hardware to solve the low-level

problems of stereo processing, as well as the lower prices for this type of

devices, turn them into an appealing sensor to develop intelligent systems.

SV provides a type of information that brings several advantages when

developing human-machine applications. For instance, some advantages of

applying SV to object tracking, can be found in the work of [GBL+11] where

an example of a real-time tracking algorithm for following a 3D position of

a generic spatial object is presented. In the work of [YN12] it is possible to

find an application of SV to agriculture, although it focuses only on people

detection rather than the tracking. Another application is presented in the

work of [SELG10] which describes a 3D detection and tracking of pedes-

trians in urban traffic scenes. The system is built around a probabilistic

environment model which fuses evidence from dense 3D reconstruction and

image-based pedestrian detection into a consistent interpretation of the ob-

served scene, and a multi-hypothesis tracker to reconstruct the pedestrians’

trajectories in 3D coordinates over time.

The possibility to know the distance from the camera to the person is

an advantage of SV over other techniques. This could be of great assistance

for tracking as well as for a better analysis of his/her gestures. To achieve

so, stereo correlation algorithms are used. They are able to match the

pixels of several (two or more) different adjacent cameras and compute the

distance of those pixels to the camera. On this work, it is used the stereo

correlation algorithm of the camera manufacturer ([Res10]). Nevertheless,

many algorithms exist namely the recent ones of [AK10] and [Zic12] that

aim to improve the accuracy of this kind of algorithms. There is also a

less exploited field on stereo correlation algorithms which use several (at
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least two) PTZ (Pan-Tilt-Zoom) cameras. Stereo vision using dual-PTZ-

camera system, compared with using dual-static-camera system, is much

more challenging. In [WZ08] authors propose a novel stereo rectification

method for dual-PTZ-camera system, which is essential to greatly increase

the efficiency of stereo matching.

Another positive point of SV over monocular vision is that informa-

tion regarding disparities becomes more invariable to illumination changes

than the provided by a single camera. There are authors that have stud-

ies the problem of illumination in stereo computing as the work of [NG10]

which proposes a new illumination-invariant dissimilarity measure in order

to substitute the established intensity-based ones. Robustness to luminance

changes is a very advantageous factor for the development of background

estimation techniques [LHH12], [DDCF01], [HGW01], [EKB98]. As a basis

for improved people detection, a correct segmentation of the image is also

desirable. To achieve that goal, a good scene calibration enables the system

to process the input video in a different way depending on the camera posi-

tion and the scene characteristics. In the paper of [PATF13], an automatic

method to calibrate the scene, for detecting and tracking people systems,

is presented based on measurements of video sequences captured from a

stationary camera.

In the majority of works, one or several cameras, often placed in elevated

positions, are used [Har04, GK04]. In [Har04] a method for locating and

tracking people in stereo images is presented using occupancy maps. Before

the people detection process takes place, an image of the environment is cre-

ated through a sophisticated image analysis method. Once the background

image is created, the objects that do not belong to it are easily isolated, and

an occupancy map and a height map are built. The information from both

maps is merged to detect people using simple heuristics. People tracking

is performed by using a Kalman filter combined with deformable templates.

In their work, a stereoscopic system is used which is located three meters

above the ground, on a fixed position. In the work of Grest and Koch

([GK04]) a Particle Filter (PF) ([IB98]) is used to estimate the position of

the person and to create colour histograms of the face and the chest regions

of one person and the SV is used to compute its real position. However,

stereo and colour were not integrated in the tracking process and they use

cameras positioned in different parts of a room rather than only one ste-

reo camera. A more recent work, the one from [SM11], proposes a method

to locate and track people by combining evidence from multiple cameras

using the homography constraint. The algorithm computes the amount of
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support that basically corresponds to the “foreground mass” above each

pixel. Therefore, pixels that correspond to ground points have more sup-

port. The support is normalised to compensate for perspective effects and

accumulated on the reference plane for all camera views. Two other recent

works, the one from [CHX+10] and the one from [AD12] only use a single

camera. Nevertheless their camera is also placed at a higher than a human

head position in order to have a more clear field of view.

However, to privilege interaction with HRI, position of the camera should

usually be placed lower than the height of the person, like in [DGHW00].

Here authors present a system capable of detecting and tracking several

people. Their work is based on a skin detector, a face detector and the

disparity map provided by a stereo camera. Besides improving the visibility

of the face and arms of the person, these methods are more adequate for

their implementation in robotic systems that require interaction with people.

Studies carried out, show that in order to improve the acceptance of robots

by humans, it is important that they are located in a lower position than

the later [FND03]. Otherwise the person could feel intimidated.

When tracking people, there might occur occlusion situations that affect

the performance of trackers. On multi-camera approaches, this problem

should happen less than when using a single camera. There are authors

that have done some work on this problematic, such as [HH12], which cir-

cumvents this problem by performing tracking based on observations from

multiple wide-baseline cameras. However, [CDL10] presents an approach for

tracking multiple persons on a mobile robot with a combination of colour

and thermal vision sensors, using several new techniques and a single cam-

era. In their approach an algorithm for detecting occlusions is introduced,

using a machine learning classifier for pairwise comparison of persons (clas-

sifying which one is in front of the other). On our work, we also deal with

this problem using only one camera, with the help of a occlusion map.

The Kalman/mean-shift (described in [CR00]) is employed in different

tracking approaches. In their work, Comaniciu and Ramesh combine the

well known mean-shift algorithm with colour information to locally move

the search region towards the gradient direction of the Bhattacharyya coef-

ficient described in [ATR97]. The Kalman filter is employed to predict the

position of the target in the next frame. Another colour-based particle fil-

tering technique that uses this kind of information is the one described by

[NKMG03], where each particle represents a possible position and size of the

tracked object. [SB10] also present a method where they combine the use of

Monte Carlo sequential filtering for tracking and Dezert Smarandache the-
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ory (DSmT) to integrate the information provided by different colour and

position cues. [MTACS02] present a system able to detect and track a single

head using the Kalman filter. They combine colour and stereo information

but head colour does not provide enough information to distinguish among

different users. In [Har04] and [MSAGS07], authors present an approach

to detect and track several people using plan-view maps. They use inform-

ation provided by an occupancy map and a height map using the Kalman

filter. More recent works such as the one from [MJK12] proposes a novel

and efficient method of tracking, which performs well even when the target

takes a sudden turn during its motion. Their method arbitrates between

KF and Optical flow (OF) to improve the tracking performance and uses

a laser sensor to measure distance. On the other hand [FSA11] uses the

classic Kalman filter for tracking and uses a low-level recognition system to

properly distinguish among the targets.

When merging different unreliable or imprecise sources of information

one can choose between using probabilistic/mathematical based models

([MSMCMCCP09], [LS09], [KLM10]) or SC techniques. An example of

a SC technique based on FL can be found in [HLK09]. They decompose

the input-output characteristics into noise-free part and probabilistic noise

part and identify them simultaneously. Other SC techniques applied to

computer vision have already been used in different works namely the ones

from [KjB97] and [Blo08]. [MB10] presents a pattern classifier system for

the detection of people using laser range finders data is presented. The

approach is based on the quantified fuzzy temporal rules (QFTRs) know-

ledge representation and reasoning paradigm, that is able to analyse the

spatio-temporal patterns that are associated to people. More information

and work on this subject can be found in [SCFERB+09], [SCSD09] and

[NKDdW09]. In the current work, FL ([YF94]) is privileged in order to

have the possibility of dealing with uncertainty and vagueness in a flexible

manner as well as to avoid restrictions when representing imprecision and

uncertainty with probabilistic models. Regarding object detection, different

works, as the one from [IBP06], are supported by FL approaches.

PF are widely used on object tracking algorithms. They can estimate

the state of a dynamic system x(t) from sequential observations z(t) as ref-

ereed in different works as the ones from [GS95]), [IB98] and [Kit96]. They

are able to manage multiple hypotheses simultaneously, by dealing naturally

with systems where both the posterior density and the observation density

are non-Gaussian. However, they may present some problems when used

for multi-target tracking. Firstly, the standard version of the PF, does not
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define a method to identify individual targets. Furthermore, particles gener-

ated by this kind of filter quickly converge to a single target, discarding the

rest of them (also known as the coalescence or particle “hijacking” problem).

Another problem is that it can suffer from exponential complexity as the

number of targets increases. [VGP05] as well as [KBD05] and [OTdF+04]

propose different approaches to deal with these problems. A Multi Particle

Filter (MPF) consists of employing an independent PF for each target and

an interaction factor which modifies the weight of particles in order to avoid

the coalescence problem. A more recent work, the one of [MS12], presents

a novel approach, based on drift homotopy for stochastic differential equa-

tions, for improving particle filters for multi-target tracking. Drift homotopy

is used to design a Markov Chain Monte Carlo step which is appended to

the particle filter and aims to bring the particle filter samples closer to the

observations while at the same time respecting the target dynamics. An-

other approach which is aimed for people tracking is the one from [PMC12]

in which a generic online multi-target track-before-detect (MT-TBD) that is

applicable on confidence maps used as observations is proposed. The main

novelty is the inclusion of the target ID into the particle state, enabling the

algorithm to deal with unknown and large number of targets.

Another way of dealing with uncertainty and vagueness issues susceptible

of being found in PF are the so called Fuzzy Logic based Particle Filter

(FLPF), which is a concept that has been applied by some authors. In

[ZZ08], the ideal number of generated particles is computed using a Fuzzy

System(s) (FS). In [YJJMMT07], a fuzzy adaptive PF for the localization

of a mobile robot is proposed, whose basic idea is to generate samples at

high-likelihood using a FL approach. [SMYF10] present a particle filtering

approach in which particles are weighted using a fuzzy based color model

for object which discriminates between background and foreground elements.

In their approach, only that information is fuzzified and used to evaluate

the particle. [KB05] present a FLPF algorithm for tracking a manoeuvring

target. In their work, the nonlinear system which is comprised of two-input

and single-output are represented by fuzzy relational equations. In [ZB09] a

PF approach, where face detection information is also used to enhance the

performance of the PF, is described. In the current approach, the problem

of merging different information sources, usually accompanied by vagueness

and uncertainty, is solved by using a new approach based on a PF which

generates particles that are evaluated by means of FL.

We finish this section by citing some papers that use the Kinect sensor

which, as said before, is a sensor that is becoming popular in this field of
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study, for solving people detection and/or tracking problems. Albiol et al

[AAOM12] propose the concept of bodyprints to perform re-identification

of people in surveillance videos. The Kinect is placed in a high position

so that several people are seen from above. They create a database of 40

people and argue that their bodyprint concept is very robust to changes

of pose, point of view and illumination. Also, the algorithm could be used

for tracking people using networks of non-overlapping cameras. Another

proposal [LSA10] combines a multi-cue person detector for RGB-D data

with an on-line detector that learns individual target models. It neither

relies on background learning nor has a ground plane assumption. It uses

3 Kinect devices mounted vertically and target appearance models must

be learnt. Others authors [RBMHMU12] present an approach for people

detection and tracking by an autonomous mobile robot, using the Kinect

(although they claim that their methodology can be applied to any RGB-D

system). They use 2D space information to detect features of people, like

face and skin, and 3D information to segment the people silhouette. Some

authors [SAJ+13] claim that the Kinect presents some limitations for its

use on a mobile platform and propose to add to the system a thermical

sensor (thermopile) mounted on top of a mobile platform. They propose

the implementation of an evolutionary selection of sequences of image trans-

formation to detect people through supervised classifiers and show that the

people detection error is reduced. Finally, a method which uses the Kinect

to achieve human object recognition using the depth and color information

of the shirt a person is wearing was proposed [SF13].

1.3.2 Human Response

In the fields of HCI and HRI, a main goal is to be able to replicate the

behavior among humans by designing a system capable of interacting with

humans in a natural way. There is certainly a long way to be traversed but

there are interesting works in the literature about this topic.

One of the works [AKK08] is aimed for users that are located next

to a screen. Specific cues such as head pose and eye gaze that are only

detectable at very close distances were considered. Other authors [UPSP10]

use different types of sensors to segment a human region of interest and

to track his/her motion. They do not use colour information and show

their results for only one person. Other examples are mostly based on face

information [SBOGP08, SM04], focus orientation [HCPW03] or eye gaze

[MI]. Most of these examples require that users are placed at relatively close
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distances from the camera and its reliability often depends on the level of

his or her head motion. It is usual to find the use of specific face features

[AS11], where a face and head gesture detector in video streams is used.

The detector is based on face landmark paradigm in which appearance and

configuration information of landmarks are used. Also machine learning

is considered and [CHF08] propose a hybrid-boost learning algorithm for

multi-pose face detection and facial expression recognition. Another option

is to use algorithms based on extracted points from the subjects faces as

well as their physiological responses [BPM+08].

Different sources of information could be considered. For example, it

is possible to consider sound source localization or speech recognition com-

bined with face detection in order to study the human behavior [BFJ+05a].

In other cases [SKKB01], the recognition of specific facial (lips) expressions

allows to a robotic arm to operate autonomously via visual feedback. Most

of the mentioned works require users to be close to the sensors and, also,

they centre their study in only a few features.

In order to detect certain arms interaction gestures, we opted to use

a fast but precise algorithm [AGSG+07] where stereo information is also

used to detect simple interest demanding gestures with the arms. Thus,

in our proposal, we try to integrate different visual features detectable at

several ranges of distances (close, medium and far) using a Hierarchical

Fuzzy System(s) (HFS). It makes it a more robust and flexible Human

Robot Interaction oriented system, at different distances. Our system is

composed by a single stereo camera (similar to human vision) and avoids

the use of specific “not human alike” hardware. Also, it is modular and it is

possible to easily include new feature detection algorithms in future works.

Our proposal requires to fuse different information. The fusion of inform-

ation has the problem that data is often affected by errors (which are linked,

for instance, to unpredictable situations and to the physical specifications

of the sensor). In order to handle these issues, soft computing techniques,

as FL, can be used.

In the fields of HCI and HRI, FL has been used in several works. One

option is to use FL clustering techniques to model an operator’s attention

(based on eye gaze) and to develop a computational model for the attention

and its allocation [LZW+09]. As authors claim, their model can be limitat-

ive by only using one type of cue. Regarding emotion detection, in [MA07]

a FL model transforms four physiological signals into arousal and valence

and a second FL model transforms arousal and valence into five emotional

states relevant to computer game play: boredom, challenge, excitement,
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frustration, and fun. Their approach makes use of several hardware devices

that must be applied on the user to extract features which will be used as

the fuzzy sets inputs. Although it is an interesting approach, the use of “hu-

man intrusive” sensors could originate a certain feeling of rejection respect

to the system. In [ISH12], a new method for Emotion Recognition from

Facial Expression using Fuzzy Inference System (FIS) is proposed. Their

method is able to recognise emotions from partially occluded facial images.

Another proposal [XLC08] is based on the Fourier transform to represent

one facial expression and then to process the information using the fuzzy

C-means algorithm to generate a spatio-temporal model for each expression

type. These methods rely only on facial features which are hard to detect

at higher distances.

In our proposal, one different feature extracting method is applied de-

pending on the distance. Then, this sensorial information is fused using

a HFS, taking into account its level of confidence. HFS [Tor02] allow the

organization of several FS according to the type of information they cope

with. In this work, thanks to the proposed HFS, sensorial information is

handled according to the distance at which the tracked person is placed.

Then, it is possible to compute his or her instantaneous, accumulated and

average level of human response, for a specific period of time.

Finally, and before concluding this section, some works using the relative

new Kinect depth sensor, and that are somehow related with the detection of

human behavior, namely gestures detection, are presented. In [MBMM13]

there is a proposal using an autonomous system for real-time human ac-

tion recognition based on 3D motion flow estimation. They exploit colored

point cloud data acquired with a Kinect sensor and summarise the motion

information by means of a 3D grid-based descriptor. In [LYTZ13] authors

present a novel vision-based markerless hand pose estimation scheme based

on depth image sequences. The proposed scheme exploits both temporal

constraints and spatial features of the input sequence, and focuses on hand

parsing and 3D fingertip localization for hand pose estimation. Respect to

body pose estimation, a work [OKO+12] compares the Kinect pose estima-

tion (skeletonization) with more established techniques for pose estimation

from motion capture data, examining the accuracy of joint localization and

robustness of pose estimation with respect to the orientation and occlusions.

Experimental results present pose estimation accuracy rates and correspond-

ing error bounds for the Kinect system. Finally, there is an application of

pose estimation [MM13] in which a novel fall detection system based on

the Kinect sensor is presented. The system is capable of detecting in real
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time walking falls. It is performed in accurate and robust way and without

taking into account any false positive activities (i.e. lying on the floor). Ve-

locity and inactivity calculations are performed to decide whether a fall has

occurred.
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Chapter 2

System and Techniques

Description

In this chapter a description of the used hardware is firstly given. Then, in

the second section, the basis of the used stereo algorithm will be presented

followed by the colour modeling method. These two methods are crucial to

all subsequent developed algorithms which are based in this kind of visual

information. In the third section of this chapter, the basis of Principal

Component Analysis (PCA) and Support Vector Machines (SVM), which

correspond to those learning machine techniques that were several times

employed, is described. Finally, Fuzzy Logic (FL) is presented, as this

reasoning method is largely privileged in this thesis.

2.1 Hardware Description

The hardware system used in the different works presented in this thesis was

comprised of a PeopleBot mobile robot ([Rob]), a stereoscopic system with

a binocular camera [Res05] and a laptop for processing all the data. The

camera and the laptop were mounted on the top of the robot structure as

seen in Fig. 2.1. The used stereoscopic system allows the extraction of not

only colour but also depth information. In our experiments sequences were

recorded with a resolution of 320 x 240 pixels size at a 15 fps frame rate.

At first, the used laptop was comprised of an Intel Pentium IV Central

Processing Unit (CPU) working at 3.2 Ghz. Lately, the processor of the

laptop was an Intel i5 CPU working at 2.67 GHz.
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Figure 2.1: Peoplebot robot with a laptop and the Bumblebee stereo camera
on the top.

The main sensor used in the current work, the stereo camera, captures

two images from slightly different positions (calibrated stereo pair) which

are transferred to the computer to calculate a disparity image containing

the points matched in both images (see Section 2.2.1).

Although the moving functionality of the robot is not directly used in

the presented works, the goal is to integrate the algorithms hereby presented

with other works developed by different research teams of our group. The

height of this robot is similar to the average height of a 8 to 10 years old child.

We believe this is an advantage as it may favour the interaction of people

with a social robot. As a matter of fact, people will feel more comfortable

interacting with a robot as high as an human being and having its vision

system placed on the top of it (simulating its eyes), as an human being does.

This is one of the conditions that were prioritised in the different works as it

is important for the research group to simulate the same conditions taking

place on a Human to Human interaction. The system is aimed to be used

in different social activities in which several people could participate while

freely moving and interacting between a distance which varies from 0.5 to 5

meters (limitation due to the image resolution of the camera, angle of vision

and real time performance restrictions).
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2.2 Computer Vision

In this Section, a description of the two main computer vision techniques

used in the different works is given. Firstly, stereo vision is introduced and

then color modelling is described.

2.2.1 Stereo Modeling

In this section, the notions of stereo computation, which is the base of the

entire system (people detection, tracking and human behaviour analysis),

are presented. For a more detailed review, the interested reader is referred

to [BBH03]. Please note that it is not our purpose to develop or present a

new stereo matching algorithm. Instead of it, the software that comes with

the camera ([Res10]) is used. The camera software already deals with lens

distortion when performing stereo computation. It supplies an assembly

optimized fast-correlation stereo core that performs fast Sum of Absolute

Differences (SAD) stereo correlation. This method is known for its speed,

simplicity and robustness, and generates dense disparity images.

The minimal possible Stereo Vision (SV) system is composed by a pair

of cameras whose optical centres (Ol and Or) are separated by a distance

b. Let us assume, in order to simplify the explanation, that both cameras

have identical optical characteristics and have coplanar vision planes (as in

Fig.2.2). A SV system is able to capture two images (Il and Ir) at the same

instant. Both cameras are calibrated and the captured images are rectified

in order to remove the deformations caused by lens distortion. Usually, the

centre of one of the cameras is employed as reference system. In the present

case, it will be the centre of the right image (named reference camera image).

A point P = (X, Y, Z) in space projects to two locations (p = (x, y)

and p′ = (x′, y′)) at the same epipolar line on each rectified images. The

displacement of the projection in one image in comparison to the other is

named disparity and the set of all disparities between two images is the so

called disparity map. Disparities can only be computed for these points

that are registered on both images but it is difficult to do it when there

are occlusions or insufficient texture. The points whose disparity cannot be

calculated are named unmatched points.

Knowing the intrinsic parameters of the SV system, such as the focal

length (in the presented system this value is 6 mm), it is possible to recon-

struct the three-dimensional structure corresponding to the disparity map.
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Figure 2.2: Minimal stereo system composed by two cameras.

In Fig.2.3 there is an example of a scene captured with a SV system.

While in Fig.2.3a the left camera image Il is shown and in Fig.2.3b the

right camera image Ir (defined as the reference image) is shown, in Fig.2.3c

it is possible to see the distance image Iz. In this image, brighter pixels in-

dicate lower values of Z while darker ones represent farther distances. Black

pixels represent unmatched points. The disparity map for this frame would

be an image similar to Fig.2.3c, where lighter pixels would mean greater

disparity and darker ones would represent smaller disparity. In addition,

it is also important to take into consideration that distance information

obtained from a stereo pair is affected by typical stereo errors, i.e., in the

calibration, quantization and matching processes, as explained in ([MMN89]

and [RA90]). Algorithms employing stereo information must properly deal

with these errors

Although distance (stereo) information is used to improve the accuracy

of the tracking algorithm, the tracking is done in the reference image, in the

2D domain, where the position of a person is the position of the centre of

his/her face, which was originally detected by a face detector in the reference

image. Thus, the position of a person is a (xp, yp) pair corresponding to a

pixel within the reference image.

Figure 2.3: (a) Image of the left camera Il captured with the Stereo Vision
system. (b) Image of the right camera Ir (reference image). (c) Image of
distance Iz.
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2.2.2 Colour Modeling

Tracking objects using colour information is a well known problem which has

been studied using different approaches [Bir98], [CR00], [GK04], [NKMG03].

The most frequently used method consists of using a histogram to rep-

resent a colour model q̂ where each bin represents a colour region. As HSV

colour space ([FvD82]) is relatively invariable to illumination changes, it has

become a popular approach in this domain. A colour histogram q̂ comprises

nhns bins for the hue and saturation. However, chromatic information can-

not be considered reliable when the value component is too small or too big.

Therefore, pixels in this situation are not used to describe the chromaticity.

Due to the fact that these pixels might have important information, the

histogram includes also nv bins to capture its luminance information. Thus,

the resulting histogram is composed by m = nhns + nv bins.

As stated in [Bir98], [CR00] and [NKMG03], an elliptical region of the

image is used to create the colour model whose horizontal and vertical axis

are hx and hy respectively. Let pc be the ellipse centre and {pj}j=1,...,n the

locations of the interior pixels of the ellipse. Let us also define a function

b : �2 → 1, ...,m which associates to the pixel at location pj the index

b(pj) of the histogram bin corresponding to the colour u of that pixel. It is

now possible to compute the colour density distribution q̂ for each elliptical

region with:

q̂(u) =
1

n

n∑
j=1

k[b(pj)− u], (2.1)

where the parameter k is the Kronecker delta function. Please notice

that the resulting histogram is normalised, i.e.,
∑m

u=1 q̂(u) = 1.

After calculating the colour model q̂, it is possible to compare it with

another colour model q̂′ using the Bhattacharyya coefficient as described in

[ATR97] and [Kai67]. In the case of a discrete distribution it can be ex-

pressed as indicated in Eq. 2.2. The result expresses the similarity between

two colour models in the range of [0, 1] where 1 means that they are identical

and 0 means that they are completely different. An important feature of

ρ is that both colour models, q̂ and q̂′, can be compared even if they have

been created using regions of different sizes. In Fig. 2.4 there is an example

of a frame taken from a video on the left and a table comparing different

Region of Interest (ROI) with their corresponding Bhattacharyya coefficient

on the right.
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ρ(q̂, q̂′) =
m∑

u=1

√
q̂(u)q̂′(u). (2.2)

Figure 2.4: (a) Scene with three objects in it. (b) Bhattacharyya values for
different images.

2.3 Machine Learning

As in the works presented in this thesis, different machine learning tech-

niques were used, we introduce in this section two of those techniques:

Principal Component Analysis and Support Vector Machines.

2.3.1 Principal Components Analysis

PCA [HD89] is a technique widely employed for dimensionality reduction.

When PCA is used, an image is transformed into its principal components,

i.e., those that contain the “most important” aspects of the data. PCA has

the distinction of being the optimal linear transformation for keeping the

subspace that has largest variance. It allows the identification of patterns in

data, and to express the data in such a way as to highlight their similarities

and differences. PCA is also used to compress data as, once these patterns

have been found in the data, the number of dimensions may be reduced,

selecting the percentage of information that is lost. The mathematical basis

of PCA can be easily found in bibliography or on the Internet [Sim13].

A PCA projection represents a data set in terms of the orthonormal ei-

genvectors of the data set’s covariance matrix. A covariance matrix captures
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the correlation between variables in a data set. PCA finds the orthonormal

eigenvectors of the covariance matrix as the basis for the transformed fea-

ture space. Eigenvectors can be thought of as the “natural basis” for a

given multi-dimensional data set. Higher eigenvalues in the covariance mat-

rix indicate lower correlation between the features in the data set. PCA

projections seek uncorrelated variables.

Every data set has principle components, but PCA works best if data are

Gaussian-distributed. For high dimensional data the Central Limit theorem

allows us to assume Gaussian distributions.

Let us begin by calculating the variance of a single variable x as:

σ2 =

∑n
i=1(xi − X̄)2

n
Then it is possible to calculate the variance of two variables, x and y,

as:

cov(X, Y ) =

∑n
i=1(xi − X̄)(yi − Ȳ )

n
With the covariance, one is able to see how two variables vary together:

• In the case that covariance between two variables is positive, if one

variable increases, the other will also increase.

• In the case that covariance between two variables is negative, if one

variable increases, the other will decrease.

• In the case that covariance between two variables is zero, then both

variables are completely independent of each other.

For a set of variables < X1, ..., Xn >, (for instance, the features of a

data set) it is possible to construct a matrix which represents the covariance

between each pair of variables Xi and Xj where i and j are indexes of the

feature vector.

cov(X) =

⎡
⎢⎢⎢⎣

var(X1) cov(X1, X2) · · · cov(X1, Xn)

cov(X2, X1) var(X2) · · · cov(X2, Xn)
...

...
. . .

...

cov(Xn, X1) cov(Xn, X2) · · · var(Xn)

⎤
⎥⎥⎥⎦

In this matrix the diagonal simply represents the variance of an indi-

vidual variable. This matrix is symmetric, which means that, cov(Xi, Xj) =

cov(Xj, Xi).
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Before using the concept of covariance in PCA, there is a first step which

consists of subtracting the means X̄i from each xi before constructing the

covariance matrix so that each X̄i has a mean of zero. By subtracting the

mean it is possible to rewrite the covariance matrix as the following matrix

multiplication:

Σ =
1

n
XXT

Then, by applying the spectral decomposition theory, we can factor the

matrix above into:

Σ = UΛUT

where Λ = diag(λ1, · · · , λn) is the diagonal matrix of the eigenvalues of

the covariance matrix ordered from highest to lowest:

Λ =

⎡
⎢⎢⎢⎣

λ1 0 0 0

0 λ2 0 0

0 0
. . .

...

0 0 · · · λn

⎤
⎥⎥⎥⎦

Finally, the principal components are the row vectors of UT. UT rep-

resents the projection weight matrix W and the transformed data matrix S

can be obtained from the original data matrix X by:

S = WX

If we choose not to use eigenvectors that correspond to lower eigenvalues

so that W has fewer rows, then each s will have lower dimensionality regard-

ing its corresponding x. Discarding these eigenvectors can be thought of as

discarding noise from the data, since these eigenvectors represent highly

correlated, and thus uninformative variables.

2.3.2 Support Vector Machines

SVMs are a useful technique for data classification. Although SVM is con-

sidered easier to use than Artificial Neuronal Networks (ANN), users not

familiar with it often get unsatisfactory results at first. Furthermore, there

are two main advantages of SVM over ANN. First, most of the modalities

of ANN can suffer from multiple local minima while the solution supplied

by SVM is global and unique. Second, the computational complexity of
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SVM does not depend on the input data dimensionality, unlike ANN. Al-

though readers do not need to understand the underlying theory behind

SVM, the basics necessary for explaining the used SVM package are given.

In this case, the libsvm library (free software available in Internet [CL11])

has been employed and the brief following explanation is adapted from this

article.

A classification task usually implies separating data into training and

testing sets. Each instance in the training is added to one class group and

contains several “attributes” (i.e. the features or observed variables). The

goal of SVM is to produce a model (based on the training data) which

predicts the class label of the test data, given only the test data attributes.

Given a training set of instance-label pairs (xi, yi), i = 1, ..., l where

xi ∈ Rn and yi ∈ {1,−1}l, the SVM require the solution of the following

optimization problem ([BGV92] and [CV95]):

min
w,b,ξ

1
2
wTw + C

∑l
i=0 ξi

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0.

Here, training vectors xi are mapped into a higher (maybe infinite) di-

mensional space by the function φ. SVM finds a linear separating hyper-

plane with the maximal margin in this higher dimensional space. C > 0 is

the penalty parameter of the error term. Furthermore, K(xi, xj) ≡ φ(xi)
T

φ(xj) is called the kernel function. Though new kernels are being proposed

by researchers, the following four basic kernels are easily found in literature:

• linear: K(xi, xj) = xT
i xj.

• polynomial: K(xi, xj) = (γxT
i xj + r)d, γ > 0.

• radial basis function (RBF): K(xi, xj) = exp(−γ‖xi − xj‖2), γ > 0.

• sigmoid: K(xi, xj) = tanh(xT
i xj + r).

2.4 Fuzzy Logic

The main reasoning system used in the different works of this thesis is FL.

Therefore, the basis of FL will now be presented, namely the concepts that

are mostly used. These concepts are based on the explanations found in

[Ful10] and [Kae] but readers interested in other questions concerning FL

may consult the following references [Zad75], [Zad99], [DD96] and [YF94].
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FL was conceived by Lofti Zadeh as a way of processing data by al-

lowing partial set membership rather than crisp set membership or non-

membership. According to him, people do not require precise, numerical

information input, and yet they are capable of highly adaptive control. He

believed that feedback controllers could be programmed in a way that they

would be able to accept noisy and/or imprecise input and this way they

could be more effective and even easier to implement.

It is possible to see FL as problem-solving control system methodology

that can be implemented in a wide range of different systems. It can be

implemented in hardware, software or both. FL provides a simple way

to arrive at a definite conclusion based upon vague, ambiguous, imprecise,

noisy, or missing input information. A FL approach to control problems

mimics how a person would make decisions, only much faster.

Among the benefits of using FL there are some features that we would

like to highlight:

• It is considered to be robust as it does not require precise and noise-

free inputs. Even in case of an input failure it may continue to work

and its output is normally smooth despite the several possible inputs.

• It is very modular and easily adaptable. As a matter of fact, its rules

can be easily changed and tuned to drastically change the system

performance. New sensors can be easily incorporated by setting up

new rules and/or adapting he existing ones.

• It allows the use of a wide range of different types of sensors as it is not

limited to a few feedback inputs and one or two control outputs, nor

is it necessary to measure or compute rate-of-change parameters in

order for it to be implemented. It is then possible to use inexpensive

and even imprecise sensors while keeping the overall system cost and

complexity low.

• Any reasonable number of inputs can be processed (1-8 or more) and

numerous outputs (1-4 or more) generated. Nevertheless, the com-

plexity of the rule-base may increase when using many inputs so it

is advisable to distribute different sub tasks to different controllers

(using, for instance, a Hierarchical Fuzzy System(s) (HFS) approach).

• It is also possible to model nonlinear system thus making it possible

to model control systems that would normally be deemed unfeasible

for automation.
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2.4. Fuzzy Logic

Professor Lotfi Zadeh proposed the concept of linguistic or “fuzzy” vari-

ables. We can see them as linguistic objects or words, rather than numbers.

The sensor input is a noun, e.g. “temperature”, “displacement”, “velocity”,

“flow”, “pressure”, etc. Since error is just the difference, it can be thought

of the same way. The fuzzy variables themselves are adjectives that modify

the variable (e.g. “large positive” error, “small positive” error, “zero” error,

“small negative” error, and “large negative” error). As a minimum, one

could simply have “positive”, “zero”, and “negative” variables for each of

the parameters. Additional ranges such as “very large” and “very small”

could also be added to extend the responsiveness to exceptional or very

nonlinear conditions, but aren’t necessary in a basic system.

FL incorporates a simple, rule-based IF X AND Y THEN Z approach

to a solving control problem rather than attempting to model a system

mathematically. The FL model is empirically-based, relying on an operator

experience rather than their technical understanding of the system. For

instance, rather than dealing with temperature control in terms such as

“SP = 500F”, “T < 1000F”, or “210C < TEMP < 220C”, terms like “IF

(process is too cool) AND (process is getting colder) THEN (add heat to the

process)” or “IF (process is too hot) AND (process is heating rapidly) THEN

(cool the process quickly)” are used. These terms are imprecise and yet very

descriptive of what must actually happen. Consider what you do in the

shower if the temperature is too cold: you will make the water comfortable

very quickly with little trouble. FL is capable of mimicking this type of

behavior but at very high rate.

The next logical question is how to apply the rules. This leads into

the next concept, the membership function. The membership function is a

graphical representation of the magnitude of participation of each input. It

associates a weighting with each of the inputs that are processed, defines

functional overlap between inputs, and ultimately determines an output

response. The rules use the input membership values as weighting factors

to determine their influence on the fuzzy output sets of the final output

conclusion. There are different membership functions associated with each

input and output response.

The logical products for each rule must be combined or inferred before

being passed on to the defuzzification process for crisp output generation.

Once the functions are inferred, scaled, and combined, they are defuzzified

into a crisp output which drives the system by combining the results of the

inference process and then computing the “fuzzy centroid” of the area.

The system should be tuned in order to produce the best results. This
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can be done by changing the rule antecedents or conclusions, changing

the centers of the input and/or output membership functions, or adding

additional degrees to the input and/or output functions such as “low”,

“medium”, and “high” levels of “error”, “error-dot”, and output response.

These new levels would generate additional rules and membership func-

tions which would overlap with adjacent functions forming longer “moun-

tain ranges” of functions and responses. The techniques for doing this

systematically are a subject unto itself.

After this brief explanation of FL, and as this technique is widely used

on this thesis, we will describe some of the previous mentioned concepts in

a formal way, namely those which are most used in our work.

2.4.1 Fuzzy sets

According to the definition of [Zad65], let X be a nonempty set. A fuzzy

set A in X is characterized by its membership function

μA : X→ [0,1]

and μA(x) is interpreted as the degree of membership of element x in

fuzzy set A for each x ∈ X.

Frequently we will write simply A(x) instead of μA(x).

Let A be a fuzzy subset of X; the support of A, denoted supp(A), is the

crisp subset of X whose elements all have nonzero membership grades in A.

2.4.2 Fuzzy Numbers

A fuzzy set A of the real line R is defined by its membership function

(denoted also by A)

A : R→ [0,1]

If x ∈ R then A(x) is interpreted as the degree of membership of x in

A.

A fuzzy set in R is called normal if there exists an x ∈ R such that

A(x) = 1. A fuzzy set in R is said to be convex if A is unimodal (as a

function). A fuzzy number A is a fuzzy set of the real line with a normal,

(fuzzy) convex and continuous membership function of bounded support.
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2.4. Fuzzy Logic

Definition: A fuzzy set A is called triangular fuzzy number with peak

(or center) a, left width α > 0 and right width β > 0 if its membership

function has the following form:

A(t) =

⎧⎪⎪⎨
⎪⎪⎩
1− a−t

α
if a− α ≤ t ≤ a

1− t−a
β

if a ≤ t ≤ a+ β

0 otherwise

and we use the notation A = (a, α, β).

The support of A is (a−α, b+β). A triangular fuzzy number with center

a may be seen as a fuzzy quantity

“x is close to a” or “x is approximately equal to a”:

Figure 2.5: A triangular fuzzy number

Definition: A fuzzy set of the real line given by the membership func-

tion

A(t) =

{
1− |a−t|

α
if |a− t| ≤ α,

0 otherwise

where α > 0 will be called a symmetrical triangular fuzzy number with

center a ∈ R and width 2α and we shall refer to it by the pair (a, α).

Definition: A fuzzy set A is called trapezoidal fuzzy number with toler-

ance interval [a, b], left width α and right width β if its membership function

has the following form:

A(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1− a−t
α

if a− α ≤ t ≤ a

1 if a ≤ t ≤ b

1− t−b
β

if a ≤ t ≤ b+ β

0 otherwise
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and we use the notation A = (a, b, α, β)

The support of A is (a− α, b+ β). A trapezoidal fuzzy number may be

seen as a fuzzy quantity

“x is approximately in the interval [a, b]”:

Figure 2.6: Trapezoidal fuzzy number

2.4.3 Operations on Fuzzy Sets

The classical set theoretic operations from ordinary set theory can be ex-

tended to fuzzy sets. Let A and B are fuzzy subsets of a crisp set X. The

classical - introduced by Zadeh in 1965 - intersection of A and B is defined

as:

(A ∩ B)(t) = min{A(t), B(t)} = A(t) ∧ B(t),

The union of A and B is defined as

(A ∪ B)(t) = max{A(t), B(t)} = A(t) ∨ B(t),

The complement of a fuzzy set A is defined as

(¬A)(t) = 1− A(t)

for all t ∈ X.

2.4.4 Triangular Norms

Triangular norms were introduced by Schweizer and Sklar to model distances

in probabilistic metric spaces. In fuzzy sets theory triangular norms are

extensively used to model logical connective and.
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2.4. Fuzzy Logic

Definition: (Triangular norm.) A mapping

T : [0, 1]× [0, 1]→ [0, 1]

is a triangular norm (t-norm for short) iff it is symmetric, associative,

non-decreasing in each argument and T(a, 1) = a, for all a ∈ [0, 1]. In other

words, any t-norm T satisfies the properties:

• Symmetricity: T(x, y) = T(y, x), ∀x, y ∈ [0, 1].

• Associativity: T(x,T(y, z)) = T(T(x, y), z), ∀x, y, z ∈ [0, 1].

• Monotonicity: T(x, y) ≤ T(x′, y′) if x ≤ x′ and y ≤ y′.

• One identy: T(x, 1) = x, ∀x ∈ [0, 1].

These axioms attempt to capture the basic properties of set intersection.

The basic t-norms are:

• minimum: min(a, b) = min{a, b},
• Lukasiewicz: TL(a, b) = max{a+ b− 1, 0}
• product: TP (a, b) = ab

2.4.5 Triangular conorms

Triangular conorms are extensively used to model logical connective or.

Definition: (Triangular conorm.) A mapping

S : [0, 1]× [0, 1]→ [0, 1]

is a triangular co-norm (t-conorm) if it is symmetric, associative, non-

decreasing in each argument and S(a, 0) = a, for all a ∈ [0, 1]. In other

words, any t-conorm S satisfies the properties:

• Symmetricity: S(x, y) = S(y, x), ∀x, y ∈ [0, 1].

• Associativity: S(x,S(y, z)) = S(S(x, y), z), ∀x, y, z ∈ [0, 1].

• Monotonicity: S(x, y) ≤ S(x′, y′) if x ≤ x′ and y ≤ y′

• Zero Identy: S(x, 0) = x, ∀x ∈ [0, 1]

If T is a t-norm then the equality
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S(a, b) := 1−T(1− a, 1− b),

defines a t-conorm and we say that S is derived from T.

The basic t-conorms are:

• maximum: max(a, b) = max{a, b},

• Lukasiewicz: SL(a, b) = min{a+ b, 1}

• product: SP (a, b) = a+ b− ab

2.4.6 Material Implication

Let p =′ x is in A′ and q =′ y is in B′ are crisp propositions, where A and

B are crisp sets for the moment.

The full interpretation of the material implication p→ q is that:

the degree of truth of p → q quantifies to what extend q is at least as

true as p, i.e.

τ(p→ q) =

{
1 if τ(p) ≤ τ(q)

0 otherwise

2.4.7 Fuzzy Implications

Consider the implication statement

“if pressure is high then volume is small”

The membership function of the fuzzy set A, big pressure, can be inter-

preted as

• 1 is in the fuzzy set big pressure with grade of membership 0

• 2 is in the fuzzy set big pressure with grade of membership 0.25

• 4 is in the fuzzy set big pressure with grade of membership 0.75

• x is in the fuzzy set big pressure with grade of membership 1, x ≥ 5

46



2.4. Fuzzy Logic

Figure 2.7: Membership function for “big pressure”

A(u) =

⎧⎪⎪⎨
⎪⎪⎩
1 if u ≥ 5

1− 5−u
4

if 1 ≤ u ≤ 5

0 otherwise

The membership function of the fuzzy set B, small volume, can be in-

terpreted as:

• 5 is in the fuzzy set small volume with grade of membership 0

• 4 is in the fuzzy set small volume with grade of membership 0.25

• 2 is in the fuzzy set small volume with grade of membership 0.75

• x is in the fuzzy set small volume with grade of membership 1, x ≤ 1

B(υ) =

⎧⎪⎪⎨
⎪⎪⎩
1 if υ ≤ 1

1− υ−1
4

if 1 ≤ υ ≤ 5

0 otherwise

If p is a proposition of the form “x is A” where A is a fuzzy set, for

example, big pressure and q is a proposition of the form “y is B” for example,

small volume then we define the implication p→ q as

A(x)→ B(y)

For example,

x is big pressure → y is small volume ≡ A(x)→ B(y)
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Figure 2.8: Membership function for “small volume”

Remembering the full interpretation of the material implication

p→ q =

{
1 if τ(p) ≤ τ(q)

0 otherwise

We can use the definition

A(x)→ B(y) =

{
1 if A(x) ≤ B(x)

0 otherwise

4 is big pressure → 1 is small volume = A(4)→ B(1) = 1.

In many practical applications they use Mamdani’s minimum operator

to model causal relationship between fuzzy variables.

A(u)→ B(υ) = min{A(u), B(υ)}
For example,

4 is big pressure → 1 is small volume = min{A(4), B(1)} = 0.75

It is easy to see this is not a correct extension of material implications,

because 0 → 0 yields zero. However, in knowledge based systems, we are

usually not interested in rules, where the antecedent part is false.

2.4.8 The Theory of Approximate Reasoning

In 1979 Zadeh introduced the theory of approximate reasoning. This the-

ory provides a powerful framework for reasoning in the face of imprecise

and uncertain information. Central to this theory is the representation of

propositions as statements assigning fuzzy sets as values to variables.
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2.4. Fuzzy Logic

Suppose we have two interactive variables x ∈ X and y ∈ Y and the

causal relationship between x and y is completely known. Namely, we know

that y is a function of x

y = f(x)

Then we can make inferences easily

premise y = f(x)

fact x = x′

consequence y = f(x′)

Figure 2.9: Simple crisp inference

This inference rule says that if we have y = f(x), ∀x ∈ X and we observe

that x = x′ then y takes the value of f(x′).

More often than not we do not know the complete causal link f between

x and y, only we now the values of f(x) for some particular values of x,

�1 : if x = x1 then y = y1

�2 : if x = x2 then y = y2

. . .

�n : if x = xn then y = yn

Suppose that we are given an x′ ∈ X and want to find an y′ ∈ Y which

corresponds to x′ under the rule-base {�1, . . . ,�n},
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�1 : if x = x1 then y = y1
�2 : if x = x2 then y = y2

. . .
�n : if x = xn then y = yn
fact: x = x′

consequence: y = y′

This problem is frequently quoted as interpolation.

Let x and y be linguistic variables, e.g. “x is high” and “y is small”. The

basic problem of approximate reasoning is to find the membership function

of the consequence C from the rule-base {�1, . . . ,�n} and the fact A,

�1 : if x is A1 then y is C1

�2 : if x is A2 then y is C2
. . .

�n : if x is An then y is Cn

fact: x is A
consequence: y = C

In 1979 Zadeh introduces a number of translation rules which allow us

to represent some common linguistic statements in terms of propositions in

our language. In the following we describe some of these translation rules.

Definition: Entailment rule:

x is A : Mary is very young

A ⊂ B : very young ⊂ young
x is B : Mary is young

Definition: Conjunction rule:

x is A
x is B

x is A ∩ B

Example

pressure is not very high

pressure is not very low

pressure is not very high and not very low

Definition: Disjunction rule:
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x is A
x is B

x is A ∪ B

Example

pressure is not very high

pressure is not very low

pressure is not very high or not very low

Definition: Projection rule:

(x, y) have relation R

x is ΠX(R)

(x, y) have relation R

y is ΠY (R)

Example

(x, y) is close to (3, 2)

x is close to 3

(x, y) is close to (3, 2)

y is close to 2

Definition: Negation rule:

not (x is A)

x is ¬A
Example

not (x is high)

x is not high

In fuzzy logic and approximate reasoning, the most important fuzzy

implication inference rule is the Generalized Modus Ponens (GMP). The

classical Modus Ponens inference rule says:

premise if p then q

fact p
consequence q

This inference rule can be interpreted as: If p is true and p→ q is true

then q is true.

The fuzzy implication inference is based on the compositional rule of

inference for approximate reasoning suggested by Zadeh in 1973.
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Definition: (compositional rule of inference)

premise if x is A then y is B

fact x is A′

consequence y is B′

where the consequence B′ is determined as a composition of the fact and

the fuzzy implication operator

B′ = A′ ◦ (A→ B)

that is,

B′(υ) = sup
u∈U

min{A′(u), (A→ B)(u, υ)}, υ ∈ V.

The consequence B′ is nothing else but the shadow of A→ B on A′.

The Generalized Modus Ponens, which reduces to classical modus pon-

ens when A′ = A and B′ = B, is closely related to the forward data-driven

inference which is particularly useful in the Fuzzy Logic Control.

In many practical cases instead of sup-min composition we use sup-T

composition, where T is a t-norm.

Definition: (sup-T compositional rule of inference)

premise if x is A then y is B

fact x is A′

consequence y is B′

where the consequence B′ is determined as a composition of the fact and

the fuzzy implication operator

B′ = A′ ◦ (A→ B)

that is,

B′(υ) = sup{T(A′(u), (A→ B)(u, υ))|u ∈ U}, v ∈ V
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It is clear that T can not be chosen independently of the implication

operator.

The classical Modus Tollens inference rule says: If p → q is true and q

is false then p is false. The Generalized Modus Tollens,

premise if x is A then y is B

fact y is B′

consequence x is A′

which reduces to “Modus Tollens” when B = ¬B and A′ = ¬A, is closely
related to the backward goal-driven inference which is commonly used in

expert systems, especially in the realm of medical diagnosis.

Suppose that A, B and A′ are fuzzy numbers. The Generalized Modus

Ponens should satisfy the basic property:

Figure 2.10: Basic property

premise if x is A then y is B

fact x is A
consequence y is B

Example

if pressure is big then volume is small

pressure is big

volume is small

2.4.9 Simplified Fuzzy Reasoning Schemes

Suppose that we have the following rule base
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�1 : if x is A1 then y is z1
also

�2 : if x is A2 then y is z2
. . .

�n : if x is An then y is zn
fact: x is x0

action: y is z0

where (A1, . . . , An) are fuzzy sets.

Suppose further that our data base consists of a single fact x0. The

problem is to derive z0 from the initial content of the data base, x0, and

from the fuzzy rule base � = {�1, . . . ,�n}.

�1 : if salary is small then loan is z1
also

�2 : if salary is big then loan is z2
fact: salary is x0

action: loan is z0

A deterministic rule base can be formed as follows

Figure 2.11: Discrete causal link between “salary” and “loan”.

�1 : if 2000 ≤ s ≤ 6000 then loan is max 1000

�2 : if s ≥ 6000 then loan is max 2000

�3 : if s ≤ 2000 then no loan at all

The data base contains the actual salary, and then one of the rules is

applied to obtain the maximal loan can be obtained by the applicant.

In fuzzy logic everything is a matter of degree.
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If x is the amount of the salary then x belongs to fuzzy set

• A1 = small with degree of membership 0 ≤ A1(x) ≤ 1

• A2 = big with degree of membership 0 ≤ A2(x) ≤ 1

In fuzzy rule-based systems each rule fires.

The degree of match of the input to a rule (wich is the firing strength)

is the membership degree of the input in the fuzzy set characterizing the

antecedent part of the rule.

Figure 2.12: Membership functions for “small” and “big”.

The overall system output is the weighted average of the individual rule

outputs, where the weight of a rule is its firing strength with respect to the

input.

To illustrate this principle we consider a very simple example mentioned

above

�1 : if salary is small then loan is z1
also

�2 : if salary is big then loan is z2
fact: salary is x0

action: loan is z0

Then our reasoning system is the following

• input to the system is x0

• the firing level of the first rule is α1 = A1(x0)

• the firing level of the first rule is α2 = A2(x0)
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• the overall system output is computed as the weighted average of the

individual rule outputs

z0 =
α1z1+α2z2

α1+α2
that is z0 =

A1(x0)z1+A2(x0)z2
A1(x0)+A2(x0)

A1(x0) =

{
1− (x0 − 2000)/4000 if 2000 ≤ x0 ≤ 6000

0 otherwise

Figure 2.13: Example of simplified fuzzy reasoning.

A2(x0) =

⎧⎪⎪⎨
⎪⎪⎩
1 if x0 ≥ 6000

1− (6000− x0)/4000 if 2000 ≤ x0 ≤ 6000

0 otherwise

It is easy to see that the relationship

A1(x0) + A2(x0) = 1

holds for all x0 ≥ 2000. It means that our system output can be written

in the form.

z0 = α1z1 + α2z2 = A1(x0)z1 + A2(x0)z2

that is,
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z0 = (1− x0−2000
4000

)z1 + (1− 6000−x0

4000
)z2

if 2000 ≤ x0 ≤ 6000. And z0 = 1 if x0 ≥ 6000. And z0 = 0 if x0 ≤ 2000

The (linear) input/oputput relationship is illustrated in the following

figure.

Figure 2.14: Input/output function derived from fuzzy rules.

2.4.10 Fuzzy Reasoning Schemes

�1 : if x is A1 and y is B1 then z is C1

�2 : if x is A2 and y is B2 then z is C2
. . .

�n : if x is An and y is Bn then z is Cn

x is x̄0 and y is ȳ0
z is C

The i-th fuzzy rule from this rule-base

�i : if x is Ai and y is Bi then z is Ci

is implemented by a fuzzy relation Ri and is defined as

Ri(u, υ, ω) = (Ai × Bi → Ci)(u, ω) = [Ai(u) ∧Bi(υ)]→ Ci(ω)

for i = 1, . . . , n.

Find C from the input x0 and from the rule base � = {�1, . . . ,�n}.

Interpretation of

• logical connective “and”

• sentence connective “also”
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• implication operator “then”

• compositional operator “◦”

We first compose x̄0 × ȳ0 with each Ri producing intermediate result

C ′
i = x̄0 × ȳ0 ◦Ri

for i = 1, . . . , n. Here C ′
i is called the output of the i-th rule

C ′
i(ω) = [Ai(x0) ∧ Bi(y0)]→ Ci(ω)

for each ω.

Then combine the C ′
i component wise into C ′ by some aggregation op-

erator:

C =
n⋃

i=1

C ′
i = x̄0 × ȳ0 ◦R1 ∪ · · · ∪ x̄0 × ȳ0 ◦Rn

C(ω) = A1(x0)× B1(y0)→ C1(ω) ∨ · · · ∨ An(x0)× Bn(y0)→ Cn(ω)

• input to the system is (x0, y0)

• fuzzified input is (x̄0, ȳ0)

• firing strength of the i-th rule is Ai(x0) ∧Bi(y0)

• the i-th individual rule output is C ′
i(ω) := [Ai(x0) ∧ Bi(y0)]→ Ci(ω)

• overall system output is C = C ′
1 ∪ · · · ∪ C ′

n.

overall system output = union of the individual rule outputs.

Among some of the most well-known inference mechanism systems in

fuzzy rule-based systems there are the ones of “Mamdani”, “Tsukamoto”,

“Sugeno” and “Larsen”.

In the following paragraph there is a brief description about the “Mam-

dani” inference system. For the other inference systems we advise readers

to consult the mentioned bibliography.
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For simplicity we assume that we have two fuzzy IF-THEN rules of the

form

�1 : if x is A1 and y is B1 then z is C1

also
�2 : if x is A2 and y is B2 then z is C2

fact : x is x̄0 and y is ȳ0
consequence : z is C

2.4.11 Mamdani

The fuzzy implication is modelled by Mamdani’s minimum operator and

the sentence connective also is interpreted as oring the propositions and

defined by max operator.

The firing levels of the rules, denoted by αi, i = 1, 2, are computed by

α1 = A1(x0) ∧B1(y0),

α2 = A2(x0) ∧ B2(y0)

The individual rule outputs are obtained by

C ′
1(ω) = (α1 ∧ C1(ω)),

C ′
2(ω) = (α2 ∧ C2(ω))

Figure 2.15: Inference with Mamdani’s minimum operation rule.
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Then the overall system output is computed by oring the individual rule

outputs

C(ω) = C ′
1(ω) ∨ C ′

2(ω) = (α1 ∧ C1(ω)) ∨ (α2 ∧ C2(ω))

Finally, to obtain a deterministic control action, defuzzification strategy

is employed.
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Chapter 3

People Detection and Tracking

This Chapter shows a Stereo Vision (SV) system capable of detecting and

tracking several people. This task is essential for the posterior detection of

the interest and of the human response. As already mentioned in Section

1.3, many research works have presented different approaches to solve differ-

ent problems during the process. Some of these problems are: the correct

detection of human beings, the correct tracking with a minimum loss of

the tracked people, the use of human alike sensors and techniques to per-

form the detection and tracking (enhancing the sense of a more “natural”

or “human similar” interaction).

In our case, the detection of people is based on the integration of colour

and distance information. On the one hand, independent objects (blobs) are

detected on the disparity image. They will be marked as possible people.

On the other hand a face detector is also applied. These items are merged

in order to detect the visible people. To perform the tracking, hair color,

clothes and past history information of the located people, are used. This

way, people can be identified even though some occlusions occur. Almost the

totality of the techniques used to solve the problem of people detection and

tracking, namely those described in Section 1.3, are based on probabilistic

approaches. In our case we firstly present a probabilistic approach to solve

the problem of people tracking. We integrate not only colour and distance

information, using a probabilistic approach, but we also use an analogous

to the human vision system (stereo camera) which is placed at a similar

height comparing to the human vision system (eyes).

We continue by presenting a people detection and tracking algorithm
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3. People Detection and Tracking

which is based on a “possibilistic” (using Fuzzy Logic (FL)) approach. The

reason for proposing a “possibilistic” approach, is because FL allows adding

more information based on expert knowledge, when evaluating the particles,

without being confined to the probabilistic models. Although stereo and col-

our information are also used in this work as sources of information, they are

supplied to several hierarchically sorted Fuzzy System(s) (FS), also called

Hierarchical Fuzzy System. This is done by generating different particles

in the image and then, using a FL approach, computing their possibility

of being the face central pixel of some previously detected person. In com-

plex applications, containing a large set of variables, it is not appropriate

to define the system with a flat set of rules. Among other problems, the

number of rules increases exponentially with the number of variables. Thus,

FS should be organised according to the type of information they cope with

in a hierarchical structure which has the advantage of helping reducing the

complexity of such systems ([Tor02]). That is a non negligible advantage

that was taken into consideration when choosing the architecture of the

employed FS.

In this Chapter, the first detection probabilistic approach is described

in Section 3.1 and then we describe the “possibilistic” approach in Section

3.2.

3.1 Probabilistic Human Tracking Approach

A probabilistic approach for tracking people, based on Particle Filter (PF)

and intended for mobile robots, will be firstly presented.

3.1.1 Proposed Method

This section explains our probabilistic person tracking method. It is based

on the use of the 3D body model shown in Fig. 3.1(a). It is a model

comprised by two planar ellipses and the information projected inside them:

one fitting the head region of the person (Eh), and another one fitting their

torso (Et). In an initial phase, the model must be appropriately placed to

fit the person head and torso (e.g. using a face detector [YKA02]). Then,

two color models (one for each ellipse) are stored to be employed in order

to track the person. The HSV color space has been employed in this work

because it is relatively invariable to illumination changes.

Our tracking approach employs the Condensation algorithm where particles

represent positions and velocities of the 3D model. The 3D position of the
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3.1. Probabilistic Human Tracking Approach

Figure 3.1: (a) Anatomical measures used for the different human body
sections, represented over real stereo information corresponding to a scene
with a person. (b) Projection of the human model on the reference camera
image (shown a person)

model is given by the central position of its upper ellipse Eh
c = (X, Y, Z)

that corresponds to the person head being tracked. Given a 3D position

for the model, it is possible to determine its projection on the reference

camera image. Figure 3.1(b) shows the projection of the 3D model shown

in Fig. 3.1(a). Particles weights are calculated by first projecting the 3D

model on the reference camera image and then examining the inner pixels of

the projected ellipses. If a particle is near the true person location, then the

inner pixels of the model projection must have a color distribution similar

to the target color models and be at the distance indicated by the particle.

Besides, the gradient around the upper ellipse should indicate the presence

of an elliptical object (person head). Nevertheless, these assumptions are

very strict and several contingencies must be taken into account. First, as

previously mentioned, the disparity calculation is subject to errors. Second,

in some cases it might be impossible to determine the disparity of the target

region because of occlusions or absence of texture. As follows, a detailed

explanation about how color and depth information have been combined in

this approach in order to deal with these problems, is given.

Initial phase and model projection

The 3D model employed is comprised by two ellipses whose sizes have been

selected according to standard people sizes. The ellipses axis lengths are

shown in Fig. 3.1(a). Let be Eh
w and Eh

h the horizontal and vertical lengths

of the axis of Eh. As it can be seen, the axis of Et are twice longer than
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3. People Detection and Tracking

the axis of Eh.

In the initial phase, the model must be appropriately placed to fit the

head and torso of the person in order to create the two target color models.

They are employed in the tracking phase in order to look for similar colored

regions in the subsequent images. The first target color model, named q̂Et ,

corresponds to the torso of the person being tracked and stores information

about the person clothes. The second color model, q̂Eh , corresponds to the

person head region.

The two ellipsoidal surfaces of the model (Eh and Et) project in two

ellipses on the reference camera image (let us denote them by eh and et).

The centre of eh (let us denote it ehc = (ehx, e
h
y)) is the projection of Eh

c =

(X, Y, Z), that can be calculated using projective geometry as:

ehx =
Xf

Z
; ehy = −Y f

Z
. (3.1)

The sizes of the horizontal and vertical axis of eh, let us denote them ehw
and ehh, can be calculated using projective geometry as:

ehw =
ZEh

w

f
; ehh =

ZEh
h

f
. (3.2)

The projection of Et can be calculated using the same procedure, obtaining

et. The color models of the torso and head projected ellipses (let us denote

them by q̂tE and q̂hE respectively) are stored in order to look for the person

in the tracking phase.

Tracking phase

Let a particle si(t) = [Xi(t), Yi(t), Zi(t), Ẋ(t), Ẏ (t), Ż(t)] represents the po-

sition and speed of the person being tracked. The sample set is propagated

using a dynamic model

s(t) = As(t− 1) + w(t− 1), (3.3)

where A indicates the deterministic component of the model and w(t − 1)

is a multivariate Gaussian random variable. We have opted for a first order

model whereA describes the target moving at constant velocity (Ẋ(t),Ẏ (t),Ż(t)).

As previously indicated, for each particle si(t), it is calculated its projec-

tion on the reference camera image. Each particle projects as two ellipses

ehi (t) and eti(t). Our approach consists in examining color and depth of the

projected ellipses and the gradient information around the upper one. For
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3.1. Probabilistic Human Tracking Approach

the sake of clarity, it is explained first how color and depth information are

modelled for each projected ellipse, and then it is explained how gradient

information is examined for the upper one.

For approximation both color and depth information are considered as

“normal-behaved” because the distribution of the information is expected

to be more similar to its neighbourhood than to further information.

Colour information is managed by defining the variable dhi (t) ∼ N(0, σc)

that is the Bhattacharyya distance:

dhi (t) =
√
1− ρ(q̂hE, q̂

h
e,i(t)). (3.4)

It provides values near 0 when two color models are similar and tends to 1

as they differ. In Eq. 3.4, q̂he,i(t) is the color model of ehi (t) and q̂hE is the

target color model of the person head.

Depth information is managed by the variable μh
z,i(t) ∼ N(Zi(t), σz) that

is defined as:

μh
z,i(t) = K

n∑
j=1

w

(
||ehc,i(t)− phj,i(t)||

a

)
Iz(p

h
j,i(t)). (3.5)

where Iz represents the distance image obtained from the disparity map,

each pixel Iz(p) represents the Z component of the point p, w is the weight-

ing function defined as: w(r) =

{
1− r2 if r < 1

0 otherwise
, a is the distance

from the farthest point of the ellipse to its centre ehc,i(t), K is a normalisation

constant calculated by imposing the condition that
∑n

j=1w
( ||ehc,i(t)−phj,i(t)||

a

)
=1

and {phj,i(t)}j=1...ni(t) are the inner pixels of ehi (t). The variable μh
z,i(t) rep-

resents the average distance of the pixels enclosed in ehi (t), assigning more

relevance to central pixels (using w). Assigning more relevance to cent-

ral pixels helps to reduce the influence of occluding objects in the target

boundaries.

It must be reminded that Iz might contain undefined values (unmatched

points) so that Eq. 3.5 is only applied for these pixels phj,i(t) whose distance

is known. Thus, the value provided by μh
z,i(t) is affected by uncertainty since

there might be unmatched points that if detected might alter its value. The

intention is to manage the possible absence of depth information into the

model in order to do it more robust. The greater the amount of disparity

found, the higher the degree of confidence assigned to depth information

is. The problem is then to define a probability distribution function that

merges the original distribution taking into account the degree of confidence
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in μh
z,i(t). Our proposal consists in calculating a confidence measure that is

included in the standard deviation of the probability distribution function

of μh
z,i(t). The idea is to modify the shape of the normal distribution so that

when the confidence in depth information is high, the new distribution is ex-

actly like the original one. However, as the confidence on depth information

decreases, the standard deviation of the probability distribution function is

increased making the distribution more similar to an uniform one.

Let us denote as λh(t) the confidence measure that indicates the propor-

tion of valid points detected in the inner pixels of all the upper projected

ellipses (ehi (t)i=1..N) respect to the total points analysed:

λh(t) =

∑N
i=1

∑ni

j=1 δ(p
h
j,i(t))∑N

i=1 n
i(t)

. (3.6)

In Eq. 3.6, N is the number of particles and δ is a function that only has

two values: it is 0 when the pixel phj,i(t) has an undefined distance value and

1 in the opposite case. Thus, the value λh(t) is in the range [0, 1], where 1

means that for each particle all the pixels in all the projected ellipses have

a known distance value, and decreases to 0 as the number of unmatched

points increases.

Using the above calculated λh(t), the probability distribution of depth

information is redefined for λh(t) �= 0 as:

μh
z,i(t) ∼ N(Zi(t), σ

h
z (t)),

where

σh
z (t) =

σz

λh(t)
.

The probability distribution goes from a normal with the mass of the

probability around Zi(t) to, little by little, a distribution with all the values

with the same probability. So, when λh(t) = 0, μh
z,i(t) follows an uniform

distribution.

The joint probability distribution function of color and depth for the
upper ellipse, when λh(t) �= 0, is defined as:

Pcd(e
h
i (t)) =

1

2πσcσz(t)
exp

(
−1

2

(
dhi (t)

2

σ2
c

+
(μh

z,i(t)− Zi(t))
2

σz(t)2

))
(3.7)

When λh(t) = 0, μh
z,i(t) is an uniform and any value is equally probable. In

case of total absence of disparity (λh(t) = 0), the hereby presented approach

performs as pure color-based tracker.

66



3.1. Probabilistic Human Tracking Approach

For the torso ellipse eti(t), a similar reasoning is used in order to define

the probability distribution function Pcd(e
t
i(t)).

Finally, the detection whether the projected ellipse perimeter ehi (t) is

placed on an ellipsoidal object is achieved by analysing the image gradient.

This is a technique employed by several authors in the related literature

[BH94, Bir98, BCZ93]. A variant of the Birchfield’s method [Bir98] is used

that evaluates the gradient direction of the ellipse perimeter. The measure

fittingi(t) is defined as:

fittingi(t) = 1− 1

N

N∑
j=1

|nj · gj|, (3.8)

where N is the total number of pixels in the perimeter of the ellipse ehi (t),

(·) denotes the dot product, gj is the unit gradient vector of the image at

the j-th pixel of the perimeter and uj is the unit vector normal to the ellipse

at pixel j. Assumming fittingi(t) ∼ N(0, σg), its probability distribution

function is defined as:

φi(t) =
1√
2πσg

exp

(
−fittingi(t)

2

2σ2
g

)
(3.9)

Using the distributions explained above, and assuming independence

between them, the final weight of a particle is calculated as:

πi(t) = Pcd(e
h
i (t))Pcd(e

t
i(t))φi(t) (3.10)

Equation 3.10 is able to manage uncertainty in the depth information. In

the worst case (absence of information about disparity), the weight of a

particle is based on color and gradient information uniquely. However, the

greater the amount of disparity found, the greater its influence on the final

particle weight. The final person position is assumed to be the mean of the

state E [S(t)].
Assuming independence in Eq. 3.10 allows to speed up the particle com-

putation. For each particle, the value Pcd(e
h
i (t)) is calculated first. If it has

a low value, the final particle weight will also be low. Thus, computing time

is saved by avoiding the calculation of Pcd(e
t
i(t)) and φi(t) when Pcd(e

h
i (t))

is sufficiently low.

Finally, the target color models q̂Eh and q̂Et are updated at the end of

each iteration step in order to adapt the tracking process to illumination

changes. However, the target color models are only updated when the

weight of the final estimated state πE[S] is above a certain threshold πT in
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order to avoid including as part of the updated models elements from the

background or from occluding objects. The target color models are updated

as proposed by [NKMG03] using the projection of the 3D model indicated

by E [S(t)].

3.1.2 Experimental Results

This section explains the experimentation carried out in order to validate

this proposal. The recorded sequences show scenes with a varying number of

people (from one up to four) interacting in a room. In the sequences, people

perform several types of interactions: walk at different distances, shake

hands, cross their paths, jump, run, embrace each other and even quickly

swap their positions trying to confuse the system. People were instructed

not to walk farther than 5 m from the camera. At larger distances the depth

errors obtained became too high because of the narrow baseline of the SV

system. A total of 7 different people participated in the tests.

Our experimentation aims to evaluate the tracking error in determin-

ing the 2D person head position in the reference camera image. In order

to obtain quantitative measures of the tracking error, the people head po-

sition have been manually determined in each frame of the sequences. In

total, there have been manually extracted 4460 positions from the sequences

recorded.

In unimodal problems such as this, the final mean state E [S(t)] might

be considered as the best person position estimation. Thus, the 2D tracking

error is calculated as the distance from the manually determined position

to the upper ellipse centre when the 3D model is projected from E [S(t)].
As previously indicated, the performance of methods based on PF in-

creases as the number of particles grows. However, the higher the number

of particles employed, the higher the computational time required for the

algorithm is. Therefore, it is important to analyse the error of the tracker as

a function of the number of particles in order to decide the most appropri-

ate configuration for a particular application. Therefore, each sequence has

been evaluated for an increasing number of particles. However, because of

the stochastic nature of the algorithm, each test has been repeated several

times with different seeds for the random number generator. In order to run

the tests, the algorithm parameters have been experimentally determined

as σz = 0.1, σc = 0.2 and σg = 0.3.

The analysis of Fig. 3.2 reveals that for a low number of particles, the

algorithm obtains relatively high errors. However, there is a rapid improve-

68



3.1. Probabilistic Human Tracking Approach

Figure 3.2: Tracking error in determining the 2D head position

ment of the performance as the number of particles grow up to the limit of

100 particles. As it can be noticed, no relevant improvements are achieved

above this limit and the 2D tracking error was about 20 pixels. It also

possible to conclude that the proposed method can be considered valid for

real-time tracking purposes as the execution times per iteration was around

10 ms.

3.1.3 Summary and Final Remarks on the Probabilistic

Approach

An approach to the person tracking problem based on combining multiple

visual cues using a probabilistic particle filtering approach was presented.

This method employs a 3D rigid human body model comprised by two el-

lipses: one for tracking the person head an another one for his/her the torso.

Particles represent possible 3D positions for the model that are evaluated

by examining their projection in the camera image. This method integrates

depth, color and gradient information to perform a robust tracking.

Depth information cannot be always extracted because of occlusions or

absence of texture. Our method is able to deal with this problem by de-

fining a certainty measure that indicates the degree of confidence in depth

information. The confidence measure is employed to modify the probability

distribution function employed for weighting the particles. The greater is

the amount of disparity found, the greater is its contribution to the final

particles weights and vice versa. In the worst case (absence of information

about disparity), the proposed algorithm makes use of the information avail-
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able (color and gradient) to perform the tracking. The proposed algorithm

does no only determines the 3D person position but also his/her head pos-

ition in the camera image. This is a very valuable piece of information for

Human-Computer Interaction (HCI) and Human-Robot Interaction (HRI)

tasks (e.g., face pose estimation, expression analysis).

Several color-with-depth sequences have been employed in order to test

the validity of our proposal. The sequences recorded show a varying number

of people (from one up to four) interacting in a room. In the sequences,

people perform different types of interactions: walk at different distances,

shake hands, cross their paths, jump, run, embrace each other and even

quickly swap their positions trying to confuse the system. The tracking

errors have been calculated for different number of particles in order to

determine the number of them that allows an appropriate trade-off between

tracking error and computing time. The experimental results show that the

proposed method is able to determine, in real-time, both the 3D position

and the 2D head position in the camera image of a moving person despite

of the presence of other people. Besides, the proposed method is able to

deal with both partial and short-term total occlusion.

3.2 Possibilistic Approach for Human Detection

and Tracking

After presenting the probabilistic approach for the tracking of people, a FL

approach will be presented. This second proposal tries to overcome some

situations which were not considered in the probabilistic approach. Firstly,

and because in the approach presented in Section 3.1 the background in-

formation is not taken into account, there are some cases in which the

background colour can be confused with the colour model of the tracked

objects. In this second approach, foreground and background information

are used which avoid certain confusing situations. Secondly, the approach

mentioned in Section 3.1 does not handle certain occlusion situations which

are now included in the “possibilistic” approach. Thirdly, in the probabil-

istic approach, there is only one confidence measure based on the disparity

information. According to the amount of disparity, the algorithm computes

the weight of a particle using uniquely colour and gradient information or

also using depth information. On this Section’s approach, not only disparity

information is taken into consideration for computing confidence levels, but

also the distance at which the person is located and the possibility of being
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occluded. In addition to these advantages, a more elaborated people detec-

tion method is employed in order to reduce the amount of false positives.

Furthermore, as we are going to see in Section 3.2.2, the 2D tracking error

is better than on the method presented in Section 3.1.

The previously mentioned advantages are mainly due to a higher num-

ber of information cues in this section’s approach. This is achieved with

the help of FL which has the ability of managing an increasing amount of

information, in a simple way. In addition, the use of FL to compute the final

weight of each particle brings different benefits compared to the probabilistic

approach. First, by using probability models to evaluate particles, it is as-

sumed that variables follow a probability distribution. That is, uncertainty

could be modelled in a probabilistic approach by modifying the probabil-

istic distribution function by means of some parameter. Those assumptions

sometimes are not exactly true or are hard to be modelled. Nevertheless,

with FL one can achieve the same goal in a more flexible way, without being

restricted to particular aspects of the probability distributions. Secondly,

FL easily allows to incrementally add other sources of information, in case

our system needs so. By using linguistic variables and rules to express rela-

tionships the system becomes more understandable and similar to the way

humans represent and deal with knowledge.

On the other hand, there is the drawback of using more information cues

which is directly related to the computing time. This makes it even more

important to correctly adjust the number of used particles, in order to find

the best trade-off value between computing time and accuracy. In our case,

and as it will be shown, the number of 50 particles allowed a good trade-off

in the “possibilistic” approach.

3.2.1 Proposed Method

In this section, the process of people detection is first explained just before

the description of the people tracker method takes place. FL is used in both

phases and a new FLPF is used on the tracking phase.

People Detection

In this subsection, our possibilistic approach to detect new people in the

surroundings of the robot is presented. The face detector tool, the concept

of “projection of a person”, the background extraction method as well as

the occlusion handling technique are all explained in the next paragraphs.
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Finally in the last part of this subsection, the algorithm to detect new

people, which uses these mentioned techniques, is presented.

Face Detection

The people detection process begins with a face detector phase. The system

employs the face detector provided by the OpenCV Library ([Sou10]). This

face detector is also described in [BK08]. It is not in the scope of this work

to develop face detection techniques since there is plenty of literature about

it in [YKA02]. The face detector is based on Viola and Jones’ method

([VJ01]) which was later improved by Lienhart and Maydt ([LM02]). The

implementation is trained to detect frontal views of human faces and works

on gray level images, although it can be trained to detect other perspectives

of human faces (for instance, lateral views). This detector is free, fast

and able to detect people with different morphological faces. Nevertheless,

the problem of false positives should be taken into account, no matter the

detector chosen for this job.

The classifier outputs the rectangular regions of the frontal faces detec-

ted in the camera reference image. Each detected face position is firstly

compared to the position of each of those people which are already being

tracked. If the difference between each of those positions, is higher than

distNewFace, which was experimentally tuned, the system initiates a pro-

cedure which goal is to reject potential false positives and which is described

in the last part of this subsection.

Projection of a Person

The concept of “projection of a person” has already been partially presented

in Section 3.1. In this work, it is defined as the 2D region that both face and

torso of a standing up and average size person, would occupy either in the

reference and in the distance image, if his or her face were approximately

in the same 3D location of the detected face. For instance, in the reference

camera image, it can be interpreted as the equivalent of eh and et together,

which were defined in the Section 3.1.

Thus, to explain the concept of “projection of a person” the same as-

sumptions made in Section 3.1, regarding various anthropomorphic features

of a human being, are taken into consideration, namely the face and torso

approximate size. We consider that a person face roughly fits inside a 20x30

cm ellipse, and his or her torso fits in a 40x60 cm ellipse. We also assume

that those ellipses’ centers are roughly separated by a distance of 45 cms.
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By assuming these values, it is possible to extract from both reference and

distance images, the regions occupied by both head and torso of a person.

Knowing the intrinsic parameters of the camera, and with the help of the

distance of the detected face centre to the camera (obtained using the ste-

reo algorithm), it is possible to define two elliptical regions in the reference

camera image, denoted by RPri, which are equivalent to eh and et defined

in the last Section. Analogously, two elliptical regions in the distance image,

denoted by RPdi, which had not been yet defined in Section 3.1, are also

defined. In our notation, RP stands for Region of Projection while ri stands

for reference image and di for distance image. Fig.3.3 shows those regions

for two different people both in the reference image (RPri1 and RPri2) and

in the distance image (RPdi1 and RPdi2).

Figure 3.3: (a) Projection of 2 people on the reference image. (b) Projection
of the 2 people on the distance image.

Background Extraction

The concepts of background extraction and occlusion map are used in the

hereby presented approach. The first one consists in extracting the pre-

viously computed background of the environment in every new frame. To

compute the background, an adjustable number of frames are used when the

system is initialised. The background is modelled during the initialization

of the system, by using information about the invariable colour and stereo

data of the scene, as suggested by Harville in [HGW01]. Fig.3.4 exemplifies

the background extraction method.
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Figure 3.4: (a) Reference Image. (b) Background: Projection of detected
static objects in the floor plane after the background extraction initial phase.
(c) Projection of detected dynamic objects on the floor plane (corresponding
to 2 people) during the experiments. (d) Reconstitution of the scene using
distance information (static + dynamic objects). (e) Reconstitution of the
scene using distance information and subtracting background.

Occlusion Map

In the proposed system stereo information of each detected or tracked per-

son is stored in a vector variable. This information is updated in each frame.

Therefore, it is possible to know who is closer or father regarding the cam-

era and so to determine who is potentially occluding other people located

behind.

The occlusion map for a frame is defined as a binary image where each

pixel at each frame is set to 0 if it does not belong to a person. Each pixel

at each frame is set to 1 whenever it is part of the mask of the person.

This mask might be viewed as the silhouette of the person and is computed

by using a flood fill algorithm starting from the centre of the person until

it reaches its extremities. It is computed over a binary foreground image,

which basically is an image where every pixel is set to 1 when it belongs to

a foreground object detected for the current frame (for instance, a detected

person) and to 0 when it does not belong to the foreground scene.

When the occlusion map is initialised, at every new processed frame, all

pixels of this binary image are set to 0. This is done from the closest to

the farthest located person so it is possible to compute, for each person,

how many and which of his or her pixels are currently occluded by closer
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located people. In Fig.3.5, an example of this occlusion map is shown

at the moment in which the algorithm is analysing if the occlusion map

generated by the person which is located closer to the camera, interferes

with the person which is farther from the camera. If there was, for instance,

a third person in the image behind these two people, the algorithm would

analyse whether the occlusion map generated by the two people which are

closer to the camera (mask of the person which is closer to the camera plus

mask of the second person closer to the camera) interfered with the third

person located behind them. In Fig.3.5, on the right, it is possible to see

how the person which is located closer to the camera occludes the one that

is farther. In green, we represent the “projection of the person” which is

located farther to the camera and it is possible to see that most of the pixels

inside his “projection” are “covered” by those pixels which are part of the

mask of the closest person.

Figure 3.5: (a) Reference image with one person partially occluding another
person. (b) Occlusion map where white pixels represent the pixels of the
camera image occupied by the closest person to the camera. This way it is
possible to know which pixels of the farther person are occluded.

During the people detection phase, the system knows which pixels were

classified as being part of people in the previous frame, using the occlusion

map. By knowing so it is able to determine if a candidate to new person po-

tentially has a part of its body occluded. If so, these projections belong to a

region where visual and depth information is not sufficient and consequently

not reliable.

The occlusion map is also used in the tracking phase to compute a

confidence level to the stereo and colour information. The methodology for

using occlusion information in the tracking phase is explained in the next

subsection.
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First Test of People Detection

Regarding the next two Sections, the goal of these tests is to detect false

positives, after detecting faces in the reference camera image. Let us call

RPri(DF ) and RPdi(DF ) (where DF stands for Detected Face) to the pro-

jections of the person whose face belongs to a detected face, on both refer-

ence camera image and distance image.

The goal of the first test is to check whether inside RPdi(DF ) there

are enough pixels respecting three conditions. First, they belong to the

foreground (if they belong to the background they cannot be considered

as being part of a person). Second, they have stereo information, ie, they

are not unmatched points (if there is a person projected in RPdi(DF ) then

this region should contain a high number of pixels with depth information).

Third, they are not occluded. As people moving freely in the environment

tend to occlude each other, if pixels inside RPri(DF ) and RPdi(DF ) are

occluded, it is possible to infer that a person is fully or partially occluding

other.

These three measures are fuzzified by three linguistic variables labeled

as ForegroundPixels, StereoP ixels and NonOccludedP ixels, respectively

(see Fig.3.6). Using these three variables as input variables to the FS Test

1 (FST1) shown by Table 3.1, the fuzzy output V isiblePerson is computed.

FST1 and the rest of the FS shown in this work use the Mamdani inference

method. The defuzzified value of V isiblePerson indicates the possibility,

from 0 to 1, whether region RPri(DF ) is likely to contain a visible person

whose face is the one detected by the face detector. If this value is higher

than α1, the detected face passes to a second test.

At this stage, it is important to refer that all membership functions and

rule bases were created using our expert knowledge and were then exper-

imentally tuned. Rules which were considered irrelevant were eliminated

and rules which were similar between themselves were merged.

Second Test of People Detection

The second test also checks whether RPri(DF ) may contain a true positive

face. However the idea is different now. If there is a person in that region,

then pixels inside RPdi(DF ) should have approximately the same depth as

the centre of the face. In case the centre of the face is an unmatched point,

the closest pixel which contains stereo information is used. Therefore the

FS Test 2 (FST2) receives, as input, the difference between the average
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Figure 3.6: Fuzzy sets to assess detected faces with variables Foreground-
Pixels (ratio), StereoPixels (ratio), NonOccludedPixels (ratio) and output
variable VisiblePerson

depth of RPdi(DF ) and the depth of the centre of the detected face as seen

in Eq.3.11.

d = |Z(DF )−
∑n

j=1(zj)

n
|. (3.11)

where d is the difference to be computed, Z(DF ) the depth of the centre

of the detected face (which is considered to be a good approximation of the

face distance taking into account the precision of the SV camera and the

expected algorithm precision), zj the depth of the j pixel inside RPdi(DF )

and n the total number of pixels inside RPdi(DF ). This value is fuzzified

by the linguistic variable AverageDifference.

FST2 also receives the standard deviation of the depth of those pixels be-

longing toRPdi(DF ), fuzzified by the linguistic variable StandardDeviation,

and the depth at which the face was detected, fuzzified by the linguistic vari-

able Depth. The depth of the detected face is used to compute the confid-

ence that should be assigned to the values of the other variables. The farther

the distance, the higher the uncertainty, according to the table provided

by the manufacturer available online (see [Res05]). The output variable

SimilarDepth is computed by FST2 and its defuzzified value is a value

between 0 and 1 corresponding to the possibility that RPdi(DF ) contains
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Table 3.1: Rules for Fuzzy System Test 1.

IF THEN
ForegroundPixels StereoPixels NonOccludedPixels VisiblePerson

High High High Very High
High High Medium High
High High Low Medium
High Medium High High
... ... ... ...
Medium High High Medium
Medium High Medium Medium
Medium High Low Low
... ... ... ...
Low Medium Low Low
Low Low High Very Low
Low Low Medium Very Low
Low Low Low Very Low

pixels with a depth value similar to the depth of the detected face. In Fig.3.7

linguistic variables AverageDifference, StandardDeviation, Depth and

SimilarDepth (output) are shown. In Table 3.2 it is possible to find ex-

amples of the rules defined for FST2.

Finally, if this value is higher than α2, it is assumed that a new person

was detected and a new tracker is thus assigned to him or to her. The

values for parameters α1 and α2 have been experimentally tuned. In our

experiments, a value of α1 = α2 = 0.6 proved to be adequate in order to

achieve a good performance.

The rules and linguistic variables defined for other FS are similar to the

ones of Figures 3.6, 3.7 and Tables 3.1, 3.2 so that they are omitted in order

not to be redundant.

People Tracking

In this subsection our approach to track people in the environment is presen-

ted. Firstly the Fuzzy Logic based Particle Filter (FLPF) is presented and

then the Observation Model is introduced. Next the FS used in this work

is presented in detail and finally, in the last paragraph of this subsection,

the colour model update phase is presented so the system is able to handle

changes in the colour model as illumination changes.
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Figure 3.7: Fuzzy sets to assess detected faces with variables AverageDif-
ference (meters), Depth (meters), StandardDeviation (meters) and output
variable SimilarDepth

Fuzzy Logic based Particle Filter

In each frame, the tracking of people is done in depth order, which means

that the closest person to the camera is firstly analysed until the one that

is placed farther to the camera. There are as many trackers as people being

tracked, and the maximum number of tracked people essentially depends

on time processing constraints (one of the goals of this work is to comply

with real time constraints) and on the amount of people that “fit” into the

camera field of view. Considering the hardware of our system, this proposal

allows up to 4 people to be tracked at the same time.

At the beginning of the tracking algorithm, and before the FLPF is integ-

rally executed, a test is executed to assess the possibility that a previously

detected face (by the face detector) corresponds to the face of the current

person being tracked (see Fig.3.8(1)). To do so, the position, in the refer-

ence camera image, of the closest detected face (CDF (t) = (xCDF , yCDF ))

to the previous position of the person being tracked PersonPos(t − 1) is

selected. To consider that CDF (t) corresponds to the new position of the

person PersonPos(t) it has to comply with two conditions. The first one is

that its distance to PersonPos(t− 1) is less than an experimentally tuned

threshold β. The second is that its evaluation value is above a certain γ

79



3. People Detection and Tracking

Table 3.2: Rules for Fuzzy System Test 2.

IF THEN
AverageDifference StandardDeviation Depth SimilarDepth

VL Low Far High
VL Low Medium High
VL Low Near High
L Medium Far Medium
... ... ... ...
M Medium Far Low
M Medium Medium Medium
M Medium Close Medium
... ... ... ...
VH Medium Close Low
VH High Far Low
VH High Medium Low
VH High Close Low

threshold, which once again was experimentally tuned and set to 0.8. This

evaluation method is described in the next subsection. In the case that the

particle complies with these two conditions, CDF (t) is considered to be the

new position of the person PersonPos(t). The aim of this procedure is to

avoid all the particle filtering process, when there are strong suspicions that

some specific face could be the face of the person that it is being tracked. By

adopting this procedure, extra processing time is spared and the algorithm

tracking accuracy is improved.

When no face is detected in the “neighbourhood” of the last position

of the tracked person, the FLPF takes place (Fig.3.8(2)). PF can estimate

the state of a dynamic system PersonPos(t) from sequential observation

z(t). The variable PersonPos(t) is defined as the position xp, yp of the

centre of the person face. To achieve that estimation Et, a weighted set

of J particles S(t) = {(si(t), πi(t))}, with i = 1..J , is computed, where

si(t) = (xsi, ysi) represents a possible state of the system, and πi(t) is a

non-negative numerical factor called importance weight which represents an

estimation of the observation density p(z(t)|si(t)). Our approach is based

on the typical structure of the Condensation algorithm ([IB98]), which is

partially adapted with new concepts that will be described. In our system,

πi(t) is not computed by means of probabilistic assumptions but using FL.

This is achieved by combining the output of several hierarchically connected

FS.

The value of J was experimentally tuned to 50, as lower values might
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compromise accuracy and higher values might compromise processing time

(and real time constraints whenever there are several people being tracked).

As referred before, when no face is detected in the “neighbourhood” of the

tracked person last position, the algorithm uses the previous position of the

person PersonPos(t− 1) to create a set of particles S(t). The propagation

model of the particles is based on the previous position of the person plus

some δ random Gaussian noise with parameters N(μ = 0 px, σ = 30 px).

The idea is to generate most particles in the surroundings of the previous

position and only a few farther, as people are not expected to move fast

from frame to frame. The new samples si(t) are then weighted.

The weight πi(t) of each particle is computed, taking into consideration

the new observations obtained from the FS.

Observation Models

After generating the set of particles, the process of evaluating the possib-

ility πi(t) that each particle corresponds to the tracked person (Fig.3.8(3))

begins. The observation model for each particle is based on the output of

different FS as shown in Fig.3.9. There are 5 FS, which are called FSRI

(FS Region Information), FSFI (FS Face Information), FSC (FS Confid-

ence), FSPPDI, (FS Particle to Person Distance Information) and FSTI

(FS Torso Information). They are sorted out according the type of informa-

tion which each of their variables represent. The whole system is structured

in a hierarchical way, which is one alternative presented in the literature

([Tor02]) to overcome the problem of reducing the complexity of rule un-

derstanding, when several variables are used in FS. Therefore, a two layer

FS approach is used, which takes into account the confidence level of the

outputs of some of the FS. The overall result for each particle is given by

πi(t) = OutFSC ∗OutFSPPDI ∗OutFSTI where each parcel corresponds

to the defuzzified output of a FS and is a value between 0 and 1 (see Fig.3.9).

The new position of the tracked person, PersonPos(t), is equal to the

final state estimation Et = E [S(t)] which is obtained from the mean of the

state S(t) by weighting all particles si(t) (see Fig.3.8(4)).

For a better understanding of our algorithm, a detailed description about

the functioning of the FLPF algorithm is shown in Fig. 3.8.

Fuzzy Systems Description

In the next paragraphs it will be described each of the FS used to compute

the value of πi(t). Because of the similarity between FS, all labels and
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1. Evaluate whether there is a Detected Face with high possibility of being
the face of the person being tracked:
CDF (t) = (xCDF , yCDF ) where CDF stands for Closest Detected Face
IF (CDF (t)− PersonPos(t− 1) < β) AND (π0(t) > γ) THEN
PersonPos(t) = CDF (t) (Go to Step 5)
ELSE

2. Compute a sample set S(t) from PersonPos(t− 1) as:
Set si(t) = PersonPos(t− 1) +N(0, 1) with i = 1..J

3. Measure and weight each sample in terms of the new observation:
πi(t) = OutFSC*OutFSPPDI*OutFSTI
Then normalize so that

∑J
i=1 πi(t) = 1

4. Estimate the new state S(t) and calculate its weight:
Et = E [S(t)] =

∑J
i=1 πi(t)si(t).

5. Update the occlusion map

Figure 3.8: Algorithm employed for tracking each person

rule bases of each FS are not described. However, by taking a look at the

examples presented on the previous sub section, the reader may have a good

idea about the type of values used in these FS .

In the evaluation process of S(t) the concept of “projection of a person”

is also used. In this case, the position (xsi, ysi) of the particle currently

being evaluated is used as the centre of the face to compute the projection

of the person RPri(si) in the reference camera image and RPdi(si) in the

distance camera image.

The goal of FSRI is to evaluate the region RPdi(si) (see Fig.3.3). This

evaluation takes into consideration only aspects related to the possibility

that some object, similar to a person, is projected in that region. The first

step is to compute the area of RPdi(si). After obtaining this information

three linguistic variables that are called ForegroundPixels′, StereoP ixels′

and AverageDeviationDifference are used. ForegroundPixels′ and Ste-

reoP ixels′ are defined in a similar way to ForegroundPixels, StereoP ixels

of the previous subsection. AverageDeviationDifference provides inform-

ation about the difference between the depth of si and the average depth

of all pixels inside RPdi(si). This value is also fused with the standard de-

viation of the depth of those pixels. The reason for defining this variable is

that, all pixels inside RPdi(si), should have approximately the same depth
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Figure 3.9: Fuzzy Systems used to evaluate de overall quality of each gen-
erated particle. For each FS, the input linguistic variables are specified.

as si and should have approximately the same depth between them, as long

as they belong to some person or object. We would like to highlight the fact

that only pixels that are considered as not being occluded by other person

are taken into account. To know which pixels are in this situation, the occlu-

sion map is used. The occlusion map is updated at the end of the tracking

cycle, for each tracker. These values are the input to FSRI that outputs a

deffuzified value between 0 and 1. The higher amount of foreground, stereo

pixels and lower difference in average and standard deviation, the closer

the output is to 1. A value closer to 1 means that, in the area represented

by RPri(si), it is likely to have some object that could hypothetically be a

person.

The scope of FSFI is to evaluate face issues related to the person being

tracked. The first step is to define two linguistic variables called FaceHisto-

gram and FaceOpenCV Distance. The first one contains information about

the similarity between the face region of RPri(si) and the face histogram

of the person being tracked. As people, from frame to frame (at a 15 fps

frame rate), do not tend to move or rotate their face so abruptly, those
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histograms should be similar. The elliptical region of the face is used to

create a colour model ([Bir98]). The difference between the face histogram

of region of RPri(si) and the face histogram of the person being tracked

is measured. This difference is based on a popular measure between two

colour distributions: the Bhattacharyya coefficient as explained in Section

2.2.2. Once again, only pixels that are not occluded are used in this process.

This method gives the similarity measure of two colour models in the range

[0, 1]. Values close to 1 mean that both colour models are identical. Values

near 0 indicate that the distributions are different. An important feature

of this method is that two colour models can be compared even if they

have been created using a different number of pixels. The second linguistic

variable measures the distance between si and the position of the nearest

face to si detected by the OpenCV face detector. Although OpenCV is not

100% accurate, most of the time this information can be worth as it can tell

if there is really a face near si. The deffuzified output of this FS is also a

number between 0 and 1 where 1 is an optimal value.

Figure 3.10: Variables for fuzzy system FSC, PersonRegion, PersonFace,
RatioNonOccluded, ParticleDistance (meters) and OutputFSC

The deffuzified outputs of FSRI and FSFI are then provided as input of

FSC. The aim of this FS is to measure the confidence of the outputs of FSRI
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and FSFI based on occlusion and depth information. As including new vari-

ables in FSRI and FSFI would make it more difficult to define rules and

better understand the whole system, a Hierarchical Fuzzy System(s) (HFS)

structure was chosen, allowing to measure the confidence of the mentioned

outputs. Thus, for FSC, four linguistic variables called PersonRegion,

PersonFace, RatioNonOccluded and ParticleDistance are defined in or-

der to compute its final output as it is possible to see in Fig.3.10. Person-

Region and PersonFace have five linguistic labels Very Low, Low, Medium,

High and Very High distributed in a uniform way into the interval [0, 1] and

its inputs are the defuzzified outputs of FSRI and FSFI respectively. Ratio-

NonOccluded contains information about the ratio of non occluded pixels

inside RPri(si). The higher the number of non occluded pixels, the more

confidence on the output values. In other words, the more pixels from

RPri(si) and RPdi(si) which can be used to compute foreground, depth,

average information and histogram, the more confidence on the outputs of

FSRI and FSFI. Finally ParticleDistance has information about the dis-

tance of the evaluated particle (si). As errors in stereo information increase

with distance, the farther the particle is located, the less trustable it is in

means of depth information. The defuzzified output of FSC (OutFSC) is

also a number between 0 and 1. Higher values indicate a region with higher

possibility to contain a person. Rules for this FS can be seen in Table 3.3.

Table 3.3: Rules for Fuzzy System Confidence (FSC).

IF THEN
PersonRegion PersonFace RatioNonOcc ParticleDistance Output FSC

VH VH High Close VH
VH VH High Medium VH
VH VH High Far H
VH VH Medium Close H
... ... ... ... ...
M M High Close M
M M High Medium M
M M High Far L
... ... ... ... ...
VL M Medium Close L
VL M Medium Medium VL
VL M Medium Far VL
VL M Low Close VL
VL L Low Medium VL
VL VL Low Far VL
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With respect to FSPPDI, its goal is to evaluate whether si is likely to be

the person being followed, by taking into consideration the distance to the

previous location of the person (in the frame before). Due to the frame rate

used, people from frame to frame are not expected to move significantly.

Therefore, only one variable called ParticleDistanceToPosition is defined,

which contains information about the distance in pixels between the position

of si and the position of the currently tracked person (PersonPos(t − 1)).

The deffuzified output is, once again, a value between 0 and 1 represented

by OutFSPPDI. An output equal to 1 means that si is located exactly in

the same place where PersonPos(t− 1) was located.

The last FS, FSTI is related with torso information. Identically to FSFI,

a variable that translates the similarity between the torso histogram inform-

ation of RPri(si) and the histogram information of the torso of the person

being tracked is defined. This variable is called TorsoHistogram. Similarly

to FSFI, only pixels that are considered as non occluded are used. For this

FS, the variables RatioNonOccluded and ParticleDistance are also defined

analogously to FSC. This way, we are adding a measure of confidence for

the output which, after its deffuzification, is called OutFSTI and has a

value between 0 and 1.

As said before, all these outputs are multiplied and the result is a value

between 0 and 1. Then, a weighted average of the position in the reference

image PersonPos(t) is computed, by taking into consideration all the pos-

sibility values for the set of particles. A particle that has a possibility value

closer to 1 weights much more than one with a possibility value of 0. Its

region of projection is also added to the occlusion map, so the following

trackers and the people detection algorithm know that there is already a

person occupying that region.

Model Update

Changes in the illumination conditions and person different perspectives

might alter the observed colour distribution of the tracked region. Therefore,

it is necessary to update the head and torso colour models to achieve robust

tracking. For that purpose, after the tracking process is concluded, the

projection of the person on the reference camera image RPri is used to

update his or her colour model. The pixels of RPri are employed for creating

the new observed colour model as:

q̂E(t) = (1− α)q̂E(t− 1) + αq̂Ea(t) (3.12)
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where the parameter q̂Ea(t) refers to the observed colour model for the

current estimated projection and α ∈ [0, 1] determines the contribution of

the observed colour model to the updated target model. In order to avoid

the inclusion of pixels from the background or from occluding objects as

part of the updated model, only pixels that are part of the foreground, that

are not occluded, and belong to RPri are employed. Finally, we have opted

to set α = 1 − ρ(q̂E(t), q̂Ea(t)). In that way, the model is automatically

updated accordingly to its difference to the actual observed colour model.

The higher the difference between them, the higher the value employed for

α. This is done both for the head and torso colour models independently.

3.2.2 Experimental Results

Previously, we have mentioned several advantages of using this approach re-

garding the method presented in Section 3.1, after taking into consideration

other information cues that were not used in the first approach. Neverthe-

less, it is necessary to validate this proposal by comparing it to well known

methods in this field of research. This experimental study is shown in this

Section.

The achieved operation frequency of our system depends on the number

of people being tracked and the number of particles that were used by the

PF algorithm. As each tracked person implies a new tracker, processing

time increases for each added tracker. Up to 4 people are allowed in order

to the system to be able to perform in real time with our hardware.

For this experimentation, different colour-with-depth sequences have

been recorded using our stereo camera. Videos were recorded in differ-

ent rooms with different lightning conditions so a diversity regarding back-

ground scenarios was taken into consideration. Several people participated

in the recording and they were instructed to move freely and to simulate

different interaction situations either with other people or with the camera.

The aim was to check whether our algorithm was able to keep track

of different people in several situations that are part of the daily life of a

human. The hereby presented algorithm was compared with an adaptation

of Nummiaro’s algorithm ([NKMG03]) which is a PF approach that uses

the Bhattacharyya coefficient to compare two colour regions. A comparison

with the Kalman/meanshift tracker proposed by [CR00], which is implemen-

ted in the OpenCV library, was also done. This version of the Comaniciu’s

algorithm is able to track only one person at a time. Nevertheless this fea-
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ture is enough for testing accuracy and executing times, which are our main

concerns.

The comparison of the proposed approach with the Comaniciu’s and

the Nummiaro’s based algorithms is made by measuring the distance error

between the indicated position provided by all the three algorithms and

the manually defined position, on the reference image, of the person being

tracked. The error concerning the size of the indicated face rectangle was

also measured. The projected size of the face in the camera image and

the manually defined size of the face was also compared. To do so, both

differences between the equivalent sides of both rectangles were used. For

approaches that output an ellipse, the longest axis of the ellipse is considered

equivalent to the longest size of the manually determined rectangle, and the

shortest axis of the ellipse is considered equivalent to the shortest size of

the manually determined rectangle.

In total, more than 5000 frames have been manually annotated. These

frames correspond to 8 videos that last between 40 and 60 seconds each.

Statistical information indicating the error values for different algorithms

are presented. The RMSE (Root Mean Square Error) between the manually

determined positions and the position indicated by the tracker as well as

the RMSE between the manually determined rectangle sizes of the faces and

the ones indicated by the trackers were chosen as error measures. Please

note that because of the stochastic nature of the PF algorithms used, results

are affected by the initialization of the random number generator. To avoid

this problem, each experiment has been repeated 30 times with different

initialization seeds. The values of the mean values of the RMSE for the set

of frames concerning the 30 runs are presented on Table 3.4.

Concerning the processing time, an average of 22 ms was achieved for one

for each tracking cycle when using the 50 particle version of the algorithm.

Despite the high amount of data involved, this time proves that the hereby

presented algorithm can be used in real time environments while achieving

a more accurate and robust tracking than other traditional algorithms.

By looking at Table 3.4 it is possible to see that, once again, our al-

gorithm outperforms other algorithms in accuracy, without compromising

real time performance. Comparing the 2D tracking error of our two tracking

approaches, we can see that the second algorithm obtains 8.85 px, as error

value, against almost 20 px of the first algorithm. The error is better in the

second algorithm but the execution time has increased regarding the first

algorithm.

Depending on the colour of the target and the background, other al-
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Table 3.4: Comparison between approaches

Our Approach Nummiaro
Based

Comaniciu
Based

RMSE Position 8.85 px 35.99 px 58.49 px
RMSE Rect-
angle Size

4.88 px 61.39 px 220.87 px

Processing Time
per cycle and
person

22.64 ms 12.62 ms 17.65 ms

gorithms can vary their accuracy while our algorithm generally does not lose

track of its targets. Please note that these methods, which are based only

on colour, perform very poorly when the background of the scene presents

a colour model very similar to the colour of the skin or clothes. In those

cases, the algorithm simply does not work, sometimes detecting the whole

background and/or image as the initial person being tracked. In Fig.3.11

(b) and (c) and specially in Fig.3.12 (b) and (c) examples that illustrate

these remarks can be found.

By taking a deeper look at Fig.3.11 and Fig.3.12, it is possible to observe

different aspects regarding the tested algorithms. Fig.3.11 represents a scene

with two people, slightly moving forward and backward, partially or totally

occluding their face. Fig.3.12 helps to understand how using only colour

information on a tracking algorithm approach, can critically downgrade the

accuracy of those algorithms. Five frames from each video were chosen in

order to exemplify how different algorithms track both of them.

In Fig.3.11(a) it is possible to observe that the proposed algorithm man-

ages to keep track of those two people without ever losing their track. In

frames number 205 and 275, sometimes, the reader may see that the square

of the face is not totally centred, but the error is not substantial. This was

one of our main goals, ie, to acquire a reasonable approximation of each face

region. By observing Fig.3.12(a) one may see that our algorithm keeps track

of people in different situations, even when they cross their paths. Below,

we will analyse it deeper in Fig.3.13.

If confidence is put only on colour information, as exemplified in Fig.3.11

(b) and Fig.3.12 (b) it is very common that the tracking algorithm starts to

assume that neighbor regions are part of the head and starts to slide from

the target person (Fig.3.12(b) frame 185 on both people) to similar colour

89



3. People Detection and Tracking

objects. In (Fig.3.12(b)), it can be observed that the algorithm also loses its

target. The new squares observed in frames 343 and 399 correspond to new

trackers, as the system detects faces that are faraway from the previously

tracked people.

In Fig.3.11(c), although only one person is detected in the available ver-

sion of the Comaniciu’s algorithm, it is easy to observe that this algorithm

works quite well, although there are some issues that should be pointed out.

Indeed, it is possible to see that the Comaniciu’s algorithm works fine in

this scene but, and because it makes the tracking based on the skin colour

model of the face, when a person turns back towards the camera, it detects

his neck as the whole head area. Furthermore, when a person is facing the

camera, it includes the neck as part of the person face. This aspect could

turn out to be a problem, for applications that make use of face features.

Concerning Fig.3.12(c), as it can be observed, background presents a very

similar to face colour model which turns out to be a reason for Comaniciu’s

algorithm to rapidly lose its tracked person. In this kind of situation the

algorithm fails completely.

Figure 3.11: a) Proposed Algorithm; b) Nummiaro Based Algorithm; c)
Comaniciu Algorithm.

90



3.2. Possibilistic Approach for Human Detection and Tracking

Despite the good results achieved by our proposal, there might exist

scenarios where, when two people dressed with the same colours are located

near to each other, the system momentarily loses track of the tracked people.

Nevertheless, this hypothetical scenario affects all the analysed algorithms

in this section. This issue can be solved in a near future by providing more

information sources to the system which, in the presented approach, should

be as simple as adding new FS or rules to the existing ones. This issue might

be considered as an important advantage with respect to other approaches.

Figure 3.12: a) Proposed Algorithm; b) Nummiaro Based Algorithm; c)
Comaniciu Algorithm.

Behavior results with two people interacting

Finally, in Fig.3.13 there is an example of four frames taken from one of

those videos, with both reference image and distance image shown for each

frame. The aim of this example is to show how our algorithm behaves during

a natural interaction between 2 people. In the distance image, lighter areas

represent shorter distances to the camera. In Fig.3.13(a) it is possible to see

that the system detected person A (square 1) but person B was not detected
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3. People Detection and Tracking

(due to the fact that the employed face detector only detects frontal faces).

In Fig.3.13(b) the reader can see that person B was detected (square 2)

as his head was now facing the camera. It is important to have in mind

that the stereo camera sometimes produces errors that tend to decrease the

accuracy of the stereo part of the algorithm. For instance, in the distance

image, it may happen that the region of the face has the double of its

real size. In Fig.3.13(c) it is possible to see that the size of the head of

the person A, in the distance image, is much bigger that its actual size.

In this experiment, people cross their trajectories achieving similar values

for their positions. However, the system could still keep an accurate track

for each of the people. The reason for achieving this accuracy relies on

colour information that compensated the similarity of position information.

Finally in Fig.3.13(d) it is possible to see that, for person A, although part

of his body was occluded, the system could still achieve an accurate tracking,

based on stereo information rather than colour information.

Figure 3.13: Different frames taken from a video with 2 people being tracked

3.2.3 Summary and Final Remarks on the Possibilistic Ap-

proach

A system able to detect and track various people simultaneously, using a new

approach based on both colour and stereo information handled by means of

FL, has been presented. The results showed that our system managed to

keep track of people, in the reference image, in most of the situations where

other trackers fail. It was tested in simulated complex real life situations,

where people were interacting freely and occluding each other sometimes.
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The method proved to be fast enough for detecting and tracking people

simultaneously and therefore adequate to be used in real time applications.

The system uses FL in order to integrate information to detect and track

people, managing the vagueness of the data provided by the sensors. FL

is an interesting tool that has a proved efficacy for treating uncertain and

vague information as well as noisy data from different sources. A modified

PF is used to generate particles that are evaluated using FL instead of

probabilistic methods. As it is known, information supplied by sensors is

commonly affected by errors, and therefore the use of FS help to deal with

this problem. By setting up linguistic variables and rules that deal with

this problem, we achieved an efficient way of solving it.

Both FS used for people detection and the HFS used for the tracking

process, deal with several sources of information as colour, position in the

reference image, depth, occlusion and other data obtained from the SV.

In this sense, information regarding depth and occlusion is used to create

confidence levels to fuse, in an appropriate way, both colour and stereo

information. Furthermore, the advantage of using several sources of inform-

ation relies on the fact that these sources complement each other. Thus,

when information about the position of people is not enough to identify

them, colour as well as other information sources can be used to identify

them. On the other hand, when the colour information extracted from a

person is similar to the colour information extracted from another person or

similar to the colour of the background, the stereo data is useful to distin-

guish between them. Overall, the people detection and tracking processes

achieve very good results thanks to the fusion of these kinds of information.

Also, when FS are used to represent knowledge, the complexity in un-

derstanding the system is substantially lower, as this kind of knowledge

representation is similar to the way the human being uses to represent its

own knowledge. Furthermore, it allows an easy way of adding new features,

just by adding more variables or FS. Thus, it will be easy to expand the

system in the future, when new sources of information are available.
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Chapter 4

Interest Detection and Attention

Request

As the main motivation of this thesis is to improve Human-Robot Interac-

tion (HRI), the work presented in this Chapter appears as a fundamental

part after achieving the goal of detecting and tracking people described in

the last Chapter. As a matter of fact, once the people are located, the level

of interest of each person to interact with the robot is calculated by analys-

ing his/her position and his/her degree of attention, as presented in Section

4.1. The position of a person is analysed using both his/her distance to the

centre of the robot and his/her angle in respect to the heading direction of

the robot. With respect to the degree of attention, this is determined de-

tecting the orientation of the head, i.e., a higher degree of attention can be

assumed when a person is looking at the system than when it is backwards.

This analysis is solved by a view based approach using Support Vector Ma-

chines (SVM) which is briefly described in Chapter 2.3.2. Thanks to SVM,

head pose can be detected achieving a great percentage of success independ-

ently of the morphological features of the heads. Fusing this information

with Fuzzy Logic (FL), a level of interest in interacting with the robot can

be computed for each detected person.

When the level of interest is high, the person is analysed in more detail to

detect some of the interaction situations commented above. This is trans-

lated by analysing two typical interaction situation, arms movement and

head shaking/nodding detection, as presented in Section 4.2. The presented

approaches are not only valid for robotic applications but also in ambience

95



4. Interest Detection and Attention Request

intelligence that use stereoscopic devices.

4.1 Interest detection

This section explains our FL approach for estimating the interest of the

detected people in interacting with the robot. The approach presented in

this work is based on Stereo Vision (SV) but the system can be easily ex-

panded to merge other sources of information. In Section 2.4, the general

advantages of using FL in controllers were shown. In Section 3.2.1 the ad-

vantages of using FL in a tracking algorithm were shown. In the case of

interest detection, these advantages also play a key role in the approach.

This is to say, firstly, the robot has to deal with information from the SV

system that is affected by uncertainty and vagueness. FL is a good tool to

manage uncertainty using linguistic variables. Secondly, the human know-

ledge can be usually expressed as rules. FL allows to establish relationships

among the variables of a problem through fuzzy rules providing an infer-

ence mechanism. Finally, there are methods in FL to fuse the results from

several fuzzy rules in order to achieve a final overall result. Therefore, the

system designed in this work, based exclusively on stereo information, could

be easily integrated with other Fuzzy System(s) (FS) using other types of

information as source sound localization, gesture analysis or speech recog-

nition systems. In this work, the determination of the degree of interest

of a person is based on its position and its degree of attention. The po-

sition of a person is analysed using both its distance to the center of the

robot and its angle respect to the heading direction of the robot. The first

feature is measured by the linguistic variable Distance and the second one

by the linguistic variable Angle. Each one of these linguistic variables has

three possible values as shown in Fig. 4.2. These two variables are used

to establish the following rule: if the person is detected near the robot and

more or less centred with respect to it, then it is assumed that the person

is more interested in establishing an interaction with the robot rather than

when the person is far or on the left or right side of the robot. Nevertheless,

the position of the person is not enough to determine his/her interest in

interacting with the robot. Thus, the third feature shown in this work is

the person attention detected by the analysis of the head pose. To detect

the head pose a view based approach using SVM has been employed. This

approach will be now explained.
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4.1.1 Estimating face attention using Principal Compon-

ent Analysis and Support Vector Machines

One of the most prominent cues to detect if a person is paying attention to

the system is the orientation of the face, i.e., a higher degree of attention

can be assumed when a person is looking at the system than when it is back-

wards. This section describes our approach for face attention estimation.

Head poses have been classified in three main categories: “A” that com-

prehends all the frontal faces (faces looking directly at the camera), “B”

that comprehends all the slightly sided faces (faces looking to some point

slightly above, below or aside from the camera) and “C” that comprehends

all the other faces (side faces, faces looking at some point in the ceiling or

ground, backward heads). Figure 4.1 shows examples of each one of the

categories employed.

Figure 4.1: Head Pose Estimation: Classes A, B and C.

A head pose database comprised by a total of 4000 samples equally

distributed among the three classes has been created. The database contains

images of 21 different people (men and women), of different races, with

different hair cuts and some of them wearing glasses. The database samples

were manually classified into categories “A”, “B” or “C” according to where

people were looking at. All the images are gray-scale and 48x40 sized.

In order to reduce the data dimensionality, Principal Component Ana-

lysis (PCA) has been applied (see Chapter 2.3.1 for more information about

PCA). A key aspect in PCA consists in deciding how many principal com-

ponents are appropriate for a proper training. A low number of components

reduces the computing time required, but also reduces the accuracy since

part of the information is discarded, and vice versa. Therefore, tests with

different number of components have been performed and the amount of 50

components has been chosen as it allows a good trade-off between classific-

ation accuracy and computing time.

The training process has been carried out using SVM. To certificate

that results were satisfactory before applying the model 85%, of the data
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Figure 4.2: Fuzzy sets of the linguistic variables: (a) Distance (b) Angle (c)
Attention (d) Interest

set has been used to train the SVM and the remainder 15% to test the

model generated. The result on the test set was of 93.14% of accuracy.

For each detected person the SVM classifier estimates in real time the

head pose in one of the three previously indicated categories. The output

of the SVM classifier is translated into a numerical value by the definition

of the variable SVMOut. The value of SVMOut in the time t is

SVMOutt =

⎧⎪⎪⎨
⎪⎪⎩
1 if output SVM = “A”;

0.5 if output SVM = “B”;

0 if output SVM = “C”.

(4.1)

However, SVMOutt is an instantaneous value that does not take into ac-

count past observations. In order to consider past observations, the variable

HP(t) is defined as:

HP(t) = αHP(t−1) + (1− α)SVMOutt (4.2)
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where the initial value for HP is the first value of SVMOut when the

person is detected and α is a weighting factor that ponders the influence of

past observations.

To deal with the uncertainty and vagueness in this process a linguistic

variable called “Attention” is used and divided into the “High”, “Medium”

and “Low” values (see Fig. 4.2). This variable takes as input values the

measures of face attention estimation considered by HP (Eq. 4.2). In Fig.

4.2 it is possible to see the labels for the variable “Attention”.

4.1.2 Fuzzy system for interest estimation

Once the three linguistic variables have been defined, the rule base that

integrates them is explained in this section. The idea that governs the defin-

ition of the rule base is dominated by the value of the variable Attention.

If Attention has a high value then the possibility of interest is also high

depending on the distance and the angle of the person to the robot. If

Attention is medium then the possibility of interest has to be decreased

but, like in the former case, depending on the distance and the angle. Fi-

nally, if Attention is low, it means that the person is not looking at the area

where the robot is located and the possibility of interest is defined as low or

very low depending on the other variables. The rules for the case in which

Attention is High are shown by Table 4.1. The other cases are expressed in

a similar way using the appropriate rules. The output linguistic variable is

Interest and has the five possible values shown by Fig. 4.2(d).

Table 4.1: Rules in the case of high Attention.

IF THEN
Attention Distance Angle Interest

High Low Left High
High Low Center Very High
High Low Right High
High Medium Left Medium
High Medium Center High
High Medium Right Medium
High High Left Low
High High Center Medium
High High Right Low

Finally in order to compute the value of possible interest, a fuzzy in-

ference process is carried out using the minimum operator as implication
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operator. Then the output fuzzy sets are aggregated and the overall output

is obtained. The overall output fuzzy set can be understood as a possibility

distribution of the interest of the person in the [0, 1] interval. Therefore

values near to 1 mean a high level of interest and vice versa.

4.2 Recognizing typical interaction situations

After estimating the interest as described in the previous section, it is desir-

able that the robot centres its attention in the person that is more interested

in interacting with it. This person could possible be willing to communicate

with the robot in different ways.

The goal in this section is to compute whether a person, whose level of

interest estimated before is high, is requesting attention from the robot. We

are interested in the analysis of some typical interaction situations that can

be integrated in a more complex system. The proposed situations are: i) the

interaction demanding through the position or motions of the arms; ii) the

shaking and nodding of the head to express assent or negation. These ana-

lysis are carried out using visual information and dealing with its underlying

uncertainty and vagueness by means of FL.

After detecting the level of interest among those people located in the

surroundings of the robot, the system detects if the person is static (not

moving or moving very slowly). If so, the system analyses whether the

person is standing (rising or extending) one or both arms as well as whether

he/she is doing any movement with any of them.

As during an interaction people tend to ask and answer typical yes/no

questions, a method employed to detect whether the ”interested” person is

shaking or nodding his/her head has been developed. This feature can be

employed in a more complex system, when the robot is able to, for instance,

ask questions to the user.

4.2.1 Gestures Detection

One of the most common ways to request somebody attention using gestures

is to raise or to shake one or both arms. Therefore efforts were focused in

detecting whether a person, who might be interested in communicating, is

doing this kind of gestures or not.

Using the information supplied by the SV system it is possible to know

the position and distance at which many of the image pixels are located,

and therefore to compute which objects are part of the foreground. To
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4.2. Recognizing typical interaction situations

Figure 4.3: (a) Silhouette of a person. (b) Silhouette image marked with
area for detecting raised arms (red). (c) Silhouette with red marked area
and with a raised arm inside it.

achieve that goal an algorithm based on the “Distance of Mahalanobis” is

used to separate the pixels that are part of the background from those

who belong to the foreground. The “Distance of Mahalanobis” is based

not only in the euclidean distance but also in the correlation between two

variables. Afterwards, the objects and people belonging to the foreground

are separated, using the information of the position of each person given by

the tracker. A recursive algorithm called “Flood Fill” is then employed to

build an image of the silhouette of that person. This algorithm computes

whether the pixels surrounding the root pixel (the pixel assigned to be the

centre of mass of the person) are within a specific “distance” and, therefore,

also belong to that person. If so it continues to search for pixels in the

surroundings of the new pixels that were previously classified as belonging

to the person. When no more pixels satisfy this condition the image of

the mask of that person is obtained where each pixel that belongs to the

person has the information about its distance to the camera and pixels not

belonging to the person are set to value 0. A more simple version of this

image is the silhouette of the person or the binary image of the person as

seen in Fig. 4.3(a). In this picture, pixels in white belong to the person

while pixels in black do not belong to the person.

By doing this, it is possible to analyse if there are pixels around the

person body that could be part of a raised arm. In the hereby presented

system, all pixels that are not set to 0 in an elliptic region around the person

(see Fig. 4.3(b)) are chosen. The inner border of the ellipse is just next to

the person exterior border while the outer border of the ellipse is located

more exteriorly in a way that any possible raised arm could fit inside the

elliptic region. In Fig. 4.3(c) it is possible to see an example of the silhouette

of a person whose arm is inside the elliptic region, indicating that the person

is raising it or moving it. The algorithm only examines the upper half of
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Figure 4.4: Fuzzy sets of the linguistic variables: (a) Raised Arm (b) Ex-
tended Arm (c) Requires Attention Position (d) Rule base of the FS

the ellipse because people arms can never be below the hips whenever a

person is standing up. The linguistic variable RaisedArm is defined and

it can take three values represented by the labels “Zero” “One” and “Two”

(see Fig. 4.4) that represent the number of arms inside the region according

to the number of pixels.

As it is also possible that the person is moving his/her arms forward

in the region between the robot and the person, the system also analyses

the distance between each of the person pixel to his/her mass centre. By

doing so, it is possible to analyse the number of pixels that are not close

to the mass centre and that could potentially be part of an extended arm.

The linguistic variable ExtendedArm is defined in order to represent this

situation. This variable can also take three values represented by the labels

“Zero”, “One” and “Two” (see Fig.4.4) that represent the number of arms

inside this region according to the number of pixels.

To analyse whether a person is moving an arm instead of only raising

or extending it, the system analyses the number of pixels in the last frames

building an image made of the pixels existing in the elliptic area (for a

raised arm) or in front of the person (for an extended arm) in the last

frames. If a person is moving one arm in that area, the number of pixels
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Figure 4.5: Fuzzy sets of the linguistic variables: (a) Moving Raised Arm
(b) Moving Extended Arm (c) Requires Attention Movement (d) Rule base
of the FS

in the last frames should be higher (two or three times more) than for one

arm that is only raised or extended. Analogously, two linguistic variables

MovingRaisedArm and MovingExtendedArm are defined. They can also

take values “Zero”, “One” and “Two” (see Fig. 4.5) according to the number

of arms which is given by the number of pixels in both regions as previously

described.

This information is given to two parallel FS that compute the level of

attention demand of each person. The first one computes the level of at-

tention demand using only the information about the number of raised and

extended arms that are not moving (based only in position) while the second

one does the same using the information about moving arms in both regions.

The output from the first FS is called RAP (Requiring Attention Position)

while the output from the second is called RAM (Requiring Attention Mov-

ing). These linguistic variables are represented in Fig.4.4 and Fig.4.5. The

rule base for each one of the two FS is represented in Fig. 4.4(d) and Fig.

4.5(d). The fuzzy variable RAfuzzy (Requesting Attention fuzzy) takes

the maximum value of variables RAP and RAM :

RAfuzzy = max(RAP,RAM)
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The defuzzyfied value of RAfuzzy belongs to the [0, 1] interval and rep-

resents the instantaneous level of attention demand. This value is weighted

with past observation in a similar way than the shown in Section 4.1.1.

4.2.2 Shaking or nodding of the head

When communicating with people, head shaking or nodding is normally

used to express agreement and disagreement with others. Similarly, during

an interaction between a robot and a person, it might be important to

detect if the person is agreeing or disagreeing, respect to some statement or

situation during the interaction process. Speech recognition could be used

to detect this kind of situation, but as people tend to shake and nod their

head while they speak, it turns out to be an interesting feature to add by

recognising this kind of gestures.

In order to detect this kind of situation, the system uses the area of

the face given by the face detector. After obtaining the face region, it is

applied a Sobel filter to extract the gradient of the face. Then it is possible

to analyse the direction in which the face has moved from the previous to

the current frame. For that purpose, we compare whether the region of the

current face image has shifted to the surrounding pixels in the four main

directions (up, down, left and right). To achieve this, the system computes

the difference between the previous and current image gradients (see the

following equation).

Figure 4.6: Labels for variable Head Motion.

SD =
n∑

i=0

m∑
j=0

|p(i, j)t − p(i, j)(t−1)| (4.3)
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Figure 4.7: Examples from the first video: Low interest (a), Highly inter-
ested and not moving the arm (b),Highly interested and moving one hand
(c), Highly interested and moving both hands (d), Nodding the head (e),
Shaking the head (f)

where n and m are the width and height of the face image and p(i,j) the

gray level of pixel i,j.

Equation 4.3 is used to compare the current image with the previous

image shifted by a variable offset. After some experiments it was experi-

mentally defined that comparing images shifted in the four main directions

until a maximum offset value of 5 pixels was enough to detect head shaking

and heading.

At the end, it is chosen the one that has the smallest value, indicating

that it is the image most similar to the current one. Therefore it is possible

to know what is the direction (if any) that the face has moved and how

many pixels has it moved (the speed at which the person is moving his/her

face).

For each frame the system estimates in real time the direction of the head

in one of the five categories: up (U), if the direction that had the smallest

error was the upper direction, in down (D) if it was the down direction, in

left (L) if it was the left direction, in right (R) if it was the right direction

and in static (S) if it was not none of the above. This output is translated

into a numerical value by the definition of the variable HMcurrt. The value

of HMcurrt in the time t is
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HMcurrt =

⎧⎪⎪⎨
⎪⎪⎩
1 if output = “U” or “D”;

0.5 if output = “S”;

0 if output = “L” or “R”.

(4.4)

However, HMcurrt is an instantaneous value that does not take into ac-

count past observations. In order to consider past observations, the variable

HM(t) is defined as:

HM(t) = αHM(t−1) + (1− α)HMcurrt (4.5)

where the initial value for HM is the first value of HMcurrt when the

person is detected and α is a weighting factor that ponders the influence of

past observations.

To deal with the uncertainty and vagueness existing in this process a

linguistic variable called “Head Motion” is used and split into “Shaking”,

“Still” and “Nodding” (see Fig. 4.6). This variable takes as input values the

measures of the head motion estimation considered by HMt (Eq. 4.5) so

that values near 0 mean shaking the head and values near 1 mean nodding

the head. In future works this fuzzy variable can be used to facilitate the

communication with the people.

4.3 Experimentation

Several experiments have been done to validate our approach. The results

were very satisfactory in respect to interest estimation, attention demand

and shaking and nodding estimation. In this section two of the carried out

experiments are described. To perform the stereo process, images of size

320x240 have been done as well as sub-pixel interpolation to enhance the

precision in the stereo calculation. The operation frequency of the hereby

presented system is about 30 Hz without considering the time required for

stereo computation.

Regarding interest estimation, it has been checked that the interest de-

gree assigned to each tracked person increases and decreases dynamically

accordingly to the behavior of the person in relation to the robot, i.e., it

depends on whether the person is looking at the robot, on the distance from

the robot, and on whether it is in front of it.

Fig.4.7 shows the first experiment with one person. In Fig.4.7(a) it is

possible to see that the person is not looking at the camera and his level
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Figure 4.8: Examples from the second video: Both people with no interest
(a), High interest from person on the right (b), Both people with little
interest (c), High interest and demand of attention by the person on the
right (d), Both people with no interest (e), High interest from person on the
right (f), High demand of attention from person on the right (g), Person on
the right nodding his head (h), Person on the right shaking his head (i)

of interest is low, while in the other frames his interest is higher. In frame

Fig.4.7(b) the person shows interest but is not requesting attention because

is not doing any movement with the arms. In frame Fig.4.7(c) the person

is demanding attention because it is moving one of the arms. In frame

Fig.4.7(d) the person is moving not only one arm but two, making the

value of attention demand increase to higher values.

Concerning head shaking and nodding, it was possible to check that the

system determined these movements most of the times. It was possible to

check that head shaking was detected more accurately than nodding as the

achieved results show (around 86% accuracy to head shaking while head

nodding was about 83%). Fig. 4.7 shows in frames (e) and (f) examples of

head nodding and head shaking and the output of the system for the first

experiment.
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With respect to the second experiment two people were used to test the

system as seen in Fig. 4.8. In this experiment one of the people did not

show interest to the robot (the person on the left) while the other one was

changing his behavior over the time. The system never examines whether

the person is demanding attention or making any movement with his head

when his interest towards the robot is less than “High” as it is seen in

frames (a), (c) and (e). In frame (a) it is possible to see that no person was

showing interest to the robot. The same situation happens in frames (c)

and (e) with different levels of attention for each of them. Between these

frames the reader can see that the person on the right changed his behavior

towards the robot. In frame (b) that person was showing interest to the

robot but he was not demanding attention neither making any movement

with his head, while in frame (d) the same person was requesting the robot

attention by raising his left arm. In frame (f) and (g) similar situations

to frames (b) and (d) are shown. Finally, in frames (h) and (i) there are

examples of the person on the right nodding and shaking his head.

4.4 Summary and Final Remarks

In this work, a system for estimating the interest of the people in the sur-

roundings of a robot and detecting motions related to attention demand and

head nodding and shaking, is described. It uses SV, head pose estimation

by SVM and FL. While a person is being tracked, the FS computes a level

of possibility about the interest that this person has in interacting with the

robot. This possibility value is based on the position of the person with

respect to the robot, as well as on an estimation of the attention that the

person pays to the robot. To examine the attention that a person pays to

the robot the head pose of the person is analysed in real time. This ana-

lysis is performed by a view based approach using SVM. Thanks to SVM,

the head pose can be detected achieving a great percentage of success that

does not depend on the morphological features of the heads. The employed

FS was also able to accurately detect demanding attention situation, by

analysing the movement of the arms. The system also achieved a good res-

ult concerning the detection of head movements such as head nodding and

shaking.

108



Chapter 5

Detecting Human Response Level

In the previous chapter an approach, in which the interest of each person

towards the robot is calculated, was presented. In that approach, whenever

the person was standing still and his/her level of interest was high, other

kind of movements (arms movement and head shaking and nodding) were

detected.

In the present chapter a slightly different approach is presented. In

this work, the human response is computed without prioritising people that

are closer than others respect the robot, people which are located more

“centrally” than others regarding the robot or people expressly looking at it

comparing to others that are not meeting this requirement. Now the idea

is that the robot may play a role in certain social interaction activities in

which it could interact with one or more people who are supposed to act in a

natural way. This means that people might move freely in its surroundings,

cross their paths and interact among themselves, as long as they respect the

field of view and range of action of the camera. As in the previous Chapter,

the robot is supposed to be immobile and observing the behaviour of each

person. Distance plays an important role in choosing which variables are

used but a person standing at 5 meters may present a much higher human

response than someone which is closer to the robot. The algorithm also

analyses other visual cues, such as the arms movement, while people are

moving in its surroundings. In this work we try to improve the human

behavior analysis by defining a human response measure based on visual

cues which have different importance levels, depending on the distance of

the person towards the robot.
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5.1 Proposed Method

The proposed system is aimed to be used in indoor environments and it

is prepared to work (depending mainly on the performance of the stereo

sensor) in a range that might vary from dmin to dmax meters. With the

used Stereo Vision (SV) sensor, dmin = 0.5 meters and dmax = 5 meters

were defined. It is able to deal with at least 4 people at the same time

(restrictions imposed by real time processing capabilities and the kind of

camera used in this work). These operating variables could be increased in

the future by simply using more powerful sensors and processors.

In order to analyse the response of those people to its interacting actions,

the robot captures several features (input variables) which are described in

Section 5.1.1. These features are the attention that each person is paying

to him (face pose regarding the robot), occlusion (considering that people

try to avoid obstacles when interacting with it), certain arms movements

(the robot might ask people to interact by shaking their arms) and smile

detection (it should provide a good feedback about each person satisfaction

level according to those actions and messages transmitted by the robot). In

this work, variables which could be detected by a SV system were prioritised.

In Fig. 5.1 it is possible to see how the visual perception of one person

may change depending on the distance of the person towards the camera.

Therefore, the variables used to compute the human response, based on

visual cues, also depend on the distance at which each person is located

regarding the robot. Then, Fuzzy Logic (FL) is the tool used to fuse all these

information cues as it allows the handling of the uncertainty and vagueness

that come along with the information provided by the sensors. It also allows

to handle knowledge with straight forward rules defined in a human alike

way and to easily fuse different output from different Fuzzy System(s) (FS).

In Section 5.1.2 these FS are presented as well as an explanation of how the

outputs of those FS are merged, according the distance of each person to

the robot.

Finally, by computing the human response for certain number of frames,

it is possible to analyse how a specific social-interaction activity proposed by

the robot has an impact on a person. Also, by analysing the human response

during the whole time of the interaction, it is possible to compute the success

of the whole activity. Both measures provide important information which

might lead to the improvement of the proposed activity. These measures

are explained in Section 5.1.3 more in detail.
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Figure 5.1: Different visual perceptions of a person depending on the dis-
tance: person located at about about 3 meters (a), at about 1.5 meters (b)
and at about 1 meter (c).

5.1.1 Input Variables

In this section, the variables used to compute human response values are

described. Firstly, a description of the variable related to the detection of

a frontal face is given and then we pass over to the variable that represents

occlusion. Variable that represents arms movement is explained next and

the variable which represents smile detection is lastly detailed at the end of

this section.

Frontal Face

In order to detect whether someone is looking at the camera, a frontal face

detector [Sou10] is used. This face detector is based on the Viola and Jones’

method [VJ01]. Their detector uses Haar based features. To select the

specific Haar features to use, and to set threshold levels, Viola and Jones

use a machine-learning method called AdaBoost. In Fig. 5.2 both examples

of a frontal and non frontal face are shown.

Figure 5.2: (a) Example of a frontal face. (b) Example of a non frontal face.

With the goal of determining that someone is looking at the camera,

we consider that this situation happens when the system detects a frontal

face during some instants of time. We have experimentally defined that this

information should be obtained by analysing the current frame and the 9

previous frames totalising 10 frames. Considering this number of frames an
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average value, AverageFrontalFace(P ), is obtained to be used as input to

FS.

More specifically, the variable FrontalFace(P ) is defined as:

FrontalFace(P )t =

{
1 if detectedFace(xp, yp)t = true

0 if detectedFace(xp, yp)t = false
(5.1)

where P represents a detected person and (xp, yp) his or her face central

position in the reference image.

Finally variable AverageFrontalFace(P ) is defined as:

AverageFrontalFace(P )k =

∑k
i=k−9 FrontalFace(P )i

k
, with k = 10

(5.2)

This variable and the FS that deals with this information help filtering

instantaneous false positives or negatives of the face detector, making this

information more robust to errors.

Occlusion management

In Chapter 3, Section 3.2.1, the concept of “projection of a person” was

presented. Basically, it can be viewed as the 2D region that both face

and torso of a standing up person, with average size, would occupy on the

reference and on the distance image, if his or her face were approximately on

the same 3D location of the detected face. Therefore, one region projected

in the reference camera image, made of two elliptical regions (corresponding

to head and torso), and denoted by RPri, is defined. Similarly, two elliptical

regions (head and torso) projected in the distance image, denoted by RPdi,

are also defined. The size of these ellipses takes into account the distance

of the person to the camera. Fig. 3.3 shows those regions for two different

people both in the reference image (RPri1 and RPri2) and in the distance

image (RPdi1 and RPdi2).

In this work, the concept of occlusion map is also used according to the

definition given in Section 3.2.1. It is thus possible to compute the number

of occluded pixels regarding each person.

Concerning the human response detection algorithm, it is assumed that

someone who is less occluded than another person, should have an higher

level of human response. Variable AmountNonOccluded(P ) (with value

between 0 and 1) was defined according to:
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AmountNonOccluded(P )t =
pixelsNotOccluded(P )t
totalNumberP ixels(P )t

(5.3)

where variable pixelsNotOccluded(P ) represents the number of pixels of

the “projection of the person P” which are not occluded by another person

and variable totalNumberP ixels(P ) represents the total number of pixels

of the “projection of the person P”.

Arms Movement Computation

In order to compute arms movement, a previous algorithm described in

Chapter 4 is employed. The first step is to compute the mask image of each

person, concept which is also used for filling up the occlusion map, where

each pixel that belongs to the person has the information about its distance

to the camera and those pixels that do not belong to the person are set

to 0. In Fig.5.3(b) and Fig.5.4(b), the regions in grey represent the mask

associated to a person.

Figure 5.3: (a) Reference image with one person not shaking any arm. (b)
Distance image of the reference image with a red ellipse determining the
zone where the system looks for extended arms.

After determining the mask associated to a person, it is possible to search

or to infer about the situation of having pixels around his or her torso that

could potentially be part of a raised arm. In this approach the first step is

to look for pixels that contain distance information in an elliptic region that

surrounds the person body (see red ellipse in Fig. 5.3(b) and in Fig. 5.4(b)).

This region, where each arm of the person may be located, whenever his or

her arm is raised, is defined as seen in Fig.5.4(b). Different fuzzy variables

were defined in order to represent the number of arms (static or moving)

inside that area as described in Section 4.2.1.
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Figure 5.4: (a) Reference image with one person shaking both arms. (b)
Distance image of the reference image with a red ellipse determining the
zone where the system looks for extended arms.

Another circumstance to consider is that it is possible that the tracked

person might be shaking his or her arms in an “extended” way and in the

direction of the camera. So, the detection has to be done in a zone close

to his or her torso, between the person and the camera. By analysing the

distance at which each pixel of the person mask is located, and by comparing

this set of distances to his or her mass centre, it is possible to infer if there

is a significant region of his or her body that is slightly forward. The

possibility that the extended arms are moving is also taken into account. In

case it exists, this region is potentially an arm that is located in the space

between the person and the camera. Once again, different fuzzy variables

are defined to represent the number of arms (static or moving) inside that

region as described in Section 4.2.1.

To compute the final value of the arms movement produced by the situ-

ation of raising/extending, a static/moving arm, two parallel FS are used

as described in Section 4.2.1 of Chapter 4. Arms Information or AI(P ) rep-

resents the output of those FS used to compute the level of arms movement.

It is a value between 0 and 1 which is weighted, taking into consideration

the previous information of each person arms movement, according to the

next equation:

AI(P )t = δAI(P )(t−1) + (1− δ)AI(P )t (5.4)

where δ is a threshold value experimentally determined to set the weight

of past or current measures.
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Smile Detection

Here, machine learning is used to classify the different situations. As de-

scribed in Section 2.3.2, Support Vector Machines (SVM) is a technique to

analyse and classify data according to given patterns. For each input, SVM

predicts which of different classes forms the input. In this approach, one of

the cues that are used in order to analyse human behaviour, is the smile. In

this case, it is assumed that a person might be in two situations: smiling or

not. This kind of binary classification makes it adequate for using a SVM

based classifier. To use SVM, a database of examples should be firstly set up

containing enough examples for the SVM classifier algorithm to learn and

build a model capable of assigning new examples to each of the categories.

In this approach, face images of people either smiling or not smiling

are classified in two different categories (Smiling or NotSmiling). Some

examples of these images can be found in Fig.5.5.

Figure 5.5: On the left part of the image there are 10 examples of non-
smiling faces and on the right part of the image there are 10 examples of
smiling faces.

As images often contain a lot of information which is redundant and

therefore less important for the classification system, a first step is advisable

to extract the most important information of those images. In order to

reduce the data dimensionality, Principal Component Analysis (PCA) has

been applied (see Section 2.3.1 for more information about PCA). Tests

with different number of components were performed and the number of

100 components was considered to be very satisfactory to achieve a good

trade-off between classification accuracy and computing time.

The libsvm library [CL11] was chosen for classifying using SVM. A data-

base of roughly 2000 frontal face images (40x48 pixels) was built where one

half of these images were marked as belonging to the smiling class and the

other half was marked as belonging to the nonsmiling class. The face im-

ages used have been provided by different public available databases namely

several from the Computer Vision Laboratory, University of Ljubljana, Slov-

115



5. Detecting Human Response Level

enia, [Pee03, SPB+03] from the FERET database of facial images collected

under the FERET program and sponsored by the DOD Counterdrug Tech-

nology Development Program Office [PWHR98, PMRR00], and from the

ORL Database of Faces [SH94]. Some other image faces from people be-

longing to the University of Granada, Spain were added to the previously

mentioned databases. In order to validate the proposal, cross validation

was applied. The accuracy obtained with this method was of 89.2%. Before

deciding to use this methodology, others were tested namely a classification

based only on the mouth region of the face (after applying a mouth detector)

which was abandoned due to the fact that sometimes mouth region images

that look like as “not smiling” belong to people which are smiling and vice-

versa. Other feature reduction techniques as the Discrete Cosine Transform

were tested on the whole database of face images but this method did not

prove to an improvement of the accuracy regarding the PCA used method.

After the training step, face images extracted from tracked people during

the execution of the algorithm were classified in one of those two mentioned

categories: Smiling or NotSmiling. To transform this information in an

usable value, the variable Smile(P ) was defined as:

Smile(P )t =

{
1 if detectedSmile(P )t = true

0 if detectedSmile(P )t = false
(5.5)

Finally variable AverageSmile(P ) was defined as:

AverageSmile(P )k =

∑k
i=k−9 Smile(P )i

k
, with k = 10 (5.6)

This variable and the FS that deals with this information help filtering

instantaneous false positives or negatives of the smile detector making this

information more robust to errors.

5.1.2 Fuzzy Systems for Processing Information

In this section, the hierarchical structure of the built FS and each of these

FS, used to compute the final value of human response, are described. On

the definition of these FS, the physical impossibility to detect the same

features at different distances was taken into consideration. In Fig.5.1 there

are 3 screenshots of the same person at different distances from the robot.

For instance, when someone is closer than a certain distance respect to

the stereo camera (which is considered as the eyes of a robot), not all the
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required features can be registered by the camera. As an example of this

situation, if a person is moving his or her arms very closely to the camera,

the field of view of the camera does not allow to detect this movement. Also,

when someone is located farther from the camera, the precision of the used

camera does not allow to detect whether that person is smiling or not.

Two main FS were defined according to features which can be detected

at different distances. The range of distances at which each feature is still

detectable was experimentally computed. A third FS is used to fuse the

outputs of these FS, according to the distance at which the detected person

is located. A scheme of the FS structure can be seen in Fig. 5.6.

Now, the three FS are going to be explained.

Figure 5.6: Hierarchical Structure of Employed Fuzzy Systems

First Layer Fuzzy System 1: Features Detected at Farther Distances

This FS is used within a specific range of distances between β and dmax

(maximum distance value defined for this camera). This range is what it

will be called from now on “farther distances”. In this work, dmax is 5 meters

and β was estimated as 2.0 meters.

The first step is to define the three linguistic variables that are used

to fuzzify the information coming from the three different sources of in-

formation detected at farther distances, that is, AverageFrontalFace(P ),

AI(P ) and AmountNonOccluded(P ). The three linguistic variables are

called FrontalFaceFuzzyFar, ArmsInformationFuzzy and Occlusion-

InfoFuzzy and they take its input values from variables AverageFrontal-

Face(P ), AI(P ) and AmountNonOccluded(P ) respectively. Smile is im-

possible to be detected at this distance with the used camera. Each of

these variables is represented in Fig.5.7(a), (b) and (c) where it is possible

to see the different labels defined for each of these variables.
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Figure 5.7: Fuzzy sets of the linguistic variables: (a) FrontalFaceFuzzyFar
(b) ArmsInformationFuzzy (c) OcclusionInfoFuzzy (d) OutFLFS1.

The next step is to define the output variable, OutFLFS1, which is

represented in Fig.5.7(d). This output variable has 5 different labels which

are also represented in Fig.5.7(d).

Another key step is to define the rule base for this FS. The rules used in

the defined FS are available on Table 5.1 and were experimentally defined.

The maximum value of the output of this FS is 1 whenever the person is

interacting, by shaking his or her arms and looking at the camera without

being occluded. The output decreases if the person is not complying with

one or several of these conditions reaching 0, the minimum value, whenever

the person is neither looking at the camera nor moving his or her arms while

most of his or her torso and face are occluded.

Finally, to compute the value of human response in this context, FLFS1

uses the Mamdani inference method. Then the output fuzzy sets are aggreg-

ated and the overall output is obtained. The overall output fuzzy set is de-

fuzzified and can be seen as a measure of the human response of the tracked

person P in the [0,1] interval, at farther distances. HRFS1(P ) is denoted

as the defuzzified output of FLFS1. Therefore a value of HRFS1(P ) close

to 1 means a higher level of human response than a value closer to 0.

First Layer Fuzzy System 2: Features Detected at Close Distances

Firstly, the range for what will be called “closer distances” is defined. Thus,

this FS is used within a specific range of distances between dmin (minimum

distance value defined for this camera) and α. In this case, dmin was defined

as 0.5 meters and α was defined as 1.0 meter.

For those people located at a distance lower than α meters and higher

than dmin meters, arms movement and occlusion make no sense to be con-

sidered. So, it is necessary to define another FS which takes into considera-

tion those features which can be detected at lower distances. These features
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Table 5.1: FLFS 1 Rules.

IF THEN
FrontalFaceFuzzyFar ArmsInformationFuzzy OcclusionInfoFuzzy OutFLFS1

High High High H
High High Medium VH
High High Low VH
High Medium High M
High Medium Medium M
High Medium Low H
High Low High L
High Low Medium L
High Low Low M
Medium High High L
Medium High Medium M
Medium High Low H
Medium Medium High L
Medium Medium Medium L
Medium Medium Low M
Medium Low High VL
Medium Low Medium VL
Medium Low Low L
Low High High L
Low High Medium L
Low High Low M
Low Medium High VL
Low Medium Medium VL
Low Medium Low L
Low Low High VL
Low Low Medium VL
Low Low Low VL

are: “frontal face detection” and “smile detection” which are computed by

the variables AverageFrontalFace(P ) and AverageSmile(P ) respectively.

In order to do so, the first step is to define those 2 linguistic variables that

are used to fuzzify both features. They are called FrontalFaceFuzzyClose

and SmileFuzzy which take its input value from variables AverageFrontal-

Face(P ) and AverageSmile(P ) respectively. Each of these variables is rep-

resented in Fig.5.8(a) and Fig.5.8(b) where it is possible to see the different

labels defined for each of these variables. The next step is to define the out-

put variable, named OutFLFS2. This variable is represented in Fig.5.8(c)

with its 5 different labels.

As for the FS used for farther distances, the rule base for this FS was

defined. The rules used on the defined FS are available in Fig.5.8(d) and

were also experimentally determined.

The same inference process is used as for the FS used for farther dis-

tances. The output is also defuzzified and corresponds to a value in the

[0,1] interval. HRFS2(P ) is denoted as the defuzzified output of FLFS2.

Therefore a value of HRFS2(P ) close to 1 means a higher level of human

response at close distances than a value closer to 0. The maximum value
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Figure 5.8: Fuzzy sets of the linguistic variables: (a) FrontalFaceFuzzyClose
(b) SmileFuzzy (c) OutFLFS2 (d) Rule base of the fuzzy system FLFS2

of the output of this FS is 1 whenever the person P is smiling and looking

at the camera. The output decreases if the person is not complying with

one of these conditions reaching its minimum of 0 when the person is not

looking at the camera and not smiling.

Second Layer System: Fusing Information According to Distance

Another consideration is that for distances up to α meters, features like

frontal face detection and smile detection worked with little error while the

goal of detecting the movements of the tracked person arms was almost

impossible to achieve. Also, for distances farther than β meters, smile

detection is not possible with the used camera. Features like arm movement

detection and occlusion detection are correctly detected and features like

frontal face detection gradually are more difficult to detect regarding closer

distances. Finally, for those distances between α and β meters, all features

could potentially bring valuable information to the system, although this

information still depended on specific situations (at a α+0.1 meters distance,

the smile detector detects the smile accurately but at β − 0.1 meters the

chance that an erroneous smile detection occurs is higher). These thresholds
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might be adjusted on future works depending on the characteristics of the

hardware such as the resolution or the field of view of the camera.

A way to deal with this situation is to create another FS which handles

the outputs of each of the previously mentioned FS together with the dis-

tance information of the person who is being analysed and outputs the

final human response level. Thus, SLFS has tree input variables. Two

input variables are crisp values (HRFS1 and HRFS2) and the third in-

put is the linguistic variable DistancePerson which is shown by Fig.5.9.

DistancePerson is used to fuzzify the value of the person distance D(P )

towards the camera, which can be computed with the stereo system. The

final output variable was defined and called HumanResponse or HR(P )

where P is one of the person being tracked.

Figure 5.9: Linguistic variable DistancePerson

SLFS has two fuzzy rules:

If DistancePerson = Far then HR(P ) = HRFS1

If DistancePerson = Close then HR(P ) = HRFS2

Therefore the final value HR is computed by:

HR(P )t = μ(Close)D(P )t ∗HRFS2(P )t+μ(Far)D(P )t ∗HRFS1(P )t (5.7)

where μ(Close) is the membership function of the Close label, μ(Far) is

the membership function of the Far label and D(P ) is the distance of the

person P towards the camera.

HR(P ) is a value in the interval [0,1] and represents the final human

response computed by the FS for a person P . A value of HR near to 1

means a good human response, and a value near to 0 means a poor human

response.

121



5. Detecting Human Response Level

5.1.3 Instantaneous and accumulated results

From the mathematical expression presented in Eq. 5.7, an instantaneous

human response measure is obtained, for each person, at each frame. This

value is able to indicate if that person is responding to the actions purposed

by the robot in the frame t.

By taking into consideration all the values of instantaneous human re-

sponse for each person, during the whole activity, one is able to see at which

moments people responded better to those actions performed by the robot.

If all instantaneous human response values are summed up for each person,

a global human response (GHR(P )) measure may be obtained:

GHR(P ) =
N∑
t=1

HR(P )t (5.8)

where N is the final instant of the sequence for which the user wants to

measure the global human response.

This measure is able to indicate which of those users showed a better

human response for a specific period of time or for the whole activity. It

is then possible to infer about the behavior of users in a specific action or

activity.

In a similar way, by calculating the average value of HR(P ) as

HR(P ) = GHR(P )/N (5.9)

it is possible to compute, for instance, which of the people participating

in the experiments was collaborating the most with the robot.

By taking into consideration instantaneous, global and average values,

one might analyse which aspects of the robot proposed activity might be im-

proved or adapted. For instance, the robot may adapt its behavior whenever

the feedback given by the users of the system is not satisfactory.

5.2 Experimental Results

In this section, the experiments carried out in order to validate the presen-

ted proposal, are presented. The achieved operation frequency of the system

depends on different factors with the most important one being the num-

ber of people which are tracked at a time. Each tracked person uses an

independent tracker (see 3), so processing time increases with the number

of people. Considering the hardware and camera used, the system could be

employed in real time activities for up to 4 people tracked at the same time.
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In order to test the system, different colour-with-depth sequences were

used. The data was recorded using the employed stereo camera. These

videos were recorded in different environments such as different rooms and

luminance conditions. The goal was to provide diversity with different back-

ground scenarios and conditions of use. Several people participated in the

videos, moving without restrictions, with the freedom to interact among

them and considering the robot as another person. The only request was

that they thought about using those visual cues that the system is able to

recognise (although these cues are part of those gestures that people nor-

mally use on their daily routines) when responding to the actions by the

robot. The aim was to check whether the algorithm was able to correctly

measure the human response on different situations.

Experiments were divided in two parts. The first one takes into con-

sideration the situation of one person moving between the three different

distance zones. The second one shows the functioning of the system when

there are several people moving and interacting among them. Sections 5.2.1

and 5.2.2 show the results for the first experimentation while Section 5.2.3

shows the results for the second one.

5.2.1 Measuring the Human Response for One Person

In this section, frames taken from several videos where a person is standing

at different distances are presented. Images of those situations are shown

in Fig.5.10, Fig.5.11 and Fig.5.12. Below every image, the instantaneous

human response value (between 0 and 1), corresponding to that frame can

be observed. Also, there are different zones marked by rectangles of different

colours. These rectangles correspond to the detected face for the person

being tracked. Blue rectangles correspond to a face which is considered to

be in a “smiling” situation and green rectangles correspond to a face which

is considered “not smiling”.

Person standing at Farther Distances from the robot

Let us start by analysing the situation of one person at farther distances

(Fig.5.10). In this case the person was standing approximately at 3.5 meters

from the robot. As there is only one person, there is no occluding situation.

Thus, OcclusionInfoFuzzy value is always low. It is visible that the system

always assigns the correct face rectangle to the tracked person. Also, there

is no frame in which the system is able to detect the person smile, even
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on frame Fig.5.10(e). In Fig.5.10 it is also possible to see that HR(P )t is

within an expected range for each of the shown situation. When the person

is not looking at the robot and is not moving any arm (Fig.5.10(a)), his

instantaneous human response is very low and when the person is staring

at the robot and shaking his arms (Fig.5.10(f)) his instantaneous human

response value is very high.

Figure 5.10: Instantaneous human response according frontal face and arms
movement for a person located at farther distances (3.5 meters). Below each
image the value of HR(P )t is indicated.

Person standing close to the robot

In this case (Fig.5.11), there is one person standing at approximately 0.73

meters from the robot. In this situation, as it is easy to observe, possible

shaking arms would fall out of the screen image, even when the person is

well centred in the camera image. In this situation, only frontal face and

smile possibility are taken into consideration to detect the person human

response. It is also observable that HR(P )t is according to the situation

(i.e., for a person not looking at the robot) the human response value is

close to 0 (frame Fig.5.11(c)), for a person looking at the robot and smiling

during some frames, this value is practically 1 (see Fig.5.11(a)) and finally

for a person looking at the robot but not smiling the value of HR(P )t is

around 0.5 (Fig.5.11(b)).
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Figure 5.11: Instantaneous human response according frontal face and smile
for a person located at close distances (0.73 meters). Below each image, the
value of HR(P )t is indicated.

Person standing between Farther and Close Distances

Finally, examples of one person standing between Farther and Close Dis-

tances are shown. This corresponds to distances between α and β meters

away from the robot as seen in Fig.5.12, where both FS (for faraway and

close situations) are used. In this case, both FS are used to computeHR(P )t
but its weight depends on whether the person is either closer to the farther

area or to the closer area. In Fig.5.12 it is possible to see that when a

person, with frontal face, is smiling and shaking his arms (Fig.5.12(d)), the

human response value is almost 1 and when the person is not smiling neither

shaking any of his arms (but still looking at the robot), his human response

value decreases to almost 0.5 (Fig.5.12(a)). When the person either shakes

his arms (Fig.5.12(b)) or smiles (Fig.5.12(c)), the human response value is

approximately the same, as the person is approximately located halfway

between α and β.

5.2.2 Transition among different situations

In this section, values of some of the variables used in the system, during

a whole video of roughly 1500 frames, are shown. Basically, there is one

person which is initially located 0.7 meters away from the robot and then

moving backwards until a distance of 3.6 meters. During the video, the

person walks and stops now and then for some seconds. The person is

asked to use the previously presented interaction cues taken into account for

computing human response. The goal is to observe the different FS output

values and also how the variable HR(P )t depends on input variables such

as AverageFrontalFace, AI and AverageSmile as well as on the distance

of the person towards the robot. In this experiment OcclusionInfoFuzzy

is always Low as there is only one person.
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Figure 5.12: Instantaneous human response according arms movement and
smile for a person with a detected frontal face who is located between
Farther and Close Distances (between α and β meters). Below each im-
age, the value of HR(P )t is indicated.

As defined in Equation 5.7, HR(P ) is equal to HRFS2(P ) whenever

D(P ) is between dmin and α. Fig. 5.13 shows this situation and it is also

possible to see how HRFS2(P ) depends on the input variables.

If D(P ) is between α and β, HR(P ) depends on both HRFS2(P ) and

HRFS1(P ). In this case, the weight of each variable also depends on the

distance of the person D(P ). Fig. 5.14 shows this situation and how HR(P )

depends on the input variables.

Finally, HR(P ) is equal to HRFS1(P ) whenever D(P ) is between β

and dmax. Fig. 5.15 shows this situation and how the variable HRFS1(P )

depends on the input variables.

On the left part of Fig.5.13 it is possible to see that, when the vari-

able AverageFrontalFace is equal to 1, HRFS2(P ) mainly depends on

the value of variable AverageSmile. When both variables are equal to 1,

HRFS2(P ) is also equal to 1. On the right part of the graph one can

see that AverageSmile is never superior to AverageFrontalFace as expec-

ted since it is assumed that a smile cannot be detected without a detected

frontal face. When both input outputs are close to 0, HRFS2(P ) is also

close to 0, as expected.
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Figure 5.13: Graph showing HRFS2(P ) depending on input variables
AverageFrontalFace and AverageSmile values (Y axis). The X axis rep-
resents the distance to the robot (always below α meters for this case which
represents the close situation).

Figure 5.14: Graph showing HR(P ) depending on input variables Average-
FrontalFace, AI and AverageSmile values (Y axis). The X axis represents
the distance to the robot (always between α and β meters for this case which
represents the intermediate situation).

In Fig.5.14 it is possible to see that HR(P ) gradually starts to depend

more on the variable AI than rather on variable AverageSmile as the dis-

tances increases. This behavior can be seen, for instance, between 1.02

and 1.1 meters as HR(P ) practically reaches 0 because AverageSmile and

AverageFrontalFace are 0, although AI is not 0. If we compare it to the

situation at around 1.46 meters whereAverageSmile andAverageFrontalFace

are also 0, it is visible now that HR(P ) is slightly higher for roughly the

same value of AI. This happens as the weight of AI is higher at 1.46 meters

than at 1.05 meters. Another aspect to remark is the high instability of the

smile detector respect to the close zone. This factor is due to a gradual
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5. Detecting Human Response Level

lost of precision of the smile detector (isolated false positives or negatives).

That is the main reason why the smile detector is not taken into account

for positions above β meters and why its weight decreases when a person

moves towards a distance close to the β threshold.

Figure 5.15: Graph showing HRFS1(P ) depending on input variables
AverageFrontalFace and AI values (Y axis). The X axis represents the
distance to the robot (always higher than β meters for this case which rep-
resents the far situation).

In Fig.5.15 HRFS1(P ) only depends on AverageFrontalFace and AI

as there is no occlusion. As AverageFrontalFace is mostly constant, it

is easily observable that when AI increases or decreases, HRFS1(P ) also

increases or decreases in a very similar way. When AverageFrontalFace

suddenly drops or rises, HRFS1(P ) behaves analogously.

Although some sporadic errors in the detection of the defined features

can occur, this kind of graphs makes it possible to observe that the FS

correctly outputs the expected human response values on most of the frames.

The result is a smooth and natural recognition of the human response during

almost the entire video, where those previously mentioned sensor errors tend

to have less importance because of FL.

Concerning the processing time, it mainly depends on the used detection

and tracking algorithm. An execution time of 20 and 30 ms for one tracking

cycle per person was measured. Despite the high amount of data involved,

we observed that the proposed algorithm is prepared to be used in real time

environments and so allowing a natural interaction among all the people

that participated in the experiments.
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5.2. Experimental Results

Table 5.2: Values of HR and D for P1 and P2

Frame HR(P1) HR(P2) D(P1) D(P2)
a 0 0.38 1.7 4.3
b 0 0.39 2.2 4.1
c 0 0.45 4.7 1.5
d 0.18 0.51 4.7 1.5
e 0.81 0.51 4.7 1.5
f 0.41 0.79 4.7 1.5
g 0.51 0.04 1.8 3.9
h 0.89 0 1.2 4
i 0.97 0 0.7 4
j 0.59 0 0.7 4
k 0.98 0 0.8 4
l 0 0 0.9 4.1

5.2.3 Multiple people

In this experiment, two people (denoted as P1 and P2) were asked to freely

move in front of the robot, and to randomly choose between interacting

among themselves or with the robot (using the previously defined gestures

and actions). In Fig.5.16 there are some screenshots of one of the videos,

and in Table 5.2 the corresponding value of HR and D for each person P1

and P2.

If the reader takes a deeper look into some of these situation, he can

observe that in Fig.5.16(d) there is an example of occlusion. In this case, it

is visible that the only variable that makes HR(P1)t to increase a little is

AI. As soon as P1 becomes not occluded (Fig.5.16(e)) HR(P1)t increases

(thanks to both the effect of not being occluded, having a visible frontal

face and moving the arms). In Fig.5.16(f) HR(P1)t drops a little bit again

as P1 stops moving the arms and is partially occluded. By looking at

P2, in frames from Fig.5.16(h) to Fig.5.16(k), there are other examples of

occlusion where HR(P2)t is 0. In the other examples, it is possible to see

that the system correctly assigns higher values of human response to those

situations where the two participants provided more feedback to the camera

(P2 in frame Fig.5.16(f) and P1 in frames from Fig.5.16(h) to (k)). In frame

Fig.5.16(e) it is also possible to see that HR(P1)t is higher than HR(P2)t
as P1 is shaking his arms and looking towards the robot while P2 is closer

to the camera but neither smiling nor shaking her arms. In this frame, P1

is located at 4.6 meters which is almost the dmax threshold defined for the

configuration of the used system. This threshold is related to the lost of

precision of the image resolution and stereo accuracy.

Depending on the application where the system is used, different meas-

ures based on HR can be computed, such as the global HR (represented
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Figure 5.16: Different situations during an interaction between the robot
and two people on its surroundings.

as GHR(P )), the average HR (represented as HR(P )), the standard devi-

ation of HR (represented as σ(HR(P ))), the maximum HR (represented as

max(HR(P ))) and the minimum HR (represented as min(HR(P ))). These

values supply important information about the whole or a part of the in-

teraction. The values for this experiment are presented on Table 5.3. This

functionality could be applied to improve activities, and evaluate applica-

tions and people in a global way rather than only based on an instantaneous

human response value.
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Table 5.3: Statistical Information for HR(P1) and HR(P2)

Measure P1 P2
GHR(P ) 431.10 323.94

HR(P ) 0.56 0.36
σ(HR(P )) 0.35 0.32

max(HR(P )) 1 1
min(HR(P )) 0 0

5.3 Summary and Final Remarks

In this Chapter, a fuzzy stereo-vision system able to detect and analyse the

human response of users located in the surroundings of a social robot is

presented. One of the system goals is to be as “natural” as possible and

to avoid being user intrusive. Following this logic, a single stereo camera

that has several similarities regarding the human vision system, is the only

sensor used to capture information.

We observed that the system is able to detect different visual cues which

were previously defined. As there are visual cues which are not easily de-

tectable (mainly due to hardware constraints) at all distances, the system

correctly selects those visual cues which can provide valuable information

to the human response value. In addition, people can move and interact

freely, and the system was able to smoothly select among different sources

of information according to the distance of the person to the camera. The

system was tested in simulated real life situations, where people participat-

ing in the experiments were asked to move and to act naturally. In addition,

the method is fast enough to be used in real time applications.

The approach is based on FL. Thus, human response is computed by

means of a Hierarchical Fuzzy System(s) (HFS) that is able to deal with

the uncertainty and vagueness of the inputs, depending on the distance

of the person. FL is a very helpful tool that has a well known efficacy

treating uncertain and vague information. It also aids to deal with noisy

data. In this kind of sensors, information supplied is commonly affected

by errors, and therefore the use of FS is helpful when dealing with this

problem. By setting up linguistic variables and “natural” alike rules, the

problem is managed in an efficient way. Also, by using FS to represent

knowledge, the understanding of the system is facilitated, as this kind of

knowledge representation is similar to the way the human beings represent

the knowledge. Moreover, it is not complex to change or add other variables,

so making easy to improve or customise the system.
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Chapter 6

Conclusions and Future Work

This thesis has presented contributions in different areas of the Soft Com-

puting (SC), Computer Vision and Human-Robot Interaction (HRI) fields.

Efforts have been focused in the problem of people detection and tracking

which could be considered a first step before developing any other HRI tech-

niques. Additionally, we have proposed a novel approach to detect different

kinds of human responses interacting with a robot. This chapter aims at

highlighting the main contributions and providing a summarising view of

the work developed. Two main problems have been addressed in this Thesis:

the problem of people detection and tracking (Chapter 3) and the recogni-

tion of people interest in interacting with a robotic agent (Chapters 4 and

5).

The main contributions of this PhD Thesis are:

• The development of a fast stereo tracking algorithm using a confid-

ence measure. The confidence measure is employed to modify the

probability distribution function employed for weighting the particles

in the particle filtering algorithm. This proposal is robust and allows

to manage the uncertainty associated to the disparity information.

• The development of a fuzzy stereo tracking algorithm. In this pro-

posal not only the uncertainty associated to disparity information is

managed. The managing of the vagueness associated to the rest of

sources of information is considered too.

• A new fuzzy system that allows the visual detection of interaction

demands. A level of interest is computed in realtime by a view based
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approach using Support Vector Machines.

• The proposal of a hierarchical fuzzy system to measure human re-

sponse using stereo vision. The hierarchical fuzzy system is able to

deal with the uncertainty and vagueness of the measures depending

on the distance of the tracked person.

In Chapter 3, two people detection and tracking methods are presented,

one which is based on a probabilistic approach (described in Section 3.1)

and another based on a “possibilistic” approach (Section 3.2). Both of them

combine multiple visual cues using a Particle Filter (PF). Both methods

employ the concept of projection of a person which is comprised of two

ellipses: one for the person head and another one for his/her the torso.

On the probabilistic approach, particles represent possible 3D positions

for the model that are evaluated by examining their projection in the camera

image. This method integrates depth, color and gradient information to

perform a robust tracking. As depth information cannot be always extracted

because of occlusions or absence of texture, the probabilistic method is able

to deal with this problem by defining a certainty measure that indicates

the degree of confidence in depth information. The confidence measure

is employed to modify the probability distribution function employed for

weighting the particles. The greater is the amount of disparity found, the

greater is its contribution to the weight of the final particle and vice versa. In

the extreme case of complete unavailability of disparity, the tracking is done

using only colour and gradient information. The proposed algorithm does

not only determine the 3D person position but also his/her head position

in the camera image.

Several color-with-depth sequences have been employed in order to test

the validity of our proposal. The sequences recorded show a varying number

of people (from one up to four) interacting in a room. In the sequences,

people perform different types of interactions: walk at different distances,

shake hands, cross their paths, jump, run, embrace each other and even

quickly swap their positions trying to confuse the system. The tracking

errors have been calculated for different number of particles in order to

determine the number of them that allows an appropriate trade-off between

tracking error and computing time. The experimental results show that the

proposed method is able to determine, in real-time, both the 3D position

and the 2D head position in the camera image of a moving person despite

of the presence of other people. Besides, the proposed method is able to

deal with both partial and short-term total occlusion.
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The “possibilistic” approach tries to overcome some situations which

were not taken into account on the probabilistic approach. Firstly, using

the previous approach, there are some cases in which the background color

can be confused with the color model of the tracked objects. In this second

approach, foreground and background information is taken into considera-

tion which avoid certain confusing situations. Secondly, the probabilistic

approach does not handle certain occlusion situations which are now taken

into consideration. Thirdly, in the probabilistic approach, there is only

one confidence measure based on the disparity information. In the second

approach, not only disparity information is taken into consideration for

computing confidence levels, but also the distance at which the person is

located and the possibility of being occluded. We consider that if a person

is partially or completed occluded, the confidence on disparity or on color

information will change.

In addition to these advantages, a more elaborated people detection

method is employed in order to reduce the amount of false positives. Fur-

thermore, in the second approach the 2D tracking error is lower than on the

first method.

The previously mentioned advantages are mainly due to the use of an in-

creasing number of information cues in the second method. This is achieved

with the help of Fuzzy Logic (FL) which has the ability of managing an in-

creasing amount of information. In addition, the use of FL to compute the

final weight of each particle brings different benefits compared to the prob-

abilistic approach. First, by using probability models to evaluate particles,

it is assumed that variables follow a probability distribution. That is, un-

certainty could be modeled in a probabilistic approach by modifying the

probabilistic distribution function using some parameter. Those assump-

tions sometimes are not exactly true or are hard to be modeled. Never-

theless, with FL it is possible to achieve the same goal in a more flexible

way, without being restricted to particular aspects of the probability distri-

butions. Secondly, FL easily allows to incrementally add other sources of

information. By using linguistic variables and rules to express relationships

the system becomes more understandable and similar to the way humans

represent and deal with the knowledge.

On the other hand, there is the drawback of using more information cues

which is directly related with the computing time. The computing time is

higher than in the first method but the second method is able to deal with

more complicated situations than the first one.

The second method has been experimentally compared to other well-
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known tracking methods. The results showed that our system managed to

keep track of people, in the reference image, in most of the situations where

other trackers fail. It was tested in simulated complex real life situations,

where people were interacting freely and sometimes occluding each other.

The second method proved to be also fast enough for detecting and track-

ing people simultaneously and therefore adequate to be used in real time

applications.

In Chapter 4, a system for estimating the interest of the people in the sur-

roundings of the robot and detecting motions related to attention demand

and head nodding and shaking, is described. It uses Stereo Vision (SV),

head pose estimation by Support Vector Machines (SVM) and FL. While

a person is being tracked, the Fuzzy System(s) (FS) computes a level of

possibility about the interest that this person has in interacting with the

robot. This possibility value is based on the position of the person with

respect to the robot, as well as on an estimation of the attention that the

person pays to the robot. To examine the attention that a person pays to

the robot the head pose of the person is analyzed in real time. This analysis

is performed by a view based approach using SVM. Thanks to SVM, the

head pose can be detected achieving a great percentage of success that does

not depend on the morphological features of the heads. The employed FS

was also able to detect accurately whenever the person was demanding at-

tention by analyzing the movement of the arms. The system also achieved

a good result concerning the detection of head movements such as head

nodding and shaking.

In Chapter 5, the human response is computed without prioritizing

people that are closer, more or less centered and/or facing the robot, re-

garding other people that are not fulfilling all and every condition. Now,

we try to improve the human behavior analysis by defining a human re-

sponse measure based on visual cues which have different importance levels

depending on the distance of the person towards the robot. These visual

cues are the attention that each person is paying to him (face pose regard-

ing the robot), occlusion (considering that people will try to avoid obstacles

when interacting with it), certain arms movements (the robot might ask

people to interact by shaking their arms) and smile detection (it should

provide a good feedback about each person satisfaction level according to

those actions and messages transmitted by the robot). FL will be the tool

used to fuse all these information cues as it allows the handling of the un-

certainty and vagueness that come along with the information provided by

the sensors. A Hierarchical Fuzzy System(s) (HFS) is proposed so that a
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high level FS handles the outputs of two low level FS depending on the

distance information of the tracked person. Each low level FS is specialized

in one specific distance situation of the person regarding the robot: close

or far. The high level FS fuses the information supplied by the low level

FS according to the distance value. This is done so that visual information

is managed in a correct and useful way in order to measure the human

response. Several final measures are defined based on the output of the pro-

posed HFS such as the instantaneous human response HR(P ), the global

human response GHR(P ) and the average value of HR(P ). By taking into

consideration instantaneous, global and average values, one might analyze

which aspects of the robot proposed activity might be improved or adapted.

For instance, the robot may adapt its behavior whenever the feedback given

by the users of the system is not satisfactory.

The system was tested in simulated real life situations, where people

participating in the experiments were asked to move and to act naturally.

Despite the high amount of data involved, we observed that the proposed

algorithm is prepared to be used in real time environments and so allowing

a natural interaction among all the people that participated in the experi-

ments. In addition, the HFS correctly outputs the expected human response

values on most of the frames.

In the different FS shown in this work, rules and linguistic variables have

been defined experimentally. As a future work, the possibility of building a

system capable of learning and adjusting these parameters automatically is

being studied. Another possible improvement for future works is to use the

feedback from users regarding the activities proposed by the social robot in

order to improve those same activities and the interaction between the robot

and users. Finally, the modularity of the system allows the incorporation of

other information sources. Therefore, sound sensors and speech recognition

techniques are being studied for incorporation in future works.
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[AG02] E. Aguirre and A. González. Integrating fuzzy topological maps

and fuzzy geometric maps for behavior-based robots. International

Journal of Intelligent Systems, 17(3):333–368, 2002. [cited at p. 7]

[AGSG+07] E. Aguirre, M. Garcia-Śılvente, A. González, R. Paúl, and R. Muñoz-

Salinas. A fuzzy system for detection of interaction demanding and

nodding assent based on stereo vision. Journal of Physical Agents,

1:15–25, 2007. [cited at p. xxiv, 28, 171]

[AK10] K. Ambrosch and W. Kubinger. Accurate hardware-based stereo vis-

ion. Computer Vision and Image Understanding, 114(11):1303 – 1316,

2010. [cited at p. 22]

[AKK08] S. Asteriadis, K. Karpouzis, and S. Kollias. A neuro-fuzzy approach

to user attention recognition. In Proceedings of the 18th international

conference on Artificial Neural Networks, Part I, ICANN ’08, pages

927–936. Springer-Verlag, 2008. [cited at p. 27]

139



[Alb92] J. S. Albus. RCS: A reference model architecture for intelligent control.

j-COMPUTER, 25(5):56–59, 1992. [cited at p. 9]

[Alb99] J. S. Albus. 4-d/rcs reference model architecture for unmanned

ground vehicles. In Proceedings of the SPIE, volume 3693, pages 11–

20, 1999. [cited at p. 9]

[Ark86] R. C. Arkin. Path planning for a vision-based autonomous robot. In

Proc. of the SPIE Conference on Mobile Robots, pages 240–249, 1986.

[cited at p. 10]

[Ark98] R. C. Arkin. Behavior-Based Robotics. The MIT Press, 1998.

[cited at p. 2, 9]

[AS11] H. C. Akakin and B. Sankur. Robust classification of face and head

gestures in video. Image and Vision Computing, 29(7):470–483, 2011.

[cited at p. 28]

[AST11] A. Andreas, E.F. Soonggalon, and K. Tejawibawa. Developing a quad-

rupedal robot with speech recognition movement control. In Instru-

mentation Control and Automation (ICA), 2011 2nd International

Conference on, pages 310–315, 2011. [cited at p. 17]

[ATKTJ00] M.-R. Akbarzadeh-T, K. Kumbla, E. Tunstel, and M. Jamshidi.

Soft computing for autonomous robotic systems. Elsevier, 2000.

[cited at p. 11]

[ATR97] F. Aherne, N. Thacker, and P. Rockett. The bhattacharyya metric as

an absolute similarity measure for frequency coded data. Kybernetica,

32:1–7, 1997. [cited at p. 24, 35, 176]

[BBB+98] H.-J. Boehme, A. Brakensiek, U.-D. Braumann, M. K.s, and H.-

M. Gross. Neural architecture for gesture-based human-machine-

interaction. Lecture Notes in Computer Science, 1371:219–232, 1998.

[cited at p. 21]

[BBH03] M. Z. Brown, D. Burschka, and G. D. Hager. Advances in computa-

tional stereo. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 25:993–1008, 2003. [cited at p. xxii, 6, 33, 169, 174]

[BCZ93] A. Blake, R. Curwen, and A. Zisserman. A framework for spatiotem-

poral control in the tracking of visual contours. International Journal

of Computer Vision, 11:127–145, 1993. [cited at p. 67]

[BFJ+05a] M. Bennewitz, F. Faber, D. Joho, M. Schreiber, and S. Behnke. In-

tegrating vision and speech for conversations with multiple persons.

In IROS’05: Proceedings of the IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems, pages 2523–2528, 2005. [cited at p. xxiii, 16, 28,

169]

140



[BFJ+05b] M. Bennewitz, F. Faber, D. Joho, M. Schreiber, and S. Behnke. Mul-

timodal conversation between a humanoid robot and multiple persons.

In AAAI’05: Proceedings of the Workshop On Modular Construction

of Human-Like Intelligence, pages 40–47, 2005. [cited at p. 19]

[BGV92] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm

for optimal margin classifiers. In Proceedings of the 5th Annual ACM

Workshop on Computational Learning Theory, pages 144–152. ACM

Press, 1992. [cited at p. 39, 179]

[BH94] A. Baumberg and D. Hogg. An efficient method for contour tracking

using active shape models. In IEEE Workshop on Motion of Non-

Rigid and Articulated Objects., pages 194–199, 1994. [cited at p. 67]

[BHD94] R. Beckers, O. E. Holland, and J. L. Deneubourg. From local actions

to global tasks: Stigmergy and collective robotics. In Artificial Life

IV, pages 181–189. MIT Press, 1994. [cited at p. 13]

[Bir98] S. Birchfield. Elliptical head tracking using intensity gradients and

color histograms. In IEEE Conference on Computer Vision and Pat-

tern Recognition (1998), pages 232–237, 1998. [cited at p. 35, 67, 84,

175, 176]

[BJ11] P. Benavidez and M. Jamshidi. Mobile robot navigation and target

tracking system. In System of Systems Engineering (SoSE), 2011 6th

International Conference on, pages 299–304, 2011. [cited at p. 18]

[BK08] G. Bradski and A. Kaehler. Learning OpenCV. Computer Vision with

the OpenCV. O’Reilly, 2008. [cited at p. 72]

[Blo08] I. Bloch. Defining belief functions using mathematical morphology -

application to image fusion under imprecision. International Journal

of Approximate Reasoning, 48:437–465, 2008. [cited at p. 25]

[BPM+08] J.N. Bailenson, E.D. Pontikakis, I.B. Mauss, J.J. Gross, M.E. Jabon,

C. Hutcherson, C. Nass, and O. John. Real-time classification of

evoked emotions using facial feature tracking and physiological re-

sponses. International Journal Human-Computer Studies, 66(5):303–

317, 2008. [cited at p. 28]

[Bre02] C. Breazeal. Designing Sociable Robots. MIT Press, 2002.

[cited at p. 15, 17, 19]

[Bre03] C. Breazeal. Towards sociable robots. Robotics and Autonomous

Systems, 42(3):167–175, March 2003. [cited at p. 13]

[Bro85] R.A. Brooks. A layered intelligent control system for a mobile robot.

In Third International Symposium of Robotics Research, pages 1–8,

Gouvieux, France, 1985. [cited at p. 9]

141



[Bro91] R. A. Brooks. Intelligence without reason. In John Myopoulos and

Ray Reiter, editors, Proceedings of the 12th International Joint Con-

ference on Artificial Intelligence (IJCAI-91), pages 569–595, Sydney,

Australia, 1991. Morgan Kaufmann publishers Inc.: San Mateo, CA,

USA. [cited at p. 1]

[BS99] C. Breazeal and B. Scassellati. How to build robots that make friends

and influence people. In IEEE/RSJ International Conference on In-

telligent Robots and Systems, pages 858–863, 1999. [cited at p. 20]

[BS03] Z. Bien and W. Song. Blend of soft computing techniques for effective

human-machine interaction in service robotic systems. Fuzzy Sets and

Systems, 134(1):5–25, 2003. [cited at p. 21]

[BV10] J. Biswas and M. Veloso. Wifi localization and navigation for autonom-

ous indoor mobile robots. In Robotics and Automation (ICRA),

2010 IEEE International Conference on, pages 4379–4384, 2010.

[cited at p. 9]

[CDL10] G. Cielniak, T. Duckett, and A. J. Lilienthal. Data association

and occlusion handling for vision-based people tracking by mobile

robots. Robotics and Autonomous Systems, 58(5):435 – 443, 2010.

[cited at p. 24]

[CHF08] H.Y. Chen, C.L. Huang, and C.M. Fu. Hybrid-boost learning for

multi-pose face detection and facial expression recognition. Pattern

Recognition, 41(3):1173–1185, 2008. [cited at p. 16, 28]

[CHX+10] Ling Cai, Lei He, Yiren Xu, Yuming Zhao, and Xin Yang. Multi-

object detection and tracking by stereo vision. Pattern Recognition,

43(12):4028 – 4041, 2010. [cited at p. 24]

[CL11] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for sup-

port vector machines. ACM Transactions on Intelligent Systems

and Technology, 2:27:1–27:27, 2011. Software available at http:

//www.csie.ntu.edu.tw/~cjlin/libsvm. [cited at p. 39, 115, 179]

[CR00] D. Comaniciu and V. Ramesh. Mean shift and optimal prediction for

efficient object tracking. In IEEE International Conference on Image

Processing (2000), volume 3, pages 70–73, 2000. [cited at p. 24, 35, 87,

175, 176]

[CV95] C. Cortes and V. Vapnik. Support-vector networks. InMachine Learn-

ing, pages 273–297, 1995. [cited at p. 39, 179]

[CV12] G. Csaba and Z. Vamossy. Fuzzy based obstacle avoidance for mobil

robots with kinect sensor. In Logistics and Industrial Informatics

(LINDI), 2012 4th IEEE International Symposium on, pages 135–144,

2012. [cited at p. 18]

142



[Dau95] K. Dautenhahn. Getting to know each other-artificial social intel-

ligence for autonomous robots. Robotics and Autonomous Systems,

(16):333–356, 1995. [cited at p. 14]

[Dau97] K. Dautenhahn. I could be you — the phenomenological dimension of

social understanding. Cybernetics and Systems, 25(8):417–453, 1997.

[cited at p. 15]

[Dau98] K. Dautenhahn. The art of designing socially intelligent agents - sci-

ence, fiction and the human in the loop. Applied Artificial Intelligence

Journal, Special Issue on Socially Intelligent Agents, 12:573–617, 1998.

[cited at p. 14, 16]

[Dau02] K. Dautenhahn. Design spaces and niche spaces of believable so-

cial robots. In Proceedings. 11th IEEE International Workshop on

Robot and Human Interactive Communication, pages 192–197, 2002.

[cited at p. 15]

[Dau03] K. Dautenhahn. Roles and functions of robots in human society: im-

plications from research in autism therapy. Robotica, 21(4):443–452,

2003. [cited at p. 15]

[DB99] K. Dautenhahn and A. Billard. Bringing up robots or - the psychology

of socially intelligent robots: from theory to implementation. In Pro-

ceedings of the Third International Conference on Autonomous Agents

(Agents’99), pages 366–367. ACM Press, 1999. [cited at p. 15]

[DD96] M. Reinfrank D. Driankov. An Introduction to Fuzzy Control.

Springer, 1996. [cited at p. 39, 180]

[DDCF01] T. Darrell, D. Demirdjian, N. Checka, and P. Felzenszwalb. Plan-

view trajectory estimation with dense stereo background models. In

Eighth IEEE International Conference on Computer Vision (ICCV

2001), volume 2, pages 628 – 635, 2001. [cited at p. 23]

[DGF+90] J. L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain,

and L. Chrétien. The dynamics of collective sorting robot-like ants

and ant-like robots. In Proceedings of the first international conference

on simulation of adaptive behavior on From animals to animats, pages

356–363. MIT Press, 1990. [cited at p. 13]

[DGHW00] T. Darrell, G. Gordon, M. Harville, and J. Woodfill. Integrated Person

Tracking Using Stereo, Color, and Pattern Detection. Int. Journ.

Computer Vision, 37:175–185, 2000. [cited at p. 24]

[DJ96] H. S. Dulimarta and A. K. Jain. A client/server control architec-

ture for robot navigation. Pattern Recognition, 29(8):1259–1284, 1996.

[cited at p. 9]

[DK02] G. N. DeSouza and A. C. Kak. Vision for Mobile Robot Navigation:

A Survey. IEEE Transactions on Pattern Analysis and Machine In-

telligence, 24:237–267, 2002. [cited at p. 6]

143



[DO02] K. Dautenhahn and B. Ogden. From embodied to socially embedded

agents implications for interaction-aware robots. Cognitive Systems

Research, 3:397–428, 2002. [cited at p. 14]

[Duf03] B. Duffy. Anthropomorphism and the social robot. Special Issue

on Socially Interactive Robots, Robotics and Autonomous Systems,

42(3):177–190, 2003. [cited at p. 15]

[EKB98] C. Eveland, K. Konolige, and R.C. Bolles. Background Modelling

for Segmentatation of Vide-Rate Stereo Sequences. In IEEE Conf.

on Computer Vision and Pattern Recognition, pages 266–271, 1998.

[cited at p. 23]

[Elf89] A. Elfes. Using occupancy grids for mobile robot perception and

navigation. IEEE Computer Magazine, Special Issue on Autonomous

Intelligent Machines, 22(6):46–57, 1989. [cited at p. 6]

[ETNMT11] S.A.-L. El-Teleity, Z.B. Nossair, H.M.A.-K. Mansour, and A. Ta-

gElDein. Fuzzy logic control of an autonomous mobile robot. In

Methods and Models in Automation and Robotics (MMAR), 2011 16th

International Conference on, pages 188–193, 2011. [cited at p. 22]

[FLW+12] Nai-Hong Fang, I-Hsum Li, Wei-Yen Wang, Lian-Wang Lee, and Yi-

Hsing Chien. Resarch and design of control system for a tracked robot

with a kinect sensor. In System Science and Engineering (ICSSE),

2012 International Conference on, pages 217–222, 2012. [cited at p. 18]

[FND03] T. Fong, I. Nourbakhsh, and K. Dautenhahn. A survey of socially

interactive robots. Robotics and Autonomous Systems, 42:143–166,

2003. [cited at p. xxii, 15, 24, 169]

[Fog99] B. J. Fogg. Persuasive technologie. Commun. ACM, 42(5):26–29,

1999. [cited at p. 15]

[FSA11] J. Foytik, P. Sankaran, and V. Asari. Tracking and recognizing mul-

tiple faces using kalman filter and modularpca. Procedia Computer

Science, 6:256 – 261, 2011. [cited at p. 25]

[FTB01] T. W. Fong, C. Thorpe, and C. Baur. Collaboration, dialogue, and

human-robot interaction. In Proceedings of the 10th International

Symposium of Robotics Research, Lorne, Victoria, Australia. Springer-

Verlag, November 2001. [cited at p. 20]

[Ful10] R. Fuller. A short survey of fuzzy reasoning methods - tu-

torial, http://uni-obuda.hu/users/fuller.robert/fuzzy-reasoning.pdf,

2010. [cited at p. 39, 180]

[FvD82] J.D. Foley and A. van Dam. Fundamentals of Interactive Computer

Graphics. Addison Wesley, 1982. [cited at p. 35, 176]

[Gat91] E. Gat. Reliable Goal-Directed Reactive Control of Autonomous

Mobile Robots. PhD thesis, Virginia Polytechnic Institute, 1991.

[cited at p. 10]

144



[Gav99] D. M. Gavrila. The visual analysis of human movement: A sur-

vey. Computer Vision and Image Understanding: CVIU, 73(1):82–98,

1999. [cited at p. 17]

[GBL+11] N. Greggio, A. Bernardino, C. Laschi, J. Santos-Victor, and P. Dario.

Real-time 3d stereo tracking and localizing of spherical objects with

the icub robotic platform. J. Intell. Robotics Syst., 63(3-4):417–446,

September 2011. [cited at p. 22]

[GK04] D. Grest and R. Koch. Realtime multi-camera person tracking for

immersive environments. In IEEE Sixth Workshop on Multimedia

Signal Processing (2004), pages 387–390, 2004. [cited at p. 23, 35, 175]

[GNS+02] S. Ghidary, Y. Nakata, H. Saito, M. Hattori, and T. Takamori.

Multimodal interaction of human and home robot in the context

of room map generation. Autonomous Robots, 13:169–184, 2002.

[cited at p. xxiii, 16, 169]

[GS95] N. Gordon and D. Salmand. Bayesian state estimation for tracking

and guidance using the bottstrap filter. Journal of Guidance, Control

and Dynamics, 18:1434–1443, 1995. [cited at p. 25]

[GS99] J. Gasós and A. Saffiotti. Using fuzzy sets to represent uncertain

spatial knowledge in autonomous robots. Spatial Cognition and Com-

putation, 1(3):205–226, 1999. [cited at p. 11]

[GSFVGG97] M. Garcia-Silvente, J. Fdez-Valdivia, J.A. Garcia, and A. Garrido. A

new edge detector integrating scale-spectrum information. Image and

Vision Computing, 15(12):913–923, 1997. [cited at p. 11]

[Har04] M. Harville. Stereo person tracking with adaptive plan-view templates

of height and occupancy statistics. Image and Vision Computing,

2:127–142, 2004. [cited at p. 23, 25]

[HCPW03] Chia-Chiang Ho, Wen-Huang Cheng, Ting-Jian Pan, and Ja-Ling Wu.

A user-attention based focus detection framework and its applications.

In International Conference on Information, Communications Sig-

nal Processing Fourth IEEE Pacific-Rim Conference On Multimedia,

pages 1315–1319, 2003. [cited at p. 27]

[HD89] G. Henry and Dunteman. Principal Components Analysis. SAGE

Publications, 1989. [cited at p. 36, 177]

[HGW01] M. Harville, G. Gordon, and J. Woodfill. Foreground segmentation

using adaptive mixture models in color and depth. In IEEE Workshop

on Detection and Recognition of Events in Video (2001), pages 3–11,

2001. [cited at p. 23, 73]

[HH12] F. Huo and E. A. Hendriks. Multiple people tracking and pose estim-

ation with occlusion estimation. Computer Vision and Image Under-

standing, 116(5):634 – 647, 2012. [cited at p. 24]

145



[HLK09] S. Hong, H. Lee, and E. Kim. A new probabilistic fuzzy model:

Fuzzification-maximization (fm) approach. International Journal of

Approximate Reasoning, 50:1129–1147, 2009. [cited at p. 25]

[HM03] N. Hirai and H. Mizoguchi. Visual tracking of human back and

shoulder for person following robot. In IEEE/ASME International

Conference on Advanced Intelligent Mechatronics (2003), volume 1,

pages 527–532, 2003. [cited at p. xxi, 168]

[HMW+09] F. Hegel, C. Muhl, B. Wrede, M. Hielscher-Fastabend, and G. Sagerer.

Understanding social robots. In Advances in Computer-Human Inter-

actions, 2009. ACHI ’09. Second International Conferences on, pages

169–174, 2009. [cited at p. 12]

[HOP11] D.H. Heo, A. Oh, and T.H. Park. A localization system of mobile

robots using artificial landmarks. In Automation Science and En-

gineering (CASE), 2011 IEEE Conference on, pages 139–144, 2011.

[cited at p. 9]

[HST01] A. Howard, H. Seraji, and E. Tunstel. A Rule-Based Fuzzy Tra-

versability Index for Mobile Robot Navigation. In IEEE Interna-

tional Conference on Robotics and Automation, pages 3067–3071,

2001. [cited at p. 11]

[HW] O. Holland and G. Walter. The pioneer of real artificial life. In

Proceedings of the International Workshop on Artificial Life, MIT

Press, pages 34–44, Cambridge, MA. [cited at p. 13]

[IB98] M. Isard and A. Blake. Condensation-conditional density propagation

for visual trackings. International Journal of Computer Vision, 29:5–

28, 1998. [cited at p. 23, 25, 80]

[IBP06] R.T. Iqbal, C. Barbu, and F. Petry. Fuzzy component based object

detection. International Journal of Approximate Reasoning, 45:546–

563, 2006. [cited at p. 25]

[ISH12] M. Ilbeygi and H. Shah-Hosseini. A novel fuzzy facial expression

recognition system based on facial feature extraction from color face

images. Engineering Applications of Artificial Intelligence, 25(1):130–

146, 2012. [cited at p. 29]

[JF93] J.L. Jones and A. M. Flynn. Mobile Robots. Inspiration to Implement-

ation. A K Peters, 1993. [cited at p. 3, 4, 7]

[JF98] L. C. Jain and T. Fukuda. Soft Computing for Intelligent Robotic

Systems. Physica-Verlag, 1998. [cited at p. 11]

[Kae] Steven D. Kaehler. Fuzzy logic tutorial,

http://www.seattlerobotics.org/encoder/mar98/fuz/flindex.html.

[cited at p. 39, 180]

146



[Kai67] T. Kailath. The Divergence and Bhattacharyya Distance Measures in

Signal Selection. IEEE Transactions on Communication Technology,

15:52 – 60, 1967. [cited at p. 35, 176]

[KB05] H. Kamel and W. Badawy. Fuzzy-logic-based particle filter for track-

ing a maneuverable target. In 48th Midwest Symposium on Circuits

and Systems (2005), volume 2, pages 1537–1540, 2005. [cited at p. 26]

[KBD05] Z. Khan, T. Balch, and F. Dellaert. Mcmc-based particle filtering for

tracking a variable number of interacting targets. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 27:1805–1819, 2005.

[cited at p. 26]

[KC03] D. Kulic and E.A. Croft. Estimating intent for human robot interac-

tion. In International Conference on Advanced Robotics, pages 810–

815, 2003. [cited at p. 16, 21]

[KG01] L. Kopp and P. Gardenfors. Attention as a minimal criterion of

intentionality in robotics. In Lund University of Cognitive Studies,

volume 89, 2001. [cited at p. 20]

[Kit96] G. Kitagawa. Monte carlo filter and smoother for non-gaussian non-

linear state space models. Journal of Computational and Graphical

Statistics, 5:1–25, 1996. [cited at p. 25]

[KjB97] L. Kil-jae and Z. Bien. A model-based machine vision system using

fuzzy logic. International Journal of Approximate Reasoning, 16:119–

135, 1997. [cited at p. 25]

[KLM10] J. Klein, C. Lecomte, and P. Miché. Hierarchical and conditional com-
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new fuzzy based algorithm for solving stereo vagueness in detecting

and tracking people. International Journal of Approximate Reasoning,

53:693–708, 2012. [cited at p. xxiv, 17, 171]

[PATF13] D. Perdomo, J. B. Alonso, C. M. Travieso, and M. A. Ferrer. Auto-

matic scene calibration for detecting and tracking people using a single

camera. Engineering Applications of Artificial Intelligence, 26(2):924–

935, 2013. [cited at p. 23]

[PC98] E. Paulos and J. Canny. Designing personal tele-embodiment. In

Proceedings of the IEEE International Conference on Robotics and

Automation, volume 4, pages 3173–3178, 1998. [cited at p. 15]

[Pea01] P. Persson and et al. Understanding socially intelligent agents - a

multilayered phenomenon. IEEE Transactions on SMC, 31(5):349–

360, 2001. [cited at p. 15]

[Pee03] Peter Peer. Cvl face database, 2003. [cited at p. 116]

151



[PL11] C.B. Park and S.W. Lee. Real-time 3d pointing gesture recognition

for mobile robots with cascade hmm and particle filter. Image Vision

Computing, 29(1):51–63, 2011. [cited at p. 16, 18, 20]

[PMC12] F. Poiesi, R. Mazzon, and A. Cavallaro. Multi-target tracking on

confidence maps: an application to people tracking. Computer Vision

and Image Understanding, (0):–, 2012. [cited at p. 26]

[PMP+03] J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun. To-

wards robotic assistants in nursing homes: Challenges and results.

Special issue on Socially Interactive Robots, Robotics and Autonom-

ous Systems, 42(3 - 4):271 – 281, 2003. [cited at p. 15]

[PMRR00] P.J. Phillips, H. Moon, S.A. Rizvi, and P.J. Rauss. The feret evalu-

ation methodology for face recognition algorithms. volume 22, pages

1090–1104, 2000. [cited at p. 116]

[Pri05] Primesense. Primesense official webpage,

http://www.primesense.com/, 2005. [cited at p. 18]

[PSH97] V. Pavlovic, R. Sharma, and T. S. Huang. Visual interpreta-

tion of hand gestures for human-computer interaction: A review.

IEEE Transactions on Pattern Analysis and Machine Intelligence,

19(7):677–695, 1997. [cited at p. 18]

[PWHR98] P.J. Phillips, H. Wechsler, J. Huang, and P. Rauss. The feret database

and evaluation procedure for face recognition algorithms. Image and

Vision Computing, 16(5):295–306, 1998. [cited at p. 116]

[RA90] J.J. Rodriguez and J.K. Aggarwal. Stochastic analysis of stereo quant-

ization error. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 12:467–470, 1990. [cited at p. 34, 175]

[RBMHMU12] J.A. Rivera-Bautista, A. Marin-Hernandez, and L.F. Marin-Urias. Us-

ing color histograms and range data to track trajectories of moving

people from a mobile robot platform. In Electrical Communications

and Computers (CONIELECOMP), 2012 22nd International Confer-

ence on, pages 288–293, 2012. [cited at p. 27]

[RC08] R. E. Woods R. C.Gonzalez. Digital Image processing. Prentice Hall,

2008. [cited at p. 5]

[Res01] S. Restivo. Bringing up and booting up: Social theory and the emer-

gence of socially intelligent robot. In IEEE International Conference

on Systems, Man, and Cybernetics, volume 4, pages 2110–2117, 2001.

[cited at p. 16]

[Res05] Point Grey Research. Point grey research, bumblebee 1 stereo camera,

http://www.ptgrey.com/products/bumblebee/bumblebee.pdf, 2005.

[cited at p. 31, 77, 173]

152



[Res10] Point Grey Research. Triclops sdk,

http://www.ptgrey.com/products/triclopssdk/index.asp, 2010.

[cited at p. 22, 33, 174]

[Rob] ActivMedia Robotics. Performance peoplebot robot,

http://www.mobilerobots.com/researchrobots/peoplebot.aspx.

[cited at p. 31, 173]

[Saf97] A. Saffiotti. The uses of fuzzy logic in autonomous robot navigation.

Soft Computing, 1:180–197, 1997. [cited at p. 2, 11]

[SAJ+13] L. Susperregi, A. Arruti, E. Jauregi, B. Sierra, J.M. Mart́ınez-Otzeta,

E. Lazkano, and A. Ansuategui. Fusing multiple image transforma-

tions and a thermal sensor with kinect to improve person detection

ability. Engineering Applications of Artificial Intelligence - Available

Online, (0):–, 2013. [cited at p. 27]

[SAS01] D. Spiliotopoulos, I. Androutsopoulos, and C. D. Spyropoulos.

Human-robot interaction based on spoken natural language dialogue.

In in: Proceedings of the European Workshop on Service and Hu-

manoid Robots, pages 25–27, 2001. [cited at p. 17]

[SB10] Y. Sun and L. Bentabet. A particle filtering and dsmt based ap-

proach for conflict resolving in case of target tracking with multiple

cues. Journal of Mathematical Imaging and Vision, 36:159–167, 2010.

[cited at p. 24]

[SBOGP08] K. Smith, S. O. Ba, JM. Odobez, and D. Gatica-Perez. Tracking

the visual focus of attention for a varying number of wandering

people. IEEE Transactions Pattern Analysis Machine Intelligence,

30(7):1212–1229, 2008. [cited at p. 27]

[Sca01] B. Scassellati. Foundations for a theory of mind for a humanoid robot.

PhD thesis, 2001. Supervisor-Rodney Brooks. [cited at p. 15]

[Sca03] B. Scassellati. Investigating models of social development using a

humanoid robot. In Proceedings of the International Joint Conference

on Neural Networks, volume 4, pages 2704–2709, 2003. [cited at p. 20]

[SCFERB+09] C. Solana-Cipres, G. Fernandez-Escribano, L. Rodriguez-Benitez,

J. Moreno-Garcia, and L. Jimenez-Linares. Real-time moving object

segmentation in h.264 compressed domain based on approximate reas-

oning. International Journal of Approximate Reasoning, 51:99–114,

2009. [cited at p. 25]

[Sch94] A. Schultz. Learning robot behaviors using genetic algorithms. In

Intelligent Automation and Soft Computing: Trends in Research, De-

velopment, and Applications, pages 607–612, 1994. [cited at p. 21]

[SCSD09] R.E.O. Schultz, T.M. Centeno, G. Selleron, and M.R. Delgado.

A soft computing-based approach to spatio-temporal prediction.

153



International Journal of Approximate Reasoning, 50:3–20, 2009.

[cited at p. 25]

[SELG10] K. Schindler, A. Ess, B. Leibe, and L. Van Gool. Automatic detec-

tion and tracking of pedestrians from a moving stereo rig. ISPRS

Journal of Photogrammetry and Remote Sensing, 65(6):523 – 537,

2010. [cited at p. 22]

[SF13] B. John Southwell and Gu Fang. Human object recognition using col-

our and depth information from an rgb-d kinect sensor. International

Journal of Advanced Robotic Systems, 10:1–8, 2013. [cited at p. 27]

[SH94] F. Samaria and A. Harter. Parameterisation of a stochastic model

for human face identification. In Proceedings of the Second IEEE

Workshop on Applications of Computer Vision, pages 138–142, 1994.

[cited at p. 116]

[Sim13] C. Simpkins. Principle components analysis - a short primer by chris

simpkins, http://www.cc.gatech.edu/ simpkins/courses/cs7641/pca-

primer.txt, 2013. [cited at p. 36]

[SKKB01] W. Song, D. Kim, J. Kim, and Z. Bien. Visual servoing for a user’s

mouth with effective intention reading in a wheelchair-based robotic

arm. In ICRA, pages 3662–3667, 2001. [cited at p. xxiii, 16, 28, 169]

[SM04] H. Suzuki and M. Minami. Real-time face detection using hybrid

ga based on selective attention. In IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, pages 1329–1334, 2004.

[cited at p. 27]

[SM11] T. T. Santos and C. H. Morimoto. Multiple camera people detection

and tracking using support integration. Pattern Recognition Letters,

32(1):47 – 55, 2011. [cited at p. 23]

[SMC05] L. Snidaro, C. Micheloni, and C. Chiavedale. Video security for ambi-

ent intelligence. IEEE Transactions on Systems, Man and Cybernet-

ics, Part A, 35:133 – 144, 2005. [cited at p. 17]

[SMYF10] H.T. Shandiz, S.M. Mirhassani, B. Yousefi, and M.J.R. Fatemi. Fuzzy

based foreground background discrimination for probabilistic color

based object tracking. International Journal of Computer Science

and Network Security, 10:120–125, 2010. [cited at p. 26]

[SN04] R. Siegwart and I.R. Nourbakhsh. Introduction to Autonomous Mobile

Robots. The MIT Press, 2004. [cited at p. 4]

[Sou10] Sourceforge. Opencv, intel: Open source computer vision library,

http://www.intel.com/research/mrl/opencv/, 2010. [cited at p. 72,

111]

154



[SPB+03] F. Solina, P. Peer, B. Batagelj, J. Kovac, and S. Juvan. Color-based

face detection in the “15 seconds of fame” art installation. In Mirage

2003, Conference on Computer Vision / Computer Graphics Collabor-

ation for Model-based Imaging, Rendering, image Analysis and Graph-

ical special Effects, pages 38–47, 2003. [cited at p. 116]

[Spe13] IEEE Spectrum. Robot sensors and actuators,

http://spectrum.ieee.org/robotics/robotics-hardwarel, 2013.

[cited at p. 4, 7]

[SRT99] J. Schulte, C. Rosenberg, and S. Thrun. Spontaneous short-term

interaction with mobile robots in public places. In In Proceedings

of the IEEE International Conference on Robotics and Automation

(ICRA), pages 658–663, 1999. [cited at p. 20]

[SSA04] L. Sigal, S. Sclaroff, and V. Athitsos. Skin color-based video segment-

ation under time-varying illumination. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 26:862–877, 2004. [cited at p. xxi,

168]

[SW96] A. Saffiotti and L.P. Wesley. Perception-based self-localization using

fuzzy locations. In M. van Lambalgen L. Dorst and F. Voorbraak,

editors, Reasoning with Uncertainty in Robotics.LNAI, pages 368–385,

Berlin, DE, 1996. Springer-Verlag. [cited at p. 11]

[Tor02] V. Torra. A review of the construction of hierarchical fuzzy sys-

tems. International Journal of Intelligen Systems, 17:531–543, 2002.

[cited at p. 29, 62, 81]

[Tor11] Jose R .A. Torreao. Advances in Stereo Vision. InTech, 2011.

[cited at p. 6]

[UPSP10] T. Uhm, H. Park, D. Seo, and J.-Il Park. Human-of-interest tracking

by integrating two heterogeneous vision sensors. In Proceedings of the

2010 IEEE Virtual Reality Conference, VR ’10, pages 309–310, 2010.

[cited at p. 27]

[VGP05] J. Vermaak, S.J. Godsill, and P. Perez. Monte carlo filtering for multi-

target tracking and data association. IEEE Transactions on Aerospace

and Electronic Systems, 41:309–332, 2005. [cited at p. 26]

[VGRC12] D. Viejo, J. Garcia-Rodriguez, and M. Cazorla. A study of a soft

computing based method for 3d scenario reconstruction. Appl. Soft

Comput., 12(10):3158–3164, October 2012. [cited at p. 18]

[VJ01] P. Viola and M. Jones. Rapid object detection using a boosted cascade

of simple features. In IEEE Conf. on Computer Vision and Pattern

Recognition, pages 511–518, 2001. [cited at p. 72, 111]

[WDOH01] I. Werry, K. Dautenhahn, B. Ogden, and W. Harwin. Can social

interaction skills be taught by a social agent? the role of a robotic

155



mediator in autism therapy. In CT ’01: Proceedings of the 4th Inter-

national Conference on Cognitive Technology, pages 57–74. Springer-

Verlag, 2001. [cited at p. 15]

[WH99] Y. Wu and T. S. Huang. Vision-based gesture recognition: A

review. Lecture Notes in Computer Science, 1739:103–115, 1999.

[cited at p. 18]

[Wil97] J. Wiley. Movile robot navigation using artificial landmarks. Journal

of Robotc Systems, 14(2):93–106, 1997. [cited at p. 7]

[WJ95] M. Wooldridge and N. R. Jennings. Intelligent Agents: Theory

and Practice. The Knowledge Engineering Review, 10:115–152, 1995.

[cited at p. 10]

[WZ08] D. Wan and J. Zhou. Stereo vision using two ptz cameras. Com-

puter Vision and Image Understanding, 112(2):184 – 194, 2008.

[cited at p. 23]

[XLC08] T. Xiang, M.K.H. Leung, and S.Y. Cho. Expression recognition using

fuzzy spatio-temporal modeling. Pattern Recognition, 41(1):204–216,

2008. [cited at p. 29]

[Yan08] W. Yang. Autonomous Robots Research Advances. Nova Science Pub

Incorporated, 2008. [cited at p. 1]

[YF94] R.R. Yager and D.P. Filev. Essentials of Fuzzy Modeling and Control.

John Wiley & Sons, Inc, 1994. [cited at p. 25, 39, 180]

[YJJMMT07] K. Young-Joong, W. Jung-Min, and L. Myo-Taeg. Fuzzy adapt-

ive particle filter for localization of a mobile robot. In Proceedings

of the 11th international conference, KES 2007 and XVII Italian

workshop on neural networks conference on Knowledge-based intelli-

gent information and engineering systems (2007), pages 41–48, 2007.

[cited at p. 26]

[YKA02] M. H. Yang, D. Kriegman, and N. Ahuja. Detecting faces in images: a

survey. In IEEE Trans. on Pattern Analysis and Machine Intelligence

24, pages 34–58, 2002. [cited at p. 62, 72]

[YN12] L. Yang and N. Noguchi. Human detection for a robot tractor using

omni-directional stereo vision. Computers and Electronics in Agricul-

ture, 89(0):116 – 125, 2012. [cited at p. 22]

[YpB10] Wang Yan-ping and Wu Bing. Robot path planning based on modified

genetic algorithm. In Future Computer and Communication (ICFCC),

2010 2nd International Conference on, volume 3, pages V3–725–V3–

728, 2010. [cited at p. 21]

[Zad65] L.A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

[cited at p. 42]

156



[Zad75] L.A. Zadeh. The concept of a linguistic variable and its application to

approximate reasoning-i. Information Sciences, 8(3):199 – 249, 1975.

[cited at p. 39, 180]

[Zad99] L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy

Sets Syst., 100:9–34, April 1999. [cited at p. 39, 180]

[ZB09] W. Zheng and S.M. Bhandakar. Face detection and tracking using

a boosted adaptive particle filter. Journal of Visual Communication

and Image Representation, 2:9–27, 2009. [cited at p. 26]

[Zha12] Z. Zhang. Microsoft kinect sensor and its effect. MultiMedia, IEEE,

19(2):4–10, 2012. [cited at p. 18]

[Zic12] Low-cost fpga stereo vision system for real time disparity maps cal-

culation. Microprocessors and Microsystems, 36(4):281 – 288, 2012.

[cited at p. 22]

[Zla01] J. Zlatev. The epigenesis of meaning in human beings, and possibly

in robots. Minds Mach., 11(2):155–195, 2001. [cited at p. 15]

[ZZ08] C. Zhenjiang and L. Zongli. Fuzzy particle filter used for tracking

of leukocytes. In Proceedings of the 2008 International Symposium

on Intelligent Information Technology Application Workshops (2008),

pages 562–565, 2008. [cited at p. 26]

157





Appendices

159





Appendix A

Publications

The work presented in this Thesis is original work undertaken between 2007

and 2012 at the University of Granada, Spain. Portions of this work have

been published elsewhere.

International Journals (ISI)
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Appendix B

Resumen en Español

Resumen

El objetivo principal del trabajo presentado en esta tesis es el desarrollo

de técnicas visuales que resulten útiles para el establecimiento de una inter-

acción natural entre seres humanos y robots. En este contexto, “natural”

significa que es similar a las interacciones existentes entre los humanos. En

este sentido, nuestros esfuerzos se han centrado en hacer posible que un

robot, equipado con una cámara estéreo, sea capaz de analizar y estudiar el

comportamiento de las personas que se encuentran a su alrededor.

La motivación subyacente a este objetivo es proporcionar a los robots

la posibilidad de comportarse como lo haŕıa un ser humano, eligiendo entre

diferentes acciones de la misma manera como lo haŕıa una persona. Esto

pasa por ejecutar distintas tareas tales como: ser capaz de detectar y seguir

personas en su entorno, detectar cual o cuales de entre estas personas están

interesadas en las acciones propuestas por el robot, y además están respon-

diendo a esas mismas acciones. Por otra parte, los robots pueden utilizar

sus recursos de una manera más apropiada y mejorar sus métodos de comu-

nicación alcanzando un comportamiento más cercano al comportamiento

humano.

Para alcanzar este tipo de Interacción Humano-Robot consideramos

diferentes técnicas. Estas técnicas contribuyen a resolver varios problemas

existentes en esta área. En particular, las técnicas de ”Soft Computing” son

utilizadas para tratar la incertidumbre e imprecisión, aśı como para repres-

entar las variables y las reglas de una manera más comprensible por el ser
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humano. Son utilizadas también diferentes técnicas de análisis de imágenes

para extraer la información relevante del entorno del robot. Todas estas

técnicas permiten una mejora en la socialización de los robots.

El objetivo de este trabajo puede dividirse en dos. El primero es la

detección y el seguimiento de las personas que se encuentran en el entorno

del robot. El segundo es la detección del interés de cada persona en in-

teraccionar con el robot, la detección de la demanda de atención al robot

y la detección de la respuesta a sus acciones. Esto se realiza en base al

análisis de algunos de los elementos que caracterizan una situación de in-

teracción t́ıpica entre humanos tales como: la distancia entre los diferentes

interlocutores, la orientación de la cabeza, el movimiento de brazos, el movi-

miento de concordancia y discordancia entre la cabeza y la expresión de la

boca (sonrisa).

Para alcanzar el primer objetivo se consideran dos métodos: el primero

basado en un enfoque probabiĺıstico y el segundo basado en un enfoque

”posibiĺıstico”. El método probabiĺıstico muestra un nuevo enfoque para

el seguimiento de personas que combina profundidad, color e información

de gradiente y está basado en visión estéreo. El grado de confianza asig-

nado a la información de profundidad en el proceso de seguimiento vaŕıa

de acuerdo con la cantidad de información estéreo disponible en el mapa

de disparidad. Se ha definido una nueva medida de confianza para alcanzar

este objetivo y el seguimiento se hace utilizando filtros de part́ıculas. El se-

gundo método, basado en un enfoque ”posibiĺıstico”, se utiliza para añadir

más información basada en conocimiento experto que se usa a la hora de

evaluar las part́ıculas. Este enfoque tiene las restricciones derivadas de las

condiciones de un modelo probabiĺıstico. En este caso se utiliza la lógica di-

fusa para manejar la información estéreo y aśı poder detectar y seguir a las

nuevas personas. Más concretamente, en la fase de detección de personas,

se utilizan dos sistemas difusos para filtrar los falsos positivos del detector

de caras. A continuación, en la fase de seguimiento, se propone un nuevo

Filtro de Part́ıculas basado en Lógica Difusa para fusionar la información

estéreo y la información de color, asignando diferentes niveles de confianza

a cada una de estas fuentes de información. De esta manera, el sistema

es capaz de seguir a las personas, en la imagen de referencia de la cámara,

aún cuando una de las fuentes de información utilizada (estéreo o color) sea

confusa o imprecisa.

Considerando que un robot es un sistema inteligente, la detección de

determinadas situaciones de interacción es una habilidad que resulta in-

teresante. Por consiguiente, para alcanzar el segundo objetivo, se presenta
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un método basado en diferentes caracteŕısticas, como el ángulo y la distan-

cia entre las personas y el robot, aśı como la dirección de la cabeza de cada

persona. La estimación de la dirección de la cabeza en tiempo real se hace

utilizando una técnica basada en ”Support Vector Machines” mientras que

se utiliza un sistema difuso para calcular el valor de interés final a partir

de las tres variables que se acaban de mencionar. Siempre que el grado de

interés alcanza un valor alto, la persona se analiza con más en detalle para

detectar su posición y un determinado tipo de movimiento de sus brazos

y cabeza (concordancia y discordancia). Esta información se gestiona por

otro sistema difuso que debe calcular si la persona está llamando la atención

del robot o si está diciendo SI / NO con su cabeza. En el último trabajo

presentado en esta tesis, algunas de estas fuentes de información se usan de

forma conjunta con una técnica de detección de sonrisa, para construir un

sistema basado también en lógica difusa, que tiene la capacidad de medir

ciertos tipos de respuesta humana. Como la fiabilidad de la información

visual captada por la cámara estéreo depende bastante de la distancia de

cada persona con respecto a la cámara, las diferentes caracteŕısticas visuales

se priorizan de acuerdo con la distancia de la persona al robot. La respuesta

humana se calcula a partir de un sistema difuso jerárquico que es capaz de

tratar la incertidumbre y la imprecisión existentes en dichas medidas, según

la distancia a la que se encuentra la persona con respecto al robot. Esta

medición de la respuesta humana se utiliza para detectar la persona o las

personas que están respondiendo mejor a la interacción social propuesta por

el robot. Dicha medición puede servir también para mejorar y ajustar las

habilidades de interacción social del robot en el futuro.

Preámbulo

Como se ha mencionado en el resumen, para que un sistema artificial actúe

de manera “natural”, hay ciertos comportamientos que se deben llevar a

cabo de una forma similar a como los realizan los seres humanos. En este

trabajo, se asume que el robot se encuentra completamente inmóvil durante

el proceso de interacción. La misma condición se aplica a la cámara estéreo.

Esta condición puede ser considerada aceptable ya que t́ıpicamente, cuando

una persona está analizando el comportamiento de otra e intentando en-

tender como su interlocutor reacciona con respecto a sus acciones, como

en el caso de nuestro robot, dicha persona se queda normalmente quieta y

enfocando su atención en su(s) interlocutor(es). Obviamente, esa persona
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puede empezar a moverse durante la interacción pero no es el objetivo de

este trabajo permitir que el robot pueda moverse mientras está analizando

a sus interlocutores. Sin embargo, aunque el robot se encuentre parado, sus

interlocutores śı que se pueden mover libremente en su entorno.

El primer problema que se toma en consideración en este trabajo es

la capacidad de detectar y seguir correctamente a las personas que se en-

cuentran en el entorno del robot. La detección y el seguimiento de perso-

nas se pueden realizar de diversas maneras y utilizando diferentes tipos de

hardware. Cuando se utilizan técnicas de visión artificial, el sistema debe

analizar las imágenes y buscar los elementos que proporcionan información

relevante para la detección de los objetivos. Esos elementos pueden ser,

por ejemplo, caracteŕısticas morfológicas del cuerpo humano ([HM03]) y

modelos dinámicos del color de piel ([SSA04]).

Existen varios métodos empleados en el seguimiento de personas que se

fundamentan en la información de color de la ropa de las personas. Gener-

almente, el primer paso es crear el modelo de color de la persona que se ha

detectado y que va a ser seguida. A continuación, en la secuencia siguiente

de imágenes, la posición y el tamaño de la región de la imagen que mejor

coincide con el modelo de color de la persona, son considerados como la

nueva posición y tamaño de la persona que está siendo seguida. A esta

técnica se llama seguimiento adaptativo y es especialmente indicada para

el seguimiento de ”non-rigid targets”, con respecto a los cuales no hay un

modelo expĺıcito o bien cuando la estimación del background no es posible.

Como la mayoŕıa de estas técnicas se fundamenta únicamente en la in-

formación de color, se constatan varios inconvenientes. El más importante

es la confusión entre dos o más áreas de la imagen que tienen la misma dis-

tribución de color y siempre que se encuentren cerca una de la otra. Como

no hay otra información que permita distinguir entre ellas, esto puede llevar

al sistema a confundir los distintos objetivos. Esta confusión puede también

producirse con respecto al background, siempre que el algoritmo de segui-

miento no sepa qué partes de la imagen forman parte del background o del

foreground. Aśı, en el caso de que el background, o una de sus partes, tengan

una distribución de color similar a la persona que está siendo seguida, estos

sistemas puede perder el objetivo. Finalmente, existe también la posibilidad

de que una subregión de la persona sea considerada como la totalidad de la

misma. Esto puede llevar a que la determinación del tamaño de la persona

sea imprecisa e incorrecta y esto genera posteriormente otros problemas.

Algunos autores han propuesto el uso de la tecnoloǵıa estéreo para re-

solver esta cuestión. Esta tecnoloǵıa ha sido bastante estudiada en los
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últimos años y se emplea cada vez más en distintas aplicaciones ([BBH03]).

Con el desarrollo de tecnoloǵıas estéreo bien consolidadas, y la disponibil-

idad de hardware comercial capaz de solucionar los problemas inherentes

a la visión estereoscópica, esta técnica se ha convertido en una herrami-

enta importante a la hora de desarrollar aplicaciones basadas en visión por

ordenador, como los algoritmos de seguimiento. Estos algoritmos pueden

aprovechar la información de distancia a la que se encuentra cada pixel para

solucionar algunos de los problemas de los algoritmos tradicionales de visión.

En primer lugar, la posibilidad de conocer la distancia a la que se encuentra

cada persona con respecto a la cámara puede ser una ayuda importante. En

segundo lugar, la información de distancia es menos sensible a los cambios

de iluminación con respecto a la información dada por una sola cámara.

A partir del momento en que el problema de detección y seguimiento

de personas se encuentra resuelto, se deben analizar otros problemas con

vista al desarrollo de un robot con capacidades sociales. Existen distintos

enfoques que pueden contribuir al progreso de la dif́ıcil tarea de construir un

robot social ([FND03]). En ese trabajo, el rango de problemas que se tienen

que considerar puede variar desde el diseño del robot hasta su aceptación

por la sociedad, desde la detección de emociones hasta la expresión de sus

propias emociones, desde la posibilidad de simular una personalidad hasta

la imitación de otras personalidades. En todos los casos, un robot social

debe estar preparado para captar e interpretar los elementos de comunic-

ación empleados por sus interlocutores y aśı poder completar sus tareas con

éxito. Además, lo deberá hacer de manera natural, utilizando caracteŕısticas

visuales naturales.

Aunque diferentes autores hayan contribuido con distintos trabajos en

este campo ([FND03]) (ver Sección 1.3), existe aún un rango amplio de cues-

tiones por explorar que permitirán mejorar la interacción entre los robots

sociales y los humanos. En este trabajo, hemos centrado nuestros esfuerzos

en reconocer cuando y por cuanto tiempo una persona está interesada en es-

tablecer una interacción. Aśı como en conocer cual es el nivel de respuesta de

esas personas a las actividades propuestas por un robot social. Para resolver

estas tareas se pueden tener en cuenta diferentes tipos de señales de comu-

nicación expresadas por los seres humanos (verbales y no verbales). Algunos

autores ([BFJ+05a]) utilizan la localización de sonido y el reconocimiento

de voz, combinado con la percepción visual para detectar la(s) persona(s)

más interesadas en una interacción. En otros casos, se analizan expresiones

faciales ([SKKB01]) y gestos ([GNS+02]). En este trabajo, se dedica un

interés especial al análisis de algunas situaciones t́ıpicas de interacción, las
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cuales se pueden integrar en el futuro en sistemas más complejos.

Este trabajo se basa en el sentido humano más importante a la hora

de interaccionar: la visión. Además, el uso de la visión hace innecesario el

uso de dispositivos espećıficos adicionales, como ocurre con otros tipos de

sensores. Esto hace que la forma de percibir el mundo para el robot sea

análoga a la humana. La información visual tiene caracteŕısticas de impre-

cisión que provocan que sea necesario utilizar herramientas que manejen

incertidumbre. Por esta razón, usamos lógica difusa como modelo para el

tratamiento de la información. En especial, los diferentes elementos visuales

definidos en este trabajo pueden indicar, de manera natural, si una persona

está interesada, colaborando y/o respondiendo a una interacción. Los ele-

mentos visuales que se han tenido en cuenta para inferir el nivel de respuesta

humana y su interés son la orientación de la cabeza con respecto al robot,

el movimiento de los brazos y si la persona está o no sonriendo. También

pensamos que una persona que quiere interaccionar y comunicarse con otra

persona intentará tener ĺınea de visión directa con su interlocutor y evitará

estar ocluida por otras personas u objetos. Adicionalmente, se presenta un

método para inferir la posibilidad de que una persona esté contestando SI

o NO con su cabeza. Como se puede observar, estos elementos visuales

son ”naturales” y son bastante utilizados cuando interaccionamos con otras

personas.

Para alcanzar los objetivos propuestos se han tenido en cuenta diferentes

restricciones. Por ejemplo, es casi imposible detectar con certidumbre una

sonrisa (considerando la resolución del dispositivo) cuando una persona se

encuentra a más de un par de metros de la cámara. Otra restricción tiene

que ver con el hecho de que cuando una persona se encuentra bastante cerca

de la cámara sus brazos están fuera del campo de visión y, consecuentemente,

nos es posible detectar el movimiento de sus brazos. De esta manera, es fácil

entender que la distancia juega un papel muy importante con respecto a la

detección de los diferentes elementos visuales propuestos. Aśı, en la prop-

uesta presentada en esta tesis, la respuesta humana es calculada por medio

de un sistema difuso jerarquizado que es capaz de tratar la incertidumbre

y la imprecisión de las diferentes percepciones visuales en función de la

distancia de la persona respecto a la cámara. Al medir esta respuesta, el

robot tiene la posibilidad de interaccionar de una forma más natural y me-

jorar aśı la actividad que está proponiendo a sus interlocutores según la

retroalimentación recibida de los participantes.
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Contribuciones Principales

El trabajo descrito en esta tesis creemos que ha contribuido con distintos

avances en el área de Interacción entre Robots y Humanos. No solamente

se han probado diferentes metodoloǵıas, sino que se han propuesto nuevas

ideas y nuevos enfoques que pueden ayudar al desarrollo de este campo.

Entre estas contribuciones las más relevantes son:

1. Un nuevo método que permite seguir personas que está basado en un

filtro de part́ıculas que integra profundidad, color e información de

gradiente para alcanzar un seguimiento más robusto. Este método

incluye una medida de certeza que indica la confianza que se tiene

sobre la información de profundidad y permite de esta forma manejar

problemas provocados por las oclusiones y/o falta de textura. Este

trabajo se ha publicado en [MSAGSP07].

2. Un sistema capaz de detectar y seguir varias personas al mismo tiempo

utilizando un nuevo enfoque basado en color, visión estéreo y lógica di-

fusa. Inicialmente, en la fase de detección de personas, se utilizan dos

sistemas difusos que permiten filtrar los falsos positivos provocados

por el detector de caras. A continuación, en la fase de seguimiento, se

usa un nuevo filtro de part́ıculas basado en lógica difusa con el objet-

ivo de fusionar la información estéreo y de color, asignando diferentes

niveles de confianza a cada una de estas fuentes de información. La

información de profundidad y de oclusión se utiliza para crear estos

niveles de confianza. De esta manera, el sistema es capaz de seguir a

varias personas en la imagen de referencia de la cámara a pesar de que

la información correspondiente al color o a la profundidad sea confusa

o imprecisa.

Este trabajo se ha publicado en [PAGSMS12].

3. Un nuevo sistema difuso que permite la detección visual de posibles

demandas de interacción, además de la detección de gestos de con-

cordancia y discordancia realizados con la cabeza. El nivel de interés

de la persona para interaccionar con el robot se calcula analizando su

posición, la orientación de su cabeza y el movimiento de sus brazos.

La estimación de la orientación de la cabeza se realiza en tiempo real a

través de un enfoque basado en Máquinas de soporte vectorial (SVMs).

Este trabajo se ha publicado en [AGSG+07].
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4. Un sistema capaz de medir la respuesta humana de personas que se

encuentran en el entorno de un robot social utilizando lógica difusa

y visión estéreo. Para alcanzar este objetivo, el sistema analiza difer-

entes pistas visuales que los humanos utilizan de forma ”natural” y

que proporcionan al robot una retroalimentación con respecto a la

actividad que éste se encuentra proponiendo. La respuesta humana

se calcula a través de un sistema jerárquico difuso que es capaz de

tratar la incertidumbre y la imprecisión presentes en la información

proveniente de los sensores, y que dependerá de la distancia a la cual

se encuentre la persona del robot. Este trabajo está sometido a la

revista International Journal of Human Computer Studies (IJHCS).

Estructura de la tesis

Esta tesis está organizada en varios caṕıtulos. El primero corresponde a

la Introducción. En este Caṕıtulo se presenta también una revisión del es-

tado del arte sobre los diferentes campos de la Interacción entre Humanos y

Robots, aśı como una corta descripción de otros trabajos que tratan temas

directamente relacionados con esta tesis. En el Caṕıtulo 2, se describe

la configuración del sistema que se ha utilizado para el desarrollo, imple-

mentación y experimentación del trabajo realizado. También se presentan

algunas de las técnicas utilizadas como la visión estéreo y la modelización

del color, el análisis de componentes principales (PCA), las Máquinas de

soporte vectorial (SVM) y la lógica difusa (FL).

En los Caṕıtulos 3, 4 y 5 se presentan las contribuciones más import-

antes de esta tesis. En el Caṕıtulo 3, se muestran dos métodos diferentes

de detección y seguimiento de personas: uno probabiĺıstico y el otro pos-

ibiĺıstico. En el Caṕıtulo 4 presentamos un método para la detección del

interés y la demanda de atención. Finalmente, en el Caṕıtulo 5 se presenta

un método para la detección de la respuesta humana.

En el Caṕıtulo 6 se muestran las Conclusiones, algunas consideraciones

finales y los trabajos futuros.

Descripción del Sistema y de las Técnicas Em-

pleadas

En este caṕıtulo, se describe el hardware de nuestro sistema. A continuación,

se muestran los elementos básicos para el desarrollo de los métodos prop-
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uestos: la base de la visión estéreo y el modelado de color. En la tercera

sección se explican dos técnicas usadas en aprendizaje automático (Machine

Learning (ML)) que son el análisis de componentes principales (Principal

Component Analysis (PCA)) y las máquinas de soporte vectorial (SVM).

Estas técnicas se emplean en diferentes ocasiones a lo largo de esta tesis.

En la última sección de este caṕıtulo se presentan algunos fundamentos

de lógica difusa, como método de representación de la imprecisión e incer-

tidumbre y como herramienta de ”razonamiento”.

Descripción del Hardware

El hardware utilizado en esta tesis está compuesto por un robot móvil

“PeopleBot” [Rob], un sistema estereoscópico con una cámara binocular

[Res05] y un portátil encargado de procesar la información visual. La

cámara y el portátil se encuentran montados en la parte superior del ro-

bot como se puede observar en la Figura 2.1. El sistema estereoscópico

utilizado no solo permite la extracción de color sino también la información

de profundidad. En nuestros experimentos, se han grabado varias secuencias

con una resolución de 320x240 ṕıxeles a una tasa de 15 frames por segundo.

Al principio, se utilizó un portátil con un procesador Intel Pentium IV a 3.2

Ghz. En los últimos trabajos, se ha cambiado a otro portátil con un Intel

i5 a 2.67 Ghz.

El sensor principal utilizado en los diferentes trabajos, la cámara estéreo,

es capaz de captar dos imágenes ligeramente distintas (par estéreo calib-

rado). Estas imágenes se utilizan para calcular la imagen de disparidad

entre las dos imágenes captadas.

Aunque la funcionalidad del movimiento del robot no se utiliza directa-

mente en los diferentes trabajos de esta tesis, en un futuro se podrán integrar

los algoritmos presentados aqúı con otros trabajos desarrollados en nuestro

grupo de investigación. La altura del robot es similar a la altura media de

un niño de 8 a 10 años. Pensamos que esta caracteŕıstica es una ventaja que

favorece la interacción entre un robot y las personas. De hecho, las personas

se sentirán más confortables al interaccionar con un robot con una altura

parecida a la de un ser humano que, además, tiene su sistema de visión ubic-

ado en su parte superior tal y como un ser humano. Esta idea ha sido una

de las condiciones que hemos tenido en cuenta en los trabajos desarrollados.

Aśı respetamos uno de los objetivos del grupo de investigación que es el de

simular las mismas condiciones que se pueden dar en una interacción entre

seres humanos.

173



El sistema propuesto en esta tesis está diseñado para utilizarse en difer-

entes actividades en las cuales pueden participar hasta cuatro personas al

mismo tiempo. Dichas personas pueden moverse e interaccionar entre śı y/o

con el robot, dentro de un rango de distancias que puede variar entre 0.5

y 5 metros (estas limitaciones provienen de la resolución de la cámara, del

campo de visión y del tiempo de procesamiento adecuado para las aplica-

ciones en tiempo real).

Visión por Computador

En esta sección se describen las dos técnicas principales de visión artificial

que se utilizan en los diferentes trabajos de esta tesis. En primer lugar se

presenta la visión estéreo y a continuación el modelo de color.

Visión Estéreo

En esta sección se presentan algunos fundamentos de visión estéreo[BBH03].

Es importante advertir que no es nuestro objetivo desarrollar o presentar

un nuevo algoritmo de emparejamiento estéreo y que se utiliza el software

proporcionado por el fabricante de la cámara[Res10] para obtener la in-

formación de profundidad. El software de la cámara resuelve cuestiones

como la distorsión de la óptica en el momento de realizar el cálculo estéreo.

También, el software aporta un núcleo optimizado para el cálculo eficiente

del estéreo basado en la Suma de las Diferencias Absolutas. Este método

es conocido por su rapidez, simplicidad y robustez y es capaz de generar

imágenes densas de disparidad.

Un sistema de visión estéreo básico está compuesto por un par de cámaras

colocadas de forma paralela y cuyos centros ópticos (Ol y Or) están separa-

dos por una distancia b. Empecemos por asumir, para simplificar la explic-

ación, que ambas cámaras tienen caracteŕısticas ópticas equivalentes y que

los planos de visión son coplanarios (como se muestra en la figura 2.2). Un

sistema de visión estéreo es capaz de producir dos imágenes (Il y Ir) en el

mismo instante. Las dos cámaras se encuentran calibradas y las imágenes

capturadas son rectificadas para eliminar las deformaciones causadas por la

distorsión de las ópticas. Normalmente, se define como sistema de referen-

cia el centro de una de las cámaras. En nuestro caso, será el centro de la

imagen derecha (al cual llamamos imagen de referencia de la cámara).

Un punto en el espacio P = (X, Y, Z) se proyecta en dos puntos distin-

tos (p = (x, y) y p′ = (x′, y′)) en la misma ĺınea epipolar en cada imagen
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rectificada. A la distancia entre las proyecciones de ese punto en cada uno

de los planos de las cámaras se llama disparidad y el conjunto de todas

las disparidades entre los puntos de las dos imágenes es lo que constituye

el mapa de disparidad. Las disparidades solo se pueden calcular para los

puntos aparecen en ambas imágenes y además hay variedad en la textura.

Consecuentemente, es dif́ıcil calcularlo cuando hay oclusiones. Los puntos

en los que no se puede calcular la disparidad se denominan puntos sin cor-

relación.

Al ser conocidos los parámetros intŕınsecos del sistema de visión estéreo,

como por ejemplo la distancia focal (para nuestro sistema es 6mm), es pos-

ible reconstruir la estructura tridimensional que corresponde al mapa de

disparidad.

En la figura 2.3 se puede observar un ejemplo de una escena captada por

un sistema de visión estéreo. En la figura 2.3a tenemos la imagen izquierda

Il y en la figura 2.3b la imagen derecha Ir (que ha sido definida como imagen

de referencia). En la figura 2.3c tenemos la imagen de distancia Iz. En esta

imagen, los ṕıxeles con un tono más claro indican valores más bajos de

Z (y mayor disparidad) mientras que los ṕıxeles más oscuros representan

distancias mayores (y menor disparidad). Los ṕıxeles negros representan

los puntos sin correlación. El mapa de disparidad para este frame seŕıa una

imagen similar a la de la figura 2.3c. También es importante tener en cuenta

que la información de distancia obtenida de un par estéreo puede estar

afectada por errores t́ıpicos del estéreo producidos en las fases de calibración,

cuantización y correlación[MMN89][RA90]. Por tanto, los algoritmos que

utilizan información estéreo deben estar preparados para tratar de forma

adecuada estos errores.

La información de distancia (estéreo) se emplea para mejorar el algor-

itmo de seguimiento, y éste realmente se lleva a cabo en la imagen de refer-

encia, en un dominio de dos dimensiones. Se considera como la posición de

la persona el centro de su cara, que ha sido previamente detectado por un

detector de caras en la imagen de referencia. La posición de la persona se

escribe como (xp, yp) y se corresponde con un pixel concreto de la imagen

de referencia.

Modelo de color

La utilización de la información de color en el seguimiento de objetos es un

problema que ha sido bastante estudiado[Bir98][CR00][GK04][NKMG03].

Los métodos más frecuentemente utilizados consisten en usar un histo-
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grama para representar un modelo de color q̂. Ya que las componentes HS

del espacio de color HSV ([FvD82]) son relativamente invariables a cambios

de iluminación, se ha convertido en un enfoque popular en este dominio.

Un histograma de color q̂ está constituido por nhns columnas para la tonal-

idad y la saturación. Sin embargo, la información cromática no puede ser

considerada fiable cuando el valor de este componente es demasiado bajo

o demasiado alto. Aśı, estos ṕıxeles se eliminan a la hora de describir el

modelo. Debido al hecho de que estos ṕıxeles pueden contener información

importante, el histograma también tiene en cuenta nv columnas para cap-

turar la información de luminosidad. Por tanto, el histograma final estará

compuesto por m = nhns + nv columnas.

Se utiliza una región eĺıptica de la imagen para crear un modelo de

color en la cual hx y hy representan los ejes horizontal y vertical respectiva-

mente[Bir98][CR00][NKMG03]. Siendo pc el centro de la elipse y {pj}j=1,...,n

los ṕıxeles interiores de la misma. Se define también la función b : �2 →
1, ...,m que asocia al pixel pj el ı́ndice b(pj) de la columna del histograma

correspondiente al color u de ese pixel. Se puede entonces calcular la dis-

tribución de densidad de color q̂ para cada región eĺıptica como:

q̂(u) =
1

n

n∑
j=1

k[b(pj)− u], (B.1)

Donde el parámetro k es la función delta Kronecker. Se debe tener en

cuenta que el histograma final se normaliza, o sea,
∑m

u=1 q̂(u) = 1.

Después de calcular el modelo de color q̂, es posible compararlo con otro

modelo de color q̂′, utilizando una medida de similitud. Habitualmente se

utiliza el coeficiente de Bhattacharyya[ATR97][Kai67]. En el caso de una

distribución discreta, podemos expresarlo como se indica en la ecuación 2.2.

El resultado indica la similitud entre dos modelos de color en un rango que

vaŕıa entre [0, 1] y donde 1 significa que los dos modelos son idénticos y 0

indica que son completamente diferentes. Una caracteŕıstica importante de

ρ es que dos modelos de color, q̂ y q̂′ se pueden comparar aunque hayan sido

creados a partir de regiones con diferentes tamaños. En la parte izquierda

de la figura 2.4 podemos encontrar un ejemplo de un frame extráıdo de un

video y en la derecha una tabla en la que se comparan diferentes regiones

de interés y donde se indica el coeficiente de Bhattacharyya en cada caso.

ρ(q̂, q̂′) =
m∑

u=1

√
q̂(u)q̂′(u). (B.2)
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Aprendizaje Automático

En esta sección se presentan dos técnicas que se utilizan en el ámbito del

aprendizaje automático y que se usan más adelante. Dichas técnicas son:

Análisis de componentes principales (PCA) y Máquinas de soporte vectorial

(SVM).

Análisis de componentes principales

El Análisis de componentes principales (PCA)[HD89] es una técnica que

se usa para reducir la dimensionalidad de los datos pero conservando la

esencia fundamental de los mismos. Cuando se utiliza PCA, se transforma

una imagen en sus componentes principales, o sea, las componentes que

contienen los aspectos “más importantes” de la información. PCA permite

la identificación de patrones en los datos, de manera que permite resaltar

sus similitudes y sus diferencias. PCA también se utiliza para comprimir

información.

Una proyección PCA representa un conjunto de datos en términos de

vectores propios ortonormales de la matriz de covarianza de los datos. La

matriz de covarianza indica la correlación entre las diferentes variables en

un conjunto de datos. PCA detecta los vectores propios ortonormales de

la matriz de covarianza como base para el espacio de caracteŕısticas. Los

vectores propios pueden ser vistos como una “base natural” para un determ-

inado conjunto de datos multi-dimensional. Valores propios mayores en la

matriz de covarianza indican una correlación menor entre las caracteŕısticas

del conjunto de datos. Las proyecciones del PCA buscan las variables no

relacionadas.

A todos los conjuntos de datos se les puede extraer sus componentes

principales pero el PCA funciona mejor si los datos siguen una distribución

gaussiana. Cuando tenemos una gran cantidad de datos, el teorema del

ĺımite central nos permite asumir distribuciones gaussianas.

Empecemos por calcular la varianza de una variable x como:

σ2 =

∑n
i=1(xi − X̄)2

n
Luego, se calcula la varianza de dos variables x y y como:

cov(X, Y ) =

∑n
i=1(xi − X̄)(yi − Ȳ )

n
A partir de la covarianza, podemos observar como evolucionan dos vari-

ables una en función de la otra:
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• En el caso de que la covarianza entre dos variables sea positiva, si una

variable aumenta, la otra aumentará también.

• En el caso de que la varianza entre las dos variables sea negativa, si

una variable aumenta, la otra disminuye.

• En el caso de que la varianza entre las dos variables es cero, entonces

las dos variables son completamente independientes.

Para un conjunto de variables < X1, ..., Xn >, (por ejemplo, las ca-

racteŕısticas de un conjunto de datos) es posible construir la matriz que

representa la varianza entre cada par de variables Xi‘ y Xj donde i y j son

los ı́ndices del vector de caracteŕısticas.

cov(X) =

⎡
⎢⎢⎢⎣

var(X1) cov(X1, X2) · · · cov(X1, Xn)

cov(X2, X1) var(X2) · · · cov(X2, Xn)
...

...
. . .

...

cov(Xn, X1) cov(Xn, X2) · · · var(Xn)

⎤
⎥⎥⎥⎦

Para esta matriz, es posible observar que en la diagonal se representa sim-

plemente la varianza de una variable individual y que la matriz es simétrica,

lo que significa que cov(Xi, Xj) = cov(Xj, Xi).

Antes de utilizar el concepto de covarianza en PCA, hay un primer paso

que consiste en sustraer las medias X̄i de cada xi para que cada X̄i tenga

una media igual a cero. Al sustraer la media es posible reescribir la matriz

de covarianza como el siguiente producto:

Σ =
1

n
XXT

Luego, a través de la teoŕıa de descomposición, se puede factorizar la

matriz mencionada anteriormente en:

Σ = UΛUT

donde Λ = diag(λ1, · · · , λn) es la matriz diagonal de valores propios de

la matriz de covarianza ordenada del mayor al menor:

Λ =

⎡
⎢⎢⎢⎣

λ1 0 0 0

0 λ2 0 0

0 0
. . .

...

0 0 · · · λn

⎤
⎥⎥⎥⎦
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A continuación, las componentes principales son los vectores de UT. UT

representa la proyección de la matriz de peso W y la matriz de los datos

transformados S se puede obtener a partir de la matriz de datos originales

X como:

S = WX

Si no seleccionamos los vectores propios que corresponden a los valores

propios más bajos entonces cada s tendŕıa una dimensión más baja que su

x correspondiente. El hecho de descartar estos vectores propios puede ser

visto como la acción de descartar ruido en los datos.

Máquinas de soporte vectorial

Las máquinas de soporte vectorial (SVM) es una técnica útil para clasificar

datos. Aunque SVM se considera más fácil de usar en comparación con

las redes neuronales, normalmente las personas que no están familiarizadas

con este proceso no consiguen obtener resultados satisfactorios al princi-

pio. Además, hay dos ventajas principales de SVM con respecto a las redes

neuronales. En primer lugar, gran parte de los diferentes tipos de redes

neuronales pueden caer en mı́nimos locales mientras que la solución pro-

porcionada por SVM es única y global. En segundo lugar, la complejidad

computacional de SVM no depende de la dimensión de los datos de entrada,

lo que no sucede con las redes neuronales. Aunque los lectores no necesiten

entender la teoŕıa subyacente de las SVM, vamos a describir de forma breve

ciertos fundamentos para poder comprender mejor la herramienta utilizada.

En nuestro caso hemos aplicado una biblioteca que se encuentra dispon-

ible gratuitamente en internet [CL11] y la explicación que se muestra a

continuación se ha tomado de ese mismo recurso.

Una tarea de clasificación normalmente implica que antes se realice una

separación entre los datos de entrenamiento y los datos de prueba. Cada

ejemplo que pertenece a los datos de entrenamiento se clasifica en una clase

con unos determinados “atributos” (por ejemplo, las caracteŕısticas obser-

vadas). El objetivo de las SVM es producir un modelo (basado en los datos

de entrenamiento) que sea capaz de predecir la clase a la que pertenecen los

datos de prueba a partir de los atributos de esos mismos datos.

Dado un conjunto de entrenamiento de pares de instancias etiquetadas

(xi, yi), i = 1, ..., l donde xi ∈ Rn y yi ∈ {1,−1}l, aplicar SVM significa

obtener la solución al problema de optimización siguiente ([BGV92][CV95]):
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min
w,b,ξ

1
2
wTw + C

∑l
i=0 ξi

sujeto a yi(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0.

Aqúı, los vectores de entrenamiento xi se mapean a un espacio de grandes

dimensiones a través de la función φ. La SVM se encarga de encontrar un

h́ıper plano de separación con el máximo margen en este espacio de grandes

dimensiones. C > 0 es un parámetro de penalización del término de error.

Además, a K(xi, xj) ≡ φ(xi)
T φ(xj) se le llama la función núcleo. Aunque

haya nuevos núcleos que están siendo propuestos por los investigadores, los

cuatro siguientes son los más utilizados:

• lineal: K(xi, xj) = xT
i xj.

• polinomial: K(xi, xj) = (γxT
i xj + r)d, γ > 0.

• función de base radial (RBF): K(xi, xj) = exp(−γ‖xi − xj‖2), γ > 0.

• sigmoideo: K(xi, xj) = tanh(xT
i xj + r).

Lógica Difusa

El principal sistema de razonamiento utilizado en los diferentes trabajos

de esta tesis es la lógica difusa. A continuación presentaremos algunos

fundamentos de la lógica difusa, principalmente los que se han empleado

en dichos trabajos[Ful10][Kae]. Los lectores más interesados en profundizar

en cuestiones de lógica difusa pueden consultar referencias como [Zad75],

[Zad99], [DD96] y [YF94].

La lógica difusa fue concebida por Lofti Zadeh como una manera de pro-

cesar datos permitiendo una pertenencia parcial en vez de una pertenencia

binaria. Según él, las personas no necesitan información precisa y numérica

como entrada y, aun aśı, son capaces de realizar acciones de control alta-

mente adaptativas. Él créıa que la retroalimentación de los controladores

podŕıa ser programado de una manera tal que le permitiŕıa aceptar y pro-

cesar entradas ruidosas y/o imprecisas y, al hacerlo, podŕıan convertirse en

sistemas más eficaces y sencillos en su implementación.

Aśı, podemos definir la lógica difusa como una metodoloǵıa de control

orientada a la resolución de problemas que puede ser implementada en un

amplio rango de sistemas diferentes. Puede ser implementada a nivel del

hardware, de software o de ambos. La lógica difusa proporciona una manera

180



sencilla de llegar a una conclusión basada en información vaga, ambigua,

imprecisa o ruidosa. Un enfoque de control basado en lógica difusa, imita

la toma de decisiones por parte de las personas, pero de manera mucho más

rápida.

Entre los beneficios de utilizar la lógica difusa, hay algunos que nos

gustaŕıa resaltar:

• Se considera una técnica robusta que no necesita información precisa

y libre de ruido. Aún en el caso de un fallo en la entrada, el sistema

puede seguir “trabajando” y su salida es normalmente fluida, aunque

puedan existir diferentes tipos de entradas.

• Es bastante modular y fácilmente adaptable. De hecho, sus reglas

pueden ser cambiadas fácilmente y afinadas para ajustar el funcionami-

ento del sistema. Nuevos sensores se pueden incorporar fácilmente

mediante la definición de nuevas variables y reglas y/o adaptando las

existentes.

• Permite la utilización de un amplio rango de sensores ya que no se en-

cuentra limitada a solo algunos tipos de entradas de retroalimentación

o una o dos salidas de control. No es necesario medir o calcular el ratio

de cambio de los parámetros para que sea implementada. Es posible

utilizar sensores de bajo coste o bien sensores imprecisos, logrando un

sistema con complejidad y coste bajos.

• Se puede procesar un numero razonable de entradas (1-8 o más) y

varias salidas (1-4 o más). Sin embargo, la complexidad de la base

de reglas puede aumentar cuando se utilizan muchas entradas, aśı

que es aconsejable el distribuir diferentes tareas a diferentes contro-

ladores (utilizando, por ejemplo, un enfoque basado en sistemas di-

fusos jerárquicos (HFS)).

• También es posible modelar sistemas no-lineales dando lugar a la mod-

elización de sistemas de control que normalmente seŕıan considerados

como “no reproducibles” de forma automática.

Además, Lotfi Zadeh propuso el concepto de variables lingǘısticas o “di-

fusas”. Podemos verlas como palabras u objetos lingǘısticos y no números.

La entrada proveniente del sensor es un sustantivo (por ejemplo “tem-

peratura”, “desplazamiento”, “velocidad”, “flujo”, “presión”, etc). El er-

ror cometido puede ser visto de la misma manera. Las variables difusas
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son adjetivos que modifican la variable (por ejemplo “gran error positivo”,

“pequeño error positivo”, error “cero”, “pequeño error negativo”, y “gran

error negativo”). Para simplificar, podemos utilizar solamente las vari-

ables “positivo”, “cero”, y “negativo” para cada uno de los parámetros.

Variables adicionales tales como “muy grande” y “muy pequeño” también

podŕıan añadirse para extender la capacidad de respuesta a condiciones

excepcionales o bastante no lineales, pero no suelen ser necesarias en un

sistema básico.

La lógica difusa incorpora un enfoque sencillo, basado en reglas del tipo

IF X AND Y THEN Z para encontrar la solución a un problema de control

en vez de intentar la descripción del sistema en la forma clásica matemática.

El modelo de lógica difusa se fundamenta en información emṕırica, como

la experiencia de un operador. Por ejemplo, en el caso de control de tem-

peratura, en vez de tratarla de la forma “SP = 500F”, “T < 1000F”, o

“210C < TEMP < 220C”, se utilizan términos como “IF (proceso está de-

masiado fŕıo) AND (proceso se está enfriando) THEN (añadir calor al pro-

ceso)” o “IF (proceso está demasiado caliente) AND (proceso está calent-

ando rápidamente) THEN (enfriar proceso rápidamente)”.

La siguiente cuestión lógica es como aplicar las reglas. Esto nos lleva

al siguiente concepto, el de función de pertenencia. La función de perten-

encia es una representación gráfica de la magnitud de participación de una

variable difusa de cada entrada al sistema. Las reglas utilizan la función

de pertenencia como factor de ponderación en el cálculo de los conjuntos

difusos de salida. Cada entrada y cada salida tienen asociadas diferentes

funciones de pertenencia.

Los resultados producidos por la activación de cada regla deben inferirse

y luego combinarse antes de llevar a cabo el proceso de defuzificación, el cual

genera una salida numérica concreta.

A continuación, el sistema debe ser ajustado para producir los mejores

resultados. Esto puede hacerse cambiando los antecedentes o las conclu-

siones de las reglas, cambiando los centros de las funciones de pertenencia

de entrada y/o salida, o añadiendo otros niveles a las funciones de entrada

y/o salida como, por ejemplo, niveles de “error”, “error-dot”, y respuesta

de salida “bajos”, “medios”, y “altos”. Estos nuevos niveles generan nuevas

reglas y funciones de pertenencia que van a sobreponerse a las funciones

adyacentes formando más “rangos” de funciones y respuestas.
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Conclusiones y Trabajo Futuro

Esta tesis presenta diferentes trabajos llevados a cabo en los últimos años

y que están relacionados con diferentes áreas de las Ciencias de la Com-

putación como la Inteligencia Artificial, la Interacción entre Robots y Hu-

manos y la Visión por Computador. En particular, nuestros esfuerzos se han

enfocado en la problemática de la detección y seguimiento de personas que

consideramos un tema primordial y que debe ser resuelto antes de invest-

igar en técnicas de Interacción entre Robots y Humanos. A continuación,

hemos desarrollado algunas técnicas para la detección de diferentes tipos

de respuesta humana. En los distintos caṕıtulos de esta tesis ya se han

mostrado algunas conclusiones parciales. En este último caṕıtulo, el ob-

jetivo es presentar una visión en conjunto de todos los trabajos aśı como

las contribuciones globales de esta tesis. Como se comentó en el Resumen,

son dos las problemáticas abordadas con más detalle en esta memoria. La

primera relacionada con la detección y seguimiento de personas que está

descrita en el Caṕıtulo 3 y la segunda que trata el tema del reconocimi-

ento de interés en una interacción y la medida de ciertos tipos de respuesta

humana que están detallados en los Caṕıtulos 4 y 5.

Las principales aportaciones de esta tesis doctoral son las siguientes:

• El desarrollo de un algoritmo de seguimiento estéreo que utiliza una

medida de confianza. La medida de confianza se utiliza para modificar

la distribución de probabilidad de los pesos de las part́ıculas en el

algoritmo de filtro de part́ıculas. Esta propuesta es rápida, robusta y

además permite manejar la incertidumbre asociada a la información

de disparidad.

• El desarrollo de un algoritmo difuso de seguimiento estéreo. En esta

propuesta no sólo se trata la incertidumbre asociada a la disparidad

sino que también se considera la del resto de fuentes de información.

• Un nuevo sistema difuso que permite la detección visual de demandas

de interacción. Se calcula un nivel de interés en tiempo real usando

un enfoque basado en imágenes y Máquinas de soporte vectorial.

• La propuesta de un sistema difuso jerárquico para medir la respuesta

humana usando visión estéreo. El sistema difuso jerárquico es capaz

de tratar con la incertidumbre e imprecisión de las medidas en función

de la distancia a la que se encuentra la persona.
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En el Caṕıtulo 3, se han mostrado dos métodos de detección y seguimi-

ento de personas, uno basado en un enfoque probabiĺıstico (descrito en la

sección 3.1) y otro basado en un enfoque “posibiĺıstico” (sección 3.2). Am-

bos combinan diferentes elementos visuales y utilizan filtros de part́ıculas.

Ambos emplean el concepto de proyección de una persona que está formado

por dos elipses: una para la cabeza de la persona y otra para su pecho.

En el enfoque probabiĺıstico, las part́ıculas del filtro representan posibles

posiciones en 3D del modelo que son evaluadas después de ser proyectadas

en la imagen de la cámara. Este método integra información de color, pro-

fundidad y de gradiente de manera que es capaz de realizar una seguimiento

robusto. Como la información de profundidad no siempre puede ser obten-

ida debido a las situaciones de oclusión y de falta de textura, el método

probabiĺıstico trata este problema por medio de una medida de certeza que

indica el grado de confianza en la información de profundidad. La medida de

confianza se emplea para modificar la función de distribución probabiĺıstica

utilizada en el momento de evaluar las part́ıculas. Cuanta más información

de profundidad se puede utilizar para una determinada part́ıcula, mayor

será la contribución de la información de profundidad de esa part́ıcula y

viceversa. En el caso extremo en que no haya disparidad, el seguimiento

se basa solamente en la información de color y gradiente. El algoritmo

propuesto, no solo determina la posición 3D de la persona, sino también la

posición de su cabeza en la imagen de la cámara.

La validez de la propuesta se ha validado usando diversas secuencias de

videos con información de color y profundidad. En las secuencias aparecen

un número distinto de personas (1 a 4 personas) que interaccionan en una

sala. En esas secuencias, las personas ejecutan varios tipos de interacción:

desde andar a diferentes distancias, apretar las manos (saludar), cruzar sus

caminos, saltar, correr, abrazarse hasta cambiar rápidamente de posición

intentando confundir al sistema. Los errores de seguimiento se han calculado

para diferentes números de part́ıculas a fin de calcular el adecuado número

de part́ıculas que permite un buen equilibrio entre error de seguimiento y

tiempo de procesamiento. Los resultados experimentales muestran que el

método propuesto es capaz de determinar, en tiempo real, las posiciones

3D (de las personas) y 2D (de la cara en la imagen de la cámara) de una

persona que se está moviendo, a pesar de la presencia de otras personas.

Además, el método es capaz de resolver adecuadamente oclusiones parciales

y/o momentáneas.

El enfoque “posibiĺıstico” intenta resolver algunas situaciones que no han

sido tenidas en cuenta en el enfoque probabiĺıstico. En primer lugar, en la
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propuesta anterior, hay ciertos casos en que el color del background puede

ser confundido con el color de la persona que está siendo seguida. En esta

segunda propuesta, se tiene en cuenta la información de background y de

foreground, lo que permite evitar algunas situaciones confusas. En segundo

lugar, la propuesta probabiĺıstica no tiene en cuenta algunas situaciones de

oclusión que śı se tienen en cuenta en la propuesta ”posibiĺıstica”. En tercer

lugar, en la propuesta probabiĺıstica, existe solo una medida de confianza

basada en la información de disparidad. En la segunda propuesta, no solo

se tiene en cuenta la información de disparidad para calcular el nivel de

confianza, sino también la distancia a la que se encuentra la persona y

la posibilidad de estar ocluida o no. Se considera que, si la persona se

encuentra parcial o completamente ocluida, la confianza en la información

disponible de color y de disparidad disminuye.

Además de estas ventajas, se presenta un método más elaborado para

la detección de personas, con el objetivo de reducir al máximo el número

de falsos positivos. Asimismo, el error de tracking 2D (cabeza) es menor en

el segundo método.

Las ventajas comentadas están principalmente relacionadas con el aumento

de fuentes de información con respecto al primer método. Esto es posible

gracias a la utilización de la lógica difusa que es capaz de tratar gran can-

tidad de información de una manera sencilla. Aśı, el uso de lógica difusa en

la evaluación de cada part́ıcula tiene ciertas ventajas con respecto al enfoque

probabiĺıstico. En primer lugar, cuando se utiliza un modelo probabiĺıstico

para evaluar las part́ıculas estamos asumiendo que las variables siguen una

distribución probabiĺıstica. Para conseguir eso, la incertidumbre se modela

modificando una distribución probabiĺıstica a través de unos parámetros.

Estas suposiciones no siempre corresponden exactamente a la realidad y no

son fáciles de ser modeladas en forma probabiĺıstica. Sin embargo, la lógica

difusa permite alcanzar el mismo objetivo de una manera más flexible, sin

estar sujeta a las restricciones de un modelo probabiĺıstico. En segundo

lugar, la lógica difusa permite un incremento gradual de otras fuentes de in-

formación de manera sencilla. Al utilizar variables lingǘısticas y reglas para

expresar relaciones entre las diferentes fuentes de información, el sistema

se convierte en un sistema más comprensible y similar a la interpretación

humana del conocimiento.

Por otro lado, al utilizar más fuentes de información aparece el incon-

veniente de necesitar más tiempo de ejecución para obtener el resultado

final. Sin embargo, y aunque el tiempo de ejecución del segundo método es

superior al del primero, el segundo está preparado para tratar situaciones
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más complejas.

El segundo método ha sido comparado experimentalmente con otros

métodos de seguimiento bien conocidos en este campo. Los resultados

muestran que nuestro sistema ha logrado mantener el seguimiento de las

personas, en la imagen de referencia de la cámara, en gran parte de las

situaciones donde los otros métodos fallan. Se ha probado en situaciones

complejas que simulan la vida real, en las que personas se encontraban in-

teraccionando de manera libre y ocluyéndose, a veces, unas a otras. Se ha

comprobado experimentalmente que el segundo método es suficientemente

rápido en la detección y seguimiento de personas y, consecuentemente, ad-

ecuado para aplicaciones en tiempo real.

En el Caṕıtulo 4, se presenta un sistema capaz de estimar el interés de

las personas que se encuentran en el entorno del robot y también de detectar

determinados movimientos de brazos que indican una demanda de atención

o movimientos de la cabeza que indican concordancia o discordancia. El

método utiliza visión estereoscópica y estimación de la orientación de la

cabeza a través de SVM y lógica difusa. Mientras se sigue a una persona,

el sistema difuso calcula el grado de interés que tiene la persona en inter-

accionar con el robot. Este valor de interés se basa en la posición de la

persona con respecto al robot aśı como en la estimación de la atención que

esa persona está prestando al robot. Para calcular la atención, la orientación

de la cabeza es estimada en tiempo real. Este análisis se hace utilizando

un enfoque basado en visión y SVM. Gracias a la SVM, la detección de

la orientación de la cabeza se realiza con un gran porcentaje de éxito, e

independientemente de las caracteŕısticas morfológicas. El sistema difuso

empleado también ha sido capaz de detectar de manera precisa cuando la

persona se encontraba reclamando la atención del robot con los brazos, aśı

como ha logrado obtener buenos resultados en la detección de movimientos

espećıficos de la cara como los de concordancia y discordancia.

En el Caṕıtulo 5, se calcula la respuesta humana en un modo difer-

ente al Caṕıtulo 4. En este caso no se exige a las personas que cumplan

todas las condiciones anteriores al mismo tiempo, es decir, que se encuen-

tran más o menos cercanas al robot, más o menos centradas con respecto

a él y mirándolo siempre directamente. La idea es mejorar el análisis del

comportamiento humano, por medio de una medida de respuesta humana

basada en diferentes elementos visuales, que tienen mayor o menor import-

ancia de acuerdo con la distancia a la cual se encuentra la persona respecto

al robot. Estos elementos visuales son la atención que cada persona presta

al robot (orientación de la cabeza con respecto al robot), la oclusión (con-
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siderando que una persona intenta evitar los obstáculos entre el robot y ella

misma durante una interacción), ciertos tipos de movimientos con los brazos

(ya que el robot puede pedir a las personas que interaccionen agitando los

brazos) y la detección de la sonrisa (que debe transmitir una buena idea

del grado de satisfacción de las personas con respecto a ciertos mensajes

y acciones propuestos por el robot). La lógica difusa será, una vez más,

la herramienta utilizada para fusionar todas estas fuentes de información,

ya que permite un tratamiento fácil de la incertidumbre e imprecisión que

puede existir en la información obtenida a partir de los sensores. Se propone

un sistema difuso jerárquico de manera que un sistema difuso de alto nivel

trata las salidas de otros dos sistemas difusos de más bajo nivel, teniendo en

cuenta la distancia a la que se encuentra la persona respecto del robot. Cada

uno de los sistemas difusos de bajo nivel está especializado en la situación

de distancia cercana o lejana de la persona con respecto al robot. El sistema

difuso de alto nivel utiliza la salida de los sistemas difusos de bajo nivel en

función de la distancia de la persona de manera que la información visual

se utiliza de la forma más conveniente para medir la respuesta humana.

A partir de la salida del sistema difuso se proponen diferentes medidas de

la respuesta humana. Estas medidas son la respuesta humana instantánea

HR(P), la respuesta humana global GHR(P) y la media de HR(P). Al tomar

en cuenta valores instantáneos, globales y medios podemos analizar que

aspectos de la actividad propuesta por el robot se pueden mejorar. Por

ejemplo, si la retroalimentación obtenida por parte de los usuarios no es

satisfactorio el robot podŕıa cambiar su forma de comportarse durante la

actividad de interacción social. El sistema se ha probado en situaciones

que simulan la vida real, en las cuales se ha pedido a las personas que

participaban que se moviesen y actuaran de una manera natural. A pesar de

la gran cantidad de información analizada hemos observado que el algoritmo

tiene un buen rendimiento para ser utilizado en situaciones de la vida real,

permitiendo una interacción natural entre todas las personas que participan

en los experimentos. Además, el sistema difuso jerárquico calcula los valores

esperados de respuesta humana en casi la totalidad de los frames analizados.

Como conclusión, y como se indicó en el Resumen inicial, pensamos

que los trabajos presentados en esta tesis, que han sido implementados y

probados en condiciones de la vida real, contribuyen en diferentes aspectos

al desarrollo de este área de investigación.

En los diferentes sistemas difusos descritos en este trabajo las reglas y

las variables lingǘısticas se han definido de manera experimental. Como

trabajo futuro, se está estudiando la posibilidad de construir un sistema
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capaz de aprender y ajustar esos parámetros de forma automática. Otra

cuestión a tener en cuenta para trabajos futuros es el aprovechamiento de

la retroalimentación de los usuarios con respecto a las actividades propues-

tas por el robot para mejorar dichas actividades y/o la interacción que se

produce entre el robot y los usuarios. Por último, hay que tener en cuenta

que la modularidad del sistema permite la incorporación de otras fuentes

de información. En este sentido, se está considerando la incorporación de

sensores de sonido y de técnicas de reconocimiento de voz como posibles

mejoras del sistema en trabajos futuros.
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