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Chapter 1

Introducción (in spanish)

Este caṕıtulo presenta una breve reflexión personal sobre la presente tesis, ana-

lizando el pasado, presente y futuro del trabajo realizado, en lengua española, a

fin de cumplir con lo establecido en la normativa vigente de regulación de las

enseñanzas oficiales de Doctorado y del t́ıtulo de Doctor por la Universidad de

Granada aprobadas por Consejo de Gobierno de la Universidad de Granada en

su sesión de 2 de Mayo del 2012.

1.1 Motivación

Los Modelos Gráficos Probabiĺısticos son una herramienta de modelado amplia-

mente extendida por su versatilidad y potencia para razonar y tomar decisiones

en problemas que conllevan incertidumbre. Como herramienta de modelado per-

miten especificar relaciones complejas entre variables, aśı como incorporar la

propia información probabiĺıstica en el modelo. Desde un punto de vista com-

putacional, se pueden definir y aplicar sobre ellos algoritmos eficientes para la

propia creación de las estructuras, o aprendizaje, y para la toma de decisiones o

resolución de consultas, lo que denominamos inferencia. La efectividad y eficien-

cia con la que se realicen estas operaciones es motivo de estudio por parte de la

comunidad cient́ıfica, buscando siempre métodos más rápidos y que representen

mejor y más compactamente las distribuciones de probabilidad asociadas a los

problemas y algoritmos que devuelvan mejores soluciones y que lo hagan con un

menor coste computacional.
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1.2 Trabajo desarrollado

La forma de representar la información probabiĺıstica es un tema clave a la

hora de trabajar con estos modelos, ya que de la estructura de datos va a depen-

der en gran medida la eficiencia de los algoritmos que trabajen con ella. Además,

la estructura de datos utilizada debe ser lo suficientemente flexible para permitir

el modelado de relaciones complejas entre variables y de la manera más compacta

posible. Es común usar tablas de probabilidad para expresar esta información

probabiĺıstica, pero al tener que especificar un valor de probabilidad para cada

configuración de las variables involucradas, el tamaño de la representación crece

exponencialmente con el número de variables. Una solución ampliamente ex-

tendida es el uso de árboles de probabilidad, estructuras en forma de árbol que

se aprovechan de las independencias sensibles al contexto para compactar la re-

presentación de la información. En este contexto nació la idea que dio pie al

desarrollo de este trabajo, al analizar las debilidades de esta última estructura.

Los Árboles de Probabilidad Recursivos (RPTs) generalizan a los árboles de

probabilidad tradicionales, permitiendo expresar descomposiciones multiplicati-

vas dentro de la propia estructura, lo que permite modelar relaciones más com-

plejas de una manera más compacta. También da pie al desarrollo de algoritmos

de inferencia que se aprovechen de estas factorizaciones para mejorar la eficiencia

del proceso. Una cuestión fundamental al desarrollar una nueva estructura de

datos es definir una metodoloǵıa para poder construir la estructura a partir de

una distribución de probabilidad, lo que implica buscar los patrones representa-

bles mediante Árboles de Probabilidad Recursivos dentro de la distribución. Esto

implica diseñar métodos de aprendizaje que detecten independencias sensibles al

contexto y posibles factorizaciones en las relaciones entre variables.

1.2 Trabajo desarrollado

Esta tesis se ha dividido en cinco partes. La primera aporta una introducción al

problema junto con una revisión bibliográfica de los conceptos básicos necesarios

para enmarcar el trabajo. El cuerpo de la tesis son las tres partes siguientes,

la Parte II está dedicada a definir la estructura de los Árboles de Probabilidad

Recursivos, analizando su expresividad y detallando la manera de trabajar con

ellos mediante el análisis de la forma en que las operaciones básicas necesarias

4



1.3 Ĺıneas futuras

para la inferencia se llevan a cabo mediante esta forma de representación. En el

Caṕıtulo 4 se muestran varios resultados que confirman los beneficios en términos

de tiempo de computación y tamaño de almacenamiento al trabajar con RPTs,

comparándolos con árboles de probabilidad tradicionales.

La Parte III está centrada en Inferencia. En esta parte se estudian los métodos

de factorización clásicos de árboles de probabilidad, y se propone un nuevo método

que resuelve algunos de los problemas presentes en la literatura. Los RPTs de

manera natural permiten incorporar factorizaciones presentes en las distribu-

ciones de probabilidad y trabajar con ellas de manera eficiente. De esta manera,

el método de factorización propuesto se plantea como una herramienta para tra-

ducir potenciales en RPTs factorizados y aśı acelerar el proceso de inferencia. La

Parte IV de esta tesis propone varias soluciones al problema de aprender un RPT

a partir de una distribución de probabilidad, bien almacenada en otra estructura

de datos o bien representada con una base de datos. Los resultados obtenidos

con los métodos estudiados en los caṕıtulos señalados avalan los beneficios de los

RPTs cuando se trabaja con distribuciones de probabilidad que presentan pa-

trones como independencias sensibles al contexto, valores proporcionales y otros

tipos de factorizaciones. En el caso de que las distribuciones no puedan ser ex-

presadas de manera exacta, se consiguen RPTs que contienen aproximaciones

compactas de calidad.

La última parte, Parte V, aporta una reflexión general sobre el trabajo de-

sarrollado, enumera las publicaciones obtenidas y discute las numerosas ĺıneas de

trabajo futuro.

1.3 Ĺıneas futuras

En este trabajo se recogen algunas respuestas a tres preguntas fundamentales

que se pueden definir como tres ĺıneas de investigación que discurren en paralelo:

definición de la estructura, inferencia y aprendizaje. Las tres corrientes presen-

tan un amplio abanico de posibilidades para trabajos futuros. A continuación

pasamos a detallar algunas de las ideas que se plantean.
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1.3 Ĺıneas futuras

Definición de la estructura

Con respecto a la propia estructura de datos, planeamos ampliar su expresividad

mediante la incorporación de un nuevo tipo de nodo, el nodo Suma, que permita

expresar descomposiciones aditivas de manera sencilla y eficiente. Además pre-

tendemos modificar la estructura para trabajar en un espacio cont́ınuo. Hasta

ahora se ha trabajado con variables discretas, por lo que la incorporación y el

manejo de variables continuas es un tema que abre muchas posibilidades de in-

vestigación.

Inferencia

Se plantea seguir desarrollando la idea presentada en el Caṕıtulo 5, para aśı

diseñar algoritmos que incorporen la factorización rápida de potenciales en fases

intermedias de la inferencia, donde los propios potenciales adquieran dimensiones

demasiado grandes. También se plantea desarrollar nuevos métodos que trabajen

directamente sobre RPTs, teniendo en cuenta la naturaleza factorizada de los po-

tenciales representados. Otra ĺınea de investigación relacionada es el desarrollo de

algoritmos de inferencia que trabajen sobre RPTs que mezclen variables discretas

y continuas.

Aprendizaje

Aparte de diseñar nuevos algoritmos que aprendan la estructura, se plantea refinar

los algoritmos planteados para el aprendizaje a partir de datos presentados en el

Caṕıtulo 6, especialmente modificar el algoritmo basado en score and search

añadiendo nuevos operadores, modificando los actuales, añadiendo otros tipos de

factorizaciones y modificando la estrategia de búsqueda.

Aplicaciones

Por último, también consideramos como una ĺınea de investigación futura la apli-

cación práctica de los RPTs. Al tratarse de una estructura de datos que permite

representaciones muy compactas de las distribuciones de probabilidad, podŕıan
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1.3 Ĺıneas futuras

aplicarse en casos en los que el espacio de almacenamiento es un tema cŕıtico,

como pueden ser los dispositivos móviles.
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Chapter 2

Introduction

Probabilistic Graphical Models (PGMs) enable efficient representation of joint

distributions exploiting independencies among the variables. The independencies

are encoded by means of the d-separation criterion [1]. Therefore only explicit

dependencies will be represented and quantified. The values measuring the depen-

dencies can be stored using several data structures, being Conditional Probability

Tables (CPTs) the most common and straightforward. A CPT encoding a po-

tential defined over a set of variables can be seen as a grid with a cell for each

combination of values of these variables. This implies an exponential growth of

memory space requirements depending on the number of variables. Probability

Trees (PTs) [2; 3; 4] try to improve CPTs allowing context-specific independen-

cies and usually obtaining memory space savings as a consequence. Recursive

Probability Trees (RPTs) suppose another step in this direction and can be con-

sidered as a generalization of PTs. With this data structure it is possible to cover

the modeling capabilities of PTs and to represent proportionalities, multinets [5]

and mixtures of conditional distributions as well. Moreover, RPTs try to keep the

information as factorised as possible. These features are used during inference in

order to speed up the process.

2.1 Contributions

The main contribution of this thesis is the introduction of a new framework for

representing and managing probabilistic potentials. Recursive Probability Trees
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2.1 Contributions

aim at reflecting some patterns often present within probabilistic potentials, like

context specific independencies, proportional values and other types of multiplica-

tive factorisations. This representation is also compact, keeping the potentials

factorised while working with them. The full analysis of the structure and its

capabilities is given in Chapter 4.

Two main contributions are given in Chapter 5. The first is a new algorithm

for factorising probability distributions stored as probability trees (PTs). This

method runs in linear time with respect to the number of variables in the tree,

and is not dependent on the ordering of the variables, overcoming with this some

of the issues of classical approaches to the problem. The described method can

be easily incorporated when working with RPTs. The second contribution is

a measure called the factorisation degree, that provides a heuristic to rank the

variables in the domain of a probabilistic potential according to the accuracy of

the decompositions that they induce. The computation of such measure is fast

enough as to be included in probabilistic inference algorithms, where computing

time is a crucial issue.

In Chapter 6 we propose three algorithms for learning RPTs. The first is

an algorithm for learning Recursive Probability Trees from a probabilistic poten-

tial represented in any other data structure. The algorithm proposed follows a

greedy methodology, and search for factorisations and context specific indepen-

dencies within the original distribution to build a compact RPT. When an exact

representation of the original distribution is too large, the algorithm is able to

compute an accurate approximation.

The second learning algorithm is in fact a modification of the previous one, this

time aiming at learning the structure from a database. The general workflow of

the algorithm is preserved, but now the relation between the variables is measured

in terms of a Bayesian score, the Bayesian Dirichlet equivalent metric (BDe) [6].

Also, the normalisation of the different factors does not rely on a normalisation

constant, as the correspondent potentials are retrieved already normalised from

the database.

Finally, the third learning framework is based on a Search and Score approach,

where different local operators are defined, along with a specific search technique.

As the search space of RPTs is enormous, the methodology explained aims at

10



2.2 Overview

reducing it by limiting the possible neighbours to be explored at each step of the

search. This is done when defining the local operators, so by modifying them we

can explore different parts of the search space, issue that belongs to the proposed

future research lines.

2.2 Overview

This dissertation is arranged into five parts. Part I is a introductory section

composed of three chapters. Chapter 1 summarises the main conclusions achieved

with this work, and it has been written in Spanish to fulfil the requirements given

by the University of Granada related to the Doctoral theses that aim to obtain

the International mention. Chapter 2 provides an introduction to the topic and

explains the main contributions of the thesis. Chapter 3 provides the necessary

background to enshrine this work, along with the definition of the notation used

throughout the dissertation.

The secont part, Part II, only contains one chapter, Chapter 4. This chapter

is devoted to explain and analyse the structure and capabilities of Recursive

Probability Trees. Part III focuses on Inference, where Chapter 5 analyses the

factorisation of probabilistic potentials and its possible applications on RPTs.

Part IV is devoted to Learning. Chapter 6 addresses the problem of transforming

probabilistic potentials into RPTs, as well as dealing with the problem of learning

RPTs from data using two different approaches.

Finally, Part V contains one last chapter, Chapter 7. This chapter provides a

discussion of the main conclusions of the dissertation and states future research

lines. Also, a list of publications supporting the contributions of this thesis is

provided.
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Chapter 3

Background

3.1 Graphs

A graph G is a data structure composed of a set of nodes X = {X1, ..., Xn} and a

set of edges L = {l1, ..., lI}. Each edge connects a different pair of nodes from X,

and the specification of the edge will define its nature, and therefore, the nature

of the graph. An edge that connects two nodes Xi, Xj, can be directed Xi → Xj

or Xi ← Xj or undirected Xi − Xj. If all the edges in the graph are directed,

then the graph is directed. If all the edges are undirected, the graph is called

undirected as well. If within a graph there are directed and undirected edges, we

will say it is a partially directed graph. In some cases it is useful to disregard the

direction of the edges in a directed or partially directed graph, transforming it

into an undirected graph. In Fig. 3.1 (i) there is an example of a directed graph,

undirected graph (ii) and partially directed graph (iii). The definition of a graph

can be more general, allowing several edges to connect the same pair of nodes

or even allowing edges from one node to itself. However, for the scope of this

dissertation those cases will never be considered.

Whenever we have an edge (directed or undirected) that connects Xi and Xj,

we will say that Xi is a neighbour of Xj and vice versa. In Fig. 3.3 we see the set of

neighbours of X3 coloured in grey. The set of all the neighbours of a node is called

its neighbourhood. It is possible to travel from one node to another following the

edges that connect neighbours, if those edges exist. We define a path between

two nodes Xi and Xk as the set of nodes Xi, ..., Xk where for each pair Xi, Xi+1,

13



3.1 Graphs

X2 X3

X4

X1

X2 X3

X4

X1

X2 X3

X4

X1

(i) (ii) (iii)

Figure 3.1: Directed graph (i), undirected graph (ii) and partially directed graph

(iii).

exists an edge such as Xi → Xi+1 or Xi − Xi+1. We will say that Xi, ..., Xk form

a trail if each pair Xi, Xi+1 are connected with and edge, independently of its

direction. We will say a graph is connected when for each Xi, Xj, exists a trail

between them. Otherwise, the graph will be disconnected, and the parts of the

graph that remain connected will be called connected components of the graph.

Example 1 Consider the graph in Fig. 3.2 whose set of nodes is {X1, X2, X3,

X4, X5, X6, X7}. This graph is disconnected, as there are no trails that con-

nect the substets {X1,X2,X3,X4,X5} and {X6,X7}. These two sets with their

corresponding edges form the two connected components of this graph.

Example 2 The directed graph in Fig. 3.3 is a connected graph, as every node

is connected through an edge to the rest of the network. From X1 we can follow

a path to X5 or X6, going through X3. The set of nodes {X1,X3,X6,X4} form a

trail, as the edge between X6 and X4 goes in the reverse direction.

A cycle in a graph is a directed path {X1, ..., Xk} where X1 = Xk. We will

define an acyclic graph as a graph that contains no cycles. If this graph is directed,

then we will call it directed acyclic graph (DAG). This will be a key concept along

this dissertation as a DAG is the underlying graphical structure of a Bayesian

network.
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3.1 Graphs

X2 X3

X4

X1

X5

X6

X7

Figure 3.2: Disconnected graph.

X1 X2

X3 X4

X5 X6

Figure 3.3: Directed graph. The nodes in grey are the set of neighbours of X3.

We will also define a tree as a directed graph that has only one path between

each pair of nodes. From this definition we see that a tree is a connected graph,

but if any of its edges is removed, then the graph becomes disconnected. Again,

a tree does not contain cycles (it is a DAG), but if we add an edge to it, we

automatically introduce a cycle in it.

Example 3 The example in Fig. 3.3 corresponds to a tree, and we see how the

removal of any edge disconnects the graph, and the addition of an edge anywhere

in the graph creates a cycle. Every node in a tree can be seen as the root node of

the subtree rooted at that node.
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3.2 Causal networks and d-separation

3.2 Causal networks and d-separation

A causal network is a DAG that represents the relations of dependency between

elements in a given model. The nodes in the DAG represent the elements -from

now on denoted as variables 1- of the model, and the edges represent the causal

relations between them. Given this semantics, we will refer to the nodes in a

causal network as variables, and we will rename the edges as arcs. From now on,

when talking about the relations between a pair of variables Xi, Xj where there

is an arc Xi → Xj, we will say that Xi is a parent of Xj, and therefore Xj is a

child of Xi. We will say Xi is an ancestor of Xk if there is a path from Xi to

Xk, and so Xk is called a descendant of Xi. We will denote as πXi to the set of

parents of variable Xi in the model. For example, in Fig. 3.3, πX3 = {X1, X2}.
In a causal network, every variable represents a set of possible states within

the model. At one time point, every variable can be in only one state, and changes

in those states can lead to changes in the remaining variables. The knowledge

of the certainty of a variable is called evidence. Evidence, e, is an assignment of

values to a subset E of the domain’s variables. The evidence can be strong, if

it establishes the exact state of the variable that it refers, or soft, in other case.

When the state of a variable is known, that is to say we have strong evidence

about its state, then we call the variable instantiated. The way of how a change

of certainty in one variable may change the certainty for other variables is defined

by the arcs, following a set of rules that we describe in this section.

1A variable symbolizes a measurable attribute that usually corresponds to a defined entity

in the represented model. Variables can be discrete (taking values from a countable set of states)

or continuous. For the scope of this dissertation, when we refer to variables we will always refer

to discrete variables with a finite number of possible states, unless otherwise stated. We will

denote a variable as a capital letter, usually X, and we will use x when referring to a particular

state of X. The whole set of states for a given variable X will be denoted as ΩX , and we will

note a set of variables in boldface, for example X (therefore, ΩX will be the set of possible

combinations of states of the variables in X). If the set is indexed, we will include a subindex

to the boldface label denominating the set of indexes, for example XI = {X1, ..., XI}
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3.2 Causal networks and d-separation

3.2.1 Serial connections (head to tail)

A serial connection is represented in Fig. 3.4, where X1 influences X2, and X2

has an effect on X3. If we do not know anything about X2, a knowledge of X1

will influence our knowledge of X3 through X2, and vice versa.

If we have strong evidence about X2, the channel between X1 and X3 becomes

blocked, and they become independent, given X2. In this example, we say that

X1 and X3 are d-separated given X2, as there is only one path connecting them.

This concept of condicional independence can be generalised as follows:

Given three disjoint sets of variables X, Y and Z, we say that X and Y are

conditionally independent given Z (defined as I(X,Y|Z)) if P (x|z) = P (x|y, z)
for each possible value of x,y, z of X,Y,Z, such as P (x, y) > 0. Otherwise, we say

that X and Y are conditionally dependent given Z, and we write it as D(X,Y|Z).

X1 X2 X3

Figure 3.4: Serial connection (head to tail).

3.2.2 Diverging connections (tail to tail)

In a diverging connection such as the one presented in Fig. 3.5, the flow of in-

formation can travel among the children of X1 unless X1 is instantiated. That

is, all the children are d-separated given the parent, as there are no other path

between them. We say in this situation that the parent is the common cause of

all the children.

X1

X2 X3 X4

Figure 3.5: Diverging connection (tail to tail).
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3.2 Causal networks and d-separation

3.2.3 Converging connections (head to head)

This situation is illustrated in Fig. 3.6. In this case, every parent affects the child

X4. If we do not have any evidence over the model, all the parents are indepen-

dent: evidence about one of them cannot influence the state of the others through

their common child. However, if we have some evidence about the child, then the

information about one of the parents can give some information about the rest.

In other words, the parents become conditionally dependent given the child. This

information about the child can be direct evidence about it, or evidence about

any child of it. So if neither the child nor any of its descendants have received

evidence, the parents are d-separated. In this case, we say that the child is the

common effect of all the parents.

X4

X1 X2 X3

Figure 3.6: Converging connection (head to head).

3.2.4 d-separation

The preceding discussion explains all the possible ways of transmitting the evi-

dence among the variables in a causal model. In general, it is possible to deter-

mine if two variables are dependent given some evidence. In summary, the rules

of d-separation are the following:

Two variables Xi and Xj in a causal model are d-separated if for each path

between Xi and Xj exists a variable Xk such as:

• the connection is serial or diverging and Xk is instantiated, or,

• the connection is converging and neither Xk nor any of its descendant have

received evidence.

If Xi and Xj are not d-separated, then we say they are d-connected.
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3.3 Probabilistic graphical models

Example 4 For example, consider the DAG in Fig. 3.7. The variable X3 is

instantiated, and to denote this situation, the node is coloured in grey. In this

context, the flow of information between X1 and X6 is closed, as there is only

a serial connection between them, and X3 is instantiated. The same situation

happens between X5 and X6, there is a diverging connection and the flow of in-

formation is stopped by the instantiation of X3. And finally, if we consider the

two diverging connections present in this graph, we see that the flow of informa-

tion is open between X1 and X2 due to the instantiation of X3, but it is closed

between X3 and X4, as they remain independent as long as X6 does not receive

evidence.

X1 X2

X3 X4

X5 X6

Figure 3.7: Directed acyclic graph where X3 has received evidence.

3.3 Probabilistic graphical models

A probabilistic graphical model (PGM) is a group of three elements {V, P,G}
where V is a set of random variables with a joint probability distribution P (V)

and G is a graph that represents the interactions between the variables in the

model.

The probability distribution and the graph are related in the sense that all the

independencies between variables expressed in G due to the d-separation criterion

are reflected in the probability distribution P . However, it is possible that some

independencies present in P are not present in G. Formally, we will say that

I(X, Y |Z)G → I(X, Y |Z)P .
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3.4 Bayesian networks

The procedure of building a probabilistic graphical model for a set of variables

can be simplified by considering a factorisation of the underlying probability

distribution as a product of conditional probability distributions. To do so, it is

necessary to know the dependency relations between the variables in the model.

This means that the analysis of a probabilistic graphical model has two parts:

• Qualitative: the cause-effect relationships between the variables are repre-

sented using a graphical model.

• Quantitative: the dependencies are quantified through probability distribu-

tions.

There are several types of probabilistic graphical models. Without being

exhaustive and attending to the types of nodes in the model, we can have:

• PGMs that only contains nodes that represent variables:

– If G is an undirected graph: Markov network.

– If G is a DAG: Bayesian network.

– if G is a partially directed graph and has certain restrictions: chain

graphs.

• PGMs that contain variables and other types of nodes, as decision and

utility nodes:

– Markov decision models.

– Influence diagrams.

3.4 Bayesian networks

A Bayesian network is a set BN = {V,G,P} where G is a DAG where every

node is associated to one of the variables of the model, Xi ∈ V, i = 1, ..., n and

P = {P (X1|πX1 , ..., P (Xn|πXn)} is a set of conditioned probability distributions,

one for each variable given its set of parents. The set P defines an associated
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3.5 Inference in Bayesian networks

joint probability distribution through the factorisation (known as the chain rule

for Bayesian networks):

P (X) =
n∏
i=1

P (Xi|πXi). (3.1)

The advantages of explicitly representing a probability distribution over a

set of variables using a Bayesian network are many: simplify conditionalisation,

ability to plan decisions under uncertainty and capacity to explain the outcome

of stochastic processes.

• Building the network becomes easier. Either if we are filling the probability

values using a human expert’s knowledge or if we are using some kind of

automated learning algorithm, it is much easier to fill a set of smaller condi-

tional probability distributions P (Xi|πXi) than considering all the possible

cases of the joint distribution P (X1, ..., Xn) one by one.

• The size of the model decreases. If we consider the joint probability dis-

tribution P (X1, ..., Xn), we can see how the number of parameters grows

exponentially on the number of nodes in the network. However, if we use a

factorised representation, we see how for each conditional probability dis-

tribution P (Xi|πXi) the number of parameters only grows exponentially on

the number of parents.

• Inference can be carried out with local operations. Algorithms can compute

all the marginals and conditional probability distributions of P(X) without

computing the whole joint probability distribution.

3.5 Inference in Bayesian networks

One of the main tasks when working with probabilistic graphical models is belief

updating or probabilistic inference, that consists of the computation of the

posterior probability distribution for a set of query nodes given some evidence

over the rest of the network. Performing inference in Bayesian networks is a very

flexible process, as evidence can be entered about any node while beliefs in any
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3.5 Inference in Bayesian networks

other nodes are updated. If E is the set of variables instantiated by the evidence

e, the simplest question would be to know the probability of this evidence:

P (e) =
∑
Xi /∈E

P (X1, ..., Xn, e). (3.2)

However, in the context of Bayesian networks, the most common query will be

to compute the posterior probability of a variable (or a set of variables, usually the

unobserved, those variables not instantiated by the evidence) called variable(s) of

interest, given the evidence:

P (X|e) =
P (X, e)

P (e)
. (3.3)

Inference in Bayesian networks has been a productive field of study for more

than 20 years, leading to the development of many different algorithms. We dis-

tinguish between exact algorithms [7; 8; 9; 10; 11; 12; 13] -those algorithms

that compute the probabilities of the nodes without any other error than the

introduced by the computer- and approximate algorithms [2; 14; 15; 16; 17] -

algorithms that use different techniques to obtain approximate values of the prob-

abilities. In general, theoretically both types of algorithms are computationally

complex - NP-hard1 [18; 19]- In practice, the speed of the inference is determined

by many factors such as the topology of the network (how dense it is, among

others) and, as we will develop thorough this dissertation, the representation in

the computer of the probability values contained in the model.

3.5.1 Probabilistic potentials

We need to introduce a new concept that will be used from now on thorough the

whole dissertation. It usually happens, when working with probability distribu-

tions, that the results of local operations are not normalised. These unnormalised

1NP stands for “‘nondeterministic polynomial time”, a term going back to the roots of

complexity theory. A problem is said to be NP if we can find a nondeterministic Turing machine

that can solve the problem in a polynomial number of nondeterministic moves. That is to say,

its solution comes from a finite set of possibilities and it takes polynomial time to verify the

correctness of a candidate solution. NP-hard is a class of problems that are, informally, at least

as hard as the hardest problems in NP.
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3.5 Inference in Bayesian networks

probability distributions must be stored and handled during the inference. In-

formally, a potential [20] is a probability distribution that is not necessarily nor-

malised.

Formally, a potential φ is a real-valued function over a domain of finite vari-

ables X (denoted as dom(φ)):

φ : ΩX → R+
0 (3.4)

where R+
0 is the set of non-negative real numbers.

The size of a potential φ is the number of values needed to fully represent it.

If φ is defined over ΩX, its size will be denoted as |ΩX|.

Example 5 Consider the potential φ of three binary variables X = {X1, X2, X3}
represented in Fig. 3.8. In this case, |ΩX| = 8, as we need 8 values to fully

represent the potential.

X1 X2 X3 φ(X1, X2, X3)

0 0 0 0.2

0 0 1 0.5

0 1 0 0.7

0 1 1 0.7

1 0 0 0.3

1 0 1 0.5

1 1 0 0.3

1 1 1 0.3

Figure 3.8: Potential of three binary variables represented as a table.

3.5.1.1 Operations with potentials

There are three basic operations over potentials that are needed for performing

inference: the marginalisation of a potential over a set of variables, the combina-

tion or multiplication of potentials and the restriction of a potential to a given

configuration of its variables. Given a set of variables XJ, we will denominate

a configuration of XJ (denoted as xJ) to an instantiation of all or some of the

variables in XJ.
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3.5 Inference in Bayesian networks

Example 6 For example, in Fig. 3.8, all the possible configurations for the set

of binary variables {X1, X2, X3} are disclosed (the 8 rows of the table for the first

3 columns).

This representation where the full set of configurations and their correspond-

ing probability value are displayed in a tabular form is called probability table,

and it is the traditional and more straightforward way of representing a pro-

bability potential. If the potential is a conditional probability distribution, the

representation is called conditional probability table.

Marginalisation

The key operation that we are performing when computing the probability of a

subset of variables is that of marginalising out variables from a distribution. In

general, given a potential φ defined over ΩXI
and a subset J ⊂ I, with K = I−J,

we define the marginalisation of φ over the variables in XJ (or the elimination

of the variables with indexes in K) as a new potential φ↓XJ defined over the set

of variables XJ as:

φ↓XJ(XJ) =
∑
XK

φ(XJ,XK). (3.5)

Informally, to marginalise out a variable from a potential is to add the values

corresponding to the configurations in the potential that only differ in the state

of that variable, for each possible state it can reach. The result is a new potential

with a reduced dimension, as the variable marginalised out will not be part of it.

Example 7 An example of this is shown in Fig. 3.10, where we consider a po-

tential of three binary variables φ(X1, X2, X3), and the potential resulting after

marginalising out X1. The new potential is defined over the set {X2,X3} and

therefore its size is smaller than the original one, being necessary only 4 values

to fully define it.

A modification to this operation is the marginalisation by maximum, that

instead of adding the values for the configurations, it chooses the maximum pro-

bability value for each configuration and for each state of the variable. This is
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X1 X2 X3 φ(X1, X2, X3)

0 0 0 0.2

0 0 1 0.5

0 1 0 0.7

0 1 1 0.7

1 0 0 0.3

1 0 1 0.5

1 1 0 0.3

1 1 1 0.3

X2 X3

∑
X1

φ(X1, X2, X3)

0 0 0.2 + 0.3 = 0.5

0 1 0.5 + 0.5 = 1

1 0 0.7 + 0.3 = 1

1 1 0.7 + 0.3 = 1

Figure 3.9: Potential of three binary variables and the result of marginalising one

of them out.

useful when we are interested in obtaining the most probable explanation for a

given evidence of the model, whilst the marginalisation by addition is used for

probability propagation.

Combination

In general, if we have a set of r potentials φ1, ...,φr, defined over the sets

ΩXI1
, ...,ΩXIr

respectively, the combination of all of them will be a new poten-

tial defined over the set of variables with indexes in I =
⋃r
i=1 Ii given by the

expression:

φ(XI) =
r∏
i=1

φi(X
↓Ii
I ). (3.6)

The result of this operation is a new potential defined over the set of possible

states of the union of the variables of each individual multiplied potential. The

dynamics of the operation is simple: for each configuration of the new potential,

multiply the values of every individual potential that are consistent with the

configuration, and repeat for every configuration.

Example 8 This is illustrated in Fig. 3.10, where a potential of only one vari-

able, X1, is combined with a potential of two variables X2, X3 resulting a potential
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of three variables X1, X2, X3.

X1 φ(X1)

0 0.2

1 0.7

X2 X3 φ(X2, X3)

0 0 0.2

0 1 0.5

1 0 0.7

1 1 0.3

X1 X2 X3 φ(X1, X2, X3)

0 0 0 0.2 · 0.2 = 0.04

0 0 1 0.2 · 0.5 = 0.1

0 1 0 0.2 · 0.7 = 0.14

0 1 1 0.2 · 0.3 = 0.6

1 0 0 0.7 · 0.2 = 0.14

1 0 1 0.7 · 0.5 = 0.35

1 1 0 0.7 · 0.7 = 0.49

1 1 1 0.7 · 0.3 = 0.21

· =

Figure 3.10: Combination of two potentials.

Restriction

We define the restriction of a potential φ, defined over ΩXI
, to a configuration

xJ, where J ⊆ I, as a new potential φR(xJ) obtained by getting the values from

φ that are consistent with xJ.

Example 9 This operation is illustrated in the example in Fig. 3.11, where a

potential of three binary variables {X1, X2, X3} is restricted to the configuration

{X1 = 0}, where X1 takes its first value. The result is a potential defined over

the remaining variables, {X2, X3}, nevertheless, implicitly it is known that those

values correspond to the context of the restrictive configuration.
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X1 X2 X3 φ(X1, X2, X3)

0 0 0 0.2

0 0 1 0.5

0 1 0 0.7

0 1 1 0.7

1 0 0 0.3

1 0 1 0.5

1 1 0 0.3

1 1 1 0.3

X2 X3 φR(X1=0)(X2, X3)

0 0 0.2

0 1 0.5

1 0 0.7

1 1 0.7

Figure 3.11: Potential of three binary variables and the result of restricting it to

the configuration X1 = 0.

3.5.1.2 Normalisation of probabilistic potentials

A probabilistic potential can be turned into a probability distribution by making

its values add up to one. This process is called normalisation, and it is an essential

operation when working with probabilistic graphical models. The basic idea is to

divide every value in the potential by the total sum of all its values.

Definition 1 We define the sum of a potential φ, denoted as sumφ, as the ad-

dition of all the values in the potential.

sumφ =
∑
∀x∈X

φ(x). (3.7)

Definition 2 Therefore, the normalisation of a probabilistic potential φ, denoted

as normalise(φ), can be defined as the division of each and every value in the

potential by sumφ.

normalise(φ) =
φ(x)

sumφ

,∀x ∈ X. (3.8)

Example 10 Consider the potential φ in Fig. 3.12. We compute sumφ by ap-

plying Eq.(3.7), which gives us the value 3.5. According to Eq.(3.8), the next step
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of the algorithm is to go through all the configurations in φ, dividing every value

by sumφ, which gives us the potential φN , represented in Fig. 3.13.

X1 X2 X3 φ(X1, X2, X3)

0 0 0 0.175

0 0 1 0.525

0 1 0 0.28

0 1 1 0.07

1 0 0 0.35

1 0 1 0.7

1 1 0 1.05

1 1 1 0.35

Figure 3.12: Potential of three binary variables.

X1 X2 X3 φ(X1, X2, X3)

0 0 0 0.175/3.5 = 0.05

0 0 1 0.525/3.5 = 0.15

0 1 0 0.28/3.5 = 0.08

0 1 1 0.07/3.5 = 0.02

1 0 0 0.35/3.5 = 0.1

1 0 1 0.7/3.5 = 0.2

1 1 0 1.05/3.5 = 0.3

1 1 1 0.35/3.5 = 0.1

Figure 3.13: Result of normalising the potential in Fig. 3.12.

However, it may be the case that a potential φ represents a conditional pro-

bability distribution of the variables in Xc given the set of parents Xp. In this

case, the potential must add up to one for each configuration of the parents. To

normalise φ we have to independently normalise the potentials (using Eq. (3.8))
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resultant of restricting φ to each configuration of the set of parents Xp:

c normalise(φ) = normalise(φ(Xc)
R(xp)),∀xp ∈ Xp. (3.9)

Example 11 Consider the potential of three binary variables shown in Fig. 3.14.

Note that we use here a different representation for the conditional probability

table, as this display makes it easier grouping together the values of X1 given

the different configurations of the set of parents {X2, X3}. The potential in the

figure is an unnormalised representation of the conditional probability distribution

P (X1|X2, X3). To normalise it, we use Eq. (3.9), where we basically normalise

each column as if they were independent potentials of only one variable, in this

example, X1. Fig. 3.15 shows the normalised potential, where every column adds

up to 1.

X2, X3

X1 00 01 10 11

0 0.09 0.02 0.66 0.14

1 0.36 0.18 0.44 0.06

Figure 3.14: Potential representing an unnormalised conditional probability dis-

tribution.

X2, X3

X1 00 01 10 11

0 0.2 0.1 0.6 0.7

1 0.8 0.9 0.4 0.3

Figure 3.15: Result of normalising the potential in Fig. 3.14.

3.5.1.3 Factorisation of probabilistic potentials

When working with PGMs we seek an accurate representation of the probability

distributions involved in the models. Besides accuracy, we will be interested in
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compacting the information both to save storage space and to try to benefit the

inference.

The division of potentials can lead to storage savings, as we aim at represent-

ing potentials over several variables as a multiplicative factorisation of smaller

potentials. The inference in this case also may gain efficiency, as we can design

algorithms that take into account these factorisations to minimize the complexity

of the operations.

As discussed above, a probabilistic potential represented as a table specifies

the probability value associated to every possible configuration of the variables

in the potential, which means that a probability table that stores a potential φ

defined over a set of variables {X1, ..., Xn} will need |ΩX1| · ... · |ΩXn| values to

fully represent it. If we represent the potential as a combination of two smaller

potentials, the total number of values that we need for the representation would

be the addition of the sizes of the factors. The size of the factorisation can

be smaller than the size of the original potential, for example if we seek disjoint

factorisations, that would be those decompositions1 where the subsets of variables

of the factors do not share any variable among them.

Definition 3 A potential φ defined for a set of variables X is said to be factoris-

able with respect to φ1 and φ2 if:

φ(x) = φ1(xXI) · φ2(xXJ),∀x ∈ X such that X = I ∪ J.

Additionally, if we observe that I∩ J = ∅, we will say that φ is decomposable

with respect to φ1 and φ2.

Example 12 For example, consider the potential φ1 represented in Fig. 3.16.

This potential is defined over three binary variables X = {X1, X2, X3} and so,

the total number of values needed to be specified in the probability table are 23 = 8

values. We can decompose φ1 into the multiplication of two smaller potentials,

φ2 and φ3, as specified in Fig. 3.16. These two potentials are defined over two

disjoint subsets of X which makes the decomposition a smaller representation of

the original potential. Adding the number of parameters of each factor, the total

number of values needed to represent φ1 is 6.

1We will specifically denominate a factorisation as a decomposition if we know that the

domains of the factors are disjoint. Otherwise, we will use the general term.
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X1 X2 X3 φ1(X1, X2, X3)

0 0 0 0.02

0 0 1 0.04

0 1 0 0.08

0 1 1 0.06

1 0 0 0.08

1 0 1 0.16

1 1 0 0.32

1 1 1 0.24

X1 φ2(X1)

0 0.2

1 0.8

X2 X3 φ3(X2, X3)

0 0 0.1

0 1 0.2

1 0 0.4

1 1 0.3

·=

Figure 3.16: Decomposition of probabilistic potentials.

3.5.2 Exact inference algorithms

Performing exact inference over a Bayesian network consists of computing the

marginal distributions of each variable modifying the information of its neigh-

bours using exact computation. When the information in a node is modified, this

change affects its neighbours, and so on, making the message-passing process an

NP-complete1 problem [18].

There are some methods that preserve the original structure of the network,

being the most important of them the inference algorithm over polytrees2 of Judea

Pearl [21; 22]. The methods that change the structure of the network can be

divided into two categories: those based on the variable elimination technique

[23; 24; 25], and the algorithms that are based on making subgroups of nodes and

passing messages between them [10; 20; 26].

3.5.2.1 Variable elimination technique

This technique is based on successively removing variables from a Bayesian net-

work while maintaining its ability to answer queries of interest. Consider a

1NP-complete is a class of decision problems where each problem C is in NP and every

problem in NP is reducible to C in polynomial time.
2A polytree is a tree where the nodes can have more than one parent.
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Bayesian network defined over a set of variables X = {X1, ..., Xn}, and some

evidence e. The goal would be to obtain the posterior distribution of a variable

of interest, Xi, given the evidence. To do so, an ordering for removing the vari-

ables is defined, being Xi the last one. For each step of the algorithm, a variable

is removed and its information is incorporated to the simplified network. At the

end of the algorithm we obtain a potential over the variable of interest, and the

posterior probability that we were looking for is proportional to this potential.

The detailed process is defined in Algorithm 1, where we start from a Bayesian

network B = {G,P} defined over a set of variables X = X1, ..., Xn, being the

variable of interest Xi, and we have some evidence e. The first step is to integrate

the evidence in the network (line 4). To do so, every probability distribution in P

is restricted to the evidence. The next step would be to define an ordering of the

variables (line 5) such as the last variable is Xi. The search for the optimal node

elimination sequence is, in general, NP-hard, so we need to rely on heuristics to

solve it. The choice must be carefully taken because the ordering will critically

affect the efficiency of the method [27; 28; 29; 30]. The next step of the algorithm

would be to iterate over the variables, following the order established, combining

the potentials related to each one (lines 6 to 12). When the loop ends, we obtain

a list of potentials over exclusively Xi. These potentials are then combined to

obtain a single potential (line 13) that after normalising (line 14) becomes the

probability distribution of Xi given the evidence e.
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1 Variable Elimination((B),Xi,e)
Input: A BN (B) = {X,G,P} defined over a set of variables

X = {X1, ..., Xn}, the evidence e and a variable of interest Xi.
Output: P (Xi|e).

2 begin
3 Let L be a list of potentials with all the distributions in P, {φ1, ...,φn};
4 Integrate e;
5 Define an elimination ordering σ that contains all the variables but Xi;
6 foreach k = 1 until (n− 1) do
7 Xk ← σ(k);
8 Let F be the subset of potentials from L that are defined over Xk;
9 L = L− F;

10 φ′ =
∑
Xk

(
∏
φ∈F

φ);

11 L = L ∪ φ′;
12 end
13 Combine in φ all the potentials in L;
14 Normalise φ to obtain P (Xi|e);
15 return P (Xi|e);

16 end

Algorithm 1: Variable elimination algorithm

Example 13 Consider the Bayesian network detailed in Fig. 3.17. We want

to apply the Variable Elimination algorithm (Alg. 1) to compute the posterior

probability distribution of X3 given the evidence e = {X2 = 0}.
The first step would be to integrate the evidence (line 4 of Alg. 1), so we

reduce the complexity of the problem as we only take into account the values in the

potentials that are consistent with the configuration e = {X2 = 0}. After this step

we can eliminate X2 from the Bayesian network by multiplying the corresponding

potentials, obtaining the model in Fig. 3.18.

Now we only have X1 left to be removed from the network, so the next step

would be to combine both remaining potentials, as they both include X1 in their

domains. After the combination, we marginalise out X1 (line 10 of Alg. 1). The

result of this step is the posterior probability distribution of X3 given the evidence

e = {X2 = 0} as shown in Fig. 3.19.
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X1 X2

X3

X1, X2

X3 00 01 10 11

0 0.2 0.1 0.6 0.7

1 0.8 0.9 0.4 0.3

X1

0 0.2

1 0.8

X2

0 0.4

1 0.6

Figure 3.17: Bayesian network of three binary variables.

X1

X3

X1, {X2 = 0}
X3 00 01 10 11

0 0.2 ∗ 0.4 = 0.08 – 0.6 ∗ 0.4 = 0.24 –

1 0.8 ∗ 0.4 = 0.32 – 0.4 ∗ 0.4 = 1.6 –

X1

0 0.2

1 0.8

Figure 3.18: Intermediate step of the Variable Elimination process.

X3

0 0.52

1 0.48

Figure 3.19: Result of the Variable Elimination algorithm.
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3.5.2.2 Message passing technique

The algorithms that use this technique are also known as grouping methods, as

their underlying idea is to build an alternative representation of the graph where

each supernode contains a subset of the original nodes, capturing the local struc-

tures associated with the original graph, and then propagate over this structure,

where the computations will be local (dependent of a smaller group of variables).

This auxiliary structure is called join tree [10]. A join tree is a tree where each

node V is a subset of the variables in the network, and such that if a variable is in

two different nodes, V1 and V2, then it is also in every node in the path between V1

and V2. Every potential in the original Bayesian network (i.e. every conditional

distribution) is assigned to a node Vj containing the variables involved in the

conditional distribution. A potential constantly equal to 1 (unity potential) is

assigned to nodes which did not receive any conditional distribution. In this way,

attached to every node Vi there will be a potential φi defined over the set of

variables Vi and which is equal to the product of all the potentials assigned to it.

P (X1)

X1

P (X2)

X2

P (X3|X1, X2)X3

P (X4|X3)

X4

P (X5|X3)

X5

X1, X2, X3V1

φ1 = {P (X1), P (X2), P (X3|X1, X2)}

X3, X4 V2

φ2 = {P (X4|X3)}

X3, X5 V3

φ3 = {P (X5|X3)}

φ
V 1
→
V 2

�

φ
V
1 →
V
3

�

(i) (ii)

Figure 3.20: A Bayesian network (i) and a join tree (ii) associated with it. Pro-

bability propagation is carried out sending messages throughout the edges.

It is possible to keep the potentials assigned to a node as a list instead of multi-

plying them initially [11; 14] in what is called lazy propagation. This methodology
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tries to save computation effort by postponing the actual combinations of poten-

tials until the result is required. Figure 3.20 illustrates the process of probability

propagation: A join tree (ii) is constructed from a Bayesian network (i) and then

propagation is carried out by a flow of messages through the edges of the join

tree. Observe that, in this example, the potentials in the nodes are kept as a list.

A message from one node Vi to one of its neighbours, Vj is a potential defined

for the variables contained in Vi∩Vj, and is obtained as the result of removing from

the potentials attached to Vi all the variables not in Vj. A variable is removed by

multiplying the potentials containing it and then summing the variable out. This

is precisely the step in which the complexity of probability propagation arises, as

it happened in the Variable Elimination algorithm: The domain of the potential

resulting from the product above mentioned may become so large that a huge

amount of memory would be necessary to store it.

3.5.3 Approximate inference algorithms

The methodology explained above may become infeasible because of the complex-

ity of the networks, so an approximation is the tradeoff between computational

cost and accuracy of the results. The main algorithms developed for approxi-

mate inference in Bayesian networks can be classified into two main categories:

deterministic algorithms, those which obtain an approximation for P (Xi|e) that

is always the same for any execution of the algorithm given equal inputs; and

the category containing the algorithms based on simulation, also called Monte

Carlo algorithms. In general, a Monte Carlo algorithm generates a sample from

P (X|e), and then estimates P (Xk|e) as the relative frequency of the values of Xk

in the sample.

3.5.3.1 Deterministic algorithms

Deterministic algorithms can be classified into two subgroups: the algorithms

based on simplifying the model, and the search algorithms.

The algorithms in the first category simplify the model in order to perform

exact propagation afterwards, but now over a tractable version of the model.
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There are several approaches for the deterministic algorithms based on building

a simplification of the model:

• Replace by zero small probability values, also called annihilating small prob-

abilities [31].

• Remove arcs in the graph [32; 33]. The approach consists of deleting arcs

between variables that are almost independent in order to simplify the topol-

ogy of the network. They use the Kullback-Leibler divergence to quantify

the strength of the arcs. The Kullback-Leibler (KL) divergence is a non-

symmetric measure of the difference between two probability distributions

P and an approximation P’. For discrete probability distributions P and

P ′, the KL divergence of P ′ from P is defined to be:

DKL(P ||P ′) =
∑
i

log(
P (i)

P ′(i)
)P (i). (3.10)

• Remove variables (the localized partial evaluation algorithm [34]). This al-

gorithm consists of removing the variables that are too far from the variables

of interest. Its basic version uses the message passing scheme by Pearl.

• Reduce the cardinality of the conditional probability distributions, or state

space abstraction [35]. The algorithm can be used when the original vari-

ables were continuous and discretized, and it consists of propagating suc-

cessively using an increasing number of states in the discretized variables.

• Use alternative representations for the conditional probability distri-

butions, other than tables, where similar probabilities are merged. This

methodology can be based on rules [36; 37], or on tree-based structures like

probability trees [2; 14; 38]. This last option is the methodology followed

during the whole dissertation, where we present a generalisation of this

framework.

The second approach among the deterministic inference algorithms is to follow

the hypothesis that a relatively small fraction of the joint probability distribution

contains the majority of the probability mass. These algorithms look for the
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configurations with high probability and use them to obtain the approximations.

There are several examples:

• The search of the N configurations with higher probability [39].

• Search methods for high-probability configurations [40].

• Approximate search method using conflicts1 [41; 42; 43].

3.5.3.2 Simulation algorithms: Monte Carlo

As introduced at the beginning of this section, the algorithms based upon simula-

tion consist of generating a sample from P (X|e) and then estimating P (Xi|e) as

the relative frequency of Xi in the sample. So the process of stochastic simulation

of a Bayesian network can be described as follows: estimate P (Xi|e) by sampling

a large number of random configurations over all the noninstantiated variables

in the Bayesian network. The configurations that are inconsistent with e are

discarded, and if n is the total number of resulting cases, then P (Xi|e) ≈ n(Xi)
n

,

computed for each possible state of Xi.

We can distinguish two groups of Monte Carlo algorithms: those based on

Gibbs sampling [44; 45] and those based on importance sampling [16; 17; 23; 46;

47; 48; 49; 50].

• Gibbs sampling: this method differs from the general stochastic simulation

in the way the samples are generated. In Gibbs sampling, a sample is

generated by starting from a valid configuration (for instance, the result

of a sweep of stochastic simulation) and randomly changing the state of

the variables, following the topological order. In this algorithm there is no

instance discarding, but the issue is to choose a correct first instance.

• Importance sampling: the idea behind this methodology is that certain

values of the input variables in the simulation have more impact on the pa-

rameter being estimated than others, and so, the method try to emphasize

1In this context, a conflict is an assignment of a subset of variables that has a probability

value close to zero.
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this peculiarity by sampling more frequently those values, using a differ-

ent distribution. This introduced error is compensated by weighting the

simulation outputs.

Particular extensions of these methodologies are blocking Gibbs sampling [44]

and importance sampling based on approximate precomputation [49; 50]. In both

cases, the goal is to draw samples from a probability distribution that is extremely

difficult to manage because of its size.

3.5.3.3 Comparing approximate inference algorithms: Fertig and

Mann’s divergence

Further in this dissertation we will need to compare different approximate infer-

ence algorithms, and to do so we have chosen Fertig and Mann’s divergence [51].

The metric is defined as follows. For one variable X, the error is computed as

G(X) =

√√√√ 1

|ΩX |
∑
x∈ΩX

(P̂ (x|e)− P (x|e))2

P (x|e)(1− P (x|e))
, (3.11)

where P (x|e) is the exact posterior probability, P̂ (x|e) is the approximate value

and |ΩX | is the number of possible values of variable X. For a set of variables X,

the error is:

G(X) =

√∑
X∈X

G(X)2 . (3.12)

Fertig and Mann’s divergence is an appropriate measure for comparing ap-

proximate inference algorithms, as it takes into account the magnitude of the

exact value when evaluating the approximation. More precisely, it gives more

weight to errors made when estimating extreme probabilities (close to 0 or 1),

as it can be easily checked that the denominator in Eq. 3.11 is maximised for

P (x|e) = 0.5.
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3.6 Learning Bayesian networks

In this section we define the basic steps to build a Bayesian network, and we give

details on some of the most widely known algorithms. In general, when defining

a problem using a Bayesian network, there are three main points to take into

account:

1. Definition of the network variables and their values: we need to define all

the entities that interact in the situation we are modelling, that will become

the nodes in the DAG.

2. Definition of the network structure: at this step, we need to determine the

interactions between the variables, or in other words, the edges in the DAG.

3. Definition of the network’s conditional probability distributions: at this

point we have to specify all the probability values that fill the conditional

probability distributions defined by the relations between the variables,

specified in the previous step.

This process could be performed entirely by hand, however, even a mod-

estly sized network requires a skilled knowledge engineer spending a considerable

amount of time with one or more domain experts. This approach has several prob-

lems: in some domains, the amount of knowledge required to model the problem

is just too large, or the expert’s time is just too expensive. In other domains,

there are simply no experts that have enough understanding of the problem to

define even the more subtle relations. Also, some domains change over time, and

we cannot expect to have an available expert to redesign the whole system all

over again.

The usual situation is to have a database available with a record of several

instantiations of a set of variables altogether, so we can build the Bayesian net-

work from it, with or without the help of the expert1. This database can be

preprocessed in order to identify, for example, a subset of variables that is more

relevant for predicting than the whole set in order to obtain a smaller and more

1If we have an expert available, we can combine an automated learning process with the

incorporation of expert knowledge in order to increase the quality of the representation.
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accurate representation. In the preprocessing stage it is usually necessary as well

to take care of non valid or non existent values, that can exist in the database

due, for instance, to errors in the measurement equipment. After preprocessing

the database, we obtain the set of variables with their correspondent domains

and a clean set of values such that we can build a Bayesian network from it.

We differentiate two stages in the automated learning of Bayesian networks:

learning the structure of the network and learning the parameters. Both tasks

are dependent on each other, and usually they are performed iteratively. In the

following we give an explanation of both tasks and give examples of the most

widely known algorithms to perform such operations.

3.6.1 Structural learning

The task of learning the structure of the network can be performed using different

methodologies. Here we describe the two main ones: methods that use indepen-

dence tests to identify the relations between the variables, and methods that

search in the space of all possible networks trying to optimize a quality measure.

3.6.1.1 Independence tests

The algorithms that fall into this category try to detect the relationships between

the variables using independence tests. Generally, they start with the complete

graph: a graph that contains all the variables as its nodes and all and every one of

them are connected to each other, and afterwards some arcs are deleted according

to the result of independence tests.

A classic algorithm that follows this methodology is the PC algorithm [52].

The general idea behind this algorithm is to begin with the complete graph for

the model, and remove arcs according to the results of independence tests that

grow in complexity on each sweep of the algorithm: it first tests all the pairs

of variables, checking the conditional independence of level 0. After checking all

the pairs, it tests conditional independencies of level 1, which means whether

two variables are independent given a third one, that must be adjacent to either

one of the variables being tested. The algorithm keeps adding complexity to the

independence tests until reaching a certain level m.
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3.6.1.2 Score and search

This methodology has two main elements: on one hand it has a search technique

used to explore the space of candidate networks, and on the other hand there is

an evaluation measure or metric that each specific algorithm uses for evaluating

each candidate. This metric measures the degree of fitness between the graph

and the available data, and therefore the learning of an structure can be seen

as an optimization procedure where a candidate network with optimal fitness is

searched.

Metrics

A valid metric should be able to assign a score to all the candidate networks

in the domain so we can define an ordering with the goal of choosing the best

network. The metric should take into account how well the available data fits into

the candidate network, how well the network fits within the expert information

(in case that we have it) and finally, the metric should also take into account

the network complexity, so that in case that we had two networks that equally

fit the data, we would always prefer the less complex. Besides, some metrics

are score equivalent, which means that equivalent DAG models have the same

marginal likelihood [6; 53]. This is a desirable property for a good metric, along

with decomposability: it is preferable to be able to decompose the metric such

as small changes in the candidate network can be evaluated without having to

reevaluate the whole network.

• The K2 metric [6; 53; 54]. It is not score equivalent, but it is efficient and

obtains good results in practice. The quality of a graph G given the data

D is defined, according to the K2 metric, as:

K2(G|D) =
n∑
i=1

[
si∑
k=1

[
log

Γ(ri)

Γ(Nij + ri)
+

ri∑
j=1

log Γ(Nijk + 1)

]]
(3.13)

where:

– Γ is the Gamma function.
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– ri = |ΩXi|, the number of cases of variable Xi.

– xik is the k-th value of Xi.

– πij is the j-th value of πXi , the set of parents of Xi.

– si =
∏

xj∈πXi
rj = |πXi|, the number of cases of πXi .

– Nijk = n(xik|πij), the number of cases in the database consistent with

the given configuration of Xi and its parents.

– Nij =
∑ri

k=1Nijk.

• The Bayesian Information Criterion (BIC metric) [6; 55]. It is a likelihood

criterion penalized by the model complexity, measured as the number of

free parameters. It is defined as:

BIC(G|D) =
n∑
i=1

ri∑
j=1

si∑
k=1

Nijk log
Nijk

Nik

− 1

2
C(G) logN. (3.14)

where C(G) =
∑n

i=1(ri − 1)si is a complexity measure of the network and

N is the total number of cases in the database.

• The Bayesian Dirichlet equivalent (BDe) metric [6], which is based on the

concept of sets of likelihood equivalent network structures, where all mem-

bers in a set of equivalent networks are given the same score.

Search technique and search space

In general, we need to define a search space where we will look for possible

candidate networks to be evaluated. Examples of these search spaces are the DAG

space, the order space or the space of equivalence classes1. A set of operators is

defined to be able to travel from one candidate to the next in the defined search

space. The usual operators used when learning Bayesian networks are:

• The addition of a new arc in the network.

1The space of equivalence classes are graphs that represent the same (in)dependence rela-

tions.
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• The removal of an existing arc in the network.

• The reversal of an arc. This operator can be seen as a composition of the

removal of an arc and the addition of a new one that goes in the opposite

direction.

Once the search space and the operators to explore it are defined, the next

step is to choose a search technique. There are several classical techniques avail-

able, which are based in local search: hill climbing, tabu search and simulated

annealing, for instance. Another approach is to define an ordering of the vari-

ables and use it during the search. An example of this methodology is the K2

algorithm, that starts with the empty network 1 and adds arcs when the addition

produces an increment in the K2 metric.

3.6.2 Parametric learning

Once the structure of the network is defined, and so the set of parents of each

variable, we need to estimate the conditional probability distributions associated

to each node in the network that define the joint probability distribution of the

variables. Again, the probabilities could be elicited by one or more experts,

but this task can become infeasible when the networks are very large or the

relationships between variables are too subtle for the expert’s understanding.

There are several methods to automate the task of estimating the probabilities

from a database which are outlined below.

Maximum likelihood approach

This first approach is based on the likelihood principle, which favours those esti-

mates that have a maximal likelihood, that is, ones that maximize the probability

of observing the given data set. This is probably the most common approach,

where each probability is computed from the sample as the relative frequency of

1An empty network has only nodes and no arcs.
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the values. Let n(xi) be the number of times that the variable Xi takes the value

xi, then the computation of the estimator is defined as:

P (xi|πxi) =
n(xi,πxi)

n(πxi)
. (3.15)

This methodology has two main drawbacks: on one hand, the sample needs

to be long, and if a given configuration has not been observed, its probability

is estimated as zero (furthermore, Eq. 3.15 might not be even defined for some

configurations of the parents). On the other hand, this estimator tends to overfit

the data, leading to poor prediction power in models learned from small samples.

Laplace smoothing

Laplace smoothing [56] tries to overcome the problems of the maximum likelihood

approach, by redefining the estimator as:

P (xi|πxi) =
n(xi,πxi) + 1

n(πxi) + |ΩXi|
. (3.16)

Equation 3.16 is always defined, and has the following properties:

• If the sample is small, it is close to a uniform distribution. So if it is the case

that a given configuration of the parents has no observations, the estimator

corresponds exactly to a uniform distribution.

• If the sample is large enough, the estimator defined in Eq. 3.16 tends to

the value of the maximum likelihood one, as the values 1 and |ΩXi| are

insignificant compared to the frequencies.

3.7 Alternative representations of potentials

In this section we review some data structures to represent potentials. Along this

Chapter, we have used probability tables to illustrate the concept of potential and

the operations performed with them. This representation is exhaustive, which

means that we declare all the possible configurations of the variables in a given

potential, and specify the probability values associated to them. Therefore, the
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size of the representation can become very large as the number of variables in the

potential grows, and if we are representing a conditional probability distribution,

the size of the representation grows exponentially in the number of parents of the

distribution.

Also, the graphical structure of a Bayesian network can only capture inde-

pendence relations of the form I(X,Y|Z), that is, independencies holding for any

configuration of the variables in Z. However, we are often interested in indepen-

dencies that hold only in certain contexts. This situation is called context-specific

independency [57], and if we used a probability table to represent a distribution

with context-specific independencies within it, it would mean that the table would

store repeated probability values in several rows, depending on how precise the

context where the independence is defined is.

Example 14 For example, if we consider the potential fully defined in the left

part of Fig. 3.21, we see that there are many repeated values in the table. The full

potential can be defined with only four different values, as expressed in the right

part of Fig. 3.21. There, the context-specific independencies (for the contexts

{X1 = 0, X3 = 0} and {X1 = 1}) are emphasized. Note that we use reduced

configurations to express context-specific independencies, as the value for {X1 =

0, X3 = 0} is the same for {X1 = 0, X3 = 0, X2 = 0} and for {X1 = 0, X3 =

0, X2 = 1}. The same happens for the value of the configuration {X1 = 1} in

φ, we do not need to specify the states of X2 and X3 because the value of the

configuration is the same for each possible combination of the two of them.

In this Section we review some alternative representations for probabilistic

potentials that attempt to reduce the number of parameters used to define the

potentials involved in probabilistic graphical models, either taking advantage of

context-specific independencies present in the data, or reformulating the nature

of the model.

3.7.1 Probability Trees

Probability trees [17] have been used as a flexible data structure that enables

the specification of context-specific independencies [57] as well as using exact or
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X1 X2 X3 φ(X1, X2, X3)

0 0 0 0.1

0 0 1 0.8

0 1 0 0.1

0 1 1 0.2

1 0 0 0.3

1 0 1 0.3

1 1 0 0.3

1 1 1 0.3

φ(X1 = 0, X3 = 0) = 0.1

φ(X1 = 0, X2 = 0, X3 = 1) = 0.8

φ(X1 = 0, X2 = 1, X3 = 1) = 0.2

φ(X1 = 1) = 0.3

Figure 3.21: Potential of three binary variables with context-specific independen-

cies.

approximate representations of potentials. A probability tree PT is a directed

labelled1 tree, in which each internal node represents a variable and each leaf2

represents a non-negative real number (in this context, we will say that a node in

a probability tree is labelled either with a variable or with a probability value).

Each internal node has one outgoing edge for each state of the variable that labels

that node; each state labels one edge. The size of a tree PT, denoted by size(PT),

is defined as its number of leaves.

Formally, a probability tree PT on variables XI = {Xi|i ∈ I} represents

a potential φ : ΩXI
→ R+

0 if for each xI ∈ ΩXI
the value φ(xI) is the number

stored in the leaf node that is reached by starting from the root node and selecting

the child corresponding to coordinate xi for each internal node labelled Xi. A

subtree of PT is called a terminal tree if it contains only one node labelled with

a variable, and all the children are numbers (leaf nodes).

A probability tree is usually a more compact representation of a potential

1In general, a labelled graph is a graph whose edges have a label associated to it. In the case

of probability trees, the labels of the edges correspond to the states of the variable represented

by the source node.
2In a probability tree, there is only one node that has no parents, and it is called the root

node. At the same time, there can be several nodes that have no children. These nodes are

called leaves of the probability tree. A probability tree is generally traversed from root to leaves.
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X1 X2 X3 φ(X1, X2, X3)

0 0 0 0.2

0 0 1 0.5

0 1 0 0.7

0 1 1 0.7

1 0 0 0.3

1 0 1 0.5

1 1 0 0.3

1 1 1 0.3

X2

X3

X1

0.2

0

0.3

1

0

0.5

1

0

X1

0.7

0

0.3

1

1

X2

X3

0.25

0

0.5

1

0

X1

0.7

0

0.3

1

1

(i) (ii) (iii)

Figure 3.22: Potential φ(X1, X2, X3) (i), its representation as a probability tree

(ii) and its approximation after pruning several branches (those rounded with a

rectangular box) (iii).

than a table.

Example 15 This situation is illustrated in Fig. 3.22, which displays a potential

φ(X1, X2, X3) stored as a probability table (i) and its representation using a pro-

bability tree (ii). It can be seen that the values in the potential are independent

of X3 in the context {X2 = 1}. This context-specific independence is reflected in

the tree in Fig. 3.22 (ii): it contains the same information as the table, but only

requires five values rather than eight.

Furthermore, trees enable even more compact representations in exchange for

loss of accuracy. There are several ways of constructing and approximate tree [58].

One of the alternatives consists of adding nodes until an exact representation is

achieved or a maximum number of nodes is reached. Other alternative consists

of building the full tree (an exact representation of the potential) and prune

it afterwards. The pruning of a probability tree is a mechanism that consists

of removing certain leaves and replacing them, for instance, with the average

value, as shown in Fig. 3.22 (iii). Again, there are several alternatives to decide

when to prune a subtree, being the most straightforward to prune when the
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values on the leaves are too similar. We will denominate slight pruning when the

operation is only performed when the difference between the values is small. In

contrast, we are performing severe pruning when we prune subtrees whose leaves

are significantly different.

3.7.1.1 Operations over Probability Trees

The basic operations (combination, marginalisation and restriction ) in potentials

that were introduced in Section 3.5.1 can be performed directly on probability

trees [17].

Restriction

If PT is a probability tree on XI and XJ ⊆ XI , PTR(xJ ) (probability tree re-

stricted to the configuration xJ) denotes the restriction operation which consists

of returning the part of the tree which is consistent with the values of the config-

uration xJ ∈ ΩXJ
.

Example 16 For example, in Fig. 3.22 (ii), PTR(X2=0,X3=0) represents the ter-

minal tree enclosed by the lined square.

This operation is an important part of both combination and marginalisation

operations and is used for conditioning potentials to a given configuration.

Combination

The combination of two probability trees can be performed recursively using the

procedure explained in Algorithm 2. Given two probability trees PT1 and PT2,

the result of the combination of both is a probability tree PTc defined over a set of

variables that is the union of the sets of variables where PT1 and PT2 are defined,

respectively. The underlying idea is to restrict both trees to a configuration

of the variables in PTc until we reach a pair of values that are consistent with

the configuration, and then multiply those values. By doing this for each possible

configuration of the variables of PTc, we fill its leaves, making the new probability

tree the result of the combination of PT1 and PT2.
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1 combine(PT1,PT2)

Input: Two probability trees PT1 and PT2

Output: A probability tree PTc

2 begin

3 Let L1 and L2 be the labels of the root nodes of PT1 and PT2,

respectively.;

4 if L1 and L2 are numbers then

5 Make L1 · L2 label the root of PTc;

6 end

7 if L1 is a number and L2 is a variable then

8 Make L2 label the root of PTc;

9 foreach subtree PT′2 child of PT2 do

10 Make PT′1 = combine(PT1,PT′2) be a child of PTc.;

11 end

12 end

13 if L1 is a variable (Xk) then

14 Make Xk label the root of PTc;

15 foreach xk state of Xk do

16 Make PT′1 = combine(PT
R(xk)
1 ,PT

R(xk)
2 ) be a child of PTc.;

17 end

18 end

19 return PTc;

20 end

Algorithm 2: Combination of two probability trees

Example 17 Consider the two probability trees in Fig. 3.23. We want to apply

Alg. 2 to combine them into a single probability tree.

50



3.7 Alternative representations of potentials

X1

X2

0.2

0

0.6

1

0

X3

0.1

0

0.4

1

1

· X2

0.3

0

0.7

1

Figure 3.23: A probability tree PT1 defining a potential φ1 over the set of vari-

ables {X1, X2, X3} to be combined with a probability tree PT2 that represents a

potential φ2 over the variable X2.

As the root of the first probability tree is labelled by a variable, X1, the root of

the resultant probability tree will be labelled with X1 (lines 13 and 14 of Alg. 2).

For each state of the variable, we apply the algorithm recursively with both pro-

bability trees restricted to each context of X1, as shown in Fig. 3.24 (lines 15 to

17 of Alg. 2).
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Figure 3.24: Propagation of Alg. 2 to the children of X1.

Both parts of the tree are now solved independently. In the left part of the tree,

a new subtree rooted by variable X2 is created (lines 13 and 14 of Alg. 2), and

the recursive call ends by multiplying the numbers in the leaves (lines 4 to 6 of

Alg. 2). In the right part of the tree, the new subtree is rooted by variable X3, and

in this case every one of its children (in this example they are both numbers) are

combined with a subtree rooted by X2. This scenario corresponds to lines 7 to 12

of Alg. 2, where a subtree rooted by X2 is created, and is illustrated in Fig. 3.25.
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Figure 3.25: Intermediate step of Alg. 2.

The result of the operation is a new probability tree over the set of variables

{X1, X2, X3} as shown in Fig. 3.26.
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Figure 3.26: Probability tree resultant of applying Alg. 2 to combine the proba-

bility trees in Fig. 3.23.

Marginalisation

The procedure to marginalise out a variable from a probability tree is explained

in Algorithm 3. The idea is to traverse the tree until we find the variable to

marginalise out, then it is replaced by the addition of its children. The addition

of two probability trees is explained in Algorithm 4, where the methodology is

the same as in the general combination operation, but in the case of the addition,

when we reach two probability values we add them instead of multiplying them.

Both operations, marginalisation and addition of probability trees, are recursive.
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1 marginalise(PT,Xi)
Input: A probability tree PT and a variable Xm from the set of variables

where PT is defined.
Output: A probability tree PTm.

2 begin
3 Let L be the label of the root of PT;
4 if L is a number then
5 Make L · |ΩXm| label the root of PTm;
6 else
7 Let Xk be the variable corresponding to L;
8 if Xk == Xm then
9 Let PT1, ...,PTs be the children of PT;

10 Let PTm = PT1;
11 foreach child PTi of PT starting from i = 2 do
12 Make PTm = add(PTi,PTm) using Alg. 4;
13 end

14 else
15 Create PTm with Xk labelling its root;
16 foreach state xk of Xk do

17 Make PTh = marginalise(PTR(xk),Xi) be the next child of
PTm;

18 end

19 end

20 end
21 return PTm;

22 end

Algorithm 3: Marginalisation of a variable from a probability tree.
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1 add(PT1,PT2)
Input: Two probability trees PT1 and PT2.
Output: A probability tree PTa.

2 begin
3 Let L1 and L2 be the labels of the root nodes of PT1 and PT2,

respectively.;
4 if L1 and L2 are numbers then
5 Make L1 + L2 label the root of PTa;
6 end
7 if L1 is a number and L2 is a variable then
8 Make L2 label the root of PTa;
9 foreach subtree PT′2 child of PT2 do

10 Make PT′1 = add(PT1,PT′2) be a child of PTa.;
11 end

12 end
13 if L1 is a variable (Xk) then
14 Make Xk label the root of PTa;
15 foreach xk state of Xk do

16 Make PT′1 = add(PT
R(xk)
1 ,PT

R(xk)
2 ) be a child of PTa.;

17 end

18 end
19 return PTa;

20 end

Algorithm 4: Computation of the addition of two probability trees

Example 18 The methodology to add two probability trees is almost equivalent

with the combination of probability trees, as it can be seen in the following exam-

ple. Consider the two probability trees in Fig. 3.27. We want to apply Alg. 4 to

add them into a single probability tree.
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Figure 3.27: A probability tree PT1 defining a potential φ1 over the set of variables

{X1, X2, X3} to be added with a probability tree PT2 that represents a potential

φ2 over the variable X2.

As the root of the first probability tree is labelled by a variable, X1, the root of

the resultant probability tree will be labelled with X1 (lines 13 and 14 of Alg. 4).

For each state of the variable, we apply the algorithm recursively with both pro-

bability trees restricted to each context of X1, as shown in Fig. 3.28 (lines 15 to

17 of Alg. 4).
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Figure 3.28: Propagation of Alg. 4 to the children of X1.

Both parts of the tree are now solved independently. In the left part of the

tree, a new subtree rooted by variable X2 is created (lines 13 and 14 of Alg. 4),

and the recursive call ends by adding the numbers in the leaves (lines 4 to 6 of

Alg. 4). In the right part of the tree, the new subtree is rooted by variable X3,

and in this case every one of its children (in this example they are both numbers)

are added with a subtree rooted by X2. This scenario corresponds to lines 7 to 12

of Alg. 4, where a subtree rooted by X2 is created, and is illustrated in Fig. 3.29.
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Figure 3.29: Intermediate step of Alg. 4.

The result of the operation is a new probability tree over the set of variables

{X1, X2, X3} as shown in Fig. 3.30.
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Figure 3.30: Probability tree resultant of applying Alg. 4 to add the probability

trees in Fig. 3.27.

Example 19 Consider the probability tree over the set of variables {X1, X2, X3}
shown in Fig. 3.31. We want to use Alg. 3 to marginalise out variable X3, so

the result of the operation will be a probability tree defined over the reduced set of

variables {X1, X2}.
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Figure 3.31: A probability tree defining a potential φ over the set of variables

{X1, X2, X3}.

Algorithm 3 starts by analysing the root of the tree, that is a variable different

than the variable of interest X3. In this case, we build the root of the resultant

tree with variable X1, and then Alg. 3 is recursively called for every context of

the root (lines 15 to 19 of Alg. 3). Now, both the left and right parts of the tree

are computed separately. In the left part of the tree, we find a subtree rooted by a

variable different than X3, so we follow the same procedure. As its children are

all values, the algorithm multiplies them by the number of states of the variable

of interest (lines 4 and 5 of Alg. 3). In the right part of the tree, we find that

the root of the subtree is our variable of interest, so we apply Alg. 4 to add all its

children. The current state of the structure is shown in Fig. 3.32.
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Figure 3.32: Intermediate step of Alg. 3.

After solving both parts of the tree, the final result is the probability tree shown

in Fig. 3.33.
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Figure 3.33: Probability tree resultant of applying Alg. 3 to marginalise out the

variable X3 from the probability tree in Fig. 3.31.

3.7.1.2 Inference with Probability Trees

Traditional inference algorithms as those introduced in Section 3.5 can be mod-

ified to take advantage of the nature of probability trees, as it is the case of

the Variable Elimination algorithm [24; 25] explained in Section 3.5.2.1. Algo-

rithm 5 shows the general workflow of the Variable Elimination algorithm, that

is equivalent as the methodology explained earlier in this chapter, but adapted

to work with probability trees instead of general potentials. This basically means

that now the potentials are stored as probability trees, and when working with

them we will be applying the basic operations (i.e. combination, restriction and

marginalisation) specifically designed for probability trees, as explained in Sec-

tion 3.7.1.1.

Observe that Algorithm 5 is an exact inference algorithm, as it does not

apply any pruning over the probability trees that represent the distributions.

Algorithm Prune VE(B,E,e,α) (Alg. 6) is an extension of Alg. 5 that carries out

the approximation by pruning the probability trees corresponding to the initial

conditional distribution in the network. The pruning is controlled by parameter

α. Intuitively, this parameter indicates that sub-trees whose entropy is higher

than the entropy of the binary probability distribution {0.5− α, 0.5 + α} will be

replaced by a single value equal to the average of all the values in the subtree [17].

This approximation method based on tree pruning has been successfully used as

the fundamental of various approximate algorithms [2; 17].
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1 Variable Elimination(X,W ,E,e,P )
Input: The variables in the network (X), an observation E = e, the target

variable (W ) and a set of probability trees, P, over the variables in
X.

Output: The posterior distribution of W given E = e.
2 Let PTi, i = 1, . . . , k, be the probability trees in P .

3 T = {PTR(E=e)
i , i = 1, . . . , k}.

4 foreach U ∈ X \ E \ {W} do
5 TU = {PT ∈ T|U ∈ dom(PT)}.
6 Let gU be the product of the trees in TU .
7 Let rU be the result of marginalising out variable U from gU .
8 T = (T \TU) ∪ {rU}.
9 end

10 Let PTf be the product of the trees in T.
11 Normalise PTf in order to make it add up to 1.
12 return PTf .

Algorithm 5: Variable Elimination algorithm over probability trees.

1 Prune VE(B,E,e,α)
Input: A Bayesian network B and an observation E = e. A threshold α

for pruning the initial distributions.
Output: The posterior distribution of all the unobserved variables in the

network, given E = e.
2 Let X be the variables in B.
3 Let PT = {PTi, i = 1, . . . , n}, be the probability trees representing the

conditional distributions in B.
4 foreach PT ∈ PT do
5 Let PT′ be the result of pruning PT according to parameter α.
6 PT← (PT \ {PT}) ∪ {PT′}.
7 end
8 R = ∅.
9 foreach W ∈ X \ E do

10 PT ← Variable Elimination(X,W ,E,e,PT).
11 R← R ∪ {PT}.
12 end
13 return R.

Algorithm 6: Variable Elimination algorithm with tree pruning of the ini-

tial distributions.
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3.7.1.3 Proportional subtrees

We may also find within a probability tree that some subtrees are proportional.

In this case, we can factorise the tree into a product of smaller trees, where the

division may lead into an efficiency gain when performing inference.

Formally, given a probability tree PT defined over ΣX , let xc be a configuration

that defines a path from the root to a variable Xi in PT. We will say that PT is

proportional under Xi in the context xc if there is an x0 ∈ ΣX such as for each

xi ∈ ΣX ,∃αi > 0 such as:

PTR(xc,xi) = αi · PTR(xc,x0).
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Figure 3.34: Probability tree with proportionalities and context-specific indepen-

dencies.
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Figure 3.35: Factorisation of the tree in Fig. 3.34 as a product of smaller proba-

bility trees.
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Example 20 For example, the probability tree in Fig. 3.34 shows on one hand

that the represented potential has some context-specific independencies, as for

X1 = 1, the value of the potential is independent of the value of X3. On the

other hand, if we check the context X1 = 0, we see that the values for X3 are

proportional for the different states of X2, being the proportionality factors (1, 2, 4)

for each state of X2, sequentially. This probability tree can be divided into a

product of two smaller probability trees, as shown in Fig. 3.35. As it can be

seen in the figure, both factors together are smaller than the original probability

tree, with the advantage that not all the variables are in both factors, and so the

inference can benefit from this scenario to gain efficiency.

3.7.2 Binary Probability Trees

A binary probability tree BT [59] is similar to a probability tree in the sense that

it is also a directed labelled tree, where each internal node is labelled with a

variable, and each leaf is labelled with a non-negative real number. It also allows

a potential for a set of variables XI to be represented. The main differences with

respect to a probability tree are that for a binary probability tree each internal

node has always two outgoing arcs and a variable can appear more than once

labelling the nodes in the path from the root to a leaf node. Another difference

is that, for an internal node labelled with Xi, the outgoing arcs can generally be

labelled with more than one state of the domain of Xi, ΩXi .

At a given node t of BT, labelled with variable Xi, we denote with Ωt
Xi

,

Ωt
Xi
⊆ ΩXi , the set of available states of Xi at node t. In general, this set is a

proper subset of ΩXi . The available states of Xi at node t will be distributed

between two subsets, in order to label its two outgoing arcs. We denote with

Llb(t) and Lrb(t) the labels (two subsets of Ωt
Xi

) of the left and right branches of t.

We denote with tl and tr the two children of t.

Example 21 For example, Fig. 3.36 (ii) shows a probability tree for the table in

(i), and its equivalent as a binary probability tree is shown in (iii). In this last

figure, the root is labelled with variable X1. The domain of X1, ΩX1, is the set

of states {0, 1, 2}. At root node we have ΩX1 = {0, 1, 2}. That is, the available

states of X1 at the root node coincides with its domain. The left branch of the
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Figure 3.36: Probability distribution P (X1|X2) as a table, as a probability tree

and as binary probability tree

root is labelled with {0} and the right branch with {1, 2}. If we traverse the tree

following the right path, we reach a node also labelled with X1 but this time the set

of states is ΩX1 = {1, 2}. If we keep going down the tree, the nodes labelled with

X2 divide their states as well into two groups: Ωleft
X2

= {0, 1} and Ωright
X1

= {2}. It

can be seen that the binary probability tree contains only five leaves, whereas the

probability tree contains seven.

Another difference with probability trees is that the labelling LPt of a path

from the root to a descendant node t now determines an extended configuration

AXt
I

for the variables in Xt
I ,X

t
I ⊆ XI , rather than a standard configuration xt.

This new concept is required in binary probability trees in order to express that

a variable Xi in XI belongs to a subset of ΩXi , instead of stating that Xi = xi.

Extended configurations will be denoted with A or AXI
. Thus, an extended

configuration AXI
defines a set of configurations SAXI

for XI , which is obtained

with the Cartesian product of the subsets of states in AXI
.

Example 22 For example, an extended configuration for the set of variables

{A,B} could be {{a3}, {b1, b2}}. This means that A is a3 and B can be b1 or

b2. Therefore, it determines the set of configurations {{a3, b1}, {a3, b2}}.

Example 23 For example, the extended configuration {X1 = {1, 2}, X2 = {2}}
corresponds to the labelling of the path from the root to the rightmost node in

Fig. 3.36 (iii), corresponding to the probability value 0.5.

62



3.7 Alternative representations of potentials

At denotes the associated extended configuration for node t.

3.7.3 Canonical models

Causal interaction models, called canonical models [22], were developed in order

to simplify both the construction of Bayesian networks and probabilistic inference,

as they reduce the number of parameters to be acquired, and so the size of the

CPTs in the model. The most famous example is the noisy-OR model, where

each cause Xi acts independently of the other causes to produce the effect Y .

For each cause Xi, exists an inhibitory mechanism that can prevent the cause to

produce the effect with a certain probability. A noisy-OR gate can be decomposed

as shown in Fig. 3.37. This model requires only one parameter per parent to fully

define the distribution.

X1 Xn

Z1 Zn

Y

...

...

Figure 3.37: Noisy-OR gate for n causes.

This model has been extended in many ways:

• The noisy-MAX model [60] is a generalisation for graded variables1 of the

noisy-OR gate.

• The noisy-AND [61] differs from the noisy-OR gate in that the inhibitory

mechanism for a single condition can make Y be false even if the other

conditions are satisfied.

1A graded variable X can be either absent or present with δX degrees of intensity.
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• The noisy-MIN model [62] is a generalization for graded variables of the

noisy-AND gate.

• The noisy-ADD model, also known as noisy-addition [63], assumes that the

effect of causes on the symptom is the addition of the effects caused by each

cause independently.

• The recursive noisy-OR (RNOR) model [64], instead of allowing only pro-

bability parameters of the effect given each single-cause as the input, allows

probability parameters of the effect given subsets of causes.

• NIN-AND trees, that stands for non-impeding noisy-AND trees [65], is

a generalization of all the previous models, in the sense that can repre-

sent both reinforcement and undermining1 in a recursive mixture, allowing

multi-cause input as well.

1When multiple causes are present, they may reinforce each other, that is, the more causes

are active, the more likely the effect is to occur. Alternatively, multiple causes may as well

undermine each other, making the effect less likely when more causes are present. This last

interaction can only be modelled by NIN-AND trees among the causal models presented here.
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Chapter 4

Recursive Probability Trees

Recursive Probability Trees (RPTs) are a data structure that can be used for

representing several types of potentials involved in Probabilistic Graphical Models

(PGMs). The RPT structure improves the modelling capabilities of previous

structures (like probability trees (PTs) or conditional probability tables (CPTs)).

These capabilities can be exploited in order to gain savings in memory space

and/or computation time during inference. This chapter describes the modelling

capabilities of RPTs as well as how the basic operations required for making

inference on Probabilistic Graphical Models operate on them. The performance

of the inference process with RPTs is examined with some experiments using the

Variable Elimination algorithm for Bayesian networks.

4.1 Motivation

The design of this data structure was directed to take advantage of different pat-

terns that are present within probabilistic potentials, in order to build smaller

representations of the probability distributions and speed up the inference pro-

cess. In Chapter 3.7 we discussed different representations of probabilistic po-

tentials, emphasizing the benefits of using tree-based structures (like probability

trees) to represent potentials, as these structures allow the capture of patterns

like context-specific independencies that help compact the representation. Also,

it is easy to reduce the size of these structures by representing an approximation
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of the distribution, strategy that is useful when the size of the potentials makes

them unmanageable.

The problem is that frequently potentials present different patterns beyond

context-specific independencies like proportionalities, as explained in Chapter 3,

that are difficult to represent with existent data structures. Furthermore, as prob-

abilistic graphical models develop, we find ourselves in the need of representing

complex situations like sets of independencies that change for different contexts of

subsets of variables (Bayesian multinets [5]), or probability distributions that are

mixtures of smaller conditional distributions. Recursive Probability Trees are a

tool conceived to be able to efficiently represent different types of patterns in the

local structure of PGMs. Moreover, the basic operations to manage probabilistic

potentials, as introduced in Chapter 3.5.1, are optimized to take advantage of the

compacted representations in order to save computational effort.

4.2 Recursive Probability Trees

The chosen data structure to hold the potentials in PGMs has a direct impact on

the performance of inference algorithms. The magnitude of this effect will depend

on the probability distribution being represented and on the ability of the data

structure to capture as many patterns present in the distribution as possible.

We discussed in Chapter 3.7 some alternatives to potential representation other

than probability tables, emphasizing the capabilities of probability trees to obtain

(exact or approximate) compacted representations.

In this Chapter we present the Recursive Probability Tree (RPT) as a gen-

eralization of probability trees. RPTs are developed with the aim of enhancing

PTs’ flexibility and so they are able to represent different kinds of patterns that

so far were out of the scope of probability trees.

RPTs as a generalization of PTs

An RPT RT is an extension of a PT, and so it is a directed tree, to be traversed

from root to leaves, where the nodes (both inner nodes and leaves) play different

roles depending on their nature. In the simplest case, an RPT is equivalent to a
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4.2 Recursive Probability Trees

PT, where the inner nodes represent variables, and the leaf nodes are labelled by

numbers. In the context of RPTs, we will call this type of inner nodes as Split

nodes and this kind of leaves as Value nodes.

X1

X2

v1

0

v2

1

0

X3

v3

0

v4

1

1Split nodes

Value nodes

Figure 4.1: An RPT with only Split and Value nodes.

In Fig. 4.1 we can see an RPT for a potential of three binary variables. The

three inner nodes are Split nodes, and they are labelled with the name of each

variable. For each Split node, there are as many outgoing arcs as states the

variable has, and each arc is labelled with the identifier of the correspondent

state. Each children of a Split node is an RPT that encodes the corresponding

potential to the context defined by the parent. In the leaves we have four Value

nodes that are labelled with a single real number each.

In this example the RPT has the same shape as a PT and in general we can

state that every potential that can be represented using a probability tree can be

represented as an RPT of, at least, the same size as the original probability tree.

This implies that RPTs can capture at least the same patterns as PTs do, like

context-specific independencies.

Example 24 In Fig. 4.1 we can check that the RPT is representing a potential

with context-specific independecies, as in the example it holds that the potential

is independent of X3 in the context {X1 = 0}, and also it is independent of X2

in the context {X1 = 1}.

For a formal definition, consider an RPT RT with dom(RT) = XI. A Split

node is labelled with a variable Xi ∈ XI, and it has outgoing arcs for each

value xi ∈ ΩXi . Its children will be new RPTs encoding potentials defined over

XJ ⊂ XI. Let φ be the full potential represented by RT, and φi be the potential

corresponding to the child for Xi = xi then φ(xJ, xi) = φi(xJ).

69



4.2 Recursive Probability Trees

Example 25 In the example presented in Fig. 4.1, we have a potential φ with

dom(φ) = {X1, X2, X3}. The root of the RPT in the figure is a Split node labelled

by variable X1, and as it is a binary variable, it has two outgoing arcs, labelled

with each state that the variable can present: 0 and 1. Following the path where

X1 = 0, the children is an RPT that represents a potential φ1 defined over the

subset of variables XJ = {X2, X3} where XJ ⊂ dom(φ). The left part of the RPT

in Fig. 4.1 corresponds then to φ(xJ, X1 = 0) that is equivalent to saying φi(xJ).

In an RPT RT we have to distinguish between its theoretical domain, that is

the variables for which the tree is defined (dom(RT)) and the variables explicitly

appearing in the nodes of the tree, which will be denoted as dom∗(RT). In general,

we will have that dom∗(RT) ⊆ dom(RT).

If in an RPT RT the variables in dom(RT) are not equal to the explicit

variables dom∗(RT), it will be assumed that the potential represented by the

RPT is the potential defined on the variables dom∗(RT) combined with an implicit

potential defined for the variables dom(RT) \ dom∗(RT) being identically equal

to 1, that is a potential with a value of 1 associated to each possible configuration

of the variables in dom(RT) \ dom∗(RT).

This distinction will be relevant when implementing operations with RPTs,

as the fact that dom(RT) 6= dom∗(RT) means that the potential represented with

RT is independent on the variables in dom(RT) \ dom∗(RT) and sometimes this

information can be relevant.

Example 26 For example, as we mentioned before, in Fig. 4.1 the RPT rooted

with a Split node of X2 corresponds to a potential φ1 with dom(φ1) = {X2, X3}
and dom ∗ (φ1) = {X2}.

Factorisations with RPTs

In Chapter 3.7.1.3 we discussed proportionalities, a pattern usually present within

probability distributions. Using probability trees, we saw how the representation

of proportionalities implied the storage of a list of smaller probability trees that,

when combined, represented the original potential. Besides the problems of hav-

ing to handle the lists specifically when incorporating this kind of divisions in
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4.2 Recursive Probability Trees

algorithms that work with probability trees, sometimes it is impossible to reduce

the size of the factors in the factorisation. Consider the potential represented in

Fig. 4.2 as a probability tree. This potential presents proportionalities, as the

branch correspondent to the context {X1 = 0, X2 = 1} is twice the branch corre-

spondent to the context {X1 = 0, X2 = 0}. However, the branch corresponding

to the context {X1 = 0, X2 = 2} does not present any proportional factor with

respect to its siblings. If we factorise it using probability trees, we are not able

to lower the complexity of both factors, as seen in Fig. 4.3 where we still have a

factor with three variables, and furthermore, we need to increase the number of

values to represent the potential to ten, when the original only needs nine values.
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Figure 4.2: Probability trees with proportional subtrees.
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Figure 4.3: Factorisation of the probability tree in Fig. 4.2 using PTs.

Recursive Probability Trees propose to include the factorisations within the

data structure by incorporating a type of inner node which mission is to list

together all the factors. Therefore, a List node represents a multiplicative fac-

torisation by listing all the factors making up the division. If a List node stores a

factorisation of k factors of a potential φ defined on XJ, and every factor i (that
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4.2 Recursive Probability Trees

is an RPT as well) encodes a potential φi for a subset of variables XJi
⊆ XJ,

then φ can be obtained as
∏k

i=1 φi(XJi
).

Example 27 For example, in Fig. 4.4(i) we can observe a probability tree that

contains proportional subtrees, as the subtree for the context {X1 = 0, X2 = 1}
is twice the subtree correspondent to the context {X1 = 0, X2 = 0}. This can be

represented using RPTs in a single structure using a List node under the context

{X1 = 0}, as shown in Fig. 4.4(ii).

·

(i) (ii)
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Figure 4.4: Simple probability tree with proportionalities and its factorisation as

an RPT.

Example 28 For the pattern shown in Fig. 4.2, RPTs can offer a solution as

the structure in Fig. 4.5. In this RPT, the factorisation is incorporated in the

structure under the context X1 = 0, and using the same number of parameters as

the original representation.

RPTs for Bayesian networks

When necessary, RPTs will include a fourth type of node denominated Potential

node. This is a leaf node and its purpose is to encapsulate a full potential within

the leaf in an internal structure. This internal structure usually will not be an

RPT, but a probability tree or a probability table instead. In fact, as long as the

internal structure of a Potential node supports the basic operations on potentials

as explained in Chapter 3.5.1, it is accepted within the RPT representation.
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Figure 4.5: Factorisation of the probability tree in Fig. 4.2 as an RPT.

In summary, an RPT can have four kind of nodes in total: Split or List nodes

as inner nodes, and Value or Potential nodes as leaves. We can combine them

in very different ways in order to find the structure that best fits the potential

to be represented, making RPTs an extremely flexible framework to work with.

Fig. 4.6 shows a single CPT (i) and three alternative RPTs representations: (ii)

an RPT with a single Potential node as root; (iii) RPT with a Split node for X

and two Value nodes (this representation is equivalent to the corresponding PT);

and (iv) RPT with a List node encoding the trivial factorisation 1 · φ(X).

X φ(X)
0 0.3
1 0.7

(i)

φ(X)

(ii)

X

0.3

0

0.7

1

(iii)

1 φ(X)

(iv)

Figure 4.6: Different RPTs for the probability distribution in a).

An RPT is able to represent a full model like a Bayesian network. The more

straightforward way of representing a BN would be to join with a List node all

the conditional probability distributions defined by the chain rule for Bayesian

networks. Every factor could be represented independently looking for patterns

within it.
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Example 29 For example, consider the BN defined in Fig. 4.7 (i). We can

resort to the factorisation of its joint probability distribution by means of a set of

conditional probability distributions to build an RPT such as the one presented in

Fig. 4.7 (ii).
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3

Split
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Figure 4.7: An RPT representing a full Bayesian network.

In the figure, the RPT has a List node as root that contains a child for every

conditional probability distribution defined by the BN. Note that the three leftmost

children are Potential nodes for the marginal potentials: φ1(X6), φ2(X1) and

φ3(X5). The fourth child encodes the factors φ4(X3, X1), φ5(X2, X1, X6) and

φ′(X4, X2, X3, X5) through a new List node. The first two factors are represented

as Potential nodes and the third one with a Split node for capturing some context-

specific independencies imposed by X2 and X3 (see the branch enclosed with the

dashed line). These independencies are represented with Split nodes for X2 and

X3 (both of them are binary variables). The right child for X2 contains a Potential

node for φ7(X4). The left one contains a Split node for X3: if X3 = 0 then the

potential does not depend on X4 and X5 and a Value node is enough (with 0.5 as

value). The potential corresponding to X3 = 1 is contained into a Potential node.

Formal definition of RPTs

Formally, it can be stated that an RPT (RT) defined over a set of variables

XI represents the potential φRT(XI) : ΩXI
→ R+

0 if for each xI ∈ ΩXI
the
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4.2 Recursive Probability Trees

value φRT(xI) is the number obtained with the recursive procedure explained in

Algorithm 7.

The procedure starts from the root of the RPT, traversing recursively the full

structure to the leaves. It works by applying a different action depending on the

kind of node. If root is a: Value node, just returns the corresponding value (lines

6 and 7 of Alg. 7.); Potential node: gets the value for the selected configuration

x (lines 8 to 10 of Alg. 7.); Split node: the procedure is recursively called to the

child consistent with the given configuration (lines 11 to 15 of Alg. 7.); List node:

multiplies the results obtained from new recursive calls for every child (lines 16

to 18 of Alg. 7.).

1 probValue(RT,xI)

Input: RT: an RPT defined on XI, xI: a configuration;

Output: PRT(xI): a value;

2 begin

3 root← root node of RT;

4 type← type of root (Value, Potential, Split or List)

5 switch type do

6 case Value

7 return label of root

8 case Potential

9 Let P (XJ ⊆ XI)← be the potential labelling the root;

10 return P (xI)

11 case Split

12 Let Xi be the variable labelling the root;

13 Let xi be x
↓{Xi}
I ;

14 chi(RT)← child of root for xi value ;

15 return probValue(chi(RT),xI) ;

16 case List

17 ch1(RT), ch2(RT) . . . chn(RT) children of root;

18 return Πn
i=1probValue(chi(RT),xI)

19 endsw

20 endsw

21 end

Algorithm 7: Algorithm to compute the correspondent probability value

from an RPT given a configuration of its variables.
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4.2 Recursive Probability Trees

Example 30 For example, consider the RPT in Fig. 4.8. We want to recover the

value correspondent to a configuration xI = {X1 = 1, X2 = 0, X3 = 1, X4 = 0}
from the RPT using Algorithm 7. We start from the root of the tree (line 3

of Alg. 7), that is a Split node of variable X1 (line 4 of Alg. 7). The switch

structures leads us to the specific functionality for Split nodes (line 11 of Alg. 7).

The projection1 of configuration xI to variable X1 (line 13 of Alg. 7) gives us

the value 1, so we apply Alg. 7 recursively to the child corresponding to the right

branch (lines 14 and 15 of Alg. 7). The new root is a Value node, so the algorithm

will return the value that labels it (line 7 of Alg. 7). In this example, the value

retrieved by the algorithm is 0.7, that is the correspondent value in the potential

for configuration {X1 = 1, X2 = 0, X3 = 1, X4 = 0}.

X1

0.7

10

φ(X3, X2) X4

0.2

0

0.8

1X3

X2

0.6

0

0.1

1

0

0.3

1

Figure 4.8: An RPT representing a potential of three variables.

Example 31 Let now consider the configuration xI = {X1 = 0, X2 = 1, X3 =

1, X4 = 0}. In this case, the algorithm begins the same as in the last example,

but now the projection of configuration xI to variable X1 (line 13 of Alg. 7) gives

us the value 0, so we apply the algorithm recursively to the child corresponding to

the left branch (line 14 and 15 of Alg. 7). The child is a List node, so we need

to recursively apply the algorithm to every one of the List node’s children, and

1The projection of a configuration to a variable x
↓{Xi}
I corresponds to the retrieval of the

state defined in a configuration xI for a given variable Xi. We will denote it as the identifier of

the configuration with a superindex that specifies the variable to project.
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then multiply the individual obtained values (lines 17 and 18 of Alg. 7). Working

from left to right, the first child is a Potential node, and the potential that it

encapsulates is disclosed within the dashed line in Fig. 4.8. As we can appreciate,

the structure that holds the potential within the potential node is a probability tree.

The algorithm delegates the retrieval of the correspondent value to the probability

tree (lines 9 and 10 of Alg. 7), that will return 0.3 as the leaf consistent with xI.

The second child of the list is a Split node, so we proceed in the same way as in

the last example, retrieving the value 0.2. The final result of the algorithm will be

the multiplication of the obtained values: 0.3 ·0.2 = 0.06, that is the correspondent

value in the potential for configuration {X1 = 0, X2 = 1, X3 = 1, X4 = 0}.

4.3 Expressiveness of RPTs

As it was mentioned before, RPTs can be considered as a general representation

for potentials involved in PGMs. In this section we analyse in detail some patterns

for which RPTs provide an efficient representation, and how they take advantage

of the local structure, achieving more compact representations than probability

trees and probability tables.

4.3.1 Proportional values

Proportional values are sometimes present within probability distributions. An

example of this was given in Section 3.7.1.3, where we dealt with the presence of

proportional subtrees in probability trees by factorising the original structure into

two smaller trees. This solution, however, is somehow limited and requires the

specific managing of the lists of factors within the inference algorithms in order

to take advantage of the factorisations. Recursive probability trees offer a more

flexible framework, being able to represent and manage the factorisations within

the structure itself.

Consider the potential φ(X1, X2) encoded as a CPT defined in Fig. 4.9. This

potential presents proportional values, as the values consistent with the config-

uration {X1 = 1} are 4 times the values correspondent with the configuration
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{X1 = 0}, for each state of X2 respectively. Therefore, the values of φ consis-

tent with the configuration {X1 = 0} can be considered as a base potential for a

factorisation.

If we represent this potential as a probability tree, we do not obtain a more

compact representation unless we build a product of two factors. The same

procedure can be followed to build an RPT, as shown in Fig. 4.10, with the added

advantage that RPTs are optimized to work with this factorised representations,

so the efficiency gain can be increased. Observe that the RPT stores a reduced

number of parameters than the CPT.

X1 X2 φ(X1, X2)

0 0 0.025

0 1 0.075

0 2 0.075

0 3 0.025

1 0 0.1

1 1 0.3

1 2 0.3

1 3 0.1

Figure 4.9: Potential with proportional values.
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Figure 4.10: RPT encoding the potential with proportional values described in

Fig. 4.9.
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4.3.2 Context-specific independencies

The concept of context-specific independency was introduced in Section 3.7,

where we discussed the benefits of tree-based representations when represent-

ing the potentials in a PGM. Fig. 4.11 shows an example where a potential φ

with dom(φ) = {X1, X2, X3} some values sometimes do not depend on the whole

set of variables of the domain, presenting context-specific independencies.
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Figure 4.11: Potential with context-specific independencies and proportionalities.

The left part (i) in Fig. 4.11 shows a probability tree representing the potential

φ(X1|X2, X3) where some of the values (right branch for X3 = 1) do not depend

on X2, that is to say that the potential φ is independent of X2 (it only depends

on X1) in the context {X3 = 1}. Moreover, this potential includes proportional

values as well. The configuration given by X3 = 0, X1 = 0 points to a potential

whose values can be used to generate the values for X3 = 0, X1 = 1 (multiplying

by 2) and for X3 = 0, X1 = 2 (respectively multiplying by 7 and 2). All of these

features are represented with the RPT in Fig. 4.11 (right part, (ii)).
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4.3.3 Multinets

An advantage of Bayesian networks is that they can specify dependencies only

when necessary, leading to a significant reduction in the cost of inference. Bayesian

multinets [5] further generalize Bayesian networks and can further reduce com-

putation. A multinet can be thought of as a network where edges can appear

or disappear depending on the values of certain nodes in the graph. Consider

a network with four nodes X1, X2, X3, X4 where the conditional independencies

among these variables depend on the values of X4, a binary variable. In fact this

conveys the need to consider two different Bayesian networks, one for each state

of X4, (see Fig. 4.12 (i)). The complete multinet can be represented with an

RPT, as shown in Fig. 4.12 (ii), where the root node is a Split node that defines

the context for the different groups of independencies, and each child is a List

node that represents the multiplicative factorisation of the conditional probability

distributions present for each context.

X4

X3 X2

X1

X4 = 0

X3 X2

X1

X4 = 1

(i)

X4

φ(X4 = 0)

φ(X3|X2) φ(X2|X1)

φ(X1) φ′(X1)

φ′(X2|X1) φ(X3|X2, X1)

φ(X4 = 1)

0 1

(ii)

Figure 4.12: Bayesian multinet and RPT representation.
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Therefore, any inference algorithm that works with multinets could be adapted

to take advantage of the RPT representation.

4.3.4 Mixtures of conditional distributions

Imagine a variable X4 with X1, X2, and X3 as parents. Let us assume that a

probability distribution for these variables is given by a convex combination of

two terms: on one hand, a conditional distribution of X4 given X1, X2; and on

the other, a conditional distribution of X4 given X2, X3. That is, the considered

probability distribution is defined as:

P (X4|X1, X2, X3) = αP (X4|X1, X2) + (1− α)P (X4|X2, X3).

Recursive probability trees can easily represent multiplicative factorisations,

but not additions such as the one defined in the mixture above. However, it is

possible to build an RPT that represent the mixture of conditional distributions

proceeding in the following way: we define an auxiliary variable A with as many

states as terms the mixture has. In the example considered here, the mixture

only has two terms, so A would be a binary variable. The idea now is to express

the mixture as a combination of the states of A, such as if we marginalise out A

from the final model, we obtain the addition of the terms in the mixture.

A

α

0

1− α

1

A

P (X4|X1, X2)

0

P (X4|X2, X3)

1

Figure 4.13: RPT representation of a mixture of conditional distributions using

an auxiliary variable A.

Fig. 4.13 shows the RPT encoding the mixture of conditional probability

distributions explained here, where the root is a list node that encodes the mul-
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tiplication of two factors where A labels both roots. In the first factor, at the

left side of the figure, A has two Value nodes as children with the weights of the

convex combination, α and 1 − α. In the right part of the figure, A has two

Potential nodes containing both conditional probability distributions present in

the division: P (X4|X1, X2) and P (X4|X2, X3) respectively. As we will explain in

the next section, the marginalisation over RPTs, that runs from root to leaves,

first solves the List nodes that are up the tree by multiplying the factors where

the variable to marginalise out is involved. This ensures the correctness of the

RPT representation of mixtures of conditional distributions explained here, as

the states of the auxiliary variable A will be added only after multiplying both

factors.

4.4 Operations with RPTs

The basic operations on potentials: restriction, combination and marginalisation,

that where described in Sec. 3.5.1 can be adapted to be supported by RPTs,

following a similar procedure as the described in Sec. 3.7.1.1 over probability trees.

As RPTs are a generalisation of PTs, the operations described in Sec. 3.7.1.1

are extended to deal with the multiplicative factorisations introduced within the

RPTs by the List nodes.

In this section we describe how to carry out these operations directly on

the RPT data structure. The operations over Potential nodes will depend on

the particular data structure used to represent the distribution within it, for

example, if two leaves are Potential nodes represented by probability trees, then

it is possible to combine them by multiplication using the operations described

in Sec. 3.7.1.1 [2].

In addition, sometimes it is also needed to transform a potential represented

with an RPT into a probability distribution or a conditional probability distri-

bution. This can be achieved through the normalisation and conditional normal-

isation operations.
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4.4.1 Restriction

Let RT be an RPT and xJ a configuration for the variables in XJ. The restriction

operation of RTR(xJ) (RT restricted to xJ) will be performed recursively from root

to leaf nodes acting on nodes according to their type. In the simplest case, that

is when the RPT only contains Split and Value nodes, the operation is applied

exactly as explained in Sec. 3.7.1.1 when working with probability trees: Value

nodes will remain unaltered, while in Split nodes the operation will be transmitted

to the children if the variable labelling the Split node is not in XJ, in any other

case the leaf representing the value contained in xJ will be kept (and promoted

to the place of its parent node) and the rest will be removed.

The addition of the two extra types of nodes present in RPTs increases the

complexity of the operation. Potential nodes will produce the restriction of their

potentials if needed (their domains include any of the variables in XJ). Therefore,

the data structure used to represent the potentials within the Potential nodes

should support the restriction operation. Finally, List nodes will transmit the

operation to their children, continuing recursively with the procedure.

Example 32 The pseudocode for this procedure is shown in Algorithm 8. To ilus-

trate its workflow, this operation will be applied to the RPT presented in Fig. 4.14,

where part (i) represents the BN and the set of potentials involved and the RPT

representation is below (ii). Suppose we want to compute the value of the potential

restricted to the configuration xJ = {X1 = 0, X2 = 1, X3 = 0}.
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Figure 4.14: RPT encoding a Bayesian network
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1 restrict(RT,xJ)

Input: An RPT RT, a configuration of variables XJ = xJ

Output: An RPT RTR(xJ )

2 begin

3 Let root be the root of RT;

4 if root is a Value node labelled with r then return r ;

5 else if root is a Potential node labelled with P then return PR(xJ ) ;

6 else if root is a Split node labelled with Xi then

7 if Xi ∈ XJ then

8 Let chi(RT) be the child of root corresponding to the value of Xi in xJ ;

9 return restrict(chi(RT),xJ);

10 else

11 Make a new RPT RT′ with Xi as root;

12 foreach child of the root of RT, chi(RT) do

13 RT′
i ← restrict(chi(RT),xJ);

14 Set RT′
i as i-th child of RT′ root;

15 end

16 return RT′;

17 end

18 end

19 else if root is a List node then

20 Make a new RPT RT′ with a List node as root;

21 foreach child of the root of RT, chi(RT) do

22 RT′
i ← restrict(chi(RT),xJ);

23 Set RT′
i as i-th child of RT′ root;

24 end

25 return RT′;

26 end

27 end

Algorithm 8: Algorithm to restrict an RPT to a given configuration of

variables.

When the restriction operation R(xJ) is invoked on the root node of the RPT,

as shown in Fig. 4.15 (i), as the root is a List node, the operation is propagated

downwards to its children (lines 19 to 26 of Alg. 8). Every children is restricted

independently of the others: the first and second children are Potential nodes that

are represented internally as probability trees, so after restricting them (line 5 of

Alg. 8) we obtain values that are stored in Value nodes within the RPT, as shown
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in Fig. 4.15 (ii). The last child is a Split node of a variable that is contained in

xJ, so the operation is propagated in the consistent branch (lines 7 to 9 of Alg. 8).

We reach another Split node whose variable is also in xJ, so again the operation

is propagated in the consistent branch, as shown in Fig. 4.16 (i). At this point,

we reach a Potential node that also includes a variable present in the restricting

configuration, so applying the restriction operation over the node returns a value

that is enclosed in a Value node, as pictured in Fig. 4.16 (ii).

P (X1) P (X2) X1

X2

0.5

0

φ1(X3)

1

0

φ2(X3)

1

(i)

R(xJ) = R(X1 = 0, X2 = 1, X3 = 0)

0.3 0.1 X1

X2

0.5

0

φ1(X3)

1

0

(ii)

Figure 4.15: RPT restricted to a configuration, operation applied to the List node

at the root.

R(xJ) = R(X1 = 0, X2 = 1, X3 = 0)

0.3 0.1 X1

X2

φ1(X3)

1

0

(i)

0.3 0.1 X1

X2

0.2

1

0

(ii)

Figure 4.16: RPT restricted to a configuration, operation applied to a Split node.

Finally, the structure is compacted into the RPT shown in Fig. 4.17: a List

node containing three values. As the RPT assumes a multiplicative factorisation,
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the probability value for the configuration will be given by multiplying these values:

0.006.

R(xJ) = R(X1 = 0, X2 = 1, X3 = 0)

0.3 0.1 0.2

Figure 4.17: Result of restricting an RPT to a configuration using Alg. 8.

Observe that this operation is performed recursively from root to leaves, so

the time consumed by the algorithm will be linear on the number of nodes of the

RPT.

4.4.2 Combination

The possibility of expressing multiplicative factorisations within RPTs by means

of the List nodes makes the combination a very simple operation, as we will merely

join the factors using a List node that will root the resultant RPT. This idea is

described in Algorithm9. Note that the algorithm is formulated in a general way,

so that it is designed for combining two RPTs (lines 12 to 14 of Alg. 9) but also

for combining an RPT with another kind of potential and an RPT with a real

value. In these last two cases, when the second factor is a constant, it is stored

in a Value node (lines 4 to 7 of Alg. 9), whilst when the factor is a potential, it is

enclosed within a Potential node (lines 8 to 11 of Alg. 9). These transformations

are done prior to storing the factors as children of the List node (lines 5 and 9 of

Alg. 9, respectively).

Example 33 A very simple example of the application of this operation is shown

in Fig. 4.18. In both parts we are combining a simple RPT RT (that contains just

a Potential node) with a value v (i) and with another potential P (X1) that could

be an RPT with a Potential node as a root, or simply a potential stored in any
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1 combine(RT, f)

Input: An RPT RT, a factor f (another RPT , a potential or a value).

Output: The result of combining RT and f .

2 begin

3 Make a new RPT RT′ with a List node L as root;

4 Put RT as child of RT′;

5 if f is a numeric value then

6 Make a new Value node labelled with f ;

7 Put the Value node as child of L;

8 end

9 if f is a potential then

10 Make a new Potential node labelled with f ;

11 Put the Potential node as child of L;

12 end

13 if f is an RPT then

14 Put RPT as child of L;

15 end

16 return RT′;

17 end

Algorithm 9: Algorithm to combine two RPTs

other data structure, like a probability tree. After applying Alg. 9, in Fig. 4.18

(i) we obtain an RPT with a List node as a root (lines 5 to 8 of Alg. 9), that has

two children: one is RT, and the other is a Value node that contains v. Again,

in Fig. 4.18 (ii), we obtain an RPT with a List node as a root (lines 9 to 12 of

Alg. 9), that has two children: one is RT, and the other is a Potential node that

contains P (X1).
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φ(X2) · 0.45 =

φ(X2) 0.45

(i)

φ1(X2) · φ2(X1) =

φ1(X2) φ2(X1)

(ii)

Figure 4.18: Combination of potentials with RPTs.

Example 34 The last part of Alg. 9 (lines 13 to 15) deals with the combination

of two RPTs. An example is illustrated in Fig. 4.19, where the result of the

operation is again an RPT with a List node as a root, that has as children both

RPTs.

φ1(X2) ·

X1

X2

0.5

0

φ2(X3)

1

0

φ3(X3)

1

=
φ1(X2) X1

X2

0.5

0

φ2(X3)

1

0

φ3(X3)

1

Figure 4.19: Combination of potentials with RPTs.

An important feature of the combination process as described in Alg. 9 is that

it does not really require the actual computation of any product of numbers. In

this sense, RPTs are compatible with inference schemes based on lazy propagation

[11; 12].
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4.4.3 Marginalisation

The marginalisation of a potential φ to a set of variables XJ consists, as explained

in Chapter 3.5.1, of summing out all the variables not in XJ. This is noted

as φ↓XJ . Again this operation can be performed directly over RPTs, but this

operation is not trivial. For summing out a variable from an RPT we need to

define first the multiplication and the addition of two RPTs.

Multiplying RPTs

The multiplication of RPTs is explained in Alg. 10. The difference between

the combination of RPTs as explained in Section 4.4.2 through Alg. 9 and the

multiplication of RPTs as defined in Alg. 10 is that when combining RPTs it may

not be necessary to actually perform the numerical computations, being sufficient

to store the factors in a List node to be multiplied afterwards. In Alg. 10, even

though a grouping of factors is performed, the idea is to divide the RPT into

smaller factors consistent with each other until we encounter two factors that can

be multiplied, i.e. Value or Potential nodes.

The algorithm takes two RPTs RT1 and RT2 and acts in accordance to the

type of their roots, root1 and root2 respectively. If either root is a List node (lines

3 to 19 of Alg. 10), the algorithm will return a new RPT RT ′ with a List node at

the root that will put together the factors of root1 and root2. If both roots were

List nodes, then the RT ′ will have as children all the factors of root1 and root2

together (lines 3 to 8 of Alg. 10). If either root1 or root2 is not a List node, then

the root of RT ′ will father all the factors of the RPT rooted by a List node, and

the root of the other RPT (lines 9 to 19 of Alg. 10).

Example 35 Consider Fig. 4.20, where Alg. 10 is performed upon two RPTs,

one rooted by a List node and the second rooted with a Split node. The result of

the operation, as shown in the right part of the figure, would be an RPT with a

List node at the root, and fathering all the factors of the first RPT plus the whole

second RPT.
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X1

0.8

0

0.2

1

φ(X2, X3)

X3

0.6

0

0.4

1
· =

X1

0.8

0

0.2

1

φ(X2, X3) X3

0.6

0

0.4

1

Figure 4.20: Multiplication of two RPTs (I).

Example 36 Consider now Fig. 4.21 where Alg. 10 is performed upon two RPTs,

both rooted by a List node. The result of the operation, as shown in the right part

of the figure, would be an RPT with a List node at the root, and fathering all the

factors of both RPTs.

X1

0.8

0

0.2

1

φ(X2, X3) X3

0.6

0

0.4

1

0.5

· =

X1

0.8

0

0.2

1

φ(X2, X3) X3

0.6

0

0.4

1

0.5

Figure 4.21: Multiplication of two RPTs (II).

If root1 is a Split node labelled by a variable Xi, then the root of RT ′ will be

a Split node of Xi (line 21 of Alg. 10) with a List node for each of its children.

Each List node i will contain two factors: one will be the child correspondent

to the i-th state of Xi in root1, and the second will be RT
R(Xi=xi)
2 , that is the

second RPT restricted to the correspondent context of the variable Xi (line 24 of

Alg. 10). In the case that root1 is not a Split node but root2 is, the procedure is

the same (lines 29 to 36 of Alg. 10).

Example 37 The next example is illustrated with Fig. 4.22. Now we are multi-

plying two RPTs RT1 and RT2 that both have Split nodes as roots. The resultant

RPT has a Split node of the variable X3 that labels the first multiplicand, RT1.

For X3 = 0, we have a List node in the resultant RPT that contains two factors:
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the part of RT1 consistent with {X3 = 0}, that is a Value node labelled by 0.6, and

the part of RT2 consistent with the same configuration, that is a Split node of X1

with two Value nodes as children. Note that this structure is the result of applying

the restrict operation, as explained in Section 4.4.1, to RT2 for the configuration

{X3 = 0}. The second child of the resultant RPT’s root is the same, but this time

using the configuration {X3 = 1}.

X3

0.6

0

0.4

1

X1

0.8

0

X3

0.1

0

0.9

1

1
· =

0.6 X1

0.8

0

0.1

1

0.4 X1

0.8

0

0.9

1

X3

0 1

Figure 4.22: Multiplication of two RPTs (III).

Note that at this point, root1 and root2 can either be Value or Potential nodes,

as the possibility of either of them being a List or a Split node has already been

covered by the algorithm. Now the multiplication is a direct operation (lines 38

and 39 of Alg. 10), if both root1 and root2 are Value nodes, the result will be a

Value node labelled by the result of the multiplication of the labels of both roots.

If either root1 or root2, or both are Potential nodes, then the result will be a

Potential node labelled by the product of both potentials. In the case that both

roots were Potential nodes, then we have to be careful because it may happen that

the data structure that represents the potential in root1 is not the same as the

data structure used within root2. We have handled this scenario by making the

resultant Potential node always contain a probability tree, but other approaches

could be developed for specific data structures.
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.

1 multiply(RT1,RT2)

Input: Two RPTs RT1 with root root1 and RT2 with root root2

Output: The multiplication of RT1 and RT2

2 begin

3 if root1 is a List node then

4 Make a new RPT RT with a List node as root;

5 Append all the children of root1 as children of the root of RT;

6 if root2 is a List node then

7 Put all the children of root2 as children of the root of RT;

8 end

9 else

10 Append the factor rooted by root2 as a child of the root of RT;

11 end

12 return RT;

13 end

14 else if root2 is a List node then

15 Let RT be a new RPT with a List node as root;

16 Append all the children of root2 as children of the root of RT;

17 Append the factor rooted by root1 as a child of the root of RT;

18 return RT;

19 end

20 else if root1 is a Split node then

21 Let Xi be the label of root1, let RT be a new RPT with Xi labeling the root;

22 foreach child of root1, chi(RT1) do

23 Let RTi be a new RPT with a List node as root;

24 Append chi(RT1) and RT2
R(Xi=xi) as children of RTi;

25 Put RTi as child of RT;

26 end

27 return RT;

28 end

29 else if root2 is a Split node then

30 Let Xi be the label of root2, let RT be a new RPT with Xi labeling the root;

31 foreach child of root2, chi(RT2) do

32 Make a new RPT RTi with a List node as root;

33 Append chi(RT2) and RT1
R(Xi=xi) as children of RTi;

34 Put RTi as child of RT;

35 end

36 return RT;

37 end

38 Let f1 and f2 be the factors (Value or Potential nodes) in RT1 and RT2;

39 return f1 · f2 (in this case f1 and f2 can be multiplied directly);

40 end

Algorithm 10: Algorithm to multiply two RPTs
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Adding RPTs

The addition of two RPTs RT1 and RT2 rooted with root1 and root2 respectively

is explained in Algorithm 11, and again the algorithm will perform different op-

erations depending on the nature of the roots.

If root1 is a List node, we will first compute the pairwise multiplication of all

its children using Alg. 10 (line 5 of Alg. 11), obtaining a new RPT RT ′. The next

step will be to perform a recursive call to Alg. 11 this time with RT ′ and RT2

(line 6 of Alg. 11). If root1 is not a List node but root2 is, the procedure is the

same as described, multiplying this time the children of root2 instead (lines 8 to

11 of Alg. 11).

If root1 is a Split node labelled by variable Xi, then RT ′ will have as a root

root′ a Split node labelled also with Xi. For every state j of Xi, root
′ will have

as child the result of a recursive call to Alg. 11 using as parameters the j-th child

of root1 and RT
R(Xi=xj)
2 , that is RT2 restricted to the correspondent context of

Xi. If root1 is not a Split node but root2 is, the procedure is the same, but being

this time the label of root2 the variable that labels the root of RT ′ (lines 20 to

26 of Alg. 11).

As in the multiplication operation, note that at this point, root1 and root2

can either be Value or Potential nodes, as the possibility of either of them being a

List or a Split node has already been covered by the algorithm. Now the addition

is a direct operation (lines 28 and 29 of Alg. 11), if both root1 and root2 are

Value nodes, the result will be a Value node labelled by the result of the addition

of the labels of both roots. If either root1 or root2, or both are Potential nodes,

then the result will be a Potential node labelled by the sum of both potentials. In

the case that both roots were Potential nodes we have the same problem as with

the multiplication. Again we have handled this scenario by making the resultant

Potential node always contain a probability tree, but other approaches could be

developed for specific data structures.

Example 38 Consider the two simple RPTs defined in Fig. 4.23. We are now

going to apply Alg. 11 to add them, considering them, from left to right, RT1 and
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1 sum(RT1,RT2)

Input: Two RPTs RT1 and RT2

Output: A new RPT with the sum of RT1 and RT2

2 begin

3 Let root1 and root2 be the root of RT1 and RT2 respectively;

4 if root1 is a List node then

5 Let RT′ be the product of all of the children of root1, calculated by pairwise

multiplication with Algorithm 10;

6 return sum(RT′,RT2);

7 end

8 else if root2 is a List node then

9 Let RT′ be the product of all of the children of root2, calculated by pairwise

multiplication with Algorithm 10;

10 return sum(RT′,RT1);

11 end

12 else if root1 is a Split node then

13 Make a new RPT RT with a Split node as root;

14 Label the root of RT with the same label Xi of root1;

15 foreach child of root1, chi(RT1) do

16 Obtain the child i of the root of RT as sum(chi(RT1),RT
R(Xi=xi)
2 );

17 end

18 return RT;

19 end

20 else if root2 is a Split node then

21 Make a new RPT RT with a Split node as root;

22 Label the root of RT with the same label Xi of root2;

23 foreach child of root2, chi(RT2) do

24 Obtain the child i of the root of RT as sum(chi(RT2),RT
R(Xi=xi)
1 );

25 end

26 return RT;

27 end

28 Let f1 and f2 be the factors (Value or Potential nodes) in RT1 and RT2;

29 return The sum of f1 and f2 ;

30 // In this case f1 and f2 are potential or Value nodes and can be

added directly

31 end

Algorithm 11: Algorithm to add two RPTs.
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RT2 respectively. As root1 is a List node, the first step would be to multiply all

its children using Alg. 10 (line 5 of Alg. 11), and afterwards we recursively apply

Alg. 10 with the result of the multiplication and RT2, as we see in Fig. 4.24.

X3

0.8

0

0.2

1

φ(X2)

X3

0.6

0

0.4

1
+

X2

0.3

0

0.7

1

φ(X2)

Figure 4.23: Addition of two RPTs (I).

X3

0.6

0

0.4

1
+

0.8 φ(X2) 0.2 φ(X2)

X3

0 1

Figure 4.24: Addition of two RPTs (II).

The new RT1 has a Split node as a root, so Alg. 11 tells us to build a Split

node as a root for the resultant RPT, and recursively compute the sum of each

of the children of root1 with RT2 restricted to every branch of the new Split node

(lines 12 to 18 of Alg. 11). This step of the algorithm is explained in Fig. 4.25,

where within the dashed line we can see the two recursive calls to Alg. 11 with

the correspondent factors. After solving the List nodes in the recursive calls using

Alg. 10, Alg. 11 is applied over the factors shown in Fig. 4.26. The final result

corresponds to the RPT displayed in Fig. 4.27.
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0.6+ 0.4+

0.8 φ(X2) 0.2 φ(X2)

X3

10

Figure 4.25: Addition of two RPTs (III).
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0.3 · 0.8
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Figure 4.26: Addition of two RPTs (IV).
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Figure 4.27: Addition of two RPTs (V).

Summing out a variable from an RPT

Given a Recursive Probability Tree RT representing a potential φ defined for a

set of variables XI, and J ⊆ I, the marginalisation of RT over XJ, denoted as

RT↓XJ , is a new RPT that represents the potential φ marginalised to XJ, that

is, φ↓XJ(xJ) =
∑

xI−J
φ(xJ,xI−J). The marginalisation is obtained by deleting

from RT all the variables {Xι} where ι ∈ I−J. The result of the marginalisation
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does not depend on the order in which the variables are deleted, but this order

can have a deep impact on the runtime performance of the operation.

The deletion of variable Xι is denoted by RT↓XI\{Xι} and represents the poten-

tial φ↓XI\{Xι}. The procedure to sum out a variable Xι is a recursive process that

traverses the RPT from root to leaves performing different operations according

to the nature of the nodes in the RPT, as explained in Algorithm 12.
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.

1 sumOut(Xι,RT)

Input: An RPT RT defined for XI and a variable Xι ∈ XI (the variable to be summed

out)

Output: An RPT for RT↓XI\{Xι}

2 Let root be the root of RT;

3 if root is a Value node labelled with a real number r then

4 Make a new RPT RT′ with a Value node as root;

5 Put r · |ΩXι | as the label of the root of RT′ ;

6 end

7 else if root is a Potential node labelled with a potential P then

8 Make a new RPT RT′ with a Potential node as root;

9 if Xι is a variable in the domain of p then

10 Put P ↓XI\{Xι} as the label of the root of RT′ (this is an external operation that

depends on the data structure that holds the potential) ;

11 end

12 else

13 Put p · |ΩXι | as the label of the root of RT′;

14 end

15 end

16 else if root is a Split node labelled with Xi then

17 if Xi = Xι then

18 Let RT′ be the sum of all the children of root using Algorithm 11;

19 end

20 else

21 Make a new RPT RT′ with a Split node as root;

22 Put Xi as the label of the root of RT′;

23 foreach child of root, chi(RT) do

24 RT′
i ← sumOut(Xι, chi(RT));

25 Set RT′
i as the ith child of the root of RT′;

26 end

27 end

28 end

29 else if root is a List node then

30 Let with and without be the list of children of root containing and not containing

Xι respectively ;

31 Let RT1 be the multiplication of all the factors in the with list (using Algorithm 10);

32 RT2 ← sumOut(Xι,RT1);

33 Make a new RPT RT′ with a List node as root;

34 Put RT2 and all the factors in without list as children of the root of RT′;

35 end

36 return RT′ ;

Algorithm 12: Algorithm to marginalise out a variable from an RPT.
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• If the root is a Value node (lines 3 to 6 of Alg. 12) or a Potential node that

does not contain Xι in its domain (lines 7, 8 and 13 of Alg. 12), the result of

the operation would be the node multiplied by the number of possible states

of Xι, denoted as |ΩXι|. This situation corresponds to the case in which the

variable Xι is in the theoretical domain of the potential associated to the

root, but it does not appear in an explicit way. The operation is done as if

the potential depends of Xι.

If the Potential node has Xι in its domain, then the marginalisation opera-

tion is performed according to the data structure of the potential enclosed

in the node (lines 7 to 11 of Alg. 12).

Example 39 Consider the RPT in Fig. 4.28, composed just of a Potential node.

The potential that labels it has two variables, and it is represented using a proba-

bility tree, as detailed in the figure, within the dashed line. Imagine that we want

to marginalise out the variable X2 from this RPT, using Alg. 12. As X2 belongs

to the domain of the potential, we ask to the internal data structure to perform

the marginalisation for us (line 10 of Alg. 12). The resultant RPT will be rooted

by the result of the marginalisation, that in this example consists of a Potential

node with a potential of just the variable X1, as displayed in Fig. 4.29.

φ(X1, X2)

X1

X2

0.1

0

0.4

1

0

0.3

1

Figure 4.28: Marginalisation of RPTs (I).
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φ(X1)

X1

0.5

0

0.3

1

Figure 4.29: Marginalisation of RPTs (II).

• If the root of the RPT is a Split node, then if Xι labels it, a pairwise sum of

its children using Alg. 11 is performed (lines 16 to 19 of Alg. 12). Otherwise,

if Xι is not the label of the root, the marginalisation operation is recursively

applied to every child of the root (lines 20 to 27 of Alg. 12).

Example 40 Consider now the RPT shown in Fig. 4.30, that consists of the

same potential as in Fig. 4.28, but represented using Split nodes. If we apply

Alg. 12 to this RPT to remove variable X2, we will create a new RPT with a

Split node rooting it, labelled by the variable X1 (lines 21 and 22 of Alg. 12).

Now we recursively apply Alg. 12 to every of the children of the original Split

node, obtaining the RPT shown in Fig. 4.31

X1
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1
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Figure 4.30: Marginalisation of RPTs (III).

X1

0.1 + 0.4

0

0.3

1

Figure 4.31: Marginalisation of RPTs (IV).

• If the root of the RPT is a List node, then all its children are sorted into two

sets, one containing all the factors related to Xι, and the other containing
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the remaining (line 30 of Alg. 12). This first set must be combined pairwise

using Alg. 10 (line 31 of Alg. 12), and afterwards a recursive call to the

algorithm is applied to the result of the multiplication (line 32 of Alg. 12).

It is possible that the list of potentials containing Xι is empty. This happens

when Xι belongs to the theoretical variables, but not to the list of explicit

variables. In this case, the multiplication RT 1 contains as root a Value

node labelled with 1. When Xι is summed out in this potential, the result

will have again a Value node as root labelled with |ΩXι|. The final RPT

would contain all the factors that were not related to Xι plus the result of

the recursive call (lines 33 and 34 of Alg. 12).

Example 41 Consider for this example the RPT in Fig. 4.32. Again, our mis-

sion is to marginalise out X2 from the RPT using Alg. 12. As the root of the tree

is a List node, the first step consists on sorting the factors of the root according

to wether they contain variable X2 or not (line 30 of Alg. 12). In the figure we

have enclosed both sets of factors into dashed boxes, with and without.

X1

X2

0.1

0

0.4

1

0

0.3

1

X2

0.1

0

0.9

1

0.3

with

without

Figure 4.32: Marginalisation of RPTs (V).

The next step would be the combination of all the factors in with, that using

Alg. 10 leads to the structure in Fig. 4.33. Note that this is just the with part of

the original RPT.
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X2
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0

X2

0.1

0
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0

0.3 X2
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0

0.9

0

X1

0 1

Figure 4.33: Marginalisation of RPTs (VI).

The following step is to recursively apply Alg. 12 to the result of the multi-

plication, that proceeds by solving the List nodes as shown in Fig. 4.34. This is

done because for every child of X1 (that both are List nodes), both with sets are

composed of all the factors, that must be multiplied using Alg. 10.

0.1 0.1 0.4 0.9

X2

0 1

0.3 0.90.1 0.3

X2

10

X1

10

Figure 4.34: Marginalisation of RPTs (VII).

The next step is to marginalise out X2 in every child (lines 23 to 26 of Alg. 12).

As we have now two Split nodes of X2, we proceed to sum their children (line 18 of

Alg. 12). The result of this last operation is put together with the without part as

children of a new List node, root of the solution, obtaining the RPT in Fig. 4.35

as the solution to the marginalisation operation (lines 33 to 36 of Alg. 12).

Example 42 In this example, we consider the RPT in Fig. 4.36 and we want to

marginalise out the variable X2 using Alg. 12.

The first step, see Fig. 4.37, corresponds to line 30 in Algorithm 12, where

the original RPT has been divided into two parts: the left part of the tree contains
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0.3X1

(0.1 · 0.1) + (0.4 · 0.9)
0

(0.1 · 0.3) + (0.3 · 0.9)
1

Figure 4.35: Marginalisation of RPTs (VIII).
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Figure 4.36: Marginalisation of RPTs (IX)

a potential φ1(X1) and the right one contains all the potentials containing the

variable to be removed, X2, in their domains.

The step represented by Fig. 4.38 has selected the potential φ2(X2) that will be

multiplied with the tree under the Split node for X1. This corresponds to line 31

of Algorithm 12, that calls Algorithm 10 in order to perform the multiplication.

In Fig. 4.39 the multiplication operation reaches a Split node for X2 which

conveys the restriction of the potential φ2(X2) passed as argument to the values

of X2. Therefore, the leftmost value in Fig. 4.39 must be multiplied by φ2(X2 =

0) = 0.9. The child for X2 = 1 will be given after multiplying φ3(X3) and

φ2(X2 = 1) = 0.1.

Fig. 4.40 shows the result of removing X2 from the factor for X1 = 0, by

adding the children of the Split node for X2 according to the procedure described
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φ1(X1)

φ2(X2) X1

X2

0.5

0

φ3(X3)

1

0

φ4(X3)
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Figure 4.37: Marginalisation of RPTs (X)
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φ2(X2)X2
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φ3(X3)

1

φ4(X3) φ2(X2)

Figure 4.38: Marginalisation of RPTs (XI)

in Algorithm 11. Note that the right child of the Split node labelled with X1 is

a List node that only contains one factor involving X2, so the marginalisation

operation is directly applied to it. This is shown in Fig. 4.41, where the addition

of the children of the factor containing X2 results in a Value node enclosing a 1.

This structure contains the result of the operation.

RPTs can outperform other data structures when marginalising out variables

from potentials, because this procedure only uses the parts of the tree where the

variable to marginalise out is actually involved. Obviously the performance of the

operation depends on the potential and its representation, this will work better
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φ1(X1) X1

X2

0 1

0 1

0.5 0.9 φ3(X3) 0.1
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Figure 4.39: Marginalisation of RPTs (XII)

φ1(X1) X1

φ′
3(X3)

0 1

φ4(X3) φ2(X2)

X3

0.45 + (0.2 · 0.1)

0

0.45 + (0.8 · 0.1)

1

φ′
3(X3)

Figure 4.40: Marginalisation of RPTs (XIII)

φ1(X1) X1

φ′
3(X3)
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φ4(X3) 1

Figure 4.41: Marginalisation of RPTs (XIV)
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the more factorised the potential is.

Example 43 For example, imagine that we are performing Variable Elimina-

tion over an RPT. Fig. 4.42 shows a step of the algorithm, where two potentials

(φ1(X1, X2, X3) and φ2(X1, X2)) have to be combined in order to remove variable

X1.

φ1(X1) φ2(X2, X3)

X2

X1

v1

0

v2

1

0

v3

1

·

φ3(X1) φ4(X2)

Figure 4.42: Step of Variable Elimination algorithm, X1 is the variable to be

removed.

φ1(X1) φ3(X1) X2

X1

v1

0

v2

1

0

v3

1

φ2(X2, X3) φ4(X2)

Figure 4.43: Reordered RPT achieved in a step of Alg. 12

The combination of these two RPTs is reduced to make them children of a List

node. The next step would be applying Algorithm 12 to the resulting structure.

Fig. 4.43 captures a step of the process, and the dotted line encloses the factors

that directly affect variable X1. In order to remove it, it is necessary to combine

the three factors, that is: P1(X1) · P2(X1) · P (X2, X1), and then remove variable

A from the resulting RPT. In Fig. 4.44 the result of the combination of the three
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factors can be seen. The last step to complete the process is to remove A from the

factor enclosed within the dotted line, by summing it out. To sum up, now the

removal of X1 only requires the combination of three simple potentials: P1(X1) ·
P2(X1) · P (X2, X1).

X2

X1

φ1(X1)
R(X1=0)·

φ3(X1)
R(X1=0) · v1

0

φ1(X1)
R(X1=1)·

φ3(X1)
R(X1=1) · v2

1

0

φ1(1)·
φ3(X1) · v3

1

φ2(X2, X3) φ4(X2)

Figure 4.44: Result of applying Alg. 12 and Alg. 10.

4.4.4 Normalisation of RPTs

When using RPTs to perform inference, it is necessary to be able to represent

probability distributions with them. For example, when applying the Variable

Elimination algorithm to obtain P (X|e), if the retrieved RPT is not normalised,

then we will not be able to obtain the probability value correspondent to P (X|e)

from it, but the value of a potential φ(X|e) instead. Any potential represented as

an RPT can be turned into a joint probability distribution over the variables for

which it is defined through the normalisation operation, that consists of making

it add up to 1, as explained in Chapter 2 (Section 3.5.1.2).

The procedure to compute the total sum of a given RPT, sumRPT, is detailed

in Algorithm 13. It consists on traversing the tree from root to leaves, applying

a different action depending on the kind of node. If root is a: Value node, just

returns the corresponding value (lines 6 to 7 of Alg. 13.); Potential node: asks

to the internal structure for the total sum of the encapsulated potential (lines 8

to 11 of Alg. 13.); Split node: for each configuration of the variables, retrieves

the probability value using Alg. 7, and returns the addition of all the computed
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values (lines 12 to 17 of Alg. 13.); List node: makes a recursive call to Alg. 13

with the result of combining using Alg. 10 every child of the List node (lines 18

to 21 of Alg. 13.).

1 sum(RT)
Input: RT: an RPT defined on XI

Output: a value that is the sum of all the values in the RPT.
2 begin
3 root← root node of RT;
4 type← type of root (Value, Potential, Split orList);

5 switch type do
6 case Value
7 return label of root;
8 case Potential
9 Let φ be the potential labelling the root;

10 Let sum be the addition of the values in φ, computed by the
data structure holding φ;

11 return sum;

12 case Split
13 Let sum = 0;
14 foreach configuration xI of XI do
15 sum+ = probValue(xI), using Alg. 7;
16 end
17 return sum;

18 case List
19 ch1(RT), ch2(RT) . . . chn(RT) children of root;
20 return sum(Πn

i=1chi(RT)) computing the product with Alg. 10;

21 endsw

22 endsw

23 end

Algorithm 13: Algorithm to compute the sum of an RPT.

The normalisation is easily achieved by computing sumRPT using Algorithm 13,

and then including a factor of (1/sumRPT), in the form of a Value node that mul-

tiplies the whole tree. If the root of the RPT is a List node, then the new Value

node is added as a new child of it. If not, then a new root node is created as a List

node, and the old RPT will be added as a child, along with the new normalisation

factor.
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Example 44 This process is illustrated in Fig. 4.45 where we normalise an RPT

rooted with a Split node of X1. Following Algorithm 13 (lines 14 to 16) we proceed

to recover the values for all the possible configurations of the RPT, which using

Alg. 7 gives us the values 0.3, 0.5, 0.6 and 0.6, and by adding all of them we obtain

the total sum of the RPT, that in this example is 2. The normalising factor, 1/2

is now included in the RPT as a Value node, child of a new List node that roots

the resultant normalised RPT, and sibling of the not normalised RPT.

X2

0.3

0

0.5

1

φ1(X2)

X1

φ1(X2)

0

0.6

1

1/2X1

φ1(X2)

0

0.6

1

Figure 4.45: Normalisation of RPTs, the RPT represents φ(X1, X2). Enclosed in

the dashed line is the potential encapsulated in the Potential node.

A conditional probability distribution P (XJ|XK) can also be represented us-

ing an RPT. In this case, for any configuration of the parent variables XK = xK,

the restriction of the potential to this configuration should be normalised (i.e.

sum up to 1). This conditional normalisation is performed by adding to the RPT

a new factor that will be a split chain of all the variables in XK, with Value nodes

in the leaves. Those Value nodes store normalisation factors, that correspond to

1/sumRPTR(xK) , where the denominator denotes the sum of all the values of the

RPT restricted to each configuration of the variables in XK.

Example 45 An example of this is represented in Fig. 4.46 where now we have

as a normalisation subtree a Split node of the parent variable X2 fathering the

correspondent normalisation factors for each of its states. Note that now Alg. 13
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is invoked with the RPT restricted to the correspondent configuration of the set of

parents, in this example it is called twice, one for the RPT restricted to {X2 = 0}
(obtaining 0.9) and a second call with the RPT restricted to {X2 = 1} (obtaining

1.1).

X2
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0.5

1

φ1(X2)

X1

φ1(X2)

0

0.6

1

X1

φ1(X2)

0

0.6

1

X2

1/0.9

0

1/1.1

1

Figure 4.46: Normalisation of RPTs, the RPT represents P (X1|X2). Enclosed in

the dashed line is the potential encapsulated in the Potential node.

This method must be considered as a first approximation to the problem

of the conditional normalisation of an RPT, as the procedure explained above

implies increasing the size of the model according to the variables in XK and

their number of states. Normalising to conditional without adding this factor

is a complex problem due to the internal factorisations represented through List

nodes within an RPT. This problem will be discussed again in Chapter 6.2, where

we propose a methodology to learn normalised RPTs.

In both variations of the operation, the normalisation remains as a factorisa-

tion until it is needed to get the actual value during the inference process, where

both factors are combined.

4.5 Experimental evaluation

We have carried out a series of experiments in order to check the performance

of RPTs with respect to other structures for probability potentials representa-
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tion. Our intuition is that RPTs are a more suitable data structure to represent

potentials that can be factorised, as RPT’s basic operations are optimized to

take advantage of this kind of patterns, among others, like context-specific inde-

pendencies. RPTs should perform quicker than probability trees, that basically

benefit from context-specific independencies, and certainly RPTs should outper-

form a representation based on tables (CPTs) that even though they are usually

inefficient, their use is quite widespread.

The idea of these experiments is to do inference over a Bayesian network

whose conditional probability distributions present a given degree of factorability

and also context-specific independencies. We want to compare the runtime per-

formance, along with the size of the handled structures during the process, when

storing the potentials as RPTs, and compare to the performance of probability

trees and conditional probability tables.

We chose a moderate-sized well-known Bayesian network structure for our ex-

perimentation, the Barley network [66] (details are available in Appendix 7.2.4).

Preserving the skeleton of the network, we replaced each conditional probability

distribution with an RPT representing a factorised conditional distribution. Af-

terwards, we run the Variable Elimination algorithm over the Bayesian network

and measured the total time of computing the posterior probabilities for all the

variables in the network, along with the sizes of the structures stored during the

process.

For comparison, we repeated the inference, first transforming the RPTs into

PTs and secondly turning them into CPTs. Using this procedure, we could check

how PTs and CPTs handle distributions that have a given level of factorisations.

With this study we aim at emphasizing the real need of using more efficient data

structures when designing probabilistic graphical models.

4.5.1 Generation of a random RPT

The RPTs used in the experiments were generated at random. The procedure to

generate a random RPT runs as follows. We considered three parameters: a set

of variables X, a probability pS for the generation of Split nodes as inner nodes,

and a probability pP for the generation of Potential nodes on the leaves.
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The procedure is recursive, generating first the root node and going down to

the leaves. If the size of X is less or equal to two, we will generate a leaf node:

if X is not empty, we generate a Potential node of its variables. If there are no

varaibles in X, then we incorporate a Value node labelled by a random value

to the structure. If the number of remaining variables is between 3 and 5, the

probability of generating an inner node (either Split or List node) is 0.2. If the

number of variables considered is equal or greater than 5, then we will always

generate an inner node.

When generating an inner node, a Split node of a random variable within the

set will be created with probability pS. For List nodes, a maximum of 5 children

is allowed in order to bound the size of the factorisation. The choosing of the

number of children for a List node follows a Poisson distribution. For each child

of the List node, we randomly create a subset of variables to be represented. The

intersection between the subsets doesn’t have to be empty.

When building a leaf node, we will generate either a Potential node or a Value

node according to pP . To build a Value node, a random number between 0 and

1 is generated and stored in the node. The procedure to create a Potential node

runs as follows: randomly obtain a number n between 1 and the size of the set of

remaining variables. Randomly retrieve n variables from the set and store them

as the variable set for the new potential enclosed within the new Potential node.

For each configuration of the new set of variables, store a random value between

0 and 1, as its probability value. Potential nodes are internally represented as

probability trees, with a small prune factor of 0.001, to avoid the storage of many

similar values within the structure.

At the end of the process, we check if any of the variables of X was left out.

If this is the case, a Potential node with the remaining variables is created, and

attached to the previously generated RPT through a List node that becomes the

new root of the final RPT.

In this way it is possible to calibrate the RPT to represent a potential with the

desired level of factorisations or context-specific independencies. The generated

RPTs are normalised afterwards as explained in Sect. 4.4.4 in order to keep it as

a conditional probability distribution.
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4.5.2 Fixed RPT generation parameters

The aim of this experiment is to check the performance of the inference process

over the considered data structures (RPTs, PTs and CPTs) when the distribu-

tions in the network can be highly factorised. RPTs should take advantage of this

over other data structures like traditional probability trees, that only increase the

performance of the algorithm when the distributions have context-specific inde-

pendencies.

To do so, the procedure explained in Sect. 4.5.1 was applied to generate one

RPT corresponding to each conditional probability distribution of the original

Bayesian network, with the following parameters: pS = 0.001 and pP = 0.8.

This ensures that the inner nodes are more likely to be List nodes, and this

means that the distribution would be highly factorised. In the leaves we will have

mostly Potential nodes (pP = 0.8), that are internally stored as probability trees.

After the transformation, the Variable Elimination algorithm was executed

over the network, in order to compute the posterior distribution for each variable.

Then the RPTs of the Bayesian network where transformed into PTs and CPTs,

and the Variable Elimination algorithm was executed again over the structures.

The procedure to turn an RPT into a PT or a CPT is easy: we just have to build

the structures and fill the values by recovering the values for each configuration

of the variables from the RPT. In the case of PTs, they can be pruned afterwards

if we chose to do so.

Probability trees spend some computing time in pruning the trees. They do

so by pruning the branches that have repeated values, or when the variation

is smaller than a given threshold. The threshold used for this experiment was

0.0001, that is a very small value [17], so the trees may only be pruned when the

values are the same or almost the same. In this experiment we also considered

disabling the prune of the probability trees, so no time would be used in other

process than the inference itself.

Fig. 4.47 shows the results obtained in 30 repetitions of the experiment. It can

be seen how the inference process is slower in unpruned trees and conditional pro-

bability tables than using RPTs and probability trees for conditional probability

distributions representation. Also, RPTs outperform PTs in all the cases.
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Figure 4.47: Experiment 1: execution time of removing all the variables in the

network over RPTs, PTs, unpruned PTs (PTWP) and CPTs.

In terms of size of the generated structures, RPTs are usually more compact.

We measured the size of the biggest structure stored during the inference process,

understanding by size the number of inner and leaf nodes. In RPTs, we will count

Potential nodes as the total number of nodes of the inner structure: as we are

representing them using probability trees, the size is the number of inner nodes

plus the number of leaves. We also recorded the number of probability values

stored in the leaves of the biggest structure. For CPTs, we understand by size

the number of stored probability values.

Table 4.1 shows the average and standard deviation of the maximum sizes

recorded on each one of the 30 runs of the algorithm, being the RPTs smaller

and observing a smaller standard deviation. CPTs and unpruned PTs correspond

in this experiment to exact representations of the distributions, so the number

of probability values used by both structures are the same. However, unpruned

PTs perform better in terms of time, this can be due to the optimization of the

basic operations using probability trees.
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Number of Prob. Values

RPT PT unpruned PT CPT

average 6980,72 7504,26 2177280 2177280

standard deviation 1522,12 12633,19 0 0

Number of Nodes

RPT PT unpruned PT CPT

average 7849,35 8463,29 2527747 2177280

standard deviation 1706,98 14695,73 0 0

Table 4.1: Average and standard deviation of the size of the biggest structure

stored during the inference

We can conclude from this experiment that performing inference over proba-

bility distributions with a high level of factorisations is more efficient, both in

terms of time consumption and storage space, when storing the potentials using

RPTs instead of PTs.

4.5.3 Varying RPT generation parameters

The aim of this second experiment was to check the performance of the Variable

Elimination over different structures of RPTs, that is to say, when the conditional

probability distributions present different levels of factorability. This time the

RPTs were generated varying the parameter pS from 0.0 to 1, and the same

procedure as explained in Sec. 4.5.2 was performed. Smaller values of pS are

translated into RPTs representing highly factorised distributions, and the higher

the pS value, the less factorised the distribution, and therefore closer to a PT

representation. For each value of the parameter, the algorithm was run 30 times,

and the average of the times obtained is shown in Fig. 4.48, along with the

performance of probability trees, unpruned probability trees, and conditional

probability tables.
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Figure 4.48: Experiment 2: time average of the Variable Elimination algorithm

over probability trees, unpruned PTs (PTWP), CPTs and RPTs, considering

different factorisation levels.
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Figure 4.49: Experiment 2: size average, in terms of number of stored probability

values, of the biggest structure stored during the inference process over RPTs,

CPTs, probability trees and unpruned probability trees (PTWP).

The results suggest that RPTs run faster in average than PTs when the de-

gree of factorisations within the probability distribution is high (low values of

pS). The performance of RPTs decrease when the probability of obtaining a

Split node is close to 1, mainly because the RPTs operations are optimized to

search for factors within the structure, which consumes time, and also due to

the normalisation factor included in the RPTs, that increases their complexity.

However, the RPT structures remain smaller: Fig. 4.49 shows the average of the

number of probability values stored to represent the biggest structure stored in

memory during the inference process for each step of the experiment, in loga-

rithmic scale. Figure 4.50 shows the size, in terms of number of nodes in the

structure, as in the previous experiment.

We see that the tendency is the same in both figures, on average the RPT

structures are smaller, but increasing in size as the probability of Split node grows.
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Figure 4.50: Experiment 2: size average, in terms of number of stored nodes,

of the biggest structure stored during the inference process over RPTs, CPTs,

probability trees and unpruned probability trees (PTWP).

The presence of Potential nodes at the leaves of the RPTs help reducing their

size as they compress the information. However, this is not an inherent benefit of

RPTs: if we represent the same distribution with RPTs without List nodes and

PTs, using the same ordering for the variables in both trees, the size in terms

of number of nodes (as we are computing it) should be the same. This equal

ordering is not guaranteed in this experimentation, so it might be the case that

RPTs are capturing context-specific independencies hidden for the equivalent PT

representation.

4.6 Conclusions and Future Work

This chapter gives a detailed explanation of a powerful data structure for repre-

senting probabilistic potentials. RPTs present a high expressive ability, and they
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can take advantage of context-specific independencies and possible factorisations

of the probability potentials in order to obtain more compact and effective repre-

sentations than other structures like Probability Trees or Conditional Probability

Tables. In this chapter we have explained how the basic operations to perform

inference (restriction, combination and marginalisation) work on RPTs, along

with how to normalise the structure.

Several examples have been shown where it seems that depending on the na-

ture of the distributions, RPTs are able to reduce the computation time of the

inference process when comparing to PTs and CPTs, using compact representa-

tions. We expect that the ability for capturing context specific independencies

and factorising potentials is likely to be more faithful in representing the true

underlying probability distributions, avoiding overfitting problems when learning

from small data sets.
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Chapter 5

Inference with factorised

representations

The prospective importance of capturing factorisations for more effective rep-

resentations of probabilistic potentials has been discussed in previous chapters,

along with the procedure followed by Recursive Probability Trees to take advan-

tage of these particularities to speed up inference and, when possible, compact

the structure. The problem is that most of the time the presence of these fac-

torisations within the distributions is not obvious, or maybe the potentials are

not dividable at all, so building a factorised representation like an RPT is not an

straightforward task.

In this chapter we describe our proposal for finding multiplicative decompo-

sitions of probabilistic potentials, distinguishing between the obtaining of exact

and approximate decompositions. The methodology presented here is in general

valid for different representations of potentials, like probability tables and proba-

bility trees. We will focus on the latest to illustrate the algorithm, as probability

trees are the simplest case of RPTs, and the translation from a factorisation with

probability trees as factors to an equivalent Recursive Probability Tree is immedi-

ate. It is also handy to exemplify our proposal using probability trees as previous

factorisation methods operate over them, so an accurate comparison between our

proposal and existing algorithms can be directly performed.
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5.1 Motivation

Previous approaches try to deal with finding factorisations within probability

trees looking for proportional factors in subtrees. The problem of this approach,

that will be discussed later in this chapter, is that it is highly dependent on the

ordering of the variables in the tree. This means that for a given probability tree,

we might have to rebuild the tree for all the possible ordering of its variables before

finding an optimal factorisation. This approach can easily become intractable in

terms of efficiency, so it would be inconceivable to incorporate such approach, for

instance, to the inference.

In this chapter we define a new approach to the factorisation of probabilistic

potentials, providing an efficient framework to either find the exact decomposition

hidden in the potential or provide an accurate approximation. We illustrate that

the new factorisation procedure can be used for controlling the tradeoff between

efficiency and accuracy in approximate inference algorithms, through a modified

version of the Variable Elimination scheme [24; 25].

5.2 Classical factorisation of probability trees

In this section we discuss a previous approach at factorising potentials [67; 68; 69]

using probability trees. This methodology exploits the existence of proportional

subtrees, as defined in Chapter 3.7.1.3.

If proportionalities are found in the structure, then it is possible to build an

exact decomposition of the tree. The algorithm looks for proportional sub-trees

located below a given variable. Therefore, the performance is highly dependent

on the order of the variables in the tree. The method that determines if we

have encounter proportional subtrees is denoted as isProportional(PT,α). This

method takes a probability tree PT and returns true if its subtrees are propor-

tional, storing in α the proportionality factors. The algorithm returns false if the

subtrees are not proportional.

Once we notice that there are proportionalities in the tree, and we have defined

the location of the pattern, we use algorithm obtain Factors(PT,Y ,w,α,Listφ)

(Alg. 14) to compute the factorisation. This algorithm takes a probability tree
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PT, where under the context w exists a subtree rooted by Y that encodes a pro-

portionality defined by the factors in α. This algorithm modifies PT by replacing

the descendent of Y with the correspondent proportionality factors in α (lines 8

to 15 of Alg. 14), and includes a new probabiity tree in Listφ that fills with 1 all

the subtrees except the one defined by w (lines 4 to 7 of Alg. 14), that is replaced

with the subtree under the configuration {w, Y = y0}. The combination of PT

and the potential in Listφ gives the original potential as a result.

1 obtain Factors(PT,Y ,w,α,Listφ)
Input: A probability tree PT on X, a variable Y ∈ X, a configuration w,

a list of proportionality factors α and an empty list of potentials
Listφ.

Output: A modification of PT with respect to Y and an inclusion of a
potential in Listφ. The multiplication of the modified PT and
the new element of Listφ results in the original potential defined
in PT

2 begin
3 Let PTF be a copy of PT
4 for each configuration z not compatible with w do

5 Make PT
R(z)
F = 1.

6 end

7 Make PT
R(w)
F = PTR(w,Y=y0).

8 for each configuration yi ∈ ΩY do
9 if yi == y0 then

10 PTR(w,Y=y0) = 1
11 end
12 else
13 PTR(w,Y=yi) = αi
14 end

15 end
16 Listφ = Listφ ∪ PTF
17 end

Algorithm 14: Factorisation of a probability tree with proportionalities

under a given context.

Therefore, in order to perform a factorisation of a probability tree it is needed

to explore the structure searching for proportionalities, and once detected, build
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the factorisation with the described methodology. The general framework is de-

scribed in Alg. 15, where we recursively check the nodes in the tree using a

breath-first search looking for the variable Y . Once we find it (lines 12 to 22 of

Alg. 15), we check if the subtrees under the node labelled by Y are proportional

(line 16 of Alg. 15), and if so we proceed to build the decomposition (line 18 of

Alg. 15). Otherwise the tree is left untouched.

1 Factorise classic(PT,Y ,Listφ)
Input: A probability tree PT on X, a variable Y ∈ X and an empty list of

potentials Listφ.
Output: A decomposition of PT with respect to Y given as a list of

potentials Listφ.
2 begin
3 Let L be the label of PT’s root.
4 if L is a number then
5 return False.
6 end
7 else
8 Let X = L.
9 if X == Y then

10 return True.
11 end
12 else
13 for each xk ∈ ΩX do
14 Let PTk = PTR(xk).
15 if Factorise classic(PTk,Y ,Listφ) then
16 if isProportional(PTk,α) then
17 Let C = (XC = xC , X = xk).
18 obtain Factors(PT,Y ,C,α,Listφ)

19 end

20 end

21 end

22 end

23 end
24 return False.

25 end

Algorithm 15: Classical factorisation of probability trees.
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Example 46 As an example, consider the probability distribution for variables

X1, X2 and X3 represented as the probability tree shown in Fig. 5.1. It can be seen

that the sub-trees below X2, for branch X1 = 0, are proportional. The classical

factorisation procedure would decompose the tree in Fig. 5.1 as the product of the

two trees in Fig. 5.2, i.e., the value of the decomposition for a given configuration

of the involved variables, is equal to the result of multiplying the values obtained

by evaluating that configuration in both trees. Notice that, in this case, the size of

the resulting factorisation (which is the sum of the sizes of individual trees that

comprise the factorisation) is higher than the one of the original tree, but applying

the classical procedure to the tree in the left side of Fig. 5.2 it could be further

decomposed, as the two sub-trees below X2 are also proportional when X1 = 0.
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Figure 5.1: A probability tree with proportional sub-trees.

This methodology was extended to cope with cases where an exact factorisa-

tion of the probability tree could not be found. The methodology is the same as

described above, but this time they relax the algorithm isProportional(PT,α)

to find a set of proportionality coefficients that minimizes the divergence be-

tween the original tree and the factorisation. This approximate factorisation of

probability trees used to represent the probabilistic potentials [68; 69] has been

proven to be an appropriate way of controlling the tradeoff between complexity

and accuracy of propagation algorithms.

But it can even be the case that the classical factorisation algorithm (both

exact and approximate approaches) is not able to decompose a tree with respect
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Figure 5.2: Decomposition of the tree in Fig. 5.1 using Alg.15.

to a given variable, if it is located away from the root of the tree. For instance, the

tree in Fig. 5.3 can be expressed as the product of the two trees in Fig. 5.4, but

such decomposition cannot be obtained using the classical factorisation technique,

since variable X2 is located near to the leaves. In theory, classical factorisation

could find the right decomposition, if the variables in the tree are re-arranged

until the appropriate order is obtained. However, that would be too costly in

terms of time.
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Figure 5.3: Probability tree that cannot be factorised by variable X2 with classical

factorisation.
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Figure 5.4: Decomposition of the tree in Fig. 5.3, which cannot be obtained using

Alg.15.

5.3 Fast factorisation of probability trees

In order to deal with the disadvantages of the classical factorisation procedure

described above, we propose a new methodology that quickly performs a decom-

position of a given probability tree. In case that an exact decomposition of the

probability tree can not be computed, we offer an efficient measure that defines

the best variable to guide the decomposition.

5.3.1 Exact Decomposition

In what follows we propose a factorisation technique able to deal with situations

like the one described in Figs. 5.3 and 5.4, in a computationally efficient way.

The key concept is the decomposability of trees, as stated in the next definition.

Definition 4 A probability tree PT defined for a set of variables X is said to be

decomposable with respect to Y ( X if there are two probability trees PT1 and

PT2, defined for variables Y and Z ( X respectively, such that

1. Y ∩ Z = ∅,

2. X = Y ∪ Z and

3. PT = PT1 · PT2.

Notice that the tree in Fig. 5.3 is decomposable with respect to X, as the three

conditions in Def. 4 are met. A detailed procedure for finding a factorisation of
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a decomposable tree is described in Alg. 16. It makes use of the restriction

operation over probability trees as defined in Chapter 3.7.1.1.

The algorithm starts by computing the proportionality factors of the tree (lines

3 to 9 of Alg. 16), as one of the factors of the decomposition will be a probability

tree of the variables in Y as inner nodes, and the computed proportionality factors

as leaves (line 10 of Alg. 16). The second factor of the decomposition will be PT

restricted to the first configuration of the variables in Y (line 11 of Alg. 16). The

last step of the algorithm is to normalise both factors (lines 13 and 14 of Alg. 16).

1 Factorise(PT,Y)
Input: A probability tree PT on X and set of variables Y ⊂ X.
Output: A decomposition of PT with respect to Y, given as two

probability trees {T1, T2}.
2 begin
3 Let y0,...,yr−1 be the elements of ΩY.
4 Z← X \Y.
5 Let (Z = z) be any configuration for all variables in Z.

6 Let α0, . . . , αr−1 be the leaves of tree PTR(Z=z).
7 for i← 0 to r − 1 do

8 Let βi =
αi
α0

.

9 end
10 Let PT1 be a tree with the variables in Y as inner nodes and

β0, . . . , βr−1 as leaves.
11 PT2 ← PTR(Y=y0).
12 Let sPT, sPT1 and sPT2 be the sum of all the values in PT,PT1 and PT2

respectively.

13 PT1 ← PT1 ·
sPT
sPT1

.

14 PT2 ← PT2 ·
1

sPT2
.

15 return {PT1,PT2}
16 end

Algorithm 16: Fast factorisation of probability trees.

The next proposition shows that, if a tree is decomposable, then Alg. 16

actually finds a decomposition consistent with Def. 4.
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Proposition 1 Let PT be a probability tree defined for a set of variables X. If

PT is decomposable with respect to Y ( X, then Alg. 16 returns two probability

trees PT1 and PT2 that factorise PT according to Def. 4.

Proof 1 The sets of variables over which PT1 and PT2 are defined, are deter-

mined in Steps 10 and 11. It is clear that, according to the definition of restriction

in Chapter 3.7.1.1, conditions (1) and (2) in Def. 4 hold. Now we will show that

condition (3) also holds after applying Alg. 16.

If PT is decomposable, then for all y, z

PT(y, z) = PT1(y) · PT2(z). (5.1)

Also, according to the definition of the restriction operation, for all y, z

PT(y, z) = PTR(Y=y)(z). (5.2)

Let y0 be the first configuration of Y. It follows from Steps 8 and 10 that

PT1(y0) = 1. Therefore,

PT(y0, z) = PT1(y0) · PT2(z) = PT2(z), (5.3)

and according to Eq. 5.2, it means that

PTR(Y=y0)(z) = PT2(z). (5.4)

For any other configuration yj ∈ ΩY, we can write

PT(yj, z) = PT1(yj) · PT2(z) = PTR(Y=yj)(z),

and using Eq. 5.4,

PTR(Y=yj)(z) = PT1(yj) · PTR(Y=y0)(z)⇒ PT1(yj) =
PTR(Y=yj)(z)

PTR(Y=y0)(z)
,

which corresponds to the calculation in Step 8. Finally, notice that the re-scaling
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in Steps 13 and 14 do not affect this result, as

PT1 ·
sPT

sPT1
· PT2 ·

1

sPT2
= PT1 · PT2 ·

∑
yz t(y, z)

(
∑

y t1(y))(
∑

z t2(z))

= PT1 · PT2 ·
∑

y,z t(y, z)∑
y t1(y)(

∑
z t2(z))

= PT1 · PT2 ·
∑

y,z t(y, z)∑
y

∑
z t1(y)t2(z)

= PT1 · PT2 ·
∑

y,z t(y, z)∑
y

∑
z t(y, z)

= PT1 · PT2.

Therefore, it follows that PT = PT1 · PT2 and thus condition (3) in Def. 4 holds.

�

The next example illustrates the way in which Alg. 16 carries out the decom-

position.

Example 47 Let PT be the tree in Fig. 5.3. We will use Alg. 16 to decompose it

with respect to variable X2. The first action is actually performed in Step 5, where

a configuration is selected for those variables in the tree, different from the one

with respect to which we are going to decompose. In this case, a configuration for

(X1, X3) has to be selected. Assume we choose the configuration (X1 = 0, X3 = 0).

Step 6 requires the computation of tree PTR(X1=0,X3=0), which is a tree that only

contains variable X2, and whose leaves are α0 = 0.1 for X2 = 0 and α1 = 0.2 for

X2 = 1. In Step 8, the β coefficients are computed:

β0 =
α0

α0

=
0.1

0.1
= 1, β1 =

α1

α0

=
0.2

0.1
= 2.

Next, a tree is constructed in Step 10 with X2 as unique variable and β0 and

β1 as leaves. It corresponds to the leftmost tree in Fig. 5.4. Step 11 computes

the second tree in the decomposition, by restricting PT to (X2 = 0). This tree

is shown in the right side of Fig. 5.4. Finally, Steps 12, 13 and 14 re-scale the

values in the decomposition in order to guarantee that the total mass is the same

as in the original tree. The re-scaled decomposition is shown in Fig. 5.5.
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Figure 5.5: Modified decomposition obtained from Fig. 5.4 after making the total

mass be equal to the one in the original tree in Fig. 5.3.

An important feature of this decomposition scheme is its low complexity. This

is specially interesting because it allows fast factorisation to be included in other

algorithms (for instance, inference algorithms) without increasing the complexity

order.

Lemma 1 The complexity of Alg. 16 is linear in the size of the input tree, in the

worst case.

Proof 2 The complexity is determined by Steps 6, 11 and 12, which compute

the restriction of the input tree and the sum of the input and output trees. The

restriction operation is, in the worst case, linear in the size of the input tree as

it can be obtained just by visiting all the leaves in the tree and keeping those

consistent with the restricting configuration. The sum is also linear as it requires

to visit all the leaves in the tree. �

5.3.2 Approximate Decomposition

As shown in Prop. 1, Alg. 16 finds the correct factorisation of a tree that is

actually decomposable. However, it may happen that a tree is not decomposable

with respect to a set of variables, but perhaps it is possible to factorise it in such

a way that the product of the resulting trees is not far away from the original

one. The next example illustrates this fact.

Example 48 Consider the probability tree in Fig. 5.3, but with the first two leaves

equal to 0.11 and 0.19 instead of 0.1 and 0.2 respectively. After such modification,
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the tree is no longer decomposable. If we apply Alg. 16 to factorise such tree with

respect to variable X, we obtain the decomposition in Fig. 5.6. Notice that this

decomposition is actually an approximation. In fact, if we multiply again the

two trees, the result is the tree in Fig. 5.7, which is not exactly the same as the

original one.
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Figure 5.6: Decomposition of the tree in Fig. 5.7, using Alg. 16.
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Figure 5.7: Result of multiplying the two trees in Fig. 5.6.

The concept of approximate factorisation has been studied previously [68],

but the limitation of that approach is the same as the one described in the case

of exact classical factorisation. Here we analyse how to extend the factorisation

procedure explained above to the case in which a tree is not exactly decomposable.

If a tree is not exactly decomposable with respect to a given set of variables,

we propose to use the extended Kullback-Leibler divergence [70] as a basis to
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determine how far from exact factorisation a given decomposition is. This diver-

gence measure is an extension of Kullback-Leibler divergence [71] to unnormalised

potentials. It is an important feature, as in general we deal with unnormalised

potentials (i.e., potentials that do not sum up to one), especially after applying

Alg. 16. For two unnormalised potentials φ1 and φ2, it is defined as

eKL(φ1,φ2) =
∑
x

φ1(x) log
φ1(x)

φ2(x)
+
∑
x

(φ2(x)− φ1(x)). (5.5)

From now on, whenever we mention the eKL divergence between probability

trees we understand the eKL divergence between the potentials represented by

those trees. The key result is given in the next theorem, which provides an upper

bound of the eKL divergence for a given decomposition.

Theorem 1 Let PT be a probability tree to be decomposed with respect to a set

of variables Y. Let X be the set of variables for which PT is defined. Let be

Z = X \ Y. Let PT1 and PT2 be the output of algorithm Factorise(PT,Y)

(Alg. 16). Then it holds that

eKL(PT,PT1 ⊗ PT2) ≤∑
x

t(x) log t(x)−
(∑

x

t(x)

) ∑
y:t1(y)≤1

log t1(y) +
∑
z

log t2(z)

 , (5.6)

where t, t1 and t2 are the potentials represented by trees PT,PT1 and PT2

respectively.
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Proof 3

eKL(PT,PT1 ⊗ PT2) =
∑
x

t(x) log
t(x)

t1(y)t2(z)
+
∑
x

(t1(y)t2(z)− t(x))

=
∑
y,z

t(y, z) log
t(y, z)

t1(y)t2(z)
+
∑
y,z

(t1(y)t2(z)− t(y, z))

=
∑
y,z

t(y, z) (log t(y, z)− log t1(y)− log t2(z))

+
∑
y,z

(t1(y)t2(z)− t(y, z))

=
∑
y,z

t(y, z) log t(y, z)−
∑
y,z

t(y, z) log t1(y)

−
∑
y,z

t(y, z) log t2(z)

+
∑
y,z

t1(y)t2(z)−
∑
y,z

t(y, z).

Now, let us denote by t∗1 and t∗2 the potentials corresponding to the trees PT1 and

PT2 in Steps 10 and 11 of Alg. 16, i.e., before re-scaling the trees. Then,

∑
y,z

t1(y)t2(z) =
∑
y,z

t∗1(y)
sPT

sPT1
t∗2(z)

1

sPT2

=
sPT

sPT1sPT2

∑
y,z

t∗1(y)t∗2(z)

=
sPT

sPT1sPT2

(∑
y

t∗1(y)

)(∑
z

t∗2(z)

)

=
sPTsPT1sPT2
sPT1sPT2

= sPT =
∑
y,z

t(y, z),

where sPT, sPT1 and sPT2 are defined in Step 12 of Alg. 16. Hence,
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eKL(PT,PT1 ⊗ PT2) =
∑
y,z

t(y, z) log t(y, z)

−
∑
y,z

t(y, z) log t1(y)−
∑
y,z

t(y, z) log t2(z)

=
∑
y,z

t(y, z) log t(y, z)−
∑
y

(
(log t1(y))

∑
z

t(y, z)

)

−
∑
z

(
(log t2(z))

∑
y

t(y, z)

)
.

Notice that, since the values in t are not negative, it holds that∑
z

t(y, z) ≤
∑
y,z

t(y, z) (5.7)

and ∑
y

t(y, z) ≤
∑
y,z

t(y, z). (5.8)

Furthermore, the values in t2 are guaranteed to be lower than 1, and therefore

their log is a negative number. Thus, we can write

eKL(PT,PT1 ⊗ PT2) ≤
∑
y,z

t(y, z) log t(y, z)−
∑

y:t1(y)≤1

(
(log t1(y))

∑
y,z

t(y, z)

)

−
∑
z

(
(log t2(z))

∑
y,z

t(y, z)

)
=

∑
x

t(x) log t(x)

−
(∑

x

t(x)

) ∑
y:t1(y)≤1

log t1(y) +
∑
z

log t2(z)

 ,

which completes the proof. �

Note that, if a decomposition is exact, then eKL(PT,PT1 ⊗ PT2) is equal to

0, and the further a decomposition is to the exact one, the higher the value of
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the divergence reaches [70]. Observe also that the upper bound given in Eq. 5.6,

actually depends on the specific decomposition through the term

S =
∑

y:t1(y)≤1

log t1(y) +
∑
z

log t2(z),

which suggests that S could be used as a measure of the degree of decomposability

of a tree PT with respect to Y. The computation of S is rather fast, as it requires

a time linear on the size of PT1 and PT2. Hence, we use the reasoning above to

formally define the degree of decomposability of a tree with respect to a given set

of variables, called the factorisation degree, as follows.

Definition 5 Let PT be a probability tree. Let X be the set of variables for which

PT is defined, and Y ⊂ X. Let Z = X \Y. Let PT1 and PT2 be the output of

algorithm Factorise(PT,Y), described in Alg. 16. We define the factorisation

degree of PT with respect to Y as

fd(PT,Y) =
∑

y:t1(y)≤1

log t1(y) +
∑
z

log t2(z), (5.9)

where t1 and t2 are the potentials represented by PT1 and PT2 respectively.

The factorisation degree defined above provides a heuristic way to choose

the variable or set of variables with respect to which a tree can be decomposed,

producing the lowest error in terms of eKL divergence. It is only heuristic since

what is minimised is not the eKL divergence itself, but an upper bound, as given

in Theorem 1.

This heuristic suggests a way to control the tradeoff between accuracy and

complexity in approximate inference algorithms for Bayesian networks, namely

by establishing a threshold of factorisation degree, and decomposing those trees

for which there is a set of variables whose factorisation degree surpasses such

threshold. Notice that, according to Definition 5 and Theorem 1, the higher

the factorisation degree, the lower the bound above the divergence between the

original and decomposed representation of the tree. Therefore, by setting a lower

threshold, more trees are potentially decomposed, and therefore the complexity of

the inference problem is reduced as it has to deal with smaller trees, in exchange

of losing accuracy.
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The effectiveness of this approach depends on whether or not the kind of regu-

larity characterised in Definition 4 is actually found in real-world problems. In or-

der to investigate this fact, we have analysed four real-world networks commonly

used as a benchmark for approximate inference algorithms. These networks are

called Munin [72], Andes [73], Barley [66] and Water [74] (details of the networks

can be found in Appendix 7.2.4). The analysis consisted of decomposing their

conditional distributions according to the variable with highest factorisation de-

gree, and measuring the root mean squared error between the original probability

tree and its decomposition. The results are shown in Fig. 5.8, which is a beanplot

[75] that displays the empirical distribution of the errors obtained for the four

networks.

Figure 5.8: Decomposability in four real-world examples. The plot shows the

distribution of the potentials that, after decomposing, attained different levels of

error.
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The beanplot consists of a density trace for each batch mirrored to form a

polygon shape, and it details the averages of each batch using a slightly bolder

line and the overall average using a dotted line. It can be seen how a high amount

of distributions can be factorised introducing a very low error, close to zero,

specially in the case of the Water network. Of course there are many potentials

for which it is not possible to carry out the decomposition without introducing a

large error, but this is a common fact in methods for approximating probability

trees. For instance, consider the tree in Fig. 5.9. It is clear that it can no longer

be approximated using tree pruning, unless a high error in the approximation is

admitted.
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Figure 5.9: Potential φ(X1, X2, X3) represented as a pruned probability tree.

5.4 Inference with factorised representations

In Section 3.7.1.2 we discussed how a reduction in the size of the initial pro-

bability distributions in the network by pruning probability trees can simplify

the inference problem, illustrating the workflow of this methodology with the

Prune VE(B,E,e,α) algorithm (Alg. 6). The parameter α defines the threshold

for the prune of the trees, controlling in this way the accuracy of the approxima-

tions. The concepts shown in this chapter about factorisation of probability trees

can be applied in a similar fashion to try to ease the computational complexity

of the inference.

We define the algorithm Factorise VE(B,E,e,δ) (Alg. 17) that carries out

the approximation by factorising the initial distributions in the network for which

the best factorisation degree obtained by any of its variables surpasses a given
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threshold δ. Algorithm 17 can be seen as a wrapper of the specific Variable

Elimination algorithm for working with probability trees (Alg. 5) explained in

Chapter 3.7.1.2. The reason is that, just like algorithm Prune VE(B,E,e,α)

(Alg. 6), our algorithm needs to preprocess the conditional probability distribu-

tions in the network in order to factorise them prior to the inference.

Algorithm 17 takes a Bayesian network whose conditional probability distri-

butions are represented using probability trees (line 3 of Alg. 17). The first step

consists on decomposing each and every one of the probability trees (lines 5 to

16 of Alg. 17). For each distribution, we first compute the variable that gives a

higher factorisation degree according to Eq. 5.9 (line 8 of Alg. 17). If the higher

obtained factorisation degree surpasses our threshold δ, (line 9 of Alg. 17) then

we proceed to decompose the distribution (line 10 of Alg. 17). Once all the dis-

tributions are preprocessed, we call Alg. 5 with all the variables that are not

instantiated (lines 17 to 21 of Alg. 17). Note that the deletion ordering that we

follow is stablished by the position of the variables in vector X.
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1 Factorise VE(B,E,e,δ)
Input: A Bayesian network (B) and an observation (E = e). A

factorisation degree threshold (δ) for decomposing the initial
distributions.

Output: The posterior distribution of all the unobserved variables in the
network, given E = e.

2 Let X be the variables in B.
3 Let PT = {PTi, i = 1, . . . , n}, be the probability trees representing the

conditional distributions in B.
4 PT′ ← ∅.
5 foreach PT ∈ PT do
6 Let Y1, . . . , Yk be the variables in PT.
7 Compute fd(PT, Yi), i = 1, . . . , k according to Eq. 5.9.
8 Y ← arg max

i=1,...,k
fd(PT, Yi).

9 if fd(PT, Y ) > δ then
10 F← Factorise(PT,Y ).
11 end
12 else
13 F← ∅.
14 end
15 PT′ ← PT′ ∪ F.

16 end
17 R = ∅.
18 foreach W ∈ X \ E do
19 PT ← Variable Elimination(X,W ,E,e,PT′) (using Alg. 5).
20 R← R ∪ {PT}.
21 end
22 return R.

Algorithm 17: Pseudo-code of the variable elimination algorithm with fac-

torisation of the initial distributions.

5.5 Experimental evaluation

The setting we have established is simple, in order to facilitate the evaluation of

the real impact of using factorisation of probability trees as a means to control

the level of approximation, and also to be able to compare this approach with
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the approximation method based on tree pruning, as explained in the previous

section.

Using both algorithms discussed above (Factorise VE(B,E,e,δ) (Alg. 17)

and Prune VE(B,E,e,α) (Alg. 6)) we carried out a series of tests in order

to check that parameter δ is appropriate for controlling the complexity of the

inference process, in a similar way as parameter α.

The tests consisted of running both algorithms over the four real-world net-

works mentioned in Sec. 5.3.2 (Munin, Andes, Barley and Water) with different

values of α and δ, in order to compute the posterior distribution for each variable

of the networks. For each run, we measured the execution time for the whole

process, the error in the estimation of the posterior probabilities and the average

and maximum sizes of the probability trees handled during the inference process.

The error was measured using Fertig and Mann’s divergence [51], as explained in

Chapter 1.

The results of the experiments are summarised in Figs. 5.10 to 5.15. In general,

it can be said that parameter δ can be used to control the approximation level in

a similar way as parameter α (Figs. 5.10 and 5.11). The only anomaly is detected

in the case of network Munin (see the bottom part of Fig. 5.10), where for the

first point, execution time is higher than for others with lower errors. However,

the same behaviour can be observed for the α parameter in this case. It can be

seen that for networks Barley and Munin, the convergence to low error values is

reached more quickly by algorithm Factorise VE, while the contrary happens

for networks Andes and Water.
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Figure 5.10: Error vs. time for the Barley (top) and Munin (bottom,) net-

works. The solid line corresponds to method Factorise VE and the dotted one

to Prune VE.
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Figure 5.11: Error vs. time for the Andes (top) and Water (bottom) networks.

The solid line corresponds to method Factorise VE and the dotted one to

Prune VE.

Regarding the size of the potentials involved in the calculations during the

inference process, the experiments show how the average size is lower for algorithm

Factorise VE (see Figs. 5.12 and 5.14). However, the maximum size of such

potentials is lower when using algorithm Prune VE (see Figs. 5.13 and 5.15).
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Figure 5.12: Average potential size (in logarithmic scale) vs. time for the Bar-

ley (top) and Munin (bottom) networks. The solid line corresponds to method

Factorise VE and the dotted one to Prune VE.
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Figure 5.13: Maximum potential size (in logarithmic scale) vs. time for the

Barley (top) and Munin (bottom) networks. The solid line corresponds to method

Factorise VE and the dotted one to Prune VE.
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Figure 5.14: Average potential size vs. time for the Andes (top) and Water

(bottom) networks. The solid line corresponds to method Factorise VE and

the dotted one to Prune VE.
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Figure 5.15: Maximum potential size (in logarithmic scale) vs. time for the

Andes (top) and Water (bottom) networks. The solid line corresponds to method

Factorise VE and the dotted one to Prune VE.

5.6 Conclusions and Future Work

In this chapter we have introduced a new and fast procedure for factorising pro-

bability trees. An important feature of the proposed algorithm is related to its

capability for obtaining optimal decompositions in case that the tree is actually
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decomposable, in the sense that the decomposition is as compact as possible. We

have also shown that the decomposition can be carried out even if the tree does

not really contain proportional subtrees, in which case the obtained factorisation

will be approximate.

In order to deal with the degree of approximation of the possible decomposi-

tions of a potential we have introduced a measure called the factorisation degree,

that provides a heuristic to rank the variables in the domain of a potential accord-

ing to the accuracy of the decompositions that they induce. The computation of

such measure is fast enough as to be included in probabilistic inference algorithms,

where computing time is a crucial issue.

We have analysed the behaviour of the fast factorisation algorithm as a means

of controlling the tradeoff between accuracy and complexity. In the networks

tested in the experiments, the factorisation degree performed in a similar way as

tree pruning.

Possible applications of the concept of fast factorisation go beyond probabilis-

tic inference algorithms. We define as a future line of research the application of

the concepts developed in this Chapter within algorithms for learning structured

representations of probabilistic potentials, such as Recursive Probability Trees

and their possible variations.
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Learning
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Chapter 6

Learning Recursive Probability

Trees

We discuss in this chapter the process of learning RPTs. First we discuss the

possibility of transforming a probabilistic potential into an RPT following a top-

down greedy approach. This algorithm looks for context-specific independencies

along with factorisations within the original potential to build a small RPT struc-

ture. This methodology is later adjusted to cope with the learning process from

data, where we follow a very similar approach to learn a small RPT that encodes

an approximation of the potential represented by the database.

Also in this chapter we propose an algorithm for learning RPTs from data

that follows a score-and-search approach. This algorithm starts from an initial

RPT structure and builds a group of neigbours using a set of operators. The best

of this neighbours is chosen to continue the search from it, until a stop criterion

is reached.

The chapter ends with an experimental evaluation of the three proposed al-

gorithms, along with the main conlcusions and thoughts for future related works.

6.1 Learning RPTs from probabilistic potentials

This section starts by describing our proposal for building an RPT from another

probabilistic potential (a CPT, for instance). The problem of finding a minimal

RPT is not trivial, as we will discuss in Section 6.1.4, where we prove that it
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6.1 Learning RPTs from probabilistic potentials

is in fact NP-hard. Hence, we propose to obtain an RPT in a greedy way, fol-

lowing a heuristic designed for selecting Split nodes that are likely to reduce the

dependencies among the remaining variables. In this way we intend to increase

the possibilities of finding multiplicative factorisations, which constitute the basis

for obtaining RPTs of small size. Furthermore, the algorithm proposed in this

chapter can be used to obtain approximations of the original potential, when the

size of the exact representation through an RPT is too large.

The proposed algorithm is modified in Section 6.1.5, where we learn RPTs

from a database. In this case, we measure each considered RPT using a Bayesian

score, and we apply a different approach when normalising, using the Laplace

smoothing.

6.1.1 Motivation

In general, inference algorithms become less efficient as the number of variables

and general complexity of the model grow, as this implies operations with big

structures that require large storage space and increase the computational pro-

cessing time. The ability of generating a Recursive Probability Tree from a

probabilistic potential can be incorporated to the inference process, when the

management of big amounts of data becomes an issue.

6.1.2 Building an RPT from a probabilistic potential

We have designed an algorithm oriented to the detection of context-specific inde-

pendencies and also multiplicative factorisations. Context-specific independencies

are sought following an approach similar to the one used for constructing pro-

bability trees [76]. It is based on selecting variables for Split nodes according to

their information gain, as it is done by Quinlan when constructing decision trees

[77].

Quinlan’s ID3 algorithm [77] builds a decision tree from a set of examples. A

decision tree represents a sequential procedure for deciding the class membership

of a given instance of the attributes of the problem. That is, the leaves of the

decision tree give us the class for a given instance of the attributes. ID3 builds

a decision tree in a greedy way, by choosing a good test attribute to refine the
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6.1 Learning RPTs from probabilistic potentials

actual structure. To determine which attribute should be the test attribute for

a leaf node of the tree, the algorithm applies an information-theoretic measure

over all the possible attributes. This information measure gives an idea of the

gain of information by partitioning a leaf node in the tree with an attribute.

In the case of probability trees, the algorithm is very similar [58], but the

information measure is different, because each leaf in a decision tree represents a

class, while in a probability tree, each leaf represents a probability value. Then,

we need a measure particularly adapted to probabilities.

For our algorithm, the general idea is to look for context-specific indepen-

dencies following a top-down approach, choosing at each step a variable that

maximizes the information gain. This allows an ordering of the variables that

places the most informative ones at the upper nodes in the tree.

Regarding multiplicative decompositions, the basic idea is to detect groups

of variables according to their mutual information. The mutual information is a

quantity that measures the mutual dependence of two variables: it measures how

much knowing one of the variables reduces uncertainty about the other.

A threshold ε is defined in order to control when a pair of variables are con-

sidered independent based on their mutual information. The groups obtained are

later used to get the potentials making up the multiplicative decomposition.

6.1.2.1 Description of the algorithm

The starting point is a potential φ defined over a set of variables X. The goal is

to find an RPT representing φ, denoted from now on as RT.

We defined sumφ in Chapter 3 (Section 3.5.1.2) as the sum of all the values

in a potential, so the sum of values consistent with a given configuration xJ of a

subset of the potential’s variables can be written as:

sumφR(xJ) =
∑
z∈Ωz

φ(z,y)

The main algorithm used for computing RT is referred as potentialFactori-

sation (Alg. 18). The simplified workflow of this algorithm is represented in

Fig. 6.1, where we can see how it makes use of several auxiliar algorithms in
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Figure 6.1: Alg. 18 workflow
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different parts of the process. In the following we give a detailed explanation of

every one of them.

Algorithm potentialFactorisation (Alg. 18) operates with an auxiliary graph

Gφ = (X, E) with vertex set X and link set E. A link Xi − Xj belongs to E

only if the mutual information (used as a measure of dependence) between both

variables, denoted as I(Xi, Xj), exceeds a given threshold ε > 0, with:

I(Xi, Xj) =
∑

xi∈ΩXi
xj∈ΩXj

φ(xi, xj) log
φ(xi, xj)

φ(xi)φ(xj)
, (6.1)

φ(xi, xj) =
φ↓Xi,Xj(xi, xj)

sumφ

, (6.2)

φ(xi) =
φ↓Xi(xi)

sumφ

, φ(xj) =
φ↓Xj(xj)

sumφ

, (6.3)

where φ↓Xi,Xj , φ↓Xi and φ↓Xj are the marginals of φ over the sets {Xi, Xj}, {Xi}
and {Xj} respectively. Links Xi −Xj are weighted with I(Xi, Xj).

Algorithm 18 computesGφ in line 4. Line 6 is focused on analysing Gφ, search-

ing for connected components. There are two possible scenarios to consider: (i)

Gφ is decomposed into n components C = {C1, . . . ,Cn} and (ii) Gφ contains

a single connected component. Both of them will be handled, respectively, with

auxiliary algorithms multiplicativeFactorisation (line 11) and contextSpeci-

ficFactorisation (line 14) respectively. These algorithms will be described in the

next sections.
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6.1 Learning RPTs from probabilistic potentials

1 potentialFactorisation(φ)

Input: A potential φ

Output: RT, an RPT for φ

2 begin

3 // Step 1: compute Gφ

4 Gφ → graph for variables dependencies in φ

5 // Step 2: graph analysis

6 Gφ analysis looking for connected components

7 // Several scenarios are possible according to Gφ

8 // components

9 if Gφ is partitioned into components C = {C1 . . .Cn} then

10 // Step 3: multiplicative factorisation

11 RT ← multiplicativeFactorisation(φ,C)

12 else

13 // Only one component: decomposition with Step 4

14 RT ← contextSpecificFactorisation(φ, Gφ)

15 end

16 return RT

17 end

Algorithm 18: Main body of potential factorisation algorithm

6.1.2.2 Computing multiplicative factorisations

When Gφ is partitioned as C = {C1, . . . ,Cn} the potential to decompose can be

expressed as

φ(X) = f1(C1) . . . fn(Cn)Sn, (6.4)

where fi(Ci) = φ↓Ci(X), i = 1, . . . , n, are the resulting factors and Sn is a nor-

malisation constant that guarantees that φ and its factored counterpart sum up

to the same value:

Sn =

∑
x∈ΩX

φ(x)∑
x∈ΩX

∏n
i=1 fi(x

↓Ci)
. (6.5)
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This decomposition is computed using multiplicativeFactorisation (Alg. 19).

The result will be a List node LN with a child (factor) for every component Ci

in Gφ.

Algorithm 19 iterates on the set of components C (lines 6 to 23). Every

iteration yields a child of LN . Two situations may arise when dealing with a

component Ci. The first one is focused on components with one or two variables

(lines 8 to 14). In this case a Potential node will represent the corresponding

factor f(Ci). The second will work with components with more than two variables

(lines 15 to 22) and generates new recursive calls to potentialFactorisation for

the analysis of φ↓Ci (line 19). The final part of Algorithm 19 computes the

normalisation constant (line 25) as shown in Eq. 6.5. This constant will be

represented with a Value node included as the last child of LN .

Example 49 Consider the network represented in Fig. 6.2 as the dependencies

graph computed in the first part of algorithm potentialFactorisation (line 3 of

Alg. 18). The graph is disconnected, so algorithm multiplicativeFactorisation

(Alg. 19) is called (line 10 of Alg. 18).

X2 X3

X4

X1

X5

X6

X7

C2 = {φ2(X6, X7)}C1 = {φ1(X1, X2, X3, X4, X5)}

Figure 6.2: Dependencies graph computed during the factorisation process.

Alg. 19 analises each connected component separately, storing the independent

results as children of a List node. Finally, a normalisation constant is stored to
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ensure the correctness of the representation (lines 24 to 28 of Alg. 19). In the

example proposed in Fig. 6.2, the network is composed of two connected compo-

nents: C1 and C2. The first component, C1, is analised by recursively calling to

Alg. 18, as C1’s number of variables is higher than 2 (lines 15 to 22 of Alg. 19).

The second component, C2, as it only contains two variables, is directly repre-

sented as a Potential node (lines 8 to 14 of Alg. 19). The built RPT at this stage

of the process is shown in Fig. 6.3.

potentialFactorisation(φ1) φ2(X6, X7) Sn

Figure 6.3: RPT representing the situation described in Fig. 6.2.
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.

1 multiplicativeFactorisation(φ,C)

Input:

Potential φ

List C of connected components in Gφ

Output: LN , a List node

2 begin

3 // Makes LN, a new and empty List node

4 LN ← new List Node

5 // Iterates on the list of components C

6 for each Ci in C do

7 // Considers the number of variables in the component

8 if Ci contains 1 or 2 variables then

9 // Makes PN a new Potential node

10 PN ← new Potential node;

11 // PN content: potential for variables in Ci

12 PN ← φ↓XCi ;

13 // Adds new node PN as factor in the List node

14 Add PN as LN child

15 else

16 // Factor with more than 2 variables: more analysis

17 // required. A new RPT TCi will be produced after

18 // analyzing Ci. New call to potentialFactorisation

19 TCi ← potentialFactorisation(φ↓Ci)

20 // Adds TCi as new factor in the List node

21 Add TCi as LN child

22 end

23 end

24 // Computes the normalisation constant

25 Sn ← computed normalisation constant (Eq. 6.5)

26 // Adds a new Value node V N for the constant

27 V N ← new Value node for Sn;

28 Add V N to LN ;

29 return LN

30 end

Algorithm 19: Algorithm to compute multiplicative factorisations.
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6.1.2.3 Detecting context-specific independencies

When Gφ is connected, φ cannot be decomposed as a product of factors, but

still it may be possible to obtain such decompositions under some context, due

to context-specific independencies. This condition will be analysed checking the

degree of dependence between every variable Xi and those other variables belong-

ing to its neighbourhood, ne(Xi). The above mentioned degree of dependence is

computed as

VXi =
∑

Xj∈ne(Xi)
I(Xi, Xj). (6.6)

This is the main goal of Algorithm contextSpecificFactorisation (see Algo-

rithm 20), which computes and returns RT, the RPT representing the potential

received as argument.

The main block of Algorithm 20 consists of a loop iterating on the variables

in dom(φ) until completing the decomposition (lines 6 to 30). The variables will

be selected according to their degrees of dependence. The loop starts off testing

if the potential under consideration is defined over one or two variables, which is

in fact the stop condition. In such case, the potential will be decomposed and

added as a Potential node to RT (lines 8 - 12). The rest of the loop (lines 13 to

29) is devoted to removing variables step by step and checking the corresponding

changes in Gφ.

Every iteration of the loop selects the variable maximizing the degree of depen-

dence in order to look for the context in which the potential might be factorised.

The chosen variable corresponds to:

Xmax = arg max
Xi

VXi . (6.7)

Once Xmax is selected it will be included in S1 or S2. These are auxiliary

vectors of variables that represent two types of variables: those that are closely

related to all the others (S1) and those variables that are only highly dependent

of only a subset of the variables in the component (S2) (line 3 of Alg. con-

textSpecificFactorisation). Variables in S1 will be translated into Split nodes

in the RPT representation, whilst the variables in S2 will be used along with
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the variables in the resultant connected components for further analysis. Note

that the ordering in which the variables are selected is very important, as every

deletion is dependent on the previous one. The splitting of the tree with the

variables of S1 will be performed using a first-in-first-out fashion.

Therefore, Xmax will be included in S1 if it is completely connected to the

rest of variables in Gφ. Otherwise it will be included in S2. In both cases, Xmax

and its links will be removed from Gφ producing a new graph GXmax
φ that will be

considered in further iterations.

The remaining links are re-weighted with the value of the mutual information

conditional on Xmax, computed as

I(Xi, Xj|Xmax) =
∑

xi∈ΩXi
xj∈ΩXj

xmax∈ΩXmax

φ(xi, xj, xmax) log
φ(xi, xj|xmax)

φ(xi|xmax)φ(xj|xmax)
(6.8)

where

φ(xi, xj, xmax) =
φ↓Xi,Xj ,Xmax(xi, xj, xmax)

sumφ

, (6.9)

φ(xi, xj|xmax) =
φ↓Xi,Xj ,Xmax(xi, xj, xmax)

φ↓Xmax(xmax)
, (6.10)

φ(xi|xmax) =
φ↓Xi,Xmax(xi, xmax)

φ↓Xmax(xmax)
, φ(xj|xmax) =

φ↓Xj ,Xmax(xj, xmax)

φ↓Xmax(xmax)
. (6.11)
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.

1 contextSpecificFactorisation(φ,Gφ)

Input:

Potential φ

Dependencies graph Gφ

Output: RT, an RPT for φ

2 begin

3 S1, S2 ← empty vectors of variables;

4 GXmaxφ ← Gφ // Initially the graph to analyse is Gφ

5 stopCondition← false // Initially stopCondition is false

6 repeat

7 if |dom(φ)| < 3 // Number of variables in φ < 3

8 then

9 PN ← new Potential node for φ // PN: new Potential node

10 RT ← PN // TP: output of the algorithm

11 stopCondition← true

12 end

13 else

14 Xmax ← selected var. for removing // Selects Xmax with

Eq.6.23

15 classifies Xmax into S1 or S2;

16 GXmaxφ graph after deleting Xmax and its links

17 Iφ(Xmax)← value of information gain

18 if GXmaxφ is connected and |dom(φ)| > 2 then

19 if Iφ(Xmax) exceeds the threshold (Eq. 6.19) then

20 RT ← independentFactorisation(φ,S1);

21 stopCondition← true;

22 end

23 end

24 else

25 stopCondition← true;

26 if S1 = ∅ then RT ← multiplicativeFactorisation(φ,C);

27 else RT ← splitChainFactorisation(φ,C,S1,S2);

28 end

29 end

30 until stopCondition is true;

31 return RT

32 end

Algorithm 20: Algorithm to search for context-specific independencies.
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According to the structure of GXmax
φ , the algorithm proceeds as follows:

• GXmax
φ remains connected after removing Xmax. Then the decomposition is

guided by the content of S1 through a call to independentFactorisation,

(line 20 of Algorithm 20). This call relies on the information gain produced

by splitting on Xmax. The intuitive idea is to decide when the informa-

tion gain generated by splitting by the current context (determined by the

variables in S1) is high enough to start analyzing the restricted potentials

independently. This process is controlled by a parameter δ, described in

detail in Section 6.1.2.6, that sets the amount of information gain that we

consider enough to split the tree by a given variable.

Example 50 Consider the scenario proposed in Fig. 6.4, where the graph in the

left represents the whole cluster that is being analysed. Imagine that the first

removed variable was X4 that, as it was connected to all the others, is stored

in S1. As the cluster remains connected, we check if X4 surpasses the threshold

of information gain. Imagine that this threshold is not surpassed, so we keep

removing variables from the cluster. The next variable that maximized the degree

of dependence was X6, that is only connected to X1 and X5, so it is stored in S2.

Again, as the graph is still connected, we look for another variable to be removed,

that in this case is X5. This variable is connected to all the remaining variables

in the cluster, so we introduce it in S1. Again, we check the information gain

generated by splitting by X4 and X5, and we discover that it is higher than the

threshold, so we proceed to apply Alg. 21. This algorithm basically splits by all the

current variables in S1, and applies Alg. 18 to the original potential restricted to

the correspondent context, for every possible combination of states of the variables

in S1.
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S1 = {X4, X5}
S2 = {X6}

φ1 = φ(X1, X2, X3, X6|X4 = 0, X5 = 0)

φ2 = φ(X1, X2, X3, X6|X4 = 0, X5 = 1)

φ3 = φ(X1, X2, X3, X6|X4 = 1, X5 = 0)

φ4 = φ(X1, X2, X3, X6|X4 = 1, X5 = 1)

Figure 6.4: Step of the algorithm when the removal of X5 exceeds the threshold

of information gain.

• GXmax
φ is disconnected and S1 is empty. Then φ is decomposed as a mul-

tiplicative factorisation, (see the call to multiplicativeFactorisation in

line 26 of Algorithm 20).

Example 51 This scenario is represented in Fig. 6.5, where we have discon-

nected the graph into two clusters after removing variable X5. This variable goes

into S2 because it was only directly connected to X3 and X2, but not to X1 nor

X4.

The way of representing this scenario is by creating a List node with a children

for each resultant connected component, plus an extra child for the normalisation

constant. The potential related to each cluster will include the variables in the

cluster plus the variables in S2, in this case only X5. Algorithm 18 is afterwards

applied to each child independently.
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X1

X4X2

X5

X3

φ1 φ2 Sn

S1 = {}
S2 = {X5}

φ1 = φ↓{X1,X2,X4,X5}

φ2 = φ↓{X3,X5}

Figure 6.5: Step of the algorithm when we find a division in the graph and S1 is

empty.

• GXmax
φ is disconnected and S1 is not empty. Then a chain of Split nodes

will be considered (with a call to splitChainFactorisation, Algorithm 20,

line 27).

Example 52 Consider the graph in Fig. 6.6. The first variable removed from

the graph was X6 that, as it was connected to all the others, was introduced into

S1. As the removal of X6 did not disconnect the graph neither generated enough

information gain, then we chose another variable to remove, that in this case

was X5. As X5 was not connected to all the variables, we stored it into S2. The

removal of X5 produces the disconnection of the graph into two clusters, and so

we proceed to represent this situation using an RPT.

Algorithm 22 takes the original potential, the obtained set of clusters and both

sets S1 and S2 as arguments. The representation will consist of a Split chain of the

variables in S1, that in this case consists only of X6, and a factorisation for each

context defined by a List node with as many children as connected components are

plus the normalisation factors. Each subfactor with enough size will be analysed

afterwards.
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S1 = {X6}
S2 = {X5}

φ1 = (φR(X6=0))↓(X3,X5)

φ2 = (φR(X6=0))↓(X1,X2,X4,X5)

φ3 = (φR(X6=1))↓(X3,X5)

φ4 = (φR(X6=1))↓(X1,X2,X4,X5)

Figure 6.6: Step of the algorithm when we find a division in the graph and we

have variables in S1.

6.1.2.4 independentFactorisation algorithm

This auxiliary algorithm is called within Algorithm 20 when the information gain

due to splitting on Xmax exceeds the threshold described in the previous section.

This algorithm receives as arguments the potential to decompose, φ, and the set

S1, that contains the variables connected to the rest of variables in GXmax
φ when

removed. The structure of the procedure is described in Algorithm 21.
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1 independentFactorisation(φ,S1); Input:

Potential φ

Vector of variables S1

Output: RT, an RPT with a Split node as root

2 begin

3 // Makes a chain of Split nodes for S1 variables

4 RT ← root node in the split chain

5 // Iterates on S1 configurations

6 for each possible value s1 of S1 do

7 // Tries a decomposition for the potential restricted to

8 // s1 configuration: φR(S1=s1)

9 RTs1 ← potentialFactorisation(φR(S1=s1)) ;

10 // Adds the resulting RPT to RT

11 Add RTs1 to leaf node for s1 configuration in RT ;

12 end

13 return RT

14 end

Algorithm 21: Algorithm to independently factorise the branches of a Split

chain.

independentFactorisation creates a Split chain (a set of Split nodes, one

per variable in S1) This Split chain will follow the order in which the variables were

introduced into S1, that is to say, the first variable introduced will correspond

to the root of the chain, the next variable will split the tree next, and so on. A

loop (lines 6 to 12) iterates on the configurations in ΩS1 , making new calls to

potentialFactorisation. The potential passed as argument is φR(S1=s1) (line 9)

(φ restricted to the current configuration). The output of these calls is included

as children in RT (line 11).

6.1.2.5 splitChainFactorisation algorithm

This algorithm is called from Algorithm 20 when either GXmax
φ is disconnected in

C components or the remaining variables in the connected component is less or

equal than 2, and S1 is not empty. The RPT to be computed by such algorithm
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should reflect the conditional dependence on the variables in S1, including a chain

of Split nodes (a complete tree defined over this set of variables). Each leaf of

this tree corresponds to a complete configuration for the variables in S1.

The splitChainFactorisation algorithm distinguishes two different scenar-

ios:

• C contains a single component. In this case the factor assigned to the leaf

node in the split chain for each configuration s1 is the output of a new call

to potentialFactorisation, passing as argument the potential restricted

to configuration s1 (lines 24 to 28).

Example 53 This scenario is represented in Fig. 6.7, where after removing the

variables X2,X3 and X4 the set of remaining variables in the connected component

only contains two variables. The algorithm builds a Split chain with the variables

stored in S1, and for each branch, we apply Alg. 18 to the correspondent potential.
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X4

X5

X2

X3

φ1
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φ2

1

0

X3

φ3

0

φ4

1

1

S1 = {X2, X3}
S2 = {X4}

φ1 = φ(X1, X5, X4|X2 = 0, X3 = 0)

φ2 = φ(X1, X5, X4|X2 = 0, X3 = 1)

φ3 = φ(X1, X5, X4|X2 = 1, X3 = 0)

φ4 = φ(X1, X5, X4|X2 = 1, X3 = 1)

Figure 6.7: Creation of a Split chain.

• C contains several components (lines 7 to 23). Then the algorithm computes

a multiplicative factorisation producing a List node LN whose factors are

the result of decomposing each component. Components will be considered

one by one (lines 11-17). Focusing on the iteration for the i-th component,
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a new call to potentialFactorisation is made, but using as argument φ

restricted to the configuration s1 and marginalised to keep the variables in

Ci∪S2 (line 15). The result is stored as the i-th child in LN (line 16). The

last child in this node is the normalisation constant. Once computed the

multiplicative factorisation, LN is stored in the leaf node of the split chain

corresponding to s1 (line 22).

Example 54 Consider the situation represented in Fig. 6.8. After removing X4

and X3 we find a decomposition of the graph in two connected components, so

we proceed to build an RPT with a Split chain of the variables in S1, in this

example just X4, and in the leaves we build the factorisation, that has a List node

as a root, and one child per resultant connected component plus a normalisation

factor. Again, we apply Alg. 18 to every correspondent subfactor.

X5

X7X6

X4X3

X1

X2

X4

0 1

φ1 φ2 Sn1 φ3 φ4 Sn2

S1 = {X4}
S2 = {X3}

φ1 = (φR(X4=0))↓(X1,X2,X3,X4)

φ2 = (φR(X4=0))↓(X5,X6,X7,X3,X4)

φ3 = (φR(X4=1))↓(X1,X2,X3,X4)

φ4 = (φR(X4=1))↓(X5,X6,X7,X3,X4)

Figure 6.8: Creation of a Split chain with a decomposition of the auxiliar graph.

The normalisation constant is computed as follows. Assume that leaf h is

reached by configuration sh. The potential assigned to the leaf is φh = φR(S1=sh)
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(denoting the potential restricted to configuration sh). The complete decomposi-

tion of φh (represented in the RPT with a List node) is given by the components

C = {C1, . . . ,Cn}:

φh(c1 . . . cn, s2) = Sh
n∏
i=1

(φh)↓Ci∪S2(ci, s2). (6.12)

Sh is computed according to the nature of the factorisation performed, in order

to minimize the possible normalisation error produced when factoring. When the

factors do not share variables (i.e. S2 is an empty set) then Sh is a normalisation

constant that is computed as

Sh =

∑
c∈ΩC
s2∈ΩS2

φh(c1 . . . cn, s2)∑
c∈ΩC
s2∈ΩS2

∏n
i=1(φh)↓Ci∪S2(ci, s2)

. (6.13)

Proposition 2 Otherwise, Sh is a potential that depends on the variables in S2

(common variables of all the factors), Sh(s2) can be computed as:

Sh(s2) =
(
(φh)↓S2(s2)

)1−n
. (6.14)

Proof 4 As Sh(s2) depends on the variables in S2, equation (6.13) can be rewrit-

ten as:

Sh(s2) =

∑
c∈ΩC

φh(c1 . . . cn, s2)∑
c∈ΩC

∏n
i=1(φh)↓Ci∪S2(ci, s2)

.

In the denominator, the potentials in the product do not share any variable

but those included in S2, so the previous formula can be written as:

Sh(s2) =

∑
c∈ΩC

φh(c1 . . . cn, s2)∏n
i=1

∑
c∈ΩC

(φh)↓Ci∪S2(ci, s2)
=

(φh)↓S2(s2)∏n
i=1(φh)↓S2(s2)

.

which completes the proof. �

172



6.1 Learning RPTs from probabilistic potentials

.

1 splitChainFactorisation(φ,C,S1,S2)

Input:

Potential φ

List C of connected components in Gφ

Vectors of variables S1 and S2

Output: RT, an RPT with a Split node as root

2 begin

3 // Makes a chain of Split nodes for S1 variables

4 RT ← root node in the split chain ;

5 for each possible value s1 of S1 do

6 // Checks the number of components in C

7 if C has more than one component then

8 // There will be a factor per component

9 // The factors will be stored in a List node

10 LN ← new List Node ;

11 for each element Ci in C do

12 // Tries a decomposition for the potential according

13 // to configuration s1: φR(S1=s1)

14 // but marginalised to variables in Ci ∪ S2

15 RTs1 ← potentialFactorisation((φR(S1=s1))↓Ci∪S2);

16 Add RTs1 to LN ;

17 end

18 // Computes the normalisation constant

19 Sh ← computed normalisation potential (Eq. (6.14));

20 PN ← new Potential node for Sh;

21 Add PN to LN ;

22 Add LN to leaf node for s1 configuration in RT ;

23 end

24 else

25 RTs1 ← potentialFactorisation (φR(S1=s1))

26 // Adds the resulting RPT to RT

27 Add RTs1 to leaf node for s1 configuration in RT ;

28 end

29 end

30 return RT

31 end

Algorithm 22: Algorithm to represent the RPT once a factorisation is

found.
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Example 55 We can find another example of a decomposition of the graph in

Fig. 6.9. The components conforming the decomposition are C1 = {X5, X6} and

C2 = {X2, X4, X7}. Assume that S1 = {X1} and S2 = {X3}. Then the tree will

contain a Split node for X1. Factors f3 and f6 represent normalising constants.

New decompositions should be analysed for f1, f2, f4 and f5 with recursive calls

to the algorithm.

Sometimes, to simplify the notation and when the marginal variables are

explicitly given in the potential arguments, we will write (φh)↓Ci∪S2(ci, s2) as

φh(ci, s2) and (φh)↓S2(s2) as φh(s2).

X2

X7X4

X1X3

X5

X6

X1

0 1

φ1 φ2 Sn1 φ3 φ4 Sn2

S1 = {X1}
S2 = {X3}

φ1 = (φR(X4=0))↓(X5,X6,X3)

φ2 = (φR(X4=0))↓(X2,X4,X7,X3)

φ3 = (φR(X4=1))↓(X5,X6,X3)

φ4 = (φR(X4=1))↓(X2,X4,X7,X3)

Figure 6.9: Example of Gφ complete division. New recursive calls required for

factors φ1, φ2, φ3 and φ4.

6.1.2.6 Setting the sensitivity of context-specific independencies de-

tection

The introduction of a new Split node through a call to Alg. 21 in Algorithm 20

(lines 19 to 22) depends on the information gain produced by splitting φ on

Xmax (the variable selected for splitting). The information gain is computed
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as the difference between the Kullback-Leibler divergence between the potential

obtained after splitting by Xmax and the original potential. This difference can

be computed as follows [76]:

Iφ(Xmax) = sumφ(log|ΩXmax| − log sumφ)+∑
xi∈ΩXmax

sumφR(Xmax=xi)log sum
R(Xmax=xi)
φ (6.15)

Proposition 3 The maximum value for Iφ(Xmax) can be obtained using the prop-

erties of Shannon’s entropy, as:

Iφ(Xmax) ≤ sumφ (log |ΩXmax| − log sumφ) +NXmax logNXmax . (6.16)

Proof 5 Define NXmax =
∑

xi∈ΩXmax
sum

R(Xmax=xi)
φ (i.e. the sum of the values

of the potential corresponding to the configurations of Xmax). Then, it holds that

− 1

NXmax

∑
xi∈ΩXmax

sum
R(Xmax=xi)
φ log

sum
R(Xmax=xi)
φ

NXmax

≥ 0, (6.17)

and therefore

− 1

NXmax

∑
xi∈ΩXmax

sum
R(Xmax=xi)
φ (log sum

R(Xmax=xi)
φ − logNXmax) ≥ 0⇒

− 1

NXmax

{
∑

xi∈ΩXmax

sum
R(Xmax=xi)
φ log sum

R(Xmax=xi)
φ −

∑
xi∈ΩXmax

sum
R(Xmax=xi)
φ logNXmax} ≥ 0⇒

∑
xi∈ΩXmax

sum
R(Xmax=xi)
φ log sum

R(Xmax=xi)
φ ≤

logNXmax

∑
xi∈ΩXmax

sum
R(Xmax=xi)
φ = NXmax logNXmax . (6.18)

Hence, replacing in (6.15) the upper bound obtained in (6.18), we obtain

(6.16), which completes the proof. �
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Using this result, the threshold for detecting context-specific independencies

will be controlled by the parameter 0 ≤ δ ≤ 1, so that the variable Xmax will be

used for introducing a new Split node if

Iφ(Xmax) ≥ δ (sumφ(log |Xmax| − log sumφ) +NXmax logNXmax) . (6.19)

Thus, the value of δ controls the behaviour of the algorithm regulating the

degree of context-specific independencies detection. Note that values of δ close

to 1 indicate that only when the information gain is close to its upper bound, the

split will be carried out.

6.1.3 Examples

In this section we illustrate the algorithm with two examples of learning from

potentials with different features. Although the examples are not exhaustive

they offer some insights about its application and results.

Example 56 Consider a potential φ defined over X = {X1, X2, X3, X4} rep-

resented as a probability tree (Fig. 6.10). φ can be obtained combining the

two potentials included in Fig. 6.11, that is: φ(X1, X2, X3, X4) = φ1(X1, X2) ·
φ2(X3, X4).
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Figure 6.10: Potential φ to be decomposed in Example 1.
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Figure 6.11: Factors generating φ in Example 1.

When φ is passed as an argument to Algorithm potentialFactorisation,

the first step is to construct Gφ. This involves the computation of the mutual

information between every pair of variables. In this example the value selected

for the threshold is ε = 1E − 6. The selection of this value is justified in order to

dismiss small positive values of mutual information for independent variables due

to round-off errors. The values of mutual information for each pair of variables

are:
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• I(X1, X2) = 0.148 > ε,

• I(X1, X3) = 1.28E − 16 < ε,

• I(X1, X4) = 2.20E − 16 < ε,

• I(X2, X3) = 2.22E − 16 < ε,

• I(X2, X4) = 2.22E − 16 < ε,

• I(X3, X4) = 0.005 > ε.

Therefore Gφ contains only two links, X1−X2 and X3−X4, and is partitioned

into two components: C1 = {X1, X2} and C2 = {X3, X4}. A call to multiplica-

tiveFactorisation will decompose φ according to the components (see line 11,

Algorithm 18). This algorithm iterates over each component (lines 6 to 23 in Al-

gorithm 19). As both factors are defined over 2 variables, a direct decomposition

is computed through marginalisation. That is, the factors obtained are φ1(X1, X2)

and φ2(X3, X4) (see Fig. 6.12).

X1

X2

0.2

0

1.2

1

0

X2

1.8

0

0.8

1

1

X3

X4

0.6

0

0.8

1

0

X4

1.4

0

1.2

1

1

·

φ1(X1, X2) φ2(X3, X4)

Figure 6.12: Factors obtained from the decomposition in Example 1.

The third factor is the normalisation constant computed as stated in Eq. 6.5.

The learned RPT is the one displayed in Fig. 6.13.
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φ1(X1, X2) φ2(X3, X4) 0.25

Figure 6.13: RPT learned in Example 1.
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Figure 6.14: Potential φ considered in Example 2.

Example 57 Consider a potential φ defined over X = {X1, X2, X3} as shown

in Fig. 6.14, and a threshold value ε = 0.001. Again, the first operation car-

ried out by Algorithm potentialFactorisation is the computation of the mutual

information values in order to build Gφ. These values are:

• I(X1, X2) = 0.039 > ε,

• I(X1, X3) = 0.012 > ε,

• I(X2, X3) = 0.021 > ε.
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Hence, Gφ is a complete graph with a single component and Algorithm con-

textSpecificFactorisation is invoked from potentialFactorisation (line 14

in Algorithm 18). Then contextSpecificFactorisation receives both φ and Gφ

as argument and the block in line 13 is executed as |ΩX| = 3. The next step selects

a candidate variable for deletion, computing the connectivity values as defined in

Eq. (6.22). These values are: V (X1) = 0.051, V (X2) = 0.06 and V (X3) = 0.033.

Therefore, X2 is the selected variable (Xmax) and is inserted in S1 (because it

was connected to X2 and X3 in Gφ). Now GX2
φ is obtained by computing the new

weight for the remaining link: 0.025 > ε for X1 −X3. The information gain for

X2 is 0.099. As the maximum information gain is 1.73. Assuming a threshold

δ = 0.05, then Eq. (6.19) holds and Algorithm independentFactorisation is

invoked.

As S1 6= ∅, a Split chain is built with the variables in S1 (in this case only

X2). The loop in independentFactorisation, lines 6-12, considers each config-

uration in ΩS1, producing new calls to potentialFactorisation with arguments

φR(X2=x21) and φR(X2=x22) respectively. These calls finally produce new invoca-

tions of contextSpecificFactorisation (because GX2
φ contains a single compo-

nent). These calls produce new Potential nodes for φR(X2=x21) and φR(X2=x22).

The learned RPT is shown in Fig. 6.15, where the potential nodes are represented

as PTs whose branches containing repeated values have been pruned.
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Figure 6.15: RPT learned in Example 2.

6.1.4 Problem Complexity and Properties of the Algo-

rithm

6.1.4.1 Problem Complexity

Obtaining minimum size representations of a probabilistic potential by means of

an RPT is not a trivial problem, as we establish in the next proposition. By

the size of an RPT RT, we mean the number of Value nodes plus the sizes of

the potential nodes (bounded above by the product of the cardinalities of the

domains ΩXi of all the variables Xi in RT).

Proposition 4 Let φ be a probabilistic potential represented by an RPT. Then,

the problem of finding an RPT of minimum size representing φ is NP-hard.

Proof 6 By reduction from 3-SAT. Let I be an instance of 3-SAT with a set of

variables U = {u1, . . . , um} and a set of clauses C = {C1, . . . , Ck}. Let RT be an

RPT with a List root node. Let U denote the variables of RT and assume the set

of possible values for each variable is {0, 1}.
The List node will have one element Ti for each one of the clauses Ci, where

Ti is a potential defined for the variables {ui1 , ui2 , ui3} in clause Ci. The value of
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the potential for a combination of values (ui1 = r1, ui2 = r2, ui3 = r3) will be 1 if

the clause is true for this combination of true values of the variables (identifying

0 with false and 1 with true) and 0 otherwise.

It is clear that the RPT RT represents a potential which has a value of 1

for a configuration of values (u1 = r1, . . . , um = rm) if all the clauses are true.

The 3-SAT problem is equivalent to the fact that the potential represented by the

RPT RT is identically 0. If the set of non trivial clauses (i.e. those clauses non

containing ui and ¬ui) is different from the empty set, then the potential will have

some 0 values, and the fact that the set of clauses can be satisfied is equivalent to

the fact that the minimum size of an RPT representing this potential is greater

or equal to 2: if the clauses can be satisfied there is a 0 value and we need, at

least, another leaf to represent the 1 corresponding to the satisfying configuration;

if the clauses cannot be satisfied, then we can represent the potential by means of

an RPT with only one node which is a Value node containing a 0. �

6.1.4.2 Properties of the algorithm

Union property

If φ is a non-null potential defined for variables dom(φ), then we can always

regard it as a probability distribution obtained by the normalisation, i.e. φ/sumφ.

This probability distribution determines a family of conditional independence

relationships. In what follows, I(X1,X2|S = s) means that the set of variables

X1 is independent of the set of variables X2 given the configuration (S = s).

We say that the union property with respect to configurations holds in φ if for

the probability distribution obtained by normalising φ, it holds that for any

configuration (S = s),

I(X1,X2|S = s) and I(X1,X3|S = s)⇒ I(X1,X2 ∪X3|S = s)

A consequence of this property is that if there is a dependence between two

sets of variables X and Y given S = s, then it is always possible to find two

variables X ∈ X and Y ∈ Y such that X and Y are dependent given S = s. The

importance of this consequence, from an algorithmic point of view, is remarkable,

as it guarantees that in order to detect dependencies between sets of variables,
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it is enough to check dependencies between individual variables. Therefore, if we

have n variables it is enough to check dependencies between n(n− 1)/2 pairs of

variables, instead of
∑n−1

i=1

(
n
i

)
(2n−i − 2) pairs of non trivial disjoint subsets of n

variables. In general, we can say that it is sensible to assume that any tractable

algorithm to detect dependencies rely on this property to guarantee correctness.

For example, when learning Bayesian networks from data, faithfulness is usually

assumed, which is a much stronger assumption than union [22].

Even if ε = 0, there is no guarantee that the RPT produced by Algorithm 18

will represent φ exactly. The reason is that it checks pairwise independence rela-

tionships between variables and it does not guarantee the independence between

sets of variables. However, if the union property holds in the probability distri-

bution associated with φ (the probability distribution given by the potential φ

after normalisation) then it returns an exact representation.

Proposition 5 Let φ be a potential for which the union property with respect

to configurations holds. Then, algorithm potentialFactorisation (Alg. 18), with

ε = 0, returns an RPT which is an exact representation of φ.

Proof 7 The proof can be given with a recursive argument. On the leaves (lines

7-12 of Alg. 20, lines 8-14 of Alg. 19, line 11 of Alg. 21, and lines 24-28 of

Alg. 22) the representation of the potential is exact.

When Split nodes are included (Alg. 21 and Alg. 22), then we select a child for

each configuration S1 = s1 of split variables. Each one of these children represents

the potential φR(S1=s1), so that the node will represent the entire potential φ.

When a List node is created (lines 7-23 of Alg. 22 and Alg. 19), the exact

decomposition is a result of the following facts:

1. When ε = 0, there is a link between two variables Xi and Xj in the graph

associated with the potential φ only if the mutual information between Xi

and Xj is > 0 (computed from the normalised potential), i.e. when the

variables are not independent. When a variable Xmax is removed from the

graph and added to sets S1 and S2, the mutual information is computed

conditional on Xmax, and thus, when a link between two variables disappears

it means that the variables are conditionally independent given Xmax. From
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this point onwards, all the computations related to the graph are carried out

by previously conditioning on Xmax.

2. As a consequence of this, when X\{Xmax1 , . . . , Xmaxn} is decomposed into n

components {C1, . . . ,Cn}, then any pair of variables X ∈ Ci, Y ∈ Cj (i 6=
j) are conditionally independent given {Xmax1 , . . . , Xmaxn} = S1 ∪ S2.

3. As a consequence of the union property, it follows that all the components

{C1, . . . ,Cn} are conditionally independent among them given the variables

in S1 ∪ S2.

4. When factoring with S1 6= ∅, it means that Split nodes have been previ-

ously considered for the variables in this set, and that the potential has been

restricted to these values, so that the factor is conditional on S1.

5. When the Split node is created, the variables in the components are con-

ditionally independent given the variables in S2 (Alg. 21 is a special case

where S2 = ∅).

6. If the variables in the components are conditionally independent given S2,

according to the normalised potential f = φ/sumφ, then f can be decom-

posed as (basic result for conditional independence):

f(c1, . . . , cn, s2) =

∏n
i=1 f(ci, s2)

f(s2)n−1
,

where f(ci, s2) is the marginalisation of f to variables Ci ∪ S2.

Therefore,

φ(c1, . . . , cn, s2)/sumφ =

∏n
i=1 φ(ci, s2)/sumφ

(φ(s2)/sumφ)n−1

and cancelling sumφ,

φ(c1, . . . , cn, s2) =

∏n
i=1 φ(ci, s2)

φ(s2)n−1
.

This is precisely the factorisation applied in our procedure (the denominator

is added as the normalisation potential).

�
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Minimal RPT

An RPT RT is said to be minimal if the following conditions are verified:

1. There are no potential leaf nodes with more than two variables, and if a

potential in a leaf node has exactly two variables, it cannot be factored as

a product of two potentials, each one of them defined for a single variable.

2. If N is a Split node and φ is the potential associated with this node, with

dom(φ) = C, then it is not possible to decompose φ as product of two

potentials φ1 and φ2 defined on C1 and C2 respectively, where C1 and C2

are non-empty sets that constitute a partition of C.

The intuition behind this definition is what guides the algorithm presented in

this chapter. The algorithm seeks for factorisations until reaching potentials de-

fined for 2 variables, and also Split nodes are only considered when multiplicative

decompositions are not possible, with the aim of obtaining factorisations based

on conditional independence relationships.

The following result shows that our algorithm finds minimal representations

except at most in what concerns the nodes representing normalisation factors,

that still can remain as Potential leaf nodes not verifying condition 1 above.

Proposition 6 Let φ be a potential for which the union property with respect

to configurations holds. Then, algorithm potentialFactorisation (Alg. 18) with

ε = 0 obtains minimal exact decompositions, except possibly for the normalisation

factors φh(s2)1−n of Eq. (6.14).

Proof 8 We already proved in Prop. 5 that the decompositions obtained are exact.

Minimality can be derived from the description of the algorithms as we show below.

The first property of minimal decompositions is a consequence of the fact that

the algorithms only add Potential leaf nodes in the following situations:

• Lines 8-14 of Alg. 19. In this case potentials only have 1 or 2 variables, and

in the case of a cluster Ci the potential cannot be decomposed as a product

of potentials of 1 variable, because it would mean that the variables are

independent, in which case they would not constitute a connected component

of Gφ.
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• Lines 7-12 of Alg. 20. In this case, potentials are defined for less than 3

variables. If a potential is defined just for 2 variables, then it cannot be

decomposed as a product of potentials of 1 variable, because its associated

dependence graph has only one component, which means that the variables

cannot be independent according to φ.

• Lines 19-21 of Alg. 22. This case corresponds to potentials representing

normalisation factors.

The second property of minimal representations is a consequence of the fact

than the Split nodes added (loops starting in line 6 of Alg. 21 and line 5 of Alg. 22)

are labelled with variables from S1. Whenever a new variable is added to S1, the

dependence graph is connected, and therefore the set of variables cannot be de-

composed into two independent non-trivial subsets. Hence, a decomposition of the

potential into two factors with non-empty disjoint sets of variables is not possible.

This line of reasoning requires that the variables taken from S1 to conform chains

of Split nodes are selected in the same order that they are introduced in S1, since

it is the order in which the connectivity of the dependence graph conditional on

the variables was tested. �

Thus, our algorithm can be considered as a greedy algorithm to find RPTs

of small size, which under certain conditions are minimal representations of a

probabilistic potential. The intuitive idea behind the procedure for selecting

nodes for conditioning (Split nodes) is to reach degrees of dependence among the

remaining variables as low as possible. In other words, we try to condition on

variables that make the remaining ones become independent or weakly dependent,

in order to be able to represent the potential over them as a List node. The proof

of Prop. 6 also requires that the variables chosen for Split nodes from S1 are

selected in the same order in which they were inserted in S1. This is the most

natural way of performing the splitting, as this means to follow the heuristic that

we used for selecting variables.

The algorithm could be modified to obtain minimal representations without

exceptions, by trying to decompose the normalisation factors, φh(s2)1−n. The

problem is that the exponent (1−n) conveys that the independence relationships

in φh are not necessarily the same as in φh1−n
. More precisely, it holds that any
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factorisation of φh as a product of potentials can be translated into a product

decomposition of φh(s2)1−n and vice versa (for example if φh(s2) = fh1 (r1)fh2 (r2),

then it is immediate to show that φh(s2)1−n = fh1 (r1)1−nfh2 (r2)1−n). However, the

marginal independence relationships associated with (φh(s2))1−n can be different

of those of φh(s2), and therefore the union property conditional on configurations

might not hold in the new potential. The consequence is that we can reach

approximate decompositions even when the conditions of Prop. 5 are verified. The

solution of this problem1 consists of calling Algorithm 1 to decompose potential

φh(s2) without the exponentiation, obtaining an RPT that can be transformed

afterwards into an RPT for φh(s2)1−n, by raising all the values (x) or potentials

(f) in the leaves to the power 1− n (i.e. x1−n or f 1−n).

Time complexity of the algorithm

With respect to the time complexity of our greedy algorithm, if we assume that

dom(φ) contains n variables, that φ is represented by a probability table with

direct access to a value giving a configuration, and that c is the maximum number

of cases of each variable, then in the worst case our algorithm does not find any

List node (these nodes reduce the complexity of posterior steps), and a full PT is

built with depth n−1 (we stop at potentials of size 2). Each level i (i = 0, . . . , n−
2) makes (n− i)(n− i− 1)/2 independence tests using mutual information. Each

independence test needs to compute the marginal for two variables in a potential

depending of n−i variables which is of size cn−i. The other operations in each node

(computing the graph, its connected components and the potentials associated

with the children) are of lower order. Since there are of order ci nodes per level

of the RPT, this results in an order of time complexity O((n− i)(n− i+ 1)cn−i),

and summing over the different levels, we obtain O(
∑n−2

i=0 ((n− i)(n− i+ 1)cn−i),

and this is of order O(n2cn). It must be pointed out that the size of potential

φ is exponential in the number of variables m = cn. So, the algorithm time

complexity is a polynomial function of the input size. If the algorithm finds

List nodes, then the complexity is lower, as for a potential with n variables,

1We have not considered it in our implementation because it is a minor issue in practice,

as the normalisation factors will depend on few variables in general.
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a multiplicative factorisation decomposes a potential into two potentials with

n− 1 variables (in the worst case), and by splitting on a variable Xi we obtain a

number of children equal to the number of values of Xi, each one of them with

n− 1 variables, and the number of possible values of a variable is, at least, 2.

6.1.5 Learning from data

The previously described methodology can be adapted to learn an RPT from a

database. In general, we follow the same approach as we did when learning from

probabilistic potentials, but now we take into consideration the particularities of

the new problem. The main differences with the previous approach are:

• The way of computing the degree of dependence between variables is now

performed using a Bayesian score.

• We do not consider the information gain as a way of increasing the flexibility

of the algorithm, as this might include a higher level of error when learning

from data.

• We do not need to compute normalisation factors in the same way as before,

as normalised potentials are retrieved from the database.

The starting point is a database cases defined over a set of variables X, and

the aim of the algorithm is therefore to find a representation of the probability

distribution encoded in cases as an RPT.

The proposed algorithm is defined in Alg. 23, and as it can be seen in the pseu-

docode, it is divided into four steps, iterating over them until finding a suitable

representation for the encoded distribution of the data. The first step consists

of building an auxiliary graph structure Gc with vertex set X where a pair of

variables Xi, Xj ∈ X will be linked if there is probabilistic dependence between

them. More precisely, a link Xi − Xj is present in Gc if the weight of the link

between Xi and Xj is bigger than 0. We use the Bayesian Dirichlet equivalent

metric [6] to measure the relation between pairs of variables, and hence, a link

Xi −Xj will be included only if

W (Xi, Xj) = BDe(Xi|Xj)−BDe(Xi) > 0. (6.20)
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1 learn(database cases)

Input: A database cases

Output: RT, an RPT for an approximation of the distribution in cases

2 begin

3 // Step 1: compute Gc

4 Gc → graph for variables dependencies in cases

5 // Step 2: graph analysis

6 Gc analysis looking for connected components

7 // Several scenarios are possible according to Gc

8 if Gc is partitioned into components C = {C1 . . .Cn} then

9 // Step 3: multiplicative factorisation

10 RT ← multiplicativeFactorisation(cases,C)

11 else

12 // Only one component: decomposition with Step 4

13 RT ← contextSpecificFactorisation(cases,Gc)

14 end

15 return RT

16 end

Algorithm 23: Main body of the learning algorithm

The second step of the algorithm consists of analyzing the resultant graph Gc.

A disconnected representation of Gc can be directly translated as a factorisation,

jumping into the third step of the algorithm, because the separation between the

clusters mean that the dependence between their variables is weak. The fourth

step of the algorithm corresponds to the case when the graph Gc remains as a

single connected component, which means that the potential is not decomposable

as a list of factors with disjoint variables. However, conditional decompositions

are possible, so the algorithm looks for either factorisations that share variables,

context-specific independencies, or a combination of both.
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Representing a factorisation

If Gc is disconnected in n connected components X1 ∪ · · · ∪ Xn = X. The

factorisation is given by:

f(x) = f1(x1) · · · fn(xn), (6.21)

where fi = f ↓Xi , i = 1, . . . , n. Each fi is a potential with the absolute frequen-

cies for all the variables in the correspondent connected component. Therefore,

f corresponds to the joint probability distribution of all the variables in the Gc.

If the clusters do not share any variables (as it happens, for instance, when

Gc is disconnected the first time that we compute it in Alg. 23), we can normalise

each potential independently using the Laplacian correction to avoid dealing with

zero probabiliy values. If the clusters share variables, then we apply the Laplace

correction taking into account all the variables only when normalising the first

factor. The other factors are normalised using the Laplace correction but condi-

tioned to the common variables, in order to avoid the introduction of normalising

errors. This set of conditioning variables is associated to the cluster until the end

of the algorithm, so further factorisations will be correctly normalised.

If any of the clusters contains more than 2 variables, we recursively apply

the algorithm to try to learn a factorised substructure from the database for

the correspondent subset of variables. Hence, the distribution for the current

cluster can be represented as an RPT where the root node would be a List node

containing the factors in Eq. 6.21.

Analysing connected components

This part of the algorithm will work with a subset of the variables of the database

and will iteratively perform a series of steps: first, locate the variable within the

cluster that present the highest degree of dependence with respect to the others,

and remove it from the graph; second, recompute the links in the reduced graph

by weighting the relations between every pair of the remaining variables; third,

analyse the graph: if it becomes disconnected, we can represent the cluster as a

factorisation, if it becomes too small (2 variables) it means that a factorisation

is not possible, hence we represent the cluster as a Potential node, retrieving
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the parameters from the database. The third possibility is that after removing a

variable, the graph continues being connected, in which case we iterate selecting

a new variable to be removed, and so on.

The above mentioned degree of dependence between every variable Xi and

those other variables belonging to its neighborhood, ne(Xi), is computed as:

VXi =
∑

Xj∈ne(Xi)
W (Xi, Xj). (6.22)

Every iteration of the loop selects the variable maximizing the degree of de-

pendence in order to look for the context in which the underlying potential might

be factorised:

Xmax = arg max
Xi

VXi . (6.23)

Once Xmax is selected it will be included in S1 or S2. These are auxiliary

vectors that represent two types of variables: those that are closely related to all

the others (S1) and those variables that are highly dependent of only a subset

of the variables in the component (S2). Note that the ordering in which the

variables are selected is very important, as every deletion is dependent on the

previous one. The splitting of the tree with the variables of S1 will be performed

using a first-in-first-out fashion.

Therefore, Xmax will be included in S1 if it is completely connected to the

rest of variables in Gc. Otherwise it will be included in S2. In both cases, Xmax

and its links will be removed from Gc producing a new graph GXmax
c that will be

considered in further iterations.

Each remaining link Xi − Xj is re-weighted according to the previously re-

moved variables Xs = S1∪S2, being only included the links that obtain a positive

score:

W (Xi, Xj | Xs)=BDe(Xi | Xj, Xs)−BDe(Xi | Xs) > 0. (6.24)
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Obtaining a factorisation of a cluster

If we disconnect the graph during the procedure explained above, we build the

correspondent RPT in the following way:

If S1 has variables, we take the first variable Xi in S1 and build a List node

with two children: one will be a Split node of Xi and the second a Potential node

with the marginal probability distribution of Xi computed from the database,

and normalised using Laplace but checking if Xi belongs to the conditioning set.

Then, for every possible child of the Split node, we add the same structure for

the next variable in S1, and so on until we represent all the variables in the set.

We have to take into account when learning the parameters both the Split nodes

above and the possible list of conditioning variables in the Laplace normalisation.

Now, we follow the branches of the Split nodes consistent with every possible

configuration of the variables in S1, and at the leaves we store the factorisation

according to the variables in S2 and the resultant clusters C = {c1, ..., cn}. The

representation will be a factorisation computed as explained in Sec. 16, but taking

into account that we include the variables in S2 to the set of variables of every

subcluster:

f(c1, . . . , cn,S2) :=
n∏
i=1

fh(ci,S2),

Once a decomposition is performed, the algorithm is recursively applied to

each and every potential obtained successively, until no further decomposition

can be computed.

6.2 Score and Search approach

This section presents a search-and-score approach for determining an RPT struc-

ture that approximates the model given by a database. The basic operators to

explore the search space are defined in Section 6.2.2, followed by the search strat-

egy, explained in Section 6.2.3. The introduced search algorithm is divided into

two stages: the first consists of determining the structure of the network, adding

and removing arcs from the underlying model. The second stage consists of trying
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to factorise every resultant CPT, tying parameters to keep the model normalised

during the whole process. Results related to the log likelihood and size of the

learned models are compared to PC and K2 algorithms, and detailed in Sec-

tion 6.3. Experiments on different standarized data sets show that the presented

algorithm achieves more accurate approximations than the baseline methods in

all the considered databases, and usually more compact models than at least one

of the compared methods. In Section 5.6 we present the general conclusions and

give a list of possible modifications to the explained methodology, as a line of

future research.

6.2.1 Motivation

Learning the structure of the model from a database is a fundamental issue when

working with Probabilistic Graphical Models, as it is not always possible to have

an expert at our disposal to choose the model that best fits the relationships

between the variables. In the case of approximating distributions with Recursive

Probability Trees, the search space is huge, so we need to design algorithms

that shorten this space while exploring accurate candidates. In the context of a

search-and-score method we propose to address this problem in two ways: first by

defining a set of operators that consider a specific set of possible neighbours and

secondly by setting a search heuristic that controls the dimension of the search

space, allowing only a controlled set of neighbours to be considered at each stage.

An issue that must be taken into account when learning RPTs is the normal-

isation of the structure. In Chapter 4.4.4 we explained how the normalisation

of a Conditional Probability Distribution (CPD) is translated into the addition

of a new factor to the RPT containing all the parents of the node, increasing

in this way the complexity of the model. In the algorithm proposed here, as

we are learning a conditional probability distribution for each of the nodes in

the network, we have to handle this problem in an efficient way to be able to

recover compact structures as well as accurate. We propose to solve this issue by

controlling the shape of the factorisations and introducing tied parameters every

time we incorporate a factorisation in the model, computing the parameters as a

maximum likelihood estimation restricted to the normalisation conditions.
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6.2.2 Search and Score approach

In this Chapter we define the framework for learning RPTs using a Search and

Score approach. This methodology has been widely used for structural learning

of Bayesian networks, and consist of exploring the space of possible RPTs, eval-

uating every candidate and finally returning the one that gives a better score. In

order to explore the search space, we define a set of operators that locally trans-

form the current model. Afterwards, the model is evaluated with a score metric

and if its performance is better than the current candidate, the first takes its

place and the search continues. When there is no variation in the score achieved

by the set of neigbours, the search stops and the better candidate is given as

result.

Local operations

In order to search the space of possible RPTs during the learning process, some

local operations must be defined. These operations will make local changes to

the current learned RPT structure, in order to explore the neighbourhood and

locate better candidates.

Add parents

This operator correspond to the addition of arcs in traditional structural learning

methodologies. In the context of this work, the addition of a new parent of a

node means the inclusion of Split nodes of the parent into the CPD of the son.

The new parent is incorporated to the list of parents of the node and the later

is deleted from the list of possible parents of the parent, as to avoid a conflict in

the resultant model. The parameters are computed using a maximum likelihood

estimation for each configuration defined by the branches of the RPT defining

the CPD.

We will consider two variations of this operator, one that introduces a Split

node of the new parent for every leaf of the current modelled CPD, and other

operator that only introduces the Split nodes for concrete configurations of the

rest of the parents, considering in this way context-specific independencies within
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the distribution. If Xi is the new parent to be introduced in the CPD of Xj, we

define:

• AddSN(Xi, Xj) sets Xi as a parent of Xj, that means the inclusion of a

Split node of Xi on all the leaves of the RPT representing the CPD of Xj

given its parents.

• AddSNConf(Xi, Xj) sets Xi as a parent of Xj but only for a concrete

context, that means the inclusion of a Split node of Xi on the leaves of the

RPT representing the CPD of Xj given its parents that are consistent with

a specific configuration.

Remove parents

RemoveSN(Xi, Xj) removes Xi as a parent of Xj, that means the erasure of the

Split nodes related to Xi inside the factor related to Xj, as well as the removal

of Xi from the list of parents of Xj, and the addition of Xj as a possible parent

of Xi. This operation is conceptually equivalent to the removal of arcs when

learning Bayesian networks.

Factorise CPD

The operator Factorise(Xi) performs a factorisation of the RPT related to the

CPD representing Xi conditioned to its parents. This operator has been designed

to perform a specific factorisation of the RPT, where the parameters are tied and

computed so as the model remains normalised. The motivation of this methodol-

ogy is on one hand not to increase the complexity of the model, and secondly to

restrict the search space, as the number of possible factorisations to be performed

in a certain model can be intractable.

We can approximate the decompositions by tying the proportional parameters

and modifying them along with the proportionality factor (maximizing the log-

likelihood of the data) so the factor remains as a CPD. The process is illustrated

in Fig. 6.16 and detailed in Algorithm 24. Note that we have only considered

binary variables in this work for the sake of simplicity, but this methodology can

be extended to cope with variables with more states.
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Figure 6.16: Tying parameters to factorise a CPT
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1 factorise cpd(RPT cpd)
Input: An RPT cpd composed of at least 3 variables, and starting with a

Split chain of al least two of them
Output: An RPT rpdfact enclosing the performed factorisation

2 begin
3 Let root1 be the root of cpd (a Split node);
4 Let root2 be a Split node of the same variable as root1;
5 //Generate left son;
6 Generate a List Node list;
7 Let sonl be the left son of root1 (a Split node);
8 Let sonll be the left son of sonl;
9 Let sonl2 be a Split node of the same variable as sonl;

10 Let a Value node set to 1 be the left son of sonl2;
11 Compute p as the proportionality factor between the right and left sons

of sonl by dividing the value corresponding to their first configuration;
12 Let a Value node set to p be the right son of sonl2;
13 Set sonl2 as son of list;
14 Set sonll as son of list;
15 //Generate right son;
16 Let sonr be the right son of root1 (a Split node);
17 Let sonrl be the left son of sonr;
18 Let sonr2 be a Split node of the same variable as sonr;
19 Set sonrl as left son of sonr2;
20 Let sonrr be a copy of sonll;
21 Recompute the parameters on the leaves as (1 - p*current value);
22 Set sonrr as right son of sonr2;
23 Set list as left son of root2;
24 Set sonr2 as right son of root2;
25 Let root2 be the root of an RPT rpdfact;
26 Return rpdfact;

27 end

Algorithm 24: Algorithm for factorising an RPT keeping it normalised as

a CPD

6.2.3 Search strategy

The methodology that we propose here is composed of three stages. First, we

define the first candidate to be evaluated, and the structure that will be the
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starting point of the search. Afterwards, we analyse the relations between the

parents, finding a promising set of parents for each node. The final stage of the

algorithm consists on trying to factorise each conditional probability distribution

of the model. Algorithm 25 details the followed methodology.

1 learn RPT(cases)
Input: A database cases
Output: A Recursive Probability Tree rpt that approximates the

distribution in cases
2 begin
3 Create initial model with Alg. 26;
4 for each CPD do
5 while there are possible parents for the node do
6 Insert a parent;
7 Evaluate the new model;
8 if the new model is better then
9 Replace current model with factorised;

10 end
11 else
12 Reverse the arc;
13 Evaluate the new model;
14 if the new model is better then
15 Replace current model with factorised;
16 end

17 end

18 end

19 end
20 for each CDP do
21 Apply Factorise operator (Alg. 24);
22 Evaluate the new model;
23 if the factorised model is better then
24 Replace current model with factorised;
25 end

26 end
27 Return rpt that corresponds to the current model;

28 end

Algorithm 25: Algorithm for learning RPTs from data

In order to measure the quality of the considered candidates, we compute a
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Bayesian metric that contains a penalty term. It is defined in Eq. 6.25. The

penalty term takes into account the complexity of the model, in terms of number

of probability values used to represent the distribution, to benefit more compact

structures over larger ones.

BIC(RPT ′) = log(P (D|RPT ′))− A

2
log(N)

=
N∑
i=1

logP (di|RPT ′)−
A

2
log(N)

=
K∑
j=1

N∑
i=1

logP (dji |RPT ′)−
A

2
log(N),

(6.25)

Setting up the first candidate

The algorithm begins by building a first structure to serve as the starting point for

the search. This first structure consists of an RPT which root is a List node with

as many children as variables in the model. Each child would be then a Split node

containing the marginal for each one of the variables in the model. The graph

equivalent to this situation would be a fully disconnected one. The root List node

contains an initial decomposition
∏N

i=1 P (Xi), where N is the number of variables

in the network. The parameters are learned from the database, maximizing the

likelihood. Algorithm 26 details the construction of this initial candidate. After
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the set up of this first candidate (line 3 of Alg. 25), the search procedure starts.

1 initial setup(cases)
Input: A database cases
Output: A Recursive Tree Node root representing

∏N
i=1 P (Xi|cases)

2 begin
3 Let root be a List Node;
4 Let N be the number of variables in cases;
5 for i← 1 to N do
6 Let childi be a Split Node;
7 Let Xi be the ith variable in cases;
8 Set childi’s parameters to fit P (Xi|cases);
9 Include childi in the children set of root;

10 end
11 Return root;

12 end

Algorithm 26: Initial setup for Learning RPTs from data

First stage: defining the set of parents

The first stage of the algorithm consists on adding and removing parents to

and from every CPD in order to find a model that best fits the data among

those explored (lines 4-19 of Alg. 25). We keep a list of possible parents to

be introduced in every CPD. At the beginning of the algorithm, for each CPD

P (Xi|Pa(Xi)), the Candidates list will be the full set of variables but Xi, and

these lists are modified every time we apply the operators that add a parent and

the operator that removes a parent to avoid possible conflicts in the final model,

as bidirectional arcs or cycles, that are not allowed in the underlying Bayesian

network that we are building.

Second stage: factorising CPTs

The second stage of the algorithm consists on visiting all the CPDs and try to

apply the Factorise operator. Once a CPD is factorised, the model is evaluated.

If the factorisation makes the model more accurate, the operation is fixed and the

process continues trying to factorise the next CPD. This procedure corresponds to
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lines 20 to 28 of Alg. 25. At this stage we have only considered a factorisation from

the top of each tree, but this can be expanded to search for smaller factorisations

down the RPTs.

6.3 Experimental evaluation

6.3.1 Learning RPTs from probabilistic potentials

This section presents a set of experiments conducted in order to test the behavior

of the algorithm. Some of the experiments analyse the relation between the accu-

racy of the representation (in terms of the Kullback-Leibler divergence between

the original and the learned distributions) and the size of the learned RPTs, and

shed light on the problem of controlling the tradeoff between complexity and ac-

curacy. We also introduce the possible benefits of applying this algorithm during

the inference process.

The value of δ is not thoroughly studied in this work, remaining as a future

line of research. Instead, δ has been fixed for every experiment so that the results

are focused in the differences for the values of ε.

Learning from CPTs

The first experiment consists of analysing 30 randomly generated CPTs defined

over 6 binary variables (size(P ) = 26). The values for each CPT are generated at

random, so no context specific independencies or any factorisations are guaranteed

to be present on them. For each CPT the learning process is repeated with

different threshold values (ε varying from 0.0 to 0.01 with an increment of 0.001).

The value of δ (see Eq. (6.19)) is set to 0.5. After each execution, the Kullback-

Leibler (KL) divergence is computed between the distribution represented in the

resulting RPT and the original CPT.

The results are presented using boxplots, representing the full range of data

obtained, and with whiskers spanning up to the most extreme data point that is

no more than 1.5 times the interquartile range from the box. Fig. 6.17 (left part)

shows the KL values (computed for all the RPTs) obtained for each value of ε.

Higher values of ε yield worse approximations.
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There is a certain value of ε acting as a limit point: once surpassed this value,

the error is highly increased. This fact can be used as a selection criterion for

the admissible threshold. It is also observed that higher values of ε are linked to

solutions almost completely factored (a List node with a factor per variable).

Figure 6.17: KL divergence and size (logarithm of number of probability values

stored) of the representation for models learned with different thresholds.
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The size of the learned model (in terms of the number of values stored to

represent the distribution, in logarithmic scale) for each value of ε, is shown in

the right part of Fig. 6.17. The size of the representation decreases as ε increases

because more factorisations are introduced in the model (where the extreme solu-

tion would be an almost completely factored representation, i.e. a List node with

a factor per variable). Fig. 6.18 depicts the quality of the representations obtained

for small values of the threshold by applying the same experimental methodology

to values of ε between 0 and 0.002. It shows how the error rate grows as the size

of the obtained model decreases. This suggests the need to establish a selection

criterion for an admissible threshold that tradeoffs accuracy and representation

size, that could be a certain variation in the error rates obtained.
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Figure 6.18: KL divergence and size (logarithm of number of probability values

stored) of the representation for models learned with smaller thresholds.

Capturing repeated values

The second experiment aims at testing the ability of the algorithm for detecting

context specific independencies. For that purpose, 30 randomly generated PTs

were used. As in the previous experiment, no context specific independencies
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or any factorisations are guaranteed to hold on these trees in this point. The

generation of repeated values is attained by using the pruning operation: some

sub-trees are replaced by a single value (its average value). Two limit values for

the pruning operation are considered: 0.001 (soft pruning) and 0.01 (severe prun-

ing, i.e. more sub-trees are replaced and more repeated values will be produced

as well). For each PT the algorithm is executed with different values of ε: from

0.0 to 0.01 with an increment of 0.001. The parameter δ is set to 0.01. The

right part of Fig. 6.19 shows KL divergence values for every ε value, along with

a measure of the size of the RPTs obtained, for the case where soft pruning is

applied. Fig. 6.20 gathers the results for severe pruning.

The error rate is higher when soft pruning is applied, which means that the

algorithm is able to detect these context-specific independencies, providing better

approximations when the distribution analyzed contains them. The left part of

both Fig. 6.19 and Fig. 6.20 show the variation of the sizes of the representations

obtained when increasing the value of the threshold. The structures obtained by

Algorithm 18 when learning from severely pruned trees provide a better balance

between accuracy and size of the representation.
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Figure 6.19: KL divergence and size (logarithm of number of probability values

stored) of the representation learning from the same tree (slightly pruned) for

different values of ε
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Figure 6.20: KL divergence and size (logarithm of number of probability values

stored) of the representation learning from the same tree (severely pruned) for

different values of ε

Other experiments have been performed to check the relation between accu-

racy and size of the learned model. The results show that models with reduced

sizes are less accurate. This seems to point out that smaller representations are

mainly List nodes containing simple factors (one or two variables). This factori-
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sation is usually a poor representation of the potentials under analysis.

Learning from the same model

Due to the nature of the algorithm and the RPT structure itself, it is possible

to get different RPTs representing the same distribution. The relation between

different but alternative RPTs is considered in this experiment. Several PTs (30)

are studied with the following strategy:

• 30 PT of 6 binary variables each, are generated at random;

• an RPT is learned for every PT, with ε = 0.002 as threshold value, and

δ = 0.001 (this stage produces RPT1i, i = 1, . . . , 30);

• RPT1i is converted into a CPT and used for learning another RPT with

ε = 0.0005. These RPTs are denoted as RPT2i, i = 1, . . . , 30.

It is likely that RPT1i and RPT2i be similar because they represent the same

original distribution. The pairs RPT1i − RPT2i are analyzed computing and

storing the differences between the sizes of both RPTs (in terms of number of

values stored to represent the distribution) and between the Kullback-Leibler

divergence respect to the original PT. Regarding the logarithm of the tree sizes,

the mean is 2.2 and the standard deviation 6.47. For Kullback-Leibler divergence

the mean is 0.0015 and the standard deviation 0.004. The differences in the sizes

between RPT1i and RPT2i suggest that the structures learned are different, whilst

the low and stable KL rates confirm that both RPTs accurately approximate the

original distribution.

Recovering a factorisation of a network from its joint pro-

bability distribution

The aim of this experiment is to test the accuracy of the factorisation performed

by the algorithm, using as input the joint probability distribution of a Bayesian

network. For the experiment, the Cancer network [22] (more details can be

checked in Appendix 7.2.4) has been chosen due to its reduced dimension. The
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input of the algorithm is potential obtained by combining all the CPTs specified

in the network, and the learning process was repeated varying the threshold values

from ε = 0.0 to 0.02 with an increment of 0.001. The Kullback-Leibler divergence

between the distribution represented by each RPT generated and the original

joint probability distribution was computed. The size of the representation, in

terms of numer of probability values stored, was measured as well. Fig. 6.21 shows

that by increasing the ε value, the learned structures attain higher error rates,

but at the same time, their size is lower. It is interesting to see how for values

of ε between 0.005 and 0.009 the algorithm retrieves almost the same structure,

obtaining the same value for the KL divergence and for the size of the structure.

The same happens for the interval between 0.01 and 0.014. Fig. 6.22 shows the

structure of the RPT learned for an ε value of 0.01.
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Figure 6.21: KL divergence variation between the joint probability distribution

of Cancer network and the model learned, and size of the learned model, for

different values of the threshold.
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P (MetastaticCancer, SerumCalcium)

P (Coma)

P (SerumCalcium,BrainTumor) P (SerumCalcium,BrainTumor)

P (SerumCalcium)

P (HeadAche) 0.9999

Figure 6.22: RPT learned from the Cancer network
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Measuring the size of the RPTs used during the inference

process.

Figure 6.23: Largest and average structure sizes used during the inference process

over different Bayesian networks.
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Figure 6.24: Largest (left) and average (right) structure sizes used during the

inference process over Barley Bayesian network.

RPTs intend to be a compact structure to represent the probabilistic information

in a Bayesian network. In this experiment we perform the variable elimination

algorithm, once for each variable in the network, and with no observed variables,

over different Bayesian networks whose CPTs are stored first as RPTs and then as

PTs, in order to compare the size of the data structures used during the process, in

terms of number of values that are stored for representing the distribution. The

original probability tables are transformed into RPTs with an ε value of 0.05.

The variable elimination algorithm was run over networks Alarm [78], Barley

[66], Pedigree [44] and prostanetE [79] (details about the networks can be found

in Appendix 7.2.4). Fig. 6.23 shows how the maximum and average size of the

RPTs used are always lower than those of PTs. The results for Barley network are

shown in Fig. 6.24, where the size of the representations is specified in logarithmic

scale, due to the significant difference between the results obtained.

In order to check the accuracy of the representation, Table 6.1 presents the

average and standard deviation of the KL divergence between the posterior distri-

butions of each node of the network obtained using RPTs and that obtained with

PTs. The PTs used are not pruned, so the solution they present is exact. The low

values show that the approximation performed with RPTs is close to the original
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in all the networks, even without applying an independent parametrisation to

optimize the results for each network.

Table 6.1: Average and standard deviation for the KL divergence values obtained

between the posterior distribution obtained for every node of each network, using

RPTs and using PTs.

Alarm Pedigree prostanetE Barley

average 0.058 2.29E-5 0.057 0.029

s.d. 0.119 1.4E-4 0.065 0.066

6.3.2 Learning RPTs from data

In this section we present the experimental evaluation carried out in order to

analyze the performance of the proposed algorithm. We learned from different

kind of databases, both handcrafted and real, and examined the results both in

terms of accuracy and size of the obtained representation.

Detecting factorisations and context-specific independen-

cies in the data

The aim of this experiment was to check the accuracy and size of the learned

RPTs. We sampled several RPTs with different degrees of factorisations and

context-specific independencies within them, and then learned a new structure

with the proposed algorithm. Afterwards we compared the learned structure to

the original one, both measuring the Kullback-Leibler divergence between them,

and counting the number of probability values needed to represent the distribu-

tion.

To do so, we used the random RPT generator explained above to build RPTs

of 10 binary variables, and varied the probability of generating a Split node (pS)

between 0 and 1, with intervals of 0.1. The probability of generating a Potential

node (pP ) in the leaves was set to 0.8. For each combination of the parameters,
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the experiment was repeated 30 times. For each generated RPT we sampled a

database of 100, 500, 1000, 2000 and 5000 entries.

Figure 6.25 shows the average of the 30 Kullback-Leibler divergence values

obtained for each value of pS. The Kullback-Leibler divergence shows generally

reasonable accurate results, getting worse as the level of factorisations decrease

in the original distributions. This means that the algorithm performs well at

detecting clusters of highly dependent variables, and in general obtains good

approximations of the distributions by detecting the patterns hidden within them.

As for the number of samples in the database, we can see in Fig. 6.25 that small

databases lead to poor representations, whilst too much data leads to overfitting.

The best average results are obtained for the database of 2000 entries.
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Figure 6.25: Average Kullback-Leibler divergence between the original distribu-

tion and the learned, for different RPTs and for different database sizes.

We also measured the sizes of both the original model and the learned struc-

tures for all the considered cases. In general, the learned RPTs are much more

compact in all the cases. For instance, in Fig. 6.26 we see the averages of the 30

structures generated for each value of pS, with the database of 2000 entries, where
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we can check how the approximations are much smaller and, as seen in Fig. 6.25,

still reasonably accurate. We do not show the figures for all the database sizes

due to lack of space, but the observed behavior is constant for all the database

sizes tested.
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Figure 6.26: Size of the learned RPTs for the database of 2000 instances.

In general we can conclude from this experiment that the proposed algorithm

returns compact structures representing good approximations of the original dis-

tributions.

Learning Bayesian networks

In this experiment we learned the RPT models from 6 databases extracted from

the UCI Machine Learning Repository1 (more details can be found in Appendix 7.2.4).For

each database, we learned the RPT with 80% of the data, and then computed

the loglikelihood with the remaining 20%. We compared the resultant accuracy

with the models obtained by the PC and K2 algorithms.

1http://archive.ics.uci.edu/ml/
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This procedure was repeated 30 times, every time varying the partition of the

database. With the average of the loglikelihood and size (in terms of number of

probability values stored) of the models we computed the Bayesian Information

Criteria (BIC), that for small sample sizes penalizes more complex models. The

results are shown in Fig.6.27, where we can see that RPTs get a better score than

at least one of the other learned models with all the databases with the exception

of Heart Disease, where all three algorithms obtain a very similar score. We have

included the average BIC for all the considered networks, and we can see how

RPTs tie with the PC algorithm (with an average of -869,57 (s.d. 283,54) for

RPTs and -866,51 (s.d. 452,09) for the PC), whilst K2 results fall far behind

(with an average of -1090,98 and standard deviation of 389,64)). A Friedman

test revealed that there are no statistically significant differences between the

algorithms (χ2 = 11.95,p < 0.05).
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Figure 6.27: Bayesian Information Criteria for the learned models.
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6.3.3 Score and Search approach

Learning Bayesian networks

In this experiment we learned the models from four databases extracted from

the UCI Machine Learning Repository [80]. Appendix 7.2.4 gives some details

on the chosen databases (Hepatitis, Glass Identification, Diabetes and Asia). All

the continuous variables were discretized, so in the end all the variables had two

states. For each database, we learned the RPT with 70% of the data, and then

computed the loglikelihood with the remaining 30%. We compared the resultant

accuracy with the PC algorithm and K2. This procedure was repeated ten times,

and the average of the log likelihood obtained in each case is shown in Fig.6.28.

In general the obtained log likelihood results for the RPTs are better than the

other approaches, and in Fig. 6.29 we can see how the RPTs are generally more

compact representations than at least one of the other approaches taken into

account.

Figure 6.28: Log likelihood of the learned models.
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Figure 6.29: Size of the learned models, in terms of number of probability values

used to represent them.

6.4 Conclusions and Future Work

In this chapter we propose an algorithm for learning an RPT from a probabilistic

potential. The complexity of the problem of learning minimum size RPTs as

well as the time complexity and some properties of the algorithm have been

theoretically analyzed. The experiments conducted suggest that the algorithm is

able to capture most of the details of the original distribution. This proposal can

be used as the basis for designing new approximate algorithms for inference in

probabilistic graphical models using RPTs during the inference process, instead

of CPTs or PTs.

Notice that the algorithm is limited in practice by the size of the distribution

to learn from: the distributions used for computing GP are obtained by marginal-

izing the original potential P . Therefore, a representation of P allowing efficient

computations of marginals certainly improves the performance of the algorithm.

The second contribution of this chapter is the extension of the previous algo-

rithm to learn an RPTs from a database, looking for factorisations and context-
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specific independencies within the data. The experiments suggest that the algo-

rithm retrieves accurate and compact representations for the underlying distri-

butions, being competitive against algorithms like PC and K2. In this chapter

we have only considered the BDe metric for weighting the relations between vari-

ables, but other measures, like the mutual information, can be considered and

tested against each other in future works.

Finally, we introduce the idea of designing a traditional score-and-search algo-

rithm for learning RPTs from data. We have proposed many modifications to the

different parts of the algorithm, that remains as a future line of research. We have

also presented a preliminary experimentation where we show how the obtained

models are good and compact representations of the underlying distributions rep-

resented by well known data bases present in the literature. We have compared

the results of our algorithm to two well known algorithms, obtaining compara-

ble results. As a first approximation to addressing the problem, the results are

promising.
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Chapter 7

Conclusions and Future Work

This chapter brings together all the conclusions that have been presented sep-

arately on each chapter of this work, lists all the publications where the ideas

were presented and concludes with an enumeration of the future research to be

performed on the topic.

We have presented throughout this work a data structure for representing

probabilistic information. Recursive Probability Trees present an interesting

framework to work with Probabilistic Graphical Models, allowing the modelling

of different patterns usually found within probability distributions, as context-

specific independencies, proportionalities and other types of factorisations. Through

the experimental evaluation, RPTs have been proven to be a good alternative to

traditional data structures like CPTs or PTs.

RPTs also compact the information and keep it factorised during the infer-

ence, allowing the design of algorithms that take this into account in order to

speed up the process. We have designed an algorithm that efficiently computes

optimal factorisations within probability potentials, as a first step towards the

incorporation of RPTs to inference algorithms. Also, we have provided a fast-

to-compute measure called the factorisation degree, that provides a heuristic to

rank the variables in the domain of a potential according to the accuracy of the

decompositions that they induce. This measure can be included within inference

algorithms, for instance, to build RPTs when necessary.

We have also presented different approaches at addressing the problem of

learning RPTs. The first developed algorithm aims at transforming a probabilis-
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tic potential stored in any data structure into an RPT by looking for patterns

within it. This algorithm uses the mutual information as a measure of the de-

pendency between the variables. Also we have addressed the problem of learning

RPTs from data from two different perspectives. Firstly we have adapted the

methodology explained before to cope with this problem, using a Bayesian score

as a dependency measure. Besides we propose a learning algorithm based in a

Search and Score methodology, that gives reasonably good results, and brings up

a variety of possible lines of related research.

7.1 List of Publications

The majority of the work presented in this dissertation has been published in the

following references (some of them still in revision process):

[1] A. Cano, M. Gómez-Olmedo, S. Moral, and C. Pérez-Ariza, “Recursive

probability trees for Bayesian networks” in: Lecture Notes in Artificial In-

telligence (CAEPIA 2009), vol. 5988, pp. 242–251, 2009.

[2] A. Cano, M. Gómez-Olmedo, S. Moral, C. Pérez-Ariza, and Antonio Salmerón

“Inference in Bayesian Networks with Recursive Probability Trees: data

structure definition and operations” in: International Journal of Intelligent

Systems,Wiley, vol. 28, Issue 7, pp.623–647, 2012.

[3] A. Cano, M. Gómez-Olmedo, S. Moral, C. Pérez-Ariza, and A. Salmerón,

“Learning recursive probability trees from probabilistic potentials” in: Pro-

ceedings of the Fifth European Workshop on Probabilistic Graphical Models

(PGM-2010) (P. Myllymäki, T. Roos, and T. Jaakkola, eds.), pp. 49–57,

2010.
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7.2 Future Work

In this section we gather together the future lines of research that were commented

on each of the chapters of this dissertation. Basically this work provides some

answers to three main questions, that can be defined as three research lines flowing

in parallel: definition of the data structure and its capabilities, inference over the

structure and finally, learning of RPTs. As discussed in every related chapter,

the three lines present a huge variety of possibilities for further research. In the

following we summarise some of those ideas.

7.2.1 Structure definition

So far, the only way of expressing decompositions where the terms are added

instead of multiplied is by including auxiliar variables in the RPT that are

marginalised out at some point to compute the result of the decomposition. In

order to increase the flexibility of RPTs to freely express this addition of factors,

and handle them efficiently, we plan to extend the data structure with the addi-

tion of a new type of node, a sum node, in a similar way as the approach followed

with NIN-AND trees[65].

Also, in this work we have so far covered only models with discrete variables,

but we plan to incorporate continuous variables to the structure, making RPTs

able to deal with more realistic models.

7.2.2 Inference

Related to inference, we plan to further investigate the concepts presented in

Chapter 5, with the idea of incorporating the fast factorization method and the

factorisation degree measure to existing inference algorithms, in order to factorise

potentials that become very big during the inference. With this we aim at re-

ducing the time complexity of inference algorithms. We also plan to design new

inference algorithms that take into account the factorised nature of RPTs and

benefit from it.
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7.2 Future Work

7.2.3 Learning

Designing new algorithms for learning RPTs is a future line of research, specially

after modifying the data structure to deal with sums of complex factors and

continuous variables. Focusing in the current state of the structure, we want to

modify the Search and Score procedure presented in Chapter 6 by adding new

operators and modifying the existents, specially the Factorize operator, as it can

be designed in many different ways to explore different types of factorisations.

The search startegy is also extensible. So far we have followed a greedy approach,

but we plan to apply more sofisticated and efficient startegies.

7.2.4 Applications

Finally, a potential line of future research is the practical application of RPTs. As

RPTs stand as a compact and efficient data structure to work with probabilistic

potentials, they can be applied to problems where the storage and computational

resources are limited, as it is the case of mobile devices. The idea is to build

an adaptation of RPTs that optimize the computation time and the size of the

structures, to hold the probabilistic information handled in mobile applications

that use Probabilistic Graphical Models.
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Appendix

Coding in Elvira

Recursive Probability Trees and all the related algorithms described in this dis-

sertation have been developed in Java under Elvira [81], an open-source software

package for working with probabilistic graphical models.

The Elvira project started in 1997 as a join collaboration of several Span-

ish universities, being the University of Granada among them. The exchange of

ideas and the join work leaded to the development of an wide tool that contains

several algorithms for inference and learning of probabilistic graphical models, be-

ing specialized in Bayesian networks and influence diagrams. Elvira, through its

graphical user interface, makes probabilistic graphical models available to every-

one. Although some researchers still contribute to expand Elvira, a new system

is under development with the aim of fixing some efficiency and organization

problems present in Elvira: ProGraMo [82].

Data structure

The class hierarchy to build Recursive Probability Trees as explained in Chapter 4

is represented through an UML diagram in Fig. 1. It has been designed so the

incorporation of new types of nodes becomes a relatively easy task.

The data structure is composed of the following classes:

• RecursivePotentialTree.java

– This is the main class that defines the structure and its basic function-

ality.
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• TreeNode.java

– This abstract class generalizes the types of nodes that a Recursive

Probability Tree can manage.

• SplitNode.java

– This class contains a Node that labels the Split. So far we have only

considered FiniteStates nodes, that in Elvira correspond to discrete

variables, but we plan to make this kind of node able to work with

continuous variables as well.

• ListNode.java

– This type of node contains an array of Recursive Probability Trees.

• ValueNode.java

– This node contains a numerical value.

• PotentialNode.java

– This kind of node contains a generic Potential. This allows the incor-

poration of any data structure to RPTs in Elvira, as long as it works

with discrete variables.

Inference with Recursive Probability Trees

The Variable Elimination algorithm is implemented in Elvira as a general frame-

work that is specified for each available data structure. The setting was extended

so we could run it on Recursive Probability Trees by adding a new class to the

hierarchy, as shown in Fig. 2.

The functionality explained in Chapter 5 was implemented in Class Poten-

tialTree. The location of this class with respect to RPTs in the code is shown in

the UML diagram in Fig. 3. The main methods that develop the functionality

for fast factorisation of probability trees are the following:
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Figure 1: UML diagram for the RPTs classes

• public double factorisationDegree2(FiniteStates x)

– Computes an upper bound of the factorisation degree of a tree for a

given variable, using Jensen’s inequality (Eq. 5.9).

• public Vector<PotentialTree>factoriseRT(Vector<FiniteStates>x)

– Factorises a tree as a list of two factors, as explained in Algorithm 16
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Figure 2: UML diagram for the VariableElimination classes

• public Vector<FiniteStates>sortByFactorisationDegree()

– Returns the variables in the potential, sorted by their factorisation

degree, in ascending order.

• public FiniteStates bestToFactorise()

– Returns the variable with highest factorisation degree.

Learning Recursive Probability Trees

The first algorithm explained in Chapter 6 has been coded in class learningRPT.

To use this algorithm, it is necessary to generate an instance of the class using

the constructor. It asks for two parameters, that are the two thresholds that

the algorithm requires. Afterwards, we call the method factorize(Potential

argPot), that takes the potential to be factorised as an argument. The result

will be a TreeNode that is the root of the RPT that represents the potential.

231



Figure 3: UML diagram for the ProbabilityTree classes

The second algorithm explained in Chapter 6 has been coded in class learn-

ingRPT DB, that works in a similar way as learningRPT, but this time the only

parameter that it needs is the database, as there are no thresholds in this imple-

mentation. Again, it is needed to instantiate the class using a constructor that

asks for the database as a parameter, and then call the main method learn().

The algorithm for learning RPTs using a search and score methodology as pre-

sented at the end of Chapter 6, has been coded using two classes under the package

elvira.potential.learningRPTS. The UML diagram that shows these classes is in

Fig. 4

• LearningModel

– Main class for the learning algorithm.

• CPT rpt

– This class manages a conditional probability distribution.
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Figure 4: UML diagram for the search and score learning algorithm

Testing the code

All the code has been tested using a testing framework for the Java programming

language: JUnit [83]. JUnit builds a parallel hierarchy of classes with the aim of

containing a test method for each public method in the tested class. This test

suite encapsulates the procedure so it automatically checks all the implemented

functionality.
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Appendix

Databases

This appendix reviews the databases that have been used in the experimentation

of the work discussed in this thesis.

UCI repository

The following networks are publicly available at the UCI Machine Learning

Repository1. Here we give a brief summary of the used databases.

Hepatitis

Table 1: Details of Hepatitis dataset.

Number of Attributes 19

Number of Instances 155

Discretized? yes

missing values? yes

Dr. Peter Gregory of Stanford Hospital observed 155 chronic hepatitis patients,

of which 33 died from the disease. On each patient were recorded 19 covariates

summarizing medical history, physical examinations, x-rays, liver function tests,

1http://archive.ics.uci.edu/ml/
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and biopsies. An effective prediction rule, based on these 19 covariates, was de-

sired to identify future patients at high risk. Such patients require more aggressive

treatment.

Comments: The data was donated by Gail Gong.

Glass Identification

Table 2: Details of Glass Identification dataset.

Number of Attributes 10

Number of Instances 214 (163 after preproc.)

Discretized? yes

missing values? no

The study of classification of types of glass was motivated by criminological in-

vestigation. At the scene of the crime, the glass left can be used as evidence...if

it is correctly identified!

Ecoli

Table 3: Details of Ecoli dataset.

Number of Attributes 8

Number of Instances 336

Discretized? yes

missing values? no

This data contains protein localization sites.
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Diabetes

Table 4: Details of Diabetes dataset.

Number of Attributes 20 (9 after preproc.)

Number of Instances 768

Discretized? yes

missing values? yes

Diabetes patient records were obtained from two sources: an automatic electronic

recording device and paper records. The automatic device had an internal clock

to timestamps events, whereas the paper records only provided ”logical time” slots

(breakfast, lunch, dinner, bedtime). For paper records, fixed times were assigned

to breakfast (08:00), lunch (12:00), dinner (18:00), and bedtime (22:00). Thus

paper records have fictitious uniform recording times whereas electronic records

have more realistic time stamps.

Comments: We used a reduced version of this database, with just 9 variables

out of the original set.

Breast Cancer

Table 5: Details of Breast Cancer dataset.

Number of Attributes 9

Number of Instances 286

Discretized? yes

missing values? yes

This is one of three domains provided by the Oncology Institute that has repeatedly

appeared in the machine learning literature.
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Heart Disease

Table 6: Details of Heart Disease dataset.

Number of Attributes 14

Number of Instances 303 (294 after preproc.)

Discretized? yes

missing values? yes

This database contains 76 attributes, but all published experiments refer to using a

subset of 14 of them. In particular, the Cleveland database is the only one that has

been used by ML researchers to this date. The ”goal” field refers to the presence

of heart disease in the patient. It is integer valued from 0 (no presence) to 4.

Experiments with the Cleveland database have concentrated on simply attempting

to distinguish presence (values 1,2,3,4) from absence (value 0). The names and

social security numbers of the patients were recently removed from the database,

replaced with dummy values.

Other models

The following models are full Bayesian networks detailed in previous works that

have been used in our experimentation.

Andes

Table 7: Details of Andes dataset.

Number of Nodes 223

Number of Arcs 338

ANDES is an Intelligent Tutoring System for Newtonian physics. ANDES’ stu-

dent model uses a Bayesian network to do long-term knowledge assessment, plan

recognition and prediction of students’ actions during problem solving [73].
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Water

Table 8: Details of Water dataset.

Number of Nodes 32

Number of Arcs 66

This Bayesian network models an expert system for control of waste water treat-

ment [74].

Barley

Table 9: Details of Barley dataset.

Number of Nodes 48

Number of Arcs 84

This Bayesian networks corresponds to a decision support system for growing

malting barley without use of pesticides. One module in this system is the decision

support system for mechanical weed control in malting barley. The module for

weed control describes the relative reduction on the yield and the dry weight of

weeds remaining in the field under a variety of conditions. The most important

conditions included in the model are the amount of weeds in the spring, different

methods of mechanical weed control, the row distance and the application method

of nitrogen [66].

Munin1

Table 10: Details of Munin dataset.

Number of Nodes 189

Number of Arcs 282
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This Bayesian network describes a diagnosis tool for diseases affecting the median

nerve. This network is a graph with loops (not a tree) [72].

Cancer

Table 11: Details of Cancer dataset.

Number of Nodes 5

Number of Arcs 5

Metastatic cancer is a possible cause of a brain tumour and is also an explanation

for increased serum calcium. In turn, either of these could explain a patient falling

into a coma. Sever headache is also possibly associated with a brain tumour [22].

Comments: original work by Cooper.

Alarm

Table 12: Details of Alarm dataset.

Number of Nodes 37

Number of Arcs 46

This Bayesian network contains knowledge by medical experts for monitoring pa-

tients in intensive care [78].

Pedigree4

Table 13: Details of Pedigree dataset.

Number of Nodes 441

Number of Arcs 592
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This Bayesian network is a subnetwork of an extremely complex real-world prob-

lem, namely estimation of genotype probabilities, for individuals in a heavily in-

bred pedigree containing approximately 20000 breeding pigs. Each individual may

have a hereditary trait, PSE, which causes the meat to be unfit for human con-

sumption [44].

ProstanetE

Table 14: Details of Prostanet dataset.

Number of Nodes 47

Number of Arcs 81

This Bayesian network was designed to help the diagnosis of prostate cancer.

Prostate cancer is a very common disease in men over 50. However,sometimes

it is not easy to diagnose it because it has symptoms and signs very similar to

those produced by other benign diseases. Prostanet is a causal Bayesian network

designed to help doctors to make a dierential diagnosis between certain diseases

related to the prostate [79].
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[67] I. Mart́ınez, S. Moral, C. Rodŕıguez, and A. Salmerón, “Factorisation of

probability trees and its application to inference in Bayesian networks,” in

Proceedings of the First European Workshop on Probabilistic Graphical Mod-
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