
Universidad de Granada
Escuela Técnica Superior de Ingenierı́a Informática

y Telecomunicaciones
Department of Computer Science and Artificial

Intelligence (DECSAI)
Intelligent Databases and Information Systems

(IDBIS)

Universiteit Gent
Faculteit Ingenieurswetenschappen en Architectuur

Vakgroep Telecommunicatie en
Informatieverwerking (TELIN)

Onderzoeksgroep Database, Document en Content
Management (DDCM)

Fuzzy Temporal Information Treatment in Relational
Databases
Programa de doctorado: Tecnologı́as de la Información y la Comunicación

José Enrique Pons Frı́as

Dissertation submitted in accordance with the
requirements for the double degree of

Doctor of Computer Science Engineering by
Ghent University and

Doctor by University of Granada
Academic year 2012-2013

Editor: Editorial de la Universidad de Granada
Autor: José Enrique Pons Frías
D.L.: GR 226-2014
ISBN: 978-84-9028-745-3

Universidad de Granada
Escuela Técnica Superior de Ingenierı́a Informática

y Telecomunicaciones
Department of Computer Science and Artificial

Intelligence (DECSAI)
Intelligent Databases and Information Systems

(IDBIS)

Universiteit Gent
Faculteit Ingenieurswetenschappen en Architectuur

Vakgroep Telecommunicatie en
Informatieverwerking (TELIN)

Onderzoeksgroep Database, Document en Content
Management (DDCM)

Promoters: Prof. Dr. Olga Pons Capote 1

Prof. Dr. Guy de Tré 2

1 Universidad de Granada
Escuela Técnica Superior de Ingenierı́a Informática y Telecomunicaciones

Department of Computer Science and Artificial Intelligence
C/ Periodista Daniel Saucedo Aranda s/n, 18071 Granada, España

Tel.: +34-958-24.40.19
Fax.: +34-958-24.33.17

2 Universiteit Gent
Faculteit Ingenieurswetenschappen

Vakgroep Telecommunicatie en Informatieverwerking
St-Pietersnieuwstraat 41, B-9000 Gent, Belgium

Tel.: +32-9-264.34.12
Fax.: +32-9-264.42.95

This research has been supported by the grant BES-2009-013805 within the research
project TIN2008-02066: Fuzzy Temporal Information treatment in relational DBMS.

Dissertation submitted in accordance with the
requirements for the double degree of

Doctor of Computer Science Engineering by
Ghent University and

Doctor by University of Granada
Academic year 2012-2013

El doctorando José Enrique Pons Frı́as y los directores de la tesis Olga Pons Capote
y Guy de Tré, garantizamos, al firmar esta tesis doctoral, que el trabajo ha sido realiza-
do por el doctorando bajo la dirección de los directores de la tesis y hasta donde nuestro
conocimiento alcanza, en la realización del trabajo, se han respetado los derechos de
otros autores a ser citados, cuando se han utilizado sus resultados o publicaciones.

Granada, Mayo de 2013

Los directores de la tesis: El doctorando:

Prof. Dr. Olga Pons Capote Prof. Dr. Guy de Tré José Enrique Pons

Agradecimientos / Dankwoord

Este trabajo no hubiera sido posible sin el apoyo, la ayuda y el cariño de mucha
gente.

Primero me gustarı́a dar las gracias a Olga, mi tutora. Ella me dió la oportunidad de
realizar este trabajo. Durante todos estos años me ha apoyado y guiado. También me
ha dado libertad para desarrollar mis ideas y comprensión. Su confianza en mi trabajo
ha hecho que me esfuerce al máximo. A ella, muchas gracias por estos años.

En segundo lugar, quiero darle las gracias a Ignacio Blanco, Nacho. Él me ha ayu-
dado mucho, en especial los dos primeros años. Siempre encontraba un hueco para
atenderme, a pesar de sus maratonianos dı́as de trabajo. Ha sido un amigo, ha mirado
más por mı́ que por sus propios intereses y por ello le doy las gracias.

Los primeros dos años de este perı́odo, los pasé en el edificio Mecenas. Allı́ co-
nocı́ a Rocı́o y Coral. Gracias a ellas, las jornadas de trabajo se hacı́an más llevaderas.

Quiero agradecer también a Guy por su ofrecimiento y disposición. También le
quiero agradecer el tiempo que he pasado en su laboratorio de estancia. He aprendido
mucho con él y he sido muy feliz levantándome cada mañana para ir a trabajar a su la-
boratorio. Él, junto con Antoon, Christophe, Daan, Tom y Joachim han sido mi familia
en Bélgica. Quiero darle especialmente las gracias a Christophe y Helena, en especial
por alojarme en su casa y tratarme con amabilidad y cariño.

Durante estos años he trabajado y colaborado también con otros profesores de la
universidad como Nicolás, Amparo, Juan Miguel. Siempre han tratado de echarme una
mano.

También quiero darle las gracias a la beca de investigación del ministerio, sin la
que este trabajo no hubiera sido posible.

Muchas gracias a mis padres. A mi madre Ana, a mi padre José por todos los
sacrificios que han hecho por mı́. A mi hermana Eva, por alegrarme.

Gracias también a la familia de Laura por su cariño y comprensión. A sus padres
José y Chari por acogerme como uno más. También a Pepe y Francis por ser tan amigos.
Con especial cariño le escribo estas lı́neas a David, quien no se explica que semana tras
semana los deberes que me mandan “del cole” nunca se acaben. Gracias por tu amistad
incondicional. Alejandro no es capaz de pronunciar mi nombre todavı́a, ası́ que cada
semana me llama de una manera. Nos alegras la vida a todos.

Gracias a todos mis amigos. A Araceli, Juanje, Jesús, Pitu, Nono, Arturo por todos
los buenos momentos. También gracias a mis amigos Fergu, Manu, Sara, Quique, Fran
por los buenos momentos y el dı́a a dı́a en el CITIC. En mi corazón también están
Alberto, Estı́baliz, Diego y Rubén. Hemos disfrutado, trabajado y sufrido mucho, pero
ha merecido la pena. Gracias también a Juampa. No puedo expresar con palabras lo
mucho que significa nuestra amistad.

A Laura, muchas gracias por tu amor, apoyo, cariño, comprensión y complicidad.

II

Recibo de ti más de lo que pudiera imaginar. Haces que mi vida sea mejor y me com-
plementas.

A todos vosotros, gracias.

Granada, Mayo de 2013
José Enrique Pons Frı́as

Table of Contents

Agradecimientos / Dankwoord I

List of Acronyms XI

Nederlandse samenvatting XVII

English summary XIX

Resumen en Español XXI

1. Introduction 1-1
1.1. Objectives . 1-5
1.2. Contents . 1-7
1.3. A comment on the notation . 1-8
1.4. List of Publications . 1-9

1.4.1. Journal Papers . 1-9
1.4.2. International Conferences 1-9
1.4.3. National Conferences . 1-10
1.4.4. Book Chapters . 1-10
1.4.5. Manuscript under review . 1-10

2. Time modelling, temporal databases and fuzzy databases 2-1
2.1. Time Modelling . 2-3

2.1.1. Basic Concepts and Properties 2-3
2.1.2. Granularities . 2-5
2.1.3. Calendars . 2-7
2.1.4. An example of temporal domain: Julian Day Number 2-8
2.1.5. Temporal Relationships . 2-10
2.1.6. Types of Imperfections in Temporal Modelling 2-11
2.1.7. Representation of Imperfect Information 2-13
2.1.8. Imperfections in Temporal Relationships 2-14

2.2. Temporal Databases . 2-15
2.2.1. Basic Concepts and Properties 2-15
2.2.2. Primary Keys in Valid-time Relation Design 2-19
2.2.3. Consistency under Modification 2-20
2.2.4. Temporal database models 2-22

2.2.4.1. Valid-time models 2-22
2.2.4.2. Transaction-time models 2-24
2.2.4.3. Bi-temporal, multitemporal datamodels 2-24

2.2.5. Temporal Query Languages 2-25
2.2.6. Commercial Temporal Database Systems 2-25

IV

2.3. Fuzzy Modelling . 2-26
2.3.1. Fuzzy sets . 2-26
2.3.2. Concepts about fuzzy sets 2-28
2.3.3. Interpretation of fuzzy sets 2-30

2.4. Fuzzy Databases . 2-31
2.4.1. Main models and proposals 2-32

2.4.1.1. Buckles & Petry 2-32
2.4.1.2. Prade & Testemale 2-33
2.4.1.3. Umano & Fukami 2-34
2.4.1.4. Zemankova & Kaendel 2-36
2.4.1.5. GEFRED by Medina, Vila & Pons 2-36

2.5. Conclusions . 2-44

3. A Possibilistic Valid-time Model 3-1
3.1. Preliminaries . 3-3

3.1.1. Possibility Theory . 3-3
3.1.2. Possibilistic Variables . 3-5
3.1.3. Fuzzy Numbers and Fuzzy Intervals 3-6
3.1.4. Interval Evaluation by Ill-known Constraints 3-7

3.2. Time Representation . 3-11
3.2.1. Approaches for the representation 3-11
3.2.2. Ill-known time point . 3-13

3.2.2.1. Data Types . 3-14
3.2.3. Ill-known time interval . 3-15

3.2.3.1. Open ill-known time intervals 3-15
3.2.3.2. Representation of semi-open time intervals 3-15
3.2.3.3. Data types . 3-16

3.3. Crisp Valid-time Model for Relational DBs 3-16
3.3.1. Temporal model for crisp databases 3-17
3.3.2. Data manipulation language 3-19

3.3.2.1. Modify . 3-21
3.3.2.2. Insert . 3-21
3.3.2.3. Delete . 3-23
3.3.2.4. Revise . 3-23

3.3.3. Selection . 3-23
3.3.3.1. Query Evaluation 3-24

3.3.4. Cartesian Product . 3-25
3.3.4.1. Join . 3-27

3.4. Possibilistic Valid-Time Model
for Relational DBs . 3-29
3.4.1. The generalized temporal model 3-29
3.4.2. Data manipulation language 3-34

3.4.2.1. Modify . 3-36
3.4.2.2. Insert . 3-36
3.4.2.3. Delete . 3-37
3.4.2.4. Revise . 3-38

3.4.3. Selection . 3-38
3.4.3.1. Query Evaluation 3-39
3.4.3.2. Aggregation and Ranking 3-39

3.4.4. Cartesian Product . 3-41

V

3.4.4.1. Join . 3-42
3.5. Conclusions . 3-43

4. Bipolar Querying of Temporal Databases 4-1
4.1. Introduction . 4-3
4.2. Bipolar Query Conditions . 4-4

4.2.1. Constraint-Wish Approach 4-5
4.2.2. Satisfied-Dissatisfied Approach 4-6
4.2.3. Examples . 4-8

4.3. Ranking of Query Results . 4-9
4.3.1. Ranking in the Constraint-Wish Approach 4-10
4.3.2. Ranking in the Satisfied-Dissatisfied Approach 4-10
4.3.3. Comparison and discussion 4-12

4.4. Aggregation in Bipolar Query Processing 4-13
4.4.1. Aggregation in the Constraint-Wish Approach 4-13

4.4.1.1. Treating c(t) and w(t) Individually 4-13
4.4.1.2. Treating (c(t), w(t)) as a Whole 4-14

4.4.2. Aggregation in the Satisfied-Dissatisfied Approach 4-15
4.4.2.1. Treating s and d Individually 4-15
4.4.2.2. Treating (s, d) as a Whole 4-19

4.4.3. Comparison and discussion 4-19
4.5. Bipolar querying of Temporal Databases 4-21

4.5.1. Temporal constraints at the global level 4-21
4.5.1.1. The Query Structure 4-21
4.5.1.2. The Evaluation of the Query 4-22
4.5.1.3. Presenting the Results to the User 4-22
4.5.1.4. Discussion. 4-24

4.5.2. Temporal constraints at the local level 4-24
4.5.2.1. Construction of the Query 4-24
4.5.2.2. Query Evaluation 4-26
4.5.2.3. Object Ranking 4-27
4.5.2.4. Results and discussion 4-29

4.6. Case of use . 4-29
4.6.1. Medieval Diplomatic Sources of the Low-Countries in Belgium 4-29
4.6.2. Bipolar querying of temporal databases 4-30
4.6.3. Query evaluation . 4-31
4.6.4. Aggregation . 4-31

4.7. Conclusions . 4-32

5. Visualization of Uncertain Time Intervals in the Triangular Model 5-1
5.1. Introduction . 5-2
5.2. The triangular model . 5-4

5.2.1. Uncertain Time Intervals . 5-4
5.2.2. The triangular model . 5-5

5.3. Representing Uncertain Time Intervals 5-6
5.4. Temporal reasoning with uncertain time intervals 5-8

5.4.1. Relational Information for Interval Points 5-8
5.4.2. Relational Information for UTIs 5-11

5.5. Link between TM and the IKC frameworks. 5-12
5.5.1. Comparison of Approaches to Interval Representation 5-13

VI

5.5.2. Comparison of Approaches to Allen Relationship Evaluation . 5-14
5.6. Conclusions . 5-15

6. An Open Source Framework for Fuzzy Temporal Databases 6-1
6.1. Hibernate Framework . 6-3

6.1.1. Architecture . 6-3
6.1.1.1. Hibernate objects states 6-8
6.1.1.2. Making objects persistent 6-8
6.1.1.3. Loading an object 6-9

6.1.2. Querying in the Hibernate framework 6-11
6.1.2.1. Executing queries 6-12
6.1.2.2. Iterating results 6-12

6.2. The stratified model . 6-14
6.2.1. A Stratified Architecture . 6-14
6.2.2. Design Criteria . 6-15
6.2.3. Implementation Model . 6-15

6.2.3.1. Implementation 6-16
6.2.4. Valid time representation . 6-17

6.2.4.1. Fuzzy Validity Period 6-19
6.2.4.2. Possibilistic Valid-time Period 6-19

6.2.5. Fuzzy Querying . 6-21
6.2.5.1. Approach 1: Fuzzy operators in plain SQL 6-22
6.2.5.2. Approach 2: Querying by ill-known constraints . . 6-25
6.2.5.3. Comparison . 6-27

6.3. Related work . 6-28
6.4. Conclusions . 6-29

7. Conclusions and further research work 7-1
7.1. Summary . 7-1
7.2. Discussion . 7-4

7.2.1. Representation of time . 7-5
7.2.2. Temporal relationships . 7-5
7.2.3. Time in databases . 7-6
7.2.4. Bipolar querying of temporal databases 7-6
7.2.5. Implementations . 7-7

7.3. General Conclusion and Further Research Work 7-8

A. Possibilistic evaluation of sets A-1
A.1. Set evaluation by ill-known constraints A-3
A.2. An application on intervals . A-9

A.2.1. Interval evaluation by ill-known constraints A-9
A.2.2. Dubois and Prade’s approach A-13
A.2.3. Comparison with fuzzy transformations A-14

A.3. Conclusions . A-15

List of Tables

2.1. Julian Day . 2-9
2.2. The thirteen Allen Relations . 2-11
2.3. Example of valid, transaction and decision-time. 2-18
2.4. Example of the primary key issue in temporal databases. 2-20
2.5. Example with new primary key. 2-20
2.6. Example of the consistence mechanism 2-21
2.7. Example relation updated maintaining consistency. 2-22
2.8. Commercial Temporal Database Systems. 2-26
2.9. Example of a simple fuzzy database. 2-32
2.10. Non-ordered domain example. 2-40
2.11. Fuzzy operators . 2-42
2.12. Ordered domain example. 2-42
2.13. Query evaluation example. 2-43

3.1. Comparative PVP vs FVP . 3-13
3.2. Values for the time point data type. 3-14
3.3. Example of ill-known values in historical database. 3-14
3.4. Relations for the Open(C) function. 3-16
3.5. Combinations for an ill-known interval. 3-17
3.6. Example database for r ∈ R . 3-19
3.7. Example of historical database. 3-20
3.8. Example of insert. 3-22
3.9. Example of delete and revise. 3-23
3.10. Employees table. Instance r of relation R. 3-25
3.11. Address table. Instance s of relation S. 3-25
3.12. Intermediate calculations. 3-26
3.13. Resultset table for the selection in equation (3.64) 3-26
3.14. Intermediate calculations for the temporal Cartesian product. 3-28
3.15. GEFRED data types . 3-29
3.16. Example of fuzzy valid-time relation. 3-31
3.17. Example of an historical database. 3-32
3.18. Primary key in a historical database. 3-34
3.19. Example database, instance c ∈ C 3-40
3.20. Result table and ranking . 3-40
3.21. Relation for the employees with an ill-known valid-time interval. . . . 3-42
3.22. Relation for the addresses with an ill-known valid-time interval. . . . 3-42
3.23. Intermediate calculations for the temporal Cartesian product. 3-43

4.1. Example database. 4-23
4.2. Example resultset of a fuzzy temporal query. 4-23

VIII

4.3. Example instance for criminal database. 4-25
4.4. Evaluation table. 4-27
4.5. The resulting possibility and necessity degrees. 4-29
4.6. Sample of the historical database from the medieval sources of the Low

Countries. 4-30
4.7. Valid time in FVP representation. 4-30
4.8. Satisfaction degree s, dissatisfaction degree d, value for BSD and

value for V SD. 4-32
4.9. Comparative with different values for ω for result classification. . . . 4-33

5.1. The thirteen Allen’s Relations . 5-7
5.2. The fifteen possible URZ. 5-9

6.1. Example of diplomatic document database. 6-6
6.2. Relational representation attributes type 2. 6-18
6.3. Relational representation attributes type 3. 6-18
6.4. Relational representation FVP. 6-19
6.5. Relational representation PVP. 6-19
6.6. Example of Historical database, FVP 6-20
6.7. Example of Historical database, PVP 6-21
6.8. The relation employees with fuzzy validity periods (FVP). 6-24
6.9. Example table with FVP. 6-25
6.10. Example table with PVP. 6-26
6.11. Resultset table . 6-27
6.12. Comparison among different fuzzy DB implementations. 6-29
6.13. Changes to migrate the implementation to another DBMS. 6-29

A.1. Uncertainty about set evaluation . A-9
A.2. Allen’s relations represented in the framework. A-13

List of Figures

1.1. Speaker Time vs Refered Time . 1-3
1.2. Granularity Imprecision . 1-3
1.3. Diagram with the main database types in information systems. 1-6
1.4. Our proposal with respect to the present approaches. 1-6
1.5. Contents of each chapter and relationships between them. 1-7

2.1. Granularity graph. 2-7
2.2. Allen relations between two crisp time intervals. 2-10
2.3. Example for the Allen relationship ‘after’. 2-15
2.4. Valid-time with respect to Transaction Time. 2-17
2.5. Classification of valid-transaction-time. 2-17
2.6. 3D representation for valid, transaction and decision-time. 2-18
2.7. Discrete possibility distribution . 2-28
2.8. Continuous possibility distribution example. 2-29
2.9. Type 2 possibility distribution. 2-40

3.1. Example of fuzzy number. 3-6
3.2. Example of fuzzy interval. 3-6
3.3. Example of ill-known constraint. 3-8
3.4. Example of ill-known values. 3-11
3.5. Fuzzy Validity Period . 3-12
3.6. Possibility distribution for ill-known point. 3-17
3.7. Classification for a fuzzy temporal database. 3-35

4.1. Example in the Satisfied-dissatisfied approach. 4-8
4.2. Example in the Constraint-wish approach. 4-9
4.3. Extension of the example in the Constraint-wish approach. 4-9

5.1. Representation of time intervals. 5-3
5.2. Possibilistic modelling of a time interval. 5-5
5.3. Construction of an interval point. 5-6
5.4. Crisp Relational Zones . 5-6
5.5. Construction of the UIZ for an UTI. 5-7
5.6. Using TM to represent UTIs. 5-8
5.7. Uncertain Relational Zones . 5-8
5.8. Determining the possible Allen relation. 5-10
5.9. Determining the possible Allen relation. 5-11
5.10. The visualization of the example using the TM framework. 5-16

6.1. High level Hibernate architecture. 6-3
6.2. Detailed Hibernate with lite configuration. 6-4

X

6.3. Detailed Hibernate with the comprehensive configuration. 6-5
6.4. Transition among the different Hibernate objects states 6-8
6.5. Stratified architecture. 6-14
6.6. Abstract layer model . 6-15
6.7. Detailed Hibernate architecture for fuzzy representation 6-16
6.8. UML diagram for fuzzy data types. 6-18
6.9. Translation HQL to SQL. 6-23
6.10. Querying architecture. 6-25
6.11. Performance comparative. 6-28

A.1. Possibility distribution of X . A-6
A.2. Two binary relations on U . A-8
A.3. Possibility distributions of X1 and X2 A-8
A.4. The fuzzy numbers X and Y . A-11
A.5. Possibility of evaluation for the interval [a, b]. A-11
A.6. Necessity of evaluation for the interval [a, b]. A-12
A.7. Transformations of ill-known values. A-14

List of Acronyms

A

A After
AD Anno Domini
AFS Attanassov (Intuitionistic) Fuzzy Set
API Application Programming Interface
AR Allen Relation
AST Abstract Syntax Tree

B

B Before
BC Before Christ
BSD Bipolar Satisfaction Degree

C

C Contains
CDEG Compatibility Degree
CJD Chronological Julian Date
CORBA Common Object Request Broker Architecture
CRZ Crisp Relational Zone
CRUD CReate, Update and Delete
CTI Crisp Time Interval

D

D During
DBMS Database Management System
DDL Data Definition Language
DJD Dublin Julian Date
DML Data Manipulation Language
DT Decision Time

XII

E

EJB Enterprise Java Beans

F

FB From the Beginning
FEQ Fuzzy Equal To
FGT Fuzzy Greater Than
FGEQ Fuzzy Greater Than of Equal To
FIRST Fuzzy Interface for Relational Systems
FLEQ Fuzzy Less Than or Equal To
FLT Fuzzy Less Than
FRDBMS Fuzzy Relational Data Base Management System
FSQL Fuzzy Structured Query Language
FVP Fuzzy Validity Period
FS Fuzzy Set
FKRO Fuzzy Knowledge Representation Ontology

G

GEFRED Generalized Model for Fuzzy Relational Database

H

HQL Hibernate Query Language

I

IFS Atanassov (Intuitionistic) Fuzzy Set
IKC Ill-known Constraint
IKI Ill-known Interval
IKTP Ill-known Time Point
IKTI Ill-known Time Interval
IKV Ill-known Value
IVFS Interval-valued Fuzzy Set

XIII

J

JD Julian Date
JDBC Java Database Connectivity
JDN Julian Day Number
JED Epheris Time
JTA Java Transaction Api

M

MGT Much Greater Than
MJD Modified Julian Day
MLT Much Less Than

N

NFEQ Necessity Fuzzy Equal To
NFGT Necessity Fuzzy Greater Than
NFGEQ Necessity Fuzzy Greater Than or Equal To
NFLEQ Necessity Fuzzy Less Than or Equal To
NFLT Necessity Fuzzy Less Than

O

O Overlaps
OB Overlapped By
OMG Object Management Group
OWA Order Weighted Averaging

P

PE Possibly Equals
PF Possibly Finishes
PFB Possibly Finished By
PM Possibly Meets
PMB Possibly Meets By
POJO Plain Old Java Object
PK Primary Key
PS Possibly Starts
PSB Possibly Started By
PVP Possibilistic Valid-time Period

XIV

Q

QBC Query By Criteria
QBE Query By Example

R

RDBMS Relational Data Base Management System
RJD Reduced Julian Day

S

SQL Structured Query Language

T

TT Terrestrial Time or Transaction Time
TJD Truncated Julian Date
TSQL Temporal Structured Query Language
TDB Temporal Data Base
THOLD Threshold
TFS Two-fold Fuzzy Sets
TM Triangular Model

U

UB Uncertain Beginning
UE Uncertain Ending
UT Universal Time
UDT User Defined Time
UML Unified Modelling Language
UC Until Changed
UTI Uncertain Time Indication
UIZ Uncertain Interval Zone
URZ Uncertain Relational Zone

V

VT Valid Time
VST Valid-time Satisfaction Degree
VID Version Identifier

XV

W

WWW World Wide Web

X

XML Structured Markup Language

Nederlandse samenvatting
–Summary in Dutch–

Bij informatiesystemen heerst een bijzondere belangstelling voor het opslaan en
behandelen van tijdsafhankelijke gegevens of gegevens met een temporele component
(voor de eenvoud zullen we vanaf nu naar deze verwijzen als temporele gegevens).
Bij het omgaan met temporele gegevens in een databank is het noodzakelijk om het
standaardgedrag van de databank-motor te modificeren. Bij het omgaan met temporele
gegevens worden gewoonlijk verschillende versies van dezelfde gegevens opgeslagen.
Met andere woorden, de evolutie van de gegevens doorheen de tijd wordt bewaard.
Daarom zou een mechanisme moeten worden voorzien om de verschillende versies
van de bewaarde gegevens op te slaan en met deze verschillende versies om te gaan en
om de consistentie tussen deze verschillende versies te verzekeren.

Daarnaast is de beschikbare temporele informatie gewoonlijk niet perfect. Daarom
is het noodzakelijk om een formeel werktuig te voorzien om met de imperfecties in
temporele informatie om te gaan. De studies van tijd in taal en in kennis leiden ons
tot de conclusie dat mensen op een onzekere, onnauwkeurige en/of vage manier om-
springen met tijd. In deze thesis stellen we een formeel model voor om om te gaan met
imperfecte tijdsintervallen, dat gebaseerd is op possibiliteitstheorie en vaagverzame-
lingenleer. Deze beide theorieën voorzien goed gekende formele werktuigen om om te
gaan met onzekerheid, onnauwkeurigheid en vaagheid.

In dit werk bestuderen we de behandeling van onnauwkeurige temporele gegevens
in een databank. Hiertoe stellen we een theoretisch model voor vage temporele rela-
tionele databanken voor. Dit model representeert en behandelt imperfecte temporele
gegevens op een consistente manier. De belangrijkste bijdrage van dit model is een
benadering van de behandeling van imperfecte temporele informatie die dichter ligt bij
de menselijke manier van redeneren.

Het voorgestelde model is compleet. We voorzien de datatypes, de integriteitsbe-
perkingen, de datadefinitietaal (DDL) en de datamanipulatietaal (DML). Het model
lost de belangrijkste problemen op bij het omgaan met temporele informatie in een
databank. Het is mogelijk om verscheidene versies voor dezelfde gegevens te bewa-
ren. Het consistentiemechanisme wordt verschaft door middel van de datamanipulatie-
taal (DML), die wordt geherdefinieerd om de consistentie van de temporele gegevens
te verzekeren. Op deze manier stellen we de databankconsistentie veilig, zelfs in de
aanwezigheid van imperfecte temporele informatie. In deze thesis bestuderen we het
flexibel bevragen van temporele gegevens. Eerst worden vergelijkingsoperatoren uit-
gebreid door het gebruik van specifieke temporele operatoren (before, after, during,
. . . , etc.). Gewoonlijk wordt een booleaanse waarde verkregen als resultaat van een
evaluatie. Daarentegen worden, in het possibilistisch raamwerk, possibiliteits- en ne-
cessiteitsgraden in het eenheidsinterval [0, 1] verkregen als resultaat van een evaluatie.
Deze graden voorzien de gebruiker van meer informatie dan een booleaanse waarde.

XVIII

Om een krachtiger werktuig te voorzien om de gebruikerspreferenties voor te stel-
len, wordt bipolaire databankbevraging voorgesteld. Er zijn twee belangrijke bena-
deringen in de literatuur. Volgens de eerste (genaamd de restrictie-wens benadering)
specifieert de gebruiker een verzameling restricties die van kracht moeten zijn voor de
geselecteerde objecten. De gebruiker mag ook een verzameling eigenschappen aan-
leveren die tevens wenselijk zijn voor de geselecteerde objecten. Bijvoorbeeld: een
gebruiker kan een wagen willen die donker zou moeten zijn, en het liefst zwart is.
Volgens de tweede benadering (genaamd de tevredenheid-ontevredenheid benadering)
mag de gebruiker een verzameling beperkingen specifiëren die van kracht moeten zijn
voor de geselecteerde objecten en een andere verzameling beperkingen die niet van
kracht mogen zijn voor de geselecteerde objecten. Bijvoorbeeld: een gebruiker kan
een wagen willen die donker zou moeten zijn, maar zeker niet blauw zou mogen zijn.
In deze thesis gebruiken we de tevredenheid-ontevredenheid benadering om tempo-
rele databanken op een bipolaire manier te bevragen. Dit is nuttig gebleken in zowel
historische als criminologische databanken.

Wanneer een bevraging verwerkt wordt bij toepassing op een databank, moet het
verwerkingssysteem enkele berekeningen maken om te bepalen of een object de ver-
eisten in de bevraging vervult of niet. Het belangrijkste probleem is hier de aggregatie
van de evaluatie van niet-temporele beperkingen en de evaluatie van temporele beper-
kingen. In het geval van bipolaire bevraging moeten we bovendien de evaluaties van
zowel restricties als wensen of de evaluaties van zowel tevredenheid als ontevreden-
heid aggregeren. Een van de belangrijkste problemen bij het tonen van de resultaten
van een bevraging aan de gebruiker is het rangschikken van deze resultaten. De voor
de gebruiker interessantere resultaten zouden een hogere score gegeven moeten wor-
den dan de voor de gebruiker minder interessante resultaten. Daarom voorzien we in
dit werk verscheidene methoden voor de aggregatie van de evaluaties van temporele en
niet-temporele vereisten. Daarnaast voorzien we enkele methoden voor het rangschik-
ken van de resultaten van een bevraging.

Gewoonlijk wordt een grote hoeveelheid gegevens verkregen als resultaat van een
bevraging. Tegenwoordig voorzien de meeste moderne databankbeheersystemen werk-
tuigen om deze informatie samen te vatten en om de resultaten van een bevraging op
een gebruiksvriendelijke manier te presenteren. Bij het bevragen van temporele gege-
vens is het van bijzonder belang om de geldigheidsperiode van de opgevraagde gege-
vens te tonen. Gewoonlijk wordt deze temporele informatie gevisualiseerd als een in-
terval volgens een zekere tijdslijn. Desalniettemin is deze voorstelling niet conveniënt
wanneer meerdere tijdsintervallen moeten worden vergeleken. Het triangulair model
visualiseert de tijdsintervallen als punten in een tweedimensionale ruimte. Door deze
visualisatie te gebruiken, kan een groot aantal tijdsintervallen vergeleken worden met
één blik.

In deze thesis breiden we het triangulair model uit om onzekere tijdsintervallen
voor te kunnen stellen en te kunnen behandelen. Een methode voor het verkrijgen van
de relationele informatie tussen twee tijdsintervallen wordt tevens voorgesteld. Ten
slotte werd een volledige implementatie ontwikkeld om te tonen dat de implementatie
van het theoretisch model uitvoerbaar is. We voorzien een implementatie die imper-
fecte temporele informatie representeert, behandelt en opslaat. Ook de bevraging is
geı̈mplementeerd door de implementatie van de temporele operatoren gedefinieerd in
het theoretisch model.

English summary

In information systems, the storage and handling of time-dependent data or data
with a temporal component (for simplicity, we will refer to these as temporal data
from now on) is of special interest. When dealing with temporal data in a database,
it is necessary to modify the default behavior of the database engine. Usually, when
dealing with temporal data, different versions of the same data are stored. In other
words, the evolution of the data over time is stored. Therefore, a mechanism to store
and handle the different versions of the stored data as well as to ensure the consistency
among these versions should be provided.

In addition to this, the available temporal information is usually not perfect. There-
fore, it is necessary to provide a formal tool to handle the imperfections in temporal
information.

The studies of time in language and in knowledge lead us to the conclusion that
human beings deal with time in an uncertain, imprecise and/or vague way. In this
thesis, we propose a formal model to deal with imperfect time intervals, based on
possibility theory and fuzzy set theory. Both theories provide very well-known formal
tools to deal with uncertainty, imprecision and vagueness.

In this work, we study the treatment of imprecise temporal data in a database. To
achieve this, we propose a theoretical model for fuzzy temporal relational databases.
This model represents and handles imperfect temporal data in a consistent way. The
main contribution of this model is an approach to the treatment of imperfect temporal
information which lies closer to human reasoning. The proposed model is complete.
We provide the necessary data types, integrity constraints, data definition language
(DDL) and data manipulation language (DML). The model solves the main issues of
dealing with temporal information in a database. It is possible to store several versions
for the same data. The consistency mechanism is provided through the data manipu-
lation language (DML), which is redefined to ensure the consistency of the temporal
data. By doing this, we ensure database consistency, even in the presence of imperfect
temporal information.

In this thesis, we study the flexible querying of temporal data. First, comparison
operators are extended through the use of specific temporal operators (before, after, dur-
ing, . . .). Usually, a Boolean value is obtained as the result of an evaluation. However,
in the possibilistic framework, possibility and necessity degrees in the unit interval [0,
1] are obtained as the result of an evaluation. These degrees provide the user with more
information than a Boolean value.

In order to provide for a more powerful tool to represent user preferences, the bipo-
lar querying of databases is proposed. There are two main approaches in literature.
Following the first one (called the constraint-wish approach), a user specifies a set of
constraints which must hold for the selected objects. The user may also provide a set
of properties which are also desirable for the selected objects. For example: a user
may want a car which should be dark and is wished to be black. Following the second
approach (called the satisfaction-dissatisfaction approach), a user may specify a set

XX

of constraints which must hold for the selected objects and another set of constraints
which must not hold for the selected objects. For example: a user may want a car which
should be dark but should definitely not be blue.

In this thesis, we use the satisfaction-dissatisfaction approach to query temporal
databases in a bipolar way. This has appeared to be useful in both historical and crimi-
nal databases.

When a query is being processed in application to a database, the processing system
has to make some calculations in order to determine whether an object fulfills the query
constraints or not. The main problem here is the aggregation of the evaluation of non-
temporal constraints and the evaluation of temporal constraints. Moreover, in the case
of bipolar querying, we either have to aggregate the evaluations of both constraints
and wishes or the evaluations or both satisfaction and dissatisfaction. One of the main
issues when showing query results to a user is their ranking. The results which are
more interesting to the user should be given a higher score than the results which are
less interesting to the user. Therefore, in this work, we provide several methods for the
aggregation of the evaluations of temporal and non-temporal constraints. Next to that,
we provide some methods to rank query results.

Usually, a big amount of data is obtained as the result of a query. Nowadays, the
most modern database management systems provide tools to summarize this infor-
mation and to present query results in a user-friendly way. When querying temporal
data, showing the validity period of the queried data is of special importance. Usu-
ally, this temporal information is visualized as an interval corresponding to some time
line. However, this representation is not convenient when multiple time intervals have
to be compared. The triangular model visualizes time intervals as points in a two-
dimensional space. Using this visualization, a big number of time intervals can be
compared in a single glance.

In this thesis, we extend the triangular model to be able to represent and handle
uncertain time intervals. A method to obtain the relational information between two
time intervals is also proposed.

Finally, in order to show that the implementation of this theoretical model is fea-
sible, a complete implementation has been developed. We provide an implementation
which represents, handles and stores imperfect temporal information. Querying is also
implemented through the implementation of the temporal operators defined in the the-
oretical model.

Resumen en Español

En los sistemas de información actuales, es de gran interés el almacenamiento y la
manipulación de datos que tengan una componente temporal o bien sean dependientes
del tiempo (por simplicidad, a partir de ahora, nos referiremos a ellos genéricamente
como datos temporales). Para modelar esta información en una base de datos, hay que
tener en cuenta que la naturaleza temporal de los datos implica una serie de alteraciones
en el comportamiento natural de los mismos, ya que nos vemos obligados a mantener
varias versiones de un mismo objeto, o lo que es lo mismo, su evolución a lo largo del
tiempo. Por lo tanto es también necesario proporcionar mecanismos para almacenar,
tratar y asegurar la consistencia entre las distintas versiones de los datos almacenados.

Otro problema adicional es que la información temporal de la que se dispone, no
siempre es conocida con precisión. Por lo tanto, a los mecanismos mencionados ante-
riormente, hay que dotarlos de herramientas para manejar esta particularidad.

En esta tesis, estudiamos primero cómo entendemos y tratamos el tiempo los seres
humanos. La conclusión a la que llegamos es que, los humanos somos capaces de ha-
cer razonamientos muy precisos con expresiones temporales vagas e imperfectas. Esto
nos conduce a presentar un modelo matemático para modelar y razonar con interva-
los de tiempo, basado en la teorı́a de la posibilidad y la lógica difusa, herramientas
fundamentales que permiten modelar la imprecisión y la vaguedad.

En este trabajo, estudiamos el problema del tratamiento de la información temporal
imprecisa en una base de datos. Para ello, proponemos un modelo teórico para bases
de datos relacionales, siguiendo la aproximación posibilı́stica. Este modelo permite
almacenar y tratar datos temporales de una manera consistente. La principal novedad
con respecto a otros modelos de bases de datos temporales es el manejo que hacemos
del tiempo, lo que permite representar y razonar con datos temporales de una manera
más cercana a como lo hacemos los humanos.

El modelo que proponemos es completo ya que definimos las estructuras de datos,
restricciones de integridad y proporcionamos los lenguajes tanto de definición de datos
(DDL) como de manipulación de datos (DML). Nuestra propuesta resuelve también
los problemas clásicos que encontramos en bases de datos temporales. Primero, permi-
timos que existan varias versiones para los datos temporales y aseguramos su consis-
tencia redefiniendo las operaciones del lenguaje de manipulación de datos (DML). De
esta manera, y a pesar de que las expresiones relativas al perı́odo de validez de los datos
se proporcionen de manera imprecisa, el contenido de la base de datos es consistente.

Por otra parte, estudiamos también la consulta flexible de los datos temporales al-
macenados en la base de datos. Primero extendemos los operadores clásicos de com-
paración con operadores temporales del tipo anterior, posterior, durante, ..., etc. En
un enfoque clásico, los operadores de mencionados devuelven verdadero o falso, pe-
ro al utilizar el marco teórico posibilistico, podemos emplear varias medidas para el
cómputo del grado de cumplimiento de una comparación. Este grado, a diferencia de
los operadores clásicos, nos proporciona un grado de cumplimiento de la condición,
que normalmente se suele encontrar en el intervalo [0, 1]. Esto nos proporciona mayor

XXII

información como resultado de nuestras consultas a la base de datos.
Con la intención de captar de una manera más completa las preferencias de los

usuarios, se propone la consulta bipolar de bases de datos, que permite dar un mayor
poder expresivo a los usuarios. Existen dos propuestas que, como veremos, son equi-
valentes. En la primera (llamada restricción-deseo), el usuario expresa por un lado un
conjunto de restricciones que son de obligado cumplimiento, y por otro lado un con-
junto de condiciones que serı́an deseables. Por ejemplo, podemos buscar un coche de
color oscuro, preferiblemente negro.

En la otra propuesta de consulta bipolar (llamada satisfacción-insatisfacción), el
usuario especifica por un lado un conjunto de restricciones que satisfacen la consulta y
por otro lado, un conjunto de restricciones que no son deseables. Por ejemplo, podemos
buscar un coche de color oscuro, pero que no sea azul.

En esta tesis, extendemos la segunda propuesta para consultas bipolares en bases
de datos temporales. Como veremos es útil en aplicaciones de bases de datos históricas
y también en búsqueda criminalı́stica.

Cuando se ejecuta una consulta en una base de datos, el sistema ha de realizar una
serie de cálculos para determinar si un determinado objeto satisface o no los criterios de
la consulta. En este caso, nos encontramos con el problema que supone la agregación de
la evaluación de los criterios temporales y la evaluación de los criterios no temporales.
Además, en el caso de la consulta bipolar, tenemos el problema de la agregación de
las restricciones y los deseos (si utilizamos la primera propuesta) o la agregación de la
satisfacción e insatisfacción (si utilizamos la segunda propuesta).

A la hora de mostrar los resultados a los usuarios, nos encontramos con el problema
de ordenar los resultados, de modo que los objetos más interesantes sean los primeros
que se le muestren al usuario. Por lo tanto, en este trabajo proponemos varios métodos
para agregar primero los resultados procedentes de criterios temporales y los resulta-
dos procedentes de criterios no temporales. Finalmente proponemos mecanismos para
ordenar los resultados y presentarlos al usuario.

Suele ocurrir que, como resultado de una consulta, obtenemos un conjunto de da-
tos muy grande que hay que mostrar al usuario. Hoy en dı́a, los principales sistemas de
bases de datos, cuentan con herramientas para resumir y presentar de manera más ami-
gable dicha información. Sin embargo, cuando tratamos con datos temporales, como
parte de los resultados de una consulta, hay que mostrar el perı́odo de validez de dichos
datos. Normalmente, ese intervalo de tiempo se visualiza como una lı́nea cuya longi-
tud es proporcional a la duración del intervalo. Cuando queremos comparar un gran
número de intervalos esta visualización no es viable. El modelo triangular propone una
visualización de los intervalos de tiempo en dos dimensiones. Esto hace que un inter-
valo de tiempo en el modelo triangular, se represente como un punto. La ventaja que
proporciona es que podemos estudiar las relaciones entre un gran número de intervalos
de un simple vistazo.

En este trabajo, extendemos el modelo triangular para representar intervalos de
tiempo con incertidumbre. Presentamos también una manera visual de obtener las re-
laciones entre intervalos de tiempo que presentan imprecisión.

Por último, con la intención de demostrar que el modelo teórico de bases de datos
desarrollado en esta tesis es factible en un sistema real, hemos realizado su implemen-
tación completa, extendiendo para ello un sistema de bases de datos relacional. Dicha
implementación permite tanto representar datos temporales con imprecisión ası́ como
realizar consultas utilizando los operadores de comparación estudiados para datos tem-
porales.

1
Introduction

Contents
1.1. Objectives . 1-5
1.2. Contents . 1-7
1.3. A comment on the notation . 1-8
1.4. List of Publications . 1-9

1.4.1. Journal Papers . 1-9
1.4.2. International Conferences 1-9
1.4.3. National Conferences . 1-10
1.4.4. Book Chapters . 1-10
1.4.5. Manuscript under review 1-10

1-2 INTRODUCTION

The temporal dimension is a constant in our daily life. Practically, every aspect of
our daily life is joined by the temporal dimension. But, although the concept of time is
well known, it is very complex to define it.

More formally, it could be said that the time is a physical magnitude. There is no
agreement on the starting of the time (which is related to the Big Bang) neither on the
ending of the time (although some scientists believe that the time could be infinite). The
perception of the time is associated with the culture. In some cultures, there is a linear
perception of the time whereas in some other cultures there is a cyclical perception.
Because of this, the time is usually organized in hierarchical and cyclic structures, for
example the calendars. In a calendar, the time is organized in one or several hierarchical
levels. Each one of these levels are called by some authors, granules. For example, the
Gregorian Calendar [1] organizes a year in twelve months.

Despite of these hierarchical and well organized temporal structures, humans be-
ings handle the time in an imprecise way. Very often, while communicating, some
vague expressions are used and refers to a specific temporal moment. For example,
“We will see each other tomorrow around ten ”. This last sentence, contains impre-
cision; the exact time for the meeting would be approximately between five to ten
minutes before or after ten o’clock. In the other hand, the sentence is also an example
of vagueness. It is not explicitly set whether the meeting would be in the morning or
at night. Nevertheless, both speaker and hearer, would not have any doubts in the time
for the meeting.

The linguistic aspect of the time [2, 3] has been studied in depth as well as the
semantics of the time in language [4–8]. The main motivation for these studies is to
build a model that handles temporal aspects. In 1983, Allen [9] studied all the possible
relationships between two time intervals.

As a result of the study of time in language, several conclusions have been achieved.
First of all, in a temporal indication, two different types of time are distinguished.
Speaker Time, ST is the time when the temporal indication was uttered. Next to that,
referred time, RT is the time mentioned in the temporal indication. It has been proven
that the higher distance between both ST and RT, the bigger the rounding that humans
beings do. For example, consider the sentence “I lost my home keys last week”. The
time interval associated with the time indication “last week” is approximately around
5 to 9 days. Nevertheless, in the sentence “Romanticism lasted around one hundred
years”, the time interval is somewhere around eighty and one hundred and twenty years.
RT and ST are illustrated in Figure 1.1.

Another of the main sources of imprecision in language is the granularity; The
changes between different granularities lead to a precision lost. For example consider
the sentence “I was born the thirteen of September of 1983”. The temporal indication
in the sentence has a granularity of days. If we change the granularity to months,
then the sentence would be “I was born on September 1983”. By doing this, we are
introducing some imprecision in the sentence, since any day of September is possible
for the temporal indication. Figure 1.2 illustrates the example.

The term information comes from the Latin word informatio which means to give
form, to form an idea. But, as explained in [10], Information is a polymorphic phe-
nomenon and a polysemantic concept. The reader is refered to [11] for an easy-to-read
introduction.

INTRODUCTION 1-3

Figure 1.1: Speaker Time vs Refered Time

1982 1983 1984
Años

Meses de 1983

Días de Septiembre de 1983

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 ... 25 26 27 28 29 30

Figure 1.2: Example of imprecision in granularity shifts.

An Information System (IS) is defined as a combination of technology and people’s
activities [12], [13]. That technology supports, handles and manages the information.
In other words, IS includes software, hardware, data, people and procedures.

Usually, at the backbone of each Information System is a Database Management
System (DBMS) The main features of any database system are two, and they are intrin-
sically connected. The first one is the storage of data. The data are organized within a
model. Several models have been proposed. Among them, the most popular is the (ob-
ject) relational model [14, 15]. The second one is the querying. The users may query
the data stored in the database. In order to achieve that, a query language is provided.
The most popular query language is the Structured Query Language, SQL [16].

As it can be seen, both storage and querying are interconnected. Whereas the stor-
age needs a representation model, the querying needs a language to make queries.

As a natural evolution of the relational model, several proposals has been done
in order to represent more complex types of information. The other way around, in
order to implement more realistic models, some extensions of the relational model are
proposed. Two main extensions were, first, the representation of incomplete / missing
information. Second, the representation of temporal information associated to the data.
At this point, it is possible to distinguish between the period of time in which the
data is valid, e.g., the time associated to the validity of a physical constant, like the
temperature of a room, and some other time associated to the data. E.g., the time when
a bank transaction is made.

To allow information systems to cope with these and similar data imperfections,
many approaches adopt fuzzy sets [17] for the representation of temporal informa-
tion [18–21]. The temporal relationships studied by Allen were fuzzified by several
authors [19, 22, 23]. Garrido et al. [24] present different temporal operators, defined
by a combination of regular fuzzy comparisons. Also, [24, 25] studied uncertainty in

1-4 INTRODUCTION

temporal expressions concerning time intervals. Other approaches, like [26], use rough
sets [27] to represent imperfect time intervals.

The concept of time itself is very complex to handle and interpret [2, 3], though
it is very natural and omnipresent. As information systems attempt modelling natural
objects, concepts or processes, they often require modelling temporal aspects or con-
cepts. Thus, several proposals have arose to obtain theoretical models that allow the
modelling or representation of time [7, 8].

In reality, some aspects or properties of objects or concepts are time-variant or time-
related, e.g., the moment of a bank transaction is traditionally a point in time and thus
a time-related notion, the function of an employee in a company can change through
recorded history and is thus time-variant. A temporal database schema is a database
schema that models real objects or concepts with time-related or time-variant proper-
ties. However, the modelling of temporal aspects has a direct impact on the consistency
of the temporal database, because the temporal nature of these aspects imposes extra
integrity constraints. An example. Consider a library database, modelling the stock of
books in the library. Two dates are stored: the loan and the return date. It is clear that a
book cannot be loaned again until it is returned. Without further precautions, a library
employee could loan the same book several times even if it is not returned. A temporal
database model will typically constrain record insertion and prevent similar modelling
inconsistencies.

Figure 1.3 shows a schematic diagram with the some of the main database types
in information systems which are relevant for this work. This schema does not show
all the different database systems. For example, spatial databases that offer support for
Geographical Information Systems GIS are not shown.

The representation of incomplete information in the relational model [28] has been
studied in depth [29–33]. Some of these proposals deal with the representation and the
semantics of null values in the relational model.

The modelling of imperfect information has been done by using one of the three
main theoretical frameworks. First, probability theory [34,35], possibility theory [17,
36–39] and rough sets [27].

Possibility theory [17] has been the key in the development of fuzzy databases.
There are several proposals [40–48] to represent and handle imperfect or vague in-
formation in a database. Flexible querying has been also studied in depth [49–51].
Recently, some extensions to query with both positive and negative criteria have been
proposed [52]. This is also known as bipolarity.

Query languages have been proposed to query in a flexible way the database. For
example, SQLf [53] and FSQL [54]. Usually an implementation of these languages is
provided. For example, Freedom-0 [55], SQLf [56] and FSQL [54]. For further details
we recommend the book on fuzzy databases [57].

A lot of research concerns temporal database models and their approaches to the
modelling of time. The first efforts were towards the representation of historical infor-
mation related to objects represented by records in a database [58]. Some proposals
tried to extend the Entity Relationship Model [59], without impact on any database
standards like SQL [60].

There are some theoretical models for probabilistic databases which extend the re-
lational model [61]. There are also some proposals for a probabilistic algebra [62–64].

INTRODUCTION 1-5

Some implementations like MayBMS [65–69]. Spatio-temporal databases represent
temporal information [70–72] as well as geographical information.

Notably, in 1994, “A Consensus Glossary of Temporal Database Concepts” was
published [73]. For this publication, 44 temporal database researchers, among which
some of the main researchers in this field, cooperated to reach a consensus on the nature
and definitions of some of the main temporal database concepts and terminology. This
glossary was subsequently updated in 1998 [74].

An interesting issue in temporal modelling concerns relationships between tem-
poral notions. In this sense, Allen [9] studied temporal relationships between time
intervals (and as a special case time points). Among others, the querying of temporal
databases has greatly benefited from these temporal relationships, because they sup-
port richer and more complex user-specified temporal query demands, by allowing to
express more complex relationships between the temporal notions in the temporal ex-
pressions in the query. For example, a query like ‘who were the department heads when
Thomas worked for the institution’ can be evaluated using operators similar to Allen’s
ones.

Some authors proposed the modelling of time intervals by using a fuzzy set [18,
19, 21, 75]. In 2009, Garrido et al, [24] proposed a compact representation for time
intervals in a fuzzy database. Some operators to compare temporal intervals were also
provided. At the same time, Qiang [26] proposed a technique to model imperfect time
intervals by using rough sets [27].

Over the last few years, a model to deal with imperfect information has come back.
Uncertain databases deal with uncertainty and / or possibilistic data. The possible
worlds model [76] had as a main drawback the computational complexity with respect
to the query evaluation. Nevertheless, twenty years later, Bosc et al. [77–79] extended
the model so the queries are now evaluated in a compact and more efficient way.

Figure 1.4 shows the positioning of this work with respect to the other approaches.

1.1. Objectives
The main objectives of this thesis are the following.

1. Definition and formalization of temporal data types and operators. The goal is
to abstract the main characteristics of the temporal data types. Then, it would be
possible to re-define the data models and the operations in a database.

As part of this main objective we find the following objectives.

a) To define a representation for the temporal elements. The chosen repre-
sentation should allow uncertainty and vagueness within the temporal ele-
ments.

b) To define the operations and semantics for the possible relationships be-
tween the temporal elements defined above.

c) To extend the fuzzy relational model to represent the temporal elements
and to support the operations on them.

d) To define the behaviour and the semantics for the time-dependent data.

1-6 INTRODUCTION

Information System

Relational DB Non-relational DB

Probabilistic

DB

Fuzzy

DB
Possibilistic

DB

Temporal

DB

Probabilistic

Spatio-temporal

DB

Figure 1.3: Diagram with the main database types in information systems.

Information System

Relational DB Non Relational DB

Probabilistic

DB

Fuzzy

DB

Possibilistic

DB

Temporal

DB

Probabilistic

Spatio-temporal

DB

Figure 1.4: Our proposal with respect to the present approaches.

INTRODUCTION 1-7

2. Implementation of the theoretical model obtained in the previous stage.

Figure 1.5: Contents of each chapter and relationships between them.

1.2. Contents
Figure 1.5 illustrates the organization of the chapters in this thesis. Most of the

content has been already published. The references here refer to the section “List of
Publications”. The contents are organized as follows:

Chapter 1: The problem is introduced as well as the objectives and the outline of
the work.

Chapter 2: The previous works and the state of the art are introduced. First of
all, we will explain some basics aspects of time modelling and the imperfec-
tions associated with time modelling. Then, the behaviour and some of the main
temporal database models. Next to that, we will introduce the main theoretical
framework: the fuzzy logic. This would serve us to explain and introduce the

1-8 INTRODUCTION

fuzzy databases. Some basic concepts about bipolarity would be introduced at
the end of the chapter. The contents of this chapter are partially covered by a
book chapter [13], and a conference proceedings [6].

Chapter 3: In this chapter, the model to represent imperfect temporal data is
defined. We will extend the relational model by redefining the behaviour in
the temporal operations. Finally, the model will be implemented in the top of a
fuzzy databases model called GEFRED. The contents of this chapter are partially
covered by two journal papers [1] and [2] and several conference proceedings [3,
4, 11].

Chapter 4: In this chapter, we present the bipolarity as a querying tool. The state
of the art is studied with two main models: the constraint-wish model and the
satisfaction-dissatisfaction model. Finally we will propose some extensions to
the satisfaction-dissatisfaction model to query temporal databases. A practical
example is given by using the presented approach to query historical databases.
The contents of this chapter are partially covered by a book chapter [14] and
several conference proceedings [7, 16, 12].

Chapter 5: In this chapter, we present the triangular model to visualize time in-
tervals. We propose an extension to represent uncertain time intervals and to
study the relationships between them. The model is compared with the theoret-
ical model presented in Chapter [3]. The contents of this chapter are partially
covered by several conference proceedings [15] and [5].

Chapter 6: This chapter is about the implementation of GEFRED in an open
source framework for object-relational mapping, Hibernate. Both representation
and querying capabilities are implemented within the framework. The contents
of this chapter are partially covered by a book chapter [15] and several confer-
ence proceedings [8, 9, 10].

Chapter 7: In this chapter we will conclude with the main contributions of the
work. We will finish the work with the further research work.

1.3. A comment on the notation
This thesis is the result of the collaboration between two research groups. In this

work, we have tried to find a balance between two goals. First, to keep the notation as
in the original publication. Second, to provide a consistent notation through the whole
thesis. If both objectives are in a conflict, then we try to provide a consistent notation.

There are several cases where the notation and / or the name of certain elements
have to be clarified. In particular, in Chapter 3, the notation and the naming of some
elements for the relational database model could be confused with some existing liter-
ature. To clarify this, we will describe the different namings that have been proposed
in the literature.

The implementation of some operators use the notation from the relational model.
Often, a mathematical set is usually notated as a capital letter, for example S. The
elements of the set are then notated with a lower case letter. Therefore, a set and

INTRODUCTION 1-9

its elements are given by S = {s1, . . . , sn}. Nevertheless, because we follow the
relational notation, a set is notated with a lower case letter in Chapter 3.

In order to provide a consistent notation through the thesis, in Chapter 4, we have
modified the notation and the naming from the original publications. In this case, we
follow the relational notation and the naming from the previous chapter.

1.4. List of Publications

1.4.1. Journal Papers

1. J. E. Pons, N. Marı́n, O. Pons Capote, C. Billiet, and G. de Tre, “A relational
model for the possibilistic valid-time approach,” International Journal of Com-
putational Intelligence Systems, vol. 5, no. 6, pp. 1068–1088, 2012.

2. A. Bronselaer, J. E. Pons, G. De Tré, and O. Pons, “Possibilistic evaluation of
sets,” Int. J. Uncertainty Fuzziness Knowlege-Based Syst., vol. 21, no. 3, 2013.

1.4.2. International Conferences

3. J. E. Pons, C. Billiet, O. Pons Capote, and G. Tré, “A possibilistic valid-time
model,” in Advances on Computational Intelligence (S. Greco, B. Bouchon-
Meunier, G. Coletti, M. Fedrizzi, B. Matarazzo, and R. Yager, eds.), vol. 297 of
Communications in Computer and Information Science, pp. 420–429, Springer
Berlin Heidelberg, 2012.

4. C. Billiet, J. E. Pons, O. Pons Capote, and G. Tré, “Evaluating possibilistic valid-
time queries,” in Advances on Computational Intelligence (S. Greco, B. Bouchon-
Meunier, G. Coletti, M. Fedrizzi, B. Matarazzo, and R. Yager, eds.), vol. 297 of
Communications in Computer and Information Science, pp. 410–419, Springer
Berlin Heidelberg, 2012.

5. G. de Tré, A. Bronselaer, C. Billiet, Y. Qiang, N. van de weghe, P. de Maeyer,
J. E. Pons, and O. Pons, “Visualising and handling uncertain time intervals in a
two-dimensional triangular space,” in Proceedings of the 2nd World Conference
on Soft Computing, 12 2012.

6. J. E. Pons and O. Pons, “Uses of fuzzy temporal databases on information sys-
tems,” in Proceedings of the IADIS International Conference Informations Sys-
tems (P. P. Miguel Baptista Nunes, Pedro Isaı́as, ed.), pp. 429–432, March 2012.

7. C. Billiet, J. E. Pons, T. Matthé, G. De Tré, and O. Pons Capote, “Bipolar
fuzzy querying of temporal databases,” in Lecture Notes in Artificial Intelligence,
vol. 7022, (Ghent, Belgium), pp. 60–71, Springer, Octobre 2011.

8. J. E. Pons, I. Blanco Medina, and O. Pons Capote, “Generalised fuzzy types
and querying: implementation within the hibernate framework,” in Proceed-
ings of the 9th international conference on Flexible Query Answering Systems,
FQAS’11, (Berlin, Heidelberg), pp. 162–173, Springer-Verlag, 2011.

1-10 INTRODUCTION

9. J. E. Pons, O. Pons Capote, and I. Blanco Medina, “A fuzzy valid-time model
for relational databases within the hibernate framework,” in Proceedings of the
9th international conference on Flexible Query Answering Systems, FQAS’11,
(Berlin, Heidelberg), pp. 424–435, Springer-Verlag, 2011.

10. J. E. Pons, O. Pons, and I. Blanco Medina, “An open source framework for fuzzy
representation and querying in fuzzy databases,” in Proceedings of the IADIS
International Conference Informations Systems (P. P. Miguel Baptista Nunes,
Pedro Isaı́as, ed.), March 2011.

1.4.3. National Conferences

11. J. Pons, A. Bronselaer, O. Pons, and G. de Tre, “Possibilistic evaluation of fuzzy
temporal intervals,” in Actas del XVI congreso Español sobre Tecnologı́as y
Lógica Fuzzy (Valladolid, Spain), february 2012.

12. J. E. Pons, C. Billiet, O. Pons, G. de Tré, E. de Paermentier, and J. Deploige,
“Consultas bipolares en bases de datos temporales: aplicación en bases de datos
con datos históricos,” in Actas de las Jornadas Andaluzas de Informática 2011.,
pp. 150–156, 9 2011.

1.4.4. Book Chapters

13. J. E. Pons, C. Billiet, O. Pons, and G. de Tré, Dedicated to Patrick Bosc, ch. As-
pects of Dealing with Imperfect Data in Temporal Databases.

14. C. Billiet, J. E. Pons, O. Pons Capote, and G. Tré, Eleventh International Work-
shop on Intuitionistic Fuzzy Sets and Generalized Nets, ch. Bipolarity in the
Querying of Temporal Databases.

15. J. E. Pons, O. Pons, and I. B. Medina, New trends on intelligent systems and
soft computing, ch. Fuzzy temporal information treatment in relational DBMS.
Theoretical Formulation, Implementation and Applications, pp. 95–112.

1.4.5. Manuscript under review

15. C. Billiet, J. E. Pons, O. Pons Capote, and G. Tré, “A comparison of approaches
to Model Uncertainty in Time Intervals” in Proceedings of the EUSFLAT con-
ference, Sep. 2013

16. C. Billiet, J. E. Pons, O. Pons Capote, and G. Tré, “Bipolar querying of Valid-
time intervals subject to Uncertainty” in Proceedings of the Flexible Querying
Answering Systems conference, Sep. 2013

17. C. Barranco, J.M. Medina, J. E. Pons and O. Pons Capote “Building a Fuzzy
Valid Time Support Module on a Fuzzy Object-Relational Database” in Pro-
ceedings of the Flexible Querying Answering Systems conference, Sep. 2013

INTRODUCTION 1-11

18. J. E. Pons, J.M. Medina, C. Barranco and O. Pons Capote “A Fuzzy Temporal
Model built on a Fuzzy Object-Relational Database” Expert Systems with Appli-
cations

2
Time modelling, temporal databases and

fuzzy databases

The contents of this chapter have been partially published on:

J. E. Pons, C. Billiet, O. Pons, and G. de Tré, Dedicated to Patrick Bosc, ch. Aspects of
Dealing with Imperfect Data in Temporal Databases.

J. E. Pons and O. Pons, “Uses of fuzzy temporal databases on information systems,” in
Proceedings of the IADIS International Conference Informations Systems (P. P. Miguel
Baptista Nunes, Pedro Isaı́as, ed.), pp. 429–432, March 2012.

Contents
2.1. Time Modelling . 2-3

2.1.1. Basic Concepts and Properties 2-3
2.1.2. Granularities . 2-5
2.1.3. Calendars . 2-7
2.1.4. An example of temporal domain: Julian Day Number . . . 2-8
2.1.5. Temporal Relationships 2-10
2.1.6. Types of Imperfections in Temporal Modelling 2-11
2.1.7. Representation of Imperfect Information 2-13
2.1.8. Imperfections in Temporal Relationships 2-14

2.2. Temporal Databases . 2-15
2.2.1. Basic Concepts and Properties 2-15
2.2.2. Primary Keys in Valid-time Relation Design 2-19
2.2.3. Consistency under Modification 2-20
2.2.4. Temporal database models 2-22
2.2.5. Temporal Query Languages 2-25
2.2.6. Commercial Temporal Database Systems 2-25

2.3. Fuzzy Modelling . 2-26
2.3.1. Fuzzy sets . 2-26

2-2 TIME MODELLING

2.3.2. Concepts about fuzzy sets 2-28
2.3.3. Interpretation of fuzzy sets 2-30

2.4. Fuzzy Databases . 2-31
2.4.1. Main models and proposals 2-32

2.5. Conclusions . 2-44

TIME MODELLING 2-3

In this chapter, we will introduce some basic concepts and the state of the art in
both time modelling and temporal databases.

We will start introducing the basic concepts and properties of time modelling in in-
formation systems. Temporal granularities and temporal relationships are also studied
in detail. Next to that, the most common types of imperfections in time are analysed.
Then, we study the representation of imperfect temporal information with special at-
tention to the imperfections in temporal relationships.

Once the time modelling is explained, we will provide a detailed overview of the
main proposals, classifications and difficulties in the temporal database research. This
chapter finishes with an overview of the most popular commercial temporal database
systems.

2.1. Time Modelling

Before considering the introduction of temporal modelling to information systems,
it is necessary to define and explain some main concepts concerning temporal mod-
elling, and to discuss some properties and issues related to these concepts. Most of
these concepts are widely used in the community of temporal databases and their defi-
nitions have been agreed upon in the context of [73]. For these concepts, in the entire
chapter, the proposals of [73] are followed (and often cited).

2.1.1. Basic Concepts and Properties

In information systems, time itself is usually perceived as a linear or cyclic con-
cept [80]. Therefore, a time domain is usually represented by a set with an imposed
partial order. In general, two main types of time models can be discerned: a linear
model [81] and a cyclic model [82]. In the linear model, a total order is imposed on the
set and the progress of time is seen as a linear matter, while cyclic models are mainly
used in the modelling of recurrent processes. It should be noted that the majority of
proposals use linear time models.

Data models used by information systems (more specifically, temporal database
systems) may represent these underlying time domains using chronons [73], which
can informally be described as the smallest distinguishable time units that can be used
in the system. However, to explain what chronons are, an explanation of some other
temporal concepts is necessary.

Definition 1. Instant [73]
An instant is a time point on an underlying time axis.

Thus, an instant is basically an instantaneous time point in a time model. Then, it
is possible to define the concept time domain.

Definition 2. Time domain [83]
A time domain is an ordered pair (T,≤) where T is a non-empty set of time instants
and≤ is a total order on T. A time domain is said to be discrete if all the elements other
than the last have an instant successor, and all the elements other than the first have an
instant predecessor.

2-4 TIME MODELLING

Orthogonal to the classification of underlying time models as linear or cyclic, they
can be classified as discrete, dense or continuous models [73]. In a discrete model [58],
the notion exists that every instant has a unique successor and the set of instants is seen
as a discrete one. Here, intuitively, the set of instants can be seen as isomorphic to
the set of natural numbers N. In a dense model, the notion exists that between any
two instants always lies another. Here, intuitively, the set of instants can be seen as
isomorphic to the set of rational numbers Q (when the set of instants is a discrete
one) or the set of real numbers R (when the set of instants is a continuous one). In
a continuous model, the notion also exists that between any two instants always lies
another one, but the set of instants is always seen as continuous and there are no “gaps”
between successive instants.

Some other relevant concepts are:

Definition 3. Time Interval [73]
A time interval is the time between two instants.

Definition 4. Duration [73]
A duration is an amount of time with known length, but no specific starting or ending
instants.

A time interval as such is bounded by two instants, whereas a duration is not. Also,
it should be noted that an instant is in fact a singular case of a time interval where the
start and end point are the same.

Definition 5. Temporal Element [73]
A temporal element is a finite union of time intervals.

Definition 6. Event [73]
An event is an instantaneous fact, i.e. something occurring at an instant.

Data models for time modelling might represent an underlying time domain using
chronons:

Definition 7. Chronon [73]
In a data model, a chronon is a non-decomposable time interval of some fixed, minimal
duration.

A data model may now represent a time model or time domain by a sequence of
consecutive chronons. These chronons have identical durations. A data model will
typically not specify the exact chronon duration, so it can be fixed later by the applica-
tions.

The fact that chronons are actually time intervals has a particular effect on the rep-
resentation of instants and time intervals. In a data model representing a time domain
using chronons, an instant is of course represented by a chronon. A time interval may
be represented by a set of contiguous chronons, depending on the amount of time the
time interval comprises.

Another classification of time models concerns the use of points or intervals to
model time. The equivalence between interval-based and point-based time models is
demonstrated in [84].

Restrictions on time range may exist, as time may be bounded orthogonally in the
past and in the future [80].

TIME MODELLING 2-5

2.1.2. Granularities

An important issue in time modelling concerns the concept of temporal granulari-
ties. Informally, we may say that a granularity is the precision on the time expression.
For example, consider a speaker saying “My birthday is in May”, the speaker works
with a granularity of months. However, it is possible for the speaker to say more ex-
actly “My birthday is the 15th of May”. A formal definition for this concept is given
in [85]:

Definition 8. Granularity [86]
A granularity is an ordered set of non-overlapping and continuous temporal elements
called granules.

Definition 9. Granule [86]
A granule is the basic time unit in a granularity.

A temporal granularity is in fact a partitioning of the time line (time model) used by
a system, usually dependent on the application. For example, the age of an adult human
being is usually expressed in years: one will use sentences like ‘Laura is 21 years old’
instead of sentences like ‘Laura is 21 years, 3 months and 4 days old’. In this example
any duration shorter than a year needs no specific representation and thus the used
granularity allows no specification for durations shorter than a year. The granules are
years.

As a granularityG is an ordered set, each granule may be represented by an integer.
In this representation, to keep track of the granularity a granule is an element of a
granularity G. The corresponding granularity name is added in subscript:

G = {iG | i ∈ Z} (2.1)

In a system, the granularity with the shortest granules is the chronons granularity,
which is denoted by ‘⊥’.

Definition 10. Mapping function for granularities [85]
A mapping function f is a function that maps a given granule iG, i ∈ Z, in a given
granularity G, to a set of corresponding chronons:

f : G→ P(⊥)

iG 7→ {c⊥ | (c⊥ is contained in iG) ∧ (c⊥ ∈ ⊥)}

Note that a mapping function f always maps from a given granularity G to the
powerset P(⊥) of the set of chronons ⊥. Therefore, the output for a mapping function
is an element of P(⊥) and thus a subset of ⊥.
A mapping function f requires that the following properties hold [85]:

G is an ordered set.

G is a set of continuous granules.

The granules in G do not overlap.

2-6 TIME MODELLING

The existence of mapping functions between granularities and the chronons granu-
larity also allows comparing granularities with respect to the length of their granules.
In this context, two important concepts can be discerned.

Definition 11. Finner Than [85]
Consider a mapping function f and let iG and jH be elements of granularities G and
H respectively. Granularity G is now said to be finner than granularity H if:

∀iG ∈ G,∀jH ∈ H : |f (iG) | < |f (jH) |

Definition 12. Coarser Than [85]
Consider a mapping function f and let iG and jH be elements of granularities G and
H respectively. Granularity G is now said to be coarser than granularity H if:

∀iG ∈ G,∀jH ∈ H : |f (iG) | > |f (jH) |

It is also possible to describe the relation between different granularities. This is
called a casting function, which is defined below:

Definition 13. Casting function [85]
Consider two different granularities G and H . A granularity-to-granularity casting

function cast is then a function mapping granules from G to granules from H:

cast : G×G×G→ H

(iG, G,H)→ jH

where iG ∈ G and jH ∈ H and where G denotes the set of all granularities.

Thus, the function cast associates a granule iG in G to a corresponding granule jH
in H . Two kinds of granularity-to-granularity mappings can now be discerned: an up-
wards mapping is a mapping from a granularity G to a coarser granularity H , whereas
a downwards mapping is a mapping from a granularity K to a finner granularity L.
Besides this classification, mappings between two granularities may be classified as
regular mappings, irregular mappings or congruent mappings [85], [87].

Regular mapping: A regular mapping is a granularity-to-granularity mapping
where the mapping function value is calculated by means of multiplications
and/or divisions and (maybe) an anchor adjustment, e.g., the mapping value of
the mapping between hours and minutes is calculated using a multiplication by
60.

Irregular mapping: An irregular mapping is a granularity-to-granularity map-
ping where the mapping function value can not be calculated by means of mul-
tiplications and/or divisions, e.g., the mapping value of the mapping between
months and days is dependent on the exact month or day.

Congruent mapping: A congruent mapping is a granularity-to-granularity map-
ping where the two granularities involved in the mapping have the same granules
but a different anchor, e.g., the mapping between the days (Gregorian calendar
days) and the academic days is a congruent mapping.

TIME MODELLING 2-7

Weeks

Days

Hours

Minutes

Seconds

Chronons

Academic day

Academic month

Academic term

Academic year

Months

Years

1000

60

60

24

7

1

12
4

2

Figure 2.1: The granularity graph corresponding to Example 1.

Different granularity-to-granularity mappings between several granularities can be
represented using a granularity graph, which is a directed graph indicating the mapping
conversions. The above is illustrated in the following example.

Example 1. Consider a system that models both Gregorian calendar dates as well as
academic calendar dates. In this system, the chronons granularity is a set of millisec-
onds. Figure 2.1 shows the complete granularity graph corresponding to this example.
The transition between the chronons granularity and the seconds granularity is an ex-
ample of a regular mapping. Regular mappings are represented by thin arrows in the
visualisation of the graph. The transition between the days granularity and the months
granularity is an example of an irregular mapping. In the graph visualisation, irregular
mappings are represented by a bold arrow. Finally, the transition between the Gregorian
calendar day granularity and the academic day granularity is an example of a congru-
ent mapping. Both concern the same days, but the academic year starts on October 1st,
whereas the Gregorian calendar year starts on January 1st. In the graph visualisation,
congruent mappings are visualised as straight lines without arrow heads.

Next, in subsection 2.1.3, some basic concepts and issues concerning calendars are
explained.

2.1.3. Calendars

A calendar provides some sort of human interpretation of time. As such, calendars
provide meaning or interpretation to temporal values where this meaning or interpreta-
tion is relevant or useful to the user. More precisely, calendars determine the mapping
between human-meaningful time values and an underlying time model [73]. Indeed, a
calendar is an organization of different granularities (e.g., granularities day, month and

2-8 TIME MODELLING

year) in a hierarchy. In order to formally define what a calendar is, a linear hierarchy of
Granularities should first be introduced [88]. In order to ensure the compatibility with
the modelling of granularities, some of the definitions in [88] are adapted to follow the
formalization of the granularities introduced in the previous section.

Definition 14. Linear Hierarchy of Granularities [88]
A linear hierarchy of granularities is a finite set of granularities with a linear order
(denoted @). The most coarse granularity is called the top of the hierarchy and must be
an infinite set while all other granularities must be finite sets.

An example of a linear hierarchy is the set {days, months, years}, where days @
months and months @ years. With this, a linear calendar can be defined.

Definition 15. Linear Calendar [88]
A linear calendar consist of a linear hierarchy of granularities and a validity predicate
which specifies if a granule is valid in the calendar.

An example of a linear calendar could be the linear hierarchy { days, months, years
}, where days @ months and months @ years, together with a validity predicate that
excludes time indications like ‘32 April 2012’ or ‘30 February 2012’.

The linear hierarchy days @ months @ years represents a linear calendar. It is
necessary to define the validity predicates because 17 January 2012 is a valid element
of the calendar whereas 30 February 2012 is not.

In order to represent a Gregorian Calendar, a linear calendar is the most appropiate
structure. Nevertheless, there are some other types of calendars, like periodic calendars.
For further reading on this topic, we refer the reader to [88].

2.1.4. An example of temporal domain: Julian Day Number

The Julian Day number JDN [89] is a counter. Its value is incremented in one unit
every day from 1 January 4713 B.C. at 12:00 noon. The particularity of starting at noon
was useful for astronomers: the observations they took one night belonged to the same
Julian Day.
Note that the Julian Day represents whole days. There is an extension that allows to
represent any precision needed (it is called Julian Date). By default, a Julian Day is
expressed in Universal Time. (U.T., also known as Solar Time). However, there are
also representations in Terrestrial Time (T.T.) and Epheris Time (J.E.D. or J.D.E.). Any
time scale different from Universal Time must be explicit after the Julian Day number.
There are several conversion formulas [90] [91] [92] between a date in Gregorian cal-
endar format and a date in JDN format. The inverse conversion formula is proposed
in [93].

There are many alternatives to optimize the representation of Julian Day numbers
because of its extremely far origin (4713 B.C. year). Table 2.1 shows several time
domains that can be calculated from the Julian Date, some of them are proposed just
for optimization purposes.

TIME MODELLING 2-9

Name From Formula Current
Value1

Julian Date
(JD)a

12:00 noon Monday
1 January 4713 B.C

2455278.
85488

Julian Day
Number
(JDN)b

12:00 noon Monday
1 January 4713 B.C.

JND = floor(JD) 2455278

Reduced
Julian Day
(RJD)c

12:00 noon Tuesday
16 November 1858
A.C.

RJD = JD - 2400000 55278.85488

Modified
Julian Day
(MJD)d

00:00 Wednesday 17
November 1858 A.C.

MJD = JD -
2400000,5

55278.35488

Truncated
Julian Day
(TJD)e

00:00 Friday 24 May
1968 A.C.

TJD = JD -
2440000,5

15278.35488

Truncated
Julian Day
(TJD)f

00:00 Thursday 10
November 1995 A.C.

TJD = (JD- 0,5) mod
10000

5278. 35488

Dublin Ju-
lian Day
(DJD))g

12:00 noon Sunday
31 December 1899
A.C.

DJD = JD - 2415020 40258.
85488

Chronological
Julian Day
(CJD)h

00:00 Monday 1 Jan-
uary 4713 B.C.

CJD = JD + 0,5 +
timezone adjust.

2455279.
3548843
(UT)

Lilian Day
Numberi

Friday 15 October
1582

floor(JD-2299160,5) 156118

ANSI Datej Monday 1 January
1601

floor(JD-2305812,5) 149466

Rata diek Monday 1 January 1
A.C

floor(JD -
1721424.5)

733854

Unix timel Thursday 1 January
1970 A.C.

(JD – 2440587.5)
×86400

1269333062

1 Current value on 23/03/2010.
a This is an extension of the Julian Day that allows time representation.
b Each day changes at noon.
c Used by astronomers.
d It starts at midnight.
e Definition from NASA. [94].
f Definition from NIST. [95].
g Introduced by the IAU in 1995.
h The timezone must be explicited. Each day changes at midnight.
i The number of days since Gregorian calendar in Universal Time.
j The origin for COBOL integer dates.
k The number of days since actual era.
l It counts the seconds not the day.

Table 2.1: Julian Day representations

2-10 TIME MODELLING

2.1.5. Temporal Relationships

In this section, a brief introduction concerning temporal relationships can be found,
sometimes also called ‘temporal relations’ [20]. Temporal relationships can be seen as
relationships between temporal elements belonging to the same time domain. These
relationships express how the temporal elements are related to one another, with respect
to temporal precedence and overlap.

First the relative positions between a time point and a time interval were studied.
There are three main relationships: the time point is before the time interval, the time
point is during the time interval and finally, the time point is after the time interval. If
we extend this study to the case of two time intervals, then, the relation during can be
subdivided into three relations: overlaps, during and meets.

I J
I Before J

I Equal J

I Meets J

I Overlaps J

I During J

I Starts J

I Finishes J

J

J

J

J

J

J

time

Relation

Figure 2.2: Allen relations between two crisp time intervals I and J . Note that the
crisp time interval I is fixed and the different positions of the interval J illustrate the
Allen relations.

Allen [9] most notably described such relationships between time intervals and as a
special case, between instants. Figure 2.2 shows the thirteen temporal relationships that
Allen discerned. Table 2.2 shows the implementation of the Allen relations between
two time intervals I and J .

As explained in the introduction, humans handle temporal information using tem-
poral notions like time intervals or time points [73]. While the used temporal no-
tions may contain imperfections [5], [21], [19], [96], humans often gracefully deal
with these, as their inherent interpretation capability accounts for a lot of them. This
phenomenon has been studied a.o. in the field of artificial intelligence [97], [98] and
language understanding [6], [19], [5]. An information system, however, cannot ap-
peal to a similar interpretation functionality. Thus, many proposals have been con-
cerned with the combination of time and imperfections in the context of informa-
tion systems [19]. Some proposals can be applied to both crisp and other time in-
tervals [22], [19], [23], [24]. In this section, some main concepts and issues concerning
this combination are presented.

TIME MODELLING 2-11

Name Implementation
I equals J if si = sj ∧ ei = ej
I starts J if si = sj ∧ ei < ej

I started by J if si = sj ∧ ei > ej
I finishes J if si > sj ∧ ei = ej

I finished by J if si < sj ∧ ei = ej
I meets J if ei = sj
I met by J if si = ej
I overlaps J if si < sj ∧ ei < ej ∧ ei > sj

I overlapped by J if si > sj ∧ ej < ei ∧ si < ej
I during J if si > sj ∧ ei < ej
I contains J if si < sj ∧ ei > ej
I before J if ei < sj
I after J if si > ej

Table 2.2: Allen relations represented in the framework. I = [si, ei], J = [sj , ej]

2.1.6. Types of Imperfections in Temporal Modelling

As studied by Motro [99, 100] there are different sources of imperfection in an
Information System.

Error: Erroneous information is the simplest form of imperfection in informa-
tion. An information system contains erroneous information when the stored
information is different from the true information. One specific type of erro-
neous information is inconsistency which happens when the same aspect of the
modelled reality is represented more than once.

Imprecision: The imprecision in an information system happens when the infor-
mation stored represents a set of possible values and the real value is one of the
elements of the set. Hence, imprecision in information is different from erro-
neous information. There can be distinguished several types of imprecision like
disjunctive information (e.g., Tom’s birthday is either 10th or the 11th of July)
, range information (e.g.,Tom’s birthday is between June and July), negative in-
formation (e.g., Tom’s birthday is not on August), and information with error
ranges (e.g., Tom’s birthday is the 11th of July ± 1 day).

Uncertainty: It is the case when the knowledge about the information can not
be stated with absolute confidence (e.g., Tom’s birthday is probably the 11th of
July). In this case, the confidence about the information should be qualified with
a measure of confidence.

Taking this classification into temporal modelling, a distinction is made between
the following sources of imperfections [19].

Uncertainty: Temporal information or data may contain uncertainty. This means
that the exact temporal value is (partially) unknown, however, generally some
knowledge is present anyhow, possibly describing the value [21], [19], [96], [18].
E.g., the temporal notion described in a sentence like ‘The Belfry of Bruges

2-12 TIME MODELLING

was finished on a day somewhere between 01/01/1201 A.D. and 31/12/1300
A.D.’ contains uncertainty: it is known that the belfry of Bruges was finished
on a single day and that this day lays somewhere between 01/01/1201 A.D. and
31/12/1300 A.D., but it is not known exactly which day it is.

Vagueness: Temporal information or data might contain inherent vagueness, as
a precise instant or time interval may be intended, but the description of it is
certainly vague [23], [19], [5]. E.g., the temporal notion described in a sentence
like ‘It happened during summer.’ contains vagueness, as even the boundaries of
the mentioned temporal notion are not clearly expressed.

Subjectivity or ambiguity: Temporal notions might be subject to subjectivity or
ambiguity. In certain cases, the temporal notion concerns a historical period like
‘late romanticism’ or ‘the early middle ages’ and thus contains subjectivity [19].
In other cases, the interpretation of the temporal notion depends on extra factors.
E.g., consider a person saying to another person ‘Let’s meet each other at six.’
The person hearing these words doesn’t now if 6 a.m. or 6 p.m. is intended,
though the person saying the words does.

As to the sources of the imperfections in temporal information, most proposals con-
sider no specific source [98], [23], [19], [96], [18], [22], [101]. Some proposals, how-
ever, deal with the imperfections specifically resulting from aspects of language [5] and
other proposals consider transitions between different granularities to be the source of
imperfection in temporal information [85]. Therefore, some proposals consider granu-
larity as the base of the temporal model [8].

In an information system, temporal information is usually related to facts or events [102].
In light of this, several classifications of temporal information can be considered, in
which the following types of temporal information may be found.

A first classification refers to the time handled by a temporal expression:

1. Time position. E.g., yesterday.

2. Frequency. E.g., every Monday, two times a week.

3. Duration. E.g., 8 hours, the whole day.

Apart from this classification, a time indication can be classified in the following:

1. Relational time indications refer to a relation with respect to a time point or
interval. For example after three hours, around May.

2. Situational time indications point to a time fact itself. For example in June, at 12
o’clock.

An orthogonal classification could be done in terms of the bounds of the temporal
expression:

1. Bounded temporal expressions refer to the past, present or future. For example:
yesterday at ten PM., in June 2013.

TIME MODELLING 2-13

2. Unbounded temporal expressions do not refer to past, present or future. For
example: at three o’clock.

1. Definite temporal information: Definite temporal information contains informa-
tion describing a situation in which all time indications associated with some fact
are absolute time indications. The temporal information is precisely known.

2. Indefinite temporal information [64]: Indefinite temporal information contains
information describing a situation in which the time indication associated with
some fact has not been fully defined. E.g., consider an event that in fact occurred
but it is not known exactly when.

3. Repetitive temporal information [103]: Repetitive temporal uncertain informa-
tion contains information describing a situation in which an infinite number of
time indications are associated with some fact. This is usually found in recurrent
events like meetings. E.g., consider meetings that take place every Wednesday at
noon. Some systems (usually with different information providers) may dispute
the occurrence and/or the duration of a fact.

These three types of temporal information may be affected by uncertainty.

2.1.7. Representation of Imperfect Information

As mentioned before, information systems may have to deal with time indications
which contain imperfections. Even for some specific events or facts, the temporal in-
dications may become imprecise. Therefore, a time point might be specified by means
of a time interval of which the boundaries may not be precisely known. An example.

Example 2. Consider a speaker and a hearer. The speaker wants to make an appoint-
ment with the hearer. Now, consider the speaker saying:

‘We will meet each other tomorrow around 10’

The hearer will now usually instinctively agree that the appointment will be in, e.g., the
time interval between 9.55h and 10.05h.

The study of the semantics of ‘around’ in temporal [5] indications has shown that
the size of the time interval associated with the imprecise specification of a time point
depends on the distance with respect to the current time. E.g., consider now that the
speaker is talking about something that happened ‘during last week’, then the hearer
would consider a time interval of more or less 10 days.

Some proposals [104], [8], [19], [102] conclude that the best representation for
incomplete temporal knowledge is therefore based on time intervals, even if they refer
to a fact that happen at a time point. This means that, as Allen proposed in [9], the
primitive units (the chronons) in a time domain, used in an information system should
be intervals.

In order to represent and manage uncertain temporal information properly, several
theoretical frameworks have been proposed:

2-14 TIME MODELLING

Probability theory: Probability theory [64], [67], [105] is usually employed when
uncertainty concerning a time interval allows a probability distribution to be as-
sociated to the time interval. The use of probability theory is very usual in lo-
gistics information systems. E.g., ‘The package will arrive at its destination on
Monday morning with a probability of 0.8’.

Possibility theory: Using possibility theory [38], a possibility distribution is as-
sociated to the temporal fact or event. Possibility theory is widely used to model
uncertainty and vagueness in time [21], [96], [4], [19]. Several works [23], [22]
present fuzzy versions of the temporal relations proposed by Allen [9]. The
aim of these works is generally to obtain a flexible way to compare uncer-
tain, ill-known temporal intervals modelled by possibility distributions by means
of temporal relationships. The study of imperfect temporal meta data is done
in [106], [107]. In [108] a proposal to use temporal fuzzy linguistic terms in
fuzzy databases is studied. Burney [109], [110] has studied recently the combi-
nation of fuzzy databases with temporal data.

Rough sets: Rough set theory [27] has been used to represent uncertainty in time
intervals. The two dimensional representation of time intervals and the temporal
relationships between them has been studied in [26]. In [111] a rough set-based
model for temporal databases is presented. The study of temporal relationships
between rough time interval is studied in [112].

2.1.8. Imperfections in Temporal Relationships

As the existence of temporal relationships allows to compare temporal notions,
many approaches have been concerned with finding similar temporal relationships, able
to support imperfections in the temporal information. Imperfections can be described
by temporal notions or even by the temporal relationships themselves [22], [19], [23], [21].
These approaches are often based on Allen operators [9]. Example 3 presents a short
example concerning one of Allen relationships.

Example 3. Consider an event which takes place between time points A and B. Thus,
the event comprises time interval [A,B] (this is visualized in part (1) of figure 2.3).
The classical Allen relationship ‘after’ will be true for all intervals starting in]B,∞[

as shown in part (2) of figure 2.3. A fuzzified version of Allen ‘after’ operator is
illustrated in part (3) of figure 2.3. The comparison between any two time intervals
results in a possibility degree in the unit interval. The shape of the corresponding
possibility distribution is shown in part (3) of figure 2.3.

Note that all the points strictly after the point B results in a possibility degree of 1
whereas there is an area near the point B in which the possibility degree runs smoothly
between 0 and 1.

Consider now the interval given by [C,D], illustrated in part (4) of figure 2.3. The
user wants to know if [C,D] is after [A,B]. The crisp version of the ‘after’ operator
would return ‘no’ as an answer. The fuzzy version for the same operator would return
‘yes, with a possibility of 0.5’.

TIME MODELLING 2-15

time

possibility

0

1

time

A B

time

(1)

(2)

(3)

C D
(4)

0.5

time

Figure 2.3: Example for the Allen relationship ‘after’. (1) The event bounded within
time points A and B. (2) The crisp version of the ‘after’ operator. (3) A fuzzy version
of the after operator. (4) Another event, bounded within time points [C,D].

2.2. Temporal Databases

A temporal database can generally be seen as a database that manages some tem-
poral aspects in its schema [113], [20]. In subsection 2.2.1, some main concepts and
properties concerning temporal databases and their definitions are presented and ex-
plained. In subsections 2.2.2 and 2.2.3, some issues of relational temporal databases
are presented and discussed. Subsection 2.2.4 is an overview of the main temporal
database models in the literature. Finally, subsection 2.2.6 presents an overview of
some commercial temporal database systems.

2.2.1. Basic Concepts and Properties

A database schema models some part of reality. As mentioned in the introduction,
the part of reality a temporal database schema tries to model, contains some temporal
aspects. For example, in this part of reality, some concepts or objects could have time-
related or time-variant properties. The modelling of these temporal aspects has to be
handled specifically in order for the database to maintain a consistent model of reality.

Thus, a temporal database will contain temporal values, i.e. values representing
(indications of) time. Temporal values in a temporal database can be classified into the
following types based on their interpretation and modelling purpose. The definitions
and explanations of these types can be found in [73] and [114] and more information
can be found in [115], [116] and [114].

Definition 16. Valid Time [73]
The valid-time (VT) of a fact is the time when the fact is true in the modeled reality.
For example, consider an application that stores the contracts for the employees in a
company. The valid-time for each contract is a time interval with the starting and the
ending dates of the contract.

2-16 TIME MODELLING

Definition 17. Transaction Time [73]
A fact is stored in a database at some point in time, and after it is stored, it is current
until logically deleted. The transaction-time (TT) of a database fact is the time when
the fact is current in the database and may be retrieved. For example, consider an
application that stores the contracts for the employees in a company. The transaction-
time is a timestamp which stores the time when the data for the contract of an employee
was stored in the database.

Definition 18. Decision Time [114]
Decision time (DT) denotes the time when an event was decided to happen. For exam-
ple, consider the application that stored the contracts for the employees in a company.
Decision time is the time when the decision to hire the employee was done.

Definition 19. User-defined Time [73]
User-defined time (UDT) is an uninterpreted attribute domain of date and time.

Valid times are usually provided by the user, whereas transaction-times are usu-
ally system-generated and -supplied [73]. Temporal values of type UDT are not given
any extraordinary interpretation and have thus no extraordinary query language sup-
port [73].

A temporal database can now formally be defined as follows:

Definition 20. Temporal Database [73]
A temporal database supports some aspect of time, not counting user-defined time.

In a relational temporal database, temporal values will of course be in the tuples of
the extensions, more specifically in temporal relations:

Definition 21. Valid-time Relation [73]
A valid-time relation is a relation with exactly one system supported valid-time.

Definition 22. Transaction-time Relation [73]
A transaction-time relation is a relation with exactly one system supported transac-
tion-time.

A valid-time, respectively transaction-time relational database is now defined as
containing one or more valid-time, respectively transaction-time relations [73]. Next to
this, bitemporal relational databases contain both valid-time and transaction-time [73]
and tritemporal or multitemporal databases contain valid-time, transaction-time and
decision-time [114].

Figure 2.4 illustrates both transaction-time with respect to valid-time. Valid-time is
usually represented by a time interval whereas the transaction-time is represented by a
timestamp. For a given tuple, there are the following options:

The timestamp for the transaction-time is greater than or equal to the starting
point of the in the interval for the valid-time, hence the tuple is said to be imme-
diate. See Figure 2.5 (a).

The timestamp for the decision-time is after the valid-time interval, then the tuple
is said to be retroactive.See Figure 2.5 (b).

TIME MODELLING 2-17

T
ra

n
s
a
c
ti
o
n
 T

im
e

Valid Time

Valid Time < Transaction Time

Valid Time > Transaction Time

V
alid

 T
im

e =
 T

ra
nsa

ct
io

n T
im

e

Figure 2.4: Valid-time with respect to Transaction Time.

time

V.T. T.T
(a)

time

V.T. T.T
(b)

time
V.T.T.T(c)

time
V.T.

T.T(d)

Figure 2.5: Illustration of the classification for valid and transaction-time. (a) Imme-
diate: transaction-time is greater or equal to valid-time. (b) Retroactive: the transac-
tion-time is after the valid-time interval. (c) Proactive: the transaction-time is before
the valid-time interval. (d) Retro-proactive: valid-time is equal to transaction-time.

The timestamp for the transaction-time is before the valid-time interval, then the
tuple is said to be proactive.See Figure 2.5 (c).

In the case that the valid-time interval crosses the line in which valid-time is
equal to transaction-time, the tuple is said to be retroactive and proactive at the
same time.See Figure 2.5 (d).

Figure 2.6 shows a 3D representation in which valid, transaction and decision-time
are represented in each axis. Note the plane that divides the time space. The only
feasible times are below that plane, this is because of the constraint that decision-time
is always before decision-time. In other words, it is not possible to store in the database
(decision-time) a fact before the decision to make that fact is done (decision-time).

We will illustrate the uses for each type of time with an example.

2-18 TIME MODELLING

U
nfe

asi
ble

 a
re

a

Decision Time

Valid Time

Transaction Time

Figure 2.6: 3D representation for valid, decision and decision-time. The upper values
from the shape are not feasible since decision-time is always before or during transac-
tion-time.

Example 4. Consider an employee database containing data regarding the history for
the employees in a company as shown in Table 2.3. For each employee, the following
data are stored: a unique identifier (ID), the name of the employee, the birthday, the
valid-time (VT) when the contract started and ended. The transaction-time (TT) when
the data was stored in the database and finally, the decision-time (DT), which is the
time when the decision for that contract was made.

ID Name Start End TT DT
1 Peter 25/08/2010 30/08/2011 23/08/2010 22/08/2010
1 Peter 31/08/2011 27/09/2011 26/09/2011 15/05/2011
1 Peter 28/09/2011 - 25/09/2011 17/09/2011
2 Maria 03/04/1984 03/04/1990 03/04/1999 2/04/1984
3 John 21/02/1999 - 21/02/1999 21/02/1999
4 Sarah 29/11/1985 - 03/04/1999 05/07/1985

Table 2.3: Example relation modelling the employees of a company. Values for the
Valid, Transaction and Decision time attributes are visualized here in ‘dd/mm/yyyy’
format.

Consider now the employee with ID = 1. The first contract started on 25/08/2010
and finished on 30/08/2011. The decision for hiring that employee was made on
22/08/2010 but the record was stored in the database on 23/08/2010. Then, the com-
pany wanted to renew the contract for this employee. The new contract starting and
ending dates are 31/08/2011 until 27/09/2011. The decision was made several months
before, on 15/05/2011, but the record was stored in the database on 26/09/2011 due to

TIME MODELLING 2-19

the holidays. Once the present contract finished, the company wanted to hire again the
employee with ID = 1. The new contract started on 28/09/2011 and has no ending date
(this is shown in the table with a ‘-’ symbol). The decision for this new contract was
made on 17/09/2011 and the record was inserted on the database on 25/09/2011.

As we can see, the second contract was stored after the third contract. In this
example, the decision-time helps to order the real order for the contracts.

A very extensive list of the most well-known temporal database models can be
found in [117]. As it is of course necessary to define a consistent way to query the
temporal data, there are several proposals concerned with query languages and query
language adaptations for temporal databases like [118] and [119].

In the rest of the chapter, the focus will be on concepts and issues concerning valid-
time relations and aspects of valid-time relations. For this reason, the next two sections
will present and discuss some main issues concerning temporal databases, specifically
applied to or presented in the context of valid-time relations.

2.2.2. Primary Keys in Valid-time Relation Design

Generally, when designing a relation based on a relational database model, a subset
of the relation’s attribute set is usually chosen as primary key. The values of a tuple
for these attributes will then uniquely determine this tuple, hence no two distinct tu-
ples may have the exact same values for every attribute in this primary key. Also, a
primary must keep the irreducibility constraint. This constraint ensures that there are
no redundant attributes in the primary key.

Next to attributes unrelated to time, a valid-time relation schema will typically con-
tain one or more attributes which model the valid-time aspects and behavior of the real
objects and concepts modelled by the relation schema. In this work, these attributes are
called valid-time attributes. In valid-time relation extensions, distinct tuples can exist
containing exactly the same values for every attribute except the valid-time attributes.
These distinct tuples represent distinct versions of the same real object or concept, valid
during different time periods. To allow the existence of such tuples when designing a
valid-time relation using a relational database model, the most common solution is to
include the valid-time attributes in the primary key.

The following example illustrates this primary key issue.

Example 5. Consider the example valid-time relation visualized in table 2.4, which
models when certain people worked as employees in a certain company and under
whose supervision they worked during that time. The valid-time attributes ‘Start’ and
‘End’ describe the year when an employee started, respectively finished working for
the company. For example, the last tuple visualized in table 2.4 represents that the em-
ployee represented by this tuple started working for the company in 2005 and finished
in 2009. The attributes ‘Name’, ‘Birthday’ and ‘Supervisor’ describe respectively the
name, birthday date and unique identifier of the supervisor of an employee in the time
during which he or she worked for the company. When correct, the date of an em-
ployee’s birthday never changes and as such, the modelling of birthday dates has no
effect on the database consistency. The ‘Birthday’ attribute thus describes UDT val-
ues. The attribute ‘ID’ describes employee identifiers. For each tuple, this identifier (a

2-20 TIME MODELLING

ID Name Birthday Supervisor Start End
1 Peter 24/10/1985 3 2010 -
2 Maria 03/04/1984 3 2001 -
3 John 21/02/1964 - 1999 -
4 Sarah 29/11/1985 2 2005 2009

Table 2.4: Example relation modelling the employees of a company. Values for the
‘Birthday’ attribute are visualized here in ‘dd/mm/yyyy’ format.

ID Name Birthday Supervisor Start End
1 Peter 24/10/1985 3 2010 -
2 Maria 03/04/1984 3 2001 -
3 John 21/02/1964 - 1999 -
4 Sarah 29/11/1985 2 2005 2009
4 Sarah 29/11/1985 2 2010 -

Table 2.5: Example relation after including the valid-time attributes in the primary key
and adding a tuple.

number) uniquely identifies the employee represented by the tuple.
Now consider {ID} being the primary key and consider the company wanting to

hire Sarah again in 2010. This would be represented by another tuple in the relation,
containing value 4 for attribute ‘ID’. The existence of such a tuple is of course not
allowed by the primary key, because it would mean the existence of two distinct tuples
containing value 4 for attribute ‘ID’. This problem can now be solved by defining a new
primary key: {ID, Start, End}, which allows for the existence of distinct tuples with
value 4 for attribute ‘ID’,which is not allowed as long as they have different values for
attributes ‘Start’ or ‘End’. The resulting relation is shown in table 2.5.

2.2.3. Consistency under Modification

The solution presented in subsection 2.2.2 concerns relation design and consists of
including the valid-time attributes in the primary key. Unfortunately, implementing this
solution as such allows for the existence of records whose values imply inconsistencies
with respect to the modelling of reality.

Consider a valid-time relation which the primary key can be partitioned into two
sets of attributes. One set contains attributes totally unrelated to time, for which the
values of a record allow to uniquely identify the object or concept represented by the
record. The other set contains the valid-time attribute(s). Because the valid-time at-
tribute(s) is(are) included in the primary key, the existence of distinct records with
exactly the same values for all time-unrelated attributes and distinct values for at least
one valid-time attribute is not prohibited. Thus, inserting such records into the rela-
tion is not prohibited either, even if the information represented by the values for the
valid-time attributes shows clear inconsistencies. An example.

Example 6. Consider the example valid-time relation visualized in table 2.6, which is
based on the relation visualized in table 2.4. The primary key is again {ID, Start, End}.

TIME MODELLING 2-21

ID Name Birthday Supervisor Start End
1 Peter 24/10/1985 3 2010 -
2 Maria 03/04/1984 3 2001 -
3 John 21/02/1964 - 1999 -
4 Sarah 29/11/1985 2 2005 2009
4 Sarah 29/11/1985 3 2007 2008

Table 2.6: Example relation with records whose values for the valid-time attributes
violate consistency.

The last record in the relation represents a person named ‘Sarah’ started working for
the company in 2007 and finished in 2008, with supervisor ‘John’. However, the fourth
record represents the same person (the value for attribute ‘ID’ is the same) started
working for the company in 2005 and finished in 2009, with supervisor ‘Maria’. The
intention is clear: Sarah worked in the company from 2005 to 2009, first for Maria,
then for John, then again for Maria. It is of course possible for an employee to change
supervisors, but it is impossible for a person to start working in the same company
twice at different times, for different supervisors, without stopping to work for one in
between, as it is impossible to stop working for a supervisor twice at different times,
without working for another one in between. The valid-time information represented
by the last record is clearly not consistent with the valid-time information represented
by the fourth record, or vice versa.

The most usual approach to deal with this inconsistency problem is to adapt the
DML used by the DBMS, as to enforce consistency towards time with respect to the
modelled reality.

Example 7. Reconsider the problem presented in example 6. The inconsistency arises
when the last record in table 2.6 is inserted. Because the record’s values for the valid-
time attributes differ from those of the fourth record, the last record is accepted. The
DML statement used was (the table is called ‘Employees’):

INSERT INTO Employees VALUES
(4, ‘Sarah’, ‘29/11/1985’, 3, 2007, 2008);

The inconsistency problem can now be solved by replacing this statement with:

UPDATE Employees SET ‘End’ = ‘2007’ WHERE
(ID = 4) AND (Start = 2005) AND (End = 2009);

INSERT INTO Employees VALUES
(4, ‘Sarah’, ‘29/11/1985’, 3, 2007, 2008);

INSERT INTO Employees VALUES
(4, ‘Sarah’, ‘29/11/1985’, 2, 2008, 2009);

The resulting relation is visualized in table 2.7.

2-22 TIME MODELLING

ID Name Birthday Supervisor Start End
1 Peter 24/10/1985 3 2010 -
2 Maria 03/04/1984 - 2001 -
3 John 21/02/1964 - 1999 2010
3 John 21/02/1964 - 2010 -
4 Sarah 29/11/1985 2 2005 2007
4 Sarah 29/11/1985 3 2007 2008
4 Sarah 29/11/1985 2 2008 2009

Table 2.7: Example relation updated maintaining consistency.

2.2.4. Temporal database models

There are several extensions to the relational model that include temporal elements.
In the current section, we briefly describe these models and some of its most interesting
features. Some models work only with valid or transaction-time, whereas a few models
can handle both. The current study starts with the models supporting valid-time only,
continues through the models which support transaction-time and finally deals with the
bitemporal models.

2.2.4.1. Valid-time models

Most models support valid-time only.

Brooks [120]: Proposes a tridimensional view of a valid-time database.

Wiederhold [121] : Presented a time-oriented database, developed to work with
medical applications. This model depicts relations as sets of entity-attribute-
time-value quadruples. Time is associated with the visit number of the patient.

LEGOL 2.0 [122]: A language used in legislative writing. The temporal order
of elements and the valid-times for objects are important. It was the first time-
oriented algebra to be defined, and some of its features are found in subsequent
algebras. Tuples in this model have two time attributes: Start and Stop. Each one
indicates the start point and the end point of the interval where the tuple is valid.

Clifford-1 [123, 124]: Each relation schema has an additional time value called
’State’. Also, a Boolean attribute is added to indicate if this tuple exists for that
state.

Ariav [125]: Temporally-oriented data model: a valid-time relation is a set of
snapshot relation states indexed by valid-time. A calculus-based query language
is associated with the model: TOSQL.

Navathe [118]: Proposes a temporal extension to SQL called TSQL, the tem-
poral algebra associated to the temporal relational model. This model allows
a relationship to handle time-varying attributes, and also relationships without
time-varying attributes. The only restriction is that all attributes in the relation

TIME MODELLING 2-23

must be of the same type. Objects are classified in snapshot relations and valid-
time relations. In the latter, each tuple has associated to it an interval of validity
with two points: time-start and time-end, like in the LEGOL 2.0 model.

Sadeghi [126]: Proposes a calculus-based valid-time language, HQL, where all
objects represent valid-.time relations. As in Navathe and LEGOL 2.0, two time
points are required for the start and end of the interval. The model requires
coalescing.

Sarda [60]: This model was designed to support the calculus-based model HSQL.
The model associates valid-time with tuples. Objects can either be snapshot or
valid-time relations. In this model, valid-time is considered to be closed on the
left part of the interval and open on the right. Time is represented by an implicit
attribute called ’Period’ as a single non-atomic value.

The following time data models are not in first normal form (1NF), which means
they might have multiple values per attribute. Even though these models are an
extension of the 1NF, the representation is not in 1NF, but the operators work on
valid-time relations, which are extensions of conventional relations.

Segev [127]: Defines the temporal data model, whose principal time structure
is the time sequence. A time sequence is a surrogate value that identifies the
object along with a sequence of time-value pairs. There are several types of time
sequences depending on the semantics of the data represented.

Clifford-2 [58,128]: This model is a refinement of the previous one presented by
the same author. The data model allows two types of objects: a set of chronons,
termed a lifespan, and a valid-time relation in which each attribute and tuple is
assigned a lifespan. A tuple is an ordered value containing the tuple value and
its lifespan. Attributes are not atomic since an attribute value in a tuple is a
partial function from the chronons’ domain to the value domain of the attribute.
Relations have key attributes and, at the same chronon, no two tuples are allowed
to match the key attributes.

Tansel [58,129]: Designed to support the calculus-based query language (Hquel)
and the time by example language. The model supports only one type of object:
the valid-time relation. Four types of attributes are supported. If we take the
time into account, attributes can be time-varying or non-time-varying. Then,
attributes can be atomic-valued or set-valued. There is no need for attributes in
the relation to be of the same type, and attribute values in a given tuple do not
need to be homogeneous. A triplet containing an element from the attribute’s
value domain and the boundary points of the time interval represents the value
of a time-varying atomic-valued attribute. A set-valued attribute is represented
by a set of these triplets.

Gadia-1 [130, 131]: This homogeneous model allows two types of objects:
valid-time elements and valid-time relations. The model requires that all at-
tribute values in a given tuple be functions on the same valid-time element. Un-
like intervals, valid-time elements are closed under union, difference, and com-

2-24 TIME MODELLING

plementation. Bhargava presents an extension of this model to both valid and
valid-time.

Gadia-2 [130, 132, 133]: Is an extension of the homogeneous model known
as multihomogeneous model. Temporal elements may be multi-dimensional to
model both valid and transaction-time. Attribute values are functions from tem-
poral elements onto attribute value domains, but attribute values do not need to
be on the same temporal element. The key attributes in the relations must be
single-valued which respect to the interval of validity.

Lorentzos [134, 135]: The temporal relational model allows to specify different
granularities and the support of periodic events. This model associates times-
tamps with individual attribute values rather than with tuples. Timestamps are
explicit values updated directly by the user. The said timestamps represent either
the chronon during which attribute(s) were valid or a boundary point of the inter-
val of validity. In the model, several timestamps of different granularities can be
used together in the specification of a chronon. This model has the particularity
that some columns have a different meaning depending on the context.

2.2.4.2. Transaction-time models

The main feature of the transaction-time models is that they are append-only. There-
fore, only new versions of the tuples are inserted into the database. In some database
models, transaction-time is implicitly managed by the database, so the user does not
have to deal with transaction-time.

Kimball [136]: This temporal model is called DATA. In it, the association be-
tween facts and times is implicit. Also, the update operations avoid the explicit
use of time. However, transaction-time relations cannot be displayed but can
only be depicted in the snapshots extracted from the transaction-time relations.
At query language level, the association of facts and times is also implicit.

Stonebraker [137]: Proposes the Postgres temporal data model. Like in the pre-
vious model, the association between time and facts in the three model features
(update language, query language and visualization) is implicit. In this model,
the visualization is not restricted to snapshot relation states. Two timestamps are
used when specifying the time for a given tuple that is current in the relation.

Jensen [115]: In the data model with time (DM/T) model, the association of
facts and times is also implicit. DM/T contains a backlog for each user-defined
transaction-time relation. This backlog contains the full history of the associated
user-defined transaction-time relation. When an insert, delete or update opera-
tion is performed, the backlog for this relation is updated.

2.2.4.3. Bi-temporal, multitemporal datamodels

Bi-temporal models deals with both valid and transaction-time. Usually, the changes
in the valid-time are recorded with a timestamp in the transaction-time. The main

TIME MODELLING 2-25

model is TSQL2 [80]. Snodgrass [119] proposed the changes to support TSQL2 in the
standard SQL3.

To the best of our knowledge, the only multitemporal model is given by Nasci-
mento [114] where valid, transaction and decision-time are stored and handled.

2.2.5. Temporal Query Languages

The SQL query language provides a very limited support for temporal data. Hence,
a considerable amount of research has been done to extend SQL with advanced tem-
poral support. Despite of the efforts to extend SQL with temporal support, none of the
proposals is part of the standard. In the following we will briefly describe the temporal
query languages found in the literature.

IXSQL [138]: An extension of SQL2 for time intervals. Two operators are pro-
vided in order to map between time intervals and time points. Fold and Unfold
operators. These operators are known to be inefficient in time.

ATSQL [139, 140]: Is an extension of SQL with temporal statements. The
model uses interval-timestamped values for the tuples and works with interval
semantics. The most recent version, ATSQL2, is a temporally complete language
because it extends the relational schema to store time-varying data.

TSQL2 [80, 141]: As explained before, TSQL2 is an extension of SQL2 that
supports both time points and intervals. It is a complex model that deals with
both valid and transaction-time.

TQuel [116]: This is a temporal extension for the Quel language. The only
time supported is valid-time and it is represented by time intervals. The main
drawback is that there is not an algebraic language defined.

HTQUEL [142]: This language is based on the TQUEL language. Time is
represented as intervals. The model defines a complete and sound relational
algebra.

SQL/TP [143]: This is a temporal extension to SQL which is point-based. Time
is represented as time point timestamps.

TOSQL [125]: This is another temporal extension to SQL. The access to both
previous and current data versions is allowed although the update sentence is not
defined.

2.2.6. Commercial Temporal Database Systems

Several commercial temporal DBMS exist. Table 2.8 gives an overview of some of
the more better known temporal DBMS and provides references for more information.

Oracle workspace manager [144] and TimeDB [145] are libraries for dealing with
time in OracleDB. TimeDB and Postgree Temporal [146] are similar: both are simple
implementations that implement a subset of the Allen operators and some operations
for the creation and manipulation of temporal attributes (valid-time, transaction-time or

2-26 TIME MODELLING

Name Time Supported Comments Reference
Oracle
Workspace
Manager

VT, TT. Package for
Oracle DB.

[144]

TimeDB VT, TT. Interface for
Oracle DB.

[145]

Postgree
Temporal

VT. Package for
Postgree
SQL.

[146]

Teradata VT, TT. Used for data-
mining.

[147]

Secondo VT, TT. Spatio-
temporal
database.

[149]

Table 2.8: Commercial Temporal Database Systems.

both are supported). Teradata [147] is mainly a business intelligence system designed
for data mining. Secondo [148] is an extensible database system in which the core of
the database may be replaced by a customized algebra. It is designed for non-standard
applications and it supports both valid and transaction-times.

The most complete implementation is Workspace Manager.
Unfortunately, none of these systems take data imperfections into account, neither

in data storage, nor in querying.

2.3. Fuzzy Modelling

This section is devoted to introduce some basic concepts of fuzzy sets [36–38,150,
151]. First we will introduce the concept of fuzzy set. Finally we will introduce some
operators defined on fuzzy sets.

2.3.1. Fuzzy sets

Fuzzy sets are a generalization of classical sets in which the membership of an
element with respect to the set is not completely known. The generalization is done as
follows.

1. The membership for an element with respect to a set is now a fuzzy concept. For
some elements it is not clear whether they belong to the set or not.

2. The membership for an element with respect to a set is quantified by a degree
which is usually known as membership degree for the element with respect to
the set an it usually takes values in the unit interval [0, 1].

Therefore, a mathematical set A on the universe of discourse Ω, is fully character-
ized by its membership function µA which associates the value 1 with each element of
A and 0 with each other element of U .

TIME MODELLING 2-27

µA : Ω→ {0, 1} (2.2)

x 7→ 1↔ x ∈ A
x 7→ 0↔ x 6∈ A

For the definition of a fuzzy set, the discrete set {0, 1} of the previous membership
function is extended to the unit interval [0, 1]. More formally, a fuzzy set is defined as
follows.

Definition 23. Fuzzy set
A fuzzy set Ã defined over a universe of discourse Ω is a set of pairs µA(x)/x.

Ã = {µA(x)/x : x ∈ Ω, µA(x) ∈ [0, 1]} (2.3)

where µA(x) is the membership degree of the element x with respect to the set Ã. It is
important to notice that

µA(x) = 0 means that the element x does not belong to the fuzzy set Ã.

µA(x) = 1 means that the element x fully belong to the fuzzy set Ã.

Usually, the function µA(x) is given by a membership function. If the membership
function provides values of the set {0, 1}, then we have a crisp set.

Example 8. Let us consider the price in euros to be the universe of discourse for the
concept “middle priced restaurant”. The fuzzy set representing the concept “middle
priced restaurant” could be given by the following membership function.

middle priced restaurant = {1/10, 1/15, 0.9/20, 0.85/25, 0.75/30, 0.65/35}

The label “middle priced restaurant” associated with the fuzzy set, is also known as
linguistic label.

Definition 24. Linguistic label
A linguistic label is a label associated with a fuzzy set which could be defined by a
membership function or not.

It is clear that the definition of the membership function for a given linguistic label
could be subjective and it will also depend on the universe for the fuzzy set.

Depending on whether the universe of the discourse Ω is finite or not, the definition
of the fuzzy set in terms of the universe is as follows.

Ω is finite:
Ω = {x1, . . . , xn}

A fuzzy set Ã is expressed in the following way.

Ã = {µ1/x1, . . . , µn/xn} (2.4)

Where µi is the membership degree for the element xi, with i = 1, . . . , n. By
default, the elements with membership 0 are not listed.

2-28 TIME MODELLING

-

6

1

Ω

Brown Blonde Red Gray

r

r

µA

r r

0

Figure 2.7: Discrete membership function for the “Blond hair” concept.

Example 9. Consider a set of hair colors {Black, Brown, Blond, Auburn, Ches-
nut, Red, Grey }. The concept “ Blond hair” can be modelled by using a fuzzy set
like Ã = {0.25/Brown, 1/Blond, 0.4/Red, 0.6/Grey}. The membership function
is illustrated in Figure 2.7.

Ω is infinite: The fuzzy set Ã could be represented as in the following expression.

Ã =

∫
µÃ(x)/x (2.5)

where µÃ(x) is the membership degree of x.

Example 10. We want to model the concept “Tall” for the height of a person
in meters. In this case, we could consider a continuous membership function
since the universe of discourse Ω is also continuous. Figure 2.8 illustrates the
membership function.

2.3.2. Concepts about fuzzy sets

The following operations and concepts are defined to handle fuzzy sets.

Definition 25. α-cut (α-level set)
The α-cut (α-level set) of a fuzzy set Ã on an universe of discourse Ω is notated as Ãα
and defined for all the elements that fulfil the following condition.

Ãα = {x : x ∈ Ω, µÃ(x) ≥ α} (2.6)

where α ∈ [0, 1].

The concept of strict α-cut (strict α-level set) is the following:

Ãα = {x : x ∈ Ω, µÃ(x) > α} (2.7)

Two special cases of (strict) α-cut sets of a fuzzy set Ã are the support (notated by
supp(Ã))and the core (notated by core(Ã)).

TIME MODELLING 2-29

-

6

1

meters

µA

0
1,50 1,60 1,70 1,80

Figure 2.8: Continuous membership function for the “Tall” concept.

Definition 26. Support of a fuzzy set
The support of a fuzzy set Ã on Ω is a subset that fulfils the following.

supp
(
Ã
)

= {x ∈ Ω, µÃ(x) > 0} (2.8)

Definition 27. Core of a fuzzy set
The core of a fuzzy set Ã on Ω is a subset that fulfils the following.

core
(
Ã
)

0 {x ∈ Ω, µÃ(x) = 1} (2.9)

Definition 28. Height of a fuzzy set
The height of a fuzzy set Ã on Ω is defined as follows.

height
(
Ã
)

= sup
x∈Ω

µÃ(x) (2.10)

Definition 29. Normalized fuzzy set
A fuzzy set Ã on Ω is said to be normalized if:

∃x ∈ Ω, µÃ(x) = height
(
Ã
)

= 1 (2.11)

The cardinality of a fuzzy set is a real number which reflects a global membership
degree of all the elements of the fuzzy set and therefore can not be considered as an
indication of the number of elements of the fuzzy set. More formally, the cardinality
of a fuzzy set is defined as follows:

Definition 30. Cardinality of a fuzzy set
Consider a universe of discourse Ω, if the universe is discrete, then the cardinality of
the fuzzy set is computed as follows:

card
(
Ã
)

=
∑
x∈Ω

µÃ(x) (2.12)

2-30 TIME MODELLING

If the universe of discourse Ω is continuos, then the cardinality of the fuzzy set is
computed as follows:

card
(
Ã
)

=

∫
Ω

µÃ(x) (2.13)

The standard complement Ã of a fuzzy set Ã which is defined over a universe of
discourse Ω is defined as follows.

Ã = {(x, 1− µÃ(x)) |∀x ∈ Ω : 1− µÃ(x) > 0} (2.14)

2.3.3. Interpretation of fuzzy sets

The membership degrees µÃ(x) of the elements x ∈ Ω of a fuzzy set Ã can be
interpreted in three different ways [152]:

1. Degree of compatibility. The fuzzy set has a conjunctive interpretation; the con-
cept that is being modelled is represented by all the elements of the fuzzy set.
Therefore, the membership function µÃ(x) returns a compatibility degree be-
tween the element x and the concept modelled by the fuzzy set Ã.

For example, consider that we are looking for middle-priced restaurants. The
membership function is defined in example 8. This set has a conjunctive inter-
pretation: for us, all the elements of the fuzzy set are the concept “middle-priced
restaurant”.

2. Degree of truth / preference. In this case, the fuzzy set has also a conjunctive
interpretation; all the elements of the fuzzy set represent the concept that is be-
ing modelled. The membership function µÃ(x) returns a degree that shows to
what extent the element x of the fuzzy set Ã applies. For example, consider the
fuzzy set of the languages spoken by a person, where each membership degree
represents a degree of truth. The fuzzy set can be specified by:

{ (Spanish, 1), (English, 0.5), (Dutch, 0.2) }

This membership function represents a perfect knowledge of Spanish, a medium
knowledge of English and a basic knowledge of Dutch.

3. Degree of uncertainty. In this case, the interpretation of the fuzzy set is disjunc-
tive. Usually this kind of fuzzy set models a variable taking exactly one single
value. For some reason, that value is not exactly known and hence is modelled by
a fuzzy set. The membership degree µÃ(x) represents the extent that the value
x is the actual value of the variable modelled. For example, consider the average
price p of a dish in a restaurant. If the price is not exactly known, but it is known
that the restaurant is middle-priced then the interpretation of the membership de-
gree is different than in the example related to the degree of compatibility. In
this case, the interpretation is that the price p of the restaurant could be 20 euros
to an extent of 0.9.

TIME MODELLING 2-31

2.4. Fuzzy Databases

Humans manage knowledge in an imprecise way. It is a difficult task to represent
knowledge when imprecision arises in Information Systems, IS [151, 153–155]. Sev-
eral theoretical frameworks have been proposed to deal with this problem. Among
them, probability theory [34, 35], possibility theory [17, 36–39] and rough sets [27].
Each one tries to represent and handle ill-defined information.

The main difference between possibility and probability theory is that the first one is
less restrictive. Probability theory deals with incomplete knowledge due to variability
in the outcomes of an experiment [38]. Possibility theory can capture incomplete
knowledge whereas probability theory cannot [155, 156].

It is known that database management systems (DBMS) are the best way to store
and retrieve data in an Information System. In order to store data, a representation
model should be defined. Besides, in order to retrieve data, a query language is nec-
essary. In the past decades, DBMSs have undergone a huge evolution. First of all, the
representation of concepts (as entities) and relationships were first introduced by the
relational model by [14], and [157]. Afterwards, several models to represent and query
uncertainty were proposed.

First of all, an extension of the relational model was proposed by [15]. There
are several proposals for fuzzy databases like [33, 40, 42, 44, 158]. Among them, the
GEFRED model by [159] is a synthesis with the main features of the proposals men-
tioned before.

On the one hand, probability theory has also been used to represent uncertainty in
information systems. The main theory was proposed in the work of [61] as an extension
to the relational algebra. The management of probabilistic data was studied in [62].
An algebra for probabilistic databases is defined by [63] and [64]. In [70] a proba-
bilistic temporal algebra is proposed. A more recent approach MayBMS, is proposed
in [65]. This system is implemented on the top of PostgreSQL. As a consequence of
the expansion of the WWW, several proposals deal with a XML database instead of a
relational database. This has been studied by [66–68]. In [69] a mobile version based
on XML is proposed.

Probabilistic spatio-temporal databases have been also studied by [70]. A logical
formulation is proposed by [71] and a more recent approach by [72].

On the other hand, possibility theory has served as the basis for fuzzy databases.
Abundant research on fuzzy relational databases has been done since the eighties by
[40–47]. In [48] extended possibilistic truth values have been considered as an exten-
sion of the model.

The querying of a fuzzy database has also been studied in depth by [49–51], SQLf
by [53] and more recently by [52] with the introduction of positive and negative criteria
in the query specification.

There exist several implementations of these fuzzy databases systems like Free-
dom-0 by [55], the query language SQLf has been defined in [56] and FSQL by [54,
160]. The FSQL server runs on top of Oracle DBMS, although there is also a version
for PostgreSQL. A book for fuzzy databases that covers some aspects of the modeling,
design and the implementation is [57].

Over the last few years, a new approach to incomplete information in databases,

2-32 TIME MODELLING

called Uncertain Databases has been introduced. [161] makes a survey of current
research trends in possibilistic logic. An interesting property is the way to handle both
positive and negative information. Several theoretical models have been proposed.
Among them, it is of special interest the possible worlds model first proposed by [76].
The main drawback for that model was the computational complexity of evaluating
a query against all the possible worlds. The model has been extended twenty years
later by [77–79]. In these works, the authors propose a new compact way to evaluate
queries against all the possible worlds in an efficient way.

In the following subsection, we will briefly introduce and compare the main models
and proposals for fuzzy databases in the literature.

2.4.1. Main models and proposals

The simplest approach consist on adding a membership degree for each tuple in a
relation. That degree represent to which extent the tuple is in the relation. Usually, the
degree is a value in the unit interval [0, 1].

Example 11. Consider an employee database containing data regarding the history for
the employees in a company, as shown in Table 2.9. For each employee, the following
data are stored: a unique identifier (ID), the name of the employee and the starting
and ending dates when the contract started and ended. A global membership degree
is added to express the membership of each tuple to the relation. Therefore, the tuple
representing the employee with ID = 1 and start and end dates 25/08/2010, 30/08/2011
respectively belongs to the relation with a degree of 0.8.

ID Name Start End µ
1 Peter 25/08/2010 30/08/2011 0.8
1 Peter 31/08/2011 27/09/2011 0.5
1 Peter 28/09/2011 - 1
2 Maria 03/04/1984 03/04/1990 0.23
3 John 21/02/1999 - 0.89
4 Sarah 29/11/1985 - 0

Table 2.9: Example of a simple fuzzy database. The relation models the data regarding
the employees of a company. Values for the start and end time attributes are visualized
here in ‘dd/mm/yyyy’ format. The membership degree for each tuple is given by µ.

In the previous example, it is not possible to distinguish cases where we are not
sure about the name of the employee, or about the starting or ending date. For that
reason, it would be more informative to know the membership degree of each attribute
instead. The following models have been proposed in the literature:

2.4.1.1. Buckles & Petry

This model [41, 42] is based on the concept similarity relation as proposed by
Zadeh [162]. A Fuzzy Relationship is defined as a subset of the following Cartesian
product: P(D1)× . . .× P(Dn), where P(Di) is the power set of the domain Di.

There are three main types of data within this model:

TIME MODELLING 2-33

1. A discrete set of values. For example, consider the set {small, medium, big}.

2. A discrete set of numbers. For example, consider the set {20, 35, 40}.

3. A discrete set of fuzzy numbers. For example, consider the following labels
associated with fuzzy numbers: { cheap, middle-price, expensive }.

The semantics for the data stored in the database are disjunctive. In other words,
only one element in the given set is allowed for each value which are called interpre-
tations. For each numeric or scalar domain D, a similarity relation is defined between
each pair of elements in the domain. Usually, the values for a similarity relation are nor-
malized within the interval [0, 1] where 0 denotes “completely different” and 1 means
“equal or completely similar”. Therefore, a similarity relationship can be defined as
follows.

sr : D ×D 7→ [0, 1] (2.15)

sr (di, dj) 7→ [0, 1]

with di, dj ∈ D.
A threshold value γ can be specified. The pair of values with a similarity degree

equal or higher than γ are considered to be equal [163]. A Relational Calculus is
proposed by [164] for this model. Shenoi and Melton [165] proposed a similar model
which works with proximity relations instead of similarity relationships. The reflex-
ive and symmetric properties hold in a proximity relation, nevertheless the transitive
property does not necessarily holds [162].

2.4.1.2. Prade & Testemale

In his model [43, 44], the knowledge about an attribute for a given entity is repre-
sented by means of a normalized possibility distribution. Therefore it is represented
incomplete or uncertain information in the database.

A possibility distribution πA(x) models the available knowledge about the value x
takes for the attribute A ∈ D. A special constant e is defined for the case when the
value is not applicable. In other words, the possibility distribution can be defined as
follows.

πA(x) : D ∪ {e} 7→ [0, 1] (2.16)

The model provides seven different data types:

1. The data are a crisp and known value c.

πA(x)(e) = 0 (2.17)

πA(x)(c) = 1

πA(x)(d) = 0,∀d ∈ D ∧ d 6= c

2-34 TIME MODELLING

2. The data are unknown but applicable.

πA(x)(e) = 0 (2.18)

πA(x)(d) = 1,∀d ∈ D

3. The data are not applicable.

πA(x)(e) = 1 (2.19)

πA(x)(d) = 0,∀d ∈ D

4. There is completely lack of knowledge about the data.

πA(x)(d) = 1,∀d ∈ D ∪ {e} (2.20)

5. The data is known to be in a range between [m,n].

πA(x)(e) = 0 (2.21)

πA(x)(d) =

{
1 if d ∈ [m,n] ⊆ D
0 otherwise.

6. The knowledge about the data is modelled by a possibility distribution µa.

πA(x)(e) = 0 (2.22)

πA(x)(d) = µa(d)∀d ∈ D

7. The knowledge about the data is modelled by a possibility distribution µa. The
possibility that the data are not applicable is given by λ.

πA(x)(e) = λ (2.23)

πA(x)(d) = µa(d)∀d ∈ D

2.4.1.3. Umano & Fukami

The main difference between this model [55,158,166,167] and Prade-Testemale is
the representation of non-applicable information. Three special values are introduced:

UNKNOWN: Any value for the attribute in the domain is equally possible. The
representation in this model is the following.

πA(x)(d) = 1∀d ∈ D (2.24)

UNDEFINED: It is not possible for the attribute to take any value in the domain.
The representation in this model is the following.

πA(x)(d) = 0∀d ∈ D (2.25)

TIME MODELLING 2-35

NULL: The absence of knowledge about the value that the attribute takes is total.
This is represented in the model as follows.

NULL = {1/Unknown, 1/Undefined} (2.26)

The main data types are compared with the data types defined in the Prade-Testemale
model.

1. The data are a crisp and known value c.

πA(x)(d) = {1/c}P (2.27)

2. The data are unknown but applicable. See equation (2.24).

3. The data are not applicable. See equation (2.25).

4. There is completely lack of knowledge about the data. See equation (2.26).

5. The data is known to be in a range between [m,n].

πA(x)(e) = 0 (2.28)

πA(x)(d) =

{
1 if d ∈ [m,n] ⊆ D
0 otherwise.

6. The knowledge about the data is modelled by a possibility distribution µa.

πA(x)(d) = µa(d)∀d ∈ D (2.29)

7. The knowledge about the data is modelled by a possibility distribution µa. The
possibility that the data are not applicable is given by λ. This data type is not
representable in the model.

This model was extended by Umano and Fukami [167] to represent and handle
ambiguous data. A possibility distribution can be stored in the attribute value. More-
over, the degree of membership for each tuple with respect to the relation is given by a
normalized possibility distribution. A membership function µR is defined for a fuzzy
relationship R with m attributes.

µR : P(U1)× P(U2)× . . .× P(Um) 7→ P([0, 1]) (2.30)

Where Uj with j = 1, . . . ,m is the Universe for each attribute Aj of the relation
R. Two kind of imprecision can be managed by the system:

1. Imprecision in the attribute value: The value for an attribute may be given by a
possibility distribution.

2. Imprecision in the relationship: Each tuple has a membership value with respect
to the relationship.

2-36 TIME MODELLING

2.4.1.4. Zemankova & Kaendel

In this model [40,168], the information is represented like in the previous presented
models, but it offers a language to manipulate data as well as obtain the relations be-
tween possibility and certainty. The model consists on three elements:

1. A value database (VDB) where the data are organized in the same way as the
previous database models.

2. An explicative database, where the meta data for fuzzy data and fuzzy relation-
ships are stored.

3. A translation rule set in order to handle adjectives for data and relationships.

The querying process is similar to the Prade-Testemale model. But in this case,
instead of provide a necessity measure, they provide a certainty measure. Therefore,
the possibility pA(F) and certainty measures cA(F) for the fuzzy set F with respect to
the attribute value A is defined as follows.

pA(F) = sup
u∈D
{µF (u) · πA(u)} (2.31)

cA(F) = max
u∈D
{0, inf {µF (u) · πA(u)}}

In [40], the selection operators are defined. A similarity relation Θ is defined on
D × D and therefore any other comparison relationship can be defined on it. For
example, the relation “bigger than” is defined as follows.

µbigger than(x, y) =

{
1− 0.5 · s(x, y) if x ≥ y
0.5 · s(x, y) if x < y

(2.32)

The corresponding possibility and certainty measures are computed by using the
equations (2.31).

2.4.1.5. GEFRED by Medina, Vila & Pons

This model [159] is the integration of the main fuzzy database models. GEFRED
defines the concept Generalized Fuzzy Domain, which is defined as follows.

Definition 31. Generalized Fuzzy Domain.
Consider the powerset P̃(U) of all the possibility distributions defined on the Uni-
verse U , which include both Unknown and Undefined data types (as given by Umano
and Fukami in equations (2.24)-(2.25)). A generalized fuzzy domain D is defined as
follows:

D ⊆ P̃(U) ∪ NULL (2.33)

Where the Null constant is given by equation (2.26).

The following data types may be defined in the model:

1. A scalar value. For example, the attribute eye color = blue.

TIME MODELLING 2-37

2. A number. For example, the attribute price = 20.

3. A discrete set of scalar values. For example, eye color = {blue, brown}

4. A numeric set of values. For example price = {20, 25}.

5. A possibility distribution over a discrete scalar domain. For example, eye color
= {0.9/blue, 0.1/brown }.

6. A possibility distribution over a numeric domain, a fuzzy set domain or linguistic
labels. For example, price = {0.3/20, 0.7/25}.

7. A number in the unit interval [0, 1]. The number represents the membership
degree for an attribute in a given tuple. For example Good = 0.8.

8. UNKNOWN: Any value for the attribute in the domain is equally possible.

9. UNDEFINED: It is not possible for the attribute to take any value in the domain.

10. NULL: The absence of knowledge about the value that the attribute takes is total.

Then, a generalized fuzzy relation can be defined.

Definition 32. Generalized Fuzzy Relation.
A generalized fuzzy relation R = (H,B) is given by two elements. A headerH and a

body B which are defined as follows.

The headerH is a triplet attribute-domain-compatibility:

H = {(A1 : D1 [, C1]) , . . . , (An : Dn [, Cn])} (2.34)

Where each attributeAj has a corresponding fuzzy domainDj with j = 0, . . . , n.
The compatibility attribute is an optional value in the interval [0, 1] and it will be
used when an operation is performed.

The body B of the relation is the set of tuples where each tuple is a triplet.

B =
{(
A1 : d̃i1, [ci1]

)
, . . . ,

(
An : d̃in, [cin]

)}
(2.35)

Where d̃ij is the domain value for the tuple i on the attribute Aj and cij is the
corresponding compatibility degree.

Given a generalized fuzzy relationshipR, the following elements can be defined on
it.

Definition 33. Value and compatibility component.
Consider a generalized fuzzy relation R given by the following expression.

R =

{
H = {(A1 : D1 [, C1]) , . . . , (An : Dn [, Cn])}
B =

{(
A1 : d̃i1, [ci1]

)
, . . . ,

(
An : d̃in, [cin]

)} (2.36)

with i = 1, . . . ,m the number of tuples in the relation. The following elements can be
defined.

2-38 TIME MODELLING

The value Component Rv of a fuzzy generalized relation is given by the value
components of both header and body of the relation.

Rv =

{
Hv = {(A1 : D1) , . . . , (An : Dn)}
Bv =

{(
A1 : d̃i1

)
, . . . ,

(
An : d̃in

)} (2.37)

Compatibility componentRc of a fuzzy generalized relation is given by the com-
patibility components of both header and body of the relation.

Rc =

{
Hc = {[C1] , . . . , [Cn]}
Bc = {[ci1] , . . . , [cin]}

(2.38)

The comparison operators have to be re-defined.

Definition 34. Extended comparison operator.
Let U be the Universe, we will say that θ is an extended comparison operator to any

fuzzy relation defined on U .

θ : U × U 7→ [0, 1] (2.39)

θ(ui, uj) 7→ [0, 1]

Where ui, uj ∈ U .

Definition 35. Generalized extended fuzzy comparator.
LetU be the universe andD the generalized fuzzy domain and an extended comparator
θ is defined on U . Then, the function Θθ is defined as follows:

Θθ : D ×D 7→ [0, 1] (2.40)

Θθ(d̃1, d̃1) ∈ [0, 1]

We will say that Θθ is a generalized extended fuzzy comparator on D if the following
property holds.

Θθ(d̃1, d̃2) = θ (d1, d2)∀d1, d2 ∈ U (2.41)

Where d̃1, d̃2 are the possibility distributions 1/d1, 1/d2 respectively.

GEFRED defines a generalized fuzzy relational algebra. The operators for the
union, intersection, difference, Cartesian product, projection, selection, join and di-
vision are defined. In the following, we will introduce the Cartesian product, the pro-
jection and the selection operators in GEFRED.

Definition 36. Generalized Cartesian product.
Let R and R′ be two generalized fuzzy relations given as follows.

R =

{
H = {(A1 : D1 [, C1]) , . . . , (An : Dn [, Cn])}
B =

{(
A1 : d̃i1 [, ci1]

)
, . . . ,

(
An : d̃in [, cin]

)}

R′ =

{
H = {(A′1 : D′1 [, C ′1]) , . . . , (A′n : D′n [, C ′n])}
B =

{(
A′1 : ˜d′k1 [, c′k1]

)
, . . . ,

(
A′n′ : ˜d′kn′ [, c

′
kn′]
)}

TIME MODELLING 2-39

where i = 1, . . . ,m and k = 1, . . . ,m′. The values m and m′ are respectively the
cardinalities of the relations and n, n′ are respectively the arities of the relationships.
The generalized Cartesian product is defined as follows.

R×R =

{
H× = H ∪H′

B× = B × B′
(2.42)

Definition 37. Generalized fuzzy projection.
Let R be a generalized fuzzy relation as shown by equation (2.36), and X a subset of
H notated as follows.

X ⊆ H, X = {(As : Ds [, Cs′]) : s ∈ S, s′ ∈ S′;S, S′ ⊆ {1, . . . , n}}

The generalized fuzzy projection is defined by the following formula.

P(R;X) =

{
HP = X

BP =
{(
As : ˜dis, [, cis′]

)} (2.43)

Where s ∈ S, s′ ∈ S′ and S, S′ ⊆ {1, . . . , n}.

Definition 38. Generalized fuzzy selection.
Let R be a generalized fuzzy relation as shown by equation (2.36), ã ∈ D a constant,
Θθ a generalized fuzzy comparator and γ ∈ [0, 1] a fulfilment threshold. Then, the
generalized fuzzy selection on R by using the condition in Θθ composed with ã and
the attribute Ak (k ∈ {0, . . . , n}) and qualified by γ is given by the following formula:

S
(
R; Θθ (Ak, ã) ≥ γ

)
=

{
HS = {(A1 : Da [, C1]) , . . . , (An : Dn [, Cn])}
BS =

{(
A1 : d̃r1 [, cr1]

)
, . . . ,

(
An : ˜drn [, crn]

)}
(2.44)

with
c′rk = Θθ

(
˜drk, ã

)
≥ γ (2.45)

where r = 1, . . . ,m′ and m′ is the cardinality of the selection.
In the following, we will briefly introduce the Fuzzy Interface for Relational Sys-

tems (FIRST, [54]) which is based on the GEFRED model. First of all, we will deal
with the representation of imperfect information and then, we will deal with the flexible
querying.

Representation The representation of imperfect information. FIRST defines
three fuzzy data types:

• Type 1: Numerical data with extended querying facilities. The attributes
with this data type, can be queried by using the generalized fuzzy com-
parators introduced before.

• Type 2: Numerical data given by a possibility distribution. There are five
subtypes (Crisp, Label, Interval, Approximate and Trapezoidal) which dif-
fer in the shape of the distribution and the way the possibility distribution
is stored. For example, consider that the price for a book is not precisely
known. Then, the average price is stored as shown in Figure 2.9.

2-40 TIME MODELLING

1

0
16 18 24 26

possibility

Cheap Middle-price Expensive

Price

Figure 2.9: Possibility distribution associated to the Price attribute. There are three
possibility distributions here, each one correspond with a label; cheap, middle-price
and expensive respectively.

• Type 3: Data without an underlying numerical domain. In order to compare
the elements in the domain, an equivalence table is required. The only
applicable operator is the fuzzy equality. For example, consider a restaurant
database. Each restaurant has a type of cuisine. It is possible for the user
to store the similarity among the different types of cuisine in the database.
Table 2.10 shows four types of cuisine (Pizzeria, Hamburger bar, Chinese,
Fast Food). A similarity degree in the interval [0, 1] is associated with each
pair of types. For example, fast food restaurant and a hamburger bar are
considered to be similar with a degree of 0.8. Then, if the user is looking
for fast food restaurants, the database would also return some hamburger
bars as the result of the query.

C1 C2 C3 C4

C1 1 0 0 .6
C2 0 1 0 .8
C3 0 0 1 .4
C4 .3 .6 .4 1

Table 2.10: Example of a similarity relationship in a non-ordered domain, like the type
of cuisine. C1 = Pizzeria, C2 = Hamburger bar , C3 = Chinese, C4 = Fast Food.

Querying The Fuzzy SQL (FSQL) language is an extension of the SQL standard
with support for flexible querying. The fuzzy operators defined in table 2.11 are
implemented. The following elements are introduced or modified in FSQL:

• Fuzzy operators, as shown in Table 2.11. Both possibility and necessity
operators are defined and shown in table 2.11. The syntax is the following.

<f_attribute> FOperator <f_attribute_or_value>

TIME MODELLING 2-41

For example, we want to know if the price of a book is middle-price, as
shown in Figure 2.9. Then the query would be as follows.

book.price FEQ $[16,18,24,26];

• Linguistic labels. A label is usually associated with a type 2 or type 3 fuzzy
type. For example, consider the previous example. We have labels associ-
ated to each possibility distribution, then the query would be the following.

book.price FEQ $middle_price;

• Threshold (THOLD): The threshold it is a value in the unit interval [0, 1],
denoting the minimum global degree that a tuple should fulfill to be se-
lected.

<simple_condition> THOLD t;

For example, we want to know if the price of a book is middle-price, but
we want only the books with a fulfilment degree about 0.8 or more. The
query would be as follows.

book.price FEQ $[16,18,24,26] THOLD .8;

• Compatibility degree (CDEG): it is a function that shows the compatibility
degree for a tuple or an attribute. For example, in order to show the com-
patibility degree in a query looking for the books with middle price, the
FSQL sentence will be the following.

SELECT book.%, CDEG(*)
FROM book WHERE book.price FEQ $[16,18,24,26];

• Wildcard (%): When it is specified in the query, the compatibility degree
for each fuzzy attribute in the WHERE clause is shown.

• IS: The IS clause is modified in the following way:

<fuzzy attribute> IS [NOT]
(UNKNOWN | UNDEFINED | NULL)

• Fuzzy quantifiers allow to build complex queries that require to make some
calculations about the number of tuples that fulfil a given condition. Simi-
larly to the classical model, there are two main types:

◦ Relative quantifiers rely on two quantities and they are usually given
in natural language, e.g., “Most of the tuples ...”, “The minority of the
tuples ...”, “Approximately the half of the tuples...”. Two values are
computed. First the number of tuples that fulfil the query and second,
the total number of tuples. Then, an averaging operator is used to
compute the fulfilment of the query.

$Quantifier FUZZY[r] ’(’ fuzzy_condition ’)’
THOLD t;

For example, in a basketball player database, “Most of the players
from team A are very good”.

2-42 TIME MODELLING

Possibility Necessity Possibly / Necessarily
FEQ NFEQ Fuzzy =
FGT NFGT Fuzzy >

FGEQ NFGEQ Fuzzy ≥
FLT NFLT Fuzzy.<

FLEQ NFLEQ Fuzzy ≤
MGT NMGT Much >
MLT NMLT Much <

Table 2.11: Fuzzy operators

◦ Absolute quantifiers rely on one quantity. They are related with the
number of tuples in the resultset of a query. For example, in natural
language, “big”, “small”, “some”, “all”, ..., etc. The syntax for these
operator is given as follows.
$Quantifier FUZZY[r] ’(’ fuzzy_condition1 ’)’
ARE ’(’ fuzzy_condition2 ’)’ THOLD t;

For example, in a basketball player database we could combine the
two types of quantifiers in a sentence like “Most of the players from
team A which are tall, are also very good”.

ID Name α β γ δ
1 Amadeus 16 18 20 22
2 Grotta Mare 10 15 20 25
3 Saffron 17 20 25 30
4 Castaneda 20 30 30 35

Table 2.12: Example of a restaurant database. The field ID is the restaurant identifier,
the primary key. The field name is the name of the restaurant and the fields [α, β, γ, δ]
are the average price in euros for the restaurant, stored as a trapezoidal possibility
distribution.

Example 12. Consider a restaurant database in Table 2.12. A restaurant is iden-
tified by a number, ID, which is the primary key. The name of the restaurant
and the average price (as a trapezoidal distribution) are stored. The user wants to
obtain a list of cheap restaurants. Then, the user defines ‘cheap’ as a trapezoidal
possibility distribution given by [0, 0, 16, 18] (see Figure 2.9). Then, the query,
written in FuzzySQL is:

SELECT CDEG(*), Restaurants.%
FROM Restaurants
WHERE Price FEQ $[0,0,16,18];

The fuzzy equality operator is defined more formally. Consider U to be an un-
derlying domain. Let p1 and p2 be two attributes of a fuzzy type, and πp1 , πp2

TIME MODELLING 2-43

be the possibility distributions associated to each attribute respectively. Then the
fuzzy equals operator is defined formally as follows.

FEQ (p1, p2) = sup
d∈U

min (πp1 (d) , πp2 (d)) (2.46)

CDEG(*) ID Name
1.0 2 Grotta Mare
0.5 1 Amadeus
0.2 3 Saffron
0.0 4 Castaneda

Table 2.13: Example of a restaurant database. Resultset for the query: ‘The user wants
to obtain all the cheap restaurants’. The resultset is ordered by the compatibility de-
gree.

Then, the resultset ordered by compatibility degree, is presented to the user. See
Table 2.13.

2-44 TIME MODELLING

2.5. Conclusions

In this chapter, we have studied the time modelling in Information Systems. The
main concepts when dealing with temporal information have been presented. A chronon [73]
is the smallest unit of time that can be represented in a system. Next to that, we have
studied the organization of the time in hierarchical structures such as granularities and
Calendars. Several authors proposed methods for handling the changes between differ-
ent granularities.

We have presented an example of temporal domain, the Julian Day Number (JDN) [93]
which consist on the representation of a date as a number. This representation is of par-
ticular interest since some of the major vendors of database systems provide an internal
representation of the time in this format.

A time instant can be represented as a time point either as a time interval. Due to
the limitation (discretization) in the representation of time in an Information System, a
common approach is to model a time instant as a time interval. The relations between
two crisp time intervals have been studied by Allen [9]. Only thirteen relations are
available between two crisp time intervals.

Nevertheless, humans manage and handle temporal information by using temporal
notions which may contain imperfections. Several studies have been done to under-
stand time in language [2–4]. In the field of artificial intelligence, some efforts have
been done to model and reason with imperfect temporal information [5, 6, 169, 170].

In order to classify imperfections in temporal information, we studied first the
sources of imperfections in an Information System [99,100]. Then, we provide several
classifications for imperfect temporal information.

Once we have classified the temporal information, we provide an overview of the
main theoretical frameworks to deal with imperfections in temporal information. Prob-
ability theory is used when a probability distribution is associated to the temporal ex-
pression. For example, “The package will arrive tomorrow morning with a probability
of 0.8”. Possibility theory is used when a possibility distribution can be associated to
the temporal expression. Rough set theory has been used to represent uncertainty in
time intervals.

In order to represent and handle imperfect time intervals, we choose the possibility
theory framework. This choice is motivated by the facilities of possibility theory to
model complex relations between time intervals as well as the support in fuzzy rela-
tional databases.

A brief overview of temporal database approaches is given. The models are clas-
sified depending on the kind of temporal information that is managed by the database.
Three kind of temporal data types are studied; valid-time is the time when a fact is
recorded in a database. For example, a credit card transaction has a transaction-time
which is a timestamp indicating the time when the transaction was done. Valid time is
the time when a fact is valid in the modelled reality. For example, in an employee’s
database modelling the data about the contracts of the employees, the valid-time for a
contract is the time when the contract is valid. Decision time is a time when a decision
for an event was made. For example, in an employee’s database, decision-time is a
timestamp indicating when the decision to hire an employee was done.

There are two main issues that have to be address when dealing with time-dependent

TIME MODELLING 2-45

information in a database. First, the primary key has to be extended to allow different
versions of the same object. Second, a consistence mechanism has to be provided by
the database which is usually provided by re-defining the data manipulation language
(DML).

There are some commercial database management systems with temporal support.
Among them, Oracle Workspace Manager stands out because of its complete temporal
support. Nevertheless, none of the commercial systems provide support for imperfect
temporal information.

Some basic concepts about fuzzy modelling by using fuzzy set theory were intro-
duced. Then we studied some of the most popular fuzzy database proposals. The main
contributions for the fuzzy databases are briefly studied. The GEFRED model [159] is
the integration of the main fuzzy database models. We will build a temporal database
model to deal with imperfect temporal information on the top of it.

The next chapter is devoted to present a theoretical model for the possibilistic valid-
time approach on the top of the GEFRED model.

2-46 A POSSIBILISTIC VALID-TIME MODEL

3
A Possibilistic Valid-time Model

The contents of this chapter have been partially published on:

J. E. Pons, N. Marı́n, O. Pons Capote, C. Billiet, and G. de Tre, “A relational model for the
possibilistic valid-time approach,” International Journal of Computational Intelligence
Systems, vol. 5, no. 6, pp. 1068–1088, 2012.

A. Bronselaer, J. E. Pons, G. De Tré, and O. Pons, “Possibilistic evaluation of sets,” Int.
J. Uncertainty Fuzziness Knowlege-Based Syst., vol. 21, no. 3, 2013.

J. E. Pons, C. Billiet, O. Pons Capote, and G. Tré, “A possibilistic valid-time model,”
in Advances on Computational Intelligence (S. Greco, B. Bouchon-Meunier, G. Coletti,
M. Fedrizzi, B. Matarazzo, and R. Yager, eds.), vol. 297 of Communications in Computer
and Information Science, pp. 420–429, Springer Berlin Heidelberg, 2012.

C. Billiet, J. E. Pons, O. Pons Capote, and G. Tré, “Evaluating possibilistic valid-time
queries,” in Advances on Computational Intelligence (S. Greco, B. Bouchon-Meunier,
G. Coletti, M. Fedrizzi, B. Matarazzo, and R. Yager, eds.), vol. 297 of Communications
in Computer and Information Science, pp. 410–419, Springer Berlin Heidelberg, 2012.

J. Pons, A. Bronselaer, O. Pons, and G. de Tre, “Possibilistic evaluation of fuzzy tem-
poral intervals,” in Actas del XVI congreso Español sobre Tecnologı́as y Lógica Fuzzy
(Valladolid, Spain), february 2012.

3-2 A POSSIBILISTIC VALID-TIME MODEL

Contents
3.1. Preliminaries . 3-3

3.1.1. Possibility Theory . 3-3
3.1.2. Possibilistic Variables . 3-5
3.1.3. Fuzzy Numbers and Fuzzy Intervals 3-6
3.1.4. Interval Evaluation by Ill-known Constraints 3-7

3.2. Time Representation . 3-11
3.2.1. Approaches for the representation 3-11
3.2.2. Ill-known time point . 3-13
3.2.3. Ill-known time interval 3-15

3.3. Crisp Valid-time Model for Relational DBs 3-16
3.3.1. Temporal model for crisp databases 3-17
3.3.2. Data manipulation language 3-19
3.3.3. Selection . 3-23
3.3.4. Cartesian Product . 3-25

3.4. Possibilistic Valid-Time Model
for Relational DBs . 3-29

3.4.1. The generalized temporal model 3-29
3.4.2. Data manipulation language 3-34
3.4.3. Selection . 3-38
3.4.4. Cartesian Product . 3-41

3.5. Conclusions . 3-43

A POSSIBILISTIC VALID-TIME MODEL 3-3

In this chapter we will introduce a new valid-time model to represent and handle
ill-known temporal intervals.

We will introduce some background concepts about possibility theory, which is
the mathematical tool we use for modelling imperfections. Next we introduce our
possibilistic framework, which is extended in depth in Appendix A. Furthermore, we
explain the representation of time within the possibilistic framework.

A crisp model for temporal relational databases is presented. In the next section,
this model is extended by using the possibilistic framework developed before.

3.1. Preliminaries

In this section, we introduce some basic concepts concerning possibilistic variables
and fuzzy numbers and intervals. Then, the framework of set evaluation by ill-known
constraints [25] is explained. The section concludes with a brief introduction to tem-
poral databases.

3.1.1. Possibility Theory

In the past century, several theories have been proposed that deal with the mod-
elling, processing and inference of uncertainty. The most popular of these theories is
perhaps probability theory [34, 35], which has many important applications in statis-
tical testing and predictive models, amongst others. Despite the huge importance of
probability theory, it has been argued by several authors in the past decades that the
purpose and applicability of probability theory is restricted. More specific, it has been
shown that probability theory deals with uncertainty caused by variability in the out-
come of experiments [38]. For example, if a coin is tossed, this can be regarded as an
experiment and the outcome is variable in that sense that tossing the coin repeatedly
will result in different outcomes. The uncertainty about the answer to the question
“What side of the coin will be shown after the toss?” is caused by the fact that the
experiment has two possible outcomes. It is however well known that there is another
cause of uncertainty that can not be captured by probability theory: incomplete knowl-
edge [155,156]. For example, the uncertainty about the question “What is the birthday
of John?” is clearly not caused by some variability in the outcome of an experiment,
but it is caused by a lack of knowledge about a person named John.

In order to cope with this alternative cause of uncertainty, the theory of possibility
has been developed and it has been argued that it is a theory compatible to probability
theory. Possibility theory was first defined by Zadeh [36], although some earlier works
already provide an informal treatment of possibility theory [2, 171]. For a concise
and formal treatment of possibility theory, the authors refer to [172–174]. Perhaps
the most important contribution of Zadeh [36] is the establishment of a connection
between possibility theory on the one hand and fuzzy sets [17] on the other hand. This
connection contributes to the observation that the membership degree of a fuzzy set
can be assigned three semantics: degree of similarity, degree of preference and degree
of uncertainty [175].

Informally, a theory of uncertainty considers a set of uncertain events and tries to
quantify the confidence about the occurence of those events. Such quantification of

3-4 A POSSIBILISTIC VALID-TIME MODEL

confidence is achieved by means of a confidence measure [176].

Definition 39. Confidence measure.
Consider a set of outcomes Ω. Let ℘(Ω) denote the powerset of Ω and let A and B be
elements of ℘(Ω). A confidence measure on Ω is defined by a function

g : ℘(Ω)→ [0, 1] (3.1)

that satisfies

g(∅) = 0 (3.2)

g(Ω) = 1 (3.3)

A ⊆ B ⇒ g(A) ≤ g(B) (3.4)

Both possibility and necessity measures are special cases of confidence measures.

Definition 40. Possibility measure.
Consider a confidence measure Π on a set of outcomes Ω. Let J be a countable index
set and let {Aj |j ∈ J ∧ Aj ⊆ Ω} be a family of elements of ℘(Ω). Π is a possibility
measure on Ω if it satisfies:

Π

⋃
j∈J

Aj

 = sup
j∈J

Π(Aj) (3.5)

In this work, the interpretation is as follows. The possibility of an event expresses
how plausible the occurrence of the event seems to an observer of the experiment, given
the (partial) knowledge of the observer about the experiment.

Information on the possibility of distinct elements of the universe of discourse Ω

can now be given by a possibility distribution π on Ω, defined by:

Definition 41. Possibility distribution.
Consider a possibility measure Π on Ω. A possibility distribution π on Ω underlying
the possibility measure Π is a function defined by:

π : Ω→ [0, 1] : π(u) = Π({u}) (3.6)

Definition 42. Necessity measure.
Consider a confidence measureN on Ω. Let J be a countable index set and let {Aj |j ∈
J ∧ Aj ⊆ Ω} be a family of elements of ℘(Ω). N is a necessity measure on Ω if it
satisfies:

N

⋂
j∈J

Aj

 = inf
j∈J

N(Aj) (3.7)

In this work, the interpretation is as follows. The necessity of an event expresses
how necessary the occurrence of the event seems to an observer of the experiment,
given the (partial) knowledge of the observer about the experiment.

Possibility and necessity measures are dual in the sense that:

∀A ⊆ Ω : N(A) = 1−Π(Ā) (3.8)

That is, the degree to which an event is necessary is the extent to every other possi-
ble event is not plausible.

A POSSIBILISTIC VALID-TIME MODEL 3-5

3.1.2. Possibilistic Variables

Informally speaking, a possibilistic variable is a variable taking one value, but for
some reason its value is unknown. Then, a possibility distribution is defined to model
the knowledge available about the set of possible values for such a variable. Consider
for example the height of a person. The exact value for a given person might not be
precissely known, but it could be specified by a possibility distribution. Possibilistic
variables rely on possibility theory [151] and are defined as follows [25].

Definition 43. Possibilistic variable.
A possibilistic variableX over a universe U is defined as a variable taking exactly one

value in U , but for which this value is (partially) unknown. A possibility distribution
πX on U models the available knowledge about the value X takes; for each u ∈ U ,
πX(u) represents the possibility that X takes the value u. In this work, this possibility
is interpreted as a measure of how plausible it is that X takes the value u, given the
available (partial) knowledge about the value X takes.

The exact value a possibilistic variable takes, which is (partially) unknown, is called
an ill-known value in this work [151].

When a possibilistic variable is defined on the powerset P(U) of some universe U ,
the unique value the variable takes will be a crisp set and its possibility distribution
on the powerset P(U) will describe the possibility of each crisp subset of U to be the
value the variable takes. This exact value (a crisp set) the variable takes, is now called
an ill-known set [151].

Note that while a single ill-known value refers to one (partially) unknown value, an
ill-known set is a crisp set but, for some reason, (partially) unknown.

A specific application of possibilistic variables is obtained when the universe under
consideration is the set of Boolean values B = {T, F}. Indeed, any Boolean proposition
p takes just one value in B. If the knowledge about which value this proposition p
will take is given by a possibility distribution πp; the proposition can be seen as a
possibilistic variable. The possibility and necessity that p are T (the proposition holds)
demand more attention. This possibility and necessity is noted here as:

Possibility that p = T (p holds): (3.9)

Pos(p) = πp(T)

Necessity that p = T (p holds): (3.10)

Nec(p) = 1− πp(F)

Here, equation (3.9) denotes the possibility that p = T and the proposition holds,
while equation (3.10) denotes the necessity that p = T and the proposition holds.

This work deals with ill-known intervals. These are ill-known sets, defined and
represented via a starting and an ending point that, in turn are ill-known values. The
elements of the set are the values between the starting and ending points. A closed ill-
known interval with a starting point defined by a possibilistic variableX and an ending
point defined by a possibilistic variable Y is noted here [X,Y].

3-6 A POSSIBILISTIC VALID-TIME MODEL

1

0
values

D-a D D+b

α β=γ δ

Figure 3.1: Example of fuzzy number.

1

0
 α β γ δ

Figure 3.2: Example of fuzzy interval.

3.1.3. Fuzzy Numbers and Fuzzy Intervals

Among others, Dubois and Prade [177] use fuzzy sets [17] to define a fuzzy interval.

Definition 44. Fuzzy interval.
A fuzzy interval is a fuzzy set M , defined by a membership function µM on the set of
real numbers R such that:

µM : R→ [0, 1] (3.11)

∀(u, v) ∈ R2 : ∀w ∈ [u, v] :

µM (w) ≥ min(µM (u), µM (v))

∃m ∈ R : µM (m) = 1

If this modal value m is unique, then M is referred to as a fuzzy number.
A simple form of the membership function of a fuzzy interval is a trapezoidal func-

tion (Figure 3.2). It can be shown that such a membership function µT for a fuzzy
interval T is convex and normalized. The values [α, β, γ, δ] represent a trapezoidal
possibility distribution defined by µT :

µT : R→ [0, 1] (3.12)

µT (x) =


1 if x ∈ [β, γ]

0 if x > δ ∨ x < α
x−α
β−α if x ∈ [α, β[
δ−x
δ−γ if x ∈]γ, δ]

The representation for a triangular possibility distribution (Figure 3.1) is given by
three values [D, a, b]. The distribution is obtained from a trapezoidal possibility distri-
bution by replacing the values [D − a,D,D,D + b]. Both representations for a trian-
gular possibility distribution are equivalent, but the compact representation [D, a, b] is

A POSSIBILISTIC VALID-TIME MODEL 3-7

preferred and used in this work because the values a and b need to be calculated when
computing the membership function for the triangular possibility distribution.

3.1.4. Interval Evaluation by Ill-known Constraints

In the case of temporal databases, it is very important to know if all points in a crisp
interval I reside between the boundaries of an ill-known interval [X,Y]. To compute
that, the concept of ill-known constraint [25] has been introduced.

Definition 45. Ill-known constraint.
Given a universe U , an ill-known constraint C on a set A ⊆ U is specified by means
of a binary relation R ⊆ U2 and a fixed ill-known value denoted by its possibilistic
variable V over U , i.e.:

C , (R, V) (3.13)

Set A satisfies the constraint if and only if:

∀a ∈ A : (a, V) ∈ R (3.14)

An example of an ill-known constraint is Cex = (<, V). Some set A satisfies Cex
if ∀a ∈ A : a < V , given the possibilistic variable V .

The satisfaction of a constraint C , (R, V) by a set A is still a Boolean matter, but
due to the uncertainty about the ill-known value V , it can be uncertain whether C is
satisfied byA or not [25]. In fact, this satisfaction now behaves as a proposition. Based
on the possibility distribution πV of V , the possibility and necessity that A satisfies C
can be computed. This proposition can thus be seen as a possibilistic variable on B.
The required possibility and necessity are:

Pos(A satisfies C) = min
a∈A

(
sup

(a,w)∈R
πV (w)

)
(3.15)

Nec(A satisfies C) = min
a∈A

(
inf

(a,w)/∈R
1− πV (w)

)
(3.16)

So far, we have shown how it can be verified whether a crisp set satisfies or not an
ill-known constraint. The interval evaluation problem is explained in a more general
context in [25].

Example 13. Consider V = [5, 3, 2] and let C = (≤, V) the ill-known constraint.
Then, the evaluation of the possibility and the necessity are obtained from (3.15) and
(3.16) respectively. The intermediate calculations for both possibility and necessity
measures are shown in Figure 3.3.

Pos(A satisfies C) = min
a∈A

(
sup
a≤w

πX(w)

)
(3.17)

Nec(A satisfies C) = min
a∈A

(
inf
a>w

1− πX(w)

)
(3.18)

3-8 A POSSIBILISTIC VALID-TIME MODEL

U

1

0

possibility

1 2 3 4 5 6 7 8

V

sup πv(w)
(a,w) ∈ R

U

1

0
1 2 3 4 5 6 7 8

V

(a,w) ∉ R

possibility inf 1 - πv(w)

Figure 3.3: Example of the evaluation of the ill-known constraint C , (≤, V), V =
[5, 3, 2]. The left graphic shows the calculation of sup(a,w)∈R πV (w). The right
graphic shows the calculation of inf(a,w)/∈R 1− πV (w).

It is observed that Boolean combinations of constraints are required. For example,
the problem of interval evaluation (explained earlier) requires that all the elements of
an interval [a, b] are larger than a value X and, at the same time, smaller than a value
Y , which implies that a conjunctive Boolean combination of both constraints must be
satisfied. To allow Boolean combinations of constraints, the following definitions are
introduced.

Definition 46. Evaluation function.
Consider a universe U , an n-ary vector C of constraints and a Boolean function
B : Bn → B. An evaluation function is defined by:

λ : P(U)→ B : λ(A) 7→ B
(
C1(A), ..., Cn(A)

)
. (3.19)

Definition 46 presents a function that evaluates a Boolean combination of some
basic constraints. Informally, it states that a set A passes the evaluation made by λ if
the evaluation of the Boolean combination of some propositionsCi, (with i = 1, . . . , n)
yields T . This crisp definition can be generalized to the case of ill-known constraints.

Definition 47. Ill-known set evaluation.
Consider a universe U , an n-ary vector C of ill-known constraints and a Boolean

function B : Bn → B. The uncertainty about the evaluation of a set A by an evaluation
function λ is then given by:

∀A ∈ P(U) : πλ(A) = B̃
(
πC1(A), ..., πCn(A)

)
(3.20)

Hereby, B̃ is the possibilistic extension of B.

It is well known that any Boolean function B can be cast to a canonical form [178],
requiring only logical conjunction ∧, logical disjunction ∨ and logical negation. There-
fore, only those connectives will be treated within the scope of this paper. By applying
the possibilistic extensions of∧, ∨ and¬, concrete equations are obtained for the calcu-
lations of uncertainty about the evaluation of a set by means of an evaluation function
λ. In the case of conjunction (i.e., B = ∧), the inference of uncertainty about the
evaluation of a set reduces to:

∀A ∈ P(U) : Pos(λ(A)) = mini=1...n Pos (Ci(A)) (3.21)

∀A ∈ P(U) : Nec(λ(A)) = mini=1...n Nec (Ci(A)) . (3.22)

A POSSIBILISTIC VALID-TIME MODEL 3-9

In the case of disjunction (i.e. B = ∨), the inference of uncertainty about the evaluation
of a set reduces to:

∀A ∈ P(U) : Pos(λ(A)) = maxi=1...n Pos (Ci(A)) (3.23)

∀A ∈ P(U) : Nec(λ(A)) = maxi=1...n Nec (Ci(A)) . (3.24)

Note that by using the functions min and max here, there is an implicit assumption that
the possibilistic variables πCi

are mutual min-dependent in the sense of De Cooman
(i.e. non-interactive). For an extensive reading on (in)dependency of possibilistic vari-
ables, the reader is referred to [172], [173], [174]. In case of ¬, we get:

∀A ∈ P(U) : Pos(¬λ(A)) = 1−Nec(λ(A)) (3.25)

∀A ∈ P(U) : Nec(¬λ(A)) = 1− Pos(λ(A)). (3.26)

Example 14. Consider that we want to check if the crisp interval I = [j, k] is included
in [X,Y]. In this situation, two ill-known constraints are constructed.

C1 , (≥, X) (3.27)

C2 , (≤, Y) (3.28)

To calculate the possibility and necessity concerning a conjunction of constraints,
the min operator can be used. The possibility and necessity of I being included in
[X,Y] are now:

Pos(I satisfies C1 and C2) = min
a∈I

(
sup
a≥w

πX(w), sup
a≤v

πY (v)

)
(3.29)

Nec(I satisfies C1 and C2) = min
a∈I

(
inf
a<w

1− πX(w), inf
a>v

1− πY (v)

)
. (3.30)

There is a special Boolean combination of constraints that is of particular interest;
let us see it.

Definition 48. Conjunctive combination of ill-known constraints.
Consider a universe U . Let R1, R2 be two binary relations in U. Let X1, X2 be two
fixed ill-known values in U . Let C1 = (R1, X1) and C2 = (R2, X2) be two ill-known
constraints. A conjunctive combination of both constraints is given by:

CC , {C1 ∧ C2} (3.31)

In a more general way, it is possible to define the conjunctive combination of an n-ary
vector of constraints:

CC , {C1 ∧ . . . ∧ Cn} (3.32)

Theorem 1. Consider the conjunctive combination CC of any n-ary vector [C1Z1
, . . .,

CnZn
] of constraints over the ill-known variables Z1, . . . , Zn. Then, if πC1(Z1), . . .,

πCn(Zn) are convex, then πCC is also convex.

3-10 A POSSIBILISTIC VALID-TIME MODEL

Proof. Let CC ,
{
C1Z1

∧ . . . ∧ CnZn

}
. Then:

πCC (λx1 + (1− λ)x2) = min
(
πC1(Z1) (λx1 + (1− λ)x2) , (3.33)

. . . , πCn(Zn) (λx1 + (1− λ)x2)
)

Since πC1(Z1), . . . , πCn(Zn) are convex:

πC1(Z1) (λx1 + (1− λ)x2) = min
(
πC1(Z1) (x1) , πC1(Z1) (x2)

)
(3.34)

...

πCn(Zn) (λx1 + (1− λ)x2) = min
(
πCn(Zn) (x1) , πCn(Zn) (x2)

)
Then, by using equation (3.33):

πCC (λx1 + (1− λ)x2) = min
(

min
(
πC1(Z1) (x1) , πC1(Z1) (x2)

)
, (3.35)

. . . ,min
(
πCn(Zn) (x1) , πCn(Zn) (x2)

))
Which is equivalent to the following:

πCC (λx1 + (1− λ)x2) = min
(

min
(
πC1(Z1) (x1) , . . . , πCn(Zn) (x1)

)
, (3.36)

. . . ,min
(
πC1(Z1) (x2) , . . . , πCn(Zn) (x2)

))
Finally we obtain:

πCC (λx1 + (1− λ)x2) = min
(
πCC (x1) , πCC (x2)

)
(3.37)

Sometimes, an ill-known value might be specified by a convex combination of ill-
known constraints. This allow to define ill-known values by means of relationships
with respect to other ill-known points.

Definition 49. Ill-known value defined by conjunctive combination of constraints.
Consider a universe U , and CC ,

{
C1Z1

∧ . . . ∧ CnZn

}
a conjunctive combination

of ill-known constraints over the variables Z1, . . . , Zn. The uncertainty about the eval-
uation of an ill-known value X is given by:

X ∈ P(U) : πX = πCC (3.38)

The definition of the ill-known valueX with respect to the conjunctive combination
of ill-known constraints, is written as:

X , CC (3.39)

Note that πX is convex since πCC is convex as demonstrated in Theorem 1.

Example 15. As an example, consider a historical database containing data about
diplomatic medieval documents. The starting and ending dates when a diplomatic
document was valid, are not precisely known. Consider now that the time granularity
are years. Then X = [1112, 2, 2] is the starting year for the validity of a document. A

A POSSIBILISTIC VALID-TIME MODEL 3-11

1110 1112 1114 1116 1118 1119

years

1

0

possibility
YX

Z

Figure 3.4: Ill-known values X and Y . The grey area represents the ill-known value Z
defined by the convex combination of the two ill-known constraints C1 and C2.

new diplomatic document was valid in the year Y = [1118, 2, 1]. Then, it is possible
to obtain Z (the period of time between the starting of both documents) by using a
conjunctive combination of constraints.

CC = {C1 (>,X) ∧ C2(≤, Y)}
Z = CC

Z is a fuzzy interval defined by a trapezoidal shape given by [1112, 1114, 1118, 1119].
Figure 3.4 illustrates the relations among the variables X , Y and Z.

We have seen the main theoretical concepts about ill-known values. Now, we are
going to explain the main concepts about the treatment of time and the imperfection
related to time in databases. These two preliminary analysis will be the pillars of our
proposal in section 3.2.

3.2. Time Representation
This section is devoted to specify the representation of time within the framework

of possibility theory. First of all, we will present some approaches in the literature.
Next to that we will define the specification for a single ill-known temporal point.
Finally, the formal specification and the related constraints are given for an ill-known
valid-time interval.

3.2.1. Approaches for the representation

Several proposals for managing uncertain time in a database exist. Some proposals
work with rough sets [26], and some others rely on possibility distributions for repre-
senting uncertainty in time [24,74,179]. To compare temporal possibility distributions,
extensions of the classical Allen’s operators [9] are defined in [19, 22, 23, 180].

In order to deal with uncertainty in time intervals, several proposals have been
made. Here, two approaches are described: the first one, based on Fuzzy Validity
Periods [24] and the second one, based on Possibilistic Valid-time Periods [181].

3-12 A POSSIBILISTIC VALID-TIME MODEL

1

0

membership

degree

1

0

1

0

membership

degree

membership

degree

Time

Time

Time

Original start and end points

Convex hull

Uncertainty preserving approach

Figure 3.5: Transformation to obtain the FVP. The top graph shows the two triangular
possibility distributions. The middle graph shows the convex hull validity period, the
bottom one shows the result of the second transformation, which maintains the impre-
cision.

Definition 50. A Fuzzy Validity Period [24] (FVP) is defined as a fuzzy time interval
specifying when the data regarding an object are valid. A fuzzy time interval is then
the fuzzification of a crisp time interval.

Several options to transform possibility distributions corresponding to the fuzzy
starting point and the fuzzy end point into a consistent FVP exist [24], e.g., Fig. 3.5:

The convex hull approach is the most intuitive approach. The resulting FVP is
the convex hull of the union of both possibility distributions.

In the uncertainty preserving approach, the amount of uncertainty is main-
tained at the edges of the possibility distribution representing the FVP [24].

The main feature for the FVP is the optimization for the storage. The compact
representation is the result of a conjunctive semantic. The object is valid within all the
time points inside the starting and ending points.

Definition 51. A Possibilistic Valid-time Period (PVP) is an ill-known interval of
time specifying when the data regarding an object are valid.

Note that the PVP represents only one crisp time interval, but for some reason, it is
(partially) unknown.

The main advantage for the PVP is that it preserves all the information for both
starting and ending points [25, 182]. Table 3.1 is a comparison between PVP and FVP.
The following list defines the items in the comparative:

(1) Domain: The domain of the possibility distribution modelled by the approach.

(2) Implementation of relationships: How to implement a relationship?.

A POSSIBILISTIC VALID-TIME MODEL 3-13

(3) Allen’s relations: Are the Allen relations defined?

(4) Storage: The way the data are stored in the database.

(5) Possibility measures: Does the framework provide a possibility measure for any
relation between two time intervals?

(6) Necessity measures: Does the framework provide a necessity measure for any
relation between the temporal elements?

Item PVP FVP
(1) P(R) R
(2) Ill-known constraints. Ad-hoc operators.
(3) X -
(4) Two distributions one for

the starting point and one
for the ending point.

Only one distribution.

(5) X If the FVP is obtained by the convex hull
transformation, then the possibility mea-
sure returns the same value than the pos-
sibility measure for the PVP. If the FVP is
obtained by the preserving transformation
approach, then the possibility measure re-
turns a different result than the possibility
measure of the PVP.

(6) X The necessity measure results in an infor-
mation lost and provides a different value
than the necessity measure of the PVP.

Table 3.1: Comparative PVP vs FVP

In the rest of the work, we will work only with PVP to represent valid-time inter-
vals.

3.2.2. Ill-known time point

An ill-known time point X is a single time point that, for some reason, is not fully
specified. Note that X has only one possible value but that value is unspecified.

Definition 52. Ill-known time point.
Consider a time domain T ; the uncertainty about the values of an ill-known time point
X is given by the possibility distribution πX :

Π(X) = πX(t) ∈ [0, 1] , t ∈ T (3.40)

It is also possible to specify an ill-known time point by a convex combination of
ill-known constraints, as specified by equation (3.38).

3-14 A POSSIBILISTIC VALID-TIME MODEL

Definition 53. Domain for an ill-known time point.
Consider P(T) the set of all the possibility distributions over T , and the three fuzzy
constants UNKNOWN = {1/t,∀t ∈ T }, UNDEFINED = {0/t,∀t ∈ T } and NULL
= {1/ UNKNOWN, 1/ UNDEFINED }. The domain for an ill-known time point X is
given by:

D(X) = {P(T) ∪ UNKNOWN ∪ UNDEFINED ∪ NULL} (3.41)

3.2.2.1. Data Types

The data type for the representation of an ill-known time point allows the represen-
tation of the values shown in Table 3.2

Subtype Value Representation
1 A single time point 1/x, x ∈ T
2 A possibility distribution in the nu-

meric domain
A fuzzy number or a
fuzzy interval.

3 An unknown value UNKNOWN=
{1/t,∀t ∈ T }

4 An undefined value UNDEFINED=
{0/t,∀t ∈ T }

5 A null value NULL = {1/Unknown,
1/Undefined }

Table 3.2: Values for the time point data type.

Example 16. Consider a historical database with data from medieval diplomatic docu-
ments. The following fields are stored: the digital identifier ID which is the primary key
and the estimated time when the document was issued (field Date). Table 3.3 contains
some example data from this database.

ID Date
23454 Unknown
34563 11/12/1204
12211 [7/2/1204, 30, 30]
23455 [10, 10/6/1204, 20/6/1204, 15]

Table 3.3: Sample of the historical database

In that database, for the document with ID=23454, all the dates in the domain are
equally possible. Nevertheless, the document 34563 was issued the crisp (exact) date
11/12/1204. The time for documents 12211 and 23455 are specified by a possibility
distribution. The first one is also known as a fuzzy number whereas the second one is
also known as a fuzzy interval, as explained in Section 3.1.

A POSSIBILISTIC VALID-TIME MODEL 3-15

3.2.3. Ill-known time interval

An ill-known time interval denoted by [X,Y] is a precise time interval whose
boundaries are not precisely known.

Definition 54. Ill-known time interval Let T be the time domain, and X , Y two ill-
known values in the time domain. An ill-known time interval is given by [X,Y]. The
evaluation of the ill-known time interval is given by equations (3.15),(3.16). The set of
all the ill-known time intervals will be noted by IPV P .

3.2.3.1. Open ill-known time intervals

Quite often, the user may want to specify time intervals with open boundaries in
one or both endpoints. Consider an ill-known time interval [X,Y]. Then it is possible
to distinguish between the following two types of open intervals:

Definition 55. Completely unknown time interval: Both starting and ending points
are unknown, therefore the whole interval is unknown.

Definition 56. Semi-open time interval: Only one of the two ill-known endpoints for
the time interval [X,Y] is unknown. Example 17 and Figure 3.6 illustrates a left open
time interval.

3.2.3.2. Representation of semi-open time intervals

As mentioned before, the problem resides in the representation of semi-open time
intervals.

Because of the ill-known constraints C1, C2, respectively defined on X and Y , a
function called Open should be defined in order to deal with a proper representation of
these intervals.

Definition 57. Open(C)
Consider an ill-known value T , a binary relationship R ∈ {≤, <,>,≥} and the con-

straint C
4
= (R, T). The function Open(C) = (Ip(C), In(C)) provides both the

possibility and necessity measure for all the points in the open part of a semi-open
ill-known time interval and are defined by:.

Ip (C) =
(

sup
r∈T ,rRp w

πT (w)
)

(3.42)

In (C) =
(

inf
r∈T ,rRn w

1− πT (w)
)

(3.43)

Where the values for the binary relations Rp and Rn are shown in Table 3.4.

A special constant until changed, UC [73] is used in temporal databases to specify
a open time interval in which the ending point of the time interval is +∞. Analogously,
a special constant from the beginning FB, can be defined. In this case, the starting point
of the time interval is −∞.

3-16 A POSSIBILISTIC VALID-TIME MODEL

Constraint Rp Rn

C
4
= (<, T) > ≤

C
4
= (≤, T) ≥ <

C
4
= (>, T) < ≥

C
4
= (≥, T) ≤ >

Table 3.4: Relations for the Open(C) function. Depending on the relation R ∈
{≤, <,>,≥} in the constraint C, the values for Rp and Rn are shown.

When dealing with ill-known time intervals, the constants FB and UC can be re-
defined by using the function Open with the following parameters:

FB = Open((≤, Y)) (3.44)

UC = Open((≥, X)) (3.45)

Where the constraints C1 and C2 are given in equations (3.27) and (3.28).

Example 17. Consider an ill-known time interval given by [FB, Y]. Consider also
that, in this case, Y = [15/10/2012, 3, 4]. Figure 3.6 shows the representation for Y .
The user wants to obtain the possibility and the necessity measures for the FB part of
the interval.

FB = Open(C2) with C2
4
= (≤, Y)

Ip(C2) =
(

sup
r∈T ≥ w

πY (w)
)

In(C2) =
(

inf
r∈T< w

1− πY (w)
)

3.2.3.3. Data types

In order to properly represent an ill-known time interval in a database, some extra
data types are needed. Because of the ill-known constraints, not all the combinations of
data types for each ill-known time point (see Table 3.2) are allowed. Table 3.5 shows
all the possible values that can be used to represent an ill-known time interval denoted
by [X,Y].

3.3. Crisp Valid-time Model for Relational DBs

This section is devoted to define a model for a crisp valid-time database. For the
sake of simplicity, only the three main operations (CReate Update, Delete) in the Data
Manipulation Language DML are shown. Usually the DML operations in a temporal
database are re-defined (a typical update sentence in SQL could be expressed by means

A POSSIBILISTIC VALID-TIME MODEL 3-17

Figure 3.6: Possibility distribution for Y , and possibility and necessity measures for
the open ill-known point, X

Subtype for
X

Subtype for
Y

Description

1 or 2 1 or 2 An ill-known time interval.
3 3 An unknown time interval.
FB 1 or 2 A left-open time interval.
1 or 2 UC A right-open time interval.

Table 3.5: All the meaningful combinations of values for the time interval [X,Y]. The
subtypes refer to Table 3.2.

of a couple of insert and update sentences). Therefore, for the sake of clarity, high level
primitives in the DML for a valid-time database are usually noted as Insert, Modify and
Delete. In the following subsections each primitive is defined and explained. Finally,
an illustrative example is given. For more complete information on the behaviour of a
bi-temporal database, please refer to [183].

3.3.1. Temporal model for crisp databases

We will define the main concepts and elements in order to implement a model
for temporal relational databases. First of all, we will introduce some definitions and
notations.

Definition 58. Valid-time relation. Consider the following definitions and notations:

A set of non-temporal attributes.

A = {A1, A2, . . . , An} (3.46)

The domain for each attribute A1, . . . , An is D1, . . . , Dn respectively.

3-18 A POSSIBILISTIC VALID-TIME MODEL

The original primary key AK is a subset of the attributes in A.

AK ⊆ A (3.47)

Two attributes, S and E for the starting and ending points respectively. I defines
the valid-time interval for the data.

I = (S,E) (3.48)

T is the time domain, and used as domain for S and E.

Then R, the schema for the valid-time relation is:

R = A ∪ I (3.49)

The primary key for the valid-time relation R is:

PK = AK ∪ I (3.50)

We will note by r any valid instance of R.

r ⊆ D1 × . . .×Dn × T × T (3.51)

V (t) is the set of all the versions for a given tuple t. Formally,

V (t) = {ti ∈ r, ti [AK] = t [AK]} (3.52)

Obviously, t itself is included in this set.

We will illustrate the definitions with an example.

Example 18. Consider the set of attributes A = {A1, A2, A3}. The primary key for
these attributes is given by AK = {A1, A2}. Let I = {S,E} be the set of temporal
attributes that define the validity period of the data. R is the valid-time relation and r
is an instance of the relation. The instance r is given by the following elements. r =

{(a11, a12, a13, s1, e1) , (a21, a22, a23, s2, e2) , (a11, a12, a31, s3, e3)}. The instance r
is illustrated in Table 3.6. Consider the tuple t1 = (a11, a12, a13, s1, e1). Then,

t1 [S] = s1

t1[E] = e1

t1[S,E] = (s1, e1)

t1 [AK] = (a11, a12)

t1 [PK] = (a11, a12, s1, e1)

V (t1) = {t1, t3}

A POSSIBILISTIC VALID-TIME MODEL 3-19

A1 A2 A3 S E
t1 a11 a12 a13 s1 e1

t2 a21 a22 a23 s2 e2

t3 a11 a12 a31 s3 e3

Table 3.6: Example database containing the instance r of the valid-time relation R.

3.3.2. Data manipulation language

In a crisp temporal database, the Data manipulation language (DML) is re-defined
in order to provide a consistent access to data and keep databases consistency. In the
following we will implement the algorithms for the DML operations: Insert, Modify
and Delete.

In order to simplify the algorithms for the manipulation of data, some auxiliary
functions and constants are defined:

Definition 59. From the beginning (FB).
Consider the elements in definition 58 and a tuple t. We will say t[S] = FB when
t[S] = −∞.

Definition 60. Until changed (UC).
Consider the elements in definition 58 and a tuple t. We will say t[E] = UC when
t[E] = +∞.

Definition 61. Current.
Consider the elements in definition 58. We will say that the tuple t is current in the
instance r of the relation R when t[E] = UC.

For example, let us consider the last row in Table 3.7. The value for the time
interval is I = (S, E) = (4/4/2012 , UC). The meaning is that the document with ID
= 3 was valid the 4/4/2012 and it is still valid. The document with ID = 3 is current in
the relation.

Example 19. Consider a historical database containing diplomatic documents. The
starting and the ending dates denote when the diplomatic document is valid. It is pos-
sible that a diplomatic document is valid for a period of time and several years later
it becomes valid again. The following elements are stored: an identifier of the doc-
ument (ID), the entity that issues the document and the dates when the document is
valid. Table 3.7 illustrates the first version of the database, after three insertions. In
this example, A = (ID, Entity) and I = (Start, End).

Definition 62. Current (r, ak).
Consider the elements in definition 58. The function Current (r, ak) returns the crisp
time interval of a tuple t with primary key ak as follows:

Current (r, ak) =

{
t[S,E] if ∃t ∈ r : t[E] = UC and t[AK] = ak

∅ otherwise

3-20 A POSSIBILISTIC VALID-TIME MODEL

ID Entity Start End
3 E.U. 15/3/2012 30/3/2012
4 N.A.T.O. 25/3/2012 4/4/2012
5 C.E.I. 18/3/2012 2/4/2012
3 E.U. 4/4/2012 UC

Table 3.7: Example of historical database

For example, the function Current(r, 3) returns the time interval (4/4/2012 , UC).
Conversely, Current(r, (4,‘N.A.T.O.’)) returns the empty set.

The Allen relations between two time intervals are shown in Figure 2.2. The com-
plete implementation of the relations using only the starting and the ending points is
defined in [19].

We will use two of the Allen relations: Overlaps and During which will be defined
as follows.

Definition 63. Overlaps.
Given two time intervals defined by the couples of values i1 = (s1, e1) and i2 =

(s2, e2), it is said that i1 overlaps i2 if:

i1 overlaps i2 = (((s1 < s2) ∧ (e1 < e2)) (3.53)

∨ (((s1 > s2) ∧ (e1 > e2))

Definition 64. During.
Given two time intervals defined by the couples of values i1 = (s1, e1) and i2 =

(s2, e2), it is said that i1 during i2 if:

i1 during i2 = (s1 > s2) ∧ (e1 < e2) (3.54)

In the rest of the this thesis, and without losing generality, we will consider that the
time granularity are days. Also, the dates will be given in the format dd/mm/yyyy.

Definition 65. CloseR(i1, i2):
Consider two crisp time intervals defined by the couples of values i1 = (s1, e1) and
i2 = (s2, e2). The CloseR(i1, i2) function allows to close the right-open interval i1
with respect to the first value s2 in i2:

CloseR (i1, i2) =

{
(s1, s2 − 1) if e1 = UC and i2 During i1
i1 otherwise

(3.55)

For example, consider two time intervals, i1 = (4/4/2012, UC) and i2 = (

24/4/2012, UC). The result of applying the CloseR(i1, i2) is i1 = (4/4/2012, 23/4/2012
).

Now it is possible to close the current version of an entity by using (3.55) and
(3.53). This functionality is required to add or update new information about an exist-
ing entity in the relation.

A POSSIBILISTIC VALID-TIME MODEL 3-21

Definition 66. Close-current(r, t).
Consider the elements in definition 58. The function Close-current(r, t) closes any
current version tk of the entity given by t and adds the new version t. For the imple-
mentation tCUR and tUP variables are defined:

tCUR [Ak] = t[AK] (3.56)

tCUR [S,E] = Current (r, t[AK])

tUP [Ak] = t[Ak]

tUP [S,E] = CloseR (tCUR [S,E] , t[S,E])

Then, tCUR is the current version of the entity given by the tuple t, and tUP is the
updated version of the tuple tCUR. In this updated version, the time interval given by
iUP is closed with respect to the tuple t.

Close-current (r, t) =

{
{(r \ tCUR) ∪ {tUP } ∪ {t}} if Current (r, t[AK]) 6= ∅
r, otherwise

For example, consider the document with ID = 3 in Table 3.7. The current version
of the document started on 4/4/2012, the ending date was not specified. Then, a new
version of the same document was issued on 24/4/2012. Then, the Close-current func-
tion closes the old version of the document and adds a new version. First, the function
CloseR is applied with i1 = (4/4/2012, UC) and i2 = (24/4/2012, UC). Hence, the
value for the time interval i1 is (4/4/2012, 23/4/2012). Then, the modifications on the
value for the time interval i1 are stored. Finally a new row with the current values of
the document and the time interval i2 is stored. The result of this operation is illustrated
on Table 3.8.

3.3.2.1. Modify

This operation adds new information about an existing entity (given by the tuple t)
to the instance r of the relation R. The modify operation does not remove any previous
value of the entity. It closes the current version and adds a new version.

Definition 67. Modify(r, t).
Consider the elements in definition 58. The algorithm for the modify operation is
defined as follows.

modify (r, t) = Close-current (r, t) (3.57)

3.3.2.2. Insert

The user wants to store an entity (given by the tuple t) which is valid in the instance
r of the relation R during the time interval specified by i = (s, e). There are two main
cases when performing a create operation:

1. The entity was never in the relation: The entity is added with the valid-time
indicated by the crisp interval i.

3-22 A POSSIBILISTIC VALID-TIME MODEL

ID Entity Start End
3 E.U. 15/3/2012 30/3/2012
4 N.A.T.O. 25/3/2012 4/4/2012
5 C.E.I. 18/3/2012 2/4/2012
3 E.U. 4/4/2012 23/4/2012
3 E.U. 24/4/2012 UC

Table 3.8: Example of historical database after insert operation.

2. The entity is in the relation. Depending on the value of the time interval, there
are three possibilities:

a) If the time interval i does not overlap with any other valid-time interval in
the instance r relation R for the entity, then insert t in the instance r of the
relation R. For example, consider that the document with ID = 3 was valid
from 15/3/2013 to 30/03/2012. The 4/4/2012, a new version was issued.
This version is still currently valid as illustrated in Table 3.7.

b) If the ending point of the time interval for the existing entity in the database
is until changed, then modify and close the current version of t and insert
the new version. For example, consider now that the document with ID = 3
was valid on 24/4/2012. Here the problem is that the document with ID = 3
was valid on 4/4/2012 but, for some reason, the ending date was not stored.
If the document is again valid, then it is necessary to set the ending date
and add a new row with the new starting date. This is illustrated in Table
3.8.

c) If the time interval i does overlap any existing valid-time interval for the
entity t in the instance r of the relation R, then reject the insertion, For
example, consider that the document manager wants to introduce a past
valid-time for the document with ID = 3. The validity period for the docu-
ment is (6/4/2012, 25/4/2012). As the dates do overlap, it is not possible to
reflect in a consistent way that the document was valid at that time interval.
Therefore, the insertion is rejected.

Definition 68. Insert(r, t).
Consider the elements in definition 58. Then, the algorithm for the implementation of
the insert operation is defined as follows.

insert (r, t) =


r if ∃tk ∈ V (t), (t[S,E] overlaps tk[S,E])

r ∪ {t} if V (t) = ∅ or ∀tk ∈ V (t),

¬ (t[S,E] overlaps tk[S,E])

modify(r, t) otherwise

(3.58)

A POSSIBILISTIC VALID-TIME MODEL 3-23

3.3.2.3. Delete

The delete operation logically removes a current entity t which is valid in the in-
stance r of the relation R.

Definition 69. Delete(r, t).
Consider the elements in definition 58. The algorithm for the delete operation is defined
as follows.

delete (r, t) = r \ V (t)

The set V (t) is computed as explained in definition 58 and contains all the versions for
the tuple t.

For example, consider that the document manager wants to delete the history for
the document with ID = 3. The result of this operation is shown in Table 3.9.

ID Entity Start End
4 N.A.T.O. 25/3/2012 4/4/2012
5 N.A.T.O. 18/3/2012 2/4/2012

Table 3.9: Example of historical database after delete and revise operations.

3.3.2.4. Revise

This operation allows to make corrections in the values for an entity without affect-
ing the validity period.

Definition 70. Revise(r, t).
Consider the elements in definition 58.

revise (r, t) =

{
{(r \ {tk}) ∪ {t}} if ∃tk ∈ V (t), t [S,E] = tk [S,E]

r otherwise

For example, consider now that the document manager wants to make a correction
in the entity for the document with ID = 5. The new entity is ‘N.A.T.O.’. The result of
this operation is illustrated in Table 3.9.

3.3.3. Selection

The selection operator is very useful when the user wants to obtain a subset of
tuples that fulfill a given constraint. More formally,

Definition 71. Selection operator.
Consider the elements in definition 58. The selection operator σ obtains a subset of

3-24 A POSSIBILISTIC VALID-TIME MODEL

tuples that fulfill the selection formula P from an instance r of the relation R. The
selection formula usually consist on either a set of constraints or a logical expresion
(for example, a Boolean condition). The selection operator is noted as follows:

σP (r) (3.59)

Where r ∈ R is the relation, and P is the selection formula. The selection formula
is a set of two elements:

P =
{
Q,QT

}
(3.60)

Where Q is the set of non-temporal constraints and QT the set of temporal con-
straints. The component Q is a set composed of atomic constraints:

Q = {qa1
θ val1, . . . , qan

θ valn} (3.61)

Where:

qa∈A is an atomic constraint. The constraint refers to an attribute a that belongs
to the set of attributes A ⊆ A1 . . . An of the relation R.

θ is a relational operator; usually one of {=, 6=, <,≤, >,≥}.

val1 . . .valn are values in the domain of the queried attribute.

The temporal constraints, QT are provided in a similar way. The main difference
is that, instead of comparisons like {=, 6=, <,≤, >,≥}, we use the Allen relations [9].
Hence, the representation of the temporal constraints is expressed as follows:

QT = {qv1 AR i1, . . . , qvn AR in} (3.62)

Where

qv, v ∈ I is an attribute representing a time interval. (qv = [sv, ev]).

AR is one of the thirteen Allen relations (equal, before, overlaps, starts, finishes,
meets, during) and their respective reverses (See Figure 2.2).

ir is a crisp time interval with starting and ending points (ik = [sk, ek], k =

1, . . . , n).

3.3.3.1. Query Evaluation

In a crisp relational database, the query satisfaction can be expressed by a Boolean
value. The evaluation of the query requirements results in one of two possibilities;
accept the record if it satisfies all the constraints or reject the record otherwise. The
evaluation of the selection formula P given in equation (3.60) is handled as follows.
For each tuple t in the database, two things happen independently:

The crisp constraints expressed in Q are evaluated and aggregated. The result
of this is a Boolean value. We will note as eQ(t) value for the evaluation of the
constraints in Q for the tuple t.

A POSSIBILISTIC VALID-TIME MODEL 3-25

ID Job Works for Start Finish
1 Professor 4 5 10
2 Technician 4 3 7
3 Accountant 4 4 10
4 Administrator - 1 UC
1 Professor 4 11 UC

Table 3.10: Employees table. Instance r of relation R.

ID Adr. Start Finish
1 C/ Camino de ronda FB 12
2 C/ Recogidas FB UC
3 C/ Pintor Maldonado FB UC
4 C/ Mesones FB UC
1 C/ Manuel de Falla 12 UC

Table 3.11: Address table. Instance s of relation S.

The temporal constraints expressed inQ are evaluated and aggregated. The result
of this is again a Boolean value. We will note as eTQ(t) the value for the evaluation
of the constraints in QT for the tuple t.

The results from eQ(t) and eTQ(t) are aggregated using a Boolean combination. For
valid-time intervals, the preferred combination is the ’and’ (∧) operator. The function
efinal (t) is given by:

efinal (t) = eQ(t) ∧ eTQ(t) (3.63)

Example 20. Consider an employees database. The data are stored in two tables;
Table 3.10 (r ∈ R) contains temporal data about the employees and Table 3.11 (s ∈ S)
contains temporal data about the addresses for each employee. Consider now that the
user wants to obtain all the employees who are a professor and that worked in the time
interval [7, 10].

The selection formula is the following:

σ{{r.Job=′Professor′},{r.[S,E] Contains [7,10]}} (r) (3.64)

The values for eQ(r) and eTQ(r) for each record, as well as the final aggregation (see
Equation (3.63)) are illustrated in Table 3.12. The resultset for the selection is shown
in Table 3.13.

3.3.4. Cartesian Product

The relational Cartesian product is defined as all the possible combinations between
tuples of r, s from two given relationsR and S respectively. It is usually noted as r×s.
The temporal Cartesian product operator is defined as the relational Cartesian product
with a predicate on the temporal valid-time intervals [184]. The temporal Cartesian
product is defined then as r ×T s.

3-26 A POSSIBILISTIC VALID-TIME MODEL

ID Job Works for Start Finish eQ(t) eQ(t) efinal(t)
1 Professor 4 5 10 True True True
2 Technician 4 3 7 False False False
3 Accountant 4 4 10 False True False
4 Administrator - 1 UC False True False
1 Professor 4 11 UC True False False

Table 3.12: Intermediate calculations for selection formula given in equation (3.64)

ID Job Works for Start Finish
1 Prof. 4 5 10

Table 3.13: Resultset table for the selection in equation (3.64)

We will re-define the predicate given in [184] in terms of the Allen’s relations. To
do this, two auxiliary functions, intersect and overlapping interval should be defined.

Definition 72. Intersect(i1, i2).
Given two intervals i1 and i2, the Intersect function returns a Boolean value showing
whether the two intervals intersect or not. In terms of the Allen relations, two intervals
i1 and i2 intersect if between them exist any of the Allen relations except Before or
After. In other words, only if the Allen relations Before or After do not hold for the
two intervals, they will intersect.

Intersect (i1, i2) = {¬ (e1 < s2) ∨ ¬ (e2 < s1)} (3.65)

Example 21. Consider the following intervals i1 = [5, 10] and i2 = [0, 12]. The
intersect operation is calculated as follows:

Intersect (i1, i2) = {¬ (10 < 0) ∨ ¬ (12 < 5)} (3.66)

= True ∨ True

= True

The other auxiliary function that is required to define the predicate for the Cartesian
product, needs some previous definitions as well.

Definition 73. Last(ip, iq).
Given two time points ip and iq , this function obtains the lastest time point.

Last (ip, iq) =

{
ip if ip After iq
iq otherwise

(3.67)

Note that because both ip, iq are time points, the After relation is implemented as ip >
iq .

Definition 74. First(ip, iq).
Given two time points ip and iq , this function obtains the earliest time point.

First (ip, iq) =

{
ip if ip Before iq
iq otherwise

(3.68)

A POSSIBILISTIC VALID-TIME MODEL 3-27

Note that because both ip, iq are time points, the Before relation is implemented as
ip < iq .

Definition 75. Overlapping-interval(i1, i2).
Given two intervals i1 = [s1, e1] and i2 = [s2, e2], this function returns an overlapping
interval from the original two intervals.

OvInt (i1, i2) =

{
[Last (s1, s2) ,First (e1, e2)] if Last (s1, s2) ≤ First (e1, e2)

∅ otherwise
(3.69)

Now it is possible to define the temporal Cartesian product.

Definition 76. Temporal Cartesian Product.
Consider the elements in definition 58. The temporal Cartesian product of two temporal
relations r ∈ R = (A1, . . . An, S, E) and s ∈ S = (B1 . . . , Bm, S, E) is noted as
r ×T s and is defined by the following formula:

r ×T s = {z(n+m+2)|∃x ∈ r, ∃y ∈ s (3.70)

intersect (x[S,E], y[S,E])∧
z [A] = x [A] ∧ z [B] = y [B]∧

z [S,E] = OvInt (x [S,E] , y [S,E]) ∧ z [S,E] 6= ∅}

Where A and B are a shorthand for {A1, . . . An} and {B1 . . . , Bm} respectively.

The following example illustrates the temporal Cartesian product.

Example 22. Consider the employee database mentioned before (Tables 3.10 and
3.11). Table 3.14 illustrates an intermediate step to compute the temporal Cartesian
product.

3.3.4.1. Join

The join operator ./ builds a new relation from two given relations, namely r ∈ R
and s ∈ S. This new relation is a set with all the possible combinations of tuples in
both r and s that fulfill a predicate. It is usually noted as r ./aθb s and called (theta)
join, where a, b are attributes from r and s respectively and θ, is a relational operator.
The temporal join definition is based on the temporal Cartesian product.

Definition 77. Temporal theta join.
Let r and s be two instances of relations R,S respectively. Then the temporal theta
join is defined as follows:

r ./Taθb s = σaθb
(
r ×T s

)
(3.71)

3-28 A POSSIBILISTIC VALID-TIME MODEL

r.id s.id x [S,E] y [S,E] 1 2 3 z [S,E]
1 1 [5, 10] [FB, 11] True 11 5 [5, 11]
1 2 [5, 10] [FB,UC] True UC 5 [5, UC]
1 3 [5, 10] [FB,UC] True UC 5 [5, UC]
1 4 [5, 10] [FB,UC] True UC 5 [5, UC]
1 1 [5, 10] [12, UC] False UC 12 -
2 1 [3, 7] [FB, 11] True 11 3 [3, 11]
2 2 [3, 7] [FB,UC] True UC 3 [3, UC]
2 3 [3, 7] [FB,UC] True UC 3 [3, UC]
2 4 [3, 7] [FB,UC] True UC 3 [3, UC]
2 1 [3, 7] [12, UC] False UC 12 -
3 1 [4, 10] [FB, 11] True 11 4 [4, 11]
3 2 [4, 10] [FB,UC] True UC 4 [4, 11]
3 3 [4, 10] [FB,UC] True UC 4 [4, 11]
3 4 [4, 10] [FB,UC] True UC 4 [4, 11]
3 1 [4, 10] [12, UC] False 12 12 -
4 1 [1, UC] [FB, 11] True UC 1 [1, UC]
4 2 [1, UC] [FB,UC] True UC 1 [1, UC]
4 3 [1, UC] [FB,UC] True UC 1 [1, UC]
4 4 [1, UC] [FB,UC] True UC 1 [1, UC]
4 1 [1, UC] [12, UC] True UC 12 [12, UC]
1 1 [11, UC] [FB, 11] False UC 11 -
1 2 [11, UC] [FB,UC] True UC 11 [11, UC]
1 3 [11, UC] [FB,UC] True UC 11 [11, UC]
1 4 [11, UC] [FB,UC] True UC 11 [11, UC]
1 1 [11, UC] [12, UC] True UC 12 [12, UC]

1, intersect(x [S,E] , y [S,E])
2, First(x[E], y[E])
3, Last(x[S], y[S])

Table 3.14: Intermediate calculations for the temporal Cartesian product.

A POSSIBILISTIC VALID-TIME MODEL 3-29

3.4. Possibilistic Valid-Time Model
for Relational DBs

In this section we will formalize the model for possibilistic valid-time relational
databases. The first subsection is devoted to the formalization of the model. Then, the
data manipulation language is defined.

3.4.1. The generalized temporal model

The model is based on GEFRED [159] (Generalized Model of Fuzzy Relational
DB) model. This model is extended by adding valid-time support which will be illus-
trated through definitions and examples. The information in the system is defined by
the following elements:

Definition 78. Generalized fuzzy domain.
Let D be the discourse domain, P̃ (D) is the set of all possibility distributions defined
on D, plus the NULL constant. The generalized fuzzy domain DG is defined as:

DG ⊆ P̃ (D) ∪ NULL (3.72)

The data types that can be used to represent DG are shown in table 3.15.

Definition 79. Typeof(a).
LetDG be a generalized fuzzy domain and consider the elements in definition 58. Let a
be the value for the attribute A. The function typeof(a) returns the data type associated
with the value a and returns a number in [1, 10] as shown in Table 3.15.

Typeof (a) 7→ [1, 10] (3.73)

No. Data type
1 A single scalar.
2 A single number.
3 A set of mutually exclusive possible scalar assignations.
4 A set of mutually exclusive possible numeric assignations.
5 A possibility distribution in a scalar domain.
6 A possibility distribution in a numeric domain.
7 A real number in [0, 1] referring to degree of matching.
8 An UNKNOWN value.
9 An UNDEFINED value.
10 A NULL value.

Table 3.15: Data types

It is possible to define a more specific generalized temporal domain, TG.

3-30 A POSSIBILISTIC VALID-TIME MODEL

Definition 80. Generalized fuzzy temporal domain.
Consider T to be the temporal domain, and let P̃ (T) be the set of all normalized possi-
bility distributions (see Section 3.1.1) defined on T . The Generalized Fuzzy Temporal
Domain, TG is

TG ⊆
{
P̃ (T) ∪ NULL

}
(3.74)

Note that TG ⊆ DG. The data types for this domain have been studied previously
in section 3.2 and are shown in tables 3.2 and 3.5.

A generalized fuzzy relation is defined in [159]. Here, we will extend the definition
to a generalized fuzzy temporal relation.

Definition 81. Generalized fuzzy temporal relation.
Consider the elements in definition 58. Some of them will be extended for the fuzzy

case.

An attribute, VID, called version identifier will be added to the schema. This
attribute is a counter for each different version of the entities.

Then RFTG, the schema for the fuzzy valid-time relation is:

RFTG = A ∪ VID ∪ I (3.75)

The primary key for the fuzzy valid-time relation RFTG is:

KGT = AK ∪ VID (3.76)

A formal definition of the primary key for fuzzy valid-time relations will be given
later in Definition 86.

We will note by r any valid instance of RFTG.

r ⊆ D1 × . . .×Dn (3.77)

V (t) is the set of all the versions for a given tuple t. Formally,

V (t) = {ti ∈ r, ti [AK] = t [AK]} (3.78)

Obviously, t itself is included in this set.

Let KGT be the primary key for the valid-time relation as given in equation
(3.76). Then, k denotes the values for the attributes in the primary key.

k = t [KGT] (3.79)

We will illustrate the definitions with an example.

Example 23. Consider the set of attributes A = {A1, A2, A3}. The primary key for
these attributes is given by AK = {A1, A2}. Let I = {S,E} be the set of temporal
attributes that define the possibilistic validity period of the data. RFTG = A∪VID ∪ I
is the valid-time relation and r is an instance of the relation. The instance r is given by

A POSSIBILISTIC VALID-TIME MODEL 3-31

the following elements. r = {(a11, a12, a13, 001, s1, e1) , (a21, a22, a23, 001, s2, e2) ,
(a11, a12, a31, 002, s3, e3)}. The instance r is illustrated in Table 3.16. Consider the
tuple t = (a11, a12, a13, s1, e1). Then,

s1 = t [S]

e1 = t[E]

i = (s1, e1)

ak = t [AK] = (a11, a12)

k = t [PK] = (a11, a12, s1, e1)

V (t) = r (t [AK]) = {t1, t3}

A1 A2 A3 VID S E
t1 a11 a12 a13 001 s1 e1

t2 a21 a22 a23 001 s2 e2

t3 a11 a12 a31 002 s3 e3

Table 3.16: Sample database containing the instance r of the fuzzy valid-time relation
RFTG.

A generalized fuzzy temporal relation RFTG can be noted also by:

RFTG = (H,B) (3.80)

Where H is the Head of the relation and consist on a fixed set of triplets (attribute,
domain, compatibility) with an optional valid-time attribute:

H =
{

(AG1 : DG1 [, CAG1
]) , . . . , (AGn : DGn [, CAGn

]) ,
[

(PVP, DPVP [, CAPVP])
]}

(3.81)

Note that DGj (j = 1, . . . , n) is the domain for the attribute AGj . CAGj
is the compat-

ibility attribute which takes values in the unit interval [0, 1].
B is the body of the relation and it consists of a set of tuples. Each tuple is a triplet

attribute- value- degree with an optional valid-time attribute:

B =
{(

AG1 : d̃i1 [, ci1]
)
, . . . ,

(
AGn : d̃in [, cin]

)
,
[(

PVP, d̃PVP [, CAPVP]
)]}

(3.82)

The definition in [159] forRFTG shows that classical relations are a particular case
of this model.

Example 24. Consider a historical database containing diplomatic documents as ex-
plained in example 19. But now, the documents are from the Medieval Ages. Hence,
the time is known with imprecision. For simplicity, the ill-known time points are repre-
sented as triangular fuzzy numbers. An ill-known time point is given by [dd/mm/yyyy, a, b].

3-32 A POSSIBILISTIC VALID-TIME MODEL

The values for a and b are integers. Thus, the date given by [15/3/1012, 5, 2] is a tri-
angular fuzzy number with the left bound the 10/3/1012, the core on the 15/3/1012 and
the right bound on 17/3/1012.

H ={(ID : DID) , (Entity : DEntity) , (PVP : DPVP)} (3.83)

Table 3.17 shows the elements Head, H and Body, B of the relation. When the
compatibility degree is 1, it is omitted. The body, B consists on all the tuples shown in
Table 3.17.

H ID Entity Start End
3 E.U. [15/3/1012, 5, 2] [30/3/1012, 1, 1]

B 4 N.A.T.O. [25/3/1012, 3, 2] [4/4/1012, 1, 7]
5 C.E.I. [18/3/1012, 4, 1] [2/4/1012, 2, 2]

Table 3.17: Sample historical database

Definition 82. Value component.
The value component RvFTG of a fuzzy temporal relation RFTG is a set with the value
components for both the head and the body of the relation:

RvFTG = {Hv,Bv} (3.84)

Where:

Hv = {AG1 : DG1, . . . , AGn : DGn}

Bv =
{
AG1 : d̃i1, . . . , AGn : d̃in

}
For example, in the case of the document with ID = 3:

Hv = {(ID : DID) , (Entity : Dentity) , (PVP : DPVP)}
Bv = {3, “E.U.”, [15/3/1012, 30/3/1012]}

Definition 83. Compatibility component.
The compatibility component RcFTG of a fuzzy temporal relation RFTG is a set with
the compatibility components for both the head and the body of the relation:

RcFTG = {Hc,Bc} (3.85)

Where:

Hc = {[CAG1
] , . . . , [CAGn

]}
Bc = {[ci1] , . . . , [cin]}

For example, in the case of the document with ID = 3:

Hc ={(CID) , (Centity) , (CPVP)}
Bc = {1, 1, 1}

A POSSIBILISTIC VALID-TIME MODEL 3-33

Definition 84. Temporal component.
The temporal component RtFTG of a fuzzy temporal relation RFTG is a set with the
temporal components for both the head and the body of the relation:

RtFTG =
{
Ht,Bt

}
(3.86)

Where:

Ht = {(PVP, DPVP [, CAPVP])}

Bt =
{[

PVP, d̃PVP [, CAPVP]
]}

For example, in the case of the document with ID = 3:

Ht = {(PVP, DPVP)}
Bt = {15/3/1012, 30/3/1012}

Analogously, it is possible to define both the name value component and the com-
patibility component for the temporal part.

Definition 85. Generalized primary key.
Consider DG to be a fuzzy generalized domain, and let AGs : DGs be the attributes
and the domain of the attribute for each s ∈ S ⊆ {1, . . . , n}. A generalized primary
key, KG is a subset of the head:

KG ⊆ H,KG = {(AGs : DGs)} s ∈ S ⊆ {1, . . . , n} (3.87)

Subject to the following constraints:

∀s ∈ S,Typeof (DGs) ∈ {1, 2} (3.88)

∀i, i′ ∈ {1, . . . ,m} ,∃s ∈ S : (AGs : dis) 6= (AGs : di′s) (3.89)

For example, consider the database in Table 3.17. Without any temporal constraint,
the primary key KG is:

KG ⊆ H,KG = {(ID : DID)}

In this case, the function Typeof(ID) = 2 (see Definition 79 and Table 3.15). The
primary key for the table is the attribute ID, a unique number. Two different documents
have two different values for the ID attribute.

In order to add valid-time support, the primary key should be re-defined. E.g.,
consider the historical database. If the primary key is the ID attribute, a document
should be valid only during one period of time. To resolve this problem, we extend the
given primary key with a version identifier.

Definition 86. Generalized fuzzy temporal key.
Consider DG to be a fuzzy generalized domain, and let AGs : DGs be the attributes
and the domain of the attribute for each s ∈ S ⊆ {1, . . . , n}. Let V be a new attribute
called version. A generalized fuzzy temporal key, KGT is a subset of the head.

KGT ⊆H,KGT = {(AGs : DGs) ∪ (VID : DID)} (3.90)

Typeof (DID) = s ∈ S ⊆ {1, . . . , n}
(3.91)

3-34 A POSSIBILISTIC VALID-TIME MODEL

Subject to the following constraints:

∀s ∈ S,Typeof (DGs) ∈ {1, 2} (3.92)

∀i, i′ ∈ {1, . . . ,m} ,∃s ∈ S : (AGs : dis) 6= (AGs : di′s) (3.93)

For example, consider the database in Table 3.18. The primary key is now:

KGT ⊆ H,KGT = {(ID : DID) , (VID : DID)}

H ID V Entity (Start ,End)
3 001 E.U. [15/3/1012, 5, 2] [30/3/1012, 1, 1]
4 001 N.A.T.O. [25/3/1012, 3, 2] [4/4/1012, 1, 7]

B 5 001 C.E.I. [18/3/1012, 4, 1] [2/4/1012, 2, 2]
3 002 E.U. [4/4/1012, 3, 3] UC

Table 3.18: Sample historical database

3.4.2. Data manipulation language

The Generalized Fuzzy Relational Algebra [159] manipulates relations likeRFTG.
The operations defined are: Union, Intersection, Difference, Cartesian Product, Pro-
jection, Join and Selection. Thus, in this section we will describe the following op-
erations for temporal databases. The operations implemented are: Insert, Modify and
Delete. The semantics of the operations will be the same as those defined for a crisp
temporal database, whereas the temporal representation is made by the possibilistic
valid-time period and the ill-known constraints (see sections 3.1 and 3.2).

It is important to notice that while the result of the evaluation of any comparison
between crisp time intervals is Boolean, the evaluation of any comparison between
PVPs is a value in the unit interval. Therefore, for a crisp valid-time relation, it an
overlapping among any valid-time interval is not possible. In other words, a crisp
temporal database is always strictly consistent. Thus, from the point of view of a fuzzy
temporal database, there are the following choices (see Figure 3.7):

Definition 87. Strictly consistent.
It is not possible that two versions of an entity are valid at the same time. Consider a
tuple t in the instance r of the fuzzy valid-time relation RFTG and V t = {t1, . . . , tn}
(see Definition 81). Then, a fuzzy temporal database is strictly consistent if:

∀k, j ∈ {1, . . . , n} , k < j : tk Overlaps tj ≤ 1 (3.94)

Definition 88. Ill-consistent.
Two PVPs of the same entity do overlap. The following sub-types can be distinguished:

Definition 89. Co-existence
Two versions of the same entity may exist at the same time.

∀k, ∃!j ∈ {1, . . . , n} , k < j : tk Overlaps tj ≥ 1 (3.95)

A POSSIBILISTIC VALID-TIME MODEL 3-35

Valid Time

Validity degree

(a)

(b)

(c)

0

1

0

1

Valid Time

Valid Time

Figure 3.7: Classification for a fuzzy temporal database. The validity for an entity
is represented by a trapezoid. Graphic (a) shows an example of a strictly consistent
database. Between two versions of the entity some amount of overlapping is possible,
but equation (3.94) always holds. Graphic (b) shows an example of a co-existence.
Two versions of the same entity may overlap in any degree, but not more than two
versions. Graphic (c) shows an example of weak-consistence. The different versions
of the same entity are shown in an unfolded way, to clarify the multiple overlapping.

Definition 90. Weak-consistence
Several versions of the same entity may exist at the same time.

∀k, ∃j ∈ {1, . . . , n} , k < j : tk Overlaps tj ≥ 1 (3.96)

In the implementation of the DML operations we will consider a strictly consistent
temporal database. This is a natural extension of crisp temporal databases. This ap-
proach allows a definition for the DML operations which is similar to the ones defined
in Section 3.3.

Since the time intervals are now possibilistic valid-time periods, PVPs, the auxiliary
functions defined in equations (3.55) to (3.57) are the basis for the following auxiliary
functions.

Definition 91. CloseR(i1, i2).
Consider the elements in Definition 81. The CloseR function closes the PVP given by
i1 with a conjunctive combination of ill-known constraints (see section 3.1.4):

CloseR (i1, i2) =

{
i1 = (s1, ez) if i1 = (s1, UC)

i1 otherwise
(3.97)

Where ez , {C1 (>, s1) , C2 (<, s2)}.

For example, consider i1 = [[4/4/1012, 3, 3] , UC] and i2 = [[15/4/1012, 2, 1],
UC]. The result for CloseR(i1, i2) is i1 = [[4/4/1012, 3, 3], [4,7,13,15]]. The value
that closes i1 is a trapezoid in the form [α, β, γ, δ] as defined in Section 3.1.3.

3-36 A POSSIBILISTIC VALID-TIME MODEL

Definition 92. Close-current(r, t).
Consider the elements in Definition 81. The function Close-current(r, t) closes any
current version tk of the entity given by t if it exists and add the new version t. In order
to implement the functionality, the variables in equation (3.56) are used by equation
(3.53).

Close-current (r, t) =

{
(r \ {tCUR}) ∪ {tUP } ∪ {t} if tCUR 6= ∅
r otherwise

(3.98)

For example, consider the database in Table 3.18. The function Close-current
(RFTG, ID=3, [[15/4/1012,2,1], UC]) closes the current version of the patient with
ID=3 and creates a new version with the specified time interval.

3.4.2.1. Modify

This operation adds new information about an existing entity (given by the tuple
t) in the instance r of the fuzzy temporal relation RFTG. The modify operation does
not remove any previous value of the entity. Note that the modify operation is only
applicable when the entity is current in the relation, i.e., t ∈ r and t[S,E] = (s,UC).

Definition 93. modify (r, t).
Consider the elements in Definition 81. The algorithm for the modify operation is
defined as follows.

modify (r, t) = Close-current (r, t) (3.99)

3.4.2.2. Insert

The user wants to store an entity (given by the tuple t) which is valid in the instance
r of the fuzzy temporal relation RFTG during the time interval specified by the PVP,
i = (s, e). There are the following cases when performing an insert operation:

1. The entity was never in the relation: The entity is added with the valid-time
indicated by the PVP, i. For example, consider the database given by Table 3.18.
The following sentences correspond with the insertion of the first validity period
for each document.

Insert(3,’E.U.’,[[15/3/1012, 5, 2],
[30/3/1012, 1, 1]]);

Insert(4,’N.A.T.O.’,[[25/3/1012, 3, 2],
[4/4/1012, 1, 7]]);

Insert(5,’C.E.I.’,[[18/3/1012, 4, 1],
[2/4/1012, 2, 2]]);

2. The entity is in the relation. Depending on the value of the time interval i, there
are three possibilities:

A POSSIBILISTIC VALID-TIME MODEL 3-37

a) If the time interval i does not overlap any other valid-time interval in the
relation RFTG, then insert t in the instance r of the relation RFTG. Note
that here, the result of the Overlaps operator is a element of the unit interval.
For example, the document with ID=3 is still valid. The insert sentence is
the following.

Insert(3,’E.U.’,[[4/4/1012, 3, 3], UC]);

b) If there exists a current version of the tuple, then modify and close the
current version and insert a new version. For example, consider now that
the document with ID=3 was valid around the 24/4/1012 (this is modelled
by a triangular fuzzy number: [24/4/1012, 1, 1]). Here the problem is that
the document with ID=3 was valid around 4/4/1012, but, for some reason,
the ending date was not stored. If the document is again valid, then it is
necessary to set the ending date and add a new row with the new starting
date.

Insert(3,’E.U.’, [[24/4/1012, 1, 1], UC]]);

c) If the time interval i do overlap with a degree of 1 any existing valid-time
interval for the entity in the relation, then reject the insertion. For exam-
ple, consider that the document manager wants to introduce a past validity
period for the document with ID=3. The validity starting date for the doc-
ument was around 6/4/12/1012 and the ending date was around 25/4/1012.
As this interval does overlaps other time intervals with a degree of 1, it is
not possible that the document was valid during two different time periods.
Therefore, the insertion is rejected. The insert sentence is:

Insert(3,’E.U.’,[[6/4/12/1012, 1, 1],
[25/4/1012, 1, 1]]);

Definition 94. insert (r, t).
Consider the elements in definition 81. The algorithm for the implementation of the
insert operation is defined as follows.

insert (r, t) =

{
r ∪ {t} if t 6∈ r or ∀tk ∈ V (t) , (i Overlaps ik) < 1

modify(r, t) otherwise
(3.100)

Where V (t) is the set of all the versions for the tuple t, as explained in Definition
81 and in equation (3.78).

3.4.2.3. Delete

The delete operation logically removes an entity which is valid in the instance r of
the relation RFTG.

3-38 A POSSIBILISTIC VALID-TIME MODEL

Definition 95. delete (r, t).
Consider the elements in definition 81. The algorithm for the delete operation is defined
as follows.

delete (r, t) = {r \ V (t)} (3.101)

For example, consider that the document manager wants to delete the history for the
document with ID = 3. The following sentence deletes all the rows for the documents
with ID = 3.

Delete(3,’E.U.’);

3.4.2.4. Revise

The revise operation allows the correction of non-temporal attributes for a given
entity.

Definition 96. revise (r, t).
Consider the elements in definition 81. The algorithm for the revise operation is defined
as follows.

revise (r, t) =

{
(r \ {tk}) ∪ { t} if ∃tk ∈ V (t), t [S,E] = tk [S,E]

r otherwise
(3.102)

For example, consider now that the document manager wants to make a correction
in the organization for the document with ID = 5. The new organization is ‘N.A.T.O.’.
The required revise operation is:

Revise(5,’N.A.T.O.’, [[18/3/1012, 4, 1],
[2/4/1012, 2, 2]]);

3.4.3. Selection

The selection operator is defined analogously as the crisp selection operator given
in Definition 71 and the formal specification given by equation (3.59).

Definition 97. Fuzzy temporal relation.
Consider the elements in definition 81. The selection operator σ̃T returns a subset of
tuples that fulfill a set of constraints P from an instance r of the relation R. The set
of constraints is usually a Boolean combination of atomic constraints. The selection
operator is noted as follows:

σ̃T
P (r) (3.103)

Where r ∈ R is the relation, and P is the selection formula.
In the possibilistic model, the main modification is that the selection predicate P is

not a Boolean function. The selection predicate P returns a satisfaction degree (in the

A POSSIBILISTIC VALID-TIME MODEL 3-39

unit interval). The selection formula has the same appearance than the crisp selection
formula in equation (3.60):

P =
{
Q,QT

}
(3.104)

In this case, in order to evaluate both, where Q and QT could be fuzzy or crisp
predicates, it is necessary to define the evaluation functions for both Q and QT . We
will illustrate the possibilistic evaluation of Q. The possibilistic evaluation of QT is
analogous. First of all, consider a Boolean function B : Bn → B. The evaluation
function for the constraints in Q is given by:

λ : Q→ B : λ(Q)→ B (qa1θ val , . . . , qanθ val) (3.105)

Now, the uncertainty about the evaluation ofQ and a Boolean function B : Bn → B
is given by:

πλ(Q) = B̃
(
πqa1

θ val , . . . , πqanθ val
)

(3.106)

3.4.3.1. Query Evaluation

In fuzzy querying of regular (relational) databases, the modelling of query satis-
faction is a matter of degree. Usually, the evaluation of the query requirements for a
record results in a satisfaction degree s, where s lies in [0, 1], where 0 denotes total
dissatisfaction and 1 denotes complete satisfaction. In crisp querying, the evaluation of
query requirements for a record results in accepting or rejecting the record as a part of
the resultset. This can be modelled using satisfaction degrees, by assigning rejection a
degree of 0 and acceptance a degree of 1 and not using any other value in [0, 1].

The evaluation of the predicate P =
(
Q,QT

)
, is now handled as follows. For each

tuple t in the database, with the valid-time notion of t being specified by a PVP j, two
events happen independently:

The preferences expressed in Q are evaluated, resulting in a satisfaction degree
denoted here eQ(t). The presented model accepts any sound way of calculating
this evaluation, as long as eQ(t) ∈ [0, 1].

Depending on the Allen Relation selected AR , a specific set of ill-known con-
straints is considered. The possibility and necessity that t fulfills all these con-
straints are calculated using formulas based on equations (3.15) respectively
(3.16) and aggregated using the min operator.

3.4.3.2. Aggregation and Ranking

In order to present the results to the user, a crude ranking method is used: for every
tuple t, the sum of PosQtime(t) and NecQtime(t) gives an evaluation score e′Qtime(t)

in interval [0, 2]. Because necessity cannot exceed 0 unless possibility is 1, this gives
a natural ranking score. Some authors [77] mentioned before that the possibility and
necessity measures result in a total order in the set of events. This e′Qtime(t) is then
rescaled to the unit interval, resulting in eQtime(t). The final ranking efinal(t) is now
given by a convex combination:

3-40 A POSSIBILISTIC VALID-TIME MODEL

efinal(t) = ω ∗ eQ(t) + (1− ω) ∗ eQtime(t), ω ∈ [0, 1] (3.107)

The use of this convex combination allows a record to make up for a low score for
the temporal constraint by a good score for the non-temporal constraint (or vice versa).
Using different values for ω also allows granting the temporal constraint more weight
with respect to the non-temporal constraint (or vice versa).

Example 25. Consider the example relation c ∈ C given in Table 3.19 describing
car models, containing general attributes (model name, manufacturer, car segment).
The valid-time is referring to the approximate time period during which the car model
was sold. In this example, the value for D is stored in yyyy format and a and b are
represented by an integer. The ID field identifies a car model while the field Instance
ID (IID) identifies the instance for a car model, thus a car model in a certain state.

ID IID Segment Manufacturer Name Start End
001 1 B Peugeot 205 [1985,2,3] [1997,2,1]
002 1 C Peugeot 305 [1977,2,2] [1989,2,3]
003 1 B Citroen C2 [2001,1,1] [2005,1,1]
001 2 B Peugeot 206 [2000,1,2] [2011,2,1]
001 3 B Peugeot 207 [2006,1,1] [2011,1,1]

Table 3.19: Example database, instance c ∈ C

Consider the following query:

The user wants to obtain a list of models from segment B, sold by manufacturer
Peugeot before the time period [2001,1,1], [2005,1,1].

Using the introduced notations in (3.103),(3.104), the query is translated to:

σ̃T
{Q,QT } (c) (3.108)

The query constraints are the following:

Q = (c.Segment = B) ∧ (c.Manufacturer = Peugeot) (3.109)

QT = c. [S,E] Before [2001, 1, 1] , [2005, 1, 1] (3.110)

ID IID PosQT NecQT eQT (rescaled) Q efinal (ω = 0.5)
001 1 1 1 1 1 1
002 1 1 1 1 0.5 0.75
003 1 1 0.5 0.75 0 0.375
001 2 1 0 0.5 1 0.75
001 3 0 0 0 1 0.5

Table 3.20: Result table and ranking

Table 3.20 shows a natural and gradual ranking for the results. The last record, (ID
001, IID 3) shows also that with ω = 0.5 both temporal and regular criteria have the
same importance.

A POSSIBILISTIC VALID-TIME MODEL 3-41

3.4.4. Cartesian Product

In this subsection we are going to extend the crisp version of the temporal Cartesian
product to deal with ill-known time intervals. First of all, we need to define the ill-
known counterpart functions of the previously defined intersects, first, last, OvInt.

Definition 98. Intersects(I,J).
Two ill-known time intervals intersect if one or both of the before and after relation-
ships do not hold. Consider I = [Is, Ie] and J = [Js, Je] be two ill-known time inter-
vals with Is, Js the starting ill-known points and Ie, Je the ending ill-known points of
the intervals. Let the following ill-known constraints:

C1 = (<, Is) (3.111)

C2 = (=, Js) (3.112)

C3 = (<, Js) (3.113)

C4 = (=, Is) (3.114)

Intersects (I, J) = {¬ (C1 ∧ C2) ∨ ¬ (C3 ∧ C4)} (3.115)

= {¬ ((C1 ∧ C2) ∧ (C3 ∧ C4))}

Definition 99. Last(In, Jm).
Given two ill-known points In and Im, the last operator is a combination of the follow-
ing ill-known constraints:

C1 = (>, In) (3.116)

C2 = (=, Jm) (3.117)

C3 = (>, Jm) (3.118)

C4 = (=, In) (3.119)

Last (In, Jm) = (C1 ∧ C2) ∨ (C3 ∧ C4) (3.120)

Analogously, the first operator is defined as follows.

Definition 100. First(In, Jm).
Given two ill-known points In and Im, this operator is a combination of the following
ill-known constraints:

C1 = (<, In) (3.121)

C2 = (=, Jm) (3.122)

C3 = (<, Jm) (3.123)

C4 = (=, In) (3.124)

First (In, Jm) = (C1 ∧ C2) ∨ (C3 ∧ C4) (3.125)

Now it is possible to define the function overlapping interval for the ill-known case.

Definition 101. Overlapping interval.
Given two ill-known time intervals I and J , this function returns an overlapping inter-
val from the original two intervals. It is necessary to define two ill-known constraints:

3-42 A POSSIBILISTIC VALID-TIME MODEL

C1 = (≤,First (Ie, Je)) (3.126)

C2 = (=,Last (Is, Js)) (3.127)

OvInt (I, J) =

{
[Last (Is, Js) ,First (Ie, Je)] if C1 ∧ C2 6= 0.

∅ otherwise
(3.128)

Finally, the temporal Cartesian product for ill-known time intervals is defined as
follows.

Definition 102. Temporal Cartesian product.
Consider the elements in definition 81. The temporal Cartesian product is notated
r×̃T s and is given by the following equation:

r×̃T s =
{
z(n+m+2)|∃x ∈ r, ∃y ∈ s (3.129)

intersect (x[S,E], y[S,E]) > 0∧
z [A] = x [A] ∧ z [B] = y [B]∧

z [S,E] = OvInt (x [S,E] , y [S,E]) ∧ z [S,E] 6= ∅}

The temporal Cartesian product by ill-known constraints is illustrated in the fol-
lowing example.

Example 26. Consider a ill-known version of the employee’s database, as illustrated
by tables 3.21 and 3.22

ID Job Works for Start Finish
1 Prof. 4 [5, 1, 1] [10, 1, 1]
2 Tech. 4 [3, 1, 1] [7, 1, 1]

Table 3.21: Relation for the employees with an ill-known valid-time interval.

ID Address Start Finish
1 C/ Camino de Ronda [1, 1, 1] [12, 1, 1]
2 C/ Recogidas [1, 1, 1] [5, 1, 1]

Table 3.22: Relation for the addresses with an ill-known valid-time interval.

3.4.4.1. Join

The possibilistic join operator .̃/ builds a new fuzzy temporal relation from two
given relations, namely r ∈ R and s ∈ S. This new relation is a set with all the
possible combinations of tuples in both r and s. It is usually noted as r.̃/aθbs and
called (theta) join, where a, b are attributes from r and s respectively and θ a relational
operator. The possibilistic temporal join definition is based on the temporal Cartesian
product.

A POSSIBILISTIC VALID-TIME MODEL 3-43

r.id s.id intersect(x [T] , y [T]) Last(Is, Js) First(Ie, Je)
1 1 1 [5, 1, 1] [10, 1, 1]
1 2 1 [5, 1, 1] [5, 1, 1]
2 1 1 [3, 1, 1] [7, 1, 1]
2 2 1 [3, 1, 1] [5, 1, 1]

Table 3.23: Intermediate calculations for the temporal Cartesian product.

Definition 103. Temporal theta join.
Let r and s be two instances of relations R,S respectively. Then the temporal theta
join is defined as follows:

r.̃/Taθbs = σaθb

(
r×̃T s

)
(3.130)

3.5. Conclusions
In this chapter, we presented a complete valid-time model to represent and han-

dle ill-known temporal intervals. The chapter includes the formal definition of pos-
sibilistic valid-time period in order to manage the time and the formal definition of
ill-known constraints to define operators and integrity. This is the first formal model in
the literature for possibilistic valid-time in relational databases. The semantics and the
implementation of the DML operations are described within the chapter.

The novel contributions of this chapter are:

A formal framework to model and handle imprecise time intervals, based on the
possibility theory.

A theoretical fuzzy temporal model for relational databases build on the top of
the GEFRED model.

The next chapter is devoted to bipolarity in databases. First some preliminary
concepts will be introduced. Then an approach to query in a bipolar way temporal
databases will be explained.

3-44 BIPOLAR QUERYING OF TEMPORAL DATABASES

4
Bipolar Querying of Temporal Databases

The contents of this chapter have been partially published on:

T. Matthé, J. Nielandt, S. Zadrozny, and G. Tré, Volume dedicated to prof. Patrick Bosc,
ch. Constraint-Wish and Satisfied-Dissatisfied: An Overview of Two Approaches for
Dealing with Bipolar Querying.

C. Billiet, J. E. Pons, O. Pons Capote, and G. Tré, Eleventh International Workshop on In-
tuitionistic Fuzzy Sets and Generalized Nets, ch. Bipolarity in the Querying of Temporal
Databases.

C. Billiet, J. E. Pons, T. Matthé, G. De Tré, and O. Pons Capote, “Bipolar fuzzy query-
ing of temporal databases,” in Lecture Notes in Artificial Intelligence, vol. 7022, (Ghent,
Belgium), pp. 60–71, Springer, Octobre 2011.

C. Billiet, J. E. Pons, O. Pons Capote, and G. Tré, “Bipolar querying of Valid-time inter-
vals subject to Uncertainty” in Proceedings of the Flexible Querying Answering Systems
conference, Sep. 2013

J. E. Pons, C. Billiet, O. Pons, G. de Tré, E. de Paermentier, and J. Deploige, “Consultas
bipolares en bases de datos temporales: aplicación en bases de datos con datos históricos,”
in Actas de las Jornadas Andaluzas de Informática 2011., pp. 150–156, 9 2011.

4-2 BIPOLAR QUERYING OF TEMPORAL DATABASES

Contents
4.1. Introduction . 4-3
4.2. Bipolar Query Conditions . 4-4

4.2.1. Constraint-Wish Approach 4-5
4.2.2. Satisfied-Dissatisfied Approach 4-6
4.2.3. Examples . 4-8

4.3. Ranking of Query Results . 4-9
4.3.1. Ranking in the Constraint-Wish Approach 4-10
4.3.2. Ranking in the Satisfied-Dissatisfied Approach 4-10
4.3.3. Comparison and discussion 4-12

4.4. Aggregation in Bipolar Query Processing 4-13
4.4.1. Aggregation in the Constraint-Wish Approach 4-13
4.4.2. Aggregation in the Satisfied-Dissatisfied Approach 4-15
4.4.3. Comparison and discussion 4-19

4.5. Bipolar querying of Temporal Databases 4-21
4.5.1. Temporal constraints at the global level 4-21
4.5.2. Temporal constraints at the local level 4-24

4.6. Case of use . 4-29
4.6.1. Medieval Diplomatic Sources of the Low-Countries in Bel-

gium . 4-29
4.6.2. Bipolar querying of temporal databases 4-30
4.6.3. Query evaluation . 4-31
4.6.4. Aggregation . 4-31

4.7. Conclusions . 4-32

BIPOLAR QUERYING OF TEMPORAL DATABASES 4-3

4.1. Introduction

In daily life, it can be observed that people, whilst communicating their preferences,
tend to use vague or fuzzy terms in expressing their desires. A typical example is a re-
cruitment office that, e.g., is searching for young people with a high score in math. A lot
of research has been done to translate this ‘fuzziness’ to the domain of database query-
ing, resulting in ‘fuzzy’ querying of regular databases, where the queries are composed
of several ‘fuzzy’ query conditions, interconnected by logical connectives. Indeed, the
main lines of research in this area include the study of modeling linguistic terms (like,
e.g., young or high) in the specification of elementary query conditions using elements
of fuzzy logic [185] and the enhancement of fuzzy query formalism with soft aggre-
gation operators [50, 51, 175, 186]. Both linguistic terms and soft aggregations model
the user’s preferences [187] and, as such, require a query satisfaction modeling frame-
work that supports rank-ordering the tuples retrieved in response to a query according
to the degree to which they satisfy all conditions imposed by the query. Usually, query
satisfaction in ‘fuzzy’ querying of regular databases is modelled by associating a sat-
isfaction degree s with each tuple in the answer set of the query. These satisfaction
degrees take values in the unit interval [0, 1] and are computed during query process-
ing. The value 0 means complete lack of satisfaction and implies that the associated
tuple does not belong to the query’s answer set. The value 1 expresses full satisfaction,
while all other, intermediate, values denote partial query satisfaction. Records with a
satisfaction degree s that is lower than a given threshold value δ, i.e., for which s < δ,
are usually discarded from the query answer set.

A more advanced aspect of specifying user preferences in database queries con-
cerns the handling of bipolarity. Bipolarity hereby refers to the fact that users might
distinguish between positive and negative aspects (or between constraints and wishes)
while specifying their query preferences. Positive statements are used to express what
is possible, satisfactory, permitted, desired or acceptable, whereas negative statements
express what is impossible, unsatisfactory, not permitted, rejected, undesired or unac-
ceptable. Likewise, constraints express what is accepted, whereas wishes are used to
specify which of the accepted values are really desired by the user. Bipolarity is inher-
ent to human communication and natural language and should hence be reflected and
dealt with in any querying system that aims to support human interaction as adequate
as possible.

For example, consider the specification of user preferences in the context of select-
ing a car, more specifically the color of a car. A positive statement is ‘I like black or
dark blue cars’, while ‘I do not want a white car’ is a negative statement. In terms of
constraints and desires, similar preferences might be expressed by ‘I want a dark col-
ored car’ and ‘if possible, I really prefer a black or dark blue car’. Remark that often,
negative conditions might be translated to constraints, while positive conditions might
be seen as wishes.

Depending on the situation, it may be more natural for a user to use negative con-
ditions or positive conditions. Sometimes one can use both positive and negative con-
ditions at the same time. This is especially the case if the user doesn’t have complete
knowledge of the domain on which the criterion is specified, or if this domain is too
large to completely specify the user’s preferences for every value in the domain, as can

4-4 BIPOLAR QUERYING OF TEMPORAL DATABASES

for example be the case with available car colors.
In standard approaches to regular ‘fuzzy’ querying it is explicitly assumed that a

tuple that satisfies a query condition to a degree s, at the same time dissatisfies it, i.e.,
satisfies its negation, to a degree 1− s. This assumption does not generally hold when
dealing with bipolar query criteria specifications as positive and negative conditions
comprising a query are can in general be independent of each other. In such situa-
tions of heterogeneous bipolarity, a semantically richer query satisfaction modelling
approach, which is more consistent with human reasoning and is able to model this
bipolarity, is preferred.

In this chapter, two such approaches to bipolar database querying are discussed. On
the one hand, the constraint-wish (or mandatory-desired) approach will be presented,
used amongst others by Dubois, Prade et al. [188, 189] and Bosc et al. [190–194],
and on the other hand, the satisfied-dissatisfied (or positive-negative) approach will
be discussed, used amongst others by Kacprzyk, Zadrożny et al. [195, 196] and De
Tré, Matthé et al. [52, 197, 198]. For both approaches, an overview is given, which
consecutively handles the semantics of the actual framework, the evaluation of query
conditions within this framework, the ranking of query results and the aggregation of
compound query conditions.

The remainder of this chapter has been organised as follows: first, some prelimi-
naries on bipolar query conditions will be presented in Section 4.2, explaining the two
approaches that will be discussed in this chapter in more detail, together with their se-
mantics. The next Section 4.3 discusses the ranking of the results of a bipolar query.
Next, in Section 4.4, different techniques for aggregating the results of multiple query
conditions are presented. The consideration or handling of temporal constraints in the
bipolar criteria are studied in Section 4.5. Finally, Section 4.7 states some conclusions.

4.2. Bipolar Query Conditions

Pioneering work in the area of heterogeneous bipolar database querying has been
done in [199], which seems to be the first approach where a distinction has been made
between mandatory query conditions and desired query conditions. As mentioned ear-
lier, desired and mandatory conditions can be viewed as specifying positive and nega-
tive information, respectively. Indeed, the opposite of a mandatory condition specifies
what must be rejected and thus what is considered as being negative with respect to the
query result, whereas desired conditions specify what is considered as being positive.

Later on, this idea has been further developed and adapted to be used in ‘fuzzy’
querying techniques. In the Twofold Fuzzy Set (TFS) based approach [188, 189], an
elementary query condition with respect to a given attribute A can be specified using a
twofold fuzzy set that is defined on the domain of A. This twofold fuzzy set expresses
which domain values are accepted by the user and which among these accepted val-
ues are really desired by her or him. An alternative approach, based on the concept of
an Atanassov (intuitionistic) Fuzzy Set (AFS) and departing from the specification of
which values are desired and which values are undesired, is presented in [197, 200].
Both approaches have in common that they deal with bipolarity that is specified inside
elementary query conditions, i.e., in the domain of an attribute in question three, in gen-

BIPOLAR QUERYING OF TEMPORAL DATABASES 4-5

eral fuzzy, subsets are distinguished: of positively, negatively and not at all evaluated
elements.

Other approaches study bipolarity that is specified between elementary query con-
ditions, meaning that these conditions are assigned different semantics. In particular,
a distinction can be made between mandatory and desired query conditions. These
conditions can still contain vague terms modelled by fuzzy sets as in regular ‘fuzzy’
querying [51,185,187,201–204]. For example, in [195] an approach is presented where
bipolar queries are represented as a special case of the fuzzy ‘winnow’ operator. Bipo-
larity is thus studied considering queries with preferences as in [199]. An alternative
assumption that can be made, is considering queries that consist of a number of ‘pos-
itive’ and ‘negative’ elementary conditions [52, 198]. Matching positive and negative
conditions contributes, respectively, to satisfying and dissatisfying the query by a tuple.

In this chapter, only bipolarity that is specified inside elementary query conditions
will be considered. In the following subsections, two approaches will be discussed in
more detail: the constraint-wish and the satisfied-dissatisfied approach.

4.2.1. Constraint-Wish Approach

Consider a universe of discourse U corresponding to the domain of an attribute
in question. In the constraint-wish approach, the bipolar query condition consists of
two parts: a constraint C, which describes the set of acceptable values of U , and a
wish W , which defines the set of wished-for (or desired) values of U . In general, the
constraint and the wish are specified using fuzzy sets C and W , defined on U [17],
identified by their respective membership functions µC and µW . Because it is not
coherent to wish something that is rejected (where the rejected values are represented
by the complement of the fuzzy set C), a consistency condition is imposed. Two forms
of consistency conditions may be considered:

Strong consistency,

∀x ∈ U : µC(x) < 1⇒ µW (x) = 0. (4.1)

In this case, the support of the wish W is required to be a subset of the core of
the constraint C, which means that the wish can play any role in evaluating only
those records which fully satisfy the constraint. The pair of fuzzy sets C and W
then form a twofold fuzzy set [205].

Weak consistency,
∀x ∈ U : µW (x) ≤ µC(x). (4.2)

In this case, the wish is required to be more specific than the constraint what
represents the fact that it is harder to satisfy a wish than to satisfy a constraint,
but the wish can also play a role in evaluating the records which do not fully
satisfy the constraint. The pair of fuzzy sets C and W then form an interval-
valued fuzzy set (IVFS) [206–209].

Because a twofold fuzzy set is formally a special case of an interval-valued fuzzy
set, the bipolar query condition can in both cases be modelled by means of an IVFS,

4-6 BIPOLAR QUERYING OF TEMPORAL DATABASES

which is defined by

F = {(x, [µF∗(x), µF∗(x)])|(x ∈ U) ∧ (0 ≤ µF∗(x) ≤ µF∗(x) ≤ 1)}. (4.3)

Thus, a bipolar query condition is modelled by means of an IVFS, where the upper
membership function µF∗ models the constraint, i.e., µF∗ = µC , and the lower mem-
bership function µF∗ models the wish, i.e., µF∗ = µW .

An important feature of this semantics is that the wish plays somehow a secondary
role in the query. A bipolar query condition in the constraint-wish approach should be
interpreted as ‘satisfy C and, if possible, satisfy W ’ [188].

Summarising, in this approach the evaluation of a tuple t against an elementary
bipolar query condition ‘A IS F ’ with F composed of a couple (C,W) of fuzzy sets
C and W results in a pair of satisfaction degrees (c(t), w(t)) ∈ [0, 1]2 such that

c(t) = µC(t[A]) (4.4)

w(t) = µW (t[A]) (4.5)

where t[A] denotes the value of tuple t for attribute A.

4.2.2. Satisfied-Dissatisfied Approach

In the satisfied-dissatisfied approach, the bipolar query condition also consists of
two parts. One part specifies the values of an attributeA which are positively evaluated
by the user with respect to her or his preferences and, independently, another part
specifies the values for A which are negatively evaluated by the user. A pair of fuzzy
sets, F+ and F−, expressing the respective parts of the query condition may be treated
as a bipolar extension to the concept of fuzzy set. Atanassov (intuitionistic) Fuzzy Sets
(AFSs) [210] are an example of such an extension. An AFS F over a universe U is
formally defined by

F = {(x, µF (x), νF (x))|(x ∈ U) ∧ (0 ≤ µF (x) + νF (x) ≤ 1)}. (4.6)

where µF : U → [0, 1] and νF : U → [0, 1] are respectively called the membership and
non-membership degree functions and 0 ≤ µF (x) + νF (x) ≤ 1, ∀x ∈ U reflects the
consistency condition of the AFS. In the context of database querying, this consistency
condition can be interpreted as stating that the degree of non-preference νF (x) for a
given value x can never be larger than the complement 1 − µF (x) of the degree of
preference for that value (or, equivalently, that the degree of preference µF (x) for a
value x can never be larger than the complement 1 − νF (x) of the degree of non-
preference for that value.)

Formally, in their basic form, AFSs are operationally equivalent to IVFSs and thus
may also be used to represent preferences in the constraint-wish approach, but their
intended semantics is closer to the idea of the satisfied-dissatisfied approach. However,
in the satisfied-dissatisfied approach the total independence of positive and negative
condition is assumed and the AFS’s consistency condition does not meet this assump-
tion. Thus, in what follows we will use the concept bipolar AFS which follows the
two membership functions structure of AFSs but drops the consistency condition. In
this respect, the presented approach is similar to the neutrosophic logic [211, 212].

BIPOLAR QUERYING OF TEMPORAL DATABASES 4-7

It is also similar to a fuzzy version of Belnap’s logic [213], proposed by Öztürk and
Tsoukias [214] and further developed by Turunen et al. [215]; cf. also a study on links
between Belnap’s logic and bipolarity by Konieczny et al. [216]. However, it should be
stressed that the degrees of satisfaction and dissatisfaction do not have any epistemic
flavour here, i.e., e.g., they do not form an interval containing a ‘true’ degree to which
the user likes the given value of an attribute in question. Instead, these degrees respec-
tively express the genuine liking and disliking of the value which are assumed to occur
simultaneously and independently of each other.

In what follows, we will thus often adopt the notation µF and νF instead of, respec-
tively µF+ and µF− , while referring to the sets of positively and negatively evaluated
values of an attribute under consideration.

We have thus a couple (µF (x), νF (x)) which is referred to as the bipolar satisfac-
tion degree (BSD) and represents the suitability of x ∈ domA with respect to a condi-
tion A IS F , where A is an attribute and F is a bipolar AFS representing preferences
of the user. Now, the question is how these couples are to be processed, i.e., used to
order the records in an answer to the query and aggregated with the couples related
to other elementary conditions. We discuss these issues in the following sections and
now recall a formula used to characterise BSDs from the point of view of the amount
of information they convey [198]:

µF (x) + νF (x) (∈ [0, 2]). (4.7)

This formula is meant to indicate how the preferences for that value x are ‘specified’.
Three cases can be distinguished:

• µF (x) + νF (x) = 1: the preference for x is fully specified. In this case it holds
that νF (x) = 1 − µF (x), so the negative evaluation is the complement of the
positive evaluation. The user has provided full and consistent information on
whether x satisfies her or his preferences.

• µF (x) + νF (x) < 1: the preferences for x are underspecified. Compared to the
above case of full and consistent specification, there is less information available.
The amount 1− µF (x)− νF (x) quantifies this lack of information.

• µF (x)+νF (x) > 1: the preferences for x are overspecified and µF (x)+νF (x)−
1 represents the degree of conflict (inconsistency) in the user’s preferences (cf.
also the notion of the grade of contradiction in [215]). Compared to the case of
full specification, there is more, but conflicting information available.

Thus, bipolar AFSs allow to model conflicting and incomplete user preferences and
can therefore be used to handle heterogeneous bipolar query conditions in the satisfied-
dissatisfied approach in a more general way. An elementary bipolar query condition ‘A
IS F ’ in the satisfied-dissatisfied approach should be interpreted as ‘preferably satisfy
F+ and preferably do not satisfy F−’ [197].

Summarising, in this approach the evaluation of a tuple t against an elementary
bipolar query condition ‘A IS F ’ with F a bipolar AFS characterized by a pair (µ, ν) of
membership functions µ and ν results in a pair (s(t), d(t)) ∈ [0, 1]2 of values, referred

4-8 BIPOLAR QUERYING OF TEMPORAL DATABASES

Figure 4.1: Examples: (a) µF− : ‘too large’, µF+ : ‘large’; (b) µC : ‘not too large’, µW :
‘large’.

to as satisfaction degree (s) and dissatisfaction degree (d), jointly called a Bipolar
Satisfaction Degree (BSD) [197], such that

s(t) = µF (t[A]) (4.8)

d(t) = νF (t[A]) (4.9)

where t[A] is the value of tuple t for attribute A. The set of all possible BSDs will be
denoted as B̃.

4.2.3. Examples

As an example of an elementary bipolar query condition, consider the case of a real
estate application and a user who wants to find a suitable house to buy. An important
criterion may be the size of the garden. The user may have a number of criteria in mind
when judging which ranges of values of this attribute she or he prefers. For example,
considering garden as a playground for children the user may use a positive unipolar
scale to measure its suitability – the larger the size the better. On the other hand, taking
into account the maintenance costs of the garden the user may use a negative unipolar
scale – the larger the garden size the higher the costs.1. Let us assume that the terms
‘large’ and ‘too large’, respectively, represent the preferences of the user along these
two criteria and thus describe the sets F+ and F− of positive and negative parts of the
bipolar condition.

Figure 4.1(a) shows how such preferences may be represented in the framework of
the satisfied-dissatisfied approach. It is worth noticing that, for example, a garden size
of 550 sq. m. is totally negatively evaluated from the point of view of the maintenance
costs and, at the same time, totally positively evaluated from the point of view of fun
for the children.

Looking for a counterpart in the constraint-wish approach we would like to inter-
pret the positive condition as a wish and the negative condition as the complement of
the constraint. However, this is not possible as the consistency condition implied by
the semantics of the constraint-wish approach is not met, what is illustrated in Fig-
ure 4.1(b), i.e., there are some values x where, µW (x) > µC(x).

1We are slightly simplifying the situation here as with respect to both criteria the user may have in mind
two separate bipolar scales, but still it will result in sets of aggregated positively and negatively evaluated
garden size values.

BIPOLAR QUERYING OF TEMPORAL DATABASES 4-9

Figure 4.2: Examples: (a) µF− : ‘not large’, µF+ : ‘around 400-500 sq. m.’; (b) µC :
‘not large’, µW : ‘around 400-500 sq. m’.

Figure 4.3: Examples: (a) µF− : µF− : ‘not large’, µF+ : ‘around 400-500 sq. m. or
slightly less’; (b) µC : ‘not large’, µW : ‘around 400-500 sq. m. or slightly less’.

In order to illustrate the constraint-wish approach at work let us assume the fol-
lowing scenario. The user may look for a ‘large’ garden but she or he would be most
happy with a garden of size around 400-500 sq. m. Thus, the former may be inter-
preted as a constraint (‘not large’ garden is excluded) while the latter is just a desired
size. Figure 4.2(b) shows an example of membership functions which may serve to
represent such preferences in the framework of the constraint-wish approach. It should
be stressed that the satisfied-dissatisfied approach is not suitable to represent such pref-
erences.

One can consider a kind of representation shown in Figure 4.2(a) which is obtained
by treating the wish and the constraint as, respectively, the positive evaluation and the
complement of the negative evaluation. However, in the framework of the satisfied-
dissatisfied approach Figure 4.2(a) should be actually interpreted as representing the
following preferences: the user has positive feelings about the garden size being ca.
400-500 sq. m. and does not like small gardens (more precisely: not large gardens).

Figure 4.3(b) shows a slightly different wish which may be expressed as ‘preferred
size of the garden is ca. 400-500 sq. m. or slightly less’. This case is still well suited to
be represented in the constraint-wish based approach although only the weak consis-
tency is preserved.

The genuine representation in the framework of the satisfied-dissatisfied approach
is shown in Figure 4.3(a).

4.3. Ranking of Query Results

After evaluating a bipolar query condition for all potential query results, every re-
sulting tuple ti will have an associated pair of calculated satisfaction degrees, either a

4-10 BIPOLAR QUERYING OF TEMPORAL DATABASES

pair (c(ti), w(ti)) or a BSD (s(ti), d(ti)). Now, we will deal with the question how the
records should be ranked in the response to a query using these pairs of degrees.

4.3.1. Ranking in the Constraint-Wish Approach

In this approach it is assumed that constraints and wishes are not compensatory
[190, 191], i.e., a higher satisfaction of a wish can not compensate a lower satisfaction
of a constraint. Therefore, ranking is done primarily on the constraint satisfaction, and
secondly, in case of ties, on the wish satisfaction. In general, one has [217]:

t1 � t2 ⇔ (c(t1) > c(t2)) ∨ (c(t1) = c(t2) ∧ w(t1) > w(t2)) (4.10)

where t1 � t2 means that t1 is preferred to t2. Thus, this is the lexicographical ordering
with respect to the pairs (c, w).

Another possibility is scalarization: a real function may be applied to the pairs
(c(ti), w(ti)) and the records are then ranked according to the values obtained. Zadrożny
and Kacprzyk [195], following Lacroix and Lavency [199], propose the aggregation of
both degrees in the spirit of the ‘and if possible’ operator. In this approach the wish
is taken into account only ‘if possible’, i.e., if its satisfaction does not interfere with
the satisfaction of the constraint what is determined with respect to the content of the
whole database. The same idea, applied in a different context, may be found in some
earlier work of Bordogna and Pasi [218], Dubois and Prade [219] or Yager [220]. Re-
cently, a lot of work has been done on the study of different interpretations of the ‘and
if possible’ as well as its dual ‘or at least’ operators by Bosc, Pivert, Tamani, Hadjali
(see, e.g., [221–223]) and by Dubois and Prade.

4.3.2. Ranking in the Satisfied-Dissatisfied Approach

Because, in the satisfied-dissatisfied approach, the satisfaction degree and the dis-
satisfaction degree are assumed to be totally independent, both should have an equal
impact on the ranking [197]. Naturally, the higher the satisfaction degree, the higher
the ranking should be, and dually, the higher the dissatisfaction degree, the lower the
ranking should be. A possible ranking function r for BSDs (s, d), with a complete
symmetrical impact for both the satisfaction and dissatisfaction degree, is the follow-
ing:

r(s, d) =
s+ (1− d)

2
. (4.11)

This ranking function produces values in [0, 1]. Three special cases can be distin-
guished:

• r(s, d) = 1: in this case it must be that s = 1 and d = 0, so this is the case of
full satisfaction (without any hesitation or conflict).

• r(s, d) = 0: in this case it must be that s = 0 and d = 1, so this is the case of
full dissatisfaction (without any hesitation or conflict).

• r(s, d) = 0.5: in this case it must be that s = d and the ranking can be considered
neutral. The condition is as satisfied as it is dissatisfied.

BIPOLAR QUERYING OF TEMPORAL DATABASES 4-11

Remark that both degrees equally matter when ranking the records, as expected. For
example, records for which the evaluation leads to a dissatisfaction degree d = 1,
or dually a satisfaction degree of s = 0, should not a priori be excluded as being
totally unsatisfactory. Indeed, e.g., the BSDs (1, 1) and (0, 0), although having d = 1

(respectively s = 0), both have neutral ranking (r(s, d) = 0.5) and are hence situated
in the middle of the ranking spectrum. Due to this they should not be catalogued as
being totally unsatisfactory.

Notice that the ranking induced by (4.11) parallels one of the orders underlying
Belnap’s truth values bilattice, namely the one along the ‘t’ (truth) axis [213]. As it
is a total preorder then it replaces incomparability of pairs (0,0) and (1,1) in Belnap’s
lattice with their indifference.

Other ranking functions are also possible, e.g., assigning more importance to either
the satisfaction degree or the dissatisfaction degree. In general, a suitable ranking
function r for BSDs should meet the following minimal requirements:

1. 0 ≤ r(x, y) ≤ 1, with (x, y) a BSD, i.e., r : B̃→ [0, 1].

2. r(1, 0) = 1, i.e., the BSD with full satisfaction and no dissatisfaction should be
ranked the highest.

3. r(0, 1) = 0, i.e., the BSD with full dissatisfaction and no satisfaction should be
ranked the lowest.

4. ∀x, y ∈ [0, 1] : r(x, x) = r(y, y), i.e., for all BSDs with equal satisfaction degree
and dissatisfaction degree, the ranking should also be equal. The reason for this
requirement is that, ranking wise, it is impossible to make a sensible distinction
between the cases of total indifference (i.e., BSD (0, 0)) and total conflict (i.e.,
BSD (1, 1)), and also all other intermediate cases where s = d (i.e., BSD (x, x),
x ∈ [0, 1]).

5. monotonicity: r(x, y) ≤ r(x+ ilon, y) and r(x, y) ≥ r(x, y + ilon).

These minimal requirements eliminate the use of ranking functions which solely rank
on either the satisfaction degree s or the dissatisfaction degree d, and use the other
degree (d or s respectively) only as a ‘tiebreaker’, because they would violate the fourth
requirement. These lexicographical orderings, meaningfully used in the constraint-
wish approach (see Eq. (4.10)), will not be used in the satisfied-dissatisfied approach
because of the assumed total independence between, and equally important role of, the
satisfaction and dissatisfaction degrees.

4-12 BIPOLAR QUERYING OF TEMPORAL DATABASES

A list of useful ranking functions for BSDs is listed below:

r1 =
s+ (1− d)

2
(4.12)

r2 =
s

s+ d
(4.13)

r3 =
1− d

(1− s) + (1− d)
(4.14)

r4 =
s

s+ d
· 1− d

(1− s) + (1− d)
(4.15)

r5 = max{0, s− d} (4.16)

r6 = min{1 + s− d, 1}. (4.17)

Ranking function r2 is discontinuous in BSD (0, 0), r3 is undefined for BSD (1, 1),
while r4 is undefined for BSDs (0, 0) and (1, 1). More information on the behaviour
and properties of these ranking functions can be found in [224].

4.3.3. Comparison and discussion

The lexicographical ordering used in the constraint-wish approach makes wishes
(positive information) rather secondary in comparison to the constraints (negative infor-
mation), according to the assumed semantics. This may be, however, counter-intuitive
in some cases. Let us consider two pairs of degrees (c(t1), w(t1)) and (c(t2), w(t2))

such that c(t1) = c(t2) + ε, while w(t1) = 0 and w(t2) = 1. In such a case t1 will be
ranked before t2, even for ε very close to 0 what may be disputable. A possible escape
is to assume a discrete scale for c’s and w’s with a small number of levels and to claim
that the smallest difference in levels of the constraint satisfaction is large enough to
justify its definite role in establishing the ranking of records whatever their satisfaction
of wishes is.

A scalarization in the spirit of the ‘and possibly’ operator is an interesting option
but it adopts a specific semantics of constraints and wishes.

Ranking in the satisfied-dissatisfied approach is based on the ranking of the BSDs.
Due to their specific semantics and the total independence of the satisfaction and dis-
satisfaction degrees, BSDs can be ranked in different ways. A ranking function for
BSDs should satisfy the requirements specified in Subsection 4.3.2. The selection of a
ranking function depends on the requirements of the application.

If it is necessary to assign an equal weight to s(t) and d(t), then the ranking
function r1 (cf. Eq. (4.12)) can be used. In this approach, query conditions are
interpreted as preferences because records with d(t) = 1 or s(t) = 0 are not a
priori excluded from the result, i.e., they do not necessarily result in a ranking
value 0.

If the positive condition should be interpreted as an absolute requirement, i.e., if
s(t) = 0 has to imply that the ranking value is 0, then the ranking function r2

(cf. Eq. (4.13)) can be used.

BIPOLAR QUERYING OF TEMPORAL DATABASES 4-13

Dually, if the negative condition (failing to satisfy it) should be interpreted as an
absolute requirement, i.e., if d(t) = 1 has to imply a ranking value 0, then the
ranking function r3 (cf. Eq. (4.14)) can be used.

Ranking function r4 (cf. Eq. (4.15)) can be used if both the positive and negative
conditions must be interpreted as absolute requirements.

Finally, if the ranking should be based on the best of s(t) and d(t), then either
ranking function r5 (cf. Eq. (4.16)) or ranking function r6 (cf. Eq. (4.17)) can be
used. Hereby, r5 = 0 if s(t) ≤ d(t) and r6 = 1 if s(t) ≥ d(t).

It is worth noting that modelling bipolarity inside an elementary query condition
using the constraint-wish approach (cf. Section 4.2.1) makes the ranking problem
somehow trivial. Namely, it is easy to verify that due to the consistency condition,
it is impossible to have two pairs of degrees (c(t1), w(t1)) and (c(t2), w(t2)) such that
c(t1) < c(t2) and at the same time w(t1) > w(t2). This further justifies the primary
role of the constraint satisfaction degree in the ranking process, as defined in (4.10).
On the other hand, this is not the case in the satisfied-dissatisfied approach what makes
room for more possible approaches of ranking.

4.4. Aggregation in Bipolar Query Processing

Bipolar queries are built of elementary query conditions, discussed so far, using
logical connectives of conjunction, disjunction and negation. The evaluation of an
elementary bipolar query condition A IS F results in a pair of satisfaction degrees
(either (c(t), w(t)) or (s(t), d(t))) for every tuple t. Now, consider the evaluation of an
entire query composed of n elementary query conditions. First, for each relevant tuple
t, each elementary condition need to be evaluated resulting in n individual pairs of
satisfaction degrees. Second, all these individual pairs must be aggregated to come up
with a global result reflecting the extent to which t satisfies the entire bipolar query. The
basic aggregation techniques in case of the constraint-wish approach and the satisfied-
dissatisfied approach are presented in the two subsections below. A distinction has
been made between techniques where the pairs of satisfaction degrees are treated as a
whole and techniques where the satisfaction degrees are treated individually.

4.4.1. Aggregation in the Constraint-Wish Approach

Consider n elementary bipolar query conditions, the evaluation of which for a tuple
t leads to a set of n pairs (ci(t), wi(t)). This set of n pairs needs to be aggregated to
obtain the global satisfaction degree.

4.4.1.1. Treating c(t) and w(t) Individually

In this approach a bipolar query is meant as a list of elementary bipolar conditions
and their conjunction is tacitly assumed. The ci(t)’s and wi(t)’s are separately aggre-
gated [188, 189]. Both aggregations are guided appropriately by the semantics of the
constraints and of the wishes. Namely, it is assumed that, if a tuple t does not satisfy

4-14 BIPOLAR QUERYING OF TEMPORAL DATABASES

a constraint then it should be rejected overall. Therefore, the degrees ci(t) are aggre-
gated in a conjunctive way. On the other hand, if a tuple is desirable according to one
wish then it is desirable overall. Therefore, the degrees wi(t) are aggregated in a dis-
junctive way. This then leads to a global pair (c(t), w(t)) expressing the satisfaction of
the whole bipolar query by a tuple t:

(c(t), w(t)) = (min
i
ci(t),max

i
wi(t)). (4.18)

Besides the minimum and maximum, other aggregation operators, based on triangular
norms and co-norms, can also be used if a reinforcement effect is needed or desired.

Remark that, in general, this aggregation technique will not preserve consistency,
i.e., it is possible that wt > ct. This can be solved by treating the ‘global wish’ not
just as the mere disjunction of all wishes, but by also taking the conjunction of this
disjunction with all constraints [189]:

(c(t), w(t)) = (min
i
ci(t),min(max

i
wi(t),min

i
ci(t))). (4.19)

4.4.1.2. Treating (c(t), w(t)) as a Whole

This approach, followed amongst others by Bosc et al. [190, 191], does not look at
the ci(t)’s and wi(t)’s separately, but treats them as a whole. In contrast with Dubois
and Prade, Bosc et al. consider both conjunction and disjunction of bipolar query condi-
tions. As it is done in regular ‘fuzzy’ querying, conjunction is translated to a minimum
operator and disjunction is translated to a maximum operator. In order to take the min-
imum or maximum, the set of (ci(t), wi(t)) pairs must be ordered. In this approach, a
lexicographical ordering is assumed (see above, in Subsection 4.3.1) and the operators
lmin and lmax are introduced as aggregation operators for respectively conjunction
and disjunction of bipolar query conditions [189–191]. Let us assume that two ele-
mentary bipolar queries Ai IS Fi, i = 1, 2, result in two pairs of satisfaction degrees
for a tuple t: (ci(t), wi(t)), i = 1, 2. Then, the pair of satisfaction degrees for the
conjunction and disjunction of these elementary queries is defined as follows:

(c(A1ISF1)∧(A2ISF2)(t), w(A1ISF1)∧(A2ISF2)(t)) =

= lmin((c1(t), w1(t)), (c2(t), w2(t)) =

=

{
(c1(t), w1(t)) if (c1(t) < c2(t)) ∨ (c1(t) = c2(t) ∧ w1(t) < w2(t))
(c2(t), w2(t)) otherwise (4.20)

(c(A1ISF1)∨(A2ISF2)(t), w(A1ISF1)∨(A2ISF2)(t)) =

= lmax((c1(t), w1(t)), (c2(t), w2(t)) =

=

{
(c1(t), w1(t)) if (c1(t) > c2(t) ∨ (c1(t) = c2(t) ∧ w1(t) > w2(t))
(c2(t), w2(t)) otherwise. (4.21)

Due to the associativity of the operators lmin and lmax formulas (4.20) and (4.21)
may be easily extended to the case of a conjuction and disjunction, respectively, of n
elementary bipolar queries.

By definition both lmin and lmax return one of the input pairs as the result. As all
arguments are assumed to be consistent so is also the result of this type of aggregation.

BIPOLAR QUERYING OF TEMPORAL DATABASES 4-15

4.4.2. Aggregation in the Satisfied-Dissatisfied Approach

Consider again n bipolar query conditions, evaluation of which for tuple t leads to
a set {(si(t), di(t)), i = 1, . . . , n} of n BSDs. This set of n pairs needs to be aggre-
gated to the BSD (s(t), d(t)), representing the global (dis)satisfaction when taking into
account all imposed query conditions.

4.4.2.1. Treating s and d Individually

In this approach, as in the approach by Dubois and Prade, the BSDs are not aggre-
gated as a whole but the lists of si(t)’s and di(t)’s are aggregated separately [197,198].
But, unlike the Dubois and Prade approach, both conjunction and disjunction of bipo-
lar query conditions are considered, and additionally also the negation. Moreover, this
approach also allows to take into account weights to distinguish important from less
important query conditions.

Because the bipolar query conditions in this approach are inspired by AFSs, the
basic aggregation of BSDs (which are the result of the evaluation of such bipolar query
conditions) is also inspired by the aggregation of AFSs. This means that the conjunc-
tion (respectively disjunction) of two BSDs is calculated in the same sense as the in-
tersection (respectively union) of two AFSs. Moreover, these operations also coincide
with those proposed in a continuous extension of Belnap’s four-valued logic proposed
by Öztürk and Tsoukiàs [214].

Non-Weighted Aggregation

Let us consider two elementary bipolar conditions: ‘A1 IS F1’ and ‘A2 IS F2’, and
their conjunction and disjunction.

Conjunction. The satisfaction and dissatisfaction degrees, i.e., a BSD, for the query
‘(A1 IS F1) ∧ (A2 IS F2)’ is computed as follows:

(s(A1 IS F1)∧(A2 IS F2)(t), d(A1 IS F1)∧(A2 IS F2)(t)) =

= (min(sA1 IS F1
(t), sA2 IS F2

(t)),max(dA1 IS F1
(t), dA2 IS F2

(t))). (4.22)

An intuitive justification for this formula is as follows:

For the conjunction of two conditions to be satisfied, both conditions have to be
satisfied. Therefore the minimum of both individual satisfaction degrees is taken
as the satisfaction degree of their conjunction.

For the conjunction to be dissatisfied, it is enough if one of them is dissatisfied.
Therefore the maximum of both individual dissatisfaction degrees is taken as the
dissatisfaction degree of their conjunction.

Besides the minimum and maximum, other aggregation operators based on triangular
norms and co-norms can also be used if a reinforcement effect is needed or desired.

It should be noted that the formulas (4.18) and (4.22) although similar on the sur-
face, are quite different. In both cases we have the minimum operator applied to the first
components of the aggregated pairs and the maximum operator applied to the second

4-16 BIPOLAR QUERYING OF TEMPORAL DATABASES

components of these pairs. However, in the former case the minimum and maximum
operators are applied to the complements of the negative evaluations and the positive
evaluations, respectively, while in the latter case these are positive and negative evalu-
ations, respectively.

Disjunction. The satisfaction and dissatisfaction degrees, i.e., a BSD, for the query
‘(A1 IS F1) ∨ (A2 IS F2)’ is computed as follows:

(s(A1 IS F1)∨(A2 IS F2)(t), d(A1 IS F1)∨(A2 IS F2)(t)) =

= (max(sA1 IS F1
(t), sA2 IS F2

(t)),min(dA1 IS F1
(t), dA2 IS F2

(t))). (4.23)

Similarly to the case of conjunction, an intuitive justification for this formula is as
follows:

For the disjunction of two conditions to be satisfied, it is enough for one of them
to be satisfied. Therefore the maximum of both individual satisfaction degrees is
taken as the satisfaction degree of their disjunction.

For the disjunction of two conditions to be dissatisfied, both of them have to be
dissatisfied. Therefore the minimum of both individual dissatisfaction degrees is
taken as the dissatisfaction degree of their disjunction.

Negation. The satisfaction and dissatisfaction degrees, i.e., a BSD, for the query ‘¬
(A IS F)’ is computed as follows:

(s¬(A IS F)(t), d¬(A IS F)(t)) = (dA IS F (t), sA IS F (t)). (4.24)

The same effect of negation can also be achieved by swapping fuzzy sets of posi-
tively (F+) and negatively (F−) evaluated elements of domA composing F , F =

(F+, F−) in ‘¬ (A IS F)’, i.e., ‘¬(A IS F)’ is thus equivalent to ‘A IS F ′’, where
F ′ = (F−, F+).

Weighted Aggregation

When expressing queries (bipolar or not), one way to model the difference in im-
portance between different elementary (bipolar) query conditions is by using weights.
Also in the framework of BSDs, it is possible to deal with such weights [225]. The
underlying aggregation operators are still appropriate basic aggregation operators, but
a premodification step is performed on the elementary criteria evaluation results to take
into account the impact of the weights. It is assumed that the importance of a condition,
with respect to the final result, is linked with the condition itself, not with the degree to
which the condition is satisfied. So weights wi ∈ [0, 1] can be attached to the individ-
ual elementary bipolar conditions. The semantics of the weights is as follows: wi = 1

denotes that the condition is fully important, while wi = 0 denotes that the condition
is not important at all. Such a condition can be neglected (and hence should have no
impact on the result). Conditions with intermediate weights should still be taken into
account, but to a lesser extent than conditions with weight wi = 1. In order to have an
appropriate scaling, it is assumed that maxi wi = 1 [175].

BIPOLAR QUERYING OF TEMPORAL DATABASES 4-17

To reflect the impact of a weight on the evaluation of a condition, a premodification
is performed on the initial BSDs, taking into account the weights. This means that,
before aggregating the individual BSDs, the impact of the weights on these BSDs is
calculated first. Afterwards, the modified BSDs are aggregated using the regular aggre-
gation techniques, as if they were regular, non-modified, BSDs. Let g be the operator
that models this weight influence on the individual BSDs:

g : [0, 1]× B̃→ B̃ : (w, (s, d)) 7→ g(w, (s, d)). (4.25)

It has been shown that implication functions fim and co-implication functions f coim
can be used to model the impact of weights, where fim and f coim are [0, 1]-valued exten-
sions of Boolean implication and co-implication functions. As an example, consider
the Kleene-Dienes implication and co-implication:

fimKD
(x, y) = max(1− x, y)

f coimKD
(x, y) = min(1− x, y). (4.26)

The impact of a weight on a BSD, in case of conjunction, can be defined as follows:

g∧ : [0, 1]× B̃→ B̃ : (w, (s, d)) 7→ g∧(w, (s, d)) =
(
sg∧(w,(s,d)), dg∧(w,(s,d))

)
(4.27)

where

sg∧(w,(s,d)) = fim(w, s)

dg∧(w,(s,d)) = f coim(1− w, d).

As an example, consider the weight operator for conjunction based on the Kleene-
Dienes implication:

g∧(w, (s, d)) = (max(1− w, s),min(w, d)) . (4.28)

Consider the basic conjunction operator ∧ for BSDs, which is defined by

∧ : (B̃)2 → B̃ : ((s1, d1), (s2, d2)) 7→ (min(s1, s2),max(d1, d2)) (4.29)

(cf. Eq. (4.22)). Using this definition and the definition of the weight impact operator
g∧, a definition of an extended operator for weighted conjunction ∧w of BSDs can now
be given as follows:

∧w : ([0, 1]× B̃)2 → B̃ (4.30)

((w1, (s1, d1)), (w2, (s2, d2))) 7→ g∧(w1, (s1, d1)) ∧ g∧(w2, (s1, d1)).

An extended operator for weighted disjunction can be defined analogously. Indeed,
the impact of a weight on a BSD, in case of disjunction, can be defined by:

g∨ : [0, 1]× B̃→ B̃ : (w, (s, d)) 7→ g∨(w, (s, d)) =
(
sg∨(w,(s,d)), dg∨(w,(s,d))

)
(4.31)

where

sg∨(w,(s,d)) = f coim(1− w, s)
dg∨(w,(s,d)) = fim(w, d).

4-18 BIPOLAR QUERYING OF TEMPORAL DATABASES

Using the Kleene-Dienes implication, the following weight operator for disjunction is
for example obtained:

g∨(w, (s, d)) = (min(w, s),max(1− w, d)) . (4.32)

Consider the basic disjunction operator ∨ for BSDs, which is defined by

∨ : (B̃)2 → B̃ : ((s1, d1), (s2, d2)) 7→ (max(s1, s2),min(d1, d2)) (4.33)

(cf. Eq. (4.23)). Using this definition and the definition of the weight impact operator
g∨, a definition of an extended operator for weighted conjunction ∨w of BSDs can then
be given as follows:

∨w : ([0, 1]× B̃)2 → B̃ (4.34)

((w1, (s1, d1)), (w2, (s2, d2))) 7→ g∨(w1, (s1, d1)) ∧ g∨(w2, (s1, d1)).

Averaging

Besides the basic aggregation operators based on the aggregation of AFSs, using
triangular norms and co-norms, BSDs can also be aggregated using other operators,
like averaging operators [225]. Some averaging operators that could be used are the
arithmetic mean (AM), geometric mean (GM) or harmonic mean (HM). As an ex-
ample, consider the traditional arithmetic mean:

AM(x1, . . . , xn) =
1

n

n∑
i=1

xi. (4.35)

Such averaging operators cannot be applied on BSDs as such, because a BSD consists
of a pair of values. So again, the satisfaction degrees and dissatisfaction degrees need
to be treated separately. An extended version of the above regular averaging operator
can be defined, where this regular averaging operator is applied for the satisfaction
degrees, and, separately, for the dissatisfaction degrees:

AM((s1, d1), . . . , (sn, dn)) =

(
1

n

n∑
i=1

si,
1

n

n∑
i=1

di

)
. (4.36)

A similar extension can be defined for other averaging operators (GM , HM , . . .).

Weighted Averaging

In the case of weighted averaging, it is again assumed that the importance of a
condition, with respect to the final result, is linked with the condition itself, not with
the degree to which the condition is satisfied. So weights wi ∈ [0, 1] can be connected
with the individual bipolar conditions. Again, in order to have an appropriate scaling, it
is assumed that maxi wi = 1. Weighted counterparts of the above averaging operators
for BSDs (e.g., weighted arithmetic mean (AMw), weighted geometric mean (GMw),
or weighted harmonic mean (HMw)) can be used, where the satisfaction degrees on
the one hand, and the dissatisfaction degrees on the other hand, are again aggregated

BIPOLAR QUERYING OF TEMPORAL DATABASES 4-19

separately using regular weighted averaging operators. As an example, consider the
weighted arithmetic mean AMw for BSDs:

AMw : ([0, 1]× B̃)n → B̃ (4.37)

((w1, (s1, d1)), . . . , (wn, (sn, dn))) 7→
(∑n

i=1 wi · si∑n
i=1 wi

,

∑n
i=1 wi · di∑n
i=1 wi

)
.

4.4.2.2. Treating (s, d) as a Whole

Aggregating BSDs as a whole can be done by using Ordered Weighted Averaging
(OWA) operators for BSDs [225]. Ordered weighted averaging of BSDs can be based
on the traditional OWA operators [226, 227] as done in the case of aggregating regular
satisfaction degrees. The OWA operator of dimension n, i.e., accepting n arguments
x1, . . . , xn is defined by:

OWAW (x1, . . . , xn) =
n∑
i=1

wi · x′i (4.38)

where x′i is the ith largest value of x1, . . . , xn and W = [w1, . . . , wn];
∑n
i=1 wi = 1 is

a parameter of the OWA operator, referred to as the vector of weights.
This traditional OWA operator can also be extended to work with BSDs. To this

aim, the BSDs are first rank ordered, for example by using one of the ranking functions
presented in Section 4.3.2:

OWAW : Bn → B (4.39)

((s1, d1), . . . , (sn, dn)) 7→

(
n∑
i=1

wi · s′i,
n∑
i=1

wi · d′i

)

where (s′i, d
′
i) is the ith largest BSD of (s1, d1), . . . , (sn, dn), according to the ranking

function used.
Depending on the weight vector that is used, this extended OWA operator will

behave differently (just like the regular OWA operator). In special cases, it can, e.g.,
act as a maximum function for BSDs (w1 = 1, wi = 0 for i > 1), a minimum function
for BSDs (wn = 1, wi = 0 for i < n), or a median function for BSDs (for odd n:
wdn

2 e = 1, wi = 0 for i 6=
⌈
n
2

⌉
, where d e denotes the ceiling function; for even n:

wn
2

= 1
2 , wn

2 +1 = 1
2 , wi = 0 for i 6= n

2 and i 6= n
2 + 1).

Remark that the exact behaviour of the maximum, minimum and median function
for BSDs (and also for all other OWA operators) depends on the specific ranking func-
tion employed.

4.4.3. Comparison and discussion

The aggregation of pairs of satisfaction degrees of elementary bipolar conditions
should follow and reflect the semantics of the querying approach. This is why, for both
approaches, specific aggregation techniques have been presented, hereby distinguish-
ing techniques to aggregate both satisfaction degrees separately and to aggregate the
satisfaction degree pairs as a whole.

4-20 BIPOLAR QUERYING OF TEMPORAL DATABASES

In the constraint-wish approach, handling both satisfaction degrees separately boils
down to treating all constraints together as a global constraint and treating all wishes to-
gether as a global wish, hereby preserving the applicable consistency condition, which
requires some additional effort. Handling both satisfaction degrees as a whole boils
down to lexicographical ordering. In both kinds of aggregation the semantics of con-
straints and wishes is retained.

In the satisfied-dissatisfied approach the satisfaction and dissatisfaction degrees are
completely independent of each other. This characteristic offers more freedom to de-
velop aggregation operators that treat both degrees separately.

Basic aggregation operators, inspired by the aggregation of AFSs and based on
the minimum triangular norm and maximum triangular co-norm, have been de-
fined for non-weighted conjunction and disjunction. These operators retain the
semantics of positive and negative information.

To handle elementary query conditions of different importance, extended coun-
terparts of the basic aggregation operators have been presented in literature.
These operators use associated weights to model the relative importance of a
query condition. First, the elementary conditions are evaluated as if there are
no weights. Second, the impact of a weight on the evaluation of a condition
is modelled in a premodification step using an implication and co-implication
function.

Instead of being based on a triangular norm and a triangular co-norm, an aggre-
gation function can also be based on an averaging operator like the arithmetic,
geometric or harmonic mean or on the weighted extension of such an averaging
operator.

Choosing which aggregation operator to use depends on the requirements of the appli-
cation. Aspects that may be considered in the selection of an adequate operator are:
the need to better distinguish among the resulting tuples, the need for a reinforcement
effect and the computation time.

BSDs can also be treated as a whole and aggregated based on their ranking. For that
purpose, an OWA operator for BSDs has been presented in the literature. As is the case
with regular OWA operators, the behaviour of the aggregation will then strongly depend
on the used weight vector. Special cases are the minimum, maximum and median
function for BSDs. Whether to use this kind of aggregation or not, and which weight
vector should be chosen, again depend on the requirements of the application under
consideration. Results obtained from an aggregation based on the ranking of BSDs
are in general less informative to the user, because they do not provide independent
information about the satisfaction of the positive and negative conditions in the user
preferences. However, if a quantifier-based aggregation is required by the application,
where at least (or at most) a specified (fuzzy) number of elementary conditions should
be satisfied in order to satisfy the query, an OWA-based aggregation can be used.

BIPOLAR QUERYING OF TEMPORAL DATABASES 4-21

4.5. Bipolar querying of Temporal Databases

The bipolar querying of temporal databases consists on the application of bipolar
techniques to the querying of temporal databases. In this section we will follow the
satisfied-dissatisfied approach presented in Section 4.2.2. The specification of a query
in the satisfied-dissatisfied approach is the following [52]:

Q̃ = (Qpos, Qneq) (4.40)

Where Qpos represents the logical expression of possitive query conditions and
Qneg represents the logical expression of negative query conditions. All the elemen-
tary query conditions in Qpos and Qneg can be specified in a ‘fuzzy’ way. Also, the
elementary query conditions in both Qpos and Qneg can only be connected by a con-
junction operator (∧) or a disjunction operator (∨). Note that the negation operator is
not allowed in the logical expressions due to the fact that it is considered to be non-
involutive.

When departing from a query as specified in (4.40), a preference towards valid-time
can be inserted at two levels:

Global level. Here, the entire query is extended with a single time demand. This
means that the entire query is given one elementary temporal constraint. The
introduced temporal demand is defined by the user when the query is constructed
and specifies a condition or constraint on the valid-time period of a tuple.

Local level. Here, Qpos, as well as Qneg , are seen as logical aggregations of
elementary query conditions and each of these elementary conditions is extended
with a time demand. It is important to notice that the temporal constraint itself
is neither positive nor negative. This means that every elementary condition is
given an elementary temporal constraint which is evaluated and aggregated with
the evaluation result of the condition. The introduced demands are defined by
the user when the query is constructed and each one specifies a time constraint
related with the fulfilment of the corresponding non-temporal condition.

In the following subsections, we will study the specification of time constraints at
the global level first and then, the specification of temporal constraints at the local level.

4.5.1. Temporal constraints at the global level

In this approach we will consider valid-time temporal databases. The time is rep-
resented by possibilistic valid-time period (PVP) as described in Section 3.2.1. The
query structure is detailed as follows. Then, the evaluation method is provided.

4.5.1.1. The Query Structure

The approach followed here introduces a global time demand: the user can define
one time demand for the entire query. A query now has the following structure:

(
QT , (Qpos, Qneg)

)
(4.41)

4-22 BIPOLAR QUERYING OF TEMPORAL DATABASES

As in [52], Qpos and Qneg represent the positive and negative preference criteria, re-
spectively, and QT represents the global temporal condition. QT is defined as follows.

QT = { AR qt} (4.42)

Here, AR is one of the Allen relations and qt is a possibilistic valid-time (PVP) spec-
ified by the user.

4.5.1.2. The Evaluation of the Query

In the presented approach, every tuple t from the instance r of the relation R con-
tains a possibilistic valid-time period given by t[S,E] to express the tuple’s valid-time.
The approach then is the following:

For every tuple t in the database, the bipolar query criteriaQpos andQneg are evalu-
ated, resulting in a BSD of the form (st, dt), where st denotes the degree of satisfaction
and dt denotes the degree of dissatisfaction of the tuple. Separately, the temporal con-
ditionQT is evaluated in an attempt to define the degree to which t satisfies the query’s
temporal demand. For every tuple in the database, a validity satisfaction degree (VSD)
is computed using the ill-known evaluation of the Allen relationships.

4.5.1.3. Presenting the Results to the User

This approach was designed to present the user both the resulting tuples and the
degrees to which these tuples satisfy the entire query. To discover the tuples which
are most useful to the user, the results have to be ranked. As the QT is evaluated
independently from (Qpos, Qneg) for every tuple, the ranking for the VSD will be
determined independently from the ranking for the BSD for every tuple. The BSD’s
are ranked as presented in Section 4.3.2. The VSD’s are values in [0, 1] and thus have
a natural ranking.

To achieve the final ranking, the rank of the total BSD (RankBSD) and the VSD
of a tuple are combined using a convex combination of both ranks:

RankTotal = ω ∗RankBSD + (1− ω) ∗ V SD

This somewhat unusual approach allows the overall ranking to reflect the effects of
the BSD and the VSD in chosen proportions. Thus, by increasing the parameter ω, the
non-temporal demands of the user can be given more importance and by lowering the
ω, the time demand can be emphasized.

Example 27. Consider a car rental service which uses the valid-time temporal database
given in Table 4.1. Next to some general attributes (Color, Fuel consumption (noted
F.C., in l/100 km), Age (in years)), the relation shows the validity period of each car
expressed by a PVP. The ID field uniquely identifies a physical car, but the properties of
a car can be modified: some engine optimizations could allow less fuel consumption,
changes in the color could be made, etc. E.g., the car described in tuples 1 and 5 is the
same (both tuples have the same ID value), but their color differs. Therefore, a tuple
in this database will be uniquely defined by the combination of the ID field and the
Version ID (VID) field, which contains unique values for tuples with the same ID field

BIPOLAR QUERYING OF TEMPORAL DATABASES 4-23

value. A little remark: As the age of the car has nothing to do with when the car is
available for rent, the ‘Age’-attribute is considered as being user-defined time. Also, in
this example, for the sake of simplicity, the chronons will be days.

PVP
ID VID Color F.C. Age [S, E]
001 1 Black 6 4 [10/12/2010, 10, 10] [10/01/2011, 10, 10]
002 1 Red 5 6 [25/12/2010, 5, 5] [25/02/2011, 5, 5]
003 1 Blue 4 2 [01/03/2011, 3, 3] UC
004 1 Black 6 7 [01/01/2011, 10, 10] [05/03/2011, 5, 5]
001 2 Red 6 4 [11/01/2011, 10, 10] UC
002 2 Red 5 6 [26/02/2011, 10, 10] UC
004 2 Black 6 7 [05/04/2011, 10,10] UC

Table 4.1: The valid-time car relation. Note that the valid-time is represented by a PVP.
The main point for both starting and ending points is a date in the dd/mm/yyyy format
and the left and right margins are given in number of days.

ID VID RankBSD VSD RankTotal
ω = 0 ω = 0.5 ω = 1

001 1 -1 0 0 -0.5 -1
002 1 1 0.817 0.817 0.9085 1
003 1 0 0.142 0.142 0.071 0
004 1 -1 1 1 0 -1
001 2 1 1 1 1 1
002 2 1 0.338 0.338 0.669 1
004 2 -1 0 0 -0.5 -1

Table 4.2: Result set of the query

Consider the following query:

The user does not want to rent a black car, and prefers a red car which is ei-
ther younger than 6 years or has an average fuel consumption that is around 5 or 6
litres/100 km and the car should be available around February 2011.

Using the structure (Qtime, (Qpos, Qneg)) presented above, the query translates to:

(ctime, (cposColor ∧ (cposAge ∨ c
pos
Fuel), c

neg
Color))

with

cposColor = {(Red, 1)}

cnegColor = {(Black, 1)}

cposFuel = {(5, 1), (6, 1), (7, 0.5)}

cposAge = {(0, 1), (1, 1), (2, 1), (3, 1), (4, 0.7), (5, 0.5), (6, 0.3)}

4-24 BIPOLAR QUERYING OF TEMPORAL DATABASES

The temporal condition is represented by the following PVP.

cT = [S,E] = [25/01/2011, 5, 5] , [10/03/2011, 5, 5] .

The resultset of the query, using the presented approach, is given in Table 4.2.
Here, RankBSD is the ranking of the BSD originating from the non-temporal bipolar
constraints andRankTotal gives the total ranking (between−1 and 1) of the tuple with
respect to the query, based on the chosen values for ω.

4.5.1.4. Discussion.

With ω = 0, only the temporal constraint is taken into account. Because of the
graduality of the VSD’s, a richer ranking can be discerned than the simple acceptance
or rejection which would occur when the query time interval would be requested to be
fully contained in the tuple time intervals.

With growing values of ω, the non-temporal constraints grow in importance and the
third tuple is ranked increasingly better than the fourth tuple, though the fourth tuple
has a much higher VSD. This phenomenon can be desirable, as the fourth tuple has a
much lower BSD rank.

With ω = 0.5, only the tuple that scores high in both constraints gets a very high
ranking (the fifth and the second tuples). Tuples with a low ranking for one of both
constraints, are punished for this in the overall ranking, with the degree of punishment
being relative to the lowness of the ranking. Vice versa, low scores for either the
temporal or the non-temporal constraints can be compensated for with high scores for
the other constraints. This introduces a very natural ordering, which ranks the tuples
with respect to both the temporal and the non-temporal preferences of the user.

4.5.2. Temporal constraints at the local level

In this section, a novel technique is proposed to query a valid-time relation with
valid-time indications subject to uncertainty in a heterogeneously bipolar way. The
novelty of this technique is that it allows a local specification of the user’s temporal
preferences, i.e., for every elementary query condition, the user can specify during
which crisp valid-time interval this condition should hold. First, the assumed structure
of the valid-time relation is discussed, next the proposals for the construction of a query
and the evaluation of such a query are presented and last, some issues concerning tuple
ranking and the technique adopted here are given.

We will consider valid-time relations with valid-time indications which are ill-
known valid-time intervals, as described in Section 3.2.

4.5.2.1. Construction of the Query

In the current proposal, a query Q is constructed as:

Q = (cA1 , tcA1) op1 . . . opn−1 (cAn , tcAn).

Here, for every i ∈ N, for which 1 ≤ i ≤ n, every cAi
is a bipolar elementary

query condition specified using an AFS (as shown in Section 4.2.2) and every opi is an
operator, which can be either ‘AND’ or ‘OR’. Every tcAi

is now a temporal constraint.

BIPOLAR QUERYING OF TEMPORAL DATABASES 4-25

ID IID DoB AoO VST VET
1 1 11/08/77 Bruges [5/11/02, 1, 2] [10/11/02, 1, 1]
1 2 11/08/77 Ghent [16/11/02, 1, 1] [24/11/02, 4, 3]
1 3 11/08/77 Antwerp [10/06/03, 5, 3] [11/08/04, 2, 2]
2 1 23/05/77 Antwerp [16/11/02, 1, 1] [24/11/02, 4, 2]
2 2 23/05/77 Ghent [20/06/03, 4, 7] [11/08/04, 4, 7]

Table 4.3: A visualisation of an example relation, containing information on criminals.
The value for attribute ID uniquely identifies a criminal, the combination of values for
attributes ID and IID uniquely identify a state or version of a criminal.

Such a temporal constraint tcAi
is hereby any expression which can be expressed using

a single Allen relationship and a single crisp time interval.
The interpretation here is that the user requires tuples for which the corresponding

elementary query condition is valid during a time interval related to the time interval to
which the temporal constraint evaluates. The nature of this relationship is given by the
Allen relationship. Remembering that a tuple in a valid-time relation represents a state
or version of a real object or concept (as opposed to the real object itself), the user’s
query demands are interpreted as demands towards the state of an object or concept
during the given corresponding time period(s). This means that the user may express
demands about the current state of an object or concept (by specifying a time interval
containing the present) and / or demands about previous / future states of an object or
concept (by specifying time intervals in history, respectively in the future). Thus, the
user can describe the current, previous and / or future states of the object or concept he
or she requires and thus some kind of required ‘history’. Obviously, several elementary
query conditions may concern the same attribute, but indicate a different time period.

Example 28. Let us consider a relation describing wanted criminals. This relation
might contain the attributes ‘Date of Birth (DoB)’ and ‘Area of Operation (AoO)’,
describing the date of birth and the main city of operation of a criminal. Table 4.3
shows an instance for the relation.

Considering the example relation given in Table 4.3, a user could be interested in
identifying a criminal who ‘was born somewhere in the summer of 1977, operated in
the vicinity of Bruges from 6/11/02 until 10/11/02 and operated in the surroundings of
Ghent, but certainly not around Bruges any more, since 16/11/02’. The corresponding
query would then be:

Qex = (cDoB , tcDoB) AND (cAoO,1, tcAoO,1) AND (cAoO,2, tcAoO,2)

where

(cDoB , tcDoB) models the criterion ‘was born somewhere in the summer of
1977’.

• Under the consideration that T is a time domain containing all dates in
time,

cDoB = {(x, µcDoB
(x), 1− µcDoB

(x)) : x ∈ T}

4-26 BIPOLAR QUERYING OF TEMPORAL DATABASES

with membership function

µcDoB
(x) =



0 if x is a date with month in
{Jan, Feb,Mar,Apr,Oct,Nov,Dec}

0.5 if x is a date with month in {May, Sep}
and year = 1977

1 if x is a date with month in
{Jun, Jul, Aug} and year = 1977

and the non-membership function νcDoB
is the inverse of the membership

function µcDoB
.

• tcDoB = during]−∞,∞[, which reflects that there are no specific con-
straints on the valid-time for this criterion.

(cAoO,1, tcAoO,1) models the criterion ‘operated in the vicinity of Bruges from
6/11/02 until 10/11/02’. Hereby

• cAoO,1 = {(x, µcAoO,1
(x), 1−µcAoO,1

(x)) : x ∈ Cities} where the mem-
bership function µcAoO,1

is the one of the fuzzy set

{(Bruges, 1), (Ghent, 0.7), (Antwerp, 0.3)}

and the non-membership function νcAoO,1
is the inverse of the membership

function µcAoO,1
.

• tcAoO,1 = during [6/11/02, 10/11/02] models ‘from 6/11/02 until 10/11/02’.

(cAoO,2, tcAoO,2) models the criterion ‘certainly not around Bruges any more,
since 16/11/02’. Hereby

• cAoO,2 = {(x, µcAoO,2
(x), 1−µcAoO,2

(x)) : x ∈ Cities} where the mem-
bership function µcAoO,2

is the one of the fuzzy set

{(Bruges, 0.3), (Ghent, 1), (Antwerp, 0.7)}

and the non-membership function νcAoO,2
is the membership function of

the fuzzy set

{(Bruges, 1), (Ghent, 0.3), (Antwerp, 0.3)}.

• Under the consideration that ‘NOW ’ indicates the current date, tcAoO,2 =

during [16/11/02, NOW] models ‘since 16/11/02’.

4.5.2.2. Query Evaluation

The query is evaluated for every tuple in the relation. For every tuple in the relation,
the following happens distinctly:

Every non-temporal elementary query condition is evaluated, resulting in a BSD
for each. This evaluation is done as described in [198], using Eq. (4.8) and
(4.9). The resulting BSD expresses the extend to which the tuple’s value for the
corresponding attribute satisfies and dissatisfies the user’s non-temporal demand
expressed in the elementary query condition.

BIPOLAR QUERYING OF TEMPORAL DATABASES 4-27

ID IID cDoB tcDoB cAoO,1 tcAoO,1 cAoO,2 tcAoO,2

1 1 (1,0) (1,1) (1,0) (1, 0) (0.3,1) (0,0)
1 2 (1,0) (1,1) (0.7, 0.3) (0, 0) (1,0.7) (1,0)
1 3 (1,0) (1,1) (0.3, 0.7) (0, 0) (0.7,0.3) (1,1)
2 1 (0.5, 0.5) (1,1) (0.3, 0.7) (0, 0) (0.7,0.3) (1,0)
2 2 (0.5, 0.5) (1,1) (0.7, 0.3) (0, 0) (1,0.7) (1,1)

Table 4.4: The example query evaluation for the example table. The values for the non-
temporal constraints show BSD’s (s, d), the others pairs (p, n) consist of a possibility
degree p and necessity degree n.

Every temporal constraint corresponding to an elementary query condition is
evaluated, resulting in a possibility degree and a necessity degree. For this evalu-
ation, the possibility and necessity degrees expressing respectively the possibility
and necessity that the tuple’s valid-time interval is in the given Allen relationship
with the given crisp time interval are calculated using ill-known constraints. This
calculation is done exactly as described in Chapter 3, and in [181], [228], using
Eq. (3.15)-(3.16).

The interpretation here is that the resulting BSD expresses to which extend the state
of an object or concept satisfies the user’s request, while the possibility and necessity
degrees express how plausible, respectively necessary it is that the object or concept
under consideration is in this state during a time period related to the time period spec-
ified by the user.

In Table 4.4, the resulting BSD’s, possibilities and necessities after evaluation of
the individual criteria in the example query for the tuples of Table 4.3 are shown.

4.5.2.3. Object Ranking

The purpose of evaluating a query is of course to provide the user with the objects
or concepts most fitting to his or her needs. In this case, two different criteria play a
role.

1. The possibility and necessity degrees constitute quantifications of confidence
in a context of valid-time uncertainty and thus portray the confidence in and
necessity of the presence of an object able to fulfill the user’s requests. These
quantifications answer the question: ‘How plausible is it that a suitable object or
concept is available?’.

2. The (dis)satisfaction degrees constitute quantifications of satisfaction and dissat-
isfaction and thus portray the level of (dis)satisfaction an object could bring the
user with respect to his or her demands. These quantifications answer the ques-
tion: ‘To what extend would a possibly available object (dis)satisfy the user’s
demands?’.

A fundamental question poses itself now: how can both quantifications be com-
bined so as to obtain a single ranking of the results? An unambiguous and straight-
forward ranking allows to easily present the query results best fitting the user’s de-
mands. When ranking the results, the importance the user allocates to availability

4-28 BIPOLAR QUERYING OF TEMPORAL DATABASES

and (dis)satisfaction should be carefully examined and taken into account: some users
might not care so much about availability, as long as they are sufficiently satisfied
with the object, or vice versa. It is important to keep both quantifications as sepa-
rate (meta)data in the ranked results presented to the users, else the mutually different
interpretations of both quantifications would be lost.

In most existing proposals dealing with a similar situation, both quantifications are
combined as to restrict each other. The result is generally seen as a quantification of
the possibility that the user requirements are met. In the presented work, this same
approach will be followed.

For every couple (cAi
, tcAi

) of a non-temporal elementary query constraint cAi

and the corresponding temporal constraint tcAi
, let

(stcAi
, dtcAi

) be the BSD and

(posttcAi
, necttcAi

) be the possibility and necessity pair

all resulting from the evaluation of (cAi
, tcAi

) for a database tuple t. First, a score

sctcAi
=

(stcAi
− dtcAi

+ 1)

2

is calculated, expressing how well the tuple fulfils the positive and negative non-temporal
user demands about attribute Ai. This calculation is based on a scoring function sug-
gested in [198] (but rescaled to cover the unit interval) and could be replaced by another
consistent one. Now, the possibility postAi

and the necessity nectAi
that the user’s re-

quirements about Ai are met, are calculated as follows:

postAi
= min(sctcAi

, posttcAi
)

nectAi
=

{
0 if postAi

< 1
min(sctcAi

, necttcAi
) else.

Every database tuple t represents an object or concept state. Let

{to,i : i ∈ N ∧ 1 ≤ i ≤ m}

be the set of tuples to,i representing states of object o. Then, for every such couple
(cA, tcA), for every object or concept o, the degrees posto,iA and necto,iA , i ∈ N ∧ 1 ≤
i ≤ m must be combined in a general possibility degree posoA, respectively necessity
degree necoA, to express how possible (resp. necessary) it is that o meets the user’s
demands about A. For this, a maximum function is used, to express that if any state of
o has a high plausibility of meeting the user’s demands, then o should be seen similar.
Thus:

posoA = max
1≤i≤m

(pos
to,i
A)

necoA = max
1≤i≤m

(nec
to,i
A).

The results of these calculations for the example are shown in Table 4.5. Based
on these possibility and necessity degrees, a consistent ranking can be made. In the
context of the presented work, it is suggested to model the ‘AND’ query operator with
a minimum function and the ‘OR’ query operator with a maximum function. This
would result in the objects with ID’s respectively 1 and 2 having final possibilities 0.7,
resp. 0 and final necessities 0, resp. 0.

BIPOLAR QUERYING OF TEMPORAL DATABASES 4-29

ID posDoB necDoB posAoO,1 necAoO,1 posAoO,2 necAoO,2

1 1 1 1 0 0.7 0
2 0 0 0 0 0.7 0

Table 4.5: The resulting possibility and necessity degrees.

4.5.2.4. Results and discussion

In this section, a novel technique is presented, to query a valid-time relation con-
taining uncertain valid-time data in a heterogeneously bipolar way, allowing to assign
a specific temporal constraint to every elementary query constraint . Furthermore, a
major issue in combining quantifications of (dis)satisfaction with quantifications of
confidence in a context of partial knowledge is described and shortly discussed. In the
near future the possible interactions between valid-time uncertainty and bipolar query-
ing will be further explored and some considerable attention will be dedicated to the
issue in combining semantically different quantifications.

4.6. Case of use

In this case study, the medieval diplomatic database from the Low Countries (SMLC
Diplomata Belgica) [229] provides data about diplomatic documents from the medieval
ages. The temporal indications in this database are usually imprecise. In some cases
the exact dates, the author or the place for a document are not exactly known. By using
bipolar temporal queries, we may solve queries like:

“The historician wants to obtain all the documents written by the pope Alexander II
and that were also written in a benedictine abbey and drawn up around the year 1703.”

4.6.1. Medieval Diplomatic Sources of the Low-Countries in Bel-
gium

The history department in the Ghent University and the Royal Commission of His-
tory in Belgium provide a database with diplomatic documents from the medieval ages
(diplomas, letters and sources from the government). The main feature of this database
is that most of the elements are known with some amount of imprecision, related, for
instance, to the date of writing, the place or even the author. This database usually
provides several fields that store the possible dates for an event.

The validity dates for a document have been studied by different historician re-
searchers. Each document has a most possible data which is considered to be the most
plausible date for that document. The database deals with valid-time for the documents
and, therefore, the stored date is the date when the document was legally valid.

In this work, we will consider the most possible starting and ending dates provided
by the historicians. The simplified schema for the database is shown in Table 4.6.

The description of the fields that we will use in the example are the following:

ID: The document identifier. It is the primary key.

4-30 BIPOLAR QUERYING OF TEMPORAL DATABASES

ID Gender Languge Author Receiver
13559 B L Pope Innocentius III UNKNOWN
13398 B L Pope Innocentius III Marquis Boniface
13412 E L Count Hugues IV King Henri I
13428 B L Pope Innocentius III Marquis Boniface
13613 D L King Philippe King Henri I
13790 B L Pope Innocentius III King Kalojan
14268 D L King John UNKNOWN

Table 4.6: Sample of the historical database from the medieval sources of the Low
Countries.

ID FVP FVP in JDN format
13559 22/03/1203 [2160534, 2160534, -, -]
13398 20/05/1203 [2160593, 2160593, -, -]
13412 1/08/1203 +-20 days [2160656, 2160676, -, -]
13428 7/02/1204 +- 30 days [2160841, 2160871, -, -]
13613 12/11/1204 [2161135, 2161135, -, -]
13790 16/08/1205 +- 4 days [2161410, 2161414, -, -]
14268 8/02/1209 [2162684, 2162684, -, -]

Table 4.7: Valid time in FVP representation.

Gender: The type of document. There are the following types: B a document
from the pope, E a letter and D a document from the king.

Language: The language in which the document is written. In the selected sam-
ple, L means that are written in latin.

Author: The person or the authority that writes the document.

Receiver: The person or the authority that receives the document.

Valid time: The validity period for a document. It may be distinguished between
the following two types:

• The exact date: The date for a document is precisely known. In this case,
the validity period is modelled by a rectangular possibility distribution. (An
FVP in which α = β).

• The date is known with some imprecision. In this case, the validity period
is represented by an FVP.

Table 4.7 shows the validity periods associated to each element in Table 4.6.

4.6.2. Bipolar querying of temporal databases

We will explain how to extend the bipolar querying to temporal databases. In this
case, we will work with valid-time databases. The query is specified as shown in Eq.

BIPOLAR QUERYING OF TEMPORAL DATABASES 4-31

(4.41) in Section 4.5.1.1 [20]. This allows to specify a validity period within a bipolar
query. Therefore, the query Q̃ is specified as follows:

Q̃ = (Qtime, (Qpos, Qneg)) (4.43)

As explained before, (Qpos, Qneg) refers to the positive and negative preferences
for an user whereas Qtime specify the validity period for the result tuples. In the query,
the time may be specified in an imprecise way, with respect to the starting and ending
point of the interval. The time interval specification is interpreted in a conjunctive
semantics. In other words, it is considered that the user prefers objects that are valid
during the whole validity period.

4.6.3. Query evaluation

In the mentioned database, each row contains an interval Vr with the most possible
starting s and ending e dates. For each row r in the database, both criteria (Qpos, Qneg)

are evaluated independently. As a result, we obtain a BSD given by (sr, dr) with the
satisfaction degree sr and the dissatisfaction degree dr. The temporal criteria Qtime
is also evaluated independently. In this case, the evaluation of the temporal criteria is
made with the gradual inclusion of the two sets:

degvs(Ṽq, Ṽr) = deg(Ṽq ⊆ Ṽr)

=
card(Ṽq ∩ Ṽr)
card(Ṽq)

As the time intervals are continuous, the last formula may be written as follows:

degvs(Ṽq, Ṽr) =

∫
U
min(µṼq

(x), µṼr
(x))dx∫

x∈U µṼq
(x)dx

Where U is the time domain and µṼq
and µṼr

are the membership functions for Ṽq
and Ṽr. Then, the Valid-time Satisfaction Degree (VSD) is obtained.

4.6.4. Aggregation

Once both, the bipolar satisfaction degree BSD and the Valid-time satisfaction de-
gree are obtained, it is necessary to define an aggregation method. This method will
specify the balance between the temporal and the bipolar criteria. Both values BSD
and VSD are computed independently and are aggregated as shown in Section 4.5.1.3:

RankTotal = ω ∗ RankBSD + (1− ω) ∗ V SD (4.44)

Example 29. Consider the database of diplomatic documents with the structure shown
in Tables 4.6 and 4.7. The user wants to make the following query:

“To obtain the documents that have been written by the pope Inocentius III and that
have been received by Marquis Boniface or have a gender equal to ’D’. The document
was not received by Kalojan and it existed at least from the beginning of the year 1203

to the ending of the year 1206.”

4-32 BIPOLAR QUERYING OF TEMPORAL DATABASES

The query is expressed according to the Eq. (4.43) into the following:(
ctime, (cposAuthor ∧ (cposReceiver ∨ c

pos
Gender)) , c

neg
Receiver

)
(4.45)

Where:

ctime (Expressed as FVP): [26/05/1203, 05/06/1203, 26/01/1206, 5/02/1206]. In
Julian Day format (JDN): [2160599, 2160609, 2161275, 2161585].

cposAuthor = (Inocentius III,1).

cposReceiver = (Marquis Boniface, 1).

cposGender = (D, 1).

cnegReceiver = (Kalojan, 1).

Now, the evaluation of the query is done in two s. First, the bipolar satisfaction
degree BSD is computed. Then, the Valid-time satisfaction degree is computed. Table
4.8 shows the calculations. For each record, the satisfaction, dissatisfaction, BSD and
VSD are shown.

ID s d rank VSD
13559 0 0 0 1
13398 1 1 1 1
13412 0 0 0 0,936
13428 1 0 1 0,742
13613 0 0 0 0,456
13790 0 1 -1 0,172
14268 0 0 0 0

Table 4.8: Satisfaction degree s, dissatisfaction degree d, value for BSD and value for
V SD.

Finally, the aggregation of the results is done by using Eq. (4.44). Table 4.9 shows
how different values for ω give more weight to the temporal or the bipolar part of the
query. The final ranking is a value in the interval [−1, 1]. This allows to classify the
results in one of the three groups as explained in Section 4.3.2. A value of −1 is a
total dissatisfaction. A value of 0 represents indifference. A value of 1 represents full
satisfaction of the criteria.

4.7. Conclusions

In this chapter, an overview and comparison of two commonly known approaches
to bipolar querying of databases have been presented: the constraint-wish approach and
the satisfied-dissatisfied approach. The specification of bipolar query conditions and
different aspects of query handling, including the evaluation of elementary conditions,
their aggregation, as well as ranking of the query results have been described. Also,
the application of bipolar querying to temporal databases has been studied.

BIPOLAR QUERYING OF TEMPORAL DATABASES 4-33

ID ω = 0 ω = 0.25 ω = 0.5 ω = 0.75 ω = 1
13559 1 0.75 0.5 0.25 0
13398 1 1 1 1 1
13412 0,936 0,702 0,468 0,234 0
13428 0,742 0,807 0,871 0,936 1
13613 0,456 0,342 0,228 0,114 0
13790 0,172 -0,121 -0,414 -0,707 -1
14268 0 0 0 0 0

Table 4.9: Comparative with different values for ω for result classification.

The constraint-wish approach has been specifically designed to cope with situations
where user preferences express requirements —called constraints— which should be
satisfied (at least to some extent) by the retrieved database tuples, and other, optional
conditions —called wishes— which serve to distinguish among those tuples that satisfy
the constraints to the same extent. Slightly different semantics is modelled by the ‘and
if possible’ based approach to constraints and wishes, where the influence of the wishes
on the results of a query depends on the existence of the tuples satisfying constraints
and wishes at the same time.

The motivation for the satisfied-dissatisfied approach is to cope with user prefer-
ences that are composed of positive conditions —expressing what the user likes— and
negative conditions —expressing what the user wants to avoid. The positive and nega-
tive conditions do not necessarily have to be complementary to each other.

Although both approaches result in pairs of satisfaction degrees (constraint satisfac-
tion and wish satisfaction, or satisfaction degree and dissatisfaction degree), the seman-
tics are quite different. In the constraint-wish approach, ‘true’ constraints, i.e., manda-
tory requirements, are treated as more important in a specific sense. In the satisfied-
dissatisfied approach, the positive and negative requirements are considered in general
as being equally important and independent. Due to this assumed independence, it is
also possible to model inconsistent or conflicting situations in the satisfied-dissatisfied
approach, which is not possible in the constraint-wish approach, where either strong or
weak consistency must apply. Moreover, in the satisfied-dissatisfied approach, the set
of operators that can be used for ranking or aggregating is more elaborate than in the
constraint-wish approach (e.g., weighted aggregation operators). On the other hand, a
complete ‘bipolar’ relational algebra has been developed for the constraint-wish ap-
proach, i.e., an extension of traditional relational algebra to handle bipolarity [190].

The introduction of temporal constraints in bipolar querying, leads to several issues
related to the semantics of the constraints as well as the aggregation and ranking of the
results. In this chapter we have presented two proposals to provide bipolar querying in
a temporal database. Both are based on the satisfied-dissatisfied approach. In the first
proposal, the temporal constraint is seen as a global constraint. The user can specify
a temporal constraint which is specified by using one of the Allen relations [9] and a
(possibilistic) time interval. The resulting tuples fulfil the bipolar constraints and the
global temporal constraint. In this case the evaluation of the satisfaction and dissatis-
faction degrees is a matter of aggregation between the bipolar satisfaction degree and
the temporal satisfaction degree. The second proposal, allows to specify one or sev-

4-34 BIPOLAR QUERYING OF TEMPORAL DATABASES

eral temporal constraints in each elementary query conditions. In this case, the user
can specify different temporal constraints for each attribute. This offers the user more
expressive power, as shown in the examples of the criminal database.

In this chapter we presented a practical application of bipolar querying in a tempo-
ral database. The dataset is a real database SMLC. The most interesting characteristic
of this database is the uncertainty in the temporal data. The information obtained by
applying bipolar querying techniques, gives to the historian a classification of the query
results in three groups: The results which satisfy the criteria, the results which do not
satisfy the criteria at all and the indifferent results. This kind of information is not
provided by the traditional querying techniques.

The novel contributions of this chapter are:

The extension of the satisfied-dissatisfied approach for the bipolar querying of
databases with temporal criteria.

The aggregation and ranking between temporal criteria and non-temporal crite-
ria.

Further research work will cover the specification, ranking and aggregation of bipo-
lar temporal constraints in the satisfied-dissatisfied approach. In this case, the temporal
constraint will be specified by using both positive and negative elementary temporal
constraints.

Acknowledgements

Part of this research has been supported with the founding of the Hercules Founda-
tion (Flanders) within the project “Sources from the Medieval Low Countries (SMLC)”.
We want to thanks Philippe Demonty for the dataset used in this chapter.

5
Visualization of Uncertain Time Intervals

in the Triangular Model

The contents of this chapter have been partially published on:

G. de Tré, A. Bronselaer, C. Billiet, Y. Qiang, N. van de weghe, P. de Maeyer, J. E. Pons,
and O. Pons, “Visualising and handling uncertain time intervals in a two-dimensional
triangular space,” in Proceedings of the 2nd World Conference on Soft Computing, 12
2012.

C. Billiet, J. E. Pons, O. Pons Capote, and G. Tré, “A comparison of approaches to Model
Uncertainty in Time Intervals” in Proceedings of the EUSFLAT conference, Sep. 2013

Contents
5.1. Introduction . 5-2
5.2. The triangular model . 5-4

5.2.1. Uncertain Time Intervals 5-4
5.2.2. The triangular model . 5-5

5.3. Representing Uncertain Time Intervals 5-6
5.4. Temporal reasoning with uncertain time intervals 5-8

5.4.1. Relational Information for Interval Points 5-8
5.4.2. Relational Information for UTIs 5-11

5.5. Link between TM and the IKC frameworks. 5-12
5.5.1. Comparison of Approaches to Interval Representation . . . 5-13
5.5.2. Comparison of Approaches to Allen Relationship Evaluation5-14

5.6. Conclusions . 5-15

5-2 VISUALIZATION OF UNCERTAIN TIME INTERVALS

Time modelling is an important issue in information management. Both traditional
and soft computing methods have been thoroughly studied. Traditional approaches are
specifically designed to efficiently deal with perfect temporal data. Soft computing
techniques additionally support the efficient handling of imperfect temporal data. In
this chapter, we study a novel soft computing technique to represent and handle time
intervals that have an uncertain start and/or end point. Hereby, a two-dimensional rep-
resentation, which is called the Triangular Model, is further generalized to efficiently
cope with uncertain time intervals. The proposed approach provides a straightforward
and compact visualisation for possibilistic interval data, which supports temporal rea-
soning and in which temporal distributions are easy to observe and to analyse.

5.1. Introduction

When using fuzzy sets to represent imperfect time intervals, one should take care
about the underlying semantics [152]. Indeed, two main approaches exist and should
be clearly distinguished.

First, a fuzzy set F can be used to model the time points that belong to a given
imperfect time interval, e.g., all time points belonging to the ‘industrial revolution’.
For each time point t, the corresponding membership grade µF (t) then reflects the
proximity of t to prototype elements of F . Membership grades are hence interpreted
as degrees of similarity. The fuzzy set has a conjunctive interpretation: all its ele-
ments together represent the prototype. An example of such a fuzzy set is given in
Fig 5.1(a). The fuzzy set representing ‘industrial revolution’ expresses for each time
point, its proximity to the imperfect time interval known as ‘industrial revolution’. For
example, all dates between 1750 and 1850 fully belong to this period, while 1740 only
belongs to an extent 0.4 to this period. Reasoning with ‘fuzzy’ time intervals under this
conjunctive interpretation has, among others, been studied in [21], [23], [230].

Second, uncertainty about the start or end of a time interval can also be expressed
by a fuzzy set, of which the membership function is interpreted as a possibility distri-
bution. Under this interpretation, the membership grades of the membership function
are interpreted as degrees of uncertainty. The fuzzy set has a disjunctive interpretation:
it reflects all the possible candidates for the uncertain time point of which only one
candidate is the actual value. If the same fuzzy set F as given in Fig 5.1(a) is used in
this context to model the start point of a time interval, it denotes that the interval under
consideration starts during the industrial revolution. The exact start date is not known
with certainty, but modelled by a possibility distribution πs which returns for each time
point t, the possibility πs(t) = µF (t). Only one time point with µF (t) 6= 0 will turn
out to be the actual start point of the interval. Using the same approach, a time interval
with uncertain start point and end point can be modelled by two separate possibility
distributions πs and πe as presented in Fig 5.1(b). The leftmost possibility distribu-
tion hereby reflects the uncertainty about the starting point of the interval, e.g., ‘around
1750’, whereas the rightmost possibility distribution reflects the uncertainty about the
end point of the time interval, e.g., ‘around 1850’. Hence the two membership func-
tions in Fig 5.1(b) together represent an uncertain time interval which starts around
1750 and ends around 1850. This approach has been initially presented in [21] and fur-

VISUALIZATION OF UNCERTAIN TIME INTERVALS 5-3

ther developed within the context of temporal databases in [231], [181], as described
in Chapter 3.

A problem with the presentation of uncertain time intervals as illustrated in Fig
5.1(b) is that two separate possibility distributions are used and presented along the
same scale and in the same graphic. This might induce confusion and moreover does
not allow it to directly derive the possibility that the effective time interval, e.g., ‘starts
in 1752 and ends in 1848’. To overcome these problems an alternative visualisation
technique for uncertain time intervals is proposed in this chapter. The proposed ap-
proach is based on the time visualisation technique of Kulpa [232], [233], in which
crisp time intervals are mapped to points in a two-dimensional space. Kulpa’s model
has been further developed, extended for analysis purposes and named the Triangular
Model (TM) in [234]. In [235] an initial approach to handle imperfect time intervals in
the TM represented by fuzzy sets with a conjunctive interpretation has been presented.
In [236], [237] Qiang studied the modelling of imperfect time intervals in the TM using
rough set theory. In this chapter, Qiang’s rough set approach is further generalised to
a fuzzy set based approach in which imperfect time intervals are represented by two
fuzzy sets with a disjunctive interpretation.

time

1

0

possibility

time

1

0

possibility

1750

1750

1850

1850

(a)

(b)

Industrial revolution

Industrial revolution

Figure 5.1: Different representations of fuzzy sets representing time intervals.

The remainder of the chapter is organised as follows. In the next Section 5.2 some
preliminaries about the handling of uncertain time intervals and the triangular model
(TM) are presented. In Section 5.3 it is studied how the TM can be used to represent
uncertain time intervals. Next, the basic operational aspects of reasoning with uncer-
tain time intervals in the TM are discussed in Section 5.4. Hereby, the thirteen Allen
relations for crisp time intervals are generalised to handle uncertain time intervals and
new methods for determining the relational information between an interval point and

5-4 VISUALIZATION OF UNCERTAIN TIME INTERVALS

an uncertain interval and between two uncertain intervals are proposed. Finally, the
results of this work are discussed and some conclusions and issues for further research
are presented in Section 5.6.

5.2. The triangular model
Two essential concepts are explained in the following two subsections. First an

introduction to the uncertain time intervals (UTIs) and then an explanation of the trian-
gular model.

5.2.1. Uncertain Time Intervals

As it has been shown before, in practice, it often occurs that time intervals cannot be
exactly specified. Especially, in historical data it is often the case that either the starting
date or the ending date (or both) of a time interval are partially or completely unknown.
In such cases, the best thing to do is modelling the available knowledge about (the
uncertainty of) the interval as accurate as possible, hereby avoiding information loss.
Soft computing techniques, more specifically possibility theory [38], can be used for
that purpose. In [231], [181] a possibilistic valid-time model able to cope with time
intervals that have an uncertain start and/or end point has been presented in Chapter 3.
The basics of this model are used and briefly described as follows. Each (Un)certain
Time Interval (UTI) is defined by a pair

(πs, πe) (5.1)

where πs and πe are two convex possibility distributions, respectively reflecting the
knowledge about the start and end point of the UTI (as illustrated in Fig. 5.2(a)). In
case of certainty, the possibility distribution is characterised by a fuzzy set with single-
ton support and core, containing the crisp date. In case of uncertainty, the possibility
distribution is characterised by a normalized fuzzy set containing all possible candidate
values for the date and their associated degree of possibility.

Together, both possibility distributions reflect the available knowledge about the
start and end of the UTI they model. This implies that πs and πe together represent
another possibility distribution πI consisting of all possible time intervals that can be
constructed from πs and πe . Some of the intervals in πI are depicted in Fig. 5.2(b).
For each time interval [ts, te], its associated possibility grade in πI is computed by

πI ([ts, te]) =

{
min (πs(ts), πe(te)) , if ts ≤ te
0, otherwise.

(5.2)

Eq. (5.2) reflects that given the uncertainty about the start point, modelled by πs
and the uncertainty about the end point, modelled by πe, the possibility that [ts, te] is
the actual value of the UTI equals the possibility that ts is the actual start point (i.e.,
πs(ts)) and te is the actual end point (i.e., πe(te)) of I , where the conjunction of both
conditions is modelled by the minimum t-norm. In the inconsistent case where ts > te
the interval is considered to be completely impossible. In the following, we will denote
an UTI as πI , i.e., πI = (πs, πe).

VISUALIZATION OF UNCERTAIN TIME INTERVALS 5-5

time

1

0

possibility

1750 1850

(b)

Industrial revolution

time

1

0

possibility

1750 1850

(a)

Industrial revolution

Figure 5.2: Possibilistic modelling of a time interval.

5.2.2. The triangular model

Mainly due to its linear characteristic, time is traditionally visualised using a linear
representation where several time intervals are depicted as linear segments on top of a
horizontal time axis. This approach has also been used in Fig. 5.2(b). One can read
the start and end point of each interval on the horizontal scale. The vertical dimension
is solely used to differentiate multiple overlapping intervals, if used at all. The linear
representation works well as long as the number of represented time intervals remains
low. As soon as a large number of overlapping intervals have to be represented the
representation becomes overloaded and accurate visual data analysis becomes almost
impossible.

For that reason, an alternative, Triangular time Model (TM) has been proposed
in [234]. This model is an extension of Kulpa’s triangular model for modelling crisp
time intervals [232]. Basically, intervals are modelled as interval points in a two-
dimensional space as follows. First, a horizontal time axis is considered. Second,
for each time interval [ts, te] two straight lines Ls and Le are constructed as depicted
in Fig. 5.3. Line Ls is passing through ts and makes a fixed angle α with the hori-
zontal time axis, whereas Le is passing through te making a fixed angle −α with the
horizontal time axis. The interval [ts, te] is then represented by the intersection of Ls
and Le , which is called the interval point of [ts, te]. For the ease of use, α is here cho-
sen to be 45◦ . In TM all time intervals are represented by their corresponding interval
point. So, because α is fixed for all interval points, the position of the interval point
completely determines the start and end of the interval. The two-dimensional space of
interval points is called the interval space and is denoted by IR [233].

From the observation that the start points and end points of two crisp time intervals

5-6 VISUALIZATION OF UNCERTAIN TIME INTERVALS

time
0

ts te

α -α

Figure 5.3: Construction of an interval point.

I1 =
[
t1s, t

1
e

]
and I2 =

[
t2s, t

2
e

]
can be smaller than (<), equal to (=) or larger than

(>) each other, Allen proposed the thirteen possible relations between two crisp time
intervals given in Table 5.1 [9].

In TM, these thirteen Allen relations each correspond to a specific zone in the in-
terval space IR [232]. These thirteen zones are called Crisp Relational Zones (CRZs).
The CRZs with respect to a reference interval point I are depicted in Fig. 5.4. Hereby,
the following shorthand notations are used: equals (E), starts (S), started by (SB), fin-
ishes (F), finished by (FB), meets (M), met by (MB), overlaps (O), overlapped by (OB),
during (D), contains (C), before (B) and after (A).

time

C

O

B D A

OB

F
B

E
S
B

M
S I F

M
B

Figure 5.4: CRZs corresponding to the thirteen Allen relations with respect to the
reference interval point I .

Each CRZ represents the set of interval points of the crisp time intervals that are in
the corresponding Allen relation with respect to the reference interval I . For example,
all interval points of intervals that come before I are located in the CRZ represented by
the leftmost lower triangle in the interval space. Likewise, if an interval point is located
in the top quadrangle above I , then its corresponding interval contains I . CRZs allow
to visually analyse relations between (large) sets of interval points.

5.3. Representing Uncertain Time Intervals

In what follows, we propose a novel technique to model and visualise UTIs as
introduced in Subsection 5.2.1 in the TM that has been presented in Subsection 5.2.2.

For each UTI πI characterized by its two possibility distributions πs and πe , a cor-
responding Uncertain Interval Zone (UIZ) can be constructed as illustrated in Fig.5.5.
The convex possibility distribution πs determines the interval [t−s , t

+
s] in which the start

VISUALIZATION OF UNCERTAIN TIME INTERVALS 5-7

Name Implementation
I equals J if si = sj ∧ ei = ej
I starts J if si = sj ∧ ei < ej

I started by J if si = sj ∧ ei > ej
I finishes J if si > sj ∧ ei = ej

I finished by J if si < sj ∧ ei = ej
I meets J if ei = sj
I met by J if si = ej
I overlaps J if si < sj ∧ ei < ej ∧ ei > sj

I overlapped by J if si > sj ∧ ej < ei ∧ si < ej
I during J if si > sj ∧ ei < ej
I contains J if si < sj ∧ ei > ej
I before J if ei < sj
I after J if si > ej

Table 5.1: Allen’s relations represented in the framework. I = [si, ei], J = [sj , ej]

0 1 2 3 4 5 6 7 8 9 10 time

1

0

possibility
πS πE

11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

πI

1

0

t-s t+s t+et-e

t-s t+s t+et-e

Figure 5.5: Construction of the UIZ corresponding to a given UTI πI

point of the UTI is located, whereas the convex possibility distribution πe determines
the interval [t−e , t

+
e] in which the end point of the UTI is located. Hence, all candidate

time intervals for the UTI are contained within the interval [t−s , t
+
e] (or during [t−s , t

+
e])

and contain the interval [t+s , t
−
e]. Using the CRZs that correspond to the Allen relations

during and contains we obtain that the UTI must be located in the quadrangle zone that
is determined by the two straight lines that respectively go through t−s and t+s under an
angle α and the two straight lines that respectively go through t−e and t+e under an angle
−α. Not all interval points in this zone are to the same extent representing candidate
intervals for the UTI. Indeed, by using Eq. (5.2) it is obtained that an interval [ts, te] is
a candidate to the extent min (πs(ts), πe(te)) if ts ≤ te and not a candidate at all else.
To denote the extent to which an interval point is a candidate for the UTI, the point is
colored using a grey scaled gradient color where black denotes 1 (completely possi-
ble candidate) and white denotes 0 (completely impossible candidate). The resulting

5-8 VISUALIZATION OF UNCERTAIN TIME INTERVALS

colored quadrangle zone is then called the UIZ of the UTI.

timeπ1

1

0

Figure 5.6: Using TM to represent UTIs.

Example 30. In Fig.5.6 some examples of UIZs are shown. UTI πI1, πI2 and πI3 have
both uncertain starting and ending points. From the position of the UTIs is possible
to extract relational information. For example, it is clear that the uncertainty in the
beginning of πI1 is related with πI3. Also, πI3 is overlapped by (OB) πI2. Finally,
we can say that πI2 is after πI1. In the following section we will study the temporal
reasoning with uncertain time intervals.

5.4. Temporal reasoning with uncertain time intervals
In order to reason with UTIs, the thirteen CRZs for crisp interval points have been

generalized. For a general UTI πI , this generalisation resulted in fifteen so-called
Uncertain Relational Zones (URZs), which are depicted in Fig. 5.7. These URZs are
the basis for deriving relational information on interval points and UTIs with respect
to the reference UTI. The positioning of interval points with respect to an UTI is dis-
cussed in the next Subsection 5.4.1, whereas the positioning of two UTIs is handled in
Subsection 5.4.2.

time

C

O

B
D

A

OB

P
M

UE

P
S
B

P
S P

F P
M
B

P
F
B

UB

ts
-

ts
+

te
-

te
+

1

0

Figure 5.7: URZs: A generalisation of CRZs.

5.4.1. Relational Information for Interval Points

Like with CRZs, an URZ gives relational information on the positioning of an
interval point with respect to the candidate interval points of an UTI. The naming and
semantics of the fifteen URZs presented in Fig. 5.7 are described in Table 5.2. The first
column contains the symbols used to represent the URZs, the second column gives the
full name of the zone, whereas the third column sums up the different possible Allen
relations that correspond to the URZ.

VISUALIZATION OF UNCERTAIN TIME INTERVALS 5-9

Symbol Name Relationships
B Before B
O Overlaps O
C Contains C
D During D
OB Overlapped By OB
A After A
PM Possibly Meets M, B, O
PS Possibly Starts O, S, D
PFB Possibly Finished By O, FB, C

PE Possibly Equal E, FB, SB, F,
S, C, D,O, OB

PSB Possibly Started By C, OB, SB
PF Possibly Finishes OB, F, D
PMB Possibly Met By OB, MB A
UB Uncertain Beginning B, M, O, S, D
UE Uncertain Ending D, F, OB, MB, A

Table 5.2: The fifteen possible URZ for a given UTI.

The set of the fifteen relations corresponding to the fifteen URZs given in Table 5.2
is denoted RU , i.e.,

RU = { B, O, C, D, OB, A, PM, PS, PFB, PE, PSB, PF, PMB, UB, UE }.

Consider an interval point J in the interval space IR. For the sake of generalisation
it is assumed that J has an associated degree of possibility µIR(J) which expresses
to what extent it is possible that the interval point belongs to the interval space. (For
interval points that represent a crisp interval it holds that µIR(J) = 1. For interval
points belonging to an UIZ it more generally holds that 0 < µIR(J) ≤ 1, denoting
to what extent it is possible that J is the actual interval of the UTI represented by the
UIZ.)

Depending on the location of J with respect to the UTI πI , we can have certainty
or uncertainty about the possible Allen relations between J and πI :

If the interval point J is located in a zone with only one possible Allen relation.
(From Fig. 5.7 and Table 5.2 it can be derived that this is the case if J is located
in the URZ B, O, C, D, OB or A.) Then we know with certainty that J is in the
corresponding Allen relation R

′
with UTI πI . The relation is considered to be

possible to an extent
µ(JRπI)

(
R
′
)

= µIR (J) (5.3)

For all other (non-candidate) Allen relations the above degree of possibility is
zero.

If the interval point J is located in a zone with multiple candidate Allen relations.
(This occurs when J is located in the URZ PM , PS, PFB, PE, PSB, PF , PMB,
UB or UE.) Then there is uncertainty about the Allen relation that actually ap-
plies to J and the actual interval of the UTI πI . The possible relations are those

5-10 VISUALIZATION OF UNCERTAIN TIME INTERVALS

mentioned in the Table 5.2. The uncertainties associated with these relations
originate from the uncertainty in the UTI and can be computed as follows.

To start, draw two straight grid lines through J , reconstructing the triangle that
determines the interval that is represented by J and draw two straight grid lines
through the start and end point of this interval which are orthogonal to the sloping
sides of the triangle. (These are the four dotted lines represented in Fig. 5.8.) A
grid line can intersect with the UIZ of πI . If this is the case, it subdivides the
zone (or zones in case of multiple intersecting grid lines) of the UIZ into three
sub zones: a sub zone at one side of the grid line, a sub zone at the other side of
the grid line and a sub zone consisting of the segment of the grid line resulting
from the intersection. As such, the grid lines subdivide R

′
the UIZ of πI into as

many different sub zones πR
′

I as there are candidate Allen relations R
′

between
J and πI (Table 5.2). To identify the relation R

′
of a given R

′
sub zone πR

′

I ,
the CRZs of an arbitrary interval point of the sub zone are considered. R

′
is then

the relation that corresponds to the CRZ in which J is located. R
′
.

J

1

0

πD
I πS

πO
I

 I

ts- ts+ te- te+

Figure 5.8: Determining the possible relation between an interval point J and and UTI
πI .

Each sub zone πR
′

I corresponds to a candidate Allen relation R
′

and contains
those candidate interval points of πI for which J is in relationR

′
. The possibility

that the candidate relation R
′

is the actual relation between J and πI is then
computed by

µIRπI

(
R
′
)

= sup
I∈πR

′
I

min (µIR(J), µI(I)) (5.4)

Eq. (5.4) reflects that the possibility of R
′

equals the best of all possibilities that
J belongs to the interval space and I represents the actual value of πI . For all
noncandidate Allen relations R

′
, the sub zone πR

′

I equals the empty set ∅, so Eq.
(5.4) will return a possibility degree zero.

Hence, the possible relations R
′

between the interval point J and the UTI πI can
be modelled by the possibility distribution

πJRπI
= {
(
R
′
, µJRπI

(
R
′
))
|R
′
∈ RU} (5.5)

where µJRπI

(
R
′
)

is computed using Eq. (5.3) or Eq. (5.4).

VISUALIZATION OF UNCERTAIN TIME INTERVALS 5-11

Example 31. To illustrate the determination of relational information for interval points,
consider a situation as sketched in Fig. 5.8. The figure represents a quadrangle UIZ
corresponding to an UTI πI and an interval point J , e.g., corresponding to a crisp in-
terval. Because J is located in the URZ possibly starts(PS), J can either overlap (O)
with the UTI πI , be located during (D) πI or start (S) at the same time as πI .

To determine all the interval points of πI with which J is in a given relation R,
the four dotted grid lines are constructed. One grid line intersects with the UIZ of πI
O, S, D and subdivides it in three sub zones πOI , π

S
I , π

D
I that respectively contain all

interval points of πI for which J is relation O, S and D. The interval points in each
zone πR

′

I , R
′

= O,S,D can then later be used to determine the possibility that J is in
relation R with the UTI πI (Eq. (5.4)).

5.4.2. Relational Information for UTIs

For the comparison of two UTIs πJ and πI a generalisation of the technique pre-
sented in Subsection 5.4.1 can be used. Consider a reference UTI πI . The same URZs
as depicted in Fig. 5.7 can be constructed for the UIZ of πI . The possible relations be-
tween a second UTI πJ and πI can then be derived from the location of the UIZ of πJ
with respect to URZs of πI . This is illustrated in Fig. 5.9. Depending on how the UIZ
of πJ is located with respect to the UIZ of πI , we can have certainty or uncertainty
about the applicable Allen relation between πJ and πI :

time

πJ

πI
1

0

Figure 5.9: Determining the possible Allen relations between an UTI πJ and and UTI
πI .

If the UIZ of πJ is completely located in an URZ with only one possible Allen re-
lation, i.e., if the intersection of the UIZ of πJ and URZR

′
withR

′ ∈ {B,O,C,D,OB,A}
equals the UIZ of πJ , then we know with certainty that the UTI πJ is in the Allen
relation R

′
with the UTI πI . This certainty follows from the fact that all candi-

date intervals for πJ are in Allen relation R
′

with all candidate intervals for πI
and R

′
is the only possible Allen relation for that UIZ. Hence the relation R

′

between πJ and πI is then considered to be completely possible, i.e.,

µπJRπI

(
R
′
)

= 1 (5.6)

For all other (non-candidate) Allen relations the above degree of possibility is
zero.

5-12 VISUALIZATION OF UNCERTAIN TIME INTERVALS

In all the other cases, there is uncertainty about the Allen relation that applies
between πJ and πI . These other cases occur when the UIZ of πJ is completely
located in an URZ with multiple possible Allen relations (i.e., when the inter-
section of the UIZ of πJ and the URZ R

′
with R

′ ∈ {PM, PS, PFB, PE, PSB,
PF, PMB, UB, UE } equals the UIZ of πJ) or when the UIZ of πJ intersects
with multiple URZs, as illustrated in Fig. 5.9. In the cases of uncertainty the
candidate Allen relations can be directly derived from the URZs that contain a
part of the UIZ of πJ : all possible relations to πI (as mentioned in Table 5.2)
for the URZs under consideration define the set of candidate Allen relations.

Example 32. For example, the UIZ of πJ presented in Fig. 5.9 intersects with the
URZs PM , O, PS and UB.

The sets of possible Allen relations corresponding to these URZs are:

for PM : {M, B, O};

for O: {O};

for PS: {O, S, D};

for UB: {B, M, O, S, D}.

The set of candidate Allen relations between πJ and πI is then obtained from the union
of these sets, i.e., is the set {B, M, O, S, D}.

The uncertainty about which one of these relations R
′

actually applies, originates
from the uncertainty about the actual interval of the UTI πI and the uncertainty about
the actual interval of the UTI πJ and can be computed from the possibility distributions
πJRπI

of all interval points J belonging to πJ (Eq. (5.5)).
Indeed, the possibility that the candidate relation R

′
is the actual relation between

πJ and πI is obtained by

µπJRπI

(
R
′
)

= sup
J∈πJ

πJRπI

(
R
′
)

(5.7)

and expresses that the best possibility ofR
′

being the relation between an interval point
J of πJ and the UTI πI (seen over all interval points J of πJ) reflects the possibility
that R

′
is the relation between πJ and πI .

The possible relationsR
′

between the UTI πJ and the UTI πI can then be modelled
by the possibility distribution

ππJRπI
=
{(
R
′
, µπJRπI

(
R
′
))
|R‘′ ∈ RU

}
(5.8)

where µπJRπI

(
R
′
)

is computed using Eq. (5.6) or Eq. (5.7).

5.5. Link between TM and the IKC frameworks.
In this section, first the approaches of the IKC and TM frameworks towards interval

representation are compared. Next, their approaches towards the evaluation of Allen
relationships between two uncertain time intervals are compared.

VISUALIZATION OF UNCERTAIN TIME INTERVALS 5-13

5.5.1. Comparison of Approaches to Interval Representation

The ill-known constraint (IKC) framework uses ill-known time intervals (IKTI) to
represent time intervals subject to uncertainty, whereas the TM framework uses UTI
for this. In both approaches, to consider uncertainty about the exact crisp time inter-
vals (CTI) which is intended, uncertainty about the exact starting and ending instants of
the intended interval is considered and confidence in the context of this uncertainty is
expressed using two possibility distributions. In an IKTI, these possibility distributions
each define one ill-known value (IKV). One of these then defines the IKTI’s starting
instant and the other defines its ending instant. In an UTI, one of these possibility dis-
tributions is directly meant to define the UTI’s starting instant and the other is directly
meant to define the UTI’s ending instant. It is obvious that the concepts of IKTI and
UTI are exactly the same, except for the explicit usage of the concept of IKV in IKTI
to define and describe uncertainty about starting and ending instants. This equality im-
plies that both approaches have the same basic restriction: they cannot represent every
kind of interval subject to uncertainty imaginable. For example, imagine an ordered set
of instants coinciding with N0 and imagine an interval subject to uncertainty in this set,
where the intended interval is either [2, 4] (possibility 1) or [3, 7] (possibility 1). This
interval can not be modelled by a combination of possibility distributions defining the
starting and ending instants without making [2, 7] and [3, 4] also possible as intended
intervals to some extent. This issue was first suggested about IKTI in [231].

Now, a major difference between the two frameworks, concerning their approaches
towards the representation of time intervals in general, is that the TM framework in-
cludes visualization in its approach.

A first consequence of this is that the TM framework allows the visualization of
multiple CTI in the same image plane. In theory, it should also allow the visualization
of multiple UTI in the same image plane. However, if the interval space area’s visual-
izing these UTI overlap, it is not yet researched which greyscale (or other) color and
intensity each interval point in this overlapping area should have, as the appearance of
such interval point should both reflect the possibility of it being the interval intended by
the first UTI and the possibility of it being the interval intended by the second UTI. The
advantage of the ability to visualize multiple time intervals in the same image plane is
that a human observer could easily assess certain characteristics of a distribution of
time intervals from an image containing their visualization. Therefore, the TM frame-
work provides an added value to the IKC framework since it supports the visualization
of IKTI.

A second consequence of this is that the TM framework requires that an UTI can
be visualized, using a visualization method which actually visualizes the possibility
of a CTI of being the interval intended by this UTI for every CTI that has a non-zero
possibility of this. Thus, a method is required (see (5.2)), to calculate the possibility
of a given CTI of being the interval intended by an UTI based on the possibility dis-
tributions defining this UTI. This method is found by demanding that the given CTI’s
starting instant is the intended interval’s starting instant and that the given CTI’s end-
ing instant is the intended interval’s ending instant and by determining the possibility
of the conjunction of both demands using the standard possibility theory conjunction
operator ‘minimum’. Although not necessary for the correct and consistent functioning

5-14 VISUALIZATION OF UNCERTAIN TIME INTERVALS

of the TM framework, it appears to be the intention of the TM framework that possibil-
ity about the exact starting or ending instant of the interval intended by the UTI could
be derived from the possibility distribution defining the possibility that a given CTI is
the interval intended by the UTI. For this derivation to be consistent, the possibility
distributions defining the UTI must be convex [177]. Given an ordered set T and an
UTI J = (πJs , πJe) in T with possibility πJ(I) that a given CTI I = [si, ei] is the
exact time interval intended by J , the derivations can be calculated as follows:

πJs(si) = max
K=[si,k],k∈T,k>si

(πJ(K))

πJe(ei) = max
K=[k,ei],k∈T,k<ei

(πJ(K))

With respect to this convexity demand, the IKC framework is similar: the possi-
bility distributions defining the starting and ending IKV of an IKTI are also demanded
to be convex by the IKC framework, although this appears not to be necessary for the
framework to function correctly and consistently.

5.5.2. Comparison of Approaches to Allen Relationship Evaluation

As mentioned before, a major difference between the two frameworks, concerning
their approaches towards the representation of time intervals in general, is that the
TM framework includes visualization in its approach. As a result, it also includes
visualization in its approach towards the evaluation of Allen relationships between a
CTI and an UTI.

A first consequence of this is that, given a CTI, an UTI, its URZ and their visualiza-
tions in the same image, the TM framework allows a visual, human assessment of the
degree of possibility of this CTI being in an Allen relationship with this UTI, for every
Allen relationship with a non-zero such degree, based on this image. Moreover, those
with possibility degree equal to zero can be easily found before any calculation is done:
they are the relationships not contained in the set corresponding to the URZ containing
the CTI’s interval point. On the other hand, to examine the respective possibilities of
a given CTI of being in several different Allen relationships with a given IKTI using
the IKC framework, a new collection of specific IKC and a specific aggregation of
these should be constructed for every Allen relationship under consideration, allowing
to calculate its exact possibility and necessity. In contrast to the TM framework, using
the IKC framework a human assessment before any calculation is not possible and it is
not known before any calculation which Allen relationships will result in a possibility
degree equal to zero.

A second consequence is that, given an UTI and its URZ, multiple CTI can be visu-
alized in the same image as the UTI and its URZ. Thus, the same image could provide
a visual, human assessment of the possibilities with which multiple CTI are in Allen
relationships with the UTI, before any calculation is done. Again, the IKC framework
would need a different collection of specific IKC and a specific aggregation of these
for every Allen relationship under consideration, but calculating the possibilities for
several CTI to be in a given Allen relationship with a given IKTI would not provide
much extra work.

VISUALIZATION OF UNCERTAIN TIME INTERVALS 5-15

A third consequence is that, in the TM framework, given an UTI, its URZ and a
visualization of these in the same image, a given Allen relationship could correspond
with several URZ. Thus, given a distribution of CTI, it is not easy to visually assess
which CTI have a non-zero possibility of being in the given Allen relationship with the
given UTI. On the other hand, assessing this using the IKC framework is impossible
without any calculation, but the necessary calculations are pretty straightforward.

Although this has not been rigorously researched yet, it is the conviction of the
authors that a great strength of the IKC framework lies in its modular approach to-
wards the evaluation of temporal relationships, resulting in a flexibility and an easy
handling of complex temporal relationships, while the visualization of these using the
TM framework could become complex and heavy. This would give the IKC framework
a major advantage over the TM framework, when used in reasoning systems like e.g.
decision support systems. Moreover, in some cases the visualization step used in the
TM framework could be a redundant step.

Example 33. Consider an ordered set of instants T coinciding with R, a CTI I = [1, 3]

and a time interval J of which the starting instant is defined by a triangular possibility
distribution on T with core {5} and support [2, 7] and of which the ending instant is
defined by a triangular possibility distribution on T with core {12} and support [9, 15].
The visualization of this example situation using the TM framework is shown in Figure
5.10. The interval point for I lies in the URZ ‘PM’. Thus, possibility is higher than zero
for I to be in a ‘meets’, ‘before’, or ‘overlaps’ relationship with J . As the darkest point
in the ‘overlaps’ area part is very light, the darkest point in the ‘meets’ line segment is
of almost exactly the same lightness and the darkest point in the ‘before’ area part is
perfectly black, it can be estimated that I overlaps J with a low possibility, I meets J
with the same low possibility and I is before J with possibility 1. Calculation using
the IKC framework now learns that:

Pos(IoverlapsJ) = min(1, 1/3, 1) = 1/3

Pos(ImeetsJ) = min(1/3, 1) = 1/3

Pos(IbeforeJ) = min(1) = 1

5.6. Conclusions

Uncertain time intervals are time intervals for which there is uncertainty about the
start and / or end point (or both). A possible approach to model uncertain time in-
tervals is to use two possibility distributions: one reflecting the uncertainty about the
actual start point and the other reflecting the uncertainty about the actual end point of
the interval. Both possibility distributions together then form a possibility of candidate
intervals (of which one is the unknown actual value of the uncertain time interval). Due
to their large quantity, representing the candidate intervals of an uncertain time interval
using a traditional linear time model is not straightforward, nor can be done efficiently.
Moreover in case of multiple coexistent uncertain time intervals, such a linear repre-
sentation is almost not accessible for further visual analysis. For these reasons, a novel

5-16 VISUALIZATION OF UNCERTAIN TIME INTERVALS

0 1 2 3 4 5 6 7 8 9 10 time

1

0

possibility

πS πE

11 12 13 14 15

IS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IE

I

πJ

Le'

time

1

0

Figure 5.10: The visualization of the example using the TM framework.

modelling technique for uncertain time intervals has been proposed in this chapter. This
technique is a generalisation of the triangular time modelling approach that originally
has been presented by Kulpa. In the generalisation, each candidate time interval of an
uncertain time interval is represented as an interval point in a twodimensional triangu-
lar space. The interval point is colored using a grey scaled gradient color representing
the possibility (∈ [0, 1]) that the candidate interval is indeed the actual unknown inter-
val. Hence, an uncertain time interval is represented by a colored zone in the triangular
space, which is called the uncertain interval zone of the uncertain interval. Multiple
uncertain time intervals each have their own uncertain interval zone, which might be
overlapping with other uncertain interval zones. Next to the representation of uncer-
tain time intervals, the determination of their positioning related to each other has been
studied. For that purpose fifteen uncertain relational zones related to an uncertain inter-
val zone have been proposed. These zones are generalisations of the thirteen relational
zones corresponding to the thirteen Allen relations for crisp time intervals introduced
by Kulpa. Each uncertain relational zone corresponds to a set of candidate Allen re-
lations. An interval point that is located in such a zone can then be in one of these
candidate relations with the uncertain time interval. Using uncertain relational zones
two novel techniques respectively determining the candidate Allen relations between
an interval point and an uncertain time interval and two uncertain time intervals have
been proposed. Where the uncertain interval zones permit to visually determine the
possible Allen relations between two uncertain time intervals, the proposed techniques
allow to compute their corresponding possibility degrees.

On the other hand, we have compared the two different frameworks designed to
represent time intervals subject to uncertainty and evaluate temporal relationships be-
tween such intervals and crisp intervals: the triangular model (TM) framework and the
ill-known constraint (IKC) framework. It is concluded that:

With respect to representation, both frameworks differ only slightly, with the TM
framework allowing easier human assessments, due to its approach including
visualization.

VISUALIZATION OF UNCERTAIN TIME INTERVALS 5-17

With respect to temporal relationship evaluation, the TM framework allows easy
human assessments in several situations, but the IKC framework seems more
fitted for complex reasoning, due to its modular build.

The novel contributions of this chapter are:

The visualization of uncertain time intervals in the triangular model.

The calculation of the relational information between two uncertain time inter-
vals.

In future research we plan to investigate the applicability of the presented tech-
niques in flexible querying of temporal databases containing uncertain interval data.
Research topics that are of interest in this respect are: (1) the handling of elementary
query conditions based on the fifteen generalised Allen relations corresponding to the
uncertain relational zones, (2) the use of additional interval analysis operations like
in between (two given uncertain time intervals), starts within (a given uncertain time
interval) and ends within (a given uncertain time interval) and operations that put con-
straints on the duration of uncertain time intervals and (3) the handling of composite
query conditions. Other planned activities include the implementation of a prototype
software and the study of performance issues, including indexing.

5-18 AN OPEN SOURCE FRAMEWORK

6
An Open Source Framework for Fuzzy

Temporal Databases

The contents of this chapter have been partially published on:

J. E. Pons, I. Blanco Medina, and O. Pons Capote, “Generalised fuzzy types and query-
ing: implementation within the hibernate framework,” in Proceedings of the 9th interna-
tional conference on Flexible Query Answering Systems, FQAS’11, (Berlin, Heidelberg),
pp. 162–173, Springer-Verlag, 2011.

J. E. Pons, O. Pons Capote, and I. Blanco Medina, “A fuzzy valid-time model for re-
lational databases within the hibernate framework,” in Proceedings of the 9th interna-
tional conference on Flexible Query Answering Systems, FQAS’11, (Berlin, Heidelberg),
pp. 424–435, Springer-Verlag, 2011.

J. E. Pons, O. Pons, and I. Blanco Medina, “An open source framework for fuzzy rep-
resentation and querying in fuzzy databases,” in Proceedings of the IADIS International
Conference Informations Systems (P. P. Miguel Baptista Nunes, Pedro Isaı́as, ed.), March
2011.

J. E. Pons, O. Pons, and I. B. Medina, New trends on intelligent systems and soft comput-
ing, ch. Fuzzy temporal information treatment in relational DBMS. Theoretical Formula-
tion, Implementation and Applications, pp. 95–112.

6-2 AN OPEN SOURCE FRAMEWORK

Contents
6.1. Hibernate Framework . 6-3

6.1.1. Architecture . 6-3
6.1.2. Querying in the Hibernate framework 6-11

6.2. The stratified model . 6-14
6.2.1. A Stratified Architecture 6-14
6.2.2. Design Criteria . 6-15
6.2.3. Implementation Model 6-15
6.2.4. Valid time representation 6-17
6.2.5. Fuzzy Querying . 6-21

6.3. Related work . 6-28
6.4. Conclusions . 6-29

AN OPEN SOURCE FRAMEWORK 6-3

In this chapter we will implement a relational database system to deal with both
imperfections in representation and flexible querying of temporal databases, using our
possibilistic approach, presented in chapter 3. Despite of other relational temporal
database implementations made in commercial systems like Oracle Workspace Man-
ager, we want to obtain an open source and multiplatform implementation. To achieve
this, we work with the Hibernate Framework [238] an open source object-relational
tool. It is written in Java, hence it is multiplatform. And it allows to switch the under-
lying database for an application by just changing a configuration file. We will modify
the source code of this framework to deal with fuzzy representation and querying first
and second, to deal with the possibilistic valid-time model presented before.

The present chapter is organized as follows: Section 6.1 introduces the Hibernate
Framework. The architecture of the framework is described in detail. The workflow
for making objects persistent is also explained. Then the different methods provided in
the framework for querying are introduced. Next to that, Section 6.2 presents the cri-
teria and the strategies that were followed for the implementation within the Hibernate
Framework. Section 6.3 shows a comparison among the proposals that can be found
in the literature. The conclusions and the benefits of each approach are presented in
Section 6.4.

6.1. Hibernate Framework

The Hibernate Framework [238] is a collection of open source projects that en-
able developers to make object-relational mappings. The framework needs an object-
oriented language (Java) and a relational database management system, DBMS. A
query language called Hibernate Query Language (HQL) is also provided, which is
an object-oriented extension to SQL.

HIBERNATE

XML mapping

Application

Persistent Objects

hibernate.

properties

Database

Figure 6.1: High level Hibernate architecture.

6.1.1. Architecture

An application developed to work with the Hibernate Framework has three layers
as shown in Figure 6.1:

1. Application layer: This is the top layer. The application makes CRUD (CRe-
ate,Update and Delete) operations by means of persistent objects: an object in

6-4 AN OPEN SOURCE FRAMEWORK

Figure 6.2: Detailed Hibernate with lite configuration.

the application representing an entity in the database. There exist three states for
an object:

a) Persistent: The object represents a current database state: the object and
the database entity are linked by a database session.

b) Transient: The object is no longer attached to a database session. The
object and the database entity are not linked.

c) Detached: A detached instance is an object that has been persistent but its
database session has been closed.

2. Hibernate layer: This layer acts as an abstraction layer between the DBMS
and the application. The framework introduces the concept dialect: A dialect is
an abstraction for the specific DBMS. Thus, the application will work with any
DBMS by changing the dialect.

3. The database: This layer is the DBMS. The Hibernate Framework supports
most of the commercial DBMS in the market. Each DBMS has it own dialect.
Therefore, MySQL, PostgreSQL, Oracle and many other DBMS have a specific
dialect.

A deeper look into the architecture shows two main configurations. The first is a
lite configuration where the application manages the JDBC1 connections. The second
is a comprehensive configuration and allows Hibernate to take care of the JDBC and
JTA2 API, so the application is abstracted from that kind of details. Both configurations
are illustrated in Figures 6.2 and 6.3 respectively.

Here are some brief discussions about some of the API objects depicted in the
preceding illustrations:

1Java Database Connectivity [239]:The Java Database Connectivity (JDBC) API is the industry stan-
dard for database-independent connectivity between the Java programming language and a wide range of
databases SQL databases and other tabular data sources, such as spreadsheets or flat files. The JDBC API
provides a call-level API for SQL-based database access.

2Java Transaction API [240]: Java Transaction API (JTA) specifies standard Java interfaces between a
transaction manager and the parties involved in a distributed transaction system: the resource manager, the
application server, and the transactional applications.

AN OPEN SOURCE FRAMEWORK 6-5

Applicat ion

Database

SessionFactory

Session Transact ion

Transact ionFactory Connect ionProvider

JNDI JTAJDBC

Transient Objects

Persistent
Objects

Figure 6.3: Detailed Hibernate with the comprehensive configuration.

SessionFactory (org.hibernate.SessionFactory) A thread-safe, im-
mutable cache of compiled mappings for a single database. A factory for org.-
hibernate.Session instances. A client of org.hibernate.connection.-
ConnectionProvider. Optionally maintains a second level cache of data
that is reusable between transactions at a process or cluster level.

Session (org.hibernate.Session) A single-threaded, short-lived object
representing a conversation between the application and the persistent store.
Wraps a JDBC java.sql.Connection. A factory for org.hibernate.-
Transaction. Maintains a first level cache of the application’s persistent ob-
jects and collections; this cache is used when navigating the object graph or
looking up objects by identifier.

Persistent objects and collections Short-lived, single-threaded objects contain-
ing a persistent state and business function. These can be ordinary JavaBeans3/POJOs4.
They are associated with exactly one org.hibernate.Session. Once the
org.hibernate.Session is closed, they will be detached and free to use in
any application layer (for example, directly as data transfer objects to and from
presentation). The difference among transient, persistent and detached object
states is discussed in [243].

3A JavaBean [241] is a POJO that is serializable, has a no-argument constructor, and allows access to
properties using getter and setter methods that follow a simple naming convention. Because of this conven-
tion, simple declarative references can be made to the properties of arbitrary JavaBeans. Code using such a
declarative reference does not have to know anything about the type of the bean, and the bean can be used
with many frameworks without these frameworks having to know the exact type of the bean.

4Plain Old Java Objects [242]: The term ”POJO” is mainly used to denote a Java object which does not
follow any of the major Java object models, conventions, or frameworks. The term continues the pattern of
older terms for technologies that do not use fancy new features. Ideally speaking, a POJO is a Java object not
bound by any restriction other than those forced by the Java Language Specification. (For example, a POJO
should not have to extend or implement prespecified classes, neither contain prespecified annotations.)

6-6 AN OPEN SOURCE FRAMEWORK

ID Legal Entity Publication Date
54 N.A.T.O 22 / 10 / 2012
55 E.U. 14 / 11 / 2012
56 C.E.I. 25 / 9 / 2012

Table 6.1: Example of diplomatic document database.

Transient and detached objects and collections Instances of persistent classes
that are not currently associated with a org.hibernateSession. They may
have been instantiated by the application and not yet persisted, or they may have
been instantiated by a closed org.hibernate. See [243].

Transaction (org.hibernate.Transaction)
(Optional) A single-threaded, short-lived object used by the application to spec-
ify atomic units of work. It abstracts the application from the underlying JDBC,
JTA or CORBA5 transaction. An org.hibernate.Session might span
several org.hibernate.Transactions in some cases. However, trans-
action demarcation, either using the underlying API or org.hibernate.-
Transaction, is never optional.

ConnectionProvider (
org.hibernate.connection.ConnectionProvider) (Optional) A fac-
tory for, and pool of, JDBC connections. It abstracts the application from un-
derlying Datasource or DriverManager (javax.sql.DataSource, java.-
sql.DriverManager). It is not exposed to application, but it can be ex-
tended and/or implemented by the developer.

TransactionFactory
(org.hibernate.TransactionFactory) (Optional) A factory for org.-
hibernate.Transaction instances. It is not exposed to the application,
but it can be extended and/or implemented by the developer.

Extension Interfaces Hibernate offers a range of optional extension interfaces
you can implement to customize the behavior of your persistence layer. See the
API documentation [238] for details.

The mentioned elements are illustrated within an example.

Example 34. Consider a database with diplomatics documents. For each document,
the following information is stored: the identifier of the document (field ID) the name
of the entity that produces the document and the day that the document was published.
An example instance of this database is shown in Table 6.1. The user wants to make
the following query:

“Select the document with ID=’56’ and change the name of the legal entity to
’N.A.T.O’ ”

5Common Object Request Broker Architecture [244, 245] (CORBA): is a standard defined by the Object
Management Group (OMG) that enables software components written in multiple computer languages and
running on multiple computers to work together (i.e., it supports multiple platforms).

AN OPEN SOURCE FRAMEWORK 6-7

We will illustrate the workflow to accomplish this task within the Hibernate Frame-
work. First of all, it is necessary to define an entity class in Java to represent a diplo-
matic document object.

1 /**
* Entity class for a diplomatic document.

3 *
*/

5 @Entity // Java annotation to indicate Hibernate
// that this class is an entity class

7

public class Document implements Serializable {
9 // Annotations to set the generated identifier.

@Id
11 @GeneratedValue(strategy = GenerationType.AUTO)

@Basic(optional = false)
13 @Column(name = "ID")

private Integer id;
15 @Basic(optional=false)

@Column(name = "LegalEntity")
17 private String legalEntity;

@DateTime
19 @Column(name = "PublicationDate")

private Date publicationDate;
21 /** Rest of the code:

getters and setters, constructor, etc */
23 ...

}

Then, the code to initialize the Hibernate framework and to make the query is the
following:

Document doc = new Document(); // A transient instance
2 /* Obtaining the session from session factory */

Session session = HibernateUtil.getSession();
4 /* Obtaining the transaction */

Transaction t = session.beginTransaction();
6 long id = 56;

/* load the object */
8 session.load(doc, id);

/* update the field */
10 doc.setLegalEntity("N.A.T.O.");

/* Store the object */
12 session.save(doc);

/* commit the transaction */
14 t.commit();

/* close the session */
16 session.close();

/* at this point, the object doc is a detached object */

6-8 AN OPEN SOURCE FRAMEWORK

Figure 6.4: Transition among the different Hibernate objects states

6.1.1.1. Hibernate objects states

In this subsection we are going to define in depth the main object states, which are
illustrated in figure 6.4:

Transient - an object is transient if it has just been instantiated using the new
operator, and it is not associated with a Hibernate Session. It has no persistent
representation in the database and no identifier value has been assigned. Tran-
sient instances will be destroyed by the garbage collector if the application does
not hold a reference anymore. Use the Hibernate Session to make an object
persistent (and let Hibernate take care of the SQL statements that need to be
executed for this transition).

Persistent - a persistent instance has a representation in the database and an iden-
tifier value. It might just have been saved or loaded, however, it is by definition
in the scope of a Session. Hibernate will detect any changes made to an object
in persistent state and synchronize the state with the database when the unit of
work completes.

Detached - a detached instance is an object that has been persistent, but its Ses-
sion has been closed. The reference to the object is still valid and the detached
instance might even be modified in this state. A detached instance can be reat-
tached to a new Session at a later point in time, making it (and all the modifi-
cations) persistent again. This feature enables a programming model for long
running units of work that require user think-time. We call them application
transactions, i.e., a unit of work from the point of view of the user.

6.1.1.2. Making objects persistent

Newly instantiated instances of a persistent class are considered transient by Hiber-
nate. We can make a transient instance persistent by associating it with a session:

Document doc = new Document();
2 doc.setLegalEntity("N.A.T.O.");

AN OPEN SOURCE FRAMEWORK 6-9

doc.setPublicationDate("25/11/2012");
4 Long generatedId = (Long) session.save(doc);

If Doc has a generated identifier, the identifier is generated and assigned to the docu-
ment when save() is called. If Doc has an assigned identifier, or a composite key,
the identifier should be assigned to the document instance before calling save(). You
can also use persist() instead of save(), with the semantics defined in the EJB36

specification.
persist() makes a transient instance persistent. However, it does not guaran-

tee that the identifier value will be assigned to the persistent instance immediately, the
assignment might happen at flush time. persist() also guarantees that it will not
execute an INSERT statement if it is called outside of transaction boundaries. This
is useful in long-running conversations with an extended Session/persistence context.
save() guarantees to return an identifier. If an INSERT has to be executed to get
the identifier, this INSERT happens immediately, no matter if you are inside or out-
side a transaction. This is problematic in a long-running conversation with an extended
Session/persistence context. Alternatively, you can assign the identifier using an over-
loaded version of save().

Example 35. Consider the database of diplomatic documents in the previous example.
In this case, the documents have a collection of associated publications. The user wants
to save the object with its corresponding associated objects. These objects can be made
persistent in any order you like unless you have a NOT NULL constraint upon a foreign
key column. There is never a risk of violating foreign key constraints. However, you
might violate a NOT NULL constraint if you save() the objects in the wrong order.

Document pk = new Document();
2 pk.setLegalEntity("E.U.");

pk.setPublicationDate("25/11/2012");
4 pk.setAssociatedDocuments(new HashSet());

pk.addDocument(doc);
6 session.save(pk, new Long(1234));

Usually the user does not bother with this detail, as you will normally use Hiber-
nate’s transitive persistence feature to save the associated objects automatically. Then,
even NOT NULL constraint violations do not occur - Hibernate will take care of ev-
erything. Transitive persistence is discussed later in this chapter.

6.1.1.3. Loading an object

The load() methods of Session provide a way of retrieving a persistent instance
if you know its identifier. load() takes a class object and loads the state into a newly
instantiated instance of that class in a persistent state.

Document doc =
2 (Document) session.load(Document.class, generatedId);

6Enterprise JavaBeans (EJB) [246, 247] is a managed, server-side component architecture for modular
construction of enterprise applications. The EJB specification is one of several Java APIs in the Java EE
specification. EJB is a server-side model that encapsulates the business logic of an application.

6-10 AN OPEN SOURCE FRAMEWORK

// you need to wrap primitive identifiers
4 long id = 1234;

Document pk =
6 (Document) sess.load(Document.class, new Long(id));

Alternatively, you can load the state into a given instance:

Document doc = new Document();
2 // load pk’s state into document

session.load(doc, new Long(pkId));
4 Set associatedDocuments = doc.getAssociatedDocuments();

Be aware that load() will throw an unrecoverable exception if there is no matching
database tuple. If the class is mapped with a proxy, load() just returns an unini-
tialized proxy and does not actually hit the database until you invoke a method of the
proxy. This is useful if you wish to create an association to an object without actually
loading it from the database. It also allows multiple instances to be loaded as a batch if
batch-size is defined for the class mapping.

If you are not certain that a matching tuple exists, you should use the get()
method which hits the database immediately and returns null if there is no matching
tuple.

Document doc =
2 (Document) session.get(Document.class, id);

if (doc==null) {
4 doc = new Document();

session.save(doc, id);
6 }

return doc;

You can even load an object using an SQL SELECT ... FOR UPDATE, using a Lock-
Mode. We refer to the API documentation for more information.

1 Document doc = (Document) session.
get(Document.class, id, LockMode.UPGRADE);

Any associated instances or contained collections will not be selected FOR UPDATE,
unless you decide to specify lock or all as a cascade style for the association.

It is possible to re-load an object and all its collections at any time, using the re-
fresh() method. This is useful when database triggers are used to initialize some of the
properties of the object.

sess.save(doc);
2 sess.flush(); //force the SQL INSERT

//re-read the state (after the trigger executes)
4 sess.refresh(doc);

How much does Hibernate load from the database and how many SQL SELECTs will
it use? This depends on the fetching strategy. This is explained in [248] (Section 20.1,
“Fetching strategies”).

AN OPEN SOURCE FRAMEWORK 6-11

6.1.2. Querying in the Hibernate framework

Hibernate provides four methods for querying. Hibernate supports an easy-to-use
but powerful object oriented query language Hibernate Query Language (HQL) [249].
For programmatic query creation, Hibernate supports a sophisticated Criteria and Ex-
ample query feature (QBC7 and QBE8). It is also possible to express a query in native
SQL language of the underlying database, with optional support from Hibernate for
resultset conversion into objects.

Example 36. Consider the diplomatic document database in the previous examples.
The user wants to obtain the document published on ’25/22/2012’. This can be ex-
pressed using any of the methods explained previously. Ordered from the more object-
oriented approach to the more relational approach:

1. Query by criteria: Selects objects that fulfil a set of criterion. E.g.:

createCriteria(Document.class).
2 Add(Restrictions.

eq("PublicationDate","25/11/2012"));

2. Query by example: Selects objects similar to a given object. E.g.:

1 Document doc.PublicationDate =
new Date("25/11/2012");

3. HQL: An object-oriented language based on SQL. E.g.:

Query q = session.createQuery("SELECT doc
2 FROM Document doc

WHERE doc.publicationDate = :publication ");
4 q.setDate("25/11/2012","publication");

4. SQL: A SQL sentence. E.g.:

"SELECT *
2 FROM Document as doc

WHERE doc.publicationDate" = "25/11/2012" ;

It is important to notice that each type of query is translated into an SQL query. That
sentence is customized for the underlying database by translating it into the database
dialect.

7Query by criteria [250]: The Criteria API is used to define queries for entities and their persistent state
by creating query-defining objects. Criteria queries are written using Java programming language APIs, are
typesafe, and are portable. Such queries work regardless of the underlying data store.

8Query By Example: [251] is a database query language for relational databases. The motivation behind
QBE is that a parser can convert the user’s actions into statements expressed in a database manipulation
language, such as SQL

6-12 AN OPEN SOURCE FRAMEWORK

6.1.2.1. Executing queries

HQL and native SQL queries are represented with an instance of org.hibernate.-
Query. This interface offers methods for parameter binding, for resultset handling,
and for the execution of the actual query. The user always obtains a Query using the
current Session:

1 List Documents = session.createQuery(
"from Documents as doc" +

3 "where doc.publicationDate < ?")
.setDate(0, date)

5 .list();

A query is usually executed by invoking list(). The result of the query will be loaded
completely into a collection in memory. Entity instances retrieved by a query are in a
persistent state. The uniqueResult() method offers a shortcut if you know your query
will only return a single object. Queries that make use of eager fetching of collections
usually return duplicates of the root objects, but with their collections initialized. You
can filter these duplicates through a Set.

6.1.2.2. Iterating results

Occasionally, better performance might be achieved by executing the query using
the iterate() method. This will usually be the case if we expect that the actual
entity instances returned by the query will already be in the session or second-level
cache. If they are not already cached, iterate() will be slower than list() and
might require many database hits for a simple query, usually one for the initial select
which only returns identifiers, and n additional selects to initialize the actual instances.

1 // fetch ids
Iterator iter =

3 sess.createQuery(
"from Documents d order by d.publicationDate")

5 .iterate();
while (iter.hasNext()) {

7 Qux qux = (Qux) iter.next(); // fetch the object
// something we couldnt express in the query

9 if (d.calculateComplicatedAlgorithm()) {
// delete the current instance

11 iter.remove();
// dont need to process the rest

13 break;
}

15 }

Queries that return tuples Hibernate queries sometimes return tuples of objects.
Each tuple is returned as an array:

1 Iterator documentsAndAssociated =
session.createQuery(

AN OPEN SOURCE FRAMEWORK 6-13

3 "select doc, associated from Documents doc
join doc.associatedDocuments associated")

5 .list()
.iterator();

7

while (documentsAndAssociated.hasNext()) {
9 Object[] tuple =

(Object[]) documentsAndAssociated.next();
11 Document doc = (Document) tuple[0];

Set associated = (Set) tuple[1];
13

}

Scalar results Queries can specify a property of a class in the select clause. They can
even call SQL aggregate functions. Properties or aggregates are considered ”scalar”
results and not entities in persistent state.

Iterator results = session.createQuery(
2 "select min(doc.publicationDate), count(doc)

from Document doc group by doc.entity")
4 .list()

.iterator();
6

while (results.hasNext()) {
8 Object[] tuple = (Object[]) results.next();

Date oldest = (Date) tuple[1];
10 Integer count = (Integer) tuple[2];

.....
12 }

Bind parameters Methods on Query are provided for binding values to named pa-
rameters or JDBC-style ’?’ parameters. Contrary to JDBC, Hibernate numbers pa-
rameters from zero. Named parameters are identifiers of the form :name in the query
string. The advantages of named parameters are as follows:

named parameters are insensitive to the order they occur in the query string.

they can occur multiple times in the same query.

they are self-documenting.

//named parameter (preferred)
2 Query q = session.createQuery(

"from Document doc
4 where doc.legalEntity = :name");

q.setString("name", "E.U.");
6 Iterator docs = q.iterate();

//positional parameter
8 Query q = session.createQuery(

6-14 AN OPEN SOURCE FRAMEWORK

"from Document doc where doc.name = ?");
10 q.setString(0, "N.A.T.O.");

Iterator docs = q.iterate();
12 //named parameter list

List names = new ArrayList();
14 names.add("E.U.");

names.add("N.A.T.O.");
16 Query q = session.createQuery

("from Document doc
18 where doc.legalEntity in (:namesList)");

q.setParameterList("namesList", names);
20 List docs = q.list();

6.2. The stratified model
This section explains the stratified architecture for a fuzzy database within the Hi-

bernate Framework. First of all, we will describe the design and main criteria for the
portability of a fuzzy representation and query system. Next, the main architecture of
the system is explained in detail.

6.2.1. A Stratified Architecture

The use of an stratified architecture has been introduced previously in the literature.
In [252], the authors propose a stratified model to implement a temporal database man-
agement system (DBMS) on the top of a relational database. The Hibernate framework
fits really well with a stratified architecture.

Application

Relational Database

Stratified Implementation

Figure 6.5: Stratified architecture.

The main idea for a stratified architecture is illustrated in figure 6.5. In the stratified
approach, the applications are not connected directly to the DBMS. Hence, the com-
munication between the application and the DBMS is done through the stratum. The
main advantages when using a stratum are:

It is possible to provide applications with a different data model than is actually
implemented.

The new data model does not have to be supplied by the DBMS vendor, therefore,
it is possible to use any relational DBMS.

AN OPEN SOURCE FRAMEWORK 6-15

When this approach is used, the idea is to convert a relational DBMS which sup-
ports a SQL standard into a possibilistic temporal database. When an application sends
a possibilistic temporal query to the database. The queries are translated in the stratum
(the Hibernate layer) and converted into SQL queries.

6.2.2. Design Criteria

In order to achieve the goals for the implementation, it is necessary to specify a set
of design requirements:

No changes The proposed implementation shall not require any changes to the
underlying database. Neither for the representation of fuzzy types nor for the
fuzzy querying by means of fuzzy operators.

DMBS independence The implementation should work with any database sup-
ported by the Hibernate framework. This would be achieved by using the SQL
standard both for representation and querying. The most complex task is the
querying. Usually, the implementation of the fuzzy comparison operators is done
in a procedural way. This is not possible in SQL. Therefore, it is necessary to
use the SQL structure CASE ∼ WHEN.

Object-Oriented The interface for the applications should be object-oriented.
Both for the representation and the querying.

Performance This property is essential for the acceptance of the system. If an
application does not use the fuzzy representation or querying, the performance
should be the same as with the version without the stratified implementation.

The proposed design model allows application developers to abstract the storage in
an application from the running database. E.g., it is possible to develop an application
within MySQL whereas the production environment is working with Oracle.

6.2.3. Implementation Model

Object-Oriented Layer.

(OORL)

MySQL

Object-Oriented to Relational.

(OO2RL).

O1 ON

R1 RN Relational Layer.

(RRL)

PostgreSQL Oracle

Conversion Layer. (CL)

Figure 6.6: Abstract layer model

6-16 AN OPEN SOURCE FRAMEWORK

The architecture for a generalized object-oriented model needs the following ele-
ments (fig. 6.6):

Object-Oriented Representation Layer OORL: The representation of the (fuzzy)
types in an object-oriented way.

Object-Oriented to Relational Representation Layer OO2RRL: This layer is
a mapping between the objects in the higher layer and the representation in the
layer below. Note that the mapping may not be trivial and a conversion function
should be given.

Relational Representation Layer RRL: The (fuzzy) types are represented by
basic types. In the GEFRED model, FIRST is the specification for this layer.

Conversion Layer CL: This layer customizes the SQL representation from RRL
for the concrete database implementation. This customization process must be
done because of the different implementations of the SQL standard on each
DBMS.

6.2.3.1. Implementation

The proposed general framework relies between the application and the DBMS.
The implementation of the model in the Hibernate Framework is the following:

Representation layer: Is the implementation for OORL: the representation for
the fuzzy objects in the Java programming language.

Adaptation layer: This layer bring together the implementation of the OO2RRL
and RRL layers.

Conversion Layer: Hibernate supports this layer by means of the dialects. It has
mapping types between SQL and the concrete implementation for these types in
the database. Thus, each DBMS, has its own dialect. Hibernate provides dialects
for the major DBMS, and it is easy to develop new dialects for new DBMS.

Application

Fuzzy Data Types Fuzzy Domains Fuzzy

Constraint

ValidatorValues Labels Constraint

Fuzzy Data

Types Adaptor

Fuzzy Domain

Adaptor

Hibernate Core

Database

Type 2 Type 3

Representation

Layer (OORL)

Adaptation

Layer (OO2RRL)

& (RRL)

Conversion

Layer (CL)

F

S

Q

L

Figure 6.7: Detailed Hibernate architecture for fuzzy representation

In a more detailed view (fig. 6.7), the decomposition of the representation layer is
depicted:

AN OPEN SOURCE FRAMEWORK 6-17

1. Representation:

a) Fuzzy data types: Three fuzzy data types are represented (The represen-
tation for type 2 and type 3 fuzzy data types is shown in Tables 6.2 and
6.3 respectively). This representation is based on the Fuzzy Knowledge
Representation Ontology (FKRO) [253] since it suits our object-oriented
representation to a large extent.

b) Fuzzy domains: To create fuzzy domains of types 2 and 3, two main fuzzy
meta-domains are defined.

c) Fuzzy constraint validator: Each fuzzy domain may be associated with a
set of fuzzy constraints. The validator checks the constraints.

2. Adaptation layer: This layer transforms on the object-oriented representation
to relational representation in the database. Thus, a fuzzy type over an ordered
underlying domain is represented as an object in the upper layer. The database
represents a fuzzy type over an ordered domain as five columns:

a) Fuzzy type: A number indicating the fuzzy type stored in the other four
columns. For a fuzzy domains of type 2, there are the following fuzzy
types: UNDEFINED, UNKNOWN, NULL, CRISP, INTERVAL, APPROX,
TRAPEZOID.

b) Fuzzy values: Fuzzy domains of type 2 are stored in four columns. For
example, if the fuzzy number stores a trapezoid, then each point is repre-
sented in a column in the database. In Table 6.2 there is a short description
for each fuzzy data type.

Fuzzy domains of type 3 have a variable length representation. The basic repre-
sentation needs at least 3 columns:

a) Fuzzy type: a number indicating the fuzzy type stored in the other four
columns. There are the following fuzzy types: UNDEFINED, UNKNOWN,
NULL, SIMPLE, POSSIBILITY DISTRIBUTION.

b) Fuzzy values: Pairs of values: Label ID and possibility degree. There is a
short description in Table 6.3.

Thus, the adaptation layer has to deal with the representation of fuzzy domains
of types 2 and 3. Note that fuzzy domain of type 1 is represented by a numeric
Hibernate basic type, therefore it is not necessary to adapt the representation.

6.2.4. Valid time representation

As mentioned in Chapter 3, in Section 3.2.1 there are different approaches for deal-
ing with imperfections in valid-time. In this work, we have implemented the two main
proposals. First of all, the implementation of a Fuzzy Validity Period, FVP is ex-
plained. Then, a second approach based on the Possibilistic Valid-time Period, PVP is
also discussed.

6-18 AN OPEN SOURCE FRAMEWORK

DatabaseDataTypes

FuzzyDataType

OrderedFuzzyTypeNon-OrderedFuzzyType

AbstractFuzzyDomain

FuzzyDomainNonOrdered FuzzyDomainOrdered

FVP

Label

Constraint

Figure 6.8: UML diagram for fuzzy data types.

Fuzzy Type FT F1 F2 F3 F4
UNKNOWN 0 N N N N
UNDEFINED 1 N N N N

NULL 2 N N N N
CRISP 3 d N N N
LABEL 4 ID N N N

INTERVAL 5 n N N m
APPROX 6 d d-m d-m m
TRAPEZ 7 α β γ δ

Table 6.2: Relational representation for fuzzy attributes type 2. Note that N is the
abbreviation for the NULL constant.

Fuzzy Type FT FP1 F1 ... FPn Fn
UNKNOWN 0 N N ... N N
UNDEFINED 1 N N ... N N

NULL 2 N N ... N N
SIMPLE 3 p d ... N N

POSS.DIST 4 p1 d1 ... pn dn

Table 6.3: Relational representation for fuzzy attributes type 3. Note that N is the
abbreviation for the NULL constant.

AN OPEN SOURCE FRAMEWORK 6-19

Fuzzy Type FT F1 F2 F3 F4
UNKNOWN 0 N N N N
UNDEFINED 1 N N N N

NULL 2 N N N N
TRAPEZ 7 α β γ δ

Table 6.4: Relational representation for fuzzy validity period, a fuzzy domain of type
2 attribute. Note that N is the abbreviation for the NULL constant.

Description Ds as bs De ae be
An ill-known
time interval

V V V V V V

An unknown
time interval

N N N N N N

A left-open
time interval

N N N V V V

A right-open
time interval

V V V N N N

Table 6.5: Relational representation for a possibilistic valid-time period in the form
[S,E] with S = [Ds, as, bs] and E = [De, ae, be]. The value N is the notation for the
NULL constant. The value V is the notation for a time value.

6.2.4.1. Fuzzy Validity Period

The Fuzzy Validity Period FVP is represented in the framework as mentioned in
Section 2.1. The underlying ordered domain is the Julian Day Number (JDN). Thus,
the representation of this data type on the framework is based on a fuzzy data type with
an underlying ordered domain.

A fuzzy underlying domain is defined with some operations to convert between
Java dates (usually in Gregorian calendar format) and the Julian Day Number with the
formula explained in Section 2.1 and the algorithm in [93].

Table 6.4 is the relational representation of the FVP in a database. Five columns are
needed: The first one (Fuzzy Type, FT) stores the subtype for the object. Four values
are allowed in order to represent a fuzzy validity period: the constants UNKNOWN,
UNDEFINED and NULL and the trapezoidal possibility distribution. The following
four columns (from F1 to F4) store the values for a given element.

6.2.4.2. Possibilistic Valid-time Period

A possibilistic valid-time period is a more convenient representation for a valid-
time interval, as pointed out in Section 2.1. In this case, in order to simplify the query-
ing, the dates are stored as a long data type. In order to store a PVP, two possibility
distributions are stored, one for the start point and one for the end point. In the imple-
mentation, only triangular membership functions are considered. The corresponding
relational representation is shown in Table 6.5.

In the following, the usage of the two types will be illustrated with an example.

6-20 AN OPEN SOURCE FRAMEWORK

ID VID Entity FVP
3 001 King Henri [1203, 1205, 1206, 1207]
4 001 King Phillipe [1210, 1215, 1216, 1217]
5 001 Pope Alexander I [1222, 1223, 1226, 1228]
3 002 King Henri [1253, 1255, 1256, 1257]

Table 6.6: Historical documents database. Representation of valid-time by a FVP. In
order to simply the representation, only the year is shown.

Example 37. Consider a database with diplomatic documents. In this case, the doc-
uments managed are from the Medieval age. For each document, an identifier (ID) is
stored, the name of the legal entity and the approximate starting and ending dates in
which the document was valid. We will illustrate how to define the entity classes for
using either the PVP or the FVP. Table 6.6 shows the version of the FVP.

The definition for an entity class that models a historical document is the following:

/**
2 * Entity class representing a diplomatic document.

*/
4 @Entity

@Table(name = "document", catalog = "")
6 public class Document implements Serializable {

8 /** Primary key, with two fields:
an identifier, ID and a version VID. */

10 @EmbeddedId
@Type(type = "es.jpons.

12 temporal.types.TemporalPKType")
@Columns(columns={

14 @Column(name="id"),
@Column(name="vid")

16 })
private TemporalPK tid;

18

/** Field Legal entity */
20

@Basic(optional = false)
22 @Column(name = "entity")

private String entity;
24 /** Fuzzy Validity Period */

@Type(type = "es.ugr.decsai.
26 fsql.databasedata types.OrderedAFTUserType")

@Columns(columns = {
28 @Column(name = "FVP1"),

@Column(name = "FVP2"),
30 @Column(name = "FVP3"),

@Column(name = "FVP4"),
32 @Column(name = "FVPT")

})

AN OPEN SOURCE FRAMEWORK 6-21

ID VID Entity PVP
Ds as bs De ae be

3 001 King Henri [1203, 5, 5] [1207, 1, 1]
4 001 King Phillipe [1215, 5, 5] [1216, 1, 2]
5 001 Pope Alexander I [1223, 1, 2] [1226, 2, 2]
3 002 King Henri [1255, 3, 3] [1257, 4, 4]

Table 6.7: Historical documents database. Representation of valid-time by a PVP. In
order to simplify the representation, only the year is shown.

34 private FVP fvp;

In order to create a new document that represents the first row in Table 6.6 the code
is the following:

Document d = new Document(new TemporalPK(3,1),
2 "King Henry",

new FVP(1203, 1205,1206,1207));

The representation for the PVP case is shown in Table 6.7. The definition of the
class with a possibilistic valid-time period is exactly the same, but now, the possibilistic
valid-time period PVP is declared in the following way:

1 /** Valid-time */
@Embedded

3 @Columns(columns={
@Column(name="startMP"),

5 @Column(name="startR"),
@Column(name="startL"),

7 @Column(name="startMP"),
@Column(name="startR"),

9 @Column(name="startL")
})

11 protected PossibilisticVTP pvp;

The code to create an instance of a document is the following. The document has
the ID = 3 and the VID = 001 and was written by the king Henry (first row in Table
6.7).

1 Document d1 = new Document(new TemporalPK(3,1),
"King Henry");

3 PossibilisticVTP pvp =
new PossibilisticVTP(1203,5,5,1207,1,1);

5 d1.setPvp(pvp);

6.2.5. Fuzzy Querying

In this part, two different approaches are presented. The first approach illustrates
how to implement the fuzzy comparison operators by SQL statements. The second
approach presents a different querying strategy by using ill-known constraints.

6-22 AN OPEN SOURCE FRAMEWORK

6.2.5.1. Approach 1: Fuzzy operators in plain SQL

To generalize fuzzy querying into any relational database, we should take into ac-
count that the interface between the relational DBMS and the framework is SQL stan-
dard. Therefore, the model we propose uses the following elements:

Declarative implementation for each fuzzy operator. This implementation should
be done in the SQL language.

Abstract syntax tree (AST) representation for the query. These representation
allows a customization process done by the conversion layer (CL).

Conversion Layer: This layer customizes the AST for the running database.

The implementation of fuzzy querying is done by modifying the HQL language. The
fuzzy operators are implemented in a declarative way in the SQL language. The HQL
language has the following features:

Object-oriented representation for queries.

Customization: The HQL code is analyzed and translated into SQL statements.
Hibernate customizes SQL statements for the running DBMS through the dialect.
E.g. if the application is running against MySQL, then Hibernate generates the
SQL code customized for it.

The Hibernate core deals with the HQL translation. By modifying this code, imple-
menting fuzzy operators should result in a HQL with fuzzy querying capabilities. This
extension will work on any database supported by the system also. The following s are
how Hibernate processes a HQL query:

The framework builds an abstract syntax tree (AST) once the query passed lexi-
cal and syntactical analysis.

The AST represents tokens as nodes. The semantic analyzer renders the tree into
SQL statements. Then the dialect customizes the SQL statements.

The following example explains the translation workflow.

Example 38. Consider a restaurant database including data about restaurants. For each
restaurant, the following information is stored: A unique identifier, ID, the name of the
restaurant and the average price. This is stored as a fuzzy type 2, by using a triangular
membership function. Consider the following query:

“The user wants to obtain a list of restaurants with an average price around 15
euro”.

This is translated to the following HQL sentence, using the fuzzy equals operator:

1 SELECT r FROM Restaurant r
WHERE r.PriceAvg FEQ $[15, 10, 20, 5];

Figure 6.9 shows the AST tree for this sentence.
Then, the FEQ node is mutated in the rendering process to its implementation

in SQL. Through the dialect, the sentence is customized to execute for instance, in
MySQL.

AN OPEN SOURCE FRAMEWORK 6-23

Figure 6.9: Translation from HQL to customized SQL statements. From the left to the
right, the HQL query is translated into an AST. The dialect customizes the AST for the
running database into specific SQL statements.

SELECT * FROM Restaurant as r
2 WHERE

1 < CASE WHEN (r.priceAvg.gamma <= beta2)
4 OR (r.priceAvg.beta >= gamma2) THEN 0

WHEN (r.priceAvg.alpha = alpha2) THEN 1
6 WHEN (r.priceAvg.gamma > beta2)

AND (r.priceAvg.alpha < alpha2)
8 THEN (r.priceAvg.gamma - beta2) /

(r.priceAvg.delta - delta2)
10 ELSE (gamma2 - r.priceAvg.beta) /

(r.priceAvg.delta + delta2);

The following example illustrates the use of temporal operators.

6-24 AN OPEN SOURCE FRAMEWORK

ID Name Salary BossID Cat. FVP
001 Josh 1200 002 C [10/10/2009, 27/10/2009,

19/10/2010, 27/10/2010]
001 Josh 1500 002 B [19/10/2010, 27/10/2010, -, -]
002 Robert 800 005 A [14/05/2007, 25/05/2007,

17/01/2008, 30/01/2008]
002 Robert 1200 005 A [17/01/2008, 30/01/2008,

24/05/2009, 30/05/2009]
002 Robert 1400 003 A [24/05/2009, 30/05/2009,

28/10/2010, 30/10/2010]
003 Alex 2100 - A+ [02/05/2007, 15/05/2007, -, -]
004 Tyna 1300 002 A+ [25/07/2009, 30/7/2009,

15/10/2009, 25/10/2009]
005 Rose 2300 003 A+ [25/09/2010, 30/09/2010,

25/02/2011, 30/02/2011]

Table 6.8: The relation employees with fuzzy validity periods (FVP).

Example 39. Consider a company which stores data about its employees. The data
is stored in a fuzzy valid-time database (see Table 6.8). Each time the relation is up-
dated, a new row with an updated version of the data is stored. The starting and the
ending points of the validity period are not precisely known, and are represented by an
FVP given in the [α, β, γ, δ] format explained in Section 3.2. For simplicity, the values
for each element of FVP are shown in their corresponding Gregorian calendar but are
stored in the JDN format mentioned in Section 2.1.

Class definition An entity class represents a table in the database. A field of an en-
tity class represents one or several table columns. The corresponding class declaration
for the Table 6.8 is:

1 public class Employee implements Serializable {

3 private String ID; // primary key: ID
private String name; // name of the employee

5 private Double salary; // salary
private Employee boss; // boss

7 private Category category; // category
private FVP fvp; // fuzzy validity period

9 }

Querying Consider the user has the following query:
“Find all the employees with boss 002 during the same period of time.”
The translation of this query into HQL is the following:

1 SELECT e,f
FROM Employee e, Employee f

3 WHERE e.ID="002" AND e.ID<>f.ID
AND e.fvp EQUALS f.fvp;

AN OPEN SOURCE FRAMEWORK 6-25

The framework translates the HQL query to SQL statements as explained in section
6.2.5. Then, the statements are sent to the database. The resultset of the query returned
by the database is mapped backwards to objects by Hibernate. Table 6.9 shows the
resultset for the query, and the compatibility for the result, computed by the fuzzy
equals operator, FEQ (see Example 38 and Section 2.4.1).

e.ID e.name f.ID f.name Comp.
001 Josh 004 Tyna 0, 55

Table 6.9: The relation employees with fuzzy validity periods (FVP).

The following subsection is devoted to present the second querying approach.

6.2.5.2. Approach 2: Querying by ill-known constraints

This approach presents a simple querying architecture, which is illustrated in figure
6.10. In this case, when the user makes a query, a minimal subset of the result is fetched
to the Hibernate layer. Then, the global membership degree is computed by using ill-
known constraints (See Section 3.1.4). In this case, the implementation has been done
using the Criteria API.

Figure 6.10: Architecture for the query engine. The top layer exposes the querying
API, which is used directly by the applications. The query engine uses the criteria API
and other Hibernate functionality. On the bottom of the architecture is the relational
database supported by the framework.

The elements of the architecture are explained in detail:

Query API: A set of querying operations are provided to the application devel-
oper. The Allen operators are provided to compare two possibilistic valid-time
intervals PVP.

6-26 AN OPEN SOURCE FRAMEWORK

Query Engine: The query engine performs the operations exposed in the Query
API and returns a resultset that fulfills the operation. The workflow for the query
engine is the following:

1. An operation in the Query API is called within the application.

2. The query engine translates the query into a set of Criteria.

3. The set of Criteria is sent to the Hibernate Framework and translated into
SQL statements which are executed in the underlying database.

4. If the query returns a resultset, it is wrapped into its corresponding entity
class by Hibernate.

5. The resultset is returned to the query engine. The resultset returned to the
query engine fulfills with a degree greater than zero the operation. Now the
possibility degree is computed for each tuple in the resultset (See Section
3.1.4) . Finally, the resultset with the corresponding possibility degree is
returned to the application.

Example 40. Consider the employees database in the previous example. Now, the
valid-time is stored using a possibilistic valid-time period, PVP as presented in Table
6.10.

ID VID Name PVP
001 001 Josh [18/10/2009, 8, 8] [18/10/2010, 8, 8]
001 002 Josh [19/10/2010, 8, 8] UC
002 001 Robert [20/05/2007, 5, 5] [20/01/2008, 3, 10]
002 002 Robert [21/01/2008, 3, 10] [25/05/2009, 1, 5]
002 003 Robert [26/05/2009, 1, 5] [25/10/2010, 5, 5]
003 001 Alex [15/05/2007, 12, 2] UC
004 001 Tyna [26/07/2009, 1, 5] [16/10/2009, 2, 9]
005 001 Rose [27/09/2010, 2, 3] [27/02/2011, 2, 3]

Table 6.10: The relation employees with possibilistic valid-time periods (PVP). For
simplicity, the dates are expressed in dd/mm/yyyy format. Other attributes like Salary,
BossID and category are omitted, but have the same values as in Table 6.8.

In this case, the user has the following query:
“Find all the employees working for the company during the period around the

middle of October 2009 to the middle of October 2010 and whose salary is between
1.000 and 1.500 euros.”

The query has to be translated into the following code:

Employee emp = new Employee();
2 PossibilisticVTP pvp =

new PossibilisticVTP(
4 15,10,2009, // day month year

5, 5, // days in the left and right margins
6 15,10,2010, // day month year

5, 5); // days in the left and right margins
8

AN OPEN SOURCE FRAMEWORK 6-27

// create the temporal query for the employee entity:
10 TemporalQuery tq =

manager.createTemporalQuery(emp);
12 // set the allen relation and the pvp:

tq.setAllenRelation(AllenRelation.during, pvp);
14 // obtaining the resultset:

List<QueryResult> list = tq.getList();

The resultset obtained is shown in Table 6.11.

global nts ts ID VID
0,6923 1 0,38461 001 001

0,5 1 0 001 002
0,5 1 0 002 002
0,5 1 0 002 003
0,5 1 0 004 001

Table 6.11: Resultset table for the query. In this table, the value global is the aggre-
gation of both temporal and non-temporal satisfaction. The values for the temporal
(column ts) and non-temporal (column nts) satisfaction degrees are shown. Further-
more, only the values for the primary key are presented.

In the following, we will study whether despite of the payload of the Criteria API
the second approach is more efficient.

6.2.5.3. Comparison

In this subsection we will compare the two presented querying approaches. We are
going to compare the execution time of each Allen relation with both approaches. The
configuration of the testing environment is the following:

The operating system is Ubuntu 10.04. Kernel version 2.6.32-22.

The database for the test is MySQL 5.1.63-0ubuntu0.10.04.1 (Ubuntu).

The server has the following configuration:

• Processor: Intel i5 CPU M 520@2,40Ghz.

• RAM: 6GB DDR3.

• HD: 2 x 500 GB

A single table will be used for the test. The employee table. The tests will be
done against the same table but with increasing number of rows. The rows will be
generated synthetically and are identical for the two approaches. A sample of the
employee table is shown in Table 6.10. The execution time for each test is the average
of ten executions of each approach to the same dataset. The results are plotted in a
graph. Figure 6.11 shows the performance of each approach. It is shown how the first
approach is faster on smaller datasets, whereas the second approach is faster on large
datasets. The reasoning behind that behaviour is the following: The two step approach

6-28 AN OPEN SOURCE FRAMEWORK

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

T
im

e
 (

m
s
)

Size of dataset

Comparative

First approach
Second approach

Figure 6.11: Comparative for the execution times between the two proposed ap-
proaches.

is slower on small datasets just because the size of the dataset. For bigger datasets,
the execution time of the first approach is slower than sending a very optimized query
to the database and process a small dataset in the server side, to obtain a satisfaction
degree.

6.3. Related work
In this section we will discuss the differences with respect to the portability among

several implementations. The proposals analyzed are:

FSQL server by [54]: The reference implementation of the FIRST interface on
the GEFRED model. The first implementation works with an Oracle database,
although there is an implementation in PostgreSQL. A new module called Fuzzy
Valid Time Support Module (FVTM) has been developed to implement the the-
oretical model in chapter 3.

SQLfi by [56]: The implementation for the SQLf language [202].

FDBLL by [254]: Fuzzy database language and library. A fuzzy SQL imple-
mentation in C language over a relational DBMS.

PSQL by [255]: An extension of the FSQL model. The main features are the
use of priority fuzzy logic and the portability: The implementation is done by
a JDBC driver. The driver acts as interface between any Java program and the
fuzzy database. The user may change the running database by just adding the
fuzzy meta tables to the catalog and keeping the same program.

Hibernate FSQL: The proposed implementation. The main difference is that the
fuzzy meta data are not stored in the database, therefore, changing the running

AN OPEN SOURCE FRAMEWORK 6-29

Fuzzy
DB

Catalog Interface Query
language

Query Processor

FSQL Inside DB. FSQL client FSQL Procedural.
SQLfi Inside DB. Client app. SQLf Procedural.
FDBLL Inside DB. Client app. Fuzzy SQL Procedural.
PFSQL Inside DB. JDBC client PFSQL Procedural.
H.
FSQL

Outside DB. Entity
Classes

Fuzzy HQL Declarative.

Table 6.12: Comparison among different fuzzy DB implementations.

Fuzzy DB Changes for representation Changes for querying
FSQL Create the metadata tables

(FMB).
Develop a client application.

Implement in a procedural
way the FSQL operators.
Develop a client application.

SQLfi Create the metadata tables.
Develop a client application.

Implement the fuzzy opera-
tors and the query translator.

FDBLL Create the fuzzy data defini-
tions.

Implement the fuzzy SQL
processor in the DBMS.

PFSQL Create the metadata tables. No changes
H. FSQL No changes. No changes.

Table 6.13: Changes to migrate the implementation to another DBMS.

database is as easy as changing some parameters in the Hibernate configuration
file. There is no need to create or modify fuzzy meta tables in the DBMS catalog.

Table 6.12 shows the main differences in the implementations and in the portability
among each approach. Table 6.13 shows the changes that must be done in order to
change the running DBMS for an application.

6.4. Conclusions
In the presented implementation we have introduced a general model for the rep-

resentation of (fuzzy) types and for fuzzy querying. The main advantage with respect
to other implementations is portability. The drawback for the portability is the depen-
dency between the application and the framework. This means that, outside the frame-
work, the DBMS is not able to manage the fuzzy types nor to make fuzzy queries. This
is not such a big issue. Over the last few years the trend is to develop the business layer
outside the DBMS too.

The temporal extension allows both representation and querying by means of fuzzy
temporal operators. The main contribution allows to represent, handle and query time-
variant objects. It is possible to represent imperfect time intervals for the validity period
of a given object.

The novel contributions of this chapter are:

The implementation within the Hibernate framework of the theoretical model
proposed for valid-time databases.

6-30 AN OPEN SOURCE FRAMEWORK

The implementation of the temporal flexible querying operators by using a re-
lational implementation in SQL an a procedural implementation by using the
criteria API.

7
Conclusions and further research work

%minitoc
This chapter summarizes the main contribution of this thesis. We will explain how

the research objectives introduced in Chapter 1 have been resolved. Next to that, the
main contributions are discussed. Finally, challenges and new research opportunities
are studied.

7.1. Summary
This thesis is concerned with the treatment of uncertain or incomplete temporal

data in an information system. In order to accomplish this objective, the following four
theoretical tasks have been done:

1. First a mathematical framework to represent and deal with the relationships of
the time intervals is proposed.

2. A formal model to represent and handle time-dependent entities in a relational
database is implemented.

3. An extension to the bipolar querying allows to make complex queries with tem-
poral constraints.

4. An extension based on the Triangular Model deals with the visualization of un-
certain time intervals.

These theoretical proposals have been implemented into open software prototypes
and applied in to real-world applications. The following development tasks have been
done:

1. The representation of possibilistic temporal intervals as well as fuzzy data types
have been defined and implemented within the Hibernate framework.

7-2 CONCLUSIONS

2. The querying of the previously defined data types is done by using the implemen-
tation of the operators defined in the theoretical model. For fuzzy data types,
fuzzy operators are implemented. For the possibilistic temporal operator, the
possibilistic version of the Allen’s operator are implemented. In order to im-
prove the performance, two sub-tasks have been done:

a) A declarative implementation of the comparison operators.

b) A procedural and more efficient implementation of the comparison opera-
tors.

3. In order to keep the database consistency the consistence mechanism proposed
by the theoretical model have been implemented.

In the following, we will summarize the contributions of this thesis with respect to
the research objectives described in Chapter 1.

Objectives

1. Definition and formalization of temporal data types and operators. The goal is
to abstract the main characteristics of the temporal data types. Then, it would be
possible to re-define the data models and the operations in a database.

Time has been shown to be a complex concept. First of all, it has been studied
how humans beings handle time indications. The main conclusion is that humans
deal with uncertain temporal expressions in their daily life. Therefore, in order to
achieve a realistic implementation of treatment of temporal information, a formal
tool to deal with the uncertainty, imprecision and or imperfection in the temporal
expressions is proposed. The three main theoretical frameworks to deal with
imperfections in time are rough sets, probability theory and possibility theory.
Among them, we choose possibility theory for its intrinsic capability of dealing
with uncertainty in knowledge. Hence, a proposal in the framework of possibility
theory has been done to represent imperfect temporal information by using the
possibilistic valid-time intervals PVP. The relationships between these intervals
have been modelled by using the ill-known constraint framework proposed.

As part of this main objective we find the following objectives.

a) To define a representation for the temporal elements. The chosen repre-
sentation should allow uncertainty and vagueness within the temporal ele-
ments.

In order to define a temporal representation we studied the proposals that
can be found in the literature. There are several frameworks to deal with
vagueness and uncertainty. Nevertheless, we find these proposals to be in-
complete. After some research, we concluded that the best way for the
representation of temporal elements is the time intervals. To handle uncer-
tainty and / or vagueness, the best solution is to use the possibility theory
to model such imperfections. Time intervals have both starting and ending
points. Typically, the imperfections in the modelling of these time intervals

CONCLUSIONS 7-3

are related to the modelling of imperfection of one or both points. There-
fore, in our proposal, two possibility distribution describe a time interval.
It is possible to represent crisp time intervals as well.
In the other hand, the representation of time intervals is provided with a
visualization method. In this thesis we have extended the triangular model,
used in the representation of crisp and rough time intervals to uncertain
time intervals. The visualization in the triangular model makes easier to
compare and classify big amounts of temporal intervals.

b) To define the operations and semantics for the possible relationships be-
tween the temporal elements defined above.
The relationships between time intervals have been studied in depth. First
Allen studied all the possible relationships between two crisp time inter-
vals. Then, several authors provided a fuzzy version of these relationships.
In this thesis we propose a general framework (based on the so called ill-
known constraints)for the possibilistic evaluation of sets. As a particular
case applied on time intervals, we define the possibilistic counterpart of the
Allen’s relations. It is possible to define even more complex relationships
and operations. For example, the operator Close that closes an open time
interval with respect to another time interval. This operator is defined by
using several ill-known constraints.

c) To extend the fuzzy relational model to represent the temporal elements
and to support the operations on them.
There are plenty of crisp temporal database models. Each model fits a
need. There are three main types of temporal databases: transaction-time
databases, that are used on accounting systems, valid-time databases that
model time-dependent objects. Decision-time databases model the time
when a decision about some fact was done. It is possible to combine these
three types of time into a multi-temporal database, but since transaction and
decision-time are timestamps, the only time which is subject to imperfec-
tion is valid-time. Therefore, we applied the representation and the opera-
tors defined in the previous objective to implement a possibilistic valid-time
model in a relational database.
By using the bipolar querying, it is possible to give more expressive power
to the user. The temporal querying extension is build on the top of the
satisfaction - dissatisfaction approach. Several proposals with respect to
the temporal constraint have been done and some ranking and classification
method have been provided. As a result of the query, the user obtains
a bipolar satisfaction degree BSD. This value classifies the results within
three groups. The first group are the results which do not satisfy at all
the criteria in the query. The second group is the set of results that are
indifferent to the user. That is it, a set of results that satisfy some criteria
and dissatisfy some others. Finally the third group of results, is a set of
results that fulfil the positive and negative criteria provide by the user. As it
has been shown, this approach gives some extra information when querying
at the same time that provides extra expressive power.

7-4 CONCLUSIONS

d) To define the behaviour and the semantics for the time-dependent data. In
order to allow imprecision, the theoretical model is build on the top of the
GEFRED model. The proposal deals with the two main issues of tempo-
ral database models: the problem of the primary key and the consistence
problem. With respect to the primary key, a version number is provided to
support several versions of the same object with different valid-time values.
The consistence mechanism is provided by re-defining the data manipula-
tion language (DML) of the model.

2. Implementation of the theoretical model obtained in the previous stage.

The implementation of the possibilistic model for temporal databases have been
developed and implemented in an open-software framework called Hibernate.
That framework is an object-relational mapping tool that provides extra querying
capabilities. We have chosen this framework because of it is not database depen-
dent and because it is open source. The framework has defined different dialects
for each database. For example MySQL has a specific dialect, Oracle has also
a different dialect, etcetera. It is possible to change the underlying database, by
just changing the dialect. Each dialect customizes the SQL code for the specific
database. In this thesis we have extended that framework to support the fuzzy
data types defined in GEFRED as well as the fuzzy operators to compare them.
On the top of this, we build the temporal data types as well as the comparison
of time intervals. The implementation provides two different approaches of the
model. The first approach provides the implementation of the fuzzy operators by
using SQL sentences. In other words, it provides a declarative implementation
for the fuzzy operators. The main benefit of this is that the full query processing
is done in the database. When the query is complex, the SQL text that is sent to
the database is also complex and difficult to understand by a human being. The
second approach, makes an procedural implementation of the fuzzy operators.
In this case, the full query processing is done at the level of the Hibernate layer,
not in the database. As we studied for big datasets it has been shown to be more
efficient than the first approach.

On the other hand, we also provide an implementation on the top of the Or-
acle database. The fuzzy valid-time support module is a module that extends
the functionality of the previously developed Fuzzy Object-Relational Database
System. In this case, the implementation has a different approach with respect to
the presented model. Some of the data manipulation language DML sentences
have been redefined. In this case, the approach is closer to the implementation
provided by the Oracle Workspace Manager, but using the logic of the ill-known
constraint presented in this thesis.

7.2. Discussion

This section studies the main contributions of this thesis and provides a discussion
for further research work. First, the value of this research is explained and then the
remaining challenges and future research lines are proposed.

CONCLUSIONS 7-5

7.2.1. Representation of time

In order to properly represent the time in an Information System, some simplifica-
tions should be done. First of all, time is a continuous magnitude, due to the internal
representation in a computer, the time has to be discretized. This first step introduces
some amount of uncertainty as explained. The smallest unit of time that can be repre-
sented in a system is called chronon.

The second step when modelling time is to decide whether to represent the time as
points or as intervals. It has been shown that both approaches are equivalent, since a
time interval can be modelled by a set of time points and vice versa, a time point is
equivalent to a time interval in which both starting and ending points are the same time
value. Most of the systems have a time interval representation for time values.

As explained in Chapter 2, several studies demonstrate that humans beings inher-
ently manage the time with imprecision and / or uncertainty. Therefore, several pro-
posals have been done in order to deal with this. Nevertheless, there was not a unified
approach to represent and handle with time intervals. In Chapter 3, we provide a for-
mal framework to deal with time intervals (called ill-known time intervals) which may
contain imprecision or uncertainty in one or both points of the interval. In an ill-known
time interval, two possibility distributions are defined. One for the starting point and
another for the ending point. By doing this, we provide a way to compute both possi-
bility and necessity measures for every calculation within the time interval. The main
advantages of this is that both measures can be used in the ranking or in the classifica-
tion of the results.

The visualization of time intervals is also presented in this thesis. In chapter 3
we have shown the representation in a two dimensional axis of possibilistic valid-time
periods (PVP). In the x-axis, is represented the time and in the y-axis is represented the
possibility degree. This representation is enough for small quantities of time intervals.
When the number of intervals increase, the graphical representation becomes messy.
The triangular model, represents crisp time intervals in a two-dimensional space. A
time interval represented in a one dimensional scale is therefore represented as a point
in a two dimensional scale. In Chapter 5 we propose an extension of the triangular
model to represent uncertain time intervals. By using this visualization, the study of
the relationships between time intervals becomes clearer.

7.2.2. Temporal relationships

The relationship between time intervals have been studied in depth. In 1983, Allen
studied all the possible relationships between two crisp time intervals. As a result the
thirteen Allen’s relations were obtained. As detailed in Chapter 2, there are several
proposals to extend the Allen’s relations to the fuzzy case. In this thesis, we provide a
formal tool (the ill-known constraints) to model and specify the relationships between
ill-known time intervals. By using the ill-known constraints not only the Allen’s rela-
tions can be modelled but also some more complex relationships.

In order to visualize the temporal relationships the triangular model is used. Each
one of the Allen’s relations has a specific area in this representation. Hence, with a
simple visual inspection of a time interval represented in this model, the corresponding
Allen relation is obtained. In this thesis we propose the extension of the triangular

7-6 CONCLUSIONS

model to visualize uncertain time intervals. As result, in the surrounding areas of the
uncertain time interval, there is also uncertainty about the Allen relation that actually
applies. We defined these areas (for example: possibly meets, possibly overlaps) and
provided a method to compute the possibility measure of the Allen’s relations.

7.2.3. Time in databases

Time in databases has been studied for a long time. There are three different types
of time that are handled specifically by a temporal database. Transaction time is a time
stamp that establishes the time when a fact was recorded in a database. It must be in the
past. In the other hand, valid-time specifies the time when a fact is true in the modelled
reality. In this case, valid-time may have values in the past, the present and / or the
future. Usually valid-time is represented as a time interval. Finally, decision-time is
also a time stamp which sets the time when a decision about the fact recorded in the
database was done.

Among these three types of time, the valid-time could be affected by imperfections
such as imprecision, vagueness and / or uncertainty. Therefore, in the model proposed
in Chapter 3 we only deal with valid-time.

In a temporal database, several issues have to be addressed, as explained in Chapter
2. The primary key has to be re-defined to allow several versions of the same object.
But also a consistence mechanism has to be provided in order to ensure that no spurious
values are inserted in the database. This is achieved by re-defining the data manipula-
tion language DML. For example, before inserting a new version of an existing value,
it is checked if the new version overlaps with some previous versions. If there is some
amount of overlapping, then the insertion is rejected.

In Chapter 3 we re-defined the DML sentences provided by the GEFRED model to
provide the consistence mechanism explained before.

7.2.4. Bipolar querying of temporal databases

Bipolar querying of databses provides a more powerful way to model user’s pref-
erences. There are two main frameworks as explained in Chapter 4. It has been shown
that both frameworks are equivalent in terms of expressive power. In other words, the
same query can be expressed in both frameworks.

In this thesis, we have extended the satisfaction-dissatisfaction approach to deal
with temporal queries. First we provide a study of the temporal constraints in the
bipolar query specification. We obtained that there are two main places to specify a
temporal constraint. At a global level, we want the results obtained to be within a
temporal frame specified by means of an Allen relation and a ill-known time interval.
It is possible to specify a temporal constraint within the elementary query conditions.
Then, for each specific constraint we could specify a temporal frame to be valid.

As it has been studied, the main problem when dealing with time in a bipolar query
is the aggregation. From the evaluation non-temporal bipolar query we obtain a bipo-
lar satisfaction degree BSD. This degree is usually scaled in the interval [−1, 1] and
provides to the user valuable information. The classification provided by a BSD can
be split into three groups. Results within [−1, 0] are said to be the set of non-desirable

CONCLUSIONS 7-7

results. That is, the set of results that do not fulfil the requirements of the query. Results
near the value of 0 are said to be indifferent. Finally, results closer to 1, are said to be
desirable results.

The main problem is to aggregate the BSD, with the evaluation of the temporal
constraint. In this thesis we provide a method to order the results in the temporal
constraint first and then a flexible aggregation method. This aggregation method allows
to the user to specify a weight ω (typically between [0, 1]) for the temporal constraint
with respect the non-temporal constraint. A default value of ω = 0.5 has been shown
to be balanced for most of the queries.

7.2.5. Implementations

Despite the efforts to add a sound temporal support to databases, the standards
usually offer a little support for date / time dependent objects if any. The SQL stan-
dard defines several temporal types (DATE, DATETIME and TIMESTAMP) but, the
implementation rely on the developer of the database. Because of that, each implemen-
tation of temporal data types in commercial systems have a different implementation,
behaviour and operators. For example, Oracle handles each date type as a Julian Day
Number (explained in Chapter 2), so it supports dates from the 1st of January of 4712
B.C. whereas MySQL supports dates from the 1st of January of 1001 A.C. The semat-
ics of the operators is also database-dependent. For example, adding a value of 1 to a
date in Oracle means adding one day to the date whereas in MySQL means adding one
second.

Some efforts have been done to join the temporal management into the SQL stan-
dard. The language TSQL handles bi-temporal (both transaction and valid-time)
databases. This language, with some modifications was proposed to join the SQL stan-
dard without success. As part of the research in temporal databases, some prototypes
of temporal database implementations have been proposed, as discussed in Chapter
6. But, to the best of our knowledge there are a few commercial implementations that
support some aspects of temporal databases. An example of that is the Workspace Man-
ager by Oracle. This framework enables temporal support for non-temporal databases.
But the aim of this implementation is not only the temporal support but speed up the
workflow between the user and the database for very large datasets. The main idea is
that the user work within a time frame and therefore, he or she works with a subset
of the data. Hence, the framework provides several mechanisms to deal with conflicts
when inserting, updating or deleting data.

In this thesis we provide an implementation on the top of a well-known open source
framework, Hibernate. This framework is widely used for the object-relational map-
ping. At the same time, this framework acts as an abstraction layer between the current
database system used by the application and the application itself. This abstraction is
based in the so called dialects. Each database vendor has a specific dialect, and there-
fore by changing the dialect, it is possible to change the underlying database system.

Due to the abstraction that Hibernate does about the underlying database, it is pos-
sible to implement the theoretical model the possibilistic valid-time approach explained
in Chapter 3. This implementation will work on the top of any of the databases sup-
ported by Hibernate. In other words, with only one implementation, is possible to

7-8 CONCLUSIONS

represent time dependent objects with possibilistic valid-time periods and to query by
using the temporal relations defined in the theoretical model.

The implementation provides two methods for the querying. The first method con-
sist on a declarative implementation by using SQL sentences. The second implemen-
tation is a procedural implementation of the comparison method. In this approach, the
execution of the methods is done at the level of the Hibernate layer. Therefore, the
computation of the fulfilment degree is done outside the database system.

As a consequence of this work, another implementation has been proposed on
the top of the Oracle database system. This implementation is a module that extend
the functionality of the fuzzy object-relational server which implements the GEFRED
database model. Aspects like the modelling of imperfect time intervals and the redefi-
nition of the DML language are covered in this implementation. The theoretical model
is based on the model presented in Chapter 3, but with some modifications to emulate
the behaviour of the Workspace Manager by Oracle.

7.3. General Conclusion and Further Research Work

In this research work, we have investigated the modelling of imperfect temporal in-
formation in an Information System. First we developed a complete formal framework
to represent and handle imperfect temporal information. This framework has been
proven to be sound and consistent with possibility theory. According with the result of
the thesis, the framework models imperfect time intervals as well as the relationships
between them. Compared to other approaches this framework provides a constraint-
based system in which the full relational information is kept. The framework, here
applied to time intervals, has been extended to deal also with discrete possibility distri-
butions.

Based on the theoretical framework to model and handle temporal information, we
developed a theoretical model for valid-time relational databases. The model is build
on the top of GEFRED and implements the representation of time-dependent objects
in a relational database. Compared to other theoretical temporal database models, in
this proposal, the validity period may contain imperfection / imprecision / uncertainty.
Despite the storage of imperfect information, the model offers a consistence mecha-
nism that ensures the consistency of the time-dependent objects / tuples stored in the
database.

The querying of a temporal database has been usually done by extending the re-
lational algebra with the Allen’s operators. In this thesis we go beyond, by extending
the satisfaction-dissatisfaction approach. A temporal constraint consists on an Allen
relation and a time interval. The time interval might contain imprecision and can be
specified by means of a Possibilistic Time period (PVP). We consider two ways of
querying by using a temporal constraint. The first method adds a global temporal con-
straint which sets a temporal frame that the selected tuples have to fulfil. In the second
method, we propose to set a temporal constraint inside each elementary criteria. Hence,
each attribute may contains a temporal frame that the selected tuples have to fulfil.

Both method present the issue of the aggregation between the temporal and the non-
temporal constraints. In this thesis we have proposed a method for both aggregation and

CONCLUSIONS 7-9

ranking. By default, both constraints have the same weight when aggregating although
the weight can be adjusted.

Further research work in bipolar querying of temporal databases is currently active.
The specification of a bipolar temporal constraint will add even more expressive power
to the queries. This is of special interest for certain applications such as criminal in-
vestigation. Again, one of the main problems is the aggregation and the ranking of the
results obtained in the query.

In this thesis is also presented a novelty visualization method for time intervals.
This method is based on the triangular model TM which represents in a two-dimensional
model a time interval, which is usually represented in a one-dimensional line. The vi-
sualization method extends the TM to visualize uncertain time intervals UTIs. By using
this visualization, the Allen’s relations among uncertain time intervals can be obtained
at a glance. The main benefit of this representation is the possibility to visualize big
amounts of time intervals and the relationships between them.

Finally, we provide an implementation in an open source framework for the theo-
retical model for temporal databases presented in this thesis. The main benefits of this
implementation is that it is portable. The representation, querying and the consistence
mechanism presented in the theoretical model have been developed in this implemen-
tation. Another implementation on the top of the Oracle database have been done by
using an extension of the theoretical model of this thesis. Further research work will
include the implementation of bipolar querying and the temporal constraints. Also the
visualization of temporal results by using the triangular model.

10 POSSIBILISTIC EVALUATION OF SETS

A
Possibilistic evaluation of sets

The contents of this appendix have been partially published on:

A. Bronselaer, J. E. Pons, G. De Tré, and O. Pons, “Possibilistic evaluation of sets,” Int.
J. Uncertainty Fuzziness Knowlege-Based Syst., vol. 21, no. 3, 2013.

A-2 POSSIBILISTIC EVALUATION OF SETS

Contents
A.1. Set evaluation by ill-known constraints A-3
A.2. An application on intervals . A-9

A.2.1. Interval evaluation by ill-known constraints A-9
A.2.2. Dubois and Prade’s approach A-13
A.2.3. Comparison with fuzzy transformations A-14

A.3. Conclusions . A-15

POSSIBILISTIC EVALUATION OF SETS A-3

In the past decades, the theory of possibility has been developed as a theory of un-
certainty that is compatible with the theory of probability. Whereas probability theory
tries to quantify uncertainty that is caused by variability (or equivalently randomness),
possibility theory tries to quantify uncertainty that is caused by incomplete informa-
tion. A specific case of incomplete information is that of ill-known sets, which is of
particular interest in the study of temporal databases. However, the construction of
possibility distributions in the case of ill-known sets is known to be overly complex.

In this appendix, we present a framework for dealing with the evaluation of con-
straints defined by ill-known values.

The appendix is organized as follows. Section A.1 shows how regular sets can be
evaluated by using ill-known constraints. In Section A.2, the proposed mechanism is
applied to the evaluation of intervals. The proposal is compared to the approach by
Dubois and Prade [96]. It is shown that the results obtained are consistent with the
ones of Dubois and Prade. There are other approaches in the literature for dealing with
time intervals, but it is shown that these approaches imply a lost of knowledge.

A.1. Set evaluation by ill-known constraints
In this section, we shall introduce the theoretical framework in which we reason

throughout the rest of this paper. The motivation for our framework is found in the
early work of Dubois and Prade on ill-known sets [154]. In that work, Dubois and
Prade provide a treatment of what they call incomplete conjunctive information and
handle the problem of ill-known sets, i.e. crisp sets that are partially unknown due to
incomplete information. They argue in their work that a possibility distribution over a
universe P(U) can be considered as a heavy-to-handle representation, due to the expo-
nential complexity in terms of the size of the universe. It can be reasoned that this high
complexity stems from the desire to represent possibilistic information about all sets in
P(U). At this point, the framework that is presented within this paper, differs from the
framework by Dubois and Prade. Rather than providing all possibilistic information,
it is assumed that there are a (limited) number of alternatives about which possibilistic
information is required. More specific, the question that is aimed to answer here is the
following: “Given a set A, what is the certainty that A meets some requirements?”.
When providing an answer to this question, it will be explicitly taken into account that:

a requirement on a set can be expressed in terms of requirements on elements,

uncertainty about such requirements can exist.

Note that the specification of sets by requirements on elements, is a very natural con-
cept in mathematics if we think of the set builder notation {u ∈ U |.}. The aim of this
paper is to take this familiar concept and to extend it towards a more general case that
allows uncertainty in the specification of requirements. In the remainder of the paper,
such uncertain requirements will be referred to as ill-known constraints.

Before giving any technical details, let us first provide some practical examples
that require the checking of ill-known constraints. As a first example, consider the
set of real numbers R and consider a crisp interval [a, b]. A fundamental problem in
fuzzy temporal databases is to find out how this interval is positioned with respect to
the interval [X,Y]. Hereby, X represents the ill-known start point of the interval and
Y represents the ill-known end point of the interval1. Let us make this example more

1Note that [X,Y] is thus not a fuzzy interval (Section 3.1.3). As such, the problem described here is
semantically different from fuzzifications of the Allen relations [9].

A-4 POSSIBILISTIC EVALUATION OF SETS

specific and suppose that it is required to know whether or not [a, b] is a subset of
[X,Y]. In order to answer this question, two constraints must be verified. The first
constraint states that all elements in [a, b] must be larger than or equal to X , while the
second constraint states that all elements in [a, b] must be smaller than or equal to Y .
Moreover, both constraints must be satisfied in order for [a, b] to be a subset of [X,Y].
Consequently, this problem has a conjunctive nature with respect to satisfaction of the
constraints. From this example, two observations can be made. Firstly, it can be seen
that each constraint on the set [a, b] is specified as a constraint on the elements of [a, b].
More specific, this specificiation is obtained by means of a binary relation R and an
ill-known value X . For example, the first constraint requires that all elements from
[a, b] are in relation ≥ to the ill-known value X . Secondly, a positive evaluation of a
set requires the satisfaction of several constraints. This means that Boolean reasoning
is required to allow the verification of aggregate (i.e. complex) constraints.

While, this first example represents a class of problems where the universe of dis-
course is equipped with a total order, the aim of this paper is to provide a more general
framework that can be applied to any universe of discourse. Therefore, as a second ex-
ample, consider the set of languages L and assume thatm language experts E1, ..., Em
are available. Suppose that each of these experts are provided with the question: “What
is the main language that John speaks?”. Because the answer to this question can be
uncertain, each expert Ei provides a possibilistic variable Xi as an answer to the ques-
tion. Suppose that we are encountered with the question: “What is the possibility that
John speaks English, French and Spanish?”. To answer this question, a decision rule
is required such as: “John speaks languages {l1, ..., lk} if each language is confirmed
by at least one expert”. Unfortunately, a mechanism to evaluate this decision rule from
the given variables X1, ..., Xm is not at hand within standard possibility theory. It is
however possible to translate the rule into a set of constraints, stating that John speaks
languages {l1, ..., lk} if, for any expert Ei, there exists a language lj such that lj = Xi

or, equivalently, not all elements in {l1, ..., lk} are different from Xi. Again, it is ob-
served that a constraint is specified on elements by means of an ill-known value (i.e.
Xi) and a binary relation (i.e. =). Again, it is observed that the evaluation of a set
stems from a Boolean combination of several constraints.

With these examples in mind, let us begin with the definitions of some basic con-
cepts. As observed in the above mentioned examples, a constraint is specified by means
of a binary relationR and a value x. For clarity, we first provide a definition in the crisp
case, i.e. the case where constraints are not ill-known.

Definition 104. Given a universe U , a constraint C on a set A ⊆ U is specified by
means of a binary relation R ⊆ U2 and a fixed value x ∈ U , i.e.:

C
4
= (R, x) . (A.1)

It is said that a set A satisfies the constraint C if and only if:

∀a ∈ A : (a, x) ∈ R. (A.2)

Definition 104 adheres to the fact that the framework of constraint evaluation is
Boolean in nature. In order to make an explicit connection with the Boolean frame-
work, we shall adopt the notation C(A) to indicate a Boolean proposition which is true
if A satisfies C and which is false if A fails (i.e. does not satisfy) C.

Example 41. Consider the set of natural numbers N and consider the constraint C =
(≤, 3), then the set A = {1, 2, 3} satisfies constraint C because all elements in A are
in relation ≤ to the value 3.

POSSIBILISTIC EVALUATION OF SETS A-5

Example 41 illustrates that crisp constraints are quite trivial. However, the trivi-
ality disappears when the step towards ill-known constraints is made. An ill-known
constraint differs from a constraint in the sense that the value in the constraint spec-
ification is no longer a crisp value x, but an ill-known value X . This generalization
requires a mechanism for checking whether or not a crisp value is in relation to an
ill-known value. Such a mechanism is provided by application of Zadeh’s Extension
Principle. More specific, for any ill-known value X over U and for any binary relation
R over U , we have that:

∀u ∈ U : Pos((u,X) ∈ R) = sup
(u,w)∈R

πX(w) (A.3)

∀u ∈ U : Nec((u,X) ∈ R) = inf
(u,w)/∈R

1− πX(w). (A.4)

With this mechanism at hand, it is possible to define the concept of an ill-known con-
straint.

Definition 105. Given a universe U , an ill-known constraint C on a set A ⊆ U is
specified by means of a binary relation R ⊆ U2 and an ill-known value X , i.e.:

C
4
= (R,X) . (A.5)

The uncertainty that a set A ⊆ U satisfies C is given by:

Pos(C(A)) = min
a∈A

(
Pos(a,X) ∈ R

)
= min

a∈A

(
sup

(a,w)∈R
πX(w)

)
(A.6)

Nec(C(A)) = min
a∈A

(
Nec(a,X) ∈ R

)
= min

a∈A

(
inf

(a,w)/∈R
1− πX(w)

)
.(A.7)

Note that the possibility (resp. necessity) thatA satisfies C is given by the possibil-
ity (resp. necessity) that all elements in A are in relation R to X . The quantifier “all”
is hereby modeled by the minimum operator, as is prescribed by the rules of possibility
theory.

The values Pos(C(A)) and 1−Nec(C(A)) together constitute a possibility distri-
bution πC(A) over the set of Boolean values B (in literature also known as a possibilistic
truth value [37, 256, 257]). This is formalized in the following theorem.

Theorem 2. Given a universe U and an ill-known constraint C specified by the ill-
known value X and a binary relation R, then for any A ⊆ U , πC(A) is a possibility
distribution over the set of Boolean values B.

Proof. Let us assume a set A ⊆ U . It is sufficient to prove that πC(A) is normalized,
which means that we must prove that either πC(A)(T) or πC(A)(F) equals 1. On the
one hand we have that:

πC(A)(T) = min
a∈A

(
sup

(a,w)∈R
πX(w)

)
. (A.8)

On the other hand we have that:

πC(A)(F) = 1−min
a∈A

(
inf

(a,w)/∈R
1− πX(w)

)
(A.9)

A-6 POSSIBILISTIC EVALUATION OF SETS

which can be rewritten as:

πC(A)(F) = max
a∈A

(
sup

(a,w)/∈R
πX(w)

)
. (A.10)

In case (1), let us assume that:

∀a ∈ A : ∃(a, v) ∈ R : πX(v) = 1. (A.11)

If this assumption holds, then it can be easily seen that:

πC(A)(T) = 1. (A.12)

In case (2), the above-made assumption does not hold, which means that:

∃a′ ∈ A : ¬
(
∃(a′, v) ∈ R : πX(v) = 1

)
. (A.13)

However, due to the fact that πX is a possibility distribution (and thus normalized), we
have that:

∃v′ ∈ U : πX(v′) = 1. (A.14)

This means that there exists an a′ ∈ A and a v′ ∈ U , such that (a′, v′) /∈ R and
πX(v′) = 1. Consequently:

πC(A)(F) = 1. (A.15)

Considering the fact that either the above-made assumption holds or not, πC(A) is
proven to be normalized.

Example 42. Consider the set of natural numbers N and consider the constraint C =
(≤, X) where X is an ill-known value specified by the possibility distribution πX as
shown in Figure A.1.

-

6

1

N
1 2 3 4

q
q

πX

Figure A.1: Possibility distribution of X

The uncertainty about whether or not set A = {1, 2, 3} satisfies C is given by:

Pos(C(A)) = min
a∈{1,2,3}

(
sup
a≤w

πX(w)

)
= 1 (A.16)

Nec(C(A)) = min
a∈{1,2,3}

(
inf
a>w

1− πX(w)

)
= 0.5. (A.17)

POSSIBILISTIC EVALUATION OF SETS A-7

So far, we have shown how it can be verified whether or not a set satisfies an
ill-known constraint. However, from the examples at the beginning of this section,
it is observed that Boolean combinations of constraints are required. For example,
the problem of interval evaluation as explained earlier requires that all elements of
an interval [a, b] are larger than a value X and at the same time smaller than a value
Y , which implies that a conjunctive Boolean combination of both constraints must be
satisfied. To allow Boolean combinations of constraints, the following definitions are
introduced.

Definition 106. Consider a universe U , an n-ary vector C of constraints and a Boolean
function B : Bn → B. An evaluation function is defined by:

λ : P(U)→ B : A 7→ B
(
C1(A), ..., Cn(A)

)
. (A.18)

Definition 106 presents the definition of an evaluation function that evaluates a
Boolean combination of some basic constraints. Informally, it states that a setA passes
the evaluation made by λ if the Boolean combination of some propositions equals T .
This crisp definition can be generalized to the case of ill-known constraints.

Definition 107. Consider a universe U , an n-ary vector C of ill-known constraints and
a Boolean function B : Bn → B. The uncertainty about the evaluation of a set A by an
evaluation function λ is then given by:

∀A ∈ P(U) : πλ(A) = B̃
(
πC1(A), ..., πCn(A)

)
(A.19)

Hereby, B̃ is the possibilistic extension of B.

It is well known that any Boolean function B can be cast to a canonical form [178],
requiring only the logical conjunction ∧, logical disjunction ∨ and logical negation.
Therefore, only the case of Boolean conjunction, Boolean disjunction and Boolean
negation will be treated within the scope of this paper. By applying the possibilistic
extensions of ∧, ∨ and ¬, concrete equations are obtained for the calculations of un-
certainty about the evaluation of a set by means of an evaluation function λ. In the case
of conjunction (i.e., B = ∧), the inference of uncertainty about the evaluation of a set
reduces to:

∀A ∈ P(U) : Pos(λ(A)) =
n

min
i=1

Pos (Ci(A)) (A.20)

∀A ∈ P(U) : Nec(λ(A)) =
n

min
i=1

Nec (Ci(A)) . (A.21)

In the case of disjunction (i.e. B = ∨), the inference of uncertainty about the evaluation
of a set reduces to:

∀A ∈ P(U) : Pos(λ(A)) =
n

max
i=1

Pos (Ci(A)) (A.22)

∀A ∈ P(U) : Nec(λ(A)) =
n

max
i=1

Nec (Ci(A)) . (A.23)

Note that by using the functions min and max here, there is an implicit assumption that
the possibilistic variables πCi

are mutual min-dependent in the sense of De Cooman
(i.e. non-interactive). For an extensive reading on (in)dependency of possibilistic vari-
ables, the reader is referred to [172–174]. In case of ¬, we get:

∀A ∈ P(U) : Pos(¬λ(A)) = 1−Nec(λ(A)) (A.24)
∀A ∈ P(U) : Nec(¬λ(A)) = 1− Pos(λ(A)). (A.25)

A-8 POSSIBILISTIC EVALUATION OF SETS

Let us provide an example that illustrates the use of Definition 107.

Example 43. Consider a universe U = {a, b, c, d} and consider two binary relations
over U as shown in Figure A.2.

R1 a b c d

a x

b x

c x

d x

R2 a b c d

a x x

b x x

c x x

d x x

Figure A.2: Two binary relations on U

Note that R1 is the equality relation over U and R2 is an equivalence relation over
U . Let us also consider two ill-known values X1 and X2 for which the possibility
distributions are shown in Figure A.3.

-

6

1

U
a b c d

q

q

πX2

-

6

1

U
a b c d

q
q

πX1

Figure A.3: Possibility distributions of X1 and X2

Based on these distributions, it is possible to infer the uncertainty about the ill-
known constraints C1 and C2. For the first constraint, we find that:

Pos((a,X1) ∈ R1) = 0.5 Nec((a,X1) ∈ R1) = 0 (A.26)
Pos((b,X1) ∈ R1) = 0 Nec((b,X1) ∈ R1) = 0 (A.27)
Pos((c,X1) ∈ R1) = 1 Nec((c,X1) ∈ R1) = 0.5 (A.28)
Pos((d,X1) ∈ R1) = 0 Nec((d,X1) ∈ R1) = 0. (A.29)

For the second constraint, we find that:

Pos((a,X2) ∈ R2) = 0.25 Nec((a,X2) ∈ R2) = 0 (A.30)
Pos((b,X2) ∈ R2) = 0.25 Nec((b,X2) ∈ R2) = 0 (A.31)
Pos((c,X2) ∈ R2) = 1 Nec((c,X2) ∈ R2) = 0.75 (A.32)
Pos((d,X2) ∈ R2) = 1 Nec((d,X2) ∈ R2) = 0.75. (A.33)

Now assume an evaluation function λ that evaluates the Boolean disjunction (B = ∨)
of C1 and C2. For any set A ⊆ U , the possibility and necessity that A passes the
evaluation through λ is shown in Table A.1.

POSSIBILISTIC EVALUATION OF SETS A-9

A Pos(λ(A)) Nec(λ(A))
∅ 1 1
{a} 0.5 0
{b} 0.25 0
{c} 1 0.75
{d} 1 0.75
{a, b} 0.25 0
{a, c} 0.5 0
{a, d} 0.5 0
{b, c} 0.25 0
{b, d} 0.25 0
{c, d} 1 0.75
{a, b, c} 0.25 0
{a, b, d} 0.25 0
{a, c, d} 0.5 0
{b, c, d} 0.25 0
{a, b, c, d} 0.25 0

Table A.1: Uncertainty about set evaluation

A.2. An application on intervals

In this section, the proposed reasoning is more deeply applied to the specific context
of intervals on the real line. It will be shown in this section that the general framework
that is presented here, is consistent with results of earlier work concerning interval
reasoning. The setting of intervals is of specific interest in the context of fuzzy temporal
databases. A temporal database [73] is a database that manages some aspects of time
in its schema. The time can be represented either as points or intervals [84]. Fuzzy
temporal models [23] have been proposed when the time points [96] or intervals [24]
are ill-known. Allen [9] defined thirteen possible relations between two crisp time
intervals. For fuzzy intervals, several proposals [19, 22, 23] have been done.

As explained above, in temporal databases, points in time can be ill-known, i.e.
a point in time is modelled as an ill-known value. When two such ill-known points
are given, an interesting problem is the inference of uncertainty about the interval that
is enclosed by these two ill-known points. In the proposed framework, this problem
can be solved by evaluating an interval against two ill-known constraints, where the
binary relations are ordering relations on the set of real numbers. We first treat this
special case of interval evaluation separately, because some authors seem to solve this
problem by transforming the given ill-known points into a fuzzy set. However, it is
shown here why such a solution fails. In a second step, it will be shown show how a
crisp interval can be compared to an ill-known interval by using Allen relations.

A.2.1. Interval evaluation by ill-known constraints

Consider two ill-known values X and Y on the set of real numbers R. Uncertainty
about the values taken by X and Y is given by possibility distributions πX and πY .
The problem that is studied first here, is how uncertainty about the fact that a crisp
interval is enclosed by the interval with boundary points X and Y can be inferred.
More concretely, for a crisp interval I = [a, b], we want to know whether all points

A-10 POSSIBILISTIC EVALUATION OF SETS

in this interval reside between the boundaries X and Y . This means that, assuming X
specifies the lower bound and Y the upper bound, we want to known whether all points
in the interval are larger than or equal to X and smaller than or equal to Y . This can
be done by casting the general framework introduced in the previous section into this
problem. Therefore, we consider two ill-known constraints.

C1
4
= (≥, X) (A.34)

C2
4
= (≤, Y) . (A.35)

Applying the inference of uncertainty as proposed in our general reasoning, we find for
the first constraint that:

Pos (C1([a, b])) = min
r∈[a,b]

(
sup
r≤w

πX(w)
)

(A.36)

Nec (C1([a, b])) = min
r∈[a,b]

(
inf
r>w

1− πX(w)
)

(A.37)

which can be simplified to:

Pos (C1([a, b])) = sup
a≤w

πX(w) (A.38)

Nec (C1([a, b])) = inf
a>w

1− πX(w). (A.39)

For the second constraint, we find that:

Pos (C2([a, b])) = min
r∈[a,b]

(
sup
r≥w

πY (w)
)

(A.40)

Nec (C2([a, b])) = min
r∈[a,b]

(
inf
r<w

1− πY (w)
)

(A.41)

which can be simplified to:

Pos (C2([a, b])) = sup
b≥w

πY (w) (A.42)

Nec (C2([a, b])) = inf
b<w

1− πY (w). (A.43)

The uncertainty about the inclusion of an interval I = [a, b] in the interval with ill-
known boundaries can now be found by evaluating [a, b] against the evaluation function
λ with B = ∧. Application of (3.21) and (3.22) leads to:

Pos (λ([a, b])) = min

(
Pos(C1([a, b])),Pos(C2([a, b]))

)
(A.44)

Nec (λ([a, b])) = min

(
Nec(C1([a, b])),Nec(C2([a, b]))

)
. (A.45)

These last expressions can also be expanded as:

Pos (λ([a, b])) = min

(
sup
a≤w

πX(w), sup
b≥w

πY (w)

)
(A.46)

Nec (λ([a, b])) = min

(
inf
a>w

1− πX(w), inf
b<w

1− πY (w)

)
. (A.47)

POSSIBILISTIC EVALUATION OF SETS A-11

X Y

1 2 3 4 5 6 7 8 9 100

1

Figure A.4: The fuzzy numbers X and Y .

Note that the interval [X,Y] used here, is certainly not a fuzzy interval. Instead, we are
dealing with an ill-known interval, i.e. it is a crisp interval, but it is partially unknown
which values are in this interval. The uncertainty stems from the fact that the interval
boundaries are ill-known. These ideas get more clear in the following example.

Example 44. To illustrate the above mentioned mechanism, consider the fuzzy num-
bers X and Y for which the membership function can be regarded as a possibility
distribution. The membership functions are given by:

X = [5, 3, 3]

Y = [9, 2, 1] (A.48)

and are shown in Figure A.4. The knowledge about the evaluation of an interval [a, b]
is modelled by the expressions in (A.46) and (A.47). Figure A.5 shows a 3D plot of the
possibility that an interval [a, b] passes the evaluation (i.e. given by (A.46)). Note the
triangular form for the resulting possibility distribution since the condition a ≤ b holds.
The necessity plot (i.e. given by (A.47)) is obtained in a similar way and is shown in

Figure A.5: Possibility of evaluation for the interval [a, b].

Figure A.6. Notice that the necessity plot is not normalized because the supports of X
and Y overlap.

It can be seen that the evaluation of intervals obtained by the presented constraints
in fact evaluates whether a crisp interval is inside two ill-known boundaries. Hence, an

A-12 POSSIBILISTIC EVALUATION OF SETS

Figure A.6: Necessity of evaluation for the interval [a, b].

evaluation of the relation “during or equal” in the sense of Allen is obtained [9]. It is
noted that any of the Allen relations (or a combination of them) can be evaluated in a
similar way. This statement is proven here by providing the basic constraints and the
corresponding function B, for the seven basic Allen relations (the others are merely
inversions of the discussed relations). Assume a crisp interval I = [a, b] on the one
hand and an interval J with ill-known boundaries X and Y . The uncertainty about
X and Y is given by the possibility distributions πX and πY . For any of the Allen
relations, we can compare I with J by formulating a set of constraints and a Boolean
function. Table A.2 shows the seven basic interval relations proposed by Allen with the
corresponding constraints in the framework and the corresponding Boolean function.
When taking a closer look at Table A.2, it can be noticed that in some cases it is
not required that all elements of a set A satisfy a constraint. For example, the Allen
relation I equals J requires to evaluate that both the lower and upper boundaries of both
intervals are equal. However, the definition of a constraint (Definition 104) implies that
a constraint is satisfied if all elements of a set are in relation to the given threshold x. It
can thus be questioned whether the framework should also allow to evaluate whether at
least one element is in relation to a given threshold x (i.e. a notion of the ∃ quantifier).
The study of the Allen relations in Table A.2 shows however that such a notion is
already at hand in the presented framework. This can be shown on a more formal level.
Suppose that for a set A, an evaluation of the following kind is required:

∃a ∈ A : (a, x) ∈ R (A.49)

then we can rewrite this as

¬
(
∀a ∈ A : ¬

(
(a, x) ∈ R

))
(A.50)

which is equivalent to
¬
(
∀a ∈ A : (a, x) /∈ R

)
(A.51)

and finally we have that
¬
(
∀a ∈ A : (a, x) ∈ R

)
. (A.52)

This provides us with a similar construction as in Definition 104, with the only differ-
ence that the constraint is negated. However, the possibilistic extension of the operator

POSSIBILISTIC EVALUATION OF SETS A-13

Allen Relation Constraints B
(
C1(I), ..., Cn(I)

)
I before J C1

4
= (<,X) C1(I)

I equal J

C1
4
= (≥, X) C1(I) ∧ ¬C2(I) ∧ C3(I) ∧ ¬C4(I)

C2
4
= (6=, X)

C3
4
= (≤, Y)

C4
4
= (6=, Y)

I meets J C1
4
= (≤, X) C1(I) ∧ ¬C2(I)

C2
4
= (6=, X)

I overlaps J
C1
4
= (<, Y) C1(I) ∧ ¬C2(I) ∧ ¬C3(I)

C2
4
= (≤, X)

C3
4
= (≥, X)

I during J

C1
4
= (>,X)

(
C1(I) ∧ C2(I)

)
∨
(
C3(I) ∧ C4(I)

)
C2
4
= (≤, Y)

C3
4
= (≥, X)

C4
4
= (<, Y)

I starts J C1
4
= (≥, X) C1(I) ∧ ¬C2(I)

C2
4
= (6=, X)

I finishes J C1
4
= (≤, Y) C1(I) ∧ ¬C2(I)

C2
4
= (6=, Y)

Table A.2: Allen’s relations represented in the framework.

¬ can be used for evaluation of such constructions. It might be noticed that evalua-
tions where only one element must satisfy a constraint could be defined directly in the
framework, perhaps leading to more simple formulas in Table A.2. The authors have
chosen not to do so, in order to keep the basic framework as simple as possible.

In what follows, the connection with the work of some other authors is presented,
hereby adopting the notations from the works that are referred.

A.2.2. Dubois and Prade’s approach

In this subsection, a comparison with the work of Dubois and Prade is made from
two points of view.

Firstly, it can be seen that the application to (temporal) intervals of our framework
provides equivalent results as the ones by Dubois and Prade in their work on temporal
reasoning [96]. This demonstrates to a certain level the correctness of the framework
presented in this paper. More specific, starting from a general framework of reasoning
about sets, we obtain equivalent results than those obtained by a specific formulation
of the problem. As a result, the reasoning about uncertainty is consistent with an alter-
native reasoning. However, note that in the presented framework, we have an explicit
connection with Boolean logic as the reasoning takes place in the framework of possi-
bilistic truth values. This reasoning is not presented by Dubois and Prade.

Secondly, our framework avoids the usage of a possibility distribution over the set

A-14 POSSIBILISTIC EVALUATION OF SETS

P(U) as is suggested in [154]. This provides a more simple reasoning. In addition, as-
pects such as monotonicity are implicitly taking into account. For example, let us con-
sider two crisp intervals [a, b] and [c, d] with the constraint that [a, b] ⊂ [c, d]. Clearly,
with [X,Y] an ill-known interval, the possibility that [a, b] is a subset of [X,Y] must
be greater than or equal to the possibility that [c, d] is a subset of [X,Y]. If a possibil-
ity distribution is to be constructed over P(R), such monotonicity has to be taken into
account explicitly, while in the presented framework, such monotonicity is implicitly
taken into account.

In conclusion, within this paper, a general framework for reasoning about the un-
certainty of sets is presented that is more suitable than the framework of ill-known sets
as presented by Dubois and Prade [154]. However, when applying the framework to
the specific case of intervals over R, the obtained results are equivalent and consistent
with earlier results [154].

A.2.3. Comparison with fuzzy transformations
Next to Dubois and Prade, there are several alternative proposals to deal with un-

certainty about intervals. These proposals initiate from the idea that two fuzzy numbers
that represent an ill-known interval, can be transformed into a fuzzy interval. Two such
transformations are based on the convex hull and on the transformation preserving the
imprecision [24]. Both transformations are illustrated in Figure A.7.

1

0

possibility

1

0

possibility

ds deds-as ds+bs de-ae de+be

ds-as ds de de+be

1

0

possibility

ds-as ds

1

0

possibility
ds+bs

de-ae de de+be

S1

S2

S3

S4

Figure A.7: Transformations of ill-known values.

Approaches that adopt such transformations are however not consistent with possi-
bility theory. We provide two arguments to illustrate this:

1. The fuzzy sets that model the two fuzzy numbers are possibility distributions
over R because they both describe an ill-known point on the real line. However,
the fuzzy set obtained after the transformation is still a possibility distribution
over R and not over P(R). This means that the approaches involving a transfor-
mation fail to establish possibilistic information on the level of intervals.

2. If the obtained fuzzy after the transformation is to be treated as a fuzzy interval,
then the notion of possibility is suddenly dropped. Such a casting from possi-
bility theory to fuzzy set theory lacks a theoretical foundation in the literature of
fuzzy set theory. Moreover, it involves a loss of information. At best, like with

POSSIBILISTIC EVALUATION OF SETS A-15

the convex hull transformation, the membership function provided for the fuzzy
interval preserves the possibility. However, information about necessity is never
preserved.

A.3. Conclusions
Possibility theory is a theory of uncertainty suited for the treatment of uncertainty

caused by incomplete information. It has been studied and developed over the past
decades. Unfortunately, there seems to be many misinterpretations of this theory when
it is applied to the case of sets. Dubois and Prade have shown that the correct treatment
of sets would imply a highly complex possibility distribution. Elaborating on their
work, we have proposed an elegant and novel method for the inference and modelling
of uncertainty about crisp sets. A framework for set evaluation is proposed where a
set is evaluated againts a collection of constraints, which can be ill-known. As such,
we develop a framework in which uncertainty on the level of elements is propagated to
uncertainty on the level of sets. The uncertainty is expressed by means of possibility
distributions over the Boolean domain B. An interesting application of the proposed
framework, is the case of interval evaluation, which is for example useful in temporal
databases. We have shown that (i) our framework allows to evaluate the well known
Allen relations, (ii) our framework is compatible with the results by Dubois and Prade
in the field of uncertain intervals and (iii) some techniques from literature with respect
to fuzzy intervals are not fully correct in the sense of possibility theory.

A-16 POSSIBILISTIC EVALUATION OF SETS

Bibliography

[1] “Gregorian calendar.” http://en.wikipedia.org/wiki/
Gregorian_calendar.

[2] G. Shackle, Decision, order and time in human affairs. Cambridge University
Press, 1961.

[3] W. Klein, Time in Language. London, U.K.: Routledge, 1994.

[4] F. Devos, N. Van Gyseghem, R. Vandenberghe, and R. De Caluwe, “Modelling
vague lexical time expressions by means of fuzzy set theory,” Journal of Quan-
titative Linguistics, vol. 1, no. 3, pp. 189–194, 1994.

[5] F. Devos, P. Maesfranckx, and G. De Tré, “Granularity in the interpretation of
around in approximative lexical time indications,” Journal of Quantitative Lin-
guistics, vol. 5, pp. 167–173, 1998.

[6] R. De Caluwe, B. Van der Cruyssen, G. De Tré, F. Devos, and P. Maesfranckx,
Fuzzy time indications in natural languages interfaces, pp. 163–185. Norwell,
MA, USA: Kluwer Academic Publishers, 1997.

[7] A. Bolour, T. L. Anderson, L. J. Dekeyser, and H. K. T. Wong, “The role of time
in information processing: a survey,” ACM SIGMOD Record, vol. 12, pp. 27–50,
April 1982.

[8] B. Van der Cruyssen and G. De Caluwe, R.and De Tré, “A theoretical fuzzy time
model based on granularities,” EUFIT’97, pp. 1127–1131, Sep 1997.

[9] J. F. Allen, “Maintaining knowledge about temporal intervals,” Commun. ACM,
vol. 26, pp. 832–843, 1983.

[10] L. Fiordi, “Semantic conceptions of information..” The Standford En-
cyclopedia of Philosophy, http://plato.stanford.edu/entries/
information-semantic/, 2005.

[11] E. Wikipedia, “Information.” http://en.wikipedia.org/wiki/
Information. Accessed on June 2012.

[12] “Definition of information system.” http://en.wikipedia.org/wiki/
Information_systems, 09 2007. Accessed on May 2013.

[13] “Information system discipline.” http://en.wikipedia.org/wiki/
Information_systems_%28discipline%29. Accessed on June 2012.

[14] E. F. Codd, “A relational model of data for large shared data banks,” Commun.
ACM, vol. 13, pp. 377–387, June 1970.

A-18 POSSIBILISTIC EVALUATION OF SETS

[15] E. F. Codd, “Extending the database relational model to capture more meaning,”
ACM Transactions on Database Systems, vol. 4, pp. 397–434, 1979.

[16] J. Melton and A. R. Simon, Understanding the new SQL: a complete guide. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1993.

[17] L. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338–353, 1965.

[18] D. Mitra and et al., “A possibilistic interval constraint problem: Fuzzy temporal
reasoning,” in Fuzzy Systems, 1994. IEEE World Congress on Computational
Intelligence., Proc. of the Third IEEE Conference on, vol. 2, pp. 1434–1439, jun
1994.

[19] G. Nagypál and B. Motik, “A fuzzy model for representing uncertain, subjec-
tive, and vague temporal knowledge in ontologies,” in On The Move to Mean-
ingful Internet Systems 2003: CoopIS, DOA, and ODBASE, vol. 2888 of LNCS,
pp. 906–923, Springer, Heidelberg, 2003.

[20] C. Billiet, J. Pons, T. Matthé, G. De Tré, and O. Pons, “Bipolar fuzzy querying
of temporal databases,” in Lecture Notes in Artificial Intelligence, vol. 7022,
(Ghent, Belgium), pp. 60–71, Springer, Octobre 2011.

[21] D. Dubois, A. HadjAli, and H. Prade, “Fuzziness and uncertainty in temporal
reasoning,” Journal of Universal Computer Science, vol. 9, pp. 1168–1194, jan
2003.

[22] H. J. Ohlbach, “Relations between fuzzy time intervals,” International Sympo-
sium on Temporal Representation and Reasoning, vol. 0, pp. 44–51, 2004.

[23] S. Schockaert, M. De Cock, and E. Kerre, “Fuzzifying allen’s temporal interval
relations,” Fuzzy Systems, IEEE Transactions on, vol. 16, pp. 517 –533, april
2008.

[24] C. Garrido, N. Marin, and O. Pons, “Fuzzy intervals to represent fuzzy valid
time in a temporal relational database,” Int. J. Uncertainty Fuzziness Knowlege-
Based Syst., vol. 17, pp. 173–192, 2009.

[25] J. E. Pons, A. Bronselaer, G. De Tré, and O. Pons, “Possibilistic evaluation
of sets,” Int. J. Uncertainty Fuzziness Knowlege-Based Syst., vol. 1, pp. 11–
11, 2012. Submitted to the International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems.

[26] Y. Qiang, K. Asmussen, M. Delafontaine, G. De Tré, B. Stichelbaut,
P. De Maeyer, and N. Van de Weghe, “Visualising rough time intervals in a
two-dimensional space,” in 2009 IFSA World Congress / EUSFLAT Conference,
Proceedings, Jul 2009.

[27] Z. Pawlak, J. Grymala-Busse, R. Slowinski, and W. Ziarko, “Rough Sets,” Com-
munications of the ACM, vol. 38, no. 6, 1995.

[28] T. Imieliński and W. Lipski, Jr., “Incomplete information in relational
databases,” J. ACM, vol. 31, pp. 761–791, Sept. 1984.

POSSIBILISTIC EVALUATION OF SETS A-19

[29] Y. Vassiliou, “Null values in data base management a denotational semantics
approach,” in Proceedings of the 1979 ACM SIGMOD international conference
on Management of data, SIGMOD ’79, (New York, NY, USA), pp. 162–169,
ACM, 1979.

[30] Y. Vassiliou, “Functional dependencies and incomplete information,” in Proc.
6th Int. Conf. on Very Large Data Bases (N. Y. ACM, ed.), (Montreal, Ont.
Canada), pp. 268–269, Oct 1980.

[31] J. Grant, “Null values in a relational data base,” Inf. Process. Lett., vol. 5, no. 5,
pp. 156–157, 1977.

[32] C. Zaniolo, “Database relations with null values,” in Proceedings of the ACM
SIGACT-SIGMOD Symposium on Principles of Database Systems (A. N. York,
ed.), (Los Angeles, Calif.), pp. 27–33, March 1982.

[33] G. D. Tré, R. M. M. D. Caluwe, and H. Prade, “Null values revisited in prospect
of data integration,” in ICSNW (M. Bouzeghoub, C. A. Goble, V. Kashyap, and
S. Spaccapietra, eds.), vol. 3226 of Lecture Notes in Computer Science, pp. 79–
90, Springer, 2004.

[34] A. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung. Berlin: Julius
Springer, 1933.

[35] B. D. Finetti, “La prévision : ses lois logiques, ses sources subjectives,” Ann.
Inst. Poincaré, vol. 7, pp. 1–68, 1937.

[36] Lotfi Zadeh, “Fuzzy sets as a basis for a theory of possibility,” Fuzzy Sets and
Systems, vol. 1, pp. 3–28, 1978.

[37] Henri Prade, “Possibility sets, fuzzy sets and their relation to lukasiewicz logic,”
in Proceedings of the International Symposium on Multiple-Valued Logic,
pp. 223–227, 1982.

[38] Didier Dubois and Henri Prade, Possibility Theory. Plenum Press, 1988.

[39] D. Dubois and H. Prade, “Interval-valued fuzzy sets, possibility theory and im-
precise probability,” in In Proceedings of International Conference in Fuzzy
Logic and Technology, pp. 314–319, 2005.

[40] M. Zemankova-Leech and A. Kandel, “Fuzzy relational databases - a key to ex-
pert systems,” Journal of the American Society for Information Science, vol. 37,
pp. 272–273, 1984.

[41] B. P. Buckles and F. E. Petry, “Extending the fuzzy database with fuzzy num-
bers,” Information Sciences, vol. 34, no. 2, pp. 145 – 155, 1984.

[42] B. P. Buckles and F. E. Petry, “A fuzzy representation of data for relational
databases,” Fuzzy Sets and Systems, vol. 7, no. 3, pp. 213 – 226, 1982.

[43] H. Prade and C. Testemale, “Representation of soft constraints and fuzzy at-
tribute values by means of possibility distributions in data bases,” The Analysis
of Fuzzy Information, vol. II, 1987.

A-20 POSSIBILISTIC EVALUATION OF SETS

[44] H. Prade and C. Testemale, “Generalizing database relational algebra for the
treatment of incomplete or uncertain information and vague queries,” Informa-
tion Sciences, vol. 34, no. 2, pp. 115 – 143, 1984.

[45] E. A. Rundensteiner, L. W. Hawkes, and W. Bandler, “On nearness measures in
fuzzy relational data models,” International Journal of Approximate Reasoning,
vol. 3, no. 3, pp. 267 – 298, 1989.

[46] S. Shenoi and A. Melton, “Proximity relations in the fuzzy relational database
model,” Fuzzy Sets and Systems, vol. 100, Supplement 1, no. 0, pp. 51 – 62,
1989.

[47] M. A. Vila, J. C. Cubero, J. M. Medina, and O. Pons, “A logic approach to
fuzzy relational databases,” International Journal of Intelligent Systems, vol. 9,
pp. 449–460, 1994.

[48] G. de Tre, “Extended possibilistic truth values,” International Journal of Intelli-
gent Systems, vol. 17, pp. 427–446, 2002.

[49] P. Bosc, M. Galibourg, and G. Hamon, “Fuzzy querying with sql: extensions
and implementation aspects,” Fuzzy Sets Syst., vol. 28, pp. 333–349, December
1988.

[50] J. Kacprzyk and A. Ziólkowski, “Database queries with fuzzy linguistic quanti-
fiers,” IEEE Trans. Syst. Man Cybern., vol. 16, pp. 474–479, May 1986.

[51] J. Kacprzyk, S. Zadrożny, and A. Ziołkowski, “Fquery iii+: A “human-
consistent” database querying system based on fuzzy logic with linguistic quan-
tifiers,” Information Systems, vol. 14, no. 6, pp. 443 – 453, 1989. ¡ce:title¿Fuzzy
Databases¡/ce:title¿.

[52] G. De Tré and e. a. Zadrozny, “Dealing with Positive and Negative Query Cri-
teria in Fuzzy Database Querying Bipolar Satisfaction Degrees,” in Proceedings
of 8th Int. Conf. FQAS, (Denmark), pp. 593–604, Springer Verlag Berlin, 2009.

[53] P. Bosc, O. Pivert, and K. Farquhar, “Integrating fuzzy queries into an existing
database management system: An example,” International Journal of Intelligent
Systems, vol. 9, no. 5, pp. 475–492, 1994.

[54] J. Galindo, J. Medina, O. Pons, and J. Cubero, “A server for fuzzy sql queries,”
in Flexible Query Answering Systems (T. Andreasen, H. Christiansen, and
H. Larsen, eds.), vol. 1495 of Lecture Notes in Computer Science, pp. 164–174,
Springer Berlin / Heidelberg, 1998.

[55] M. Umano, “Freedom-0: A fuzzy database system.,” Fuzzy Inf and Decis Pro-
cesses, pp. 339–347, 1982. cited By (since 1996) 36.

[56] L. Tineo, M. Goncalves, and J. C. Eduardo, “A fuzzy querying system based on
sqlf2 and sqlf3,” in CLEI2004 (M. Solar, D. Fernández-Baca, and E. Cuadros-
Vargas, eds.), pp. 845–851, Sept. 2004.

[57] J. Galindo, Fuzzy Databases: Modeling, Design, and Implementation. Hershey,
PA, USA: IGI Publishing, 2006.

POSSIBILISTIC EVALUATION OF SETS A-21

[58] J. Clifford and A. U. Tansel, “On an algebra for historical relational databases:
two views,” SIGMOD Rec., vol. 14, pp. 247–265, May 1985.

[59] M. R. Klopprogge and P. C. Lockemann, “Modelling information preserving
databases: Consequences of the concept of time,” in Proceedings of the 9th
International Conference on Very Large Data Bases, (San Francisco, CA, USA),
pp. 399–416, Morgan Kaufmann Publishers Inc., 1983.

[60] N. L. Sarda, “Extensions to sql for historical databases,” IEEE Trans. Knowl.
Data Eng., vol. 2, pp. 220–230, 1990.

[61] R. Cavallo and M. Pittarelli, “The theory of probabilistic databases,” in Proc.
13th Int. Conf. Very Large Databases (VLDB’87), pp. 71–81, 1987.

[62] D. Barbara, H. Garcia-Molina, and D. Porter, “The management of probabilistic
data,” Knowledge and Data Engineering, IEEE Transactions on, vol. 4, pp. 487
–502, oct 1992.

[63] M. Pittarelli, “An algebra for probabilistic databases,” Knowledge and Data En-
gineering, IEEE Transactions on, vol. 6, pp. 293 –303, apr 1994.

[64] D. Dey and S. Sarkar, “A probabilistic relational model and algebra,” ACM
Trans. Database Syst., vol. 21, pp. 339–369, Sept. 1996.

[65] L. Antova, C. Koch, and D. Olteanu, “Maybms: Managing incomplete informa-
tion with probabilistic world-set decompositions,” in Data Engineering, 2007.
ICDE 2007. IEEE 23rd International Conference on, pp. 1479 –1480, april
2007.

[66] S. Abiteboul and P. Senellart, “Querying and updating probabilistic informa-
tion in xml,” in Advances in Database Technology - EDBT 2006 (Y. Ioannidis,
M. Scholl, J. Schmidt, F. Matthes, M. Hatzopoulos, K. Boehm, A. Kemper,
T. Grust, and C. Boehm, eds.), vol. 3896 of Lecture Notes in Computer Science,
pp. 1059–1068, Springer Berlin / Heidelberg, 2006. 10.1007/11687238 62.

[67] L. V. S. Lakshmanan, N. Leone, R. Ross, and V. S. Subrahmanian, “Probview: A
flexible probabilistic database system,” ACM TRANSACTIONS ON DATABASE
SYSTEMS, vol. 22, no. 3, pp. 419–469, 1997.

[68] A. Nierman and H. V. Jagadish, “Protdb: probabilistic data in xml,” in Proceed-
ings of the 28th international conference on Very Large Data Bases, VLDB ’02,
pp. 646–657, VLDB Endowment, 2002.

[69] M. van Keulen, A. de Keijzer, and W. Alink, “A probabilistic xml approach
to data integration,” in Data Engineering, 2005. ICDE 2005. Proceedings. 21st
International Conference on, pp. 459 – 470, april 2005.

[70] A. Dekhtyar, R. Ross, and V. S. Subrahmanian, “Probabilistic temporal
databases, i: algebra,” ACM Trans. Database Syst., vol. 26, pp. 41–95, March
2001.

[71] A. Parker, V. S. Subrahmanian, and J. Grant, “A logical formulation of prob-
abilistic spatial databases,” IEEE Trans. on Knowl. and Data Eng., vol. 19,
pp. 1541–1556, Nov. 2007.

A-22 POSSIBILISTIC EVALUATION OF SETS

[72] F. Parisi, A. Parker, J. Grant, and V. S. Subrahmanian, “Scaling cautious se-
lection in spatial probabilistic temporal databases,” in Methods for Handling
Imperfect Spatial Information, pp. 307–340, Springer, 2010.

[73] C. Dyreson and F. e. a. Grandi, “A consensus glossary of temporal database
concepts,” SIGMOD Rec., vol. 23, pp. 52–64, 1994.

[74] C. E. Dyreson and R. T. Snodgrass, “Supporting valid-time indeterminacy,”
ACM Trans. Database Syst., vol. 23, pp. 1–57, March 1998.

[75] W. Kurutach, “Modelling fuzzy interval-based temporal information: a temporal
database perspective,” in Fuzzy Systems, 1995. International Joint Conference
of the Fourth IEEE International Conference on Fuzzy Systems and The Sec-
ond International Fuzzy Engineering Symposium., Proceedings of 1995 IEEE
International Conference on, vol. 2, pp. 741 –748 vol.2, mar 1995.

[76] S. Abiteboul, P. Kanellakis, and G. Grahne, “On the representation and querying
of sets of possible worlds,” Theoretical Computer Science, vol. 78, no. 1, pp. 159
– 187, 1991.

[77] P. Bosc and O. Pivert, “Modeling and querying uncertain relational databases:
A survey of approaches based on the possible worlds semantics,” International
Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, vol. 18, no. 5,
pp. 565–603, 2010. cited By (since 1996) 2.

[78] P. Bosc and O. Pivert, “On a possibilistic database model with incomplete pos-
sibility distributions,” in Fuzzy Information Processing Society, 2009. NAFIPS
2009. Annual Meeting of the North American, pp. 1 –6, june 2009.

[79] P. Bosc, O. Pivert, and H. Prade, “An uncertain database model and a query alge-
bra based on possibilistic certainty,” in Soft Computing and Pattern Recognition
(SoCPaR), 2010 International Conference of, pp. 63 –68, dec. 2010.

[80] C. S. Jensen, R. T. Snodgrass, and M. D. Soo, “The tsql2 data model,” in The
TSQL2 Temporal Query Language, pp. 153–238, 1995.

[81] J. F. K. A. V. Benthem, The Logic of Time: A Model-Theoretic Investigation into
the Varieties of Temporal Ontology and Temporal Discourse. Reidel, Hingham,
MA, 1982.

[82] N. A. Lorentzos, A Formal Extension of the Relational Model for the Represen-
tation of Generic Intervals. PhD thesis, Birkbeck College, University of London,
1988.

[83] C. S. Jensen and R. T. Snodgrass, “Temporal data management,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 11, pp. 36–44, 1999.

[84] M. Bohlen, R. Busatto, and C. Jensen, “Point-versus interval-based temporal
data models,” in Data Engineering, 1998. Proceedings., 14th International Con-
ference on, pp. 192 –200, Feb. 1998.

[85] H. Lin, C. J. (codirector), M. Bohlen, R. Busatto, H. Gregersen, K. Torp, R. S.
(codirector), A. Datta, and S. Ram, “Efficient conversion between temporal
granularities,” Master’s thesis, The University of Arizona, 1997.

POSSIBILISTIC EVALUATION OF SETS A-23

[86] X. S. Wang, S. Jajodia, and V. S. Subrahmanian, “Temporal modules: An ap-
proach toward federated temporal databases,” in INFORMATION SYSTEMS,
pp. 227–236, 1993.

[87] C. Dyreson and R. Snodgrass, “Temporal granularity and indeterminacy: Two
sides of the same coin,” technical report tr 94-06, Computer Science Depart-
ment, University of Arizona, Tucson, U.S.A, Febuary 1994.

[88] S. Kraus, Y. Sagiv, and V. S. Subrahmanian, “Representing and integrating mul-
tiple calendars,” tech. rep., University of Maryland at College Park, College
Park, MD, USA, 1997.

[89] D. Husfeld and C. Kronberg, “Astronomical time keeping.” http://www.
maa.mhn.de/Scholar/times.html, 1996.

[90] “Converting between julian dates and gregorian calendar dates.”
http://www.usno.navy.mil/USNO/astronomical-applications/astronomical-
information-center/julian-date-form/?searchterm=Julian

[91] D. Gambis, “The leap second.” http://hpiers.obspm.fr/eop-
pc/earthor/utc/leapsecond.html.

[92] “Leap second.” http://en.wikipedia.org/wiki/Leap second.

[93] H. F. Fliegel and T. C. van Flandern, “Letters to the editor: a machine algorithm
for processing calendar dates,” Commun. ACM, vol. 11, pp. 657–, October 1968.

[94] “Smithsonian astrophysical observatory.” http://www.cfa.harvard.edu/sao/.

[95] “The official u.s time.” http://nist.time.gov/.

[96] D. DuBois and H. Prade, “Processing fuzzy temporal knowledge,” IEEE Trans-
actions on Systems, Man, and Cybernetics, vol. 19, pp. 729–744, 1989.

[97] G. De Tré, R. De Caluwe, and B. Van der Cruyssen, “Dealing with time in fuzzy
and uncertain object-oriented database models,” EUFIT’97, pp. 1157–1161, Sep
1997.

[98] S. Dutta, “An event based fuzzy temporal logic,” in Multiple-Valued Logic,
1988., Proceedings of the Eighteenth International Symposium on, pp. 64 –71,
0-0 1988.

[99] A. Motro, Uncertainty Management in Information Systems from Needs to Solu-
tions, ch. Sources of Uncertainty, Imprecission and Inconsistency in Information
Systems, pp. 2–27. Kluwer Academic Publishers, 1997.

[100] A. Motro, “Imprecision and uncertainty in database systems,” Fuzziness in
Database Management Systems, pp. 3–22, 1995.

[101] J. Virant and N. Zimic, “Attention to time in fuzzy logic,” Fuzzy Sets and Sys-
tems, vol. 82, no. 1, pp. 39 – 49, 1996.

[102] P. Chountas and I. Petrounias, “Modelling and representation of uncertain
temporal information,” Requirements Engineering, vol. 5, pp. 144–156, 2000.
10.1007/s007660070006.

A-24 POSSIBILISTIC EVALUATION OF SETS

[103] F. Kabanza, J. m. Stevenne, and P. Wolper, “Handling infinite temporal data,” in
Journal of Computer and System Sciences, pp. 392–403, 1990.

[104] B. Knight and J. Ma, “Time representation: A taxonomy of temporal models,”
Artificial Intelligence Review, vol. 7, pp. 401–419, 1993. 10.1007/BF00849933.

[105] P. Haddawy, “Believing change and changing belief,” IEEE Transactions on Sys-
tems, Man, and Cybernetics Special Issue on Higher-Order Uncertainty, vol. 26,
1996.

[106] G. Bordogna, P. Carrara, M. Pagani, M. Pepe, and A. Rampini, “Managing im-
perfect temporal metadata in the catalog services of spatial data infrastructures
compliant with inspire.,” in IFSA/EUSFLAT Conf. (J. P. Carvalho, D. Dubois,
U. Kaymak, and J. M. da Costa Sousa, eds.), pp. 915–920, 2009.

[107] G. B. et al., Advanced Database Query Systems, ch. Flexible Querying of Im-
perfect Temporal Metadata in Spatial Data Infraestructures: Techniques, Appli-
cations and Technologies, p. 140. IGI Global, 2011.

[108] S. Soysangwarn and S. Chittayasothorn, “Toward fuzzy temporal databases with
temporal fuzzy linguistic terms,” in Applications of Digital Information and
Web Technologies, 2009. ICADIWT ’09. Second International Conference on
the, pp. 8 –13, aug. 2009.

[109] A. Burney, N. Mahmood, and K. Ahsan, “Tempr-pdm: a conceptual temporal
relational model for managing patient data,” in Proceedings of the 9th WSEAS
international conference on Artificial intelligence, knowledge engineering and
data bases, AIKED’10, (Stevens Point, Wisconsin, USA), pp. 237–243, World
Scientific and Engineering Academy and Society (WSEAS), 2010.

[110] A. Burney, N. Mahmood, T. Jilani, and H. Saleem, “Conceptual fuzzy tempo-
ral relational model (ftrm) for patient data,” WSEAS Trans. Info. Sci. and App.,
vol. 7, pp. 725–734, May 2010.

[111] A. Burney, N. Mahmood, and Z. Abbas, “Advances in fuzzy rough set the-
ory for temporal databases,” in Proceedings of the 11th WSEAS international
conference on Artificial Intelligence, Knowledge Engineering and Data Bases,
AIKED’12, (Stevens Point, Wisconsin, USA), pp. 237–242, World Scientific
and Engineering Academy and Society (WSEAS), 2009.

[112] A. Bassiri, M. Malek, A. Alesheikh, and P. Amirian, “Temporal relationships
between rough time intervals,” in Computational Science and Its Applications
– ICCSA 2009 (O. Gervasi, D. Taniar, B. Murgante, A. Laganà, Y. Mun, and
M. Gavrilova, eds.), vol. 5592 of Lecture Notes in Computer Science, pp. 543–
552, Springer Berlin / Heidelberg, 2009.

[113] O. Etzion, S. Jajodia, and S. Sripada, Temporal databases: research and prac-
tice. Lecture notes in computer science, Springer, 1998.

[114] M. A. Nascimento and M. H. Eich, “Decision time in temporal databases,” in
Proceedings of the Second International Workshop on Temporal Representation
and Reasoning, pp. 157–162, 1995.

POSSIBILISTIC EVALUATION OF SETS A-25

[115] C. S. Jensen, L. Mark, and N. Roussopoulos, “Incremental implementation
model for relational databases with transaction time,” IEEE Trans. Knowl. Data
Eng., vol. 3, pp. 461–473, 1991.

[116] R. Snodgrass, “The temporal query language tquel,” in Proceedings of the 3rd
ACM SIGACT-SIGMOD symposium on Principles of database systems, PODS
’84, (New York, NY, USA), pp. 204–213, ACM, 1984.

[117] Y. Wu, S. Jajodia, and X. Wang, “Temporal database bibliography update,” in
Temporal Databases: Research and Practice (O. Etzion, S. Jajodia, and S. Sri-
pada, eds.), vol. 1399 of Lecture Notes in Computer Science, pp. 338–366,
Springer Berlin / Heidelberg, 1998. 10.1007/BFb0053709.

[118] S. Navathe and R. Ahmed, “Tsql—a language interface for history databases,”
5 1987.

[119] R. T. Snodgrass, C. Richard, T. Snodgrass, T. Snodgrass, C. S. Jensen, C. S.
Jensen, C. S. Jensen, A. Steiner, A. Steiner, M. H. Böhlen, M. H. Böhlen, M. H.
Böhlen, M. H. Böhlen, R. Busatto, H. Gregersen, C. S. J. (codirector, K. Torp,
A. Datta, R. T. S. (codirector, and C. E. Dyreson, “Transitioning temporal sup-
port in tsql2 to sql3,” in Temporal Databases: Research and Practice (O. Etzion,
S. Jajodia, and S. Sripada, eds.), vol. 1399 of Lecture Notes in Computer Sci-
ence, Springer Berlin / Heidelberg, 1998. 10.1007/BFb0053709.

[120] F.P.Brooks, The Analytic Design of automatic data processing systems. PhD
thesis, Harvard University, 1956.

[121] R. L. Blum, “Displaying clinical data from a time-oriented database,” Comput.
Biol. Med., vol. 11, pp. 197–210, January 1981.

[122] S. M. Joses and R.Stamper, “Legol 2.0: A relational specification language for
complex rules,” Information Systems, vol. 4, pp. 293– –305, 11 1979.

[123] J. Clifford, “A model for historical databases,” NYU Working paper, 11 1982.

[124] J. Clifford and D. S. Warren, “Formal semantics for time in databases,” ACM
Trans. Database Syst., vol. 8, pp. 214–254, June 1983.

[125] G. Ariav, “A temporally oriented data model,” ACM Trans. Database Syst.,
vol. 11, pp. 499–527, December 1986.

[126] R. Sadeghi, A database query language for operations on historical data. PhD
thesis, 1987.

[127] A. Segev and A. Shoshani, “Logical modeling of temporal data,” SIGMOD Rec.,
vol. 16, pp. 454–466, December 1987.

[128] J. Clifford and A. Croker, “The historical relational data model (hrdm) and al-
gebra based on lifespans,” in Proceedings of the Third International Conference
on Data Engineering, (Washington, DC, USA), pp. 528–537, IEEE Computer
Society, 1987.

[129] A. U. Tansel, “Adding time dimension to relational model and extending rela-
tional algebra,” Inf. Syst., vol. 11, pp. 343–355, October 1986.

A-26 POSSIBILISTIC EVALUATION OF SETS

[130] S. K. Gadia and C.-S. Yeung, “A generalized model for a relational temporal
database,” SIGMOD Rec., vol. 17, pp. 251–259, June 1988.

[131] S. K. Gadia and J. H. Vaishnav, “A query language for a homogeneous temporal
database,” in Proceedings of the fourth ACM SIGACT-SIGMOD symposium on
Principles of database systems, PODS ’85, (New York, NY, USA), pp. 51–56,
ACM, 1985.

[132] S. K. Gadia, “Toward a multihomogeneous model for a temporal database,”
in Proceedings of the Second International Conference on Data Engineering,
(Washington, DC, USA), pp. 390–397, IEEE Computer Society, 1986.

[133] B. Chuen-sing Yeung, Query languages for a heterogeneous temporal database.
PhD thesis, Texas Tech University, 1986.

[134] N. Lorentzos and R. Johnson, “An extension of the relational model to support
generic intervals,” in Advances in Database Technology—EDBT ’88 (J. Schmidt,
S. Ceri, and M. Missikoff, eds.), vol. 303 of Lecture Notes in Computer Science,
pp. 528–542, Springer Berlin / Heidelberg, 1988. 10.1007/3-540-19074-0 71.

[135] N. A. Lorentzos and V. J. Kollias, “The handling of depth and time intervals in
soil-information systems,” Comput. Geosci., vol. 15, pp. 395–401, March 1989.

[136] K. Kimball, “The data system,” Master’s thesis, Pennsylvania, 1978.

[137] L. A. Rowe and M. Stonebraker, The Postgres Papers. Berkeley, CA, USA:
University of California at Berkeley, 1987.

[138] N. A. Lorentzos and Y. G. Mitsopoulos, “Sql extension for interval data,” IEEE
Trans. on Knowl. and Data Eng., vol. 9, pp. 480–499, May 1997.

[139] M. H. Böhlen and C. S. Jensen, “Seamless integration of time into sql,” tech.
rep., Aalborg University, 1996.

[140] A. Steiner, A Generalisation Approach to Temporal Data Models and their Im-
plementation. PhD thesis, Swiss federal institute of technology, Zurich, 1998.

[141] R. Snodgrass, I. Ahn, G. Ariav, D. Batory, J. Clifford, C. E. Dyreson, R. El-
masri, F. Grandi, C. S. Jensen, W. Käfer, N. Kline, K. Kulkarni, T. Y. C. Leung,
N. Lorentzos, J. F. Roddick, A. Segev, M. D. Soo, and S. M. Sripada., “Tsql2
language specification,” tech. rep., University of Arizona, Tucson, September
1994.

[142] S. K. Gadia, “A homogeneous relational model and query languages for tem-
poral databases,” ACM Trans. Database Syst., vol. 13, pp. 418–448, October
1988.

[143] D. Toman, “A point-based temporal extension of sql,” in In International Con-
ference on Deductive and Object-Oriented Databases, pp. 103–121, 1997.

[144] Oracle Corp., Oracle database 11g Workspace Manager Overview, 09 2009.

[145] TimeDB, “A temporal relational dbms.,” 12 2011.

[146] Postgree, “Temporal postgreesql,” 12 2011.

POSSIBILISTIC EVALUATION OF SETS A-27

[147] Teradata, “Teradata temporal,” 12 2011.

[148] S. Dieker and R. H. Güting, “Plug and play with query algebras: Secondo-
a generic dbms development environment,” in Proceedings of the 2000 Inter-
national Symposium on Database Engineering & Applications, IDEAS ’00,
(Washington, DC, USA), pp. 380–392, IEEE Computer Society, 2000.

[149] R. H. Güting and M. Schneider, “Moving objects databases.”

[150] D. Dubois and H. Prade, “Ranking fuzzy Numbers in the Setting of Possibility
Theory,” Information Sciences, vol. 224, pp. 183–224, 1983.

[151] D. Dubois and H. Prade, Possibility Theory: An Approach to Computerized Pro-
cessing of Uncertainty. New York: Plenum Press, 1988.

[152] Didier Dubois and Henri Prade, “The three semantics of fuzzy sets,” Fuzzy Sets
and Systems, vol. 90, no. 2, pp. 141–150, 1997.

[153] P. Krause and D. Clark, “Representing uncertain knowledge,” 1993.

[154] D. Dubois and H. Prade, “Incomplete conjunctive information,” Computers &
Mathematics with Applications, vol. 15, pp. 797–810, 1988.

[155] Didier Dubois and Henri Prade, Decision-making Process: Concepts and Meth-
ods, ch. Formal representations of uncertainty, pp. 85–156. Wiley, 2009.

[156] G. Shafer, A mathematical theory of evidence. Princeton University Press, 1961.

[157] J. D. Ullman, Principles of Database Systems. Computer Science Press, 1982.

[158] M. Umano and S. Fukami, “Retrieval processing from fuzzy databases,” Techni-
cal Reports of IECE of Japan, vol. 80, no. 204, pp. 45 – 54, 1980.

[159] J. Medina, O. Pons, and J. Cubero, “Gefred. a generalized model of fuzzy rela-
tional databases,” Information Sciences, vol. 76, pp. 87–109, 1994.

[160] J. Galindo, “New characteristics in fsql, a fuzzy sql for fuzzy databases,” in
Proceedings of the 4th WSEAS International Conference on Artificial Intelli-
gence, Knowledge Engineering Data Bases, AIKED’05, (Stevens Point, Wis-
consin, USA), pp. 4:1–4:9, World Scientific and Engineering Academy and So-
ciety (WSEAS), 2005.

[161] H. Prade, “Current research trends in possibilistic logic: Multiple agent rea-
soning, preference representation, and uncertain databases,” in Advances in
Data Management (Z. Ras and A. Dardzinska, eds.), vol. 223 of Studies in
Computational Intelligence, pp. 311–330, Springer Berlin / Heidelberg, 2009.
10.1007/978-3-642-02190-9_15.

[162] L. Zadeh, “Similarity relations and fuzzy orderings,” Information Sciences,
vol. 3, no. 2, pp. 177 – 200, 1971.

[163] M. Anvari and G. F. Rose, “Fuzzy relational databases,” Analysis of Fuzzy In-
formation, vol. II, pp. 203–212, 1987.

[164] B. Buckles, F. Petry, and H. Sachar, “A domain calculus for fuzzy relational
databases,” Fuzzy Sets Syst., vol. 29, pp. 327–340, 1989.

A-28 POSSIBILISTIC EVALUATION OF SETS

[165] S. Shenoi and A. Melton, “An extended version of the fuzzy relational database
model,” Information Sciences, vol. 51, pp. 35–52, 1990.

[166] M. Umano, Fuzzy Information, Knowledge Representation and Decision Anal-
ysis, ch. Retrieval from Fuzzy Database by Fuzzy Relational Algebra, pp. 1–6.
Pergamon Press, New York, 1983.

[167] M. Umano and S. Fukami, “Fuzzy relational algebra for possibility-distribution-
fuzzy-relational model of fuzzy data,” Journal of Intelligent Information Sys-
tems, vol. 3, pp. 7–28, 1994.

[168] M. Zemankova-Leech and A. Kandel, “Implementing imprecision in informa-
tion systems,” Information Sciences, vol. 37, pp. 107–141, 1985.

[169] R. De Caluwe, F. Devos, P. Maesfranckx, G. De Tré, and B. Van Der Cruyssen,
“The semantics and modelling of flexible time indications.,” Computing with
Words in Information / Intelligent Systems, vol. 1: Foundations, pp. 229–256,
1999.

[170] R. De Caluwe, G. De Tré, B. Van Der Cruyssen, F. Devos, and P. Maesfranckx,
Time management in fuzzy and uncertain object-oriented databases, vol. 39 of
Knowledge management in fuzzy databases, pp. 67–88. Physica-Verlag, 2000.

[171] Brian Gaines and Ladislav Kohout, “Possible automata,” in Proceedings of
the International symposium on multiple-valued logic, (Bloomington, USA),
pp. 183–196, 1975.

[172] Gert De Cooman, “Possibility theory 1: The measure- and integral-theoretic
groundwork,” International Journal of General Systems, vol. 25, no. 4, pp. 291–
323, 1997.

[173] Gert De Cooman, “Possibility theory 2: Conditional possibility,” International
Journal of General Systems, vol. 25, no. 4, pp. 325–351, 1997.

[174] Gert De Cooman, “Possibility theory 3: Possibilistic independence,” Interna-
tional Journal of General Systems, vol. 25, no. 4, pp. 353–371, 1997.

[175] D. Dubois and H. Prade, “Flexible query answering systems,” ch. Using fuzzy
sets in flexible querying: why and how?, pp. 45–60, Norwell, MA, USA: Kluwer
Academic Publishers, 1997.

[176] G. Choquet, “Theory of capacities,” Annales de l’Institut Fourier, vol. 5,
pp. 131–295, 1953.

[177] D. Dubois and H. Prade, “Ranking fuzzy numbers in the setting of possibility
theory,” Information Sciences, vol. 30, pp. 183–224, 1983.

[178] E. McCluskey, Introduction to the Theory of Switching Circuits. McGraw-Hill
Book Company, 1965.

[179] J. Galindo and J. M. Medina, “Ftsql2: Fuzzy time in relational databases,” in
EUSFLAT Conf. ’01, pp. 47–50, 2001.

[180] D. Dubois, A. HadjAli, and H. Prade, “Fuzziness and uncertainty in temporal
reasoning,” j-jucs, vol. 9, pp. 1168–1194, 1 2003.

POSSIBILISTIC EVALUATION OF SETS A-29

[181] J. E. Pons, C. Billiet, O. Pons, and G. de Tré, “A possibilistic valid-time model,”
in Proceedings of the 14th International Conference on Information Processing
and Management of Uncertainty on Knowledge-Based Systems, 2012.

[182] J. Pons, A. Bronselaer, O. Pons, and G. de Tre, “Possibilistic evaluation of fuzzy
temporal intervals,” (Valladolid, Spain), february 2012.

[183] C. S. Jensen, R. T. Snodgrass, and M. D. Soo, “The tsql2 data model,” 1994.

[184] D. Gao, C. S. Jensen, R. T. Snodgrass, and M. D. Soo, “Join operations in tem-
poral databases,” tech. rep., TimeCenter, 2002.

[185] V. Tahani, “A conceptual framework for fuzzy query processing - a step to-
ward very intelligent database systems,” Inf. Process. Manage., vol. 13, no. 5,
pp. 289–303, 1977.

[186] P. Bosc and O. Pivert, “An approach for a hierarchical aggregation of fuzzy
predicates,” in Fuzzy Systems, 1993., Second IEEE International Conference
on, pp. 1231 –1236 vol.2, 1993.

[187] P. Bosc, D. Kraft, and F. Petry, “Fuzzy sets in database and information systems:
Status and opportunities,” Fuzzy Sets and Systems, vol. 156, no. 3, pp. 418 – 426,
2005. 40th Anniversary of Fuzzy Sets.

[188] D. Dubois and H. Prade, “Bipolarity in flexible querying,” in Proceedings of the
5th International Conference on Flexible Query Answering Systems, FQAS ’02,
(London, UK, UK), pp. 174–182, Springer-Verlag, 2002.

[189] D. Dubois and H. Prade, Handbook of Research on Fuzzy Information Process-
ing in Databases, ch. Handling bipolar queries in Fuzzy Information Processing,
pp. 97–114. New York, USA: Information Science Reference, 2008.

[190] P. Bosc, O. Pivert, A. Mokhtari, and L. Liétard, “Extending relational algebra
to handle bipolarity,” in Proceedings of the 2010 ACM Symposium on Applied
Computing, SAC ’10, (New York, NY, USA), pp. 1718–1722, ACM, 2010.

[191] L. Lietard, D. Rocacher, and P. Bosc, “On the extension of sql to fuzzy bipo-
lar conditions,” in Fuzzy Information Processing Society, 2009. NAFIPS 2009.
Annual Meeting of the North American, pp. 1 –6, june 2009.

[192] L. Lietard and D. Rocacher, “On the Definition of Extended Norms and Co-
norms to Aggregate Fuzzy Bipolar Conditions,” in European Society for Fuzzy
Logic and Technology, pp. 513–518, 2009.

[193] L. Liétard, N. Tamani, and D. Rocacher, “Linguistic quantifiers and bipolarity.,”
in Proc. of the 2011 IFSA World Congress and the 2011 AFSS International
Conference., (Surabaya and Bali Island, Indonesia), 2011.

[194] N. Tamani, L. Liétard, and D. Rocacher, “Bipolarity and the relational division,”
in Proc. of the 7th conference of the European Society for Fuzzy Logic and Tech-
nology (EUSFLAT 2011)., (Aix-les-Bains France), 2011.

[195] S. Zadrozny and J. Kacprzyk, “Bipolar queries and queries with preferences
(invited paper),” in Database and Expert Systems Applications, 2006. DEXA
’06. 17th International Workshop on, pp. 415 –419, 0-0 2006.

A-30 POSSIBILISTIC EVALUATION OF SETS

[196] S. Zadrozny, G. D. Tre, and J. Kacprzyk, “Remarks on various aspects of bipo-
larity in database querying,” 2012 23rd International Workshop on Database
and Expert Systems Applications, vol. 0, pp. 323–327, 2010.

[197] T. Matthé and G. De Tré, “Bipolar query satisfaction using satisfaction and dis-
satisfaction degrees: Bipolar satisfaction degrees,” in Proc. of the ACM SAC’09
Conference, (Honolulu, Hawaii, USA), pp. 1699–1703, 2009.

[198] T. Matthé, G. De Tré, S. Zadrozny, J. Kacprzyk, and A. Bronselaer, “Bipolar
database querying using bipolar satisfaction degrees,” Int. J. Intell. Syst., vol. 26,
pp. 890–910, Oct. 2011.

[199] M. Lacroix and P. Lavency, “Preferences; putting more knowledge into queries,”
in Proceedings of the 13th International Conference on Very Large Data Bases,
VLDB ’87, (San Francisco, CA, USA), pp. 217–225, Morgan Kaufmann Pub-
lishers Inc., 1987.

[200] G. De Tré, R. D. Caluwe, J. Kacprzyk, and S. Zadrozny, “On flexible database
querying via extensions to fuzzy sets,” in Proc. of Joint EUSFLAT-LFA 2005,
2005.

[201] P. Bosc and O. Pivert, “Some approaches for relational databases flexible query-
ing,” Journal of Intelligent Information Systems, vol. 1, pp. 323–354, 1992.

[202] P. Bosc and O. Pivert, “Sqlf: a relational database language for fuzzy querying,”
Fuzzy Systems, IEEE Transactions on, vol. 3, pp. 1 –17, feb 1995.

[203] J. Kacprzyk and S. Zadrozny, Fuzziness in database management systems,
ch. FQUERY for Access: Fuzzy querying for windows-based DBMS, pp. 415–
433. Physica-Verlag, 1995.

[204] S. Zadrozny, G. de Tré, R. de Caluwe, and J. Kacprzyk, Handbook of Research
on Fuzzy Information Processing in Databases, ch. An overview of fuzzy ap-
proaches to flexible database querying, pp. 34–54. New York, USA: Information
Science Reference, 2008.

[205] M. De Calmès, D. Dubois, E. Hüllermeier, H. Prade, and F. Sèdes, “A fuzzy set
approach to flexible case-based querying: methodology and experimentation,”
in Proc. of the 8th International Conference, Principles of Knowledge Repre-
sentation and Reasoning (KR2002), (Toulouse, France), pp. 449–458, 2002.

[206] K.-U. Jahn, “Intervall-wertige mengen,” Mathematische Nachrichten, vol. 68,
no. 1, pp. 115–132, 1975.

[207] R. Sambuc, Fonctions φ-floues. Application l’aide au diagnostic en pathologie
thyroidienne. PhD thesis, Univ. Marseille, France, 1975.

[208] L. A. Zadeh, “The concept of a linguistic variable and its application to approx-
imate reasoning - i,” Inf. Sci., vol. 8, no. 3, pp. 199–249, 1975.

[209] I. Grattan-Guinness, “Fuzzy membership mapped onto intervals and many-
valued quantities,” Mathematical Logic Quarterly, vol. 22, no. 1, pp. 149–160,
1976.

POSSIBILISTIC EVALUATION OF SETS A-31

[210] K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 20,
pp. 87–96, 1986.

[211] F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy,
Neutrosophic Set, Neutrosophic Probability. American Research Press, 1999.

[212] U. Rivieccio, “Neutrosophic logics: Prospects and problems,” Fuzzy Sets Syst.,
vol. 159, pp. 1860–1868, July 2008.

[213] N. D. Belnap, Modern Uses of Multiple-Valued Logic, ch. A useful four-valued
logic, pp. 8–37. Dordrecht, The Netherlands: Reidel, 1977.

[214] M. Öztürk and A. Tsoukiàs, “Modelling uncertain positive and negative reasons
in decision aiding,” Decision Support Systems, vol. 43, no. 4, pp. 1512–1526,
2007.

[215] E. Turunen, M. Öztürk, and A. Tsoukiàs, “Paraconsistent semantics for Pavelka
style fuzzy sentential logic,” Fuzzy Sets and Systems, vol. 161, no. 14, pp. 1926–
1940, 2010.

[216] S. Konieczny, P. Marquis, and P. Besnard, “Bipolarity in bilattice logics,” Inter-
national Journal of Intelligent Systems, vol. 23, no. 10, pp. 1046–1061, 2008.

[217] D. Dubois and H. Prade, “Gradualness, uncertainty and bipolarity: Making
sense of fuzzy sets,” Fuzzy Sets and Systems, vol. 192, no. 0, pp. 3 – 24,
2012. ¡ce:title¿Fuzzy Set Theory — Where Do We Stand and Where Do We
Go?¡/ce:title¿.

[218] G. Bordogna and G. Pasi, “Linguistic aggregation operators of selection crite-
ria in fuzzy information retrieval,” International Journal of Intelligent Systems,
vol. 10, no. 2, pp. 233–248, 1995.

[219] D. Dubois and H. Prade, “Default reasoning and possibility theory,” Artificial
Intelligence, vol. 35, no. 2, pp. 243–257, 1988.

[220] R. Yager, “Fuzzy logic in the formulation of decision functions from linguistic
specifications,” Kybernetes, vol. 25, no. 4, pp. 119–130, 1996.

[221] P. Bosc and O. Pivert, “On three fuzzy connectives for flexible data retrieval and
their axiomatization,” in Proceedings of the 2011 ACM Symposium on Applied
Computing, SAC ’11, (New York, NY, USA), pp. 1114–1118, ACM, 2011.

[222] L. Lietard, N. Tamani, and D. Rocacher, “Fuzzy bipolar conditions of type
or else,” in Fuzzy Systems (FUZZ), 2011 IEEE International Conference on,
pp. 2546 –2551, june 2011.

[223] P. Bosc and O. Pivert, “On four noncommutative fuzzy connectives and their
axiomatization,” Fuzzy Sets and Systems, vol. 202, no. 0, pp. 42 – 60, 2012.
¡ce:title¿Theme: Aggregation Functions¡/ce:title¿.

[224] T. Matthé and G. Tré, “Ranking of bipolar satisfaction degrees,” in Advances
in Computational Intelligence (S. Greco, B. Bouchon-Meunier, G. Coletti,
M. Fedrizzi, B. Matarazzo, and R. Yager, eds.), vol. 298 of Communications in
Computer and Information Science, pp. 461–470, Springer Berlin Heidelberg,
2012.

A-32 POSSIBILISTIC EVALUATION OF SETS

[225] T. Matthé and G. de Tré, “Weighted aggregation of bipolar satisfaction degrees.,”
in Proc. of the 2011 IFSA World Congress and the 2011 AFSS International
Conference., 2011.

[226] R. R. Yager, “On ordered weighted averaging aggregation operators in multicri-
teria decisionmaking,” IEEE Trans. Syst. Man Cybern., vol. 18, pp. 183–190,
Jan. 1988.

[227] R. R. Yager and J. Kacprzyk, eds., The ordered weighted averaging operators:
theory and applications. Norwell, MA, USA: Kluwer Academic Publishers,
1997.

[228] J. Pons, N. Marı́n, O. Pons, C. Billiet, and G. de Tré, “A relational model for
the possibilistic valid-time approach,” International Journal of Computational
Intelligence Systems, vol. 5, no. 6, pp. 1068–1088, 2012.

[229] J. Deploige, B. Callens, P. Demonty, and G. De Tré, “Remedying the obsoles-
cence of digitised surveys of medieval sources. narrative sources and diplomata
belgica.”

[230] C. Garrido, N. Marin, and O. Pons, “Fuzzy intervals to represent fuzzy valid
time in a temporal relational database,” International Journal of Uncertainty,
Fuzziness and Knowlege-Based Systems, vol. 17, no. SUPPL. 1, pp. 173–192,
2009.

[231] C. Billiet, J. Pons, O. Pons, and G. Tré, “Evaluating possibilistic valid-time
queries,” in Advances on Computational Intelligence (S. Greco, B. Bouchon-
Meunier, G. Coletti, M. Fedrizzi, B. Matarazzo, and R. Yager, eds.), vol. 297 of
Communications in Computer and Information Science, pp. 410–419, Springer
Berlin Heidelberg, 2012.

[232] Z. Kulpa, “Diagrammatic representation of interval space in proving theorems
about interval relations,” Reliable Computing, vol. 3, pp. 209–217, 1997.

[233] Z. Kulpa, “A diagrammatic approach to investigate interval relations,” Journal
of Visual Languages & Computing, vol. 17, no. 5, pp. 466 – 502, 2006. Context
and Emotion Aware Visual Interaction - Part II.

[234] N. V. de Weghe, R. Docter, P. D. Maeyer, B. Bechtold, and K. Ryckbosch,
“The triangular model as an instrument for visualising and analysing residu-
ality,” Journal of Archaeological Science, vol. 34, no. 4, pp. 649 – 655, 2007.

[235] G. Tré, N. Weghe, R. Caluwe, and P. Maeyer, “Towards a flexible visualiza-
tion tool for dealing with temporal data,” in Flexible Query Answering Systems
(H. Larsen, G. Pasi, D. Ortiz-Arroyo, T. Andreasen, and H. Christiansen, eds.),
vol. 4027 of Lecture Notes in Computer Science, pp. 109–120, Springer Berlin
Heidelberg, 2006.

[236] Y. Qiang, M. Delafontaine, K. Asmussen, B. Stichelbaut, G. de Tré, P. D.
Maeyer, and N. V. de Weghe, “Modelling imperfect time intervals in a two-
dimensional space,” Control and Cybernetics, vol. 39, no. 4, pp. 983–1010,
2010.

POSSIBILISTIC EVALUATION OF SETS A-33

[237] Y. Qiang, Modelling Temporal Information in a Two-Dimensional Space: A vi-
sualization perspective. PhD thesis, Ghent University, Ghent, Belgium, 2012.

[238] G. King, C. Bauer, M. R. Andersen, E. Bernard, S. Ebersole, and H. Fer-
entschik, Hibernate Reference Documentation, 3.6.0.cr2 ed. http://www.
hibernate.org/docs.

[239] O. Corp., “Java se technologies - database.” http://www.oracle.com/
technetwork/java/javase/jdbc/index.html. Accessed Nov.
2012.

[240] O. Corp., “Java transaction api (jta).” http://www.oracle.com/
technetwork/java/javaee/jta/index.html. Accessed Nov. 2012.

[241] “Javabeans.” http://en.wikipedia.org/wiki/JavaBeans. Ac-
cessed on Nov. 2012.

[242] “Plain old java object.” http://en.wikipedia.org/wiki/Plain_
Old_Java_Object. Accessed on Nov. 2012.

[243] J. Org., “Working with objects..” http://docs.jboss.org/
hibernate/orm/4.1/manual/en-US/html_single/\#
objectstate. Accessed on Nov. 2012.

[244] I. Object Management Group, “Corba specification.” http://www.omg.
org/corba/. Accessed on Nov.2012.

[245] “Common object request broker architecture.” http://en.wikipedia.
org/wiki/Common_Object_Request_Broker_Architecture.
Accessed on Nov. 2012.

[246] wikipedia, “Enterprise javabeans.” http://en.wikipedia.org/wiki/
Enterprise_JavaBeans.

[247] J. Comunity, “Enterprise java beans (ejb) 3.0.” http://www.jboss.org/
ejb3.

[248] Hibernate, “Fetching strategies.” http://docs.jboss.org/
hibernate/orm/4.1/manual/en-US/html_single/\#
performance-fetching.

[249] Hibernate, “Hql: The hibernate query language.” http://docs.jboss.
org/hibernate/orm/3.3/reference/en/html/queryhql.
html.

[250] O. Corp., “Using the criteria api to create queries.” http://docs.oracle.
com/javaee/6/tutorial/doc/gjitv.html.

[251] Wikipedia, “Query by example.” http://en.wikipedia.org/wiki/
Query_by_Example.

[252] K. Torp, C. Jensen, and R. Snodgrass, “Stratum approaches to temporal dbms
implementation,” in Database Engineering and Applications Symposium, 1998.
Proceedings. IDEAS’98. International, pp. 4 –13, jul 1998.

A-34 POSSIBILISTIC EVALUATION OF SETS

[253] C. Martı́nez Cruz, Sistema de gestión de bases de datos relacionales difusas
multipropósito. PhD thesis, Universidad de Granada, 2008.

[254] H. Nakajima, T. Sogoh, and M. Arao, “Fuzzy database language and library-
fuzzy extension to sql,” in Fuzzy Systems, 1993., pp. 477 –482 vol.1, 1993.

[255] S. Škrbic and A. Takaci, “An interpreter for priority fuzzy logic enriched sql,” in
BCI ’09, (Washington, DC, USA), pp. 96–100, IEEE Computer Society, 2009.

[256] Antwan Van Schooten, Ontwerp en implementatie van een model voor de repre-
sentatie en manipulatie van onzekerheid en imprecisie in databanken en expert
systemen. PhD thesis, Ghent University, 1988.

[257] Gert De Cooman, “Towards a possibilistic logic. in: Fuzzy set theory and ad-
vanced mathematical applications, edited by da ruan, kluwer academic, pp. 89–
133, boston.,” 1995.

