
UNIVERSITY OF GRANADA

PhD PROGRAM IN

MATHEMATICS AND STATISTICS

(D05.56.1)

PENALIZED ESTIMATION METHODS

IN FUNCTIONAL DATA ANALYSIS

PhD DISSERTATION

María del Carmen Aguilera Morillo

Granada, April, 2013



Editor: Editorial de la Universidad de Granada
Autor:  María del Carmen Aguilera Morillo
D.L.: GR 2244-2013
ISBN: 978-84-9028-649-4





La doctoranda María del Carmen Aguilera Morillo y la directora de la

tesis Dña. Ana María Aguilera del Pino. Garantizamos, al firmar esta tesis

doctoral, que el trabajo ha sido realizado por la doctoranda bajo la dirección

de la directora de la tesis y hasta donde nuestro conocimiento alcanza, en la

realización del trabajo, se han respetado los derechos de otros autores a ser

citados cuando se han utilizado sus resultados o publicaciones.

Granada, Abril de 2013.

Directora de la Tesis Doctoranda

Fdo.: Dña. Ana M. Aguilera del Pino. Fdo.: Dña. M. Carmen Aguilera Morillo.





A Carlos





Contents

Page

Introduction 1

1 Smoothing with B-spline bases 13
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Basic tools for FDA . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Basis expansion of functional data . . . . . . . . . . . . . . . 18

1.3.1 B-splines . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.2 Other bases . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Smoothing with B-spline bases . . . . . . . . . . . . . . . . . 23

1.4.1 Regression splines . . . . . . . . . . . . . . . . . . . . 23

1.4.2 Smoothing splines . . . . . . . . . . . . . . . . . . . . 25

1.4.3 P-splines . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.5 Choosing the smoothing parameter . . . . . . . . . . . . . . . 28

1.6 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.7 Real data applications . . . . . . . . . . . . . . . . . . . . . . 35

1.7.1 Pinch data . . . . . . . . . . . . . . . . . . . . . . . . 35

1.7.2 Manure data . . . . . . . . . . . . . . . . . . . . . . . 37

1.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2 Penalized PCA approaches for B-spline expansions of smooth
functional data 41
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 Functional principal component analysis . . . . . . . . . . . . 44

2.2.1 Basis expansion estimation . . . . . . . . . . . . . . . 46

2.3 P-spline smoothed functional PCA . . . . . . . . . . . . . . . 47

2.3.1 Selection of the smoothing parameter . . . . . . . . . . 49

2.4 Functional PCA of P-splines . . . . . . . . . . . . . . . . . . 50

I



II Contents

2.4.1 Selection of the smoothing parameter . . . . . . . . . . 51

2.5 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.6 Real data application . . . . . . . . . . . . . . . . . . . . . . 58

2.7 Computational cost . . . . . . . . . . . . . . . . . . . . . . . 60

2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3 Penalized spline approaches for functional logit regression 65
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Functional logit model . . . . . . . . . . . . . . . . . . . . . . 68

3.2.1 Penalized estimation with basis expansions . . . . . . . 70

3.3 Penalized estimation of functional principal component logit

regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.1 Method I: non-penalized FPCLoR . . . . . . . . . . . . 72

3.3.2 Method II: FPCLoR on P-spline smoothing of the sam-

ple curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.3 Method III: FPCLoR on P-spline smoothing of the prin-

cipal components . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.4 Method IV: FPCLoR with P-spline penalty in the max-

imum likelihood estimation . . . . . . . . . . . . . . . . . . . 74

3.4 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.1 Choosing λ in Method II . . . . . . . . . . . . . . . . 75

3.4.2 Choosing λ in Method III . . . . . . . . . . . . . . . . 76

3.4.3 Choosing the number of principal components in Meth-

ods I, II, and III . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.4 Choosing the number of predictors and the smoothing

parameter in Methods IV and V . . . . . . . . . . . . . . . . . 77

3.5 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5.1 Case I: simulation of waveform data . . . . . . . . . . . 78

3.5.2 Case II: simulation of the Ornstein-Uhlenbeck process . 83

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 Penalized spline approaches for functional PLS regression 91
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Functional PLS . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.1 Basis expansion estimation . . . . . . . . . . . . . . . 96

4.3 Penalized functional PLS . . . . . . . . . . . . . . . . . . . . 98

4.3.1 Roughness penalty function . . . . . . . . . . . . . . . 98

4.3.2 FPLS by penalizing the norm . . . . . . . . . . . . . . 99



M. Carmen Aguilera Morillo III

4.3.3 FPLS by penalizing the covariance . . . . . . . . . . . 101

4.3.4 Sample estimation . . . . . . . . . . . . . . . . . . . . 102

4.3.5 Model selection . . . . . . . . . . . . . . . . . . . . . 104

4.4 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4.1 Description . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4.2 Discussion of results . . . . . . . . . . . . . . . . . . . 108

4.5 Real data application . . . . . . . . . . . . . . . . . . . . . . 115

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5 P-spline estimation of functional classification methods for
improving the quality in the food industry 121

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2 Smoothing the data . . . . . . . . . . . . . . . . . . . . . . . 124

5.3 Methodological aspects . . . . . . . . . . . . . . . . . . . . . 126

5.3.1 Functional principal component logit regression . . . . . 128

5.3.2 Functional linear discriminant analysis based on func-

tional PLS regression . . . . . . . . . . . . . . . . . . . . . . 131

5.3.3 Componentwise classification . . . . . . . . . . . . . . 132

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.4.1 Interpreting the weight function . . . . . . . . . . . . . 136

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A Software and computational considerations 145

A.1 Main libraries . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.2 Main functions . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.2.1 Smoothing with B-spline bases . . . . . . . . . . . . . 147

A.2.2 Functional PCA . . . . . . . . . . . . . . . . . . . . . 148

A.2.3 Penalized functional PC logit regression . . . . . . . . 149

A.2.4 Penalized functional PLS regression . . . . . . . . . . . 149

B Conclusions and further research 151

B.1 Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

B.2 Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

B.3 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

B.4 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

B.5 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

B.6 Further research . . . . . . . . . . . . . . . . . . . . . . . . . 157



IV Contents

C Conclusiones y líneas abiertas 159
C.1 Capítulo 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

C.2 Capítulo 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

C.3 Capítulo 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

C.4 Capítulo 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

C.5 Capítulo 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

C.6 Líneas abiertas . . . . . . . . . . . . . . . . . . . . . . . . . . 166

D Summary 167
D.1 Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

D.2 Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

D.3 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

D.4 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

D.5 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

E Resumen 183
E.1 Capítulo 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

E.2 Capítulo 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

E.3 Capítulo 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

E.4 Capítulo 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

E.5 Capítulo 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Bibliography 199

List of Figures 211

List of Tables 215



Introduction

A functional variable is characterized because its observations are functions

that in the majority of cases represent the evolution of a scalar variable in

time (realizations of a stochastic process). This is the case of environmen-

tal variables such as temperature or contamination level observed daily in a

period of time, economic variables such as stock price evolution or medical

variables such as stress level. In other areas of application the argument

of the observed functions is a different magnitude such as spatial location,

wavelength or probability. In many chemometric applications, observations

of the NIR spectrum at a fine grid of wavelengths are available.

Functional data analysis (FDA) is an statistical topic of active research de-

voted to solve problems related with the statistical modeling and prediction

of functional data. An overview of the basic methods of FDA, computational

aspects related with their practical application and important real data mod-

eling can be seen in the pioneers books by Ramsay and Silverman (1997,

2005, 2002) and Ramsay et al. (2009). A detailed study on nonparametric

FDA methodologies was developed in Ferraty and Vieu (2006). Statistical

inference related with some FDA methods was recently studied in Horvath

and Kokoszka (2012).

The interest of FDA is reflected in the growing number of articles on

this question in recent years, from the two papers that appeared in 1997 to

the 83 published in 2011, according to the ISI Web of Knowledge database.

This growth became particularly evident following the publication of the first

specialized book in the field (Ramsay and Silverman, 1997). From a practical

point of view, different fields where this topic has aroused special interest

are health sciences and biology, where in recent years 222 articles have been

published. A revision of the FDA methods usually used in Biometrics and

Biostatistics and interesting applications can be seen in Escabias et al. (2012).

1



2 Introduction

Early work on FDA was developed in the framework of continuous-time

stochastic processes and was devoted to the generalization of reduction di-

mension techniques such as principal component analysis (PCA) to the func-

tional case (Deville, 1974). Later, statistical researching on FDA focused

on the formulation and estimation of different functional regression models.

The functional linear model to estimate a scalar response variable from a

functional predictor was one of the first regression models extended to the

functional data case (Cardot et al., 1999, 2003). The case where the predic-

tor is a vector or scalar and the response is functional was studied by Chiou

et al. (2004). Functional analysis of variance was introduced to model the

mean of a functional response in terms of a categorical variable (Cuevas et al.,

2002, 2004). On the other hand, functional linear models where both predic-

tor and response variables are functional were studied by Yao et al. (2005b)

and Ocaña et al. (2008). Principal component prediction models, that can

be seen as a particular case of these linear models, were first introduced to

forecast a continuous time stochastic process on a future interval from its

recent past (Aguilera et al., 1997, 1999). Generalized linear models were also

extended to the case of a functional predictor (James, 2002; Müller, 2005). A

particular case of functional generalized model is the functional logit regres-

sion model whose aim is to predict a binary random variable from a functional

predictor (Ratcliffe et al., 2002; Escabias et al., 2004; Aguilera et al., 2008b).

On the other hand, a spatial spline regression model for the analysis of data

distributed over irregularly shaped spatial domains is proposed in Sangalli

et al. (2013).

Direct estimation of the functional parameter associated with a functional

regression model is an ill-posed problem due to the infinite dimension of the

functional variable. On the other hand, sample curves are usually observed

in a finite set of sampling points that could be unequally spaced and dif-

ferent among the sample units. Because of this, the first step in FDA is

to reconstruct the true functional form of each sample curve from a finite

set of discrete observations. Approximation techniques such as interpolation

or projection in a finite-dimensional space generated by basis functions were

applied from the beginning to solve these problems. This way, the estimation

of a functional regression model is reduced to the estimation of an equiva-

lent multivariate regression model with high correlation between the predictor

variables.

Regression on a set of uncorrelated random variables is usually used in
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literature to provide an accurate estimation of the parameters associated

with a regression model. Functional PCA was used to reduce the dimen-

sion and solving the multicollinearity problem in many functional regression

models. Principal components are uncorrelated generalized linear combina-

tions of the functional predictor with maximum variance. Because of this the

main criticism about principal component regression is that the regressors are

computed without taking into account the response variable. To solve this

problem, functional partial least squares (PLS) was extended to the functional

case by computing a set of uncorrelated generalized linear combinations of

the predictor variable having maximum covariance with the response variable

(Preda and Saporta, 2005b).

In many applications the data are smooth functions observed with error.

In this case least squares approximation with B-spline bases is usually used

to estimate the basis coefficients of a basis expansion of the unobserved

smooth sample functions. The problem is that the approximated sample

curves (regression splines) do not control the degree of smoothness. As a

consequence, the estimated principal components and functional parameters

associated with functional regression models are difficult to interpret because

they have a lot of variability and lack of smoothness.

The general objective of this thesis is to improve the estimation of FDA

methodologies in the case of smooth functional data observed with error.

In order to solve this problem, different approaches based on penalized esti-

mation with B-spline basis expansions of sample curves are proposed. This

general objective is achieved through five specific objectives:

1. Review and comparison of existing methods for the approximation of

smooth curves with B-splines bases.

2. Improve the estimation of functional PCA by introducing different pe-

nalized spline approaches.

3. Develop different penalized approaches for estimating the functional

logit model based on penalized spline estimation of functional PCA.

4. Propose different penalized estimation approaches in functional PLS re-

gression.

5. Develop an application of the proposed penalized estimation method-

ologies to improve the quality in food industry.



4 Introduction

According with the specific objectives, the thesis is divided into five chap-

ters with the methodology and results related with each one. The contents of

each chapter have been included in different research papers actually submit-

ted or accepted for publication in different JCR journals. In addition to the

methodological contributions in each chapter, the proposed penalized FDA

methods were applied on simulated and real data by developing own code

with the free statistical software R (http://www.r-project.org). A brief de-

scription of the main libraries and functions used in this thesis can be seen in

Appendix A at the end of this memory.

Chapter 1

The main purpose of this chapter is to review and compare three different

approaches for approximating smooth sample curves observed with error in

terms of B-spline basis: regression splines (non-penalized least squares ap-

proximation), smoothing splines (continuous roughness penalty based on the

integrated squared d-order derivative of each sample curve) and P-splines (dis-

crete roughness penalty based on d-order differences between coefficients of

adjacent B-splines). The performance of these spline smoothing approaches

is studied via a simulation study and several applications with real data.

Cross validation and generalize cross validation are adapted to select a com-

mon smoothing parameter for all sample curves with the roughness penalty

approaches.

The approximation of smooth noisy functions with B-spline bases is used

in the estimation of a wide variety of FDA methodologies. This justifies the

importance of a comparison among the main smoothing approaches in terms

of B-splines, drawing conclusions that allow the researchers and practitioners

to use the most powerful tool in each case.

The main results of this chapter are submitted for publication in the fol-

lowing paper (actually revised and resubmitted according to the reviewers

comments, and waiting for the editor decision):

• Comparative study of different B-spline approaches for functional data

Authors: Aguilera, A. M. and Aguilera-Morillo, M. C.

Ref.: Mathematical and Computer Modelling, 2012, under revision (Aguil-

era and Aguilera-Morillo, 2012)
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A part of this study was presented in the congress

• XXXII Congreso Nacional de Estadística e I.O. y VI Jornadas de Estadís-

tica Pública

Mode of participation: Oral contributed paper

Title: Técnicas de suavizado vía splines en análisis de datos funcionales

Authors: Aguilera, A. M. and Aguilera-Morillo, M. C.

Ref.: Libro de Actas XXXII Congreso Nacional de Estadística e I.O. y VI

Jornadas de Estadística Pública (J. Costa Bouzas, R. Fernández Casal,

M.A. Presedo Quindimil and J.M. Vilar Fernández, eds.), Orbigraf, 2010,

p. 109-110

Organizer: Universidad da Coruña y SEIO

Celebration: A Coruña (España), 2010, 14-9/17-9

Chapter 2

Functional principal component analysis (FPCA) is a dimension reduction

technique that explains the dependence structure of a functional data set in

terms of uncorrelated variables. In many applications data are a set of smooth

functions observed with error. In these cases the principal components are

difficult to interpret because the estimated weight functions have a lot of

variability and lack of smoothness. The most common way to solve this

problem is based on penalizing the roughness of a function by its integrated

squared d-order derivative.

In this chapter, two alternative forms of penalized FPCA based on B-spline

basis expansions of sample curves and a P-spline penalty are proposed. The

main difference between both smoothed FPCA approaches is that the first

one uses the P-spline penalty in the least squares approximation of the sample

curves in terms of a B-spline basis meanwhile the second one introduces the

P-spline penalty in the orthonormality constraint of the algorithm that com-

putes the principal components. Leave-one-out cross validation is adapted to

select the smoothing parameter for these two smoothed FPCA approaches.

A simulation study and an application with chemometric functional data are

developed to test the performance of the proposed penalized approaches and

to compare the results with non-penalized FPCA and regularized FPCA.
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The main results of this chapter are included in the following paper

• Penalized PCA approaches for B-spline expansions of smooth functional

data

Authors: Aguilera, A. M. and Aguilera-Morillo, M. C.

Ref.: Applied Mathematics and Computation, 2013, in press

(DOI 10.1016/j.amc.2013.02.009) (Aguilera and Aguilera-Morillo, 2013)

Part of this study was presented in the congresses

• 19th Conference IASC-ERS, COMPSTAT’2010

Title: Different P-spline approaches for smoothed functional principal

component analysis

Mode of participation: Oral contributed paper

Authors: Aguilera, A. M., Aguilera-Morillo, M. C., Escabias, M. and

Valderrama, M. J.

Ref.: Proceedings in Computational Statistics 2010 (Y. Lechevallier

and G. Saporta, eds.), Springer-Verlag, 2010, 641-648 (Aguilera et al.,

2010a)

Organizer: CNAM, INRIA and International Association for Statistical

Computing

Celebration: Paris (France), 2010 (22-8/27-8)

• I Reunión de Trabajo del Grupo Análisis de Datos Funcionales de la

Sociedad Española de Estadística e I.O.

Mode of participation: Poster

Title: Suavización P-spline del análisis en componentes principales fun-

cional

Authors: Aguilera-Morillo, M. C. and Aguilera, A. M.

Organizer: Grupo Análisis de Datos Funcionales de la SEIO

Celebration: Santander (España), 15-6-2011
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Chapter 3

This chapter is devoted to improve the estimation of the functional logit

model. The problem of multicollinearity associated with the estimation of

this model can be solved by using a set of functional principal components as

predictor variables. The functional parameter estimated by functional prin-

cipal component logit regression is often non-smooth and then difficult to

interpret. To solve this problem different penalized spline estimations of the

functional logit model are proposed in this chapter. All of them are based

on smoothed functional PCA and/or a discrete P-spline penalty in the log-

likelihood criterion in terms of B-spline expansions of the sample curves and

the functional parameter.

In the context of functional principal component logit regression, three dif-

ferent versions of penalized estimation approaches based on smoothed FPCA

are introduced. On the one hand, FPCA of P-spline approximation of sam-

ple curves (Method II) is performed. On the other hand, a discrete P-spline

penalty, that penalizes the roughness of the principal component weight func-

tions, is included in the own formulation of FPCA (Method III). The third

smoothed approach is carried out by introducing the penalty in the likelihood

estimation of the functional parameter in terms of a reduced set of functional

principal components (Method IV). Moreover, direct P-spline likelihood es-

timation in terms of B-spline functions is also considered (Method V). The

ability of these smoothing approaches to provide an accurate estimation of

the functional parameter and their classification performance with respect to

non-penalized functional PCA are evaluated via simulation and application

to real data. Leave-one-out cross validation and generalized cross validation

are adapted to select the smoothing parameter and the number of principal

components or basis functions associated with the considered approaches.

Part of the results of this chapter are published in the paper

• Penalized spline approaches for functional logit regression

Authors: Aguilera-Morillo, M. C., Aguilera, A. M., Escabias, M. and

Valderrama, M. J.

Ref.: Test, 2012, in press (DOI 10.1007/s11749-012-0307-1) (Aguilera-

Morillo et al., 2012)

The computational algorithm developed in this chapter for the estima-
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tion of the functional logit approach without using principal components was

recently applied to predict the probability of high levels of airborne pollen

in terms of the best subset of related functional climatic variables in the

following paper:

• Stepwise selection of functional covariates in forecasting peak levels of

olive pollen

Authors: Escabias, M., Valderrama, M. J., Aguilera, A. M., Santofimia,

M. E. and Aguilera-Morillo, M. C.

Ref.: Stochastic Environmental Research and Risk Assessment, 2013,

27, 367-376 (Escabias et al., 2013)

The contributions of this chapter were partially presented in the congress

• International Workshop on Functional and Operatorial Statistics (IW-

FOS 2011)

Mode of participation: Oral contributed paper

Title: Penalized spline approaches for functional principal component

logit regression

Authors: Aguilera, A. M., Aguilera-Morillo, M. C., Escabias, M. and

Valderrama, M. J.

Ref.: Recent Advances in Functional Data Analysis and Related Topics

(Collection Contributions to Statistics) (F. Ferraty, ed.), Physica Verlag,

2011, 1-7 (Aguilera et al., 2011)

Organizer: Universidad de Cantabria

Celebration: Santander (España), 2011 (16-6/18-6)

Chapter 4

The main problems associated with the functional linear model for a scalar

response in terms of smooth curves observed with error are high dimension,

multicollinearity and non-smooth estimation of the functional parameter. In

order to solve the three problems at the same time, two different penalized

approaches based on partial least squares regression are developed. The

main difference between the two proposed approaches is the way in which
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the penalty is introduced. The first approach introduces the penalty in the

definition of the norm of the PLS component weight functions (Method II).

The second one considers a penalized estimation of the covariance between

the response and the PLS components (Method III). Discrete and continuous

penalties are considered in terms of basis expansions of the sample curves.

The selection of the optimum number of PLS components and the smoothing

parameter is carried out by different criteria based on GCV errors and the

integrated mean squared errors of the parameter function.

In order to test the performance of the proposed penalized FPLS ap-

proaches and to compare the results with non-penalized FPLS, a simulation

study and an application with chemometric functional data are developed.

The results of this chapter will be submitted for publication in an appro-

priate JCR journal as soon as possible.

Part of the results of this chapter were presented in the following con-

gresses:

• VII Colloquium Chemometricum Mediterraneum (CCM VII)

Mode of participation: Poster

Title: Functional analysis of chemometric data

Authors: Aguilera, A.M., Escabias, M., Valderrama, M. J. and Aguilera-

Morillo, M.C.

Ref.: e-Proceedings CCM VII (ISBN: 978-84-937483-4-0; M.G. Bagur
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CHAPTER 1
Smoothing with B-spline bases

1.1 Introduction

Functional data analysis (FDA) is a topic of active statistical research

devoted mainly to the extension of multivariate analysis techniques to the

case where data consist of a set of curves instead of vectors. A functional

data set provides information about functions (curves, surfaces, etc ) varying

over a continuum. In most of applications, sample curves come from the

observation of a stochastic process in continuous time.

The argument of the sample functions is often time, but may also be a

different magnitude such as spatial location, wavelength or probability. In

spectroscopy, for example, the NIR spectrum is a functional variable whose

observations are measured as functions of wavelengths. The potential of

functional data analysis methodologies for the chemometric analysis of spec-

troscopic data was shown in Saeys et al. (2008). A magistral compilation

of models working with sample curves and interesting applications in differ-

ent fields are collected in Ramsay and Silverman (2005) and Ramsay and

Silverman (2002), respectively. A part of the literature has recently been

concerned with functional data in a wide variety of statistical problems, and

with developing procedures based on smoothing techniques.

Despite their continuous nature, sample curves are usually observed in a

13



14 Smoothing with B-splines bases

finite set of sampling points that could be unequally spaced and different

among the sample units. Because of this it is necessary to reconstruct the

true functional form of each sample curve from a finite set of discrete obser-

vations. Many approximation techniques such as interpolation or projection

in a finite-dimensional space generated by basis functions were applied from

the beginning to solve this problem. More recently, nonparametric techniques

were used for approximating functional data (Ferraty and Vieu, 2006).

In many applications the data are smooth functions observed with error.

In this case least squares approximation can be used to estimate the basis

coefficients of a basis expansion of the unobserved smooth sample functions.

In this chapter three different approaches for solving this problem in terms of

B-spline basis functions are compared in the FDA context: regression splines,

smoothing splines and penalized splines.

B-splines are constructed from polynomial pieces joined at a set of knots.

Once the knots are given, B-splines can be evaluated recursively for any degree

of the polynomial by using a numerically stable algorithm (see De Boor, 2001).

The choice of knots is an important problem when working with B-splines. If

too many knots are selected you have an overfitting of the data. On the other

hand too few knots provides an underfitting. This fact is specially significant

in the case of non-penalized spline regression (regression splines). Some

automatic numerical schemes for optimizing the number and the position of

the knots were proposed to solve this problem (see for example Friedman and

Silverman, 1989).

Soothing splines were first proposed by O’Sullivan (1986) by introducing

a penalty in the second derivative of the curve. This approach restricts the

flexibility of the fitted curve and prevents the overfitting. This approximation

was generalized later such that it could be applied in any context where

regression on B-splines was useful (Eilers and Marx, 1996). This kind of

penalized smoothers known as P-splines work with a relatively large number of

equally spaced knots and a penalty based on differences between coefficients

of adjacent B-splines.

The approximation of smooth functions with B-spline bases is used in

the estimation of a wide variety of FDA methodologies such as functional

linear regression models, functional generalized linear models and functional

additive models, among others (Brumback and Rice, 1998; Marx and Eilers,

1999; Cardot et al., 2003; Crambes et al., 2009; Aguilera et al., 2010b).
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This justifies the importance of a comparison among the main smoothing

approaches in terms of B-splines and to draw conclusions that allow the

researchers and practitioners to use the most powerful tool in each case.

After this introduction section, a revision of the different non-penalized and

penalized spline smoothers with B-spline bases (regression splines, smoothing

splines and P-splines) is presented. The most used methods for choosing the

smoothing parameter in the roughness penalty approaches (cross validation

and generalized cross validation) are also adapted to select only one smooth-

ing parameter for fitting all the sample curves in the FDA context. The

comparison of the approximation results provided by the studied approaches

is developed on a simulation study. Finally, the performance of these spline

smoothers is also studied in two applications with real data.

1.2 Basic tools for FDA

In this section, the notation and the basic tools related to functional vari-

ables are summarized.

Let (Ω,A, P ) a probabilistic space and (H, 〈, 〉H) a separable Hilbert

space. Then, a Hilbertian random variable on H is defined as a measur-

able function
X : Ω −→ H

ω −→ X (ω) ,

such that X−1 (B) ∈ A, being B a Borel set of the Borel σ-algebra generated

by the topological space H .

In this thesis, we are focus on functional variables whose observations are

realizations of a continuous-time stochastic process {X(t) : t ∈ T}, with

sample functions in the Hilbert space L2 (T ) of integrable square functions

on T defined by

L2 (T ) =
{
f : T −→ R :

∫

T
f 2 (t) dt <∞

}
,

with the usual scalar product given by

〈f, g〉 =
∫

T
f (t) g (t) dt, ∀f, g ∈ L2 (T ) . (1.1)

Working with stochastic processes it is usual to assume that they are second

order stochastic processes. A random process {X(t) : t ∈ T} is a second
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order stochastic process if ∀t ∈ T the random variable X(t) ∈ L2(Ω), where

L2(Ω) is the space of real random variables X on Ω with finite second order

moment, so that

E[|X|2] =
∫

Ω
|X(ω)|2dP (ω) <∞, ∀X ∈ L2(Ω).

Let us consider on L2(Ω) the natural scalar product defined by

L2(Ω)× L2(Ω) −→ R

(X, Y ) −→ E[XY ] =
∫

Ω X(ω)Y (ω)dP (ω).

Then, L2(Ω) with the natural scalar product defined above has structure of

Hilbert space.

Associated with a second order stochastic process, let us define the follow-

ing functions essential for the development of the methodologies presented

in this thesis:

• Mean function

µ : T −→ R

t −→ µ (t) = E [X (t)] =
∫

Ω X (t, ω) dP (ω) .

• Covariance function

C : T × T −→ R

(t, s) −→ C (t, s) ,

where

C (t, s) = E [(X (t)− µ (t)) (X (s)− µ (s))]

=
∫

Ω
[(X (t, ω)− µ (t)) (X (s, ω)− µ (s))] dP (ω) .

Most of the functional techniques impose certain restrictions regarding the

continuity of the covariance function. Then, the continuity in quadratic mean

of the stochastic process is required, involving the continuity of covariance

function in T × T .

A real stochastic process {X (t) : t ∈ T} is continuous in quadratic mean

if

lim
h→0

E
[
(X (t+ h)−X (t))2

]
= 0, ∀t ∈ T.
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On the other hand, it is known that if a process is continuous in quadratic

mean, there is another process stochastically equivalent, whose sample paths

are integrable square functions. Then, hereinafter it will be considered a func-

tional random variable X whose observations are realization of a stochastic

process {X (t) : t ∈ T} verifying the following hypothesis:

H1 : {X (t) : t ∈ T} is the second order

H2 : {X (t) : t ∈ T} is continuous in quadratic mean

H3 : The sample paths belong to L2 (T ).

Then, a continuous stochastic process may be seen as a random function

defined on L2 (T ):

X : Ω → L2 (T )
ω → X (ω) : T → R

t → X (t, ω) .

Associated with a stochastic process, under the hypothesis H1, H2 and H3,

the covariance operator is defined as

C : L2 (T ) −→ L2 (T )
f −→ C (f) (t) =

∫
T C (t, s) f (s) ds.

Let us observe that the covariance function C(t, s) is the kernel of the co-

variance operator C. Then, as C is a continuous function in T × T, C is a

bounded and continuous operator in the Hilbert space L2(T ).

As in the multivariate case, in order to study a phenomena, a sample of

observations is required. Hereinafter, let us consider a random sample of size n
of a functional variableX denoted by {xi (t) : t ∈ T, i = 1, . . . , n}. The samle

paths can be considered as independent and equally distributed realizations

of a continuous second order stochastic process X = {X (t) : t ∈ T} . Then,

the sample mean function is given by

x (t) =
1

n

n∑

i=1

xi (t) ∀t ∈ T,

and the sample covariance function will be

Ĉ (s, t) =
1

n− 1

n∑

i=1

(xi (s)− x (s)) (xi (t)− x (t)) , ∀s, t ∈ T.



18 Smoothing with B-splines bases

These functions are unbiased and consistent estimators that converge almost

surely to the corresponding population moments (Deville, 1974).

1.3 Basis expansion of functional data

As indicated above, the firs step in FDA is to reconstruct the functional

form of the sample curves from their discrete observations. The most usual

way to solve this problem consists of assuming an expansion of each sample

curve in terms of a basis of functions and to fit the basis coefficients using

smoothing or interpolation.

Let {xi (t) : t ∈ T, i = 1, . . . , n} be a sample of functions which is the

sample information related to a functional variable X.

In practice, sample functions are observed in a finite set of time points

{ti0, ti1, . . . , timi
∈ T} ∀i = 1, . . . , n. Then, the sample information is given

by the vectors xi = (xi0, . . . , ximi
)′, with xik being the value of the i-th

sample path xi (t) observed at the time tik (k = 0, . . . , mi). Because of this,

the first step in FDA is to get the functional form of the sample curves.

In this section, the sample paths are assumed to belong to a finite-

dimension space generated by a basis {φ1 (t) , . . . , φp (t)} so that they are

expressed as

xi (t) =
p∑

j=1

aijφj (t) , i = 1, . . . , n. (1.2)

This equation can be expressed in matrix form as xi (t) = a′iφ (t), where

ai = (ai1, . . . , aip)
′

and φ (t) = (φ1 (t) , . . . , φp (t))
′ .

There are different ways of obtaining the basis coefficients depending on

the kind of observations we are working with. If the sample curves are ob-

served without error

xik = xi (tik) k = 0, . . . , mi, i = 1, . . . , n,

some interpolation method, such as natural cubic spline interpolation, can

be used (Aguilera et al., 1996). Quasi-natural cubic spline interpolation with

B-splines functions was used to reconstruct sample curves of temperatures

from daily observations and to predict the annual risk of drought in terms

of them (Escabias et al., 2005). If the functional predictor is observed with

error

xik = xi (tik) + εik k = 0, . . . , mi, i = 1, . . . , n, (1.3)
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we can use a smooth approximation method as least squares after choosing an

appropriate basis. An application of least squares smoothing with trigonomet-

ric and B-spline basis was developed for approximating the curves of stress

of lupus patients from daily observations and determining the relationship

between flares and stress level (Aguilera et al., 2008a).

With both methods, smoothing and interpolation, the functional form of

sample paths is obtained by approximating the basis coefficients {aij} from

the observations of the sample curves at discrete points.

The goal is fitting a function xi from each vector xi = (xi1, xi2, . . . , ximi
)′

of discrete noisy observations by assuming model (1.3) and basis expansion

(1.2) for each one of the n observed sample curves.

Choosing the ideal basis and its dimension p for approximating the func-

tional form of a set of sample curves is very important and must be done

according to the characteristics of the data. Useful basis systems are Fourier

basis for periodic data, B-spline basis for non-periodic smooth data with

continuous derivatives up to certain order, and wavelet basis for data with

a strong local behavior whose derivatives are not required. In this thesis,

smooth sample curves observed with error will be considered. Because of

this, different types of least squares smoothing with spline functions are re-

vised and compared. B-spline basis functions that have excellent numerical

properties are considered to span the spline smoothers. The study of spline

functions from an introductory level to a higher mathematical level can be

followed in Green and Silverman (1994), De Boor (2001) and Wahba (1990),

respectively. Recently, basis of splines were used to evaluate paper manufac-

tured using Eucalyptus globulus by means of multivariate adaptive regression

splines (García Nieto et al., 2012). Formulas and computational algorithms

for optimal smoothing curves with B-splines basis for given set of discrete

data, not necessarily equally spaced data, were studied in detail in Kano

et al. (2005, 2011).

1.3.1 B-splines

A B-spline basis of degree q (order q+1) generates the space of the splines

of the same degree, defined as curves consisting of piecewise polynomials of

degree q that join up smoothly at a set of definition knots with continuity in

their derivatives up to order q−1. In Figure 1.1 (top) an example of B-spline
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Figure 1.1: B-spline bases of order 2 (top) and 4 (bottom).

basis of order 2 is shown. A B-spline basis of order 4 is displayed at the

bottom of the same Figure.

The dimension of the B-spline basis of degree q equals the order of the

polynomials plus the number of interior breakpoints (see De Boor (2001)

for a detailed explanation). The spline functions of degree q are smooth and

well-behaved functions that provide design flexibility so that by increasing the

degree q, we can progressively switch from the simplest piecewise constant

(q = 0) and piecewise linear (q = 1) representations to the other extreme,

which corresponds to a bandlimited model (n→∞).
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Let τ0 < . . . < τs be a partition of knots of the observation interval T .

Extending the partition as τ−3 < τ−2 < τ−1 < τ0 < . . . < τs < τs+1 < τs+2 <
τs+3, the B-spline basis of order q+1 is iteratively defined by (De Boor, 1977)

Bj,1 (t) =

{
1 τj−2 ≤ t < τj−1

0 in other case
, j = −1, 0, 1, . . . , s+ 4

Bj,q+1 (t) =
t− τj−2

τj+q−2 − τj−2
Bj,q (t) +

τj+q−1 − t

τj+q−1 − τj−1
Bj+1,q (t)

q = 1, 2, . . . ; j = −1, 0, . . . , s− q + 4.

When q = 3 this basis functions are called cubic B-splines. They are used

to fit regular sample curves with first and second continuous derivatives. From

now on, the subscript corresponding to the order of B-spline basis functions

will be omitted so that cubic B-splines will be denoted as

Bj,4 (t) = Bj (t) , j = −1, 0, . . . , s+ 1.

Let us observe that the dimension of the B-spline basis of degree q equals the

order of the polynomials plus the number of interior breakpoints. Then, the

dimension of the cubic B-spline basis with knots τ0 < . . . < τs is the total

number of knots plus two (s+ 3).

1.3.2 Other bases

As we said before, there are other useful bases. The most common ones

are summarized hereinafter:

1. Fourier basis for periodic data

The orthonormal version of the Fourier basis is known as orthonormal

basis of trigonometric functions in L2 (T ) and is given by

φ0(t) =
1

T 1/2

φ2j−1(t) =
(
2

T

)1/2

sin
(
2πjt

T

)

φ2j(t) =
(
2

T

)1/2

cos
(
2πjt

T

)
j = 1, . . . .
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The basis representation with this kind of basis is known as Fourier de-

velopment. This type of basis is accurate when working with periodic

data. A successful application of FPCA with Fourier basis expansions

was developed in Valderrama et al. (2010) where different functional

principal component regression models were developed to forecast cy-

press pollen concentration from daily evolution of temperatures.

2. Wavelet bases

A basis of wavelets is obtained by considering dilations and translations

of a suitable mother wavelet φ,

φkj (t) = 2k/2φ
(
2kt− j

)
,

with j and k being integers.

The wavelet expansion provides a decomposition of a function into or-

thogonal signal components at different resolution levels that it is called

multiresolution analysis. The advantages of this wavelet representation

derive from the ability of wavelets to represent locally non-smooth func-

tions with only a relatively small number of coefficients. Because of this,

wavelet analysis provide useful methods for analyzing data with intrinsi-

cally local properties, such as discontinuities and sharp spikes. A recent

study on the estimation of multidimensional curves and their derivatives

by using wavelets was developed by Pigoli and Sangalli (2012).

3. Polynomial bases

This functions are rarely used because despite its ease of calculation,

they have large oscillations and lack of smoothness. A polynomial basis

can be expressed as

φj (t) = (t− θ)j , j = 0, 1, 2, . . .

with θ being a shift parameter that is usually chosen to be in the center of

the interval of approximation. These functions do not show an accurate

local behavior unless the degree will be high. Moreover, polynomials

also tend to fit well in the center and quite bad in the queues.

4. Constant basis

The sample path associated with point and counting processes are con-

stant at random intervals defined by the instants at which new arrivals
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occur. An appropriate basis for reconstructing the sample functions

of such processes is the orthogonal basis of constant functions on the

intervals of a fixed partition.

Given a partition of the observation interval T defined by the knots

0 = a0 < a1 < · · · < ap, an orthonormal basis of the subspace of

constant functions over each of the intervals (aj−1, aj ] (j = 1, . . . , p)
is defined as

φj(t) = (aj − aj−1)
−1/2It(t),

where It(t) is the indicator function in the interval (tj−1, tj] that takes

the value 1 in this interval and zero outside of it.

1.4 Smoothing with B-spline bases

Different ways of approximating the basis coefficients in terms of B-spline

bases are reviewed in this section. In Durban (2009) a comparative study of

regression splines and smoothing splines was carried out. A complete guide

about the use of splines with penalty (P-splines) in different models can be

seen in Durban (2007).

1.4.1 Regression splines

Let us consider the basis expansion of the sample paths given by Equa-

tion (1.2), which can be expressed in matrix form as xi (t) = a′iφ (t), with

ai = (ai1, . . . , aip)
′ .

The simplest linear smoother approximates the coefficients ai by minimiz-

ing the least squares criterion

MSE (ai|xi) = (xi − Φiai)
′ (xi − Φiai) ,

with Φi = (φj (tik))mi×p .

Thus, the estimate of ai that minimizes this mean squared error is given

by

âi = (Φ′iΦi)
−1
Φ′ixi.

Then, fitted values at the observation knots are given by the vectors

x̂i = Φiâi = Φi (Φ
′
iΦi)

−1
Φ′ixi,
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and the fitted curves by

x̂i (t) = â′iφ (t) ∀i = 1, . . . , n.

When a basis of B-splines is considered, these fitted curves are usually called

regression splines.

This approximation is appropriate when the errors εik are independently

distributed with zero mean and constant variance ∀k = 0, . . . , mi; i = 1, . . . , n.
In many applications with functional data the errors could be non-stationary

and/or autocorrelated so that this assumption is not realistic. In these cases

weighted least squares regression can be used (see a detailed study in Ramsay

and Silverman, 2005).

The degree of smoothness of regression splines depends on the size of the

B-spline basis which is a function of the number of knots and the degree of

the spline. The choice of the number of knots is an important problem when

working with regression splines because they do not control the degree of

smoothness of the estimated curve. If too many knots are selected, you have

an over-fitting of the data. On the other hand, too few knots provide an

under-fitting. In Figure 1.2 it can be seen that the largest number of knots

provides the worst fit to the underlying function because it does not filter out

noise efficiently.

The selection of the number and location of knots in regression splines is

through quite complicated and non attractive algorithms. See for example,

Friedman and Silverman (1989); Lee (2000); Zhou and Shen (2001).

Localized smoothing methods such as kernel smoothing and local polyno-

mial smoothing are an alternative class of weighted least squares smoothing

with excellent computational properties but an important instability near the

boundaries of the observational interval (Ferraty and Vieu, 2006). Continuous

and discrete roughness penalty approaches are considered in this chapter as

more flexible and powerful way of smoothing discrete data by a smooth func-

tion that solves the drawbacks of the ones mentioned before. In this case,

the smoothness of the approximated curve is controlled by the smoothing

parameter.
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Figure 1.2: Regression spline approaches with different number of basis knots (5, 15 and 25).

1.4.2 Smoothing splines

Let us remember that the goal is to estimate for each sample curve the

coefficients of its basis expansion from a set of discrete noisy observations that

verify Equation (1.3). The curve fitted using roughness penalties provides a

good fit to the data in terms of residual sum of squares and simultaneously

controls the degree of smoothness.

The continuous penalty for smoothing splines measures the roughness of

a function by means of the integrated squared second derivative and was first

introduced by Reinsch (1967). If it is necessary, higher order of derivative

can be used to control the degree of smoothness of the true curve. The

computation of this continuous penalty in terms of B-splines basis functions

was consider in O’Sullivan (1986) to propose optimal algorithms for solving

the inverse problem.

In order to quantify the roughness of each curve xi (t), the integrated

square of the d-order derivative is considered

∫
[Ddxi (s)]

2ds = a′iRdai,
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where Rd is the matrix defined by

Rd =
∫
Ddφ (s)Ddφ (s)′ ds, (1.4)

with Ddφ (s) =
(
Ddφ1 (s) , . . . , D

dφp (s)
)′
.

Then, the basis coefficients of the smoother are obtained by minimizing

the continuous penalized least squares error given by

CPMSEd (ai|xi) = (xi − Φiai)
′ (xi − Φiai) + λa′iRdai. (1.5)

In practice, the most common penalty order is d = 2. In this case it is well

known (De Boor, 2001) that if the only assumption about the function is that

the integral of its squared second derivative is finite, then the function that

minimizes the penalized error given in Equation (1.5) is a cubic spline with

knots at the data points (tik : k = 0, . . . , mi). This explains that the most

common computational approach for spline smoothing is to minimize penal-

ized criterion given in Equation (1.5) with respect to the coefficients of a basis

expansion in terms of cubic B-splines functions with knots at the sampling

points. In this case, the fitted function is called cubic spline smoother.

When a very large number of sampling points is involved a lower number of

appropriate knots can be sufficient to smooth the sample paths and capture

their main features. In general, a smoothing spline is obtained assuming an

expansion in terms of B-splines and minimizing (1.5). Then, the vector of

estimated basis coefficients is given by

âi = (Φ′iΦi + λRd)
−1
Φ′ixi.

An interesting application of cubic smoothing splines for the implementa-

tion of the functional mixed effects models can be seen in Guo (2004).

1.4.3 P-splines

The roughness penalties considered for smoothing splines are defined in

terms of integrated squared derivatives. The computational problem of this

approach lies in the calculation of the matrix Rd whose elements are the

integrals of products of d-order derivatives between B-spline basis functions.

A simpler discrete penalty approach is based on defining the roughness of a

function by summing squared d-order difference values. This kind of penalty
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depends on the considered basis and only works if the sampling points are

equally spaced. A penalty based on d-order differences between coefficients of

adjacent B-splines is used in Eilers and Marx (1996). This type of smoothers

are called penalized splines and they can be also computed in terms of trun-

cated power functions. A recent study has shown that penalized spline regres-

sion in terms of B-splines with equally spaced knots and difference penalties

outperforms the penalized spline approach based on truncated power func-

tions with knots based on quantiles of the independent variable and a ridge

penalty (Eilers and Marx, 2010).

The basis coefficients of a penalized spline smoother in terms of B-spline

basis functions can be computed by minimizing the discrete penalized least

squares error as follows

DPMSEd (ai|xi) = (xi − Φiai)
′ (xi − Φiai) + λa′iPdai, (1.6)

where Pd =
(
4d
)′
4d with 4d being the matrix of d-order differences given

by the (p− d)× p matrix

4
d =




(
d

0

) (
d

1

) (
d

2

)
· · ·

(
d

d

)
0 0 · · ·

0

(
d

0

) (
d

1

)
· · ·

(
d

d− 1

) (
d

d

)
0 · · ·

0 0

(
d

0

)
· · ·

(
d

d− 2

) (
d

d− 1

) (
d
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· · ·

...
...

...
...

...
...

...
. . .




.

(1.7)

Let us observe that the vector of d-order differences of the vector ai =
(ai1, . . . , aip)

′ is given by 4dai and its components are the one-order differ-

ences of the vector of differences of order d− 1 given by

d∑

j=0

(
d
j

)
ai k+j k = 1, . . . , p− d.

The most common penalty matrix is P2 = (42)
′
42, with 42 the (p−2)×p
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matrix of 2-order differences given by

42 =




1 −2 1 0 0 ...
0 1 −2 1 0 ...
0 0 1 −2 1 ...
. . . . . ...


 .

These smoothers are called penalized splines (P-splines) and their B-spline

basis coefficients are estimated by

âi = (Φ′iΦi + λPd)
−1
Φ′ixi. (1.8)

The difference penalty is a good discrete approximation to the integrated

square of the d -th derivative so that generalizations to penalties on higher

derivatives can be easily implemented. On the other hand, P-splines are

computed by penalizing the basis coefficients of the curves that reduces the

dimensionality of the problem. We can say that P-splines combine the best

of the regression splines and smoothing splines because they have less nu-

merical complexity than smoothing splines and the selection of knots is not

so determinant as in regression splines.

The application of P-splines to different models with smooth components

(semi-parametric models, models with serially correlated errors, and models

with heteroscedastic errors) and a nonparametric strategy for the choice of

the P-spline parameters has been performed by Currie and Durban (2002),

where mixed model (REML) methods were applied for smoothing parameter

selection. Taking into account that the degree of smoothing is controlled by

the smoothing parameter, the number and location of knots is not crucial for

fitting a P-spline. Generally, the knots of a P-spline are equally spaced and

the number of knots must be sufficiently large to fit the data and not so large

that computation time is unnecessarily big. Two algorithms for automatic

selection of the number of knots by using generalized cross validation were

considered in Ruppert (2002).

1.5 Choosing the smoothing parameter

The role of the smoothing parameter in penalized smoothing is to control

the smoothness of the fitted curve. As λ becomes larger the fitted function is

smoother so that when λ→∞ the standard linear regression to the observed
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data is implemented. On the other hand, when λ becomes smaller the fitted

curve is more and more variable so that when λ→ 0 we have an interpolant

to the data.

In order to compute the optimal value of the smoothing parameter λ, two

selection criteria are considered and compared in this chapter: leave-one-out

cross validation (CV) and generalized cross validation (GCV).

In order to select the same smoothing parameter for all the n sample paths

we propose to minimize the mean of the cross validation errors over all sample

curves.

The CV (leave-one-out) method consist of selecting, for each curve, the

smoothed parameter λ that minimizes the next expression

CV (λ) =
1

n

n∑

i=1

CVi(λ),

where

CVi(λ) =

√√√√
mi∑

k=0

(
xik − x̂

−k)
ik

)2
/(mi + 1),

with x̂
−k)
ik being the values of the i-th sample path estimated at time tik

avoiding the k-th time point in the iterative estimation process. The CV

approach has two main problems, is very expensive from a computational

point of view and can lead to under-smoothing the data.

The GCV method is computationally simpler and very used in the litera-

ture about smoothing splines (Craven and Wahba, 1978). We consider two

versions of GCV error, one for the smoothing splines and other for P-splines.

The GCV method consist of selecting λ so that minimize

GCV (λ) =
1

n

n∑

i=1

GCVi (λ) ,

where

GCVi (λ) =
(mi + 1)−1MSEi

[(mi + 1)−1tr (I −Hi)]2
.

Equivalently, an easier way to interpret it would be

GCVi (λ) =

(
(mi + 1)

(mi + 1)− df(λ)

)(
MSEi

(mi + 1)− df(λ)

)
,
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where

MSEi =
1

n

mi∑

k=0

(xik − x̂ik)
2 ,

and df(λ) = tr (Hi), with Hi = Φi (Φ
′
iΦi + λRd)

−1 Φ′i in the case of the

smoothing splines. If we work with P-splines Hi = Φi (Φ
′
iΦi + λPd)

−1 Φ′i
(considering Pd instead of Rd).

1.6 Simulation study

The ability of P-splines, smoothing splines and regression splines to ap-

proximate smooth curves observed with noise is tested on simulated data. The

simulated data set consists of 100 sample paths of a second order stochastic

process with zero mean given by

X (t) = R cos (2πt+ θ) ,

where R and θ are i.r.v with distributions Raileigh(σ), with σ = 0.3, and

Uniform[0, 2π], respectively. Noisy observations of the sample paths were

simulated at m = 51 equally spaced knots in the interval T = [0, 1]. That is,

xik = X(tik) + εik (tik = k × 0.02; k = 0, 1, . . . , 50; i = 1, . . . , 100) ,

where the errors εik were simulated from independent normal distributions

N(0, σ2) with σ2 = 0.07 fixed to control the determination coefficient R2

near 0.7.

The first step in this work was to select the smoothing parameter λ.

In order to get the best smoothing parameter, we have compared the two

different methods of selecting λ seen in Section (1.5). Figure 1.3 shows the

box plot related to the mean squared error (MSE) of the approximated curves

provided by the smoothing splines and P-splines with λ selected by CV and

GCV. We can see that with the smoothing spline approach the CV method

minimizes the MSE regardless the number of basis knots.
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Figure 1.3: Simulation study. Box plot related to the MSE of the approximation of curves by
smoothing splines, with λ selected by CV (blue) and GCV (red), and P-splines, with λ selected
by CV (green) and GCV (orange), by using different number of basis knots (5, 15 and 25).

With the P-spline approach CV and GCV selection criteria provide similar

approximation errors. In order to compare the three smoothing approaches

with cubic B-spline bases studied in this work, the smoothing parameter was

selected by CV method.

In Figure 1.4 and 1.5, the three different cubic spline approximations of

a sample path to the simulated discrete data with different number of ba-

sis knots (5, 15 and 25) are displayed. It can be observed that the three

smoothers are good approximations to the true function for the case of a

4-order B-spline basis with five knots. When the number of basis knots in-

creases, regression splines and smoothing splines lose control of smoothness.

However, P-splines maintain a good fit for any number of knots. There are

not too differences between smoothing splines and P-splines, being P-splines

computationally easier to compute and its adjustment to the original function

is not affected by the number of knots.

In order to obtain general conclusions, the mean curve and the MSE dis-

tribution provided by the three approximation approaches (regression splines,

smoothing splines and P-splines) for the 100 simulated sample paths, have

been represented in Figure 1.6 by considering different number of basis knots

(5, 15 and 25).

It can be seen that the P-spline approach provides the best fit to the true

mean function and the smallest MSE in all considered cases. On the contrary,

regression splines give the worst fit because they do not control the degree

of smoothness.
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Figure 1.4: Simulation study. Regression splines, smoothing splines and P-splines approaches
with different number of basis knots (5, 15 and 25) for one of the simulated sample curves.
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Figure 1.5: Simulation study. Regression splines (green, dashed and dotted line), smoothing
splines (blue and dashed line) and P-splines (red and long dashed line) approaches with 5, 15 and
25 basis knots, for two different sample paths (a) (left) and (b) (right).
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Figure 1.6: Simulation study. Mean function (left) and MSE (right) for 100 fitted curves through
regression splines (blue), smoothing splines (red) and P-splines (green) approaches using 5, 15
and 25 basis knots. λ has been chosen by CV.
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1.7 Real data applications

Once the P-splines have been chosen as the best smoothers to approximate

noisy sample paths from discrete observations, their behavior have been tested

using two real functional data sets. Firstly, we approximate the pinch force

data set by using P-splines and comparing the results with the other two

methodologies summarized in this chapter. In the second application, P-

splines approach is applied to smooth the spectrometric curves related to

Flemish hog manures.

1.7.1 Pinch data

Pinch data, analyzed in Ramsay and Wang (1995), were collected at the

Medical Research Council Applied Psychology Unit, Cambridge, and consist

of records of the force exerted by pinching a force meter (width 6 cm) with

the tips of the thumb and forefinger on opposite sides.

The exerted force must be adapted to the characteristics of the gripped

object (such as texture, weight, surface, acceleration, between others). Some-

times, the system is slow to the response speed required by the exterior world

and in this case, it is the brain who must exert the required force. So, the

importance of studying this system is to make possible a better understanding

of how the brain can control high performance motor systems.

The data set used in this chapter consists of a sample of 20 records of

the force exerted by the human thumb and forefinger during a brief squeeze.

The force was sampled at 151 times (seconds). We have considered a cubic

B-spline basis with 30 equally spaced knots to approximate the true sample

paths. The smoothing parameter λ has been chosen by CV method.

In Figure 1.7 (a) the necessity of smoothing the observed data is clear.

The different spline approaches with B-spline basis studied in this work have

been applied and display in Figure 1.7 (b), (c) and (d). Let us observe

that regression splines can not completely avoid the noise at the extremes.

Between the two kind of penalty applied (smoothing splines (c) and P-splines

(d)), is the P-spline approach who provides the best smoothing of the sample

paths. Two original sample paths and their P-spline approaches are shown in

Figure 1.8.



36 Smoothing with B-splines bases

� � � � � � � � ����
����

� � � � � � �
� �������

� � � � � � � � ����
����

� � � � � � �
� �������

(a) Original sample paths (b) Regression splines

� � � � � � � � ����
����

� � � � � � �
� �������

� � � � � � � � ����
����

� � � � � � �
� �������
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Figure 1.7: Application (pinch data). Original pinch data set (a) and its fit by regression splines
(b), smoothing splines (c) and P-splines (d) using B-splines basis defined at 30 knots. The
different values of λ have been chosen by CV.
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Figure 1.8: Application (pinch data). Fitting two true functions observed with noise, (a) and
(b) (black and solid line) by P-splines (blue and dashed line) using 30 basis knots and λ = 0.6
(chosen by CV).

1.7.2 Manure data

Manure data set was analyzed in Saeys et al. (2004) and consists of 138
sample paths about Flemish hog manures collected in the spring of 2003 at

almost as many different farms in Flanders by the Soil Service of Belgium.

All samples were scanned in reflectance mode on a diode array Vis/NIR spec-

trophotometer. After that, data were converted into absorbance units ranging

from 426 to 1686 nm.

In order to compute the three different types of spline smoothers to the

observed data, a cubic B-splines basis defined at 30 knots has been considered.

The smoothing parameters λ have been chosen by CV method. The original

sample paths are represented in Figure 1.9 (a). The smoothing splines (c)

and regression splines (b) are quite similar. However, P-splines leads to the

smoothest approximation of the sample paths. Finally, two original sample

paths and their P-spline approximations are shown in Figure 1.10.
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Figure 1.9: Application (manure data). Original manure data set (a) and its fit by regression
splines (b), smoothing splines (c) and P-splines (d) using B-splines basis defined at 30 knots. The
different values of λ have been chosen by CV.
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Figure 1.10: Application (manure data). Fitting two true functions observed with noise, (a) and
(b) (black and solid line) by using P-splines (red and large dashed line), smoothing splines (blue
and dotted line) and regression splines (green and dashed line), with 30 basis knots. λ chosen by
CV.

1.8 Conclusions

Non-penalized and penalized least squares smoothing in terms of B-spline

bases have been compared in this chapter to approximate a set of unobserved

smooth curves from discrete noisy observations. A simulation study and two

applications with real functional data have been developed to study and com-

pare the performance of the three considered smoothers (regression splines,

smoothing splines and P-splines) in the FDA context.

In base to these results we can conclude that regression splines and smooth-

ing splines lose control of the smoothness when the number of knots increases.

Both penalized approaches get to improve the fit providing mean squared er-

rors with respect to the original smooth sample curves much smaller than

the ones given by the non-penalized approach. On the other hand, P-splines

provide the lowest approximation errors, having less numerical complexity

that makes easier its computational implementation. Moreover, P-splines are

quite insensitive to the choice of knots being sufficient to choose a relatively

large number of equally spaced basis knots.





CHAPTER 2
Penalized PCA approaches for
B-spline expansions of smooth
functional data

2.1 Introduction

When analyzing a functional data set it is usual to have a large number

of regularly spaced observations for each sample curve. Because of this a re-

duction dimension technique is necessary for explaining the main features of

a set of sample curves in terms of a small set of uncorrelated variables. This

problem was solved by generalizing principal component analysis to the case

of a continuous-time stochastic process (Deville, 1974). Asymptotic proper-

ties of the estimators of FPCA were deeply studied in the general context of

functional variables (Dauxois et al., 1982). Nonparametric methods were de-

veloped to perform FPCA for the case of a small number of irregularly spaced

observations of each sample curve (James et al., 2000; Yao et al., 2005a). As

in the multivariate case, the interpretation of the principal component scores

and loadings is a useful tool for discovering the relationships among the vari-

ables associated to a functional data set. To avoid misinterpretation of PCA,

a new type of plots, named Structural and Variance Information plots, were

recently introduced by Camacho et al. (2010).

41
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FPCA is a flexible tool in functional data analysis that is successfully used

to solve important problems as the estimation of the functional parameter

in different functional regression models (Cardot et al., 1999; Aguilera et al.,

1999; Cuevas et al., 2002; Escabias et al., 2004; Müller and Stadtmüller,

2005; Yao et al., 2005b; Cai and Hall, 2006). An alternative methodology for

solving this estimation problem in the functional linear model is the functional

version of partial least squares (PLS) regression. A estimation procedure for

functional PLS based on basis expansions of sample curves was introduced by

Aguilera et al. (2010b). A Bayesian approach to FPCA based on a generative

model for noisy and sparse observations of curves was developed in Van der

Linde (2008). Robust estimators for the functional principal components are

considered by using basis expansion (Locantore et al., 1999) and by adapting

the projection pursuit approach to the functional data context (Bali et al.,

2011).

One usual form of estimating FPCA from discrete observations of the sam-

ple curves is based on basis expansion approximation. This way, FPCA of a

set of curves is reduced to multivariate PCA of a transformation of the matrix

of basis coefficients (Ocaña et al., 2007). B-spline bases are appropriate to

approximate smooth curves. Cubic spline interpolation with B-spline basis

can be considered for approximating smooth sample curves observed without

error (Aguilera et al., 1996). Monotone piecewise cubic interpolation of the

sample paths was proposed to approximate the mean of a doubly stochastic

Poisson process in Bouzas et al. (2006). On the other hand, least squares

approximation with B-spline basis is appropriate for reconstructing the true

functional form of noisy smooth curves. This type of approximation was per-

formed to forecast lupus flares from time evolution of stress level (Aguilera

et al., 2008a). As it was shown in Chapter 1, the problem is that regres-

sion splines do not control the degree of smoothness and, consequently, the

principal components are difficult to interpret because the estimated weight

functions have a lot of variability and lack of smoothness. This problem must

be solved by introducing some kind of smoothing in the estimation of principal

component curves. A kernel approach based on regularizing the trajectories

is considered in Boente and Fraiman (2000) to provide smooth estimators in

FPCA.

There are different ways of introducing smoothing in the estimation of

FPCA. On the one hand, the data can be smoothed first and then an non-

penalized FPCA is carried out. A spline smoothing that penalizes the in-
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tegrated squared second derivative of each sample path was considered by

Besse and Ramsay (1986) and Besse et al. (1997). This approach was ap-

plied for smoothing and reconstructing a magnetic resonance imaging (FMRI)

functional data in Viviani et al. (2005). On the other hand, the smoothing

can be introduced within the FPCA algorithm. Two different approaches for

smoothing functional principal components analysis were proposed by Rice

and Silverman (1991) and Silverman (1996). Both approaches use a continu-

ous penalty that measures the roughness of the principal component curves by

their integrated squared d-order derivative but they differ in the way they in-

corporate the penalty. The Rice-Silverman approach introduces the roughness

penalty in the definition of the sample variance of the principal component

weight functions. The Silverman approach is known as regularized FPCA

(RFPCA) and introduces the penalty in the orthonormality constraint be-

tween principal components. This FPCA approach was extended to the case

of multivariate functional data sets by using Gaussian basis functions instead

of B-splines (Kayano and Konishi, 2009). An application of regularized FPCA

with B-splines basis in actuarial science was performed to estimate the risk

of occurrence of a claim in terms of the driver’s age and others significative

variables (Segovia-Gonzalez et al., 2009). A third way of penalizing FPCA

is based on smoothing not the data or the components, but the covariance

operator, whose eigenfunctions are the principal component functions (Yao

et al., 2005a). Penalized rank one approximation was recently proposed as

an alternative approach to the estimation of FPCA (Huang et al., 2008). On

the other hand, equivalences between functional PCA with a proposed inner

product and certain PCA with a given well-suited inner product were studied

by Ocaña et al. (1999) in the theoretical framework given by Hilbert valued

random variables, in which multivariate and functional PCAs appear jointly

as particular cases.

Penalized spline regression (Eilers and Marx, 1996) is an increasingly popu-

lar smoothing approach that was used to estimate the functional sample mean

and to develop an iterative P-spline algorithm for estimating FPCA in Yao

and Lee (2006). The P-spline penalty measures the roughness of a function

by summing squared d-order differences between adjacent basic coefficients.

In this chapter, two different versions of smoothed FPCA based on penalized

splines (P-splines) with B-splines basis are introduced and compared. The

first approach carries out an non-penalized FPCA on the P-spline smooth-

ing of the sample curves. The second approximates the sample curves by
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non-penalized least squares and then incorporate the P-spline penalty in the

orthonormality constraint within the FPCA algorithm. The accuracy of the

estimates provided by both P-spline smoothed approaches is tested with sim-

ulated and real data, and the results compared with non-penalized FPCA and

regularized FPCA. In order to get an optimum estimation of the smoothing

parameter, leave-one-out cross validation is adapted to this context.

2.2 Functional principal component analysis

Let {xi(t) : t ∈ T, i = 1, . . . , n} be a sample of functions that are the sam-

ple information related to a functional variableX. It will be supposed that they

are observations of a second order stochastic process X = {X (t) : t ∈ T},
continuous in quadratic mean whose sample functions belong to the Hilbert

space L2 (T ) of square integrable functions with the usual scalar product

defined in Equation (1.1).

Multivariate PCA was extended to the functional case to reduce the infinite

dimension of a functional predictor and to explain its dependence structure by

a reduced set of uncorrelated variables (Deville, 1974). In order to compute

the functional principal components, let us assume without loss of generality

that the observed curves are centered so that the sample mean n−1∑n
i=1 xi (t)

is zero.

The principal components are obtained as uncorrelated generalized linear

combinations with maximum variance. In general, the j-th principal compo-

nent scores are given by

ξij =
∫

T
xi (t) fj (t) dt, i = 1, . . . , n. (2.1)

where the weight function or loading fj is obtained by maximizing the variance




maxf var

[∫

T
xi (t) f (t) dt

]

s.t. ‖f‖2 = 1 and
∫
f` (t) f (t) dt = 0, ` = 1, . . . , j − 1.

It can be shown that the weight functions are the eigenfunctions of the sample

covariance operator Ĉ (defined in Chapter 1). That is, the solutions to the

equation

Ĉ(fj)(t) =
∫
Ĉ (t, s) fj (s) ds = λjfj(t), (2.2)
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where Ĉ (t, s) is the sample covariance function and λj = var[ξj]. We are

considering that the sample curves comes from a second order stochastic

process which is centered. Then, the Karhunen-Loève decomposition is con-

sidered, so that, the sample curves are expressed in terms of the functional

principal components as follows:

xi (t) =
n−1∑

i=1

ξijfj (t) .

This principal component decomposition can be truncated providing the best

linear approximation of the sample curves in the least squares sense

xq
i (t) =

q∑

i=1

ξijfj (t) ,

whose explained variance is given by
∑q

i=1 λi.

The problem inherent to many applications is that interpreting the com-

ponents is not always straightforward. This problem is usually solved by a

rotation of the principal component curves that simplifies the factor structure

and therefore makes the interpretation easier. There are two main types of

rotation: orthogonal when the resulting factors are also orthogonal to each

other, and oblique when the new factors are not required to be orthogonal to

each other. Oblique rotations relax the orthogonality constraint in order to

simplify the interpretation. They are used more rarely than their orthogonal

counterparts but, recently, new techniques are developed based on oblique

rotations. An example is independent component analysis that was origi-

nally created in the domain of signal processing and neural networks, and

derives, directly from the data, an oblique solution that maximizes statistical

independence (Hyvärinen et al., 2001).

The most popular orthogonal rotation method is indubitably Varimax.

This rotation criterion has been applied to functional PCA in two different

ways, one based on Varimax rotation of the matrix of basis coefficients of the

principal component curves, and the other based on Varimax rotation of the

matrix of values of the principal component curves in a grid of equally spaced

time points (see Ramsay and Silverman (2005) for a detailed development

of this functional Varimax rotation). The extension of oblique rotations to

functional PCA is out of the scope of this work but could be developed by

following the same idea that in the Varimax case.
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2.2.1 Basis expansion estimation

In order to compute the principal component weights it is necessary to

solve the second order integral Equation (2.2). It is a difficult problem that

is further complicated in practice because the sample curves are usually ob-

served at a finite set of sampling points that can be different for the sample

individuals. This means that in real data applications the sample informa-

tion is given by the vectors {xi = (xi0, . . . , ximi
)′ , i = 1, . . . , n}, with xik

being the observed value for the sample path xi (t) at the sampling point

tik, k = 0, 1, . . . , mi.

The functional form of sample paths must be reconstructed from the dis-

crete observations by using several different methods that must be chosen

depending on how the functional data was observed and the main character-

istics of the sample curves.

One usual solution is to assume that sample paths belong to a finite-

dimension space spanned by a basis {φ1 (t) , . . . , φp (t)}, so that they are

expressed as in Equation (1.2).

The main objective of this chapter is to solve the problem of estimating

the functional principal components from a sample of smooth curves observed

with error so that the sample data are given by

xik = xi(tik) + εik k = 0, 1, . . . , mi, i = 1, . . . , n.

This means that least squares approximation with B-splines basis (De Boor,

2001) are an appropriate choice to approximate the basis coefficients.

Let us suppose that the sample paths are expressed in terms of basis

functions, so that x = Aφ, where A = (aij) is the coefficient matrix,

φ = (φ1, . . . , φp)
′

and x = (x1, . . . , xn)
′
. Then, the principal component

weight function fj admits the basis expansion

fj (t) =
p∑

k=1

bjkφk (t) = φ (t)′ bj ,
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with bj = (bj1, . . . , bjp)
′
. In this case,

var[ξ] = var
[∫

T
xi (t) f (t) dt

]

= n−1
n∑

i=1



∫

T




p∑

j=1

aijφj (t)



( p∑

k=1

bkφk (t)

)


= n−1
n∑

i=1

b′Ψa′iaiΨb = b′ΨVΨb,

where V = n−1A′A, with A = (aij)n×p andΨ = (Ψij)p×p =
∫

T φi (t)φj (t) dt.
Therefore, computing the j-th principal weight function is reduced to solve

the maximization problem
{
maxb b′ΨVΨb
s.t. b′Ψb = 1 and blΨb = 0, ` = 1, . . . , j − 1.

This means that FPCA is equivalent to the multivariate PCA of matrix AΨ
1
2 ,

with Ψ
1
2 being the squared root of the matrix of inner products between basis

functions (Ocaña et al., 2007).

Then, the vector bj of basis coefficients of the j-th principal weight function

is given by bj = Ψ−
1
2uj, where the vectors uj are computed as the solutions

to the eigenvalue problem

n−1Ψ
1
2A′AΨ

1
2uj = λjuj,

where n−1Ψ
1
2A′AΨ

1
2 is the sample covariance matrix of AΨ

1
2 .

The principal components curves estimated by this non-penalized FPCA

approach with a B-spline basis can present a lot of variability and have difficult

interpretation. To solve this problem two new ways of introducing smoothing

in FPCA are proposed in this work. The first one consists of FPCA of the

P-spline smoothing of sample curves. The second one is a P-spline version

of the smoothed FPCA carried out in Silverman (1996).

2.3 P-spline smoothed functional PCA

In order to control the roughness of the weight functions fj, the principal

components can be computed by maximizing a penalized sample variance

that introduces the roughness penalty into the orthonormality constraint. A
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continuous penalty based on the integrated squared d-order derivative was

first proposed by Silverman (1996). The roughness penalty function is de-

fined by PENd (f) =
∫
[Ddf (s)]2ds. Following this idea, a penalized sample

variance based on a discrete roughness penalty is introduced in this chapter.

Let us consider a B-spline expansion of the weight functions given by

f (t) =
∑p

k=1 bkφk (t) = φ (t)′ b, where φ (t) is a B-spline basis, and

b = (b1, . . . , bp) being the vector of coefficients of the weight function. So,

the roughness penalty function exposed before can be written as

PENd (f) = b′Rdb, where Rd is the matrix consisting on the integral of prod-

ucts of d-order derivatives between B-spline basis functions, defined in Equa-

tion (1.4). Working with B-splines basis, the continuous roughness penalty

function can be approximated by a discrete P-spline roughness penalty func-

tion given by PENd (f) = b′Pdb, where Pd =
(
4d
)′
4d with 4d being the

matrix of differences of order d defined in Equation (1.7).

The principal components are now computed as generalized linear combi-

nations of the functional variable that maximize the penalized sample variance

defined by

Pvar
[∫

T
xi (t) f (t) dt

]
=

var[
∫

T
xi (t) f (t) dt]

‖f‖2 + λPENd (f)

=
b′ΨVΨb

b′Ψb+ λb′Pdb
=

b′ΨVΨb

b′ (Ψ + λPd) b
,

whit λ being the smoothing parameter that controls the roughness of the

weight function.

The j-th principal component is now defined as in Equation (2.1) and the

basis coefficients of the factor loading fj are obtained by solving

{
maxb

b′ΨVΨb

b′ (Ψ + λPd) b

Let us observe that the first constraint is the usual requirement ‖f‖2 = 1
and the second is a modified form of orthogonality that takes into account

the roughness of the weight function.

This variance maximization problem can be converted into a eigenvalue

problem

ΨVΨb = β (Ψ + λPd) b.
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By applying a factorization (SVD or Choleski) of the form LL′ = Ψ + λPd,
with L being a lower triangular matrix, then L−1ΨVΨL−1′

(L′b) = β (L′b) so

that the weight coefficients are computed by solving the eigenvalue problem

L−1ΨVΨL−1′

u = βu,

with L′b = u. This way P-spline smoothed FPCA is reduced to multivariate

PCA of the matrix whose rows are the transformed vectors of coefficients

L−1Ψai. That is multivariate PCA of matrix AΨL−1′

. Finally, the basis co-

efficients of the principal components curves are given by bj = L−1′

uj renor-

malized so that b′jΨbj = 1. Let us observe that in this case the vectors ai

of basis coefficients of the sample curves in terms of the B-spline basis are

first estimated by non-penalized least squares approximation that provides

âi = (Φ′iΦi)
−1 Φ′ixi with Φi = (φj (tik))mi×p , i = 1, . . . , n.

2.3.1 Selection of the smoothing parameter

In order to control the smoothness of the weight function associated to

each principal component, selecting a suitable smoothing parameter is very

important. In this chapter, leave-one-out cross validation (CV) has been

adapted by considering the discrete roughness penalty based on P-splines. It

consists of selecting the value of λ that minimizes

CV (λ) =
1

p

p∑

q=1

CVq (λ) ,

where

CVq (λ) =
1

n

n∑

i=1

‖xi − x
q(−i)
i ‖2,

with x
q(−i)
i =

∑q
l=1 ξ

(−i)
il f

(−i)
l being the reconstruction of the sample curve

xi in terms of the first q principal components estimated from the sample of

size n− 1 that includes all sample curves except xi.
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In terms of basis expansions these quadratic distances are given by

‖xi − x
q(−i)
i ‖2 =

∫

T

[
xi (t)− x

q(−i)
i (t)

]2
dt

=
∫

T




p∑

j=1

aijφj (t)−
q∑

l=1

ξ
(−i)
il

p∑

j=1

b
(−i)
lj φj (t)




2

=
∫

T




p∑

j=1

dijφj (t)




2

dt

= d′iΨdi,

where di = (di1, . . . , dip)
′

and dij = aij −
∑q

l=1 ξ
(−i)
il b

(−i)
lj .

2.4 Functional PCA of P-splines

This version of smoothed FPCA consists of functional PCA of the P-spline

smoothing of the original data.

In order to approximate the sample curves observed with error, regression

splines are used. As we can see in Chapter 1, their main problem is that

they do not control the degree of smoothness. Then, P-spline approach is

considered in this section. The number of knots is not so determinant as

in regression splines, and can be easily compute by using Ruppert’s law of

thumb (Ruppert, 2002). In general, the knots of a P-spline must be equally

spaced and its number sufficiently large to fit the data and not so large that

computation time is unnecessarily hight (Eilers and Marx, 2010).

As we can see in the above development there are some important choices

related to the P-spline fitting: the smoothing parameter, the order of the

penalty, the degree of the B-spline basis and the number of knots. The

choice of the smoothing parameter is discussed later in this section. The

simplest and most usual choice for the other three parameters that should

work well in most applications is use a quadratic penalty, cubic splines and

one knot for every four or five observations up to a maximum of about 40
knots (Ruppert, 2002).

The cubic spline functions (piece-wise polynomial curves that has contin-

uous two-order derivatives) tend to be the most popular in applications with

smooth functions because of their minimum curvature property (they have



M. Carmen Aguilera Morillo 51

less tendency to oscillate). In fact, cubic spline functions have proven to be

a good compromise between accuracy and complexity. Higher order splines

allow more strongly curved surfaces to be modeled but also requires more

calculations. Usually, degree 3 or 4 is sufficient for B-splines.

Once the P-spline approximations of sample curves have been computed,

FPCA is performed on the approximated curves instead of the original sample

paths. This way FPCA on P-splines is equivalent to multivariate PCA of the

matrix AΨ
1
2 where A is the matrix whose rows are the estimated coefficients

of the P-spline smoothing of the sample curves in terms of a basis of B-splines.

2.4.1 Selection of the smoothing parameter

As in other smoothing methods, the smoothing parameter of P-splines

controls the smoothness of the fitted curve. P-splines penalize distant coef-

ficients so that the larger is the parameter the smoother is the fitted curve.

Classical methods for smoothing parameter selection are leave-one-out cross

validation (CV), generalized cross validation (Craven and Wahba, 1978), the

Akaike information criterion (AIC) (Akaike, 1974) and the Bayesian informa-

tion criterion (BIC) (Schwarz, 1978). A nonparametric procedure for choosing

the P-spline parameters has been performed by Currie and Durban (2002),

where mixed model methods based on restricted maximum likelihood (REML)

estimation were applied for smoothing parameter selection. The P-spline

smoothing of the FPCA (SFPCA) introduced in the next section is not asso-

ciated with the estimation of a regression model and because of this a direct

implementation of the GCV, AIC, BIC and REML criteria is not possible. To

make the results comparable with those of the SFPCA approach, CV criterion

is used in this chapter to choose the optimum smoothing parameter.

In order to select the same smoothing parameter for the n fitted P-splines,

a CV method based on minimizing the mean of the cross validation errors over

all P-splines is applied. This CV criterion consists of selecting the smoothing

parameter λ that minimizes the expression

CVMSE (λ) =
1

n

n∑

i=1

√√√√
mi∑

k=0

(
xik − x̂

(−k)
ik

)2
/(mi + 1),

where x̂
(−k)
ik are the values of the i-th sample path estimated at time tik

avoiding the k-th observation knot in the iterative estimation process.
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2.5 Simulation study

The ability of the two smoothed versions of FPCA proposed in this chapter

(FPCA of P-splines and P-spline smoothed FPCA) to approximate the true

form of the factor loadings functions from a set of smooth curves observed

with noise is tested on simulated data. The results are compared with the

ones provided by non-penalized FPCA in terms of B-splines and regularized

FPCA (RFPCA) based on penalizing the roughness of the principal compo-

nent curves by its integrated square of the 2-order derivative (see Silverman

(1996) for a detailed study).

Let {Xt : t ∈ [0, T ]} be the zero mean gaussian process with covariance

function C (t, s) = P exp (−α|t− s|) known as Ornstein-Uhlenbeck process.

It can be shown (Van Trees, 1968) that the total variance of this process is

T and the principal component weights functions are given by the solutions

of the integral eigenequation

∫ T

0
P exp (−α|t− s|) f (s) ds = λf (t) ,

whose eigenvalues are

λi =
2Pα

α2 + b2
i

,

with bi being the positive solutions of

tan
(
bi
T

2

)
=

α

bi
(i odd )

tan
(
bi
T

2

)
=

−bi

α
(i even) . (2.3)

The first fourteen bi (solutions of Equation (2.3)) can be found in Table 2.1.

The eigenfunctions normalized in [0, T ] are

fi (t) =
cos

(
bi

(
t− T

2

))

[
T
2

(
1 + sin(biT )

biT

)] 1
2

(i odd )

fi (t) =
sin

(
bi

(
t− T

2

))

[
T
2

(
1− sin(biT )

biT

)] 1
2

(i even) . (2.4)
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Table 2.1: The first 14 solutions bi of the Equation (2.3).

b1 b2 b3 b4 b5 b6 b7

0.2164 0.8443 1.6020 2.3772 3.1574 3.9397 4.7230

b8 b9 b10 b11 b12 b13 b14

5.5069 6.2911 7.0757 7.8603 8.6452 9.4301 10.2151

The principal components of the Ornstein-Uhlenbeck process are uncorre-

lated random variables with normal distribution so that the principal compo-

nent decomposition of this process is given by

X (t) =
∞∑

i=1

λifi (t) ξi, (2.5)

where ξi are random variables with distribution N (0, 1) . Equation (2.5) trun-

cated in the 14 -th term provides a smoothed version of the Orsntein-Ulenbeck

process that explains a 99.4% of its total variance. In order to get noisy ob-

servations, a random error ε (t) with distribution N (0, σ2) was added so that

the simulated process was

Y (t) = X14 (t) + ε (t) . (2.6)

The variance of the errors σ2 was chosen to control the value of

R2 = var (X14) /var (Y ) close to 0.8. The simulation was made for T = 4,
P = 1 and α = 0.1.

In order to test the performance of the four different FPCA approaches

compared in this study, 350 samples of 100 sample curves of the contam-

inated process Y (t) given by Equation (2.6) were simulated at 41 equally

spaced knots in the observed domain [0, 4]. The first step is to reconstruct

the true functional form of the original sample paths X14 (t) from the noisy

discrete observations Y (tk) with tk = k/10, k = 0, 1, . . . , 40. Following the

methodology proposed in this work, regression splines and P-splines will be

computed in terms of B-spline basis. In Figure 2.1 it can be seen an exam-

ple where an original smooth curve (black solid line), its contaminated curve

(black dotted line), the cubic B-spline (blue dashed line) and the quartic

B-spline (red dashed dotted line) approximations are superposed for the non-

penalized splines (left) and the penalized splines (right) with different number
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of basis knots (15, 25 and 30). It can be seen that the reconstructions of the

curves provided by cubic and quartic B-splines are very similar for penalized

splines independently of the number of knots. In the non-penalized case, the

approximation provided by the quartic splines is worse when the number of

knots increases by loosing control in the extremes. Because of this, a cubic

B-splines basis was chosen in this simulation study.

Our main goal is to get an accurate approximation of the true eigenfunc-

tions and the original sample curves. The approximations of the first, second

and third eigenfunctions of the Ornstein-Uhlenbeck process by using the four

considered FPCA approaches with different number of basis knots (15, 25
and 30) are displayed in Figure 2.2 for one of the 350 simulations. The true

eigenfunctions given by the solutions of Equation (2.4) are superposed with

their approximations in the same plot. To show the ability of the smoothed

FPCA approaches to approximate the original process X14(t), the reconstruc-

tions of two different sample paths with the first three PCs approximated by

the four considered approaches are displayed in Figure 2.3.

In order to draw general conclusions, the box plots of the MSEs of approx-

imation of the eigenfunctions estimated by using FPCA, FPCA of P-splines,

P-spline SFPCA and regularized FPCA with 15, 25 and 30 basis knots for

350 simulations of the Ornstein-Uhlenbeck process were plotted in Figure 2.4.

On the other hand, the box plots of the MSEs of the reconstructions of all

sample curves with the first three PCs and with all PCs estimated by using

the four FPCA approaches for the 350 simulations are displayed in Figures

2.5 and 2.6, respectively.

From the results of this simulation study it can be concluded that the pe-

nalized smoothing approaches (FPCA of P-splines, P-spline smoothed FPCA

and regularized FPCA) provide approximations of the eigenfunctions and sam-

ple curves much more accurate and smoother than the non-penalized FPCA.

This is because the regression splines used to estimate the FPCA does not

control the degree of smoothness and the roughness and variability of the

approximated sample paths increase dramatically with the number of knots.

The results provided by the three penalized approaches are quite similar for

any number of knots but they get their best behavior when a high number

of knots is considered. The accuracy of the approximations provided by the

two approaches based on penalizing the roughness of the principal compo-

nent curves (SFPCA and RFPCA) are very similar and the best approach

is FPCA of P-splines because it gives the lowest estimation errors and is



M. Carmen Aguilera Morillo 55

computationally less expensive.
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Figure 2.1: Simulation study. Sample path of the Ornstein-Uhlenbeck simulated process approx-
imated by regression splines (left column) and P-splines (right column) using B-splines basis of
degree 3 (blue dashed line) and degree 4 (red dashed-dotted line). The original sample paths are
displayed in black solid line and the noisy sample paths in black dotted line.
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Figure 2.2: Simulation study. First, second and third eigenfunctions of the Ornstein-Uhlenbeck
process fitted by FPCA (short dashed line), FPCA via P-splines (long dashed line), SFPCA (dotted
line) and RFPCA (dashed-dotted line) for 15 basis knots (λ of P-splines 2.77, λ of SFPCA 0.21
and λ of RFPCA 0.0038), 25 knots (λ of P-splines 13.92, λ of SFPCA 0.31 and λ of RFPCA
0.005) and 30 knots (λ of P-splines 24.37, λ of SFPCA 0.15 and λ of RFPCA 0.005). The true
eigenfunctions are represented by black and solid line.
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Figure 2.3: Simulation study. Sample path (a) (left column) and sample path (b) (right column)
of the Ornstein-Uhlenbeck simulated process reconstructed with the first three PCs estimated by
FPCA (short dashed line), FPCA of P-splines (long dashed line), P-spline SFPCA (dotted line)
and RFPCA (dashed-dotted line) for 15 basis knots (λ of P-splines 2.46(a) and 2.31(b), λ of
SFPCA 0.26(a) and 0.05(b) and λ of RFPCA 0.005(a) and 0.004(b)), 25 knots (λ of P-splines
13.29(a) and 12.66(b), λ of SFPCA 0.10(a) and 0.41(b) and λ of RFPCA 0.005(a) and 0.0035(b))
and 30 knots (λ of P-splines 23.48(a) and 22.59(b), λ of SFPCA 0.92(a) and 1.84(b) and λ of
RFPCA 0.0045(a) and 0.005(b)). The true original sample paths are displayed in black and solid
line.
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Figure 2.4: Simulation study. Box plots of the MSEs of the eigenfunction 1 (left column),
eigenfunction 2 (central column) and eigenfunction 3 (right column) estimated by using FPCA,
FPCA of P-splines, P-spline SFPCA and RFPCA with 15, 25 and 30 basis knots on 350 simulations
of the Ornstein-Uhlenbeck process.

2.6 Real data application

Finally, we test the performance of the proposed smoothed FPCAs using

the Diesel data set downloaded from the website http://software.eigenvec-

tor.com/Data/SWRI/index.html. This data set was measured by the South-

west Research Institute and consists of a training set of 133 samples and
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Figure 2.5: Simulation study. Box plots of the MSEs of the reconstructions of sample curves with
the first three PCs estimated by FPCA, FPCA of P-splines, P-spline SFPCA and RFPCA with 15,
25 and 30 basis knots for the 350 simulations of the Ornstein-Uhlenbeck process.
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Figure 2.6: Simulation study. Box plots of the MSEs of the reconstructions of sample curves with
all PCs estimated by FPCA, FPCA of P-splines, P-spline SFPCA and RFPCA with 15, 25 and 30
basis knots for the 350 simulations of the Ornstein-Uhlenbeck process.

a validation set of 112 samples of the NIR transmission spectra. The NIR

spectra of a Diesel sample is measured as a function of wavelengths ranging

approximately from 750 to 1550 nm and was used to predict the cetane num-

ber of Diesel samples by using functional linear models (Saeys et al., 2008).

In this chapter, non-penalized FPCA, FPCA of P-splines and P-spline SFPCA

were performed to reduce the dimension of Diesel data and to obtain smooth

reconstructions of the NIR transmission spectra. In order to test the good

behavior of the smoothed FPCA based on P-spline penalties, cubic B-splines

with 30 definition knots were used. The smoothing parameters selected by

leave-one-out cross validation are λ = 0.05 and λ = 0, 041 for FPCA of

P-splines and P-spline SFPCA, respectively.

The estimated first and second eigenfunctions are displayed in Figure 2.7.

It can be seen that smoothed FPCA approaches provide smoother eigenfunc-
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tions than non-penalized FPCA, especially for the second eigenfunction. The

smoothest eigenfunctions are provided by FPCA of P-splines. On the other

hand, it can be seen in Table 2.2 that the first two PCs estimated by FPCA

of P-splines explain a bigger proportion of explained variance than the other

two FPCA approaches.

Table 2.2: Application (diesel data). Variances (Var) and percentages of variances (%) explained
by the three considered approaches: FPCA, FPCA of P-splines and P-spline SFPCA for Diesel
data set.

PC FPCA FPCA of P-splines P-spline SFPCA

Var. % Var. % Var. %

1 7.07× 10−4 85.23 4.44× 10−4 87.39 5.73× 10−4 86.65

2 6.70× 10−5 8.08 4.75× 10−5 9.35 5.40× 10−5 8.17

In Figure 2.8 two sample paths were reconstructed with the first and second

PCs estimated by each one of the FPCA approaches. All sample paths of

the test sample were reconstructed with the first and second PCs estimated

by using the three FPCA approaches and plotted in Figure 2.9. It is clearly

observed that FPCA of P-splines provides the smoothest approximation of

sample curves.

2.7 Computational cost

To select the smoothing parameter λ, a cross validation criterion (leave-

one-out) is considered in this work. Three smoothing parameters are needed

for each simulation, one for computing FPCA of P-splines, other for the P-

spline SFPCA and another for regularized FPCA. From the results of the

simulation study developed before, it has been concluded that there are not

great differences in the approximation errors provided by the three smooth-

ing approaches (FPCA of P-splines, P-spline SFPCA and RFPCA). However,

FPCA of P-splines is preferable because its computational cost is lower and

the approximation errors are slightly smaller. When we talk about com-

putational cost, we make reference to the CPU time that a computational

algorithm consumes during its execution.
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Figure 2.7: Application (diesel data). First (left) and second (right) eigenfunctions estimated by
FPCA (solid line), FPCA of P-splines (dashed line) and P-spline SFPCA (dotted line) for Diesel
data set.
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Figure 2.8: Application (diesel data). Noisy sample paths (a) and (b) (solid line) reconstructed
by the first and second PCs estimated by FPCA (short dashed line), FPCA of P-splines (long
dashed line) and P-spline SFPCA (dotted line).



62 Penalized PCA approaches for smooth functional data

` a a b a a a b c a a b d a aef gfh ef gfif gfff gfif gfhf gfj

k l m n o n p q r s t p u v ` a a b a a a b c a a b d a aef gfh ef gfif gfff gfif gfhf gfj

k l m n o n p q r s t p u v
Diesel test sample FPCA of P-splines

` a a b a a a b c a a b d a aef gfh ef gfif gfff gfif gfhf gfj

k l m n o n p q r s t p u v ` a a b a a a b c a a b d a aef gfh ef gfif gfff gfif gfhf gfj

k l m n o n p q r s t p u v
FPCA P-spline SFPCA

Figure 2.9: Application (diesel data). Original noisy test sample of NIR spectra (top left) recon-
structed with the first and second PCs estimated by FPCA (bottom left), FPCA of P-splines (top
right), and P-spline SFPCA (bottom right).



M. Carmen Aguilera Morillo 63

In order to compare the computational cost of the cross validation methods

used to select λ with FPCA of P-splines, P-spline SFPCA and RFPCA for the

350 simulations of the Ornstein-Uhlenbeck process, the corresponding CPU

times were measured by using the function system.time of R which returns

CPU charged for the execution of user instructions of the calling algorithm.

The means of the CPU times required by the different methods are shown in

Table 2.3. It is obvious that CPU times spent by CV method with P-spline

SFPCA (discrete penalty) and RFPCA (continuous penlty) are much larger

than with FPCA of P-splines.

Table 2.3: Mean of the CPU times that the computational algorithms (FPCA of Psplines, P-splines
SFPCA and RFPCA) consume during their execution, in the simulation study.

FPCA of P-splines P-spline SFPCA RFPCA

104.79 13171.46 11056.90

2.8 Conclusions

Two smoothed FPCA approaches based on P-spline penalties have been

proposed in this chapter to control the degree of smoothness of the principal

components weight functions estimated from smooth sample curves observed

with error. Both approaches are based on B-spline expansion of sample curves

and a P-spline penalty that measures the roughness of a function by summing

squared d-order differences between adjacent B-spline coefficients. The first

smoothed FPCA approach (called FPCA of P-splines) introduces the P-spline

penalty in the least squares approximation of the sample curves with B-spline

functions (P-splines) and then carries out a non-penalized FPCA on the ap-

proximated curves. The second approach approximates the sample curves

by non-penalized least squares (regression splines) and then performed a pe-

nalized FPCA estimation based on maximizing a penalized sample variance

that introduces the P-spline penalty in the orthonormality constraint between

principal components.

A simulation study was performed to test the ability of the proposed

smoothed FPCA approaches to provide an accurate and smooth estimation

of the principal component curves. The results were compared with the esti-

mations provided by non-penalized FPCA of the least squares approximation
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of sample curves with B-spline basis and regularized FPCA based on pe-

nalizing the roughness of the principal component curves by its integrated

squared 2-order derivative. From this simulation study, it can be concluded

that the penalized approaches give much more accurate estimations than

non-penalized FPCA. This is because FPCA looses control of the smooth-

ness when the dimension of the B-spline base increases. On the other hand,

the smoothed FPCA approaches are quite insensitive to the choice of knots

so that a relatively large number of equally spaced basis knots is a good elec-

tion for the definition of the B-spline basis. The advantage of the smoothed

FPCA approaches based on P-spline penalties respect to the ones based on

penalizing the integrated squared d-order derivatives is that they are math-

ematically simpler because the difference matrix is easier to compute than

the matrix of integrals of products of d-order derivatives between B-spline

basis functions (see Bhatti and Bracken (2006) for a detailed study on the

calculation of integrals involving B-splines). Finally, it can be concluded that

FPCA of P-splines is preferable to P-spline SFPCA and regularized FPCA be-

cause its computational cost is lower and the approximation errors are slightly

smaller.



CHAPTER 3
Penalized spline approaches for
functional logit regression

3.1 Introduction

The aim of the functional logit model (FLoM) is to predict a binary re-

sponse variable from a functional predictor and also to interpret the relation-

ship between the response and the predictor variables. In the last years, the

FLoM was applied in different contexts. A FLoM was applied to predict if

human foetal heart rate responds to repeated vibroacoustic stimulation (Rat-

cliffe et al., 2002). The FLoM was considered in the more general framework

of functional generalized linear models in James (2002). A nonparametric es-

timation procedure of the generalized functional linear model for the case of

sparse longitudinal predictors was proposed in Müller (2005). This extension

included functional binary regression models for longitudinal data and was il-

lustrated with data on primary biliary cirrhosis. An alternative nonparametric

classification method was studied in Ferraty and Vieu (2003).

In order to reduce the infinite dimension of the functional predictor and

to solve the multicollinearity problem associated with the estimation of the

FLoM, a reduced number of functional principal components can be used as

predictor variables to provide an accurate estimation of the functional pa-

rameter (Escabias et al., 2004). A climatological application to establish the

65
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relationship between the risk of drought and time evolution of temperatures

was carried out by Escabias et al. (2005). The relationship between lupus

flares and stress level was analyzed by using a principal component logit model

in Aguilera et al. (2008a). A functional PLS based solution was also proposed

by Escabias et al. (2007). The problem associated with these approaches is

that in many cases the estimated functional parameter is not smooth and

therefore difficult to interpret. The main objective of this paper is to solve

this problem by introducing different penalties based on P-splines.

The functional linear model was the first regression model extended to the

case of functional data. In order to estimate an accurate functional parame-

ter, a smoothing estimation approach based on penalizing the least squares

criterion in terms of the squared norm of a B-spline expansion of the functional

parameter was introduced by Cardot et al. (2003). A smoothed principal com-

ponent regression based on ordinary least squares regression on the projection

of the covariables on a set of eigenfunctions was also considered. When the

functional predictor is corrupted by some error, the functional parameter was

estimated by total least squares by using smoothing splines (continuous spline

penalty based on the integral of the squared second derivative of the func-

tional parameter) (Cardot et al., 2007). Two versions of functional PCR for

scalar response using B-splines and discrete roughness penalty were proposed

in Reiss and Ogden (2007). In one of them, the penalty is introduced in the

construction of the principal components. In the other one, a penalized likeli-

hood estimation is considered. The smoothing parameter was found by fitting

a linear mixed model. These penalized PCR approaches did not consider the

functional form of the sample paths but only the approximation in terms of

basis functions of the functional parameter. When both the response and

the predictor variables are functional, the idea of discrete roughness penalties

based on the absolute values of the basis function coefficient differences (cor-

responding to the LASSO) and the squares of these differences (according

to the P-spline methodology) was extended to the functional linear model

setting by penalizing the interpretable directions of the regression surface in

Harezlak et al. (2007). From a Bayesian point of view, approaches to control

the modes of variation in a set of noisy and sparse curves were proposed by

Van der Linde (2008) where Demmler-Reinsch basis was used to get smooth

weight functions in the functional PCA estimation.

In the general context of functional generalized linear models (FGLM),

different penalized likelihood estimations with B-spline basis were proposed
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to solve the roughness problem of the functional parameter. The FGLM with

P-spline penalty in the log-likelihood criterion was developed in Marx and

Eilers (1999). The benefits of this functional model were compared with

functional PLS and PCR. A penalized estimation of the functional parameter

via penalized log-likelihood was proposed by Cardot and Sarda (2005). This

estimation is quite similar to the one provided by Marx and Eilers (1999) with

the main difference coming from the continuous penalty that was expressed

as the norm of the derivative of given order of the function. A practical

mechanism to combine the GLM via penalized log-likelihood, the general

additive models (Hastie and Tibshirani, 1990) and the varying-coefficient

model (Hastie and Tibshirani, 1993) into a general additive structure was

introduced by Eilers and Marx (2002).

In this work, we propose four different methods based on penalized spline

(P-spline) estimation of the functional logit regression model by considering

the functional form of the sample paths and the functional parameter in

terms of B-spline basis expansions. The considered approaches are based

on smoothed functional principal component logit regression (FPCLoR) and

functional logit regression via penalized log-likelihood.

In the FPCLoR context, three different versions of penalized estimation ap-

proaches based on smoothed functional principal component analysis (FPCA)

are introduced. On the one hand, FPCA of P-spline approximation of sam-

ple curves (Method II) is performed. On the other hand, a discrete P-spline

penalty that penalizes the roughness of the principal component weight func-

tions is included in the own formulation of FPCA (Method III). The third

smoothed FPCLoR approach is carried out by introducing the penalty in the

likelihood estimation of the functional parameter in terms of a reduced set of

functional principal components (Method IV). Moreover, direct P-spline like-

lihood estimation in terms of B-spline functions is also considered (Method

V).

The good performance of the proposed methods with respect to non-

penalized FPCLoR (Method I) and LDA-FPLS is evaluated via two different

data simulations, a functional version of the well known waveform data and a

smooth principal component reconstruction of the Ornstein-Uhlenbeck pro-

cess.
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3.2 Functional logit model

The main objective of this chapter consists of estimating the link between

a binary random variable Y and a functional predictor X = {X (t) : t ∈ T}.
It will be assumed without loss of generality that X is a centered second

order stochastic process whose sample paths belong to the space L2 (T ) of

square integrable functions with the usual inner product defined in Equation

(1.1). This means that E (X (t)) = 0, ∀t ∈ T.

Let {xi (t) : t ∈ T, i = 1, . . . , n} be a sample of the functional variable

X and {yi : i = 1, . . . , n} be a random sample of Y associated with them.

That is, yi ∈ {0, 1}, i = 1, . . . , n. The functional logistic regression model is

given by

yi = πi + εi, i = 1, . . . , n,

where πi is the expectation of Y given xi (t) modeled as

πi = P [Y = 1|{xi (t) : t ∈ T}] =
exp{α +

∫

T
xi (t)β (t) dt}

1 + exp{α +
∫

T
xi (t) β (t) dt}

, (3.1)

with i = 1, . . . , n, α being a real parameter, β (t) a functional parameter,

and {εi : i = 1, . . . , n} independent errors with zero mean. The logit trans-

formations can be expressed as

li = ln
[

πi

1− πi

]
= α+

∫

T
xi (t) β (t) dt, i = 1, . . . , n. (3.2)

In the functional logit model, we have to take into account different aspects.

Firstly, we can not continuously observe the functional form of the sample

paths. As much we can observe each sample curve xi(t) in a finite set of dis-

crete sampling points {ti0, ti1, . . . , timi
∈ T, i = 1, . . . , n}, so that the sam-

ple information is given by the vectors xi = (xi0, . . . , ximi
)′, with xik being

the observed value for the i-th sample path xi (t) at time tik (k = 0, . . . , mi).

Secondly, it is impossible to estimate the infinite functional parameter with

a finite number of observations n. In order to solve at the same time the

two questions, a functional estimation approach based on approximating the

sample paths and the functional parameter in terms of basis functions was

proposed by Escabias et al. (2007). Different basis such as trigonometric
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functions (see Aguilera et al. (1995) and Ratcliffe et al. (2002)), cubic spline

functions (see Aguilera et al. (1996) and Escabias et al. (2005)) or wavelet

functions (see Ocaña et al. (2008)) can be used depending on the nature of

the functional predictor sample paths.

Let us consider that both the sample curves and the functional parameter

are approximated as a weighted sum of basis functions as follows:

xi (t) =
p∑

j=1

aijφj (t) , β (t) =
p∑

k=1

βkφk (t) , (3.3)

with p being the number of basis functions. Choosing the order of the ex-

pansion p is an important problem. If p is increased, the fit to the data is

better, but we risk fitting noise or variation that affects the raw data. On the

other hand, if p is too small, we may miss some important characteristics of

the underlying smooth function.

Then, the FLoM given in Equation (3.2) turns into a multiple logit model

whose design matrix is the product between the matrix of basis coefficients

of the sample paths and the matrix of inner products between basis functions

(Escabias et al., 2004). So, the logit transformations in matrix form are given

by

L = Xβ, (3.4)

where L = (l1, . . . , ln) is the vector of logit transformations, X = (1|AΨ),
with A = (aij)n×p being the matrix of basis coefficients of the sample

paths, Ψ = (ψjk)p×p the matrix of inner products between basis functions

(ψjk =
∫

T φj (t)φk (t) dt), 1 = (1, . . . , 1)′ an n-dimensional vector of ones,

and β = (β1, . . . , βp)
′

the vector of basis coefficients of β (t).

In order to estimate the multiple logit model given in Equation (3.4) we

must first approximate the basis coefficients of each sample curve from its

discrete time observations (rows of matrix A). When the sample curves are

smooth and observed with error, least squares approximation in terms of B-

spline basis is an appropriate solution for the problem of reconstructing their

true functional form (see Chapter 1 for more details). These approximated

sample curves are known as regression splines. The choice of the number of

knots is an important problem when working with regression splines because

they do not control the degree of smoothness of the estimated curve. This

problem is solved in this chapter by using penalized splines. In this case,
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the smoothness of the approximated curve is controlled by the smoothing

parameter.

3.2.1 Penalized estimation with basis expansions

The log-likelihood function for the multiple model (3.4) is given by

L (β) =
n∑

i=1

ln (1− πi) +
n∑

i=1

yi ln
(

πi

1− πi

)

= −
n∑

i=1

ln


1 + exp




p∑

j=0

Xijβj




+

p∑

j=0

(
n∑

i=1

yiXij

)
βj .(3.5)

Then, the likelihood equations in matrix form are

y′X = π̂′X,

where y = (y1, . . . , yn)
′
, π̂ = (π̂1, . . . , π̂n)

′
is the vector of likelihood estima-

tors of π = (π1, . . . , πn)
′ , with π̂i given by

π̂i =
exp

(∑p
j=0 Xijβ̂j

)

1 + exp
(∑p

j=0Xij β̂j

)

and β̂j the likelihood estimators of the basis coefficients of the functional

parameter β (t) in the FLoM. Solving the likelihood equations by mean of

the iterative Newton-Raphson method, the vector of basis coefficients of the

functional parameter at iteration t is given by

β(t) = β(t−1) +
[
X ′Diag

(
π

(t−1)
i

(
1− π

(t−1)
i

))
X
]−1

X ′
(
y − π

(t−1)
i

)
. (3.6)

The maximum likelihood estimate of the parameters of the logit model can

be calculated by iterative reweighted least squares as the limit of a sequence

of weighted least squares estimates, where the weight matrix changes each

cycle. See Agresti (1990) for a detailed study of this least squares procedure.

The estimation of this model is affected by multicollinearity due to the high

correlation between the columns of the design matrix. On the one hand, this

problem can be solved by logit regression of the response on a set of uncor-

related variables as, for example, principal components. On the other hand,

the problem can be solved by using a penalized estimation of the regression
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coefficients based on the d-order differences between adjacent coefficients

(Le Cessie and Van Houwelingen, 1992). In order to obtain a more accurate

and smoother estimation of the functional parameter, this methodology is ex-

tended in this section to the functional logit model by introducing a penalty

in the log-likelihood estimation of the multiple logit model given by Equation

(3.4). This penalty is based on B-spline basis expansions of the sample curves

and the functional parameter, and a simple discrete penalty that measures

the roughness of the parameter function by summing the squared d-order

differences between adjacent B-spline coefficients (P-spline penalty).

Let us consider the basis expansion of the functional parameter given by

Equation (3.3). Then, the penalized log-likelihood of the FLoM with logit

transformation given by Equation (3.4) is given by

L∗ (λ, β) = L (β)−
λ

2
β ′Pdβ,

where β = (β1, . . . , βp)
′

is the vector of basis coefficients of β (t), λ is the

smoothing parameter, and Pd =
(
4d
)′
4d, with 4d the matrix of d-order

differences defined by Equation (1.7) in Chapter 1.

In this case, the Newton-Raphson solution for the penalized likelihood

estimators will be

β(t) = β(t−1) +
[
X ′Diag

(
π

(t−1)
i

(
1− π

(t−1)
i

))
X + λPd

]−1
X ′
(
y − π

(t−1)
i

)
.

(3.7)

The number of basis functions p and the smoothing parameter λ are selected

by means of a double generalized cross validation (double-GCV) procedure

(see Section 3.4.4 for more details). Henceforth, this method will be called

Method V.

3.3 Penalized estimation of functional principal compo-
nent logit regression

As said before, the logit regression model given by Equation (3.4) is af-

fected by multicollinearity. In order to solve the problems of high dimension

and high correlation between the covariates of this model, a reduction di-

mension approach based on using as covariates a reduced set of functional

principal components of the predictor curves was proposed (Escabias et al.,

2004).
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In general, the FLoM can be rewritten in terms of functional principal

components as

L = α1+ Γγ, (3.8)

where Γ = (ξij)n×p is a matrix of functional principal components of the

sample paths {xi (t) : i = 1, . . . , n}, γ is the vector of coefficients of the

model and α is the intercept.

An accurate estimation of the functional parameter can be obtained by

considering only a set of q optimum principal components as predictor vari-

ables, so that Γ = (ξij)n×q (q < p). Then, the vector β of basis coefficients

is given by βp×1 = Fp×qγq×1, where the way of estimating F depends on the

kind of functional principal component analysis (FPCA) used to estimate the

functional model and the kind of likelihood estimation (penalized or non-

penalized). According to it, four different methods are considered in this

chapter.

3.3.1 Method I: non-penalized FPCLoR

A simple way to estimate the functional parameter is by means of non-

penalized functional logit regression on an optimum set of principal compo-

nents. This method known as non-penalized functional principal component

logit regression (FPCLoR) was performed by Escabias et al. (2004).

In practice, functional PCA is estimated from discrete time observations of

each sample curve xi(t) which is approximated in terms of basis functions. If

we assume that the sample curves are represented in terms of basis functions

as in expression (3.3) the functional PCA is then equivalent to the multivariate

PCA of AΨ
1
2 matrix, with Ψ

1
2 being the square root of the matrix of the inner

products between B-spline basis functions (Ocaña et al., 2007). Then, matrix

F that provides the relation between the basis coefficients of the functional

parameter and the parameters estimated in terms of principal components

is given by F = Ψ
− 1

2
p×pGp×q, where G is the matrix whose columns are the

eigenvectors of the sample covariance matrix of AΨ1/2. In this case, the matrix

of basis coefficients A is computed by using least squares approximation with

B-spline basis and γ is estimated by maximum likelihood without penalty.

The optimum number of principal components of the predictor curves used

as covariates is chosen by GCV (see Subsection 3.4.3 for more details).
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3.3.2 Method II: FPCLoR on P-spline smoothing of the sample curves

When the sample paths are observed with noise, the estimation of the

FLoM based on FPCA of regression splines provides a noisy functional pa-

rameter. This is because of regression splines do not control the smoothness

of the sample paths. In order to smooth the sample curves, P-spline approx-

imation is carried out. Therefore, a penalized estimation of the FLoM based

on FPCA of the P-spline approximation of the sample curves is proposed. In

this case, the smoothing parameter of P-splines is chosen by leave-one-out

cross validation (Section 3.4.1).

Once the P-spline approximation of sample curves has been performed, the

multivariate PCA of AΨ
1
2 matrix is carried out as explained above, being A

the basis coefficients matrix estimated with P-spline penalty. The difference

between smoothed FPCA via P-splines and non-penalized FPCA is only the

way of computing the basis coefficients (rows of matrix A), with or without

penalty, respectively. Then, an optimum set of principal components is se-

lected and the FPCLoR is carried out. In this case, F = Ψ
− 1

2
p×pGp×q, where

G is the matrix whose columns are the eigenvectors of the sample covari-

ance matrix of AΨ1/2. In this method, γ is estimated via maximum likelihood

without penalty.

The optimum number of principal components is chosen by GCV (see

Subsection 3.4.3 for more details).

3.3.3 Method III: FPCLoR on P-spline smoothing of the principal
components

In this section, we propose obtaining the principal components by maxi-

mizing a penalized sample variance that introduces a discrete penalty in the

orthonormality constraint between weight principal component functions.

Taking into account the basis expansion of the sample paths given by

(3.3), the principal component weight function fj admits the basis expansion

fj (t) =
∑p

k=1 bjkφk (t) . In Chapter 2, we can see that P-spline smoothing

of the functional principal components analysis consists of a classical PCA

of the matrix AΨ(L−1)′, where L comes from the Cholesky decomposition

LL′ = Ψ+ λPd, with λ being the smoothing parameter estimated by leave-

one-out cross validation, Ψ the matrix of inner products between basis func-
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tions, and Pd the discrete penalty matrix defined in Chapter 1.

Once the P-spline smoothing of the FPCA is computed, we carry out

the FPCLoR on an optimum set of principal components obtained by the P-

spline smoothing of FPCA. Then, the estimated vector β of basis coefficients

of the functional parameter is given by β̂ = F γ̂ = (L−1)
′
Gγ̂, where G is

the matrix of eigenvectors of the sample covariance matrix of AΨ(L−1)′ and

γ is estimated by the maximum likelihood criterion without penalty. The

optimum number of principal components to be included in the model as

regressors is chosen by GCV (see Subsection 3.4.3).

3.3.4 Method IV: FPCLoR with P-spline penalty in the maximum
likelihood estimation

As developed in Reiss and Ogden (2007) for the functional linear model,

we propose a smoothed version of FPCLoR that uses B-splines and rough-

ness penalty in the regression. This penalized regression version of FPCLoR

incorporates a penalty in the maximum likelihood estimation.

Taking into account the FLoM in terms of non-penalized principal compo-

nents, and the Equation (3.3), the estimator of the basis coefficients of the

functional parameter corresponds to β̂ = F γ̂, where F is exactly the same

as in Section 3.3.1 and γ is estimated by means of penalized likelihood.

Now the design matrix corresponds to X = (1|Γ), where Γ = (ξij)n×q

is a matrix of an optimum set of q functional principal components of the

sample paths. Then, the penalized log-likelihood of the functional principal

components logit model (3.4) is given by

L∗ (λ, γ) = L (γ)−
λ

2
γ′Pdγ,

with γ = (γ1, . . . , γq)
′

being the vector of the regression coefficients, Pd the

discrete penalty matrix defined in Chapter 1, with dimension (q × q) in this

case, and L (γ) given by Equation (3.5).

The optimal number of principal components and the smoothing param-

eter are chosen by a double GCV procedure (see Subsection 3.4.4 for more

details).
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3.4 Model Selection

Penalized FPCLoR requires selecting an optimal number q of functional

principal components and the smoothing parameter λ. Using P-spline smooth-

ing of FPCA, the problems of high dimension, multicollinearity, and roughness

in the covariables are solved. As cited in Reiss and Ogden (2007), and accord-

ing to Marx and Eilers (1999) and Cardot et al. (2003), it is often assumed

that the number of basis functions considered for computing P-splines has

little impact as long as there are many knots to capture the variation in the

functional parameter. Methods based on smoothed FPCA (Methods II and

III) select λ in a previous step to the selection of the number q of principal

components.

On the other hand, when the smoothing is applied in the likelihood estima-

tion of the functional parameter coefficients (Methods IV and V), the sample

paths are approximated by regression splines. It is known that regression

splines do not control the degree of smoothness in the curves. Therefore,

the selection of the number of predictor variables (non-penalized principal

components for Method IV and basis functions for Method V) is essential.

The optimal number of predictors and the smoothing parameter are selected

in these cases by a double-GCV procedure.

3.4.1 Choosing λ in Method II

In Method II (Section 3.3.2) the smoothing parameter λ was selected

prior to the regression. In order to select the same smoothing parameter for

the n fitted P-splines, a leave-one-out cross validation (CV) method based

on minimizing the mean of the cross validation errors over all P-splines is

applied in this chapter. This CV criterion consists of selecting the smoothing

parameter λ that minimizes the expression

CV (λ) =
1

n

n∑

i=1

√√√√
mi∑

k=0

(
xik − x̂

(−k)
ik

)2
/ (mi + 1),

where x̂
(−k)
ik are the values of the i-th sample path estimated at the time tik

avoiding the k-th observation knot in the iterative estimation process. The

number of observation knots of the i-th sample path corresponds to mi + 1.
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3.4.2 Choosing λ in Method III

As in the previous section, selecting a suitable smoothing parameter is

very important to control the smoothness of the weight function associated

with each principal component. In this chapter, CV (leave-one-out) method

described in Ramsay and Silverman (2005) has been adapted by considering

the discrete roughness penalty based on P-splines. It consists of selecting the

value of λ that minimizes

CV (λ) =
1

p

p∑

q=1

CVq (λ) ,

where

CVq (λ) =
1

n

n∑

i=1

‖xi − x
q(−i)
i ‖2,

with

x
q(−i)
i =

q∑

`=1

ξ
(−i)
i` f

(−i)
`

being the reconstruction of the sample curve xi in terms of the first q principal

components estimated from the sample of size n− 1 that includes all sample

curves except xi.

3.4.3 Choosing the number of principal components in Methods I,
II, and III

The optimal number q of functional principal components for Methods I,

II, and III is chosen by the GCV procedure following the notes given in Craven

and Wahba (1978) and Ramsay and Silverman (2005). The objective is to

minimize

GCV (q) =

(
n

n− tr (Hq)

)(
MSE(q)

n− tr (Hq)

)
, (3.9)

where

MSE(q) =
1

n

n∑

i=1

(yi − ŷq
i )

2

and Hq is the "hat" matrix given by

Hq = W 1/2
q X (X ′WqX)

−1
X ′W 1/2

q ,
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with Wq = Diag[π̂q
i

(
1− π̂q

i

)
] as the weight matrix. The design matrix X

depends on the considered method as follows:

Method I: X = (1|Γ), with Γ being the matrix comprising the columns of

the first q functional principal components of AΨ1/2, with A the matrix

of basis coefficients of the sample paths estimated via regression splines,

and Ψ1/2 the square root of the matrix of the inner products between

B-spline basis functions.

Method II: X = (1|Γ), with Γ being the matrix comprising the columns of

the first q functional principal components of AΨ1/2, with A the basis

coefficients estimated via penalized splines (P-splines).

Method III: X = (1|Γ), with Γ being the matrix comprising the columns

of the first q functional principal components of AΨ(L−1)′, with A the

matrix of basis coefficients of the sample paths estimated via regression

splines, and L given by the Cholesky decomposition.

3.4.4 Choosing the number of predictors and the smoothing param-
eter in Methods IV and V

In Methods IV and V the log-likelihood is penalized and the parameters

of the model are simultaneously chosen by a double-GCV. In Method IV, the

double-GCV consists in computing the GCV error (given by expression (3.9))

for each number of principal components q and each λ of a grid of possible

values. Then, q is selected by minimizing the mean of the GCV error over

all possible values of λ. Once q is selected, the value of λ with the lowest

GCV error is chosen. In Method V, the procedure is the same by replacing

the number q of principal components by the number p of basis functions.

The design matrix X of Methods IV and V corresponds to

Method IV: X = (1|Γ), with Γ being the matrix comprising the columns of

the q first functional principal components of AΨ1/2 and A the matrix

of basis coefficients of the sample paths estimated via regression splines.

Method V: X = (1|AΨ), with A being the matrix of basis coefficients of

the sample paths approximated by regression splines.
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When the log-likelihood criterion is penalized by using P-splines, the "hat"

matrix is given by

H = W 1/2X (X ′WX + λPd)
−1
X ′W 1/2,

with Pd the discrete penalty matrix defined in Chapter 1.

3.5 Simulation study

The good performance of the proposed penalized estimation approaches

to estimate the parameter function and to predict the response is evaluated

in this section on two different simulation schemes, and the results compared

with the ones provided by non-penalized FPCLoR (Method I).

On the other hand, the ability of the proposed approaches to forecast a

binary response and classify a set of curves has also been compared with

a competitive classification procedure as the partial least squares approach

for functional linear discriminant analysis (FLDA-PLS) introduced by Preda

et al. (2007) and its basis expansion estimation with B-spline basis proposed

in Aguilera et al. (2010b). It is important to clarify that we can compare

our results with the prediction errors and classification rates given by this

procedure but the estimated parameter functions are not comparable because

they correspond to different regression models from a theorist point of view.

3.5.1 Case I: simulation of waveform data

This data set was introduced by Breiman et al. (1984) and used later by

Hastie et al. (1994), Ferraty and Vieu (2003), and Escabias et al. (2007).

Following the simulation scheme developed in Escabias et al. (2007), 1000
curves of two different classes of sample curves were simulated with 500
curves for each one according to the random functions

x(t) = uh1 (t) + (1− u)h2 (t) + ε (t) (class 1),

x(t) = uh1 (t) + (1− u)h3 (t) + ε (t) (class 2),

with u and ε (t) being uniform and standard normal simulated random vari-

ables, respectively, and

h1 (t) = max{6− |t− 11|, 0}, h2 (t) = h1 (t− 4) , h3 (t) = h1 (t+ 4) .
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Figure 3.1: Simulation study. Case I. Simulated sample curves for class 1 (a) and class 2 (b) in
one of the 100 simulations.

Each sample curve was simulated at 101 equally spaced points in the interval

[1, 21].

An example of simulated sample paths for class 1 (a) and class 2 (b) is shown

in Fig. 3.1. The binary response variable was defined as Y = 0 for the curves

of the first class and Y = 1 for the ones of the second class. After simulating

the data, least squares approximation (with and without penalty) in terms of

the cubic B-spline functions defined on 30 equally spaced knots in the interval

[1, 21] was performed for each sample curve. When working with P-splines,

the number of basis knots is not so critical and only a large number of equally

spaced knots is needed. The choice of the P-splines parameters was discussed

by Eilers and Marx (1996), Ruppert (2002), and Currie and Durban (2002).

For the case of equally spaced observations, they conclude that using one

knot for every four or five observations up to a maximum of 40 knots is often

sufficient.

In order to corroborate the good performance of the penalized estimation

approaches proposed in this chapter, 100 repetitions of this simulation scheme

were carried out. The functional parameter estimated by means of the five

different methods presented in previous sections are displayed in Figure 3.2 for
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Figure 3.2: Simulation study. Case I. Estimated functional parameter for one of the 100 simu-
lations. The functional parameter is estimated by Method I (black short dashed line), Method
II (red solid line), Method III (blue dotted line), Method IV (green dashed and dotted line), and
Method V (pink large dashed line).

one of the simulations. The mean of the estimated functional parameters over

the 100 simulations is plotted in Figure 3.3 for each of the five estimation

approaches and for FLDA-PLS next to confidence bands computed as the

mean ±2 the standard deviation. The functional parameter estimated by

FLDA-PLS (discriminant function) is not comparable to the others because

is associated with different regression models.

Let us observe that there are important differences between the estimations

provided by the non-penalized FPCLoR approach (Method I) and the other

four methods based on penalized estimation of the FLoM. The functional pa-

rameter estimated by non-penalized FPCLoR (Method I) is not smooth and

affected by high variability. It is therefore difficult to interpret and needs to be

smoothed. The estimations provided by Methods II, III, and V are quite simi-
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Table 3.1: Simulation study. Case I. Mean and standard deviation (S.D.) for the GCV errors of
the models estimated by Methods I, II, III, IV, and V.

GCV error

Method Mean S.D

Method I 0.00003 0.000008

Method II 0.00003 0.000007

Method III 0.00002 0.000007

Method IV 0.00014 0.000112

Method V 0.00022 0.000120

lar, but sometimes the estimations provided by Method V are over-smoothed

and lose the control in the extremes of the observation interval. On the

other hand, when the P-spline penalty is introduced in the log-likelihood cri-

terion of a FPCLoR model (Method IV), the estimated functional parameter

is smoother than the one given by Method I but it is not smooth enough and

is affected by some variability. Therefore, the necessity of using smoothed

functional principal components as explicative variables is obvious. The best

estimations are achieved with Methods II and III, providing the smoothest

parameter functions with the least variability.

In order to compare the goodness of fit and the forecasting ability of

the five estimation approaches the box-plots related to the area under ROC

curve and the MSE distributions (on 100 test samples) are shown in Figure

3.4. It can be observed that the Methods I, II, and III based on non-penalized

principal component logit regression result in much more accurate predictions

than Methods IV and V based on penalized likelihood estimation. Among

them, Method II achieves the highest area under ROC curve and Method

III the smallest MSE and GCV error. Let us observe that the FLDA-PLS

approach gets the higest prediction error, but has good classification ability

similar to Methods II and III.
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Figure 3.3: Case I. Mean of the functional parameters and the confidence bands (computed as
the mean ±2 the standard deviation) estimated by Methods I, II, III, IV, V, and FLDA-PLS over
the 100 simulations.
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Figure 3.4: Simulation study. Case I. Area under ROC curve and MSE distribution (for the test
samples of the 100 repetitions) given by Methods I, II, III, IV, V, and FLDA-PLS.

3.5.2 Case II: simulation of the Ornstein-Uhlenbeck process

In order to obtain more general conclusions about the behavior of the

proposed methods a second simulation study where the functional parameter

is known has been developed.

Let us consider {Ot : t ∈ [0, T ]} the well known zero mean gaussian

process known as Ornstein-Uhlenbeck process. The simulated sample paths

were computed taking into account the decomposition of this process in terms

of principal components truncated at the 14th term

O14 (t) =
14∑

i=1

λifi (t) ξi,

with λi and fi being the eigenvalues and eigenfunctions associated with

the covariance function given by C (t, s) = P exp (−α|t− s|) , and ξi be-

ing the corresponding principal components that have distribution N (0, 1) .
This principal component reconstruction is a smooth version of the Orsntein-

Ulenbeck process that explains 99.4% of its total variance.

In order to have noisy observations, a random error ε (t) with distribution

N (0, σ2) was added so that the simulated process is given by

X (t) = O14 (t) + ε (t) . (3.10)
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The variance of the errors σ2 was chosen by controlling R2 = V ar[O14]/V ar[X]
close to 0.8. The parameters used for the simulation were T = 4, P = 1, and

α = 0.1. In this study, 200 samples of 100 and 50 sample curves of the con-

taminated process given by Equation (3.10) were simulated for training and

test samples, respectively, at 41 equally spaced knots in the interval [0, 4].

In order to simulate the binary response associated with each sample path

xi, we have considered the parameter function

β (t) = 6 cos (0.25πt)− 0.5 sin (0.25πt)

and computed the expectations πi according to Equation (3.1). Then, the

associated response value yi was simulated by a Bernoulli distribution with

parameter πi.

Let us remember that the main purpose of this work is to improve the

estimation of the functional parameter in functional logit regression, providing

in addition a good classification rate. In order to check the ability of the

proposed penalized spline approaches to estimate the functional parameter

of the logit model provided by the six methods, the mean of the estimated

functional parameters over the 200 simulations is plotted in Figure 3.5 next

to the original parameter function and the confidence bands (computed as

the mean ±2 the standard deviation). The integrated mean squared error

with respect to the original functional parameter was also computed for each

method by using the following expression:

IMSEβ =
(
1

T

∫

T

(
β(t)− ˆβ(t)

)2
)1/2

.

The box plots with the distribution of the IMSEβ for the five estimation

approaches of the functional parameter associated to the logit model are

displayed in Figure 3.6. The means and standard deviations of these errors

appear in Table 3.2.

Let us observe that Methods I (non-penalized FPCLoR approach) and IV

provide the least smooth estimates with the worst results given by Method IV

that is affected by high variability. On the other hand, Methods II and III pro-

vide again similar results with smoother estimates affected by high variability

in the extremes of the observation interval. By observing the estimated mean

functions it can be observed again that the estimations provided by Method V

are over-smoothed and have less variability than the one given by Methods II

and III. The integrated errors with respect to the original parameter function
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Table 3.2: Simulation study. Case II. Mean and standard deviation of the IMSEβ distribution.

Method I Method II Method III Method IV Method V

Mean 3.1893 1.8931 1.8166 8.0691 2.5332

SD 9.4394 2.0289 1.8645 4.1827 1.3898

are also higher for Method V than for Methods II and III. The discriminant

function associated with the FLDA-PLS approach is noisy and affected of a

very high degree of variability (see Figure 3.7).

The forecasting performance and classification ability of the six methods

can be tested by comparing the distributions of the mean squared error (MSE)

and ROC area displayed in Figure 3.8. According to the MSE, Methods III and

V are quite similar, providing the smallest prediction errors, while FLDA-PLS

gives the highest prediction errors. With respect to the ROC area, Methods III

and V achieve also the highest values followed by Method II and FLDA-PLS.

On the other hand, Method IV provides the worst classification performance

(smallest area under the ROC curve), although in all cases the ability of

the considered methods to classify the curves is very good with a median

greater than 93%. From this simulation, we can conclude that Method III

provides an accurate estimation of the functional parameter and has the best

classification ability followed by Methods V and II that give similar results. In

addition, Method III outperforms competitive methods such as FLDA-PLS in

both predictive and classification ability.

3.6 Conclusions

In order to solve the problem of multicollinearity in functional logit re-

gression and to control de smoothness of the functional parameter estimated

from noisy smooth sample curves, four different penalized spline (P-spline)

estimations of the functional logit model are proposed in this chapter. Let

us take into account that the aim of logit model is not only to classify a

set of curves in two groups but mainly to interpret the relationship between

the binary response and the functional predictor in terms of the functional

parameter. Because of this, our main purpose is to improve the estimation

of the functional parameter of a functional logit model, providing in addition

a good classification rate.
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Figure 3.5: Simulation study. Case II. Mean of the functional parameters and the confidence bands
(computed as the mean ±2 the standard deviation) (at left) and the true functional parameter
(solid line) superposed with the mean of the estimated functional parameters (dashed line) (at
right) provided by Methods I, II, III, IV, and V over 200 simulations.

A P-spline penalty measures the roughness of a curve in terms of differ-

ences of order d between coefficients of adjacent B-spline basis functions.

The proposed smoothing approaches are based on B-spline expansion of the

sample curves and the parameter function, and P-spline estimation of the

functional parameter. The difference is in how to introduce the penalty in the

model. Three of the considered approaches (Methods II, III and IV) are based

on functional principal component logit regression that consists in regressing

the binary response on a reduced set of functional principal components. In

Method II the P-spline penalty is introduced by performing the functional

PCA on the P-spline least squares approximation of the sample curves from

discrete observations. Method III introduces the P-spline penalty in the own
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Figure 3.6: Simulation study. Case II. Box plot of the distribution of the IMSEβ for the estimated
parameter functions on 200 repetitions given by Method I, II, III, IV, and V.

Ò Ó Ô Õ Ö×ØÙ ×ØÚ ×ÙÚÙ
ØÚØÙ

Figure 3.7: Simulation study. Case II. Mean of the functional parameters and the confidence
bands (computed as the mean ±2 the standard deviation) estimated by FLDA-PLS method over
200 simulations.
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Figure 3.8: Simulation study. Case II. Area under ROC curve and MSE distribution (for the test
samples of the 200 repetitions) given by Method I, II, III, IV, V, and FLDA-PLS.

formulation of functional PCA and the principal components are computed by

maximizing a penalized sample variance that introduces a discrete penalty in

the orthonormality constraint between the principal components weight func-

tions. In Method IV the P-spline penalty is used in the maximum likelihood

estimation of the functional parameter in terms of functional principal com-

ponents. On the other hand, direct P-spline likelihood estimation in terms of

B-spline functions is also considered (Method V).

Two simulation studies were performed to test the ability of the proposed

P-spline smoothing approaches to provide an accurate and smooth estimation

of the functional parameter and a good classification performance. Leave-

one-out cross validation and generalized cross validation are adapted to select

the different parameters (smoothing parameter and number of principal com-

ponents or basis functions) associated with the considered approaches. In the

case of the P-spline approximation of the sample curves from equally spaced

observations, a relatively large number of equally spaced basis knots is a good

choice for the definition of the B-spline basis. The results provided by the

different smoothing approaches are compared with the estimations provided

by non-penalized FPCLoR on least squares approximation of sample curves

with B-spline basis (Method I) and by the partial least squares estimation

approach for functional linear discriminant analysis (FLDA-PLS).

From the simulation study it can be concluded that the estimation of the
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functional parameter given by the P-spline approaches is much smoother than

the one given by the non-penalized FPCLoR although in some cases Method

IV gives worse results. In fact, Methods I and IV provide non-smooth esti-

mations affected by high variability. The most accurate and smoothest esti-

mations of the parameter function are provided by Methods II and III, based

on P-spline estimation of functional PCA with B-spline basis. On the other

hand, the estimations given by Method V are less accurate and oversmoothed.

In relation to the forecasting ability of the proposed methodologies, Methods

II and III provide the least prediction errors followed by Method V that also

gives accurate results. The classification performance of all methods is very

good, with Methods II, III, and V being the most competitive. On the other

hand, the FLDA-PLS approach gives very high classification rates similar to

methods II, III and V but its forecasting errors are much higher.

In summary, it can be concluded that the penalized approaches repre-

sented by Methods II and III are preferred because they provide the most

accurate estimation of the parameter function and have the best forecasting

and classification performance, with Method II having lower computational

cost.

An intuitive explanation of the fact that Methods II and III provide bet-

ter estimation of the functional parameter could be that these approaches

develop a penalized smoothing of the sample curves before estimating the

regression model and select the smoothing parameter according to the mean

squared error with respect to the observed sample curves. This way, the

smoothing of the curves provides an smoothed estimation of the functional

parameter. On the other hand, the results given by method V are not so

good because the roughness of the functional parameter is directly penalized

in the ML estimation but the smoothing parameter is selected by minimizing

the prediction error without taking into account the smoothness of the sam-

ple curves. Finally, Method IV gives the worst estimations of the functional

parameter because this approach does not penalize the roughness of any of

the functions involved in the analysis and the penalty is only on the regression

coefficients in terms of the non-penalized principal components.





CHAPTER 4
Penalized spline approaches for
functional PLS regression

4.1 Introduction

The functional linear model for a scalar response (FLM) was one of the first

regression models extended to the case of functional data. Theorist aspects

related with this model were studied in Cardot et al. (1999). Depending of

the functional nature of the predictor or response variable, other functional

linear models have been subject of intensive study in the recent literature on

FDA. The case where the predictor is a vector or scalar and the response is

functional was studied by Chiou et al. (2004). Functional analysis of variance

was introduced to model de mean of a functional response in terms of a

categorical variable (Cuevas et al., 2002). On the other hand, functional

linear models where both predictor and response variables are functional were

studied by Yao et al. (2005b) and Ocaña et al. (2008). Principal component

prediction models, that can be seen as a particular case of these linear models,

were first introduced to forecast a continuous time stochastic process on a

future interval from its recent past (Aguilera et al., 1997, 1999).

The aim of this chapter is to improve the estimation of the functional

parameter associated with the functional linear model for a scalar response

when the predictor curves are smooth functions observed with error. In order

91
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to solve the problems of high dimension and multicollinearity related with

the estimation of the FLM model, different approaches based on functional

principal component regression (PCR), partial least squares regression (PLSR)

and/or roughness penalty estimation were proposed in the related literature.

Several smoothing estimation approaches based on penalizing the least

squares criterion in terms of a B-spline expansion of the functional parame-

ter and smoothed principal component regression were considered by Cardot

et al. (2003) to estimate the functional linear model with scalar response. On

the other hand, PLS was extended to the case in which the predictor variable

is functional and the response is scalar (Preda and Saporta, 2005b). New

theory and explicit formulation of partial least squares for functional data

was developed in Delaigle and Hall (2012b). Functional singular component

analysis was introduced as an extension of multivariate partial least squares,

where both predictors and responses are multivariate, to the functional case,

where both predictors and responses are functional (Yang et al., 2011). In

order to smooth the estimation of the FLM model, two different PCR and

PLSR approaches for functional data based on B-spline basis expansion of

the functional parameter and discrete roughness penalty estimation were pro-

posed in Reiss and Ogden (2007). The main difference between these two

approaches is in the way of introducing the penalty: in the likelihood estima-

tion of the model or in the construction of the PLS or principal components.

These penalized estimation approaches did not consider the functional form

of the sample paths and are based on multivariate linear regression of the

response in terms of the matrix of discrete-time observations of the sample

curves. A penalized version of multivariate PLS was also applied for the es-

timation of additive functional models in terms of B-spline expansions of the

variables (Krämer et al., 2008).

More recently, functional PCR and functional PLS with basis expansion of

the sample curves and the parameter function were compared with their mul-

tivariate versions on an extensive simulation study (Aguilera et al., 2010b).

From this study, the authors concluded that although discrete and functional

models have similar prediction ability, the functional models provide a more

accurate estimation of the functional parameter with FPLS giving the best

estimation. In practice, an important problem associated with the PLS es-

timation of the functional linear model is the lack of smoothness of the es-

timated functional parameter that makes very difficult the estimation of the

relationship between the response and the predictor variables. To solve this
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problem, two new penalized approaches for functional PLS are introduced in

this chapter. The first introduces the penalty in the definition of the norm

of PLS component weight functions (this type of penalty was introduced by

Silverman (1996) for the case of regularized FPCA). The second considers

a penalized estimation of the covariance between the response and the PLS

components (see Rice and Silverman (1991) that introduced a similar pe-

nalized estimation in FPCA). Continuous (based on the integrated squared

d-order derivative) and discrete (based on d-order differences between ad-

jacent coefficients) penalties are considered in terms of basis expansions of

the sample curves. The performance of these penalized FPLS approaches is

tested and compared with non-penalized FPLS on a simulation study where

P-splines penalties are applied from least squares approximation of the sam-

ple curves with a B-spline basis. An application with chemometric functional

data measuring the NIR spectra of gasoline data is also developed.

4.2 Functional PLS

Let Y be a scalar random variable (scalar response) and X be a second

order stochastic process {X (t) : t ∈ T} (functional predictor) whose sample

paths belong to the space L2 (T ) of the square integrable functions. Without

loss of generality, we assume that E[Y ] = 0 and E[X (t)] = 0, ∀t ∈ T. With

the aim of predicting Y from X = {X (t) : t ∈ T} , a functional linear model

(FLM) is considered, so that

Y = β0 +
∫

T
X (t) β (t) dt+ ε, (4.1)

where β (t) is the functional parameter, β0 is a constant, and ε independent

errors with zero mean. It is known that the use of the least squares criterion

to estimate this model yields an ill posed problem because of the Wiener-Hopf

equation which does not have a unique solution (Saporta, 1981).

In practice, an additional problem of the functional linear model is that we

only have discrete observations xik of each sample path xi (t) at a finite set

of knots {tik : k = 0, . . . , mi}. In order to solve this problem basis expansions

of X (t) and β (t) are usually considered.

Let us consider a basis {φ1 (t) , . . . , φp (t)} and assume that the functional

predictor admits the basis expansion
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X (t) =
p∑

j=1

αjφj (t) . (4.2)

Let us also assume that the functional parameter admits a basis representation

given by

β (t) =
p∑

k=1

βkφk (t) .

Then, the functional model given in Equation (4.1) becomes a multiple

linear model for the response variable in terms of a transformation of the

functional predictor basis coefficients. Thus,

Y = β0 + (Ψα)′ β + ε,

with α = (α1, . . . , αp)
′

and β = (β1, . . . , βp)
′

being the vectors of the basis

coefficients of X and β, respectively, and Ψ being the matrix of inner products

between the basis functions, Ψp×p = (ψjk) =
∫

T φj(t)φk(t)dt.

In order to reduce the infinite dimension of the functional predictor and to

solve the multicollinearity problem associated with the estimation of the FLM,

a reduced number of functional principal components (Aguilera et al., 1999;

Cardot et al., 1999, 2007; Yao et al., 2005b) or functional PLS components

(Preda and Saporta, 2005b; Reiss and Ogden, 2007; Aguilera-Morillo et al.,

2012) can be used as predictor variables to provide an accurate estimation of

the functional parameter.

The functional PLS regression (FPLS) of a real random response Y in

terms of a functional predictor X = {X (t) : t ∈ T} is an iterative procedure,

where the first PLS component t1 =
∫

T X (t)w1 (t) dt is achieved by solving

the following maximization problem

maxw Cov2
(∫

T
X (t)w (t) dt, Y

)
.

‖w‖2 = 1
(4.3)

Now, let define the operators

CY X : L2 (T )→ R

f → x =
∫

T
Cov (X(t), Y ) f (t) dt

CXY : R→ L2 (T )
x→ f (t) = Cov (X(t), Y )x, ∀t ∈ [0, T ].
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Denoting by UX = CXY ◦ CY X : L2 (T )→ L2 (T ) ,

UX (w) (t) = [CXY (CY X (w))] (t)
= [CXY (Cov (〈X,w〉, Y ))] (t)
= Cov (X(t), Y )Cov (〈X,w〉, Y ) .

Then,

〈UX(w), w〉 = 〈{Cov (X (·) , Y )Cov (〈X,w〉, Y )}, w〉
= Cov (〈X,w〉, Y ) 〈{Cov (X (·) , Y )}, w〉
= Cov (〈X,w〉, Y )

∫
T Cov (X (t) , Y )w (t) dt

= Cov2 (〈X,w〉, Y )
= Cov2 (

∫
T X (t)w (t) dt, Y ) .

The problem (4.3) can be written as

maxw
〈UXw,w〉

〈w,w〉
. (4.4)

Then, the weight function associated with the first PLS component corre-

sponds to the largest eigenvalue of CXY ◦ CY X . That is

CXY ◦ CY X(w) = λw.

Let X0 (t) = X (t) , ∀t ∈ T and Y0 = Y . Then, the first PLS step is

completed by ordinary linear regression of X0 (t) and Y0 on t1, where X1 (t)
and Y1 are the corresponding residuals so that

X1 (t) = X0 (t)− p1 (t) t1, t ∈ T

Y1 = Y0 − c1t1.

The second, and in general the h-th PLS component is given by

th =
∫

T
Xh−1 (t)wh (t) dt,

where wh (t) is obtained by solving the following problem

maxw Cov2

(∫ T

0
Xh−1 (t)w (t) dt, Yh−1

)
.

‖w‖2 = 1
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The weight function associated with the h-th PLS component corresponds

to the largest eigenvalue of Ch−1
XY ◦ C

h−1
Y X . That is

Ch−1
XY ◦ C

h−1
Y X (w) = λw,

with Ch−1
XY and Ch−1

Y X being the cross-covariance operators of Xh−1 (t) and

Yh−1. Finally, the h-th PLS step is concluded with the linear regression of

Xh−1 (t) and Yh−1 on th and obtaining of the corresponding residuals

Xh (t) = Xh−1 (t)− ph (t) th, t ∈ T

Yh = Yh−1 − chth,

where ph (t) = (E(Xh−1 (t) th)/E(t
2
h)) and ch = (E(Yh−1th)/E(t

2
h)) .

4.2.1 Basis expansion estimation

Let us consider the basis expansion of X (t) given by Equation (4.2) and

the following basis expansion for the weight functions:

w (t) =
p∑

j=1

wjφj (t) . (4.5)

Then,
〈UX(w), w〉 = Cov2 (

∫
T X (t)w (t) dt, Y )

= Cov2 (w′Ψα, Y )
= w′Ψσσ′Ψw
= w′Ũw,

where w = (w1, . . . , wp)
′

is the vector of basis coefficients of w (t),
Ũ = (Ψσ) (Ψσ)′, with σ = (σ1, . . . , σp)

′
, so that σj = E (αjY ) , and

〈w,w〉 = w′Ψw, with Ψ being the matrix of inner products between the

basis functions.

Therefore, the maximization problem (4.4) can be written as follows

maxw
w′ (Ψσσ′Ψ′)w

w′Ψw
. (4.6)

Let us consider now the decomposition Ψ =
(
Ψ1/2

) (
Ψ1/2

)′
. Then,

w′Ψw = w′
(
Ψ1/2

) (
Ψ1/2

)′
w = w̃′w̃,
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with w̃ =
(
Ψ1/2

)′
w (w = (Ψ−1/2)′w̃). This way, the maximization problem

(4.6) turns into

maxw
w̃′(Ψ1/2)′σσ′(Ψ1/2)w̃

w̃′w̃
,

and the associated eigenvalue problem would be

(Ψ1/2)′σσ′(Ψ1/2)w̃ = λw̃. (4.7)

The weight function associated with the first PLS component is given by

w1 = (Ψ−1/2)′w̃1, with w̃1 being the eigenvector associated with the largest

eigenvalue of that problem. Then, the first PLS step is completed by ordinary

linear regression of X0 (t) = X (t) and Y0 = Y on t1, denoting by X1 (t) and

Y1 the corresponding residuals.

The second, and in general the h-th PLS component th =
∫

T Xh−1 (t)wh(t)
is obtained by the following problem

maxw
w̃′(Ψ1/2)′σh−1σ

′
h−1(Ψ

1/2)w̃

w̃′w̃
,

where σh−1 =
(
σh−11 , . . . , σh−1p

)′
, with σh−1j

= E

(
αh−1j

Yh−1

)
. The eigen-

value problem associated with this maximization problem is

(Ψ1/2)′σh−1σ
′
h−1(Ψ

1/2)w̃ = λw̃. (4.8)

Then, the weight function associated with the h-th PLS component is given

by wh = (Ψ−1/2)′w̃h, with w̃h being the eigenvector associated with the

largest eigenvalue of that problem.

Finally, the h-th PLS step is concluded with the linear regression ofXh−1 (t)
and Yh−1 on th, obtaining the corresponding residuals Xh (t) and Yh.

In general, by considering Equations (4.7) and (4.8), it can be concluded

that FPLS is equivalent to an ordinary PLS of Y on the matrix (Ψ1/2)′α
(Aguilera et al., 2010b).

Because of the relationship between the predictor and the response vari-

able can be interpreted in terms of a functional parameter β̂ (t) , in practice,

it is very important to obtain an accurate estimation of the parameters of a

functional linear regression model. When we use a reduced number of func-

tional PLS components as predictor variables of a FLM, the main problem

comes from the estimated functional parameter. If we are working with noisy
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data, the FPLS regression provides a non-smoothed functional parameter that

could be difficult to interpret. In order to solve this problem, in this chapter

the smoothness of β̂ (t) is controlled by introducing a roughness penalty. Two

different versions about penalized FPLS are shown below.

4.3 Penalized functional PLS

In this chapter, we investigate conditions under which applying smoothing

in the new framework will allow an improvement in accuracy of the functional

PLS components weight. Two different versions about penalized FPLS are

developed. The first one makes use of the methodology exposed in Silverman

(1996) for regularized FPCA that introduces the penalty in the norm of the

PLS weights. The second one introduces the penalty in the covariance by

following the penalized FPCA proposed in Rice and Silverman (1991). Before

introducing both versions, we make a review about the penalty function which

will be used in both penalized versions of FPLS.

4.3.1 Roughness penalty function

The approaches developed in this work will be based on a roughness

penalty. In order to quantify the "roughness" of a function w on T , a rough-

ness penalty such us
∫

T [D
dw (t)]2dt can be used. The first references about

this kind of penalty can be seen in O’Sullivan (1986) who proposed to in-

troduce a penalty in the second derivative of the curve (
∫

T w
′′ (t)w′′ (t) dt).

Thus, the flexibility of the fitted curve is restricted and the over-fitting is

prevented.

By considering the basis function expansion of w(t) given by Equation

(4.5), the roughness penalty function is given by

PENd(w) =
∫

T [D
dw (t)]2dt =

∫
T w

′Ddφ (t)Ddφ′ (t)w dt
= w′[

∫
T D

dφ (t)Ddφ′ (t) dt]w
= w′Pdw,

(4.9)

where w = (w1, . . . , wp)
′
is the vector of basis coefficients of w (t) and Pd the

matrix of the cross inner product of the d-order derivatives of basis functions.

In many applications the data are smooth functions observed with error.

In this case least squares approximation can be used to estimate the basis
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coefficients of a basis expansion of the unobserved smooth sample functions.

In order to approximate smooth functions, the most accurate basis to be used

is B-splines basis. B-splines are constructed from polynomial pieces joined

smoothly at a set of knots. Once the knots are given, B-splines can be

evaluated recursively for any degree of the polynomial by using a numerically

stable algorithm (see De Boor, 2001).

In Eilers and Marx (1996) the approximation of O’Sullivan was general-

ized, such that it could be applied in any context where regression on B-

splines was useful. They proposed to work with a relatively large number

of knots and a penalty based on d-order differences between coefficients of

adjacent B-splines. This kind of penalty was known as P-spline. In that chap-

ter, the relationship between the two penalties was shown. In this context,

Pd =
(
4d
)T
4d, with 4d the matrix of d-order differences between the ad-

jacent basis coefficients. From now, we used the term Pd for both continuous

and discrete penalty matrix.

4.3.2 FPLS by penalizing the norm

In order to smooth the PLS functions associated with the non-penalized

FPLS, the smoothing is incorporated in the definition of the norm with respect

to an inner product which takes into account the roughness of the functions.

Let us define the inner product

〈w, g〉λ = 〈w, g〉+ λ[w, g], (4.10)

where 〈w, g〉 is the classical scalar product, λ is the smoothing parameter and

[w, g] is the roughness term

[w, g] =
∫

T
Ddw (t)Ddg (t) dt.

Let us observe that this is a generalization of the standard inner product and

norms of Sobolev (see Adams, 1975).

By introducing the roughness penalty defined in Equation (4.9) in the

functional PLS criterion, the first PLS component,

t1 =
∫

T
X (t)w1 (t) dt,
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is obtained by solving the following maximization problem:

maxw

Cov2

(∫ T

0
X (t)w (t) dt, Y

)

〈w,w〉λ
.

Equivalently, and in terms of UX = CXY o CY X ,

maxw
〈UXw,w〉

〈w,w〉+ λ[w,w]
. (4.11)

In general, for any of the two considered penalties (continuous penalty

based on the integral of the squared second derivative or discrete penalty

based on the differences between adjacent coefficients of the basis), the first

PLS component, t1, is obtained by solving the problem

maxw
w′Ũw

〈w,w〉+ λPENd(w),
(4.12)

with PENd(w) being the penalty of order d defined in Equation (4.9).

Let us consider now the basis expansions of X (t) and w (t) given by

Equations (4.2) and (4.5), respectively. Then, 〈w,w〉λ = w′Ψw + λw′Pdw,

with Pd being the penalty matrix, and w = (w1, . . . , wp)
′
the vector of basis

coefficients of w (t). It is easy to convert the initial problem (4.12) into a

new problem given by

maxw
w′Ũw

w′Ψw + λw′Pdw
= maxw

w′Ũw

w′ (Ψ + λPd)w
. (4.13)

By assuming the decomposition LL′ = Ψ + λPd

(
L = (Ψ + λPd)

1/2
)
, the

maximization problem (4.13) is equivalent to

maxw
w′Ũw

w′ (LL′)w
.

Defining L′w = w̃ (w = (L−1)′w̃) the problem is reduced to

maxw
w̃′(L−1)Ψσσ′Ψ′(L−1)′w̃

w̃′w̃
. (4.14)

By analogy with the non-penalized FPLS, the associated eigenvalues problem

will be

(L−1)Ψσσ′Ψ′(L−1)′w̃ = λw̃, (4.15)
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so that the weight function associated with the first penalized PLS component

is given by w1 = (L−1)′w̃1, with w̃1 being the eigenvector associated with

the largest eigenvalue of that problem.

The first PLS step is completed by ordinary linear regression of

X0 (t) = X(t) and Y0 = Y on t1, and denoting by X1 (t) and Y1 the corre-

sponding residuals.

In general, the h-th PLS component (h > 1) is given by

th =
∫ T

0
Xh−1 (t)wh (t) dt,

where wh (t) is obtained by solving the following problem

maxw

Cov2

(∫ T

0
Xh−1 (t)w (t) dt, Yh−1

)

〈w,w〉λ
,

whose associated eigenvalue problem would be

(L−1)Ψσh−1σ
′
h−1Ψ

′(L−1)′w̃ = λw̃. (4.16)

The h-th PLS step is concluded with the linear regression of Xh−1 (t) and

Yh−1 on th, and the corresponding residuals Xh (t) and Yh.

From Equations (4.15) and (4.16), it can be concluded that this version of

penalized FPLS is equivalent to a ordinary PLS of Y in terms of the random

vector L−1Ψα.

4.3.3 FPLS by penalizing the covariance

In order to get accurate nonparametric estimation of the mean and the

covariance structure, a roughness penalty estimation was proposed in Rice

and Silverman (1991). Based on this penalty, an alternative smooth version

of PLS regression in the functional data context is proposed in this section.

The first penalized PLS component

t1 =
∫

T
X (t)w1 (t) dt,

is achieved by estimating w1 from the next maximization problem:

maxw

Cov2

(∫ T

0
X (t)w (t) dt, Y

)
− λPENd (w)

〈w,w〉
, (4.17)
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with PENd (w) the general penalty defined in Equation (4.9), and λ the

smoothing parameter. Let us consider the basis expansion of X (t) and w (t)
given by Equations (4.2) and (4.5), respectively. Then, the problem (4.17)

can be rewritten as

maxw
w′Ũw − λw′Pdw

w′Ψw
= maxw

w′
(
Ũ − λPd

)
w

w′Ψw
. (4.18)

Taking into account Ψ = (Ψ1/2)(Ψ1/2)′ and defining w̃ = (Ψ1/2)′w
(w = (Ψ−1/2)′w̃), the problem (4.18) turns into this one

maxw
w̃′(Ψ−1/2) (Ψαα′Ψ′ − λPd) (Ψ

−1/2)′w̃

w̃′w̃
,

so that, it is reduced to

(Ψ−1/2) (Ψαα′Ψ′ − λPd) (Ψ
−1/2)′w̃ = λw̃. (4.19)

Then, the weight function associated with the first penalized PLS component

is given by w1 = (Ψ−1/2)′w̃1, with w̃1 being the eigenvector associated with

the largest eigenvalue of this problem.

The first PLS step is completed by ordinary linear regression of

X0 (t) = X(t) and Y0 = Y on t1, denoting by X1 (t) and Y1 the corre-

sponding residuals.

In general the h-th PLS component (h > 1) is given by

th =
∫ T

0
Xh−1 (t)wh (t) dt,

where wh (t) is obtained by solving the eigenvalue problem (4.19) and con-

sidering Ψσh−1σ
′
h−1Ψ

′ and wh = (Ψ−1/2)w̃h. The PLS step is concluded with

the linear regression of Xh−1 (t) and Yh−1 on th, with Xh (t) and Yh being

the residuals.

4.3.4 Sample estimation

In this section, the estimation of the three considered models is developed.

Let {xi (t) : t ∈ T, i = 1, . . . , n} be a sample of the functional variable

X(t) and {y1, y2, . . . , yn} be a random sample of Y associated with it. The

functional linear model is then expressed as

yi = β0 +
∫

T
xi(t)β(t)dt+ εi,
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where {εi : i = 1, . . . , n} are independent and centered random errors.

The estimation procedure of the parameter function β(t) using the basis

expansion approach consists of

1. Computing the basis expansion approximation of {xi(t), i = 1, . . . , n}.
The vector of basis coefficients of the i-th sample path is estimated

by the least squares criterion in terms of a B-spline basis, so that

âi = (Φ′iΦi)
−1 Φ′ixi, with Φi = (φj (tik))mi×p . This basis expansion

approximation is known as regression spline.

2. Computing the PLS components. The matrix of PLS components T for

each method is given by

• Non-penalized FPLS: T = AΨ1/2V

• FPLS by penalizing the norm: T = AΨ(L−1)′V (LL′ = Ψ+ λPd)

• FPLS by penalizing the covariance: T = AΨ(Ψ−1/2)′V = AΨ1/2V

with V being the matrix comprising the columns of the eigenvectors

w̃1, . . . , w̃p associated with the t1, . . . , tp PLS components.

3. The estimated functional linear model of Y in terms of the first h PLS

components is given by

Ŷ h = 1γ0 + T hγ̂h = 1γ0 + AΨβ̂h,

where T h is the matrix whose columns are the first h PLS components,

γ̂h is the vector of the regression coefficients of Y on T h, and β̂h the

vector of basis coefficients of the estimated parameter function

β̂h(t) =
p∑

j=1

β̂h
j φj(t).

Then, the β̂h vector of coefficients estimated by each method is given

by

• Non-penalized FPLS: β̂h = (Ψ−1/2)′V hγ̂h

• FPLS by penalizing the norm: β̂h = (L−1)′V hγ̂h

• FPLS by penalizing the covariance: β̂h = (Ψ−1/2)′V hγ̂h
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where V h is the matrix comprising the columns of the first h eigenvec-

tors w̃1, . . . , w̃h associated with the t1, . . . , th PLS components of each

considered method.

4.3.5 Model selection

In order to select the optimum number q of PLS components and the

smoothing parameter λ, two different criteria have been considered:

• Criterion 1: choosing simultaneously the values of h and λ that minimize

the GCV error

GCV E(h, λ) =
n− tr(Hh

λ)

n
×

MSEh
λ

n− tr(Hh
λ)
,

where Hh
λ = T h((T h)′T h)−1(T h)′ is the hat matrix, with T h the matrix

comprising the columns of the first h PLS components (estimated with

the smoothing parameter λ), and MSEh
λ =

1
n

∑n
i=1(yi − ŷi(h,λ))

2 is the

mean squared error of the model estimated with h PLS components

and using the smoothing parameter λ, being ŷi(h,λ) the i-th prediction

of that model.

• Criterion 2: for each number of PLS components, choosing the value of

λ that minimizes the GCVE(h,λ). Then, the number of PLS components

h is selected by minimizing the integrated mean squared error of the

parameter function

IMSEβ(h, λ) =
(
1

T

∫

T

(
β(t)− β̂h

λ(t)
)2
dt
)1/2

,

where β̂h
λ(t) is the parameter function estimated with h PLS components

and the smoothing parameter λ. This criterion can be computed only in

simulations where the parameter function is known.

For non-penalized FPLS both criteria are reduced to select only the number

of PLS components.
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4.4 Simulation study

The ability of the proposed penalized FPLS approaches to predict the

response and to provide an accurate estimation of the functional parameter

is tested and compared in this section with simulated data.

4.4.1 Description

The simulation study developed in this chapter is based on the spectro-

scopic data set of gasoline described by Kalivas (1997). The gasoline data set

consists of the NIR spectra of 60 gasoline samples measured in 2-nm intervals

from 900 nm to 1700 nm (400 discrete observations for each sample curve).

The NIR spectra of these gasoline samples are shown in Figure 4.1 (left).

ô õ õ õ ô ö õ õ ô ÷ õ õ ô ø õ õù úùù úûù úüù úýù úþÿ úùÿ úû
� �
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ô õ õ õ ô ö õ õ ô ÷ õ õ ô ø õ õù úùù úûù úüù úýù úþÿ úùÿ úû
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� ���� ��	
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Figure 4.1: Simulation study. Spectrometric raw curves of 60 gasoline samples measured in 2-nm
intervals from 900 nm to 1700 nm (left). Discrete observations (circles) and regression spline (red
solid line) for one of the sample paths (right).

The parameter function β (t) used for simulating the response variable Y
of the functional linear model is a relatively smooth function

β (t) = 2 sin(0.5πt) + 4 sin(1.5πt) + 5 sin(2.5πt), t ∈ [0, 1],

used in Cardot et al. (2003) and Reiss and Ogden (2007) by transforming its
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Figure 4.2: Simulation study. Box plot of the distribution of correlations between columns of
matrix AΨ.

domain to the spectra domain (see Figure 4.3 (left)).

After least squares approximation of the spectrometric curves and the

functional parameter in terms of the cubic B-splines defined on 40 equally

spaced knots in the interval [900, 1700], the response values simulated in this

work are given by

yi =
∫ 1700

900
xi (t) β (t) dt+ εi,

where εi (i = 1, . . . , n) are simulated independent random errors with normal

distribution. The standard deviation of the errors, σε, is chosen so that the

squared multiple correlation coefficient of the true model equals 0.9 (Case I)

and 0.7 (Case II). An example of regression spline (red solid line) for one of

the sample paths (dotted line) is shown in Figure 4.1 (right).

The simulated response variable in matrix form would be given by Y =
AΨβ + ε, with A being the matrix of basis coefficients of the spectrometric

curves, β the vector of basis coefficients of the parameter function and Ψ
the matrix of inner products between the B-spline basis functions. It is well

known that an important problem related with the estimation of this linear

model is multicollinearity (high correlations between columns of its design

matrix). This could produce inaccurate estimates of the functional parame-
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Figure 4.3: Simulation study. Parameter function used for simulating the response variable of the
functional linear model (left) and the estimation provided by the functional logit model in terms
of regression spline approximation of the spectrometric curves (right).

ter. The distribution of the correlations between the columns of the design

matrix can be seen in Figure 4.2. As a consequence, the estimation of the

functional parameter is really poor (see Figure 4.3 (right) for case I). This in-

accurate estimation makes very difficult to interpret the relationship between

the functional predictor and the response variable. This problem is solved in

this chapter by applying different dimension reduction approaches based on

taking an optimum set of functional PLS components as predictor variables.

The problem of lack of smoothness of the parameter function estimated

by non-penalized FPLS (Method I) is solved by the two penalized estima-

tions of FPLS regression introduced in this chapter: penalizing the norm and

penalizing the covariance that will be called Method II and Method III, re-

spectively, in this simulation study. The smoothing parameters associated

with the two penalized FPLS versions are chosen by generalized cross valida-

tion (GCV). On the other hand, the optimal number of FPLS components in

all compared methods were chosen by two different criteria: minimizing the

GCV error (Criterion 1 denoted by CR1) and minimizing the integrated mean

squared error with respect to the functional parameter (IMSEβ) (Criterion

2 denoted by CR2). In order to corroborate the good performance of the



108 Penalized spline approaches for functional PLS regression

penalized FPLS estimations proposed in this chapter, 100 repetitions of each

simulation scheme (Case I and Case II) are carried out.

4.4.2 Discussion of results

As we have said before, the response values were simulated by fixing

R2 = 0.9 (Case I) and R2 = 0.7 (Case II) for the simulation of the ran-

dom errors associated with the functional linear model.

The means of the estimated parameter functions over the 100 simulations

provided by Methods I (non-penalized FPLS), II (FPLS penalizing the norm),

and III (FPLS penalizing the covariance) with criteria CR1 and CR2 used

for model selection are displayed in Figure 4.4. Pointwise confidence bands

computed as the sample mean ± 2 times the standard deviation at each time

point are displayed in Figures 4.5 and 4.6 for Case I and II, respectively.

- . . . - / . . - 0 . . - 1 . .23435
67

- . . . - / . . - 0 . . - 1 . .23435
67

Figure 4.4: Simulation study. Case I (left) and Case II (right). Simulated parameter function
(black), mean of the 100 parameter functions estimated by Method I (blue), II (red) and III
(green), using Criterion 1 (solid line) and Criterion 2 (dashed line) for selecting the number of
PLS components.

The box plots for the distribution of the integrated mean squared error

with respect to the original parameter function (IMSEβ) are drawn in Figure

4.7 for the three considered methods and the two model selection criteria.
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Let us observe that in Case II the variance of errors is higher and then the

estimation of the parameter function is a bit less accurate and with higher

variability than in Case I. This fact is reflected in the confidence bands for

the mean functions that are wider for Case II.

According with the results related to the estimation of the parameter func-

tion, it can be seen that Method I (non-penalized FPLS) does not provide a

fairly accurate estimation by showing a great lack of smoothness. Conversely,

the penalized FPLS versions (Methods II and III) achieve a smooth parameter

function estimation with the best being provided by Method II. Let us observe

that Method III leads to over-smoothed parameter functions, and the widest

confidence bands among the three compared methods. Anyway, Method I

provides the worst estimation because looses control of smoothness with re-

spect to the original parameter function, and then making very difficult their

interpretation.

In order to test the prediction ability of the three considered methods, box

plots for the distribution of the GCVE and MSPE (mean squared prediction

error) on the 100 simulations are displayed in Figure 4.7.

Let us observe that the behavior of the distribution of both types of pre-

dictions errors is very similar. In the two cases, the penalized versions of

FPLS (Methods II and III) provide slightly smaller prediction errors than the

non-penalized FPLS approach (Method I). The prediction errors provided by

Methods II and III are quite similar in Case I but in Case II the errors given

by Method II are smaller.

To compare the degree of dimension reduction produced by the two model

selection criteria, box plots for the distribution of the selected number of PLS

components are drawn in Figure 4.7 for the two cases and the three FPLS

approaches considered in this chapter. Let us observe that the penalized

versions of FPLS regression (Methods II and III) require a somewhat smaller

number of components than the non-penalized version (Method I). On the

other hand, the number of PLS components selected by criteria CR1 and

CR2 are similar except with Method III in which CR2 reduces the number of

components providing a more accurate parameter function estimation than

criterion CR1.

Let us take into account that in real applications the parameter function is

unknown and CR2 criterion based on minimizing the IMSEβ can not be used.

It can be concluded that using GCV criterion for model selection is a good
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option for predicting the response and estimating the parameter function

except for Method III where the increment in the number of selected FPLS

components worsen the functional parameter estimates slightly.

In order to see numerical differences among the results given by the FPLS

regression Methods I, II and III, the model selection criteria CR1 and CR2,

and the two different R2 used in the simulation study, Table 4.1 summarizes

the sample mean and the standard deviation of the errors IMSEβ, GCVE and

MSPE, and the number of PLS components for each of the eight possible

combinations. The results in this table corroborate the previous ones given by

Figures 4.4, 4.5, 4.6 and 4.7. Summarizing, it can be said that independently

of the model selection criterion and the simulation scheme (R2 = 0.9 or

R2 = 0.7), the more accurate estimation of the functional parameter is given

by Method II.

With respect to the prediction errors, Methods II and III give similar results

for R2 = 0.9 with Method III providing slightly smaller error for R2 = 0.7.

As expected, the significant differences between the non-penalized and

penalized estimations of FPLS are not in their prediction ability but in their

capacity to provide an accurate estimation of the functional parameter.
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Table 4.1: Simulation study. Cases I and II. Sample mean and standard deviation related to the
distribution of IMSEβ, GCVE, MSPE and number of PLS components for the optimum FPLS
regression models estimated by Method I, II and III, with the number of predictors selected by
CR1 and CR2 criteria on 100 simulations.

R2 = 0.9

Criterion 1 Criterion 2

Method I II III I II III

IMSEβ
Mean 4.98 1.21 3.79 4.08 1.07 2.70

sd 2.61 0.67 1.41 0.32 0.46 0.48

GCVE
Mean 0.18 0.16 0.14 0.18 0.16 0.16

sd 0.04 0.03 0.03 0.04 0.04 0.03

MSPE
Mean 2.94 2.83 2.74 2.97 2.85 2.91

sd 0.32 0.30 0.29 0.34 0.33 0.27

No CPs
Mean 5.29 4.17 4.25 5.07 4.29 3.14

sd 1.06 0.45 0.73 0.59 0.52 0.35

R2 = 0.7

Criterion 1 Criterion 2

Method I II III I II III

IMSEβ
Mean 6.15 2.22 3.91 4.85 1.65 2.67

sd 1.41 1.35 1.75 0.70 0.92 0.71

GCVE
Mean 0.64 0.60 0.51 0.68 0.62 0.52

sd 0.12 0.11 0.09 0.12 0.11 0.09

MSPE
Mean 5.80 5.59 5.20 5.90 5.67 5.28

sd 0.54 0.53 0.44 0.52 0.52 0.47

No CPs
Mean 3.91 3.83 3.85 4.25 4.03 3.68

sd 1.05 0.59 0.78 0.56 0.50 3.10
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Figure 4.5: Simulation study. Case I. Simulated parameter function (red) and the mean of the 100
parameter functions estimated by Methods I, II, and III (black solid line) next to confidence bands
(black dashed line) computed as ± 2 times the standard deviation at each time. The number
of PLS components was selected by Criterion 1 (CR1, left column) and Criterion 2 (CR2, right
column).
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Figure 4.6: Simulation study. Case II. Simulated parameter function (red) and the mean of the
100 parameter functions estimated by Methods I, II, and III (black solid line) next to confidence
bands (black dashed line) computed as ± 2 times the standard deviation at each time. The
number of PLS components was selected by Criterion 1 (CR1, left column) and Criterion 2 (CR2,
right column).
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Case I Case II
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Figure 4.7: Simulation study. Case I (left) and Case II (right). Box plots related to the distribution
of IMSEβ, GCVE, MSPE number of PLS components for the FPLS regression models estimated
by Method I, II and III, with the number of predictors selected by CR1 and CR2 on 100 simulations.
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4.5 Real data application

In this section, the spectroscopic data set of gasoline described by Kalivas

(1997) is considered again. Let {yi : i = 1, . . . , 60} be a sample of a scalar

response variable related to the octane number of each gasoline sample. The

aim is to forecast the octane number from the NIR spectra of 60 gasoline

samples, measured in 2-nm intervals from 900 nm to 1700 nm. In order to

test the results, the sample was divided into five sets of 12 gasoline samples,

as in Reiss and Ogden (2007). Then, each of this subsets is taken as a test

sample and the remaining 48 samples as a training sample to fit the model.

First, least squares cubic B-spline smoothing with 40 equally spaced knots

of the spectra curves was carried out. After that, the three proposed methods

(Method I, II and III) were applied. In this case, the parameter function is

unknown, and then the number of PLS components for each method was

chosen by GCV.

The mean of the parameter functions and the corresponding pointwise

confidence bands estimated by Methods I, II and III for the five training sample

are shown in Figure 4.8. The mean of the parameter functions estimated

by the three proposed methods are overlaid in Figure 4.9. It is obvious

that Method II provides the best estimations with less variability, following

by Method III which gets an over smoothed parameter function with more

variability than Method II. On the other hand, Method I provides a too noisy

function.

In order to check the prediction ability of the different proposed methods,

the mean squared prediction errors (MSPE) were computed on the five test

samples. The sample mean and the standard deviation of the GCVEs, MSPEs,

and the number os PLS components (No CPs) are summarized in Table 4.2.

Let us observe again that the penalized FPLS approaches provide smaller

prediction errors than the non-penalized approach, with Method II giving the

most accurate prediction. Respect to the dimension reduction, Method III

requires the minimum number of predictors.
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Figure 4.8: Application (gasoline data). Mean of the parameter functions estimated by Methods I,
II, and III (solid line) for 5 training samples, next to the confidence bands (dashed line) computed
as the mean ± 2 times the standard deviation at each time.
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Table 4.2: Application (gasoline data). Mean and standard deviation of the distribution of the
MSPE and the number of PLS components estimated by Methods I, II and III, for five models.

MSPE No CPs

Mean S.D Mean S.D

Method I 0.1231 0.0246 7 2.51

Method II 0.1031 0.0214 6 1.22

Method III 0.1061 0.0213 4 0.55

[ \ \ \ [ ] \ \ [ ^ \ \ [ _ \ \`a `b `cdc
ba

Figure 4.9: Application (gasoline data). Mean of the parameter functions estimated by Methods
I (blue), II (red), and III (green), for 5 training samples.

4.6 Conclusions

The aim of this chapter is to improve the estimation of the functional

parameter associated with the functional linear model for a scalar response

when the predictor curves are smooth functions observed with error.

In order to solve the problem of high dimension and multicollinearity in

the estimation of the functional linear model, and also to control de degree

of smoothness of the estimated functional parameter, two different penalized

approaches based on functional partial least squares regression (FPLSR) are
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developed. The first approach introduces the penalty in the definition of the

norm of the PLS component weight functions (Method II). The second one

considers a penalized estimation of the covariance between the response and

the PLS components (Method III). Discrete and continuous penalties can be

used in terms of basis expansions of the sample curves.

Two different criteria based on minimizing the GCVE and the IMSEβ (cri-

terion 1 and 2, respectively) were adapted to select the different parameters

(smoothing parameter and number of PLS components) associated with the

considered approaches.

The performance of these penalized FPLS approaches was tested and

compared with non-penalized FPLS by using least squares approximation of

the sample curves with B-spline basis on a simulation study and an application

with chemometric functional data measuring the NIR spectra of gasoline

samples. In the simulation study two different schemes were considered so

that R2 = 0.9 and R2 = 0.7.

From the simulation study, it can be concluded that the estimation of the

functional parameter given by the penalized approaches is much smoother

than the one given by the non-penalized FPLS. In fact, it can be said that

independently of the model selection criterion and the simulation scheme

(R2 = 0.9 or R2 = 0.7), the more accurate estimation of the functional pa-

rameter is given by Method II, because the estimations given by Method III

are oversmoothed and present more variability. With respect to the forecast-

ing performance, Methods II and III provide similar results, improving both

the prediction ability of the non-penalized FPLS approach. The significant

differences between the non-penalized and penalized estimations of FPLS are

mainly in their capacity to provide an accurate estimation of the functional

parameter. On the other hand, using GCV criterion for model selection is a

good option for predicting the response and estimating the parameter func-

tion except for Method III where the increment in the number of selected

FPLS components worsen the functional parameter estimates slightly.

In the application to the spectroscopic data set of gasoline, the aim was

to forecast the octane number from the NIR spectra of 60 gasoline samples,

and to get a good estimation of the functional parameter that explains the

relationship between the response and the functional predictor. The results of

this application corroborates that the penalized FPLS approaches have better

forecasting performance and provide smoother estimated parameter than the
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non-penalized approach, with Method II providing the best results. In both,

simulation and application, Method III is which requires the minimum number

of predictors.

Summarizing, Method II provides the best estimations of the functional

parameter, achieving also a good forecasting performance, and using less

predictors that the non-penalized FPLS approach.





CHAPTER 5
P-spline estimation of functional
classification methods for
improving the quality in the
food industry

5.1 Introduction

The aim of this chapter it to apply different functional classification meth-

ods to improve the quality in the production of the food industry. A major

concern in the food industry is to offer good quality products that can be

competitive in the market. This is the case of Danone biscuit manufacturer

that intends to improve the quality of cookies by using only those flours that

guarantee the best quality products.

There are several types of flour which are distinguished by their composi-

tion and way of extraction. The quality of a biscuit clearly depends on the

type of flour used to make it. The main goal of this work is to classify cookies

as good or bad in terms of the curves of resistance of the dough observed

during the kneading process. This way, the flours that produce good cookies

will be identified. A second purpose is to estimate the relationship between

121
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the quality of cookies and the resistance of dough that allows to establish the

main features of the curve of resistance for good cookies.

For each cookie, the resistance of dough is observed every two seconds. Let

us observe that the data consist of repeated measurements of the resistance

over time. Therefore, both longitudinal data analysis and functional data

analysis (FDA) methodologies could be used to analyze them. It is known that

data treated in FDA typically have high frequency (high number of equally

spaced observations) whereas data treated in longitudinal data analysis are

more typically sparse and irregularly sampled. Because of the high resolution

of the data of resistance we will consider that the predictor data are functions

and must be analyzed by using functional data analysis techniques (Ramsay

and Silverman, 2005; Ferraty and Vieu, 2006; Horvath and Kokoszka, 2012).

The perspectives and methods of functional data analysis and longitudinal

data analysis for smoothing were contrasted and compared in Rice (2004).

There are many papers focus on the advantages of using FDA methodolo-

gies instead of the corresponding multivariate counterparts. The majority of

them conclude that the multivariate analysis of the observed data fails in the

case of unequally spaced sampling points by providing non accurate and un-

stable estimates (see Castro et al. (1986) for the case of principal component

analysis and Aguilera et al. (1999) for principal component linear regression

when both the predictor and the response data are functions). On the other

hand, the estimation of a multivariate method is not always feasible from a

set of observed longitudinal data. It is only recommended when data are ob-

served at the same points for all individuals and the number of observations

per individual is less than the sample size.

In order to solve the problem of classification of the curves of resistance

in two groups (good or bad) we propose to apply and compared two different

functional models. The first is the logit regression model (FLoM) (James,

2002) whose aim is not only to estimate a binary response variable from a

functional predictor but also to provide a precise estimation of the relation-

ship between the resistance of dough (functional predictor) and the quality

of cookies (binary response). Interesting applications of this functional re-

gression model were developed in different fields as medicine (Aguilera et al.,

2008a) and environment (Escabias et al., 2005). The second is functional

linear discriminant analysis (FLDA) (James and Hastie, 2001). Alternative

nonparametric methods for curve classification were developed in Ferraty and

Vieu (2003).
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In order to solve the usual problems of high dimensionality and multi-

collinearity related with functional data analysis, dimension reduction tech-

niques, such as functional principal component analysis (FPCA) and func-

tional partial least squares (FPLS) regression are used to estimate the func-

tional parameters in terms of basis expansions of the sample curves (Escabias

et al., 2004, 2007; Preda et al., 2007). Functional principal component linear

regression and FPLS were compared with their multivariate versions on an

extensive simulation study with both equally spaced and irregularly spaced

sampling points (Aguilera et al., 2010b). From this study, the authors con-

cluded that the predictive ability of discrete and functional models is almost

the same but the functional models provide a more accurate estimation of

the functional parameter. A theorist study on near perfect classification of

functional data that justify the very good practical performance of these di-

mension reduction methods was developed in Delaigle and Hall (2012a).

The curves of resistance of dough are smooth curves observed with error.

Because of this, least squares approximation with B-spline basis is appro-

priate to approximate the true form of the curves. The problem is that

regression splines do not control the degree of smoothness of the curves that

depends on the position and number of the knots selected to construct the

basis functions. As a result, the estimation of the functional parameters is not

smooth enough. To solve the problem of lack of smoothness of the estimated

functional parameter associated to the FLoM, four different P-spline-based

approaches were introduced in Aguilera-Morillo et al. (2012). From the sim-

ulation results presented in this chapter, it was concluded that the estimation

based on P-spline approximation of the sample curves (Eilers and Marx, 1996)

is preferred because it provides the most accurate estimation of the parameter

function and have the best classification performance with lower computa-

tional cost. Because of this, in this work, it is proposed to introduce this

P-spline approximation in the FPLS estimation of FLDA. The classification

results will be compared with the ones provided by the P-spline estimation of

the functional principal component logit regression (FPCLoR) model and al-

ternative FDA classifiers such as componentwise logit classification (Delaigle

et al., 2012).

Inference results, such as confidence intervals for the functional param-

eters, based on the asymptotic normality of the likelihood estimators under

the classical regularity conditions, are also provided for the FPCLoR model.

Moreover, guidelines for the interpretation in terms of odds ratios and prin-
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cipal components are also provided.

5.2 Smoothing the data

The aim is to classify a cookie as good or bad from the time evolution

of the resistance (density) of the dough during the kneading process. This

means that the main problem is to classify a set of curves, {xi (t) : t ∈ T,
i = 1, . . . , n}, (being i the sample curve index, and T the function support)

representing the resistance of dough (functional data) according to a binary

response Y that takes the value Y = 0 if the quality of the cookie is bad and

Y = 1 if the quality is good.

In the data set we have a sample of 90 flours for which the resistance

of dough was recorded every two seconds during the first 480 seconds of

the kneading process. So, we have discrete-time observations of 90 sample

curves of resistance of dough (50 for good and 40 for bad flours) that can

be seen as independent realizations of a continuous-time stochastic process

X = {X (t) : t ∈ [0, 480]}. The raw curves of resistance of dough are

displayed in Figure 5.1 for good (left (a)) and bad (right (b)) curves.

The first step in functional data analysis is to reconstruct the true func-

tional form of the sample curves from their discrete-time observations. The

resistance of dough is a smooth curve measured with error. Least squares

approximation on the basis of cubic B-spline functions was used in this chap-

ter. This kind of approximation was used in previous works to solve the same

problem with different type of functional data (Aguilera et al., 2008a, 2010b).

Let us remember that the sample functions related to the resistance of

dough were observed at a finite set of time points {tk = 2 × k :
k = 0, . . . , 240}. Then, the sample information is given by a set of vectors

{xi = (xi0, xi1, . . . , xi,240) : i = 1, . . . , 90}, with xik being the value of the

i-th sample path, xi (t) , observed at the time tk. That is, xik = xi(tk) + εik,
with εik being the smoothing error that follows a normal distribution.

Let us assume that the sample paths belong to a finite-dimension space

generated by a basis {φ1 (t) , . . . , φp (t)} as in expression (1.2). Then, the

vector of basis coefficients of each sample curve that minimizes the least

squares error (xi − Φiai)
′ (xi − Φiai), is given by âi = (Φ′iΦi)

−1 Φ′ixi, with

Φi = (φj (tk))241×p and ai = (ai1, . . . , aip)
′.

As we can see in Chapter 1, the problem of regression splines is that they
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Figure 5.1: Curves of resistance of dough recorded at 240 seconds for 50 flours of good quality
(left) and 40 flours of bad quality (right). Raw data ((a) and (b)), regression splines ((c) and
(d)) and P-splines ((e) and (f)).
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do not control the degree of smoothness of the estimated curve that depends

on the number knots selected for defining the B-spline basis. This problem

is solved in this chapter by using penalized splines that take into account the

roughness of a curve by introducing into the least squares criterion a discrete

penalty based on differences of order 2 between coefficients of adjacent B-

splines (P-spline penalty).

The basis coefficients of the P-spline approximation of each sample curve

computed by minimizing the penalized least squares error are given by ex-

pression (1.8).

The degree of smoothness of a P-spline is controlled by the smoothing

parameter λ that measures the rate of exchange between fit to the data and

variability of the function. In this application, the smoothing parameter is

chosen by generalized cross validation. On the other hand, the choice and

position of knots are not determinant when using P-splines and it is sufficient

to choose a relatively large number of equally spaced basis knots (Ruppert,

2002; Currie and Durban, 2002). Taking into account the Ruppert’s rule,

28 equally spaced knots were considered to define the cubic B-spline basis.

Then, each curve xi = {xi (t) : t ∈ [0, 480]} is represented by a set of 30

basis coefficients ai = (ai1, . . . , ai30) .

In Figure 5.1, the cubic regression splines fitted to good (c) and bad

cookies (d) are displayed next to the cubic P-splines for good (e) and bad

cookies (f). As an example, in Figure 5.2, the original sample data (dotted

line), the cubic regression spline (dashed line) and the cubic P-spline (solid

line) approximations with 28 equally spaced knots are displayed for a cookie of

good (left) and bad (right) quality. It can be observed that the approximation

provided by P-splines controls much better the smoothness of the curves.

5.3 Methodological aspects

The aim of this chapter is to predict a binary response variable Y (quality

of cookies) from a functional predictor X (resistance of dough) that is equiv-

alent to the problem of classification of the sample curves in the two groups

defined by the response categories. To solve this problem we propose to apply

two different functional models. The first is the FPCLoR model (Escabias

et al., 2004) and the second is the Functional Linear Discriminant Analysis ap-

proach based on Functional Partial Least Squares (LDA-FPLS) (Preda et al.,
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Figure 5.2: Original sample curve (dotted line), regression splines (dashed line) and P-spline
approach (solid line) of a sample curve for good flour (left) and bad flour (right).

2007). Using functional PCA and PLS to estimate these models solves the

usual problems of high dimensionality and multicollinearity related with func-

tional data analysis. In both cases, a smooth version of these methodologies

based on P-spline approximation of the sample curves is considered. These

smoothed approaches provide a smoother functional parameter estimation

easier to interpret. The theorist aspects related with these methodologies are

summarized hereafter next to the basis ideas on componentwise classification

(Delaigle et al., 2012) that will be applied for comparison purpose.

Let us consider the classification problem of a sample of functional obser-

vations {xi (t) : t ∈ T ; i = 1, . . . , n} according to a related binary response

Y ∈ {0, 1} whose observations are denoted by {yi : i = 1, . . . , n}. Let us also

notice that the sample curves can be seen as observations of a second order

stochastic process X = {X (t) : t ∈ T} whose sample functions belong to

the Hilbert space L2 (T ) of square integrable functions with the usual scalar

product defined in Chapter 1 by Equation (1.1).

In what follows we will consider without loss of generality that both, the

response and the predictor variables, are centered.
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5.3.1 Functional principal component logit regression

Danone data set comprises a sample of 90 flours for which the resistance

of dough was recorded every two seconds during the first 480 seconds of the

kneading process. Then, a training and a test sample of 60 and 40 flours,

respectively, where considered.

This data set presents several problems. On the one hand, the sample

paths related to the resistance of dough of the cookies were observed at a

finite set of 241 knots. On the other hand, it is impossible to estimate the

infinite-dimensional functional parameter with a finite number of observations

(n = 60) . In order to solve the two problems at the same time, a functional

estimation approach based on approximating the sample paths and the func-

tional parameter in terms of basis functions is used.

Let us remember the FLoM is given by yi = πi + εi, i = 1, . . . , n,
where {εi : i = 1, . . . , n} are independent errors with zero mean, and

πi = P [Y = 1|{xi (t) : t ∈ T}], and the associated logit transformations are

expressed as

li = ln
[

πi

1− πi

]
= α+

∫

T
xi (t) β (t) dt, i = 1, . . . , n.

Let us consider the approximations in terms of p basis functions of the

sample paths and the functional parameter given by expression (3.3). In

this context, it is known that the FLoM turns into a multiple logit model

whose design matrix is the product between the matrix of basis coefficients

of the sample paths and the matrix of inner products between basis functions.

Remembering the Chapter 3 of this thesis, the logit transformations in matrix

form are given by Equation (3.4).

This model is affected by multicollinearity and high dimension of the func-

tional predictor. The solution is to use a reduced set of q (q < p) functional

principal components as predictor variables (Escabias et al., 2004).

In the Chapter 3 of this thesis, the FLoM in terms of functional principal

components was introduced. By considering the basis expansion of both

sample paths and parameter function, the functional principal components

analysis (FPCA) is equivalent to the multivariate PCA of the product between

the matrix of basis coefficients of the sample paths and the square root

of the matrix of inner products between B-splines basis functions (Ocaña

et al., 2007). Thus, the FLoM can be expressed in terms of the functional
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principal components as in Section 3.3 of Chapter 3. The optimum number

q of principal components will be selected by generalized cross validation and

variability order.

Taking into account that the sample paths are smooth functions observed

with noise, the approximations of the sample curves by using regression splines

are not smooth enough. As a result, the functional parameter estimation pro-

vided by the FPCLoR model will be noisy and therefore difficult to interpret.

For this reason, a smoothed estimation of the functional parameter in terms

of P-spline approximation of the basis coefficients of the sample curves is

proposed (see Subsection 3.3.2 for more details).

Functional parameter interpretation

In logit regression the exponential of the parameters are interpreted in terms

of odds ratios. In this chapter we will consider the extension of this idea to

the functional case proposed by Escabias et al. (2005).

Let li be the logit transformation for a specific functional observation

xi (t) and l∗i the logit transformation for this functional observation constantly

increased in the period [t0, t0+h]. For these two logit transformations we have

that

exp (l∗i − li) = exp

(
K
∫ t0+h

t0

β (t) dt

)
, (5.1)

where K is a positive constant. This is an odds ratio, so that the odds of

outcome Y = 1 is multiplied by this amount when the value of the functional

observation is constantly increased in K units in a fixed interval [t0, t0+h].

Inference on the functional parameter

The aim of this section is to obtain a confidence interval for the odds ratio

given by Equation (5.1). Let Î =
∫ t0+h

t0
β̂ (t) dt be the maximum likelihood

estimator for I =
∫ t0+h

t0
β (t) dt, with β̂ (t) being the maximum likelihood

estimator of β (t) . In order to get a confidence interval for I, the variance of
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Î is required by assuming its normal distribution. That is,

V ar[Î] = E
[
Î − E

(
Î
)]2

= E

[∫ t0+h

t0

[
β̂ (t)−E

(
β̂ (t)

)]
dt

]2

=
∫ t0+h

t0

∫ t0+h

t0

E
[[
β̂ (t)−E

(
β̂ (t)

)] [
β̂ (s)−E

(
β̂ (s)

)]]
dtds

=
∫ t0+h

t0

∫ t0+h

t0

Cov
(
β̂ (t) , β̂ (s)

)
dtds.

Let us now consider the basis representation of β̂ (t) given by

β̂ (t) =
p∑

j=1

β̂jφj (t) = φ′ (t) β̂,

with p being the number of basis functions, β̂ =
(
β̂0, . . . , β̂p

)′
the vector of

basis coefficients and φ (t) = (φ1 (t) , . . . , φp (t))
′

the B-splines basis func-

tions. Taking into account the vector of basis coefficients β estimated by

smoothed FPCLo regression as β̂ = F γ̂,

Cov
(
β̂ (t) , β̂ (s)

)
= φ′ (t)Cov

(
β̂
)
φ (s)

= φ′ (t)Cov (F γ̂)φ (s)

= φ′ (t)FCov (γ̂)F ′φ (s) ,

where F = Ψ
− 1

2
p×pGp×q, with G being the matrix whose columns are the

eigenvectors of the covariance matrix of AΨ1/2. Then, the variance of the

maximum likelihood estimator will be

V ar[Î] =
∫ ∫

φ′ (t)FCov (γ̂)F ′φ (s) dtds,

where Cov (γ̂) is the covariance matrix of the maximum likelihood estimator

of the vector of parameters in terms of the principal components.

A (1−α) confidence interval for I is given by Î±σ̂(Î)zα/2. Then, a (1−α)
confidence interval for exp (I) can be computed by applying exponentials

at both ends of the interval. In addition, a (1 − α) pointwise confidence

interval for β (t) is given by β̂ (t)±σ̂(β̂ (t))zα/2, where σ̂(β̂ (t)) is the standard

deviation of β̂(t) given by the squared root of Cov
(
β̂ (t) , β̂ (t)

)
.
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5.3.2 Functional linear discriminant analysis based on functional PLS
regression

Linear discriminant analysis (LDA) in the functional data context aims

to find linear combinations
∫

T X (t) β (t) dt, β ∈ L2 (T ) , such that the

variance between classes is maximized with respect to the total variance

maxβ
Var (E[X (t) |Y ])

Var (X (t))
.

Because of the equivalence between linear discriminant analysis and lin-

ear regression, the functional PLS regression approach (Preda and Saporta,

2005b,a) was used for classification purposes in Preda et al. (2007). The dis-

criminant function is the coefficient function of the functional linear regression

of Y on {X (t) : t ∈ T}, where Y is recoded as follows

Y = −
√
p0/p1 if Y=1

Y =
√
p1/p0 if Y=0, (5.2)

with p0 = P [Y = 0] and p1 = P [Y = 1].

It is known that the estimation of the functional linear model

yi = β0 +
∫

T
xi (t) β (t) dt+ εi, i = 1, . . . , n,

under least squares criterion is an ill-posed problem in the context of func-

tional data (Cardot et al., 1999). One solution to this problem is to use dimen-

sion reduction approaches such as functional principal component regression

and functional partial least squares (FPLS) regression. Both methodologies

were compared on different simulated data sets concluding that their fore-

casting performance is similar but the estimated parameter function provided

by FPLS regression is more accurate (Aguilera et al., 2010b). Because of this

the FPLS approach will be used in this application.

As established in Chapter 4, the aim of FPLS regression is to regress Y
on a set of uncorrelated random variables (FPLS components), in the linear

space spanned by X, that take into account the correlation between the

response Y and the functional predictor X. The procedure to compute the

FPLS components was described in Chapter 4, Section 4.2.

By considering the basis expansion of both the sample paths and the

discriminant function, FPLS is equivalent to multivariate PLS of the response
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on the product of the matrix of basis coefficients of the sample curves and

the squared root of the matrix of inner products between basis functions

(Aguilera et al., 2010b).

As in the case of FPCLoR, the FPLSR model is reduced to multiple linear

regression on a reduced set of PLS components, so that the vector of basis

coefficients of the linear discriminant function is estimated as β = Fγ, with

G being the matrix whose columns are the PLS components loadings. The

optimum number q of PLS components is also computed by generalized cross

validation.

The estimated discriminant function is affected again by noise and then a

smoothed estimation is proposed. As in FPCLoR, this estimation is based on

the P-spline approximation of the sample curves with B-spline functions.

5.3.3 Componentwise classification

In order to extend the scale of comparison, a non-linear functional classi-

fier introduced in Delaigle et al. (2012) is considered by comparing its per-

formance with the proposed approaches.

Let (x1, y1), . . . , (xn, yn) be independent and identically distributed data

pairs corresponding to the sample information, where yj is a class label taking

values {0, 1}, and {xi = (xi0, xi1, . . . , xik) : i = 1, . . . , n}, with xij being

the value of the i-th sample path, xi (t) , observed at the time tij .

The componentwise classification approach consists of determining a rela-

tively small number of points
{
t∗1, . . . , t

∗
p ∈ T

}
that have important leverage

for classification and applying a standard classification method on the vector(
X(t∗1), . . . , X(t

∗
p)
)
. A detailed study on the theoretical properties of the

method and its behavior for different classifiers can be seen in Delaigle et al.

(2012). In this chapter we will illustrate this approach for the classifier based

on the logit regression model. The resulting logit-based componentwise clas-

sification approach has two main steps based on selecting the value of p and

the position of the set of optimum time knots adaptively.

Choosing the optimal points in a given dimension

It is known that a full search taking into account, for successively higher values

of r, all possible sequences t(r) = (t∗1, . . . , t
∗
r), can be feasible for r = 1, 2 or

3, but becomes computationally costly for higher values of r. Because of this,
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the algorithm is considered by combining a sequential and a refining part as

follows:

1. Sequential part

Let us define for all possible set of r-vectors t(r) = (t∗1, . . . , t
∗
r) with

t∗1 < · · · < t∗r , the cross validation error rate for the logit regression

model of Y on (X(t∗1), . . . , X(t
∗
r)) given by

ê(t(r)) =
1

n

n∑

i=1

Ci(t(r)),

where Ci(t(r)) is the logit classifier given by

Ci(t(r)) =

{
1 if ŷ−i

i (t(r)) 6= yi

0 in other case,

with ŷ−i
i (t(r)) being the estimation of yi with the i-th data pair (xi(t), yi)

removed from the original sample.

• For r = 1, for all possible sets t(1) = tj , j = 1 . . . , k, the cross

validation error rates ê(t(1)) are computed and the one-dimensional

point t(1) that provides the minimum error rate, t̂1, is selected as

the most important one-dimensional point for classification. Then,

let us define T1 = inf{t(1)}ê(t(1)) = ê(t̂(1)).

• For r ≥ 2, t∗r is estimated as the value t̂∗r which, when adjoined to

{t̂∗1, . . . , t̂
∗
r−1}, leads the smallest value of Tr = inf{t(r)}ê(t(r)) =

ê(t̂(r)), and so on.

For the sequential part of the algorithm, it is recommended performing

the search for each t∗r on a grid of approximately 150 equally spaced

points over the interval T, so that the space between any two selected

points ti and tj , (i 6= j) will be at less 2 times the space between two

adjacent points of the initial grid. If the sample paths are observed in

less than 150 knots, the corresponding number of knots is considered

instead of 150.

In the application developed in this work, the sample paths of resistance

dough were recorded every two seconds during the first 480 seconds of

the kneading process. The space between adjacent knots is 2 seconds
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(∆t = 2). Then, regarding to the point 1 of this algorithm, instead

of 150 knots, 120 knots must be considered in order to get a space of

2∆t = 4 seconds between adjacent knots.

2. Refining part

The sequential part, which was first used in a related functional problem

by Ferraty et al. (2010), usually does not provide a consistent estima-

tion of the optimal points. Because of the selected vector of optimum

points is refined by constructing a neighbourhood around each point

t̂(r) = (t̂∗1, . . . , t̂
∗
r), and performing a full search over this point in that

neighbourhood. Then, proceeding similarly in the following steps.

For r ≥ 1, after the sequential part in which t̂∗r was adjoined to the points

{t̂∗1, . . . , t̂
∗
r−1}, an optimum t̂∗r is chosen by taking shorter and shorter

grids. That is, for each t̂∗j (j = 1, . . . , r) 20 neighbouring points equally

spaced (by two times the space between adjacent knots of the initial

grid) are considered when r = 2, 3 and 10 neighbouring points equally

spaced for r = 4. For r ≥ 5 only the sequential part is computed.

Choosing the optimal dimension p

The optimum number of points is selected as p = inf{r : (1−ρ)Tr ≤ Tr+1},
where ρ denotes a predetermined small proportion. In our application we used

ρ = 0.1 by following the recommendation in Delaigle et al. (2012).

5.4 Results

The good performance of the smoothed version of FPCLoR and LDA-

FPLSR models is shown in this section. As mentioned in the introduction

section, this work has two different aims. On the one hand, classifying the

curves of resistance in two groups according to quality of cookies. On the

other hand, obtaining an accurate estimation of the parameter functions that

facilitates interpretation. From a classification point of view, the penalized

versions of FPCLoR and LDA-FPLSR are compared with their non-penalized

counterparts and alternative approaches such as componentwise classification

on the logit model.

In order to test the classification ability of the considered approaches, the

original sample of 90 flours was divided in a training sample of 60 flours and
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Figure 5.3: Means of the parameter functions estimated by FPCLoR (left) and the discriminant
functions estimated by LDA-FPLSR (right), for unsmoothed (dashed lines) and smoothed versions
(solid lines).

a test sample of 30 flours. To obtain general conclusions, one hundred re-

sampling of the training and test samples were developed. In order to get the

re-sampled data, i.i.d samples were randomly drawn from the original data,

and then split into a training and a test set.

Firstly, the mean of the parameter functions estimated by FPCLoR (dashed

line) and P-spline smoothed of FPCLoR (solid line) are displayed in Figure

5.3 (left). The mean of the discriminant functions estimated by LDA-FPLSR

(dashed line) and P-spline smoothed LDA-FPLSR (solid line) are also shown in

Figure 5.3 (right). In both cases, the penalized version provides the smoothest

estimation of the corresponding function that makes the interpretation be-

tween the response and the predictor variables easier.

In regard to the prediction or classification ability of the considered meth-

ods, Table 5.1 presents the mean and the standard deviation (S.D.) of the

areas under ROC curve (ROC) and the misclassification rates (MCR). It can

be seen that the smoothed version of FPCLoR provides higher ROC and

smaller MCR than the non smoothed FPCLoR. However, in the case of LDA-

FPLSR, the values of ROC and MCR are very closed. In order to test if the

observed differences between the MCR for the penalized and non-penalized
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Table 5.1: Mean and sample standard deviation (S.D.) of the areas under ROC curve (ROC) and
the misclassification rates (MCR) for 100 resamplings.

ROC MCR

Mean S.D. Mean S.D.

FPCLoR 0.8792 0.2837 0.1626 0.2369

P-spline FPCLoR 0.9336 0.1884 0.1242 0.1861

LDA-FPLSR 0.9824 0.0146 0.0798 0.0406

P-spline LDA-FPLSR 0.9773 0.0171 0.0885 0.0915

CLoR 0.7141 0.1875 0.3333 0.1732

versions are statistically significant the one-tailed t-test for paired samples was

performed. In the case of the FPCLoR model the p-value associated with the

corresponding t-test was 0.01799. This means that the average MCR is lower

for the P-spline smoothed FPCLoR than for the non-penalized version. In the

case of LDA-FPLSR, the p-value is 0.6903. This means that the differences

between the average of misclassification rates are not significant. This t-test

was also applied for deciding if the differences observed between the average

MCR provided by P-spline FPCLoR and LDA-FPLSR are significant. The

p-value associated with this test was 0.0059 leading to the conclusion that

the MCR is significantly lower for LDA-FPLSR than for FPCLoR. On the

other hand, the componentwise logit classifier does not improve the classifi-

cation ability of the proposed methods (FPCLoR and LDA-FPLSR) because

its MCR is significantly higher. The most important advantage of the com-

ponentwise classifier is that greatly reduces the high dimensionality of the

problem because rarely selected more than three or four time points. Let

us observe from Figure 5.4 that the number of selected predictors variables

(number of components selected by generalized cross validation in the case

of FPCLoR and LDA-FPLSR, and number of selected time points in the case

of componentwise logit regression (CLoR)) is much smaller for CLoR.

5.4.1 Interpreting the weight function

In this section, different interpretations of the parameter function associ-

ated to the FPCLoR model are carried out. The parameter functions esti-

mated by FPCLoR (dashed line) and its P-spline smoothed version (solid line)

are superposed in Figure 5.5 for one of the re-sampling. Let us observe that
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Figure 5.4: Box-plots for the distribution of the number of predictors selected for the three
considered classifiers, smoothed FPCLoR (SFPCLoR), smoothed LDA-FPLSR (SLDA-FPLSR)
and componentwise logit regression (CLoR), on one hundred re-sampling.

the weight function estimated by the P-spline FPCLoR approach is smoother

than the non-penalized one and so more interpretable.

In Figure 5.6, the parameter function estimated by FPCLoR without smooth-

ing (left) and with smoothing (right) are plotted next to 95% confidence

bands computed in terms of the approximated pointwise confidence intervals

introduced in Subsection 5.3.1 for each time point. It is obvious that the

smoothed method presents less variability than the other one. Hereinafter

all interpretations will be made on the smoothed function estimation of the

parameter function.

In Figure 5.5, it can be seen that the point where the weight function is

null is located in t = 186 seconds. In addition, the weights are negative in the

early period of the kneading process (0, 186) and positive in the late period

(186, 480). This means that flours with more resistance during the first 186

seconds of the kneading process have less probability of providing cookies

with good quality meanwhile more resistance in the late period increase the

probability of produce a good cookie. In other words, a good flour must have

less resistance during the early period of the kneading process, and more

resistance in the late period.
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Figure 5.5: Parameter functions estimated by FPCLoR (dashed line) and P-spline smoothed
FPCLoR (solid line).
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Figure 5.6: Parameter functions estimated by non smoothed (left) and smoothed FPCLoR (right)
next to 95% pointwise confidence bands.
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Odds ratio interpretation

A more precise interpretation of the odds ratios (introduced in Subsection

5.3.1) is based on a constant increase of the resistance of dough. The corre-

sponding odds ratios for a one unit increase are given by

ÔR1 = exp
(∫ 186

0
β̂ (t) dt

)
= 0.9433, ÔR2 = exp

(∫ 480

186
β̂ (t) dt

)
= 1.0663.

In both cases, the odd ratio is approximately 1. In order to check if it is

significantly distinct to 1, 95% confidence intervals for the odds ratios were

computed.

The confidence interval for OR1 is given by (0.9104, 0.9774) . Therefore,

with a statistical significance of 5% the OR1 takes value distinct to 1. In the

same way, the confidence interval for OR2 will be (1.0369, 1.0965) . There-

fore, with a statistical significance of 5% the OR2 takes value distinct to

1.

Let us now consider a constant increase of 10 units in the resistance of

the dough, so that

ÔR1(∆X = 10) = ÔR
10

1 = 0.56, ÔR2(∆X = 10) = ÔR
10

2 = 1.9.

This means that if the resistance of dough is increased in 10 units (in a

constant way) during the first 186 seconds of the kneading process, the odds

of produce a good cookie is halved. On the other hand, if the same increase

is made in a constant way during the period (186, 480), the odds of good

cookie is doubled.

Principal component interpretation

After fitting the FPCLoR model according to the Equation (3.8), the first

three principal components were selected by using generalized cross validation

and variability order. Then, the fitted model is given by

l̂i = γ̂0 + γ̂1ξ̂1i + γ̂2ξ̂2i + γ̂3ξ̂3i, (5.3)

with (γ̂0, γ̂1, γ̂2, γ̂3) being the estimated coefficients and ξ̂1, ξ̂2, ξ̂3 the first

three principal components, which explains the 93.59%, 3.5% and 1.6% of

the total variability, respectively. The results of the significance test on the

estimated coefficients are shown in Table 5.2. Let us observe that only the

parameter γ1 is significantly different from zero.
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Table 5.2: Significance test for the coefficients of the model.

Estimate Std. Error z value Pr(>|z|)
γ0 1.2838 0.8936 1.44 0.1508

γ1 0.0024 0.0007 3.35 0.0008
γ2 0.0018 0.0019 0.99 0.3242

γ3 0.0028 0.0028 0.97 0.3325

The first three principal component weight functions are displayed in Fig-

ure 5.7. The effect of adding and subtracting a suitable multiple of each

factor loading to the sample mean function is shown in Figure 5.8. The dis-

persion graph between the first and the second principal component scores

is displayed in Figure 5.9. It can be observed that the first principal compo-

nent gives negative weights to the observations with response Y = 0 (bad

cookies) and positive weights for Y = 1 (good cookies). On the other hand,

the first principal component curve is always positive and represents the main

features of the curve of resistance of a good cookie. This means that the

main mode of variation of the resistance curves is associated with the quality

of the cookies and allows us to identify the flours that produce good cookies.

Taking into account Equation (5.3), an increase of ξ1 in one unit will cause

that the odd in favor of the good quality of the cookies will be multiplied by

eγ̂1 . Let us now consider the principal component decomposition

X (t) = µ (t) + f1 (t) ξ1 + f2 (t) ξ2 + f3 (t) ξ3,

with fj (t) being the j-th principal component curve. Then, ∆ξ1 = 1 produces

an increase in X (t) equal to f1(t). Therefore, if the resistance curves are

increased according to f1, then the odd in favor of the good quality of the

cookies will be multiplied by eγ̂1 = 1.0024. In addition, eγ1 is significantly

different from one with 5% statistical significance because the 95% confidence

interval for eγ1 given by (1.0012, 1.0035) does not contain the value 1. Finally,

we can conclude that if we increase a resistance curve according to the first

principal component curve, then the probability of producing a good cookie

is increased.
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Figure 5.7: First eigenfunction (left), second eigenfunction (center) and third eigenfunction
(right).
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Figure 5.8: Mean resistance curves (solid line) and the effect of adding (+) and subtracting (-)
a suitable multiple of each principal component curve.

5.5 Conclusions

Different functional classification approaches are applied and compared in

this chapter to classify the quality of cookies (good or bad) in terms of the

curves of resistance of dough during the kneading process. The aim of this

application is to identify those flours that provide good cookies and improve

the quality of the manufacturer’s products by using only those flours that

guarantee the best quality.

Two different classification methods, such as functional logit regression

and functional linear discriminant analysis, are considered to classify a set of

curves in the two groups defined by a binary response. A third method based

on componentwise logit classification is also applied for comparison purposes.
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Figure 5.9: Dispersion graph between the first and the second principal component scores.

The first methodology allows not only to solve the classification problem but

also to estimate the relationship between the response variable (quality of

cookies) and the predictor variable (resistance of dough during the kneading

process). The estimation of the proposed functional classification approaches

is affected by several problems such as high dimension and multicollinearity.

Estimation based on functional PCA and functional PLS is considered to

solve these problems. Smoothed versions of these methodologies based on

P-spline approximation of the sample curves with B-spline basis are introduced

in this chapter to solve the problem of lack of smoothness of the estimated

functional parameters. Inference on the estimated functional parameters and

associated odds ratios is also carried out based on the asymptotic normality

of the likelihood estimators.

From the statistical analysis of the results it can be concluded that the

proposed functional methodologies (FPCLoR and LDA-FPLSR) have a high

classification ability with LDA-FPLSR being the one that gives the highest

area under ROC curve and the minimum misclassification rate. The smoothed

versions of both approaches give more accurate and smooth estimations of

the functional parameters which facilitates their interpretation. On the other
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hand, the componentwise logit classifier does not improve the classification

ability of the proposed methods because provides the smallest area under ROC

curve and the highest misclassification error. The main advantage of this non

linear classifier is that provides the highest reduction of dimension because

rarely selected more than three or four time points that convey particular

information for classification purpose.

Several interpretations of the functional parameter based on odds ratios

and principal components are also proposed. To summarize, it can be con-

cluded that good cookies have greater resistance of the dough in the late

period and less resistance in the early period. The main features of the curve

of resistance of good cookies were also identified by interpreting the first

principal component curve.





APPENDIX A
Software and computational
considerations

In this section the main computational considerations of this thesis are de-

scribed. Note that the computational cost of this thesis is really high. Because

of this, the largest computer simulations were run on a cluster of 30 blade

servers each one with two Intel XEON E5420 processors running at 2.5 GHz

and with 16 GB of RAM memory. Each processor has four cores, and the

experiments are carried out on virtualized Windows XP machines, each one

with one virtualized processor and 1 GB of RAM memory.

All results presented in this thesis were performed by using the free soft-

ware R for statistical computing and graphics (http://www.r-project.org).

Specifically, two different versions of R software were used (2.10.1 and 2.15.2
version). This software is used by many researchers in FDA and there are

some libraries related with the implementation of standard FDA methodolo-

gies. Moreover, the development of custom code for the developed algorithms

not directly implemented in its libraries is allowed.

Then, a summary of the main libraries and R functions used for the devel-

opment of this thesis is shown.

145
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A.1 Main libraries

In this section, the main R libraries used to compute the methodology

developed in this thesis are summarized.

• fda library

This library implements the techniques of functional data analysis de-

scribed in Ramsay and Silverman (2005).

• fda.usc library

This library integrates and complements the fda package by carrying

out exploratory and descriptive analysis of functional data, functional

regression models with a scalar response, supervised and unsupervised

classification methods and functional analysis of variance.

• stats library

This package contains functions for statistical methods such as principal

components analysis and linear models, both used in this thesis.

• design library

Among other things, this library allows to fit a binary or ordinal logistic

model by using ordinary or penalized maximum likelihood estimation.

• mgcv library

This library has been considered in order to make matrix calculations,

such as the squared root of a matrix, by using either pivoted Choleski

decomposition or singular value decomposition.

• plsr library

This library was used to compute PLS regression.

A.2 Main functions

In this section, the main functions required to compute the methodology

developed in this thesis are summarized. Graphics related with the mean of

the parameter functions and pointwise confidence bands were computed by

using the functions func.mean and func.var of the library fda.usc.
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A.2.1 Smoothing with B-spline bases

The firs step in FDA is to reconstruct the functional form of the sample

curves from their discrete observations. The most usual way to solve this

problem consists of assuming an expansion of each sample curve in terms of

a basis of functions. In order to get the main basis functions, the following

functions of the fda package were considered:

• Cubic B-splines basis: create.bspline.basis(...).

• Fourier basis: create.fourier.basis(...).

• Constant basis: create.constant.basis(...).

In this thesis only cubic B-splines basis functions were used. Depending

of the considered spline smoother (see Chapter 1 for more details), the basis

coefficients are computed as follows:

1. Regression splines

The functional form is achieved with the function data2fd(...) of the

fda library.

The curves are centered by using the function center.fd(...) of the fda
package on the object obtained from the function data2fd(...).

2. Smoothing splines

The continuous penalty matrix of order 2 used to computed the smooth-

ing spline approximation of the sample curves is based on the integrated

squared 2-order derivative of B-spline functions. It is computed by means

of the function bsplinepen(basis, Lfdobj=2) of the fda library. The func-

tional form are given by the function smooth.spline.

3. P-splines

The discrete penalty matrix of order 2 used to obtain the P-spline approx-

imation of the sample curves is computed with the R code diff(diff(diag(
nnodos+2))), where nnodos is the number of basis knots.
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A.2.2 Functional PCA

In order to carry out the different versions of penalized and non-penalized

FPCA, the following libraries are required: fda, mgcv, stats.

Once the functional form of the sample paths is obtained, all versions of

FPCA developed in this paper are reduced to a multivariate PCA of a design

matrix which is achieved by mean of the function princomp of the library

stats.

The design matrix of the different versions of FPCA are computed as

folows:

• Non-penalized FPCA: the design matrix given by the product between

the matrix of basis coefficients of the curves approximated by regression

splines and the squared root of the matrix of inner products between

basis functions.

The inner products between basis functions is computed with the func-

tion inprod(...) of the fda library. The squared root of that matrix is

computed by using the function mroot(...) of the library mgcv.

• P-spline smoothed FPCA: the design matrix is given by the product

between the matrix of basis coefficients of the curves approximated by

regression splines, the matrix of inner products between basis functions

and the inverse of a lower triangular matrix. The lower triangular matrix

is obtained by a Choleski factorization of the sum of the matrix of the

inner products between basis functions plus the smoothing parameter

multiply by the P-spline penalty matrix. The Choleski factorization is

computed with the function chol(...) of the package base.

• Functional PCA of P-splines: the design matrix is given by the product

of the matrix of basis coefficients of the curves approximated by P-

splines and the squared root of the matrix of inner products between

basis functions.

• Regularized FPCA

The main difference between the computational algorithm for comput-

ing regularized FPCA and P-spline smoothed FPCA is the continuous

penalty matrix that is based on the integrated squared 2-order derivative

of B-spline functions.
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A.2.3 Penalized functional PC logit regression

All the FPCLoR models developed in this thesis were reduced to ordi-

nary logit regression of the binary response variable on the matrix comprising

the columns of the first q functional principal component scores provided by

different versions of penalized and non-penalized FPCA.

Once the principal components are computed, the logit model is achieved

by means of the function glm(formula, family=binomial(link ="logit"),...) of

the R package base.

The optimal number q of functional principal component scores and the

smoothing parameter (for penalized FPCLoR) was selected by the GCV al-

gorithms described in Section by developing our own R code.

When FLoR with P-spline penalty in the maximum likelihood estimation is

considered, the penalized estimation was provided by the function lrm.fit(...)
of the library design after computing the P-spline penalty matrix.

A.2.4 Penalized functional PLS regression

Both, non-penalized FPLS and the first version of penalized FPLS (de-

scribed in Section 4.3.2) are reduced to ordinary PLS regression of the re-

sponse variable on an appropriate design matrix. Then, the PLS components

are estimated by the function plsr(...) of the plsr library.

The vector of model parameters provided by the plsr function is obtained

in both cases with the coef( plsr(...), ...) function. Then, the vector of

basis coefficients of the functional parameter is obtained by transforming

that vector as corresponds in each case.

The second version of penalized FPLS is not reduced to a multivariate

PLS. Then, the penalized FPLS components were obtained by the iterative

algorithm, where the required eigenvalues problems were computed with the

function eigen(...) of the R package base. The linear regression models of

the response variable on the penalized PLS components were computed with

the function lm(...) of the library stats.





APPENDIX B
Conclusions and further research

Let us remember that the general objective of this thesis is to improve the

estimation of FDA methodologies in the case of smooth functional data ob-

served with error. In order to solve this problem, different penalized estimation

approaches with B-spline basis expansions are proposed for functional PCA,

functional principal component logit regression and functional PLS.

The performance of all the proposed penalized methodologies is studied

on simulated and real data and the results compared with the corresponding

non-penalized counterpart estimated in terms of B-spline basis expansions of

the sample curves and the functional parameters. From the results presented

in each chapter, it can be concluded that the penalized approaches provide

a more accurate and smoother estimation of the functional parameters and

have the best forecasting and classification performance. A summary of the

main contributions and conclusions for each chapter is given hereafter.

B.1 Chapter 1

Non-penalized and penalized least squares smoothing in terms of B-spline

bases have been compared in this chapter to approximate a set of unobserved

smooth curves from discrete noisy observations. A simulation study and two

applications with real functional data have been developed to study and com-

pare the performance of the three considered smoothers (regression splines,

smoothing splines and P-splines) in the FDA context.
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In base to these results we can conclude that regression splines and smooth-

ing splines lose control of the smoothness when the number of knots increases.

Both penalized approaches get to improve the fit providing mean squared er-

rors with respect to the original smooth sample curves much smaller than

the ones given by the non-penalized approach. On the other hand, P-splines

provide the lowest approximation errors, have less numerical complexity mak-

ing easier its computational implementation and are quite insensitive to the

choice of knots so that it is sufficient to choose a relatively large number of

equally spaced basis knots.

B.2 Chapter 2

Two smoothed FPCA approaches based on P-spline penalties have been

proposed in this chapter to control the degree of smoothness of the principal

components weight functions estimated from smooth sample curves observed

with error. Both approaches are based on B-spline expansion of sample curves

and a P-spline penalty that measures the roughness of a function by summing

squared d-order differences between adjacent B-spline coefficients. The first

smoothed FPCA approach (called FPCA of P-splines) introduces the P-spline

penalty in the least squares approximation of the sample curves with B-spline

functions (P-splines) and then carries out a non-penalized FPCA on the ap-

proximated curves. The second approach approximates the sample curves

by non-penalized least squares (regression splines) and then performed a pe-

nalized FPCA estimation based on maximizing a penalized sample variance

that introduces the P-spline penalty in the orthonormality constraint between

principal components.

A simulation study was performed to test the ability of the proposed

smoothed FPCA approaches to provide an accurate and smooth estimation

of the principal component curves. The results were compared with the esti-

mations provided by non-penalized FPCA of the least squares approximation

of sample curves with B-spline basis and regularized FPCA based on pe-

nalizing the roughness of the principal component curves by its integrated

squared 2-order derivative. From this simulation study it can be concluded

that the penalized approaches give much more accurate estimations than

non-penalized FPCA. This is because FPCA looses control of the smooth-

ness when the dimension of the B-spline base increases. On the other hand,

the smoothed FPCA approaches are quite insensitive to the choice of knots so
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that a relatively large number of equally spaced basis knots is a good election

for the definition of the B-spline basis. The advantage of the smoothed FPCA

approaches based on P-spline penalties respect to the ones based on penaliz-

ing the integrated squared d-order derivatives is that they are mathematically

simpler because the difference matrix is easier to compute than the matrix

of integrals of products of d-order derivatives between B-spline basis func-

tions (see Bhatti and Bracken (2006) for a detailed study on the calculation

of integrals involving B-splines). Finally, it can be concluded that FPCA of

P-splines is preferable to P-spline SFPCA and regularized FPCA because its

computational cost is lower and the approximation errors are slightly smaller.

B.3 Chapter 3

In order to solve the problem of multicollinearity in functional logit re-

gression and to control de smoothness of the functional parameter estimated

from noisy smooth sample curves, four different penalized spline (P-spline)

estimations of the functional logit model are proposed in this chapter. Let

us take into account that the aim of logit model is not only to classify a set

of curves into in two groups but mainly to interpret the relationship between

the binary response and the functional predictor in terms of the functional

parameter. Because of this, our main purpose is to improve the estimation

of the functional parameter of a functional logit model, providing in addition

a good classification rate.

A P-spline penalty measures the roughness of a curve in terms of differ-

ences of order d between coefficients of adjacent B-spline basis functions.

The proposed smoothing approaches are based on B-spline expansion of the

sample curves and the parameter function, and P-spline estimation of the

functional parameter. The difference is in how to introduce the penalty in the

model. Three of the considered approaches (Methods II, III and IV) are based

on functional principal component logit regression that consists in regressing

the binary response on a reduced set of functional principal components. In

Method II the P-spline penalty is introduced by performing the functional

PCA on the P-spline least squares approximation of the sample curves from

discrete observations. Method III introduces the P-spline penalty in the own

formulation of functional PCA and the principal components are computed by

maximizing a penalized sample variance that introduces a discrete penalty in

the orthonormality constraint between the principal components weight func-



154 Conclusions and further research

tions. In Method IV the P-spline penalty is used in the maximum likelihood

estimation of the functional parameter in terms of functional principal com-

ponents. On the other hand, direct P-spline likelihood estimation in terms of

B-spline functions is also considered (Method V).

Two simulation studies were performed to test the ability of the proposed

P-spline smoothing approaches to provide an accurate and smooth estimation

of the functional parameter and a good classification performance. Leave-

one-out cross validation and generalized cross validation are adapted to select

the different parameters (smoothing parameter and number of principal com-

ponents or basis functions) associated with the considered approaches. In the

case of the P-spline approximation of the sample curves from equally spaced

observations, a relatively large number of equally spaced basis knots is a good

choice for the definition of the B-spline basis. The results provided by the dif-

ferent smoothing approaches are compared with the estimations provided by

non-penalized FPCLoR on least squares approximation of sample curves with

B-spline basis Method I) and by the partial least squares estimation approach

for functional linear discriminant analysis with (LDA-FPLS).

From the simulation study it can be concluded that the estimation of the

functional parameter given by the P-spline approaches is much smoother than

the one given by the non-penalized FPCLoR although in some cases Method

IV gives worse results. In fact, Methods I and IV provide non-smooth esti-

mations affected by high variability. The most accurate and smoothest esti-

mations of the parameter function are provided by Methods II and III, based

on P-spline estimation of functional PCA with B-spline basis. On the other

hand, the estimations given by Method V are less accurate and oversmoothed.

In relation to the forecasting ability of the proposed methodologies, Methods

II and III provide the least prediction errors followed by Method V that also

gives accurate results. The classification performance of all methods is very

good, with Methods II, III, and V being the most competitive. On the other

hand, the LDA-FPLS approach gives very high classification rates similar to

methods II, III and V but its forecasting errors are much higher.

In summary, it can be concluded that the penalized approaches repre-

sented by Methods II and III are preferred because they provide the most

accurate estimation of the parameter function and have the best forecasting

and classification performance, with Method II having lower computational

cost.
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B.4 Chapter 4

The aim of this chapter is to improve the estimation of the functional

parameter associated with the functional linear model for a scalar response

when the predictor curves are smooth functions observed with error.

In order to solve the problem of high dimension and multicollinearity in

the estimation of the functional linear model, and also to control de degree

of smoothness of the estimated functional parameter, two different penalized

approaches based on functional partial least squares regression (FPLSR) are

developed. The first approach introduces the penalty in the definition of the

norm of the PLS component weight functions (Method II). The second one

considers a penalized estimation of the covariance between the response and

the PLS components (Method III). Discrete and continuous penalties can be

used in terms of basis expansions of the sample curves.

Two different criteria based on minimizing the GCVE and the IMSEβ (cri-

terion 1 and 2, respectively) were adapted to select the different parameters

(smoothing parameter and number of PLS components) associated with the

considered approaches.

The performance of these penalized FPLS approaches was tested and

compared with non-penalized FPLS by using least squares approximation of

the sample curves with B-spline basis on a simulation study and an application

with chemometric functional data measuring the NIR spectra of gasoline

samples. In the simulation study two different schemes were considered so

that R2 = 0.9 and R2 = 0.7.

From the simulation study, it can be concluded that the estimation of the

functional parameter given by the penalized approaches is much smoother

than the one given by the non-penalized FPLS. In fact, it can be said that

independently of the model selection criterion and the simulation scheme

(R2 = 0.9 or R2 = 0.7), the more accurate estimation of the functional pa-

rameter is given by Method II, because the estimations given by Method III

are oversmoothed and present more variability. With respect to the forecast-

ing performance, Methods II and III provide similar results, improving both

the prediction ability of the non-penalized FPLS approach. The significant

differences between the non-penalized and penalized estimations of FPLS are

mainly in their capacity to provide an accurate estimation of the functional

parameter. On the other hand, using GCV criterion for model selection is a
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good option for predicting the response and estimating the parameter func-

tion except for Method III where the increment in the number of selected

FPLS components worsen the functional parameter estimates slightly.

In the application to the spectroscopic data set of gasoline, the aim was

to forecast the octane number from the NIR spectra of 60 gasoline samples,

and to get a good estimation of the functional parameter that explains the

relationship between the response and the functional predictor. The results of

this application corroborates that the penalized FPLS approaches have better

forecasting performance and provide smoother estimated parameter than the

non-penalized approach, with Method II providing the best results. In both,

simulation and application, Method III is which requires the minimum number

of predictors.

Summarizing, Method II provides the best estimations of the functional

parameter, achieving also a good forecasting performance, and using less

predictors that the non-penalized FPLS approach.

B.5 Chapter 5

Different functional classification approaches are applied and compared in

this chapter to classify the quality of cookies (good or bad) in terms of the

curves of resistance of dough during the kneading process. The aim of this

application is to identify those flours that provide good cookies and improve

the quality of the manufacturer’s products by using only those flours that

guarantee the best quality.

Two different classification methods, such as functional logit regression

and functional linear discriminant analysis, are considered to classify a set of

curves in the two groups defined by a binary response. A third method based

on componentwise logit classification is also applied for comparison purposes.

The first methodology allows not only to solve the classification problem but

also to estimate the relationship between the response variable (quality of

cookies) and the predictor variable (resistance of dough during the kneading

process). The estimation of the proposed functional classification approaches

is affected by several problems such as high dimension and multicollinearity.

Estimation based on functional PCA and functional PLS is considered to

solve these problems. Smoothed versions of these methodologies based on

P-spline approximation of the sample curves with B-spline basis are introduced
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in this chapter to solve the problem of lack of smoothness of the estimated

functional parameters. Inference on the estimated functional parameters and

associated odds ratios is also carried out based on the asymptotic normality

of the likelihood estimators.

From the statistical analysis of the results it can be concluded that the

proposed functional methodologies (FPCLoR and LDA-FPLS) have a high

classification ability with LDA-FPLS being the one that gives the highest

area under ROC curve and the minimum misclassification rate. The smoothed

versions of both approaches give more accurate and smooth estimations of

the functional parameters which facilitates their interpretation. On the other

hand, the componentwise logit classifier does not improve the classification

ability of the proposed methods because provides the smallest area under ROC

curve and the highest misclassification error. The main advantage of this non

linear classifier is that provides the highest reduction of dimension because

rarely selected more than three or four time points that convey particular

information for classification purpose.

Several interpretations of the functional parameter based on odds ratios

and principal components are also proposed. To summarize, it can be con-

cluded that good cookies have greater resistance of the dough in the late

period and less resistance in the early period. The main features of the curve

of resistance of good cookies were also identified by interpreting the first

principal component curve.

B.6 Further research

The research line on penalized FDA methodologies is not closed and the

authors have in mind to continue working and developing the following ideas:

1. Penalized estimation of functional multinomial response models for nom-

inal and ordinal responses.

2. Comparative study between penalized functional PCR and penalized

functional PLS.

3. Formulation and estimation (both non-penalized and penalized approaches)

of functional PLS regression when both response and predictor variables

are functional.
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4. Application of penalized FDA methodologies in different areas of interest

as environment, medicine, chemometric, ...



APPENDIX C
Conclusiones y líneas abiertas

Recordemos que el objetivo principal de esta tesis doctoral es mejorar la es-

timación de metodologías del ADF para el caso de datos funcionales suaves

observados con error. Con objeto de resolver este problema, se han propuesto

distintas estimaciones penalizadas con bases de B-splines para el ACP fun-

cional, la regresión logística funcional en componentes principales y el PLS

funcional.

El funcionamiento de los métodos penalizados se ha testado mediante

estudios de simulación y aplicaciones a datos reales, comparando sus resulta-

dos con los obtenidos mediante los correspondientes métodos sin penalización

estimados en términos de las representaciones básicas con B-splines de las

curvas muestrales y de la función parámetro.

C.1 Capítulo 1

En este capítulo, con objeto de aproximar un conjunto de curvas suaves

a partir de observaciones discretas ruidosas, se han comparado distintos

suavizados basados en la estimación por mínimos cuadrados penalizados y

no penalizados. Se han llevado a cabo un estudio de simulación y varias apli-

caciones a datos reales con objeto de comparar las tres formas de suavizado

de curvas consideradas (splines de regresión, splines de suavizado y P-splines)

en el contexto de ADF.
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En base a estos resultados se puede concluir que los splines de regresión

y los splines de suavizado pierden el control de la suavidad de la curva a

medida que aumenta el número de nodos de la base. Ambas aproximaciones

penalizadas (splines de suavizado y P-splines) consiguen mejorar el ajuste

de las curvas proporcionando errores cuadráticos medios de aproximación a

la curvas muestrales suaves originales más pequeños que los proporcionados

con la estimación no penalizada. Por un lado, los P-splines proporcionan los

errores de aproximación más bajos, tienen menos complejidad numérica, lo

que hace más simple su implementación computacional, y son menos sensibles

a la elección de los nodos de la base, siendo suficiente con seleccionar un

conjunto relativamente grande de nodos igualmente espaciados.

C.2 Capítulo 2

En este capítulo, con objeto de controlar el grado de suavidad de las

funciones peso de las componentes principales estimadas a partir de curvas

suaves observadas con error, se proponen dos aproximaciones suaves del análi-

sis en componentes principales funcional (FPCA) basadas en penalizaciones

P-spline. Ambas aproximaciones se basan en la representación básica con

B-splines de las curvas muestrales y en una penalización P-spline que mide

la falta de suavidad de una función sumando los cuadrados de las diferencias

de orden d entre los coeficientes adyacentes de los B-splines. La primera

aproximación suave del FPCA (llamada FPCA de los P-splines) introduce la

penalización P-spline en la aproximación por mínimos cuadrados de las curvas

muestrales con funciones B-spline (P-splines) y posteriormente lleva a cabo un

FPCA no penalizado sobre las curvas aproximadas. La segunda aproximación

considera las curvas muestrales aproximadas mediante mínimos cuadrados

no penalizados (splines de regresión) y realiza una estimación penalizada del

FPCA basada en la maximización de la varianza muestral penalizada, que

introduce la penalización P-spline en la condición de ortonormalidad entre las

componentes principales.

Se ha llevado a cabo un estudio de simulación donde se ha testado la

capacidad de las estimaciones penalizadas del FPCA para proporcionar una

estimación adecuada y suave de las curvas de las componentes principales.

Estos resultados se han contrastado con los obtenido mediante el FPCA no

penalizado sobre las curvas muestrales aproximadas por mínimos cuadrados

con bases de B-splines y el regularized FPCA que penaliza la falta de suavidad
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de las curvas de componentes principales mediante la integral del cuadrado de

la derivada de orden 2 de dichas curvas. A partir de este estudio de simulación

se puede concluir que las estimaciones penalizadas proporcionan estimaciones

más adecuadas que el FPCA no penalizado. Esto se debe a que el FPCA no

penalizado pierde el control de la suavidad cuando la dimensión de la base de

B-splines aumenta. Por otro lado, las aproximaciones suaves del FPCA son

poco sensibles a la selección de los nodos básicos, de modo que bastaría con

utilizar un número considerablemente grande de nodos básicos equidistantes

para definir la base de B-splines. La ventaja de las estimaciones penalizadas

del FPCA basadas en la penalización P-spline respecto a la basada en la

penalización continua es que las primeras son matemáticamente más simples,

ya que es más fácil calcular la matriz de diferencias que la matriz de las

integrales de los productos de las derivadas de orden 2 entre funciones básicas

de B-spline (ver Bhatti and Bracken (2006) para un estudio detallado sobre

el cálculo de las integrales con B-splines). Finalmente, se puede concluir que

el FPCA sobre los P-splines es preferible al FPCA suavizado con penalización

P-spline y al regularized FPCA, ya que su coste computacional es menor y

los errores de aproximación de las curvas son ligeramente inferiores.

C.3 Capítulo 3

Con objeto de resolver el problema de la multicolinealidad en el modelo de

regresión logística funcional y controlar la suavidad del parámetro funcional

estimado a partir de curvas muestrales suaves observadas con error, en este

capítulo se proponen cuatro estimaciones P-spline penalizadas del modelo

logit funcional. Hay que tener en cuenta que el objetivo principal del modelo

logit no es tanto clasificar un conjunto de curvas en dos grupos, sino interpre-

tar la relación entre la variable respuesta y el predictor funcional en términos

de la función parámetro. Por ello, el principal propósito de este trabajo es

mejorar la estimación de la función parámetro de un modelo logit funcional,

proporcionando al mismo tiempo una tasa de clasificaciones correctas ade-

cuada.

Una penalización P-spline mide la falta de suavidad de una curva en tér-

minos de diferencias de orden d entre coeficientes básicos de B-splines adya-

centes. Los modelos penalizados propuestos se basan en la expansión básica

con B-splines de las curvas muestrales y la función parámetro, y una esti-

mación P-spline de la función parámetro. La diferencia radica en cómo se
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introduce la penalización en el modelo. Tres de las aproximaciones propues-

tas (Métodos II, III y IV) se basan en la regresión en componentes principales

funcional, es decir, la regresión de una variable respuesta binaria sobre un

conjunto reducido de componentes principales funcionales. En el Método II,

la penalización P-spline se introduce considerando un FPCA sobre la aprox-

imación P-spline de las observaciones discretas de las curvas muestrales (P-

splines). El Método III introduce la penalización en la propia formulación del

PCA, de modo que las componentes principales se obtienen maximizando una

varianza penalizada que introduce una penalización discreta en la condición

de ortonormalidad entre las funciones peso de las componentes principales.

En el Método IV, la penalización se utiliza en la estimación por máxima verosi-

militud del parámetro funcional en términos de componentes principales. Por

otro lado, se considera una penalización P-spline directa de la verosimilitud

en términos de bases de B-splines (Método V).

Con objeto de testar la capacidad de los métodos propuestos tanto para

predecir, como para obtener una estimación adecuada y suave de la fun-

ción parámetro, se han desarrollado dos estudios de simulación. Los méto-

dos de validación cruzada leave-one-out y validación cruzada generalizada

se han adaptado para seleccionar los parámetros de los modelos propuestos

(parámetro de suavizado y número de componentes principales o funciones

básicas). Para la aproximación P-spline de las curvas muestrales a partir de

observaciones equidistantes basta con seleccionar un número considerable-

mente grande de nodos para la definición de la base de B-splines. Los re-

sultados obtenidos mediante las metodologías penalizadas se han comparado

con las estimaciones proporcionadas por la regresión logística funcional en

componentes principales (FPCLoR) no penalizada sobre las curvas muestrales

aproximadas con bases de B-splines (Método I) y con el análisis discriminante

lineal basado en el PLS funcional (LDA-FPLS).

A partir del estudio de simulación se puede concluir que la estimación

del parámetro funcional proporcionada por los métodos basados en la pe-

nalización P-spline es más adecuada que la proporcionada por FPCLoR no

penalizada, aunque hay ocasiones en las que el Método IV no da buenas esti-

maciones. De hecho, los Métodos I y IV proporcionan unas estimaciones poco

suaves y con gran variabilidad. Las estimaciones más adecuadas y suaves de

la función parámetro se han obtenido con los Métodos II y III, ambos basa-

dos en la estimación P-spline del FPCA con bases de B-splines. Por otro

lado, las estimaciones proporcionadas por el Método V son menos adecuadas
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y tienden a ser demasiado suaves. En relación a la capacidad predictora de

las metodologías expuestas, los Métodos II y III son los que proporcionan

menores errores de predicción, seguidos del Método V que también propor-

ciona buenos resultados. La capacidad de clasificación de todos los métodos

es bastante buena en general, siendo los Métodos II, III y V los más compe-

titivos en este sentido. Por otro lado, el LDA-FPLS proporciona una tasa de

clasificación elevada y similar a la de los Métodos II, III y V, pero sus errores

de predicción son mayores.

Resumiendo, se puede concluir que las estimaciones penalizadas basadas

en los Métodos II y III son las más adecuadas, en el sentido de que pro-

porcionan las mejores estimaciones de la función parámetro y tienen mejor

capacidad de predicción y clasificación, siendo el Método II el que supone un

menor coste computacional.

C.4 Capítulo 4

El objetivo de esta capítulo es mejorar la estimación de la función parámetro

del modelo lineal funcional para una variable respuesta escalar cuando los pre-

dictores son curvas suaves observadas con error.

Con objeto de resolver los problema de alta dimensión y multicolinealidad

en la estimación del modelo lineal funcional, y al mismo tiempo controlar el

grado de suavidad de la función parámetro estimada, se proponen dos ver-

siones penalizadas distintas basadas en la regresión PLS funcional (FPLS). La

primera aproximación introduce la penalización en la definición de la norma

de las funciones peso de las componentes PLS (Método II). La segunda con-

sidera una estimación penalizada de la covarianza entre la respuesta y las

componentes PLS (Método III). Se puede utilizar tanto la penalización dis-

creta como la continua, ambas en términos de la representación básica de las

curvas muestrales.

Para seleccionar los distintos parámetros asociados a las dos aproxima-

ciones propuestas (parámetros de suavizado y número de componentes PLS),

se han adaptado dos criterios diferentes basados en minimizar los errores de

validación cruzada generalizada y los errores cuadráticos medios integrados

de la función parámetro (criterios 1 y 2, respectivamente).

El comportamiento de las aproximaciones penalizadas de la regresión PLS

funcional propuestas en este capítulo se ha testado mediante un estudio de
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simulación y una aplicación con datos reales basados en el espectro NIR de

muestras de gasolina, comparando tales resultados con los del FPLS no pe-

nalizado. En el estudio de simulación se consideraron dos esquemas distintos,

uno para R2 = 0.7 y otro para R2 = 0.9.

A partir del estudio de simulación podemos concluir que los métodos pe-

nalizados proporcionan una función parámetro más suave y adecuada que el

PLSF no penalizado. Además, con independencia del criterio de selección

de parámetros empleado y del esquema de simulación seguido (R2 = 0.7
o R2 = 0.9), la mejor estimación de la función parámetro viene dada por

el Método II, ya que las estimaciones proporcionadas por el Método III son

demasiado suaves y presentan mucha variabilidad. Respecto a la capacidad

de predicció, los Métodos II y III presentan resultados muy similares, mejo-

rando ambos las predicciones dadas por el FPLS no penalizado. No obstante,

podemos decir que las diferencias más significativas entre las aproximaciones

penalizadas y no penalizada radican en la estimación de las función parámetro.

Por otro lado, es una buena opción utilizar el criterio de validación cruzada

generalizada en la selección de los modelos para predecir y estimar la función

parámetro, excepto para el Método III, donde el incremento en el número

de compoenentes PLS seleccionadas empeora ligeramente la estimación de la

función parámetro.

En la aplicación a los datos sobre espectros de la gasolina, el objetivo

fue predecir el número de octanos a partir del espectro NIR de 60 muestras

de gasolina y conseguir una buena estimación de a función parámetro que

explique la relación entre la variable respuesta y el predictor funcional. Los

resultados de esta aplicación corroboran que las aproximaciones penaliza-

das del FPLS tienen mejor capacidad predictora y consiguen una función

parámetro más suave que la aproximación no penalizada, siendo el Método II

el que proporciona los mejores resultados. Tanto en la simulación como en la

aplicación, el Método III es el que requiere el mínimo número de predictores.

Resumiendo, el Método II proporciona las mejores estimaciones de la fun-

ción parámetro, consiguiendo al mismo tiempo una buena capacidad predic-

tora y utilizando menos variables en el modelo (componentes PLS) que el

FPLS no penalizado.
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C.5 Capítulo 5

En este capítulo se proponen y comparan distintas metodologías para la

clasificación funcional con objeto de clasificar la calidad de las galletas (buenas

o malas) en términos de las curvas de resistencia de la masa de las mismas

durante el proceso de horneado. El objetivo de esta aplicación es identificar

aquellas harinas que dan lugar a galletas buenas, mejorando así la calidad

de los productos de la manufacturera DANONE usando sólo harinas que

garanticen la mejor calidad.

Con objeto de clasificar un conjunto de curvas en dos grupos definidos

por una variable respuesta binaria, se han considerado dos métodos de clasi-

ficación funcional como son la regresión logística funcional y el análisis dis-

criminante lineal funcional. A modo comparativo se propone otro método

basado en la clasificación logit componente a componente (componentwise
classification). El primer método no sólo permite clasificar las curvas en dos

grupos, sino también estimar la relación entre la variable respuesta (calidad

de las galletas) y el predictor funcional (resistencia de la masa durante el pro-

ceso de horneado). La estimación de los distintos métodos de clasificación

funcional propuestos en este capítulo están afectados por la alta dimensión

de los datos y la multicolinealidad. Para resolver ambos problemas se con-

sidera una estimación de los métodos mencionados previamente basada en

FPCA y FPLS. Con objeto de resolver el problema de falta de suavidad de los

parámetros funcionales estimados, se han propuesto versiones suavizadas de

estas metodologías basadas en la aproximación P-spline de la curvas mues-

trales con bases de B-splines. Basándonos en la normalidad asintótica de

los estimadores de máxima verosimilitud, se lleva a cabo inferencia sobre los

parámetros funcionales estimados y los cocientes de ventajas asociados.

A partir del análisis estadístico de los resultados se puede concluir que las

metodologías funcionales propuestas (FPCLoR y LDA-FPLS) presentan una

elevada capacidad de clasificación, siendo LDA-FPLS el que proporciona las

mayores áreas bajo la curva ROC y las tasas de clasificaciones incorrectas

más bajas. Las versiones penalizadas de ambas aproximaciones proporcionan

una estimación más suave y adecuada de las funciones parámetro, lo cual

facilita su interpretación. Por otro lado, el clasificador logit componente

a componente no mejora la capacidad de clasificación de los métodos pro-

puestos, dando lugar a áreas bajo la curva ROC más pequeñas y tasas de

clasificaciones incorrectas más elevadas. No obstante, la principal ventaja de
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este clasificador funcional es que consigue reducir bastante de la dimensión

del problema, ya que rara vez selecciona más de tres o cuatro instantes de

tiempo que contienen información importante para la clasificación.

Se proponen varias interpretaciones de la función parámetro en base a los

cocientes de ventajas y las componentes principales. Resumiendo, se puede

concluir que las galletas de buena calidad presentan una resistencia de la masa

mayor al final de la fase de horneado y menos resistencia al principio. Las

principales características de las curvas de resistencia de las galletas buenas

también se han identificado interpretando la curva de la primera componente

principal.

C.6 Líneas abiertas

La línea de investigación sobre metodologías del ADF penalizadas no ter-

mina con esta tesis doctoral. Los autores tienen en mente continuar traba-

jando y desarrollando las siguientes ideas:

1. Estimación penalizada de los modelos de respuesta multinomual fun-

cional para respuestas nominales y ordinales.

2. Estudios comparativos entre PCR funcional penalizado y PLS funcional

penalizado.

3. Formulación y estimación (aproximaciones penalizadas y no penalizadas)

de la regresión PLS cuando la respuesta y las variables predictoras son

funcionales.

4. Aplicación de las metodologías penalizadas del ADF en distintas áreas

de interés como medio ambiente, medicina, quimiometría, ...



APPENDIX D
Summary

A functional variable is characterized because its observations are functions

that in the majority of cases represent the evolution of a scalar variable in

time (realizations of a stochastic process). This is the case of environmen-

tal variables such as temperature or contamination level observed daily in a

period of time, economic variables such as stock price evolution or medical

variables such as stress level. In other areas of application the argument

of the observed functions is a different magnitude such as spatial location,

wavelength or probability. In many chemometric applications, observations

of the NIR spectrum at a fine grid of wavelengths are available.

Functional data analysis (FDA) is an statistical topic of active research de-

voted to solve problems related with the statistical modeling and prediction

of functional data. An overview of the basic methods of FDA, computational

aspects related with their practical application and important real data model-

ing can be seen in the pioneers books by Ramsay and Silverman (2005, 2002);

Ramsay et al. (2009). A detailed study on nonparametric FDA methodologies

was developed in Ferraty and Vieu (2006). Statistical inference related with

some FDA methods was recently studied in Horvath and Kokoszka (2012).

Early work on FDA was developed in the framework of continuous-time

stochastic processes and were devoted to the generalization of reduction di-

mension techniques such as principal component analysis (PCA) to the func-

tional case (Deville, 1974). Later, statistical researching on FDA focused

on the formulation and estimation of different functional regression models.

167
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The functional linear model to estimate a scalar response from a functional

predictor was one of the first regression models extended to the case of func-

tional data (Cardot et al., 1999, 2003). The case where the predictor is a

vector or scalar and the response is functional was studied by Chiou et al.

(2004). Functional analysis of variance was introduced to model the mean

of a functional response in terms of a categorical variable (Cuevas et al.,

2002, 2004). On the other hand, functional linear models where both predic-

tor and response variables are functional were studied by Yao et al. (2005b)

and Ocaña et al. (2008). Principal component prediction models, that can

be seen as a particular case of these linear models, were first introduced to

forecast a continuous time stochastic process on a future interval from its

recent past (Aguilera et al., 1997, 1999). On the other hand, generalized lin-

ear models were also extended for the case of a functional predictor (James,

2002; Müller, 2005). A particular case of functional generalized model is the

functional logit regression model whose aim is to predict a binary random

variable from a functional predictor (Ratcliffe et al., 2002; Escabias et al.,

2004; Aguilera et al., 2008b).

Direct estimation of the functional parameter associated with a functional

regression model is an ill-posed problem due to the infinite dimension of the

functional variable. On the other hand, sample curves are usually observed in

a finite set of sampling points that could be unequally spaced and different

among the sample units. Because of this the first step in FDA is to reconstruct

the true functional form of each sample curve from a finite set of discrete

observations. Approximation techniques such as interpolation or projection in

a finite-dimensional space generated by basis functions were applied from the

beginning to solve these problems. This way, the estimation of a functional

regression model is reduced to the estimation of an equivalent multivariate

regression model with high correlation between the predictor variables.

Regression on a set of uncorrelated random variables is usually used in

literature to provide an accurate estimation of the parameters associated

with a regression model. Functional PCA was used to reduce the dimen-

sion and solving the multicollinearity problem in many functional regression

models. Principal components are uncorrelated generalized linear combina-

tions of the functional predictor with maximum variance. Because of this the

main criticism about principal component regression is that the regressors

are computed without taking into account the response variable. To solve

this problem, functional partial least squares was extended to the functional
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case by computing a set of uncorrelated generalized linear combinations of

the predictor variable having maximum covariance with the response variable

(Preda and Saporta, 2005b).

In many applications the data are smooth functions observed with error.

In this case least squares approximation with B-spline bases is usually used

to estimate the basis coefficients of a basis expansion of the unobserved

smooth sample functions. The problem is that the approximated sample

curves (regression splines) do not control the degree of smoothness. As a

consequence, the estimated principal components and functional parameters

associated with functional regression models are difficult to interpret because

they have a lot of variability and lack of smoothness.

The general objective of this thesis is to improve the estimation of FDA

methodologies in the case of smooth functional data observed with error.

In order to solve this problem, different approaches based on penalized esti-

mation with B-spline basis expansions of sample curves are proposed. This

general objective is achieved through five specific objectives:

1. Review and comparison of existing methods for the approximation of

smooth curves with B-splines bases.

2. Improve the estimation of functional PCA by introducing different pe-

nalized spline approaches.

3. Develop different penalized approaches for estimating the functional

logit model based on penalized spline estimation of functional PCA.

4. Propose different penalized estimation approaches in functional PLS re-

gression.

5. Develop an application of the proposed penalized estimation method-

ologies to improve the quality in food industry.

According with the specific objectives, the thesis is divided into five chap-

ters with the methodology and results related with each one. The contents of

each chapter have been included in different research papers actually submit-

ted or accepted for publication in different JCR journals. In addition to the

methodological contributions in each chapter, the proposed penalized FDA

methods were applied on simulated and real data by developing own code
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with the free statistical software R (http://www.r-project.org). A brief de-

scription of the main libraries and functions used in this thesis can be seen in

Appendix A at the end of this memory.

D.1 Chapter 1

The main purpose of this chapter is to review and compare three different

approaches for approximating smooth sample curves observed with error in

terms of B-spline bases: regression splines (non -penalized least squares ap-

proximation), smoothing splines (continuous roughness penalty based on the

integrated squared d-order derivative of each sample curve) and P-splines (dis-

crete roughness penalty based on d-order differences between coefficients of

adjacent B-splines). The performance of these spline smoothing approaches

is studied via a simulation study and several applications with real data.

Cross-validation and generalize cross-validation are adapted to select a com-

mon smoothing parameter for all sample curves with the roughness penalty

approaches.

The approximation of smooth noisy functions with B-spline bases is used

in the estimation of a wide variety of FDA methodologies. This justifies

the importance of a comparison among the main smoothing approaches in

terms of B-splines and to draw conclusions that allow the researchers and

practitioners to use the most powerful tool in each case.

Let {xi(t) : t ∈ T, i = 1, . . . , n} be a sample of size n of a functional

variable X, whose observations are independent and equally distributed real-

izations of a second order stochastic process X = {X (t) : t ∈ T}, continu-

ous in quadratic mean, whose sample functions belong to the Hilbert space

L2 (T ) of square integrable functions with the usual scalar product given by

〈f, g〉 =
∫

T
f (t) g (t) dt, ∀f, g ∈ L2 (T ) .

The sample paths are assumed to belong to a finite-dimension space gen-

erated by a basis {φ1 (t) , . . . , φp (t)} so that they are expressed as

xi (t) =
p∑

j=1

aijφj (t) = a′iφj (t) , i = 1, . . . , n,

where ai = (ai1, . . . , aip)
′ is the vector of basis coefficients of the i-th sample

path.
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In this chapter, the vectors of basis coefficients of the sample paths are es-

timated by different methodologies, such as regression splines (without rough-

ness penalty), smoothing splines (continuous penalty) and P-splines (discrete

penalty).

• Regression splines: âi = (Φ′iΦi)
−1Φ′ixi, with xi being the values of the

sample paths at the observation knots, and Φi = (φj (tik))mi×p .

• Smoothing splines: âi = (Φ′iΦi + λRd)
−1 Φ′ixi, where λ is the smooth-

ing parameter, and Rd is a matrix whose elements are the integrals of

products of d-order derivatives between B-spline basis functions.

• P-splines: âi = (Φ′iΦi + λPd)
−1 Φ′ixi, where Pd =

(
4d
)′
4d, with 4d

being a matrix whose elements are the d-order differences between co-

efficients of adjacent B-splines.

D.2 Chapter 2

Functional principal component analysis (FPCA) is a dimension reduction

technique that explains the dependence structure of a functional data set in

terms of uncorrelated variables. In many applications the data are a set of

smooth functions observed with error. In these cases the principal components

are difficult to interpret because the estimated weight functions have a lot

of variability and lack of smoothness. The most common way to solve this

problem is based on penalizing the roughness of a function by its integrated

squared d-order derivative.

In this chapter, two alternative forms of penalized FPCA based on B-spline

basis expansions of sample curves and a simpler P-spline penalty are proposed.

The main difference between both smoothed FPCA approaches is that the

first uses the P-spline penalty in the least squares approximation of the sam-

ple curves in terms of a B-spline basis meanwhile the second introduces the

P-spline penalty in the orthonormality constraint of the algorithm that com-

putes the principal components. Leave-one-out cross-validation is adapted to

select the smoothing parameter for these two smoothed FPCA approaches.

A simulation study and an application with chemometric functional data are

developed to test the performance of the proposed penalized approaches and

to compare the results with non-penalized FPCA and regularized FPCA.
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In the same conditions of Chapter 1, let {xi(t) : t ∈ T, i = 1, . . . , n} be

a sample of functions that are the sample information related to a functional

variable X. In general the j-th principal component scores is expressed in

terms of the weight functions or loadings as follows

ξij =
∫

T
xi (t) fj (t) dt, i = 1, . . . , n,

where the associated weight functions are the eigenfunctions of the sample

covariance operator. That is, the solutions to the eigenequation

C(fj)(t) =
∫

T
C (t, s) fj(s)ds = λjfj(t).

Considering the basis representation of the sample curves, the weight func-

tions can be expressed in terms of the same basis so that

fj (t) =
p∑

k=1

bjkφk (t) = φ (t)′ bj,

with bj = (bj1, . . . , bjp)
′ . The estimation of the vector of basis coefficients

of the weight functions depends on the type of FPCA to be used.

• Non-penalized FPCA is equivalent to the multivariate PCA of the matrix

AΨ
1
2 , with A being the matrix of basis coefficients of the sample paths

approximated by regression splines and Ψ
1
2 being the squared root of the

matrix of inner products between basis functions (Ocaña et al., 2007).

• Functional PCA of P-splines is equivalent to the multivariate PCA of

the matrix AΨ
1
2 , with A being the matrix of basis coefficients of the

sample paths approximated by P-splines.

In order to compute the optimal value of the smoothing parameter λ,

two selection criteria are considered and compared in this chapter: leave-

one-out cross validation (CV) and generalized cross validation (GCV).

• P-spline smoothed FPCA is reduced to multivariate PCA of the matrix

AΨL−1′

, where A is the matrix of basis coefficients of the sample paths

approximated by regression splines, L−1 is the inverse of a lower trian-

gular matrix obtained by the Choleski factorization of LL′ = Ψ + λPd,
with λ being the smoothing parameter and Pd being the discrete penalty

matrix defined in Chapter 1.
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In order to select the smoothing parameter in P-spline smoothed FPCA,

leave one out cross-validation (CV) has been adapted by considering

the quadratic distances in terms of basis representations. It consists of

selecting the value of λ that minimizes

CV (λ) =
1

p

p∑

q=1

CVq (λ) ,

where

CVq (λ) =
1

n

n∑

i=1

‖xi − x
q(−i)
i ‖2,

with x
q(−i)
i =

∑q
l=1 ξ

(−i)
il f

(−i)
l being the reconstruction of the sample

curve xi in terms of the first q principal components estimated from the

sample of size n− 1 that includes all sample curves except xi.

In terms of basis expansions these quadratic distances are given by

‖xi − x
q(−i)
i ‖2 =

∫

T

[
xi (t)− x

q(−i)
i (t)

]2
dt = d′iΨdi,

where di = (di1, . . . , dip)
′ , with dij = aij−

∑q
l=1 ξ

(−i)
il b

(−i)
lj , and Ψ is the

matrix of inner products between basis functions.

D.3 Chapter 3

This chapter is devoted to improve the estimation of the functional logit

model. The problem of multicollinearity associated with the estimation of this

model can be solved by using as predictor variables a set of functional princi-

pal components. The functional parameter estimated by functional principal

component logit regression is often non-smooth and then difficult to interpret.

To solve this problem different penalized spline estimations of the functional

logit model are proposed in this chapter. All of them are based on smoothed

functional PCA and/or a discrete P-spline penalty in the log-likelihood crite-

rion in terms of B-spline expansions of the sample curves and the functional

parameter.

In the context of functional principal component logit regression, three dif-

ferent versions of penalized estimation approaches based on smoothed FPCA

are introduced. On the one hand, FPCA of P-spline approximation of sam-

ple curves (Method II) is performed. On the other hand, a discrete P-spline
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penalty, that penalizes the roughness of the principal component weight func-

tions, is included in the own formulation of FPCA (Method III). The third

smoothed approach is carried out by introducing the penalty in the likelihood

estimation of the functional parameter in terms of a reduced set of functional

principal components (Method IV). Moreover, direct P-spline likelihood es-

timation in terms of B-spline functions is also considered (Method V). The

ability of these smoothing approaches to provide an accurate estimation of

the functional parameter and their classification performance with respect to

non-penalized functional PCA are evaluated via simulation and application

to real data. Leave-one-out cross-validation and generalized cross-validation

are adapted to select the smoothing parameter and the number of principal

components or basis functions associated with the considered approaches.

In the same conditions of Chapter 1, let {xi(t) : t ∈ T, i = 1, . . . , n} be

a sample of functions that are the sample information related to a functional

variable X and {yi, i = 1, . . . , n} be a random sample of Y associated with

them. That is, yi ∈ {0, 1}, i = 1, . . . , n. The functional logistic regression

model is given by

yi = πi + εi, i = 1, . . . , n,

with the logit transformations expressed as

li = ln
[

πi

1− πi

]
= α+

∫

T
xi (t) β (t) dt, i = 1, . . . , n.

Let us consider the basis representations of the sample paths and the param-

eter function

xi (t) =
p∑

j=1

aijφj (t) , β (t) =
p∑

k=1

βkφk (t) ,

with β = (β1, . . . , βp)
′

being the vector of basis coefficients of β (t) . In

this context, different ways to estimated de vector of basis coefficients β are

developed in this chapter.

1. FLoM in terms of principal components (FPCLoR).

In general, the FLoM can be rewritten in terms of functional principal

components as

L = α1+ Γγ,

where Γ = (ξij)n×p is a matrix of functional principal components, γ is

the vector of coefficients of the model and α is the intercept.
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An accurate estimation of the functional parameter can be obtained by

considering only a set of q optimum principal components as predictor

variables, so that Γ = (ξij)n×q (q < p).

Then, the vector β of basis coefficients is given by β = Fγ, where the

way of estimating F depends on the kind of FPCA used to estimate

the functional model and the kind of likelihood estimation (penalized or

non-penalized).

• Method I: β̂ = Ψ
− 1

2
p×pGp×nγ̂, where G is the matrix whose columns

are the eigenvectors of the sample covariance matrix of AΨ1/2,
with A being the matrix of basis coefficients of the sample paths

approximated by regression splines. In this method γ is estimated

by maximum likelihood without penalty.

• Method II: β̂ = Ψ
− 1

2
p×pGp×nγ̂, where G is the matrix whose columns

are the eigenvectors of the sample covariance matrix of AΨ1/2,
with A being the matrix of basis coefficients of the sample paths

estimated by P-splines. In this method γ is estimated by maximum

likelihood without penalty.

• Method III: β̂ = (L−1)
′
Gγ̂, where G is the matrix of eigenvectors

of the sample covariance matrix of AΨ(L−1)′, with A being the

matrix of basis coefficients of the sample paths approximated by

regression splines and L defined in Chapter 2. In this method γ is

estimated by the maximum likelihood criterion without penalty.

• Method IV: β̂ = Ψ
− 1

2
p×pGp×nγ̂, where G is the matrix whose columns

are the eigenvectors of the sample covariance matrix of AΨ1/2,
with A being the matrix of basis coefficients of the sample paths

approximated by regression splines. In this method γ is estimated

by penalized maximum likelihood so that

L∗ (λ, γ) = L (γ)−
λ

2
γ′Pdγ,

with L (γ) being the log-likelihood of FPCLoR model, λ the smooth-

ing parameter and Pd the discrete penalty matrix defined in Chapter

1.
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2. FLoM via penalized log-likelihood.

Let us consider the basis representation of the sample paths and the

parameter function. Then, the logit transformations in matrix form are

given by

L = Xβ,

where L = (l1, . . . , ln) is the vector of logit transformations,

X = (1|AΨ), with 1 = (1, . . . , 1)′ an n-dimensional vector of ones

and β = (β1, . . . , βp)
′

the vector of basis coefficients of β (t).

Method V: the parameter function is estimated by penalized maximum

likelihood and without using principal components. Then, the penalized

log-likelihood of the FLoM is given by

L∗ (λ, β) = L (β)−
λ

2
β ′Pdβ,

with L (γ) being the log-likelihood of FLoM. In this case, the Newton-

Raphson solution for the penalized likelihood estimators would be

β(t) = β(t−1)+
[
X ′Diag

(
π

(t−1)
i

(
1− π

(t−1)
i

))
X + λPd

]−1
X ′
(
y − π

(t−1)
i

)
,

with X = (1|AΨ) .

D.4 Chapter 4

The main problems associated with the functional linear model for a scalar

response in terms of smooth curves observed with error, are high dimension,

multicollinearity and the lack of smoothness in the functional parameter esti-

mation. In order to solve the three problems at the same time, two different

penalized approaches based on partial least squares regression are developed.

The main difference between the two proposed approaches is the way in which

the penalty is introduced. The first approach introduces the penalty in the

definition of the norm of the PLS component weight functions (Method II).

The second one considers a penalized estimation of the covariance between

the response and the PLS components (Method III). Discrete and continuous

penalty are considered in terms of basis expansions of the sample curves. The

selection of the optimum number of PLS components and the smoothing pa-

rameter is carried out by two different criterion based on GCV errors and the

integrated mean squared errors of the parameter function.
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In order to test the performance of the proposed penalized FPLS ap-

proaches and to compare the results with non-penalized FPLS, a simulation

study and an application with chemometric functional data are developed.

In the same conditions of Chapter 1, let {xi(t) : t ∈ T, i = 1, . . . , n} be

a sample of functions that are the sample information related to a functional

variable X and {yi : i = 1, . . . , n} be a random sample of Y associated with

them. The FLM is then expressed as

yi = β0 +
∫

T
xi(t)β(t)dt+ εi,

with {εi : i = 1, . . . , n} being independent and centered random errors.

In order to get an accurate estimation of the parameter function, the FLM

model in considered in terms of PLS components so that

Y = 1γ0 + Tγ,

where T is the matrix comprising the columns of the PLS components and γ
is the vector of the regression coefficients of Y on T.

An accurate estimation of the functional parameter can be obtained by

considering only a set of q optimum PLS components as predictor variables so

that T = (tij)n×q (q < p). The matrix of PLS components T is estimated

by three different versions of FPLS

Let us consider the basis representation of the sample paths and the pa-

rameter function

xi (t) =
p∑

j=1

aijφj (t) , β (t) =
p∑

k=1

βkφk (t) .

Then, the following versions of FPLS regression are considered:

• Non-penalized FPLS.

The functional PLS regression (FPLS) of a real random response Y
in terms of a functional predictor X = {X (t) : t ∈ T} is an iterative

procedure so that the h-th PLS component is given by

th =
∫

T
Xh−1 (t)wh (t) dt,
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with wh (t) being the weight function obtained by solving the following

problem:

maxw Cov2

(∫ T

0
Xh−1 (t)w (t) dt, Yh−1

)
,

‖w‖2 = 1

where X0 (t) = X (t) , ∀t ∈ T and Y0 = Y . The h-th PLS step is

concluded with the linear regression of Xh−1 (t) and Yh−1 on th so that

Xh (t) = Xh−1 (t)− ph (t) th, t ∈ T

Yh = Yh−1 − chth,

where ph (t) = (E(Xh−1 (t) th)/E(t
2
h)) and ch = (E(Yh−1th)/E(t

2
h)) .

Non-penalized FPLS is reduced to a multivariate PLS of Y on the matrix

AΨ1/2 so that T = AΨ1/2V, with A being the matrix of basis coefficients

of the sample paths approximated by regression splines and V being the

matrix comprising the columns of the eigenvectors associated with the

estimated PLS components.

The vector of basis coefficients of the functional parameter β is esti-

mated by β̂ = (Ψ−1/2)′V γ̂.

• FPLS by penalizing the norm.

In this case, the h-th penalized PLS component is achieved by the fol-

lowing maximization problem

maxw

Cov2
(∫ T

0 Xh−1 (t)w (t) dt, Yh−1

)

〈w,w〉+ λPENd(w)
,

where 〈w,w〉 is the classical scalar product, PENd (w) is a general

penalty defined in Chapter 1 and λ is the smoothing parameter.

This version of Penalized FPLS is reduced to a multivariate PLS of Y on

the matrix AΨ(L−1)′ so that T = AΨ(L−1)′V, with A being the matrix

of basis coefficients of the sample paths approximated by regression

splines, V being the matrix comprising the columns of the eigenvectors

associated with the estimated PLS components and L a matrix defined

in Chapter 2.

The vector of basis coefficients of the functional parameter β is esti-

mated by β̂ = (L−1)′V γ̂.
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• FPLS by penalizing the covariance.

In this case, the h-th penalized PLS component is achieved by the fol-

lowing maximization problem

maxw

Cov2
(∫ T

0 Xh−1 (t)w (t) dt, Yh−1

)
− λPENd (w)

〈w,w〉
,

where 〈w,w〉 is the classical scalar product, PENd (w) is a general

penalty defined in Chapter 1 and λ is the smoothing parameter.

In this version of Penalized FPLS the matrix of penalized PLS compo-

nents is given by T = AΨ(Ψ−1/2)′V, with A being the matrix of basis

coefficients of the sample paths approximated by regression splines and

V being the matrix comprising the columns of the eigenvectors associ-

ated with the estimated PLS components.

In this case, the vector of basis coefficients of the functional parameter

β is estimated by β̂ = (Ψ−1/2)′V γ̂.

D.5 Chapter 5

The aim of this chapter is to improve the quality of cookies production

by classifying them as good or bad from the curves of resistance of dough

observed during the kneading process. As the predictor variable is functional,

functional classification methodologies such as functional logit regression and

functional discriminant analysis are considered. A P-spline approximation of

the sample curves is proposed to improve the classification ability of these

models and to suitably estimate the relationship between the quality of cook-

ies and the resistance of dough. Inference results on the functional parameters

and related odds ratios are obtained using the asymptotic normality of the

maximum likelihood estimators under the classical regularity conditions. Fi-

nally, the classification results are compared with alternative functional data

analysis approaches such as componentwise classification on the logit regres-

sion model.

Let us consider the classification problem of a sample of functional obser-

vations {xi (t) : t ∈ T ; i = 1, . . . , n} according to a related binary response

Y ∈ {0, 1} whose observations are denoted by {yi : i = 1, . . . , n}.
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1. Penalized FPCLoR (Method II Chapter 3)

Let us remember the FLoM defined in Chapter 3 and the associated

logit transformations expressed as

li = ln
[

πi

1− πi

]
= α +

∫

T
xi (t) β (t) dt, i = 1, . . . , n.

• Functional parameter interpretation

exp (l∗i − li) = exp

(
K
∫ t0+h

t0

β (t) dt

)
,

where l∗i is the logit transformation for the i-th functional observa-

tion constantly increased in the period [t0, t0+h], and K is a positive

constant. This is an odds ratio, so that the odds of outcome Y = 1
is multiplied by this amount when the value of the functional obser-

vation is constantly increased in K units in a fixed interval [t0, t0+h].

• Inference on the functional parameter

Let Î =
∫ t0+h

t0
β̂ (t) dt be the maximum likelihood estimator for

I =
∫ t0+h

t0
β (t) dt, with β̂ (t) being the maximum likelihood esti-

mator of β (t) .

A (1− α) confidence interval for the odds ratio is given by

exp(Î±σ̂(Î)zα/2) .

A (1− α) pointwise confidence interval for β (t) is given by

β̂ (t)± σ̂(β̂ (t))zα/2.

Let us consider the basis representation of the sample paths and

the functional parameter. Then, the vector of basis coefficients of

β(t) is estimated (Method II Chapter 3) as β̂ = F γ̂. Then,

V ar[Î] =
∫ t0+h

t0

∫ t0+h

t0

Cov
(
β̂ (t) , β̂ (s)

)
dtds

can be approximated by

V ar[Î] =
∫ ∫

φ′ (t)FCov (γ̂)F ′φ (s) dtds.
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2. Penalized LDA-FPLS

Linear discriminant analysis (LDA) in the functional data context aims

to find linear combinations
∫

T X (t) β (t) dt, β ∈ L2 (T ) , so that the

variance between classes is maximized with respect to the total variance

maxβ
Var (E[X (t) |Y ])

Var (X (t))
.

The discriminant function is the coefficient function of the functional

linear regression of Y on {X (t) : t ∈ T}, where Y is recoded as follows

Y = −
√
p0/p1 if Y=1

Y =
√
p1/p0 if Y=0,

with p0 = P [Y = 0] and p1 = P [Y = 1].

Because of the equivalence between linear discriminant analysis and lin-

ear regression, the problem of high dimension is solved by using a set

of FPLS components as predictor variables. Let us consider that the

sample curves are affected by noise. Because of this, the estimated

discriminant function is non-smooth and a smoothed estimation is pro-

posed. As in FPCLoR, this estimation is based on the previous P-spline

approximation of the sample curves with B-spline functions.

3. Componentwise classification

The componentwise classification approach consists of determining a

relatively small number of points
{
t∗1, . . . , t

∗
p ∈ T

}
that have important

leverage for classification and applying a standard classification method

on the vector
(
X(t∗1), . . . , X(t

∗
p)
)
. A detailed study on the theoretical

properties of the method and its behavior for different classifiers can

be seen in Delaigle et al. (2012). In this chapter we will illustrate this

approach for the classifier based on the logit regression model. The re-

sulting logit-based componentwise classification approach has two main

steps based on selecting the value of p and the position of the set of

optimum time knots adaptively.





APPENDIX E
Resumen

Una variable funcional se caracteriza porque sus observaciones son funciones

que en la mayoría de los casos representan la evolución de una variable escalar

en el tiempo (realizaciones de un proceso estocástico). Este es el caso de

variables medioambientales tales como son la temperatura o el nivel de con-

taminación observados diariamente durante un periodo de tiempo, variables

económicas tales como la evolución de las cotizaciones en bolsa o variables

médicas como el nivel de estrés en pacientes. En otras áreas de aplicación, el

argumento de las funciones observadas es una magnitud distinta al tiempo tal

como pueden ser la localización espacial, la longitud de onda o la probabilidad.

En quimiometría existen aplicaciones donde se disponen de observaciones del

espectro NIR en una malla fina longitudes de onda.

El análisis de datos funcionales (ADF) es un tema de actualidad en Es-

tadística que cuenta con una gran actividad investigadora y que pretende

resolver problemas relacionados con la modelización y la predicción estadís-

tica de datos funcionales. Una revisión completa sobre los principales métodos

del ADF, aspectos computacionales relacionados con su aplicación práctica

e importantes ejemplos con datos reales pueden verse en los libros pioneros

de Ramsay and Silverman (2005, 2002); Ramsay et al. (2009). En Ferraty

and Vieu (2006) se puede ver un estudio detallado sobre metodologías no

paramétricas en ADF. Recientemente, en Horvath and Kokoszka (2012) se

ha llevado a cabo inferencia estadística sobre distintos métodos del ADF.

Los primeros trabajos sobre ADF se desarrollaron en el contexto de los

183
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procesos estocásticos en tiempo continuo, generalizando al caso funcional

técnicas de reducción de la dimensión tales como el análisis en componentes

principales (PCA) (Deville, 1974). Más tarde, las investigaciones estadís-

ticas sobre ADF se centraron en la formulación y estimación de distintos

modelos de regresión funcional. Uno de los primeros modelos de regresión

extendidos al ámbito de los datos funcionales fue el modelo lineal funcional,

que permite estimar una variable escalar a partir de un predictor funcional

(Cardot et al., 1999, 2003). En Chiou et al. (2004) se estudió el caso con-

creto en que el predictor es un vector y la respuesta es funcional. Con objeto

de modelizar la media de una variable respuesta funcional en términos de una

variable categórica se introdujo el análisis de la varianza funcional (Cuevas

et al., 2002, 2004). Por otro lado, en Yao et al. (2005b) y Ocaña et al.

(2008) se estudió el modelo lineal funcional para el caso en que tanto la va-

riable respuesta como las variables explicativas son funcionales. Los modelos

de regresión en componentes principales, los cuales pueden ser vistos como

una caso particular de los anteriores, se utilizaron por primera vez en Aguilera

et al. (1997, 1999) para predecir un proceso estocástico en tiempo continuo

sobre un intervalo futuro a partir de su pasado más reciente. Por otro lado,

los modelo lineales generalizados también se extendieron para el caso de un

predictor funcional (James, 2002; Müller, 2005). Un caso particular del mo-

delo lineal generalizado funcional es el modelo de regresión logística funcional,

cuyo objetivo es predecir una variable aleatoria binaria a partir de un predictor

funcional (Ratcliffe et al., 2002; Escabias et al., 2004; Aguilera et al., 2008b).

La estimación directa de la función parámetro asociada a un modelo de

regresión funcional es un problema de difícil solución debido a la dimensión

infinita de la variable funcional. Por otro lado, las curvas muestrales usual-

mente se observan en un conjunto finito de puntos muestrales que pueden ser

desigualmente espaciados y diferentes para las distintas unidades muestales.

Por ello, el primer paso en ADF es reconstruir la verdadera forma funcional

de cada curva muestral a partir de un conjunto finito de observaciones dis-

cretas. Para resolver este problema se han utilizado distintas técnicas de

aproximación, tales como la interpolación o la proyección en un espacio finito-

dimensional generado por funciones básicas. De este modo, la estimación de

un modelo de regresión funcional se reduce a la estimación de un modelo de

regresión multivariante equivalente con gran correlación entre las variables

predictoras.

Para obtener una estimación adecuada de los parámetros asociados a un
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modelo de regresión, usualmente se lleva a cabo una regresión sobre un con-

junto de variables aleatorias incorreladas. El ACP funcional se ha utilizado en

muchas ocasiones para reducir la dimensionalidad de un conjunto de datos

y resolver el problema de multicolinealidad de diversos modelos de regresión

funcional. Las componentes principales son combinaciones lineales generali-

zadas incorreladas de un predictor funcional con varianza máxima. Por ello,

la principal crítica sobre la regresión en componentes principales es que los

regresores se obtienen sin tener en cuenta la variable respuesta. Con objeto

de resolver este problema, el criterio de mínimos cuadrados parciales (PLS)

fue extendido al caso funcional para obtener un conjunto de combinaciones

lineales generalizadas incorreladas de la variable predictora que tengan cova-

rianza máxima con la variable respuesta (Preda and Saporta, 2005b).

En muchas aplicaciones los datos son funciones suaves observadas con

error. En este caso, los coeficientes de la representación básica de la trayec-

torias muestrales se aproximan mediante mínimos cuadrados con bases de

B-splines. El problema es que las curvas muestrales aproximadas (splines de

regresión) no controlan el grado de suavidad. Como consecuencia, las com-

ponentes principales estimadas y los parámetros funcionales asociados con

los modelos de regresión funcional son difíciles de interpretar porque tienen

mucha variabilidad y falta de suavidad.

El objetivo general de esta tesis es mejorar la estimación de las metodologías

del ADF para el caso de datos funcionales observados con error. Con objeto

de resolver este problema, se proponen distintas aproximaciones basadas en

la estimación penalizada mediante representación básica de las curvas mues-

trales con bases de B-splines. Este objetivo general se consigue mediante

cinco objetivos específicos:

1. Revisión y comparación de los métodos existentes para la aproximación

de curvas suaves con bases de B-splines.

2. Mejorar la estimación del PCA funcional introduciendo distintas aproxi-

maciones basadas en la penalización spline.

3. Desarrollar distintas aproximaciones penalizadas para estimar el modelo

logit funcional, utilizando una estimación spline penalizada del PCA

funcional.

4. Proponer distintas estimaciones penalizadas para la regresión PLS fun-

cional.
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5. Desarrollar una aplicación de las metodologías de estimación penalizada

propuestas para mejorar la calidad en la industria alimentaria.

De acuerdo con los objetivos específicos, la tesis se divide en cinco capí-

tulos, cada uno con su conrrespondiente metodología y resultados. Los con-

tenidos de cada capítulo se han incluído en distintos artículos de investigación

actualmente sometidos o aceptados para su publicación en revistas del JCR.

Además de las contribuciones metodológicas de cada capítulo, los distintos

métodos de estimación penalizada propuestos se han aplicado sobre distintos

conjuntos de datos reales y simulados, desarrollando el código de progra-

mación necesario y utilizando el software libre R (http://www.r-project.org).

En el Anexo A al final de esta memoria se ha incluído un resumen deta-

llado de las principales librerías y funciones de R utilizadas en el desarrollo

computacional de esta tesis.

E.1 Capítulo 1

La principal propuesta de este capítulo es revisar y comparar tres formas

distintas de aproximación de curvas muestrales suaves observadas con error en

términos de bases de B-splines: splines de regresión (aproximación mediante

mínimos cuadrados no penalizados), splines de suavizado (penalización con-

tinua basada en la integral del cuadrado de las derivadas de orden d de cada

curva muestral) y P-splines (penalización discreta basada en las diferencias

de orden d entre los coeficientes adyacentes de los B-splines). El compor-

tamiento de estas tres aproximaciones spline suavizadas se han estudiado y

comparado mediante un estudio de simulación y varias aplicaciones con datos

reales. Se han adaptado los métodos de validación cruzada leave-one-out

(CV) y validación cruzada generalizada (GCV) con objeto de seleccionar un

parámetro de suavizado común para todas las curvas muestrales aproximadas

mediante penalización de la falta de suavidad.

La aproximación con bases de B-splines de funciones suaves observadas con

ruido se ha utilizado en una amplia variedad de metodologías del ADF. Esto

justifica la importancia de comparar las principales aproximaciones suaves en

términos de B-splines y extraer conclusiones que permitan a los profesionales

usar la herramienta más adecuada en cada caso.

Sea {xi(t) : t ∈ T, i = 1, . . . , n} una muestra de tamaño n de una

variable funcional X, cuyas observaciones son realizaciones independientes e
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igualmente distribuidas de un proceso estocástico de segundo orden

X = {X (t) : t ∈ T}, continuo en media cuadrática, cuyas funciones mues-

trales pertenecen al espacio de Hilbert L2 (T ) de funciones de cuadrado in-

tegrable, con el producto escalar usual dado por

〈f, g〉 =
∫

T
f (t) g (t) dt, ∀f, g ∈ L2 (T ) .

Se asume que las trayectorias muestrales pertenecen a un espacio finito-

dimensional generado por una base {φ1 (t) , . . . , φp (t)} de modo que se ex-

presan como

xi (t) =
p∑

j=1

aijφj (t) = a′iφj (t) , i = 1, . . . , n,

donde ai = (ai1, . . . , aip)
′ es el vector de coeficientes básicos de la i-ésima

trayectoria muestral.

En este capítulo, los vectores de coeficientes básicos de las trayectorias

muestrales se estiman por distintas metodologías, tales como splines de re-

gresión (sin penalización), splines de suavizado (penalización continua) y P-

splines (penalización discreta).

• Splines de regresión: âi = (Φ′iΦi)
−1 Φ′ixi, con xi los vectores de obser-

vaciones de las trayectorias muestrales en los nodos de observación y

Φi = (φj (tik))mi×p .

• Splines de suavizado: âi = (Φ′iΦi + λRd)
−1 Φ′ixi, donde λ es el parámetro

de suavizado y Rd es una matriz cuyos elementos son las integrales de

los productos de las derivadas de orden d entre funciones básicas de

B-splines.

• P-splines: âi = (Φ′iΦi + λPd)
−1 Φ′ixi, donde Pd =

(
4d
)′
4d, con 4d

una matriz cuyos elementos son las diferencias de orden d entre coefi-

cientes adyacentes de B-splines.

E.2 Capítulo 2

El análisis de componentes principales funcional (FPCA) es una técnica

de reducción de la dimensión que explica la estructura de dependencia de
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un conjunto de datos funcionales en términos de variables incorreladas. En

muchas aplicaciones los datos son un conjunto de funciones suaves obser-

vadas con error. En estos casos, las componentes principales son difíciles de

interpretar porque las funciones peso estimadas tienen mucha variabilidad y

falta de suavidad. La forma más común de resolver este problema se basa en

penalizar la rugosidad de una función a partir de la integral del cuadrado de

su derivada de orden d.

En este capítulo, se proponen dos formas alternativas del FPCA penaliza-

do basadas en la expansión básica con B-splines de las curvas muestrales y

una penalización P-spline. La principal diferencia entre ambas versiones del

FPCA penalizado es que la primera usa la penalización P-spline en el criterio

de mínimos cuadrados de estimación de las curvas muestrales en términos de

bases de B-splines, mientras que la segunda introduce la penalización P-spline

en la restricción de ortonormalidad del algoritmo que calcula las componentes

principales. El parámetro de suavizado para ambas versiones del FPCA pe-

nalizado se ha obtenido a partir de una adaptación del criterio de validación

cruzada (leave-one-out). Con objeto de testar el buen funcionamiento de las

aproximaciones penalizadas propuestas y compararlas con el FPCA no pena-

lizado y el regularized FPCA, se han llevado a cabo un estudio de simulación

y una aplicación con datos funcionales quimiométricos.

En la mismas condiciones del Capítulo 1, sea {xi(t) : t ∈ T, i = 1, . . . , n}
una muestra de funciones correspondientes a la información muestral de una

variable funcional X. En general, la j-ésima componente principal se puede

expresar en términos de las funciones peso como sigue

ξij =
∫

T
xi (t) fj (t) dt, i = 1, . . . , n,

donde las funciones peso asociadas son las autofunciones del operador de

covarianza muestral. Esto es, las soluciones al problema

C(fj)(t) =
∫

T
C (t, s) fj(s)ds = λjfj(t).

Considerando la representación básica de las curvas muestrales, las fun-

ciones peso se pueden expresar en términos de la misma base tal que

fj (t) =
p∑

k=1

bjkφk (t) = φ (t)′ bj,
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con bj = (bj1, . . . , bjp)
′ . La estimación del vector de coeficientes básicos de

las funciones peso depende del tipo de ACPF usado.

• FPCA no penalizado es equivalente a un PCA multivariante de la matriz

AΨ
1
2 , con A la matriz de los coeficientes básicos de las trayectorias

muestrales aproximadas con splines de regresión y Ψ
1
2 la raíz cuadrada

de la matriz de productos interiores entre funciones básicas (Ocaña et al.,

2007).

• FPCA de los P-splines es equivalente a un PCA multivariante de la matriz

AΨ
1
2 , con A la matriz de los coeficientes básicos de las trayectorias

muestrales aproximadas con P-splines.

Con objeto de obtener el valor óptimo de λ, en este capítulo se han

considerado y comparado dos criterios de selección distintos: validación

cruzada leave-one-out (CV) y validación cruzada generalizada (GCV).

• FPCA con suavizado P-spline se reduce a un PCA multivariante de la

matriz AΨL−1′

, donde A es la matriz de los coeficientes básicos de las

trayectorias muestrales aproximadas con splines de regresión, L−1 es la

inversa de una matriz triangular inferior obtenida con la descomposición

de Choleski de LL′ = Ψ + λPd, con λ el parámetro de suavizado y Pd

la matriz de penalización discreta definida en el Capítulo 1.

Para seleccionar el parámetro de suavizado en esta versión del FPCA pe-

nalizado, se ha adaptado el criterio de validación cruzada leave-one-out

(CV) considerando las distancias cuadráticas en términos de representa-

ciones básicas. Esto consiste en seleccionar el valor de λ que minimiza

CV (λ) =
1

p

p∑

q=1

CVq (λ) ,

donde

CVq (λ) =
1

n

n∑

i=1

‖xi − x
q(−i)
i ‖2,

con x
q(−i)
i =

∑q
l=1 ξ

(−i)
il f

(−i)
l la reconstrucción de la curva muestral xi en

términos de las primeras q componentes principales estimadas a partir de

una muestra de tamaño n− 1 que contiene todas las curvas muestrales

excepto xi.
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En términos de expansiones básicas, estas distancias cuadráticas vienen

dadas por

‖xi − x
q(−i)
i ‖2 =

∫

T

[
xi (t)− x

q(−i)
i (t)

]2
dt = d′iΨdi,

donde di = (di1, . . . , dip)
′ , con dij = aij−

∑q
l=1 ξ

(−i)
il b

(−i)
lj , y Ψ la matriz

de productos interiores entre las bases de B-splines.

E.3 Capítulo 3

En este capítulo el objetivo es mejorar la estimación del modelo logit fun-

cional. El problema de multicolinealidad asociado con la estimación de este

modelo se puede solucionar usando cono variables predictoras un conjunto de

componentes principales. El parámetro funcional estimado por la regresión

logit en componentes principales a veces es ruidosa y difícil de interpretar.

Para resolver estos problemas, en este capítulo se proponen distintas estima-

ciones spline penalizadas del modelo logit funcional. Todas ellas se basan en

el FPCA penalizado y/o una penalización P-spline discreta en el criterio de

máxima verosimilitud en términos de la expansión básica con B-splines de la

curvas muestrales y la función parámetro.

En el contexto de la regresión logística funcional en componentes princi-

pales, se introducen tres versiones distintas de estimación penalizada basadas

en el FPCA suavizado. Por un lado, se lleva a cabo un FPCA sobre la aproxi-

mación P-spline de las curvas muestrales (Método II). Por otro lado, se incluye

una penalización P-spline discreta, que penaliza la rugosidad de las funciones

peso asociadas a las componentes principales, en la propia formulación del

FPCA (Método III). La tercera aproximación penalizada se lleva a cabo in-

troduciendo la penalización en la estimación por máxima verosimilitud de la

función parámetro y en términos de un conjunto reducido de componentes

principales funcionales (Método IV). Además, se propone un estimación di-

recta (sin componentes principales) de la función parámetro por máxima ve-

rosimilitud penalizada en términos de funciones B-spline (Método V). La

capacidad de estas aproximaciones para proporcionar una buena estimación

de la función parámetro, así como su capacidad de clasificación se comprueba

y se compara con la aproximación basada en el ACPF no penalizado mediante

un estudio amplio de simulación. Para seleccionar el parámetro de suavizado

y el número de componentes principales o funciones básicas, se han adaptado
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los criterios de validación cruzada leave-one-out (CV) y validación cruzada

generalizada (GCV).

En las mismas condiciones del Capítulo 1, sea {xi(t) : t ∈ T, i = 1, . . . , n}
una muestra de funciones que corresponden a la información muestral de

una variable funcional X e {yi : i = 1, . . . , n} una muestra aleatoria de Y
asociada a ellas. Esto es, yi ∈ {0, 1}, ∀i = 1, . . . , n. El modelo de regresión

logit funcional viene dado por

yi = πi + εi, i = 1, . . . , n,

con las transformaciones logit expresadas como

li = ln
[

πi

1− πi

]
= α +

∫

T
xi (t)β (t) dt, i = 1, . . . , n.

Se consideran las representaciones básicas de las trayectorias muestrales y la

función parámetro

xi (t) =
p∑

j=1

aijφj (t) , β (t) =
p∑

k=1

βkφk (t) ,

con β = (β1, . . . , βp)
′

el vector de coeficientes básicos de β (t) . En este

capítulo se desarrollan distintas formas de estimar el vector de coeficientes

básicos β.

1. FLoM en términos de componentes principales (FPCLoM)

En general, el FLoM se puede reescribir en términos de componentes

principales funcionales como sigue

L = α1+ Γγ,

donde Γ = (ξij)n×p es la matriz de componentes principales funcionales,

γ es el vector de coeficientes del modelo y α es la constante.

Una estimación adecuada del parámetro funcional se obtiene considerando

sólo un conjunto q de componentes principales como variables predic-

toras, de modo que Γ = (ξij)n×q (q < p). Por lo tanto, el vector β
de coeficientes básicos viene dado por β = Fγ, donde la forma en que

se estima F depende del tipo de FPCA utilizado para estimar el modelo

funcional y del tipo de máxima verosimilitud empleada (penalizada o no

penalizada).
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• Método I: β̂ = Ψ
− 1

2
p×pGp×nγ̂, donde G es la matriz cuyas columnas

son los autovectores de la matriz de covarianzas muestral de AΨ1/2,
con A la matriz de los coeficientes básicos de las trayectorias mues-

trales aproximadas con splines de regresión. En este método γ se

estima por máxima verosimilitud no penalizada.

• Método II: β̂ = Ψ
− 1

2
p×pGp×nγ̂, donde G es la matriz cuyas columnas

son los autovectores de la matriz de covarianzas muestral de AΨ1/2,
con A la matriz de los coeficientes básicos de las trayectorias mues-

trales aproximadas con P-splines. En este método γ se estima por

máxima verosimilitud no penalizada.

• Método III: β̂ = (L−1)
′
Gγ̂, donde G es la matriz cuyas colum-

nas son los autovectores de la matriz de covarianzas muestral de

AΨ(L−1)′, con A la matriz de los coeficientes básicos de las trayec-

torias muestrales aproximadas con splines de regresión y L definida

en el Capítulo 2. En este método γ se estima por máxima verosi-

militud no penalizada.

• Método IV: β̂ = Ψ
− 1

2
p×pGp×nγ̂, donde G es la matriz cuyas columnas

son los autovectores de la matriz de covarianzas muestral de AΨ1/2,
con A la matriz de los coeficientes básicos de las trayectorias mues-

trales aproximadas con splines de regresión. En este método γ se

estima por máxima verosimilitud penalizada

L∗ (λ, γ) = L (γ)−
λ

2
γ′Pdγ,

con L (γ) la log-verosimilitud del FPCLoM, λ el parámetro de

suavizado y Pd la matriz de penalización discreta definida en el

Capítulo 1.

2. FLoM via log-verosimilitud penalizada.

Se considera la representación básica con B-splines de las trayectorias

muestrales y del parámetro funcional. De este modo, las transforma-

ciones logit en forma matricial vienen dadas por

L = Xβ,

donde L = (l1, . . . , ln) es el vector de transformaciones logit,

X = (1|AΨ), con 1 = (1, . . . , 1)′ un vector n-dimensional de unos

y β = (β1, . . . , βp)
′
el vector de coeficientes básicos de β (t).



M. Carmen Aguilera Morillo 193

Método V: el parámetro funcional se estima mediante máxima verosimi-

litud penalizada y sin componentes principales. Así, la log-verosimilitud

penalizada viene dada por

L∗ (λ, β) = L (β)−
λ

2
β ′Pdβ,

con L (γ) la log-verosimilitud del FLoM. En este caso, la solución de

Newton-Raphson para los estimadores de verosimilitud penalizada sería

β(t) = β(t−1)+
[
X ′Diag

(
π

(t−1)
i

(
1− π

(t−1)
i

))
X + λPd

]−1
X ′
(
y − π

(t−1)
i

)
,

con X = (1|AΨ) .

E.4 Capítulo 4

Los principales problemas asociados con el modelo logit funcional para una

respuesta escalar en términos de curvas suaves observadas con error son la alta

dimensionalidad, la multicolinealidad y la falta de suavidad en la estimación

del parámetro funcional. Con objeto de resolver los tres problemas al mismo

tiempo, se proponen dos aproximaciones penalizadas distintas basadas en la

regresión PLS. La primera introduce la penalización en la definición de la

norma de las funciones peso asociadas a las componentes PLS (Método II).

La segunda considera una estimación penalizada de la covarianza entre la res-

puesta y las componentes PLS (Método III). Se considera tanto penalización

continua como discreta basadas ambas en la expansión básica con B-spline de

las curvas muestrales. La selección del número óptimo de componentes PLS

y del parámetro de suavizado se lleva a cabo mediante dos criterios diferentes

basados en los errores de GCV y los errores cuadráticos medios integrados

respecto de la función parámetro.

El buen funcionamiento de las aproximaciones penalizadas del FPLS se ha

comprobado y comparado con el FPLS no penalizado mediante un estudio de

simulación y una aplicación con datos funcionales quimiométricos.

En las mismas condiciones del Capítulo 1, sea {xi(t) : t ∈ T, i = 1, . . . , n}
una muestra de funciones relativas a la información muestral de una variable

funcional X y {yi : i = 1, . . . , n} una muestra aleatoria de Y asociada a

ellas. El modelo lineal funcional (FLM) viene dado por

yi = β0 +
∫

T
xi(t)β(t)dt+ εi,
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con {εi : i = 1, . . . , n} errores aleatorios centrados e independientes.

Con objeto de conseguir un estimación adecuada del parámetro funcional,

el FLM se considera en términos de componentes PLS tal que

Y = 1γ0 + Tγ,

donde T es la matriz cuyas columnas son las componentes PLS y γ es el

vector de coeficientes de regresión de Y sobre T.

Una estimación adecuada del parámetro funcional se obtiene considerando

sólo un conjunto óptimo de q componentes PLS como variables explicativas,

de modo que T = (tij)n×q (q < p). La matriz de componentes PLS T se

estima con tres versiones distintas de PLS funcional.

Se considera la representación básica de las trayectorias muestrales y de

la función parámetro

xi (t) =
p∑

j=1

aijφj (t) , β (t) =
p∑

k=1

βkφk (t) .

Así, se consideran las siguientes versiones de regresión PLS funcional (FPLS):

• FPLS no penalizado.

La regresión PLS funcional de una variable respuesta aleatoria real Y
en términos de un predictor funcional X = {X (t) : t ∈ T} es un pro-

cedimiento iterativo de modo que la h-ésima componente PLS viene

dada por th =
∫

T Xh−1 (t)wh (t) dt, con wh (t) la función peso obtenida

resolviendo el siguiente problema:

maxw Cov2

(∫ T

0
Xh−1 (t)w (t) dt, Yh−1

)
,

‖w‖2 = 1

donde X0 (t) = X (t) , ∀t ∈ T e Y0 = Y . El h-ésimo paso del PLS

finaliza con la regresión lineal de Xh−1 (t) e Yh−1 sobre th tal que

Xh (t) = Xh−1 (t)− ph (t) th, t ∈ T

Yh = Yh−1 − chth,

donde ph (t) = (E(Xh−1 (t) th)/E(t
2
h)) y ch = (E(Yh−1th)/E(t

2
h)) .
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El FPLS no penalizado se reduce a a un PLS multivariante de Y sobre la

matriz AΨ1/2 de modo que T = AΨ1/2V, con A la matriz de los coefi-

cientes básicos de las trayectorias muestrales aproximadas con splines de

regresión y V la matriz cuyas columnas son los autovectores asociados

a las componentes PLS estimadas.

El vector de coeficientes básicos de la función parámetro β se estima

como β̂ = (Ψ−1/2)′V γ̂.

• FPLS penalizando la norma.

En este caso, la h-ésima componentes PLS penalizada se obtiene me-

diante el siguiente problema de maximización

maxw

Cov2
(∫ T

0 Xh−1 (t)w (t) dt, Yh−1

)

〈w,w〉+ λPENd(w)
,

donde 〈w,w〉 es el producto escalar clásico, PENd (w) es una penali-

zación general definida en el Capítulo 1 y λ el parámetro de suavizado.

Esta versión del FPLS penalizado se reduce a un PLS multivariante de Y
sobre la matriz AΨ(L−1)′ tal que T = AΨ(L−1)′V, con A la matriz de

los coeficientes básicos de las trayectorias muestrales aproximadas con

splines de regresión, V la matriz cuyas columnas son los autovectores

asociados a las componentes PLS estimadas y L una matriz definida en

el Capítulo 2.

El vector de coeficientes básicos de la función parámetro β se estima

como β̂ = (L−1)′V γ̂.

• FPLS penalizando la covarianza.

En este caso, la h-ésima componente PLS penalizada se obtiene a partir

del siguiente problema de maximización

maxw

Cov2
(∫ T

0 Xh−1 (t)w (t) dt, Yh−1

)
− λPENd (w)

〈w,w〉
,

donde 〈w,w〉 es el producto escalar clásico, PENd (w) es una penali-

zación general definida en el Capítulo 1 y λ el parámetro de suavizado.

En esta versión del FPLS penalizado la matriz de componentes PLS viene

dada por T = AΨ(Ψ−1/2)′V, con A la matriz de los coeficientes básicos

de las trayectorias muestrales aproximadas con splines de regresión y V la
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matriz cuyas columnas son los autovectores asociados a las componentes

PLS estimadas. En este caso, el vector de coeficientes básicos β del

parámetro funcional se estima como β̂ = (Ψ−1/2)′V γ̂.

E.5 Capítulo 5

El objetivo de este capítulo es mejorar la calidad en la producción de

galletas clasificándolas como buenas o malas a partir de las curvas de re-

sistencia de la masa observada durante el proceso de horneado. Como la

variable predictora es funcional, se proponen métodos de clasificación fun-

cional, tales como la regresión logit funcional y el análisis discriminante lineal

funcional. Con objeto de mejorar la capacidad de clasificación de estos mo-

delos y obtener una buena estimación de la relación entre la calidad de las

galletas y la resistencia de la masa, se propone una aproximación P-spline de

las curvas muestrales. Una vez estimado el modelo logit funcional se hace

inferencia sobre la función parámetro y los correspondientes cocientes de ven-

tajas haciendo uso de la normalidad asintótica de los estimadores de máxima

verosimilitud bajo las condiciones clásicas de regularidad. Finalmente, los

resultados sobre clasificación se comparan con otra metodología alternativa

como es la clasificación componente a componente (componentwise classifi-

cation) sobre el modelo logit.

Se considera el problema de clasificación de una muestra de observaciones

funcionales {xi (t) : t ∈ T ; i = 1, . . . , n} de acuerdo a una variable respuesta

binaria Y ∈ {0, 1} cuyas observaciones se denotan por {yi : i = 1, . . . , n}.

1. FPCLoM penalizado (Método II Capítulo 3)

Recordemos el FLoM definido en el Capítulo 3 y las transformaciones

logit expresadas como

li = ln
[

πi

1− πi

]
= α +

∫

T
xi (t) β (t) dt, i = 1, . . . , n.

• Interpretación de la función parámetro

exp (l∗i − li) = exp

(
K
∫ t0+h

t0

β (t) dt

)
,

donde l∗i es la transformación logit para la i-ésima observación fun-

cional incrementada de forma constante en el periodo [t0, t0+h], y
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K una constante positiva. Esto es un cociente de ventajas tal que

la ventaja a favor de que Y = 1 se multiplica por una cantidad

cuando el valor de la observación funcional se incrementa de forma

constante en K unidades en un intervalo fijado [t0, t0+h].

• Inferencia sobre la función parámetro

Sea Î =
∫ t0+h

t0
β̂ (t) dt el estimador de máxima verosimilitud para

I =
∫ t0+h

t0
β (t) dt, con β̂ (t) el estimador de máxima verosimilitud

de β (t) .

Un intervalo de confianza al nivel (1−α) para el cociente de ventajas

vendría dado por

exp(Î±σ̂(Î)zα/2) .

Un intervalo de confianza al nivel (1 − α) para β (t) vendría dado

por

β̂ (t)± σ̂(β̂ (t))zα/2.

Consideremos la representación básica de las trayectorias muestrales

y el parámetro funcional. Así, el vector de coeficientes básicos de

β(t) se estima (Method II Chapter 3) como β̂ = F γ̂. Por tanto,

V ar[Î] =
∫ t0+h

t0

∫ t0+h

t0

Cov
(
β̂ (t) , β̂ (s)

)
dtds

se puede aproximar por

V ar[Î] =
∫ ∫

φ′ (t)FCov (γ̂)F ′φ (s) dtds.

2. LDA-FPLS penalizado

El análisis discriminante lineal (LDA) en el contexto de los datos fun-

cionales consiste en encontrar combinaciones lineales
∫

T X (t) β (t) dt,
con β ∈ L2 (T ) de modo que la varianza entre clases se maximiza res-

pecto a la varianza total

maxβ
Var (E[X (t) |Y ])

Var (X (t))
.

La función discriminante es la función parámetro de la regresión lineal

funcional de Y sobre {X (t) : t ∈ T}, donde Y se transforma del
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siguiente modo

Y = −
√
p0/p1 si Y=1,

Y =
√
p1/p0 si Y=0,

con p0 = P [Y = 0] y p1 = P [Y = 1].

Debido a la equivalencia entre el análisis discriminante lineal y la re-

gresión lineal, el problema de la gran dimensionalidad de los datos se

resuelve utilizando un conjunto de componentes PLS funcionales como

variables predictoras. Se considera que las curvas muestrales están afec-

tadas por cierto ruido. Por ello, la función discriminante estimada no

es suave y por lo tanto, se propone una estimación suave de la misma

basada en una aproximación previa de las curvas muestrales mediante

P-splines.

3. Componentwise classification basada en el modelo logit

La clasificación componente a componente consiste en determinar un

conjunto de puntos relativamente pequeño
{
t∗1, . . . , t

∗
p ∈ T

}
, que tenga

una influencia importante para la clasificación, y aplicar un método de

clasificación estándar sobre el vector
(
X(t∗1), . . . , X(t

∗
p)
)
. Un estudio

completo sobre las propiedades teóricas de este método y su compor-

tamiento para distintos clasificadores se llevó a cabo en Delaigle et al.

(2012). En este capítulo se muestra esta aproximación para el clasifi-

cador basado en el modelo logit. La aproximación resultante tiene dos

pasos fundamentales basados en la selección del valor de p y la posición

del conjunto óptimo de nodos.
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