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Abstract / Resumen

1. Abstract

Alkylphospholipid analogues are a group of antitumoral drugs that, instead of
targeting DNA, they are membrane-directed compounds and exert a variety of biological
actions. In particular, these agents are promising candidates in cancer treatment, having
selective cytotoxicity against many types of tumours, inhibiting the growth of transformed
cells. Although alkylphospholipids are currently used in cancer clinic trials, there still exist a

high lack of knowledge concerning to their mode of action.

We have worked with two different human tumour cell lines: HepG2 from
hepatoblastoma and U-87 MG, from glioblastoma. Cell proliferation and cell cycle
progression have been studied in them by flow cytometry and colorimetric assays. All
alkylphospholipids tested here are shown to inhibit cell proliferation and cause cell cycle
arrest. Interestingly, in the glioblastoma cell line we have obtained data consistent with an

induction of different autophagy stages, which are detected by electron microscopy.

Traditionally, phospholipid metabolism was proposed to be the target for
alkylphospholipids. However, novel reports from our laboratory and others are linking them
with alterations of sterol metabolism in tumoral cells. Given the important roles of cholesterol
in cellular functions such as signalling, adhesion and motility, and because its intracellular
transport must be strictly regulated for cell growth and membrane biogenesis, in this thesis we
execute a study that could prove a relationship between alkylphospholipids and cholesterol

homeostasis disruption.

Here we demonstrate that alkylphospholipid-treatment of tumoral cells provoques a
clear disruption of the intracellular cholesterol transport. As a consequence, cholesterol
biosynthesis and uptake are increased, entailing to an accumulation of cholesterol inside the
cell and thereby a disturbance of membrane lipid microdomains. By performing
inmunoblotting and fluorescence resonace microscopy, we studied the PI3K/AKT signalling
pathway. Remarkably, alkylphospholipids are shown to inhibit this route, being raft-

microdomain integrity and cell survival altered as well.
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In this work we analyze as well the expression profile of a broad group of genes
related with cholesterol anabolism and catabolism demonstrating that there exists an
imbalance in cholesterol sensing mechanisms when cells are exposed to alkylphospholipids.
Finally, the cholesterol efflux is extensively studied as key part of the cholesterol
homeostasis, discovering that alkylphospholipids are able to promote cholesterol efflux from
the cell in free-serum condition. In this work we demonstrate that there exists an important
influence of the surrounding environment concerning the ability of alkylphospholipids to

remove sterols from the plasma membrane.

Therefore the information obtained will be relevant for understanding the
interrelationship between all these processes, which is fundamental to our knowledge of
tumour response and may facilitate the development of novel therapeutics to improve the

cancer treatment.




Abstract / Resumen

1. Resumen

Los andlogos de alquilfosfolipidos son un grupo de farmacos antitumorales que
dirigidos hacia membrana, en lugar de dafiar al ADN, ejerciendo una variedad de acciones
bioldgicas. En particular, estos agentes son candidatos prometedores en el tratamiento del
cancer, puesto que presentan citotoxicidad selectiva contra varios tipos de tumores, inhibiendo
el crecimiento de células transformadas. A pesar de que los alquilfosfolipidos se utilizan
actualmente en ensayos clinicos contra el cancer, alin existe una gran falta de conocimiento

acerca de su modo de accidn.

En esta tesis se ha trabajado con dos lineas de células tumorales humanas diferentes: HepG2,
de hepatoblastoma y U-87 MG, de glioblastoma. En estas células la proliferacion celular y la
progresion del ciclo celular han sido estudiadas mediante citometria de flujo y ensayos de
colorimetria. Todos los alquilfosfolipidos utilizados en este estudio han mostrado inhibir la
proliferacion celular y causar detencion del ciclo celular. Curiosamente, en la linea celular de
glioblastoma, hemos obtenido datos consistentes con una induccion de la autofagia,

detectando diferentes etapas de este proceso mediante microscopia electronica.

Tradicionalmente, se ha propuesto que la diana de estos compuestos es el metabolismo de los
fosfolipidos. Sin embargo, trabajos novedosos de nuestro laboratorio y otros estan vinculando
a los alquilfosfolipidos con alteraciones del metabolismo de esteroles en las células tumorales.
Dado el importante papel del colesterol en las funciones celulares, como sefializacion,
adhesion y motilidad y, debido a que su transporte intracelular debe estar estrictamente
regulado para permitir el crecimiento celular y la biogénesis de la membrana, en esta tesis se
lleva a cabo un amplio estudio que podria mostrar la relacion entre el los alquilfosfolipidos y

una disrupcion de la homeostasis del colesterol intracelular.

Aqui demostramos que el tratamiento de las células tumorales con alquilfosfolipidos provoca
una clara interrupcion del transporte de colesterol intracelular. Como consecuencia, la
biosintesis de colesterol y su entrada se incrementan, lo que implica a su vez una acumulacion
de colesterol dentro de la célula y perturbaciones de microdominios de lipidos de membrana.
Mediante la realizacion de microscopia de fluorescencia de resonancia e inmunoblotting, se

ha estudiado la via de sefializacion PI3K/AKT. Sorprendentemente, los alquilfosfolipidos
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inhiben esta ruta, alterando también la integridad de los dominios de membrana raft y la

supervivencia celular.

En este trabajo se analiza también el perfil de expresion de un amplio grupo de genes
relacionados con el anabolismo y el catabolismo del colesterol demostrando que existe un
desequilibrio en los mecanismos de deteccion intracelular de colesterol cuando las células se
exponen a los alquilfosfolipidos. Finalmente, el eflujo de colesterol es extensamente estudiado
como parte clave de la homeostasis de colesterol, descubriendo que los alquilfosfolipidos son
capaces de promover la salida de colesterol desde la célula en condiciones de ausencia de
suero. En este trabajo se demuestra que existe una gran influencia del entorno sobre la

capacidad de los alquilfosfolipidos para retirar los esteroles de la membrana plasmatica.

Por lo tanto, la informacion obtenida serd relevante para la comprension de la
interrelacion de todos estos procesos, lo cual es fundamental para nuestro conocimiento de la
respuesta tumoral y puede facilitar el desarrollo de nuevas terapias para mejorar el tratamiento

del cancer.
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Introduction

2. Introduction

2.1. Cancer and metabolism

It is estimated that there are over 13 million people diagnosed with cancer until
nowadays. Its hardness and difficulty to treat make this disease one of the main points in
biomedical research for work in. The damage caused to society by cancer is deep, not only in

terms of the patient suffering and their relatives, but the cost of cancer in economic terms.

Cancer treatment has little changed in the last 20 years but significant progress has
been made on understanding the molecular mechanisms underlying the process of oncogenic
transformation. We have learnt that the cancer cell phenotype is achieved through the
reactivation or alteration of existing cellular programmes used for normal cellular
homeostasis. These programmes coordinate processes such as cell proliferation, migration,
polarity, apoptosis or energy generation (laccarino and Martins, 2011). In this sense,
differences in energy metabolism between normal and cancer cells had been observed at the
beginning of the twentieth century. No cancer cells derive the majority of their energetic
needs from ATP through oxidative phosphorylation in the mitochondria. In contrast, tumoral
cells exhibit the Warburg effect, that consist in producing ATP even in aerobic conditions
through glycolysis, producing lactate from piruvate, a catabolic pathway predominantly less
efficient than oxidative phosphorylation. It is known nowadays that one reason for this
metabolic switch is that glycolysis provides the majority of the anabolic intermediates
required to sustain high rates of cellular proliferation. In addition, tumoral cells cannot use
glucose to provide their biosynthetic pathways with a source of reduced nitrogen, but they

have solved this problem by increasing their glutamine uptake to feed the Krebs cycle.

Cancers exhibit alterations in several signal transduction pathways governing the
survival and proliferation of the cell. For instance, the phosphatidylinositol-3-kinase (PI3K)
pathway is one of the most frequently mutated pathways in cancer. This route is known to
give rise to tumours that have a significantly elevated glucose uptake and dependency. The
PI3K pathway is therefore the subject of several studies and it has been discussed it relation
with genes involved in cholesterol and fatty acid biosynthesis (Porstmann et al., 2005).

Another well known route related with cell survival is Fas. Fas-mediated apoptosis involves
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translocation of Fas and downstream signaling molecules into membrane specific domains, a
process that can be pharmacologically modulated. This is of importance in apoptosis-deficient

disorders such as cancer and autoimmune diseases (Mollinedo and Gajate, 2006).

On this regard, the development of anti-tumour drugs is one of the most significant
challenges that modern medicine has to overcome. The impact of conventional
chemotherapeutic agents affects not only tumour tissues, but also rapidly dividing cells of
healthy organs (e.g. bone marrow, gastrointestinal epithelial cells and hair follicles).
Furthermore, some organs, like the heart, liver and kidney, were also observed to be damaged.
One of the major obstacles of the anti-cancer therapy is represented by the multi-drug
resistance, whose mechanisms include accelerated drug efflux, drug inactivation, alterations
in drug targeting and evasion of apoptosis (Wong and Goodin, 2009). Therefore, it is

necessary to develop novel strategies and overcome these severe problems.

2.2. Alkylphospholipids

Alkylphospholipid (APL) derivatives are cytostatic agents that, in contrast to most of
the currently used chemotherapeutic drugs, do not target DNA or the cytoskeleton but act at
the cell membrane (Van Blitterswijk and Verheij, 2008) and thus they constitute promising
candidates for a new approach to cancer chemotherapy (van der Luit et al., 2007; Vink et al.,

2007).

In the early 1960s, it was observed that the generation of 2-lysophosphatidylcholine,
from phosphatidylcholine (PtdCho) induced the phagocytic activity of peritoneal
macrophages in vitro and in vivo (Munder and Modolell, 1973). However, 2-
lysophosphatidylcholine is not stable and is inactivated either by the action of acyltransferase
generating PtdCho or by lysophospholipase producing glycerophosphocholine; subsequent
efforts were made to synthesize metabolically stable phospholipids analogues for clinical

research and trials. In these attempts APLs appeared.

Edelfosine represents the first generation of APLs; is an ether lipid (Fig. 1) that
accumulates in cell membranes. Hexadecylphosphocholine (HePC), also known as

miltefosine, represents the second generation of these compounds and has a simpler structure
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that lacks the carbon skeleton of glycerol. Both compounds exert strong cytostatic action in
vitro on several tumor cell lines (Van Blitterswijk and Verheij, 2008). In order to improve
antitumor activity with reduced side effects, erucylphosphocholine (ErPC) and perifosine
emerged. Compared to miltefosine, ErPC contains a longer hydrocarbon chain with a cis

double bond and perifosine presents a piperidine moiety instead of the choline head group.

£

HC 4

N
S SCH,
o

O
=
ot Q" g

o Miltefosine
o -—)f' =0
Q
e I

HC N, o

CHy | .

" HiC O=P—0
Edelfosine (L

Perifosine

Figure 1. Structure of alkylphospholipids. APLs exhibit a long saturated hidrocarbonated chain, being the
ErPC the only one with a double bond. The polar head is mostly derivative from choline with the exception of

perifosine.

The inhibition of tumor cell proliferation caused by APLs may be the result not only
of inhibition in proliferation but also because of the induction of apoptosis. Some clinical
studies have shown promising results; for example, miltefosine may be used for the topical
treatment of cutaneous metastases of mammary carcinomas (Clive et al., 1999). This
compound exerts antitumor activity too against a broad spectrum of established tumor cell
lines and solid tumors (Rybczynska et al., 2001; Jendrossek et al., 2002), in fact some
preclinical studies with miltefosine are proving useful information for treating certain

cutaneous lymphomas, in which a response of up to 60% effectiveness has been observed

11
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(Dumontet et al., 2006). On the other side, perifosine exerts potent antitumoral activity and is
currently undergoing phases II and III of clinical studies for colorectal cancer and for multiple
myeloma. Moreover, ErPC and edelfosine have been tested for their anti-tumor activity in
clinical phase I and phase II trials for a variety of tumors. Currently, APLs are attractive for
use in combination with radiotherapy, since they enhance radiation-induced apoptosis. In this
sense, encouraging results have been obtained with APLs in the treatment of leukaemic

malignancies (Vink et al., 2007).

A wide variety of molecular mechanisms have been proposed to explain the antitumor
activity of distinct membrane-directed APLs, whose action appears to depend on the cell type,
the uptake rate into the cell and the compound under study. Due to their chemical structure,
APLs are thought to be able to exert their antiproliferative activity through their insertion into
both plasma membrane and subcellular membranes, where they accumulate. (Geilen et al.,
1994). Until now its mode of action has not been precisely established, although the
membrane appears to be the primary site of its activity, most likely due to interference with
lipid metabolism and lipid-dependent signal transduction (Barratt et al., 2009). Since many of
enzymes involved in lipid metabolism are mainly located in the membrane of the endoplasmic

reticulum (ER), this might be a potential target of APLs.

Regarding its specificity, edelfosine for instance was demonstrated to trigger the
apoptosis of tumour cells without affecting normal cells (Diomede et al., 1993; Houlihan et
al., 1995). Mollinedo and coworkers (1993) proposed that the induction of apoptosis
constitutes a relevant step in the cytotoxic activity of edelfosine. Some previous studies from
our laboratory demonstrated that nontoxic concentrations of miltefosine exert an
antiproliferative effect on cultured HepG2 cells (Jiménez-Lopez et al., 2002). These findings
agree with those encountered in MDCK (Wieder et al., 1995), HeLa (Wieder et al., 1993) and
other neoplastic cell lines (Boggs et al., 1998), indicating that tumoral cells are sensitive to
cytostatic activity of miltefosine. Moreover, we have described (Jiménez-Lopez et al., 2002)
that after prolonged treatment with miltefosine, the tumoral cells show a clearly rounded
morphology and even became increasingly detached from the plate. In fact, cells exposed to
miltefosine for more than 24 h sometime show typical features of apoptosis, such as DNA

laddering and caspase-3 activation. Thus, apoptotic cell death induced by miltefosine in the

12
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HepG2 cells appears to involve, at least, an increased caspase-3-like protease activity and

genomic DNA fragmentation.

APLs have also shown other biological actions as antiparasitic and antimicrobial
effects. So, orally administered miltefosine has been reported to be efficacious against
leishmaniasis as a consequence of its interference with the parasite’s metabolic pathways
(Soto and Soto, 2006; Rakotomanga et al., 2007) inducing apoptosis on it. In fact, HePC has
become the first active orally administered agent to prove being effective against visceral and
cutaneous leishmaniasis caused by Leishmania donovani and Leishmania panamensis
respectively (Pérez-Victoria et al., 2006). It has also recently proved to be useful in the
treatment of allergies related to T cells (Baumer et al., 2009). Obando et al. (2007) analyzed
several synthetic derivatives of HePC and edelfosine and concluded that these compounds
might also be promising antifungal and antimicrobial drugs. Miltefosine is also toxic in vitro
to other protozoan parasites as Trypanosoma cruzi (Saraiva et al., 2002) and some species of

Acantamoeba (Seifert et al., 2001).

2.3. Effect of alkylphospholipids on glycerolipid and sphingolipids

metabolism

Effects induced by APLs upon a wide range of cellular processes related with
glycerolipid metabolism such as the modulation of calcium homeostasis (Henke et al., 1999),
alterations of phospholipase C (Berkovic et al., 1996), phospholipase A2 (PLA2) (Berkovic et
al., 1997) or phospholipase D activity (Lucas et al., 2001), lipid-signal transduction events
(Arthur and Bittman, 2008) and PtdCho metabolism (Berkovic, 1998) has led to several
hypotheses being put forward to explain how it works. One of these is that they may arrest

tumor cell proliferation by interfering with the biosynthesis of PtdCho.

As depicted in figure 2, in eukaryotes the biosynthesis of PtdCho occurs via two
distinct pathways (Vance and Vance, 2004). 1) The main pathway (CDP—choline pathway)
consists of three steps: the phosphorylation of choline catalyzed by choline kinase (CK),
followed by the transfer of CMP from CTP to choline phosphate, catalyzed by CTP
phosphocholine cytidylyltransferase (CT), and finally the transfer of choline phosphate from

13
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CDP-choline to diacylglycerol (DAG), catalyzed by CDP-choline:sn-1,2-diacylglycerol
cholinephosphotransferase (CPT) (Vance and Vance, 2004). 2) In the other pathway of
PtdCho biosynthesis three successive methylations to convert phosphatidylethanolamine
(PtdEtn) to PtdCho are involved. These methylations are catalyzed by PtdEtn N-
methyltransferases, enzymes commonly found in hepatic microsomes. PtdCho produced by

this route accounts for 20% to 40% of the quantity produced by hepatocytes.

Our research group (Jiménez-Lopez et al., 2002) and others (Geilen et al., 1992;
Wieder et al., 1998) have shown that synthesis of PtdCho is inhibited by HePC via CDP-
choline pathway. As far as the soluble intermediates in the CDP-choline pathway are
concerned, we have found that treatment of human hepatoma cell line HepG2 with this agent
produces a significant increase in the label of choline phosphate and a decrease in that of
CDP-choline compared to the untreated cells. Thus, the inhibitory effect produced by
miltefosine on PtdCho synthesis in these cells seems to be the consequence of an alteration in
CT activity. In fact, the exposure of HepG2 cells to HePC caused a dose-dependent increase
in cytosolic CT activity and this was accompanied by a concomitant decrease in membrane-
bound CT activity in the cell particulate fraction, while the total CT activity was unaltered.
Therefore, this APL interferes with PtdCho biosynthesis by impairing the translocation of the
rate-limiting enzyme CT from the cytosol, where it is inactive, to membranes, where it
expresses activity; that is, it affects only the distribution of CT. Althought, HePC did not
inhibit particulate CT activity in vitro, i.e., at the membrane level, it did inhibit cytosolic CT
activity in the presence of low amounts of activating PtdCho/oleate liposomes. Thence,
miltefosine appears to hinder the insertion of the soluble CT form into lipid vesicles or the
membrane to become activated. Interestingly, simultaneous exposure of cells to oleate
increased CT activity hereby stimulating PtdCho synthesis so that it drastically reversed the
inhibitory effect of miltefosine on PtdCho formation (Jiménez-Lopez et al., 2002).

The reduction in PtdCho biosynthesis was shown not to be due to any alteration in
choline uptake by the HepG2 cells, a finding which agrees with that found in MDCK cells
(Geilen et al., 1992), but it does go against observations made in neuronal cells (Posse et al.,
1995) and KB and Raji cells (Berkovic et al., 1995). In the latter cells, an increase in the
degradation of PtdCho was also apparent after miltefosine treatment. The inhibition of

PtdCho synthesis in the HepG2 cell line after miltefosine incubation was not related to any

14
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alteration in the degradation rate of PtdCho or its secretion into the culture medium; in
addition, treatment with miltefosine altered neither the activity of cytosolic choline kinase nor
that of membrane- bound diacylglycerol cholinephosphotransferase (Jiménez-Lopez et al.,
2002). It is remarkable that induction of apoptosis by distinct APLs in lymphoma cells occurs
through inhibition of CTP-phosphocholine CT after internalization via endocytosis (van der
Luit et al., 2007). Since PtdCho is involved in cell-signaling processes, minor alterations in its

levels may contribute negatively to cell survival.

Incubation of HepG2 cells with miltefosine was also shown to increase the de novo
biosynthesis of triacylglycerol (TAG) and PtdEtn (Jiménez-Lopez et al., 2006). The combined
enhancement of TAG and PtdEtn synthesis may be attributed in part to the higher availability
of diacylglycerol for glycerolipid biosynthesis when the synthesis of PtdCho is inhibited, as
illustrates Figure 2. The synthesis of PtdEtn requires the previous CDP-ethanolamine
formation in a two-step process, followed by the transfer of ethanolamine residue to DAG by
phosphoethanolamine transferase. Concerning the synthesis of PtdEtn, in our laboratory it has
been analyzed the water-soluble intermediates and final product, PtdEtn, of the CDP-
ethanolamine pathway and found that HePC causes a modest increase in the incorporation of
radiolabeled ethanolamine into CDP-ethanolamine and PtdEtn and a decrease in ethanolamine
phosphate, which might be interpreted in terms of a stimulation of CTP:phosphoethanolamine
CT activity, the rate-limiting enzyme of this metabolic pathway. Even though these changes
might be attributed to miltefosine stimulating the synthesis of PtdEtn in HepG2 cells, the
effect is quite slight (only 10%) compared to controls (Jiménez-Lopez et al., 2004).

It has been reported too that miltefosine treatment increases the amount of PtdEtn in
the membranes of Leishmania donovani promastigotes (Rakotomanga et al., 2007). Moreover,
the ether lipid edelfosine increases the production of CDP-ethanolamine hence enhancing the
PtdEtn synthesis in MCF-7 cells (Zhou and Arthur, 1995). Since PtdEtn can be methylated in
the ER to obtain PtdCho, it was analyzed this process and observed that miltefosine
significantly decreases the microsomal synthesis of PtdCho from PtdEtn by inhibiting PtdEtn
N-methyltransferase activity (Jiménez-Lopez et al., 2004). These results constituted the first
experimental evidence that the inhibition of the synthesis of PtdCho via CDP-choline by

miltefosine is not counterbalanced by any increase in its formation via methylation. On the
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contrary, in the presence of miltefosine both pathways seem to contribute jointly to a decrease

in the overall synthesis of PtdCho in HepG?2 cells, as shown in Figure 2.

With regard to the metabolism of the acidic phospholipid phosphatidylserine (PtdSer),
in mammals PtdSer is formed by the action of a base-exchange enzyme, which catalyzes the
reversible displacement of the polar head from PtdEtn or PtdCho by serine. The conversion of
PtdSer to PtdEtn also occurs via descarboxylation of PtdSer in a reaction catalized by the
phosphatidylserine descarboxilase (Fig. 2). The uptake of radioactive serine into PtdSer and
other phospholipids is unchanged by miltefosine and neither is the activity of either PtdSer
synthase or mitochondrial PtdSer decarboxylase. This demonstrates that the biosynthesis of
PtdSer is unaffected by miltefosine in HepG2 cells (Jiménez-Lopez et al., 2004). However,
treatment of the human lymphoma Raji cell line with miltefosine also led to an inhibition of
PtdCho synthesis via CDP-choline, but enhanced, however, the generation of PtdCho from
PtdSer via decarboxylation and methylation processes as a compensatory mechanism
(Berkovic et al., 2002), suggesting that the effect of miltefosine on cellular phospholipid

metabolism may well differ depending upon the cell type.

It has been showed too that HePC can interact with PLA2, an enzyme in lipid-
mediated cell signaling. Snake venom containing PLA2 have been isolated and miltefosine
shown ability to inhibit the purified enzyme (Berkovic et al., 1997). Moreover, some
experiments in Leishmania Donovani demonstrate that HePC is internalized and promotes

activation of PLA2 inside the parasite (Rakotomanga , 2007).

Our research group has previously reported that sphingolipid metabolism is altered
after miltefosine treatment. So, HePC produces a marked time-dependent inhibition of
sphingomyelin synthesis, using radiolabeled palmitate as exogenous substrate. An
accumulation of ceramide was observable after short-term of this agent treatment, which
could well be a result of diminished sphingomyelin synthesis (Jiménez-Lopez et al., 2006).
These results agree with findings reported in HaCaT cells, showing that the incorporation of
choline into sphingomyelin is inhibited by miltefosine concomitantly with an increase in

intracellular ceramide levels (Wieder et al., 1998).

Due to the precursor-product relationship, the biosynthesis of sphingomyelin catalyzed

by sphingomyelin synthase might be influenced by the inhibition of the PtdCho synthetic
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pathway in the presence of miltefosine. Hence, it is worth emphasizing that miltefosine
treatment may affect phospholipid homeostasis and hereby the cell membrane functionality by
decreasing the synthesis of choline-bearing phospholipids, that is, PtdCho and sphingomyelin

(Figure 2), which are key membrane lipid components.
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Figure 2. Diagram for the hepatic biosynthetic pathways of phospholipids and triacylglycerol. The
postulated mode of action of miltefosine on specific metabolic steps is included. It is noteworthy that miltefosine
inhibits the synthesis of both choline-bearing phospholipids, PtdCho (PC) and sphingomyelin (SM). Other
abbreviations PtdSer (PS) and PtdEtn (PE).

2.4. Lipid raft domains

Lipid rafts are defined as cholesterol- and sphingolipid-rich domains in biological
membranes. They provide specialized lipid environments, which are understood to regulate
the organization and function of many membrane proteins (Simons and Gerl, 2010). Rafts are
fluctuating assemblies of sphingolipids, cholesterol and proteins (e.g. GPI-proteins) that can

be stabilized to coalesce, forming platforms that function in membrane signaling and
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trafficking (Coskun and Simons, 2010). Growing evidence of their existence, protein cargo,
and regulation is based largely on the study of isolated lipid rafts. Moreover, there is a strict
relationship between raft domains and membrane fluidity. In this sense, there are two relevant
phases of membranes: liquid disordered (L4) and liquid ordered (L,). Sphingolipids,
cholesterol and saturated phospholipids contribute to decrease the membrane fluidity and so
raft regions are tipically Lo phases (Feigenson, 2006). Lo phases are thicker and less fluid
than Ld, so that lipids and proteins diffuse more difficultly.

Regarding raft composition and size, the raft concept has shifted with the realization
that the association of components is dynamic and sizes range from small — nanoscale and
more stable — to bigger microdomains, which lifetime can vary. The situation is like that of
logs in a river: one or several logs can function as a raft for one or more loggers and these can

pile up into a raft jam (Simons and Gerl, 2010) (Fig. 3).
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Figure 3. Raft domains formation. Nanoscale

assemblies composed of sterols, sphingolipids and

Nanascale assembly Naﬂwafa‘“[éfgb'rt different kinds of proteins such as GPI-anchored- ,
cylated pratein

transmembrane-raft- and  acylated-  proteins.
Transmembrane non-raft proteins are excluded from
these assemblies (A). In response to external signals
or the initiation of membrane trafficking events, raft
platforms are formed from fluctuating assemblies
through protein—protein lipid—protein, and lipid-lipid
interactions. (B). Micrometer-sized raft 'phases' can
be induced at equilibrium (C). Abbreviations used:

glycosphingolipid (GSL), glycophospholipids (GPL).

Figure from Simons and Gerl, 2010.

Raft phase

Nature Reviews | Molecular Cell Biology

18



Introduction

Although the ganglioside GM1 has been commonly used as raft marker because a
fluorescently labeled probe was available, when nanoscale assemblies are analysed, it should
not be expected that they are enriched in every marker. Actually, when these assemblies are
clustered into raft platforms, there is no obligatory reason why GPI-anchored proteins, GM 1

or other raft constituents should be clearly abundant.

Metodology for raft investigation has highly changed in the last years, so that the raft
concept has varied from big static structures to a more real and more dynamic model. A key
fact ten years ago was the methodology used to define a raft component. The main criteria for
raft definition was dependent on its interaction with detergents, so that raft constituents were
defined simply as the insoluble residue or “detergent resistant membrane” (DRM) remaining

after non-ionic detergent solubilization at 4°C.

The main criticisms for these methods are the use of detergent resistance as a defining
factor for raft components (Lichtenberg et al., 2005). Whereas physiologically induced
changes in DRM composition can reflect lateral biases in the membrane, detergent
solubilization is an inherently artificial method giving different results depending on the
concentration and type of detergent, duration of extraction and temperature (Lingwood and
Simons, 2007). For this reason, methods that allow raft isolation in absence of detergents are
more accurate for raft study composition. In this sense, Macdonald and Pike (2005) have

reported a simplified method for raft fractions isolation by the use of free detergent solutions.

Visualizing rafts in cell membranes has always been an important concern that is
widely discussed from years ago (Simons and Tommre, 2000). Although microscopically
observable probes were used, the variability of the colocalization and sizes seen has induced
wonderings about their relevance. Moreover, approaches used to study membrane protein
diffusion, such as fluorescence recovery after photobleaching (FRAP) led to mixed results and

thus caused skepticism about the raft concept (Kenworthy et al., 2004).

In the past years, an influx of novel methods, such as Fluorescence Resonance Energy
Transfer (FRET) and fluorescence polarization anisotropy, revealed that GPI-anchored
proteins and other lipid-modified proteins form cholesterol-dependent nanoscale clusters
(Meyer et al., 2004; Pinaud et al., 2009). Another tracking methods employed are dual-color

total internal reflection fluorescence (TIRF) microscopy and single quantum dot tracking to
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study the cholesterol-dependent diffusion behavior of a GPI-anchored protein. These showed
that this protein dynamically partitioned into and out of cell surface clusters of the ganglioside
GM1 (Pinaud et al., 2009). In spite of some restrictions, data from these methods conclusively

support the existence of dynamic nanoscale cholesterol-dependent complexes.

Raft domain assemblies are necessary for activation of some signaling pathways that
are related with cell survival or death such as Fas, SRC kinases or AKT/PI3K pathway, being
the last one a great point of care. Akt is a serine/threonine protein kinase that plays an
important role in cell survival (Benbrook and Masamha, 2011). Akt activation protects cells
from apoptotic death and is correlated to the progression of some human cancers. Upstream
Akt protein activators are varied receptors, whose activation results in phosphorylation of Akt
at Thr308 and Ser473 (Alessi et al., 1997). Remarkably, the interaction between Akt and
membrane receptor proteins has been suggested to take place in the lipid rafts of the cell,
being shown that Akt is more effectively activated when located in these domains (Gao and
Zhang, 2008; Lasserre et al., 2008). In fact, other findings indicate that the phosphorylation of
Akt happens faster in raft than in non-raft regions (Gao and Zhang, 2008). Because of all this,
the integrity of lipid rafts is required for Akt activity and cell survival so that disruption of
lipid raft domains using cyclodextrine destabilizes raft activation platforms of Akt, resulting
in impaired Akt phosphorylation at Thr308 and Ser473, diminished Akt phosphorylation, and
increased apoptosis in several cell lines (Motoyama et al., 2009; Calay et al., 2010). To
determine that the apoptotic response is dependent on cholesterol depletion simvastatin,
filipin III and 5-cholesten-5-B-ol have also been used to extract cholesterol, with similar pro-

apoptotic effects (Calay et al., 2010).

The results of these studies lead to the conclusion that lipid rafts require proper
concentrations of cholesterol and other lipids in order to serve as signaling platforms for Akt
activation. In the absence of lipid rafts or proper integrity, Akt activation and cell survival
signaling does not take place. In regard to APLs, some authors (Ausili et al., 2008) have
shown that, by using phospholipids/SM/cholesterol mixtures, edelfosine alters the phase
status of these systems, which are reported to be raft structure models. The same laboratory
describes how this APL is accumulated in lipid rafts of cancer cells, altering raft protein

and lipid composition. This affects Fas/CD95 death signaling (Gajate and Mollinedo, 2011)

20



Introduction

so that it can contribute to apoptosis. All this in mind, raft platforms and key components such

as cholesterol may well be a potential pharmacological target in the treatment of cancer.

2.5. Cholesterol metabolism

2.5.1. Cholesterol in cell membranes

Cholesterol is an essential structural component of cell membranes, where it ensures
proper membrane permeability, and regulates fluidity over a range of physiological
temperatures. It plays a unique role among the lipids in mammalian cells (Maxfield and van
Meer, 2010), based partly on its biophysical properties, which allow it to be inserted into or
extracted from membranes with relatively easiness. In membranes, cholesterol molecules are
intercalated between phospholipids and reduce the movement of their acyl chains,
contributing to the maintenance of membrane stability. Thus, it plays a special role in
determining the biophysical properties of other lipids in a bilayer. Because of its importance,
cells have evolved complex mechanisms to tightly regulate the abundance and distribution of

sterols within cells.

Inside the membranes, cholesterol is able to interact with other membrane lipids as
well as with specific proteins. Its cyclopentanoperhydrofenanthrene derived structure has
unique biophysical properties that increase cohesion and packing of neighbouring lipids.
Because of the inflexible sterol structure, cholesterol is preferentially located near lipids
containing saturated hydrocarbon chains as these are more rigid and elongated than
unsaturated lipids. Cholesterol increases lateral ordering of lipids affecting the biophysical
properties of cell membranes, this decreases its fluidity and thus reduces the permeability of
polar molecules. On contrary, too much cholesterol is unfavorable as it could slow down the
diffusion of membrane proteins. Some models have been suggested to explain cholesterol
location within membranes and its interaction with the other lipids (Fig. 4). The simplest
interaction shows polar head of phospholipids covering cholesterol polar group; other lipids
such as sphingomyelin can collaborate with phospholipids to create bigger association with
cholesterol. Some authors have suggested that, depending on cholesterol content, some

molecules of cholesterol can be partially exposed to extracellular acceptors. This cholesterol
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is termed as “active cholesterol” and it thought to be easily extractable from the membrane

(Steck and Lange, 2010).
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Figure 4. Cholesterol structure and disposition within membranes. Cholesterol structure is a four-ring
backbone, with two residues methylated and a radical chain, setting a 27 total number of carbons molecule. It
C3 hydroxyl group confers ability to create hydrogen bonds (left). Cholesterol is represented by different
models of interaction with other lipids present in membrane (right). The umbrella model (a) shows a simpler
interaction, with phospholipids “covering” hydroxyl group of cholesterol with their polar heads. When
membrane is enriched in cholesterol more intricate models are suggested (b). Some molecules of cholesterol in

membrane can be partially exposed to easier extraction, (¢). Taken from Ikonen, 2008.

Cholesterol homeostasis in mammals is regulated by a complex set of mechanisms that
include cholesterol biosynthesis, hydrolysis of cholesteryl esters (CE) from internalized
lipoproteins, transport of released cholesterol to intracellular organelles such as the ER and
cholesterol efflux (Chang et al., 2006). In the liver, many aspects of metabolism of cholesterol
are well known, including its synthesis in the ER, its extracellular transport in plasma
lipoproteins, its uptake by the low-density lipoprotein receptor (LDLR), and its sterol-level
dependent feedback regulation. The pathways involved in cholesterol metabolism are strictly
related to its transport and intracellular distribution among subcellular organelles and the
plasma membrane (Soccio and Breslow, 2004). However, these pathways and their molecular

regulation are still only partially understood.

Our research group has preliminarily examined the effects of the HePC on intracellular

cholesterol transport and metabolism and it possibly relevance in maintaining cholesterol
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homeostasis. It was shown that treatment of HepG2 and Vero cells with HePC significantly
alters cholesterol metabolism and leads to an accumulation of cholesterol in the cell (Jiménez-
Lopez et al., 2006). Using radiolabeled substrates we determined the effect of HePC on
cholesterol synthesis and found that long-term exposure of HepG2 cells to miltefosine caused
a marked increase in cholesterol biosynthesis when acetate, but not mevalonate, was used as
the lipogenic precursor. Interestingly, some other experiments confirmed that miltefosine
stimulates not only the cholesterogenic pathway but the receptor-mediated uptake of

cholesterol in HepG2 cells.
2.5.2. Cholesterol biosynthesis

Cholesterol biosynthesis has been the subject of extensive study and its complex
biosynthetic pathway is now well known (Fig. 5). This pathway involves several cytosolic
and peroxisomal reactions (Kovacs and Krisans, 2003), converting acetyl-CoA into the
intermediate farnesyl diphosphate (FPP). This first stage involves I) conversion of acetyl CoA
into acetoacetyl CoA catalyzed by acetoacetyl CoA thiolase (ACAAZ2), II) conversion of
acetoacetyl CoA into 3-hydroxyl-3-methylglutaryl CoA by hydroxyl-3-methylglutaryl CoA
synthase (HMGCS1), III) conversion of 3-hydroxy-3-methylglutaryl CoA into mevalonic acid
(MVA) by the action of 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR), 1V)
phosphorilation of MV A into phosphomevalonate by mevalonate kinase (MVK), (V) another
phosphorilation of phosphomevalonate into diphosphomevalonate by phosphomevalonate
kinase (PMVK) and VI) conversion of diphosphomevalonate into isopentyl diphosphate (A3-
IPP) by mevalonate diphosphate decarboxylase (MVD). Several of these enzymes have been
reported to regulate this process, being essential the HMGCR. This enzyme is located in the
ER and is considered to be the rate-limiting enzyme of the cholesterol biosynthetic pathway
(Trapani and Pallottin, 2009; Jo and Debose Boyd, 2010), although MVK (Waterham, 2002)
and MVD (Rezen et al., 2011) also seem to take part in the control of cholesterogenesis. The
enzymatic steps that produce farnesyl diphosphate (FPP) include several branching points that
lead towards the synthesis of essential molecules with key roles in different cell processes in
addition to cholesterol itself (Fig. 5). Nonsterol isoprenoids, such as heme-A and isoprene,

result from the mevalonate pathway (Rezen et al., 2011).

A3-1PP, the basic C5 building block, is then added to prenyl diphosphate cosubstrates

to form longer chains. A3-IPP itself is not reactive enough to initiate the condensation of
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higher isoprenoids (Nes, 2011). So, it is first isomerized to the allylic ester A2-IPP through
rearrangement followed by head to tail condensation of A2- and A3-IPP to form geranyl
diphosphate by geranyl diphosphate synthase. In the second stage, the condensation reaction
is repeated by the addition of A3-IPP producing the CI15 allylic FPP. FPP is a key
intermediate in the synthesis of the lipid dolichol and in farnesylation of proteins in which the
polyprenyl group serves as a membrane anchor (Beltowski et al., 2009). A large number of
experimental and clinical studies have suggested that inhibition of the production of non-
sterol isoprenoids might have a role in human pathology, since they are essential for cell
growth, differentiation and apoptosis (Miquel et al., 1996). FPP is also the precursor for
coenzyme Q, which is a component of the electron transport chain in mitochondria and

participates in aerobic cell respiration to generate energy.

Two molecules of FPP condense tail to tail to the C30 acyclic squalene by the action
of squalene synthase (FDFT1). The squalene undergoes oxidation to form S-oxidosqualene
via an NADPH-dependent mono-oxygenase reaction catalyzed by squalene epoxidase, and
this substrate can be cyclized by an oxidosqualene sterol synthase to yield the steroidal
backbone structure presented in lanosterol. In the last stage lanosterol is converted to
cholesterol in a multistep process involving many intermediates that are linked to ER
(Waterham, 2002). Cholesterol synthesis by microsomal enzymes is fast and extremely
efficient to the extent that organization via a multienzymatic complex has been suggested

(Gaylor, 2002).
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Figure 5: Diagram of the biosynthetic pathway of cholesterol. The product FPP (farnesyl-PP) is utilized in

the synthesis of cholesterol, farnesylated and geranylgeranylated proteins, dolichols, coenzyme Q and the
isoprenoid moiety of heme. Abbreviations used: acetyl-CoA acyltransferase 2 (ACAA2), acetoacetyl- HMG-
CoA synthase (HMGCS1), HMG-CoA reductase (HMGCR), mevalonate kinase (MVK), isopentenyl
diphosphate (IPP), phosphomevalonate kinase (PMVK), diphosphomevalonate decarboxylase (MVD), IPP
isomerase (IDI1), farnesyl diphosphate synthase (FDPS), squalene synthase (FDFT1) 7-dehydrocholesterol
reductase (DHCR?7), 24-dehydrocholesterol reductase (DHCR24).

Because free cholesterol is one of the major components of membrane lipids, each cell
must balance the internal and external sources while avoiding either a sterol shortage or over-
accumulation so as to maintain membrane cholesterol homeostasis. From its site of synthesis,
cholesterol needs to be transported to other cell destinations, accumulating mainly in the
plasma membrane, where most of cell cholesterol resides (Warnock et al., 1993). On opposite,
the cholesterol composition of ER membrane is minimum (lower than 5%) and there exist a
highly fine cholesterol sensing mechanism located in this organelle. The smallest changes in
cholesterol levels within ER (because of synthesis, arrival or sorting) are able to modulate
biosynthetic enzymes as HMGCR by a feedback-control mechanism that is explained in detail

later.
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Several studies have shown that, in addition to synthesizing cholesterol, mammalian
cells also synthesize substantial amounts of intermediates of sterols (Echevarria et al., 1990).
In a similar way to cholesterol, these sterols leave the ER and rapidly reach the plasma
membrane before moving back to the ER to be processed enzymatically into cholesterol, this
movement being essential to the completion of cholesterol biosynthesis (Heino et al., 2000;
Field et al., 2007). It has also been shown that when the traffic of cholesterol from the plasma
membrane to the ER is disrupted, the circuit for its synthesis is affected, so intermediates of

cholesterol biosynthesis accumulate (Metherall et al., 1996; Field et al., 2007).

Moreover, the endocytic pathways plays a key role for cholesterol homeostasis and it
is now well established that control of both cholesterol levels and distribution through
intracellular traffic contributes to the maintenance of cell cholesterol homeostasis (Soccio and
Breslow, 2004). Nevertheless, in contrast to cholesterol’s well known metabolism, the routes
involved in cholesterol transport and their molecular regulation are still only partially
understood. In any case, cholesterol quantities and intracellular distribution are tightly

regulated by intracellular transport (Maxfield and Wustner, 2002; Soccio and Breslow, 2004).
2.5.3 Cholesterol uptake and transport

In addition to synthesis, cells obtain cholesterol from the blood via the LDLR and
hydrolyze it to free cholesterol in endosomes/lysosomes (Goldstein and Brown, 2009). LDLR,
which is present on the plasma membrane of most cells, bind particles that contain ApoB or
ApoE proteins, such as chylomicron remnants, very low density lipoprotein (VLDL) and
LDL. LDLR complexes are present in clathrin-coated pits on the cell surface, which when
bound to LDL-cholesterol via adaptin, are pinched off to form clathrin-coated vesicles inside
the cell. This allows LDL-cholesterol to be internalized in a process known as endocytosis
and prevents the LDL from merely diffusing around the membrane surface. The vesicles lose
their clathrin coats, undergo fusion with other similar vesicles, and form larger vesicles
known as early or sorting endosomes. The lower pH in early endosomes promotes the
dissociation of LDL from the LDLR. In this compartment cholesteryl esters are hydrolysed by
acid lipase to provide unesterified cholesterol for cellular needs. The LDLR and other
recycling proteins then localize in the recycling endosomes, from where they return to the
plasma membrane after about 10 min to be reused in many more rounds of LDL delivery.

Eventually the LDLRs enter the late endosomes en route to being degraded in the lysosomes.
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Lysosome membranes are normally cholesterol-poor, which is favourable for
sphingolipid digestion (Kolter and Sandhoft, 2005). This suggests that most of the cholesterol
normally leaves the endosome membrane before entering lysosomes towards favorable
concentration gradient (Fig 6). How this happens has not been clearly stated. The intra-
endosomal membranes of multivesicular late endosomes that are enriched in
lysobisphosphatidic acid/ bismonoacylglycerophosphate (LBPA/BMP) serve as important
regulators of cholesterol transport (Kobayashi et al., 1999).

Abnormalities affecting cholesterol transport and distribution lead to several inherited
metabolic illnesses such as Niemann Pick Type C (NPC) disease, characterized by the
accumulation of unesterified cholesterol and other lipids in the endosomal/lysosomal
compartment (Blanchette-Mackie, 2000). Late endosomes are normally dynamic structures
but they become static, enlarged and cholesterol-rich in the NPC cell (Ko et al., 2001). Two
independent proteins responsible for this neurodegenerative disorder have been identified;
NPCI is a polytopic membrane protein from late endocytic membranes, whereas NPC2 is a
cholesterol-binding soluble protein that also targets the late endocytic organelles. Genetic and
phenotypic evidence in mutant mice suggest that both NPC proteins participate in different
steps of the same pathway being both necessary for correct running. Both proteins can bind
sterol (Xu et al., 2007)) but have also been implicated in sphingolipid binding or mobilization
(Malathi et al., 2004). NPC2 is a small soluble protein that functions as a cholesterol transfer
protein in vitro, favoring acidic pH and the presence of LBPA (Cheruku et al., 2006). By
contrast, NPCI is a glycoprotein that contains 13 membrane-spanning domains (Davies and
Ioannou, 2000). A possible mechanism is that NPC2 transfers cholesterol either from intra-
endosomal membranes or directly from acid-lipase-catalysed ester hydrolysis to NPCI,
participating on its sorting from the endosomes. This could involve NPCI-mediated
cholesterol transport across the membrane and sterol egress to cytosolic lipid transfer proteins,
or NPCl-regulated membrane transport that removes cholesterol, and possibly sphingolipids
(Koivusalo et al., 2007), from late endosomal circuits. Some amphiphilic drugs, such as
U18666A, progesterone and imipramine, have been described as interfering with intracellular
sterol traffic by accumulating lysosomal unesterified cholesterol in fibroblasts and Chinese
Hamster ovary cells (Lange et al., 1998; Mohammadi et al., 2001); the movement of
cholesterol from the cell surface to the ER is inhibited by these drugs, which also affect

cholesterol transport from the endosomes (Lange, 1994). This defect in cholesterol transport
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causes cell damage and mimics the cellular lesions observed in fibroblasts from patients
affected by NPC disease, producing an accumulation of unesterified cholesterol and other
lipids in the endosomal/lysosomal compartment (Blanchette-Mackie, 2000; Wojtanik and
Liscum, 2003). However the precise functions and trafficking itinerary of both NPC1 and
NPC2 remain to be clarified.

The contribution of other endocytic routes to cholesterol transport and balance and
their interplay with the LDLR route, are yet poorly understood at the molecular level.
Cholesterol can move between the ER and the plasma membrane by mechanisms that bypass,
in part, the secretory pathway and are probably non-vesicular. Little is known about these
mechanisms, but it is likely that they contribute significantly to maintaining the different
cholesterol concentration inside the ER and the plasma membrane. On release from the
endolysosomal system, cholesterol is delivered to other membranes, such as the plasma
membrane, ER, recycling endosomes and mitochondria. Which membrane/organelle serves as
the first acceptor for the cholesterol that leaves endosomes has not been determined because
of the rapid kinetics by which cholesterol reaches other destinations and insufficient

resolution of the available assays (Ikonen, 2008).
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Figure 6. Model of endocytosis and lysosomal digestion of membranes. Glycosphingolipids (GSL) are
highlighted on the plasma membrane and on internal membranes, and gradients of pH, cholesterol (Chol), BMP,
sphingomyelin (SM; hypothetical), and ceramide (Cer; hypothetical) are shown. Taken from Kolter and
Sandhoff, 2010.
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Once cholesterol reaches ER it is esterified by acyl-CoA:cholesterol acyltransferase
(ACAT) to form cholesteryl esters (CE). Due to the high hydrophobic nature of CE, they
cannot insert into membranes; instead of this, they accumulate into lipid droplets, which
function as cellular stores of cholesterol. CE formation is an important buffering mechanism
for reducing sterol levels when plasma membrane is saturated of free cholesterol. Fatty acid
sterol esters are stored too in lipid droplets from the ER. Lipid droplets were considered to be
passive fat deposits but they are now emerging as dynamic, regulated organelles (Martin and
Parton, 2006). In some cells, such as adipocytes, considerable amounts of unesterified
cholesterol are stored in lipid droplets (Prattes et al., 2000). One interesting protein in this
respect is caveolin, which associates with both caveolae and lipid droplets (Parton and
Simons, 2007). Cholesterol addition was found to induce the trafficking of plasma membrane
caveolin to lipid droplets, where caveolin had a role in maintaining unesterified cholesterol
levels (Le Lay et al., 2006). There are also some indications of crosstalk between caveolae
and lipid droplets in the metabolism of triglycerides (Ost et al., 2005). Moreover, recent data
indicate that the ATP-binding cassette (ABC) transporter ABCGI1, which facilitates the
removal of cellular cholesterol (see below), also regulates triglyceride storage (Buchmann et
al., 2007). How cholesterol and triglyceride storage and mobilization in lipid droplets are

interlaced are determinant open questions.

As summary, intracellular cholesterol transport it is represented in figure 7. There are
three organelles involved in cholesterol trafficking: (1) ER, the major site of synthesis,
regulation and esterification of cholesterol, (2) plasma membrane, a prominent storage site for
unesterified cholesterol, and (3) endosomes/lysosomes, where lipoprotein-derived cholesterol
is released. Endocytosed LDLs are delivered rapidly to lysosomes; the protein/phospholipid
coat is degraded and CE are hydrolyzed to cholesterol (Sugii et al., 2003). Most, perhaps all,
of this cholesterol is transported directly to the plasma membrane (Lange et al., 1997), which
contains approximately 65-90% of the unesterified cholesterol in the cell (Liscum and Munn,
1999). Cholesterol synthesized in the ER, as well as that released in the endosomes/lysosomes
by lipoprotein catabolism, moves to the plasma membrane against a steep concentration
gradient (Prinz, 2002; Soccio and Breslow et al., 2004) (Fig. 6). Once the capacity of the

plasma membrane and other compartments to absorb cholesterol is exceeded, cholesterol is
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transported back to the ER, where it is esterified by ACAT. In the ER cholesterol promotes
HMGCR proteolysis and inhibits its biosynthesis and uptake by gene expression modulation
(explained in more detail later). This distribution of cholesterol between sites of regulation,

synthesis, and deposition provides a highly efficient control for cellular cholesterol levels.
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Figure 7. A model for intracellular cholesterol trafficking in mammalian cells.

2.5.4. Cholesterol efflux

Cholesterol synthesized in the ER has to move to towards the plasma membrane
against a steep concentration gradient (Prinz, 2002; Soccio and Breslow et al., 2004). This
movement may occur through either by a vesicular or a non-vesicular transport. Data
supporting the idea of vesicular transport, involving the protein secretory pathway through the
Golgi, is that ATP depletion or low temperature rapidly inhibits cholesterol transport from the
ER to the plasma membrane. Nevertheless, brefeldin A treatment, which causes Golgi
disassembly and fusion with the ER, blocks protein secretion but only decreases cholesterol
transport to the plasma membrane slightly. Therefore, vesicular transport through the Golgi
may transfer some nascent cholesterol to the plasma membrane but it is not the major

pathway. As far as non-vesicular movement is concerned, there are data to support the idea
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that cytosolic proteins such as sterol carrier protein-2 (SCP-2) or caveolin are involved in the

process, but the precise role of either of these is inconclusive (Prinz, 2002).

Not only newly synthesized cholesterol but some precursors as well as other
biosynthetic sterols, — such as zymosterol, lathosterol or desmosterol — are shown to be
quickly targeted to the plasma membrane, becoming then available to extracellular acceptors
(Lusa et al., 2003). In yeast, Osh proteins have been implicated in sterol transport from ER to
plasma membrane, but rather than being sterol transporters, it was proposed that these
proteins influence sterol trafficking by affecting the ability of the plasma membrane to

sequester sterols (Sulivan et al., 2006).

When cholesterol accumulates in the plasma membrane it can not only be internalized
back towards organelles but also can be effluxed from cells in a specific
extracellular/intracellular scenario. Cellular cholesterol efflux is a critical event for cellular
cholesterol homeostasis as cells can alleviate the excess of cholesterol by its release from the
cell. Cholesterol efflux occurs by two distinct mechanisms (Yokoyama, 2005): (a) passive
diffusion, driven by the cholesterol gradient between the cell surface and the high density
lipoprotein (HDL) in contact with the cell surface, and (b) an apolipoprotein-mediated
pathway that generates nascent HDL particles, using mainly the apoA-I (which is synthesized

mostly in the liver) and phospholipids and cholesterol of peripheral cells as the substrates.

The ABC protein ABCA1, located mainly at the plasma membrane of peripheral cells,
plays an essential role in efflux process. Tangier Disease, a rare disease consisting in HDL
deficiency, is caused by defective mutations within the coding regions of the Abcal gene
(Oram, 2002). How ABCA1 mediates cholesterol efflux is under study. Some findings show
that ABCA1 gene expression is mainly controlled by transcription and by protein degradation.
For transcriptional control, the liver X receptors (LXRs) bind to oxidized derivatives of
cholesterol called oxysterols and form heterodimers with the retinoid X receptors (RXR),
which use retinoic acid as their natural ligand (Repa and Mangelsdorf, 2000). The
heterodimeric complex then becomes active in stimulating expression of the Abcal gene
(Venkateswaran et al., 2000) as well as of other genes involved in cellular sterol efflux
(Chawla et al., 2001). On the other hand, binding of ABCA1 with apolipoproteins stabilizes
ABCA1 against degradation (Yokoyama, 2005).
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As stated above, there exist a relationship between nascent cholesterol or stored
cholesterol and its efflux. The removal of cellular cholesterol by ApoA-I mobilizes certain
intracellular cholesterol pools and causes a decrease in ACAT activity in intact cells.
Moreover, blocking ACAT activity with specific inhibitors expands the cellular cholesterol
pool available for ApoA-I-mediated cholesterol efflux (Chang et al. 1997, Yamauchi et al.
2004).

Recent studies show that in macrophages, in addition to ABCAI transporter, ABCG1
mediates cellular cholesterol efflux to mature HDL by passive diffusion and results in a net
reduction in cellular cholesterol (Wang et al., 2004, Kennedy et al., 2005). It is thought that
ABCG]1 cooperates with ABCAT1 by further adding cellular lipids to the nascent particle,
which results in the maturation of HDL. In this sense, some recent data indicate that ABCA1
and ABCGI1 synergize to mediate cholesterol export to ApoA-I (Gelissen et al., 2006).
Targeted disruption of macrophage ABCA1 and ABCGI1 leads to a complete impediment of
cholesterol efflux in vitro, and an in vivo accelerated atherosclerosis (Yvan-Charvet et al.,

2007).

In cells of peripheral tissues, excess cellular cholesterol needs to be removed and
transported to the liver for reutilization and excretion. This process is collectively termed
reverse cholesterol transport, and is briefly represented in Figure 8. The HDL acts as the
major acceptor for cellular cholesterol released from the extrahepatic cells. The mature
globular HDLs transport CE to the liver, the adrenals glands, and other steroidogenic tissues.
At the surface of the liver cells and steroidogenic cells, the HDL is recognized by the HDL
receptor, named scavenger receptor type B class I (SRB1) (Krieger, 1999; Azhar and Reaven,
2002). The SRB1 mediates internalization of CE by a selective uptake process and thus CE
are hydrolyzed to free cholesterol. The compartment involved the CE hydrolysis that enter
through this pathway is not known but it does not involve NPCI1 (Xie et al., 2000). In the
liver, the HDL-derived cholesterol serves as an important precursor for bile acid synthesis; it
can also enter the bile duct, to be excreted from the body. As an example, SRB1 expression
correlates with biliary cholesterol secretion, in a not completely known manner (Harder et al.,
2007). In steroidogenic tissues, the HDL-derived cholesterol serves as an important precursor

for steroid hormone synthesis. HDL is recognized as an antiatherogenic lipoprotein; raising
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plasma HDL is a potential therapeutic goal for treating atherosclerotic cardiovascular disease

(Linsel-Nitschke and Tall, 2005).
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2.5.5. Regulation of cholesterol homeostasis

It is known that both the biosynthesis and uptake of cholesterol are well regulated by
feedback control. When cells accumulate excess sterols, the activity of HMGCR declines by
more than 90% and the number of LDLRs also decreases. In contrast, when intracellular
cholesterol is depleted the activity of this enzyme remains high and the cells express a large
number of LDLRs on their surface (Goldstein et al., 2006). Moreover HMGCR protein levels
are reduced by lipoprotein derived cholesterol. Indirect evidence from some reports (Brown
and Goldstein, 1975; Golstein and Brown 1984) suggested that the major mechanism for the
decrease of HMGCR and LDLR levels is a reduction in the mRNAs for these two proteins.
Some other experiments a time later indicated the presence of a transcription factor that
promotes expression of both proteins-associated genes. In 1990 it was located a 10-bp
sequence that was named the sterol regulatory element (SRE), thought to be target of the

unknown transcription factor (Smith et al., 1990).

In the process for understanding the genetic regulation of cholesterol homeostasis

Joseph L. Goldstein’s laboratory designed an antibody against a specific protein that contains

33



Pablo Rios Marco

in its sequence an SRE binding domain, which had been named as SRE binding protein
(SREBP). When they applied the antibody to cultured fibroblasts incubated with or without
exogenous cholesterol, in sterol-depleted cells the SREBP was located into the nucleus,
whereas in sterol-exposed cells it exhibited a different location consistent with ER membranes
(Wang et al., 1994). Two different SREBP proteins have been reported: SREBP-1, which has
two isoforms -la and -1c and SREBP-2. SREBP-1 has shown to be related with fatty acid
synthesis, while SREBP-2 regulates genes of cholesterol biosynthesis and uptake.

SREBP-2 has two different states that differ in molecular weight and location
(Yokoyama et al., 1993). The mature 60 KDa state, found in the nucleus, and a 125 KDa
protein, that is located in ER. Moreover, the 60KDa isoform correspond to the N-terminal
portion of the 125 KDa protein. The sequence of the unprocessed 125 KDa SREBP has shown
to contain the following elements: 1) an N-terminal fragment that contains a basic-helix-loop-
helix-leucine zipper domain (bHLH-Zip) 2) a 80 amino acid sequence containing two
membrane-spanning helices separated by a 30 amino acid hydrophilic sequence. 3) a ~550
amino acid sequenced named regulatory domain. The N-terminal bHLH-Zip domain and the
C terminal regulatory domain project into the cytosol whereas the 30-amino acid hydrophilic

loop is exposed to the lumen of ER (Fig. 9).

Some studies revealed that, for the processing of the inmature isoform towards
transcription factor 60 KDa peptide, two proteolytic cleavages are required (Sakai et al.,
1996) and these are done by two different proteases. The first protease cuts SREBPs at a
conserved leucine residue within the 30-amino acid luminal loop. This protease, called site-1
protease (S1P), separates the SREBPs into two halves but keeping the bHLH-Zip domain
associated with the membrane. After cleavage by S1P, a second protease, designated site-2
protease (S2P), clips the N-terminal fragment, releasing the bHLH-Zip domain from the
membrane. Interestingly, the active form these proteases are located at Golgi (Epenshade et
al., 1999), which suggests that SREBP needs to travel to this organelle for its maturation.
Because of that, the SREBP cleavage showed to need the involvement of a SREBP cleavage-
activating protein (SCAP). Fluorescence microscopy demonstrated that this protein was
localized to the ER in sterol-loaded cells, and it moves rapidly to the Golgi complex when
sterols are depleted. More specifically, there exist a Scap/SREBP complex that moves from

ER to Golgi in a sterol-sensitive fashion (Nohtufft et al., 1998) (Fig. 9).
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Figure 9. SREBP location pre/post protease cleavages. When sterol levels are high inside the cell,
unprocessed SREBP is located in ER with its regulatory and bHLH-Zip domains exposed to cytosol and SP1
cleavage domain towards ER lumen. When sterol levels are decreased, the complex SCAP/SREBP goes to Golgi
where proteases SP1 and SP2 cleave SREBP, releasing the mature transcription factor to the nucleus. Taken

from Brown and Goldstein, 2009.

But, how sterol regulates the SCAP/SREBP delivery to Golgi? For the understanding
of this process, a new protein came into scene — this is Insig, which stands for insulin-induced
gene (Diamond et al., 1993). Insig was identified as an SREBP-induced target gene in CHO
cells, so that is related with SREBP activation; there exist two Insig isoforms, Insig-1 and
Insig-2, being both required for sterols to retain the Scap/SREBP complex in the ER (Adams
et al., 2004). Scap binds to Insig only in the presence of sterols, either cholesterol or 25-
hidroxycholesterol (Yang et al., 2002; Adams et al., 2004). It was found that Scap has
different conformation when it is isolated from sterol-deprived cells when compared to sterol-
treated ones. Moreover, the conformational change involves arginine-503, belonging to a
hexapeptide MELADL, which resides in a loop located in Scap protein (Fig. 10.A).
Interestingly, the modulation of SCAP/SREBP complex delivery differs depending on the
kind of sterol, while cholesterol binds to Scap, oxysterols bind to Insig. Either of these facts
however entails binding of Scap and Insig so that MELADL peptide is not accessible to
proteins Cop II. The function of these proteins is to target MELADL and sequester
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Scap/SREBP towards Golgi, but only in low-sterol situation (figure 10.B). Cop
[I/Scap/SREBP vesicles are directed to Golgi where proteases SP1 and SP2 release SREBP
mature transcription factor that goes to nucleus to enhance expression on SRE-containing

genes such as HMGCR or LDLR.

Regarding proteins degradation, it has been described that when sterol levels are high
Scap has the ability to bind to HMGCR in ER. This binding promotes HMGCR ubiquitination
and consequent degradation, so that cholesterol biosynthesis is both, transcriptionally and

enzymatically impeded in high sterol context (Goldstein et al., 2006).

As summary, once the capacity of the plasma membrane and other compartments to
absorb cholesterol is exceeded, cholesterol is transported back to the ER, where it is esterified
by ACAT, regulates HMGCR proteolysis and inhibits the proteolytic processing of sterol
SREBP-2, which is required for the expression of sterol-regulated genes (Goldstein et al.,
2006; Sato, 2010). The main regulatory mechanism is the sensing of intracellular cholesterol
in the ER by the protein SCAP. In the absence of cholesterol the mature SREBP-2 migrates to
the nucleus and acts as a transcription factor to stimulating the transcription of many genes

(Sato, 2010), among which are those encoding LDLR and HMGCR.
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Figure 10. SCAP structure and conformational change. A. A hamster SCAP sequence and topology, showing
MELADL hexapeptide. B. When cholesterol binds to SCAP or oxysterol binds to Insig, MELADL is exposed to
Cop II proteins, which transport the complex to Golgi. From Brown and Goldstein, 2009.
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3. Objectives

Lipid modulation is acquiring importance in cancer treatment and thence membrane-
targeted lipid analogs are currently used in clinical trials either directly or as a complement of
cancer therapy. As exposed under Introduction, there is some background that links APLs
with cholesterol metabolism. Since cholesterol has shown to be determinant in cancer
progression, we propose that its metabolism is a target of lipid analogs with antitumoral
activity. The development of APLs and their use in clinics, evidence the need for an
understanding of the mechanism by which these agents exert their action and how the sterols

are related with its biologic activity.

The main objective of this thesis is to deeply study the actions of APLs on cholesterol

metabolism and homeostasis, focusing in events like its synthesis, location, trafficking and

efflux.
To achieve this aim, we have proposed the following specific objectives:

1) Test the antiproliferative activity of APLs on tumor human cell lines HepG2 and U-87

MG and make a comparative study of their inhibitory potencies.

2) Determine the actions of APLs on cell cycle and related processes such as autophagy;

detect if treatment with lipid analogs causes any ultrastructural anomalies.
3) Perform studies of cholesterol biosynthesis and accumulation inside the cells.

4) Establish the effects of APLs on cholesterol internalization, transport and

esterification.

5) Determine how APLs modulate raft micro-domains by its isolation with a free-
detergent method and subsequent study of its lipid profile; analyze the
cholesterol/sphingolipid ratio.
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6) Study lipid efflux from cells to extracellular medium in presence of APLs and probe

how lipofilic acceptors could modulate this activity.

7) Perform lipid transcriptome and proteome studies to check the effect of APLs on

cholesterol anabolism, catabolism, internalization and efflux.

8) Study the modulation of PI3K/AKT signaling survival pathway by APLs through
phosphoinositides levels and AKT phosphorylation; test the reversibility of the

process by cholesterol replenishment.
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4. Results

4.1. Hexadecylphosphocholine alters nonvesicular cholesterol traffic from
the plasma membrane to endoplasmic reticulum and inhibits the synthesis

of sphingomyelin in HepG2 cells

In this first work we focused in the APL analogue miltefosine or HePC and the effect
of this compound in the intracellular cholesterol trafficking inside the hepatoma HepG2 cell
line. Cholesterol sensing mechanisms are mainly located in the ER, where excess of cellular
cholesterol is converted to cholesteryl esters by the enzyme ACAT. We have centered this

study in cholesterol and sphingolipid synthesis and transport.

Firstly, we labeled cells with radioactive acetate, which is incorporated to cholesterol
and biosynthesic intermediates through the cholesterogenic pathway. We detected that HePC
promoted an increase in some intermediates of cholesterol biosynthesis as desmosterol and 7-
dehydrocholesterol, suggesting a cholesterol biosynthetic activation. On the contrary, we
found that sphingomyelin and ceramide synthesis were significantly inhibited in HepG2 cells

after exposure to HePC.

Radiolabeling and tracking of cellular cholesterol helped us to analyze the effect of
HePC on cholesterol transport in three different directions: 1) LDL-cholesterol uptake,
internalization and transport back to plasma membrane, 2) Transport of newly synthetized
cholesterol from ER to plasma membrane, 3) direct cholesterol transport from plasma
membrane to ER. HePC produced a noteworthy inhibition of the last kind of transport (from
plasma membrane to ER), but no significant effect for either of the two others. Moreover,
experiments performed in ATP depleted cells show that HePC inhibits cholesterol transport
from plasma membrane to ER with similar accuracy than with available ATP. This last result
suggests that this agent alters only the non vesicular energy-independent cholesterol traffic
without altering the vesicular transport. In addition, hydrolysis of plasma membrane
sphingomyelin by exogenously added sphingomyelinase resulted in enhanced plasma-
membrane cholesterol esterification, but this treatment did not prevent the inhibition in

cholesteryl ester formation caused by HePC.
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Summarizing, HePC affects significantly the cholesterol and sphingomyelin
homeostasis in HepG2 cells. This alteration could be related with the antiproliferative activity
reported previously by our research group and others. Moreover, since sphingomyelin and
cholesterol are major lipid constituents of membrane raft microdomains, these results suggest
that HePC could disturb membrane raft integrity and thence its functionality and so, further

studies on this direction need to be done.
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The synthetic lipid analogue, hexadecylphosphocholine is an antitumoral and antileishmanial agent
that acts on cell membranes and can induce apoptosis. We have previously investigated the effect of
hexadecylphosphocholine on the biosynthesis and intracellular transport of cholesterol in the human
hepatoma HepG2 cell line. Here we show that the traffic of endocytosed-cholesterol from LDL to the
plasma membrane and the transport of newly synthesized cholesterol from the endoplasmic retic-
ulum to the plasma membrane were unaffected by alkylphosphocholine exposure. On the contrary,
cholesterol traffic from the plasma membrane to the endoplasmic reticulum was drastically interrupted
after 1h of cell exposition to HePC and, consequently, the intracellular esterification of cholesterol
was substantially decreased. Our results also demonstrate that this alkylphosphocholine exclusively
affected the nonvesicular, energy-independent cholesterol traffic, without altering the vesicular trans-
port.In addition, hydrolysis of plasma membrane sphingomyelin by exogenously added sphingomyelinase
resulted in enhanced plasma-membrane cholesterol esterification, but sphingomyelinase treatment did
not prevent the inhibition in cholesteryl ester formation caused by hexadecylphosphocholine. We also
found that sphingomyelin synthesis was significantly inhibited in HepG2 cells after exposure to hex-
adecylphosphocholine. Since sphingomyelin and cholesterol are major lipid constituents of membrane
raft microdomains, these results suggest that hexadecylphosphocholine could disturb membrane raft
integrity and thence its functionality.
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pathways and the induction of apoptosis (Soto and Soto, 2006;
Rakotomanga et al., 2007).

HePC has amphiphilic properties and thus interacts with the
cell membrane and rapidly reaches other subcellular membranes

1. Introduction

Alkylphosphocholines (APC) are a new class of antitumour
agents that have been shown to induce apoptosis in several tumour

cells. Hexadecylphosphocholine (HePC) is a lipid analogue belong-
ing to the APC group which exerts antiproliferative activity against
a broad spectrum of established tumour cell lines (Wieder et al.,
1998). This lipid analogue also shows potent leishmanicidal activ-
ity as a consequence of its interference in the parasite’s metabolic

Abbreviations: APC, alkylphosphocholine; CE, cholesteryl esters; CL,
cholesteryl linoleate; ER, endoplasmic reticulum; FBS, fetal bovine serum; HePC,
hexadecylphosphocholine; HMG, 3-hydroxy-3-methylglutaryl; 20HpBCD, 2-
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(Berkovic et al., 2003), thus being able to affect cell metabolism
at different levels. We reported in previous studies that HePC
interferes with phosphatidylcholine (PC) synthesis in HepG2 cells
via both CDP-choline (Jiménez-Lopez et al., 2002) and phos-
phatidylethanolamine methylation (Jiménez-Lopez et al., 2004).
Recently, we have established that HePC also alters intracellular
cholesterol metabolism leading to an increased uptake, synthesis
and accumulation of cholesterol