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Joaqúın Derrac Rus

PARA OPTAR AL GRADO DE DOCTOR EN INFORMTICA

Febrero de 2013

DIRECTORES

Francisco Herrera Triguero y Salvador Garćıa López
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Computing Techniques”, que presenta D. Joaqúın Derrac Rus para optar al grado de doctor, ha sido
realizada dentro del Programa Oficial de Doctorado en “Ciencias de la Computación y Tecnoloǵıa
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Chapter I

PhD dissertation

1. Introduction

In recent years, there has been a manifold increase in the amount of the data that applica-
tions in industry, medicine, economy and many other areas of research and business must manage.
Researchers and practitioners in many application fields have an increasing necessity of new devel-
opments to gather, analyze and understand information which is continually stored in large data
bases. The management and analysis of such a amount of data is beyond of human possibilities,
and thus, it is necessary to rely in automatic procedures to acquire valuable knowledge, usually
hidden in this contemporary data deluge [BHS09].

Therefore, the analysis of data and the extraction of useful knowledge has become a mandatory
task - and a difficult challenge - in many business and research processes nowadays. This process,
formally known as Knowledge Discovery in Databases (KDD) [FPSS96, Han05] represents the task
of obtaining new knowledge from large amounts of data. These new pieces of knowledge should be
useful and valid, and must make sense for the specific problem tackled in each scenario.

The KDD process is generally defined as a succession of five stages:

• Selection of the target data to which the KDD process will be applied.

• Preprocessing of the data, including several phases of cleaning and reduction to ease the
procedures of the subsequent stages.

• Transforming the data into an structured representation; a representation as accurate as
possible of the knowledge of the problem stored in the initial data.

• Construction of new knowledge patterns, through the analysis of the representations built in
the former step.

• Visualization of the data, describing and understanding the new patterns obtained in a way
in which they could be useful for the practitioners.

Following these stages, the KDD process includes a large number of computer science and
artificial intelligence techniques and methodologies to perform numerous tasks in each step. Its
central stages are also defined by the term of data mining [TSK05, WFH11]. Data mining is

1



2 Chapter I. PhD dissertation

the discipline focused on the identification of patterns and the prediction of relationships from
data. Usually, its techniques can be categorized as descriptive (when they are applied to discover
interesting patterns among data) or predictive ones (when the behavior of a model is predicted
through the analysis of the data available).

Both descriptive and predictive process of data mining are conducted by machine learning
algorithms [MD01, Alp10, WFH11], introduced as mechanisms capable of induce knowledge from
the available data. Such knowledge induction is desirable in problems with no efficient algorithmic
solution, vaguely defined, or informally specified.

The use of machine learning algorithms is two-fold: They can be used just as black boxes,
obtaining as a result only the output of the models. However, some of them can also be used as
a tool of knowledge representation, building a symbolic knowledge structure aiming to be useful
from the point of view of the functionality, but also from the perspective of interpretability.

Depending on their objectives, machine learning algorithms can be classified on two different
areas:

• Supervised learning: Algorithms focused on using a set of labeled examples, describing
information of several input variables, to predict the values of some output variables. The
most common categories of supervised learning algorithms are classification (where the vari-
able to predict is discrete; for example red, green, blue) and regression (where the variable to
predict is continuous; for example: temperature, weight, . . .).

• Unsupervised learning: Algorithms focused on searching for new patterns and relation-
ships over unlabeled data. The most common categories of unsupervised learning algorithms
are clustering (the process of splitting the data into several groups, with the examples belong-
ing to each group being as similar as possible among them) and association (the identification
of relationships from transactional data).

Classification methods can be defined as techniques that enable to learn how to categorize
elements into several predefined classes. A classifier receives a data set as input, denoted as training
set, and learns the classification model with it. In the validation process of the classifier, an extra
set of examples, not used in the learning process (the test set) is used in order to check the accuracy
of the classifier.

Generally, there are five ways of measuring the performance of a classifier:

• Accuracy: Confidence of the classifier, usually estimated as the percentage of test examples
correctly classified over the total.

• Efficiency: Time consumed by the model when classifying a test example.

• Interpretability: Clarity and credibility, from the human point of view, of the classification
model. The higher the interpretability of the produced model is, the more knowledge can be
extracted from it.

• Learning speed: Time required by the machine learning algorithm to build the clasiffication
model.

• Robustness: Minimum number of examples needed to obtain a precise and reliable classifi-
cation model.
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There are many different approaches proposed in the literature to perform classification tasks,
including statistical techniques, discriminant functions, neural networks, decision trees, support
vector machines and many more. Among them, there is a subclass of algorithms which can be
highlighted by its unique ability of performing the learning process using directly the examples
provided in the training set: the instance based learning algorithms [AKA91].

The most well-known instance based algorithm is the nearest neighbor classifier. Its is a non-
parametric method for pattern classification [DHS00, HTF09]. Introduced by Fix and Hodges in
1951 [FH51], the nearest neighbor classifier gained considerable popularity after 1967, when some
of its formal properties were described by Cover and Hart [CH67]. Cover’s work was the key mile-
stone of a subject which now has become a lively research field for many researchers in pattern
recognition and machine learning areas: the study and development of one of the top ten algorithms
in data mining [WK09].

The nearest neighbor classifier is also an important example of lazy learning algorithms [Aha97].
Lazy learning algorithms are techniques which, in contrast with the rest of machine learning ap-
proaches, do not built a model in its training phase. They can be defined by three main properties:

• They defer the processing of the training data until the test phase. Thus, usually there is no
training phase when pure lazy learning algorithms are used.

• Its output is obtained as a combination of their stored data. Hence, regardless the absence of
a model, the training data is still a key element in the performance of lazy learning algorithms.

• The information obtained when processing the output is discarded. Pure lazy learning algo-
rithms do not learn anything from previous classification steps.

As a lazy learning algorithm, the nearest neighbor classifier has inherited many beneficial traits,
including its relative simplicity, its adaptability to many different general problems, its flexibility
to be optimized, for example, by modifying its similarity function, the lack of the necessity of a
training phase and the capability of incorporating new knowledge to the classifier easily (this step,
immediate for nearest neighbor classifiers, usually implies to rebuild a new model for most machine
learning approaches). However, the nearest neighbor classifier also suffers from several problems:

• In test phase is computationally costly, since it has to analyze the whole training set every
time a new instance is classified.

• In its original definition, it is not able to process nominal data. Also, it cannot handle missing
values (incomplete information in the instances of the training data).

• It lacks of interpretability capabilities, since there is no model to explain how the classification
is performed.

• Is not tolerant to noise. Noisy (incorrect) examples may affect the behavior of the classifier
if there are many in the surrounding of the test instance.

• It is very sensitive with respect to the similarity measure chosen to discriminate between the
instances.

• It is affected by the presence of irrelevant attributes describing the data.
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• With most of the common similarity measures, it is affected by the so-called curse of di-
mensionality, which means that the nearest neighbor classifier does not measure similarities
in a proper way when the dimensionality of the data growths (that is, when the number of
attributes describing the training data is too large).

Many approaches have been developed in the last decades in order to tackle these issues. A
remarkable number of them are based on Soft Computing approaches, incorporating the use of
evolutionary computation, approximate reasoning, fuzzy sets and so on to the enhancement of the
nearest neighbor classifier.

The present thesis is developed following this path. Advanced models for nearest neighbor
classification will be designed, based on Soft Computing techniques. A remarkable number of
them will be based on data preprocessing and data reduction techniques, both working over the
training data instead on just modifying the nearest neighbor classifier. To define them, evolutionary
algorithms, fuzzy rough sets and fuzzy sets will be incorporated as useful tools for improving the
performance of the classifier, in the sense of increasing the accuracy of the classification and also
in the sense of improving the efficiency of the test classification phase.

After this introduction, the next section (Section 2.) is devoted to describe in detail three main
areas related: Data preprocessing and data reduction for nearest neighbor classification (Section
2.1), evolutionary algorithms and coevolution (Section 2.2) and fuzzy sets and fuzzy rough sets
(Section 2.3). All of them are fundamental areas for defining and describing the proposals presented
as a results of this thesis.

Next, the justification of this memory will be given in Section 3., describing the open problems
addressed. The objectives pursued when tackling them are described in Section 4.. Section 5.
presents a summary on the works that compose this memory. A joint discussion of results is
provided in Section 6., showing the connection between each of the objectives and how have been
reached each of them. A summary of the conclusions drawn is provided in Section 7.. Finally, in
Section 8. we point out several open future lines of work derived from the results achieved.

The second part of the memory is constituted by seven publications, organized into four sections
(related with the four sections in which the results and conclusions are reported). These publications
are the following:

• Evolutionary Algorithms in Prototype Reduction:

– A Survey on Evolutionary Instance Selection and Generation.

• Coevolutionary Algorithms for Enhancing Nearest Neighbor Classification:

– IFS-CoCo: Instance and Feature Selection Based on Cooperative Coevolution With
Nearest Neighbor Rule.

– Integrating Instance Selection, Instance Weighting, and Feature Weighting for Nearest
Neighbor Classifiers by Coevolutionary Algorithms.

• Fuzzy Rough Sets and Evolutionary Algorithms in Nearest Neighbor Classification:

– Enhancing Evolutionary Instance Selection Algorithms by Means of Fuzzy Rough Set
Based Feature Selection.

– On the Use of Evolutionary Feature Selection for Improving Fuzzy Rough Set Based
Prototype Selection.
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• Fuzzy Nearest Neighbor Classification:

– Fuzzy Nearest Neighbor Algorithms: Taxonomy, Experimental analysis and Prospects.

– EIVF-kNN: An Evolutionary Interval Valued Fuzzy K-Nearest Neighbors Classifier.

Introducción

En los últimos años, se ha producido un gran incremento en la cantidad de datos que se deben
procesar en aplicaciones en industria, medicina, economa y muchas otras áreas. Los investigadores
y profesionales de muchas áreas están encontrando una necesidad creciente de nuevos desarrollos
para recolectar, analizar y entender la información que se almacena continuamente en grandes bases
de datos. La gestión y el análisis de esta cantidad de datos está por encima de las capacidades hu-
manas y, por tanto, es necesario confiar en procedimientos automáticos para adquirir conocimientos
valiosos, normalmente ocultos en esta avalancha de datos contemporánea. [BHS09].

Por ello, el análisis de datos y la extracción de conocimiento útil se ha convertido en una
tarea obligada - y en un difcil desafo - para muchos procesos de investigación y de negocio en la
actualidad. Este proceso, conocido formalmente como Descubrimiento de Conocimiento en Bases
de Datos (DCBD) [FPSS96, Han05] comprende la tarea de obtener nuevo conocimiento a partir de
grandes cantidades de datos. Estos nuevos fragmentos de conocimiento deben ser útiles y válidos,
y deben tener sentido para el problema especfico abordado.

El proceso de DCDB se define generalmente como una sucesión de cinco etapas:

• Selección de los datos sobre los que se aplicará el proceso de DCDB.

• Preprocesamiento de los datos, incluyendo varias fases de limpieza y reducción para facilitar
el desarrollo de las etapas subsecuentes.

• Transformación de los datos en una representación estructurada; una representación del
conocimiento del problema almacenado en los datos iniciales tan precisa como sea posible.

• Construcción de nuevos patrones de conocimiento, a partir del análisis de la representación
construida en el paso anterior.

• Visualización de los datos, describiendo y comprendiendo los patrones obtenidos, de forma
que puedan ser útiles para los usuarios.

Siguiendo estas etapas, el proceso de DCDB incluye un gran número de técnicas y metodologas
de las ciencias de la computación y la inteligencia artificial, para abordar numerosas tareas en cada
paso. Sus etapas centrales también son definidas mediante el término minera de datos [TSK05,
WFH11]. La minera de datos es la disciplina centrada en la identificación de patrones y la predicción
de relaciones entre los datos. Normalmente, sus técnicas se pueden clasificar como descriptivas
(cuando son aplicadas a descubrir patrones interesantes entre los datos) o predictivas (cuando se
predice el comportamiento de un modelo a través del análisis de los datos disponibles).

Los procesos descriptivos y predictivos de la minera de datos son conducidos mediante algoritmos
de aprendizaje automático [MD01, Alp10, WFH11], introducidos como mecanismos capaces de
inducir conocimiento a partir de datos. Dicha inducción de conocimiento es deseable en problemas
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que no dispongan de una solución algortmica eficiente, definidos vagamente, o especificados de
forma informal.

El uso de algoritmos de aprendizaje automático presenta dos vertientes: Pueden ser empleados
simplemente como cajas negras, obteniéndose como resultado tan solo las salidas de los modelos.
Sin embargo, algunos algoritmos pueden ser empleados como herramientas de representación de
conocimiento, construyendo una estructura simbólica de conocimiento dispuesta a ser útil desde al
punto de vista de la funcionalidad, pero también desde la perspectiva de la interpretabilidad.

Dependiendo de sus objetivos, los algoritmos de aprendizaje automático pueden ser clasificados
en dos áreas diferentes:

• Aprendizaje supervisado: Son algoritmos centrados en emplear un conjunto de ejemplos
etiquetados, describiendo información de varias variables de entrada, para predecir el valor de
varias variables de salida. La categoras más comunes de algoritmos de aprendizaje supervisado
son clasificación (donde la variable a predecir es discreta; por ejemplo rojo, verde, azul) y
regresión (donde la variable a predecir es continua; por ejemplo: temperatura, peso . . .

• Aprendizaje no supervisado: Son algoritmos centrados en buscar nuevos patrones y rela-
ciones en datos no etiquetados. La categoras más comunes de algoritmos de aprendizaje no
supervisado son agrupamiento (el proceso de separar datos en varios grupos, manteniendo
ejemplos de los mismos grupos tan similares entre s como sea posible) y asociación (la iden-
tificación de relaciones en datos transaccionales).

Los métodos de clasificación se pueden definir como técnicas que permiten aprender como cate-
gorizar elementos dentro de varias clases predefinidas. Un clasificador recibe un conjunto de datos
como entrada, definido como conjunto de entrenamiento, y aprende un modelo de clasificación con
él. En el proceso de validación del clasificador, se emplea un conjunto adicional de ejemplos, no
contemplados durante el proceso de aprendizaje (el conjunto de test) para comprobar la precisión
del clasificador.

Generalmente, existen cinco maneras de medir el rendimiento de un clasificador:

• Precisión: Confianza del clasificador, normalmente estimada como el porcentaje de ejemplos
de test correctamente clasificados sobre el total.

• Eficiencia: Tiempo consumido por el clasificador a la hora de clasificar un ejemplo de test.

• Interpretabilidad: Claridad y credibilidad, desde el punto de vista humano, del modelo de
clasificación. Cuanto más alta sea la interpretabilidad del modelo producido, mayor cantidad
de conocimiento podrá ser extrada de él.

• Velocidad de aprendizaje: Tiempo requerido por el algoritmo de aprendizaje automático
para construir el modelo de clasificación.

• Robustez: Número mnimo de ejemplos necesarios para obtener un modelo de clasificación
preciso y fiable.

En la literatura existen muchas propuestas diferentes para la realización de tareas de clasi-
ficación, incluyendo técnicas estadsticas, funciones discriminantes, redes neuronales, árboles de
decisión, máquinas de vectores soporte y muchas otras. Entre ellas, existe una subclase de al-
goritmos que merece ser destacada por su habilidad única de realizar el proceso de aprendizaje
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directamente a partir de los ejemplos incluidos en el conjunto de entrenamiento: los algoritmos de
aprendizaje basados en instancias [AKA91].

El clasificador del vecino más cercano es el algoritmo basado en instancias más conocido. Es
un método no paramétrico de clasificación de patrones [DHS00, HTF09]. Introducido por Fix y
Hodges en 1951 [FH51], el clasificador del vecino más cercano adquirió una popularidad considerable
tras 1967, cuando varias de sus propiedades formales fueron descritas por Cover y Hart [CH67].
El trabajo de Cover fue la piedra angular de una materia que ahora se ha convertido en un vivo
campo de investigación para muchos investigadores de las áreas de reconocimiento de patrones y
aprendizaje automático: el estudio y desarrollo de uno de los diez algoritmos más importantes en
minera de datos [WK09].

El clasificador del vecino más cercano es también un importante ejemplo de algoritmos de
aprendizaje perezoso. Los algoritmos de aprendizaje perezoso son técnicas que, a diferencia del
resto de técnicas de aprendizaje automático, no construyen un clasificador durante su fase de
entrenamiento. Pueden ser definidos mediante tres propiedades:

• Retrasan el procesamiento de los datos de entrenamiento hasta la fase de test. Por tanto, en
los modelos de aprendizaje perezoso puro no hay fase de entrenamiento.

• Su salida es obtenida como una combinación de los datos obtenidos. Por eso, a pesar de
ausencia de un modelo, los datos de entrenamiento siguen siendo un elemento clave en el
rendimiento de los algoritmos de aprendizaje perezoso.

• La información obtenida al procesar la salida se descarta. Los algoritmos de aprendizaje
perezoso puro no aprenden nada de pasos previos del proceso de clasificación.

Como algoritmo de aprendizaje perezoso, el clasificador del vecino más cercano ha heredado
muchos rasgos beneficiosos, incluyendo su relativa simplicidad, su adaptabilidad a diferentes prob-
lemas generales, su flexibilidad a la hora de ser optimizado, por ejemplo, mediante la optimización
de su función de similaridad, la no necesidad de un proceso de entrenamiento y la capacidad de
poder incorporar nuevo conocimiento al clasificador de forma sencilla (este paso, inmediato en el
caso del clasificador del vecino más cercano, normalmente implica la reconstrucción de un nuevo
modelo para la mayora de métodos de aprendizaje automático). Pese a todo, el clasificador del
vecino más cercano también sufre debido a varios problemas:

• Es computacionalmente costoso en la fase de test, dado que debe analizar el conjunto de
entrenamiento completo cada vez que una nueva instancia es clasificada.

• En su definición original, no es capaz de procesar datos nominales. Además, tampoco puede
manejar valores perdidos (información incompleta en los datos de entrenamiento).

• No dispone de capacidades de interpretabilidad, dado que no hay un modelo para explicar
cómo se ha realizado la clasificación.

• No es tolerante al ruido. Los ejemplos ruidosos (incorrectos) pueden afectar al compor-
tamiento del clasificador si hay muchas instancias incorrectas en las proximidades de la in-
stancia de test.

• Es muy sensible con respecto a la medida de similaridad escogida para discriminar entre las
instancias.
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• Se ve afectado por la presencia de atributos irrelevantes describiendo los datos.

• Con la mayora de las medidas de similaridad comunes, se ve afectado por la, as llamada,
maldición de la dimensionalidad, lo que significa que el clasificador del vecino más cercano
no mide de forma correcta la similaridad entre las instancias cuando la dimensionalidad de
los datos crece demasiado (es decir, cuando el número de atributos describiendo los datos es
demasiado grande).

En las últimas décadas se han desarrollado muchas propuestas para abordar estos problemas.
Un número destacable de ellas están basadas en técnicas de Computación Flexible, incorporando
el uso de la computación evolutiva, el razonamiento aproximando, los conjuntos difusos y otras
técnicas en la mejora del clasificador del vecino más cercano.

La presente tesis de desarrolla siguiendo este camino. Se diseñarán modelos avanzados para
clasificación del vecino más cercano, basado en técnicas de Computación Flexible. Un número
destacable de ellas están basadas en técnicas de preprocesamiento y reducción de datos, trabajando
sobre los datos de entrenamiento en lugar de simplemente modificar el clasificador del vecino más
cercano. Algoritmos evolutivos, conjuntos rugosos difusos y conjuntos difusos seran incorporados
como herramientas útiles a la hora de definir estas técnicas para la mejora del rendimiento del
clasificador, en el sentido de incrementar la precisión de la clasificación y de mejorar su eficiencia
en la fase de test.

Tras esta introducción, la siguiente sección (Sección 2.) está dedicada a describir en detalle tres
principales áreas relacionadas: Preprocesamiento y reducción de datos para clasificación del vecino
más cercano (Sección 2.1), algoritmos evolutivos y coevolución (Sección 2.2) y conjuntos difusos y
conjuntos rugosos difusos (Sección 2.3). Todas ellas son áreas fundamentales para definir y describir
las propuestas presentadas como resultado de esta tesis.

Después, la justificación de esta memoria se presenta en la Sección 3., describiendo los problemas
abiertos abordados. Los objetivos perseguidos al abordar dichos problemas son descritos en la
Sección 4.. La Sección 5. presenta un resumen de los trabajos que componen esta memoria. Se
aporta una discusión conjunta de resultados en la Sección 6., mostrando la conexión entre cada
uno de los objetivos y como ha sido alcanzado cada uno de ellos. En la Sección 7. se incluye un
resumen de las conclusiones alcanzadas. Finalmente, en la Sección 8. se destacan varias lneas de
trabajo futuro abiertas, derivadas de los resultados alcanzados.

La segunda parte de la memoria se constituye de siete publicaciones, organizadas en cuatro
secciones (relacionadas con las cuatros secciones en que los resultados y conclusiones son mostrados).
Estas publicaciones son las siguientes:

• Algoritmos evolutivos en reducción de prototipos:

– A Survey on Evolutionary Instance Selection and Generation.

• Algoritmos coevolutivos para la mejora de la clasificación del vecino más cercano:

– IFS-CoCo: Instance and Feature Selection Based on Cooperative Coevolution With
Nearest Neighbor Rule.

– Integrating Instance Selection, Instance Weighting, and Feature Weighting for Nearest
Neighbor Classifiers by Coevolutionary Algorithms.

• Conjuntos rugosos difusos y algoritmos evolutivos en la clasificación del vecino más cercano:
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– Enhancing Evolutionary Instance Selection Algorithms by Means of Fuzzy Rough Set
Based Feature Selection.

– On the Use of Evolutionary Feature Selection for Improving Fuzzy Rough Set Based
Prototype Selection.

• Clasificación del vecino más cercano difusa:

– Fuzzy Nearest Neighbor Algorithms: Taxonomy, Experimental analysis and Prospects.

– EIVF-kNN: An Evolutionary Interval Valued Fuzzy K-Nearest Neighbors Classifier.

2. Preliminaries

Three major fields in machine learning and Soft Computing are presented in this section, as pre-
liminary background on the topics in which the thesis are elaborated. These fields are data prepro-
cessing and data reduction for nearest neighbor classification (Section 2.1), evolutionary algorithms
and coevolution (Section 2.2) and fuzzy sets and fuzzy rough sets (Section 2.3)

2.1 Data preprocessing for nearest neighbor classification

The preparation of the data that composes the training set [Pyl99] is a capital issue in the perfor-
mance of nearest neighbor classifiers. Obviously, the more representative the training data would
be, the more accurate the nearest neighbor rule will perform. However, the analysis on the quality
of the training data does not have to be limited to the process of its acquisition.

Data preprocessing techniques play a crucial role in the preparation, adjustment and enhance-
ment of the performance of nearest neighbor classifiers. Working on the initial data available, these
techniques can be applied to tackle several common problems, such as the presence of harmful data.

Regardless of its representativity, real-world data poses a challenge for machine learning al-
gorithms, including nearest neighbor classifiers. Noisy data, duplicate or inconsistent instances,
outliers, missing or incomplete instances, and simply erroneous data are some examples of the dif-
ficulties that may be overcome by introducing data preparation techniques. Moreover, they can be
used to reduce the size of the training set by discarding irrelevant data, which will help to improve
the performance of the classifier with respect to its efficiency.

Data reduction is one of the most successful ways of performing data preparation for nearest
neighbor classifiers. This field encloses several different techniques, being the most remarkable the
following:

• Instance selection: The selection of the most representative instances in training data
[LM01]. Instance selection has been the focus of many research approaches in the last decades,
given its capabilities of improving the performance of classification algorithms thorough the
simultaneous reduction of the training set size and the removal of noisy and irrelevant ex-
amples. Instance selection approaches can be classified as training set selection techniques
(instance selection for training sets used in classifiers’ models construction) or prototype se-
lection techniques (instance selection for selecting prototypes for nearest neighbor classifiers).

• Feature selection: The selection of the most representative attributes in the domain of
the problem [LM07]. Feature selection is a very interesting data reduction technique, since
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it allows the classification model to focus on an specific subset of features, increasing its
generality and also its efficiency due to the reduction of the number of attributes per instance
to process. Furthermore, it also helps to deal with the curse of dimensionality in nearest
neighbor classification.

• Instance generation: Instance generation is an extension of instance selection which in
addition to selecting data can be applied to generate new artificial examples [TDGH12]. These
new examples can be very useful in the task of filling regions of the domain of the problem with
no representative examples in original data. Besides the creation of new examples, instance
generation focus is also on cleaning the initial training data, reducing substantially its original
size. Most of the existing approaches for instance generation are specifically developed for
improving nearest neighbor classifiers, composing the field of prototype generation.

• Feature generation: Also known as feature extraction [GGNZ06], this technique offers
several approaches for generating new attributes to describe the training data (which may
be added or not to some of the original ones). Here, the focus is to obtain a final subset of
features able to represent the data in a better suited way for the classification process. Linear
and non-linear transformations or statistical techniques such as principal component analysis
[Jol02] are classical examples of these techniques.

• Feature discretization: Discretization [GLS+12] is mainly considered as a preprocessing
tool for transforming quantitative data into qualitative data, enabling symbolic data mining
algorithms (for example, naive bayes [DP97]) to be applied over continuous data. However,
it can also be considered as a data reduction technique, given its capabilities for modifying
the representation of information, making it more concise and specific.

Among these techniques, prototype selection [GDCH12] and feature selection [LY05] can be
highlighted as the most useful ones for improving nearest neighbor classification. Particularly,
prototype selection is the most considered in the literature, featuring many different approaches
for the reduction and cleaning of the reference data.

Depending on the strategy followed, prototype selection methods can be categorized into three
classes: preservation methods, which aim to obtain a consistent subset from the training data,
ignoring the presence of noise; noise removal methods, which aim to remove noise both in the
boundary points (instances near to the decision boundaries) and in the inner points (instances far
from the decision boundaries), and hybrid methods, which perform both objectives simultaneously.
Although their performance may be different depending on the specific problem tackled, hybrid
methods generally shows an outstanding behavior when improving nearest neighbor classifier.

On the other hand, feature selection approaches can also be categorized by several properties.
The most usual, and the one by which categorize them here is depending on the mechanism followed
to assess the quality of a given subset of features. This enable us to define three categories of feature
selection methods:

• Filter methods, where the selection criterion is independent of the classifier. Instead, feature
subsets’ quality is evaluated through the use of descriptive functions, such as separability
measures [GE03].

• Wrapper methods, where the selection criterion is dependent on the classifier. The perfor-
mance of the classifier itself is considered to evaluate the quality of every subset of features
considered by the feature selection algorithm [KJ97].
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• Embedded methods, where the search for an optimal subset of features is built into the
classifier construction [SIL07].

Among these options, both wrapper and filter approaches are suitable for nearest neighbor
classifiers, although wrapper methods usually offer a better performance, at the cost of an increase
in the computational cost of the feature selection search procedure.

However, data reduction approaches are not the only preprocessing techniques of interest in
nearest neighbor classification. Weighting schemes, introduced as a way of refining the selection
schemes for features and instances, are often a very useful addition to nearest neighbor based
classifiers.

Similarly to selection techniques, weighting schemes can be applied both to instances and fea-
tures. Instance weighting schemes are usually introduced for modifying the importance of specific
training instances in the computation of the distance measure. Sometimes this is performed to the
whole data set, whereas other approaches apply the weights only when a test instance has been
presented to the classifier (performing an ad hoc local modification directly focused on the specific
test instance) [AMS97].

On the other hand, feature weighting schemes are also very popular in the task of improving
nearest neighbor classification [WAM97]. In this class of weighting algorithms, weights are assigned
to features in an attempt to relax the conditions of feature selection. Instead of just selecting or
removing a feature, feature weighting schemes allows to estimate a degree of importance of each
feature with respect to the classification process. This enables the classifier to consider information
about most of the features of the problem, but giving more importance to the most relevant ones.

2.2 Evolutionary algorithms and coevolution

Evolutionary algorithms are techniques inspired by natural computation, designed for tackling
problems of search and optimization [ES03, GJ05, PF09]. In the literature it is possible to find
many different evolutionary techniques, working all of them by representing a set of solutions, which
is evolved as the algorithm is carried out. During the evolution, different evolutionary operators are
applied to modify, combine and distribute the solutions, until the evolutionary process is stopped.

The introduction of evolutionary algorithms has been very beneficial in the task of enhancing
data mining algorithms [Fre02]. The good adaptability of evolutionary algorithms, which are able
to tackle both binary and real valued problems as long as they could be formulated as a search
procedure, is responsible of their use on upgrading and adjusting many different machine learning
algorithms. As an example, the task of adapting the parameters of the construction of a machine
learning model to a given problem can be formulated as a search process, and therefore it can be
performed by an evolutionary algorithm.

Of course, this also includes nearest neighbor classification. However, there is another use of
evolutionary algorithms for improving the nearest neighbor classifier, which is the application of
evolutionary data reduction techniques.

Among them, evolutionary instance selection is probably the field that deserves more importance
in nearest neighbor classification. The first works in this line were presented by Kuncheva et al. in
1995 and 1998 [Kun95, KB98]. They featured evolutionary prototype selection approaches, using
binary codification for representing the selection of prototypes of the training set (where 1 is used
to denote that a prototype is selected, whereas 0 denotes that it is not chosen).
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The field of evolutionary prototype selection was growing until 2003, when Cano et al. presented
a work [CHL03] in which the way in which the search of prototypes was updated. Their search
algorithms included the consideration of the reduction rate (the rate of prototypes not selected
from the training set) in the evaluations of solutions.

By incorporating a weighted average of the accuracy of the classifier (using a wrapper model) and
the reduction rate, the approaches presented in [CHL03] were able to balance both objectives along
the search, achieving an effective trade-off between accuracy in test classification and efficiency
of the classifier. Due to its significance, this approach has been adopted by many evolutionary
approaches for prototype selection until nowadays [GCH08, DGH10].

Another interesting branch of evolutionary computation is focused on coevolutionary algorithms.
Coevolution is the field of evolutionary computation which deals about algorithms able to man-
age two or more populations simultaneously. These population coexist, interacting between them
throughout all the evolutionary process.

Traditionally, coevolution has been used as a way of splitting the representation of a problem
into different parts, using a population to handle each one separately. This allows the algorithm to
follow a divide-and-conquer strategy, where each population can focus its efforts on a part of the
problem. If the solutions obtained by each population are properly joined, and the interaction be-
tween individuals is managed in a suitable way, the coevolutionary model can show an outstanding
performance in its application.

In coevolution, the interaction between individuals of different populations is key to the success
of the search. Coevolution is often divided into two classes, regarding the type of interaction
defined:

• Cooperative coevolution: Where each population evolves individuals representing a com-
ponent of the final solution. Full candidate solutions are obtained by joining an individual
chosen from each population. In this way, increases in a collaborative fitness value are shared
among individuals of all populations [PJ00].

• Competitive coevolution: Where the individuals of each population compete with each
other. This competition is usually represented by a decrease in the fitness value of an indi-
vidual when the fitness value of its antagonist increases [RB97].

Coevolution has given birth to several approaches to the construction of nearest neighbor classi-
fiers (for example [GP07]). Some of them also considers the inclusion of data reduction techniques,
such as [GPdCOB10], where evolutionary instance selection is carried out by means of a cooperative
coevolutionary algorithm. This is an example of how cooperative coevolution and data reduction
approaches can be applied to enhance the performance of nearest neighbor classifier, although it
would be possible to improve further the classifier, if coevolution is used to integrate several data
reduction approaches into the algorithm, instead of just sticking to instance selection.

2.3 Fuzzy sets and fuzzy rough sets

Fuzzy sets are sets whose elements have degrees of membership. They were introduced originally
by Zadeh [Zad65] in 1965, as an extension of the classical mathematical notion of set. In classical
set theory, the membership of elements in a set is defined in binary terms: an element either
belongs or does not belong to the set. By contrast, fuzzy set theory allows the definition of gradual
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membership of elements in a set. These gradual memberships can be described with the aid of a
membership function valued in the real unit interval [0, 1].

Fuzzy set theory can be incorporated into a wide range of domains in which information is
incomplete or imprecise. This includes classification problems, where many sources of uncertainty
can be identified: The decision rule that chooses the class to which every test instance belongs, the
inner mechanisms of many machine learning models, and even the definition of the classes of the
instances of the training set are potential sources of uncertainty.

Using the capability of fuzzy sets for modeling uncertainty, several approaches to the manage-
ment of uncertainty in nearest neighbor classification have been presented. Most of the early efforts
[Jow83, KGG85] have been directed to characterize the uncertainty on the memberships of the in-
stances to the classes. In contrast with the classical definition of the training set in classification,
where an instance belongs only to a single class, fuzzy sets theory allows to model the membership
of instances to several classes simultaneously, providing with more information about the status of
the instance to the classifier.

Lately, extensions and advanced versions of fuzzy sets have also been incorporated to address
the problem of managing uncertainty in many of the stages of the nearest neighbor classifier. The
most relevant examples includes possibilistic theory [Zad78], intuitionistic fuzzy sets [Ata86] and
type-2 fuzzy sets [Men07], all of them focuses on improving the capabilities of the classic nearest
neighbor rule.

On the other hand, rough set theory [Paw82] has been also introduced to tackle several data
mining problems. Generally speaking, rough sets provide with a formalism to define indiscernibility
relations between the information represented in a decision system; this is equivalent to highlight
inconsistencies in the training data of a classification problem with respect to the attributes that
define each instance and its class assigned.

Recently, fuzzy rough sets [CCK07] have been also introduced, in an effort to increase the
generality of classic rough sets based approaches. One of the drawbacks of the classic approaches is
that they must work over discrete data. This means that if it is necessary to apply such techniques
over continuous data, a discretization process [GLS+12] must be applied at a previous step.

Although discretization can be a good technique for solving this kind of issues, for nearest
neighbor classifiers the use of continuous values is still preferred due to the intrinsic characteristics
of most of the similarity measures used. Hence, fuzzy rough sets, the hybridization between rough
sets and fuzzy sets, are a better choice in this scenario.

Very recently, data reduction approaches based on fuzzy rough sets have been presented. In
[CJHS10] is presented a method for performing feature selection. This method, based on the
concept of discernibility, analyzes the instances of a training set, identifying which are discernible
(with respect to the elements belonging to the other classes of the domain), regarding the specific
set of features considered. In this way, a measure of the quality of a subset of features is defined,
enabling to select those features which are able to fully discern all the instances of the training set
(or, at least, discern them as much as possible). In this way, the pruned training set can maintain
its capabilities of separating instances belonging to different classes (or even increase them, by the
removal of noisy and irrelevant features), while its size is reduced.

Fuzzy rough sets based instance selection approaches can follow a similar approach. In [JC09],
the idea of the fuzzy-rough positive region is formulated, considering that instances on the border
of a class (that is, for which there exists a similar instance in another class) will have a small
membership value to the fuzzy-rough positive region compared to instances in the center of a class.



14 Chapter I. PhD dissertation

This is an orthogonal way of using fuzzy rough sets for measuring the quality of an instance as a
typical representative of its class. Thus, instances with a low quality can be determined as noise,
and can be discarded by the instance selection process.

Both theories, fuzzy sets and rough sets, can be used to improve the way in which nearest
neighbor classifiers, through the redefinition of some of their classical mechanisms or through the
use of data reduction. Both are examples of strategies worth to be explored in the definition of
advanced models for nearest neighbor classification, able to improve the behavior of the classic
nearest neighbor rule.

3. Justification

As it has been shown in the first section, Soft Computing techniques have arisen as useful tools for
improving the way in which the nearest neighbor rule behaves. Advanced evolutionary techniques
- such as cooperative coevolution - fuzzy rough sets and fuzzy sets have the potential of becoming
a helpful enhancement in the task of adjusting and improving the performance of nearest neighbor
classifiers.

If these techniques are to be adopted for developing data based approaches, the following key
issues should be addressed:

• Very recently, there is a important number of evolutionary proposals for instance selection
and generation. They should be analyzed in detail, given its flexibility and good performance
in both problems. Specifically, in the field of prototype selection, evolutionary approaches
are highlighted as the best branch of techniques of the current state of the art [GDCH12].

• However, most of the current evolutionary approaches only focus in performing a single data
preprocessing task. It would be very desirable to develop advanced evolutionary techniques,
able to develop several data preprocessing tasks at once, making the most of the existing
synergy between them.

This issue can be addressed with coevolutionary algorithms. Although the traditional way in
which coevolution and cooperative coevolution are presented is as tools for performing domain
decomposition (even when they are applied to instance selection problems [GPdCOB10]), it
turns out that cooperative coevolution can also be used to performing several data preprocess-
ing tasks simultaneously, providing that their solutions could be evaluated in an homogeneous
way.

• Another interesting trend would be to combine evolutionary algorithms with other outstand-
ing Soft Computing approaches for data preprocessing. In this point, fuzzy rough sets arise
as a successful technique, mostly in the field of feature selection. Their flexibility and low
computational cost (compared with evolutionary techniques, in general) makes them desir-
able for the task of developing hybrid data preprocessing approaches, combining both fuzzy
rough sets and evolutionary algorithms.

• Finally, outside of the data preprocessing area there are plenty of approaches for the enhance-
ment of the nearest neighbor rule. Among them, fuzzy nearest neighbor algorithms provide
with mechanisms for managing uncertainty within the classification process. Perhaps the
most useful trait of these approaches is the capability of defining the class of the prototypes
in the training data as membership functions, which allow to manage borderline, dubious and
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noise examples as members of several classes at once (with varying degrees of confidence).
Hence, a throughout study of this family of algorithms is essential in order to be able to
develop robust classifiers based on the nearest neighbor rule.

All this issues refers to a common topic, which is also the main theme of this thesis: The devel-
opment of advanced models for nearest neighbor classification with the support of Soft Computing
techniques.

4. Objectives

After studying the current state of all the areas described in the previous sections, it is possible
to focus on the actual objectives of the thesis. They will include the research and analysis of the
background fields described before, and the development of advanced models for nearest neighbor
classification based on their most promising properties of each field. More specifically, the objectives
are:

• To study the current state of the art in evolutionary instance selection. This would
mainly include evolutionary prototype selection, but evolutionary prototype generation and
evolutionary training set selection will be also covered, in order to have a full understanding
on the capabilities of evolutionary instance selection as a whole.

• To analyze cooperative coevolution and develop new cooperative coevolution data
preprocessing models. These models should make use of the best capabilities of cooperative
coevolution, incorporating several data preprocessing tasks into a single algorithm. Cooper-
ation between the different tasks should be the key element in the new models, enabling to
combine different strategies to obtain very accurate solutions at the end of the evolutionary
process.

• To incorporate fuzzy rough sets based preprocessing techniques. After studying
the last works published using fuzzy rough sets for data reduction, it would be interesting
incorporate them to a general evolutionary framework. Two possibilities are opened. The
first one deals with performing feature selection using fuzzy rough sets techniques, within
the framework of an evolutionary prototype selection model, whereas the second one would
be to develop the orthogonal model - a fuzzy rough sets based prototype selection algorithm
embedded into a feature selection evolutionary framework. A full study of both approaches
would help to characterize the usefulness of the combination of both evolutionary algorithms
and fuzzy rough sets, when improving nearest neighbor classification through data reduction.

• To review and contribute to the state of the art in fuzzy nearest neighbor clas-
sification. Given the possibilities opened with fuzzy nearest neighbor algorithms and their
unique capabilities, a last step in the development of Soft Computing based nearest neighbor
classifiers would be to analyze extensively the field of fuzzy nearest neighbor classification.
After a throughout analysis, the most promising characteristics of these techniques could be
chosen to develop a new technique, able to both show the possibilities of evolutionary algo-
rithms and fuzzy sets for building an advanced nearest neighbor classifier and to contribute
to the state of the art in fuzzy nearest neighbor classification.



16 Chapter I. PhD dissertation

5. Summary

This thesis is composed by seven works, organized into four different parts. Each part is devoted
to pursue one of the objectives described, contributing as a whole in the development of several
advanced nearest neighbor classifiers based on Soft Computing techniques.

• Evolutionary Algorithms in Prototype Reduction.

• Coevolutionary Algorithms for Enhancing Nearest Neighbor Classification

• Fuzzy Rough Sets and Evolutionary Algorithms in Nearest Neighbor Classification

• Fuzzy Nearest Neighbor Classification

This section shows a summary of the different proposals presented in this dissertation, describing
the associated publications and their main contents.

5.1 Evolutionary Algorithms in Prototype Reduction

The use of evolutionary algorithms to perform data reduction tasks has become an effective ap-
proach for improving the performance of machine learning techniques, including nearest neighbor
classifiers. Many proposals in the literature have shown that evolutionary algorithms obtain excel-
lent results in their application as instance selection and instance generation procedures.

A review has been performed, highlighting the features of evolutionary instance selection al-
gorithms (including evolutionary prototype selection and evolutionary training set selection ap-
proaches) and evolutionary instance generation algorithms.

The field of evolutionary prototype selection has been analyzed thoroughly, starting from the
very first proposals [Kun95, KB98] and analyzing the key milestone in the area, the work of Cano
et al. [CHL03]. Common characteristics of these and other proposals have also been reviewed,
including SSMA [GCH08], an evolutionary prototype selection algorithm which later would become
the best method in the state of the art in prototype selection [GDCH12].

The review also analyzed several hybrid methods, such as IGA [HLL02] and HGA [RGPC08]
(two methods that perform prototype and feature selection encoding both subsets in the solutions
of genetic algorithms) or GoCBR [AK09] (a hybrid method for prototype selection and feature
weighting).

Regarding training set selection, the review has covered several approaches for the enhancement
of decision trees (for example, [CHL07]), neural networks [INN01, Kim06] and to optimize the
results of subgroup discovery processes [CHLG08, CGH08].

With respect to evolutionary instance generation, various approaches have been analyzed in-
cluding those using different evolutionary techniques such as particle swarm optimization [KES01]
(PSO [NL09] and AMPSO [CGI09] prototype generation algorithms) and artificial immune systems
[Das98] (the PSCSA approach [Gar08]).

Finally, the review is concluded with the description of two challenging problems in machine
learning, the scaling up problem [PK99, DGW02] and the imbalance data sets problem [BPM04,
HG09] and the illustration of how evolutionary instance selection algorithms can be applied to
tackle them, by splitting the data through stratification in the former problem [CHL05] and by
performing evolutionary undersampling in the latter [GH09]
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The journal article associated to this part is:

• J. Derrac, S. Garćıa, F. Herrera, A Survey on Evolutionary Instance Selection and
Generation. International Journal of Applied Metaheuristic Computing 1:1, 60-92, doi:
10.4018/jamc.2010102604

5.2 Coevolutionary Algorithms for Enhancing Nearest Neighbor Classification

Cooperative coevolution has become a very useful tool in the development of advanced nearest
classification models. The two approaches that will be reviewed here are managed by cooperative
coevolutionary algorithms, helping to combine the efforts of several data preprocessing approaches
at once.

The first proposal features a combination of instance selection, feature selection and dual selec-
tion (instance and feature selection) into a single cooperative coevolutionary algorithm. IFS-CoCo
(Instance and Feature Selection based on Cooperative Coevolution) is composed of three popula-
tions. The individuals of each one define a different type of baseline nearest neighbor classifier,
depending on each populations characteristics.

Each population is focused on performing a basic data reduction task: The first population
performs an instance selection process, the second population performs a feature selection process,
and the third population performs a dual selection process.

Figure 1 shows an scheme of the model. The CHC evolutionary algorithm is used to conduct
the search in every population. Populations are updated sequentially, and the best chromosome of
each one is kept for the joint evaluation process.

Solutions are, then, evaluated jointly. The fitness function follows the same rationale as in
[CHL03], performing a weighted sum of training accuracy and reduction rate. However, the ac-
curacy is evaluated jointly (as is shown in Figure 1), in contrast with reduction, which is still
computed only for each single chromosome.

The second proposal, CIW-NN (Coevolution of Instance selection and Weighting schemes for
Nearest Neighbor classifiers) introduces the use of weighting schemes for instances and features.
As a coevolutionary algorithm, it also introduces the novelty of combining different evolutionary
algorithms (CHC and an steady-state genetic algorithm, in this case) with different codifications
(binary and real codifications).

CIW-NN is also composed of three populations. The first one performs an instance selection
process guided by the CHC algorithm (following the same definition than in IFS-CoCo). The
second and third populations perform a feature weighting process and an instance weighting process
respectively. Both processes select the best possible weights to further increase the leave-one-out
classification performance of the underlying nearest neighbor classifier. To do so, their search
processes are guided by a steady-state genetic algorithm updated with a crossover operator with
multiple descendants [SLVH09].

Figure 5.2 shows an scheme of the CIW-NN model, composed of a representation of the three
populations of the model (Figure 2(a)) and an scheme of the fitness assignation scheme (Figure
2(b)). Cooperation between populations is also achieved in CIW-NN through the fitness function,
but, in this time, the reduction rate is only considered for the instance selection population. On the
contrary, accuracy is computed for the solutions of the three populations, following a combination
of three chromosomes provided by each of the three populations of the model.
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Figure 1: Population scheme of IFS-CoCo

Both models, IFS-CoCo and CIW-NN, show how cooperative coevolution can be used to build
advanced nearest neighbor classifiers, improving the capabilities of the nearest neighbor rule through
the use of both data reduction and weighting schemes.

The journal articles associated to this part are:

• J. Derrac, S. Garćıa, F. Herrera, IFS-CoCo: Instance and Feature Selection Based on Coop-
erative Coevolution With Nearest Neighbor Rule. Pattern Recognition, 43 (2010) 20822105
doi: 10.1016/j.patcog.2009.12.012

• J. Derrac, I. Triguero, S. Garćıa, F. Herrera, IFS-CoCo: Integrating Instance Selection, In-
stance Weighting, and Feature Weighting for Nearest Neighbor Classifiers by Coevolutionary
Algorithms. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics
42:5 (2012) 13831397 doi: 10.1109/TSMCB.2012.2191953

5.3 Fuzzy Rough Sets and Evolutionary Algorithms in Nearest Neighbor Clas-

sification

Fuzzy rough sets have been chosen as formalism for representing the extraction of minimal subsets
of data, following a new approach for data reduction. Their use is preferred over classic rough sets
given their greater flexibility, and their capability of being able to being applied directly over data
sets representing continuous data without discretizing it at a previous step.

The approach presented in [CJHS10] provides with a proper tool for performing feature selection.
It features a measure of to evaluate the discernibility of a subset of features, and an heuristic (the
Quickreduct algorithm) to find the minimal reduct representing all the indiscernibility relations
present in the training data. The features that form this reduct are chosen as the final subset of
features obtained by the feature selection algorithm.
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(a) Populations scheme (b) Fitness computation

Figure 2: Description of the CIW-NN model

EIS-RFS (evolutionary instance selection enhanced by rough set based feature selection), the
first hybrid approach developed, features an evolutionary instance selection procedure and a fuzzy
rough sets based feature selection process. Instance selection is conducted by a steady-state genetic
algorithm, which evolves at a somewhat slower pace than classical generational genetic algorithms.
This property is very useful for combining its efforts with those of the feature selection procedure.

The feature selection, managed by Quickreduct, is performed every time a fixed number of
evaluations has been spent by the evolutionary instance selection procedure. Its output is considered
as the current subset of active features for the steady-state genetic algorithm. This means that the
synergy between both techniques is achieved by modifying the domain (the features) considered by
the evolutionary instance selection procedure at fixed points of the evolution. Consequently, the
instances selected will depend heavily on the output of Quickreduct.

The model is completed with the inclusion of the VDM (value difference metric) distance [WM97]
for nominal attributes, allowing EIS-RFS to tackle effectively both continuous and nominal data
sets, regardless its origin.

On the other hand, fuzzy rough instance selection has been also developed recently [JC09].
These methods are based on the removal of instances that negatively affect the fuzzy positive
region. Instances are removed until there is no uncertainty amongst them, that is, all remaining
instances can be classified positively.

In our second approach, EFS-RPS (evolutionary feature selection for fuzzy rough set based pro-
totype selection), fuzzy rough prototype selection and evolutionary feature selection are combined
for developing an advanced data reduction model for nearest neighbor classification.

The quality of the instances in the training set is assessed following the concepts of fuzzy rough
set theory. The membership of an instance to the positive region with respect to the current subset
of features considered is used as a noise measure for it. Following this reasoning, a pruning procedure
is carried out, iteratively removing prototypes until no improvement classification accuracy is found.

Evolutionary feature selection is performed by an steady-state genetic algorithm, considering
both classification accuracy and reduction rate in the fitness function. However, only a minimal
weight is given to the reduction rate in order to avoid excessive deletion of features to be favored
by the by the fitness function.

The full EFS-RPS evolutionary model includes both reduction techniques: The fuzzy rough
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set based prototype selection procedure is performed, selecting which instances will be considered
during the first stage of the evolutionary feature selection algorithm. Once several evaluations
have been spent, the prototype selection algorithm is carried out again (considering the best sub-
set of features found so far) to modify the environment of the feature selection procedure. This
interweaving of prototype and feature selection phases is continued until the end of the algorithm.

With this definition, EFS-RPS can be defined as an orthogonal version of EIS-RFS, in which
the roles of evolutionary algorithms and fuzzy rough set techniques is exchanged. This has enabled
to develop two complementary models, each one with the potential of obtaining very promising
results in the task of enhancing the performance of nearest neighbor classifiers.

The journal articles associated to this part are:

• J. Derrac, C. Cornelis, S. Garćıa, F. Herrera, Enhancing Evolutionary Instance Selection
Algorithms by Means of Fuzzy Rough Set Based Feature Selection. Information Sciences,
186 (2012) 7392 doi: 10.1016/j.ins.2011.09.027

• J. Derrac, N. Verbiest, S. Garćıa, C. Cornelis, F. Herrera, On the Use of Evolutionary Feature
Selection for Improving Fuzzy Rough Set Based Prototype Selection. Soft Computing 17:2
(2013) 223-238, doi: 10.1007/s00500-012-0888-3

5.4 Fuzzy Nearest Neighbor Classification

Besides preprocessing techniques, there exist several approaches for improving the performance of
nearest neighbor classification. One of the trends that have arisen in the last decades is the is the
introduction of fuzzy sets theory [Zad65] within the mechanics of the nearest neighbor rule, giving
birth to the field coined as fuzzy nearest neighbor classification.

The very first proposals were presented in 1983 [Jow83] and 1985 [KGG85]. Both of them
define fuzzy membership to classes for every instance of the training set. Fuzzy membership are
then considered as a measure of the confidence on the assignation of the instance to the class.
Some clear examples of this would include having an instance with full membership to one class
and zero to the rest - depicting a clear member to the former class - or having approximately the
same membership to all the classes - meaning that the instance could be considered noisy or, at
least, a very difficult example to classify -; however, the potential of fuzzy sets can still be used to
extend further the nearest neighbor rule.

Once the literature on fuzzy nearest neighbor classification is analyzed thoroughly, it is possible
to highlight three main places in which fuzzy sets have been introduced for modifying the nearest
neighbor classifier:

• Membership degree to a class: Which included many different uses of fuzzy sets for
representing the membership of the instances to classes, as is detailed above.

• Similarity measure: Fuzzy sets can be also incorporated to enhancement of the discrimi-
native power of the training data through the modification of the similarity measure, that is,
the function used to determine how different is each instance to the rest.

• Decision rule: In the nearest neighbor classifier, the final decision about the class of a test
instance is given by a single majority voting process. This can also be upgraded by including
fuzzy sets, as a way of developing more sophisticated voting schemes.
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Studying the field, it is also possible to note that fuzzy nearest neighbor algorithms can be
classified depending on the specific area of fuzzy sets considered for defining their basis. There
have been defined many nearest neighbor algorithms based not only on fuzzy sets, but also in fuzzy
rough sets [DCK07], intuitionistic fuzzy sets [Ata86], possibilistic theory [Zad78] and type-2 fuzzy
sets [Men07].

After performing the study, we spotted the opportunity of bringing together some of these
mechanisms to develop a new fuzzy nearest neighbor algorithm, in an effort to overcome the ex-
isting approaches. This work has enables us to develop two new approaches, IVF-kNN (Interval
Valued Fuzzy k-Nearest Neighbors classifier), and EIVF-kNN (Evolutionary Interval Valued Fuzzy
k-Nearest Neighbors classifier), being the latter an improvement of the former through the use of
evolutionary algorithms.

The first model, IVF-kNN aims to improve the way in which memberships are managed by
Fuzzy-KNN [KGG85], the classic fuzzy nearest neighbor classifier. In this model, although the
memberships to classes are managed in a reasonable way, there can be still a lack of knowledge
associated with the use of a single value to represent the membership. This problem can be avoided
if several values, represented as type-2 fuzzy sets, are considered.

IVF-kNN thus introduces the use of interval valued type-2 fuzzy sets for avoiding the problem
of using just a single value to represent the memberships, providing the general model with more
flexibility. Interval valued fuzzy sets are also considered for managing the votes cast by each
neighbor in the decision rule, as a new way of modeling the influence of each neighbor in the
decision process.

The second model, EIVF-kNN, incorporates evolutionary algorithms to the fuzzy nearest neigh-
bor framework. However, in this time evolutionary algorithms are not included as a tool for per-
forming data reduction, but to determine the configuration of two key parameters of the IVF-kNN.
This is a very important enhancement, specially if we consider that the first parameter is heav-
ily attached to the process of computing the interval based membership approaches, whereas the
second one adjusts the way in which the interval values votes are casted by each neighbor in the
decision rule.

Following an approach somewhat similar to the rest of advanced nearest neighbor models pre-
sented before, a wrapper evolutionary model, conducted by the CHC evolutionary algorithm, has
been selected to perform the search. The chromosomes of the algorithm encode different configura-
tions of the two parameters, enabling the underlying IVF-kNN model to be adjusted as accurately
as possible.

The journal articles associated to this part are:

• J. Derrac, S. Garćıa, F. Herrera, Fuzzy Nearest Neighbor Algorithms: Taxonomy, Experi-
mental analysis and Prospects. Submitted to Information Sciences.

• J. Derrac, F. Chiclana, S. Garćıa, F. Herrera, EIVF-kNN: An Evolutionary Interval Valued
Fuzzy K-Nearest Neighbors Classifier. Submitted to IEEE Transactions on Fuzzy Sets
and Systems.

6. Discussion of results

The following subsections summarize and discuss the results obtained in each specific stage of the
thesis.
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6.1 Evolutionary Algorithms in Prototype Reduction

The use of evolutionary algorithms in prototype reduction has been characterized with the elab-
oration of the survey. The most essential techniques in prototype selection, prototype generation
and training set generation have been analyzed thoroughly, focusing on the requirements for them
to be applied over supervised learning problems.

Focusing on the field of prototype selection, it has been reviewed the most common way of
representing the different subsets of prototypes selected during the search, and the different available
methods to evaluate them. The best performing methods have been studied, which has allowed us
to identify the most promising approaches for further developments.

Furthermore, some attention has been given to several hybrid methods combining prototype
selection with other preprocessing techniques (such as feature selection or feature weighting). This
underlying idea, the combination of several preprocessing techniques into a single algorithm, will
be the foundation of some of the approaches that will be developed later.

Finally, it has been reviewed the application of evolutionary prototype reduction techniques to
two challenging problems: The imbalance data sets problem and the scaling up problem. This
analysis has shown how these problems can be successfully tackled with evolutionary algorithms,
by adapting the algorithms and the evaluation of solutions to the specific problem in the former
case [GH09], and by combining an advanced stratification strategy with an scalable evolutionary
prototype selection algorithm in the latter [DGH10].

6.2 Coevolutionary Algorithms for Enhancing Nearest Neighbor Classification

Two advanced nearest neighbor classification models based on cooperative coevolution have been
developed. Both are based in the incorporation of data preprocessing techniques to adapt the
training data before performing the final classification rule of the nearest neighbor classifier.

The first model, IFS-CoCo, combines effectively instance selection, feature selection and dual
selection. It has been presented as a robust evolutionary model, composed of three populations
guided by the CHC algorithm. Its performance has been tested considering different evolutionary
algorithms for instance selection, feature selection and dual selection. Existing hybrid evolutionary
approaches have been also concluded.

The experimental study performed has shown that IFS-CoCo has a better performance that all
the techniques selected for the comparison, overcoming also several classic techniques for instance
selection and feature selection (non-evolutionary). Nonparametric statistical tests confirm our
results, highlighting the differences between IFS-CoCo and the rest of algorithms as significant.

The second model, CIW-NN, features a combination of instance selection and weighting schemes.
It also shows how cooperative coevolution can be used to joint effectively different evolutionary
techniques (CHC and a steady-state genetic algorithm, in this case), with different codifications,
into a single model.

The comparisons performed to test this second model are also favorable. Numerous methods
of the state of the art in instance selection, feature weighting and instance weighting have been
chosen, including SSMA and several composite techniques. Again, the comparison has been made
in terms of accuracy and reduction of the training set, revealing that CIW-NN shows an outstanding
performance in the task of enhancing the behavior of the nearest neighbor rule.

Both IFS-CoCo and CIW-NN are representative examples of the capabilities of cooperative
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coevolution, the former as a full data reduction model, and the latter as a hybrid model for data
reduction and weighting. When configured properly, cooperative coevolutionary models are able
to obtain outstanding results, improving by far the performance of standard approaches due to the
successful combination of several techniques into a true cooperative algorithm.

6.3 Fuzzy Rough Sets and Evolutionary Algorithms in Nearest Neighbor Clas-

sification

Fuzzy rough sets have served as a suitable tool for performing data reduction in a nearest neighbor
classification framework. Their capability of tackling both continuous and nominal data sets enables
us to consider them within our general methodology.

Both fuzzy rough set based prototype selection and feature selection can be characterized by
their competence on describing the indiscernibility relations present in the training data. This
capacity, together with the good behavior of evolutionary algorithms in data reduction, has allowed
us to develop two advanced nearest neighbor classifiers.

In our experimental studies, we have tested EIS-RFS considering evolutionary approaches for
instance selection, feature selection and dual selection. The Quickreduct original version for feature
selection has been also included. Finally, the joint application of evolutionary instance selection
and the rough set based feature selection process one after another has also been included, as a
way of determining if the combination of these techniques performed by EIS-RFS is better than
the single application of both techniques.

The results shown that EIS-RFS overcomes significantly all the comparison algorithms with
respect to classification accuracy, while acceptable reduction rates are obtained both with respect
to instances and features. EIS-RFS also shows a satisfactory performance when large size data sets
are considered. The experiments are completed with an study in which the enhancement to the
k-NN classifier is depicted at different values of the k parameter. The conclusion of this last study
is that the application of EIS-RFS is always beneficial for k-NN, although the benefits are greater
the lower the k value is.

The second model, EFS-RPS also achieves satisfactory results when compared with evolutionary
approaches for instance selection, feature selection and dual selection. This second model is also
compared with Quickreduct and with the fuzzy rough set based prototype selection procedure,
showing that it is able to effectively improve the results of the fuzzy rough set data reduction
techniques in isolation. A final comparison is performed between EIS-RFS and EFS-RPS, showing
that no hybrid algorithm is able to overcome the other.

The conclusions of this part are that both hybrid models have become two very robust ap-
proaches for improving nearest neighbor classification. This can be highlighted as a successful
combination of fuzzy rough sets and evolutionary algorithms for data reduction, with the added
benefit of having a computational cost lower than the expected for a pure evolutionary approach.

6.4 Fuzzy Nearest Neighbor Classification

Classical and recent approaches for fuzzy nearest neighbor classification have been thoroughly
analyzed with the development of a review. As a result, we have proposed a new taxonomy,
designed for characterizing every existing fuzzy nearest neighbor with respect to main category
(fuzzy sets, type-2 fuzzy sets, possibilistic methods, intuitionistic fuzzy sets, fuzzy rough sets and
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preprocessing approaches via data reduction) and several key approaches including its dependence
to the k parameter of the nearest neighbor rule or the way in which the different memberships are
represented.

An extensive experimental study have been also carried out, comparing the performance of the
most representative fuzzy nearest neighbor approaches. The best methods of each category have
been highlighted, and a further comparison has been also performed including other representative
crisp approaches for nearest neighbor classification.

The results of the comparison have shown the potential of fuzzy nearest neighbor classifiers and
its good performance over general classification problems. Moreover, we have also remarked several
key issues on fuzzy nearest neighbor classification, worth enough to be addressed in the future.
These issues includes the extension of these techniques to handle nominal (discrete) and missing
data, the development of new voting schemes, or the definition of advanced methods for estimating
the fuzzy memberships of the instances to the different classes of the problem.

Based upon this last issue, we have developed a new fuzzy nearest neighbor classifier, IVF-kNN.
This model uses type-2 fuzzy sets to represent the fuzzy memberships with an enhanced flexibility.
Another model, EIVF-kNN, has been also developed. This second model extends further IVF-kNN
by incorporating evolutionary algorithms to the process of adjusting the classifier to the available
data, following a wrapper based approach.

Both models have shown an outstanding behavior when compared with representative ap-
proaches of the state of the art in fuzzy nearest neighbor classification. IVF-kNN outperforms
both classical and recent approaches of the state of the art in the field, whereas EIVF-kNN is able
to further overcome all of them, including IVF-kNN.

Thus, we can highlight EIVF-kNN as another competent advanced nearest neighbor classifier,
obtained as a result of our research in fuzzy nearest neighbor classification. By incorporating
both fuzzy sets and evolutionary algorithms into a single approach, we have developed a very
competitive classifier, which has become the final contribution of this thesis to the field of nearest
neighbor classification.

7. Concluding Remarks

We have addressed several issues pursuing a common objective: The development of advanced
nearest neighbor classifiers. Our aim has been to design highly accurate classifiers, able to consume
as little computational resources as possible in the final classification phase - both in the sense of
reduction of the training set size, and in the sense of time spent by the classification rule.

This have been possible through the development of different techniques of data preprocessing.
Some of them, like the inclusion of weights or the definition of class memberships are introduced
towards an increase of the adaptability of the model to the training data, and ultimately to increase
the classification accuracy of the models. On the other hand, data reduction techniques have also
enhanced the models through the elimination of irrelevant, noisy and useless data (features or
instances).

All these techniques have been applied by Soft Computing approaches. Soft Computing be-
comes the common element among all the works presented, whose evolution can be followed as
each single objective is addressed. Firstly, evolutionary algorithms, one of the fundamental pillars
of Soft Computing have been analyzed in the framework of data reduction for nearest neighbor
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classification. After understanding what are the requirements for their application and how they
behave, and highlighting the best specific approaches, standard evolutionary techniques have given
way to coevolution.

We have presented cooperative coevolution as a strategy for applying several related techniques
over a single set of data, in a simultaneous way. Instead of employing coevolution in its traditional
definition, as a tool for performing domain decomposition, our models show how different data
preprocessing approaches can be performed jointly within a single evolutionary framework. As a
result, it has been possible to obtain two very powerful classifiers, IFS-CoCo and CIW-NN, able to
overcome most of the shortcomings of the nearest neighbor rule.

The second line of work has lead us to consider the inclusion of fuzzy rough sets. The fuzzy
rough formalism has offered us with two very accurate, yet computationally not very costly, ap-
proaches for data reduction. Both techniques have been included into a evolutionary framework,
producing as a result two orthogonal models: EIS-RFS (which features an evolutionary prototype
selection algorithm guided by a fuzzy rough set based feature selection procedure) and EFS-RPS
(an evolutionary feature selection algorithm conducted by a fuzzy rough set based prototype selec-
tion algorithm). Both models have shown an outstanding performance in its respective domains of
competence.

Finally, fuzzy nearest neighbor algorithms have been studied as a step forward in the enhance-
ment of the nearest neighbor rule. Probably, the most interesting characteristic of these algorithms
is the capability of representing the degree of membership of the instances to each class of the
domain, which means that a instance does not have to be assigned to just one class of the prob-
lems. Instead, with fuzzy nearest neighbor algorithms it is possible to mark dubious or borderline
instances as members of two or more classes (with a given degree representing the confidence of this
assignation), whereas instances with a clear classification can still keep a full degree of membership
to their classes.

A full review on fuzzy nearest neighbor classification has been carried out, focused on char-
acterizing the traits of the related techniques. Based upon all the lessons learned by performing
this study, a new approach for fuzzy nearest neighbor classification, based on interval type-2 fuzzy
sets, has been proposed. This technique, IVF-kNN, also features the capability of being optimized
by evolutionary algorithms, which have given birth to its updated version, EIVF-kNN. This final
model, hybrid between the evolutionary optimization techniques analyzed in the first stages of the
thesis, and the fuzzy sets based knowledge representation employed in the last one, becomes our
contribution to the state of the art of the field of fuzzy nearest neighbor classification.

Conclusiones

En esta tesis, hemos abordado varias cuestiones persiguiendo un objetivo común: El desarrollo de
clasificadores del vecino ms cercano avanzados. Nuestro objetivo ha sido desarrollar clasificadores
muy precisos, capaces de consumir tan pocos recursos como sea posible de cara a la clasificación
final - tanto en tamaño del conjunto de entrenamiento como en tiempo empleado por la regla de
clasificación.

Esto ha sido posible mediante el desarrollo de diferentes técnicas de preprocesamiento de datos.
Algunas de ella, como la inclusión de pesos o la definición de pertenencias a clases han sido in-
troducidas para obtener un incremento en la adaptación del modelo a los datos de entrenamiento,
incrementando finalmente la precisión de los modelos de clasificación. Por otro lado, las técnicas
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de reducción de datos también han mejorado los modelos a través de la eliminación de datos irrel-
evantes, ruidosos e inútiles (tanto instancias como caracteŕısticas).

Todas estas técnicas han sido aplicadas mediante propuestas de Computación Flexible. La
Computación Flexible se ha convertido en el elemento común de todos los trabajos presentados,
cuya evolución puede ser seguida a medida que cada objetivo propuesto es abordado. En primer
lugar, los algoritmos evolutivos, uno de los pilares fundamentales de la Computación Flexible, han
sido analizados en el ámbito de la reducción de datos para clasificación del vecino más cercano.
Tras entender cuales eran los requisitos para su aplicación y cómo se comportaban, y destacar las
propuestas más sobresalientes, las técnicas evolutivas estándar han dado paso a la coevolución.

Hemos presentado la coevolución cooperativa como estrategia para aplicar varias técnicas rela-
cionadas sobre un único conjunto de datos, de forma simultánea. En lugar de emplear la coevolución
siguiendo su definición tradiccional, como herramienta para realizar descomposiciones de dominio,
nuestros modelos muestran como es posible aplicar de forma conjunta diferentes técnicas de re-
ducción de datos en un solo marco de trabajo evolutivo. Como resultado, ha sido posible obtener
dos clasificadores muy competitivos, IFS-CoCo y CIW-NN, capaces de salvar la mayoria de las
desventajas de la regla del vecino más cercano.

La segunda ĺınea de trabajo nos ha llevado a considerar la inclusión de conjuntos rugosos difusos.
Este formalismo nos ha ofrecido dos propuestas muy precisas para reducción de datos, no costosas
computacionalmente. Ambas técnicas han sido incluidas en un entorno evolutivo, produciendo como
resultados dos modelos ortogonales: EIS-RFS (que incluye un algoritmo evolutivo de selección de
prototipos guiado por un procedimiento de selección de caracteŕısticas basado en conjuntos rugosos
difusos) y EFS-RPS (un algoritmo evolutivo de selección de caracteŕısticas conducido mediante un
algoritmo de selección de prototipos basado en conjuntos rugosos difusos). Ambos modelos han
mostrado un rendimiento sobresaliente en sus respectivos dominios.

Finalmente, se han estudiado los algoritmos del vecino más cercano difusos, como un paso
adelante en la mejora de la regla del vecino más cercano. Probablemente, la caracteŕıstica más
interesante de estos algoritmos es su capacidad de representar el grado de pertenencia de las in-
stancias a cada clase del dominio del problema, lo que significa que una instancia no tiene porqué
pertenecer a tan solo una clase. En lugar de eso, con los algoritmos del vecino más cercano difusos
es posible marcar instancias dudosas o fronterizas como miembros de dos o más clases (con un grado
de confianza con respecto a esta asignación), mientras que las instancias con una clasificación clara
pueden aún mantener una pertenencia total a sus clases.

Se ha realizado una revisión completa de los algoritmos de clasificación del vecino más cer-
cano difusos, centrada en caracterizar los rasgos más caracteŕısticos de las técnicas relacionadas.
Bsándonos en las lecciones aprendidas durante la realización del estudio, se ha presentado una nueva
propuesta de clasificación del vecino más cercano difusa, basada en conjuntos difusos intervalares
de tipo 2. Esta técnica, IVF-kNN, también dispone de la capacidad de ser optimizada mediante
algoritmos evolutivos, lo que ha dado lugar al nacimiento de una versión extendida, EIVF-kNN.
Este modelo final, h́ıbrido entre las técnicas de optimización evolutiva analizadas al principio de la
tesis y la representación de conocimiento basada en conjuntos difusos empleadas en la parte final,
simboliza nuestra contribución al estado del arte en clasificación del vecino más cercano difusa.
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8. Future Work

Besides the results reported in this thesis, numerous trends of work have been raised, some of them
focused on exploiting the application of several advanced topics to further enhance the performance
of the models proposed.

On the other hand, other future trends suggest the modification of the current techniques to
adapt them for new challenging problems, some of them present in many real-world applications
nowadays.

Incorporation of filter measures as fitness function in the evolutionary models Filter
measures, as a way of evaluating the quality of a classifier, were defined traditionally in the field of
feature selection [GE03]. Filtering methods are the counterpart of wrapper approaches, and differ
from the latter in the fact that the quality of the selection is assessed through indirect measures
(such as separability measures between classes), instead of estimating the performance through the
classifier to be used.

The incorporation of filter measures in nearest neighbor models based on evolutionary algorithms
would help to address one of their main drawbacks: The considerable cost of evaluating their fitness
functions. However, this development is not straightforward, since a proper definition for assessing
the quality of prototypes prior the classification phase would be necessary. This requirement,
already met for feature selection (for example, by the fuzzy rough set based measure incorporated
in Quickreduct), is still unsatisfied for prototype selection.

Upon developing a suitable filter measure for prototypes, a general definition could be applied
to hybrid and advanced models. This would enable them to apply this new way of estimating the
quality of the classifier without the necessity of building a new one every time a specific solution
has to be evaluated.

Data reduction for general k nearest neighbor classifiers Most of the research performed on
data reduction for nearest neighbor classification is focused on optimizing the 1-NN classifier. In the
field of prototype selection, this is motivated by the fact that a value of k = 1 makes the k-NN rule
more sensitive to noisy instances. This will provide the fitness function of evolutionary algorithms
with the greatest possible sensitivity to noise during the reduction process, thus empowering their
noise reduction capabilities. With a proper training phase, the results achieved would improve even
those obtained through a search of the best global k parameter.

However, the determination of an appropriate set-up of the k parameter locally could be also
incorporated to the search, as an advanced locally weighted learning procedure [AMS97]. In this
context, locally means that certain areas of the data might be better classified by a large k value,
whereas other areas could be better suited to a k = 1 set-up. This approach, (coined as Multi-
selection of instances in [GPPR12]), can be regarded as the automatic determination of the number
of votes that an instance casts during the voting process. In this manner, a k value can be learned
per each instance selected, thus adapting the discriminative power of the instance in all the voting
processes performed in its surroundings.

Fuzzy prototype selection and fuzzy prototype generation Fuzzy nearest neighbor al-
gorithms can also be benefited by data reduction techniques. Regarding prototype selection
[GDCH12], several fuzzy versions of the classical prototype selection techniques have been proposed
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(such as the Edited Fuzzy K-Nearest Neighbor Rule [YC98] or the Condensed Fuzzy k-Nearest
Neighbor Rule [ZLZ11]). However, there is still a large potential for improving fuzzy nearest neigh-
bor algorithms if advanced prototype selection techniques (including, for example, evolutionary
algorithms) are considered.

Furthermore, prototype generation [TDGH12] poses a different way of focusing on the problem.
The prototype generation techniques can also be applied to enhance fuzzy nearest neighbor classi-
fiers without performing almost any modifications to the original models. However, the definition
of the class membership of the prototypes in fuzzy nearest neighbor algorithms leads to a new way
of obtaining the reduced training set: An optimal set of fuzzy prototypes, optimally positioned
and with an optimum definition of their class memberships. Following this approach, it may be
possible to design new fuzzy nearest neighbor classifiers even more accurate than the current state
of the art.

Development of parallel, scalable and distributed models Advanced computational intel-
ligence models based on metaheuristics (such as the ones proposed in this thesis) are prone to be
improved with the use of parallelism. The employment of solutions based on this trend can be very
advantageous for nearest neighbor classifiers based on Soft Computing techniques.

The benefits of such approaches are two-fold: On the first hand the underlying metaheuristics
can take advantage of parallelism as a way to improve the quality of the solutions obtained [Alb05].
Advanced strategies, such as the decomposition of the search domain into several parts, where
each one is governed by a search metaheuristic, can lead to an improvement in the performance of
the search if the efforts of each piece are joined. This is closely related with they key elements of
cooperative coevolution, already incorporated to two of the models proposed in this thesis.

On the second hand, scalable and distributed models can also be used to tackle large scale
problems. For example, bigdata problems (applications dealing with huge amounts of data) are
out of the reach of the current machine learning approaches [BBBE11]. However, they could
be managed if proper scalable and distributed models would be considered when developing new
models. A successful example of this kind of developments is the Apache Mahout project 1, which
currently features several scalable machine learning libraries, able to process large collections of
data.

Tackling imbalanced data and other difficult problems Besides standard classification
problems, there are many other challenges in machine learning which are of great interest to the
research community [YW06]. The unique capabilities of Soft Computing based nearest neighbor
classifiers (high accuracy, great flexibility in the definition of the final training set, . . .) gives them
some opportunities of being useful when tackling some of these difficult problems.

For example, fuzzy nearest neighbor classification provides with a new way of dealing with
the problem of imbalanced data [HG09, SWK09]. The prototypes’ capability of learning different
degrees of membership to each class makes them a very interesting tool for managing data in
those cases where the importance of the classes is crucial. In an analogous way to cost-sensitive
approaches [LFMTH12] (where misses in the minority classes are heavily penalized), fuzzy nearest
neighbor approaches can also be sensitive to the classes distribution, and thus adapt the fuzzy
memberships to reflect the importance of the prototypes of the minority classes in the decision
rule.

1http://mahout.apache.org/
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1. iNtroduCtioN

Data reduction (Pyle, 1999) is one of the data 
preprocessing tasks which can be applied in a 
data mining process. The main objective in data 
reduction is to reduce the original data by select-
ing its most representative information. This 
way, it is possible to avoid excessive storage and 
time complexity, improving the results obtained 
by any data mining application, ranging from 
predictive processes (classification, regression) 

to descriptive processes (clustering, extraction 
of association rules, subgroup discovery).

Data reduction processes can be performed 
in many ways, some of the more remarkable 
being:

Selecting features (Liu & Motoda, 2007), • 
reducing the number of columns in a data 
set. This process is known as Feature 
Selection.
Making the feature values discrete (Liu et • 
al., 2002), reducing the number of pos-
sible values of features. This process is 
known as attribute Discretization.

a survey on evolutionary 
instance selection 

and Generation
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Generating new features (Guyon et al., • 
2006) which describe the data in a more 
suitable way. This process is known as 
Feature Extraction.
Selecting instances (Liu & Motoda, 2001; • 
Liu & Motoda, 2002), reducing the num-
ber of rows in a data set. This process is 
known as Instance Selection (IS)
Generating new instances (Bezdek & • 
Kuncheva, 2001; Lozano et al., 2006), 
which describes the initial data set by 
generating artificial examples. This pro-
cess is known as Instance Generation 
(IG).

This article discusses a wide number of IS 
and IG proposals. They can be divided into two 
types of techniques depending on the goal fol-
lowed by the reduction. If the set of selected or 
replaced instances will be used as the reference 
data to instance-based classification, then we 
refer to Prototype Selection (PS) and Prototype 
Generation (PG). On the other hand, if the set 
of instances obtained will be used as input or 
training set of any data mining algorithm for 
building a model, then we refer to Training Set 
Selection (TSS).

In spite of the differences between PS and 
PG (the first one finds suitable prototypes, while 
the second one generates them), both have been 
mainly employed to improve the same classi-
fier, the Nearest Neighbor rule (Cover & Hart, 
1967; see also Papadopoulos & Manolopoulos, 
2004; Shakhnarovich et al., 2006). This predicts 
the class of a new prototype by computing a 
similarity measure (Cunningham, in press) 
between it and all prototypes from the train-
ing set. In the k-Nearest Neighbors classifier, 
k nearest prototypes vote to decide the class of 
the new instance to classify. This algorithm is 
the baseline of the instance based learning field 
(Aha et al., 1991).

On the other hand, TSS consists of the 
selection of reduced training sets to improve the 
efficiency and the results obtained by any data 
mining algorithm. It has been mainly applied 
to improve the performance of decision trees, 

neural networks and subgroup discovery tech-
niques. Although there exists a wide number of 
TSS approaches, no IG work on TSS has been 
reported yet, until our knowledge.

In recent years, the data mining community 
has identified some challenging problems in the 
area (Yang & Wu, 2006). Two of these are the 
Scaling Up Problem and the Imbalance Data 
Sets Problem. They are closely related to the 
data reduction field.

The Scaling Up Problem (Provost & 
Kolluri, 1999; Domingo et al., 2002) appears 
when an overwhelming amount of data must 
be processed, overcoming the capabilities of 
the traditional data mining algorithms. The 
Imbalance Data Sets Problem (Chawla et al., 
2004; Batista et al., 2004) appears when the 
distribution of the class in the training data is 
not balanced, thus the number of instances of 
some classes is too low. This distribution can 
cause several problems in the classification 
of examples which belong to the minority 
classes.

Evolutionary Algorithms (Eiben & Smith, 
2003) are general-purpose search algorithms 
that use principles inspired by natural genetic 
populations to evolve solutions to problems. 
The basic idea is to maintain a population 
of chromosomes which represent plausible 
solutions to the problem and evolve over time 
through a process of competition and controlled 
variation.

Evolutionary Algorithms have been suc-
cessfully used in different data mining (Freitas, 
2002; Ghosh & Jain, 2005; Abraham et al., 
2006) and data reduction (Cano et al., 2003; 
Oh et al., 2004) problems. Given that the IS 
problem can be defined as a combinatorial 
problem, Evolutionary Algorithms have been 
used to solve it with promising results (Ho et al., 
2002; García et al., 2008); these applications of 
Evolutionary Algorithms to tackle IS problems 
are usually called EIS (Evolutionary Instance 
Selection) methods. Furthermore, Evolutionary 
Algorithms have shown interesting behavior in 
their application to IG due to it can be defined 
as a parameter optimization problem (Fernández 
& Isasi, 2004; Nanni & Lumini, 2008).
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The aim of this article is to present a review 
on the use of Evolutionary Algorithms for PS, 
PG and TSS algorithms, called EIS-PS, EPG and 
EIS-TSS, respectively, giving their description 
and main characteristics. Several evolutionary 
proposals developed to tackle the Scaling Up 
Problem and the Imbalance Data Sets Problem 
will be included in the review.

This article is organized as follows: Section 
2 presents the definitions of the techniques and 
problems which will be reviewed in the rest of 
the article. Section 3 presents an overall analysis 
of several EIS-PS methods. Section 4 reviews 
the EPG contributions presented in recent years. 
Section 5 deals with EIS-TSS methods and 
their application to tackle different data mining 
problems. Section 6, concludes the survey.

2. PrelimiNaries

This section provides some preliminary con-
cepts and definitions about the techniques 
and problems shown in the rest of this article. 
Firstly, we describe the main characteristics 
of IS and IG. Secondly, we present the Scal-
ing Up Problem and the Imbalance Data Sets 
Problem for classification, with reference to 
their relevance to data reduction. Finally, we 
briefly review some common features of the 
Evolutionary Algorithms approaches applied 
to tackle these problems.

instance selection and Generation

IS is one of the main data reduction techniques. 
In IS, the aim is to isolate the smallest set of 
instances which enable a data mining algorithm 
to predict the class of a query instance with 
the same quality as the initial data set (Liu & 
Motoda, 2001). By minimizing the data set size, 
it is possible to reduce the space complexity 
and decrease the computational cost of the data 
mining algorithms that will be applied later, 
improving their generalization capabilities 
through the elimination of noise.

More specifically, IS can be defined as 
follows: Let Xp be an instance where Xp = (Xp1, 

Xp2,, ..., Xpm, Xpc), with Xp belonging to a class 
c given by Xpc and a m-dimensional space in 
which Xpi is the value of the i-th feature of the 
p-th sample. Then, let us assume that there is 
a training set TR which consists of N instances 
Xp and a test set TS composed by t instances Xp. 
Let  TRS ⊂  be the subset of selected samples 
that resulted from the execution of a IS algo-
rithm, then we classify a new pattern from TS 
by a data mining algorithm acting over S. The 
whole data set is noted as D and it is composed 
of the union of TR and TS.

IS methods can be classified in two catego-
ries: PS methods and TSS methods. PS methods 
(Liu & Motoda, 2002) are IS methods which 
expect to find training sets offering best clas-
sification accuracy and reduction rates by using 
instance based classifiers which consider a cer-
tain similarity or distance measure. Recently, PS 
methods have increased in popularity within the 
data reduction field. Various approaches to PS 
algorithms have been proposed in the literature 
(see (Wilson & Martinez, 2000; Grochowski & 
Jankowski, 2004) for review). Figure 1 shows 
the basic steps of the PS process.

TSS methods are defined in a similar way. 
They are known as the application of IS methods 
over the training set used to build any predictive 
model (e.g. decision trees, neural networks …) 
Thus, TSS can be employed as a way to improve 
the behavior of predictive models, precision and 
interpretability (Riquelme et al., 2003). Figure 
2 shows the basic steps of processing a decision 
tree (C4.5) on the TSS.

IG is another important technique in 
data reduction. It has been mainly applied to 
instance-based classifiers, thus we can focus 
on describing PG in depth. PG can be defined 
as the application of instance construction 
algorithms (Liu & Motoda, 2001) over a data 
set to improve the classification accuracy of a 
nearest neighbor classifier.

More specifically, PG can be defined as 
follows: Let Xp be an instance where Xp = (Xp1, 
Xp2,, ..., Xpm, Xpc), with Xp belonging to a class 
c given by Xpc and a m-dimensional space in 
which Xpi is the value of the i-th feature of the 
p-th sample. Then, let us assume that there is 
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a training set TR which consists of N instances 
Xp and a test set TS composed by t instances Xp. 
The purpose of PG is to obtain a prototype gen-
erate set, which consists of r, r <n, prototypes, 
which are either selected or generated from the 
examples of Xp. The prototypes of the generated 
set are determined to represent efficiently the 
distributions of the classes and to discriminate 
well when used to classify the training objects. 
Their cardinality should be sufficiently small 
to reduce both the storage and evaluation time 
spent by a nearest neighbor classifier.

A wide number of PG methods have been 
designed in the specialized literature, ranging 
from traditional ones (Chang, 1974; Kohonen, 
1990), to more modern approaches (Lozano et 
al., 2006). It is important to point out the fact 
that the research on the EPG field has started 
recently, being (Fernandez & Isasi, 2004) the 
first proposal in applying Evolutionary Algo-
rithms to perform a PG task, in contrast to the 
research in evolutionary IS, where the first 
proposal was made in (Kuncheva, 1995).

Figure 1. Prototype selection process

Figure 2. Training set selection process
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the scaling up and the 
imbalance data sets Problems

IS methods are considered a useful tool to 
perform data reduction tasks, obtaining inter-
esting results. They have also been employed 
successfully to tackle two emergent challenges 
in data mining, the Scaling Up Problem and 
the Imbalance Data SetsProblem (Yang & 
Wu, 2006).

The Scaling Up Problem appears when the 
number of training samples increases beyond 
the capacity of the traditional data mining 
algorithms, harming their effectiveness and 
efficiency. Due to large size data sets, it pro-
duces excessive storage requirement, increases 
times complexity and affects to generalization 
accuracy. Usually, when the input data set size 
affects the execution of the algorithms, it is 
possible to face this situation with two differ-
ent strategies:

• Scaling up the algorithm: Proposing 
faster and lower consumption algorithms 
that can face large size data sets. (Provost 
& Kolluri, 1999)

• Scaling down the data set: In this case, 
the attention is directed toward the data 
set. The idea consists of modifying the 
data set by means of reductions to make 
it adequate to the original algorithm (Liu 
& Motoda, 2002).

This problem has been recently addressed 
by many authors. An interesting example can 
be found in (Haro-García & García-Pedrajas, 
2009), where a divide-and-conquer recursive 
approach to the problem is applied to very large 
problems, being able to match in accuracy and 
even improve on storage reduction the results 
of well-known standard IS algorithms with a 
very significant reduction in execution time. 
Another proposal, mainly adapted for use on 
evolutionary algorithms, is presented in (Cano 
et al., 2005), it will be described in the EIS-PS 
Section of this survey.

The Imbalance Data Sets Problem appears 
when the data contains many more examples of 
one class than the other and the less representa-
tive class represents the most interesting concept 
from the point of view of learning (Chawla et 
al., 2004). Imbalance in class distribution is 
pervasive in a variety of real-world applications, 
including but not limited to telecommunica-
tions (Tajbakhsh et al., 2009), web services, 
finance, ecology (Kubat et al., 1998), biology 
and medicine (Freitas et al., 2007).

Usually, in imbalanced classification prob-
lems, the instances are grouped into two types 
of classes: the majority or negative class, and 
the minority or positive class. The minority or 
positive class has more interest and it is also 
accompanied with a higher cost of misclas-
sification. A standard classifier might ignore 
the importance of the minority class because its 
representation inside the data set is not strong 
enough. As a classic example, if the ratio of 
imbalance presented in the data is 1:100 (that 
is, there is one positive instance versus one 
hundred negatives), the error of ignoring this 
class is only 1%, so many classifiers could 
ignore it or not make any effort to learn an ef-
fective model for it.

Many approaches have been proposed to 
deal with the Imbalance Data Sets Problem. 
They can be divided into algorithmic approaches 
and data approaches. The first ones assume 
modifications in the operation of the algorithms, 
making them cost sensitive towards the minority 
class (Grzymala-Busse et al., 2005; Tajbakhsh 
et al., 2009). The data approaches modify the 
data distribution, conditioned on an evaluation 
function. Re-sampling of data could be done 
by means of under-sampling, by removing in-
stances from the data (a process similar to IS) 
(Kubat & Matwin, 1997; Batista et al., 2004; 
Estabrooks et al., 2004), and over-sampling, by 
replicating or generating new minority examples 
(Chawla et al., 2002, Fernández et al., 2008).
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basic ideas on evolutionary 
algorithms for instance 
selection and Generation

A wide number of proposals presented on the 
use of Evolutionary Algorithms in IS and IG 
share some common characteristics regarding 
the two key concepts of any evolutionary al-
gorithm: The representation of the population 
and the fitness function employed.

Representation: In most of the evolu-
tionary IS algorithms, every member of the 
population encodes information about all the 
instances which are currently selected at each 
step of the search process.

This scheme is often used both in EIS-PS 
and EIS-TSS proposals. A binary representa-
tion is employed. Typically, every individual is 
defined as a binary string of length N, where 
each bit represents the current state of each 
instance of the training set (marked as ‘1’ if the 
corresponding instance is currently selected, or 
‘0’ if not). Figure 3 shows a typical individual 
of an evolutionary IS algorithm.

On the other hand, in evolutionary IG algo-
rithms every member of the population encodes 
information describing a new instance (or a new 
set of instances) to be generated. The concrete 
representation employed will vary depending on 
the codification of the problem data, although 
real coding is mostly preferred.

Fitness function: The majority of the 
evolutionary IS algorithms define a fitness 
function where two quality measures are em-
ployed: The accuracy of the results obtained 
by the subsequent data mining algorithm (e.g., 
a classifier), and the reduction rate achieved 
between the selected instances and the whole 
data set. Depending on the concrete method, 

this reduction rate can be computed by counting 
the number of instances selected, or employing 
more sophisticated methods, e.g. valuating the 
reduction as a measure of the interpretability 
of the tree obtained, when the evolutionary IS 
method is applied to improve the results of a 
decision tree algorithm.

In contrast, in evolutionary IG algorithms 
the only quality measure employed to define 
the fitness function is the accuracy obtained by 
employing the actual set of instances gener-
ated (typically, the accuracy obtained with a 
k-Nearest Neighbors classifier). The reduction 
rate is not usually employed because the number 
of instances generated is always small (usually 
it is fixed to a concrete value), thus every so-
lution is expected to achieve a high reduction 
rate, and the search process can be focused only 
on the goal of increasing the accuracy of the 
classification process.

3. eVolutioNary 
PrototyPe seleCtioN

In this section, we will present the main contri-
butions of EIS-PS appeared in the literature in 
recent years. Firstly, we give a snapshot on the 
state of the art in EIS-PS. Secondly, we describe 
in depth the characteristics of the most repre-
sentative EIS-PS methods appeared. Thirdly, 
we show some EIS-PS proposals dealing with 
the Scaling Up and the Imbalance Data Sets 
problems. Finally, we conclude this section 
presenting some EIS-PS mixed approaches.

Figure 3. A typical individual of an evolutionary IS algorithm
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a snapshot on evolutionary 
Prototype selection

The necessity of the Evolutionary Algorithms 
in PS is discussed in (Cano et al., 2003) where 
the authors differentiate between the selection 
based in heuristics (which appears in classic non-
evolutionary PS algorithms, like for example 
CNN, IB3 or DROP described in (Wilson & 
Martinez, 2000)) and the selection developed by 
EIS-PS algorithms. EIS-PS presents a strategy 
that combines inner and boundary points. It 
does not tend to select instances depending on 
their a priori position in the search space (inner 
class or limit ones). EIS-PS selects the instances 
that increase the accuracy rates independently 
of their a priori position.

We will review the main contributions that 
have included or proposed an EIS-PS model 
in recent years. The first appearance of the ap-
plication of an evolutionary algorithm to the 
PS problem can be found in (Kuncheva, 1995). 
Kuncheva applied a genetic algorithm to select 
a reference set for the k- Nearest Neighbors 
rule. Her genetic algorithm maps the training 
set onto a chromosome structure composed by 
genes, each one with two possible states (binary 
representation). The computed fitness function 
measures the error rate by application of the k- 
Nearest Neighbors rule. This genetic algorithm 
was improved in (Kuncheva & Bezdek, 1998; 
Ishibuchi & Nakashima, 1999).

At this point, all EIS-PS algorithms consid-
ered above adapt a classical genetic algorithm 
model to the PS problem. Later, a development 
of EIS-PS algorithms more conditioned to the 
problem is made. The first example of this can 
be found in (Sierra et al., 2001). In this article, 
an Estimation of Distribution Algorithm is 
used. Another example can be found in (Ho et 
al., 2002), where a genetic algorithm design for 
obtaining an optimal nearest neighbor classifier 
based on orthogonal arrays is proposed.

The technical term EIS-PS has been 
adopted by Cano et al. (2003), in which they 
analyze the behavior of different evolutionary 
algorithms, generational genetic algorithms 
(GGAs), steady-state genetic algorithms (SS-

GAs), the CHC model (Eshelman, 1990) and 
Population Based Incremental Learning (PBIL) 
(Baluja, 1994) (which can be considered one 
of the basic Estimation of Distribution Al-
gorithms). The fitness function used in these 
models combines two values: classification 
rate clasRat by using a 1-NN classifier and 
percentage reduction of prototypes of S with 
regards to TR percRed:

 dpercclasRatSFitness Re)1()( ⋅−+⋅= αα  

Where α is a weighting factor usually set to 0.5, 
and perc_red is defined as:

)/(100Re TRSTRdperc −⋅=  

One of the newest approaches to EIS-PS 
employs memetic algorithms (Ong et al., 2007). 
These are heuristic searches in optimization 
problems that combine a population-based 
algorithm with a local search. The memetic 
algorithm employed by (García et al., 2008) 
incorporates an ad hoc local search specifically 
designed for optimizing the search in prototype 
selection problem with the aim of tackling the 
scaling up problem. Another recent proposal 
(Gil-Pita & Yao, 2008), is focused in the en-
hancing of the fitness function and the muta-
tion and crossover operators when applied to 
PS problems.

Later research has gone further, focusing 
its interest on other topics apart from improving 
the design of EIS-PS algorithms. Several efforts 
have been focused on developing methods 
which will be able to tackle new challenges in 
data mining. A representative example can be 
found in (Cano et al., 2005), where an evolution-
ary method to tackle the Scaling Up Problem 
on the PS process is proposed. Another chal-
lenging problem addressed recently by using 
EIS-PS algorithms is the Imbalanced Data Sets 
Problem (García & Herrera, 2009).

A brief review will be done regarding mixed 
evolutionary approaches to IS with another data 
preprocessing technique, e.g. Feature Selection 
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and Feature Weighting. Two different propos-
als will be reviewed, (Ros et al. 2008) being 
the first one. In this article, a hybrid genetic 
algorithm is applied to perform PS and Feature 
Selection simultaneously, trying to achieve three 
objectives simultaneously: Increasing the ac-
curacy of the subsequent classification process, 
minimizing the dimensionality of the data (the 
number of features selected), and maximizing 
the number of instances selected.

The second proposal is an approach of data 
preprocessing with genetic algorithms in Case-
Based Reasoning, which is described by the 
authors as an instance-based learning procedure 
(they also employ the k- Nearest Neighbors clas-
sifier). A basic genetic algorithm is conducted 
over a population of chromosomes which per-
forms PS and Feature Weighting (which can be 
seen as a generalization of Feature Selection, 
where the weights are real valued between 0 
and 1) simultaneously. This approach has been 
applied to two different scenarios: Customer 
classification and bankruptcy prediction model-
ing (Ahn et al., 2006; Ahn et al. 2009).

overview on the  
eis-Ps algorithms

In this subsection, we will describe in depth 
the characteristics of the most representative 
EIS-PS methods.

Generational Genetic Algorithm

Its basic idea is to maintain a population of chro-
mosomes, which represent plausible solutions to 
the particular problem that evolves over succes-
sive iterations (generations) through a process 
of competition and controlled variation. Each 
chromosome in the population has an associated 
fitness to determine which chromosomes are to 
be used to form new ones in the competition 
process. The new chromosomes are created 
using genetic operators such as crossover and 
mutation.

In GGA, the selection mechanism pro-
duces a new population P(t) with copies of 
chromosomes in the old population P(t-1). The 
number of copies received for each chromosome 
depends on its fitness; chromosomes with higher 
fitness have a greater chance of contributing 
copies to P(t). Then, the crossover and mutation 
operators are applied to P(t).

Algorithm 1 (See Figure 4) shows a basic 
pseudocode of GGA:

The GGA was the first scheme developed to 
perform EIS-PS processes. Although its results 
have been overcome by most of the subsequent 
proposals, it is still an important milestone in 
the field of PS.

Figure 4. Algorithm 1: Pseudocode of the GGA
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Steady-State Genetic Algorithm

SSGA was firstly employed as an EIS-PS 
method in (Cano et al., 2003) In the SSGA 
usually one or two offspring are produced in 
each generation. Parents are selected to pro-
duce offspring and then a decision is made as 
to which individuals in the population will be 
selected for deletion in order to make room for 
the new offspring.

Algorithm 2 (See Figure 5) shows a basic 
pseudocode of SSGA:

In the construction of the SSGA, it is 
possible to select the replacement strategy 
(e.g., replacement of the worst, the oldest, 
or a randomly chosen individual) and the 
replacement condition (e.g., replacement if 
the new individual is better or unconditional 
replacement). A widely used combination is 
to replace the worst individual only if the new 
individual is better. Moreover, in (Goldberg 
& Deb, 1991), it is suggested that the deletion 
of the worst individuals can induce a high 
selective pressure, even when the parents are 
selected randomly.

This high selective pressure can help 
SSGA to improve the results of GGA in the 
performance of PS process. However, SSGA has 
been beaten also by most of the new proposals 
presented in recent years.

Population-Based 
Incremental Learning

PBIL (Baluja, 1994) is a specific Estimation 
of Distributions algorithm designed for binary 
search spaces. It attempts to explicitly maintain 
statistics about the search space to decide where 
to sample next.

The objective of the algorithm is to create a 
real valued probability vector Vp, which, when 
sampled, reveals high quality solution vectors 
with high probability. Initially, the values of Vp 
are set at 0.5. Sampling from this vector yields 
random solution vectors because the probability 
of generating a 1 or 0 for each gene is equal. As 
the search progresses, the values of Vp gradually 
shift to represent better solution vectors through 
the search process.

Algorithm 3 (See Figure 6) shows a basic 
pseudocode of PBIL algorithm.

The two basic search moves are performed 
in steps 6 and 8. In step 6, Vp is pushed toward 
SBest. LR is the learning rate, which specifies 
how close the movement to SBest is. In step 8, 
Vp is pushed far away from SWorse .LRneg is the 
negative learning rate, which specifies how far 
away the steps are from the worst solution.

PBIL can be seen as one of the most repre-
sentative evolutionary proposals for performing 
PS process, because it is almost the only example 
of EIS-PS method which its search process is 

Figure 5. Algorithm 2: Pseudocode of the SSGA
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not based in a genetic algorithm. In general, 
it obtained good results when compared with 
genetic-based methods in the study carried in 
(Cano et al., 2003).

The Evolutionary Model CHC

CHC algorithm (Eshelman, 1990) is a binary-
coded genetic algorithm which involves the 
combination of a selection strategy with a 
very high selective pressure, and several com-
ponents inducing a strong diversity. CHC is a 
robust evolutionary algorithm, which should 
often offer promising results in several search 
problems.

The four main components of the algo-
rithm are:

• An elitist selection: To compose a new 
generation, the best individuals among 
parents and offspring are selected.

• A highly disruptive crossover: HUX, 
which crosses over exactly half of the 
non-matching alleles.

• An incest prevention mechanism, 
which only allows to cross over those 
pairs of individuals which has a Ham-
ming distance higher than a difference 
threshold. This threshold is decreased, as 

time goes by, to help the population to 
converge.

• A restart process, which is applied when 
the population has converged (when the 
threshold has dropped to zero). It gener-
ates a new population by randomly flip-
ping a percentage (usually a 35%) of the 
bits of the old population individuals.

Algorithm 4 (See Figure 7) shows a basic 
pseudocode of CHC algorithm.

In the study carried out by (Cano et al., 
2003), the CHC algorithm was selected as the 
best EIS-PS strategy, being able to outperform 
all the remaining methods of the study (the 
evolutionary and the non-evolutionary ones).

An interesting conclusion derived from 
that study was that the key feature of the CHC 
algorithm is its ability to select the most rep-
resentative instances independently of their 
position in the search space, satisfying both the 
objectives of high accuracy and reduction rates. 
Due to this fact, CHC has been widely used as a 
baseline method to perform many evolutionary 
IS tasks. Some examples are shown in the next 
sections of this survey.

Figure 6. Algorithm 3: Pseudocode of the PBIL algorithm
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Intelligent Genetic Algorithm

Ho et al. (2002) propose the Intelligent Genetic 
Algorithm (IGA) based on Orthogonal experi-
mental design used for PS and Feature Selec-
tion. Besides its initial definition, it can also be 
applied as a PS method only, without changing 
its initial objectives of increasing accuracy and 
reduction rates on the training data.

IGA is a GGA that incorporates an Intelli-
gent Crossover operator. It builds an orthogonal 
array from two parents of chromosomes and 
searches within the array for the two best indi-
viduals according to the fitness function. It takes 
about 2 1logz y-( ) fitness evaluations to perform an 
Intelligent Crossover operation, where γ is the 
number of bits that differ between both parents. 
Note that the application of Intelligent Crossover 
operator to large-size chromosomes (resulting 
chromosomes from large size data sets) could 
consume a high number of evaluations.

Algorithm 5 (See Figure 8) shows a basic 
pseudocode of IGA.

As their authors concluded, the employ-
ment of the Intelligent Crossover operator 
allows IGA to be superior to conventional 
genetic algorithms when applied to problems 
where the solution space is large and complex, 

e.g. when it is composed of high dimensional 
overlapping patterns. Thus, it is a good EIS-PS 
method to apply when facing medium and large 
sized data sets.

Steady-State Memetic Algorithm

The steady-state memetic algorithm (SSMA) 
was proposed in (García et al., 2008) to cover a 
drawback of the conventional EIS-PS methods 
that had appeared before: their lack of conver-
gence when facing large problems.

SSMA makes use of a local search or meme 
specifically developed for this prototype selec-
tion problem. This interweaving of the global 
and local search phases allows the two to influ-
ence each other; i.e. SSGA chooses good starting 
points, and local search provides an accurate 
representation of that region of the domain. This 
local search scheme assigns a probability value 
to each chromosome generated by crossover 
and mutation, Cnew:

 
 





=
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CFitnessthanbetterisCFitnessif
P worstnew

LS 625.0
)()(1

Figure 7. Algorithm 4: Pseudocode of the CHC algorithm
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Algorithm 6 (See Figure 9) shows a basic 
pseudocode of the SSMA.

Where u(0,1) is a value in a uniform dis-
tribution u[0,1] and the standard replacement 
means that a the worst individual is replaced 
only if the new individual is better.

The Adaptive-PLS-mechanism is an adap-
tive fitness-based method. A description of the 
Adaptive-PLS-mechanism and the meme spe-
cifically developed for the prototype selection 
task can be found in (García et al., 2008).

The meme optimization mechanism is a 
local search specifically designed for the PS 
problem. It tries to improve the initial chromo-
some by generating its neighbors by unselecting 
one of its current selected prototypes. These 
neighbors are evaluated by a special fitness 
function which is able to consume only partial 
evaluations, saving computational resources 
for the whole evolutionary process.

The objective of the meme optimization 
mechanism is adjusted dynamically in the 

Figure 8. Algorithm 5. Pseudocode of the IGA

Figure 9. Algorithm 6: Pseudocode of the SSMA
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execution of the SSMA. Every time a certain 
number of evaluations have been spent, the ac-
curacy and reduction rates achieved by the best 
chromosome of the population are registered. 
If the classification accuracy has not increased, 
then the meme optimization starts an improving 
accuracy stage, where only better results in ac-
curacy are accepted through the local search. 
On the other hand, if the reduction rate has not 
increased, then the meme optimization starts an 
Avoiding premature convergence stage, where 
the local search accepts worse solutions in order 
to improve the diversity of the population.

As their authors concluded, the SSMA pres-
ents a good reduction rate and computational 
time. In fact, it is able to outperform the classical 
PS algorithms, when the accuracy and reduction 
rates are considered. When compared to other 
EIS-PS methods, SSMA is able to outperform 
or equal them, being particularly useful as the 
size of the databases increases.

Genetic Algorithm Based on Mean 
Square Error, Clustered Crossover 
and Fast Smart Mutation

A new genetic algorithm (concretely a GGA 
model) was proposed in (Gil-Pita & Yao, 2008) 
as an EIS-PS model. This algorithm (no name 
was provided by their authors) included the 
definition of a novel mean square error based 
fitness function, a novel clustered crossover 
technique, and a fast smart mutation scheme.

The fitness function employed was based 
on a mean square error measure:
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Where N is the number of training patterns, 
C is the number of classes, K is the number of 
nearest neighbors employed, Kn is the number 
of K nearest neighbors belonging to class i, and 
dn is 1 when the desired output for the instance 
n is the class I, and 0 when not. As their authors 
stated, the error surface defined by this function 
is smoother than those obtained using counting 

estimator based functions, making easier the 
obtaining of its local minimum.

The clustering crossover operator firstly 
performs a k-means clustering process over 
the chromosomes, extracting the centroids of 
all the clusters found (the number of clusters 
is established randomly). Then, the centroids 
are employed with a classical random point 
cross operator to generate the individuals of 
the new generation.

The fast smart mutation procedure com-
putes the effect of the change of one bit of the 
chromosome over its fitness value, testing all 
the possibilities. The change which produces 
the better fitness value is accepted as the result 
of the mutation operator. It is applied to every 
individual of the population. At the end of its 
application, the fitness value of the individuals 
is actualized, starting then a new generation of 
the evolutionary process.

Algorithm 7 (See Figure 10) shows a basic 
pseudocode of the algorithm.

The results obtained by the authors in the 
experimental study which was carried out sug-
gested that the joint use of the three proposed 
methods could be quite interesting in the case 
of not very large training sets.

eis-Ps Proposals for the scaling 
up and imbalanced data Problems

In this subsection, we will analyze some EIS-PS 
proposals dealing with the Scaling Up and the 
Imbalance Data Sets problems.

Stratification of EIS-PS to Tackle 
the Scaling Up Problem

Cano et al. (2005) proposed a method to tackle 
the Scaling Up Problem in EIS-PS. The method 
presented consists of a stratified strategy which 
divides the initial data set into disjoint strata 
with equal class distribution. The number of 
strata chosen will determine their size, depend-
ing on the size of the data set. Using the proper 
number of strata the stratified method is able to 
significantly reduce the training set, avoiding 
the drawbacks of the Scaling Up Problem.
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Figure 11 shows the basic steps of the 
process.

Following the stratified strategy, the ini-
tial data set D is divided into t disjoint sets Dj, 
strata of equal size, D1, D2, …, Dt maintaining 
class distribution within each subset. Then, PS 
algorithms will be applied to each Dj obtaining 
a selected subset DSj. In this way, the subsets 
TR and TS will be obtained as follows:

 { } TRDTStJDTR
Jj

j −=⊂=
∈
 ,..,2,1,  

And the Stratified Prototype Subset Se-
lected (SPSS) is defined as:


Jj

j tJDSSPSS
∈

⊂= },..,2,1{,  

The nearest neighbor classifier is then 
evaluated using as training data the SPSS set, 
and the TS set as test data. Thus the classifica-

Figure 11. Structure of the stratification process in EIS-PS

Figure 10. Algorithm 7: Pseudocode of the genetic algorithm based on mean square error, 
clustering crossover and fast smart mutation
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tion process can be performed on higher size 
data sets, avoiding the usual drawbacks and still 
achieving acceptable results.

The concluding remarks of the study were 
that a proper choice in the number of strata makes 
it possible to decrease significantly execution 
time and resources consumption, maintaining 
the EIS-PS algorithm’s behavior in accuracy and 
reduction rates. Also, the CHC was selected as 
the best EIS-PS algorithm when employed within 
the evolutionary stratified PS process.

EIS-PS Algorithms on 
Imbalanced Data Problems

In (García & Herrera, in press), a complete 
study of EUS (Evolutionary Under-Sampling) 
algorithms is carried out. A set of EUS methods 
is proposed, which take into consideration the 
nature of the problem and use different fitness 
functions to obtain a good trade-off between 
balance of distribution of classes and perfor-
mance.

Eight different algorithms compose the set 
of methods proposed in the study. Furthermore 
every method shares the same basic structure, 
which is developed by using the CHC algorithms 
as an evolutionary model. There are three char-
acteristics that differentiate them:

The objective that they pursue.• 
Aiming for an optimal balancing of  ◦
data without loss of effectiveness in 
classification accuracy. EUS mod-
els that follow this tendency will 
be called Evolutionary Balancing 
Under-Sampling.
Aiming for an optimal power of clas- ◦
sification without taking into account 
the balancing of data, considering the 
latter as a sub-objective that may be 
an implicit process. EUS models that 
follow this tendency will be called 
Evolutionary Under-Sampling guid-
ed by Classification Measures.

The way that they do the selection of • 
instances.

If the selection scheme proceeds  ◦
over any kind of instance, then it is 
called Global Selection. That is, the 
chromosome contains the state of all 
instances belonging to the training 
data set and removals of minority 
class instances (those belonging to 
positive class) are allowed.
If the selection scheme only pro- ◦
ceeds over majority class instances 
then it is called Majority Selection. 
In this case, the chromosome saves 
the state of instances that belong to 
the negative class and a removal of a 
positive or minority class instance is 
not allowed.

The accuracy measure used for its fitness • 
function.

Geometric Mean methods, if the  ◦
geometric mean is used as accuracy 
measure. Geometric mean was first 
employed in (Barandela et al., 2003} 
and is defined as:

 −+ ⋅= aaGM  

Where a+ denotes accuracy in examples 
belonging to the minority class and a- denotes 
accuracy in examples belonging to the major-
ity class.

Area Under the ROC Curve methods, • 
if the Area Under the Curve measure is 
used instead the geometric mean. Area 
Under the ROC Curve (Bradley, 1997) 
can measure the efficacy of various clas-
sifiers simultaneously, employing the 
True Positive and False Positive rates of 
a classification process.

The eight methods were tested with several 
imbalanced datasets, and the results obtained 
were contrasted by using non-parametric statis-
tical procedures. The main conclusions drawn 
from the study were:
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PS algorithms must not be used for han-• 
dling imbalanced problems. They are 
prone to gain global performance by elim-
inating examples belonging to the minor-
ity class considered as noisy examples.
During the evolutionary under-sampling • 
process, the employment of a majority se-
lection mechanism helps to obtain more 
accurate subsets of instances than the use 
of global selection. However, the latter 
mechanism is necessary to achieve the 
highest reduction rates.
Data sets with a low imbalance ratio • 
should be faced with Evolutionary Under-
Sampling guided by Classification Mea-
sures models, and should use in particular 
the model with a global mechanism of 
selection and evaluation through the geo-
metric mean measure.
Data sets with a high imbalance ratio • 
should be faced with Evolutionary Balanc-
ing Under-Sampling models, and should 
use in particular the model with a major-
ity selection mechanism and evaluation 
through the geometric mean measure.

mixed eis-Ps approaches

In recent years, some proposals have appeared 
performing not only the PS process with evolu-
tionary algorithms, but also performing another 
data preparation process simultaneously. This 
subsection will review two of the most remark-
able approaches.

Ros et al. (2008) proposed a hybrid genetic 
algorithm (HGA) which performs IS and Feature 
Selection simultaneously. Its objectives are to 
increase the accuracy of the k- Nearest Neighbors 
over the reference set, to minimize the number 
of features selected (reducing the reference data) 
and to maximize the number of instances selected 
(to retain the most information possible without 
harming the classification accuracy).

The HGA is divided into three phases:

A genetic algorithm is applied in the first • 
phase. It includes a sophisticated selection 

scheme and some mechanisms to manage 
diversity and elitism (including an archive 
population and a dynamic analysis of the 
diversity of the population).
By employing a histogram of the fre-• 
quency with which each feature has been 
selected, a feature selection process is car-
ried out, in order to simplify the problem.
The genetic algorithm is applied again • 
over the population. Also, some of the 
children generated by each generation are 
tuned by using local search procedures.

Despite the contradictory objectives in the 
number of instances and features selected, HGA 
is able to perform a dual IS and FS process with 
success, being a suitable evolutionary method 
to perform data reduction tasks.

A second mixed approach, GOCBR (Global 
Optimization of feature weighting and instance 
selection using genetic algorithms for Case 
Based Reasoning) was proposed in (Ahn et al., 
2006; Ahn et al., 2009). This proposal performs 
a simultaneous IS and Feature Weighting process 
in the framework of a Case Based Reasoning 
system.

The search process of GOCBR consists of 
the application of a genetic algorithm with the 
common genetic operators (selection, crossover 
and mutation). Their individuals employ a binary 
representation, encoding the weights of the 
features by employing 14 bits to each one, and 
encoding the IS information in the second part of 
the chromosome by employing the usual binary 
scheme. Its fitness function measures only the 
accuracy obtained by employing the reference set 
defined by the chromosome to classify the train 
data in a k- Nearest Neighbors classifier.

GOCBR system has been applied success-
fully by the authors to various problems, such as 
customer classification or bankruptcy prediction 
modeling. Also, it is remarkable that is the only 
evolutionary method known of which performs a 
simultaneous IS and Feature Weighting process, 
until our knowledge.



76   International Journal of Applied Metaheuristic Computing, 1(1), 60-92, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

4. eVolutioNary 
PrototyPe GeNeratioN

In this section, we will present the main con-
tributions of EPG appeared in the literature in 
recent years. In the first subsection, we give 
a snapshot on the state of the art in EPG. In 
the last subsection, we describe in depth the 
characteristics of the most representative EPG 
methods appeared.

a snapshot on evolutionary 
Prototype Generation

In recent years, the research efforts in the design 
of new PG techniques based on Evolutionary 
Algorithms have started to offer some interest-
ing approaches. All of them still employ the 
NN rule as a reference classifier to measure 
the classification accuracy of the prototypes 
generated.

Usually, the prototypes are encoding as 
members of the population of the evolutionary 
algorithm employed to carry out the evolution-
ary process. A real codification scheme is used 
to represent them; each of its components has 
a concrete value for a concrete feature of the 
problem.

In this section, we will review the main 
contributions that have proposed an EPG model. 
The first contribution is (Fernandez & Isasi, 
2004), where an evolutionary algorithm based 
on a two-dimensional grid is proposed, named 
Evolutionary Nearest Prototype Classifier. It 
defines a traditional evolutionary process to 
prepare the prototypes for its use on a 1-NN 
classifier, by employing a wide number of 
evolutionary operators.

The next two proposals are based on the 
Particle Swarm Optimization (PSO) Scheme 
(Kennedy et al., 2001). This technique is based 
on a set of potential solutions (particles) which 
evolves to find the global optimum of a real-
valued function (fitness function) defined in a 
given space (search space). Particles represent 
the complete solution to the problem and move 
in the search space using both local information 

(the particle memory) and neighbor information 
(the knowledge of neighbor particles).

In (Nanni & Lumini, 2008) a PSO based 
PG method is proposed (no name is provided 
for the algorithm). It can be seen as a Pittsburgh-
based model, because all the components of the 
solution (in this case, the prototypes generated) 
are encoded in a single particle. The method 
performs a PSO search process where a reduced 
set of prototypes is generated to finally perform 
a 1-NN classification process.

In (Cervantes et al., 2007; Cervantes et al, 
in press), inspired by the results of (Cervantes 
et al., 2005), an Adaptive Michigan PSO model 
for PG is proposed. This model is described as 
a Michigan approach because every particle 
contains only a component of the solution, thus 
the complete solution is built by joining the 
selected particles of the swarm. This approach 
also improves the traditional PSO scheme, be-
cause the online generation and destruction of 
particles is allowed in the search process.

Finally, the last proposal which will be 
reviewed, (Garain, 2008), is based on the Clonar 
Selection Algorithm (Castro & Zuben, 2002), a 
representation of an Artificial Immune System 
model (Dasgupta, 1998). Clonar Selection 
Algorithms are inspired by the behavior of the 
immune system when performing an immune 
response to an antigenic stimulus. It advocates 
the idea that only those cells that recognize the 
antigens proliferate, thus being selected against 
those which do not. This idea is employed to 
develop a PG system which is able to generate 
suitable prototypes to perform a 1-NN clas-
sification process.

overview on the eiG algorithms

In this subsection, we will describe in depth 
the characteristics of the most representative 
EIG methods.

Evolutionary Nearest 
Prototype Classifier

In (Fernandez & Isasi, 2004), an EPG method 
is proposed. It employs as a basic structure 
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a two-dimensional matrix, where each row 
is associated with a prototype of the whole 
classifier, and each column is associated with 
a class to define regions where the prototypes 
are mapped.

On its initialization, the algorithm only de-
fines one prototype. Then a whole evolutionary 
process starts: It carries out sequentially a set of 
evolutionary operations with the aim of generat-
ing a robust set of prototypes which will be able 
to correctly generalize the instances of the train 
set. The evolutionary operators defined are:

• Mutation: This operator is used to label 
each prototype with the most heavily pop-
ulated class in each of its own regions.

• Reproduction: The reproduction op-
erator function is to introduce new pro-
totypes into the classifier, splitting the 
instances assigned to a prototype into two 
sets, where the second set is assigned to a 
new prototype.

• Fight: This operator allows prototypes 
to exchange their assigned instances. The 
fight can be performed in a cooperative or 
a competitive way, and it is ruled by the 
quality of the prototypes involved.

• Movement: The movement operator real-
locates a prototype on the centroid of its 
assigned instances.

• Die: The current prototypes have a chance 
of being erased from the matrix, which is 
inversely proportional to its quality.

In the whole process, the quality of each 
prototype is defined by the number of prototypes 
which it has currently assigned and its classifica-
tion accuracy. When the evolutionary process 
is finished, the generated set of prototypes is 
employed to classify the tests set, by means of 
the 1-NN classifier.

Algorithm 8 (See Figure 12) shows a basic 
pseudocode of Evolutionary Nearest Prototype 
Classifier algorithm.

The Evolutionary Nearest Prototype Clas-
sifier algorithm has shown good overall results, 
when compared against well-known classical 
methods in PG. Moreover, the results obtained 
when employing the prototypes generated with 
a 1-NN classifier were very competitive when 
compared with many classical instance-based 
classifiers as C4.5, Naïve Bayes or PART.

Particle Swarm Optimization 
for Prototype Generation

In (Nanni & Lumini, 2008) a PG method based 
on PSO is presented. This method defines the 
particles of the swarm as sets of a fixed number 
of prototypes, which are modified as the particle 
is moved in the search space.

Figure 12. Algorithm 8: Pseudocode of the Evolutionary Nearest Prototype Classifier algo-
rithm
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The usual operators of PSO are employed 
by this proposal. The representation of each 
particle consists of a vector of length S= K • 
M given by the concatenation of K prototypes 
(dealing with M-dimensional data). The fitness 
function employed is defined as the classifica-
tion error of the set of K prototypes over the 
training data.

Several runs (N) of the PSO process are 
carried out before finishing the PG stage (the 
authors recommend N=5). Each execution 
gives as result a reference set of K prototypes, 
being the result of the PG stage a collection of 
N reference sets. To classify a test instance, it 
is evaluated by each of the N reference sets, 
obtaining the final output as the result of a 
majority vote above all the reference sets. Thus, 
the proposed model can be seen as an ensemble 
of PSO-based classifiers.

Algorithm 9 (See Figure 13) shows a basic 
pseudocode of PSO-based PG algorithm.

The employment of the ensemble structure 
allows this proposal to obtain high accuracy 
rates. Furthermore, the authors suggested some 
ways to improve the model (like the employment 
of feature weighting methods). This proposal 
confirms that PSO is a very suitable model to 
perform PG processes.

An Adaptive Michigan Approach PSO 
for Nearest Prototype Classification

In (Cervantes et al., 2007; Cervantes et al., in 
press), an Adaptive Michigan Approach PSO is 
proposed. Its particles encode a prototype, each 
one being the generated train data represented as 
the whole particle swarm. This method does not 
have a fixed number of particles. On the contrary, 
some new operations are defined to allow the 
PSO search procedure to increase or decrease 
dynamically the number of particles.

The algorithm employs two different fitness 
functions: The global fitness function, defined 
by the standard classification accuracy on a 
1-NN classifier, which is used to find the best 
swarm over the whole PSO procedure; and a 
local fitness function valued in each particle, 
defined by using the number of prototypes cor-
rectly classified and misclassified by itself. This 
secondary fitness function is used to evaluate 
the quality of each particle, in order to judge if 
it must be erased from the swarm, or if it can be 
employed as a parent of a new particle.

When the whole PSO process has finished, 
a cleaning process is carried out on the best 
swarm found. This swarm is the final output 
of the algorithm.

Algorithm 10 (See Figure 14) shows a 
basic pseudocode of the Adaptive Michigan 
PSO algorithm:

Figure 13. Algorithm 9: Pseudocode of the PSO-Based PG algorithm
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This second PSO-based approach is fo-
cused in obtaining very high accuracy rates. 
The employment of a Michigan representation 
allows the definition of a local fitness function, 
which helps the method to find quickly suitable 
solutions in the search space.

Prototype Reduction Using an 
Artificial Immune Model

In (Garain, 2008), a PG based on a Clonar 
Selection algorithm is proposed. This model 
is composed of an immune memory which 
stores in its cells the best antigens found in the 
search process.

The Clonar Selection algorithm is initial-
ized by representing the training instances as 
antigens, and choosing one antigen from each 
class to fill the immune memory. Then the 
search process starts. The first stage consists of 
a Hyper-mutation process. For each antigen on 
the training set, the most stimulating antigen in 
the immune memory is selected. The measure 
of stimulation is based on how close both anti-
gens are (by means of Hamming or Euclidean 
Distance). The selected antigen of the memory 
is used as a parent for the Hyper-mutation 

process, which generates its offspring. Then, a 
Resource Allocation procedure is called, which 
balances the total number of clones present in 
the system by giving half of the resources to 
the clones of the class of the current antigen. 
The other half is equally divided among clones 
of other classes.

While the classification accuracy is im-
proved by the generation of clones, further 
Mutation processes (and Resource Allocation 
procedures) are carried out on the surviving 
clones. This Mutation produces a lower number 
of clones which depends on the stimulation value 
of each parent clone. When no improvement is 
achieved, the best clone found is inserted into 
the immune memory, performing a replacement 
with the worst antigen present. Then a new 
generation starts.

Finally, when the algorithm meets a global 
termination criterion, the antigens contained 
in the immune memory are employed as the 
training set to classify the test instances, by 
using the 1-NN classifier.

Algorithm 11 (See Figure 15) shows a 
basic pseudocode of PG-Clonar Selection 
algorithm:

Figure 14. Algorithm 10: Pseudocode of the AMPSO algorithm
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The Clonar Selection Algorithm is a new 
method for PG based on a field of the Evolu-
tionary Computation which has started to grown 
recently: The immune systems. Although it 
has high storage requirements to allocate the 
clones generated, it is a first example of a new 
technique which can obtain promising results 
with further research.

5. eVolutioNary traiNiNG 
set seleCtioN

In this section, we will present the main 
contributions of EIS-TSS appeared in the lit-
erature in recent years. In the first subsection, 
we give a snapshot on the state of the art in 
EIS-TSS. The next subsections will analyze 
the main approaches of EIS-TSS in decision 
trees, neural networks and subgroup discovery, 
respectively.

a snapshot on evolutionary 
training set selection

The advances in EIS-TSS in recent years have 
been directed towards improving the results 
of some well-known data mining algorithms, 
being principally focused on the enhancement 
of the performance of decision trees, neural 
networks and subgroup discovery.

A wide range of these proposals have been 
inspired by the good results obtained by EIS-
PS in the task of improving the performance 
of instance-based classifiers. Thus, some of the 
EIS-TSS methods which will be presented in 
this section will share some components with 
EIS-PS proposed before, adapting its principles 
to tackle the IS problems over other data min-
ing algorithms.

Firstly, we will review some approaches 
of EIS-TSS applied to the construction of deci-
sion trees with the well-known C4.5 algorithm 
(Quinlan, 1993). A first application of IS to 
improve the construction of decision trees can 
be found in (Cano et al., 2003), where the re-
sults of the IS conducted by four evolutionary 
proposals are applied to extract reduced train-
ing sets in the construction of decision trees. 
Another proposal (Wu & Olaffson, 2006) also 
presented a genetic algorithm based IS process 
to improve the construction of decision trees, 
but they focused its effort on improving, not 
only the accuracy of the model and the reduc-
tion of the number of instances in the training 
set, but also in the interpretability and size of 
the trees obtained.

Later, Cano et al. (2007) presented two 
proposals of stratification to further improve 
the trees extracted by the C4.5 algorithm. The 
aim of both proposals was to improve the ac-
curacy and interpretability of the trees extracted 

Figure 15. Algorithm 11: Pseudocode of the PG-Clonar Selection algorithm
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by means of stratification of the training data, 
trying to maintain a good trade-off between 
both quality measures.

As a last application of EIS-TSS in deci-
sion trees, we will review a proposal to improve 
the performance of C4.5 over imbalanced data 
sets (i.e. dealing with the Imbalance Data Sets 
Problem in the construction of decision trees) 
(García & Herrera, 2008). In this contribution 
it is shown how an evolutionary undersampling 
method is able to increase the accuracy of 
the decision tress in the classification of both 
majority and minority classes, employing the 
geometric mean accuracy measure.

Two approaches of EIS-TSS applied to 
neural networks will be analyzed. The first ap-
proach is (Ishibuchi et al., 2001), where a basic 
genetic algorithm is applied to perform both IS 
and Feature Selection processes to improve the 
results of standard three layered neural networks 
in classification.

A second approach to perform EIS-TSS on 
neural networks is presented in (Kim, 2006). 
This approach proposes the use of a standard 
genetic algorithm to perform a weight adjust-
ment on the connections between the layers 
of a feed-forward neural network and an IS 
process over the instances which are employed 
to train the net.

Finally, the review of two proposals of 
EIS-TSS applied to subgroup discovery will be 
covered to close this section. The first proposal 
of this subsection (Cano, Herrera, Lozano & 
García, 2008) is an enhancement of the CN2-SD 
algorithm to increase its efficiency over large 
size datasets, by employing TSS techniques.

The second proposal (Cano et al., 2008) 
presents two stratification strategies to increase 
the presence of examples from minority classes 
in large size data sets with imbalanced data. The 
benefits shown in this study from the applica-
tion of stratification includes the enhancement 
of Apriori-SD in its application to large size 
problems, and the improvement in the quality 
of the groups discovered over the minority 
classes of the problem analyzed.

eis-tss in decision trees

Cano et al. (2003) performed a complete study 
of the use of Evolutionary Algorithms to perform 
IS tasks. Although this work has been analyzed 
above, due to the number of EIS-PS which were 
presented in the study, it is important to note 
that a second experimental study was carried out 
employing the same IS algorithms as EIS-TSS 
methods to improve the trees built by C4.5.

The results obtained in the TSS part of 
the study were similar to the ones reached in 
the PS part: Evolutionary Algorithms based 
IS method were able to equal or outperform 
non-evolutionary methods, maintaining or 
increasing the accuracy of the trees obtained 
and increasing the reduction rates obtained by 
measuring the number of instances selected.

Wu & Olaffson (2006) performed a wide 
analysis of the application of IS to the induc-
tion of decision tress. They proposed a genetic 
algorithm to conduct the IS process, employing 
an integer codification in its chromosomes. Each 
individual is composed of a set of integer values, 
where each one represents one instance of the 
training set. Thus the selected instances of each 
individual are those whose integer identifier 
forms part of the chromosome.

The genetic algorithm search process em-
ploys a set of usual genetic operators: roulette 
wheel selection, crossover operator (which 
interchanges members of each set of instances 
defined by the parents) and mutation operator 
(which randomly replaces an instance by another 
one not selected).

The fitness function is a measure of the 
accuracy of the tree which can be induced by 
the chromosome, S, and its size. It is defined 
as follows:

1),))((log()))((log(

)(

>⋅−−= a
K

SsizeaSe

SFitness
ψψ 

Where e is an estimator of the error rate of 
the decision tree ψ(S), K is an upper bound on the 
size of the tree, and a is a weighting factor.
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The final tree is obtained by merging the 
instances selected at least one time with a fixed 
number of the best chromosomes in the popula-
tion. Then the tree can be employed to classify 
new test instances.

In addition, a study of some relevant pa-
rameters is presented along with the results of 
the algorithm. A discussion of two additional 
measures, the Average Leaf Ratio (a measure of 
the number of instances in each leaf node of the 
tree), and the Instance Entropy of the training 
data, show some interesting conclusions, the 
most remarkable being:

Genetic algorithm based IS is able to re-• 
duce the tree sizes with minimal loss in 
prediction accuracy
The best results are obtained when the • 
Average Leaf Ratio of the final model is 
higher
Genetic algorithm based IS works better • 
on low entropy data sets. Higher values 
of entropy make the construction of more 
complex decision trees necessary
IS can be employed as a replacement for • 
the traditional tree pruning techniques be-
cause it is able to outperform them when 
they are compared in terms of accuracy 
and tree size

A third remarkable proposal of EIS-TSS 
can be found in (Cano et al., 2007), where the 
use of stratification is proposed to tackle the 
Scaling Up problem on the induction of decision 
trees. The aim of the study was to perform the 
extraction of classification rules from large size 
data by keeping a good tradeoff between the 
precision and the interpretability of the model 
generated. To accomplish its objective, the 
authors present a stratified strategy (similar as 
the employed in (Cano et al., 2005).

To conduct the EIS-TSS process, the CHC 
algorithm is used. Moreover, two different fit-
ness functions are employed; they are based on 
the usual fitness function used for EIS-PS:

 redPerclasPerTSSFitness ⋅−+⋅= )1()( αα

Where clasPer denotes the percentage of 
correctly classified objects from TR using only 
TSS to find the nearest neighbor or to extract a 
C4.5 model, depending on the concrete fitness 
function used. redPer denotes the reduction rate 
between TR and TSS.

• Reduction-precision fitness function: 
This fitness function uses the 1-Nearest 
Neighbor classifier for measuring the 
classification rate

• Interpretability-precision fitness func-
tion: This fitness function extracts a 
model with C4.5 to compute the classifi-
cation performance of TSS

The two fitness definitions were tested with 
CHC and the stratification strategy. Several TSS 
methods were included in the experimental 
framework, to compare the performance of 
the proposed models against them. Finally, 
the results obtained were contrasted by using 
non-parametric statistical procedures.

The main conclusions reached in the study 
were as follows:

The evolutionary stratified IS offers the • 
best model size, maintaining an accept-
able accuracy. It produces the smallest 
set of rules, with the minimal number of 
rules and the smallest number of anteced-
ents per rule.
The stratified CHC model with Interpret-• 
ability-Precision fitness function allows 
us to obtain models with high test accu-
racy rates, similar to C4.5, but with the 
advantage that the size of the models are 
reduced considerably.
The predictive model extraction by means • 
of evolutionary stratified training set se-
lection (with the CHC model and any of 
the fitness function presented) presents a 
good tradeoff between accuracy and in-
terpretability. Thus, a very good scaling 
up behavior is observed, which allows us 
to obtain good results when the size of 
data set grows.
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The last EIS-TSS proposal to improve the 
construction of decision trees which will be 
reviewed in this survey deals with the Imbal-
ance Data Sets problem.

In (García & Herrera, in press) a new 
method is presented to deal with imbalanced 
data by performing the TSS process. The aim 
of the method is to improve the classification 
accuracy obtained by C4.5 when it is used on 
imbalanced data sets.

The proposed approach uses the same 
representation as the basic EIS-TSS methods. 
C4.5 is used to extract a model in order to com-
pute the accuracy of the training set selected. 
The accuracy rates obtained by employing this 
model to classify the examples of the majority 
and minority classes are used to compute the 
geometric mean metric, which is used as fit-
ness function.

Figure 16 shows the basic stages of the 
EUS process in EIS-TSS.

Although C4.5, in its standard definition, 
incorporates a pruning mechanism to avoid 
overfitting, the inclusion of the induction tree 
process within an evolutionary cycle can di-
rect the resulting tree to an optimal model for 
training data, losing the generalization ability. 
To avoid this drawback, a simple and effec-
tive mechanism is incorporated. It consists of 
providing a higher weight for the classification 

costs of the instances that are not included in 
TSS than to the instances that are. Therefore, 
the reduction ability of the selected subset is 
encouraged, allowing the proposed approach 
to avoid overfitting in the construction of the 
models.

To test the performance of the proposal, it 
was compared to a wide number of well-known 
re-sampling algorithms, including OSS (Kubat 
& Matwin, 1997), NCL (Laurikkala, 2001) and 
SMOTE (Chawla et al., 2002), among others. 
The results obtained were contrasted by using 
non-parametric statistical procedures, finally 
showing that the proposed approach is able to 
outperform, or, at least, to behave similarly to 
every method in the comparison with respect 
to the accuracy of the models obtained, it ob-
tains very accurate trees with a low number of 
rules or leafs. Thus, the proposed approach is 
confirmed as a very accurate method, which 
is able to increase the interpretability of the 
models obtained.

eis-tss in Neural Networks

A first application of the use of EIS-TSS on 
neural networks can be found in (Ishibuchi et 
al., 2001). The aim of this proposal was to find 
an optimal subset of instances and features by 
employing a GGA.

Figure 16. The EUS process in EIS-TSS
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The GGA designed to carry out the TSS 
task employed the usual representation of the 
solutions (binary coded, employing the first 
part of the chromosome to code the instances 
which are currently selected, and the second 
part to code the features), and a standard set of 
genetic operators: Random selection of parents, 
uniform crossover and bit flipping mutation 
(biased to decrease the number of instances 
selected). The fitness function defined by this 
proposal was:

 PWFWPerfWFitness PfPerf ⋅−−⋅=  

Where Perf is a measure of the accuracy 
of a NN classifier when applied to the training 
data by using as a reference set the current 
subset selected by the chromosome, F and P 
are respectively the number of features and 
instances selected, and WPerf, WF and WP are 
user-defined weights.

When the evolutionary process was fin-
ished, the final subset selected was employed 
to train a standard three layered neural network, 
being finally validated with a test data set to 
test its generalization capability.

Although the concrete EIS-TSS method 
employed has been outperformed by other 
EIS-TSS and EIS-PS proposals, this approach 
can still be considered an important milestone 
in the field because it was the first application 
of EIS-TSS to improve the performance of 
neural networks.

A more modern approach is proposed in 
(Kim, 2006). In this proposal, a GGA is also 
employed to optimize the performance of a 
three layered neural network, in the framework 
of an application for financial forecasting. The 
individuals of the genetic algorithm encode 
information about the instances selected and 
about the adjustment of the weights of the 
neural network, employing binary coding in 
both cases. Although an EIS-TSS process is 
performed, the genetic algorithm does not 
have as its objective the maintenance of a good 
reduction rate. Instead, the fitness function is 
defined as the classification accuracy of the 

neural network defined by the chromosome, 
instead of the usual application of the neural 
network as a baseline classifier.

The experimental study carried out con-
cluded that, in the context of the financial 
forecasting problem selected, the application 
of IS to improve the performance of neural 
networks outperformed the classical proposals 
of weights adjustment with genetic algorithms, 
highlighting the benefits of using EIS-TSS to 
improve the quality of the training process of 
neural networks.

eis-tss in subgroup discovery

In (Cano, Herrera, Lozano & García, 2008), 
a proposal to improve the performance of the 
CN2-SD algorithm for subgroup discovery in 
the evaluation of large size data sets is presented. 
Although CN2-SD is based on a divide and 
conquer strategy, it has to face the Scaling Up 
problem. To avoid it, the use of TSS algorithms 
is proposed for scaling down the data sets before 
the subgroup discovery task.

The study of the application of TSS algo-
rithms, and the experiments that were carried 
out, was divided into two parts:

In the first part, the effect of TSS on the • 
subgroups discovered with CN2-SD in 
small data sets is studied. The objective is 
to analyze if the TSS process affects the 
descriptive qualitative measures of the 
subgroups (coverage, support, confidence, 
significance, unusualness, completeness, 
size and number of antecedents).

The basic IS methods applied to the TSS 
process were CNN (Hart, 1968), IB2, IB3 
(Kibbler & Aha, 1987), DROP3 (Wilson & 
Martinez, 1997) ICF (Brightom & Mellish, 
2002) and EIS-CHC. These methods were 
applied by using the stratification proposed in 
(Cano et al., 2005).

The results of this first part of the study 
were contrasted to a complete set of para-
metrical and non-parametrical statistical tests. 
Their application revealed that the use of TSS 
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did not negatively affect the quality indexes of 
the subgroup discovered. Also the measures on 
size and number of antecedents were improved, 
showing that TSS algorithms were able to 
discover smaller and more interpretable sets 
of subgroups.

In the second part, a TSS process is com-• 
bined with CN2-SD to test its behavior in 
large size data sets. As basic IS methods, 
IB2 and EIS-CHC were selected because 
they were the IS algorithms with the 
smallest subsets selected in their applica-
tion to the large size data sets.

The main conclusion of this part was that 
the combination of the highest reduction rates 
of IB2 and EIS-CHC with CN2-SD makes it 
possible to perform a SD task on large size data 
sets. In particular, EIS-CHC is recommended 
because it shows very good results in most of 
the qualitative measures tested, when employed 
in combination with CN2-SD.

As a final conclusion of the study, the 
authors stated that, thanks to the application 
of TSS methods, CN2-SD can be executed on 
large data set sizes pre-processed, maintaining 
and improving the quality of the subgroups 
discovered.

A second application of EIS-TSS for 
subgroup discovery can be found in (Cano et 
al., 2008). There, a different application of the 
stratified strategy presented in (Cano et al., 
2005) was proposed: The employment of two 
modified strategies of stratification to increase 
the presence of minority classes. The aim of the 
proposal was to allow a subgroup discovery al-
gorithm, Apriori-SD (Kavsek & Lavrac, 2006), 
to avoid the Scalability problem and to face a 
large data set without harming its accuracy due 
to a poor treatment of imbalanced data.

The data set used on the experiment was 
the KDD Cup’99. Firstly, it is shown that the 
Apriori-SD could not handle the KDD Cup’99 
problem because of its expensive computational 
cost in time. Then the TSS methods are applied 
to tackle the problem. ENN (Hart, 1968), IB3 

(Kibbler & Aha, 1987), and EIS-CHC (Cano et 
al., 2005) were proposed as baseline IS methods 
to be used.

To preserve the number of instances of 
the minority classes, two different strategies 
of stratification were proposed:

• Instance selection in all classes: The 
instances of the majority classes are as-
signed randomly over the strata created. 
Then the whole minority classes are 
added to each strata. After the IS process 
is carried out, the subsets selected are re-
united, removing duplicities.

The employment of this strategy showed 
a severe drawback: Its application to every 
TSS subset obtained after the reunion of the 
instances selected from the strata decreased 
significantly the number of instances present 
from the minority classes. Thus, the minority 
classes were not sufficiently represented for a 
proper subgroup discovery task, due to use of 
the stratified IS.

• Instance selection in majority classes: 
The selection process is applied without 
the minority ones, just to the majority 
classes. The instances which belong to 
the minority classes were added to the 
TSS subset after the reunion of the sub-
sets selected, and then the subgroup dis-
covery tasks were carried out.

In this case, the instances which appear in 
the TSS selected were the most representative 
of the majority classes and all the instances 
belonging to the minority ones. Thus the IS 
process was able to reduce the initial data set 
without affecting the presence of instances from 
the minority classes, making the subgroup dis-
covery process possible in those classes.

Both strategies were tested in combina-
tion with the selected IS methods, using con-
fidence and support as qualitative measures. 
The conclusions of the experiment were that 
the combination of the TSS algorithms with 
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stratification allows us to extract subgroups 
for most of the classes, including most of the 
minority ones, with high levels of confidence 
and support measures. Furthermore, the use 
of the instance selection in majority classes 
strategy of stratification was recommended to 
perform this task.

6. CoNClusioN

This article presents a review of PS, TSS and 
PG techniques performed by evolutionary 
algorithms. A wide number of algorithms and 
proposals of the state-of-the-art have been 
discussed, showing that the research in these 
fields have produced numerous advances in 
recent years to improve the quality of Instance 
Selection and Generation techniques in Data 
Mining.

Furthermore, this survey has considered 
the use of Evolutionary Algorithms to tackle 
two important issues in Data Mining: The Scal-
ing up Problem and the Imbalance Data Sets 
Problem. These proposals have provided a way 
to improve the results obtained over large sized 
and imbalanced data in such fields as supervised 
classification and subgroup discovery, being a 
clear example of how Evolutionary Algorithms 
can be a useful tool in order to overcome these 
challenging problems.
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aPPeNdix: aCroNyms table

In this appendix, a table with all the acronyms employed on the text is provided (Table 1). For 
each acronym, it is shown its meaning and the page where it was defined:

Table 1.

Acronym Meaning Page

EIS Evolutionary Instance Selection 4

EIS-PS Evolutionary Instance Selection – Prototype Selection 4

EIS-TSS Evolutionary Instance Selection – Training Set Selection 4

EUS Evolutionary Under Sampling 23

EPG Evolutionary Prototype Generation 4

GGA Generational Genetic Algorithm 10

GOCBR Global Optimization of feature weighting and instance 
election using genetic algorithms for Case Based Reasoning 26

HGA Hybrid Genetic Algorithm 26

IG Instance Generation 3

IGA Intelligent Genetic Algorithm 18

IS Instance Selection 3

PBIL Population Based Incremental Learning 10

PG Prototype Generation 3

PS Prototype Selection 3

PSO Particle Swarm Optimization 28

SSGA Steady State Genetic Algorithm 10

SSMA Steady State Memetic Algorithm 18

TSS Training Set Selection 3
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Feature and instance selection are two effective data reduction processes which can be applied to

classification tasks obtaining promising results. Although both processes are defined separately, it is

possible to apply them simultaneously.

This paper proposes an evolutionary model to perform feature and instance selection in nearest

neighbor classification. It is based on cooperative coevolution, which has been applied to many

computational problems with great success.

The proposed approach is compared with a wide range of evolutionary feature and instance

selection methods for classification. The results contrasted through non-parametric statistical tests

show that our model outperforms previously proposed evolutionary approaches for performing data

reduction processes in combination with the nearest neighbor rule.
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1. Introduction

The designing of classifiers can be considered one of the main
processes inside the data mining field. Due to the large amount of
data generated in many research areas, ranging from human
genome sequenciation projects to development of new technical
prototypes in industry, the use of machine learning algorithms
has become a challenging task [1,2].

The employment of data reduction [3] techniques in the first
phases of the construction of classifiers is a necessity in most data
mining applications nowadays. The main objectives of these
techniques are to increase the efficiency of the classification
process (by removing redundant instances and features or
discretizing variables) and to reduce the classification error rate
(by removing noisy instances and features). Although data
reduction techniques were originally designed to work with
standard data, it is not difficult to find applications of data
reduction in other fields, e.g. dealing with multimedia data [4] or
graphics [5]. Data reduction is also used to optimize dissimilarity-
based classification [6], to obtain high quality rules in high-
dimensional subgroup discovery problems [7] and to enhancing

the data quality based on complexity measures as the computa-
tion of volume-based inter-class overlap measures [8].

One of the most well known classifiers is the k-Nearest
Neighbors classifier (k-NN) [9]. It has been applied to many
classification problems [10]. It is a non-parametric classifier
which does not build a model in its training phase. Instead of
using a model, it is based on the instances contained in the
training set. Thus, the effectiveness of the classification process
relies on the quality of the training data. Also, it is important to
note that its main drawback is its relative inefficiency as the size
of the problem grows, regarding both the number of examples in
the data set and the number of attributes which will be used in
the computation of its similarity functions (distances).

For this contribution, two well-known techniques of data
reduction will be employed: instance selection (IS) [11] and
feature selection (FS) [12]. The objective of IS is to select the most
appropriate subset of instances (prototypes) from the initial data,
trying simultaneously to increase the accuracy of the classifica-
tion process and decrease the amount of data employed in it. FS
works in a similar way, selecting the most appropriate subset of
features to describe the data. Both are really effective not only in
reducing the size of the initial data set, but also in filtrating and
cleaning noisy data. In the field of machine learning, we can find
interesting approaches [11,12], some of them trying to enhance
the results obtained by the k-NN classifier [13].

On the other hand, the research done in evolutionary
computation (EC) [14] has contributed numerous techniques
inspired by natural evolution, which are able to manage search
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problems like IS [13,15,16] and FS [17–19]. Furthermore, Evolu-
tionary Algorithms (EAs) have been successfully used in data
mining problems, showing that they are a very useful tool to
perform this task [20–22].

A more specialized approach can be found in coevolution [23],
a specialized trend of EAs. It works by managing two or more
populations (also called species) simultaneously, allowing inter-
actions among its individuals. This approach allows splitting the
problem into different parts, employing a population to handle
each one separately, but joining its individuals to evaluate the
solutions obtained. Recently, the coevolution model has shown
some interesting characteristics [24], being successfully applied to
different problems [25,26].

Our proposal defines a cooperative coevolution model to tackle
the IS and FS problems. In the instance and feature selection based
on the cooperative coevolution (IFS-CoCo) model, both processes
are applied simultaneously to the initial data set, aiming to obtain
a suitable training set to perform the classification process.

IFS-CoCo is composed of three populations. The individuals of
each one define a different type of baseline classifier, depending
on each population’s characteristics. Thus, each population is
focused on performing a basic data reduction task: The first
population performs an IS process, the second population per-
forms a FS process, and the third population performs simulta-
neously both IS and FS processes. With the employment of
coevolution, this approach is intended to improve the results of
data reduction techniques when applied to classification tasks.

In this work, IFS-CoCo will be fully described, from its
theoretical background to the details of its implementation.
Moreover, a wide range of classification problems will be
employed to perform a comparison between IFS-CoCo and other
models, in order to highlight the benefits of the use of
coevolution. We will employ a Wilcoxon signed-ranks test [27]
to contrast the results obtained.

The rest of the paper is organized as follows: Section 2
summarizes the existing work in the related areas. Section 3
describes the cooperative coevolutive model proposed. Section 4
deals with the experimental framework employed. Section 5
presents the analysis of results. Section 6 shows the conclusions
arrived at. Finally, two appendices are provided to extend the
details of the experimental study performed. Appendix A
describes the main characteristics of the comparison algorithms
employed. Appendix B shows the complete results obtained.

2. Background: data reduction and coevolutionary algorithms

This section discusses the main topics in the background in
which our contribution is based. Section 2.1 describes in depth IS
and FS as data reduction techniques. Section 2.2 shows some
examples of how EAs can be applied to data reduction problems.
Finally, Section 2.3 highlights the main characteristics of coevolu-
tionary algorithms.

2.1. Data reduction techniques

Two well-known data reduction techniques are going to be
reviewed in this subsection: IS and FS. In addition, an analysis of
simultaneous instance and feature selection (IFS) will be pro-
vided. This will cover all the background needed to understand
the data reduction processes performed by IFS-CoCo.

2.1.1. Instance selection

IS is one of the main data reduction techniques. In IS, the goal
is to isolate the smallest set of instances which enable a data

mining algorithm to predict the class of a query instance with the
same quality as the initial data set [11]. By minimizing the data
set size, it is possible to reduce the space complexity and decrease
the computational cost of the data mining algorithms that will be
applied later, improving their generalization capabilities through
the elimination of noise.

More specifically, IS can be defined as follows: Let Xp be an
instance where Xp ¼ ðXp1;Xp2; . . . ;Xpm;XpcÞ, with Xp belonging to a
class c given by Xpc , and a m-dimensional space in which Xpi is the
value of the i-th feature of the p-th sample. Then, let us assume
that there is a training set TR which consists of N instances Xp and
a test set TS composed of T instances Xp. Let SDTR be the subset of
selected samples that resulted from the execution of a IS
algorithm, then we classify a new pattern T from TS by a data
mining algorithm acting over the instances of S.

IS methods can be divided into two categories: prototype
selection (PS) methods and training set selection (TSS) methods.
PS methods [28] are IS methods which expect to find training sets
offering the best classification accuracy and reduction rates by
using instance based classifiers which consider a certain similarity
or distance measure (e.g., k-NN). On the other hand, TSS methods
are known as the application of IS methods over the training set to
build any predictive model (e.g. decision trees, neural networks
[29,30]).

In this work, we will focus our attention on PS, because we will
employ the nearest neighbor rule as the baseline rule to perform
the classification process. More concretely, we will employ the
1-NN rule. Wilson and Martinez, in [31], suggest that the
determination of the k value in the k-NN classifier may depend
on the proposal of the IS algorithm. Setting k41 decreases the
sensitivity of the algorithm to noise and tends to smooth the
decision boundaries. In some IS algorithms, a value k41 may be
convenient, when the interest lies in protecting the classification
task of noisy instances. Therefore, Wilson et al states that it may
be appropriate to find a value of k to use during the reduction
process, and then redetermine the best value of k in the
classification task. For this contribution, we have employed
the value k¼ 1, given that EAs need to have the greatest
possible sensitivity to noise during the reduction process. In this
manner, an evolutionary IS algorithm could better detect
the noisy instances and the redundant ones in order to find a
subset of instances adapted to the simplest method of nearest
neighbors.

In the data mining field many approaches of PS have been
developed, ranging from classical approaches such as CNN [32] or
ENN [33] to recent approaches such as SSMA [15], HMNEI [34] or
PSC [35]. A wide number of reviews of PS methods can be found in
the literature [36–38,31].

2.1.2. Feature selection

FS is another of the main data reduction techniques. In FS, the
goal is to select the most appropriate subset of features from the
initial data set. It aims to eliminate irrelevant and/or redundant
features to obtain a simple and accurate classification system
[12].

FS can be defined as follows: Let Xp be an instance where
Xp ¼ ðXp1;Xp2; . . . ;Xpm;XpcÞ, with Xp belonging to a class c given by
Xpc , and an m-dimensional space in which Xpi is the value of the
i-th feature of the p-th sample. Then let us assume that there is a
training set TR whose instances Xp are defined by M features, and
a test set TS. Let PDM be the subset of selected features that
resulted from the execution of a FS algorithm, then we classify a
new pattern from TS by a data mining algorithm acting over TR,
employing for reference only the features selected in P.
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There are three main categories in which FS methods can be
classified:

� Wrapper methods, where the selection criterion is dependent
on the learning algorithm, being a part of the fitness function
[39].
� Filtering methods, where the selection criterion is independent

of the learning algorithm (separability measures are employed
to guide the selection) [40].
� Embedded methods, where the search for an optimal subset of

features is built into the classifier construction [41].

As with IS methods, a great number of FS methods have been
developed recently. Two of the most well known classical
algorithms are forward sequential and backward sequential
selection [42], which begin with a feature subset and sequentially
add or remove features until the finalization of the algorithm.

Despite the popularity of sequential methods, other
approaches can be found in the literature [43]. Some of them
are based on heuristics [44], showing a proof of heuristics and
metaheuristics can be very useful in the task of selecting the most
appropriate subset of features to be used in a classification
algorithm. More complex approaches have been developed, based
on fuzzy entropy measures [45]. Some complete surveys, analyz-
ing both classical and advanced approaches to FS, can be found in
the literature [40,46,41].

2.1.3. Instance and feature selection

Instead of approaching IS or FS problems separately, some
research efforts have been applied to the study of the dual IS and
FS problem, which we will denote Instance and Feature Selection
(IFS). There is no inconvenience in tackling both problems
simultaneously because features and instances can be selected
in an independent way: the classification accuracy of the
classification process is the only part of the problem affected,
which will be determined by the selected data.

Some proposals for IFS can be found in the literature; a first
approach is proposed in [47], where a Genetic Algorithm (GA) is
employed to simultaneously select suitable instances and features
for a reference set of a k-NN classifier. This approach was
improved in [48], where, in addition, their proposal was also
employed to improve the performance of neural networks in
classification.

Another recent proposal can be found in [49], where a
simulated annealing method [50] is applied to perform alternately
IS and FS on each step of the search. More complex approaches
mixing Feature Weighting, IS and FS have been developed
recently [51,10].

2.2. Evolutionary algorithms on data reduction

Recently, the employment of EAs in data reduction problems
has become common in the machine learning field. This
subsection will review some interesting examples.

In [13], a complete study of the use of EAs in IS is made,
highlighting four EAs to complete this task: CHC Adaptive Search
Algorithm (CHC) [52], Steady-State Genetic Algorithm (SSGA),
Generational Genetic Algorithm (GGA) and population-based
incremental learning (PBIL). They concluded that EAs outperform
classical algorithms both in reduction rates and classification
accuracy. They also concluded that CHC is an appropriate EA to
carry out this task, according to the algorithms they compared.
Other proposals can be found in [15,53,54,16,55].

Most of the EAs approaches in FS are based on GAs, using both
filter and wrapper approaches [56–58,18,59–62]. A remarkable

proposal is [19], where the CHC algorithm shows good results
when applied to FS problems. Another interesting proposal is [17],
where an estimation of distribution algorithm based on Bayesian
Networks is presented.

It is possible to find applications of simultaneous IS and FS to
EAs. Both [47] and [48] propose a GA to perform the editing of the
instance set and selection of the feature set. Ho et al [63]
presented IGA, an intelligent GA designed to tackle both IS and FS
problems simultaneously, by the introduction of a special
orthogonal cross operator. More recently, a hybrid GA (HGA)
[64] has been developed by merging local search optimization
techniques with the genetic component itself. HGA performs its
search in two phases, firstly by using a basic GA based on the
restricted tournament selection (RTS) scheme, and secondly by
employing some different processes of local searches to help the
GA to converge.

2.3. Coevolutionary algorithms

A coevolutionary algorithm (CA) is an EA which is able to
manage two or more populations simultaneously. Coevolution,
the field in which CAs can be classified, can be defined as the co-
existence of some interacting populations, evolving simulta-
neously. In this manner, evolutionary biologist Price [65] defined
coevolution as reciprocally induced evolutionary change between

two or more species or populations. A wider discussion about the
meaning of coevolution in the field of EC can be found in the
dissertation thesis of Wiegand [66].

The most important characteristic of coevolution is the
possibility of splitting a given problem into different parts,
employing a population to handle each one separately. This
allows the algorithm to employ a divide-and-conquer strategy,
where each population can focus its efforts on solving a part of the
problem. If the solutions obtained by each population are joined
correctly, and the interaction between individuals is managed in a
suitable way, the coevolution model can show interesting benefits
in its application.

Therefore, the interaction between individuals of different
populations is key to the success of coevolution techniques. In the
literature, coevolution is often divided into two classes, regarding
the type of interaction employed:

Cooperative coevolution (CoCo): In this trend, each population
evolves individuals representing a component of the final
solution. Thus, a full candidate solution is obtained by joining
an individual chosen from each population. In this way, increases
in a collaborative fitness value are shared among individuals of all
the populations of the algorithm [23].

Competitive coevolution (ComCo): In this trend, the individuals
of each population compete with each other. This competition is
usually represented by a decrease in the fitness value of an
individual when the fitness value of its antagonist increases [67].

Coevolution is a research field which has started to grow
recently. With respect to the architecture of its models, some
interesting topics can be remarked upon:

� Some research efforts have been applied to tackle the question
about how to select the members of each population that will
be used to evaluate the fitness function. One way is to evaluate
an individual against every single collaborator in the other
population [68]. Although it would be a better way to select
the collaborators, it would consume a very high number of
evaluations in the computation of the fitness function. To
reduce this number, there are other options, such as the use of
just a random individual or the use of the best individual from
the previous generation [69].
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� One main problem which CoCo (and Coevolution, in general)
must face is known as the loss of gradient problem in which one
population comes to severely dominate the others, creating a
situation where the other populations have insufficient
information from which to learn, due to the high degree of
domination present. This problem has been addressed by
several authors [70].
� Another question to solve is to define how the algorithm

should manage its populations. The most common answers are
to manage them by using either a sequential scheme or a
parallel scheme. Several studies have been done comparing
both approaches [71].
� The assignation of fitness to each individual is also an open

question. This feature, also called Collaboration Credit Assign-

ment is the rule which defines how a fitness value of an
individual will be updated when it will be used two or more
times as a part of a complete solution. Although the simplest
solution is to use just the last given value, some different
schemes have been developed, e.g., minimum, maximum and

average [72]. Also, more complex relationships have been
developed, e.g., based on game theory [73].

All these advances have been proposed with a main idea in
mind: coevolution is able to beat the well known No-Free-Lunch
(NFL) barrier present on most of the function optimization
techniques [74]. That means that it is possible to design CAs
which perform better than others EAs, when averaged over all
interaction functions, with respect to some measure of perfor-
mance [24]. This theoretical result has been studied in depth, and
as a result some proposals of NFL frameworks for Coevolution
have been developed [75].

3. A cooperative coevolutionary algorithm for instance and
feature selection: IFS-CoCo

The main features of IFS-CoCo will be presented in this section,
as well as all the details needed to perform its implementation,
along the next four subsections. Section 3.1 deals with the
description of the populations and the chromosome representa-
tion. Section 3.2 defines the fitness function employed. Section 3.3
presents the baseline EA on which our model is based, the CHC
algorithm. Finally, Section 3.4 describes the main coevolutionary
process performed by IFS-CoCo.

3.1. Populations and chromosome representation

As mentioned in the first section of this work, IFS-CoCo
manages three populations. The chromosomes of each one define
a different type of baseline classifier, thus each population is
focused on performing a basic data reduction task:

� The first population performs an IS process.
� The second population performs a FS process.
� The third population performs an IFS process.

From now on, they will be referred to as IS population, FS
population and IFS population, respectively. Fig. 1 shows a basic
representation of the scheme of the populations of IFS-CoCo.

All populations share the same basic chromosome definition.
Let us assume a data set with N instances and M attributes. Each
chromosome consists of a determinate number of genes, which
represents either an instance or a feature. A binary representation
is used, thus each gene has two possible states: 1, if the

corresponding feature/instance is included in the data set
represented by the chromosome, or 0 if not.

The concrete representation and size of the chromosome
depends on the population to which it belongs:

� IS population: Each gene represents an instance (chromosome
size: N).
� FS population: Each gene represents a feature (chromosome

size: M).
� IFS population: The first N genes of the chromosome represent

instances. Remaining genes represent features (chromosome
size: NþM).

By using this representation scheme, all chromosomes will
define a subset of the original data set, with everyone focused on a
concrete data reduction task. Regarding to the classification task,
each chromosome symbolizes a reduced subset, which will be
employed as a training set by the 1-NN classifier [9].

3.2. Fitness function

IFS-CoCo uses a fitness function focused on two objectives:
Maximize the accuracy rate of the multiclassifier defined by the
combination of the three populations and maximize the reduction
rates over instances and features.

Three chromosomes are needed to compute the fitness
function (one of each population, defining the three basic
classifiers). Each chromosome will get a fitness value, depending
on the accuracy rate obtained by the multiclassifier defined by the
joint of the three chromosomes, and also depending on the
reduction rate obtained by the data set coded by its phenotype.

To obtain the accuracy rate of the combination of three
chromosomes it is necessary to build a multiclassifier. This task
can be accomplished by building the three basic classifiers
defined by the chromosomes (an IS classifier, an FS classifier

Fig. 1. Population scheme of IFS-CoCo.
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and an IFS classifier). Then, the three outputs must be joined into
one, by using a majority voting function.

Each output value is obtained as the majority output of the
three basic classifiers. If no majority vote can be obtained, then
the output of the currently best classifier is preferred. The
currently best classifier is the one that belongs to the population
that achieved better overall results in the previous generation.

When the majority voting process has finished, the resulting
class can be regarded as the output of the multiclassifier. At this
point, the accuracy of the classifier, classRate, can be computed.

classRateðG;H; IÞ ¼
#Instances classified correctly

N
ð1Þ

where G is a chromosome from the IS population, H is a
chromosome of the FS population, I is a chromosome of the IFS
population, and N is the number of instances in the training set.
This result is assigned as the classRate of G, H and I.

classRateðGÞ ¼ classRateðG;H; IÞ

classRateðHÞ ¼ classRateðG;H; IÞ

classRateðIÞ ¼ classRateðG;H; IÞ ð2Þ

On the other hand, the reduction rates can be computed from
any chromosome. For a given chromosome J, two reduction rates
are defined:

� ReductionIS, which symbolizes the reduction rate obtained
regarding the instances of the data set:

ReductionISðJÞ ¼ 1:0-
#Instances Selected

N
ð3Þ

Where #Instances Selected is the number of genes set to 1 if J

belongs to the IS population, the number of genes set to 1 in
the first N genes if J belongs to the IFS population, or N if J

belongs to the FS population.
� ReductionFS, which symbolizes the reduction rate obtained

regarding the features of the data set:

ReductionFSðJÞ ¼ 1:0-
#Features Selected

M
ð4Þ

Where #Features Selected is the number of genes set to 1 if J

belongs to the FS population, the number of genes set to 1 in
the last M genes if J belongs to the IFS population, or M if J

belongs to the IS population.

At this point, assuming that a chromosome J has already defined
its classRate, ReductionIS and ReductionFS values, its fitness value
can be computed. The fitness function must be able to give any
chromosome a suitable value which adequately represent those
values.

A first approach (Eq. (5)) can be found in [13], where the
classRate and Reduction (the reduction rate achieved over the
selected instances) values are employed to define a suitable
fitness function for the IS problem, employing an a real-valued
weighting factor:

FitnessðJÞ ¼ a � clasRateðJÞþð1-aÞ � ReductionðJÞ ð5Þ

However, for this model we must define an expression
composed by classRate and the two reduction rates, ReductionIS

and ReductionFS. To obtain it, we define for IFS-CoCo the following
fitness function:

FitnessðJÞ ¼ a � b � clasRateðJÞþð1-aÞ � ReductionISðJÞþð1-bÞ � ReductionFSðJÞ

ð6Þ

where a and b are real-valued weighting factors valued in the
interval [0,1].

In [13], it is suggested to employ a value of 0.5 for the a
parameter (for Eq. (6)). In our approach, this value should be
increased a bit, due to the influence of the simultaneous use of
ReductionIS and ReductionFS components (and the b parameter) to
compute the fitness value.

On the other hand, the value of the second parameter, b,
should be adjusted carefully. This value has to be near 1.0, to
avoid an excessive deletion of features in the solutions obtained.
In the k-NN classifier, the removal of a feature can influence too
much the subsequent classification process. Thus, a high pressure
towards obtaining high reduction rates over the subset of selected
features may degrade significantly the accuracy of the classifier.
Consequently, the value of the b parameter should not be set very
far from 1.0 (but lesser to it, to allow our model to select smaller
subsets when comparing two solutions with a similar classRate

associated).

3.3. CHC algorithm

CHC [52] is a binary-coded GA which involves the combination
of a selection strategy with a very high selective pressure, and
several components inducing a strong diversity. Due to these
characteristics, CHC has become a robust EA, which should often
offer promising results in several search problems.

We have selected CHC as a baseline EA for our model because
it has been widely studied, being now a well-known algorithm on
evolutionary computation. Furthermore, previous studies like [13]
support the fact that it can perform well on data reduction
problems.

The four main components of the algorithm are shown as
follows:

� An elitist selection: The members of the current population are
merged with the offspring population obtained from it and the
best individuals are selected to compose the new population.
In cases where a parent and an offspring have the same fitness
value, the former is preferred to the latter.
� A highly disruptive crossover: HUX, which crosses over exactly

half of the non-matching alleles, where the bits to be
exchanged are chosen at random without replacement. This
way, it guarantees that the two offspring are always at the
maximum Hamming distance from their two parents, thus
encouraging the introduction of a high diversity in the new
population and lessening the risk of premature convergence.
� An incest prevention mechanism: During the reproduction step,

each member of the parent (current) population is randomly
chosen without replacement and paired for mating. However,
not all these couples are allowed to cross over. Before mating,
the Hamming distance between the potential parents is
calculated and if half this distance does not exceed a difference
threshold d, they are not mated. The aforementioned threshold
is usually initialized to L=4 (with L being the chromosome
length). If no offspring is obtained in one generation, the
difference threshold is decremented by one.
The effect of this mechanism is that only the more diverse
potential parents are mated, but the diversity required by the
difference threshold automatically decreases as the population
naturally converges.
� A restart process: replacing the GA mutation, which is only

applied when the population has converged. The difference
threshold is considered to measure the stagnation of the
search, which happens when it has dropped to zero and several
generations have been run without introducing any new
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individual into the population. Then, the population is
reinitialized by considering the best individual as the first
chromosome of the new population and generating the
remaining chromosomes by randomly flipping a percentage
(usually 35%) of their bits.

Algorithm 1 shows a basic pseudocode of CHC.

Algorithm 1. CHC algorithm basic structure

Input: population
1 Initialization(population);
2 d¼ L=4;
3 Evaluate(population);
4 while termination condition not satisfied do
5 candidates=SelectParents(population);
6 offSpring=CrossParents(candidates);
7 Evaluate(offspring);
8 SelectNewPopulation(population, offspring);
9 if Population not changed then
10 d¼ d-1;
11 end
12 if do0 then
13 Restart(population);
14 Initialize(d);
15 end
16 end

Output: Best(population)

To increase the speed of the data reduction process performed
by IFS-CoCo, we have modified the definition of the HUX-cross
operator. In this manner, when a gene representing an instance is
going to be set from 0 to 1 by the crossing procedure, it is only set
to one with a defined probability (prob0to1 parameter). No
modifications are applied to changes from 1 to 0, or to genes
representing features.

For example, if one chromosome, 1100000000, and another
chromosome, 1111111111, defining an IS classifier, are crossed by
the HUX standard operator, the offspring will be 1111110000 and
1100001111. On the same scenery, an execution of our HUX
modified operator, with a probability of change prob0to1¼ 0:5,
would give as the output the offspring 1101100000 and
1100001111. Fig. 2 shows this example graphically.

With this modification, the HUX crossing operator will help to
speed up the reduction process.

3.4. Coevolutionary process

This subsection describes the coevolutionary process of IFS-
CoCo. Algorithm 2 shows a basic pseudocode of the model
proposed. In the following we describe the instructions enumer-
ated from 1 to 9:

Algorithm 2. IFS-CoCo algorithm

1 Generate ISPopulation,FSPopulation and IFSPopulation
Randomly;

2 Select initial bestISArray, bestFSArray and bestIFSArray;
3 Evaluate all populations in the multiclassifier;
4 Select bestISArray, bestFSArray and bestIFSArray from each

population;
5 while evaluationsomax_evaluations do
6 Select best classifier in last generation;
7 Do a CHC Generation on every population;
8 Evaluate the individuals of every population;
9 Update bestISArray, bestFSArray and bestIFSArray if a

better global solution has been found;
10 end

Output: bestISArray, bestFSArray and bestIFSArray

� Instruction 1 generates the three initial populations. This step
includes the random generation of the chromosomes (all of its
genes are valued at either 0 or 1, with equal probability), and
an initial evaluation of the quality of each chromosome. This
basic evaluation consists of building the basic classifier defined
by the chromosome (IS classifier, FS classifier or IFS classifier),
and the extraction of its related accuracy. Because no use of the
general fitness function is made, these fake evaluations are not
counted into the limit.
� Instruction 2 selects the best individual of each population.

With them, every chromosome can be evaluated with the
general fitness function, in order to assign them a real fitness
value.
� In instruction 3, this evaluation is done by grouping every

chromosome with the two chromosomes selected of the other
populations (e.g. chromosomes of IS population will employ FS
population and IFS population best individuals as partners),
and using then the fitness function.
� When the evaluation process is finished, instruction 4 selects

the best performing individual of each population.
� Instruction 5 conducts the coevolutionary process.
� In instruction 6, the best performing individual of each

population is selected to help in the task of building the
multiclassifiers.
� Instruction 7 performs a single generation over each

population, in an arbitrary order (e.g., IS population, FS
population and IFS population), by employing the general
EA (CHC, in this case) and the multiclassifier based fitness
function.
� Instruction 8 evaluates the individuals of every population.
� Instruction 9 concludes a generation, updating the best

global solution if a better fitness score has been found. The
three chromosomes employed to get this elite solution are
saved.

When a fixed number of evaluations run out, the evolutionary
process is finished. The algorithm returns the best global solutionFig. 2. The modified HUX crossing operator.
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found, represented by the best chromosome found in each
population.

At the end of the coevolutionary process, the final IFS-CoCo
based classifier can be built based on the output chromosomes.
This multiclassifier will work in the same manner as all the
multiclassifiers employed in the coevolutionary process.

4. Experimental framework

This section shows the details of the experimental framework.
Section 4.1 presents the classification problems employed. Section
4.2 summarizes the algorithms employed in the comparison.
Section 4.3 describes the parameters employed in each method.
Section 4.4 discuss the performance measures employed to
evaluate our proposal. Finally, Section 4.5 discusses the statistical
tests employed to analyze the results.

4.1. Classification problems

To check the performance of IFS-CoCo, we have used 18 data
sets taken from the UCI Machine Learning Database Repository
[76]. Table 1 shows their main characteristics. For each data set
the number of examples, attributes and classes of the problem
described are shown.

Additionally, we have selected a second set of 6 high
dimensional data sets (with more than 35 features), of higher
size, to perform a second study about the behavior of our
approach when the size of the problem increases. All of them
have been also taken from the UCI Machine Learning Database
Repository [76], except the Texture data set, which belongs to the
ELENA project.2 Table 2 shows its characteristics.

The data sets considered are partitioned by using the ten fold
cross-validation (10-fcv) procedure, and their values are normal-
ized in the interval [0,1] to improve the classification power of the
1-NN rule.

4.2. Algorithms for evaluation

IFS-CoCo will be compared with several evolutionary data
reduction algorithms, which manage IS, FS or IFS with the 1-NN
rule employed as a baseline classifier.

The concrete algorithms employed are:

� IS algorithms:
– IS-CHC: CHC algorithm performing IS [13].
– IS-SSGA: SSGA algorithm performing IS [13].
– IS-GGA: GGA algorithm performing IS [13].

� FS algorithms:
– FS-CHC: CHC algorithm performing FS [19].
– FS-SSGA: SSGA algorithm performing FS.
– FS-GGA: GGA algorithm performing FS.

� IFS algorithms:
– IFS-CHC: CHC algorithm performing IS and FS.
– IGA: Intelligent GA [63].
– HGA: Hybrid GA [64].

� 1-NN: We compare 1-NN as the basic baseline with all data
sets.

CHC, SSGA and GGA based implementations are based on basic
evolutionary search processes by the original algorithms, by using
the same chromosome representation as the basic population of
our model.

A wider description of all the comparison algorithms can be
found in the Appendix A of this contribution.

4.3. Parameters

The most important parameter of IFS-CoCo and the rest of
comparison algorithms is the number of evaluations of the fitness
function allowed before stopping the search process. We have
selected to employ 10,000 evaluations because it is a classical
limit employed to test the performance of the majority of EAs for
IS [13], which should allow every algorithm to converge in most
of the problems used.

The rest parameters used by IFS-CoCo are:

� Population size: 50 (for each population)
� a weighting factor: 0.6
� b weighting factor: 0.99
� prob0to1 on HUX: 0.25

CHC based algorithms uses the same parameters (including the
HUX modified probability), incorporating the fitness function
weights when it is necessary.

SSGA and GGA based algorithms also use the same parameters,
but they employ standard cross and mutation operators. Their
probabilities are:

� Crossing probability (SSGA): 1.0.
� Crossing probability (GGA): 0.6.
� Mutation probability from 0 to 1 (instances): 0.001.

Table 1
UCI Data sets used in our experiments.

Data set Examples Attributes Classes

Aut 205 25 6

Bal 625 4 3

Bupa 345 6 2

Car 1728 6 4

Cleveland 303 13 5

Dermat 366 34 6

German 1000 20 2

Glass 214 9 7

Housevotes 435 16 2

Iris 150 4 3

Mammograph 961 5 2

Pima 768 8 2

Sonar 208 60 2

Spectfheart 267 44 2

Tic-tac-toe 958 9 2

Vehicle 846 18 4

Wisconsin 699 9 2

Zoo 101 16 7

Table 2
High dimensional data sets employed.

Data set Examples Attributes Classes

Chess 3196 36 2

Movement-Libras 360 90 15

Satimage 6435 36 7

Spambase 4597 57 2

Splice 3190 60 3

Texture 5500 40 11

2 ftp://ftp.dice.ucl.ac.be/pub/neural-nets/ELENA/databases
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� Mutation probability from 1 to 0 (instances): 0.01.
� Mutation probability (features): 0.01.

IGA parameters are:

� Population size: 50 (for each population).
� Mutation probability 0 to 1 (instances): 0.001.
� Mutation probability 0 to 1 (features): 0.01.
� Mutation probability 1 to 0 (features): 0.01.
� a weighting factor: 0.04.

Finally, HGA has defined 23 parameters. The main parameters’
values are:

� Population size: 50 (for each population).
� Crossing probability: 0.5.
� Mutation probability: 0.05.
� The rest of the parameters are set to default values (those

listed by the authors in [64]).

4.4. Performance measures

To analyze the results obtained in the study, we have
employed three performance measures:

Accuracy: We define the accuracy as the number of successful
hits relative to the total number of classifications. It has been by
far the most commonly used metric for assessing the performance
of classifiers for years [1,77,78].

Kappa: Is an alternative to classification rating: a method,
known for decades, that compensates for random hits [79]. Its
original purpose was to measure the degree of agreement or
disagreement between two people observing the same phenom-
enon.

Cohen’s kappa can be adapted to classification tasks and its use
recommended because it takes random successes into considera-
tion as a standard, in the same way as the AUC measure [80]. Also,
it is used in some well-known software packages, such as WEKA
[1], SAS, SPSS, etc. An easy way of computing Cohen’s kappa is to
make use of the resulting confusion matrix in a classification task.
Specifically, the Cohen’s kappa measure can be obtained using
expression (7):

kappa¼
n
PC

i ¼ 1 xii�
PC

i ¼ 1 xi:x:i

n2�
PC

i ¼ 1 xi:x:i
ð7Þ

where xii is the cell count in the main diagonal, n is the number of
examples, C is the number of class values, and x:i, xi: are the
columns and rows total counts, respectively. Cohen’s kappa
ranges from -1 (total disagreement) through 0 (random classifica-
tion) to 1 (perfect agreement). Being a scalar, it is less expressive
than ROC curves when applied to binary-classification. However,
for multi-class problems, kappa is a very useful, yet simple, meter
for measuring the accuracy of the classifier while compensating
for random successes.

The main difference between classification rating and Cohen’s
kappa is the scoring of the correct classifications. Classification rate
scores all the successes over all classes, whereas Cohen’s kappa scores
the successes independently for each class and aggregates them. The
second way of scoring is less sensitive to randomness caused by a
different number of examples in each class, which causes a bias in the
learner towards obtaining data-dependent models.

Reduction: The reduction rate is defined as the ratio of data
selected by the algorithm. For example, if a given solution only
selects half of the instances (or features) of the training set, its
reduction rate will be 0.5. If a given solution only selects half of the
instances and half of the features, its reduction rate will be 0.75.

It has a strong influence on the efficiency of the solutions
obtained, due to the cost of the final classification process
performed by the k-NN classifier ðOðN2 �MÞÞ.

Time: The simplest way to measure the practical efficiency of a
method. We will analyze the average time elapsed (in seconds) by
every data reduction method in each complete execution (no
times are given for 1-NN, since it does not perform a data
reduction phase).

4.5. Test for analysis

To complete the experimental study carried out, we have
performed a statistical comparison of accuracy between IFS-CoCo
and all the evaluation algorithms. In [81,82] a set of simple, safe
and robust non-parametric tests for statistical comparisons of
classifiers are recommended. One of them is the Wilcoxon signed-
ranks test [27,83], which is the test that we have selected to do
the comparison.

This is analogous to the paired t-test in non-parametric
statistical procedures; therefore it is a pairwise test that aims to
detect significant differences between two sample means, that is,
the behavior of two algorithms. It is defined as follows: Let di be
the difference between the performance scores of the two
classifiers on i-th out of Nds data sets. The differences are ranked
according to their absolute values; average ranks are assigned in
the case of ties. Let Rþ be the sum of ranks for the data sets in
which the first algorithm outperformed the second, and R- the
sum of ranks for the opposite. Ranks of di ¼ 0 are split evenly
among the sums; if there is an odd number of them, one is
ignored:

Rþ ¼
X

di 40

rankðdiÞþ
1

2

X

di ¼ 0

rankðdiÞ

R- ¼
X

di o0

rankðdiÞþ
1

2

X

di ¼ 0

rankðdiÞ ð8Þ

Let T be the smaller of the sums, T ¼minðRþ ;R-Þ. If T is
less than or equal to the value of the distribution of Wilcoxon
for Nds degrees of freedom ([84], Table B.12), the null hypothesis

of equality of means is rejected; this will mean that a
given classifier outperforms their opposite, with the p-value
associated.

The Wilcoxon signed ranks test is more sensible than the t-
test. It assumes commensurability of differences, but only
qualitatively: greater differences still count for more, which is
probably desired, but the absolute magnitudes are ignored. From
the statistical point of view, the test is safer since it does not
assume normal distributions. Also, the outliers (exceptionally
good/bad performances of a few data sets) have less effect on the
Wilcoxon than on the t-test. The Wilcoxon test assumes
continuous differences di, therefore they should not be rounded
to one or two decimals, since this would decrease the power of
the test in the case of a high number of ties.

When the assumptions of the paired t-test are met, Wilcoxon
signed-ranks test is less powerful than the paired t-test. On the
other hand, when the assumptions are violated, the Wilcoxon
test can be even more powerful than the t-test. This allows us to
apply it over the means obtained by the algorithms in each data
set, without any assumptions about the sample of results
obtained.

A complete description of the Wilcoxon signed ranks test and
other non-parametric tests for pairwise and multiple compar-
isons, together with software for their use, can be found in the
website available at http://sci2s.ugr.es/sicidm/.
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5. Results and analysis

This section presents the results obtained in the experiment
study and analyzes them. In addition, we discuss some advances
ideas concerning the behavior of our proposal. Section 5.1 shows
the results obtained and analyzes them. Section 5.2 analyzes a
comparative study between IFS-CoCo and some classical propo-
sals of IS and FS. Section 5.3 presents a study of how to tune the
most important parameters of IFS-CoCo. Section 5.4 shows an
analysis of the subsets of instances and features selected by the
three populations of IFS-CoCo. Section 5.5 performs an analysis of
the convergence of the search process. Section 5.6 shows a second
study about the behavior of IFS-CoCo when dealing with high
dimensional data sets. Finally, Section 5.7 discusses some
interesting trends for future work.

5.1. Results obtained

The results obtained by IFS-CoCo are compared in three
categories: IS algorithms, FS algorithms, and IFS algorithms. For
each category, two tables are shown:

� Tables 3–5 show the average results in accuracy, kappa,
reduction and time elapsed, employing a 3� 10- fold cross validation scheme (30 trials per data set) with the 18 data sets

of the study. The reduction rate shown for IFS-CoCo
corresponds to the relevant population in each category, i.e.,
the reduction rate in IS population for comparison with IS
algorithms and so on.
� Tables 6–8 show the results of performing a two-tailed

Wilcoxon Signed-Ranks Test [81] with IFS-CoCo against the
respective comparison algorithms. For each test, Rþ and R-

values are shown. Final P-values are computed from these
values, as we explained in Section 4.5.

The full results of this experimental study can be viewed in the
Appendix B. Table 14 shows the accuracy results in the training
and test phases of IFS-CoCo, the IS algorithms and the 1-NN
method. Table 15 shows their kappa results. Table 16 shows the
reduction rates achieved by every method. And finally, Table 17
shows the average time elapsed in each data set. In a similar way,
Tables 18–21 show the results achieved by FS methods, and
Tables 22–25 show the results achieved by IFS methods. Tables
regarding accuracy and kappa measures also show the standard
deviations, and highlight in bold the best results obtained in the
test phase.

Reading the results shown in the tables, we can make the
following analysis:

� IFS-CoCo achieves the best average result in accuracy in the
three categories.
� IFS-CoCo also achieves the best average result in kappa in the

three categories. This means that the success in classification
accuracy achieved by our proposal is not caused just by
randomness, because it is able to outperform the rest of the
algorithms in both performance measures.
� IFS-CoCo is able to obtain higher reduction rates than all the

remaining algorithms when each of its populations is com-
pared separately.
� The time taken by IFS-CoCo is comparable to the time spent by

FS methods. Although isolated IS and IFS methods are quicker,
the increase in time complexity of IFS-CoCo (which is caused
by the inclusion of the FS population) can be seen as a minor
drawback when we take into account the results obtained in
the rest of the performance measures.

Table 4
IFS-CoCo vs FS algorithms.

IFS-CoCo FS-CHC FS-SSGA FS-GGA 1-NN

Accuracy 0.8164 0.7921 0.7449 0.7438 0.7851

Kappa 0.6361 0.6064 0.5048 0.4957 0.5768

Reduction 0.5200 0.4419 0.4624 0.4671 –

Time 171.31 193.14 180.51 180.50 –

Table 3
IFS-CoCo vs IS algorithms.

IFS-CoCo IS-CHC IS-SSGA IS-GGA 1-NN

Accuracy 0.8164 0.7994 0.7822 0.7789 0.7851

Kappa 0.6361 0.5759 0.5950 0.6033 0.5768

Reduction 0.9818 0.9617 0.9303 0.9370 –

Time 171.31 17.67 39.03 49.70 –

Table 5
IFS-CoCo vs IFS algorithms.

IFS-CoCo IFS-CHC IGA HGA 1-NN

Accuracy 0.8164 0.7978 0.6782 0.7993 0.7851

Kappa 0.6361 0.5922 0.3439 0.5836 0.5768

Reduction 0.9911 0.9890 0.9913 0.4954 –

Time 171.31 18.31 121.76 95.58 –

Table 6
Wilcoxon Signed-Ranks Test for IS algorithms.

IS Algorithms Accuracy Kappa

Rþ R- P-value Rþ R- P-value

IFS-CoCo vs IS-CHC 155 16 0.001 138 33 0.021

IFS-CoCo vs IS-SSGA 162 9 0.000 143 28 0.010

IFS-CoCo vs IS-GGA 154 17 0.001 127 44 0.074

IFS-CoCo vs 1-NN 157 14 0.001 143 28 0.010

Table 7
Wilcoxon Signed-Ranks Test for FS algorithms.

FS Algorithms Accuracy Kappa

Rþ R- P-value Rþ R- P-value

IFS-CoCo vs FS-CHC 140.5 30.5 0.014 125 46 0.090

IFS-CoCo vs FS-SSGA 148 23 0.004 145 26 0.008

IFS-CoCo vs FS-GGA 150 21 0.003 152 19 0.002

IFS-CoCo vs 1-NN 157 14 0.001 143 28 0.010

Table 8
Wilcoxon Signed-Ranks Test for IFS algorithms.

IFS Algorithms Accuracy Kappa

Rþ R- P-value Rþ R- P-value

IFS-CoCo vs IFS-CHC 126 45 0.081 142 29 0.012

IFS-CoCo vs IGA 171 0 0.000 171 0 0.000

IFS-CoCo vs HGA 143 28 0.010 149 22 0.004

IFS-CoCo vs 1-NN 157 14 0.001 143 28 0.010

J. Derrac et al. / Pattern Recognition 43 (2010) 2082–21052090



ARTICLE IN PRESS

� In accuracy, IFS-CoCo outperforms statistically all the compar-
ison algorithms with a level of significance a¼ 0:01, excepting
FS-CHC (which IFS-CoCo outperforms with a level of signifi-
cance a¼ 0:05) and IFS-CHC (IFS-CoCo outperforms it with a
level of significance a¼ 0:1).
� In kappa, IFS-CoCo outperforms statistically all the comparison

algorithms with a level of significance a¼ 0:01, excepting IS-
CHC ða¼ 0:05Þ, IS-GGA ða¼ 0:1Þ, FS-CHC ða¼ 0:1Þ and IFS-CHC
ða¼ 0:05Þ.

The employment of coevolution as a way of breaking the search
objective down into three isolated tasks (IS, FS and IFS) has been
shown to be quite beneficial, allowing IFS-CoCo to perform a more
accurate selection of the relevant data to improve the classifica-
tion results.

The cooperation between individuals of different populations
has allowed our model to better refine the initial data, discarding
more noisy and irrelevant instances and features (e.g., some
instances which may be relevant if employed with an IS scheme,
have become irrelevant with the addition of FS and IFS reduced
sets, thus they can be removed safely, improving the general-
ization capabilities of the classifier). This affirmation is supported
by the fact that the reduction rates achieved by each of the
populations of IFS-CoCo are slightly higher than the rates of the
remaining algorithms. This result confirms that our model can
perform a more aggressive reduction of the training data without
harming (and even increasing) the generalization capabilities of
the 1-NN rule.

5.2. Comparison with classical approaches

To further demonstrate the benefits of our approach, we have
performed a second comparison, between IFC-CoCo and some
classical non-evolutionary methods for IS and FS.

The methods employed are:

� DROP3: A decremental IS procedure proposed in [31]. It
performs a noise filtering phase and an instance removal
phase, where instances are removed if they do not harm the
classification accuracy.
� ICF: Another decremental IS procedure, proposed in [85]. It also

performs a noise filtering phase before starting the instance
removal phase. In its second phase, ICF selects some instances
to remove, employing two concepts: Reachability and coverage.
� Relief: A filter-based FS method, proposed in [86]. Relief selects

features that are statistically relevant, based on how the
features represent the decision boundaries of data (employing
Euclidean distance). The method is not applied to the entire
training set. Instead, a sample (of fixed size) of the training set
is extracted to perform the FS procedure.
� LVW: A common Las Vegas wrapper-based FS method [87].

This simple method generates a fixed number of random
solutions, and tests them by employing the k-NN classifier in
the training data.

The relevant parameters employed for these methods are:

� Relief: Size Sample: 100. Relevance Threshold: 0.2.
� LVW: Number of solutions: 10000.

Table 9 shows the average results obtained in this second study
(the full results can be found in Appendix B, in Tables 26–29).
Again, we have performed a Wilcoxon signed ranks test to
contrast these results (Table 10).

If we analyze the tables, we can observe that IFS-CoCo
outperforms the rest of the proposals in terms of accuracy, kappa
and reduction rates. Our approach is able to select better reduced
training sets for the 1-NN classifier than the classical ones,
enabling it to perform quicker and more accurate classification
process, thanks to the higher reduction rates obtained.

However, it is still possible to argue that our approach is
slower than the classical ones (except for LVW, which also
employs the 1-NN classifier to compute its fitness function).
Although this may be seen as a drawback, we can point out that it
is not too important if we take into consideration the high
reduction rates achieved by our approach. Thanks to its high
reduction capabilities, IFS-CoCo will be able to perform a faster
classification process of the test set (which, in real life, is usually
the most critical phase in terms of time consumption).

The results of the Wilcoxon Signed Ranks test confirm that IFS-
CoCo greatly outperforms ða¼ 0:01Þ the rest of the classical
proposals, both in accuracy and kappa measures (except LVW in
kappa measure ða¼ 0:05Þ).

5.3. Selection of suitable parameters for IFS-CoCo

Although we have defined completely how IFS-CoCo works, an
interesting question remains: How can a user select suitable
values for the parameters of the algorithm?

Some parameters are similar to those usually employed in most
of the existing evolutionary approaches for IS and FS. In this way,
the number of evaluations of the fitness function (10,000), and the
size of the populations (50), can be selected, assuming that those
values will work well in most of the problems presented.

However, there are other parameters of IFS-CoCo which cannot
be selected by this way. The first of them, the prob0to1 is easier to
set. Experimentally, it is possible to find that this parameter does
not have a great impact on the results if it is kept at a reasonable
interval (0.2–0.5). A value lower than 0.2 may bias the search,
making it very difficult for CHC to preserve the quantity of 1’s in
the chromosomes, thus producing solutions with high reduction
rates but very low results in accuracy due to the impossibility of
CHC selecting enough data to represent the initial training set in a
suitable way. On the other hand, a value higher than 0.5 will
diminish the effect of the modified HUX-cross operator, thus
producing solutions with lower reduction rates. Consequently, we
have defined prob0to1¼ 0:25 as a optimal set up.

Table 9
IFS-CoCo vs Classical algorithms.

IFS-CoCo DROP3 ICF Relief LVW

Accuracy 0.8164 0.7553 0.7317 0.7472 0.7753

Kappa 0.6361 0.5147 0.4880 0.4862 0.5652

Reduction (IS) 0.9818 0.8281 0.7328 – –

Reduction (FS) 0.5200 – - 0.4004 0.3704

Time 171.31 0.44 0.11 0.43 150.55

Table 10
Wilcoxon Signed-Ranks Test for Classical algorithms.

IS Algorithms Accuracy Kappa

Rþ R- P-value Rþ R- P-value

IFS-CoCo vs DROP3 169 2 0.001 171 0 0.000

IFS-CoCo vs ICF 171 0 0.000 169 2 0.001

IFS-CoCo vs Relief 150 21 0.003 146 25 0.007

IFS-CoCo vs LVW 148 23 0.005 132 39 0.043
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Fig. 3. Results in accuracy by employing different values (0.4–0.7) of the a parameter.

Fig. 4. Results in accuracy by employing different values (0.9–0.995) of the b parameter.
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The most influential parameters of IFS-CoCo are a and b. Both
define the behavior of the fitness function and the importance of
the accuracy and reduction objectives in the search.

The a parameter defines the weight of the instances’ reduction
rate in the fitness function. The starting point here is a¼ 0:5,
because it is the value employed in the majority of evolutionary
proposals for IS that incorporates the reduction rate to its fitness
functions [13]. To tune it, we have selected six representative data
sets (Bupa, Pima, Sonar, Tic-tac-toe, Spectfheart and Movement

(Movement-libras)) and tested the effects on test accuracy by
changing the value of the parameter to some values between 0.4
and 0.7. The results of the test are shown in Fig. 3 (the X-axis
represents the possible values of a, and the X-axis represents the
average test accuracy achieved).

As can be seen in the graphics, an optimal value for a is 0.6.
Lower values lead to slightly worse results in classification
accuracy, while greater values lead to equal results. However, the
reduction rates achieved will be greater the lower the parameter is,
thus we have selected a¼ 0:6 as a suitable value for IFS-CoCo.

On the other hand, the b parameter defines the weight of the
features’ reduction rate in the fitness function. This value should
be very near to 1, because the removal of one feature from the
training set can produce a high decrease in accuracy due to the
large amount of data erased. Thus, only noisy features should be
removed, keeping nearly irrelevant ones in the training set if their
removal could cause a decrease in accuracy.

Again, we have tested the effects in test accuracy by changing
the value of the parameter to some values. This time we have
varied the value of the parameter between 0.9 and 0.995. The
results of the test are shown in Fig. 4 (the X-axis represents the
possible values of b, and the Y-axis represents the average test
accuracy achieved).

As can be seen in the graphics, an optimal value for b is 0.99,
both in low-dimensional (Bupa, Pima and Tic-tac-toe) and high
dimensional (Sonar, Spectfheart and Movement) data sets. Lower
values often lead to worse results in classification accuracy,
sometimes producing unstable behavior, while greater values
lead to equal results. There is no point in increasing b more,
because the classification accuracy does not increase, and it could
be counterproductive to the objective of achieving a reasonable
reduction rate in the features’ component.

5.4. Analysis of the subsets selected by IFS-CoCo

Another interesting question is related to the subsets of
instances and features selected as the final solution by each of
the populations of IFS-CoCo. What is the criterion employed by

our approach to select some subsets of features/instances and
discard the rest? Is it a stable decision in subsequent trials in the
same data set?. This section is devoted to answering these
questions, showing the reasons why a feature/instance will be
selected or not for a given problem.

IS population: In the field of IS and prototype selection there
are several different approaches to distinguishing which instances
must be selected in order to obtain the best possible training set
for a given problem. For example, classical condensation algo-
rithms (like CNN [32]) often kept the boundary instances while
discard the inner ones. By contrast, classical edition algorithms
(like ENN [33]) usually smooth the decision frontiers, removing
instances which are near to them. Other algorithms employ more
sophisticated methods (like ICF [85], which separates the data
into smaller clusters).

Evolutionary approaches try to select the most representative
instances achieving the highest reduction as possible. The number
and type of instances selected may generally depend on the difficulty
of the problem tackled and how appropriate is the k-NN classifier for
it. Evolutionary methods, like CHC [52], are able to find optimized and
adaptive solutions selecting the most suitable instances of the
training set without being restricted by prior knowledge about the
distribution of the data. For example, the graphical representations of
data in [13] show us that the subsets of instances selected are very
reduced and have an high quality, showing that CHC selects border or
internal instances as needed. IFS-CoCo also takes advantage of this,
selecting very reduced subsets of instances of high quality. Evolu-
tionary selection looks for a good distribution of decision frontiers
using the Voronoi diagrams resulted from k-NN. As we know, similar
Voronoi diagrams can be obtained with different subsets of instances,
thus it is the main reason that justifies the minimum overlap of
instances selected between different runs of the algorithm over all the
partitions of the data set.

FS population: By contrast to the instances selected by IS
population, the features selected by the FS population show stable
behavior in most of the problems.

To analyze it, we have compiled the subsets of features
selected by the FS population in every data set (excluding those
with more than 20 features, for clarity), over the thirty trials
carried out in the 3� 10�cross validation scheme employed in
the experimental study. These are presented in Table 11. For each
data set the total number of features which compose it is given,
the average number of features selected per trial, and the number
of times (out 30) where every instance has been selected.

Some interesting conclusions can be drawn from this analysis:

� Some features can be marked relevant (being selected many
times). It is possible to extract some patterns in most of the

Table 11
Analysis of the features selected by IFS-CoCo (3� 10- cross validation scheme).

Data set Features #Selected 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Bal 4 1.4 11 10 11 10 – – – – – – – – – – – – – –

Bupa 6 3.7 19 3 25 28 27 18 – - – - – - – - – - – –

Car 6 5.0 30 30 0 30 30 30 – - – - – - – - – - – –

Cleveland 13 5.9 17 9 26 19 12 8 4 9 14 4 17 30 13 – - – - –

Glass 9 5.3 30 20 27 11 8 25 30 11 0 – - – - – - – - –

Housevotes 16 5.4 0 11 25 29 11 7 23 0 17 3 2 6 13 14 4 3 – –

Iris 4 1.7 3 0 29 26 – - – - – - – - – - – - – –

Mammographic 5 1.1 10 0 5 17 0 – - – - – - – - – - – - –

Pima 8 2.8 15 21 5 1 8 21 9 21 – - – - – - – - – –

Tic-tac-toe 9 6.8 30 16 29 14 30 13 30 17 30 – - – - – - – - –

Vehicle 18 10.3 29 14 28 0 30 21 5 28 22 19 19 7 13 6 0 0 27 27
Wisconsin 9 4.9 25 18 9 5 17 21 8 19 5 – - – - – - – - –

Zoo 16 7.0 11 20 6 29 11 28 9 3 26 4 1 9 30 3 3 1 – –
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data sets, which allow us to identify what are the most
relevant features in a given problem. Thus, it is possible to
assume that the more relevant a given feature is, the greater
the number of times it will be selected and the more stable this
selection will be.
� It is possible to employ some a priori information to explain

the patterns found. For example, for the data set Iris it is
known that the two most relevant features are the petal length
and the petal width (features #3 and #4). Moreover, when
testing the acceptability of a car (car data set), it is often more
interesting to know its price (feature #1), cost of maintenances
(feature #2), number of persons to carry (feature #4), capacity
of the luggage boot (feature #5) or safety (feature #6) than to
know the number of doors it has (feature #3), which may also
be derived in part from the number of persons to carry.-
Furthermore, any experienced player in the game of tic-tac-toe
will know that the most important positions to win the game
are the center (feature #5) and the corners (features #1, #3, #7
and #9), the rest less interesting if you want to win the game
or, at least, prevent your opponent from achieving the victory.
� The relevance of the patterns could also be useful to characterize

the data sets in terms of data complexity [88,89]. For example,
less relevant patterns (like those extracted in balance, cleveland
or pima) often lead to a difficult challenge to FS approaches. By
contrast, the behavior of most of the IS approaches in these
problems is significantly better.

All of these facts can be employed to explain how the behavior
of IFS-CoCo will be with respect to the subsets of selected
features: When applied to a problem with well-defined struc-
tures, where some attributes could be found to be relevant, our
approach will exhibit a stable behavior, selecting those relevant
features in most of the trials. By contrast, when facing less well
defined problems or with complex relationships between attri-
butes, IFS-CoCo’s behavior will be less stable, thus having to rely
on the subsets selected by IS and IFS populations.

IFS population: The third population of IFS-CoCo shows peculiar
behavior: It selects a very reduced number of instances and

features, less instances than the IS population, and less features
than the FS population.

However, the explanation is straightforward: Compared with
the IS population, the IFS population is able to select the best
features of the instances currently selected. The removal of noisy
features makes it possible to describe the entire training set with
fewer points, thus explaining why the IFS population does not
need to select as many instances as the IS population.

The situation is similar when compared with the FS population:
Having selected only relevant instances, the subsets selected by the
IFS population does not need to take into account every relevant
feature in the training set, but only a very reduced number of them.
However, the concrete set of features selected is strongly
influenced by the currently selected instances, thus the resulting
set of selected features is not stable between different trials.

5.5. Analysis of convergence

One of the most important issues in the development of any EA
is the analysis of the convergence of its population. If the EA does
not evolve in time, most of the time it would not be able to obtain
suitable solutions.

In what follows, we show a graphical representation of the
convergence capabilities of IFS-CoCo (Fig. 5).

To perform this analysis, we have selected two data sets: Car
and Sonar, because they have the greatest number of instances
and features, respectively, of the experimental study. The graphics
show a line representing the fitness value of the best individual of
each population of IFS-CoCo. The X-axis represents the number of
evaluations carried out, and the Y-axis represents the fitness value
currently achieved.

As can be seen in the graphics, the classical limit of 10,000
evaluations is enough for IFS-CoCo to converge to a stable solution
in the largest examples of our study. The interweaving of the
fitness values shows how each population cooperates to allow the
global algorithm to converge on good solutions, accepting worse
local solutions if it is necessary to improve the global result. This
trade-off between the fitness value of the populations, which
often improves the results that isolated populations could have

Fig. 5. Map of convergence of IFS-CoCo on Car and Sonar data sets.

Table 12
Average results achieved (high dimensionality data sets).

Alg IFS-CoCo IS-CHC IS-SSGA IS-GGA FS-CHC FS-SSGA FS-GGA IFS-CHC IFS-IGA IFS-HGA 1-NN

Accuracy 0.9223 0.8193 0.8240 0.8371 0.8976 0.8755 0.8741 0.8605 0.8442 0.8632 0.8678

Kappa 0.8769 0.7113 0.7391 0.7623 0.8538 0.8104 0.8064 0.7950 0.7669 0.8397 0.7852

Reduction (IS) 0.8372 0.9628 0.9454 0.9440 – - – - – - –

Reduction (FS) 0.5671 – – – 0.5240 0.5369 0.5362 – - – –

Reduction (IFS) 0.9899 – – – - – - 97.51 98.01 0.6267 –

Time 40914 1461 4294 4615 57747 54819 55523 1442 22530 20082 -
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achieved alone, is the main reason for the success of the
coevolutionary approach we have employed.

5.6. Analysis of the behavior of IFS-CoCo with high dimensional data

sets

Another aspect of our approach that remains unanswered is to
test its behavior when dealing with large data sets, specially those
with a greater number of attributes. It is important to ensure that
our approach is able to tackle these problems having less (or at
least, the same) drawbacks than the rest of isolated evolutionary
approaches.

To test this behavior, we have employed almost the same
experimental framework (see Section 4) that in the standard
study, but using the 6 high dimensional data sets described in
Table 2.

Table 12 summarizes the results achieved by our approach and
all the evolutionary isolated techniques (we also include results
from the 1-NN classifier). The best average result for each
performance measure is remarked in bold (the full results can
be found in Appendix B, in Tables 30–37). In addition, we have
performed a Wilcoxon Signed Ranks test to contrast these results
(Table 13).

From these tables, we can point out the following facts:

� IFS-CoCo also outperforms the rest of the methods when
applied in high dimensionality domains. In fact, it achieves the
best precision results, both in accuracy and kappa measures in
every data set, except for the Texture data set, where
differences are very low. The Wilcoxon test (Table 13) confirm
that IFS-CoCo outperforms the rest of the evolutionary
proposals, both in accuracy and kappa measures, with a level
of significance a¼ 0:1).
� IFS-CoCo also obtains better reduction rates in FS and IFS

populations. In the IS population, its reduction rate has
decreased.
� The time consumption in higher domains remains the same

than in the first study: IFS-CoCo is slower than IS and IFS
approaches, but it is faster than FS approaches.

Beyond these results, some general considerations about the
behavior of our approach when dealing with greater domains can
be obtained. Due to the employment of the CHC algorithm to
conduct the search process, the IS population has started to
experience some convergence problems when the size of its
chromosome has increased from a thousand to more than three
thousands genes. This is the reason of the decrease observed in
the reduction rates achieved by the IS population, which would

had need more evaluations to achieve reduction rates comparable
to those achieved by the rest of IS methods (however, note that
the IS population only has a third of the total evaluations to
accomplish this task, i.e, roughly 3333 evaluations. With a higher
number of evaluations, the reduction rates achieved would
become the same).

Finally, another consideration must be taken: What happens
when the ratio between instances and features ðN=MÞ becomes
extreme (very high, or very low)? The answer is that the exact
N=M ratio does not have a significant influence in the search
process, due to the use of a fixed number of evaluations in each
population (a third of them). I.e. the search will not be dominated
by the population with a great search space or so, because each
population will be able to generate the same number of solutions.
However, as we have just discussed, our approach is able to
manage an high quality search process, as far as the number of
evaluations given were enough. Therefore, if one of these values
(N or M) becomes very large and the number of evaluations given
does not increases, our approach (as well as the rest of
evolutionary ones) will not be able to achieve a high reduction
rate in the corresponding population.

5.7. Future trends of work

As a conclusion to the experimental study, we can also point
out some interesting topics, which may be taken as starting points
for future studies:

Scalability: A promising topic of future work would be to
perform a study on the scalability of IFS-CoCo and its application
to medium and large size data sets. Although our proposal is not
very inefficient in terms of the increment of features and
instances ðOðN2 �MÞÞ, its time complexity could be very high
when employed in large scale data sets.

In the field of IS, some strategies have appeared recently to
deal with this problems. [90] and [91] are representative
examples. However, they are not suitable for IFS-CoCo due to
the fact that they only try to split the set of instances, whereas
IFS-CoCo requires an explicit treatment of instances, features, and
both. Therefore, the development of a new strategy which fits
these requirements, and its integration with IFS-CoCo, would be
an interesting improvement for our approach.

Weighting schemes: The employment of weighting schemes in
an interesting way to preprocess data. Although it falls out of our
scope (is not a task of data reduction), it can be employed to
assess a given training set, increasing the accuracy rates obtained
by the k-NN classifier when employing it as training data. It is
possible to employ weighting schemes both over the features and
the instances of the training set [92].

New coevolutionary-based classifiers could be developed
within this scope: Some populations may be focused on obtaining
suitable weights for instances and/or features, employing a real-
coded EA, whereas other populations may still perform data
reduction tasks with binary-coded EAs, as IFS-CoCo does. Indeed,
it would be interesting to test the effects of the combination of
such different approaches on a concrete method, in terms of the
accuracy, reduction and stability of the solutions obtained.

Data complexity: A final topic for future studies falls in the data
complexity field [88,89]. This recent field of research tries to
characterize the different structures that data sets may show. One
of its most interesting applications would be to decide which type
of classifier could work better on a given problem.

IFS-CoCo can take advantage of such knowledge: For example,
it could be possible to diminish the importance of certain
populations, or even disable them, if a given problem requires it
(i.e. if a given problem is characterized as very sensitive to the set

Table 13
Wilcoxon Signed-Ranks Test for high dimensional data sets comparison.

Accuracy Kappa

IS Algorithms Rþ R- P-value Rþ R- P-value

IFS-CoCo vs IS-CHC 21 0 0.031 21 0 0.031

IFS-CoCo vs IS-SSGA 21 0 0.031 21 0 0.031

IFS-CoCo vs IS-GGA 21 0 0.031 21 0 0.031

IFS-CoCo vs FS-CHC 19 2 0.093 20 1 0.062

IFS-CoCo vs FS-SSGA 21 0 0.031 21 0 0.031

IFS-CoCo vs FS-GGA 21 0 0.031 21 0 0.031

IFS-CoCo vs IFS-CHC 21 0 0.031 21 0 0.031

IFS-CoCo vs IFS-IGA 21 0 0.031 21 0 0.031

IFS-CoCo vs IFS-HGA 21 0 0.031 21 0 0.031

IFS-CoCo vs 1-NN 20 1 0.062 21 0 0.031
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of features employed to represent it, our approach would increase
the effort applied in its FS population, decreasing the resources
spent on the rest of its populations). New improvements of IFS-
CoCo may allow the user to specify which behavior IFS-CoCo
should show regarding the concrete kind of data set employed.

6. Concluding remarks

In this contribution, we have proposed a new approach based
on coevolution, to tackle IS, FS, and IFS problems simultaneously.
The employment of a cooperative scheme allows our approach to
apply three different data reduction techniques simultaneously,
acquiring all its advantages without causing interferences
between them, thanks to the employment of coevolution.

The results achieved by IFS-CoCo in the experimental study
performed have shown that it offers the best accuracy rates. These
results have been contrasted statistically, confirming the hypoth-
esis that it can outperform all the evolutionary methods selected.
Moreover, IFS-CoCo has obtained a greater reduction rate than
most of the remaining methods, showing its utility as an accurate
and effective data reduction technique.
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Appendix A. Description of the algorithms employed on the
experimental study

To complete the description of the experimental study, this
appendix will review the main characteristics of all the compar-
ison algorithms employed. For wider reference about SSGA and
GGA, see [13]. For the IGA model, see [63]. For the HGA model, see
[64].

A.1. GGA model for IS/FS

GGA is a well-known GA model. The basic idea in GGA is to
maintain a population of chromosomes, which encodes plausible
solutions to the particular problem that evolves over successive
iterations (generations) through a process of competition and
controlled variation. Each chromosome in the population has an
associated fitness to determine which chromosomes are to be
used to form new ones in the competition process. This is called
selection. The new ones are created using genetic operators such
as crossover and mutation.

The GGA algorithm consists of three operations:

1. evaluation of individual fitness;
2. formation of a gene pool (intermediate population) through

selection mechanism;
3. recombination through crossover and mutation operators.

The selection mechanism produces a new population with
copies of chromosomes from the previous population. The
number of copies received for each chromosome depends on its
fitness; chromosomes with higher fitness usually have a greater
chance of contributing copies to the new population. Then, the
crossover and mutation operators are applied to the copies.

Crossover takes two individuals called parents and produces
two new individuals called the offspring by swapping parts of the
parents. In its simplest form, the operator works by exchanging
substrings after a randomly selected crossover point. The cross-
over operator is not usually applied to all pairs of chromosomes in
the new population. A random choice is made, where the
likelihood of crossover being applied depends on probability
defined by a crossover rate.

Mutation serves to prevent premature loss of population
diversity by randomly sampling new points in the search space.
Mutation rates are kept small, however, otherwise the process
degenerates into a random search. In the case of bit strings,
mutation is applied by flipping one or more random bits in a
string with a probability equal to the mutation rate.

Termination may be triggered by reaching a maximum
number of generations or by finding an acceptable solution by
some criterion.

A.2. SSGA model for IS/FS

SSGA is another well-known GA model, In SSGAs, usually only
one or two offspring are produced in each generation. Parents are
selected to produce offspring and then a replacement/deletion
strategy defines which member of the population will be replaced
by the new offspring. The basic algorithm steps of SGA are the
following:

1. Select two parents from the population.
2. Create an offspring using crossover and mutation.
3. Evaluate the offspring with the fitness function.
4. Select an individual in, which may be replaced by the offspring.
5. Decide if this individual will be replaced.

In step 4, the replacement strategy chosen has been to replace
the worst individuals of the population. In step 5, the replacement
condition chosen has been for the replacement to be made only if
the new individual is better.

A.3. IGA model for IFS

IGA is an intelligent GA designed to tackle both IS and FS
problems simultaneously, by the introduction of a special
orthogonal cross operator. In fact, it is an improved GGA model
which introduces two new characteristics:

� A rank selection method, which always replace the worst
members of the population with the best offspring.
� An orthogonal crossover operator. This is the main feature of

IGA, and it was designed in order to improve the selection
of the best genes which will be used to form the chromos-
omes of children.

The high performance of the crossover operator arises from the
fact that it replaces the generate-and-test search for children
using a random combination of chromosomes with a systematic
reasoning search method using an intelligent combination of
selecting better individual genes. Thus, the quality of the search
procedure is improved.

A.4. HGA model for IFS

HGA is a hybrid GA which employs some local search
procedures to improve its results. It performs simultaneous IS
and FS procedures, but its objectives are to minimize the number

J. Derrac et al. / Pattern Recognition 43 (2010) 2082–21052096



ARTICLE IN PRESS

of features selected and to maximize the number of instances
selected (also trying to increase the accuracy rate).

The HGA algorithm can be divided into three phases:
Phase 1: A pure GA is applied to this phase. It includes an RTS

selection scheme and some mechanisms to manage diversity and
elitism (including an archive population and a dynamic analysis of
the diversity of the population).

Phase 2: By using a histogram of the frequency with which
each feature has been selected as present in each chromosome, a
feature selection process is carried out, in order to simplify the
problem and help the GA to converge.

Phase 3: The GA is applied again to the population. Also, in this
phase, some of the children generated in the actual generation are
tuned by using local search procedures, both in the features and
the instances’ search spaces.

Despite the contradictory objectives in the number of instances
and features selected, HGA is able to work well on dual IS and FS
problems, being a suitable option to tackle these problems.

Appendix B. Full results of the experimental study

As we have mentioned, this appendix contains the full results
of the two largest studies performed, the standard one (Section
5.1) and the study with high dimensional data sets.

For the first study, Table 14 shows the average accuracy results
(and its standard deviations) in the training and test phases of IFS-
CoCo, the IS algorithms and the 1-NN method. The best results in
accuracy in the test phase are highlighted in bold. Table 15 shows
the results achieved with kappa. Table 16 shows the reduction

Table 14
IFS-CoCo vs IS algorithms (Accuracy in training and test phases).

Alg IFS-CoCo IS-CHC IS-SSGA IS-GGA 1-NN

Training Test Training Test Training Test Training Test Training Test

Aut 85:2371:22 77:7579:25 83:1072:60 74:5377:49 57:9174:91 59:83712:22 57:2173:12 56:0778:91 75:6671:21 77:4376:35

Bal 87:2271:88 84:9575:22 78:6370:43 77:6272:12 95:9371:21 86:4074:32 93:5273:78 86:6672:77 78:9570:87 79:0476:46

Bup 75:6673:13 67:05710:02 69:6371:48 60:6477:37 78:8474:25 62:2878:46 68:2577:63 61:5877:38 61:2271:37 61:0876:88

Car 91:0970:98 90:2072:17 89:7771:43 89:5672:13 84:3272:75 89:4172:45 85:5573:57 86:9071:99 86:0970:28 85:6571:81

Cle 63:3572:01 57:9979:06 61:1870:47 55:5676:62 62:7378:56 53:6074:84 60:6674:46 55:9176:11 52:7770:96 53:1477:45

Der 98:7770:38 94:9373:62 98:2970:72 96:0173:53 91:0174:31 93:8274:01 85:5971:76 95:3672:57 95:6370:59 95:3573:45

Ger 76:9471:02 71:8073:58 74:9870:65 70:4373:01 83:1372:71 70:8773:69 80:7574:16 70:7374:04 68:9770:76 70:5074:25

Gla 77:0271:88 69:60710:36 75:6072:32 67:81712:54 69:1875:89 65:80711:77 60:5075:89 65:95713:19 70:7771:86 73:61711:91
Hou 97:4270:58 94:6274:63 96:9270:69 94:4774:03 89:0473:90 93:8674:88 87:9173:57 93:5474:52 92:3970:82 92:1675:41

Iri 96:0970:94 95:3375:33 92:7270:30 95:3373:27 95:5270:27 94:2274:27 87:9773:00 96:0074:42 95:4870:52 93:3375:16

Mam 84:5070:57 83:2575:19 84:2970:75 83:2273:48 63:8874:33 79:9973:94 85:5875:14 79:8574:09 73:7770:87 74:7275:67

Pim 78:7470:98 72:2774:16 75:9570:66 72:3875:44 82:4475:22 72:2073:59 83:1374:99 72:7174:54 70:7070:86 70:3373:53

Son 97:1571:17 85:7075:99 94:6772:66 83:3178:74 73:6075:28 79:77711:83 67:8975:74 78:4976:26 86:3271:08 85:5577:51

Spe 90:2570:93 78:6675:31 88:8171:96 76:16710:04 79:1079:75 74:9178:12 72:1075:20 76:7578:31 69:4671:66 69:7076:55

Tic 85:4871:30 83:5175:95 82:1070:80 82:1174:82 86:7973:55 75:0973:48 78:8773:69 72:5973:28 73:1370:57 73:0772:56

Veh 74:9770:99 70:8573:35 73:1371:14 68:8375:54 75:9774:75 66:7174:38 67:6276:37 64:1173:31 69:4071:13 70:1075:60

Wis 97:8270:31 96:0972:15 85:3970:24 95:3772:41 82:62713:93 96:1472:02 89:4879:88 96:3372:10 95:6970:34 95:5772:59

Zoo 98:5071:76 94:9775:22 98:0671:65 95:5876:49 82:2572:31 93:0676:50 66:3073:44 92:4876:40 92:0870:75 92:8176:57

Avg. 86:4571:22 81:6475:59 83:5171:16 79:9475:50 79:6874:88 78:2275:82 76:6074:74 77:8975:23 78:2570:92 78:5175:54

Table 15
IFS-CoCo vs IS algorithms (Kappa in training and test phases).

Alg IFS-CoCo IS-CHC IS-SSGA IS-GGA 1-NN

Training Test Training Test Training Test Training Test Training Test

Aut 83:1071:72 69:7578:95 57:6172:90 51:0877:29 84:5972:90 55:73711:62 79:3372:50 53:2374:81 69:5471:31 69:4176:75

Bal 74:9471:48 75:7875:12 82:7971:13 82:1972:22 18:8470:13 72:2474:02 61:6970:63 75:0871:21 63:0870:57 63:5177:06

Bup 51:1973:53 31:15710:32 44:9370:78 12:6077:47 75:9771:68 21:3279:16 68:1871:28 23:2974:55 19:9871:37 19:5376:48

Car 79:8970:95 77:8772:13 74:9372:03 71:9672:43 80:4671:73 79:6871:75 75:6871:73 79:2073:05 66:4770:58 65:3871:71

Cle 35:8372:03 30:4379:02 37:6270:23 29:5276:92 67:1970:57 27:0375:14 64:0270:37 23:6478:26 26:0771:26 27:3077:35

Der 98:4870:43 91:8273:92 97:4970:92 93:1673:53 36:2570:42 93:2074:41 9:2870:52 93:5074:51 94:5370:39 94:1872:75
Ger 38:3070:82 23:3573:38 37:7171:15 21:2972:61 69:7670:85 22:8473:29 60:8370:45 25:2673:01 24:8270:46 28:0074:95
Gla 69:0171:28 55:44710:12 65:1372:02 52:53712:74 75:1572:02 53:82711:37 85:8272:02 53:4376:09 60:4371:86 64:15711:81
Hou 94:4870:68 87:0074:43 91:9970:59 86:9974:73 51:0170:99 86:9474:28 50:5170:89 85:5873:90 85:7870:52 86:5175:31

Iri 96:8971:04 94:3774:83 98:1170:30 92:0073:07 93:4270:20 93:0074:27 94:5470:10 94:0070:07 93:2270:82 90:0075:16

Mam 68:8770:66 65:8376:29 63:8670:95 61:8673:88 59:5170:85 58:3774:34 50:6670:95 58:0074:03 45:1470:67 45:7375:37

Pim 50:5370:96 36:1874:36 56:7470:56 40:6574:94 72:7170:96 34:7573:49 60:3270:66 35:3275:52 34:4070:96 33:2673:93

Son 94:1971:07 73:7675:31 74:9671:96 47:5579:44 73:7772:76 59:80712:33 77:3972:96 72:9475:08 72:4271:18 70:7778:01

Spe 70:3670:83 26:0975:79 43:3872:66 18:3879:64 41:6872:06 26:3178:22 49:8172:06 27:4979:55 13:7671:76 12:7577:05

Tic 69:3371:30 60:0275:69 49:4971:00 39:7975:52 81:1470:70 43:6974:08 69:0670:60 42:1073:25 27:4670:27 27:0171:86

Veh 66:8570:91 60:8873:78 57:8271:14 48:8375:94 81:2571:04 54:2574:38 65:6670:84 54:5974:95 59:1871:23 60:1075:10

Wis 94:4070:31 94:3772:70 94:7570:36 91:8872:21 45:0770:24 92:7871:32 50:2270:35 93:14714:03 90:3970:24 90:1872:19

Zoo 95:1671:56 90:8274:94 87:0870:95 94:4176:89 95:0971:75 95:2075:80 27:3571:65 96:2372:31 89:5570:75 90:4376:77

Avg. 73:9971:20 63:6175:62 67:5871:20 57:5975:64 66:8371:21 59:5075:74 61:1371:14 60:3374:90 57:5770:90 57:6875:53
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Table 18
IFS-CoCo vs FS algorithms (Accuracy in training and test phases).

Alg IFS-CoCo FS-CHC FS-SSGA FS-GGA 1-NN

Training Test Training Test Training Test Training Test Training Test

Aut 85:2371:22 77:7579:25 78:2873:49 77:9178:79 85:6378:70 83:38711:39 85:6978:93 82:90719:18 75:6671:21 77:4376:35

Bal 87:2271:88 84:9575:22 74:7077:14 74:7978:49 75:6570:87 71:0376:46 79:6570:87 72:6676:46 78:9570:87 79:0476:46

Bup 75:6673:13 67:05710:02 62:2271:48 62:5178:98 64:8171:53 60:58710:57 64:8071:59 60:78710:57 61:2271:37 61:0876:88

Car 91:0970:98 90:2072:17 90:6870:35 90:6871:43 82:1170:28 81:8971:73 82:1170:28 81:8971:73 86:0970:28 85:6571:81

Cle 63:3572:01 57:9979:06 50:2571:00 50:3073:11 58:7170:85 50:3874:89 58:6870:97 49:9675:59 52:7770:96 53:1477:45

Der 98:7770:38 94:9373:62 93:7470:41 94:2873:83 97:7174:74 94:2875:23 98:3971:08 93:1773:80 95:6370:59 95:3573:45

Ger 76:9471:02 71:8073:58 70:6071:13 69:7074:58 72:8671:17 69:2373:53 72:8470:72 68:9374:98 68:9770:76 70:5074:25

Gla 77:0271:88 69:60710:36 71:8071:69 71:68712:58 77:6671:76 70:39713:85 77:6871:74 70:54713:11 70:7771:86 73:61711:91

Hou 97:4270:58 94:6274:63 94:7070:33 94:2473:45 81:14712:61 82:24713:38 78:44711:59 79:7979:91 92:3970:82 92:1675:41

Iri 96:0970:94 95:3375:33 96:0070:82 96:0074:42 94:9670:80 96:6773:33 94:9670:80 96:0073:27 95:4870:52 93:3375:16

Mam 84:5070:57 83:2575:19 75:6571:40 75:6575:76 57:9279:79 54:6179:48 58:4678:39 55:7278:57 73:7770:87 74:7275:67

Pim 78:7470:98 72:2774:16 68:8670:52 68:0074:96 71:9070:49 67:3175:06 71:9070:49 67:3175:06 70:7070:86 70:3373:53

Son 97:1571:17 85:7075:99 87:9871:95 86:5379:23 95:6670:56 84:48710:38 96:9271:44 87:1177:65 86:3271:08 85:5577:51

Spe 90:2570:93 78:6675:31 72:6673:14 73:5174:85 86:1471:42 73:4577:56 86:6170:99 72:9475:91 69:4671:66 69:7076:55

Tic 85:4871:30 83:5175:95 82:7870:53 82:3372:46 69:7871:09 69:5272:03 70:0370:69 69:9172:33 73:1370:57 73:0772:56

Veh 74:9770:99 70:8573:35 70:5870:77 70:9775:14 74:8470:68 73:0173:71 74:8870:43 72:3874:68 69:4071:13 70:1075:60

Wis 97:8270:31 96:0972:15 93:7370:39 95:2672:28 96:4870:48 95:2372:23 96:4770:61 95:0972:23 95:6970:34 95:5772:59

Zoo 98:5071:76 94:9775:22 95:1471:12 91:3974:79 61:63713:11 63:07714:56 59:63715:47 61:78712:30 92:0870:75 92:8176:57

Avg. 86:4571:22 81:6475:59 79:4671:54 79:2175:51 78:0973:38 74:4977:19 78:2373:17 74:3877:07 78:2570:92 78:5175:54

Table 17
Time elapsed (IS methods).

Algorithms IFS-CoCo IS-CHC IS-SSGA IS-GGA

Aut 17.76 3.86 7.38 6.72

Bal 69.58 13.28 22.64 28.03

Bup 24.27 4.66 10.19 10.16

Car 884.80 97.49 221.54 287.16

Cle 31.87 3.41 7.60 8.03

Der 93.83 7.72 10.42 13.03

Ger 555.26 39.12 93.98 119.79

Gla 14.89 2.95 5.29 5.42

Hou 74.04 6.79 10.73 14.37

Iri 5.46 1.15 1.70 1.63

Mam 223.67 25.42 51.32 73.55

Pim 197.61 20.44 44.31 53.76

Son 44.05 5.62 9.22 9.03

Spe 57.05 4.65 6.94 8.45

Tic 304.43 33.86 97.94 117.97

Veh 300.99 33.10 75.27 96.33

Wis 180.22 13.26 24.39 39.89

Zoo 3.88 1.31 1.65 1.25

Avg. 171.31 17.67 39.03 49.70

Table 16
Reduction rates achieved (IS methods).

Algorithms IFS-CoCo IS-CHC IS-SSGA IS-GGA

Aut 99.62 96.70 86.27 90.10

Bal 97.51 95.06 95.38 94.61

Bup 97.97 94.10 90.84 93.39

Car 95.18 93.85 93.50 90.95

Cle 98.02 95.75 94.76 96.71

Der 99.88 96.60 95.64 96.19

Ger 97.39 95.78 93.81 93.37

Gla 98.60 95.92 89.60 92.49

Hou 99.11 96.69 97.36 97.44

Iri 95.93 95.83 95.01 95.60

Mam 98.53 96.82 97.42 95.03

Pim 98.38 96.02 94.56 94.42

Son 99.36 97.32 87.54 89.99

Spe 98.13 95.95 95.71 96.60

Tic 98.61 97.33 90.62 91.14

Veh 96.98 96.23 90.41 91.27

Wis 99.38 97.25 99.00 98.55

Zoo 98.72 97.85 87.09 88.78

Avg. 98.18 96.17 93.03 93.70
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Table 19
IFS-CoCo vs FS algorithms (Kappa in training and test phases).

Alg IFS-CoCo FS-CHC FS-SSGA FS-GGA 1-NN

Training Test Training Test Training Test Training Test Training Test

Aut 83:1071:72 69:7578:95 81:6973:19 72:3678:49 72:9879:00 70:70711:59 66:1379:23 58:72719:48 69:5471:31 69:4176:75

Bal 74:9471:48 75:7875:12 63:0877:44 63:5178:19 63:0870:67 63:5176:26 63:0870:77 63:5176:56 63:0870:57 63:5177:06

Bup 51:1973:53 31:15710:32 29:9971:18 24:1778:98 27:0171:63 18:21710:27 26:9471:39 18:21710:57 19:9871:37 19:5376:48

Car 79:8970:95 77:8772:13 78:8070:25 78:7171:23 54:5770:08 54:2572:03 54:5770:28 54:2571:73 66:4770:58 65:3871:71

Cle 35:8372:03 30:4379:02 34:9371:30 21:6473:01 35:1371:05 27:2875:09 35:6070:87 23:4475:69 26:0771:26 27:3077:35

Der 98:4870:43 91:8273:92 98:3770:71 93:8773:93 95:6474:54 91:8175:23 97:8070:98 92:4874:10 94:5370:39 94:1872:75

Ger 38:3070:82 23:3573:38 36:3071:13 26:2774:78 33:6671:37 19:2973:53 36:8470:52 26:7274:68 24:8270:46 28:0074:95

Gla 69:0171:28 55:44710:12 70:1471:39 60:24712:78 69:8472:06 62:46713:85 69:7471:64 63:55712:91 60:4371:86 64:15711:81

Hou 94:4870:68 87:0074:43 92:2870:03 84:0773:75 53:56712:41 46:72713:28 53:48711:39 53:6479:91 85:7870:52 86:5175:31

Iri 96:8971:04 94:3774:83 94:0070:62 93:0074:12 92:4470:50 95:0073:13 92:4470:70 94:0073:47 93:2270:82 90:0075:16

Mam 68:8770:66 65:8376:29 51:4171:60 48:6875:56 21:8779:69 16:2679:18 18:4978:39 12:0578:67 45:1470:67 45:7375:37

Pim 50:5370:96 36:1874:36 34:5970:72 25:9974:76 38:2570:19 28:0174:86 38:2570:49 28:0174:96 34:4070:96 33:2673:93

Son 94:1971:07 73:7675:31 91:6071:95 72:5779:33 91:5070:76 72:85710:68 93:2371:54 71:4577:65 72:4271:18 70:7778:01

Spe 70:3670:83 26:0975:79 62:4073:04 22:8775:15 59:1771:12 28:1077:76 59:8070:69 19:2876:11 13:7671:76 12:7577:05

Tic 69:3371:30 60:0275:69 59:3170:43 57:4872:46 15:3771:09 15:9471:73 18:3070:89 17:4572:33 27:4670:27 27:0171:86

Veh 66:8570:91 60:8873:78 66:6670:97 61:6875:44 66:3870:88 61:2173:41 66:5970:43 62:1574:98 59:1871:23 60:1075:10

Wis 94:4070:31 94:3772:70 92:3370:39 89:5272:28 92:4370:58 89:2272:23 92:2670:51 89:2272:03 90:3970:24 90:1872:19

Zoo 95:1671:56 90:8274:94 97:7071:02 94:9474:59 45:71713:01 47:76714:86 45:26715:17 44:18712:30 89:5570:75 90:4376:77

Avg. 73:9971:20 63:6175:62 68:6471:52 60:6475:49 57:1573:37 50:4877:17 57:1673:10 49:5777:12 57:5770:90 57:6875:53

Table 20
Reduction rates achieved (FS methods).

Algorithms IFS-CoCo FS-CHC FS-SSGA FS-GGA

Aut 69.20 68.27 66.39 67.44

Bal 65.00 3.33 4.55 4.21

Bup 38.33 30.00 31.56 29.34

Car 16.67 16.67 20.04 24.32

Cle 54.62 48.72 48.89 48.32

Der 55.88 56.37 54.85 55.88

Ger 43.00 42.33 42.67 41.99

Gla 41.11 44.07 42.01 45.37

Hou 66.25 62.29 63.45 68.69

Iri 57.50 40.00 52.25 48.75

Mam 78.00 50.00 58.64 61.50

Pim 65.00 53.75 57.32 55.67

Son 57.17 59.50 58.43 59.25

Spe 59.09 55.76 56.71 56.05

Tic 24.44 22.22 27.35 26.34

Veh 42.78 45.52 46.23 44.57

Wis 45.56 41.11 40.59 40.87

Zoo 56.32 55.45 60.34 62.28

Avg. 52.00 44.19 46.24 46.71

Table 21
Time elapsed (FS methods).

Algorithms IFS-CoCo FS-CHC FS-SSGA FS-GGA

Aut 17.76 25.10 29.53 28.73

Bal 69.58 88.33 76.04 75.02

Bup 24.27 32.71 30.68 30.88

Car 884.80 963.64 658.31 694.10

Cle 31.87 37.46 52.00 50.72

Der 93.83 96.62 108.50 109.44

Ger 555.26 607.66 597.15 577.39

Gla 14.89 20.03 20.00 19.49

Hou 74.04 97.19 89.55 95.14

Iri 5.46 6.91 5.91 5.88

Mam 223.67 236.26 289.70 289.98

Pim 197.61 231.68 207.48 201.59

Son 44.05 58.34 62.08 60.75

Spe 57.05 71.35 79.53 74.89

Tic 304.43 361.16 360.59 366.98

Veh 300.99 357.91 373.93 367.86

Wis 180.22 178.57 202.59 195.08

Zoo 3.88 5.53 5.60 5.17

Avg. 171.31 193.14 180.51 180.50
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Table 22
IFS-CoCo vs IFS algorithms (Accuracy in training and test phases).

Alg IFS-CoCo IFS-CHC IGA HGA 1-NN

Training Test Training Test Training Test Training Test Training Test

Aut 85:2371:22 77:7579:25 71:8971:80 70:03710:05 71:9276:93 68:41713:00 78:0573:99 78:01711:72 75:6671:21 77:4376:35

Bal 87:2271:88 84:9575:22 90:2070:67 88:3272:34 52:0078:15 52:5279:58 83:8575:54 82:7675:82 78:9570:87 79:0476:46

Bup 75:6673:13 67:05710:02 73:8471:55 69:2978:32 59:8078:99 54:6777:75 66:1871:98 65:4778:16 61:2271:37 61:0876:88

Car 91:0970:98 90:2072:17 90:7370:80 89:3571:77 88:7971:35 86:8570:36 89:5470:55 88:8672:95 86:0970:28 85:6571:81

Cle 63:3572:01 57:9979:06 62:5470:57 58:2074:44 42:26711:13 42:7277:13 58:7371:20 56:2374:74 52:7770:96 53:1477:45

Der 98:7770:38 94:9373:62 97:3370:40 95:5273:28 95:3279:73 94:31712:12 97:1270:51 95:4276:01 95:6370:59 95:3573:45

Ger 76:9471:02 71:8073:58 75:0971:62 72:7772:21 73:4774:31 70:8076:18 72:4370:93 70:7778:69 68:9770:76 70:5074:25

Gla 77:0271:88 69:60710:36 73:9772:31 67:30710:25 52:0478:23 57:13710:63 72:3471:39 70:53710:77 70:7771:86 73:61711:91

Hou 97:4270:58 94:6274:63 94:7970:76 93:9973:62 66:79713:27 67:65716:07 94:1070:33 93:6574:38 92:3970:82 92:1675:41

Iri 96:0970:94 95:3375:33 96:9470:66 94:8974:99 89:92719:68 89:33710:83 96:7570:81 95:1676:57 95:4870:52 93:3375:16

Mam 84:5070:57 83:2575:19 82:1170:81 81:2175:54 69:40711:68 68:99713:03 81:5571:30 80:3675:14 73:7770:87 74:7275:67

Pim 78:7470:98 72:2774:16 78:7670:54 73:6774:51 57:6378:98 58:6476:88 77:3770:66 74:1775:59 70:7070:86 70:3373:53

Son 97:1571:17 85:7075:99 85:4072:24 75:6179:42 81:21712:07 78:7878:60 84:3471:75 77:42710:43 86:3271:08 85:5577:51

Spe 90:2570:93 78:6675:31 84:5671:60 76:7176:05 74:44711:20 71:9179:90 79:8774:14 72:0576:92 69:4671:66 69:7076:55

Tic 85:4871:30 83:5175:95 78:4472:30 76:3872:45 55:1672:38 65:3571:32 78:1870:23 77:9674:78 73:1370:57 73:0772:56

Veh 74:9770:99 70:8573:35 72:1370:74 67:5373:89 53:89710:77 54:33710:76 71:2170:99 70:9872:38 69:4071:13 70:1075:60

Wis 97:8270:31 96:0972:15 97:1870:32 95:5271:96 67:8974:27 68:8873:21 97:6973:94 95:6973:12 95:6970:34 95:5772:59

Zoo 98:5071:76 94:9775:22 94:7670:98 89:7277:45 64:1172:76 69:5074:53 95:1571:62 93:1776:90 92:0870:75 92:8176:57

Avg. 86:4571:22 81:6475:59 83:3771:15 79:7875:14 67:5678:66 67:8278:44 81:9171:77 79:9376:39 78:2570:92 78:5175:54

Table 23
IFS-CoCo vs IFS algorithms (Kappa in training and test phases).

Alg IFS-CoCo IFS-CHC IGA HGA 1-NN

Training Test Training Test Training Test Training Test Training Test

Aut 83:1071:72 69:7578:95 63:8171:60 60:06710:25 38:4476:83 27:46713:00 83:8173:79 62:77711:82 69:5471:31 69:4176:75

Bal 74:9471:48 75:7875:12 81:8770:57 78:6572:04 54:0578:05 32:3879:48 76:8575:74 69:3475:82 63:0870:57 63:5177:06

Bup 51:1973:53 31:15710:32 44:1571:45 34:6578:32 27:6479:19 20:8477:95 40:3871:68 27:6578:36 19:9871:37 19:5376:48

Car 79:8970:95 77:8772:13 79:1270:80 74:8171:77 62:1471:35 22:6170:56 78:3270:75 74:9272:85 66:4770:58 65:3871:71

Cle 35:8372:03 30:4379:02 34:6270:37 26:0274:54 19:70711:33 11:0177:03 33:1271:30 22:9274:64 26:0771:26 27:3077:35

Der 98:4870:43 91:8273:92 96:6170:20 95:2073:18 63:8579:63 53:62711:82 96:7370:31 94:7075:91 94:5370:39 94:1872:75

Ger 38:3070:82 23:3573:38 34:4171:72 27:0772:41 16:7074:11 14:6876:28 30:1170:73 22:3478:79 24:8270:46 28:0074:95

Gla 69:0171:28 55:44710:12 62:8472:61 51:18710:55 45:2577:93 30:02710:43 61:8471:09 53:18711:07 60:4371:86 64:15711:81

Hou 94:4870:68 87:0074:43 89:7070:46 87:2173:52 62:31712:97 55:60715:77 88:9870:53 87:0274:58 85:7870:52 86:5175:31

Iri 96:8971:04 94:3774:83 96:2270:76 92:0074:89 80:09719:58 76:00710:53 97:0170:51 91:8776:47 93:2270:82 90:0075:16

Mam 68:8770:66 65:8376:29 64:2071:11 61:5475:84 46:72711:38 47:39712:73 60:7371:10 52:8375:34 45:1470:67 45:7375:37

Pim 50:5370:96 36:1874:36 51:6170:44 38:6274:71 40:2179:08 25:2076:98 50:5670:66 40:1275:59 34:4070:96 33:2673:93

Son 94:1971:07 73:7675:31 69:8572:44 46:8379:12 51:58712:17 19:8378:70 72:8571:55 47:40710:73 72:4271:18 70:7778:01

Spe 70:3670:83 26:0975:79 43:9871:80 16:0876:35 33:24711:50 8:4879:90 38:7673:84 11:0376:92 13:7671:76 12:7577:05

Tic 69:3371:30 60:0275:69 52:4472:50 43:9272:65 39:5172:08 23:9271:12 53:1170:23 49:2574:68 27:4670:27 27:0171:86

Veh 66:8570:91 60:8873:78 64:0170:84 57:1073:99 48:40711:07 47:20710:46 61:9770:79 61:4872:58 59:1871:23 60:1075:10

Wis 94:4070:31 94:3772:70 94:2570:12 90:3271:86 81:2574:57 81:7173:31 94:0173:74 90:9273:02 90:3970:24 90:1872:19

Zoo 95:1671:56 90:8274:94 92:8771:28 84:7777:35 64:9072:66 21:0774:33 93:1771:42 90:7776:60 89:5570:75 90:4376:77

Avg. 73:9971:20 63:6175:62 67:5971:17 59:2275:19 48:6778:64 34:3978:35 67:3571:66 58:3676:43 57:5770:90 57:6875:53

Table 24
Reduction rates achieved (IFS methods).

Algorithms IFS-CoCo IFS-CHC IGA HGA

Aut 99.19 98.87 98.90 72.34

Bal 98.85 98.42 98.78 11.34

Bup 99.37 99.21 99.05 33.45

Car 98.96 97.76 98.65 25.77

Cle 99.50 99.45 99.52 59.20

Der 99.33 99.14 99.23 15.34

Ger 99.85 99.89 99.87 54.05

Gla 98.30 97.47 97.95 51.04

Hou 99.87 99.88 99.85 63.09

Iri 98.17 97.91 97.97 45.67

Mam 99.86 99.86 99.84 60.85

Pim 99.74 99.67 99.61 63.87

Son 99.72 99.68 99.54 70.01

Spe 99.88 99.87 99.86 62.41

Tic 99.33 99.02 99.43 30.45

Veh 99.11 99.03 98.85 53.82

Wis 99.68 99.74 99.70 49.56

Zoo 95.32 95.40 97.67 69.43

Avg. 99.11 98.90 99.13 49.54

Table 25
Time elapsed (IFS methods).

Algorithms IFS-CoCo IFS-CHC IGA HGA

Aut 17.76 3.90 13.21 14.27

Bal 69.58 17.16 77.67 39.72

Bup 24.27 5.04 22.91 15.64

Car 884.80 89.31 669.95 421.16

Cle 31.87 4.35 22.67 26.38

Der 93.83 8.37 48.78 58.12

Ger 555.26 40.85 333.55 275.34

Gla 14.89 3.11 8.48 12.84

Hou 74.04 7.71 45.99 41.63

Iri 5.46 1.27 2.70 2.36

Mam 223.67 26.64 190.28 162.85

Pim 197.61 23.80 134.60 101.11

Son 44.05 4.58 21.73 25.49

Spe 57.05 4.88 31.53 59.78

Tic 304.43 33.50 221.41 192.29

Veh 300.99 35.67 226.63 162.20

Wis 180.22 18.11 117.73 107.65

Zoo 3.88 1.33 1.89 1.60

Avg. 171.31 18.31 121.76 95.58
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Table 26
IFS-CoCo vs Classical algorithms (Accuracy in training and test phases).

Alg IFS-CoCo DROP3 ICF Relief LVW

Training Test Training Test Training Test Training Test Training Test

Aut 85:2371:22 77:7579:25 91:0871:64 62:2978:71 92:0072:43 58:8176:69 77:2971:64 78:1678:54 83:8073:90 78:1779:71

Bal 87:2271:88 84:9575:22 88:0873:64 81:7773:82 97:9971:86 70:2675:52 54:4771:23 54:4075:10 78:9570:87 79:0476:46

Bup 75:6673:13 67:05710:02 79:4573:90 60:8677:15 68:5874:09 53:2979:87 55:3672:33 52:46710:38 65:0971:38 61:3779:65

Car 91:0970:98 90:2072:17 92:1172:04 72:2174:30 96:7371:15 78:4273:44 71:9571:32 71:6571:32 82:1170:28 81:8971:73

Cle 63:3572:01 57:9979:06 85:1273:36 49:4774:24 80:5476:26 50:1975:63 45:9877:74 42:8579:53 57:6575:50 44:8879:85

Der 98:7770:38 94:9373:62 88:0273:56 92:9374:20 96:5172:03 90:5273:61 96:6970:67 96:7373:37 97:2172:55 93:7373:83

Ger 76:9471:02 71:8073:58 77:9972:19 67:2074:09 73:5972:59 66:3073:90 63:0272:11 63:9076:20 73:0770:83 69:8073:71

Gla 77:0271:88 69:60710:36 83:5974:73 65:7179:08 79:0574:56 65:21712:58 74:7171:26 76:25710:08 77:6871:76 70:85712:86

Hou 97:4270:58 94:6274:63 95:5375:16 93:6277:60 90:6572:83 89:6476:46 92:6472:50 92:1876:78 91:9072:80 92:4073:75

Iri 96:0970:94 95:3375:33 98:4977:82 94:6774:67 99:5870:84 93:3376:80 94:4470:50 94:6772:67 95:2670:82 94:6774:00

Mam 84:5070:57 83:2575:19 84:4172:53 75:0375:57 90:0271:85 75:3474:20 71:3472:09 71:3974:49 71:8676:66 69:7277:55

Pim 78:7470:98 72:2774:16 80:8473:05 73:1173:40 79:0371:97 69:3273:28 53:9178:48 67:8579:22 71:9070:49 67:8374:99

Son 97:1571:17 85:7075:99 89:7073:85 77:79711:10 85:7773:00 66:33712:05 88:0971:47 86:02710:19 93:2270:48 91:8377:14

Spe 90:2570:93 78:6675:31 79:8972:76 69:73713:17 73:2878:65 67:92713:97 76:4971:35 73:53710:68 82:5270:61 74:5377:76

Tic 85:4871:30 83:5175:95 92:3575:36 69:3178:00 94:8470:93 72:9772:75 65:3670:15 65:3571:32 70:4070:47 70:3672:53

Veh 74:9770:99 70:8573:35 83:4971:90 65:9974:15 82:5572:15 63:3675:17 71:0471:11 69:8573:25 74:4370:54 71:6474:26

Wis 97:8270:31 96:0972:15 96:78711:13 95:1375:35 95:1675:80 92:70715:70 95:4470:41 95:7172:78 96:5570:54 95:2872:30

Zoo 98:5071:76 94:9775:22 98:1375:74 92:6477:70 99:7970:64 93:2275:69 93:9172:06 91:9777:16 89:1676:22 87:50711:01

Avg. 86:4571:22 81:6475:59 88:0674:13 75:5376:46 87:5472:98 73:1777:07 74:5672:13 74:7276:28 80:7172:04 77:5376:28

Table 27
IFS-CoCo vs Classical algorithms (Kappa in training and test phases).

Alg IFS-CoCo DROP3 ICF Relief LVW

Training Test Training Test Training Test Training Test Training Test

Aut 83:1071:72 69:7578:95 88:5271:54 51:5778:51 89:6672:53 44:7276:99 70:5171:74 71:7678:54 78:9473:90 71:9579:71

Bal 74:9471:48 75:7875:12 68:1773:64 66:2173:72 55:9071:86 44:9775:62 20:0871:23 20:2375:10 63:0870:87 63:5177:06

Bup 51:1973:53 31:15710:32 55:3573:90 16:5776:85 33:8073:99 4:9779:77 9:3572:23 3:64710:38 27:8771:38 20:3379:65

Car 79:8970:95 77:8772:13 87:2372:14 34:8574:40 94:5871:15 58:1573:54 11:6271:32 10:3171:02 54:5770:28 54:2571:43

Cle 35:8372:03 30:4379:02 77:3273:46 21:4574:24 68:9776:16 22:2575:93 11:0077:84 9:5479:23 34:4775:50 16:0979:85

Der 98:4870:43 91:8273:92 89:8773:56 91:1473:90 84:9971:93 85:7873:91 95:8670:77 95:9073:07 96:5072:55 92:1573:63

Ger 38:3070:82 23:3573:38 54:1072:29 22:1073:99 43:2872:59 24:0773:60 11:7672:21 13:3176:50 34:4970:83 27:7973:61

Gla 69:0171:28 55:44710:12 77:7974:83 53:0178:78 72:6474:56 46:88712:68 65:5371:36 67:4879:78 69:8471:76 60:87712:56

Hou 94:4870:68 87:0074:43 62:3375:16 72:5477:70 80:2572:93 78:9476:56 84:4672:40 83:7576:58 82:8072:80 83:8173:55

Iri 96:8971:04 94:3774:83 95:6777:92 93:0074:67 96:1370:94 92:5076:60 91:6770:40 92:0072:97 92:8970:82 92:0074:20

Mam 68:8770:66 65:8376:29 68:7972:43 49:5775:37 80:0071:95 50:3074:10 42:1571:99 42:3574:29 43:6076:66 39:2277:25

Pim 50:5370:96 36:1874:36 61:4872:95 32:9673:20 57:0872:07 26:6973:58 9:6478:58 10:9979:42 38:1170:49 28:8574:99

Son 94:1971:07 73:7675:31 79:3073:75 55:09711:00 70:4773:00 34:07711:85 75:9471:57 71:57710:09 86:3070:48 83:4676:84

Spe 70:3670:83 26:0975:79 51:4172:76 17:91713:17 45:3278:75 5:79714:27 31:6871:35 27:16710:58 47:4970:61 28:8077:46

Tic 69:3371:30 60:0275:69 72:8775:26 21:0078:10 83:2570:93 27:9472:75 37:4670:05 15:4871:32 39:3670:47 19:0972:43

Veh 66:8570:91 60:8873:78 77:5171:90 47:9574:05 76:6872:05 51:1175:07 61:3771:01 59:7973:05 65:8970:54 62:1674:16

Wis 94:4070:31 94:3772:70 96:61711:23 89:3475:15 93:2775:80 88:53715:50 89:8670:51 90:4972:68 92:3770:54 89:5372:50

Zoo 95:1671:56 90:8274:94 92:1875:64 90:2778:00 93:2570:74 90:7475:79 86:6771:96 89:4177:06 85:7676:22 83:40711:31

Avg. 73:9971:20 63:6175:62 75:3674:13 51:4776:38 73:3173:00 48:8077:12 50:3772:14 48:6276:20 63:0272:04 56:5276:23

Table 28
Reduction rates achieved (Classical methods).

Alg IFS-CoCo (IS) IFS-CoCo (FS) DROP3 ICF Relief LVW

Aut 99.62 69.20 57.57 51.60 19.99 47.20

Bal 97.51 65.00 86.76 93.96 25.00 0.00

Bup 97.97 38.33 70.05 70.46 51.66 28.33

Car 95.18 16.67 88.34 85.55 46.67 16.67

Cle 98.02 54.62 83.17 79.72 72.31 48.46

Der 99.88 55.88 92.32 70.34 18.24 45.59

Ger 97.39 43.00 78.36 73.60 71.50 42.01

Gla 98.60 41.11 74.15 67.75 17.78 44.44

Hou 99.11 66.25 93.00 87.51 35.62 63.75

Iri 95.93 57.50 92.30 64.22 10.00 19.99

Mam 98.53 78.00 82.09 57.69 54.00 26.00

Pim 98.38 65.00 82.13 77.29 77.50 46.25

Son 99.36 57.17 75.91 71.21 58.50 52.17

Spe 98.13 59.09 83.39 89.22 44.55 52.95

Tic 98.61 24.44 92.87 70.90 54.44 22.22

Veh 96.98 42.78 77.27 69.16 43.33 44.99

Wis 99.38 45.56 97.47 95.28 3.33 34.44

Zoo 98.72 56.32 83.51 43.60 16.25 31.25

Avg. 98.18 52.00 82.81 73.28 40.04 37.04
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Table 29
Time elapsed (Classical methods).

Alg IFS-CoCo DROP3 ICF Relief LVW

Aut 17.76 0.06 0.02 0.07 27.34

Bal 69.58 0.28 0.05 0.21 58.56

Bup 24.27 0.05 0.03 0.05 26.34

Car 884.80 2.83 0.53 2.64 585.21

Cle 31.87 0.05 0.03 0.09 30.83

Der 93.83 0.24 0.08 0.17 118.39

Ger 555.26 0.63 0.28 0.54 519.59

Gla 14.89 0.05 0.02 0.06 12.12

Hou 74.04 0.38 0.08 0.26 81.76

Iri 5.46 0.06 0.02 0.04 3.55

Mam 223.67 0.59 0.19 0.47 183.84

Pim 197.61 0.28 0.11 0.23 146.32

Son 44.05 0.08 0.03 0.06 102.97

Spe 57.05 0.09 0.05 0.07 138.40

Tic 304.43 0.66 0.17 0.73 255.18

Veh 300.99 0.47 0.20 1.05 273.94

Wis 180.22 1.09 0.13 0.92 140.83

Zoo 3.88 0.03 0.02 0.03 4.65

Avg. 171.31 0.44 0.11 0.43 150.55

Table 30
IFS-CoCo vs IS algorithms (Accuracy in training and test phases, high size data sets).

Alg IFS-CoCo IS-CHC IS-SSGA IS-GGA 1-NN

Training Test Training Test Training Test Training Test Training Test

Che 96:9170:60 96:5672:45 87:8170:61 85:2774:45 92:0470:61 85:0073:15 88:7770:59 86:5672:55 84:5670:35 84:7072:65

Mov 90:5271:69 86:6677:34 71:6771:68 65:0077:37 83:3371:69 63:8977:35 79:3271:69 63:8977:35 81:4871:42 81:9477:35

Sat 91:5170:49 91:2970:97 88:0770:47 87:8770:95 91:5670:47 89:7470:98 90:3570:49 90:9870:98 90:8570:41 90:5870:99

Spa 93:6870:46 93:6972:19 87:9970:48 88:4872:19 91:2370:50 86:9672:20 89:8570:47 88:9172:19 89:9970:43 89:4572:23

Spl 87:7070:54 86:8371:30 73:6370:59 71:1671:33 82:3470:56 73:3571:33 79:0370:55 76:8071:30 75:2470:50 74:9571:33

Tex 98:9970:57 98:3671:46 94:0070:55 93:8271:47 98:1470:57 95:4571:46 97:2970:56 95:0971:47 99:0170:52 99:0571:47

Avg. 93:2270:73 92:2372:62 83:8670:73 81:9372:96 89:7770:73 82:4072:75 87:4470:73 83:7172:64 87:9370:61 86:7872:67

Table 31
IFS-CoCo vs FS algorithms (Accuracy in training and test phases, high size data sets).

Alg IFS-CoCo FS-CHC FS-SSGA FS-GGA 1-NN

Training Test Training Test Training Test Training Test Training Test

Che 96:9170:60 96:5672:45 98:6170:57 95:4372:45 78:4870:57 82:5072:65 78:5870:58 81:5673:85 84:5670:35 84:7072:65

Mov 90:5271:69 86:6677:34 92:5971:69 80:5677:38 87:6571:65 77:7877:37 87:0471:65 77:7877:35 81:4871:42 81:9477:35

Sat 91:5170:49 91:2970:97 91:7070:49 91:0770:97 91:6670:50 90:2070:97 91:7070:47 90:3670:96 90:8570:41 90:5870:99

Spa 93:6870:46 93:6972:19 93:5270:50 92:3972:19 91:9570:48 91:7472:19 92:0270:47 92:3972:22 89:9970:43 89:4572:23

Spl 87:7070:54 86:8371:30 86:5270:57 80:5671:33 88:4070:57 84:9571:31 87:2270:57 84:0171:34 75:2470:50 74:9571:33

Tex 98:9970:57 98:3671:46 99:4170:56 98:5571:46 99:3170:58 98:1171:47 99:4370:58 98:3471:50 99:0170:52 99:0571:47

Avg. 93:2270:73 92:2372:62 93:7370:73 89:7672:63 89:5870:72 87:5572:66 89:3370:72 87:4172:87 87:9370:61 86:7872:67

Table 32
IFS-CoCo vs IFS algorithms (Accuracy in training and test phases, high size data sets).

Alg IFS-CoCo IFS-CHC IFS-IGA IFS-HGA 1-NN

Training Test Training Test Training Test Training Test Training Test

Che 96:9170:60 96:5672:45 94:3270:58 94:3471:45 88:5770:59 88:3772:85 93:2270:61 91:2272:85 84:5670:35 84:7072:65

Mov 90:5271:69 86:6677:34 70:0071:67 65:8377:35 79:3471:68 72:3477:38 80:2171:67 70:2177:37 81:4871:42 81:9477:35

Sat 91:5170:49 91:2970:97 87:3470:48 86:1170:97 85:8370:49 83:8370:97 89:7070:48 85:8570:97 90:8570:41 90:5870:99

Spa 93:6870:46 93:6972:19 91:3770:47 90:7172:20 91:9270:46 91:1272:20 92:7570:46 91:5672:20 89:9970:43 89:4572:23

Spl 87:7070:54 86:8371:30 88:3770:56 86:0671:32 79:1570:56 78:6571:32 86:5470:59 83:5471:34 75:2470:50 74:9571:33

Tex 98:9970:57 98:3671:46 93:5770:57 93:2471:47 92:9870:59 92:2171:46 98:3270:56 95:5271:49 99:0170:52 99:0571:47

Avg. 93:2270:73 92:2372:62 87:4970:72 86:0572:46 86:3070:73 84:4272:70 90:1270:73 86:3272:70 87:9370:61 86:7872:67
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Table 33
Reduction rates achieved (high size data sets).

Alg IFS-CoCo (IS) IS-CHC IS-SSGA IS-GGA IFS-CoCo (FS) FS-CHC FS-SSGA FS-GGA IFS-CoCo (FS) IFS-CHC IFS-IGA IFS-HGA

Che 81.64 98.19 94.95 94.23 38.89 33.33 34.12 33.89 99.64 99.69 99.72 42.12

Mov 99.33 84.88 84.58 83.22 63.33 64.44 65.76 65.98 98.89 89.20 92.33 72.81

Sat 71.65 99.36 97.99 98.14 47.22 30.56 31.23 31.45 99.12 99.55 99.58 45.90

Spa 77.16 99.20 98.12 98.22 49.12 54.39 56.53 55.98 99.02 99.44 99.49 63.31

Spl 92.96 99.02 95.42 95.65 76.67 71.67 71.98 71.89 99.12 98.61 98.82 82.42

Tex 79.56 97.01 96.18 96.95 65.00 60.00 62.50 62.50 98.15 98.55 98.14 69.45

Avg. 83.72 96.28 94.54 94.40 56.71 52.40 53.69 53.62 98.99 97.51 98.01 62.67

Table 34
IFS-CoCo vs IS algorithms (Kappa in training and test phases, high size data sets).

Alg IFS-CoCo IS-CHC IS-SSGA IS-GGA 1-NN

Training Test Training Test Training Test Training Test Training Test

Che 93:7970:74 93:0973:23 66:7370:56 67:3872:62 84:0170:68 69:7971:93 77:4570:63 73:0873:39 84:5671:09 67:6872:22

Mov 91:4071:56 79:1677:82 72:5472:24 55:4577:56 82:1471:95 61:2977:46 77:8472:26 61:2977:46 81:4871:81 76:2077:80

Sat 89:5170:80 89:2670:91 85:2570:81 84:9971:30 89:5570:31 87:3171:07 88:0570:94 88:8271:14 90:8570:42 88:3071:27

Spa 85:1671:04 86:6872:33 74:3370:81 74:9372:01 81:4270:51 72:1472:08 78:6370:54 76:5372:64 89:9970:50 78:9772:67

Spl 80:3970:93 79:1871:20 56:0971:10 50:8371:87 71:5870:94 57:9271:73 66:3570:55 63:0671:76 75:2470:45 61:3771:30

Tex 98:8971:06 98:8071:49 93:4070:65 93:2071:54 97:9671:04 95:0071:30 97:0271:16 94:6071:52 99:0171:03 98:6071:96

Avg. 89:8571:02 87:6972:83 74:7271:03 71:1372:82 84:4470:90 73:9172:60 80:8971:01 76:2372:99 79:4370:88 78:5272:87

Table 35
IFS-CoCo vs FS algorithms (Kappa in training and test phases, high size data sets).

Alg IFS-CoCo FS-CHC FS-SSGA FS-GGA 1-NN

Training Test Training Test Training Test Training Test Training Test

Che 93:7970:74 93:0973:23 97:2171:09 92:3573:29 56:1471:09 64:4973:12 56:3871:00 62:5571:92 84:5671:09 67:6872:22

Mov 91:4071:56 79:1677:82 92:0672:08 79:1177:59 86:7771:57 76:2077:20 86:1171:53 76:2077:18 81:4871:81 76:2077:80

Sat 89:5170:80 89:2670:91 89:7570:73 88:2271:15 89:7170:38 87:9370:97 89:7570:73 88:1471:53 90:8570:42 88:3071:27

Spa 85:1671:04 86:6872:33 86:5170:93 84:2272:54 83:1370:72 82:7372:35 83:3470:62 84:1372:43 89:9970:50 78:9772:67

Spl 80:3970:93 79:1871:20 78:5270:73 69:5671:21 81:5070:97 76:4071:12 79:6070:59 74:6571:87 75:2470:45 61:3771:30

Tex 98:8971:06 98:8071:49 99:3671:01 98:8371:59 99:2471:17 98:5071:90 99:3870:46 98:2071:59 99:0171:03 98:6071:96

Avg. 89:8571:02 87:6972:83 90:5771:10 85:3872:90 82:7570:98 81:0472:78 82:4370:82 80:6472:75 79:4370:88 78:5272:87

Table 36
IFS-CoCo vs IFS algorithms (Kappa in training and test phases, high size data sets).

Alg IFS-CoCo IFS-CHC IFS-IGA IFS-HGA 1-NN

Training Test Training Test Training Test Training Test Training Test

Che 93:7970:74 93:0973:23 87:9270:47 89:9572:73 80:9270:56 82:9573:17 91:9270:64 88:1573:01 84:5671:09 67:6872:22

Mov 91:4071:56 79:1677:82 67:2572:09 52:4477:56 73:4871:65 65:8477:44 87:0171:53 73:4477:17 81:4871:81 76:2077:80

Sat 89:5170:80 89:2670:91 83:8771:04 82:2071:12 81:0270:34 80:0271:31 85:9270:92 85:5271:56 90:8570:42 88:3071:27

Spa 85:1671:04 86:6872:33 82:2070:96 85:9272:72 78:1570:30 85:6772:36 82:9070:99 86:0172:36 89:9970:50 78:9772:67

Spl 80:3970:93 79:1871:20 80:2570:45 76:4971:22 67:2570:65 57:4971:21 76:2570:82 72:4971:11 75:2470:45 61:3771:30

Tex 98:8971:06 98:8071:49 93:2470:38 90:0071:29 92:8870:73 88:1471:76 97:1770:82 98:1872:02 99:0171:03 98:6071:96

Avg. 89:8571:02 87:6972:83 82:4670:90 79:5072:77 78:9570:71 76:6972:88 86:8670:95 83:9772:87 79:4370:88 78:5272:87

Table 37
Time elapsed (high size data sets).

Alg IFS-CoCo IS-CHC IS-SSGA IS-GGA FS-CHC FS-SSGA FS-GGA IFS-CHC IFS-IGA IFS-HGA

Che 13068 770 1632 1732 21932 20657 20946 528 8841 6549

Mov 173 34 91 99 242 221 226 31 94 86

Sat 87094 2930 9275 10112 133700 125678 129634 3011 45672 42135

Spa 54636 1816 5430 6002 79048 74563 74579 1948 29220 27844

Spl 22218 677 1646 1843 35081 33264 32765 848 14794 10986

Tex 68297 2542 7689 7902 76481 74533 74987 2283 36557 32895

Avg. 40914 1461 4294 4615 57747 54819 55523 1442 22530 20082
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rates achieved. Table 17 shows the running times of every
method.

In a similar way, Tables 18–21 show the results obtained by FS
methods, and Tables 22, 23, 24 and 25 show the results obtained
by IFS methods. Finally, Tables 26–29 show the full results of the
comparison between IFS-CoCo and the classical approaches of IS
and FS.

For the second study, Tables 30–32 shows the average
accuracy results obtained over the 6 high dimensional data sets.
Table 33 shows the average reduction rates achieved over these
domains. Tables 34–36 shows the average kappa results, and
finally, Table 37 shows the average running times obtained.

Note: For space reasons, accuracy and kappa results are shown
in the format xx:xx7x:xx instead of 0:xxxx70:xxxx.
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Classifiers by Coevolutionary Algorithms
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Abstract—Cooperative coevolution is a successful trend of evo-
lutionary computation which allows us to define partitions of
the domain of a given problem, or to integrate several related
techniques into one, by the use of evolutionary algorithms. It is
possible to apply it to the development of advanced classification
methods, which integrate several machine learning techniques into
a single proposal. A novel approach integrating instance selection,
instance weighting, and feature weighting into the framework of
a coevolutionary model is presented in this paper. We compare
it with a wide range of evolutionary and nonevolutionary related
methods, in order to show the benefits of the employment of
coevolution to apply the techniques considered simultaneously.
The results obtained, contrasted through nonparametric statistical
tests, show that our proposal outperforms other methods in the
comparison, thus becoming a suitable tool in the task of enhancing
the nearest neighbor classifier.

Index Terms—Cooperative coevolution, feature weighting
(FW), instance selection (IS), instance weighting (IW), nearest
neighbor rule.

I. INTRODUCTION

C LASSIFICATION is one of the most well-known tasks
in machine learning [1]–[4]. Starting from an already

processed training set, machine learning methods are able to
extract knowledge from the data, which can be used to char-
acterize new samples and classify them into classes already
specified by the domain of the problem. Although most of
these methods store and represent this knowledge by building a
model during their execution, there are some approaches where
the construction of this model is not necessary. They are known
as lazy learning methods [5].

The most well-known lazy classifier is the k-nearest neigh-
bors (k-NNs) [6], which is one of the most relevant algorithms
in data mining [7]. It is a nonparametric classifier which simply
uses the entire input data set to establish the classification rule.
Thus, the effectiveness of the classification process performed
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by k-NN relies mainly on the quality of the training data. Also,
it is important to note that its main drawback is its relative
inefficiency as the size of the problem increases, regarding
both the number of examples in the data set and the number
of attributes which will be used in the computation of the
similarity function (distance) [8].

Many approaches have been proposed to improve the per-
formance of k-NN [9]–[14]. Some of the most effective have
been developed for data preparation [15]. Their task is to
assess, prepare, and preprocess the initially available data in
data mining processes. Their main goal is the improvement of
the algorithms in terms of efficiency and efficacy.

One way to prepare a suitable training set is to reduce it.
In this sense, data reduction [15] techniques try to obtain a
reduced version of the original training set, removing noisy
and irrelevant data (which may be harmful to the majority of
machine learning methods). Instance selection (IS) [16], which
consists of selecting the most appropriate examples (instances)
in the training set, will be used in this study.

Another way to improve the performance of k-NN is through
the use of weighting schemes. Feature weighting (FW) [11] is
a well-known technique which consists of assigning a weight
to each feature of the domain of the problem, modifying the
way in which distances between examples are computed. The
definition of weights associated with the instances [instance
weighting (IW)] is also possible. This approach, which has been
used to improve the results of some machine learning methods,
can also be used to modify the computation of the distance
function [17].

Evolutionary algorithms (EAs) [18] are search algorithms
that use principles inspired by natural populations to evolve
solutions. They have been applied to different data mining
problems [19]–[22]. Given that IS, IW, and FW tasks can
be defined as combinatorial problems, it is possible to carry
them out using EAs [23]. In fact, many successful evolutionary
proposals have been developed to tackle them [23]–[28].

Coevolutionary algorithms (CAs) [29] are also able to tackle
these problems. They are EAs composed of two or more
populations which evolve simultaneously, allowing interactions
between their individuals. In a CA, it is possible to assign
different objectives or search methods to each population, try-
ing to obtain a global solution improved by the simultaneous
application of several techniques.

In recent years, coevolution has allowed many successful
techniques to develop in a large number of fields. Several
proposals applying CAs in classification [30], clustering [31],

1083-4419/$31.00 © 2012 IEEE
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function optimization [32], training neural networks [33], or the
design of ensembles [34] can be found in the literature.

CAs have also been applied in the development of data
preprocessing methods to enhance the k-NN classifier. The
most recent are [35] and [36], where two different approaches
for data reduction (focused only on IS or combining it with fea-
ture selection, respectively) are presented. In both approaches,
results improve upon those obtained by applying these data
preprocessing techniques in isolation.

In this paper, we propose a new CA in a different line to the
former proposals. FW and IW will be its main focus, aiming to
obtain a suitable set of weights to tune the distance function
while another population selects the best possible subset of
instances of the training set. This tuning process will allow the
k-NN rule to achieve a high classification performance, taking
advantage of the existing synergy between the IS, IW, and FW
techniques. We have named it Coevolution of Instance selec-
tion and Weighting schemes for Nearest Neighbor classifiers
(CIW-NN).

To accomplish these tasks, three populations (one for each
process) are defined within a cooperative framework. The first
one performs an IS process (binary codification), aiming to
select a suitable subset of instances to enhance the classification
performance of the k-NN classifier. It also will try to reduce the
size of the subset as much as possible, in order to increase the
speed of the final classification process.

The second and third ones perform an FW and an IW process
(real codification), respectively. Both are used to select the best
possible weights to further increase the leave-one-out classifi-
cation performance of the k-NN classifier. To do so, their search
processes are guided by a steady-state genetic algorithm (GA)
(SSGA) with a crossover operator with multiple descendants
[37]. This operator is used to increase the convergence capabil-
ities of the standard SSGA, which is a necessary improvement
in the global behavior of the CA.

We have tested our proposal in a wide comparison consid-
ering several evolutionary and nonevolutionary techniques in a
large number of classification domains (30 small data sets and
8 larger data sets). The results have been contrasted by using
several nonparametric statistical tests for multiple comparisons,
reinforcing the conclusions arrived at.

The approach presented in this paper, i.e., CIW-NN, can
be used as a competent hybrid method for improving the
k-NN classifier. This method combines the storage reduction
and accuracy enhancement capabilities of the IS methods with
the accurate definition of weights performed by IW and FW
techniques, used to further improve the accuracy of the base
classifier (to the best of our knowledge, this is the first method
in the literature that is able to combine the three different
techniques into a single approach).

Owing to cooperative coevolution and the new epoch scheme
devised for managing the different populations of the model,
CIW-NN is able to use cutting-edge EAs specifically adapted
to the three problems, using binary and real codifications si-
multaneously. The joint use of the three techniques and all these
elements allow CIW-NN to achieve a satisfactory performance,
improving the results of all the state-of-the-art techniques con-
sidered in the study.

The rest of this paper is organized as follows. Section II gives
an overview of coevolution and the data preparation techniques
in the scope of this approach. Section III describes our proposal
in depth. Section IV deals with the experimental framework
defined. Section V shows the results obtained and discusses
them. Finally, Section VI concludes the study.

II. BACKGROUND: COEVOLUTION AND EVOLUTIONARY

PROPOSALS FOR IS AND WEIGHTING SCHEMES

This section covers the background information necessary
to define and describe our proposal. Section II-A gives back-
ground information about coevolution and some related core
issues. Section II-B describes IS as a tool to enhance the k-NN
classifier. Section II-C shows the weighting schemes employed.
Finally, Section II-D briefly describes some evolutionary pro-
posals already developed to perform those techniques.

A. Coevolution: Main Trends and Key Issues

Coevolution is the field of evolutionary computation which
deals with EAs that are able to manage two or more populations
simultaneously. These populations coexist during the execution
of the EA, interacting and evolving simultaneously.

The most important benefit of the use of coevolution is
the possibility of defining several components to represent a
problem and assigning them to several populations to handle
each one separately. This allows the EA to employ a divide-and-
conquer strategy, where each population can focus its efforts
on solving a part of the problem. If the solutions obtained
by each population are joined correctly, and the interaction
between individuals is managed in a suitable way, the use of
coevolution can lead to high-quality solutions, often improving
those obtained by noncoevolutionary approaches.

The interaction between individuals of different populations
is the core issue of coevolution techniques. In the literature,
coevolution approaches are often divided into three classes,
according to the type of interaction employed.

1) Cooperative coevolution: In this trend, each population
evolves individuals representing a component of the final
solution. Thus, a full solution is obtained by joining an
individual chosen from each population. In this way, in-
creases in a collaborative fitness value are shared between
individuals of all the populations of the algorithm [29].

2) Competitive coevolution: In this trend, the individu-
als of each population compete with each other. This
competition is usually represented by a decrease in the
fitness value of an individual when the fitness value of its
antagonist increases [38].

3) Competitive–cooperative coevolution: Both coopera-
tive and competitive approaches can be merged, allow-
ing the existence of a potential arm race among the
species to improve their contributions in the associated
subcomponents. This paradigm, which tries to achieve the
advantages of cooperation and competition at different
levels of the model, has been successfully employed in
dynamic multiobjective optimization [39].
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In this paper, we will focus our attention on cooperative
coevolution. Its management will require the definition of an
adequate problem decomposition, regarding its domain or the
set of techniques employed. When this decomposition is fully
defined, it will be possible to assign a baseline EA to each
population, to evolve each component separately. Finally, the
cooperation scheme has to be defined, analyzing the existing
interdependences between the subcomponents of the model.

Although this is the general scheme when designing a coop-
erative coevolution approach, several key issues must be studied
to understand how cooperative coevolution works and what
features and disadvantages that it has.

1) The main problem of cooperative coevolution is the loss
of gradient problem [40] in which one population comes
to severely dominate the others, creating a situation where
the populations have insufficient information from which
to learn, due to the high degree of domination present.

2) Another problem that arises with the use of cooperative
coevolution is the issue of variable interdependence. The
decomposition of the domain of the problem into several
parts and its assignation to the subpopulations of the
model must be performed with care. Otherwise, existing
interdependences between variables may severely de-
grade the performance of search methods.

This issue has been studied in depth in the field of
continuous optimization. Since the first cooperative co-
evolutionary approaches did not show satisfactory be-
havior in the presence of nonseparable problems, several
proposals have been presented to tackle them. A rep-
resentative example is shown in [32], where a random
grouping strategy and a weighting scheme are presented.
This framework, designed for differential evolution, has
been extended to be employed with other techniques,
such as particle swarm optimization [41].

In other fields, this issue can be overcome by avoiding
the breaking of interdependences. For example, an inter-
esting way of decomposing the domain for IS problems
is presented in [35]. In that study, several populations
of selectors and a population of combinators are used
to effectively split the domain of the IS problem, with
the objective of improving the scalability of the model
without harming its accuracy. In this work, a similar
strategy will be followed, avoiding the breaking of in-
terdependences not by decomposing the domain but by
splitting the specific preprocessing technique assigned to
each population.

3) An interesting question about the coevolutionary model
is to define how the algorithm should manage its popu-
lations. Common answers are to manage them by using
either a sequential scheme (update the status of the model
each time a population completes a generation) or a
parallel scheme (update the global status only when a
generation is complete for every population). A compari-
son between both approaches can be found in [42].

4) These schemes can be further adjusted by using an epoch
scheme [43]. Hence, a population may carry out more
than one generation while the rest of the populations are
stopped. This scheme can help the designer to give more

importance to a given population (for example, the one
with the most difficult task assigned to it) in order to
keep the search balanced. If they are employed properly,
epochs can help to ease the loss of gradient problem.

5) Researchers have also tackled the question of how to
select the members to evaluate the fitness function. One
way is to evaluate an individual against every single
member of the other populations. However, this would
consume a very high number of evaluations. To reduce
this number, there are other options, such as the use of
just a random individual or the use of the best individual
from the previous generation [44].

In this paper, all these issues have been considered and tack-
led during the designing process of CIW-NN. More information
can be found in Section III.

B. IS

IS is one of the main data reduction techniques for which
many proposals have been developed (see [12] or [45] for a
recent review). Its goal is to isolate the smallest set of instances
which enable a data mining algorithm to predict the class of a
query instance with the same or better proficiency than using
the initial data set [16]. By minimizing the data set size, the
space complexity and computational costs of the subsequent
data mining algorithms are reduced, improving their general-
ization capabilities.

IS can be defined as follows: Let X be an instance where
X = (x1, x2, . . . , xM , xc), with X belonging to a class c given
by Xc, and an M -dimensional space in which xi is the value
of the ith feature of the sample X . Then, let us assume that
there is a training set TR which consists of N instances, and
a test set TS composed of T instances. Let RS ⊆ TR be the
subset of selected samples that result from the execution of an
IS algorithm; then, we classify a new pattern T from TS from
a data mining algorithm acting over the instances of RS.

We focus our efforts on enhancing the 1-NN rule. The reason
for not employing a value k > 1 for the k-NN is to give the
classifier the greatest possible sensitivity to noise during the
reduction process. In this manner, an evolutionary IS algorithm
can better detect the noisy instances and the redundant ones
presented in the training set.

C. Weighting Schemes

In this section two different weighting schemes, i.e., FW and
IW, will be reviewed.

a) FW: FW is a successful approach used to improve the
k-NN classifier [11]. The FW methods’ main objective is to
reduce the sensitivity of redundant or noisy features in the
k-NN rule by modifying its distance function.

The most well-known dissimilarity measure for the k-NN
rule is the Euclidean distance [(1), where X and Y are two
instances and M is their number of features]. It has been widely
used in the instance-based learning field [9].

EuclideanDistance(X,Y ) =
M∑

i=0

√
(xi − yi)2. (1)
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FW methods often extend this equation to apply different
weights to each feature (Wi) which modify the way in which
the distance measure is computed

FWDist(X,Y ) =
M∑

i=0

Wi ·
√

(xi − yi)2. (2)

This technique has been widely used in the literature. To the
best of our knowledge, the most complete study performed can
be found in [11], where a review of several FW methods for lazy
learning algorithms is presented (with most of them applied to
improve the performance of the 1-NN rule).

A large number of FW techniques for improving the k-NN
rule have been proposed [11], [46]. The most well known form
the family of Relief-based algorithms. The Relief algorithm has
been widely studied and modified, producing some interesting
versions such as that in [47].

b) IW: The second interesting weighting scheme is IW. This
scheme consists of applying weights to the instances of the
training set, modifying the distance measure between them and
any other instance (the following equation, where IW (X) is
the weight assigned to the training instance X):

IWDist(X,Y ) = IW (X)
M∑

i=0

√
(xi − yi)2. (3)

The concrete definition of the weights differs in each ap-
proach, but most of the existing ones are focused on modifying
the way in which distances are measured, depending on the
positions of the instances in the training set (a representative
example that appeared recently is [17]).

Other interesting approaches apply the weights in a lazy way:
Weights are assigned to instances only when the query instance
(i.e., a test instance) has been presented to the classifier. In this
way, only instances which are in the immediate environment
of the query instance are weighted, thus performing an ad
hoc local modification directly focused on the concrete query
instance presented [10].

Although the number of existing proposals for IW is less
than that for FW, several interesting approaches have appeared
in recent years, mostly focused on the application of weights
to find a suitable local metric to improve the generalization
accuracy of the basic 1-NN [48].

D. Existing Evolutionary Approaches Used to Improve the
k-NN Rule

In recent years, EAs have been widely employed to carry
out data preparation tasks, improving the behavior of the k-NN.
This section will review some interesting examples in the scope
of this study, most of them applied to IS tasks.

The first use of EAs in IS can be found in [24]. Kuncheva
applied a GA to select a reference set for the k-NN rule. Her
GA maps the training set onto a chromosome structure, using a
binary representation and computing as the fitness function the
error rate of the k-NN rule.

In [23], a complete study of the use of EAs in IS is
made, highlighting four EAs to complete this task: Cross-

generational elitist selection, Heterogeneous recombination,
and Cataclysmic mutation (CHC) adaptive search algorithm
[49], SSGA, generational GA, and population-based incre-
mental learning. They conclude that EAs outperform classical
algorithms in both reduction rates and classification accuracy,
highlighting CHC as an outstanding method for this task.
Following this line, other successful proposals have appeared
recently [26].

In [50], a GA is used to learn continuous feature weights for
the k-NN classifier, by defining five genetic operators and a
fitness function based on the number of misclassified training
instances and their relevance. Furthermore, it is possible to
find other approaches that combine several techniques in the
same method. For example, [25] is a representative proposal
combining IS and feature selection to improve k-NN classifiers.
FW and IS are also tackled simultaneously in [51].

Cooperative coevolution has also been used to improve the
k-NN rule in [35], integrating several populations of selectors
and a population of combinators to effectively split the domain
of the IS problem, and [36], in which cooperative coevolution
is adopted as a tool to integrate several binary preprocessing
techniques in the coevolutionary model (by defining a multi-
classifier composed of three 1-NN classifiers which are tuned
by each population), which are representative examples. How-
ever, these two approaches neither define specific mechanisms
to adjust the search performed in each population (different
basic EAs and codification, fine-tuned operators, and so on) nor
consider the definition of weighting schemes to further improve
the classification accuracy.

III. CIW-NN

In this section, we describe CIW-NN in depth. We show
the details of the architecture of the coevolutionary model and
its basic components, justifying the decisions taken during its
development. Section III-A shows the scheme of populations
of CIW-NN. Section III-B gives an overview of the full co-
evolutionary model and describes the basic techniques used to
conduct the search. Section III-C describes how the coopera-
tion between individuals belonging to different populations is
achieved, through the fitness function. Finally, Section III-D
states how the fitness value is assigned to each chromosome.

A. Population Scheme

CIW-NN is composed of three populations, which coexist
and evolve simultaneously. We denote each one by the name
of its assigned task. Therefore, our model is composed of an
IS population, an IW population, and an FW population, which
will follow a sequential scheme of cooperation.

In order to characterize and describe them, several aspects of
their structure and behavior must be discussed.

1) Scope: Each population is focused on optimizing either
instances or features.

2) Codification: Depending on the concrete assessing task
performed, the individuals of each population will em-
ploy binary (0, 1) or real ([0, 1]) codification. This feature
will define the kind of basic search method which the
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TABLE I
CIW-NN POPULATION’S CHARACTERISTICS

population will carry out and also has a strong effect on
the difficulty of the search task itself, due to real coded
search spaces usually being wider and harder to explore.

3) Granularity: CIW-NN uses two schemes of assigna-
tion of weights. Individual weights (one for each in-
stance/feature) are assigned to IS and FW chromosomes,
whereas class weights, shared by instances of the same
class, are assigned to IW chromosomes.

4) Epoch length: CIW-NN defines how the evolution
process of its populations will be scheduled, by assigning
epochs of different lengths: Simple, i.e., one generation
per cycle of the global model, or Multiple, considering
more than one generation. In this way, CIW-NN equalizes
the number of evaluations spent by each population.

5) Objective: This refers to the objective that each popula-
tion pursues. A population can cope with maximizing the
accuracy obtained by the classifier, or to simultaneously
maximize this accuracy and the reduction rate, i.e., the
ratio between the number of instances discarded and the
ones that composed the original training set.

Table I summarizes the setup of each population. As can be
seen in this table, the objective of obtaining a reduced subset
is assigned to the IS population, while the rest tune the way in
which distances to the instances are computed, accomplishing
the objective of increasing the accuracy of the classifier.

Owing to this structure, our model is expected to achieve
reduction rates close to those obtained by the most successful
evolutionary IS techniques and simultaneously obtain better
results in accuracy due to the double tuning process performed
by IW and FW populations. Furthermore, the tuning process
performed by the weighting populations can positively influ-
ence the behavior of IS, for example, by selecting weights to
make up instances that, without this weighting process, could be
marked as irrelevant—or even noisy—by the selection process.
Fig. 1 symbolizes the feedback between populations existing in
CIW-NN.

It is important to note that we have not considered the use of
feature selection in CIW-NN (for example, as a new population
of the model). The reason for this is that the weights of the FW
population can simulate this behavior just by using weights very
near to 0.0 or 1.0. The rejection of the use of feature selection
prevents CIW-NN from achieving even greater reduction rates
than those it achieves as it is currently defined. However, this
is compensated for by the increase of the search space of
the features, which should lead CIW-NN to tune the distance
function better. This capability should help in increasing the
accuracy of the model.

On the other hand, one should not expect similar behavior
if weights were applied to every instance to simulate IS. This

Fig. 1. Evolutionary cycle of CIW-NN. IS, FW, and IW populations evolve
simultaneously, spending an epoch in turns. IS epochs only spend one genera-
tion, while FW and IW epochs spend several. Individuals of every population
cooperate through the fitness function (a 1-NN classifier).

Fig. 2. Coevolutionary model.

is because, in most of the standard classification problems, the
number of instances is far higher than the number of features.
Therefore, a reasonable way to work with instances would be
to apply a procedure to quickly select them, and another one is
to tune them in a fast and effective way (for example, grouping
them by their class). This is the reason behind the decision to
use class weights in the IW population.

B. Coevolutionary Model

The coevolutionary model consists of the three populations
carrying out their respective search processes at the same time:
In each cycle, each population performs a fixed number of gen-
erations, depending on their concrete setup, but their state is not
updated until the generations of the rest of the populations have
finished. Populations with Simple epoch length (IS population)
will perform only a single generation, while populations with
Multiple epoch length (IW and FW populations) will perform
several generations. When the fixed number of evaluations
runs out, the best individuals found are taken as the output of
the method. Then, they are used to build a final preprocessed
training set, which will be ready to be used by a 1-NN classifier
to classify the test set or any new example. Fig. 2 shows a
pseudocode of the full model.

CIW-NN only selects one individual per population (the best)
as a collaborator. Although other schemes, such as selecting
a set of collaborators per population, could be defined, the
employment of just one collaborator has a unique advantage:
The evaluation of any new individual only consumes one
evaluation of the fitness function. By contrast, employing any
other scheme would lead to a quadratic increase in the num-
ber of evaluations needed to characterize a new individual
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(if Z collaborators per each of the three populations are se-
lected, a new individual will require Z2 evaluations to consider
all the possible combinations). Given the nature of the problems
tackled by CIW-NN, which are characterized by a costly fitness
function, computationally speaking (more costly, by far, than,
for example, the ones usually considered in function optimiza-
tion problems; see Section III-C), this decrease in the evaluation
requirements is indispensable.

The use of a parallel scheme of coevolution, where the
global status of the model is updated only when a generation is
complete for every population, and Simple and Multiple epoch
schemes allows CIW-NN to effectively combine different kinds
of EAs. In this way, different basic evolutionary techniques
can be assigned to each population, selecting for each task and
codification the most suitable technique.

Concretely, CIW-NN uses an adapted version of the CHC
algorithm [49] in the IS population, whose reliability in its
application to IS problems has already been studied in [23]. In
that study, the authors concluded that the CHC algorithm is a
very suitable evolutionary approach to perform IS processes in
order to enhance the performance of the 1-NN classifier.

In FW and IW populations, CIW-NN uses an SSGA with
multiple descendants [37]. We have selected it since it has
shown a good performance when applied to continuous op-
timization problems with a high number of variables. Fur-
thermore, the use of multiple descendants gives a strong
convergence capability to the SSGA, which is the most desired
quality for the search process of the FW and IW populations.

Both basic methods evolve each population within the evo-
lutionary cycle. Since the number of evaluations spent in one
generation of the IS population can be much greater than that
in one generation of the FW and IW populations (CHC is a
generational GA which can spend as many evaluations as the
population size to perform a generation, whereas the SSGA
only spends a much smaller amount per generation), CIW-NN
introduces the use of a Multiple epoch scheme. In this way,
NGens generations are carried out for FW and IW populations
in each epoch, whereas only one is carried out for the IS
population. This will help to equalize the number of evaluations
spent, regardless of the search method used.

In order to adjust the behavior of both search methods,
several modifications to the original algorithms have been
considered.1 The main drawback of the application of CHC
in the IS problem is that the efficiency of its fitness function
depends on the phenotype of the chromosome. If there are many
1’s in the binary chromosome, many instances will be selected,
increasing the cost of the 1-NN classification performed to
compute its fitness value (Section III-C).

Therefore, we have applied two modifications to the original
algorithm to increase the speed of the IS population.

1) We have modified the definition of the half uniform
crossover (HUX) operator. When a gene representing an
instance is going to be set from 0 to 1 by the crossing
procedure, it is only set to 1 with a defined probability
(prob0to1 parameter). No modifications are applied to

1A wide description of them can be found at http://sci2s.ugr.es/ciw-nn.

Fig. 3. HUX crossover operator exchanges exactly half of the nonmatching
alleles, selected randomly. In our modified version of HUX, an allele valued
with 1 has a probability prob0to1 of maintaining its value when it is selected
to be exchanged.

changes from 1 to 0. For example, if one chromosome,
1100000000, and another chromosome, 1111111111, are
crossed by the HUX operator, the offsprings may be
1111110000 and 1100001111. In the same scenario, a
run of our HUX modified operator, with a probability
of change prob0to1 = 0.5, would give the offsprings
1100110000 and 1100001111 as the output. Fig. 3 shows
its application.

2) The initialization of the individuals is made randomly, but
only a small fixed number of genes are set to 1. Therefore,
in the initialization of a chromosome, each gene has a
probability prob1 to be set to 1.

The prob0to1 parameter does not have a great impact on
the results if it is kept in the interval (0.2–0.5). A value
lower than 0.2 may bias the search, making it very difficult
for CHC to preserve the quantity of 1’s in the chromosomes.
This may force the algorithm to produce solutions with high
reduction rates but very low performance in accuracy due to
the impossibility of selecting enough instances to represent the
initial training set properly. On the other hand, a value higher
than 0.5 will diminish the effect of the operator, producing
solutions with lower reduction rates. Consequently, we have
defined prob0to1 = 0.25 as an optimal setup. The prob1 also
does not have a great impact on the results, as long as it is set to
a low value. Defining a value of 0.5 will be the same as defining
just a random initialization. Thus, this value has to be lower. In
our experiments, we have found that prob1 = 0.25 is an optimal
setup for this value, which helps CHC to quickly obtain reduced
solutions without biasing the search process.

The SSGA has the following features.
1) Initialization of individuals is made randomly, assigning

to each gene weights valued in the interval [0, 1].
2) Binary tournament is used to select the parents (two indi-

viduals are randomly taken from the population. Then,
the one with the best fitness value is selected. This
procedure is carried out twice to obtain the two parents
required).

3) The offspring is obtained using a crossover operator
with multiple descendants. It consists of repeatedly
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Fig. 4. Scheme of application of the 2BLX0.3–4BLX0.5–2BLX0.7 multiple-
descendant crossover operator.

applying one or more standard crossover operators to
obtain several new individuals (six or eight are common
numbers). Then, the best two are selected as the new
offsprings. From all the options suggested in [37], we
have selected the blend crossover operator (BLX-α),
applying it four times with values 0.3, 0.5, 0.5, and 0.7
for α (2BLX0.3–4BLX0.5–2BLX0.7). Fig. 4 shows its
application.

4) A mutation operator is applied to every descendant ob-
tained during the multiple-descendant crossing process.
Following [37], we have used the nonuniform mutation
operator [52]. Mutation probability is set to a low value,
i.e., 0.05 per chromosome, to avoid harming the conver-
gence capabilities of the crossover operator.

5) The two individuals of the current population with the
worst fitness value are replaced by the new offsprings.

C. Cooperation in CIW-NN: The Fitness Function

In CIW-NN, the cooperation between individuals is achieved
by merging three chromosomes (one from each population:
IS, IW, and FW). Basically, they are used to generate a pre-
processed version of the training set (i.e., a reduced version
of the training set by the application of the IS process, and
an assignation of weights to instances and features by the
application of the FW and IW processes) whose quality will
be evaluated by a 1-NN classifier.

Therefore, we define the fitness function of CIW-NN [the fol-
lowing equation, where J , K, and L are the three chromosomes
selected] as the accuracy rate estimated when classifying the
original training set, using the preprocessed one as a reference
set and using leave-one-out as a validation scheme

Fitness(J,K,L) = AccuracyRate(J,K,L). (4)

When a new chromosome is evaluated, two collaborators,
from the other populations, are merged with it to create a full
solution. The process performed to obtain the preprocessed
training set from the original one is the following.

1) Instances marked as “0” by the IS chromosome are re-
moved. Thus, only instances marked as “1” will remain
in the preprocessed set.

2) Weights described by the FW chromosome are assigned.
3) Weights described by the IW chromosome are assigned

to the remaining instances, depending on their class.

As a result of these operations, the computation of the
distance measure in the 1-NN classifier is performed as is
described in (5), where X is an instance of the preprocessed
set, Y is a new instance to classify (from the original training
set or from the test set), and IWc(X) is the weight assigned by
the IW chromosome

Distance(X,Y ) = γ ·
(
1.0 − IWc(X)

)
· FWDist(X,Y )

+(1.0 − γ) · FWDist(X,Y ) (5)

where γ ∈ [0, 1] is a weighting value for controlling the impact
of the IW weights in the Euclidean weighted distance (2).
Consequently, we have the following.

1) The distances computed from instances belonging to
classes marked with maximum weights (IWc(X) = 1.0)
will be very small (a (1.0 − γ) factor of their former
value).

2) The distances computed from instances marked with
minimum weights (IWc(X) = 0.0) will not change.

3) The remaining possible values will keep the distance
computed within this range.

Following this scheme, we allow the IW population to set
weights which highlight the appearance of certain classes in the
domain, diminishing the importance of the rest. The distances
computed from instances belonging to the former classes will
be very low, thus increasing the chances of selecting them as
the nearest neighbors of a new test instance. Furthermore, the
inclusion of the γ weight allows the appearance of very low
final weights (very near to 0.0) to be avoided, which may nullify
the distance measure, degrading the behavior of the classifier.

With the simultaneous application of IS and both weighting
schemes, the preprocessed subset can be tuned to obtain the
most accurate possible reference set. IS chromosomes will se-
lect only those instances which are truly relevant in the training
set, whereas FW weights will emphasize those features which
better discriminate the examples with respect to their class.
Finally, IW weights will increase or decrease the magnitude
of the distance from every instance, depending on its class,
modifying its relevance inside the domain, further improving
the global accuracy of the classifier.

A final consideration about the fitness function of CIW-
NN must be noted: The computation of the AccuracyRate
involves the classification of the entire training set by the 1-NN
classifier. This is a costly operation (O(N∗S), where N is the
size of the training set and S is the number of instances selected
by the IS chromosome) and computationally heavier than the
fitness function usually employed as a benchmark in existing
approaches for function optimization. However, this cost will
be alleviated as the search processes progress, as long as the IS
chromosomes reduce the number of instances selected.
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Fig. 5. Example fitness assignment for an IS individual. RedRate is com-
puted directly. To compute AccRate, IS, FW, and IW chromosomes are applied
to the training set TS, obtaining the reference set RS, which is employed by
the 1-NN classifier to estimate accuracy.

D. Fitness Assignment

As we mentioned before, the populations of CIW-NN have
different objectives, depending on their task. Therefore, two
different methods for fitness assignment need to be defined.

The fitness value for IS individuals must pursue both re-
duction and accuracy objectives. To do so, we follow the
proposal given in [23]. Cano et al. defined AccRate as the
accuracy achieved by the 1-NN rule over the training set, using
the currently selected subset as a reference and leave-one-out
as a validation scheme. They also defined RedRate as the
reduction rate achieved over the currently selected instances,
and a weighting factor α, to adjust the strength of each term
in the resulting fitness value. The following equation defines it,
where J is an IS chromosome to be evaluated:

Fitness(J)=α·AccRate(J)+(1 − α)·RedRate(J). (6)

Following the recommendations given in [23], CIW-NN em-
ploys a value α = 0.5, which should offer an adequate tradeoff
between accuracy and reduction.

Obtaining a fitness value for the IW and FW is straightfor-
ward, since their objective is to maximize only the accuracy
of the classifier. The following equation, where K is a chro-
mosome belonging to FW or IW populations, can be defined
by considering only the AccRate term of the last equation,
keeping their former meaning:

Fitness(K) = AccRate(K). (7)

These equations are used to assign a fitness value to any chro-
mosome of CIW-NN. When the fitness function is computed by
using a chromosome in combination with its two collaborators,
the fitness value obtained is assigned as its AccRate. On the
other hand, if the chromosome belongs to the IS population,
its RedRate can be computed directly from the chromosome
itself. Fig. 5 shows an example of a fitness assignment for an IS
individual.

TABLE II
SUMMARY DESCRIPTION OF SMALL DATA SETS

TABLE III
SUMMARY DESCRIPTION OF LARGE DATA SETS

IV. EXPERIMENTAL FRAMEWORK

This section describes the experimental framework designed
to test CIW-NN.2 Section IV-A presents the classification data
sets used. Section IV-B summarizes the algorithms selected
for the comparison and their relevant parameters. Section IV-C
describes the performance measures employed to evaluate
CIW-NN. Finally, Section IV-D discusses the tests applied in
the statistical comparisons performed.

A. Classification Problems

To check the performance of CIW, we have selected a set
of 38 classification data sets. These are well-known problems
in the area, taken from the KEEL-data-set repository3 [53].
Tables II and III summarize their main characteristics. For each
data set, we provide its number of examples (#Ex.), attributes
(#At.), and classes (#Cl.).

The data sets considered are partitioned by using the ten-
fold cross-validation (10-fcv) procedure, and their values are
normalized in the interval [0, 1] to equalize the influence of
attributes with different range domains. In addition, instances
with missing values have been discarded before the execution
of the methods over the data sets.

B. Comparison Methods

Several classification methods, evolutionary and nonevolu-
tionary, have been selected to perform an exhaustive study of
the capabilities of CIW-NN.

1) 1-NN: The 1-NN rule is used as a baseline limit of per-
formance which most of the methods should supersede.

2The Java code of CIW-NN is available at http://sci2s.ugr.es/ciw-nn.
3http://www.keel.es/datasets.php.
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2) IS-CHC, FW-SSGA, and IW-SSGA: These methods
follow exactly the same setup as the populations of CIW-
NN, except that the AccRate of their fitness function
is computed separately. Consequently, only the IS-CHC
performs a reduction process. Moreover, comparison with
IS-CHC is particularly interesting due to it being recom-
mended as the best performing IS method in [23].

3) Steady-state memetic algorithm (SSMA): An SSMA
specifically designed for prototype selection. This evo-
lutionary IS includes a meme optimization mechanism
(a local search procedure) that is able to improve the
accuracy achieved by the SSGA and to avoid premature
convergence. Moreover, it offers a high reduction capabil-
ity and good behavior when tackling large problems [26].

4) Prototype weighting (PW), class weighting (CW), and
class and prototype weighting (CPW): Three gradient-
descent-based algorithms developed with the aim of min-
imizing a performance index that is an approximation of
the leave-one-out error over the training set. Weights may
be specified for each instance (PW) and for each combi-
nation of feature and class (CW) or both (CPW) [48].

5) Weighted distance nearest neighbor (WDNN): A novel
IW method which searches iteratively, in each training
instance, for the best weight to minimize the leave-one-
out error over the training set. A weight of 0.0 can be
assigned to any instance, which means that it is discarded.
Thus, this method can be regarded as a simultaneous IS
and IW method. Consequently, reduction rates can be
computed for it [17].

6) Tabu search for KNN (TS/KNN): A tabu-search-based
method for simultaneous feature selection and FW, whose
solutions encode the current set of features selected,
the current set of weights assigned to features, and the
best value of k found for the k-NN classifier [54]. Al-
though this method reduces the size of the training set
by selecting features, this reduction is too small for it
to be considered in the comparison with the rest of the
methods.

7) ReliefF: The first Relief-based method adapted to per-
form the FW process [47]. Weights computed in Relief
are not binarized to 0, 1. Instead, they are used as final
weights for the k-NN classifier. This method was noted
as the best performance-based FW method in [11].

8) Mutual information (MI): MI between features can be
used successfully as a weighting factor for k-NN-based
algorithms. This method was marked as the best preset
FW method in [11].

9) Global optimization of feature weighting and in-
stance selection using GA for case-based reasoning
(GOCBR): A GA for simultaneous IS and FW. Weights
are represented by binary chains, using binary codifi-
cation [51]. This method was not designed with the
aim of obtaining the most reduced subset possible; thus,
its reduction power is not competitive. Therefore, their
reduction rates will not be considered.

Many different configurations have been established for each
method. In our experimental study, we have used the parameters
defined in the reference, where they were originally described.
Table IV presents them.

TABLE IV
PARAMETER SPECIFICATION FOR THE METHODS OF THE STUDY

C. Performance Measures

We have selected the following performance measures.
1) Accuracy: It is defined as the number of successful hits

relative to the total number of classifications. It has been
by far the most commonly used metric for assessing the
performance of classifiers for years [1], [4].

2) Kappa: It is an alternative to the accuracy rate, a method,
known for decades, that compensates for random hits
[55] in the same way as the Area Under the ROC curve
measure. Cohen’s kappa measure can be obtained using
the expression

kappa =
N

c∑
I=1

xii −
c∑

i=1

xi.x.i

N2 −
c∑

i=1

xi.x.i

(8)

where xii is the cell count in the main diagonal, N is
the number of examples, c is the number of class values,
and x.i and xi. are the column and row total counts,
respectively. Kappa ranges from −1 (total disagreement)
through 0 (random classification) to 1 (perfect agree-
ment). For multiclass problems, it is a very useful, yet
simple, metric for measuring the accuracy of the classifier
while compensating for random successes.

3) Reduction: The reduction rate is defined as the ratio of
data selected by the algorithm. It has a strong influence
on the efficiency of the solutions obtained, due to the cost
of the final classification process performed by the 1-NN
classifier (O(N2 · M)).

4) Time: The simplest way to measure the practical effi-
ciency of a method. We will analyze the average time
elapsed (in seconds) by every method, considering both
training and classification phases.
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TABLE V
AVERAGE RESULTS OBTAINED IN THE COMPARISON BETWEEN CIW-NN AND EVOLUTIONARY PROPOSALS FOR k-NN-BASED CLASSIFICATION

D. Statistical Tools for Analysis

In our experimental study, we use hypothesis testing tech-
niques to provide statistical support for the analysis of the
results. Concretely, we use nonparametric tests, due to the fact
that the initial conditions that guarantee the reliability of the
parametric tests may not be satisfied, causing the statistical
analysis to lose credibility [56].

Throughout the study, we will use the Friedman and Fried-
man aligned-ranks tests to detect statistical differences among
the methods. Holm, Hochberg, and Finner post hoc procedures
will be used to find out which methods are distinctive among
the 1 ∗ n comparisons performed [56]. Moreover, the ranks
obtained will be analyzed graphically, depicting the best per-
forming algorithms as those with lower ranks.

More information about those statistical procedures specif-
ically designed for use in the field of machine learning can
be found at the SCI2S thematic public Web site on Statistical
Inference in Computational Intelligence and Data Mining.4

V. RESULTS AND ANALYSIS

In this section, we detail the different experimental studies car-
ried out with CIW-NN. In particular, our aims are as follows:

1) to analyze the benefits of coevolution when integrating
several techniques, comparing CIW-NN with other evo-
lutionary methods in isolation (Section V-A);

2) to compare CIW-NN with classical and recent weighting
methods for k-NN-based classification (Section V-B);

3) to test the performance of CIW-NN when the size of the
problem increases (Section V-C);

4) to show the convergence process of CIW-NN and the
cooperation process among populations (Section V-D).

For the sake of simplicity, we only include average results,
whereas the complete results can be found elsewhere.5 These
average results are computed through a 5 × 10-fold cross-
validation procedure, which means that every algorithm has
been run ten times per data set (one for each partition), and this

4http://sci2s.ugr.es/sicidm/.
5http://sci2s.ugr.es/ciw-nn. On this Internet site, it is possible to find results

detailed for each data set and performance measure, including several graphical
comparisons summarizing the results achieved in the experiments and depicting
the rankings obtained by the algorithms in each application of Friedman and
Friedman aligned-ranks procedures. It also contains the results of the applica-
tion of Holm, Hochberg, and Finner post hoc procedures. Furthermore, several
related studies about the behavior of our method (a sensitivity analysis of
parameters, the selection of suitable crossover operators with multiple parents,
advanced schemes of combination of the different preprocessing techniques,
selection of an optimal value for the k parameter of k-NN, and so on) can also
be found there.

Fig. 6. Graphical comparison of accuracy in the test phase between CIW-NN
and evolutionary proposals for k-NN-based classification.

Fig. 7. Rankings computed by Friedman aligned-ranks procedures by using
the accuracy measure.

process has been repeated five times, averaging the results ob-
tained. This will allow us to draw strong conclusions, reducing
the danger of being mislead by outliers or random successes in
the results of the classifiers.

A. Comparison Between CIW-NN and Evolutionary Proposals
for k-NN-Based Classification

The coevolution abilities of CIW-NN can be stressed when
it is compared with its basic components. In this paper, the
three evolutionary techniques employed in CIW-NN (IS-CHC,
FW-SSGA, and IW-SSGA) will be applied in isolation. Fur-
thermore, we consider the 1-NN classifier as a basic reference,
and SSMA, an advanced method for IS which incorporates a
competent local optimizer to improve the search process.

Table V shows the results obtained in the 30 small data
sets. Fig. 6 emphasizes the accuracy results of the test phase
graphically, showing mean accuracy and standard deviations.



DERRAC et al.: INTEGRATING IS, IW, AND FW FOR CLASSIFIERS BY CAs 1393

TABLE VI
AVERAGE RESULTS OBTAINED IN THE COMPARISON BETWEEN CIW-NN AND WEIGHTING METHODS FOR k-NN

The results obtained show that CIW-NN is the best perform-
ing algorithm in the test phase. Moreover, all the techniques
selected are able to improve the baseline performance of the
1-NN classifier. Fig. 7 plots the rankings obtained by the Fried-
man aligned-ranks test with the accuracy measure, showing the
differences found among the different methods graphically.

After computing the ranks, the Friedman and Friedman
aligned-ranks procedures obtained p-values of 0.00032 and
0.000097 for accuracy and p-values of 0.00274 and 0.000064
for kappa, respectively. Thus, the two tests detected significant
differences (final p-values computed by the post hoc methods
are reported on the associated Internet site).

Using these results, we can conclude the following.
1) CIW-NN offers the best results in accuracy and kappa

measures (in the test phase). Only FW-SSGA is able to
obtain close results (and only by the kappa measure).

2) The reduction rates achieved by CIW-NN are close to
those of IS-CHC and SSMA. This is a good result if we
recall that the IS population of CIW-NN (the only one
which aims to reduce the data set) only has a third of the
total evaluations spent by the coevolutionary model.

3) CIW-NN achieves the best results in both statistical tests,
considering kappa and accuracy measures.

In summary, the coevolutionary process performed by CIW-
NN can be viewed as a strong improvement on the capabilities
of the basic techniques. The individual benefits of each one
are inherited by CIW-NN, obtaining the reduction capabilities
of IS-CHC and SSMA and able to overcome statistically all
the techniques considered. Consequently, these results show
that CIW-NN is a suitable option to enhance the 1-NN rule in
standard classification domains.

B. Comparison Between CIW-NN and Weighting Methods for
k-NN-Based Classification

In this section, we perform a comparison between CIW-NN
and several weighting methods for k-NN classification, ranging
from classical approaches to more recent ones. We will check if
CIW-NN is a competitive weighting method for the k-NN rule,
in contrast with the existing techniques.

Table VI shows the average results obtained in the 30 small
data sets of the general framework. Furthermore, we also re-
port the average ranks computed by Friedman and Friedman
aligned-ranks procedures. Fig. 8 shows the accuracy results in

Fig. 8. Graphical comparison of accuracy in the test phase for CIW-NN and
weighting methods.

Fig. 9. Rankings computed by Friedman aligned-ranks procedure by using
the accuracy measure.

the test phase graphically, showing average results and standard
deviations.

The results obtained show that CIW-NN is the best per-
forming algorithm in the test phase. This fact is reinforced by
the average rankings obtained by the Friedman and Friedman
aligned-ranks methods. Fig. 9 shows this comparison graphi-
cally for the Friedman aligned-ranks procedure with accuracy
measure.

After computing the ranks, the Friedman and Friedman
aligned-ranks procedures obtained p-values of 0.00005 and
0.00082 for accuracy and p-values of 0.04971 and 0.00090 for
kappa, respectively. Thus, the two tests detected significant dif-
ferences between the methods (final p-values computed by the
post hoc methods are reported on the associated Internet site).
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TABLE VII
AVERAGE RESULTS OBTAINED IN THE STUDY OF CIW-NN IN LARGE DOMAINS

Fig. 10. Graphical comparison of accuracy in test phase in large domains.

From all the results shown, we can conclude the following.
1) CIW-NN offers the best accuracy and kappa results.
2) The average reduction rates achieved by CIW-NN are

comparable with those achieved by WDNN.
3) CIW-NN achieves the best average rankings in the Fried-

man and Friedman aligned-ranks procedures, both in
kappa and accuracy measures.

We can conclude this part of the study by stating that our
approach is very competitive when compared with the rest
of the methods considered. Its classification performance be-
comes a great advantage when compared with other techniques.
Furthermore, with the application of CIW-NN, it is possible
to obtain highly reduced training subsets for the 1-NN rule,
comparable with the subsets achieved by WDNN (the only
comparison method that is able to select weights and reduce
the training set simultaneously).

C. Study of the Behavior of CIW-NN in Large-Sized Domains

In this paper, we will apply CIW-NN to the eight large
data sets described in the general framework, with the aim of
characterizing its behavior as the size of the problem increases.
We have considered all the comparison methods except FW-
SSGA, IW-SSGA, TS/KNN, and GOCBR, due to its high
computational cost.

Table VII shows the average results obtained, highlighting
CIW-NN as the best performing method in the test phase. This
is also shown in Fig. 10. The rankings obtained by the Friedman
aligned-ranks method are shown in Fig. 11.

Fig. 11. Rankings of Friedman aligned-ranks test using accuracy in large
domains.

In this comparison, only the Friedman test detected signifi-
cant differences (p-values of 0.04790 and 0.04700 for accuracy
and kappa, respectively, whereas the Friedman aligned-ranks
p-values were 0.61974 and 0.63096). The final p-values com-
puted by the post hoc methods are shown on the associated
Internet site.

With these results, we can conclude the following.
1) CIW-NN has the best results in accuracy and kappa.
2) The reduction rates achieved by CIW-NN are comparable

with those achieved by WDNN. However, they are lower
than those of IS-CHC and SSMA.

3) CIW-NN achieves the best average rankings in the
Friedman and Friedman aligned-ranks tests, with both
measures.

All these results show us that CIW-NN is a very competitive
algorithm in large domains. It still achieves better accuracy
and kappa results than the rest of the techniques. Moreover,
it also maintains a reasonable reduction rate; thus, its test
classification phase will be faster than most of the remaining
techniques.

D. Convergence Analysis

Often, the dynamics of CAs are hard to manage, since
the constant changes in the global solution performed by the
populations may provoke changes in their search space, thus
changing the fitness value of their individuals [57]. However,
CIW-NN’s sequential scheme of evolution prevents these
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Fig. 12. Convergence analysis for CIW-NN in the Bupa problem. Critical
points are found at 3000 and 4800 evaluations approximately, where the
progress of a population allows the rest to escape from local maximums.

changes from decreasing the fitness value of the current best
individual. In fact, this change may give an opportunity to the
rest of the populations to escape from local optima, as the
current environment (the parts of the solution already fixed by
other populations) has been slightly changed. This is a key
property of CAs.

Here, we show a representative example to illustrate this
behavior. Fig. 12 shows the progress of the best chromosome
of CIW-NN populations during the search.

In this example, the IS populations fall on a local optimum
when roughly 1500 evaluations have been spent. However, FW
and IW are still able to advance, thus modifying the current
global solution and allowing the IS population to escape from
the local optimum, when almost 3000 evaluations have been
spent. This feedback also benefits the progress of the IW and
FW populations. In our example, both suffer from stagnation
when 3000 evaluations have been spent. However, further
progress made by the IS populations allows them to escape
from stagnation later (4800 evaluations). This allows them to
improve the quality of their best solutions, to a point that they
would not be able to reach by themselves.

VI. CONCLUSION

In this paper, we have presented CIW-NN, a novel evolution-
ary approach which integrates IS and two weighting schemes,
i.e., FW and IW, with the aim of enhancing the results of the
1-NN classifier in supervised classification domains.

The application of a coevolutionary scheme has allowed us
to integrate these techniques into a single method, by managing
different EAs, particularly suited to their assigned tasks. Several
mechanisms have been used to improve this cooperation, rang-
ing from the use of specialized crossover operators (modified
HUX and crossover multiple descendants) to the development
of an epoch scheme designed to balance the intensity of the
search in each of the populations.

We have performed a wide experimental study justifying
the most important decisions taken in the designing process of
CIW-NN. Moreover, we have shown that it is able to effectively

improve the behavior of the 1-NN rule to a greater extent than
a representative set of related evolutionary and nonevolutionary
techniques. These results have been successfully contrasted by
several nonparametric statistical procedures.

As future work, the employment of new search methods
to support IS, FW, and IW processes may lead to promising
results. For example, multiobjective methods for evolutionary
IS or the development of new search methods for FW and IW
with greater convergence capabilities (allowing, for example,
the definition of a weight for each instance of the problem,
instead of for each class) may improve the results of CIW-NN,
achieving better performances in classification.
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• J. Derrac, C. Cornelis, S. Garćıa, F. Herrera, Enhancing Evolutionary Instance Selection
Algorithms by Means of Fuzzy Rough Set Based Feature Selection. Information Sciences,
186 (2012) 7392 doi: 10.1016/j.ins.2011.09.027

– Status: Published.

– Impact Factor (JCR 2011): 2.833.

– Subject Category: Computer Science, Information Systems. Ranking 9 / 135 (Q1).



Enhancing evolutionary instance selection algorithms by means of
fuzzy rough set based feature selection

Joaquín Derrac a,⇑, Chris Cornelis b, Salvador García c, Francisco Herrera a

a Dept. of Computer Science and Artificial Intelligence, CITIC-UGR, Research Center on Information and Communications Technology,
University of Granada, 18071 Granada, Spain
b Dept. of Applied Mathematics and Computer Science, Ghent University, Gent, Belgium
c Dept. of Computer Science, University of Jaén, 23071 Jaén, Spain

a r t i c l e i n f o

Article history:
Received 9 October 2010
Received in revised form 10 June 2011
Accepted 18 September 2011
Available online 29 September 2011

Keywords:
Instance selection
Feature selection
Rough sets
Evolutionary algorithms
Nearest neighbor

a b s t r a c t

In recent years, fuzzy rough set theory has emerged as a suitable tool for performing fea-
ture selection. Fuzzy rough feature selection enables us to analyze the discernibility of the
attributes, highlighting the most attractive features in the construction of classifiers. How-
ever, its results can be enhanced even more if other data reduction techniques, such as
instance selection, are considered.

In this work, a hybrid evolutionary algorithm for data reduction, using both instance and
feature selection, is presented. A global process of instance selection, carried out by a
steady-state genetic algorithm, is combined with a fuzzy rough set based feature selection
process, which searches for the most interesting features to enhance both the evolutionary
search process and the final preprocessed data set. The experimental study, the results of
which have been contrasted through nonparametric statistical tests, shows that our pro-
posal obtains high reduction rates on training sets which greatly enhance the behavior
of the nearest neighbor classifier.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Classification is one of the best known tasks in machine learning [5,72]. Starting from an already processed training set,
machine learning methods are able to extract knowledge from the data, which can be used to characterize new samples and
classify them into classes already specified by the domain of the problem.

In recent years, there has been a manifold increase in the size of the data which these machine learning methods must
manage [6]. Researchers in many application fields have developed more efficient and accurate data acquisition methods,
which have allowed them to face greater and more difficult problems than before [45]. Therefore, the amount of data ex-
tracted to analyze those new challenges has grown to a point at which many classical data mining methods do not work
properly, or, at least, suffer several drawbacks in their application.

Data reduction [54] is a data preprocessing task which can be applied to ease the problem of dealing with large amounts
of data. Its main objective is to reduce the original data by selecting the most representative information. In this way, it is
possible to avoid excessive storage and time complexity, improving the results obtained by any data mining application. The
best known data reduction processes are feature selection (FS) [43], feature generation [28], attribute discretization [39],
instance generation [65,66] and instance selection (IS) [21,41,42].
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The K-Nearest Neighbors classifier (K-NN) [13,48,58] can be greatly enhanced when using these data reduction tech-
niques. It is a nonparametric classifier which simply uses the entire input data set to establish the classification rule. Thus,
the effectiveness of the classification process performed by the K-NN classifier relies mainly on the quality of the training
data. Also, it is important to note that its main drawback is its relative inefficiency as the size of the problem increases,
regarding both the number of examples in the data set and the number of attributes which will be used in the computation
of the similarity function (distance) [11,33,68]. The K-NN classifier is one of the most relevant algorithms in data mining [73],
being the best known Lazy Learning [1] method.

Recently, rough set theory (RST) [50,53] has been used to tackle several data mining problems with success. Focusing on
the FS problem, RST can be used as a tool to extract a minimal set of features from the original data set (decision reducts),
preserving the underlying semantics of the data while allowing reasonable generalization capabilities for the classifier
[10,74]. This approach can be enhanced in several ways; for example, tolerance-based rough sets [60] provide an advanced
way of defining approximation spaces and related similarity measures [46,61,62].

In addition, fuzzy logic [75] can also be hybridized with RST, obtaining as a result fuzzy rough feature selection methods,
which offer greater flexibility and better potential to produce good-sized, high-quality feature subsets than the crisp ones
[12,30,34,35,67]. Another key trait of fuzzy rough feature selection methods is that they can be applied directly over data
sets representing continuous data, in contrast with pure RST feature reducers, which cannot be applied over continuous data
sets without discretizing them at a previous step. Although discretization has proven to be a good technique for solving this
kind of issues [39], in the K-NN classifier the use of continuous values is preferred due to the intrinsic characteristics of its
decision rule (in fact, much research has been carried out in the opposite direction, turning discrete-based similarities values
for the K-NN classifier into continuous ones [70]).

Evolutionary algorithms (EAs) [17] are general-purpose search algorithms that use principles inspired by nature to evolve
solutions to problems. They have been successfully applied in different data mining problems [19,25,49]. Given that IS and FS
tasks can be defined as combinatorial problems, it is possible to carry them out by using EAs [15]. In fact, many successful
evolutionary proposals (most of them based on Genetic Algorithms (GAs)) have been developed to tackle them
[2,7,20,29,31,32,38,47]. In particular, our previous work [14] proposes an evolutionary method for dealing with both IS
and FS tasks simultaneously, using a ensemble based on preprocessed training sets.

In this work we present a new hybrid approach considering both fuzzy RST based FS and evolutionary IS, which we denote
as EIS-RFS (evolutionary instance selection enhanced by Rough set based feature selection). A steady-state GA is developed
to conduct the search for a suitable subset of instances, whereas the most useful features are selected by an heuristic-based
fuzzy RST method. In this way, proper feature subsets can be selected during the search, taking advantage of using the infor-
mation about indiscernibility already present in the training set.

Moreover, these subsets are considered within the framework of the GA, thus modifying the environment in which the
instances are chosen. At the end of its application, EIS-RFS reports the best subsets found, which can be used to construct a
reduced version of the training set, well suited to be used as a reference set for the K-NN classifier.

The performance of EIS-RFS is studied, comparing it with the K-NN classifier over unreduced data, considering different
numbers of neighbors. Moreover, we test our approach further introducing a comparative study with several related tech-
niques for IS and FS, considering a large set of standard classification problems. Finally, we also test its performance over
large data sets, with a higher number of instances and features. All the results obtained have been contrasted using nonpara-
metric statistical techniques [14], reinforcing the conclusions obtained.

The rest of the paper is organized as follows. In Section 2, some background about evolutionary IS and fuzzy RST based FS
is given. In Section 3, the main characteristics of EIS-RFS are explained. Section 4 presents the experimental framework. Sec-
tion 5 shows the achieved results. Section 6 summarizes our conclusions. Finally, Appendix A extends the description of the
contrast estimation, one of the nonparametric tests employed in the study.

2. Background

This section covers the background information necessary to define and describe our proposal. It focuses on two topics: IS
and FS as data reduction techniques (Section 2.1), and the use of fuzzy RST for FS (Section 2.2).

2.1. Instance and feature selection

IS is one of the main data reduction techniques. In IS, the goal is to isolate the smallest set of instances which enable a data
mining algorithm to predict the class of a query instance with the same quality as the initial data set [41]. By minimizing the
data set size, it is possible to reduce the space complexity and decrease the computational cost of the data mining algorithms
that will be applied later, improving their generalization capabilities through the elimination of noise.

More specifically, IS can be defined as follows: Let ðX ;AÞ be an information system, where X ¼ fx1; . . . ; xng and
A ¼ fa1; . . . ; amg are finite, non-empty sets of instances and features. Then, let us assume that there is a training set TR which
consists of N instances and M features ðM ¼ jAjÞ, and a test set TS composed of T instances ðTR [ TS ¼ ðX ;AÞÞ. Let S # TR be
the subset of selected samples that resulted from the execution of an IS algorithm, then we classify a new pattern T from TS
by a data mining algorithm acting over the instances of S.
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IS methods can be divided into two categories: Prototype Selection (PS) methods and Training Set Selection (TSS) meth-
ods. PS methods [21] are IS methods which expect to find training sets offering the best classification accuracy and reduction
rates by using instance based classifiers which consider a certain similarity or distance measure (for example, K-NN). On the
other hand, TSS methods are known as the application of IS methods over the training set to build any predictive model (e.g.
decision trees, subgroup discovery, neural networks [8,9,37]). In this work, we will focus on PS, since the nearest neighbor
Rule will be used as the baseline rule to perform the classification process.

A key property of PS methods is given in [71]. There, Wilson and Martinez suggest that the determination of the k value in
the K-NN classifier may depend on the proposal of the IS algorithm. Setting k as greater than 1 decreases the sensitivity of the
algorithm to noise and tends to smooth the decision boundaries. In some IS algorithms, a value k > 1 may be convenient,
when the interest lies in protecting the classification task against noisy instances. Therefore, they state that it may be appro-
priate to find a value of k to use during the reduction process, and then redetermine the best value of k in the classification
task. In this study, we will test the differences found when using several values for k in EIS-RFS, although we recommend
using the value k = 1, given that our EA needs to have the greatest possible sensitivity to noise during the reduction process.
In this way, an evolutionary IS algorithm can better detect the noisy and redundant instances in order to find a subset of
instances adapted to the simplest method of nearest neighbors.

Many approaches to PS have been developed [21]. Concerning evolutionary IS [15], the first contribution was made by
Kuncheva et al. [38]. Interest in this field was increased by the study performed by Cano et al. [7], where a complete study
of the use of EAs in IS was made. They concluded that EAs outperform classical algorithms both in reduction rates and clas-
sification accuracy. Therefore, research in this field has grown recently, with a wide number of noteworthy proposals
[2,14,20,24,26,29].

FS is another of the main data reduction techniques. In FS, the goal is to select the most appropriate subset of features
from the initial data set. It aims to eliminate irrelevant and/or redundant features to obtain a simple and accurate classifi-
cation system [43].

Starting from the definition given for IS, FS can be defined as follows: Let us assume A;X ; TR and TS have already been
defined. Let B #A be the subset of selected features that resulted from the execution of an FS algorithm over TR, then we
classify a new pattern from TS by a data mining algorithm acting over TR, employing as a reference only the features selected
in B.

There are three main categories into which FS methods can be classified:

� Wrapper methods, where the selection criterion is dependent on the learning algorithm, being a part of the fitness function
[55].
� Filtering methods, where the selection criterion is independent of the learning algorithm (separability measures are

employed to guide the selection) [27].
� Embedded methods, where the search for an optimal subset is built into the classifier construction [57].

As with IS methods, a large number of FS methods have been developed recently. Two of the most well known classical
algorithms are forward sequential and backward sequential selection [40], which begin with a feature subset and sequen-
tially add or remove features until the finalization of the algorithm. Some complete surveys, analyzing both classical and
advanced approaches to FS, can be found in the literature [27,57,44].

2.2. Fuzzy RST for FS

In rough set analysis [51,52], each attribute a inA corresponds to an X ! Va mapping, in which Va is the value of a over X .
For every subset B of A, the B-indiscernibility relation RB is

RB ¼ ðx; yÞ 2 X2 and ð8a 2 BÞðaðxÞ ¼ aðyÞÞ
� �

ð1Þ

Therefore, RB is an equivalence relation. Its equivalence classes ½x�RB
can be used to approximate concepts, that is, subsets of

the universe X . Given A #X , its lower and upper approximation with respect to RB are defined by

RB # A ¼ fx 2 Xj½x�RB
# Ag ð2Þ

RB " A ¼ fx 2 Xj½x�RB
\ A – ;g ð3Þ

A decision system ðX ;A [ fdgÞ is a special kind of information system, used in the context of classification, in which dðd R AÞ
is a designated attribute called the decision attribute. Its equivalence classes ½x�Rd

are called decision classes. Given B # A, the
B-positive region POSB contains those objects from X for which the values of B allow to predict the decision class
unequivocally:

POSB ¼
[

x2X

RB # ½x�Rd
ð4Þ
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Indeed, if x 2 POSB, it means that whenever an instance has the same values as x for the attributes in B, it will also belong to
the same decision class as x. The predictive ability with respect to d of the attributes in B is then measured by the following
value (degree of dependency of d on B):

cB ¼
POSBj j
Xj j ð5Þ

A subset B of A is called a decision reduct if it satisfies POSB ¼ POSA, that is, B preserves the decision making power of A, and
moreover it cannot be further reduced; in other words, there is no proper subset B0 of B so that POSB0 ¼ POSA. If the latter
constraint is lifted – B is not necessarily minimal – we call B a decision superreduct.

Instead of using a crisp equivalence relation R to represent objects’ indiscernibility, we can also measure their approxi-
mate equality by means of a fuzzy relation R. Typically, we assume that R is at least a fuzzy tolerance relation; in other words,
R is reflexive and symmetric.

Assuming that for a qualitative attribute a, the classical way of discerning objects is used, that is, Ra(x,y) = 1 if a(x) = a(y)
and Ra(x,y) = 0 otherwise, we can define, for any subset B of A, the fuzzy B-indiscernibility relation by

RBðx; yÞ ¼ T ðRaðx; yÞ|fflfflfflffl{zfflfflfflffl}a2BÞ ð6Þ

in which T represents a t-norm. It can be seen that if only qualitative attributes (possibly originating from discretization) are
used, then the traditional concept of B-indiscernibility relation is recovered.

For the lower approximation of a fuzzy set A in X by means of a fuzzy tolerance relation R, we adopt the definitions of [56]:
given an implicator I and a t-norm T , formulas (2) and (3) were paraphrased to define R;A and R"A by

ðR # AÞðyÞ ¼ inf
x2X
IðRðx; yÞ; AðxÞÞ; 8y 2 X ð7Þ

ðR " AÞðyÞ ¼ sup
x2X
T ðRðx; yÞ; AðxÞÞ; 8y 2 X ð8Þ

Using fuzzy B-indiscernibility relations, we can define the fuzzy B-positive region by, for y in U,

POSBðyÞ ¼
[

x2X

RB # ½XRd
�

 !
ðyÞ ð9Þ

This means that the fuzzy positive region is a fuzzy set in X, to which an object y belongs to the extent that its RB-foreset is
included into at least one of the decision classes.

While formula (9) provides the most faithful way to define the fuzzy positive region, it was shown in [12] that

POSBðyÞ ¼ ðRB # RdyÞðyÞ ð10Þ

becomes Eq. (9) when the decision feature is crisp.
Once we have fixed the fuzzy positive region, we can define an increasing [0,1]-valued measure to gauge the degree of

dependency of a subset of features on another subset of features. For FS it is useful to phrase this in terms of the dependency
of the decision feature on a subset of the conditional features:

cB ¼
POSBj j
POSAj j ð11Þ

3. An evolutionary fuzzy RST based model for feature and instance selection: EIS-RFS

This section is devoted to analyzing and describing EIS-RFS, and its main components, from a bottom-up perspective.
Therefore, the first step will be to describe the GA employed to conduct the search of the subsets of instances (Section
3.1). These subsets will be optimized with the inclusion of a fuzzy RST-based FS procedure (Section 3.2). Finally, the EIS-
RFS framework will be defined as a cooperation between the former procedures (Section 3.3).

3.1. A steady-state GA for IS

The IS component of EIS-RFS is guided by an evolutionary method. Specifically, we have opted to develop a steady-state
GA to accomplish this task.

Steady-state GAs are GAs in which only a reduced (and fixed) set of offspring are produced in each generation (usually
one or two).Parents are selected to produce offspring and then a decision is made as to which individuals in the population
will be selected for deletion in order to make room for the new offspring.

In the development of the steady-state GA for our approach, the following choices have been made:

� Codification: The steady-state GA will use binary chromosomes to represent the solutions. Each bit will represent the state
of each instance in the training set (1 if the instance is selected; 0 if it is deleted), as is usually done in Evolutionary IS
approaches [15].
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� Selection of parents: Binary tournament procedure will be used to select parents in each generation.
� Crossover operator: A two-point crossover operator has been considered. In each generation, this operator is applied twice,

obtaining as a result two offspring.
� Mutation operator: The bit-flip mutation operator (changing the value of the selected allele from 0 to 1, and vice versa) is

applied to each offspring produced, with a given probability per bit.
� Replacement strategy: The two worst individuals of the population are chosen for replacement, only if their fitness value is

lower than the offspring’s.

Algorithm 1 shows a basic pseudocode of the steady-state GA.

Algorithm 1. Steady-state GA algorithm basic structure

Input:A population
Output:An optimized population
Initialize population;

while Termination criterion not satisfied do
Select two parents from the population;
Create two offspring using crossover and mutation;
Evaluate the offspring with the Fitness function;
Select two individuals in the population, which may be replaced by the offspring;
Decide if this/these individuals will be replaced;

end

Concerning the fitness function, it must pursue both reduction and accuracy objectives when evaluating an IS chromo-
some, J. To do so, we will follow the proposal given in [7], where Cano et al. defined AccRate as the accuracy achieved by
a K-NN classifier when classifying the entire training set using the currently selected subset as a reference and using
leave-one-out as validation scheme

AccRateðJÞ ¼ K� NNAccuracyðJÞ ð12Þ

RedRate as the reduction rate achieved over the currently selected (maintained) instances

RedRateðJÞ ¼ #Instances SelectedðJÞ
N

ð13Þ

and a real-valued weighting factor, a, to adjust the strength of each term in the resulting fitness value. Eq. (14) defines the
full fitness function

FitnessðJÞ ¼ a � AccRateðJÞ þ ð1� aÞ � RedRateðJÞ ð14Þ

Following the recommendations given in [7], EIS-RFS will employ a value a = 0.5, which should offer an adequate trade-off
between accuracy and reduction goals.

3.2. Selecting features by means of a fuzzy RST procedure

The concept of discernibility, defined in the realm of fuzzy RST, allows several useful approaches to data reduction to be
developed [12,34]. The elements of a given data set can be analyzed, identifying which are discernible (with respect to the
elements belonging to the other classes of the domain), regarding the specific set of features considered.

Therefore, a straightforward method to properly characterize a specific training set is to select those features which are
able to fully discern all the instances of the training set (or, at least, discern them as much as possible). This way, the pruned
training set can maintain its capabilities of separating instances belonging to different classes (or even increase them, by the
removal of noisy and irrelevant features), while its size is reduced.

Eq. (11) gives a proper measure to evaluate the discernibility of a subset of features. The first step to compute this mea-
sure consists of defining a similarity measure between two different values of a same feature. This measure can be modeled
as a fuzzy tolerance relation, R. For quantitative values, a suitable measure was defined in [36]:

Raðx; yÞ ¼ max min
aðyÞ � aðxÞ þ ra

ra
;
aðxÞ � aðyÞ þ ra

ra

� �
;0

� �� �
ð15Þ

where x and y are two different instances belonging to the training set, and ra denotes the standard deviation of a. For nom-
inal attributes, instead of using the equality metric:

Raðx; yÞ ¼
1 if aðxÞ ¼ aðyÞ
0 otherwise

�
ð16Þ
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we propose the Value Difference Metric (VDM) [63,70], where two values are considered to be closer if they have more sim-
ilar classifications (that is, more similar correlations with the output classes).

Raðx; yÞ ¼
XC

c¼1

Na;x;c

Na;x
� Na;y;c

Na;y

����

����
q

ð17Þ

where:

� Na,x is the number of instances in the training set that have the same value as instance x for attribute a.
� Na,x,c is the number of instances in the training set that have the same value as instance x for attribute a and output class c.
� C is the number of output classes in the problem domain.
� q is a constant (typically 2).

Although the joint use of the overlap metric with crisp connectives would lead to an approach similar to those based on
classical RST, the use of VDM is preferred, since it provides a soft similarity measure, suitable to be combined with the use of
fuzzy connectives.

Eqs. (16) and (17) allows us to employ the fuzzy B-indiscernibility relation defined by Eq. (6), in which T represents the
minimum t-norm, T ðx; yÞ ¼ minðx; yÞ; x; y 2 ½0;1�. Then, it is possible to compute the lower approximation of a fuzzy set A in
X by means of a fuzzy tolerance relation R, by using Eq. (7) (employing, as implicator, I , the Lukasiewicz one,
Iðx; yÞ ¼ minð1;1� xþ yÞ; x; y 2 ½0;1�). With these definitions, it is possible to obtain the degree of inclusion of the instances
of the training set in the fuzzy B-positive region, POSB, and the gamma measure for B, cB.

Once a suitable measure of quality for a given subset of features, B, has been defined (cB), a search procedure to find the
best possible subset can be carried out. Following the recommendations given in [12], the QUICKREDUCT heuristic [35] will
be employed. Algorithm 2 shows its basic pseudocode.

Algorithm 2. QUICKREDUCT heuristic

Input:A set of instances
Output:A subset of features (B)
B {};
repeat

T B,best  -1;
foreach a2 ðA n BÞ do

If cB[{a}> best then
T B [ {a}, best  cB[{a};

end
end
B T;

until cB P MaxGamma;

Basically, QUICKREDUCT considers all the features in the domain of the problem and tries to add them to the candidate
subset T. Features are added only if cB is improved. This hillclimbing procedure is continued until an established MaxGamma
value (typically 1) is reached.

This filter method enables suitable subsets of features (with cB = 1) to be found quickly, which properly represent the
information contained in the data set considered as the input parameter. Note that, when this method is used inside the
framework of a larger algorithm, either subsets of instances or the entire training set can be considered.

3.3. Hybrid model for simultaneous IS and FS

Once the two basic tools considered for performing IS and FS have been defined, we can describe the hybrid model which
composes our approach. Basically, it is a steady-state GA for IS where, every time a fixed number of evaluations has been
spent, an RST based FS procedure is applied to modify the features considered during the search. Therefore, at any time only
a single feature subset will be used in the whole search procedure. As the search progresses, this subset will be upgraded and
adapted, to fit with the best subset of instances found.

Fig. 1 shows a flowchart representing its main steps: Initialization (Step 1), feature selection procedure (Step 4), Instance
Selection procedure (Step 5), and Output (Step 7). The rest of the operations (Steps 2,3 and 6) control whether each of the
former procedures should be carried out. The properties of each step are detailed as follows:

1. Initialization: The initialization procedure consists of the initialization of the chromosomes of the population, and the
selection of the initial subset of features. The chromosomes, representing different subsets of instances, are initialized
randomly (taking binary values, that is, in {0,1}). Regarding the initial subset of features, two different subsets are
considered:
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� The full set of features of the domain.
� The subset of features selected by the RST based FS method using the whole training set as input.
The best performing subset (that is, the one which achieves the lowest error when applied to a K-NN classifier) is selected

as the global subset of features of EIS-RFS. Only the features included in this subset will be considered in subsequent phases,
until new changes in the subset are made (step 4).
2. Stabilize phase: Changes in the current subset of features are only considered if the search is not near its end. Therefore,

if the current number of evaluations spent is higher than b� MAX_EVALUATIONS (usually with b near to 1), the stabilize
stage is activated and no further changes in the subset of features selected are considered. This mechanism allows EIS-
RFS to easily converge for hard problems, where the final subset of features is fixed before the end of the search. It allows
EIS-RFS to focus its last efforts on optimizing the subsets of instances selected, performing a final refinement of the solu-
tions achieved.

3. Update Features: If the Stabilize phase is not activated yet, it checks whether the FS procedure will be started or not. It
will be performed every time UpdateFS evaluations have been spent by the steady-state GA.

4. Search for a new subset of features: This procedure consists of using the RST-based FS filter method, using as input the
current best chromosome of the population (the best subset of instances found so far). The new subset of features
obtained is tested by applying it to a K-NN classifier (considering as a reference set only the current best subset of
instances). If this subset performs better than the former, it is accepted as the global subset of features of EIS-RFS.

5. New IS generation: An IS generation is carried out using the steady-state GA scheme described in Section 3.1. Note that,
when evaluating a new chromosome, the K-NN classifier used in the fitness function will only consider the selected fea-
tures in the global subset of features of EIS-RFS.

6. Termination criterion: The search process of EIS-RFS ends if the number of evaluations spent reaches the MAX_EVALU-
ATIONS limit. Otherwise, a new cycle of the algorithm begins.

7. Output: Best subsets found: When the fixed number of evaluations runs out, the best chromosome of the population is
selected as the best subset of instances found. The current global subset of selected features is designed as the best subset
of features found. Both subsets are returned as the output of EIS-RFS.

The output of EIS-RFS (a subset of instances and a subset of features) defines a pruned version of the original training set.
This set is ready to be used as a reference set by a K-NN classifier to perform a faster and more accurate classification of new
test instances.

4. Experimental framework

This section presents the experimental study designed to test our proposal. Section 4.1 presents the classification data
sets used throughout the study. Section 4.2 summarizes the algorithms selected for the comparison and the statistical pro-
cedures applied.

4.1. Data sets

To check the performance of EIS-RFS, we have selected a set of 43 classification data sets (30 standard data sets and 13
large data sets). These are well-known problems in the area, taken from the UCI Machine Learning Repository [18] and the

Fig. 1. Flowchart depicting the main steps of EIS-RFS. Rectangles depict processes whereas rhombuses depict decisions taken by the algorithm.
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KEEL-dataset repository1 [3,4]. Tables 1 and 2 summarizes their properties. For each data set, we provide its number of exam-
ples (#Ex.), Features (#Feat.) the number of numerical (#Num.) and nominal (#Nom.) attributes, and the number of classes
(#Cl.). For continuous attributes, their values are normalized in the interval [0,1] to equalize the influence of attributes with
different range domains.

The data sets considered are partitioned by using the ten fold cross-validation (10-fcv) procedure [64], that is, each data
set is randomly partitioned into ten subsets, preserving the same size (the same number of instances) and the same class
distribution between partitions. In an iterative process, one partition is selected as the test set whereas the training set is
composed of the rest. Final results are obtained averaging the results obtained over the ten partitions (stochastic algorithms
have been run three times).

4.2. Algorithms, parameters and statistical analysis

Several evolutionary preprocessing methods for the K-NN classifier have been selected to perform a comprehensive study
of the capabilities of our approach. These methods are the following:

� IS-SSGA: A steady-state GA for IS. This evolutionary method has the same characteristics as EIS-RFS, but does not include
any kind of feature selection process. Its behavior as an IS method was studied in depth in [7].
� FS-SSGA: A steady-state GA for FS. The features of the domain are encoded in the binary chromosomes, in a similar way to

IS-SSGA. Note that in the fitness function of this method, the reduction rate is computed over the ratio of features
selected. Therefore, its a weight must be very near to 1.0, to avoid an excessive deletion of features which may degrade
the accuracy of the classifier too much.
� IFS-SSGA: A steady-state GA for simultaneous IS and FS. Its binary coded chromosomes encode both instances and fea-

tures of the domain. The fitness function of this method only considers instances’ reduction rate to compute the reduction
ratio achieved.
� FS-RST: The fuzzy RST based feature selection method (FS-RST) used within the EIS-RFS framework, applied in isolation.
� FS-RST + IS-SSGA: FS-RST used as a preprocessor to IS-SSGA, that is, the preprocessed reference set obtained after the

application of FS-RST is used as the input of the IS-SSGA method.
� IS-SSGA + FS-RST: IS-SSGA used as a preprocessor to FS-RST, that is, the preprocessed reference set obtained after the

application of IS-SSGA is used as the input of the IS-SSGA method.

Table 1
Summary description for standard data sets.

Data Set #Ex. #Feat. #Num. #Nom. #Cl. Data set #Ex. #Feat. #Num. #Nom. #Cl.

Australian 690 14 8 6 2 Iris 150 4 4 0 3
Balance 625 4 4 0 3 Led7digit 500 7 7 0 10
Bupa 345 6 6 0 2 Lymphography 148 18 3 15 4
Cleveland 303 13 13 0 5 Mammographic 961 5 5 0 2
Contraceptive 1,473 9 9 0 3 Monk-2 432 6 6 0 2
Crx 690 15 6 9 2 Newthyroid 215 5 5 0 3
Ecoli 336 7 7 0 8 Pima 768 8 8 0 2
Flare-solar 1,066 11 0 11 6 Saheart 462 9 8 1 2
German 1,000 20 7 13 2 Sonar 208 60 60 0 2
Glass 214 9 9 0 7 Spectheart 267 44 44 0 2
Haberman 306 3 3 0 2 Tic-tac-toe 958 9 0 9 2
Hayes-roth 160 4 4 0 3 Wine 178 13 13 0 3
Heart 270 13 13 0 2 Wisconsin 699 9 9 0 2
Hepatitis 155 19 19 0 2 Yeast 1,484 8 8 0 10
Housevotes 435 16 0 16 2 Zoo 101 16 0 16 7

Table 2
Summary description for large data sets.

Data Set #Ex. #Feat. #Num. #Nom. #Cl. Data Set #Ex. #Feat. #Num. #Nom. #Cl.

Abalone 4,174 8 7 1 28 Satimage 6,435 36 36 0 7
Banana 5,300 2 2 0 2 Segment 2,310 19 19 0 7
Chess 3,196 36 0 36 2 Spambase 4,597 57 57 0 2
Marketing 8,993 13 13 0 9 Splice 3,190 60 0 60 3
Mushroom 8,124 22 0 22 2 Titanic 2,201 3 3 0 2
Page-blocks 5,472 10 10 0 5 Twonorm 7,400 20 20 0 2
Ring 7,400 20 20 0 2

1 http://www.keel.es/datasets.php.
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In order to estimate the classification accuracy, the preprocessed training sets obtained as a result of the application of
these methods are tested by using a K-NN classifier.

Many different configurations can be established for each combination of domain and method. However, for the sake of a
fair comparison, we have selected a fixed set of parameters for each method. Table 3 summarizes them.

Hypothesis testing techniques are used to contrast the experimental results and provide statistical support for the anal-
ysis [59]. Specifically, we use non-parametric tests, since the initial conditions that guarantee the reliability of the parametric
tests may not be satisfied, causing the statistical analysis to lose credibility [16,23].

Throughout the study, two nonparametric tests for pairwise statistical comparisons of classifiers will be employed. The
first one is the well-known Wilcoxon Signed-Ranks Test [69]. The second one is the Contrast Estimation of medians [22],
which is very useful for estimating the difference between two algorithms’ performance. We describe its detailed definition
in Appendix A.

Further information about these tests and other statistical procedures specifically designed for use in the field of Machine
Learning can be found at the SCI2S thematic public website on Statistical Inference in Computational Intelligence and Data
Mining.2

5. Results and analysis

This section is devoted to presenting and analyzing the results achieved in several studies performed to test the behavior
of EIS-RFS and compare it with several related techniques. To this end, Section 5.1 studies the behavior of EIS-RFS and K-NN
as the number of neighbors selected grow. Section 5.2 shows a comparison between EIS-RFS and the rest of the comparison
methods selected in standard data sets. Finally, Section 5.3 compares EIS-RFS when applied to large data sets.

5.1. EIS-RFS vs K-NN

One of the most critical issues of the K-NN classifier lies in the selection of its k parameter, that is, the number of neigh-
bors considered in the decision rule. Usually, an odd number of them is preferred, since this way ties in the decision of the
class membership are less likely to occur.

Concerning EIS-RFS, this is also a key issue, since the specific number of neighbors selected will affect the way in which
the accuracy assigned to the chromosomes is estimated, thus modifying its behavior during the search.

To analyze this issue, we have classified the 30 standard data sets with EIS-RFS and K-NN, using 1, 3, 5 and 7 neighbors.
Table 4 shows the average accuracy results achieved (the best results in each data set and category are highlighted in bold)
and the number of times that each method achieves the best result. Table 5 presents the results of the Wilcoxon Signed-
Ranks Test performed to contrast the results in each category.

The results show the validity of EIS-RFS as a preprocessing method for the K-NN classifier. Its average accuracy is im-
proved in every category studied (from 1 to 7 neighbors), and the number of data sets in which EIS-RFS offers a best result
is always greater. Moreover, the Wilcoxon Signed-Ranks Test confirms that differences between the methods are significant
at the 0.05 significance level.

Fig. 2 depicts this comparison graphically. The dots symbolize the accuracy achieved in test phase by EIS-RFS and K-NN in
a concrete data set (30 points are represented in each graph). A straight line splits the graph, exactly at the points where the
accuracy measure of both classifiers is equal. Therefore, those points below (right) of the line represent data sets where EIS-
RFS behaves better than K-NN, whereas those points above (left) of the line represent the opposite.

Clearly, EIS-RFS outperforms K-NN in every case, albeit the improvement achieved with the application of preprocessing
diminishes as the number of neighbors considered is increased. Similarly to IS algorithms, setting a value of k greater than 1
for EIS-RFS decreases its sensitivity to noise, smoothing the decision boundaries [71]. Therefore, the enhancement obtained if
the number of neighbors selected is high will be lower, although its application will still be beneficial if its results are com-
pared with those obtained without preprocessing data (K-NN).

Finally, a second conclusion arrived at this study is that EIS-RFS behaves slightly better if only 1 neighbor is considered.
Thus, we will fix the number of neighbors considered by it to 1 in the rest of the experimental study.

Table 3
Parameter specification for the algorithms tested in the experimentation.

Algorithm Parameters (all K-NN based methods will use k = 1, unless explicitly stated in a particular experiment)

EIS-RFS MAX_EVALUATIONS: 10000, Population size: 50, Crossover probability: 1.0, Mutation probability: 0.005 per bit, a: 0.5
MaxGamma: 1.0, UpdateFS: 100, b: 0.75

IS-SSGA MAX_EVALUATIONS: 10000, Population size: 50, Crossover probability: 1.0, Mutation probability: 0.005 per bit, a: 0.5
FS-SSGA MAX_EVALUATIONS: 10000, Population size: 50, Crossover probability: 1.0, Mutation probability: 0.005 per bit, a: 0.99
IFS-SSGA MAX_EVALUATIONS: 10000, Population size: 50, Crossover probability: 1.0, Mutation probability: 0.005 per bit, a: 0.5
FS-RST MaxGamma: 1.0

2 http://sci2s.ugr.es/sicidm/.
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5.2. Comparison with IS, FS and hybrid techniques

Table 6 shows the results measured by accuracy in test data for each method considered in the study. For each data set,
the mean accuracy and the standard deviation are computed. The best case in each data set is highlighted in bold. The last
row in each table shows the average considering all data sets.

On the other hand, Table 7 shows the average reduction rates achieved. In instances’ search space, the reduction is defined
by Eq. (13). The reduction rate for features is computed in a similar way, considering only those features selected (main-
tained) in the final reference set

RedRateFeatures ¼
#Features Selected

M
ð18Þ

In each category, only those methods that perform any kind of reduction are considered, that is:

� Instances’ search space: EIS-RFS, IS-SSGA, IFS-SSGA, FS-RST + IS-SSGA, IS-SSGA + FS-RST.
� Features’ search space: EIS-RFS, FS-SSGA, IFS-SSGA, FS-RST, FS-RST + IS-SSGA, IS-SSGA + FS-RST.

Table 4
Average accuracy rates obtained by EIS-RFS and K-NN considering different numbers of neighbors.

Data set 1 neighbor 3 neighbors 5 neighbors 7 neighbors

EIS-RFS K-NN EIS-RFS K-NN EIS-RFS K-NN EIS-RFS K-NN

Australian 85.66 81.45 85.91 84.78 84.98 84.78 85.65 84.78
Balance 85.92 79.04 85.74 83.37 86.88 86.24 87.83 88.48
Bupa 65.72 61.08 64.91 60.66 64.37 61.31 63.75 62.53
Cleveland 55.16 53.14 56.42 54.44 56.47 55.45 56.81 56.45
Contraceptive 45.42 42.77 46.85 44.95 47.59 46.85 49.16 48.27
Crx 84.93 79.57 84.49 84.20 85.07 85.51 85.80 85.65
Ecoli 82.14 80.70 79.84 80.67 80.55 81.27 80.87 82.45
Flare-solar 66.32 55.54 65.48 55.07 65.95 57.04 66.04 63.89
German 70.80 70.50 70.90 69.60 74.10 71.80 74.30 72.20
Glass 67.35 73.61 65.36 70.11 64.90 66.85 65.10 66.83
Haberman 71.56 66.97 72.60 70.58 72.49 66.95 72.19 69.90
Hayes-roth 80.86 35.70 74.98 24.82 67.98 23.95 62.59 26.86
Heart 80.74 77.04 79.56 77.41 78.89 80.74 80.37 79.26
Hepatitis 82.58 82.04 83.13 83.88 83.04 85.21 83.29 83.88
Housevotes 94.48 91.24 95.84 94.01 94.00 93.31 93.32 93.09
Iris 96.00 93.33 94.00 94.00 96.00 96.00 95.33 96.00
Led7digit 73.20 40.20 74.60 45.20 70.40 41.40 70.20 43.40
Lymphography 77.15 73.87 77.44 77.39 82.65 79.44 82.25 81.49
Mammographic 80.65 76.38 81.27 79.19 81.56 81.06 81.48 81.17
Monk-2 100.00 77.91 97.55 96.29 97.07 94.75 100.00 89.16
Newthyroid 96.77 97.23 95.41 95.37 94.91 93.98 96.32 92.58
Pima 74.80 70.33 73.45 72.93 73.72 73.06 74.50 72.93
Saheart 68.82 64.49 68.67 68.18 68.64 67.10 68.46 66.45
Sonar 80.76 85.55 78.83 83.07 78.60 83.10 78.48 80.21
Spectfheart 76.82 69.70 74.99 71.20 78.33 71.97 77.86 77.58
Tic-tac-toe 78.29 73.07 78.01 77.56 78.12 83.30 78.69 82.88
Wine 97.19 95.52 94.35 95.49 96.26 96.05 96.35 96.63
Wisconsin 96.42 95.57 96.33 96.00 96.28 96.57 96.14 97.00
Yeast 53.37 50.47 56.20 53.17 55.86 56.74 57.55 57.49
Zoo 96.39 92.81 94.81 92.81 94.97 93.64 94.64 92.97

Average 78.88 72.89 78.26 74.55 78.35 75.18 78.51 75.75
Best result (of 30) 27 3 25 6 21 10 21 9

Table 5
Wilcoxon Signed-Ranks Test results for EIS-RFS vs K-NN.

EIS-RFS vs K-NN R+ R� P-value

1 neighbor 418.0 47.0 0.00004
3 neighbors 357.0 78.0 0.00182
5 neighbors 310.0 125.0 0.04552
7 neighbors 335.5 129.5 0.03363
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Finally, Table 8 reports the time elapsed by each method in training phase (in seconds).3 Note that running times in test
phase are not reported due to the fact that they are too low to show interesting differences and efficiency in test phase is already
reflected by the reduction rates achieved (the higher the reduction rates are, the less running time will be needed).

Reading the results shown in the tables, we can make the following analysis:

� EIS-RFS achieves the best accuracy result, obtaining the best overall result in 13 of the 30 data sets.
� Concerning reduction in instances’ space, all the methods considered achieve a similar rate. Hence, the computational

time spent by the K-NN classifier in test phase will be very low if any of the reference sets produced is used, including
the one preprocessed by EIS-RFS.
� In the features’ space, EIS-RFS shows a similar behavior to FS-RST. Although these reduction rates are low when compared

with the ones achieved by the evolutionary techniques (FS-SSGA and IFS-SSGA), these methods could delete too much
features due to the fitness function used. Note that, within the evolutionary search (and especially in its first steps), it
is easier to remove features than to find an accurate combination of them in order to improve the fitness value. Thus,
by sacrificing some of its reduction power, EIS-RFS is able to find better subsets of features, reinforcing our hypothesis
of hybridizing Fuzzy-RST with EIS.
� Concerning the time elapsed, EIS-RFS spent a slightly higher time than the rest of methods, except for FS-RST (whose

computational time is not comparable since it only evaluates a single reference set, instead of the 10,000 evaluations per-
formed by the evolutionary methods), and FS-SSGA, whose time requirements are twice those of the rest.

Regarding the statistical analysis performed, Table 9 presents the results of the Wilcoxon Signed Ranks test, while Table
10 shows the results of the Contrast Estimation. Note that these tests have been carried out considering the average accuracy
of the results obtained.

The Wilcoxon test shows that our approach, EIS-RFS, statistically outperforms all the comparison methods with a level of
significance a = 0.01; that is, no comparison of EIS-RFS and any comparison method achieves a P-value equal to or higher
than 0.01. This is a strong result, which supports the fact that EIS-RFS clearly outperforms all the other techniques.

Fig. 2. Graphical comparison of EIS-RFS and K-NN using 1, 3, 5 and 7 neighbors. EIS-RFS shows a better performance in every case. However this
improvement is lower as the number of neighbors increases.

3 The experiments have been carried out on a machine with a Dual Core 3,20 GHz processor and 2 GB of RAM, running under the Fedora 4 operating System.
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Furthermore, median estimators computed by the Contrast Estimation (Table 10) represent the quantitative difference
between the different methods considered in the experimental study. Fig. 3 depicts these results graphically. As can be
seen in the graph, EIS-RFS achieves a moderate improvement on IFS-SSGA. This improvement is greater when comparing
EIS-RFS with IS-SSGA, FS-RST + IS-SSGA and FS-SSGA. The greatest differences are found comparing it with FS-RST and IS-
SSGA + FS-RST.

In summary, all these results depict EIS-RFS as an outstanding approach for enhancing the behavior of the K-NN classifier,
with respect to the related techniques selected. It offers the most accurate results, while reduction rates are maintained with
respect to its related techniques (thus the test phase will take the same computational resources – time and storage require-
ment – as the rest of methods). Moreover, its computational time in training phase is comparable to the rest of the evolu-
tionary techniques, allowing it to be employed in standard classification problems with ease.

In addiction, it is important to point out that it significantly improves the non-hybrid proposals considered in the exper-
imental framework: FS-RST + IS-SSGA and IS-SSGA + FS-RST. This fact reinforces the validity of the hybrid approach, in con-
trast to simply using both techniques one after the other.

5.3. Comparison in large domains

Table 11 shows the results measured by accuracy in test data for each method considered in the study with large
data sets (including the 1-NN classifier as baseline). For each one, the mean accuracy and the standard deviation are
computed. The best case in each data set is highlighted in bold. The last row in each table shows the average consid-
ering all data sets.

Tables 12 and 13 reports the average reduction rates achieved and the time elapsed footnote 3, respectively.
Observing the results shown in the tables, we can make the following analysis:

� EIS-RFS again achieves the best accuracy result, obtaining the best overall result in 11 of the 13 data sets. In addition, it
still greatly outperforms the 1-NN classifier.
� Concerning reduction in instances’ space, all the methods considered achieve a similar rate. Again, the computational

time spent by the K-NN classifier in test phase will be very low if any of the reference sets produced is used, including
the one preprocessed by EIS-RFS.

Table 6
Accuracy results in test phase.

Data set EIS-RFS IS-SSGA FS-SSGA IFS-SSGA FS-RST FS-RST+IS-SSGA IS-SSGA+ FS-RST

Australian 85.66 ± 2.27 85.65 ± 2.77 85.07 ± 3.49 85.36 ± 3.31 81.45 ± 4.52 85.51 ± 2.92 80.87 ± 4.49
Balance 85.92 ± 2.62 86.40 ± 3.08 70.89 ± 9.80 84.31 ± 4.85 79.04 ± 6.81 71.89 ± 3.28 61.05 ± 6.82
Bupa 65.72 ± 8.79 61.14 ± 9.37 59.91 ± 10.19 62.72 ± 8.40 62.51 ± 7.78 61.14 ± 9.60 61.14 ± 7.17
Cleveland 55.16 ± 5.82 52.82 ± 4.47 51.47 ± 9.47 56.13 ± 6.07 52.51 ± 9.49 54.42 ± 5.07 51.51 ± 9.37
Contraceptive 45.42 ± 5.14 44.54 ± 4.61 41.96 ± 3.57 45.15 ± 2.32 42.63 ± 3.73 44.54 ± 4.92 45.15 ± 4.07
Crx 84.93 ± 5.72 84.64 ± 4.22 81.16 ± 7.61 84.64 ± 5.08 81.30 ± 6.28 83.19 ± 4.79 80.72 ± 5.82
Ecoli 82.14 ± 8.42 80.38 ± 5.69 78.90 ± 7.30 77.70 ± 5.52 76.58 ± 14.73 77.18 ± 6.49 75.97 ± 15.00
Flare-solar 66.32 ± 2.94 64.82 ± 3.37 62.76 ± 3.65 67.35 ± 4.12 63.23 ± 5.56 64.82 ± 3.53 63.04 ± 5.31
German 70.80 ± 4.24 70.40 ± 3.24 69.50 ± 2.68 70.10 ± 3.48 67.90 ± 3.41 69.20 ± 3.34 69.60 ± 3.20
Glass 67.35 ± 11.83 67.10 ± 14.74 71.80 ± 14.30 71.23 ± 10.64 74.50 ± 13.17 67.10 ± 15.68 66.12 ± 13.66
Haberman 71.56 ± 7.34 71.23 ± 5.40 72.81 ± 6.15 72.83 ± 5.99 65.68 ± 6.58 71.23 ± 6.20 71.23 ± 6.42
Hayes–roth 80.86 ± 11.70 69.15 ± 11.69 83.93 ± 8.33 79.80 ± 11.65 76.07 ± 14.07 74.87 ± 11.13 77.95 ± 12.76
Heart 80.74 ± 6.34 81.11 ± 7.90 76.67 ± 6.06 82.59 ± 6.31 78.89 ± 6.77 79.26 ± 8.84 71.48 ± 6.93
Hepatitis 82.58 ± 7.99 79.33 ± 8.71 76.21 ± 7.89 80.67 ± 6.13 79.50 ± 7.95 80.04 ± 8.38 71.13 ± 7.52
Housevotes 94.48 ± 3.67 93.79 ± 3.43 94.01 ± 4.53 94.46 ± 4.37 90.78 ± 6.47 74.42 ± 4.04 62.56 ± 5.99
Iris 96.00 ± 4.92 94.67 ± 2.81 95.33 ± 4.50 94.67 ± 4.22 93.33 ± 5.44 94.67 ± 3.32 94.67 ± 5.73
Led7digit 73.20 ± 4.99 73.40 ± 2.84 63.00 ± 6.94 71.40 ± 4.81 63.60 ± 5.87 17.40 ± 2.99 17.00 ± 6.15
Lymphography 77.15 ± 12.15 77.92 ± 9.39 78.49 ± 9.12 74.92 ± 10.79 77.38 ± 11.21 78.06 ± 9.87 66.55 ± 12.18
Mammographic 80.65 ± 4.51 79.50 ± 3.85 75.86 ± 6.07 80.15 ± 6.23 75.76 ± 4.97 79.50 ± 3.85 79.50 ± 5.08
Monk-2 100.00 ± 0.00 83.53 ± 6.21 100.00 ± 0.00 98.64 ± 3.07 77.91 ± 5.71 100.00 ± 5.95 96.13 ± 5.50
Newthyroid 96.77 ± 4.83 98.16 ± 3.20 96.30 ± 1.95 96.32 ± 3.60 97.23 ± 2.39 98.16 ± 3.58 98.61 ± 2.23
Pima 74.80 ± 3.71 72.26 ± 4.44 67.70 ± 4.59 73.83 ± 3.15 70.33 ± 3.71 72.26 ± 4.48 72.26 ± 3.67
Saheart 68.82 ± 7.16 69.27 ± 3.70 61.24 ± 3.91 67.99 ± 5.69 64.49 ± 4.21 65.39 ± 4.09 66.04 ± 4.61
Sonar 80.76 ± 7.88 75.45 ± 11.74 84.62 ± 8.65 75.50 ± 12.59 81.69 ± 9.83 71.10 ± 11.61 69.21 ± 9.62
Spectfheart 76.82 ± 7.07 75.31 ± 5.96 74.17 ± 6.34 75.34 ± 7.31 70.04 ± 8.00 79.12 ± 5.92 70.10 ± 8.46
Tic-tac-toe 78.29 ± 5.07 78.71 ± 3.36 83.51 ± 3.10 77.87 ± 5.25 73.07 ± 2.70 65.35 ± 3.44 65.35 ± 2.63
Wine 97.19 ± 5.09 92.68 ± 7.91 94.90 ± 3.30 94.93 ± 3.17 95.49 ± 4.40 96.05 ± 9.24 83.17 ± 4.38
Wisconsin 96.42 ± 1.55 96.13 ± 2.95 95.14 ± 2.62 95.86 ± 2.47 95.57 ± 2.73 96.71 ± 3.36 95.99 ± 2.72
Yeast 53.37 ± 3.36 54.18 ± 4.38 52.30 ± 3.94 53.50 ± 3.77 52.23 ± 4.39 54.18 ± 4.74 53.30 ± 4.02
Zoo 96.39 ± 4.80 94.22 ± 7.94 95.42 ± 6.00 90.72 ± 7.09 96.50 ± 4.61 89.14 ± 7.88 86.08 ± 4.18

Average 78.88 ± 5.73 76.93 ± 5.78 76.50 ± 5.87 77.89 ± 5.72 75.24 ± 6.58 73.86 ± 6.17 70.78 ± 6.52
Best result (of 30) 13 4 5 4 2 4 1
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� In the features’ space, EIS-RFS obtains a slightly lower result than the rest of the reference techniques. However, with the
high reduction rates obtained in the instances’ space, the lower reduction rates over features will not cause the K-NN
classifier to consume too much time in test phase.
� Concerning time elapsed, we again obtain the same results: EIS-RFS spent a slightly higher time than the rest of the meth-

ods, except for FS-RST and 1-NN (whose computational time is not comparable since they only evaluate a single reference
set, instead of the 10,000 evaluations performed by the evolutionary methods), and FS-SSGA, whose time requirements
are greater than the rest.

This time, the statistical analysis performed is shown in Tables 14 and 15. The former presents the results of the Wilcoxon
Signed Ranks test, the latter shows the results of the Contrast Estimation. Again, note that these tests have been carried out
considering the average accuracy results obtained.

The Wilcoxon test shows that our approach, EIS-RFS, statistically outperforms all the comparison methods with a
level of significance a = 0.01; that is, no comparison of EIS-RFS and any comparison method achieves a P-value equal
to or higher than 0.01. This result confirms that the good behavior of EIS-RFS is maintained when applied to large data
sets.

Median estimators computed by Contrast Estimation (Table 15) represent greater differences than in the former study,
although similar conclusions can be drawn. Fig. 4 depicts these results graphically. As can be seen in the graph, EIS-RFS
achieves a moderate improvement over the purely evolutionary methods (IS-SSGA, FS-SSGA and IFS-SSGA), which is greater
when compared with FS-RST. The greatest differences are found comparing it with and FS-RST + IS-SSGA, IS-SSGA + FS-RST
and 1-NN.

The results obtained in this part of the study contrast the quality of EIS-RFS further. Its capabilities are not diminished if it
is applied over large data sets, even maintaining the same number of evaluations as in the standard study. Moreover,
although its application in these domains is costly, the computational times reported suggest that EIS-RFS can be used in
these domains without the necessity of exceptional computer resources, allowing the model to be considered for use in
real-world applications.

Table 7
Average reduction results over instances and features.

Data set Instances Features

EIS-RFS IS-SSGA IFS-SSGA FS-RST +
IS-SSGA

IS-SSGA +
FS-RST

EIS-RFS FS-SSGA IFS-SSGA FS-RST FS-RST +
IS-SSGA

IS-SSGA +
FS-RST

Australian 0.8872 0.8799 0.8808 0.8808 0.8799 0.1571 0.8071 0.7929 0.0000 0.7929 0.2643
Balance 0.8464 0.8686 0.8085 0.9085 0.8686 0.0000 0.3000 0.0000 0.0000 0.0000 0.5250
Bupa 0.8502 0.8644 0.8644 0.8644 0.8644 0.0000 0.3667 0.4333 0.1274 0.4333 0.0000
Cleveland 0.9014 0.9171 0.9289 0.9289 0.9171 0.0462 0.7385 0.6077 0.3908 0.6077 0.5231
Contraceptive 0.7637 0.7530 0.7530 0.7530 0.7530 0.0667 0.4556 0.5889 0.0360 0.5889 0.1222
Crx 0.8914 0.8816 0.8805 0.8805 0.8816 0.1800 0.5667 0.5533 0.2000 0.5533 0.4067
Ecoli 0.8882 0.9077 0.9130 0.9130 0.9077 0.1286 0.1714 0.1857 0.2286 0.1857 0.2571
Flare-solar 0.8122 0.8391 0.8005 0.8405 0.8391 0.0556 0.5111 0.5778 0.1556 0.5778 0.3000
German 0.8014 0.7914 0.7928 0.7928 0.7914 0.2350 0.5150 0.7450 0.1450 0.7450 0.4900
Glass 0.8718 0.8791 0.8791 0.8791 0.8791 0.0444 0.4444 0.4556 0.0168 0.4556 0.0778
Haberman 0.9306 0.9379 0.9379 0.9379 0.9379 0.0000 0.6667 0.5333 0.0254 0.5333 0.0000
Hayes-roth 0.8544 0.8384 0.8452 0.8452 0.8384 0.2500 0.2500 0.2500 0.1000 0.2500 0.2500
Heart 0.9255 0.9506 0.9230 0.9230 0.9506 0.2308 0.4538 0.5692 0.1846 0.5692 0.6000
Hepatitis 0.9262 0.9226 0.9355 0.9355 0.9226 0.5368 0.6684 0.5421 0.4263 0.5421 0.7211
Housevotes 0.9387 0.9410 0.9653 0.9653 0.9410 0.3500 0.7000 0.7313 0.0188 0.7313 0.8625
Iris 0.9511 0.9481 0.9481 0.9481 0.9481 0.1250 0.4000 0.4500 0.0000 0.4500 0.0000
Led7digit 0.9416 0.9071 0.9491 0.9491 0.9071 0.0000 0.0143 0.0000 0.0143 0.0000 0.8571
Lymphography 0.9257 0.8994 0.9234 0.9234 0.8994 0.4444 0.6500 0.6500 0.2611 0.6500 0.6944
Mammographic 0.8322 0.8229 0.7829 0.8229 0.8229 0.0000 0.5000 0.6200 0.3396 0.6200 0.0000
Monk-2 0.9342 0.8570 0.9406 0.9406 0.8570 0.5000 0.5000 0.5333 0.0000 0.5333 0.5000
Newthyroid 0.9473 0.9571 0.9571 0.9571 0.9571 0.0600 0.3000 0.3800 0.0000 0.3800 0.1000
Pima 0.7911 0.8187 0.8187 0.8187 0.8187 0.0000 0.5750 0.4375 0.0000 0.4375 0.0875
Saheart 0.8668 0.8841 0.8778 0.8778 0.8841 0.0000 0.6333 0.5778 0.0000 0.5778 0.3111
Sonar 0.8899 0.8595 0.8974 0.8974 0.8595 0.2900 0.6633 0.6600 0.7183 0.6600 0.9167
Spectfheart 0.9497 0.9426 0.9409 0.9409 0.9426 0.2727 0.6750 0.6614 0.2750 0.6614 0.8773
Tic-tac-toe 0.8655 0.7917 0.8047 0.8747 0.7917 0.0000 0.2444 0.2889 0.0000 0.2889 0.8889
Wine 0.9451 0.9538 0.9557 0.9557 0.9538 0.3308 0.4538 0.4538 0.5231 0.4538 0.7462
Wisconsin 0.9103 0.9027 0.9048 0.9048 0.9027 0.0444 0.3889 0.3222 0.0000 0.3222 0.3667
Yeast 0.7550 0.7485 0.7485 0.7485 0.7485 0.0375 0.0875 0.1625 0.1256 0.1625 0.2375
Zoo 0.8634 0.8714 0.8468 0.8468 0.8714 0.2125 0.7125 0.3750 0.2750 0.3750 0.7500

Average 0.8819 0.8779 0.8802 0.8885 0.8779 0.1533 0.4804 0.4713 0.1529 0.4713 0.4244
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Table 8
Average time elapsed (training phase), in seconds.

Data set EIS-RFS IS-SSGA FS-SSGA IFS-SSGA FS-RST FS-RST + IS-SSGA IS-SSGA + FS-RST

Australian 82.54 79.16 161.39 48.14 0.70 81.13 79.90
Balance 54.44 38.71 88.56 38.33 0.03 29.41 37.45
Bupa 20.71 13.70 32.65 11.33 0.04 13.17 13.28
Cleveland 19.29 11.89 33.37 9.04 0.10 10.17 11.93
Contraceptive 316.30 348.66 704.06 306.52 1.32 347.29 339.26
Crx 86.38 79.72 220.59 70.56 0.46 83.90 83.55
Ecoli 20.68 10.92 37.50 11.17 0.05 10.35 11.06
Flare-solar 183.44 160.00 349.09 123.76 0.01 146.04 145.15
German 304.94 252.59 591.00 167.51 2.07 245.40 263.49
Glass 10.30 5.39 15.93 5.18 0.05 5.63 5.56
Haberman 9.41 7.09 13.63 6.06 0.01 7.15 7.07
Hayes-roth 3.86 2.68 5.00 2.52 0.02 2.74 2.77
Heart 14.57 8.03 32.98 7.01 0.06 7.91 8.02
Hepatitis 8.50 3.83 13.08 3.21 0.04 3.43 3.90
Housevotes 39.42 24.98 82.91 17.38 0.02 15.94 25.31
Iris 4.40 2.44 5.22 2.33 0.02 2.55 2.45
Led7digit 40.50 25.05 88.31 28.87 0.00 17.60 25.21
Lymphography 8.14 3.97 11.77 3.23 0.02 3.19 3.99
Mammographic 127.75 116.67 205.34 77.57 0.20 105.70 112.27
Monk-2 27.92 20.72 46.18 14.22 0.02 14.06 20.24
Newthyroid 8.03 3.68 11.76 3.63 0.01 3.81 3.66
Pima 96.68 85.38 175.95 72.09 0.29 77.98 78.76
Saheart 33.45 25.98 62.64 22.45 0.15 24.01 25.78
Sonar 136.71 17.12 66.79 13.86 0.40 9.91 17.22
Spectfheart 40.33 15.14 80.53 15.25 0.27 12.10 15.23
Tic-tac-toe 176.75 150.31 348.57 132.37 0.06 75.92 138.99
Wine 7.67 3.62 14.80 3.34 0.03 3.40 3.64
Wisconsin 73.61 55.66 159.05 50.62 0.10 49.54 53.67
Yeast 420.58 354.55 825.97 364.96 1.47 351.06 342.82
Zoo 5.31 2.52 5.12 2.46 0.01 2.33 2.46

Average 79.42 64.34 149.66 54.50 0.27 58.76 62.80

Table 9
Wilcoxon signed-ranks test results.

Comparison R+ R� P-value

EIS-RFS vs IS-SSGA 381 84 0.00158
EIS-RFS vs FS-SSGA 342 93 0.00599
EIS-RFS vs IFS-SSGA 371.5 93.5 0.00335
EIS-RFS vs FS-RST 426 39 0.00001
EIS-RFS vs FS-RST + IS-SSGA 389 39 0.00007
EIS-RFS vsIS-SSGA + FS-RST 456 39 0.00000

Table 10
Contrast estimation results.

EIS-RFS vs Median estimation

IS-SSGA 1.031
FS-SSGA 1.946
IFS-SSGA 0.435
FS-RST 2.941
FS-RST + IS-SSGA 1.706
IS-SSGA + FS-RST 3.966

Fig. 3. Graphic depicting the Contrast Estimation of medians between EIS-RFS and the comparison methods.
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Table 11
Accuracy results in test phase.

Data set EIS-RFS IS-SSGA FS-SSGA IFS-SSGA FS-RST FS-RST + IS-SSGA IS-SSGA + FS-RST 1-NN

Abalone 26.31 ± 2.01 21.78 ± 1.96 20.82 ± 1.98 20.44 ± 1.81 19.84 ± 1.89 19.66 ± 2.01 12.87 ± 2.17 10.38 ± 1.74
Banana 89.34 ± 2.70 88.42 ± 0.95 87.49 ± 1.05 88.06 ± 1.38 87.49 ± 1.05 81.70 ± 2.78 78.48 ± 2.88 74.76 ± 2.08
Chess 91.30 ± 5.38 86.83 ± 2.36 64.23 ± 0.76 67.03 ± 1.06 75.47 ± 2.07 73.23 ± 5.79 74.86 ± 5.65 68.99 ± 4.84
Marketing 30.12 ± 1.85 27.10 ± 1.15 27.02 ± 1.14 29.09 ± 1.70 27.58 ± 1.06 24.90 ± 2.00 18.35 ± 1.87 17.20 ± 1.52
Mushroom 100.00 ± 0.00 99.96 ± 0.08 100.00 ± 0.00 99.94 ± 0.13 98.52 ± 0.35 98.26 ± 0.55 99.00 ± 0.34 100.00 ± 0.00
Page-blocks 95.25 ± 5.51 94.97 ± 0.83 96.44 ± 0.73 95.63 ± 0.44 95.07 ± 0.76 95.10 ± 5.72 85.48 ± 6.01 76.73 ± 5.84
Ring 86.01 ± 1.86 74.93 ± 1.47 83.01 ± 1.38 82.01 ± 1.08 79.18 ± 1.35 71.39 ± 1.98 61.39 ± 1.94 50.25 ± 1.64
Satimage 89.60 ± 1.87 87.73 ± 1.65 89.44 ± 1.96 88.65 ± 1.68 85.21 ± 1.99 84.36 ± 1.95 83.30 ± 1.97 88.38 ± 1.63
Segment 94.37 ± 0.94 94.59 ± 1.46 96.84 ± 1.02 95.93 ± 1.21 94.29 ± 1.61 94.92 ± 1.03 93.49 ± 0.99 96.06 ± 0.82
Spambase 89.35 ± 3.05 82.60 ± 0.72 83.47 ± 1.40 87.54 ± 2.07 81.74 ± 1.74 76.93 ± 3.23 79.43 ± 3.20 77.89 ± 2.49
Splice 83.07 ± 2.32 73.57 ± 1.36 76.93 ± 2.61 72.95 ± 2.49 85.89 ± 1.85 72.46 ± 2.38 58.26 ± 2.40 60.55 ± 1.85
Titanic 79.38 ± 11.23 78.78 ± 2.33 76.10 ± 5.60 78.74 ± 2.50 59.16 ± 8.08 51.35 ± 11.61 61.44 ± 11.94 13.98 ± 12.33
Twonorm 96.54 ± 1.34 95.54 ± 1.64 94.86 ± 1.76 94.59 ± 1.83 77.86 ± 1.72 80.73 ± 1.37 81.10 ± 1.47 89.35 ± 1.46

Average 80.82 ± 3.08 77.45 ± 1.38 76.67 ± 1.65 76.97 ± 1.49 74.41 ± 1.96 71.15 ± 3.26 68.27 ± 3.29 63.42 ± 2.94
Best result (of 13) 11 0 3 0 0 0 0 1
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Table 12
Average reduction results over instances and features.

Data set Instances Features

EIS-RFS IS-SSGA IFS-SSGA FS-RST + IS-SSGA IS-SSGA + FS-RST EIS-RFS FS-SSGA IFS-SSGA FS-RST FS-RST + IS-SSGA IS-SSGAFS-RST

Abalone 0.7401 0.7426 0.7391 0.6913 0.7426 0.3575 0.5875 0.4625 0.5000 0.5000 0.5000
Banana 0.7509 0.7560 0.7483 0.7623 0.7560 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Chess 0.7466 0.7578 0.7686 0.7184 0.7578 0.4722 0.4333 0.5306 0.9444 0.9444 0.5820
Marketing 0.7420 0.7357 0.7341 0.7326 0.7357 0.3585 0.7000 0.6385 0.3846 0.3846 0.3639
Mushroom 0.7620 0.7619 0.7609 0.7244 0.7619 0.8383 0.8091 0.5955 0.9545 0.9545 0.9121
Page-blocks 0.7643 0.7661 0.7610 0.7631 0.7661 0.7922 0.6000 0.4300 0.7000 0.7000 0.7000
Ring 0.7308 0.7258 0.7344 0.7345 0.7258 0.4537 0.5050 0.5450 0.7000 0.7000 0.6350
Satimage 0.7498 0.7528 0.7461 0.7020 0.7528 0.5700 0.5556 0.4611 0.8611 0.8611 0.6140
Segment 0.8062 0.8053 0.7993 0.7731 0.8053 0.0000 0.6895 0.6737 0.0000 0.0000 0.0000
Spambase 0.7549 0.7538 0.7389 0.7349 0.7538 0.5584 0.5298 0.5930 0.8596 0.8596 0.6930
Splice 0.7572 0.7431 0.7428 0.6913 0.7431 0.6833 0.8317 0.8317 0.8667 0.8667 0.8333
Titanic 0.8299 0.8283 0.8202 0.8156 0.8283 0.0000 0.5333 0.0333 0.0000 0.0000 0.0000
Twonorm 0.7521 0.7557 0.7285 0.7194 0.7557 0.0000 0.0000 0.0100 0.7500 0.7500 0.7500

Average 0.7605 0.7604 0.7556 0.7356 0.7604 0.3911 0.5211 0.4465 0.5785 0.5785 0.5064
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6. Conclusions

In this paper, we have presented EIS-RFS, a novel approach which introduces the cooperation between two well-known
techniques for data reduction: A steady-state GA for IS, and a fuzzy RST based method for FS. The judicious selection of fea-
tures performed by the RST based method has been shown to be beneficial for the search procedure performed by the GA,
thus allowing our approach to achieve highly reduced training sets which greatly enhances the behavior of the K-NN
classifier.

The experimental study performed has highlighted these improvements, especially in the case of 1-NN. It has also shown
that EIS-RFS outperforms several preprocessing methods related to IS and FS, including hybrid models, considering
classification accuracy. Moreover, these results are maintained when it is applied to higher size data sets, thus confirming

Table 13
Average time elapsed (training phase), in seconds.

Data set EIS-RFS IS-SSGA FS-SSGA IFS-SSGA FS-RST FS-RST + IS-SSGA IS-SSGA + FS-RST

Abalone 3739 3546 7992 3265 27 3391 3436
Banana 2496 3145 6992 3343 2 2948 3099
Chess 14345 5614 20910 4794 1 5249 5456
Marketing 21471 27793 47621 19468 98 25989 27774
Mushroom 33249 33121 62833 23482 4 31833 33136
Page-blocks 5853 7942 16681 6668 14 7419 7741
Ring 26797 24125 59894 20742 325 23185 24401
Satimage 62529 26160 82022 27992 426 25574 27607
Segment 1384 1641 4891 1206 4 1567 1618
Spambase 41759 19965 63763 19872 560 18870 19472
Splice 62673 9431 26504 5898 395 8951 9376
Titanic 413 605 1402 516 0 573 603
Twonorm 24515 22273 70736 25004 292 20941 21865
Average 23171 14259 36326 12481 165 13576 14276

Table 14
Wilcoxon signed-ranks test results (large data sets).

Comparison R+ R� P-value

EIS-RFS vs IS-SSGA 89 2 0.00073
EIS-RFS vs FS-SSGA 71 7 0.00928
EIS-RFS vs IFS-SSGA 82 9 0.00806
EIS-RFS vs FS-RST 85 6 0.00342
EIS-RFS vs FS-RST + IS-SSGA 89 2 0.00073
EIS-RFS vs IS-SSGA + FS-RST 91 0 0.00024
EIS-RFS vs 1-NN 76 2 0.00146

Table 15
Contrast estimation results.

EIS-RFS vs Median estimation

IS-SSGA 2.653
FS-SSGA 2.849
IFS-SSGA 2.598
FS-RST 4.855
FS-RST + IS-SSGA 7.260
IS-SSGA + FS-RST 10.784
1-NN 13.540

Fig. 4. Graphic depicting the Contrast Estimation of medians between EIS-RFS and the comparison methods in large data sets.
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the capabilities of our approach as a suitable preprocessing method for most of the standard problems present in supervised
classification.

As regards future work, we point out the possibility of using EIS-RFS to enhance other kinds of machine learning algo-
rithms. Given the nature of our method (in essence, a wrapper-based model) and the generality of the fuzzy rough feature
selection method and the fitness function defined, it is possible to apply it to improve the results of the majority of machine
learning methods. The only requirement would be the existence of a way in which the current performance of the method
could be evaluated such as, for example, the accuracy measure of the K-NN classifier. A suitable starting point for this line
would be the research shown in [8,9,37], where IS (namely TSS) is used to enhance other models such as decision trees, sub-
group discovery methods and neural networks, respectively.
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Appendix A. A nonparametric method for analyzing medians of classifiers: the contrast estimation

The Contrast Estimation based on medians [22] can be used to estimate the difference between two classifiers’ perfor-
mance. It assumes that the expected differences between performances of algorithms are the same across data sets. There-
fore, the performance of methods is reflected by the magnitudes of the differences between them in each domain.

The interest of this test lies in estimating the contrast between medians of samples of results considering all pairwise
comparisons. The test obtains a quantitative difference computed through medians between two algorithms over multiple
data sets, proceeding as follows:

1. For every pair of k algorithms in the experiment, compute the difference between the performances x of the two algo-
rithms in each of the n data sets. That is, compute the differences

Diðu;vÞ ¼ xiu � xiv ðA:1Þ

where i = 1, . . . ,n; u = 1, . . . ,k; v = 1, . . . ,k. (consider only performance pairs where u < v).
2. Find the median of each set of differences (Zuv, which can be regarded as the unadjusted estimator of the medians of the

methods u and v, Mu �Mv). Since Zuv = Zvu, it is only required to compute Zuv in those cases where u < v. Also note that
Zuu = 0.

3. Compute the mean of each set of unadjusted medians having the same first subscript, mu:

mu ¼

Pk

j¼1
Zuj

k
;u ¼ 1; . . . ; k ðA:2Þ

4. The estimator of Mu �Mv is mu �mv, where u and v range from 1 through k. For example, the difference between M1 and
M2 is estimated by m1 �m2

These estimators can be understood as an advanced global performance measure. Although this test cannot provide a
probability of error associated with the rejection of the null hypothesis of equality, it is especially useful to estimate how
far a method outperforms another one.

An implementation of the Contrast Estimation procedure can be found in the CONTROLTEST package, which can be ob-
tained at the SCI2S thematic public website on Statistical Inference in Computational Intelligence and Data Mining (http://sci2-
s.ugr.es/sicidm/).
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Abstract The k-nearest neighbors classifier is a widely

used classification method that has proven to be very

effective in supervised learning tasks. In this paper, a fuzzy

rough set method for prototype selection, focused on

optimizing the behavior of this classifier, is presented. The

hybridization with an evolutionary feature selection

method is considered to further improve its performance,

obtaining a competent data reduction algorithm for the

1-nearest neighbors classifier. This hybridization is per-

formed in the training phase, by using the solution of each

preprocessing technique as the starting condition of the

other one, within a cycle. The results of the experimental

study, which have been contrasted through nonparametric

statistical tests, show that the new hybrid approach obtains

very promising results with respect to classification accu-

racy and reduction of the size of the training set.

Keywords Prototype selection � Feature selection �
Data reduction � Fuzzy rough sets �
Evolutionary algorithms � Nearest neighbor

1 Introduction

Supervised classification is one of the most useful tech-

niques in machine learning (Mjolsness and DeCoste 2001;

Alpaydin 2010; Witten et al. 2011). Categorizing new

objects using data stored in a given training set has become

a critical task in many real-world applications of data

mining and pattern recognition.

The k-nearest neighbors classifier (k-NN) (Cover and

Hart 1967; Shakhnarovich et al. 2006) is one of the most

relevant algorithms in data mining (Wu and Kumar 2009).

It is a nonparametric classifier which simply uses the entire

input data set to establish the classification rule. Thus, the

effectiveness of the classification process performed by

k-NN relies mainly on the quality of the training data (Aha

et al. 1991). Furthermore, it is important to note that its

main drawback is its relative inefficiency as the size of the

problem increases, regarding both the number of instances

in the data set and the number of features which will be

used in the computation of the similarity (distance) func-

tion (Chen et al. 2009; Weinberger and Saul 2009).

However, the overwhelming amount of data available

nowadays in any field of research (Bell et al. 2009) poses

new problems when using the k-NN classifier. Gathering,

understanding and processing such data often requires the

use of advanced tools for managing the represented

knowledge in a suitable way. In this sense, many approa-

ches have been proposed to improve the performance of

k-NN (Triguero et al. 2010; Destercke 2012). Some of the

most effective ones work directly over the training data,

instead of modifying the computation of the k-NN rule.

They preprocess the initially available data, aiming to

improve the algorithms in terms of efficiency and efficacy.

Data reduction (Pyle 1999) is a data preprocessing task

whose main objective is to reduce the original training set.
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By removing noisy and irrelevant data—harmful for the

majority of machine learning methods—data reduction can

help to avoid excessive storage and time requirements,

easing and enabling machine learning techniques to deal

with large data sets. The best known data reduction pro-

cesses are feature selection (FS) (Liu and Motoda 2007),

feature generation/extraction (Guyon et al. 2006), attribute

discretization (Garcı́a et al. 2012b), prototype generation

(Triguero et al. 2012) and prototype selection (PS) (Garcı́a

et al. 2012a).

One of the most successful families of data reduction

methods has been originated by evolutionary computation

(Eiben and Smith 2003; Ghosh and Jain 2005). Evolutionary

algorithms, search algorithms inspired by natural popula-

tions to evolve solutions, have been applied to different data

reduction problems, modeling them as combinatorial prob-

lems (Freitas 2002; Cano et al. 2003; Pappa and Freitas

2009). A remarkable number of evolutionary data reduction

techniques have been focused on optimizing the k-NN rule.

Fuzzy sets (Zadeh 1965) and rough sets (Pawlak 1982;

Pawlak and Skowron 2007b) address two important, com-

plementary characteristics of imperfect data and knowl-

edge: the former model vague information by expressing

that objects belong to a set or relation to a given degree,

while the latter provide approximations of concepts in the

presence of incomplete information (Kusunoki and Inuig-

uchi 2010). A hybrid fuzzy rough set model was first pro-

posed in (Dubois and Prade 1990), later extended and/or

modified by many authors, being applied successfully in

various domains (Radzikowska and Kerre 2002; De Cock

et al. 2007; Tsang et al. 2008; He and Wu 2011; Zhai 2011).

Possibly, the most notable capability of these extensions is

that they enable practitioners to apply rough sets analysis

directly over data sets representing continuous data, in

contrast with pure rough sets methods, which cannot be

applied over continuous data sets without discretizing them

at a previous step.

In this paper, a hybrid model for data reduction com-

bining fuzzy rough sets and evolutionary algorithms is

proposed. A PS algorithm is developed by estimating the

quality of every training instance through a fuzzy rough set

based quality measure. The solutions obtained by this

method are used to adjust the search of an evolutionary FS

algorithm. Both the PS and the FS algorithms are applied in

succession, using the 1-NN classifier as a wrapper for

evaluating the solutions. At the end, the subsets of features

and prototypes selected are gathered to generate a final data

set, which is used in the classification phase as reference.

We have tested our approach (which we have termed

EFS-RPS, evolutionary feature selection for fuzzy rough

set based prototype selection) in a wide selection of

supervised classification domains, considering 38 different

problems. The results have been contrasted by using

several non-parametric statistical tests (Sheskin 2011),

reinforcing the conclusions obtained in the experiments.

The rest of the paper is organized as follows: Sect. 2

shows an introduction to the main topics of the study.

Section 3 describes EFS-RPS and its main characteristics.

Section 4 details the experimental study performed to test

the performance of the new technique. Finally, Sect. 5

sums up our main conclusions.

2 Data reduction preliminaries

This section gives some preliminaries on data reduction

techniques, fuzzy rough sets and evolutionary algorithms:

• Section 2.1 describes feature selection and its applica-

tion for enhancing the k-NN rule.

• Section 2.2 surveys prototype selection and some

notable characteristics of the field.

• Section 2.3 recalls some definitions of fuzzy rough sets

and various works related to data reduction.

• Section 2.4 reviews the use of evolutionary algorithms for

the reduction of training sets in k-NN based classifiers.

Throughout the section, the following definitions will be

used:

• The data set X consists of N instances which are defined

by a set A of M attributes (features) in an M-dimen-

sional space and a class (decision) attribute c. Attribute

values in M should be normalized in the interval

[0, 1].

• Each instance Xp is defined by Xp = (Xp1, Xp2, ..., XpM,

Xpc), where Xpi is the value of the i-th feature of the p-th

instance. The class attribute of the instance is deter-

mined by Xpc, which means that Xp belongs to the

class c.

• The data set is split into two different subsets: A

training set TR and a test set TS. After the application

of a data reduction algorithm (a PS or a FS one) over

TR, a reference set RS � TR is obtained.

2.1 Feature selection

One of the main data reduction techniques is FS. Its goal is

to select the most appropriate subset of features from the

initial data set. It aims to eliminate irrelevant and redundant

features to obtain a simple and accurate classification

system (Liu and Motoda 2007).

FS can be defined as follows: Given a data set composed

by TR and TS, a FS algorithm searches for a subset of fea-

tures B � A: The RS set is built from TR, considering only

the features selected in B. Instances from TS are then clas-

sified by a data mining algorithm using RS as reference.

224 J. Derrac et al.

123



There are three main categories into which FS methods

can be classified:

• Wrapper methods, where the selection criterion is

dependent on the learning algorithm, being a part of the

fitness function (Kohavi and John 1997).

• Filtering methods, where the selection criterion is

independent of the learning algorithm. In these meth-

ods, the selection is guided by data related measures

(for example, separability measures) (Guyon and

Elisseeff 2003).

• Embedded methods, where the search for an optimal

subset of features is performed within the classifier

construction (Saeys et al. 2007).

The most popular algorithms for FS are the classical

sequential ones. Forward sequential and backward sequen-

tial selection (Liu and Motoda 1998) are the best-known

ones. They begin with a feature subset and sequentially add

or remove features if they improve the quality of the selec-

tion until the algorithm finishes. Other remarkable FS

methods are FOCUS (Almuallim and Dietterich 1991) and

the RELIEF family (Kira and Rendell 1992).

Despite the popularity of these classical methods, many

other approaches based on heuristic search can be found in the

literature (Stracuzzi and Utgoff 2004; Shie and Chen 2008).

Complete surveys, analyzing both classical and advanced

approaches to FS, can be found in the literature (Guyon and

Elisseeff 2003; Liu and Yu 2005; Saeys et al. 2007).

2.2 Prototype selection

PS methods are data reduction methods whose objective is to

isolate the smallest set of instances which enable the k-NN

classifier to predict the class of a query instance with the same

quality as the initial data set (Liu and Motoda 2001).

PS can be defined as follows: Given a data set composed

by TR and TS, a PS algorithm obtains prototypes as a

subset of instances RS � TR: Instances from TS are then

classified by the k-NN classifier using RS as reference.

Depending on the strategy followed, PS methods can be

categorized into three classes: preservation methods, which

aim to obtain a consistent subset from the training data,

ignoring the presence of noise; noise removal methods,

which aim to remove noise both in the boundary points

(instances near to the decision boundaries) and in the inner

points (instances far from the decision boundaries), and

hybrid methods, which perform both objectives simulta-

neously (Garcı́a et al. 2012a).

PS methods are sometimes dependent on the k value set

on the definition of the k-NN classifier. In (Wilson and

Martinez 2000), it is stated that setting k [ 1 decreases the

sensitivity of the algorithm to noise and tends to smooth the

decision boundaries. In some PS algorithms, a value k [ 1

may be convenient, when the interest lies in protecting the

classification task against noisy instances. Therefore, they

state that it may be appropriate to find a value of k to use

in the reduction process, and then recompute the best value

of k in the classification phase. In this work, we have

employed the value k = 1, to give the classifier the greatest

possible sensitivity to noise during the reduction process.

In this manner, an evolutionary PS algorithm can detect

better the noisy instances and the redundant ones present in

the training set.

Despite the variety of PS methods developed in the last

decades (with some remarkable proposals such as CNN

(Hart 1968), ENN (Wilson 1972) or the IB (Aha et al.

1991) and DROP (Wilson and Martinez 2000) families),

improvements in storage reduction, noise tolerance, gen-

eralization accuracy and time requirements are reported

still nowadays, with the development of new PS methods

(Garcı́a et al. 2008; Ferrandiz and Boullé 2010; Franco

et al. 2010; Quirino et al. 2010). They have become a proof

of the topical nature of this field, which continues to attract

the interest of many research communities in the search for

new ways to further improve the performance of the k-NN

classifier. More information about the PS field can be found

at the SCI2S thematic public website on Prototype

Reduction in Nearest Neighbor Classification.1

2.3 Fuzzy rough sets for data reduction

Rough set theory (Pawlak 1991; Pawlak and Skowron

2007a) provides a methodology for data analysis based on

the approximation of concepts in a decision system (X, A [
{c}), in which X is a set of instances, A is a set of condi-

tional attributes and c is the decision or class attribute.

The theory revolves around the notion of (in)discern-

ibility: the ability to distinguish between instances, based

on their attribute values. When fuzzy rough sets are used,

indiscernibility is typically modeled by means of a fuzzy

tolerance relation R in X. In this paper, R is defined as, for

Xx and Xy in Xðx; y 2 1; . . .; nf gÞ;
RðXx;XyÞ ¼TðRaðXx;XyÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

a2A

Þ ð1Þ

where T is a t-norm, which is an associative, commutative

mapping T : ½0; 1�2 ! ½0; 1�; increasing in both arguments

and such that 8s 2 ½0; 1� : Tðs; 1Þ ¼ s: In this paper we

will use the Łukasiewicz t-norm, defined as follows:

Tðs; tÞ ¼ maxð0; sþ t � 1Þ for s; t 2 ½0; 1�: Note that, as a

t-norm is associative and commutative, it can be extended

unambiguously for M arguments as in Eq. (1).

The indiscernibility for one attribute RaðXx;XyÞ is given by

1 http://sci2s.ugr.es/pr/.
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RaðXx;XyÞ ¼ 1� ðXxa � XyaÞ2 ð2Þ

if a is a quantitative (real) attribute, and

RaðXx;XyÞ ¼
1 if Xxa ¼ Xya

0 otherwise

�
ð3Þ

when a is nominal (discrete).

Given R, the fuzzy-rough positive region of X is defined

as the fuzzy set POSA in X

POSAðXxÞ ¼ min
Xy2X

IðRðXx;XyÞ;RcðXx;XyÞÞ ð4Þ

where I represents an implicator, which is a mapping I :

½0; 1�2 ! ½0; 1�; decreasing in the first and increasing in the

second argument, and for which Ið0; 0Þ ¼ 1;Ið1; 1Þ ¼
1;Tð0; 1Þ ¼ 1 and Ið1; 0Þ ¼ 0: In this paper we will use

the Łukasiewicz implicator, defined as follows: Iðs; tÞ ¼
minð1; 1� sþ tÞ for s, t [ [0, 1]. The indiscernibility

w.r.t. the decision class is defined as follows:

RcðXx;XyÞ ¼
1 if Xxc ¼ Xyc

0 otherwise

�
ð5Þ

The idea of the fuzzy-rough positive region is that

instances on the border of a class (that is, for which there

exists a similar instance in another class) will have a small

membership value to POSA compared to instances in the

center of a class. This makes the fuzzy-rough positive

region suitable to measure the quality of an instance as a

typical representative of its class. Most applications of

fuzzy rough sets for FS and PS data reduction are based on

this approach (Jensen and Shen 2007, 2009; Cornelis et al.

2010; Jensen and Cornelis 2010).

2.4 Evolutionary algorithms for data reduction

Recently, the use of evolutionary algorithms in data

reduction problems has become common in the machine

learning field. This subsection surveys some interesting

approaches for evolutionary FS and evolutionary PS.

In (Cano et al. 2003), a complete study on the use of

evolutionary algorithms for prototype selection is carried

out, highlighting four evolutionary methods to complete

this task: CHC adaptive search algorithm (Eshelman 1991),

steady-state genetic algorithm (SSGA) (Whitley 1989),

generational genetic algorithm and population-based

incremental learning. They concluded that the evolutionary

algorithms selected outperform classical algorithms both in

reduction rates and classification accuracy.

Other interesting evolutionary proposals for PS can be

found in (Garcı́a et al. 2008; Gil-Pita and Yao 2008;

Ishibuchi and Nakashima 1998; Kuncheva 1995; Derrac

et al. 2010a; Garcı́a-Pedrajas et al. 2010). For a detailed

survey on the field see (Derrac et al. 2010b).

Regarding FS, most of the evolutionary approaches are

based on genetic algorithms, using both filter and wrapper

approaches (Casillas et al. 2001; Gonzalez and Perez 2001;

Oh et al. 2004; Rokach 2008). Another interesting proposal

is (Inza et al. 2001), where an estimation of distribution

algorithm based on bayesian networks is presented.

It is also possible to find evolutionary applications of

simultaneous PS and FS. Both (Kuncheva and Jain 1999) and

(Ishibuchi et al. 2001) propose a genetic algorithm to perform

simultaneously the editing of the instance set and selection of

the feature set. Another popular dual method is IGA (Ho

et al. 2002), an intelligent genetic algorithm designed to

tackle both PS and FS problems simultaneously, by the

introduction of a special orthogonal crossover operator.

3 EFS-RPS: evolutionary feature selection for fuzzy

rough set based prototype selection

In this section we describe the main components of EFS-

RPS and its implementation details. The organization of

this section follows a bottom-up order in which:

• Firstly, in Sect. 3.1, the PS algorithm based on fuzzy

rough sets which forms the core of EFS-RPS is presented.

• Secondly, in Sect. 3.2, we describe the evolutionary

algorithm developed for performing the FS process.

• Thirdly, in Sect. 3.3, we detail the way in which the

subsets of features and prototypes obtained through the

above methods are combined for preprocessing refer-

ence sets for the 1-NN classifier.

• Finally, in Sect. 4.4, a full description on the EFS-RPS

is given, as a combination of all the components

described before.

Algorithm 1 A PS algorithm based on fuzzy rough set theory
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3.1 A fuzzy rough set PS procedure

The quality of the instances in the training set can be

assessed following the concepts of fuzzy rough set theory

defined before and the definition of the fuzzy positive

region of an instance x [ X. The membership of an instance

to the positive region with respect to the current subset of

features considered B � M can serve as a noise measure

for it.

In this fuzzy rough set PS procedure, instances are

ordered with respect to their fuzzy positive region, in

increasing order. Then, noisy instances are pruned itera-

tively, and the subsequently found prototype subsets are

evaluated with respect to classification accuracy (accuracy

is estimated by using a leave-one-out procedure with a

1-NN classifier, which we denote by 1-NNlooAccuracy).

Instances with the same fuzzy positive region value are

analyzed simultaneously, that is, marked for deletion at

the same time. The best subset found is then identified as

the subset of prototypes RS, which is the output of the

algorithm. Algorithm 3 shows the pseudocode of this

procedure.

Through the procedure, a list with the nearest neighbor

of each prototype in TR is maintained. These nearest

neighbors can only belong to the set RS; hence, every time

a prototype from RS is removed, the list of neighbors is

updated and the neighbor of every prototype of TR which

is now missing is recomputed.

This neighbors list is used for estimating the 1-NN

leave-one-out accuracy of the current RS set selected

[through the 1-NNlooAccuracy (RS) procedure]. It helps

the PS method to avoid the necessity of recomputing

the nearest neighbors of each prototype in TR every

time the procedure is used, thus saving computational

resources.

Thanks to this optimization, the cost of the PS procedure

can be computed by using the concept of partial evalua-

tions. Throughout the FS and PS process of EFS-RPS, the

computational resources spent are registered in the form of

solutions evaluations. Every time a full classification of the

TR is performed to estimate the accuracy of a solution, a

full evaluation is spent.

In the specific case of this PS procedure, the complete

cost is defined as follows:

• A full evaluation is spent the first time the nearest

neighbor list is computed.

• Every time a neighbor has to be updated (because the

old neighbor has been removed from RS) a partial

evaluation is spent:

partialEvaluation ¼ 1

#instances in TR
ð6Þ

Therefore, the total cost of the PS algorithm can be

redefined as

PSCost ¼ 1þ#neighborsupdated

#instances in TR
ð7Þ

This partial evaluations procedure, inspired by the one

developed in (Garcı́a et al. 2008), allows us to define a fair

computational cost measure for the PS algorithm, which

correctly represents the savings obtained through the use of

the list of neighbors.

3.2 Searching features using an evolutionary algorithm

The second key element of EFS-RPS is its search method

for selecting subsets of features. To accomplish this task,

we have chosen SSGA as the evolutionary algorithm to

perform the search.

A SSGA is a genetic algorithm in which only a reduced set

of offspring is produced in each generation (two, in most

cases). Parents are chosen to produce offspring and then a

decision is made as to which individuals in the population will

be selected for deletion in order to make room for the new

offspring. Algorithm 2 shows the pseudocode of SSGA.

Algorithm 2 SSGA pseudocode

The fitness function of our SSGA pursues a dual

objective: The main task of the method is to search for

subsets of features which increase the accuracy of the

1-NN classifier. However, a second task should be to

reduce the size of the subsets selected, if this does not harm

the accuracy rates obtained.

Hence, following the same set-up as in (Cano et al.

2003), where a similar approach is used in the core of

evolutionary PS methods, for a given solution J (chromo-

some) of the SSGA, we define two variables:
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• AccRate: The classification accuracy of a 1-NN clas-

sifier (1-NNAccuracy) when classifying the full train-

ing set using only the currently selected subset of

features as a reference (and leave-one-out as validation

scheme).

AccRateðJÞ ¼ 1-NNAccuracyðJÞ ð8Þ

• RedRate The rate of reduction achieved over the

currently selected (maintained) features.

RedRateðJÞ ¼ 1.0� #FeaturesSelected(J)

M
ð9Þ

Both variables are adjusted through a real-valued

weighting factor a to equalize the strength of each term

in the resulting fitness value. The final fitness function of

the SSGA can be defined as

FitnessðJÞ ¼ a � AccRateðJÞ þ ð1� aÞ � RedRateðJÞ ð10Þ

The a value should be kept very high (a = 0.99 turned

out to be the best choice in our preliminary experiments) in

order to avoid those cases in which an excessive deletion of

features could be favored too much by the fitness function,

resulting in a selection of an insufficient number of features

for the final classification stage.

The configuration details of the SSGA are as follows:

• Codification The SSGA will use binary chromosomes

to represent the solutions. Each bit will represent the

state of each feature in the training set (1 if the feature

is selected; 0 if it is deleted).

• Crossover operator A two-point crossover operator has

been considered. In each generation, this operator is

applied twice, obtaining two offspring.

• Mutation operator The bit-flip mutation operator

(changing the value of the selected allele from 0 to 1,

and vice versa) is applied to each offspring produced,

with a given probability per bit.

• Selection of parents A binary tournament procedure

will be used to select parents in each generation.

• Replacement strategy The two worst individuals of the

population are chosen for replacement, only if their

fitness value is lower than the offspring’s.

3.3 Simultaneous assessment of features

and prototypes through the 1-NN classifier

While the search process performed by EFS-RPS is carried

out, we will need to assess the quality of the solutions

obtained. Mostly, this operation will consist of gathering

two solutions (one representing a prototype subset, and

another one representing a subset of features), combining

them and estimating their quality through the 1-NN

classifier.

Once both solutions have been gathered, their assess-

ment is carried out by performing the following steps:

1. A copy of the training set is obtained and pruned,

keeping only those prototypes indicated by the PS

solution.

2. After the prototypes have been isolated, their features

are also pruned, keeping this time only those indicated

by the FS solution. The resulting subset is identified as

the reference subset.

3. The 1-NN classifier is used to classify all the original

training instances. This 1-NN classifier will use as

reference set only the data preprocessed in the previous

step.

4. The accuracy of this classification (that is, the ratio of

training instances correctly classified over the total

number of training instances), a value in [0, 1], will be

used as the quality of the solutions.

This simple method allows us to evaluate subsets of

features and prototypes within the general EFS-RPS

framework. Since it involves the classification of the full

training set, performing it has a cost associated of a full

evaluation.

3.4 EFS-RPS global model

The EFS-RPS is composed by the fuzzy rough set based PS

method and the SSGA FS algorithm defined before.

Through the procedure for evaluating simultaneously fea-

ture and prototype subsets (defined in the previous sub-

section), EFS-RPS can merge the two search processes

in an effective way, enabling the framework to obtain

improved results from the existing synergy between the

two basic data reduction methods on which it is based.

EFS-RPS begins by selecting a candidate set of proto-

types, bestPS. This subset of the training set is used as

reference for the SSGA, during a fixed number of evalua-

tions (Cycle Length). Every time this limit is reached, the

candidate set of prototypes is recomputed through the PS

method, but considering only the best subset of features

found so far, bestFS. If the new subset of prototypes

computed is better than the previous one (in terms of leave-

one-out accuracy), the latter is updated.

These processes are repeated until the algorithm is close

to its end (at that point, no further update of the bestPS

subset is allowed). Once the Evaluations limit is reached,

the best subsets of prototypes and features found so far,

bestPS and bestFS are used to prepare the final reference

set, RS, which is obtained as the output of the algorithm.

Algorithm 4 shows the EFS-RPS pseudocode.
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Algorithm 3 The global EFS-RPS model

The main steps of the algorithm are detailed as follows:

• Instructions 1–2 extract a preliminary set of prototypes

by applying the fuzzy rough PS procedure detailed in

Sect. 3.1. In this first application of the PS procedure,

all the features of the problem are considered.

• Instruction 3 initializes the population of the SSGA and

its chromosomes are evaluated (using the procedure

detailed in Sect. 3.3. The prototypes considered in this

step are those stored in bestPS. Instructions 4 and 5

initialize optimizePS and cycle variables.

• Instruction 7 performs a full generation of the SSGA

(again, the new chromosomes are evaluated using the

procedure detailed in Sect. 3.3).

• Instructions 8 and 9 check if the end of the algorithm is

close; that is, when more than c � Evaluations limit

evaluations have been spent (c should be set close to 1,

for example, c = 0.75). If that limit is reached, the set

of prototypes bestPS is no further optimized (see

Instructions 11–20). Disabling these instructions in the

last generations of the algorithms will help to improve

the convergence capabilities of the SSGA.

• Instruction 10 checks if the set of prototypes bestPS has

to be improved. If this phase is enabled (see Instruc-

tions 8 and 9) and Cycle Length evaluations have been

spent since the last time this phase was carried out, the

bestPS set can be improved.

• Instruction 13 generates a new candidate set of

prototypes, newPS (only the features of the best subset

found so far by the SSGA are considered in this case).

The accuracy obtained by using this new set of

prototypes is computed, newAcc. If it is higher than

bestAcc, then the set bestPS is updated (Instructions

14–17).

• Instruction 22 gathers the best solutions found by the

SSGA and the PS procedure, and creates a final

reference set RS with those prototypes and features

selected in the solutions.

The EFS-RPS algorithm loop is carried out until the

specified limit of evaluations is reached. Then, the RS

subset generated can be used as a reference set for the

1-NN classifier to classify new test instances.

4 Experimental study

This section describes the experimental study performed to

test the performance of EFS-RPS:

• Section 4.1 lists the supervised classification problems

considered and their main characteristics.

• Section 4.2 provides a description of the algorithms

considered in the comparison and a definition of their

parameter values.

• Section 4.3 describes the nonparametric statistical

procedures considered for contrasting the results of

the study.

• Section 4.4 shows the results obtained and analyzes

them.

4.1 Data sets

We have selected a set of 38 classification data sets for our

experimental study. These are well-known problems in the

area, taken from the KEEL-dataset repository (Alcalá-Fdez

et al. 2008, 2011)2 and the UCI repository (Frank and

Asuncion 2010). Table 1 summarizes their main charac-

teristics. For each data set, we provide its number of

instances (#Ins.), attributes (#At.) and classes (#Cl.).

The data sets considered are partitioned by using the

10-fold cross-validation (10-fcv) procedure (enabling us to

follow a 5x10-fold cross-validation set-up in the study),

and their values are normalized in the interval [0, 1] to

equalize the influence of attributes with different range

domains. In addition, instances with missing values have

been discarded before the execution of the methods over

the data sets.

2 http://www.keel.es/datasets.php.
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4.2 Algorithms and parameter settings

In order to show the capabilities of EFS-RPS as a data

preprocessor for 1-NN we have selected a representative

set of comparison methods, including several evolutionary

and fuzzy rough set based ones. The preprocessed training

sets obtained as a result of the application of all these

methods (including EFS-RPS) will be evaluated using a

1-NN classifier to classify the test (unseen) data. Euclidean

distance will be considered in all the methods, whereas the

overlap metric is considered for nominal attributes.

The comparison methods selected are the following:

• Evolutionary data reduction methods:

– FS-SSGA A steady-state genetic algorithm for FS.

This method follows the same design as the

evolutionary component of EFS-RPS, but without

including any kind of PS process. Hence, it is only

focused on searching the best possible subset of

features through a wrapper based evolutionary

search.

– PS-SSGA A steady-state genetic algorithm for PS.

This method shares the same set-up as FS-SSGA,

but it is focused on selecting prototypes, instead of

features (it also uses binary chromosomes). Its

objective is to find the most representative subset of

prototypes from the training set through the evolu-

tionary search process.

– FPS-SSGA A steady-state genetic algorithm for

simultaneous FS and PS. This method shares the

same set-up as FS-SSGA and PS-SSGA, but both

features and prototypes are encoded in the chromo-

somes. As output, this method will select a subset of

features and a subset of prototypes, which are

combined in the same way as the solutions of EFS-

RPS.

• Fuzzy rough set data reduction methods:

– PS-FRW A fuzzy rough set wrapper algorithm for

PS. This method follows the same design as the PS

component of EFS-RPS.

– FS-RST A fuzzy rough set based feature selection

method. It performs a heuristic search among the

features of the training data, choosing the best ones

according to how well they represent the full

training set (using a measure of discernibility to

evaluate the different subsets of features found).

More details can be found in (Cornelis et al. 2010).

• Other algorithms:

– EIS-RFS A hybrid data preprocessing method,

which incorporates FS-RST and PS-SSGA for

performing simultaneous FS and PS. A full descrip-

tion of this method can be found in (Derrac et al.

2012).

– 1-NN The 1-NN classifier is also included in the

comparison. Its results, unmodified by any data

preprocessing method, will give an insight of how

well the rest of algorithms are improving the

behavior of the base classifier, in terms of accuracy.

Table 1 Description of the 38 data sets used in the study

Data set #Ins. #At. #Cl. Data set #Ins. #At. #Cl.

Australian 690 14 2 Housevotes 435 16 2

Automobile 205 25 6 Iris 150 4 3

Balance 625 4 3 Led7Digit 500 7 10

Bands 539 19 2 Lymphography 148 18 4

Breast 286 9 2 Mammographic 961 5 2

Bupa 345 6 2 Monks 432 6 2

Car 1,728 6 4 New thyroid 215 5 3

Cleveland 303 13 5 Pima 768 8 2

Contraceptive 1,473 9 3 Saheart 462 9 2

Crx 690 15 2 Sonar 208 60 2

Dermatology 366 34 6 Spectfheart 267 44 2

Ecoli 336 7 8 Tae 151 5 3

Flare-solar 1,066 9 2 Tic-tac-toe 958 9 2

German 1,000 20 2 Vehicle 946 18 4

Glass 214 9 7 Vowel 990 13 11

Haberman 306 3 2 Wine 178 13 3

Hayes-Roth 160 4 3 Wisconsin 699 9 2

Heart 270 13 2 Yeast 1,484 8 10

Hepatitis 155 19 2 Zoo 101 16 7

230 J. Derrac et al.

123



Many different configurations can be established for

each combination of domain and method. However, for the

sake of a fair comparison, we have selected a fixed set of

parameters for each method, which will be applied for all

the data sets. Table 2 summarizes them.

Essentially, 10,000 evaluations are allowed for every

method. SSGA base parameters are set-up to a classical

configuration, and the a value in the fitness function is set

to 0.5 if the reduction rate is computed over instances [as

recommended in Cano et al. (2003)] and to 0.99 if it is

computed over features [as recommended in Derrac et al.

(2010a)]. The rest of parameters are set to the values rec-

ommended by the authors of each technique.

4.3 Statistical procedures

We have considered the use of hypothesis testing tech-

niques to provide statistical support for the analysis of the

results of the experimental study. Concretely, we will use

nonparametric tests (Sheskin 2011), since the initial con-

ditions that guarantee the reliability of the parametric tests

(independence, normality and homocedasticity) may not be

satisfied, causing the statistical analysis to lose credibility

(Garcı́a and Herrera 2008; Garcı́a et al. 2009).

Throughout the study, we perform several multiple

comparisons between the algorithms considered. To do so,

we will use the Friedman test in order to detect statistical

differences among a group of results. A second property of

this test is that the ranks computed for obtaining the

Friedman statistic can be also considered to sort the algo-

rithm by its relative performance (where the lower the rank

obtained, the better the performance of the algorithm). The

process followed to compute the final ranks is as follows:

1. Gather observed results for each pair algorithm/data

set (for example, average the results obtained after the

cross-validation process).

2. For each data set, rank the values from 1 (best result)

to n (worst result), where n is the number of algorithms

considered in the comparison. If ties appear, assign

midranks.

3. Average the ranks obtained in all data sets to obtain the

final rank.

After computing the ranks, if the p-value of the Fried-

man test is significantly low (at a 0.05 level of signifi-

cance), the existence of significant differences between the

algorithms evaluated is assumed. From this point, a control

algorithm can be chosen (the one with the lowest rank, that

is, the best performing one), and post-hoc procedures (in

our case the Holm and Finner procedures (Garcı́a et al.

2010)) can be applied to determine which algorithms are

significantly outperformed by the control one.

More information about these tests and other statistical

procedures specifically designed for use in the field of

machine learning can be found at the SCI2S thematic

public website on Statistical Inference in Computational

Intelligence and Data Mining.3

4.4 Results and analysis

In this subsection we report the results obtained in the full

experimental study. Table 3 shows the average accuracy

results obtained in the test phase (considering a 5x10-fold

cross-validation set-up, that is, averaging the results of

five independent schemes of 10-fold cross-validation). For

each algorithm and data set, the average accuracy and

standard deviation are provided. The best result in each

data set is highlighted in bold. Moreover, the table also

provides average results over all data sets and the number

of times that each algorithm obtains the best result for a

single data set.

Table 2 Parameter specification for the algorithms tested in the experimentation

Algorithm Parameters

EFS-RPS Evaluations: 10,000, Population size: 50, Crossover probability: 1.0, Mutation probability: 0.005 per bit, a: 0.99

Cycle Length: 100, c: 0.75

PS-SSGA Evaluations: 10,000, Population size: 50, Crossover probability: 1.0, Mutation probability: 0.005 per bit, a: 0.5

FS-SSGA Evaluations: 10,000, Population size: 50, Crossover probability: 1.0, Mutation probability: 0.005 per bit, a: 0.99

FPS-SSGA Evaluations: 10,000, Population size: 50, Crossover probability: 1.0, Mutation probability: 0.005 per bit

a (instances): 0.5, a (features): 0.99

PS-FRW –

FS-RST MaxGamma: 1.0

EIS-RFS Evaluations: 10,000, Population size: 50, Crossover probability: 1.0, Mutation probability: 0.005 per bit, a: 0.5

MaxGamma: 1.0, UpdateFS: 100, b: 0.75

1-NN –

3 http://sci2s.ugr.es/sicidm/.
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Table 3 Accuracy results in test phase

Data set EFS-RPS FS-SSGA PS-SSGA FPS-SSGA PS-FRW FS-RST EIS-RFS 1-NN

Australian 85.12 ± 4.53 85.07 ± 3.49 85.65 ± 2.77 85.36 ± 3.31 84.64 ± 3.15 81.45 ± 4.52 85.66 ± 2.27 81.45 ± 4.29

Automobile 82.05 ± 8.55 79.61 ± 6.87 63.78 ± 14.84 69.38 ± 6.33 76.07 ± 7.48 78.97 ± 10.32 61.17 ± 11.58 77.93 ± 6.68

Balance 85.04 ± 6.81 70.89 ± 9.80 86.40 ± 3.08 84.31 ± 4.85 90.56 ± 1.57 79.04 ± 6.81 85.92 ± 2.62 79.04 ± 6.46

Bands 74.42 ± 5.45 72.35 ± 6.70 69.77 ± 9.22 64.95 ± 8.69 72.01 ± 9.66 66.61 ± 6.32 64.57 ± 5.91 74.04 ± 6.94

Breast 69.94 ± 7.01 70.98 ± 5.72 70.94 ± 4.63 73.42 ± 8.34 66.03 ± 6.96 60.97 ± 10.44 69.29 ± 5.73 65.35 ± 6.39

Bupa 63.98 ± 6.82 59.91 ± 10.19 61.14 ± 9.37 62.72 ± 8.40 59.59 ± 9.97 62.51 ± 7.78 65.72 ± 8.79 61.08 ± 6.88

Car 90.68 ± 1.31 90.68 ± 1.51 89.29 ± 2.55 93.34 ± 1.37 85.65 ± 3.03 70.02 ± 0.17 91.67 ± 3.31 85.65 ± 1.91

Cleveland 53.81 ± 7.66 51.47 ± 9.47 52.82 ± 4.47 56.13 ± 6.07 56.82 ± 8.87 52.51 ± 9.49 55.16 ± 5.82 53.14 ± 7.45

Contraceptive 43.31 ± 4.21 41.96 ± 3.57 44.54 ± 4.61 45.15 ± 2.32 44.47 ± 2.57 42.63 ± 3.73 45.42 ± 5.14 42.77 ± 3.69

Crx 85.07 ± 3.75 81.16 ± 7.61 84.64 ± 4.22 84.64 ± 5.08 83.04 ± 4.64 81.30 ± 6.28 84.93 ± 5.72 79.57 ± 5.12

Dermatology 95.65 ± 4.07 96.71 ± 2.85 94.84 ± 4.66 95.36 ± 3.83 95.92 ± 3.43 91.59 ± 3.69 94.81 ± 4.18 95.35 ± 3.64

Ecoli 79.79 ± 7.51 78.90 ± 7.30 80.38 ± 5.69 77.70 ± 5.52 83.33 ± 6.13 76.58 ± 14.73 82.14 ± 8.42 80.70 ± 7.51

Flare-solar 63.61 ± 3.12 62.76 ± 3.65 64.82 ± 3.37 67.35 ± 4.12 66.70 ± 3.61 63.23 ± 5.56 66.32 ± 2.94 55.54 ± 3.20

German 72.00 ± 3.40 69.50 ± 2.68 70.40 ± 3.24 70.10 ± 3.48 70.30 ± 4.57 67.90 ± 3.41 70.80 ± 4.24 70.50 ± 4.25

Glass 71.52 ± 14.45 71.80 ± 14.30 67.10 ± 14.74 71.23 ± 10.64 73.20 ± 14.31 74.50 ± 13.17 67.35 ± 11.83 73.61 ± 11.91

Haberman 72.81 ± 5.62 72.81 ± 6.15 71.23 ± 5.40 72.83 ± 5.99 67.65 ± 4.73 65.68 ± 6.58 71.56 ± 7.34 66.97 ± 5.46

Hayes-Roth 83.93 ± 9.03 83.93 ± 8.33 69.15 ± 11.69 79.80 ± 11.65 75.46 ± 10.29 76.07 ± 14.07 80.86 ± 11.70 35.70 ± 9.11

Heart 78.89 ± 6.77 76.67 ± 6.06 81.11 ± 7.90 82.59 ± 6.31 82.22 ± 5.18 78.89 ± 6.77 80.74 ± 6.34 77.04 ± 8.89

Hepatitis 81.92 ± 10.03 76.21 ± 7.89 79.33 ± 8.71 80.67 ± 6.13 82.04 ± 10.26 79.50 ± 7.95 82.58 ± 7.99 82.04 ± 11.09

Housevotes 96.31 ± 3.65 94.01 ± 4.53 93.79 ± 3.43 94.46 ± 4.37 92.38 ± 5.79 90.78 ± 6.47 94.48 ± 3.67 91.24 ± 5.41

Iris 96.00 ± 4.66 95.33 ± 4.50 94.67 ± 2.81 94.67 ± 4.22 95.33 ± 5.49 93.33 ± 5.44 96.00 ± 4.92 93.33 ± 5.16

Led7Digit 63.00 ± 7.54 63.00 ± 6.94 73.40 ± 2.84 71.40 ± 4.81 63.20 ± 3.43 63.60 ± 5.87 73.20 ± 4.99 40.20 ± 9.48

Lymphography 75.21 ± 9.75 78.49 ± 9.12 77.92 ± 9.39 74.92 ± 10.79 73.87 ± 9.17 77.38 ± 11.21 77.15 ± 12.15 73.87 ± 8.77

Mammographic 79.42 ± 4.26 75.86 ± 6.07 79.50 ± 3.85 80.15 ± 6.23 79.09 ± 3.80 75.76 ± 4.97 80.65 ± 4.51 76.38 ± 5.67

Monks 100.00 ± 0.00 100.00 ± 0.00 83.53 ± 6.21 98.64 ± 3.07 77.70 ± 5.37 77.91 ± 5.71 100.00 ± 0.00 77.91 ± 5.42

New thyroid 96.75 ± 2.24 96.30 ± 1.95 98.16 ± 3.20 96.32 ± 3.60 96.73 ± 3.18 97.23 ± 2.39 96.77 ± 4.83 97.23 ± 2.26

Pima 73.35 ± 5.21 67.70 ± 4.59 72.26 ± 4.44 73.83 ± 3.15 74.49 ± 3.49 70.33 ± 3.71 74.80 ± 3.71 70.33 ± 3.53

Saheart 69.05 ± 6.69 61.24 ± 3.91 69.27 ± 3.70 67.99 ± 5.69 71.66 ± 6.12 64.49 ± 4.21 68.82 ± 7.16 64.49 ± 3.99

Sonar 89.43 ± 6.65 84.62 ± 8.65 75.45 ± 11.74 75.50 ± 12.59 85.57 ± 7.14 81.69 ± 9.83 80.76 ± 7.88 85.55 ± 7.51

Spectfheart 74.56 ± 8.79 74.17 ± 6.34 75.31 ± 5.96 75.34 ± 7.31 78.36 ± 7.22 70.04 ± 8.00 76.82 ± 7.07 69.70 ± 6.55

Tae 62.38 ± 13.09 62.37 ± 14.17 54.42 ± 11.63 55.62 ± 13.70 61.08 ± 15.09 60.42 ± 14.29 52.08 ± 11.22 40.50 ± 8.89

Tic-tac-toe 83.20 ± 3.25 83.51 ± 3.10 78.71 ± 3.36 77.87 ± 5.25 73.07 ± 2.28 73.07 ± 2.70 78.29 ± 5.07 73.07 ± 2.56

Vehicle 72.70 ± 5.40 70.58 ± 4.92 66.91 ± 4.38 70.92 ± 3.84 68.20 ± 5.65 65.56 ± 6.14 65.37 ± 6.71 70.10 ± 5.90

Vowel 99.19 ± 0.90 99.19 ± 0.80 91.62 ± 3.01 89.60 ± 3.96 99.09 ± 1.00 91.58 ± 4.29 98.81 ± 2.10 99.39 ± 0.85

Wine 95.52 ± 3.53 94.90 ± 3.30 92.68 ± 7.91 94.93 ± 3.17 95.52 ± 6.84 95.49 ± 4.40 97.19 ± 5.09 95.52 ± 4.85

Wisconsin 95.85 ± 1.25 95.14 ± 2.62 96.13 ± 2.95 95.86 ± 2.47 96.86 ± 2.41 95.57 ± 2.73 96.42 ± 1.55 95.57 ± 2.59

Yeast 54.23 ± 4.01 52.30 ± 3.94 54.18 ± 4.38 53.50 ± 3.77 52.90 ± 3.62 52.23 ± 4.39 53.37 ± 3.36 50.47 ± 3.91

Zoo 98.33 ± 3.60 95.42 ± 6.00 94.22 ± 7.94 90.72 ± 7.09 98.33 ± 3.60 96.50 ± 4.61 96.39 ± 4.80 92.81 ± 6.57

Average 79.16 ± 5.65 77.30 ± 5.78 76.56 ± 6.01 77.61 ± 5.83 77.61 ± 5.82 74.81 ± 6.66 78.00 ± 5.86 73.56 ± 5.81

Best result (of 38) 13 4 2 5 6 1 9 1

Table 4 Results of Friedman,

Holm and Finner tests
Algorithm Friedman ranking Holm p-value Finner p-value

FS-RST 7.4211 0.000002 0.000002

1-NN 7.0263 0.000030 0.000017

FS-SSGA 6.2368 0.003437 0.001472

PS-SSGA 5.4605 0.089441 0.031968

FPS-SSGA 5.1053 0.242954 0.089710

PS-FRW 5.0132 0.242954 0.094809

EIS-RFS 4.2368 0.544390 0.544390

EFS-RPS 3.8158 – –

Friedman p-value \10-6
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Table 4 summarizes the results of the Friedman test,

and the post-hoc procedures (Holm and Finner), per-

formed to contrast the results obtained concerning clas-

sification accuracy. Average rankings and p-value are

reported for the Friedman test, and the best (lowest) rank

is highlighted in bold. Regarding the post-hoc methods,

adjusted p-values are provided, highlighting in bold those

which represent significant differences (at a 0.1 level of

significance).

Table 5 shows the average reduction rates achieved

through the application of every data reduction method. On

the left-hand side it shows the reduction achieved over the set

of features (that is, the ratio of features selected over the

original number of features of the problem) and, on the

Table 5 Average reduction results over features and instances

Data set Features Instances

EFS-RPS FS-SSGA FPS-SSGA FS-RST EIS-RFS EFS-RPS PS-SSGA FPS-SSGA PS-FRW EIS-RFS

Australian 0.7500 0.8071 0.7929 0.0000 0.1571 0.4288 0.8799 0.8808 0.4032 0.8872

Automobile 0.6760 0.7560 0.7160 0.3265 0.3560 0.0727 0.8444 0.8309 0.0640 0.8531

Bal 0.0000 0.3000 0.0000 0.0000 0.0000 0.5329 0.8686 0.8085 0.5846 0.8464

Bands 0.4842 0.6526 0.5526 0.3750 0.4263 0.3153 0.8472 0.8363 0.3267 0.8689

Bre 0.5444 0.6667 0.7111 0.2111 0.2111 0.0454 0.9441 0.9779 0.0408 0.9476

Bupa 0.4000 0.3667 0.4333 0.1274 0.0000 0.3838 0.8644 0.8644 0.3316 0.8502

Car 0.1667 0.1667 0.1667 0.1667 0.1667 0.0000 0.7681 0.7592 0.0000 0.8279

Cleveland 0.5462 0.7385 0.6077 0.3908 0.0462 0.7141 0.9171 0.9289 0.7352 0.9014

Contraceptive 0.4444 0.4556 0.5889 0.0360 0.0667 0.4133 0.7530 0.7530 0.4463 0.7637

Crx 0.4733 0.5667 0.5533 0.2000 0.1800 0.1685 0.8816 0.8805 0.1750 0.8914

Dermatology 0.5500 0.6676 0.4735 0.4354 0.3854 0.1520 0.9448 0.9414 0.1332 0.9502

Ecoli 0.1571 0.1714 0.1857 0.2286 0.1286 0.3179 0.9077 0.9130 0.3201 0.8882

Flare-solar 0.4778 0.5111 0.5778 0.1556 0.0556 0.8093 0.8391 0.8005 0.7963 0.8122

German 0.6800 0.5150 0.7450 0.1450 0.2350 0.0423 0.7914 0.7928 0.0022 0.8014

Glass 0.4222 0.4444 0.4556 0.0168 0.0444 0.1322 0.8791 0.8791 0.1422 0.8718

Haberman 0.6667 0.6667 0.5333 0.0254 0.0000 0.6560 0.9379 0.9379 0.6385 0.9306

Hayes-Roth 0.2500 0.2500 0.2500 0.1000 0.2500 0.2343 0.8384 0.8452 0.2172 0.8544

Heart 0.6231 0.4538 0.5692 0.1846 0.2308 0.6523 0.9506 0.9230 0.6617 0.9255

Hepatitis 0.6000 0.6684 0.5421 0.4263 0.5368 0.0471 0.9226 0.9355 0.0229 0.9262

Housevotes 0.6313 0.7000 0.7313 0.0188 0.3500 0.0389 0.9410 0.9653 0.0128 0.9387

Iris 0.4000 0.4000 0.4500 0.0000 0.1250 0.3415 0.9481 0.9481 0.1978 0.9511

Led7Digit 0.0143 0.0143 0.0000 0.0143 0.0000 0.5122 0.9071 0.9491 0.5122 0.9416

Lym 0.5111 0.6500 0.6500 0.2611 0.4444 0.0000 0.8994 0.9234 0.0000 0.9257

Mammographic 0.6600 0.5000 0.6200 0.3396 0.0000 0.4644 0.8229 0.7829 0.4722 0.8322

Monks 0.5000 0.5000 0.5333 0.0000 0.5000 0.3922 0.8570 0.9406 0.3760 0.9342

New thyroid 0.3200 0.3000 0.3800 0.0000 0.0600 0.6481 0.9571 0.9571 0.6652 0.9473

Pima 0.5500 0.5750 0.4375 0.0000 0.0000 0.5382 0.8187 0.8187 0.5298 0.7911

Saheart 0.4556 0.6333 0.5778 0.0000 0.0000 0.7245 0.8841 0.8778 0.6857 0.8668

Sonar 0.5767 0.6633 0.6600 0.7183 0.2900 0.0422 0.8595 0.8974 0.0283 0.8899

Spectfheart 0.4977 0.6750 0.6614 0.2750 0.2727 0.5428 0.9426 0.9409 0.5331 0.9497

Tae 0.3000 0.4000 0.2200 0.1183 0.1291 0.1902 0.8727 0.8992 0.1847 0.8764

Tic-tac-toe 0.2444 0.2444 0.2889 0.0000 0.0000 0.0000 0.7917 0.8047 0.0000 0.8655

Vehicle 0.4722 0.4833 0.4778 0.2944 0.2549 0.3256 0.7895 0.7927 0.3082 0.8211

Vowel 0.3077 0.3077 0.3538 0.2894 0.2640 0.0162 0.7201 0.7366 0.0091 0.7552

Wine 0.4846 0.4538 0.4538 0.5231 0.3308 0.6593 0.9538 0.9557 0.5905 0.9451

Wisconsin 0.4556 0.3889 0.3222 0.0000 0.0444 0.3672 0.9027 0.9048 0.4036 0.9103

Yeast 0.1000 0.0875 0.1625 0.1256 0.0375 0.4428 0.7485 0.7485 0.4272 0.7550

Zoo 0.7063 0.7125 0.3750 0.2750 0.2125 0.2349 0.8714 0.8468 0.2150 0.8634

Average 0.4500 0.4872 0.4687 0.1791 0.1787 0.3316 0.8702 0.8731 0.3209 0.8779
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right-hand side, the reduction achieved over the set of

instances (the ratio of prototypes selected over the total

number of instances of the original training set).

Finally, Table 6 reports the time elapsed for the methods

in training phase (in seconds).4 Note that the running times

in the test phase are not reported since they are too low to

show interesting differences. Furthermore, the efficiency in

the test phase is already reflected by the reduction rates

achieved (the higher the reduction rates are, the less run-

ning time will be needed).

We can draw the following conclusions:

• The new hybrid approach, EFS-RPS, obtains the best

results in accuracy. As Table 3 shows, it achieves the

Table 6 Average time elapsed (training phase), in seconds

Data set EFS-RPS FS-SSGA PS-SSGA FPS-SSGA PS-FRW FS-RST EIS-RFS

Australian 111.35 161.39 79.16 48.14 21.53 0.70 82.54

Automobile 16.80 50.27 14.40 8.55 0.40 0.36 30.48

Bal 29.27 88.56 38.71 38.33 0.21 0.03 54.44

Bands 85.28 287.05 75.96 63.93 13.09 1.41 116.68

Bre 13.77 43.73 8.86 5.67 0.13 0.09 12.32

Bupa 13.60 32.65 13.70 11.33 1.25 0.04 20.71

Car 475.93 1619.67 442.19 520.30 1.17 0.20 560.60

Cleveland 20.25 33.37 11.89 9.04 1.61 0.10 19.29

Contraceptive 352.47 704.06 348.66 306.52 9.09 1.32 316.30

Crx 114.32 220.59 79.72 70.56 6.73 0.46 86.38

Dermatology 66.46 186.50 35.90 27.80 2.33 0.30 60.20

Ecoli 14.63 37.50 10.92 11.17 1.36 0.05 20.68

Flare-solar 183.55 349.09 160.00 123.76 0.95 0.01 183.44

German 448.56 591.00 252.59 167.51 1.63 2.07 304.94

Glass 6.95 15.93 5.39 5.18 0.53 0.05 10.30

Haberman 7.39 13.63 7.09 6.06 0.22 0.01 9.41

Hayes-Roth 1.79 5.00 2.68 2.52 0.09 0.02 3.86

Heart 15.19 32.98 8.03 7.01 1.18 0.06 14.57

Hepatitis 7.89 13.08 3.83 3.21 0.11 0.04 8.50

Housevotes 50.86 82.91 24.98 17.38 0.31 0.02 39.42

Iris 1.64 5.22 2.44 2.33 0.17 0.02 4.40

Led7Digit 36.43 88.31 25.05 28.87 0.18 0.01 40.50

Lym 6.44 11.77 3.97 3.23 0.09 0.02 8.14

Mammographic 123.48 205.34 116.67 77.57 1.62 0.20 127.75

Monks 18.91 46.18 20.72 14.22 0.16 0.02 27.92

New thyroid 3.93 11.76 3.68 3.63 0.40 0.01 8.03

Pima 88.43 175.95 85.38 72.09 17.65 0.29 96.68

Saheart 34.33 62.64 25.98 22.45 4.25 0.15 33.45

Sonar 39.49 66.79 17.12 13.86 0.78 0.40 136.71

Spectfheart 38.13 80.53 15.14 15.25 3.98 0.27 40.33

Tae 2.48 9.41 2.42 2.37 0.11 0.03 3.27

Tic-tac-toe 144.63 348.57 150.31 132.37 0.59 0.06 176.75

Vehicle 409.15 671.39 220.63 183.52 47.11 6.13 495.09

Vowel 495.70 867.64 270.26 241.58 60.75 4.39 461.71

Wine 3.77 14.80 3.62 3.34 0.48 0.03 7.67

Wisconsin 70.02 159.05 55.66 50.62 2.81 0.10 73.61

Yeast 295.60 825.97 354.55 364.96 109.57 1.47 420.58

Zoo 2.43 5.12 2.52 2.46 0.05 0.01 5.31

Average 101.35 216.46 78.97 70.75 8.28 0.55 108.50

4 The experiments have been carried out on a machine with a Dual

Core 3,20 GHz processor and 2GB of RAM, running under the

Fedora 4 operating System.
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best average result, and the best result for 13 out of 38

data sets. The introduction of fuzzy rough set theory to

improve the evolutionary techniques turns out to be

very effective when its results are compared with the

basic techniques considered in isolation.

• All the data reduction methods considered in the study

outperform the basic 1-NN accuracy, PS-FRW being

the best non-hybrid technique when the average

ranking is considered. FS and PS, when performed in

an effective way—such as using the preprocessing

methods considered in the study—are able to improve

the accuracy of the 1-NN classifier (sometimes provid-

ing a substantial improvement, such as in the case of

EFS-RPS, with an average accuracy increase of more

than 5 %. This aspect is further reflected by the starplot

represented in Fig. 1).

• The hybridization performed to design EFS-RPS has

not damaged the reduction power of the base tech-

niques on which it is based: as Table 5 reports, its

reduction rate over features is similar to the one

obtained by FS-SSGA, the evolutionary FS method

which guides its search; its reduction rate over

instances is also similar to the one obtained by PS-

FRW, its basic PS inner procedure. Hence, the hybrid-

ization has shown to be effective for increasing the

accuracy of the preprocessing technique without dam-

aging the reduction capabilities of the standalone

procedures.

• Concerning running time, Table 6 shows that EFS-RPS

has an average behavior: it is somewhat slower than the

evolutionary methods with high prototype reduction

power (PS-SSGA, FPS-SSGA), but faster than the

evolutionary methods that focus only on performing FS

(FS-SSGA). It is also faster than the hybrid preprocessing

method considered in the comparison (EIS-RFS).

The statistical study, performed to contrast the results

obtained in accuracy, confirms our analysis: the Friedman

Fig. 1 Starplot depicting the enhancement in accuracy of the 1-NN classifier when EFS-RPS is used for preprocessing the data. The differences

between the areas of the star represent absolute differences between the precision of both classifiers classifying unseen instances in test phase
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test detects significant differences among the methods

(with a p-value\10-6) and highlights EFS-RPS as the best

performing one, with a rank of 3.8158 (the lowest; see

Table 4). The Holm test establishes the existence of sig-

nificant differences between EFS-RPS and FS-RST, 1-NN,

FS-SSGA and PS-SSGA, which are further expanded by

the Finner test, marking as significant the comparisons

between EFS-RPS and FPS-SSGA and PS-FRW. Only the

differences between EFS-RPS and EIS-RFS are not strong

enough to be marked as significant.

Differences between the behavior of EIS-RFS and EFS-

RPS can be found if a smaller subset of problems is con-

sidered (instead of the large set of domains chosen in this

study); thus, a suitable choice may depend upon the spe-

cific problem to tackle. However, we can point out that the

small difference found between both hybrid methods can

be caused due to the lower variation in the possible feature

sets selected by EIS-RPS, which is not an issue for the

evolutionary FS part of EFS-RPS.

In summary, EFS-RPS can be highlighted for being a highly

accurate method for performing dual data reduction (including

FS and PS) for the 1-NN classifier. It improves the accuracy of

evolutionary and fuzzy rough set based data reduction

approaches without losing reduction power and without

increasing the time complexity of the procedures considered.

Therefore, it is a competent method for performing data

reduction which can be applied for improving the performance

of the 1-NN in any standard supervised classification domain.

5 Conclusions

In this work, we have proposed a new approach based on

fuzzy rough sets and evolutionary algorithms for per-

forming a simultaneous process of FS and PS. This data

reduction process is specifically designed to improve the

performance of the 1-NN classifier, both regarding test

accuracy and computational complexity.

The results achieved by EFS-RPS in the experimental

study performed have shown that it offers the best results

among all the related techniques selected for the compar-

ison; that is, the hybrid approach outperforms those

methods based only in either evolutionary techniques or

fuzzy rough set ones. Nonparametric statistical procedures

have been used to contrast this results, supporting the

conclusions arrived at.

These promising results allow us to point out further

extensions of the EFS-RPS model, and new directions of

research related. One of them would be to test the behavior

of the model when considering other base classifiers. That

is, to apply the model and preprocess the data using other

classifiers different than 1-NN. This extension would put

our approach in the field of Training Set Selection (see

(Kim 2006; Cano et al. 2007, 2008) for some promising

applications, and (Derrac et al. 2010b; Garcı́a-Pedrajas

2011) for two reviews on evolutionary approaches to the

field), analogous to PS, providing more generality in the

range of domains in which EFS-RPS can be applied.

Another interesting trend of research can be focused on

particular traits of the data. Imbalanced data sets (He and

Garcia 2009) pose a problem nowadays in many applications

of research. This tough problem requires the definition

of specific methods, measures and evaluation procedures;

however, the application of evolutionary preprocessing

methods for nearest neighbor classifiers and rough set theory

with success is still possible (see Garcı́a and Herrera 2009;

Ramentol et al. 2012, respectively). Hence, further research on

extensions of EFS-RPS could be focused on obtaining a

new version of the model, suitable for tackling imbalanced

domains.
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1. Introduction

The nearest neighbor (NN) rule is a nonparametric method for pattern
classification [43] based on instances [1]. Introduced by Fix and Hodges in
1951 [28], the NN rule gained considerable popularity after 1967, when some
of its formal properties were described by Cover and Hart [23]. Cover’s work
was the key milestone of a subject which now has become a lively research
field for many researchers in pattern recognition and machine learning [4, 95]
areas: the study and development of one of the top ten algorithms in data
mining [96].

Although the NN rule has been introduced in many research problems,
its foremost application belongs to supervised classification, where patterns
contained in a test set TS are classified using the patterns included in a
training set TR as reference. Here, a pattern x follows the usual definition
x = {x1, x2, . . . , xd, ω}, where d is the number of attributes that describe the
data and ω is its assigned class.

The general definition of the NN rule in supervised classification, the k
Nearest Neighbors classifier (k-NN), considers the use of the most similar
(nearest) k patterns in TR for deriving the class of a test pattern. More
formally, let xi be a training pattern from TR, 1 ≤ i ≤ N (N is the number
of patterns in TR) and xj be a test pattern from TS, 1 ≤ j ≤ M (M is the
number of patterns in TS). During the training process, the k-NN classifier
simply stores the true class ω of each training pattern xi. In test phase, the
decision rule predicts a class ω̂ for the test pattern xj, according to the true
class ω of the majority of its k nearest neighbors (its most similar patterns
from TR). In case of a tie, ω̂ is given by the closest nearest neighbor that
belongs to one of the tied classes.

Despite its simplicity, the k-NN classifier has been widely studied by many
perspectives, pursuing the improvement of its classification accuracy or easing
some of its well-known shortcomings. The most critical ones are the necessity
of storing the full training set when performing the classification task (in
contrast with most of machine learning procedures, which only require to
store a model); the relatively low efficiency of the computation of the decision
rule (due to the necessity of computing the similarity of the test pattern with
every pattern of TR); the low tolerance to noise of the classifier (especially
when k is set to k = 1) and the fact that the k-NN classifier relies exclusively
on the existing data, assuming that the training set defines perfectly the
decision boundaries among classes, which is not always the case.
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The aforementioned drawbacks have been analyzed extensively by the re-
search community. As a result, many approaches have been proposed regard-
ing, for example, the computation of similarity measures [16], the optimum
choice of the k parameter [59], the definition of weighting schemes for pat-
terns and attributes [91, 50], the adaptation of the algorithm to data [42],
the development of fast and approximate versions of the NN rule, devised to
quicken the computation of the nearest neighbors [36, 5], and the reduction
of the training data [30, 86, 22, 26].

Fuzzy Sets Theory (FST) [102] has been the basis of a remarkable number
of these approaches. Several traits of the k-NN classifier are inherently crisp,
and therefore prone to be extended and improved by incorporating the use
of fuzzy sets. These traits include the definition of a degree of membership
of the instances to a class, the use of similarity measures as a means of
fuzzyfying the contribution of each neighbor in the decision rule, the set up
of the k parameter and even the definition of new ways of combining the
votes of the nearest neighbors.

The study of these characteristics has been tackled considering FST, var-
ious extensions and related approaches including fuzzy rough sets [24], intu-
itionistic fuzzy sets [7], possibilistic theory [103] and type-2 fuzzy sets [57].

Supported by the former approaches, the development of the field has
raised since 1983 and 1985, with the first works in the area published by
Jóźwik [55] and Keller et al [58]. New approaches regarding both improve-
ments of the k-NN model and applications to real-world problems have been
proposed until nowadays, arousing the attention of many researchers and
practitioners.

In this work we present an study about the current status of fuzzy nearest
neighbor classification. A survey of methods is provided, focused in the ways
in which the NN rule has been extended and modified throughout these years.
A full taxonomy is proposed, considering the different techniques involved
in the development and description of the new proposals. This taxonomy
is founded on several distinctive traits identified among the most relevant
methods.

Moreover, a full experimental framework, including a set of well-known
publicly accessible and representative supervised classification problems, is
offered. This framework offers implementations of the essential methods
for reference, and suggest a statistical methodology based on nonparametric
procedures, which should be enough for providing a rigorous confirmation
of the differences reported in most of cases. The framework’s description is
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concluded with a case of use comparing fuzzy k-NN based methods with a set
of representative crisp k-NN based approaches. After the analysis of results,
the paper is finished with the suggestion of several interesting research trends
that remain opened within the topic.

The rest of this work is organized as follows: Section 2 presents a survey
on the existing literature, reviewing the most interesting proposals based on
fuzzy k-NN published. Fuzzy nearest neighbor algorithms are then charac-
terized, with respect to several distinctive traits. Section 3 shows the taxon-
omy proposed, based on common characteristics shared among the methods.
Section 4 describes our experimental framework, including data sets, algo-
rithms and statistical procedures. Section 5 shows the experimental study
performed. Section 6 discusses several open problems as a way of future
development of the field. Finally, Section 7 concludes the paper.

2. Fuzzy nearest neighbor algorithms

Many proposals have been presented after the publication of the first
works in the field. These proposals focus not only into improvements to the
classical model, but also in other topics such as the use of other extensions
of fuzzy sets, the addition of preprocessing mechanism based on data reduc-
tion, or the development of real-world applications, describing instances of
problems tackled successfully by fuzzy nearest neighbor techniques.

This section is devoted to survey relevant works in these directions, de-
scribing the key elements of each approach. After the survey, several common
properties of the methods are identified and described. These properties are
used to characterize the main approaches surveyed, providing with an insight
on the existing differences in the design of the methods.

2.1. A survey on fuzzy nearest neighbor classification

Since the presentation of the very first proposals, fuzzy nearest neighbor
classification has become a distinctive area within the field of nearest neigh-
bor classification and instance based learning. The addition of FST based
mechanisms to the traditional approaches has allowed the definition of very
accurate and flexible classification models, with outstanding results when
applied to supervised learning problems.

Through this section, both classical approaches and new extensions will
be surveyed, including proposals based on possibilistic theory, intuitionistic
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sets, fuzzy rough sets and data preprocessing. A description of other inter-
esting proposals using both nearest neighbor classification and fuzzy sets is
also included. The survey is finished with several remarkable examples of
applications of fuzzy nearest neighbor classification to real-world scenarios.

2.1.1. Nearest neighbor algorithms based on fuzzy sets theory

The first proposal of a fuzzy nearest neighbor classifier was presented by
Jóẃik [55] in 1983. This classifier, JFKNN, is an improved version of the
standard k-NN. It is based on a learning scheme of class memberships, pro-
viding to each training instance a membership array which defines its fuzzy
membership to each class. After the learning process, the final classification
is performed similarly to k-NN, but every neighbor uses its membership array
for the voting rule, instead of just giving one vote as in the crisp k-NN.

Two years later, Keller et al. [58] proposed what now has become the
major reference in this field (currently with more than 450 citations in the
ISI Web of Science). FuzzyKNN, the classifier described in this work, has
been the baseline of many advanced methods hybridizing FST and k-NN
classifiers. Furthermore, there is plenty of applications in many fields of
research based in this model, mainly due to its good behavior when tackling
supervised learning problems.

FuzzyKNN introduced two modifications to the original k-NN rule:

• A preliminary training phase is introduced. In this phase, class mem-
berships are derived for each training instance, obtaining a value in
[0, 1] for each instance and class. Although Keller proposed three dif-
ferent methods for computing these memberships 1 the best performing
method requires for each instance xi to compute the kInit nearest neigh-
bors in the training data 2. Then, memberships are assigned following
Equation 1

uc(xi) =

{

0.51 + (vc/kInit) ∗ 0.49 if c = ω

(vc/kInit) ∗ 0.49 otherwise.
(1)

1One of them is the ’crisp’ one: to assign a membership of 1 to the class of the instance
in the original data, and 0 to the rest of classes

2kInit is usually set to a value between (3, 10)
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where vc are the number of neighbors found belonging to class c, and
ω is the class of xi in the original data.

The effect of Equation 1 is that instances close to the center of the
classes kept their original crisp memberships3 but instances close to
the boundaries between classes will spread half of their membership
between the neighbors’ classes. However, it is interesting to note that
the 0.51 and 0.49 coefficients still ensure that the largest membership
will be assigned to the ω class, regardless of the neighboring instances
4. Also, the sum of the memberships to all classes will be always 1.

• A modified voting rule in which each neighboring instance votes for
every class, using the memberships learned during the training phase.
These votes are weighted according to the inverse of the distance to
the instance to be classified, and finally all votes are added. The final
class, ω̂, is obtained as the class with the greatest combined vote.

In addition to FuzzyKNN, Keller’s work also presented FuzzyNPC, which
is a prototypical version of FuzzyKNN. It works by using only one prototype
per class (which is obtained as the mean of every instance of the class in the
training data), obtaining ω̂ using the inverse of the distances computed to
each prototype. Hence, this classifier becomes a faster (but less accurate)
version of FuzzyKNN.

Another classical way of designing fuzzy nearest neighbor classifiers is
the use of clustering algorithms to estimate the membership values of each
training instance. In [8], Bedzek et al. proposed a fuzzy version of ISODATA
to perform this task for the k-NN classifier. Later, in [9], the Fuzzy C-Means
clustering algorithm was introduced for obtaining the memberships. Bereau
et al. [11] also presented a clustering algorithm for this task, but aiming to
minimize the entropy between classes, instead of maximizing the accuracy of
the underlying k-NN classifier.

All this classical approaches are reviewed by Yang et al. [98], whose work
also includes a theoretical proof that the FuzzyKNN rule is bounded above
by twice the Bayes risk, extending the results of Cover and Hart for the k-NN
rule [23]. The convergence properties of this error are also studied in [99],
extending the original review.

31 to their original class ω and 0 to the rest
40.51 or more to their original class ω and 0.49 or less to the rest
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Considering as starting point these classic aapproaches, many extensions
were developed introducing new schemes of computation of the weights, new
ways of calculating the distances, and other ways of improving the nearest
neighbors classifiers by using fuzzy sets.

The most common approach is the modification of the way in which mem-
bership weights are computed. In [39], the VWFKNN classifier sets weights
according to to the standard deviation of the neighbors’ class membership
values. In this way, weights can model a discriminant function identifying the
different classes of the classification problem. Another example is [78], where
Pham et al. designed a method based on a kriging system for obtaining the
membership weights.

Another trend of work is focused in the modification of the computa-
tion of distances. In [61] the distances between the instances are modified
depending on its typicalness. Using expert knowledge (expert council inter-
viewing for a medical problem, in this case) fuzzy decision rules are derived
in order to obtain an accurate nearest neighbor classifier. Fuzzy distances,
represented by fuzzy numbers, are also considered in [72]. In this second case,
the introduction of fuzzy distances allows Mitchell et al. method to adapt
automatically the value of k according to the local density of the training
instances.

Other extensions are focused in the enhancement of the FuzzyKNN by the
optimization of the kInit and m parameters. For example, GAFuzzyKNN
[45] employs a genetic algorithm for optimizing both values. A parallel im-
plementation of a genetic algorithm designed for this task is also presented
in [82].

2.1.2. Interval type-2 fuzzy sets based approach

Type-2 fuzzy sets has been the basis of a fuzzy nearest neighbor approach,
presented in [20]. In that work, the IT2FKNN classifier is proposed as an al-
ternative way for discarding the necessity of setting up the parameter kInit in
the original definition of FuzzyKNN. This is achieved by introducing interval
type-2 fuzzy sets for representing the memberships computed by considering
distinct choices of the parameter kInit. Type-2 fuzzy sets are built con-
sidering all the different memberships computed, and then a type reduction
operation is performed to obtain a final, combined value, representative of
all the choices considered initially. The rest of phases of the algorithm are
similar to the original definition of FuzzyKNN.
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2.1.3. Possibilistic k-NN methods

Possibilistic classification extends fuzzy classification in the sense that
the set of memberships assigned to every instance is not constrained; that
is, in most of fuzzy classification approaches the sum of the membership
degree to every class of each instance must be 1 (see, for example, Equation
1 for FuzzyKNN). This property does not hold in possibilistic classification,
which means that non-canonical situations can be represented using this
paradigm: Using a possibilistic model an instance could belong to two classes
simultaneously (that is, it might have a degree of membership of 1 to more
than one class), or could not be a clear representative of any class (having a
sum of memberships much lower than 1).

D-SKNN [25] is the first example implementing this model. It is a k-NN
classifier based on the Dempster-Shafer theory, and incorporates mechanisms
to manage uncertainty and rejection of unclear instances. Another model
related have been recently proposed in [27], incorporating lower previsions
as generic models for uncertainty management.

Possibilistic instance based learning is also analyzed in [48]. The paper
is focused in the development of a theoretical possibilistic framework, link-
ing its properties with those of nearest neighbor classification and analyzing
advanced concepts about uncertainty in nearest neighbor classification, sim-
ilarity measures, noise and outliers detection, and incomplete information
management. It also present a classifier based in this concepts, PosIBL,
which does not need the specification of the k parameter of the classic k-NN
rule.

2.1.4. Intuitionistic k-NN methods

Intuitionistic fuzzy sets have been also used to develop fuzzy nearest
neighbor classifiers. By incorporating the concept of nonmembership, some
additional situations can be modeled in an effort to characterize the classifi-
cation problems as accurately as possible.

In [37] the IFSKNN classifier was proposed. In this algorithm, a value of
membership is computed for each instance, as the distance to the mean of
the class. Then, the nonmembership value is computed in a similar way, as
the distance to the nearest mean of the rest of the classes. This enables to
represent typical instances, near to the center of the classes, with a high de-
gree of membership whereas noisy instances, nearer to the center of different
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classes, will be assigned with a high degree of non membership 5. The clas-
sification is completed using the membership and nonmembership to modify
the distances computed by a k-NN classifier.

A second approach using intuitionistic fuzzy sets was presented in [62].
IF-KNN considers the nonmembership degree as the opposite of the mem-
bership of each instance to the class, and employs both values to determine
the contribution of each neighbor’s vote to the final classification.

Finally, in [38] the IFV-NP classifier was proposed. It is a prototypical
version of IFSKNN, in which after obtaining the prototypes a procedure
is carried out to adjust the degrees of membership and nonmembership in
accordance with the distances to the center of the classes.

2.1.5. Preprocessing approaches via data reduction

Preprocessing methods have become an effective way of enhancing the
performance of general nearest neighbor classifiers. Among them, prototype
selection [30] and prototype generation [86] fields have inspired the first pre-
processing methods for fuzzy nearest neighbor classifiers.

Regarding prototype selection, the FENN classifier [100] is based on Wil-
son’s editing rule for k-NN [93]: All instances in the training set are checked
and those whose classification by the FuzzyKNN rule does not agree with its
original class are removed. CFKNN [104] is also inspired in a classic method,
the Hart’s condensing rule [40], but using the sample fuzzy entropy to deter-
mine whether an instance is finally removed or kept. Another representative
example is the PFKNN method [6], which firstly build a set of prototypes
representing the border points of different clusters in the data and then adds
to this reference set those instances which could be misclassified. The algo-
rithm concludes with a pruning phase in which non-relevant prototypes are
discarded.

Finally, it is also possible to find prototype generation methods such as,
for example, the Gayar et al. method [34], which describes the use of Fuzzy
C-Means for obtaining the membership weights of prototypes generated in
an iterative way.

5Note that with this representation, outliers - instances which are far from all the
classes - will be represented with very low degrees of membership and nonmembership,
thus the degree of indeterminateness can be used s a way of representing outliers in the
training data
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2.1.6. Fuzzy rough sets based approaches

Recently, several approaches for nearest neighbor classification based on
fuzzy rough sets have been proposed. Most of them aim to improve the
quality of the classification performed with the combined support of the
rough sets and fuzzy sets theories.

A first proposal, FRNNA, was presented in [12]. This classifier incorpo-
rates the lower and upper approximations of the memberships to the decision
rule, in an effort to deal both with fuzzy uncertainties and rough uncertain-
ties. A second proposal - FRNN [83] - develops further this aspect, associat-
ing fuzzy uncertainties to the existing overlapping between classes and rough
uncertainties to the lack of a proper number of features to describe the data.
Another main feature of this method is that it does not require to fix a k
value for the classification rule.

Fuzzy-rough nearest neighbor classification is developed in [52]. In these
works, the FRNN-FRS and FRNN-VQRS classifiers are described. They
employ fuzzy rough sets and vaguely quantified rough sets, respectively. The
first classifier is presented as an improvement of FRNN, whereas in the second
one vaguely quantified rough sets are introduced to reduce the sensitivity of
the classifier to noise. Finally, a further step in fuzzy-rough nearest neighbor
classification is presented in [79], where Qu et al. presents an approach to
hybridize kernel-based classification with fuzzy rough sets.

2.1.7. Further extensions

Besides the flourishing number of proposals appeared in the literature,
presenting a rich variety of fuzzy nearest neighbor classifiers, the joint use
of fuzzy sets and the nearest neighbor classifier has gone beyond. Several
works, focused either in the application of fuzzy nearest neighbor rules to
tackle different problems (instead of classification) or in other ways of com-
bining FST and k-NN. This subsection surveys some of the most interesting
approaches:

• The success of FuzzyKNN and other fuzzy nearest neighbor classi-
fiers has inspired similar techniques for incremental data problems [85]
(when the full training set is not available at the training phase), out-
liers detection in temporal series [75], regression [81], semi-supervised
learning for monitoring evolving systems [41], multi-label text catego-
rization [53] or low quality data problems [69].
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• FST has become an interesting tool for the enhancement of the clas-
sic k-NN classifier throughout data preprocessing approaches. Some
remarkable examples include [49, 73] where an evolutionary instance
selection method is presented and extended. The method is enhanced
through the transformation of the instances into circular-conic fuzzy
rules, which are finally used to train the classifiers. Instance selection
is also the focus of [51] and [56], where two different instance selection
methods based on fuzzy rough sets are described.

Besides preprocessing approaches, several works have also investigated
further ways of extending the nearest neighbor classifiers . For example,
in [97], a theoretical description of a lineal programming method is
provided. This method is aimed to the design of ordered weighted
average operators for the decision rule of k-NN. A different approach
is presented in [65], which includes an approximated nearest neighbor
classifier [5] as a fast classification model, based on fuzzy rough sets.

• Finally, FuzzyKNN has also been considered as a part of larger and
more complex classification algorithms such as [101], where a boost-
ing approach including FuzzyKNN, evolutionary feature selection and
decision trees is presented. Another example is [35], where a genetic
algorithm is used to optimize a one-versus-all ensemble of FuzzyKNN
classifiers. In [19], Chua et al. proposed an hybrid algorithm includ-
ing a genetic fuzzy system, FuzzyKNN and a weighting scheme for the
distance function of the classifier. Also, in [14], a model integrating
FuzzyKNN and several multi layer neural networks as the core of a
Mamdani type fuzzy inference system is proposed.

2.1.8. Applications

Fuzzy nearest neighbor classifiers have been selected by many practition-
ers in very different fields of science and industry. Among them, FuzzyKNN
stands out as the preferred choice in a remarkable number of applications.
Besides, it is also noteworthy the amount of proposals describing very spe-
cific modifications of the original classifiers, designed to tackle the difficulties
that arise in each problem.

The first application was presented by Cabello et al. [13] where the Fuzzy
C-Means clustering algorithm and FuzzyKNN are used together to tackle a
problem of arrhythmia detection. Other recent applications are [17], where
diabetes diseases are diagnosed by incorporating FuzzyKNN to a full artificial
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immune recognition system, and [71], where the joint use of particle swarm
optimization, principal component analysis and FuzzyKNN is proposed for a
thyroid disease diagnose problem.

Other medical technologies have also been benefited by the use of fuzzy
nearest neighbor classifiers: Liao et al. ([66, 67, 68] presented several ap-
proaches for classifying radiographic images, including the use of feature ex-
traction, Fuzzy C-Means clustering and FuzzyKNN. Another remarkable ex-
ample is [64], where Leszczynski et al. analyze the performance of FuzzyKNN
with different classic distance measures (euclidean, mahalanobis, etc.) in a
framework of decision making in radiotherapy.

Another major field of application is bioinformatics. Many approaches for
protein identification and prediction includes FuzzyKNN [47, 88, 44], with
some of them incorporating additional mechanisms, such as [60], where a
parallel implementation of FuzzyKNN is suggested.

Outside of the medical and bioinformatics fields there is also plenty of
applications selecting FuzzyKNN as a suitable classifier (for example, [80]
developing a wine classification system, [46] where FuzzyKNN is used to
classify web documents, and [87] in which a computer vision approach for
duck meat color classification is presented).

Moreover, it is also easy to find other applications in which FuzzyKNN
is combined with preprocessing techniques (for example, [54] using Fuzzy
C-Means for preprocessing data describing a cellular manufacturing system,
or [63] which includes principal component analysis for reducing the dimen-
sionality of data in a mold detection problem) or with other general methods
(such as the recent proposals of [15] for bankruptcy prediction incorporat-
ing FuzzyKNN in a particle swarm optimization scheme, or [18] combining
the output of several FuzzyKNN classifiers in a human action recognition
problem.

Finally, there are not many applications including advanced fuzzy nearest
neighbor classifiers, being [105] and [77] one of the most remarkable. In the
former work, Zhu et al. presented a classifier inspired in D-SKNN, incorpo-
rating a fast implementation scheme, and applied it to image classification
problems. In the later, Petridis et al. designed a k-NN method based on
fuzzy interval numbers for the prediction of sugar production throughout
different years.
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2.2. Common properties of fuzzy nearest neighbor algorithms

Many different characteristics govern the behavior of the different fuzzy
nearest neighbor algorithms appeared in the literature. However, there are
several common traits of major importance, from the point of view of nearest
neighbor based classification, which are worth of analysis:

• Membership degree to a class: In the crisp definition of the NN rule,
training patterns are restricted to belong to a single class, regardless
of their spatial properties. Allowing fuzzy memberships (i.e. replacing
ω by a membership function representing the pattern’s assignment to
two or more classes) can be very useful for modeling many difficult
(but usual) situations in supervised classification, such as uncertain
knowledge about the true class of a pattern (e.g due to the presence of
noise).

• Similarity measure: The usage of similarities between patterns as a way
of fuzzyfying the contribution of each neighbor to the decision process
may allow an enhancement of the discriminative power of the training
data, thus improving the classification performance.

• Decision rule: In the k-NN classifier, the final decision about the ω̂
class of a test pattern is given by a single majority voting process.
Other decision rules may be derived to combine the votes of the nearest
neighbors, providing the classifier with new ways of assigning the ω̂ class
of the test pattern.

Hence, these traits can be categorized into 3 groups: Membership, Dis-
tance and Voting. Each of the techniques analyzed will only show one trait
of each category. A last category, Others, includes additional traits that
may belong or not to any technique. A description of each category and
every trait is given as follows:

• Membership: This category refers to the way in which the instance’s
memberships to each class of the problem is represented. Four different
schemes are considered:

– Crisp scheme: Classical crisp memberships are used; that is, in-
stance’s memberships are considered to be 1 to the particular class
to which the instance belongs, and 0 to the rest.

13



– Fuzzy scheme: A fuzzy set defines the instance membership to
each class. In this case, the sum of the memberships of a instance
to all the classes of the problem will be always 1. No other restric-
tions are imposed, although it is very common for methods using
this scheme to assign a higher membership degree to the class to
which the instance belongs in the initial training data.

– Possibilistic scheme: In this extension of the fuzzy scheme, the
requirement of having the sum of all memberships equal to 1 is
lifted. Usually, class membership degrees still are normalized in
the [0, 1] interval, but here there is no objection to represent an
instance with full membership to several classes or without be-
longing to any class at all.

– Intuitionistic scheme: When intuitionistic sets are used, two values
(in [0, 1]) are used to represent each instance membership (mem-
bership and non membership). Both values are simultaneously
managed by the algorithm decision rule during the classification
process.

• Distance: This category refers to the way in which the distances com-
puted between the instance to be classified and each training instance
are considered:

– Inverse weight: The most common approach is to use the inverse
of the similarity value computed (usually the Euclidean distance
between the test and the training instance) as a weight for increas-
ing the strength of the neighbor vote in the decision rule.

– Distance modulation: Different schemes can be applied for incor-
porating the distances computed to the decision rule, modifiying
its effect trough the use of additional procedures such as kernels
or exponential relations.

– Not used: Some of the techniques analyzed does not consider the
absolute value of similarity computed in the decision rule. Still,
they use distances to find the nearest neighbors of the test in-
stance, but these values are disregarded as soon as the neighbors
have been found.

• Voting: The definition of the voting rule used by the classifier. Typi-
cally, an additive scheme is chosen, which means that votes emitted by
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each neighboring instance (possibly weighted by its relative distance to
the test instance) are added to create the final output of the classifier.
However, different voting schemes may be selected:

– Classical: An additive scheme is used for combining the neighbors’
votes.

– Global: Every instance in the training set is considered for the
voting process (instead of just the neighboring instances).

– Best neighbor: Only the best neighbor found among the k nearest
ones (not necessarily the nearest) is used to determine the output
of the classifier.

• Others: In this category, other relevant traits of nearest neighbor clas-
sifiers are included:

– Independence of k: The method does not requires a value of k to
be set for the decision rule.

– Preprocessing: Besides the classification process, this technique
also performs some kind of data preprocessing. Thus, as a side
effect, the original training data is usually reduced (for example,
by means of a prototype selection or generation technique). Note,
however, that the main objective of the method is still the classi-
fication task.

– Center based: The classification is oriented to relate test instances
with the class whose center is nearest. This effect - desirable for
many classification problems, although it may be harmful in cer-
tain cases - is typical for those techniques which rely on a cluster-
ing procedure for analyzing the training data.

Table 1 displays a summary of such characteristics, highlighting which
fuzzy nearest neighbor algorithms share them.

In each row, a check mark (X) is shown for each specific capability pos-
sessed by the respective algorithm. Algorithms are denoted either by their
acronym 6 or by their author’s name. Algorithm’s main reference is also
provided.

6These algorithms are part of the experimental framework that will be presented fur-
ther; their full name will be provided in Table 3
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Table 1: Common characteristics of fuzzy nearest neighbor algorithms

Acronym/Name Ref. Member. Distance Voting Others
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JFKNN [55] X X X X

FuzzyKNN [58] X X X

FuzzyNPC [58] X X X X X X

FCMKNN [9] X X X X

Kissiov et al. [61] X X X

D-SKNN [25] X X X

IFSKNN [37] X X X X

IF-KNN [62] X X X

FENN [100] X X X X

VWFuzzyKNN [39] X X X

IFV-NP [38] X X X X X X

Mitchell et al. [72] X X X X

IT2FKNN [20] X X X

PosIBL [48] X X X X

FRKNNA [12] X X X

Pham et al. [78] X X X

Gayar et al. [34] X X X X X X

GAFuzzyKNN [45] X X X

FRNN [83] X X X X

PFKNN [6] X X X X

CFKNN [104] X X X X

FRNN-FRS [52] X X X

FRNN-VQRS [52] X X X

Qu et al. [79] X X X

Desterke et al. [27] X X X
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3. Taxonomy

By considering the traits described in the former section, it is possible
to detail a general categorization for the fuzzy nearest neighbor algorithms.
Figure 1 proposes a taxonomy founded both in the general field in which
each technique is based and in some of the traits analyzed previously.

The first level of the taxonomy is devoted to describe each technique
depending on its main category: Fuzzy sets, type-2 fuzzy sets, possibilistic
methods, intuitionistic fuzzy sets, fuzzy rough sets and preprocessing ap-
proaches via data reduction. Among these categories, and second and a
third level is introduced to discriminate between methods belonging to the
same field:

• For fuzzy sets based approaches, the main differential characteristics are
the independence to the k value and the usage of distances to weight
the computation of the votes in the decision rule.

• Possibilistic methods are also categorized depending if they are depen-
dent to the set up of the k value or not.

• Similarly to the latter, intuitionistic fuzzy sets based methods are also
categorized by their dependence to the set up of the k value. Besides,
intuitionistic methods dependent to k can be further characterized as
center based methods, focused on determining the center of each of
the classes of the problem and adapt their classification scheme to the
centers found.

• Fuzzy rough sets based method can be characterized regarding the
scheme used for representing the membership of the training instances
to the classes of the problem: The can use either fuzzy weights, possi-
bilistic weights or crisp weights.

• The natural way of classifying preprocessing based approaches is to
refer to the preprocessing field in which their are inspired (prototype
selection or prototype generation). In addition, some prototype gener-
ation based techniques can be categorized as center based methods.

The properties displayed in this taxonomy may be very helpful in under-
standing how an specific algorithm works, enabling also the inclusion of new
algorithms developed in the future. Albeit other different schemes could have
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Figure 1: Proposed taxonomy of fuzzy nearest neighbor classifiers. Each method is be
categorized into one of the six major classes: Fuzzy sets, type-2 fuzzy sets possibilistic
methods, intuitionistic fuzzy sets, fuzzy rough sets or preprocessing approaches via data
reduction. These classes are further divided according to some key properties of the
classifiers, including the dependence to the k parameter, the use of distances for weighting
the votes and other relevant traits.
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been chosen here, the different levels established ensure that any technique
(already analyzed or new) can be easy placed in one of the major categories,
using the second and the rest of levels to refine its categorization as much as
necessary.

4. Experimental framework for fuzzy nearest neighbor classifiers

A critical step in the analyses of computational intelligence methods is
the test of their behavior under a controlled environment. In the context of
supervised classification, this requires to consider several elements including
problems instances, comparison methods and evaluation tools.

In this section, we present the experimental framework developed for
analyzing the most representative fuzzy nearest neighbor classifiers of the
state of the art. It will provide useful material for characterizing the current
status of the field, easing the experimental comparisons required in future
developments.

The elements included in the framework are the following:

• Data sets: A large set of 44 well-known supervised classification data
sets is provided, and their main characteristics are described.

• Fuzzy nearest neighbor classifiers: The framework features a library
including the most relevant fuzzy nearest neighbor classifiers in the
state of the art.

• Comparison algorithms: A collection of several representative crisp
nearest neighbor classifiers is presented. They will be considered for
testing the behavior of the best performing fuzzy nearest neighbor clas-
sifiers in a more general scenario.

• Parameters configuration: The guidelines followed to configure the pa-
rameter of each method are described. Also, the set up considered for
the k parameter is discussed in depth, given its importance with respect
to most of the methods.

• Performance measures: Several performance measures have been con-
sidered for analyzing the behavior of the methods. Their characteristics
are described, as well as the motivations for including them into the
experimental study.
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• Statistical procedures: Several hypothesis testing procedures are con-
sidered to determine whether the differences found in the experimental
study between the performance of multiple algorithms are significant
or not.

All the contents of this framework are publicly available in http://

sci2s.ugr.es/fuzzyKNN/framework.php. They are described in depth through-
out the rest of this section.

4.1. Data sets

The framework includes 44 supervised classification data sets. This is
a compilation of well-known problems in the area, taken from the KEEL-
dataset repository 7 [2] and the UCI repository [29].

Table 2 summarizes the main characteristics of the data sets. For each
one, the table provide its number of instances (#Ins.), attributes (#At.)
and classes (#Cl.).

The data sets considered are partitioned by using the ten folds cross-
validation (10-fcv) procedure, and their values are normalized in the interval
[0, 1] to equalize the influence of attributes with different range domains.

Note that no data set includes nominal values, and instances with missing
values have been discarded. As will be discussed later, this is a limitation of
the methods in the current state of the art: Nominal and missing values are
often neglected by most of the existing fuzzy nearest neighbor classifiers.

4.2. Fuzzy nearest neighbor classifiers

The library of fuzzy nearest neighbor classifiers features 19 different meth-
ods. All of them have been coded in Java, under the guidelines of the KEEL
project [3]. They have been coded considering all the instructions provided
by the authors in their respective papers.

Table 3 list the methods included. For each one we provide its acronym,
name, year of publication, and the main reference (Ref.) describing the
work. We consider that this selection properly represents the current state
of the art in the area. Note that we have not considered those approaches
whose description in its original work was incomplete, or whose use require
additional resources (such as [61], where expert human knowledge is required
to be gathered prior to running the algorithm).

7http://www.keel.es/datasets.php
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Table 2: Data sets included in the framework

Data set #Ins. #At. #Cl. Data set #Ins. #At. #Cl.

Appendicitis 106 7 2 Penbased 10992 16 10
Balance 625 4 3 Phoneme 5404 5 2
Banana 5300 2 2 Pima 768 8 2
Bands 539 19 2 Ring 7400 20 2
Bupa 345 6 2 Satimage 6435 36 7
Cleveland 297 13 5 Segment 2310 19 7
Dermatology 358 34 6 Sonar 208 60 2
Ecoli 336 7 8 Spambase 4597 57 2
Glass 214 9 7 Spectfheart 267 44 2
Haberman 306 3 2 Tae 151 5 3
Hayes-roth 160 4 3 Texture 5500 40 11
Heart 270 13 2 Thyroid 7200 21 3
Hepatitis 80 19 2 Titanic 2201 3 2
Ionosphere 351 33 2 Twonorm 7400 20 2
Iris 150 4 3 Vehicle 946 18 4
Led7Digit 500 7 10 Vowel 990 13 11
Mammographic 830 5 2 Wdbc 569 30 2
Marketing 6876 13 9 Wine 178 13 3
Monk-2 432 6 2 Winequality-red 1599 11 11
Movement 360 90 15 Winequality-white 4898 11 11
New Thyroid 215 5 3 Wisconsin 683 9 2
Page-blocks 5472 10 5 Yeast 1484 8 10
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Table 3: List of methods included in the framework

Acronym Name Year Ref.

JFKNN Jóźwik Fuzzy K-Nearest Neighbor algorithm 1983 [55]
FuzzyKNN Fuzzy K-Nearest Neighbors classifier 1985 [58]
FuzzyNPC Fuzzy Nearest Prototype classifier 1985 [58]
FCMKNN Fuzzy C-Means 1986 [9]

K-Nearest Neighbors classifier
D-SKNN Dempster-Shafer theory based 1995 [25]

K-Nearest Neighbors classifier
IFSKNN Intuitionistic Fuzzy Sets 1995 [37]

K-Nearest Neighbors classifier
IF-KNN Intuitionistic Fuzzy 1995 [62]

K-Nearest Neighbors classifier
FENN Fuzzy Edited Nearest Neighbor classifier 1998 [100]

VWFuzzyKNN Variance Weighted Fuzzy 1999 [39]
K-Nearest Neighbors classifier

IFV-NP Intuitionistic Fuzzy Version of 2000 [38]
K-Nearest Neighbors classifier

IT2FKNN Interval Type-2 Fuzzy 2003 [20]
K-Nearest Neighbors classifier

PosIBL Possibilistic Instance Based Learning 2003 [48]
FRKNNA Fuzzy Rough K-Nearest Neighbors Approach 2003 [12]

GAFuzzyKNN Genetic Algorithm for 2005 [45]
Fuzzy K-Nearest Neighbors classifier

FRNN Fuzzy-Rough Nearest Neighbor algorithm 2007 [83]
PFKNN Pruned Fuzzy K-Nearest Neighbors classifier 2010 [6]

FRNN-FRS Fuzzy-Rough Nearest Neighbor classifier - 2011 [52]
Fuzzy Rough Sets

FRNN-VQRS Fuzzy-Rough Nearest Neighbor classifier - 2011 [52]
Vaguely Quantified Rough Sets

CFKNN Condensed Fuzzy 2011 [104]
K-Nearest Neighbors classifier
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4.3. Comparison algorithms

Besides the full library of fuzzy nearest neighbor classifiers, we have added
to our study a set of representative crisp nearest neighbor classifiers. Its
inclusion in the study will allow to test the behavior of the fuzzy nearest
neighbor classifiers in a more general environment, considering a wider range
of methods. The crisp nearest neighbor classifiers chosen are described as
follows:

• k-NN classifier (k-NN): The performance of the k-NN classifier will
be studied as a reference for the rest of methods [23].

• Edited Nearest Neighbors (ENN):A prototype selection algorithm
based on the edition of noisy instances. Instances whose class do not
match their nearest neighbors’ class are removed from the training set.
After the edition process, the k-NN classifier is used to obtain the final
classification [93].

• Integrated Decremental Instance-Based Learning algorithm
(IDIBL): An integrated model featuring instance selection, selection
of kernel function for the voting process, and automatic determination
of the k value and other related parameters [94].

• Adaptive k nearest neighbors classifier (KNNAdaptive): A
modification of the distance measure of the NN rule. Distances in
this method are divided by the distance of the reference prototype to
its nearest enemy (the nearest prototype from a different class) [90].

• k Symmetrical nearest neighbors classifier (KSNN): Amodifica-
tion of the voting rule of the NN classifier, where votes are considered
for those instances for which the test instance would be one of its k
nearest neighbors [74].

• Nearest Subclass Classifier (NSC):An application of the minimum
variance clustering method to the generation of prototypes for the NN
rule [89].

• Prototype Weighting algorithm (PW): A gradient descent based
algorithm developed for computing prototype weights to minimize the
leave one out error of the NN rule over the training set [76].
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4.4. Parameters configuration

An essential factor in the set up of the experimental study is the configu-
ration of the different parameters that governs the behavior of each method.
In the majority of cases, the experiments related focus their attention in the
k parameter, highlighting a best value for each method or testing different
values. In this study, given the wide range of approaches considered and the
variability between author’s recommendations in each work, we have chosen
to take a representative set of fixed values for the k parameter, k ∈ {3, 5, 7, 9}.

On the first hand, k = 1 is excluded since, as with most of classical near-
est neighbor approaches, the majority of fuzzy nearest neighbor algorithms
become the 1-NN rule when a single neighbors is considered, regardless the
additional fuzzy-based mechanisms incorporated. On the other hand, no fur-
ther values of k than k = 9 are considered. This is due to the smoothing
nature of the k parameter, which, if increased too much, may render powerless
the discriminative capabilities of most of the nearest neighbor classification
algorithms, being degenerated to a majority classifier. If fact, most of the
experimental studies in nearest neighbor classification follow this rationale,
sticking to some of the k values defined above.

The rest of configuration parameters are fixed to the values recommended
by the respective authors (the similarity function considered is the Euclidean
one). For the sake of fairness, in those cases where the k needs not to be
chosen (either because it is determined automatically or because it is not
necessary to choose a value), a similar number of configurations has been
considered, tunning other specific parameters regarding author’s recommen-
dations.

All the methods included in the experiments, both fuzzy and crisp nearest
neighbor classifiers, will follow these parameter configuration rules.

4.5. Performance measures

Several performance measures can be considered for analyzing the differ-
ent algorithms of the study. In this case, accuracy and kappa are considered
as precision measures, whereas running time is chosen for measuring the
efficiency of the methods in general terms.

Accuracy is defined as the number of successful hits relative to the total
number of classifications. It has been by far the most commonly used metric
for assessing the performance of classifiers for years [95, 4]. Cohen’s kappa
[21] is an alternative to the accuracy rate, a method, known for decades,
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that compensates for random hits in the same way as the AUC measure [10].
Kappa can be computed using the following expression:

kappa =
N

∑c

i=1 xii −
∑c

i=1 xi.x.i

N2 −
∑c

i=1 xi.x.i

(2)

where xii is the cell count in the main diagonal of the classification con-
fusion matrix, N is the number of examples, c is the number of class values,
and x.i, xi. are the columns and rows total counts, respectively. Kappa ranges
from -1 (total disagreement) through 0 (random classification) to 1 (perfect
agreement). For multi-class problems, it is a very useful, yet simple, metric
for measuring the accuracy of the classifier while compensating for random
successes.

Finally, average running time (per partition) is considered as a way of
measuring the differences between methods with respect to computational
cost. Its consideration will allow to determine which methods require a larger
amount of time to complete the classification tasks.

4.6. Statistical procedures

Once an experimental study has been carried out and its main results
have been gathered, researchers can start to analyze the performance of the
methods considered. For the sake of correctness, these kind of analyses of-
ten require the use of statistical procedures to provide a proper statistical
support.

When using this framework, we recommend to consider the use of non-
parametric statistical tests [84]. Their use is preferred over parametric ones
when the initial conditions that guarantee the reliability of the parametric
tests (independence, normality and homocedasticity) may not be satisfied,
which is a common issue in many machine learning experimental set-ups
[32, 31].

Several nonparametric procedures are suited for the aforementioned cases.
Specificly, for multiple comparisons involving several procedures, we will con-
sider the use of the Friedman test, together with a post-hoc procedure for
analyzing families of hyphoteses interrelated, namely the Shaffer post-hoc
procedure. This set of statistical methods will allow to contrast and confirm
the results obtained in the experimental studies carried out [33].

More information about these tests and other statistical procedures specif-
ically designed for use in the field of machine learning can be found at the
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SCI2S thematic public website on Statistical Inference in Computational In-
telligence and Data Mining (http://sci2s.ugr.es/sicidm).

5. A case of study: Experimental comparison between fuzzy and
crisp nearest neighbor classifiers

In this section a case of study analyzing the behavior of fuzzy nearest
neighbor classifiers is conducted, based on the experimental framework al-
ready described. The experimental study is divided into two stages:

• A first stage testing the performance of the fuzzy nearest neighbor
classifiers over the full collection of data sets included in the framework.

• A second stage featuring a comparison between the best performing
fuzzy nearest neighbor classifiers and a selection of state of the art
crisp nearest neighbor classifiers.

The purpose of this study is threefold: Firstly, it provides some insights
into the current state of fuzzy nearest neighbor classification, when standard
supervised problems are considered. Secondly, the behavior of the best per-
forming methods is characterized in a general nearest neighbor classification
scenario. And finally, it serves as an example on the use of the experimental
framework proposed in this work, showing how to make the most of its main
features.

An extended version of the definitions and results obtained in this ex-
perimental study is publicly available in http://sci2s.ugr.es/fuzzyKNN/

study.php.

5.1. First stage: Comparison of fuzzy nearest neighbor classifiers

In this first stage of the study, we have considered all the fuzzy nearest
neighbors classifiers implemented in the library (excepting JFKNN, since it is
not able to tackle the largest data sets in a reasonable running time). Average
accuracy and kappa results have been collected in two different ways:

• Firstly, a fixed value of k has been selected for each classifier, according
with the average accuracy/kappa obtained with each different set-up
(k ∈ {3, 5, 7, 9}, as noted in Section 4.4). The results obtained using
this fixed value of k (the best among the four possibilities) have been
termed as Accuracy/Kappa (Fixed k) results.
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• Secondly, the best average accuracy/kappa value per data set has been
chosen (considering k ∈ {3, 5, 7, 9} again). The average results ob-
tained using the best value of k for each data set have been termed as
Accuracy/Kappa Best) results.

Table 4 shows the results obtained, sorted from best performing (lowest
value in running time column, greatest value otherwise) to worst. For each
algorithm and performance measure (accuracy and kappa considering fixed k
and best k values, and running time) an average value is reported. For fixed
k performance measures, the value of k chosen is also shown. A * symbol is
used for those methods which do not require to fix the value of k. In this
case, the results refer to their best configuration (as noted in Section 4.4)
and their best configuration per data set.

Note that the results have been obtained through gathering every single
result obtained by each algorithm, data set and cross validation partition.
For the sake of simplicity, these results have been averaged to obtain a single
value per algorithm and data set (as is usually recommended in supervised
classification experimental studies).

These results can be contrasted by using the Friedman statistical test.
After analyzing the average results obtained regarding accuracy (with fixed
k value), the test reports a p-value of 1.38 · 10−10, which means that signifi-
cant differences are found among the algorithms. Using the Shaffer post-hoc
procedure, 66 differences (out of 153 pairwise comparisons) are found as sig-
nificant at a α = 0.1 level. Table 5 summarizes the results of both tests,
including for each algorithm the rank obtained in the Friedman test and the
number of methods for which it is statistically better (+) or equal or better
(±) at two different significance levels (α = 0.1 and α = 0.01, considering
the adjusted p-values computed by the Shaffer test).

The results shown in both tables can be analyzed as follows:

• Considering accuracy results with a fixed value of k, the best algorithms
are IT2FKNN, GAFuzzyKNN and FuzzyKNN. If the algorithms are
compared considering their respective categories in the taxonomy, the
best performing algorithms are FuzzyKNN (Fuzzy Sets), IT2FKNN
(Type-2 Fuzzy Sets), D-SKNN (Possibilistic methods), IF-KNN (In-
tuitionistic Fuzzy Sets), FRNN-FRS (Fuzzy Rough Sets) and FENN
(Preprocessing Methods via Data Reduction). It is also noticeable that
low values for the k parameter (3 and 5) produce better results for most
of the methods, excepting IT2FKNN and PFKNN.

27



Table 4: Summary results obtained in the first stage: fuzzy nearest neighbor classifiers
Accuracy (Fixed k) k Accuracy (Best) Kappa (Fixed k) k Kappa (Best) Running time

GAFuzzyKNN 0.8130 5 GAFuzzyKNN 0.8204 GAFuzzyKNN 0.6415 5 GAFuzzyKNN 0.6558 FuzzyNPC 0.0409
IT2FKNN 0.8111 7 FuzzyKNN 0.8190 IT2FKNN 0.6354 7 FuzzyKNN 0.6524 PosIBL 2.7363
FuzzyKNN 0.8110 5 IT2FKNN 0.8181 FuzzyKNN 0.6366 7 IT2FKNN 0.6484 FRNN-VQRS 2.9070
D-SKNN 0.7985 5 D-SKNN 0.8136 D-SKNN 0.6167 5 D-SKNN 0.6468 FRNN-FRS 3.0145
IF-KNN 0.7972 3 IF-KNN 0.8062 IF-KNN 0.6157 3 IF-KNN 0.6321 D-SKNN 3.0955
FENN 0.7926 5 FENN 0.8009 FRNN-FRS 0.6130 3 FENN 0.6150 FCMKNN 4.0568
PosIBL 0.7883 * PFKNN 0.7961 PosIBL 0.6071 * FRNN-FRS 0.6138 VWFuzzyKNN 5.6256
PFKNN 0.7877 9 PosIBL 0.7913 FRNN-VQRS 0.6061 5 PosIBL 0.6134 IFSKNN 6.4927
FRNN-FRS 0.7875 3 FRNN-FRS 0.7880 FENN 0.5993 5 PFKNN 0.6130 FuzzyKNN 6.5322
FRNN-VQRS 0.7799 5 VWFuzzyKNN 0.7869 PFKNN 0.5992 7 FRNN-VQRS 0.6104 CFKNN 6.7276
VWFuzzyKNN 0.7775 3 FRNN-VQRS 0.7825 VWFuzzyKNN 0.5793 3 VWFuzzyKNN 0.5936 FENN 6.9731
FRKNNA 0.7640 3 FRKNNA 0.7738 IFSKNN 0.5705 3 IFSKNN 0.5890 FRKNNA 7.2246
IFSKNN 0.7585 5 IFSKNN 0.7713 FRKNNA 0.5612 3 FRKNNA 0.5779 IF-KNN 7.9749
FRNN 0.7408 * FRNN 0.7408 FuzzyNPC 0.5079 * FuzzyNPC 0.5079 IFV-NP 11.1111
FuzzyNPC 0.6975 * FuzzyNPC 0.6975 CFKNN 0.4925 3 CFKNN 0.5000 IT2FKNN 13.1984
CFKNN 0.6885 3 CFKNN 0.6931 FRNN 0.4403 * FCMKNN 0.4497 FRNN 28.5193
FCMKNN 0.6397 5 FCMKNN 0.6469 FCMKNN 0.4390 3 FRNN 0.4403 PFKNN 725.8243
IFV-NP 0.6085 * IFV-NP 0.6337 IFV-NP 0.4153 * IFV-NP 0.4299 GAFuzzyKNN 1275.4415

Table 5: Summary results of Friedman & Shaffer tests for Accuracy (Fixed k, Stage 1)

α = 0.1 α = 0.01
Algorithm Rank + ± + ±

IT2FKNN 4.9659 10 18 9 18
FuzzyKNN 5.3409 10 18 8 18
GAFuzzyKNN 5.3523 10 18 8 18
D-SKNN 6.6818 6 18 5 18
IF-KNN 7.0909 6 18 5 18
FENN 7.2614 5 18 5 18
PFKNN 7.9318 5 18 4 18
PosIBL 8.6023 4 18 3 18
FRNN-FRS 9.2386 3 15 2 18
VWFuzzyKNN 9.7386 2 15 2 17
FRNN-VQRS 9.9091 2 15 2 15
IFSKNN 10.1591 2 15 1 15
FRNN 10.8977 1 13 0 15
FuzzyNPC 12.1250 0 12 0 12
FRKNNA 12.8409 0 11 0 11
CFKNN 13.2841 0 9 0 10
FCMKNN 14.5114 0 6 0 7
IFV-NP 15.0682 0 5 0 6
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• Considering accuracy results with the best value of k, most of the
former conclusions holds. However, in this case GAFuzzyKNN achieves
the best accuracy result, the differences between D-SKNN and the top
3 algorithms are lower. In general, all methods are benefited if the best
value of k is chosen for each particular data set, although D-SKNN,
IFSKNN and IFV-NP are the methods which obtain a greater benefit
(more than 0.01 additional accuracy, on average).

• Considering the kappa performance measure with a fixed value of k,
the best algorithms are still IT2FKNN, GAFuzzyKNN and FuzzyKNN.
However, in this case GAFuzzyKNN is highlighted as the best method
of the Fuzzy Sets family. Other noticeable differences are the relative
improvement achieved by FRNN-FRS and FRNN-VQRS, and the per-
formance drop suffered by FENN and PFKNN. Regarding the value of
the k parameter, in this case medium values (5 and 7) are preferred
generally by the best performing algorithms, excepting IF-KNN and
FRNN-FRS.

• Considering the best value of k in the analysis with the kappa measure,
D-SKNN can be also considered as the best algorithm (together with
IT2FKNN, GAFuzzyKNN and FuzzyKNN). FENN achieves a better
relative result and the relative performance of FRNN-VQRS is dimin-
ished. Again, all methods are benefited if the best value of k is chosen
for each particular data set, but the greater improvement is obtained
by D-SKNN (more than 0.02 additional kappa, on average).

• Finally, when running time is considered, the most noticeable result is
the high computational cost of the GAFuzzyKNN and PFKNN meth-
ods (due to their wrapped based nature). The rest of methods are
relatively cheap, computationally speaking, but PosIBL, FRNN-VQRS
and FRNN-FRS, and D-SKNN obtain better results in this category.
FuzzyNPC is, by far, the most efficient method. However this contrast
with its poor results in all precision measures.

The analysis performed by the Friedman and Shaffer tests considering
accuracy confirms these results: The ranks obtained by the Friedman test are
very similar to the relative position of each algorithm regarding accuracy with
fixed k. Regarding the pairwise comparisons (those analyzed by the Shaffer
test) IT2FKNN, GAFuzzyKNN and FuzzyKNN are the best algorithms of
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the study, showing significant differences with 10 out of the rest methods at
a α = 0.1 significance level (8-9 at a α = 0.01 significance level). Moreover,
all of the methods highlighted as the best performing of each category of the
taxonomy are equal or better than the rest (± = 18) except FRNN-FRS (for
which ± = 15).

The results obtained enable us to give several suggestions and recom-
mendations about the use of these fuzzy nearest neighbor, depending on the
performance desired for a specific task:

• If very high accuracy is required, then GAFuzzyKNN, IT2FKNN or
FuzzyKNN should be selected given their outstanding overall perfor-
mance concerning this measure. However, the high computational cost
of GAFuzzyKNN should also be considered if this technique is chosen.
Other suitable options for high accuracy without a large running time
are IF-KNN and D-SKNN. FENN could also be chosen as an accurate
method with the added feature of the removal of noisy instances from
the training set, which should also help in reducing the running time
in the final classification phase.

• There are very few differences if kappa is considered instead of accuracy.
FRNN-FRS shows a small improvement in its results, which suggests
that it keeps a better balance (when compared with other methods
with similar performance) over the classes of the problems, without
biasing towards the majority classes. Apart from that, the lack of dif-
ferences between accuracy and kappa suggest that the best performing
algorithms are not biased toward obtaining a good precision in the ma-
jority classes of the problems, thus balancing their efforts over all the
classes of the domains considered.

• D-SKNN should be the technique to select if a good performance is re-
quired without consuming too much computational resources. It is one
of the fastest methods analyzed in the study and is not outperformed
by any other fuzzy nearest neighbor method, thus becoming a fast and
reliable choice in these kind of situations. A second recommendation
would be FRNN-FRS, which is slightly faster than FRNN-FRS and
still keeps good precision rates.

5.2. Second stage: Comparison with crisp nearest neighbor approaches

In the second stage of the study, a comparison including the best per-
forming fuzzy nearest neighbor classifiers and several crisp nearest neighbor
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Table 6: Summary results obtained in the second stage: fuzzy and crisp nearest neighbor
classifiers

Accuracy (Fixed k) k Accuracy (Best) Kappa (Fixed k) k Kappa (Best) Running time

GAFuzzyKNN 0.8130 5 GAFuzzyKNN 0.8204 GAFuzzyKNN 0.6415 5 GAFuzzyKNN 0.6558 FRNN-FRS 3.0145
IT2FKNN 0.8111 7 FuzzyKNN 0.8190 FuzzyKNN 0.6366 7 FuzzyKNN 0.6524 D-SKNN 3.0955
FuzzyKNN 0.8110 5 IT2FKNN 0.8181 IT2FKNN 0.6354 7 IT2FKNN 0.6484 KNN 3.3452
D-SKNN 0.7985 5 D-SKNN 0.8136 D-SKNN 0.6167 5 D-SKNN 0.6468 NSC 4.8859
IF-KNN 0.7972 3 KSNN 0.8098 KSNN 0.6160 3 NSC 0.6379 ENN 5.0116
KSNN 0.7970 5 IF-KNN 0.8062 IF-KNN 0.6157 3 KSNN 0.6359 KNNAdaptive 6.1195
FENN 0.7926 5 NSC 0.8020 FRNN-FRS 0.6130 3 IF-KNN 0.6321 KSNN 6.2721
IDIBL 0.7902 * FENN 0.8009 KNN 0.6028 7 FENN 0.6150 FuzzyKNN 6.5322
FRNN-FRS 0.7875 3 KNN 0.7933 FENN 0.5993 5 KNN 0.6143 FENN 6.9731
KNNAdaptive 0.7856 3 KNNAdaptive 0.7927 PW 0.5955 * FRNN-FRS 0.6138 IF-KNN 7.9749
KNN 0.7815 7 IDIBL 0.7902 NSC 0.5814 * KNNAdaptive 0.6131 IT2FKNN 13.1984
NSC 0.7801 * ENN 0.7901 IDIBL 0.5807 * PW 0.6042 PW 22.7235
PW 0.7793 * FRNN-FRS 0.7880 ENN 0.5740 3 IDIBL 0.5946 IDIBL 409.3493
ENN 0.7784 5 PW 0.7828 KNNAdaptive 0.5697 3 ENN 0.5936 GAFuzzyKNN 1275.4415

Table 7: Summary results of Friedman & Shaffer tests for Accuracy (Fixed k, Stage 2)

α = 0.1 α = 0.01
Algorithm Rank + ± + ±

IT2FKNN 5.5795 4 18 2 18
GAFuzzyKNN 5.8295 3 18 1 18
FuzzyKNN 5.8864 3 18 1 18
KSNN 6.5455 0 18 0 18
KNNAdaptive 6.5682 0 18 0 18
D-SKNN 7.3977 0 18 0 18
IF-KNN 7.4318 0 18 0 18
KNN 7.6591 0 18 0 18
FENN 7.8409 0 18 0 18
IDIBL 8.3295 0 18 0 18
PW 8.5455 0 17 0 18
ENN 8.9659 0 15 0 18
FRNN-FRS 9.1023 0 15 0 17
NSC 9.3182 0 15 0 15
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classifiers will be carried out. The 7 fuzzy nearest neighbor classifiers selected
are the best performing methods of each category of the taxonomy, that
is, FuzzyKNN and GAFuzzyKNN (Fuzzy Sets), IT2FKNN (Type-2 Fuzzy
Sets), D-SKNN (Possibilistic methods), IF-KNN (Intuitionistic Fuzzy Sets),
FRNN-FRS (Fuzzy Rough Sets) and FENN (Preprocessing Methods via Data
Reduction). As crisp nearest neighbor classifiers, the 7 methods described in
Section 4.3 are considered.

Table 6 shows the results obtained in this second stage, following the
same experimental conditions that in the first stage.

These results are also contrasted by using the Friedman statistical test.
After analyzing the average results obtained regarding accuracy (with fixed
k value), the test reports a p-value of 1.17 · 10−6, which means that signifi-
cant differences are found among the algorithms. Using the Shaffer post-hoc
procedure, 10 differences (out of 91 pairwise comparisons) are found as sig-
nificant at a α = 0.1 level. Table 7 summarizes the results of both tests,
including for each algorithm the rank obtained in the Friedman test and the
number of methods for which it is statistically better (+) or equal or better
(pm) at two different significance levels (α = 0.1 and α = 0.01, considering
the adjusted p-values computed by the Shaffer test).

The results shown in both tables can be analyzed as follows:

• If accuracy with a fixed value of k is considered, the five best posi-
tions are achieved by fuzzy nearest neighbor classifiers (GAFuzzyKNN,
IT2FKNN, FuzzyKNN, D-SKNN and IF-KNN). None of the 7 fuzzy
nearest neighbor classifiers included shows a performance lower than
the original k-NN rule. It is also interesting to note the improvement
achieved by FuzzyKNN and FENN over their direct crisp counterparts,
KNN and ENN (an improvement of 0.0295 and 0.0142, respectively).

• The former results holds, in general, if the best value of k is considered
individually. Also, in this case, the crisp methods KSNN and NSC
shows a performance comparable with some of the best fuzzy nearest
neighbor classifiers. FRNN-FRS is the only fuzzy nearest neighbor
classifiers whose performance drops below KNN under these conditions.

• The results obtained using the kappa performance measure with a fixed
value of k still highlights GAFuzzyKNN, IT2FKNN and FuzzyKNN
as the better algorithms. On a second level, KSNN and FRNN-FRS

32



shows an improvement, being comparable to D-SKNN and IF-KNN in
this category. In this case, only FENN’s kappa falls below KNN’s.

• Considering the best value of k with the kappa measure, the differences
among methods are more tight. Most of the former results are the
same, being the most noticeable differences the improvement achieved
by NSC and the relative drop of the position of FRNN-FRS (which
almost does not get any improvement by allowing to set the best value
of k in each data set).

• Finally, there are not many differences between crisp and fuzzy meth-
ods with respect to running time. Both families have very fast methods
(FRNN-FRS, D-SKNN, KNN, NSC and ENN) and slower ones (IDIBL
and GAFuzzyKNN), which shows that there is not an additional com-
putational cost of fuzzy mechanisms are introduced to improve the
nearest neighbor rule, in comparison with crisp based mechanisms.

The analysis performed by the Friedman and Shaffer tests considering ac-
curacy confirms the superiority of GAFuzzyKNN, IT2FKNN and FuzzyKNN
in terms of accuracy, being the only methods able to improve statistically
some of the rest classifiers of the comparison, both at a α = 0.1 and at a
α = 0.01 significance level. PW, ENN, FRNN-FRS and NSC are the methods
improved by the former ones, in this sense.

In general, this second study has shown that fuzzy nearest neighbors clas-
sifiers can demonstrate a positive performance if considered within the state
of the art in nearest neighbor classification: Several methods offer better
precision (accuracy and kappa rates) and they are not specially slower or
faster than the crisp approaches. Hence, they are a suitable option for stan-
dard supervised learning tasks, in which high accuracy at a relatively lower
computational cost is required.

6. Future prospects

The experimental study performed has shown the general capabilities of
fuzzy nearest neighbor classifiers. The methods have been tested among
them, and also have been compared with a set of general nearest neighbor
classifiers, revealing that they can achieve a promising performance in general
supervised classification problems.
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Besides, the conclusions gathered along the survey can be used to suggest
some unaddressed challenges and remarks which could be very valuable for
a further development of the field:

• Most of the techniques reviewed are not able to dealt properly with
nominal (categorical) attributes and missing values, or directly does
not describe a method for manage them. Although some solutions can
be incorporated from the classical classification field (such as advanced
similarity measures for tackling nominal attributes [92] or imputation
techniques for handling missing data [70]), there is still the necessity
of a specific solution which enable fuzzy nearest neighbor classifiers
handle these kind of data with ease.

• A key aspect in the performance of the fuzzy nearest neighbor algo-
rithms is the way in which the membership values to the classes are
computed. It is true that there is a rich variety of way for represent-
ing these values. However, most of them are based on the concept of
locality (that is, membership are assigned in accordance with the near-
est instances in the training data). Other schemes of analysis, based
in different concepts such as global characteristics of the data could be
incorporated to develop new membership assignation schemes, prone to
improve further the generalization capabilities of the algorithms. The
development of a new class of preprocessing techniques could also be
helpful here, if they are applied as a way of refining an initial configu-
ration of memberships for a data set.

• Using the theoretical developments shown in [97] as a starting point,
new voting schemes could be designed (probably in an automatic way),
far from the traditional majority rules or the search for a best single
instance. The definition of ad hoc voting rules, specific to the current
problem tackled by the classifier, would enable a specialized treatment
of the intrinsic characteristics of the data. These rules would allow
fitting the classifier to the problem addressed, further enhancing its
classification performance.

7. Conclusions

In this work we have presented a survey on fuzzy nearest neighbor classi-
fiers. The application of FST and some of its extensions to the development
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of enhanced nearest neighbor algorithms has been reviewed, from the very
first proposals to the most recent approaches. Several discriminating traits
of the techniques has been described as the building blocks of a multi-level
taxonomy, devised to accommodate with ease present and future proposals.

An experimental framework is provided, incorporating implementations
of the most relevant algorithms in the state of the art. A case of study
is then conducted, testing the performance of the fuzzy nearest neighbor
classifiers. The experiment also includes a further comparison with several
state of the art crisp nearest neighbor classifiers. The conclusions of the
study reveals which are the most desirable fuzzy nearest neighbor classifiers
according to several performance measures, and remark the competitiveness
of these techniques among the classical nearest neighbor based approaches.

As a final remark, we would like to note that there is a dedicated web-
site providing all the complementary material to the paper (algorithms and
data sets of the experimental framework, and extended results and statistical
analyses conducted in the case of study). These contents can be retrieved at
http://sci2s.ugr.es/fuzzyKNN.
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Fuzzy K-Nearest Neighbors Classifier
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and Francisco Herrera, Member, IEEE,

Abstract

The K-Nearest Neighbors classifier has become a well-known, successful method for pattern

classification tasks. In recent years, many enhancements to the original algorithm have been pro-

posed. Fuzzy sets theory has been the basis of several proposed models towards the enhancement

of the nearest neighbors rule, with the Fuzzy K-Nearest Neighbors (Fuzzy-kNN) classifier the most

notable procedure in the field.

In this work we present a new nearest neighbor classifier, IVF-kNN, based on the use of type-2

interval valued fuzzy sets. The use and implementation of interval values facilitates the membership

of the instances and the computation of the votes in a more flexible way than the original Fuzzy-kNN

method, thus improving its adaptability to different supervised learning problems. An evolutionary

version of our approach, EIVF-kNN, is also proposed, further improving the capabilities of the

interval valued model through the adjustment of several key parameters of the original method. An

experimental study, contrasted by the application of nonparametric statistical procedures, is carried

out to compare the performances of these and some advanced fuzzy nearest neighbor classifiers,

over several well-known classification problems. The results enable us to safely confirm that EIVF-

kNN has the qualities necessary to become a strong approach in the field of fuzzy nearest neighbor

classification.
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I. INTRODUCTION

The k Nearest Neighbors classifier (kNN) [1] is one of the most popular supervised learning

methods. It is a nonparametric method which does not rely on building a model during the

training phase, and whose classification rule is based on a given similarity function between

the training instances and the test instance to be classified. Since its definition, k-NN has

become one of most relevant algorithms in data mining [2], and is an integral part of many

applications of machine learning in various domains [3], [4].

In nearest neighbor classification, fuzzy sets can be used to model the degree of membership

of each instance to the classes of the problem. This approach, known as the Fuzzy K-Nearest

Neighbor (Fuzzy-kNN) classifier [5], has been shown to be an effective improvement of

kNN.

This fuzzy approach overcomes the drawback associated with the kNN classifier, in which

equal importance is given to every instance in the decision rule, regardless of its typicalness

as a class prototype and the distance between it and the pattern to be classified. Fuzzy

memberships enable Fuzzy-kNN to achieve higher accuracy rates in most classification

problems. This is also the reason why it has been the preferred choice in several applications

in medicine [6], [7], economy [8], bioinformatics [9], industry [10] and many other fields.

Thus, the definition of fuzzy memberships is a fundamental aspect of Fuzzy-kNN. Although

they can be set through expert knowledge, or by analyzing local data around each instance

(as in [5]), there may be still a lack of knowledge associated with the assignation of a single

value to the membership. To overcome this difficulty, interval valued fuzzy sets (IVFSs) [11],

a particular case of type-2 fuzzy sets [12], may be used.

IVFSs allow membership values to defined by using a lower and an upper bound. The

interval based definition includes not only a greater degree of flexibility than just using a

single value, but also enables us to measure the degree of ignorance with the length of the

interval [13], [14]. Following this approach, IVFSs have been successfully applied in the

development of fuzzy systems for classification [15]–[17]. In the case of nearest neighbor
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classification, this enables the representation of the uncertainty associated with the true class

(or classes) to which every instance belongs, in the context of most standard, supervised

classification problems.

In this paper, we present an Evolutionary Interval Valued Fuzzy k-Nearest Neighbors

classifier (EIVF-kNN). Its development is composed of two stages, the first one extending

the Fuzzy-kNN classifier through the incorporation of IVFS, and the second including an

evolutionary optimization process to tune several key parameters of the model:

• In the first stage, we extend the Fuzzy-kNN classifier via the implementation of interval

values to represent the membership of each instance to the classes and the votes cast by

each neighbor in the decision rule. The new Interval Valued Fuzzy k-Nearest Neighbors

classifier (IVF-kNN) overcomes a drawback associated with the Fuzzy-kNN classifier,

by which two particular key parameters (kInit and m) are to be fixed in advance,

and it provides a higher degree of flexibility throughout the whole decision process.

The introduction of intervals by IVF-kNN allows us to consider different values for

these parameters, obtaining as a result different degrees of membership per each train-

ing instance. This poses a novel way of introducing IVFSs in fuzzy nearest neighbor

classification, substantially different to previous approaches on the use of type-2 fuzzy

sets in the field [18].

• In the second stage, IVF-kNN is extended by EIVF-kNN. Besides the generalization of

the kInit and m parameters introduced by IVF-kNN, the evolutionary technique enables

us to optimize its selection, improving in this way the accuracy of the whole model.

Therefore, this extension consists of the use of evolutionary algorithms to develop an

automatic method - conducted by the CHC evolutionary algorithm [19] - for optimizing

the procedure to build the intervals in the IVF-kNN, adapting them to the specific data

set chosen by following a wrapper based approach.

An experimental study is carried out to compare the performances of these and some

advanced fuzzy nearest neighbor classifiers, including a previous approach on fuzzy nearest

neighbor classification based on type-2 fuzzy sets [18] and an evolutionary fuzzy nearest

neighbor algorithm [20]. In this study, their classification accuracy is tested over several
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well-known classification problems. The results are contrasted using nonparametric statistical

procedures, enabling the safely confirmation of the conclusions drawn from them.

The rest of the paper is organized as follows: Section II describes the kNN and Fuzzy-kNN

classifiers, highlighting the enhancements to the former introduced by the latter. Section III

presents the IVF-kNN and EIVF-kNN models, as natural extensions of Fuzzy-kNN. Section

IV is devoted to the experimental study performed and the analysis of its results. Finally,

Section V concludes the paper.

II. K NEAREST NEIGHBORS AND FUZZY K NEAREST NEIGHBORS CLASSIFIERS

The kNN and Fuzzy-kNN classifiers require the measuring of the similarity of a new query

instance (the new instance to be classified) to the instances stored in the training set. In the

next step, a set of k nearest neighbors is found. Every neighbor casts a vote on the class to

which the query instance should be assigned. Finally, a class is assigned to the query instance

by combining these votes.

The above procedure can be formally described as follows: Let X be a training set,

composed of N instances X = {x0, x1, . . . , xN} which belong to C classes. Each instance

xi = (xi0, x
i
1, . . . , x

i
M , x

i
ω) is characterized by M input attributes and one output attribute

ω (ω ∈ C). For a new query instance Q, a nearest neighbor classifier finds its k nearest

neighbors in X , using a particular similarity function. Next, the class of Q is predicted as

the aggregation of the class attributes ω of the k nearest neighbors.

Initially, training instances of k-NN are labeled using a hard scheme: The membership U

of an instance x to each class of C is given by an array of values in {0, 1}, where Uω(x) = 1

and Uc(x) = 0, c ∈ C, c 6= ω. In this scheme, each instance belongs completely to one class

and does not belong to any of the rest.

In the case of Fuzzy-kNN [5], the above scheme is extended using a continuous range

of membership: Memberships are quantified in [0, 1], and obtained using the following

membership function

Uc(x) =


0.51 + (nnc/kInit) ∗ 0.49 if c = ω

(nnc/kInit) ∗ 0.49 otherwise
(1)
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where nnc are the number of instances belonging to class c found among the kInit 1 neighbors

of x.

This fuzzy scheme causes instances close to the center of the classes to keep the original

crisp memberships in {0, 1}, but instances close to the boundaries will spread half of their

membership between the neighbors’ classes.

Once a query instance Q has been presented, its k nearest neighbors are searched in

the training set. Although many different similarity functions can be considered for this

task, the preferred choice in nearest neighbor classification is to define it via the Euclidean

distance, which should suit most classification problems if the training data is normalized

in the domain [0, 1]. Throughout the rest of the paper we will follow this methodology: the

Euclidean distance is used and the attributes are normalized.

Once the k nearest neighbors have been determined, the final output of the classifier is

obtained by aggregating the votes cast by its neighbors. In the case of kNN, the votes are

obtained by simply adding the memberships of the k neighbors. In the case of Fuzzy-kNN,

the Euclidean norm and the memberships are weighted to produce a final vote for each class

and neighbor using Equation (2):

V (kj, c) =
Uc(kj) · 1/(‖Q− kj‖)2/(m−1)∑k

i=1 1/(‖Q− ki‖)2/(m−1)
(2)

where kj is the j-th nearest neighbor (kj ∈ k) and m,m > 1 is a parameter used to intensify

the distances between the query Q and the training data set elements (generally m = 2). The

votes of each neighbor are finally added to obtain the final classification, as in the case of

kNN.

Thus, both classifiers obtain their final output applying the majority simple rule to the

classes of the k nearest neighbors. However, in the case of Fuzzy-kNN, the use of the soft

labeling scheme and the weighted votes allows it to achieve a more robust classification,

particularly for instances located next to the decision boundaries, whose crisp classification

would otherwise be unclear.

1kInit is usually set to an integer value between [3, 9]
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III. IVF-kNN AND EIVF-kNN: K NEAREST NEIGHBORS CLASSIFIERS BASED ON

INTERVAL VALUED FUZZY SETS AND EVOLUTIONARY ALGORITHMS

IVF-kNN is proposed as an improvement of Fuzzy-kNN through the introduction of IVFS.

As a consequence, the membership values of every instance in the training set are represented

as an array of intervals, depicting a more flexible representation of the typicalness of the

instances in every class of the problem. Intervals are also considered in the computation of

the votes cast by each of the k nearest neighbors in the decision rule. Using this approach

we aim at reducing the sensitivity of the original Fuzzy-kNN classifier to the kInit and m

parameters, removing the necessity of tuning their values for each specific problem.

Our second proposal, termed EIVF-kNN, introduces the use of evolutionary algorithms

for optimizing the representation of both the membership values and the votes. These rep-

resentations are upgraded through a second redefinition of the way in which the kInit and

m parameters are interpreted. In our implementation, we have chosen the CHC evolutionary

model [19] to conduct the search.

The description of our proposals is organized as follows:

• In Subsection III-A, we detail the mechanism developed to perform the computation of

interval valued memberships to the classes.

• In Subsection III-B, the voting procedure of IVF-kNN and EIVF-kNN based on intervals

is described.

• In Subsection III-C, we show how the votes can be combined in order to obtain the final

classification.

• Finally, in Subsection III-D, the evolutionary process of EIVF-kNN is detailed, including

a description of how the kInit and m parameters are adjusted, and the details necessary

to implement this approach with the CHC model.

A. Computation of interval valued memberships to the classes

In Fuzzy-kNN, the definition of the memberships of the training instances is governed

by Equation (1). It is designed so that the class to which an instance originally belongs

obtains more than half (0.51) of the total membership, whereas the rest is shared among

the rest of the classes of the problem. By searching for the kInit nearest instances, local
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information about the relative neighborhood of the instance is considered. Therefore, this set

up incorporates both expert knowledge (the ω classes already assigned in the original data)

and structural knowledge, thereby obtaining a more accurate representation of the true nature

of the instance than by use of the kNN classifier [5].

However, a drawback of this approach is that kInit must be fixed in advance. Some rules

of thumb may be considered when aiming for a proper set up, such as not setting it to an

extremely low value - with kInit = 1 or kInit = 2 very few neighbors are included, and

hence most of the local structural information about the data is lost - or not setting it to a very

high value - which would make memberships approximately equal to the global distribution

of classes in the training data, and thus discarding again the local information. Beyond this,

any fixed value of kInit could potentially be selected.

We argue that the use of IVFSs to represent membership of classes could provide an

alternative and efficient solution to the above drawback, and therefore make the fixing of a

specific value to kInit superfluous. Indeed, the use of interval values for membership could

accommodate the simultaneous use of different values of kInit. That is, Equation (1) can be

parametrized with kInit

Uc(x, kInit) =


0.51 + (nnc/kInit) ∗ 0.49 if c = ω

(nnc/kInit) ∗ 0.49 otherwise
(3)

and then the membership of a training instance x to a class c can be represented as an interval

Uc(x) = [Uc−left(x), Uc−right(x)] (4)

Uc−left(x) = min [Uc(x, kInit)]

Uc−right(x) = max [Uc(x, kInit)] (5)

with kInit belonging to a particular set of values derived from the application of the

considerations mentioned before. Following the same recommendations as in the case of
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Fuzzy-kNN, we may consider that kInit belongs to the set of integer values of the interval

[3, 9].

Following this scheme, a more flexible and accurate representation of the training instances

is obtained:

• Instances located at the center of their respective classes, surrounded only by instances

of the same class, will maintain full membership to it ([1.0, 1.0]) and null membership

to the rest of the classes ([0.0, 0.0]). This is equivalent to Fuzzy-kNN and kNN.

• Instances located near the boundaries between classes, surrounded by instances of the

same class, but also by some instances of other classes, will have their memberships

modified as follows:

– The lower value of the membership to ω, Uc−left(x), may be regarded as a measure

of how many neighboring instances with a class different to ω there are, and of

their relevance. The higher the number of these neighboring instances to the training

instance they will be, the closer to 0.51 this lower value will be.

– The upper value of the membership to ω, Uc−right(x), is a direct measure of how

far away the first neighbor not belonging to ω is. It will be 1.0 if it is not among

the first nearest neighbors (in accordance with the set up for kInit chosen), and

slightly lower if it is, with the specific value again dependent on the number and

position of the neighboring instances not belonging to ω.

– The lower value of the membership to the rest of classes will be 0.0, unless one of

the first nearest neighbors belongs to that class. The upper value can be regarded

as a relative measure of the presence of this class among the neighborhood of the

training instance, never greater than 0.49.

• Instances badly identified (possibly noise), surrounded only by instances of other classes,

will get only half membership to ω ([0.51, 0.51]) whereas the membership to the rest of

the classes will be a representation of the true nature of the instances.

B. Interval valued voting procedure

The votes cast by each neighbor in the computation of the decision rule (Equation 2) can

also be represented by intervals. In this expression, the parameter m can be used to vary the
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Fig. 1. A valid configuration of IVF-kNN. The values of kInit chosen are 2,3,4 and 8 (from the interval (1, 9)) and the
values of ma and mb are 1.48 and 2.07, respectively

influence of the neighbors, depending on the specific value chosen.

If m = 2, the vote of each neighbor is weighted by the reciprocal of the squared Manhattan

distance. As m increases, distances between the different neighbors will be evenly weighted,

and thus the relative distances will have less effect on the determination of the votes (with

m = 3 the weight becomes the reciprocal of the Euclidean distance). Similarly, if m is

decreased, the relative distances will have a greater effect, reducing the contribution of the

furthest instances (as m approaches 1).

Although the choice recommended in [5] was to simply let m = 2, it is possible to

consider this parameter in a more flexible way, by introducing intervals. This allows a range

of possible values of m to be considered instead of a single one, resulting in a more general

voting mechanism.

To represent this, Equation 2 becomes:

V (kj, c) = Uc(kj) ·D(kj) (6)

where

D(kj) = [min(D(kj,ma), D(kj,mb)),

max(D(kj,ma), D(kj,mb))] (7)

D(kj,m) =
1/(‖Q− kj‖)2/(m−1)∑k
i=1 1/(‖Q− ki‖)2/(m−1)

(8)
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and ma,mb are the minimum and maximum values chosen for the parameter m. Note that

since the elements of Equation (6) are intervals, their product must be computed as follows

[21]:

[a1, a2] ∗ [b1, b2] = [min(Ij),max(Ij)]

Ij = {a1 · b1, a1 · b2, a2 · b1, a2 · b2} (9)

C. Combination of votes

After the votes have been computed, the final classification is obtained as the class with

the maximum vote overall. In the case of IVF-kNN, the votes for every class are computed

as

V (c) =
k∑

j=1

V (kj, c) (10)

where the addition of two intervals is obtained as follows:

[a1, a2] + [b1, b2] = [a1 + b1, a2 + b2] (11)

After the votes for every class have been added, every interval is converted to a single value

(the center of the interval). The final classification is obtained as the class with the highest

center of interval. In the case of a tie, only the contribution of the first nearest neighbor is

considered in order to discriminate between the tied classes 2.

D. Evolutionary optimization of IVF-kNN: The EIVF-kNN model

As is detailed in the description of IVF-kNN, the performance of the classifier is dependent

on the selection of values considered for kInit and [ma,mb]. Although proper values may

be fixed experimentally, in this subsection we present an automatic method for performing

an optimum selection, guided by an evolutionary algorithm.

2This is inspired by one of the possible tie-break procedures for kNN, where the class of the first nearest neighbor is
used to break ties. Note, however, that in the case of Fuzzy-kNN and IVF-kNN such ties are very unlikely.
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For parameter ma and mb, the optimization procedure needs to find two real values within

a reasonable range (in accordance with the definition of Equation 8). However, the selection

of a set of values for kInit may be more sophisticated.

Instead of just fixing this selection to an interval of integer values (for example, {3, 4, 5, 6, 7, 8, 9}),

as it is recommended for the basic IVF-kNN model, it is possible to define an optimization

procedure for choosing specific, non-correlative values.

Figure 1 shows an example of a valid configuration for IVF-kNN. It is is composed of a

binary array of Sn digits, in which a value Sn = 1 shows that n is chosen as a value for

kInit, while a value Sn = 0 shows that n is not chosen, and two real values, corresponding

to ma and mb.

In the example illustrated in Figure 1, the interval [1.48,2.07] has been chosen for the m

parameter. The values 2,3,4 and 8 have been chosen for the kInit parameter. Note that this

set-up is similar to the configuration of IVF-kNN with kInit in (2,8), but it will not produce

the same memberships, as the values 5,6 and 7 are not considered. Thus, this configuration

could be useful in such cases where the memberships should be constrained to the 4 nearest

neighbors of each training instance, but then extended by considering an instance at a greater

distance (the eighth neighbor).

Nevertheless, with this representation, an optimization algorithm may be applied in order

to obtain the best possible configuration for the specific data analyzed. In our case, we

recommend the use of the CHC evolutionary algorithm [19], a robust generational genetic

algorithm which involves the combination of an advanced selection strategy with a very

highly selective pressure, and several components inducing a strong diversity.

The CHC algorithm is configured as follows:

• Representation of solutions: Binary chromosomes of Sn bits (representing the values

chosen for kInit) and 2 real-coded values (representing the ma and mb values). Figure

1 is, in fact, a valid chromosome of the algorithm.

• Initialization: All chromosomes are initialized randomly. Real values are initialized into

the interval ]1, 4] (m cannot take a value of 1 due to the definition of Equation (8), and

should never be set to a very high value).

• Crossover operator: HUX and BLX-0.5. The HUX operator (the classic crossover op-
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erator of CHC, which interchanges half of the non-matching genes of each parent) is

used for the binary part of the solutions, whereas the BLX-0.5 operator [22] is used for

crossing the real coded values.

• Fitness function: IVF-kNN is used as a wrapper. To evaluate a solution, IVF-kNN is

configured with the parameters represented by the solution, and its accuracy over the

training data (using a leave-one-out validation scheme) is measured. This accuracy is

considered to be the fitness of the solution.

The rest of the elements follow the same configuration as in the original definition of CHC.

In summary, the application of CHC to optimize the configuration of IVF-kNN enables us

to obtain a suitable configuration, adapted to the training data available, without the necessity

of a specific set-up provided by the practitioner. This increases the adaptability of the whole

model, EIVF-kNN, for general supervised learning problems, providing that the training data

available is representative of the problem considered.

IV. EXPERIMENTAL STUDY

An experimental study has been carried out to test the performance of EIVF-kNN and

its basic version, IVF-kNN. The experiments will involve several well-known classification

problems and various state of the art algorithms in fuzzy nearest neighbor classification.

Section IV-A describes the experimental framework in which all the experiments have been

carried out. Section IV-B shows the results achieved by IVF-kNN. Finally, Section IV-C

shows the results achieved by EIVF-kNN.

A. Experimental framework

The experiments has been conducted over 44 classification data sets, whose partitions

are available at the KEEL-Dataset repository3 [23], [24]. Table I summarizes the following

characteristics: number of instances (#Ins.), number of attributes (#At.) and number of classes

(#Cl.). None of the data sets includes missing values, and no nominal (discrete) attributes

have been considered. All Attribute values have been normalized at [0, 1] and a 10-folds cross

validation procedure has been followed throughout the experiments.

3http://www.keel.es/datasets.php
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TABLE I
DATA SETS CONSIDERED IN THE STUDY

Data set #Ins. #At. #Cl. Data set #Ins. #At. #Cl.

Appendicitis 106 7 2 Penbased 10992 16 10
Balance 625 4 3 Phoneme 5404 5 2
Banana 5300 2 2 Pima 768 8 2
Bands 539 19 2 Ring 7400 20 2
Bupa 345 6 2 Satimage 6435 36 7
Cleveland 297 13 5 Segment 2310 19 7
Dermatology 358 34 6 Sonar 208 60 2
Ecoli 336 7 8 Spambase 4597 57 2
Glass 214 9 7 Spectfheart 267 44 2
Haberman 306 3 2 Tae 151 5 3
Hayes-roth 160 4 3 Texture 5500 40 11
Heart 270 13 2 Thyroid 7200 21 3
Hepatitis 80 19 2 Titanic 2201 3 2
Ionosphere 351 33 2 Twonorm 7400 20 2
Iris 150 4 3 Vehicle 946 18 4
Led7Digit 500 7 10 Vowel 990 13 11
Mammographic 830 5 2 Wdbc 569 30 2
Marketing 6876 13 9 Wine 178 13 3
Monk-2 432 6 2 Winequality-red 1599 11 11
Movement 360 90 15 Winequality-white 4898 11 11
New Thyroid 215 5 3 Wisconsin 683 9 2
Page-blocks 5472 10 5 Yeast 1484 8 10

Besides EIVF-kNN and IVF-kNN, we have considered 7 comparison algorithms, which

can be categorized as follows:

• Classical algorithms: Three classical algorithms have been chosen: kNN, Fuzzy-kNN

and IT2FKNN. IT2FKNN [18] is a fuzzy nearest neighbor classifier based on the use of

interval type-2 fuzzy sets to represent the membership to the classes of the training

instances. In this way, several values for the parameter kInit are considered, thus

including flexibility in the representation of the memberships computed by considering

distinct choices. Type-2 fuzzy sets are then built considering all the different member-

ships computed, and then a type reduction operation is performed to obtain a final,

combined value, representative of all the choices considered initially. The algorithm is

similar to Fuzzy-kNN in respect to the rest of the phases.
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• Recent proposals: Three recent proposals have been selected as a representation of

the current state of the art: CFKNN [25] is a preprocessing method for Fuzzy-KNN

inspired by the classic Hart’s condensing rule - the CNN algorithm [26]. Before the

application of Fuzzy-kNN to classify new instances, instances of the training set are

removed depending on an entropy measure which determines whether they are removed

or kept. FRNN-FRS [27] is a fuzzy nearest neighbor algorithm that makes use of rough

uncertainties, and performs a classification based on the best value obtained for the lower

and upper approximations of every nearest neighbor, choosing the class of the nearest

neighbor with the best value (not necessarily the nearest). Finally, FRNN-VQRS [27]

is a method similar to FRNN-FRS, but uses vaguely quantified rough sets to model the

lower and upper approximations of the nearest neighbors, instead of fuzzy rough sets.

• Evolutionary approaches: We have selected GAFuzzy-kNN [20] as a proper evolu-

tionary approach. GAFuzzy-kNN is a wrapper-based Fuzzy-kNN classifier. It works by

estimating the best possible values for the parameters m and kInit by means of a binary

genetic algorithm. The search is conducted by a fitness function, which computes the

accuracy of an underlying Fuzzy-KNN classifier as the fitness value.

Table II shows the parameters configuration selected for each algorithm. The parameter k

is chosen for each algorithm in the {3,5,7,9} range 4, selecting the best performing value.

That is, every algorithm has been tested considering each different value of k, and the best

value found (the one that maximizes the average accuracy) has been chosen.

For IVF-kNN, the initial intervals for kInit and m have been determined according to

preliminary experiments. For EIVF-kNN, the range of values of kInit allowed and the

range in which the maximum and minimum value of m can be established have been set-

up according to the range suggested in [20], in which GAFuzzy-kNN was presented. The

population size and the number of evaluations have been also chosen as in [20], for the sake of

a fair comparison. The rest of the parameters have been set up following the recommendations

given by the authors of each technique. Euclidean distance has been used as the similarity

4Note that k=1 has been excluded since most of the fuzzy nearest neighbor algorithms would become the 1NN rule.
Also, no higher values of k have been chosen because most of the classifiers would degenerate to a majority classifier,
discarding the locality capabilities of nearest neighbor algorithms

January 25, 2013 DRAFT

Page 14 of 22IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

IEEE TRANSACTIONS ON FUZZY SYSTEMS 15

TABLE II
PARAMETERS CONFIGURATION OF THE ALGORITHMS

Algorithm Parameters

IVF-kNN k value: 7, kInit: (3,9), m: [1.5,2]
kNN k value: 7
Fuzzy-kNN k value: 5, kInit: 3, m: 2
IT2FKNN k value: 7, kInit: {1,3,5,7,9}, m: 2

CFKNN k value: 3, α: 0.6
FRNN-FRS k value: 3
FRNN-VQRS k value: 5

EIVF-kNN k value: 9, kInit range: (1,32), m range: [1,4],
Sn:32, Population size: 50, Evaluations: 500

GAFuzzy-kNN k value: 5, kInit: 3, m: 2, Population size: 50,
Evaluations: 500, Crossover probability: 0.8,
Mutation probability: 0.01

measure in all the experiments.

The results obtained in all the experiments will be contrasted through the use of nonpara-

metric statistical tests [28], [29]. Specifically, we will use the Wilcoxon signed-ranks test [30]

for pairwise comparisons, and the Friedman test [31] (together with the Holm procedure [32]

as post-hoc) for performing multiple comparisons. More information about these statistical

procedures specifically designed for use in the field of Machine Learning can be found at

the SCI2S thematic public website on Statistical Inference in Computational Intelligence and

Data Mining 5.

B. Analysis of the IVF-kNN algorithm

In this first study, we have included IVF-kNN, the classical algorithms kNN, Fuzzy-kNN

and IT2FKNN, and the recent approaches CFKNN, FRNN-FRS, FRNN-VQRS. Table III

shows the accuracy results obtained in the test classification phase. For each data set, the

best results obtained have been highlighted in bold. The table also includes the average

accuracy obtained over the 44 datasets.

Considering these results, we can make the following analysis:

5http://sci2s.ugr.es/sicidm/
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TABLE III
RESULTS OF THE FIRST STUDY: ANALYSIS OF THE IVF-kNN ALGORITHM

Data sets IVF-kNN kNN Fuzzy-kNN IT2FKNN CFKNN FRNN-FRS FRNN-VQRS

Appendicitis 87.00 87.91 87.91 87.91 82.27 83.09 83.09
Balance 88.64 88.48 88.63 88.80 70.72 77.76 75.52
Banana 89.30 89.58 89.19 89.51 56.36 87.45 87.43
Bands 70.08 69.75 71.31 69.51 59.55 67.36 65.77
Bupa 64.05 62.53 62.50 65.21 56.90 60.65 60.33
Cleveland 57.31 56.92 55.97 56.97 53.30 55.34 55.35
Dermatology 96.34 96.34 96.33 96.34 95.79 94.65 93.53
Ecoli 82.76 82.45 82.46 82.45 72.33 80.69 80.69
Glass 72.61 66.83 72.57 72.11 45.42 70.86 71.33
Haberman 68.61 69.90 67.34 68.96 65.06 64.04 64.04
Hayes-roth 65.63 28.75 65.63 63.75 47.50 75.00 73.13
Heart 80.00 79.26 80.37 78.52 81.48 77.04 73.33
Hepatitis 84.67 89.19 83.42 84.67 83.51 40.89 25.32
Ionosphere 84.32 84.03 84.04 84.32 72.08 82.03 81.17
Iris 94.67 96.00 96.00 95.33 94.00 95.33 96.00
Led7Digit 71.40 43.40 71.60 71.40 73.20 61.80 61.00
Mammographic 79.28 81.71 80.37 79.54 79.02 74.47 74.46
Marketing 30.92 29.51 30.79 30.81 28.97 27.68 27.41
Monk-2 84.46 89.16 89.69 82.50 82.27 77.69 76.32
Movement 82.22 72.50 82.22 81.11 55.56 86.39 86.39
New Thyroid 93.98 92.58 93.98 93.98 92.08 97.23 97.23
Page-blocks 96.05 95.47 95.91 95.87 76.88 95.69 95.60
Penbased 99.17 99.13 99.24 99.14 82.16 99.30 99.29
Phoneme 90.01 87.75 89.36 89.65 73.83 90.01 89.91
Pima 73.32 72.93 72.93 73.58 71.11 71.11 71.24
Ring 59.86 67.46 60.77 58.84 71.58 78.85 79.45
Satimage 90.29 90.52 90.55 90.12 78.52 89.90 89.62
Segment 96.28 94.81 96.36 96.15 84.46 96.49 96.36
Sonar 83.10 80.21 81.64 82.14 68.83 86.98 86.02
Spambase 91.28 89.34 91.15 90.93 83.58 89.49 89.06
Spectfheart 76.05 77.58 74.23 77.55 56.58 68.55 67.42
Tae 67.00 45.08 66.29 67.00 55.08 63.04 63.04
Texture 98.40 98.31 98.53 98.35 77.95 99.11 99.05
Thyroid 93.97 93.99 93.97 93.94 43.93 90.89 90.64
Titanic 78.06 76.24 75.69 78.15 75.06 78.92 79.06
Twonorm 97.01 97.07 97.01 97.04 96.82 94.54 94.24
Vehicle 71.64 72.34 70.81 71.16 42.92 68.79 68.79
Vowel 97.78 88.69 97.47 97.07 39.29 99.39 99.29
Wdbc 97.36 97.18 96.65 97.18 94.19 94.89 94.54
Wine 96.60 96.63 96.01 97.19 96.05 94.41 93.86
Winequality-red 69.04 55.29 67.98 68.73 33.83 65.10 64.79
Winequality-white 68.60 50.92 67.52 68.38 32.11 65.66 65.40
Wisconsin 96.96 97.25 97.25 96.96 96.22 94.76 94.46
Yeast 59.71 57.49 58.89 59.91 51.08 51.62 51.76

Average 81.27 78.15 81.10 81.11 68.85 78.75 77.99

• IVF-kNN effectively improves the accuracy with respect to the kNN classifier, improving

its performance by more than a 3% on average.

• IVF-kNN achieves a better average result than all the classical techniques. Neither Fuzzy-

kNN nor IT2FKNN are able to obtain a higher accuracy, on average.

• When compared with the recent algorithms, we can also highlight IVF-kNN as a very

accurate classifier, which obtains a better average result than CFKNN, FRNN-FRS and

FRNN-VQRS.
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TABLE IV
RESULTS OF THE WILCOXON TEST - CLASSICAL APPROACHES

Comparison R+ R− p-value

IVF-kNN vs Fuzzy-kNN 636.5 309.5 0.04833
IVF-kNN vs IT2FKNN 616.0 330.0 0.08536
IVF-kNN vs kNN 674.0 272.0 0.01441

TABLE V
RESULTS OF THE FRIEDMAN & HOLM TESTS - RECENT APPROACHES

Algorithm Rank Holm p-value

IVF-kNN 1.5795 -
CFKNN 3.4205 0.00000
FRNN-FRS 2.2386 0.01664
FRNN-VQRS 2.7614 0.00002

Friedman p-value ≤ 10−8

These results have been contrasted by using nonparametric statistical procedures. For

contrasting the comparison with classical algorithms, we have chosen the Wilcoxon test

as a pairwise procedure. Table IV shows the results of the test, including the ranks obtained

in each comparison (R+ and R−) and the p-value associated.

The results of this test enables us to confirm that IVF-kNN is significantly better than the

basic kNN, thus becoming a proper enhancement of this classic algorithm. It also overcomes

statistically the Fuzzy-kNN, which reveals that the way in which IVF-kNN manages the

fuzzy memberships and the votes is more appropriate. Finally, it is possible to highlight that

the differences between IT2FKNN and IVF-kNN are also significant, which means that the

latter performs better when determining the fuzzy memberships than using interval type-2

fuzzy sets.

A second statistical analysis can be performed to contrast the comparison between IVF-

kNN and the recent approaches to fuzzy nearest neighbor classification. In this case, the

Friedman test provides us with a procedure for simultaneously contrasting the comparisons

of IVF-kNN with all the recent approaches.

Table V shows the results obtained by the application of the Friedman test and the Holm

post-hoc procedure. The Friedman p-value is lower than 10−8, which means that significant

differences are found among IVF-kNN, CFKNN, FRNN-FRS and FRNN-VQRS. The Holm
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procedure reports a very low p-value in all the pairwise comparisons of the control algorithm,

IVF-kNN, with the rest of techniques, which indicates that it significantly outperforms all

these recent approaches.

In summary, these results show us that IVF-kNN is a very competitive fuzzy nearest

neighbor classifier. The use of interval values for defining memberships and for computing the

neighbors’ votes produces better results than those using Fuzzy-kNN in its original definition.

Furthermore, IVF-kNN also achieves an accuracy improvement over the IT2FKNN classifier,

a type-2 fuzzy nearest neighbor classifier. The comparison has been completed including three

recent approaches, CFKNN, FRNN-FRS and FRNN-VQRS, whose results are also improved

by IVF-kNN.

C. Analysis of the EIVF-kNN algorithm

A second study has been performed, aimed at analyzing whether the improvements pro-

posed in the EIVF-kNN model are effective for enhancing the performance of IVF-kNN.

Moreover, GAFuzzy-kNN is also included here as a strong evolutionary fuzzy nearest neigh-

bor classifier, to complete the comparison.

Table VI shows the accuracy results obtained in this second study, highlighting the best

results obtained in each data set in bold and including the average accuracy obtained over

the 44 datasets. These results have also been contrasted with the Wilcoxon test, the results

of which are shown in Table VII.

The results shown in Tables VI and VII shows that EIVF-kNN improves the results obtained

by IVF-kNN, thus justifying the usefulness of the evolutionary method for determining which

values of the kInit and m parameters to consider during the construction of the classifier.

EIVF-kNN also shows a better performance than GAFuzzy-kNN, a representative approach

to evolutionary fuzzy nearest neighbor classification. These results are corroborated by the

Wilcoxon test, contrasting these conclusions.

V. CONCLUSION

In this paper we have proposed a new evolutionary interval valued nearest neighbor classi-

fier. IVFS are chosen as an appropriate tool for representing the instances’ memberships to the
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TABLE VI
RESULTS OF THE SECOND STUDY: ANALYSIS OF THE EIVF-kNN ALGORITHM

Data sets IVF-kNN EIVF-kNN GAFuzzy-kNN

Appendicitis 87.00 85.18 86.09
Balance 88.64 89.12 88.00
Banana 89.30 89.85 89.28
Bands 70.08 70.34 69.63
Bupa 64.05 63.99 61.68
Cleveland 57.31 56.91 53.55
Dermatology 96.34 95.78 96.35
Ecoli 82.76 83.04 82.48
Glass 72.61 71.98 73.38
Haberman 68.61 71.58 68.95
Hayes-roth 65.63 65.00 64.38
Heart 80.00 81.11 78.52
Hepatitis 84.67 82.90 83.42
Ionosphere 84.32 84.89 87.75
Iris 94.67 94.00 95.33
Led7Digit 71.40 71.80 71.20
Mammographic 79.28 79.89 79.53
Marketing 30.92 30.98 29.51
Monk-2 84.46 83.45 92.42
Movement 82.22 84.44 84.72
New Thyroid 93.98 96.34 95.89
Page-blocks 96.05 96.20 96.05
Penbased 99.17 99.34 99.32
Phoneme 90.01 90.30 89.60
Pima 73.32 73.57 74.36
Ring 59.86 71.41 63.39
Satimage 90.29 90.71 90.40
Segment 96.28 96.58 96.54
Sonar 83.10 83.07 84.55
Spambase 91.28 91.45 91.26
Spectfheart 76.05 77.54 75.00
Tae 67.00 70.96 66.96
Texture 98.40 99.04 98.91
Thyroid 93.97 94.00 93.93
Titanic 78.06 78.69 78.51
Twonorm 97.01 97.08 96.97
Vehicle 71.64 70.81 70.33
Vowel 97.78 99.19 98.79
Wdbc 97.36 97.01 96.48
Wine 96.60 97.16 95.49
Winequality-red 69.04 68.48 67.10
Winequality-white 68.60 67.99 66.40
Wisconsin 96.96 96.81 96.96
Yeast 59.71 59.91 57.89

Average 81.27 81.81 81.30

TABLE VII
RESULTS OF THE WILCOXON TEST - EVOLUTIONARY APPROACHES

Comparison R+ R− p-value

EIVF-kNN vs IVF-kNN 639.0 351.0 0.09422
EIVF-kNN vs GAFuzzy-kNN 713.5 276.5 0.00998
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different classes of the problem. They also enable our classifier to represent several votes as

a single interval, thus giving more flexibility to the decision rule computation, and ultimately,

improving the generalization capabilities of the nearest neighbor rule. The CHC evolutionary

algorithm has been incorporated to the model, in order to ease the task of properly searching

for the best intervals of the kInit and m parameters, and thus further improving its accuracy.

This has also been corroborated experimentally and it may be concluded that IVF-kNN and

EIVF-kNN are significantly more accurate than a selection of classical and new approaches

in the state of the art of fuzzy nearest neighbor classification.
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