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 The knowledge of the histological structure as well as their physical 

properties is of critical importance for the evaluation of human tissues. In the 

field of the regenerative medicine, prior to the clinical use of the human 

tissue generated by tissue engineering, it is essential to determine their 

fundamental characteristics, as part of the characterization process and 

quality control. Therefore, Chapter 1 of this Thesis is divided in three 

sections, each one describing one of the above mentioned of these items.  
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LIGHT PROPAGATION IN TISSUE 

 

 

 Understanding how ultra-violet, visible and infra-red radiation 

propagates in biological tissues represents a real need in both diagnostic and 

therapeutic medicine, due to the increasing use over the past years of these 

radiations for the development of therapeutic techniques and as well as for 

the quantitative analysis of diagnostic measurements (Ansari and 

Mohajerani, 2011; Wilson and Patterson, 2008; Patterson et al., 1991). For 

example, the local tissue temperature is of prime importance in laser surgery 

and depends on the spatial distribution of the incident radiation.   

 Diagnostic methods use fluorescent, scattered or transmitted light to 

measure parameters such as drug concentration and blood oxygenation. 

Therefore, detailed information about the propagation of the excitation and 

observed light is required. The general problem of the light propagation in 

tissue is represented by a tissue of arbitrary geometry, whose optical 

properties may be functions of position and time, is irradiated by external 

and/or internal sources of light. In order to solve this problem, three basic 

requirements are needed: 

(1) a mathematical description of the interaction of optical radiation with 

tissue; 

(2) information about the optical properties of the irradiated tissue 

(usually provided by experiment) and; 

(3) Workable solutions of the mathematical equations to provide 

sufficiently accurate calculations under circumstances of biomedical 

interest (Patterson et al., 1991). 
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 Numerous models that predict fluence rates in tissue or reflection and 

transmission of light by tissue have been developed. The accuracy of these 

models ultimately depends upon how well the optical properties of the tissue 

are known. Optical parameters are usually obtained by converting 

measurements of observables quantities (e.g. reflection) into parameters 

which characterize light propagation in tissue. The conversion process is 

based on a particular theory of light transport in tissue (Bashkatov et al., 

2011; Cheong et al., 1995).  

 In past years, many investigators have reported values of the total 

attenuation coefficient, the effective attenuation coefficient, the effective 

penetration depth, the absorption and scattering coefficients and the 

scattering anisotropy factor for a variety of tissues at a variety of light 

wavelengths. Specifically, Sardar and collaborators performed a 

comprehensive study on optical properties of ocular tissues, in the visible and 

near-infrared wavelength spectrum (Yust et al., 2012; Sardar et al., 2009; 

Sardar et al., 2007). Additionally, the authors present a brief description of 

the radiative transport equation, which is the basis for all light propagation 

models and its associated parameters and also show how optical properties 

can be determined by using different measurements. 

 Light which enters a tissue can be scattered and absorbed. The optical 

properties of the tissue are wavelength dependent and, in the next 

paragraphs, we will consider them time invariant and independent of the 

light field. In most problems in tissue optics, multiple light scattering is 

important and any useful theory must account for this (Ansari and 

Mohajerani, 2011; Patterson et al, 1991). 

 Multiple scattering electromagnetic theory (Andrews and Philips 2005; 

Ishimaru, 1978) can be used to describe the propagation of light in tissue. 

Tissue could be considered as a random medium whose permittivity, ߝሺݎሻ, 

fluctuates with position about some mean value ߝଵ, so that  

ሻݎሺߝ ൌ ଵߝ ൅  ሻ      (1.1)ݎଶሺߝ
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where ߝଶሺݎሻ is a random process whose important characteristics (i.e. variance 

and correlation length) are known. The statistical behaviour of the electric 

field can then be described using Maxwell’s equations. Although physically 

appealing, this formalism has not found application in tissue optics due to its 

complexity, the lack of readily applied solutions and the lack of information 

about ߝଶሺݎሻ (Patterson et al., 1991). 

 The usual approach is called radiative transfer theory. According to 

this theory, the radiance ܮሺݎ,  travelling ݎ ሻ(Wm-2sr-1) of light at the positionݏ

in a direction of the unit vector ݏ is decreased by absorption and scattering 

but is increased by light that is scattered from ݏ′ directions into the direction 

  The radiative transport equation which describes this light interaction is .ݏ	

ݏ ∙ ,ݎሺܮ׏ ሻݏ ൌ െሺߤ௔ ൅ ,ݎሺܮ௦ሻߤ ሻݏ ൅ ௦ߤ ׬ ,ݏሺ݌ ,ݎሺܮᇱሻݏ ᇱሻ݀߱ᇱݏ
ସగ       (1.2) 

where ߤ௔(m-1) is the absorption coefficient and represents the probability per 

infinitesimal path length that a photon will be absorbed by the tissue, ߤ௦(m-1) 

is the scattering and represents the probability per infinitesimal path length 

that a photon will be scattered by the tissue, ߤ௧(m-1) is the attenuation 

coefficient, ݀߱ᇱ is the differential solid angle in the direction ݏ′ and ݌ሺݏ,  ᇱሻ isݏ

the phase function. The total attenuation coefficient is  

௧ߤ ൌ ௔ߤ ൅  ௦      (1.3)ߤ

 The phase function describes the angular distribution for a single 

scattering event. For tractability, the phase function is usually assumed to be 

a function only of a angle between ݏ and ݏᇱ. If the integral of the phase 

function is normalized to equal one, then ݌ሺݏ,  ᇱሻ is the probability densityݏ

function for scattering from direction ݏᇱ to direction ݏ,  

׬ ,ݏሺ݌ ᇱሻ݀߱ᇱݏ
ସగ ൌ 1      (1.4) 

 Usually the form of the phase function is not known. In these cases the 

phase function is characterized by a single parameter ݃ called the average 

cosine of the phase function ݃, 
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݃ ൌ ׬ ,ݏሺ݌ ݏᇱሻሺݏ ∙ ᇱሻ݀߱′ସగݏ       (1.5) 

 This parameter is also known as the anisotropy coefficient. It is a 

measure of the asymmetry of the single scattering pattern. ݃ approaching 1, 0 

and -1 describes extremely forward, isotropic, and highly backward 

scattering, respectively (Cheong, 1995).  

 Formulation of the transport equation assumes that each scattering 

particle is sufficiently distant from its neighbours to prevent interactions 

between successive scattering effects. In theory, these scatterers and 

absorbers must be uniformly distributed throughout the medium. 

Fluorescence and polarization events are neglected. Most tissue optics studies 

considered only steady-state (time independent) transport of light (Ansari 

and Mohajerani, 2011; Cheong, 1995). 

 The knowledge of the absorption and scattering coefficients, as well as 

the phase function, is required for the calculations of light distribution based 

on the radiative transport equation. To arrive to these parameters, one must 

first have a solution of the radiative transport equation. Because of the 

difficulty of solving the transport equation exactly, several approximations 

have been made regarding the representation of the radiance and/or of the 

phase function.  

 Two simple solutions of the transport equation provide the expressions 

for the unscattered transmission and for asymptotic fluence rate deep in a 

bulk tissue (far from light sources and boundaries) (Cheong, 1995; Cheong et 

al, 1990). 

 Unscattered Transmission. Unscattered light is attenuated 

exponentially following the Beer’s law. For light passing through a slab of 

tissue with thickness ݔ and having no reflections at the surface, the 

transmission is given by:  

஼ܶ ൌ ݁ିఓ೟௫     (1.6) 
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where ஼ܶ is the unscattered transmission (also named collimated or primary 

transmission). Therefore, the total attenuation coefficient of a tissue sample 

can be calculated using: 

௧ߤ ൌ െ ଵ

௫
ln ஼ܶ       (1.7) 

 If measurements of ஼ܶ are made when surface reflections are present 

(e.g. in air) corrections are required for the reflections at all mismatched 

surfaces. For a tissue sample placed between glass or quartz slides, the 

collimated beam is reflected at the air-slide, slide-tissue, tissue-slide and 

slide-air interfaces. If the sample is only a few optical depths thick, multiple 

internal reflections must be considered. A net reflection coefficient for an air-

glass-tissue layer is given by:  

ݎ ൌ
௥೒ା௥೟ିଶ௥೒௥೟

ଵି௥೒௥೟
     (1.8) 

where the Fresnel reflections at the air-glass and glass-tissue interfaces are 

 ௧ respectively. The measured transmission ܶ isݎ ௚ andݎ

ܶ ൌ ሺଵି௥ሻమ

ଵି௥మ ಴்
మ ஼ܶ    (1.9) 

This last equation (1.9) is first solved for ஼ܶ, before using (1.7) to calculate ߤ௧.  

 Asymptotic fluence rate. In tissue regions far from light source and 

boundaries, the fluence rate (Wm-2) decays exponentially. This is the 

dominant mode of propagation in an unbounded medium (Garcia de Abajo, 

2007; van de Hulst, 1980) and is often called the diffusion mode. The rate of 

decay is called the effective attenuation coefficient (ߤ௘௙௙) or the diffusion 

exponent. An expression for this asymptotic fluence rate is  

Φሺݖሻ ∼ ሺܿݐ݊ܽݐݏ݊݋ሻ݁ିఓ೐೑೑௭      (1.10) 

where ߤ௘௙௙ refers to the measured rate of decay of the fluence in this diffusion 

region. The approximate relation for the effective attenuation coefficient in 
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terms of the absorption, scattering and anisotropy scattering coefficients is 

described by the diffusion theory.  

 Diffusion theory. The radiance in (1.2) can be divided into unscattered 

and scattered components:  

,ݎሺܮ ሻݏ ൌ ,ݎ௖ሺܮ ሻݏ ൅ ,ݎௗሺܮ  ሻ      (1.11)ݏ

 The unscattered portion (ܮ௖ሻ contains all the light that has not 

interacted with the tissue and satisfies the Beer’s law and transmission 

equation (1.6). The scattered portion (ܮௗ) contains all the light that has been 

scattered al least once and can be expressed with an infinite sum of Legendre 

polynomials. Nevertheless, the diffusion approximation simplifies this sum to 

the first two terms (an isotropic and a slightly-forward directed term) in order 

to have a more tractable transport equation (Rogers et al., 2009; Andrews and 

Philips, 2005; Ishimaru, 1978): 

ሺ׏ଶ ൅ κଶሻΦሺݎሻ ൌ െܳ଴ሺݎሻ      (1.12) 

where Φሺݎሻ is the total scattered fluence rate given by 

Φሺݎሻ ൌ ׬ ,ݎௗሺܮ ሻ݀߱ସగݏ       (1.13) 

 The source term ܳ଴ሺݎሻ is generated by scattering of collimated normal 

irradiation  

ܳ଴ሺݎሻ ൌ െ3ߤ௦ሾߤ௔ ൅ ௦ሺ1ߤ െ ݃ሻ ൅ ௧݃ሿሺ1ߤ െ  ሻ      (1.14)ݖ௧ߤሺെ	ሻexpݎ଴ሺܨ௦ሻݎ

 Here ܨ଴ is the irradiance (Wm-2). When absorption is dominated by 

scattering, the constant ߢ in (1.12) is an approximation of the actual 

measured effective attenuation coefficient ߤ௘௙௙. 

ଶߢ ൌ ௔ߤ௦ሾߤ3 ൅ ሺ1 െ ݃ሻߤ௦ሿ      (1.15) 

 For diffuse irradiances, ܳ଴ is typically set to zero because the diffuse 

incidence is introduced in the boundary conditions. The accuracy of the 

diffusion equation is affected by the ratio of scattering to absorption, the 
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scattering anisotropy and the distance from light sources and boundaries 

(Star, 1989).  

 The solution of the diffusion equation (1.2) for the total fluence rate in 

a finite parallel slab is (Andrews and Philips, 2005) 

Φ௧௢௧௔௟ሺݖሻ ൌ ܽଵ expሺݖߢሻ ൅ ܽଶ expሺെݖߢሻ ൅ ܽଷexp	ሺെߤ௧ݖሻ.       (1.16) 

 For a finite slab under plane collimated irradiation, Ishimaru provides 

values for ܽଵ, ܽଶ, ܽଷ (Ishimaru, 1978) for matched boundaries. In the case of a 

semi-infinite slab  ܽଵ must equal zero; values for ܽଶ and ܽଷ have been 

evaluated by Prahl, based on the delta-Eddington approximation, for a 

uniform collimated irradiance ܨ଴ for matched and mismatched boundary 

conditions (Prahl, 1988).  

 In a semi-infinite slab, the dominant term in (1.16) yields the next 

approximate relation for the measured effective attenuation coefficient  

௘௙௙ߤ ൎ ௔ߤ    if         ߢ ≪  ௦.      (1.17)ߤ

 The accuracy of this relation decreases with decreasing ratios of 

scattering to absorption and increasing anisotropy and fails completely when 

absorption dominates scattering.  

 Cheong (Cheong et al., 1990) gives the following expressions for light 

flux solutions of the diffusion equation (1.12) 

ሻݖାሺܨ ൌ
ܽଵ
4
ሾ1 െ ሿ݁఑௭ߢ݄ ൅

ܽଶ
4
ሾ1 ൅ ሿ݁ି఑௭ߢ݄ ൅ ൜

ܽଷ
4
ሾ1 ൅ ௧ሿߤ݄ ൅

௦݃ሺ1ߤ െ ଴ܨ௦ሻݎ
2ሾߤ௔ ൅ ሺ1 െ ݃ሻߤ௦ሿ

ൠ ݁ିఓ೟௭ 

                                                                                                            (1.18a) 

ܨି ሺݖሻ ൌ
ܽଵ
4
ሾ1 ൅ ሿ݁఑௭ߢ݄ ൅

ܽଶ
4
ሾ1 െ ሿ݁ି఑௭ߢ݄ ൅ ൜

ܽଷ
4
ሾ1 െ ௧ሿߤ݄ െ

௦݃ሺ1ߤ െ ଴ܨ௦ሻݎ
2ሾߤ௔ ൅ ሺ1 െ ݃ሻߤ௦ሿ

ൠ ݁ିఓ೟௭ 

                                                                                                       (1.18b) 

ሻݖௗሺܨ ൌ ሻݖାሺܨ െ ܨି ሺݖሻ                   (1.18c) 
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ܨି ሻ andݖାሺܨ ሺݖሻ are the forward and backward diffuse fluxes, respectively and 

 ሻ is the net scattered flux along the direction of irradiation. Theݖௗሺܨ

coefficient ݄ is  

݄ ൌ 2/3ሾߤ௔ ൅ ௦ሺ1ߤ െ ݃ሻሿ      (1.19) 

 For a semi-infinite slab, both the fluence rate and the fluxes have the 

same exponential behaviour for large ݖ: 

ሻݖേሺܨ ∼
௔భ
ସ
ሾ1 േ ௔ߤ     ሿ݁ି఑௭        ifߢ݄ ≪  ௦      (1.20)ߤ

 Consequently, for high scattering biological tissue, interstitial 

measurements of either fluence rate by isotropic detectors or flux by flat cut 

fibers placed deep inside the tissue permits evaluation of ߢ as suggested by 

(1.16) and (1.20) (Svaasand et al, 1981; Doiron et al., 1983; Preus et al., 1982; 

Wilson et al., 1986).  

 Knowing the diffuse reflection (ܴ), total transmission ( ௧ܶ) and 

unscattered transmission ( ௖ܶ) allows the determination of three optical 

properties: absorption coefficient (ߤ௔), scattering coefficient (ߤ௦) and 

anisotropy coefficient (݃). The reflection and transmission of a slab of 

thickness ݔ with index matched boundaries in the diffusion approximation 

are given by (Welch and Gardner, 2002; Dam et al., 2000; Prahl, 1988; 

Jacques and Prahl, 1987; van Gemert et al., 1987): 

ܴ ൌ െ ఓೞ௚

ሾఓೌାሺଵି௚ሻఓೞ
൅ ௛

ଶ
ሼܽଵߢ െ ܽଶߢ െ ܽଷߢሽ       (1.21a) 

ܶ ൌ ఓೞ௚

ሾఓೌାሺଵି௚ሻఓೞሿ
݁ିఓ೟௫ െ ሼܽଵ݁ߢ఑௫ െ ܽଶି݁ߢ఑௫ െ ܽଷߤ௧ି݁ߢఓ೟௫ሽ    (1.21b) 

The total transmission is ௧ܶ ൌ ܶ ൅ ௖ܶ, where ௖ܶ is given by (1.6). 

 However, if only the diffuse reflection and total transmission 

measurements are available, only absorption (ߤ௔) and reduced scattering 

௦′ߤ) ൌ ௦ሺ1ߤ െ ݃ሻ) coefficients can be calculated. The anisotropy coefficient has 

been included in the ߤ′௦ by the similarity relations: ߤ′௔ ൌ ᇱ௦ሺ1ߤ ௔ andߤ െ ݃ᇱሻ ൌ

௦ሺ1ߤ െ ݃ሻ. Anisotropic scattering is reduced to isotropic scattering by setting 
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݃ᇱ ൌ 0 and so, ߤ′௦ ൌ ௦ሺ1ߤ െ ݃ሻ (Teran et al., 2010; Garcia de Abajo, 2007; van 

de Hulst, 1980; Yoon et al., 1989).  

 There are some diffusion models that incorporate index mismatched 

boundaries, scattering anisotropy and tissue layers with varying optical 

properties, but these models lead to complicated relations for reflection and 

transmission and the optical properties cannot be expressed directly in terms 

of reflection and transmission. In order to determine the optical properties, 

iterative methods must be used in such models.  

 Table 1 shows some models proposed by different authors for modelling 

the propagation of laser light in tissue and the optical parameters required by 

each model.  

Table 1.1. Conversion Formulas relating Kubelka-Munk to Transport Coefficient 

 

Author 
 

  or 1 
 

Restrictions 2 
    

Klier3 ሺ1 െ ሻሺ1 െ ܽሻ
ሺ1 ൅ ሻ

 െ
ܽ
2
൜1 െ

1

ൠ 

Isotropic scattering 

    
van Gemert& Star4 ሺ1 െ ሻሺ1 െ ܽሻ

ሺ1 ൅ ሻ
 െ

ܽ
2
൜1 െ

1

ൠ 

Anisotropic scattering; 
delta-isotropic 
phase function 

    
van Gemert& Star 1

2
൅
1
4
	ሺ1 െ ܽሻ 

4
3
൅
38
45

ሺ1 െ ܽሻ 
Anisotropic scattering; 
assumess>>a 

    
Meador & Weaver 1

2
൅
1
4
	ሺ1 െ ܽሻ 

4
3
൅
38
45

ሺ1 െ ܽሻ 
Isotropic scattering; 
Delta-Eddingtonphase 
function (4 moments) 

    
Meador & Weaver 1

2
 

4
3
൅
20
45

ሺ1 െ ܽሻ 
Isotropic scattering; 
Delta-Eddingtonphase 
function (2 moments) 

    
Brinkworth 1

2
 

4
3
൅
80
45

ሺ1 െ ܽሻ 
Isotropic scattering; 
Eddingtonphase 
function 

    
1 for isotropic and  for anisotropic scattering; ܽ ൌ 	௦ ൫௦ ൅ ௔൯⁄ and ܽ ൌ	௦ሺ1 െ ݃ሻ ൣ௦ሺ1 െ ݃ሻ ൅ ௔൧⁄  
2 All formulas assume index matched boundaries 

3ሺଶ െ 1ሻ 2⁄ = ሺ1 ൅ ܴଶ െ ܶଶሻ 2ܴ⁄ , and= ሾ൅ ݈݊ሺ1 െ ሻሿ ሾെ ݈݊ሺ1 െ ሻሿ⁄  

4ሺଶ െ 1ሻ 2⁄ =ሺ1 ൅ ܴଶ െ ܶଶሻ 2ܴ⁄ , and௦ሺ1 െ ݃ሻ ൣ௦ሺ1 െ ݃ሻ ൅ ௔൧⁄  = ሾ൅ ݈݊ሺ1 െ ሻሿ ሾെ ݈݊ሺ1 െ ሻሿ⁄  
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 In particular, when one-dimensional geometry is a reasonable 

representation, the adding-doubling method (Liu and Weng, 2006; Riu and 

Ruprecht, 1996; Prahl, 1995) provides an accurate solution of transport 

equation for any phase function. It allows modelling of anisotropically 

scattering, internally reflecting and arbitrarily thick layered media with 

relatively fact computations (Teran et al., 2010). The adding-doubling 

approximation is one simple method and it has been successfully used to 

determine the optical properties of turbid media, such as biological tissues 

(Yust et al., 2012; Sardar et al., 2009). 

 The principle of the adding method, as first proposed by van de Hulst 

(1963) is illustrated in Figure 1.1. For a very thin slab, one can write the 

radiance at the two surfaces from knowledge of the phase function, since the 

multiple scattering is negligible. If an identical slab is added, the radiance of 

the final thicker slab can be calculated by considering the successive 

scattering back and forth between the component layers. Computation for 

thicker slabs can be carried out by adding other thin layers or, more 

efficiently, by doubling the total thickness with each iteration.  

 

Figure 1.1. Schematic representation of the adding-doubling approximation method  

I R TRT TRRRT

TRRRRTRR TRRRTRT

TRRRRTTRRTTT
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 Prahl (Prahl et al., 1993) proposed a method for determining the optical 

properties of turbid media based on the adding-doubling approximation, 

called inverse adding-doubling (IAD): inverse implies a reversal of the usual 

process of calculating reflection and transmission from optical properties, and 

adding-doubling indicates the method used to resolve the radiative transport 

equation. The adding-doubling method is sufficiently fast that iterated 

solutions are possible on current microcomputers and sufficiently flexible that 

anisotropic scattering and internal reflection at boundaries may be included 

(Madsen and Wilson, 2013). Complete details of the IAD method will be 

described in Chapter 5.  

 Nevertheless, there are also other solutions for the radiative transfer 

equation which are not direct solutions. Among them, numerical evaluations 

and particle simulations are of great interest. While numerical integration 

could be used to evaluate the scattering integral in the radiative transfer 

equation (1.2), particle simulations represent the great majority of Monte 

Carlo applications in radiative transfer. The term “Monte Carlo method” 

refers to both numerical evaluations and particle simulations based on 

random sampling from appropriate probability distributions (Kienle and 

Patterson, 1996; Patterson et al., 1991), but, in the further discussion only 

particle simulations will be considered when describing the Monte Carlo 

applications.  

 In the simplest algorithm, photons are injected into the medium one-

by-one and their history is traced until they are either absorbed or 

permanently scattered out of the region of interest. Parameters such as 

injection position, path-length between interactions and scattering angle are 

randomly sampled from probability distributions based on the known physics 

of the problem. Quantities of interest, such as absorbed energy are scored at 

desired locations. The data required (for example ߤ௔, ߤ௦,	݃) are identical to 

those required for solution of the radiative transfer equation (Patterson et al., 

1991).  
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 The Monte Carlo particle simulation displays a simple concept and 

allows direct handling of complex geometries and optical inhomogeneities. A 

limiting consideration is that the accuracy of scored quantities increases only 

with the square root of the number of photon histories. This fact makes the 

Monte Carlo particle simulation a computationally expensive method. 

However, this technique is finding increased application as computing power 

becomes more cheaply available. Various authors have applied it to tissue 

optics (Tuchin, 2007; Palmer and Ramajuan, 2006; Palmer et al., 2006; 

Marchesini et al., 1994).  

 Techniques to improve the accuracy of Monte Carlo simulations, known 

as variance reduction methods have been developed. One very useful method, 

particularly applicable to situations where scatter dominates absorption, is 

survival weighting. In this method, simulated photons are never totally 

absorbed but rather are transported through the medium with an associated 

weight, as shown in Figure 1.2a. At each interaction, the fraction ߤ௔/ߤ௧ of a 

photon’s weight represents deposited energy, while the remaining fraction, 

 ,.௧, is the factor by which the photon’s weight is reduced (Patterson et alߤ/௦ߤ

1991). 

 Two other common variance reduction techniques are splitting and 

Russian roulette. Splitting involves increased sampling in regions or 

directions that are likely to contribute to scoring, while roulette involves 

decreased sampling for unfavourable photons, such as those that are poorly 

located, directed or have a very low weight. In the splitting technique, a 

favourably located or directed photon is split into ݊ ‘sub-photons’, each of 

weight ݊-1, thereby increasing the number of trajectories while conserving 

total photon weight. Likewise, Russian roulette involves random sampling 

that terminates an unfavourable photon with a probability 1 െ ݊ (0 ൏ ݊ ൏ 1), 

so that the photon survival probability of ݊ is accompanied by a compensating 

weight increase factor of ݊-1. A simulation involving splitting and roulette is 

shown in Figure 1.2b (Kienle and Patterson, 1996; Patterson et al., 1991).  
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Figure 1.2. Schematic representation of variance reduction techniques used in Monte Carlo 

particle transport simulation. (a) Survival weighting with factor ߙ ൌ  ௧. b) Splitting ofߤ/௦ߤ

forward directed photons with parameter ݊௦௣௟௜௧=2, and rouletting of reverse directed photons 

with parameter ݊௥௢௨௟௘௧௧௘=1/3. Note that only one in three reverse directed photons survives 

but that its weight is tripled. 

 While other variance reduction methods exist, the above methods are 

simple and effective to use in order to reduce computation time.  

 In this first sub-chapter, we have described the light propagation in 

biological tissue in which the optical properties do not depend on the local 

electromagnetic field and the effects of multiple scattering are important. 

These particular conditions apply to many important uses of light in medicine 

(Ansari and Mohajerani, 2011). Although a mathematical description to this 

situation in terms of Maxwell’s equation is theoretically possible, ultimately, 

it is the radiation transfer theory, the formalism used to describe all the 

experimental results. This theory formulates an equation in terms of 

absorption and differential scattering coefficients.  
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 However, the only method capable of dealing with 3D geometries (such 

as biological tissues geometries) is the Monte Carlo simulation. It is a 

conceptually simple method that requires substantial computer resources for 

precise calculations. Nowadays, these resources are becoming more and more 

available and tissue optics is following the trend seen in other fields of 

radiation physics, where the simulation studies are prevalent. Nonetheless, 

as stated before, in order to calculate the light field in tissue, information 

about the optical properties of the irradiated tissue is required.  

 In the second section of this Chapter, we will describe the main optical 

properties of biological tissues and some of the methods used to measure 

them.  
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OPTICAL PROPERTIES OF TISSUE 

 

 

 The main processes that light suffers when travelling throughout a 

tissue are absorption and scattering.  

 Absorption. The overall effect of absorption is a reduction in the 

intensity of the light beam traversing the medium. A relationship between 

the absorption of light in a purely absorbing medium and the thickness of the 

medium was first determined in 1729 by Bouguer (1729). Some years later 

Lambert (1760) derived the following mathematical expression for the 

relationship, known as the Lambert-Bouguer law 

ௗூ

ூ
ൌ  (1.22)     ݔ௔݀ߤ

which describes how each successive layer ݀ݔ of the medium absorbs the 

same fraction ݀ܫ/ܫ of the incident intensity ܫ for a constant ߤ௔, the latter 

known as the absorption coefficient with units of inverse length (usually 

mm−1). For an incident intensity ܫ଴, therefore, the transmitted intensity ܫ 

through a distance ݔ will be 

ܫ ൌ  ଴݁ିఓೌ௫      (1.23)ܫ

 The absorption coefficient ߤ௔ can thus be interpreted as the probability 

that a photon will be absorbed by the medium per unit length. The reciprocal 

of the absorption coefficient, known as the absorption length, is the distance 

required for the intensity of the beam to fall to 1/݁ of the initial intensity. 

When (1.23) is expressed in base 10 logarithms  

ܫ ൌ  ଴10ି௄௫      (1.24)ܫ
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then the constant ܭ is known as the extinction coefficient. The absorbance of 

the medium is defined as the ݈݋ ଵ݃଴ ratio of the incident and transmitted 

intensities 

ܣ ൌ ݋݈ ଵ݃଴ ቀ
ூబ
ூ
ቁ ൌ  (1.25)      ݔܭ

where the unit of absorbance is the ‘optical density’ (OD).  

 In 1852, Beer determined that the absorption coefficient of a compound 

is linearly related to its concentration ܿ diluted in a non-absorbing medium 

(Beer, 1852) 

௔ߤ ൌ  (1.26)      ܿߙ

where ߙ is known as the specific absorption coefficient. Substituting for ߤ௔ in 

the Lambert-Bouguer law gives what is known as the Lambert-Beer law 

ܫ ൌ  ଴݁ିఈ௖௫      (1.27)ܫ

 Expressing the Lambert-Beer law in ݈݋ ଵ݃଴ gives 

ܫ ൌ  ଴10ିఌ௖௫      (1.28)ܫ

where ߝ is the specific extinction coefficient. In a solution containing a 

mixture of n absorbing compounds, the total absorbance is the sum of the 

individual extinction coefficients multiplied by the distance ݔ 

ܣ ൌ ሺܭଵ ൅ ଶܭ ൅⋯൅ ݔ௡ሻܭ ൌ ሺߝଵܿଵ ൅ ଶܿଶߝ ൅ ⋯൅  (1.29)      ݔ௡ܿ௡ሻߝ

 The Lambert-Beer law is only valid under certain limited conditions: 

the light entering the medium must be monochromatic and perfectly 

collimated, and the medium itself must be purely and uniformly absorbing. 

Therefore, certain errors will arise when applying the law to practical 

measurements, since, for example, even lasers are not perfectly 

monochromatic, and also biological media are not uniformly absorbing media 

(Hollis, 2002).  
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 In biological tissues, there are many compounds which absorb light 

radiation such as proteins, haemoglobin, melanin etc. It is worth noting that 

it is expected that in the ultraviolet region of the wavelength spectrum, ߤ௔ 

would be very large due to the high UV absorption characteristics of many 

biomolecules such as proteins and nucleic acids. As the wavelength increases, 

this absorption falls off and absorption due to specific chromophores such as 

haemoglobin, myoglobin, bilirubin and melanin dominates. Therefore, large 

differences in ߤ௔ among different tissues are expected in this wavelength 

range as their chromophores content will vary considerably. For wavelengths 

higher than 1000nm, infrared absorption by water becomes the dominant 

mechanism and it is probable that the absorption coefficient of most tissues 

would be largely water-like. For reference, the absorption spectra of melanin, 

haemoglobin and water are shown in Figure 1.3.  

 

 

Figure 1.3. The absorption spectra of water, oxyhaemoglobin and melanin (after Boulnois 

(1986) and Hale and Querry (1973)). Also shown are approximate boundaries of regions 

where absorption is dominant or scattering is dominant for light propagation in soft tissue 

(Patterson et al., 1991) 
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 Scattering. Elastic scattering of light occurs when charged particles in 

a medium are set into oscillatory motion by the electric field of the incident 

wave, and re-emit (as opposed to absorb) light of the same frequency as the 

primary wave. Scattering occurs at non-resonance frequencies, hence the 

scattered intensities are relatively weak, since the forced vibrational 

amplitudes of the particles are much smaller than those at natural 

resonances. In most solids and liquids, however, intermolecular interactions 

broaden the absorption frequencies such that both scattering and absorption 

of light occur at all wavelengths. As a result of scattering, the velocity of light 

in all matter is less than it is in vacuo. In an optically dense or homogeneous 

medium, i.e. one in which the molecular separation is much smaller than the 

wavelength of the incident light, individual atoms or molecules in a medium 

will scatter the incident radiation in all directions. The phase difference of the 

scattered light relative to the primary wave will depend on the frequency of 

the primary wave. In any direction the total scattered field is then a 

superposition of all the scattered wavelets propagating in that direction. The 

scattered waves will interfere with the incident wave, modifying its phase 

and hence the velocity of the light through the medium.  

The refractive index of a medium is given by 

݊ ൌ ௖

௩
      (1.30) 

where ܿ is the speed of light in vacuo and ݒ the speed of light in the medium. 

 The refractive index depends on the number of molecules per unit 

volume and their polarisability, since the total scattered wave that interferes 

with the incident wave depends on the amplitudes of, and phase relations 

between, the individual scattered wavelets. Furthermore, the refractive index 

for a given medium changes with the frequency of the incident light. This 

phenomenon is known as dispersion and is due in part to the frequency-

dependence of the relative phase change between the incident and scattered 

waves. Theory has shown, however, that to explain dispersion in real media 
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over a broad spectrum, including the resonance frequencies, the absorption of 

light must also be considered. Thus, the complex refractive index is defined as 

ܰ ൌ ݊ ൅ ݅݇       (1.31) 

where the real part, ݊, as defined in (1.31), determines the speed of the wave 

and the imaginary part, ݇, determines the absorption of the wave as it 

propagates through the medium. From Maxwell’s equations k can be related 

to the absorption coefficient, as follows 

݇ ൌ ఓೌఒ

ସగ
      (1.32) 

where ߣ is the wavelength of the incident light. 

 Scattering of light in tissue is caused by the size and shape of the 

tissue constituents (cells, fibers) and their refractive indices. The scattering 

arises due to a relative refractive index mismatch at the boundaries between 

two such structures, e.g. between the extracellular fluid and the cell 

membrane.  

 In particular, the refractive index of the fibrils, the refractive index of 

the extrafibrillar material, and the ratio of these two refractive indices, all 

play a major role in determining the extent of light scattered by the tissue. 

 The simplest model considers that all tissue components have a 

uniform refractive index. This essentially means that light cannot distinguish 

between fibrils and the material between them, hence it can propagate 

directly through the tissue unscattered. This model is generally rejected, 

partly because it fails to explain two important properties of tissues, such as 

birefringence and, in some cases, transparency loss when the structure is 

distorted. Also, recent X-ray diffraction data have unambiguously confirmed 

earlier evidence for a difference in the refractive indices of the fibrils and of 

the extrafibrillar material. Most modern models are based on the lattice 

theory put forward by Maurice (Maurice, 1957). By approximating the fibril 

to perfect, infinitely long cylinders, an estimate of the scattering from an 

individual fibril can be calculated. The refractive index difference between the 
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fibrils and interfibrillar matrix means that each fibril scatters a small 

amount of light. However, if the fibrils are packed in a lattice arrangement, 

correlation in their relative positions leads to destructive interference of light 

scattered away from the forward direction, all the light energy going into the 

constructive interference in the forward direction. The Direct Summation of 

Fields (DSF) method has been used to predict transmission by an arbitrary 

short range order distribution of different-sized fibrils. It is a statistical 

technique in which the scattering from each individual fibril is computed, and 

the effects of interference are included and summed for the whole tissue using 

a method called ensemble averaging (Meek et al.,2003) The DSF method has 

been tested and found to give reliable results in a number of situations (Rawe 

et al., 1997; Leonard DW, 1996; Freund et al., 1991). It has been 

demonstrated that light scattering in tissues will increase if: (1) order in the 

spatial arrangement of the fibrils is destroyed; (2) fibril diameters increase; 

(3). fibril number density increases; (4) there is an increased refractive index 

imbalance between the hydrated fibrils and the extrafibrillar matrix; (5) 

tissue thickness increases. (Meek et al., 2003) 

 As mentioned before, beside fibrils the tissue consists also of cells, 

which play an important part in the scattering of the incident light on tissue. 

The cells vary greatly in size, from blood platelets of approximately 4 µm to 

nerve cells as much as a metre in length. Figure 1.4 shows a ‘generalised’ cell 

(Marieb, 1995), i.e. it represents the basic components found in many human 

cells, but no cell type in particular. However, all cells consist of three main 

components: the cell membrane, the cytoplasm and the nucleus. The cell 

membrane, which constitutes the outer boundary of the cell, is made up of a 

phospholipid bilayer, approximately 8nm in thickness, with numerous 

proteins embedded in it. The cytoplasm is the intracellular ‘matrix’ held 

within the bounds of the cell membrane. It consists of the cytosol, a water-

based fluid within which the other constituents are suspended, the 

organelles, each of which have a special function in the cell mechanism, and 

non-functioning units known as inclusions, which include lipid droplets in fat 

cells and melanin granules in certain skin cells. Cells receive their energy 
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supply from organelles called mitochondria, the number of which reflects a 

cell’s need for energy. The mitochondria, approximately 1-4 µm by 0.3–0.5 µm 

in size (Palade, 1972), are surrounded by a double layer of membrane similar 

to the outer cell membrane. The nucleus is the largest organelle in the cell 

and constitutes its control centre. The size of the nucleus varies with cell 

type, with an average diameter in the order of 5 µm (Marieb, 1995). The 

nucleus, like the mitochondria, is surrounded by a double-layered 

phospholipid membrane. 

 

Figure 1.4. A ‘generalised’ human cell. (Marieb, 1995) 

 In order to understand how light is scattered in tissue it is helpful to 

study the structures responsible for scattering on a microscopic, i.e. cellular 

or sub-cellular, level. Each microscopic scattering particle or object will give 

rise to its own scattering phase function, which depends on the physical 

properties of the object. A single scattering event in tissue can be considered 

to arise from an ‘averaged scattering object’, representing a distribution of 

scattering objects with an averaged phase function. The contribution of each 

type of object to the averaged scattering properties in tissue will depend on 

their individual scattering properties and their relative concentrations. 
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 Mourant et al (1998) studied suspensions of mammalian cells in order 

to determine the dominant scattering centres in tissue. Comparing their 

measurements of the transport scattering coefficient ߤ௦ and the anisotropy 

factor ݃ with predictions from Mie theory, they determined that the observed 

scattering was due to particles with a distribution of sizes, equivalent to 

spheres with diameters ranging from about 0.2 to at least 1µm. They also 

measured the phase functions of isolated cell nuclei and mitochondria and 

compared them to the phase function measured for the cells. The authors 

concluded that the majority of light scattering from a cell at small angles is 

due to the nucleus, the smaller organelles such as the mitochondria being 

responsible for scattering at larger angles. In another study, Mourant et al. 

(2000) determined that approximately 55% of scattering from cells at angles 

greater than 40º was due to the internal cellular structures. By comparing 

scattering from cells and nuclei at different growth phases they concluded 

that the nucleus and its sub-structures are responsible for a maximum of 

approximately 40% of the scattering at any angle and that, as confirmed by 

the known change in mitochondrial content with growth phase, other 

organelles in the cytoplasm must also contribute significantly to the observed 

high-angle scatter. 

 In the previous sections we have discussed the physical basis for the 

absorption and scattering of light radiation, and the components of biological 

tissue responsible for these. The theories discussed in Section “Light 

propagation in tissue” can describe light propagation by both large and small 

particles (relative to the wavelength of the illuminating light) assuming a 

small enough collection of particles, or one in which the particles are far 

enough apart, such that their individual scattered fields do not significantly 

perturb one other. Also, we have discussed what happens in biological tissue, 

where the scattering particle density is such that the interaction of scattered 

waves between neighbouring particles cannot be ignored and multiple 

scattering can occur. In the next section, we will briefly describe some of the 

methods used to measure the absorption and scattering properties of 

biological tissues. 
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 Methods of measurement of optical properties. Many methods have been 

proposed for the measuring the optical properties of tissue. They can be 

divided in two categories: direct and indirect methods. The direct methods use 

nothing more than the Lambert-Beer’s law to find the optical properties. Also 

in the same category are included unscattered transmission measurements, 

effective attenuation measurements, and goniophotometric measurements of 

the single scattering phase function (Fernández-Oliveras et al., 2012; Ansari 

and Mohajerani, 2011). In the indirect methods, the optical properties are 

explicitly given in terms of the measured quantities (noniterative) or 

implicitly related to the measured quantities (iterative). The last ones are the 

most cumbersome to use, but the optical model used is more sophisticated 

than the noniterative methods.  

 A schematic representation of all the methods that can be used to 

measure the optical properties of tissues is given in Figure 1.5 (Cheong et al., 

1990). 

  

 

 

Figure 1.5a. Measured values from the unscattered transmission ௖ܶ through a sample of 

thickness ݔ are analyzed using Beer's law to provide estimates of the total attenuation 

coefficient (ߤ௧). 

 

 

 

Sample Measurements Model Optical property

Beer´s
Law

t
Tc (z)

t
Collimated
irradiance

on slab
(a)



 
APPLICATION OF OPTICAL METHODS FOR THE EVALUATION OF HUMAN TISSUES GENERATED BY TISSUE ENGINEERING 

27 

 

 

Figure 1.5b. Interstitial measurements of fluence rate (or flux) inside a sample with or 

without an added absorber yield an estimate of the effective attenuation coefficient (ߤ௘௙௙)  or 

the effective penetration depth (߲௘௙௙ ൌ  (௘௙௙ߤ/1

 

 

 

Figure 1.5c. Measurements of diffuse reflection ܴௗ and diffuse transmission ௗܶ and sample 

thickness ݔ for diffuse irradiance are used in 
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Figure 1.5d. Measurements of diffuse reflection and transmission for diffuse irradiance lead 

to Kubelka-Munk coefficients; these are then converted to transport parameters. When 

collimated transmission is available, ߤ௔, ߤ௦ and ݃ can be calculated. 

 

Figure 1.5e. If only total reflection and transmission are available, the absorption coefficient 

௦ሺ1ߤ ௔ and reduced scattering coefficientߤ െ ݃ሻ can be determined with an iterative light 

transport model. An additional measurement (collimated transmission or the phase function) 

permits separate estimation ߤ௔, ߤ௦ and ݃ 
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 In the present Thesis, we will use the iterative method shown in Figure 

1.5e when evaluating the optical properties of native and artificial tissues 

developed by tissue engineering for corneal and oral mucosa applications. In 

order to understand the characteristics of these tissues, in the next section we 

will describe the principles of tissue engineering and the morfo-functional 

aspects of the native tissue that will be mimicked.  
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TISSUE ENGINEERING OF HUMAN CORNEA AND ORAL MUCOSA 

 

 

 The term ‘‘tissue engineering’’ is thought to have been officially coined 

and defined in its modern sense by Robert Nerem in 1988 at the Lake 

Granlibakken NSF workshop on the topic of engineering tissue (Viola et al., 

2003). However, the concept was brought to wide spread attention and 

formalized in a review paper in Science in 1993 (Langer and Vacanti, 1993) 

which paraphrased the definition: Tissue engineering is an interdisciplinary 

field that applies the principles of engineering and the life sciences toward the 

development of biological substitutes that restore, maintain or improve tissue 

function. 

 In the subsequent years since the field of tissue engineering was 

formalized, there has been an enormous scientific effort to produce tissue 

constructs for clinical use (Vacanti, 2006). The success of the approach has 

thus been modest in relation to the expenditure of time and resources 

(Nerem, 2006) with few tissue engineered constructs approved for clinical use 

(the most successful of these being artificial skin). The myriad limitations of 

current tissue engineering methods are enumerated by Dr.Vacanti in an 

article in the journal Tissue Engineering (Vacanti, 2006). Nonetheless, tissue 

engineering in general does hold great promise and the potential for 

producing tissue engineered replacements for diseased or injured tissues in 

the reasonably near term does exist. One of the most engineered tissues is the 

cornea. This is because corneal tissue is reasonably ‘‘simple’’, thin and 

avascular (Ko et al., 2007). However, all tissues are extremely complex at 

some level (in the cornea it is at the level of matrix molecule organization).  
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 The term ‘‘engineering’’ as it relates to tissue engineering. An engineer is 

defined as ‘‘One who contrives, designs, or invents’’ (first definition, OED 

second edition 1989). In the sense of this definition, the term ‘‘tissue 

engineering’’ seems a perfectly reasonable description for what has been 

attempted in the field since its inception. However, in practice, the gerund 

‘‘engineering’’ carries the implication that a particular task can be 

accomplished given the currently available knowledge base, adequate funding 

and adequate manpower. Indeed, tissue engineering has the potential to 

address the transplantation crisis caused by the shortage of donor tissues and 

organs. It is through the imitation of nature that tissue engineering is able to 

address the patient need; nevertheless, a number of challenges need to be 

faced. In a review book on the principles of tissue engineering, Robert Nerem 

explains these challenges of imitating the nature faced by tissue engineers 

(Nerem, 2000). He believes that in the area of cell technology, the challenge 

includes cell sourcing, the manipulation of cell function and the effective use 

of stem cell technology. Next are those aspects that are part of construct 

technology, such as the design and engineering of tissue like constructs and 

the manufacturing technology required to provide off-the-shelf availability to 

the clinician. Finally, there are the issues concerning the integration of a 

construct into the living system, with the most critical issue being the 

engineering of immune acceptance (Nerem, 2000). Only if these issues are 

overcome, the tissue engineering of the most vital of organs can be addressed 

and the crisis in transplantation can be confronted.  

 It is this challenge of imitating nature that has been accepted by those 

who are providing leadership to this new area of technology called tissue 

engineering (Nerem and Sambanis, 1995; Langer and Vacanti, 1993). To 

imitate nature, it is required, in first place, the understanding of the basics of 

biology of the tissues of interest; with this, methods can be developed for the 

control of these biologic processes, and finally, based on the ability to control, 

strategies can be developed either for the engineering of living tissue 

substitutes or for the fostering of tissue repair or remodelling. 
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 Cell technology. Cell sourcing. The starting point for any attempt to 

engineer a tissue or organ substitute is a consideration of the cells to be 

employed. Not only a sufficient quantity is needed, but it is has to be ensured 

that it will be free of pathogens and contamination of any type whatsoever. In 

addition, the source that will be employed has to be able to provide 

autologous, allogeneic, or xenogeneic cells. As indicated in Table 1.2, there are 

both advantages and disadvantages to each of these. 

 

Type Comments 

Autologous Patient’s own cells; immune 
acceptable, does not lend itself to off-
the-shelf availability 

Allogeneic Cells from other human sources; 
lends itself to off-the-shelf 
availability, but may require 
engineering immune acceptance 

Xenogeneic From different species; not only 
requires engineering immune 
acceptance, but must be concerned 
with animal virus transmission 

Table 1.2. Cell Source (Nerem, 2000) 

 

 Cell function and genetic engineering. Once the cell types to be 

employed have been selected, the next issue to be addressed relates to the 

manipulation of the functional characteristics of a cell, so as to achieve the 

behaviour desired. This can be performed either by manipulating a cell’s 

extracellular environment (e.g. its matrix), the mechanical stresses to which 

it is exposed, or its biochemical environment, or by manipulating a cell’s 

genetic program. This last possibility can be used together with tissue 

engineering in a variety of ways that include the alteration of matrix 

synthesis, inhibition of the immune response, enhancement of non-

thrombogenicity, engineering the secretion of specific biologically active 
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molecules (e.g. a specific insulin secretion rate in response to a specific 

glucose concentration) or the alteration of cell proliferation (Nerem, 2000).  

 All these possibilities are related to the creation of a cell-seeded 

construct that can be implanted as a tissue or organ substitute; nonetheless, 

the fostering of the repair or remodelling of tissue also represents tissue 

engineering. In this case, the use of genetic engineering might take the form 

of gene therapy, such as the introduction of growth factors to foster the repair 

of bone defects. By using a gene therapy approach to tissue engineering only a 

transient expression will be required. Because of this, the use of gene therapy 

as a strategy in tissue engineering may become viable prior to its employment 

in treating genetically related diseases (Nerem, 2000).  

 Stem cell technology. To what cell selection is concerned, a considerable 

interest has been shown in the use of stem cells, the “mother” cells within the 

body, as a primary source for therapies based on cell and tissue replacement 

(Solter and Gearhart, 1999). The excitement about stem cells reached a new 

level when the isolation of the first lines of human embryonic stem cells was 

reported in two articles in 1998 (November 6, issue of Science). Vogel, in 

1999, summarized the types of human stem cells that had been isolated 

(Table 1.3) (Vogel, 1999). The embryonic stem cells are of most interest. They 

are pluripotent (capable of differentiating into many cell types), and perhaps 

are even totipotent (capable of developing into all cell types).  

 

Type Source/daughter tissue 

Embryonic Embryo or fetal tissue/ all types 

Hematopoietic Adult bone marrow/blood cells 

Neuronal Fetal brain/neurons, glia 

Mesenchymal Adult bone marrow/muscle, bone, cartilage, 
tendon 

Table 1.3. Human stem cells that have been isolated (Vogel, 1999) 
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 Laboratory investigations of stem cells in regenerative medicine have 

determined that, in the case of cornea, the corneal epithelium is derived from 

an adult stem cell type resident within the cornea. These cells, known as 

limbal stem cells (LSC's), have been widely investigated for their ex-vivo 

culture and subsequent transplantation efficacy, with some techniques 

already enjoying limited clinical application. Thus far however, only 

preliminary evidence currently exists to suggest that there is a population of 

adult stem cells which gives rise to stromal keratocytes or to the corneal 

endothelium. A handful of reports have discussed studies in which non-LSC 

adult stem cells such as mesenchymal stem cells (MSCs) or embryonic stem 

cells (ESCs) are being applied to corneal regeneration (McIntosh Ambrose et 

al., 2010). Another tissue of interest in tissue engineering is the oral mucosa. 

In this case, investigators from the University of Tel-Aviv, Israel showed that 

the highly regenerative capacity of the human adult oral mucosa suggests the 

existence of a robust stem cell population in its lamina propia. These results 

showed that the lamina propia of adult oral mucosa harbors a primitive stem 

cell population with a distinct primitive neural-crest like phenotype 

(Marynka-Kalmani et al., 2010). 

 It is necessary to understand how a stem cell differentiates into a 

tissue-specific cell in order to take full advantage of stem cell technology. This 

requires knowledge not just about the molecular pathways of differentiation, 

but even more importantly the identification of the combination of signals 

leading to a stem cell becoming a specific type of differentiated tissue cell.  

 Construct technology. Construct design and engineering. After selecting 

the source of stem cells, the next aspect to be considered is the development of 

a model in which these cells are organized in a three-dimensional 

architecture and with functional characteristics such that a specific tissue is 

mimicked. The design and engineering of a tissue-like substitute is a 

challenge on its own right (Nerem, 2000).  

 Table 1.4 summarizes the many possible approaches to obtain this 

tissue-like substitute. The cell-seeded polymeric scaffold is an approach 
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pioneered by Langer and his collaborators (Langer and Vacanti, 1993, Cima 

et al., 1991) and considered the classic tissue engineering approach. There is 

also the approach of a cell-seeded collagen gel pioneered by Bell in the late 

1970s and early 1980s (Bell at el., 1979; Weinberg and Bell, 1986) and used 

mainly for skin substitutes.  

 Auger proposed an intriguing approach (Heureux et al, 1998; Auger et 

al., 1995,), referring to it as a cell self-assembly. It involves a layer of cells 

secreting their own matrix which becomes a sheet after a period of time. First 

it was developed as part of a skin substitute research but afterwards its use 

was extended to other applications such as blood vessel by simply rolling up 

one of these cell self-assembled sheets into a tube.  

 One important approach in the construct technology is the acelullar 

approach. Although in tissue engineering the end result should include 

functional cells, there is also the strategy where the implant is without cells 

(i.e. acellular) and the cells are then recruited from the recipient or host. One 

result of this approach is to, in effect, bypass the cell sourcing issue, and 

replace this with the issue of cell recruitment, i.e., the recruiting of cells from 

the host in order to populate the construct. Because these are the patient’s 

own cells, there is no need for any engineering of immune acceptance.  

 

Approach Commets 

Acellular matrix Recquires the recruitment of host cells 

Cell-seeded collagen 
gels 

Initially used in a skin substitute; has other 
potential applications  

Cell-seeded polymeric 
scaffolds 

Initially used in a skin substitute; has other 
potential applications 

Cell self-assembly Based on the cells synthesizing their own 
matrix 

Table 1.4. Possible approaches to the engineering of constructs that mimic tissue.  
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 Whatever the approach, in order to achieve any success in the 

generation of a tissue-like substitute, the engineering of architecture and of 

functional characteristics that allow a specific tissue to be mimicked is 

critical. In fact, because of the interrelationship of structure and function in 

cells and tissues, it would be unlikely to have the appropriate functional 

characteristics without the appropriate three-dimensional architecture 

(Nerem, 2000).  

 Manufacturing technology. Mimicking a specific tissue does not stop 

with the design and engineering of a tissue-like construct. It should also take 

into account the manufacturing processes. The main focus in the 

manufacturing technology has been placed on the bioreactor technology. A 

bioreactor simply represents a controlled environment – both chemically and 

mechanically – in which a tissue-like construct can be grown (Nerem, 2000). 

Although it is generally recognized that a construct, once implanted in the 

living system will undergo remodelling, it is equally true that the 

environment of a bioreactor can be tailored to induce the in vitro remodelling 

of a construct so as to enhance characteristics critical to the success achieved 

following implantation (Seliktar et al., 1998). Thus, the manufacturing 

process can be used to influence directly the final product and is part of the 

overall process leading to the imitation of nature.  

 Integration into the living system. The final issue to be addressed is the 

incorporation of a tissue engineering product concept into the living system. 

Here one starts with animal experiments. Despite the fact that a variety of 

animal models have been developed for the study of different diseases, there 

is a lack of good animal models for use in the evaluation of a tissue-

engineered implant. The existing models are still somewhat unproved, at 

least in many cases, when it comes to their use in evaluating the success of a 

tissue-engineered implant (Nerem, 2000).  

 In addition, there is a significant need for the development of methods 

to evaluate quantitatively the performance of an implant. This is not only the 

case for animal studies, but is equally true for human clinical trials. In regard 
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to this last one, it may not be enough to show efficacy and long term patency, 

it may also be necessary to demonstrate the mechanism(s) that lead to the 

implanted tissue substitute’s success. Furthermore, it is not just in clinical 

trials that there is a need for more quantitative tools for assessment: it also 

would be desirable to have available technologies to assess periodically the 

continued viability and functionality of a tissue substitute after implantation 

(Nerem, 2000). 

 The success of any tissue engineering approach depends also on the 

immune acceptance and biocompatibility. This comes naturally with the use 

of autologous cells, but if one moves to non-autologous cell systems, then the 

challenge of engineering immune acceptance is critical to the achieving 

success in the imitation of nature.  

 Tissue engineering has been applied in many medical fields, such as 

ophthalmology and dentistry in order to overcome the complications raised by 

tissue transplantation and/or the shortage of donor tissues.   

 In ophthalmology, the supply of good-quality donor tissue does not 

meet the demand since more than 10 million people worldwide suffer from 

vision loss due to corneal damage (disease or injury) whose treatment often is 

corneal transplantation (Zerbe et al., 2006). Therefore, a cornea substitute as 

a donor tissue replacement is in urgent demand (Yang et al., 2001; Ma, 2004). 

 In dentistry, different surgical procedures carried out in the 

oropharyngeal region frequently result in large tissue defects (Schultze-

Mosgau, 2004). Reconstruction of these defects is challenging and oral and 

maxillofacial surgeons are often confronted with a shortage of oral mucosa to 

replace the excised tissues (Song et al., 2004). Although it has been 

demonstrated that primary reconstruction of large oral defects is always more 

advantageous than secondary reconstructions, primary surgical closure of 

large oral defects is extremely difficult. In these cases, various types of skin-

bearing flaps have been proposed as autologous substitutes of the oral mucosa 

(Baumann et al., 1996). In some patients, however, the use of skin-bearing 
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flaps is often associated to complications, such as the presence of adnexal 

structures causing hair growth on the implanted graft or excessive 

keratinisation of the reconstructed tissue (Toftet al., 2000). All these 

disadvantages sometimes cause a significant morbidity and aesthetic and 

functional limitations for the patients submitted to these techniques. 

Construction of biological substitutes of the human oral mucosa by tissue 

engineering could contribute to solve these problems and complications 

(Sanchez-Quevedo et al., 2007) 

 As mentioned before, the success of any tissue engineered substitute 

depends on the proper understanding of the morphological and functional 

characteristics of the native tissue to be mimicked.  

 Human cornea. 

 Corneal anatomy. The cornea is the first ocular tissue that light 

encounters when entering the eye. It comprises a highly structured 

membrane bound but relatively acellular, transparent collagenous tissue that 

joins the more disorganized and opaque sclera at the limbus. The diameter of 

the human cornea is about 12mm and the average radius of curvature of the 

central anterior surface is 7.8mm. The cornea is roughly 474μm thick at the 

centre and 607μm thick in the periphery (Hjortdal, 1996). It is bounded 

anteriorly by a stratified squamous epithelium and posteriorly by an actively 

pumping monolayer of non-proliferative cells which are referred to as the 

corneal endothelium. The main tissue of the cornea is the stromal tissue 

which comprises 90% of the total thickness where the three principal 

functions of the cornea (protection, transmission and refraction) are 

simultaneously satisfied by the long- and short-range extracellular matrix 

organization. (Ruberti and Zieske, 2008)  

 Microscopic anatomy. Figure 1.6 shows the three major functional 

layers of he cornea: the epithelium, stroma and endothelium.  

 Epithelium. The corneal epithelium is a 50μm thick, “tight”, stratified, 

squamous, multilaminar epithelium comprising three distinct cellular strata. 
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The stratum germinatum is the most posterior layer and the only epithelial 

cell layer capable of undergoing mitosis (Hanna and O’Brien, 1960). The 

middle layer comprises daughter and wing cells which are pushed anteriorly 

during epithelial desquamation. The surface layer of squamous cells forms 

the complete tight junctions which generate the primary chemical and 

antigen protective barrier in the cornea. This continual desquamation of the 

corneal epithelium depends on a stable supply of stem cells which reside in 

limbal niches at the junction between the sclera and the cornea (Schermer et 

al., 1986). A healthy epithelium has 5-7 layers of cells and rests on a 

basement membrane comprising laminin, type IV collagen, and identifiable 

hemidesmosomes and anchoring fibrils.  

 

Figure 1.6. Histological section of a human cornea 

 

 That the cornea requires a functional epithelium is demonstrated by 

pathological conditions which chronically disrupt the ocular surface mucosa 

(ocular cicatricial pemphigoid, Stevens-Johnson syndrome, etc.), disrupt tear 

production (Sjogren’s) or by injuries which destroy the stem cells niches in the 

limbus (severe chemical or alkali burns). Losing the epithelial barrier 

typically results in corneal opacity and the loss of the surface air/tear 

Epithelium 

Bowman’s membrane

Stroma

Descemet’s membrane
Endothelium 
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interface for refraction. Natural or tissue engineered grafts cannot succeed 

without a functional epithelium. (Ruberti and Zieske, 2008). 

 Nonetheless, Ruberti and Zieske (2008) assert that the epithelium is 

there to protect the stroma from invasion (and to maintain the tear/air 

interface). It is the stromal architecture that produces the necessary 

aberration-free curvature to generate the refractive power. In addition, given 

the significant advances in corneal epithelial culturing onto various 

substrates (Zieske et al., 1994), and the fact that donor corneas (which are de-

epithelized) gain epithelial coverage from the host, the epithelium is 

currently a critical concern for corneal tissue engineers. It is important to 

mention the fact that there is a considerable effort to innervate engineered 

corneal constructs (Li et al., 2003, 2005). The rationale for this approach is 

derived from data which suggest that denervation of the corneal stroma leads 

to poorly formed epithelium without proper cellular stratification (Alper, 

1975).  

 Endothelium. The corneal endothelium is a transporting monolayer of 

about 400000 hexagonal cells, 20μm across and 4-6μm in height. The 

endothelium maintains the corneal transparency by keeping the corneal 

stroma in a state of relative deturgescense via a complex pump-leak 

mechanism ((Maurice, 1972) for pump discovery and (Bonanno, 2003) for 

extensive review of endothelial ion transport). Without the endothelium the 

cornea has a natural tendency to imbibe fluid which can cause swelling, 

opacity and blindness. This dehydration mechanism is part of a sophisticated 

corneal transport system which includes both limiting layers and is described 

in detail in Ruberti and Klyce (2002). As with the epithelium, an engineered 

construct that is perfectly mimetic of the natural stroma could not function 

without a patent, active endothelial layer. However, it may be quite possible 

for a collagen based cornea that does not swell by incorporating an analog to 

sutural fibners in the dogfish (Smelser, 1962). Nonetheless, an endothelium is 

a far greater concern for tissue engineers than the epithelium, as it has been 

refractory to expansion in culture and the host endothelium will not 
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effectively repopulate and deturgesce a bare donor stromal graft. Recently, 

untransformed endothelial cells have been cultivated and multiple times 

expanded in a specialized culture medium (McAlister et al., 2005; Joyce and 

Zu, 2004; Engelmann et al., 2004; 1999). Due to these relative successful 

efforts associated with culturing and expanding endothelial cells in vitro, the 

endothelium does not appear to present a “significant” hurdle to corneal 

tissue engineering effort at this time (Ruberti and Zieske, 2008). Ultimately, 

many efforts to expand primary endothelial cells in culture will be critical to 

the success of engineered corneas.  

 Stroma. The adult human stroma is approximately 500μm thick, 

relatively acellular (3-10% quiescent corneal keratocytes by volume), and 

comprises aligned arrays of hydrated type I/V heterotypic collagen fibrils 

(15% wet weight) of uniform diameter (32±0.7nm) (Meek and Leonard, 1993); 

glucosaminoglycans (GAGs) keratin sulfate and dermatansulfate (1% wet 

weight (Anseth, 1961)); various proteoglycan (PG) core proteins (Axelsson and 

Heinegard, 1975) and other protein constituents including fibronectin, 

laminin and type VI collagen (among other collagens). The collagen fibrils are 

packed in 300-500 parallel arrays (lamellae) which are generally also parallel 

to the corneal surface (Hamada et al., 1972) and are principally responsible 

for the observed tensile mechanical properties of the cornea (reviewed in 

Either et al., 2004). The PGs and their associated GAGs contribute to the 

cornea’s compressive and swelling material properties (Hedbys, 1961) and to 

the uniform spacing of the collagen fibrils (Scott, 1991).  

 The corneal stroma is the current focus of researchers attempting to 

produce a corneal tissue analog for a number of reasons. First, there have 

been very few concerted efforts aimed at reproducing the architecture of a 

natural cornea (Guo et al., 2007; Crabb et al., 2006a,b; Orwin et al., 2003), 

while there have been multiple and relatively successful attempts to culture 

the limiting cell layers of the cornea (on a stromal scaffolding) (Li et al., 2005; 

Germain et al., 2004; Li et al., 2003 Griffith et al., 2002, 1999; Germain et al., 

1999; Zieske et al., 1994; Minami et al., 1993) fully reviewed in Ruberti et al. 
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(2007). Second, the corneal stroma provides the majority of the principal 

functions of the corneal tissue. No corneal analog will work without a 

mechanically strong and clear, properly shaped stroma. Third, the stroma is 

extremely organized on the nanoscale, making it a very difficult and 

interesting basic materials engineering problem. Finally, because of the 

highly organized nature of the stromal matrix, successful reproduction of the 

architecture requires detailed examination of in vivo/in vitro matrix 

assembly and the development of novel engineering methods to control 

collagen fibrillogenesis. Such methods have broader implications for 

connective tissue remodelling, homeostasis and pathology (Ruberti and 

Zieske, 2008). 

 Corneal function. The native cornea has three fundamental functional 

attributes to the ocular optical system: protection, transmission and 

refraction of the incident light to the retina. These attributes are also 

considered essential design requirements for an artificial corneal construct. 

 Protection. The cornea provides both transport protection (in the form 

of a barrier) and mechanical protection.  

 The transport protection is represented by the transport of deleterious 

chemicals and pathogens that is impeded by the tight junctions of superficial 

squamous cells of the corneal epithelium (Sugrue and Zieske, 1997). Thus, 

any natural, stromal analog should be inductive for the migration of 

epithelial cells from the host peripheral corneal tissue and support the 

formation of a multilaminar, adherent epithelium with complete tight 

junctions (as donor corneas do (Boot at el., 1991)).  

 The mechanical protection of the fragile intraocular contents is 

provided by the tensile properties of the stromal extracellular matrix. The 

tensile mechanical strength of the tough ocular tunic (of which the cornea is a 

continuous part) must be high enough to withstand chronic tensile stress 

induced by the intraocular pressure (IOP) and permit survival of significant 

traumatic impacts without rupture. The overall biomechanical properties of 
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the proper cornea are complex because the stromal tissue is highly 

anisotropic, heterogeneous and viscoelastic (Either et al., 2004). 

Biomechanical properties are typically derivative of the orientation of 

collagen fibrils in load-bearing connective tissue. This is also true for the 

cornea when one is considering the tensile modulus in the direction of 

tangential loads. As might be expected, in the human corneal stroma, the 

preferred collagen fibril orientation, as determined by X-ray 

(Aghamohammadzadeh et al, 2004; Meek and Boote, 2004) and SEM analysis 

(Radner and Mallinger, 2002; Radner et al., 1998) (Figure 1.7A), is reflected 

in the measured tensile strength of excised test specimens (Figure 1.7B). It is 

also reflected clinically by the tendency of astigmatic axes to be aligned with 

either tangential or sagittal meridians.  

 It is important to note that the fibril organization model of Meek and 

Boote (Aghamohammadzadeh et al, 2004) is relatively recent and is the result 

of full-thickness integrations or averages of X-ray interactions with the 

collagen fibrils, result that helps the understanding of the complex 

arrangement of fibrils in the corneal stroma.  

 
Figure. 1.7. (A) Proposed model of fibril orientation in the cornea based on X-ray 

synchrotron data. (B) Variation in corneal tensile strength as a function of direction. Though 

the cornea is typically considered a simple nematic stack of lamellae comprising aligned 

collagen which alternate in orientation by 90 degrees, recent investigations demonstrate an 

array of fibrils which run circumferentially around the periphery. Preferred fibril orientation 

and aligned fibril concentration are reflected in the tensile strength or modulus. The figure 

shows the tensile modulus found in test strips excised and loaded in the direction of the 

arrows. ((A) Meek and Boote, 2004 and (B) Ruberti et al., 2007). 
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 It has been known for over 100 years that stromas will swell and 

become opaque if excised and placed in hypotonic fluid (Leber, 1873). The 

compressive properties of the cornea are not critical to protect the globe, but 

are a consequence of the presence of the proteoglycans which are thought to 

maintain the collagen fibrillar spacing (Scott, 1991). Nonetheless, any 

accurate reproduction of a natural collagen/GAG based stroma will also 

require the same sort of hydration control system (due to the fixed charges on 

the GAGs) to maintain transparency. It is important to note that if a corneal 

analog can be produced which does not swell and remains clear, a transport 

system which deturgesces the cornea may not be required. This is the 

ostensibly valid argument of researchers pursuing synthetic hydrogel-based 

corneas which promote epithelialization (Sweeney et al., 2003). In the case of 

these synthetic porous implants, the epithelium would still be required to 

provide a barrier function and to maintain the tear/air interface. Research 

has demonstrated however that endothelial cells may still be necessary to aid 

the formation of healthy epithelium (Orwin and Hubel, 2000; Zieske et al., 

1994).  

 Transmission of light. The native cornea is an extremely efficient 

transmitter of incident visible light (Cox et al., 1970), with such efficiency 

dependent on the relative content and distribution of water in the stroma 

(Goldman et al., 1968). The transmission of light is critical to the function of 

the tissue. Thus the transparency of the stromal matrix, which constitutes 

the majority of the tissue thickness (and the light interaction) is also critical 

to corneal function. In order to understand the optics of the corneal matrix 

transparency, it is necessary to examine the stromal collagen architecture at 

the nanoscale and to examine the role of the keratocytes (Ruberti and Zieske, 

2008).  

 Within the last years, it has been demonstrated that keratocytes 

contribute actively to corneal transparency (Jester et al., 1999a,b). Following 

corneal wounding, such as PRK surgery, the dedifferentiation to keratocytes 

to fibroblasts and/or myofibroblasts can lead to a clinically relevant corneal 
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haze (Jester et al., 1999a,b). The haze has been attributed to poor optical 

properties of the cells which have undergone dedifferentiation. Their ability 

to “index match” to allow transmission of light appears to be a function of the 

content of soluble enzyme crystallins expressed in the cytoplasm of cells with 

a keratocyte phenotype (Karring et al., 2004). Thus, the cell population in 

corneal constructs should be of the appropriate phenotype to reduce cell-

induced optical haze (West-Mays and Dwivendi, 2006).  

 Another important factor in the corneal transparency is the stromal 

fibril organization. Maurice (1957) concluded in a landmark paper on corneal 

transparency that a regular crystalline arrangement of the monodisperse 

diameter collagen fibrils in the cornea was required to maintain transparency 

to incident light (Maurice, 1957). Later, Hart and Farrell (1969) and then 

Benedek (1971) showed theoretically that cornea could be transparent even if 

there was only limited correlation in the spacing of the collagen. Benedek 

(1971) demonstrated theoretically that for transparency, it was important 

that the collagen fibrils should not pack together and that areas of collagen 

depletion (lakes) larger than the wavelength of light must not exist. The 

fundamental argument against the requirement of extremely ordered fibrils 

was derived from examination of Bowman’s membrane in the shark which is 

both transparent and disordered (Figure 1.8) (Goldman and Benedek, 1967). 

Thus, while it is not necessary that the collagen fibrils in an engineered 

stroma be uniformly spaced, they should be much smaller than the 

wavelength of light, have a reasonably monodisperse diameter distribution 

and exhibit uniform center-to-center spacing. Further, there should not be 

large regions (on the order of the wavelength of light) devoid of fibrils 

(Ruberti and Zieske, 2008).  
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manifestations of sub-epithelial edema as evidence supporting this proposed 

load distribution. However, evidence has been provided that indicates that in 

the rabbit (Hennighausen et al, 1998; McPhee et al., 1985) and in the human 

(Hjortdal, 1996) the IOP load is distributed evenly through the thickness of 

the corneal stroma. In areas where the stromal lamellae are  parallel to 

corneal surface and given the monodispersity in the fibril diameters, this 

finding implies that the collagen fibrils should “feel” approximately the same 

strain (or stretch).some mechanisms must ensure during both development 

and growth, that the corneal curvature remains reasonably spherical. This 

requires that the load be distributed with precision among the collagen 

fibrils. The solution to this question may involve a matrix remodelling control 

system such as that putatively responsible for ocular globe length control 

(Troilo, 1992; Triolo and Wallman, 1991).  

 Linking corneal form and function. As stated before, the stroma 

comprises 90% of the total corneal thickness, thus it is not surprising that it 

plays a major role in providing the principal functions of the cornea. Ruberti 

and Zieske (2008) suggest that the stroma owes its success in simultaneously 

meeting the three corneal design requirements (protection, transmission and 

refraction) to its exquisite nanoscale organization. Figure 1.9 shows the 

organization of the stromal collagen fibrils, which have a virtually 

monodisperse diameter distribution (transparency), reasonably uniform local 

interfibrillar spacing (transparency), no interfibrillar covalent crosslinks 

(refraction) and are arranged in parallel arrays which are generally 

tangential to the corneal  surface (mechanical strength). The authors also 

assert that this remarkable and persistent nanoscale arrangement of fibrils 

which persists throughout the cornea (with the exception of Bowman’s 

membrane) is directly responsible for corneal function and thus links corneal 

form and function at the level of the nanoscale.  
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to tissue engineered scaffolds (Cardona et al., 2011; Gonzalez-Andrades et al., 

2009; Alaminos et al., 2006; Nakamura et al., 2006; Han et al. 2002; Rama et 

al., 2001),  allowing different degrees of regeneration of the host tissues.  

 

 Human oral mucosa 

 Oral mucosa anatomy. The oral cavity is a multi-site organ with 

several anatomical sites, as shown in Figure 1.10A. In general, the oral cavity 

is covered by a squamous epithelial tissue called oral mucosa. Figure 1.10B 

shows that the oral mucosa can be divided into two major layers: the 

squamous epithelium and the underlying connective tissue.  

 

Figure 1.10. Anatomy and architecture of the oral cavity.(A) Major anatomical sites of the 

oral cavity; (B) Basic architecture of stratified squamous epithelium. 

 These two major layers, the oral epithelium and the lamina propria are 

equivalent to the epidermis and dermis of the skin. The lamina propria is a 

layer of interlocking fibers which gives strength to the epithelium above. It 

consists mostly of tough collagen fibers, some elastic fibers and reticulin. In 

between the fibers are the cells which form them, the fibroblasts, and other 

connective tissue cells.  

 Beneath the lamina propria of the mucosa, a layer called the 

submucosa is usually found. It is a loose connective tissue containing fat, 

blood vessels, nerves and lymphatics. In some places like the hard palate, the 

submucosa is also called fibrous and binds the overlying mucosa quite firmly. 
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But there is no submucosa at all beneath the gingival mucosa. The lamina 

propria of the gingiva is bound directly onto the periosteum. It is therefore 

often referred to as a mucoperiosteum (Figure 1.11).  

 

 

Figure 1.11. Components of oral mucosa. a) The lining mucosa has a relatively thick 

epithelium (E), supported by thin lamina propria (LP). The submucosa (Sm) contains blood 

vessels and minor salivary glands, in a loose connective tissue. The submucosa may be 

attached to muscle (M) or the periosteum (Po) covering bone. b) Masticatory mucosa has 

keratinized epithelium (K) and a dense lamina propria of collagen fibers which attach the 

epithelium directly to the periosteum. 

 

 Oral epithelium. The oral epithelium is a stratified layer of squamous 

cells which may either be keratinized or non-keratinized, according to the 

region of the mouth. The epithelium exhibits four layers of cells: the basal 

layer, spinous layer, granular layer and the superficial layer, known as the 

cornified layer in the skin and the keratinized layer in oral mucosa. 

Keratinization involves the transformation of viable keratinocytes in the 

granular layer into dead surface cells devoid of organelles and packed with 

dense masses of cytokeratin filaments. In non-keratinized oral epithelium, 

the granular layer is replaced by the surface layer, the cells of which lack 

keratohyaline granules. Basal layer keratinocytes are progenitor cells that 
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undergo terminal differentiation as they migrate to the surface. In addition to 

keratinocytes, the oral epithelium contains non-keratinocyte clear cells:  

- The melanocytes produce pigment and transfer it to the keratocytes 

around them. The number of melanocytes is no greater in heavily 

pigmented epithelium, but their activity is increased. 

- The Langherhans cells are active in the immune response of the 

epithelium. They act as sentries, detecting the presence of foreign 

antigens on the surface of the oral epithelium. They then migrate from 

the epithelium to local lymph nodes where they present information 

about surface antigens to T lymphocytes. Langerhans cells do not have 

desmosome attachments and so, during histological processing, the 

cytoplasm shrinks down around the nucleus producing a clear halo. 

Hence, these cells are referred to as clear cells.  

- The Merkel cells are mechanical receptors for tactile sensations.  

 Adhesion between epithelial cells is achieved by desmosomes. The 

basal layers are attached to the underlying lamina propria through 

hemidesmosomes and the basement membrane, which contains collagen type 

IV, laminin and fibronectin.  

 In 1975, Rheinwald and Green (1975) proposed a method to grow 

human keratinocytes in serial culture in vitro, using a feeder layer composed 

of irradiated 3T3 mouse fibroblasts and a specific culture medium called 

Green’s medium. This method is frequently used for the culture of 

keratinocytes and production of single-layer epithelial sheets. Several 

investigators have been successful in culturing sheets of oral keratinocytes 

without an irradiated feeder layer (Lauer, 1994; Arenholt-Bindslev et al., 

1987), but, these epithelial sheets are fragile, difficult to handle and apt to 

contract. Monolayer cultures have been extremely helpful for the study of 

basic biology and responses to stimuli of both oral and skin keratinocytes and 

many studies have used them. However, the oral epithelium is a complex 

multilayer structure, with cells undergoing terminal differentiation and 

monolayers cultures may not be a good model of what is happening in vivo. 
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Thus, the development of a three-dimensional multilayer culture system was 

a major breakthrough in epithelial biology and tissue engineering. This new 

system facilitated the culture of keratinocytes on permeable cell culture 

membranes at the air/liquid interface.  

 Lamina propria. The lamina propria consists of an abundant network 

of type I collagen fibers and the deeper layers contain collagen type III fibers 

and elastic fibers in various amounts, depending upon the site. Many 

fibroblasts are present, but only very occasional macrophages, plasma cells, 

mast cells and lymphocytes are found. Being the most common cells in the 

connective tissue (lamina propria), fibroblasts can be easily isolated and 

cultured in monolayers by conventional cell culture technique. Berthod and 

collaborators (Berthod et al., 1993) showed that fibroblasts cultured on three-

dimensional porous scaffolds produce significantly higher levels of 

extracellular matrix than do fibroblasts grown on monolayers.  

 Fibroblasts play an important role in epithelial morphogenesis, 

keratinocyte adhesion and the formation of complex dermal-epithelial 

junction (Saintigny et al., 1993). The epithelial phenotype and keratin 

expression are extrinsically influenced by the nature and origin of the 

underlying fibroblasts (Okazaki et al., 2003) and the mesenchymal substrate 

(Merne and Syrjanen, 2003). It has been reported that without fibroblasts in 

the matrix, the epithelium ceases to proliferate (Fusenig, 1994), while 

differentiation continues (Smola et al., 1998). The significance of fibroblast 

has also been shown by an experiment in which degenerative vacuolization 

was seen in co-cultures grown in absence of fibroblasts. The use of oral buccal 

and vaginal fibroblasts led to a non-keratinized epithelium, in contrast to 

cultures with skin fibroblasts, which showed slight parakeratinization (Atula 

et al., 1997). Thus, fibroblasts may influence the differentiation potential of 

the epithelium toward that found at the site of origin of the fibroblasts.  

 The lamina propria also contains vascular components, which form 

extensive capillarity loops in the papillae between the epithelial ridges. 

Lymphatic vessels, nerves and nerve endings are also present, as well as the 
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ducts of salivary glands, whose acini are usually found in the deeper 

submucosa. Varying numbers of sebaceous glands are found in the oral 

cavity, but are not associated with hair follicles (Atkinson et al., 2000) 

 Functions of the oral mucosa. The oral mucosa has a protective, a 

secretory and a sensory function.  

 The protective function is served by its resistance to tearing and 

compression which is provided by the tough and yet resilient lamina propria. 

The oral mucosa is also mostly impervious to the penetration of bacterial 

toxins. Protection from microorganisms is also afforded by the shedding 

(desquamation) of the surface layer of cells. Bacterial colonies attached to 

these surface cells are thus regularly carried away when the cell sloughs off 

and is carried away and swallowed in the saliva.  

 The mucosa provides a suitable site for sensory nerve endings, such as 

those associated with pain, touch, temperature and the taste receptors of the 

tongue and palate. Some of these receptors are important in the initiation of 

reflexes, like swallowing or jaw opening. 

 Minor salivary glands in the submucosa secrete via ducts passing 

through the mucosa. These secretions help to keep the mucosa moist and free 

of excessive accumulations of bacteria. There are also sebaceous glands 

sometimes seen on the inside of the cheek, (also called Fordyce´s granules). 

They have no function but are important to recognise as being normal.  

 Artificial oral mucosas. Histological section of a normal native and a 

tissue engineered oral mucosa are presented in Figure 1.12. In order to create 

an ideal full-thickness engineered oral mucosa that resembles normal oral 

mucosa and optimize the generation process, many factors have to be taken 

into account. Among them, the choice of scaffold, the cell source and the 

culture medium are the most important ones.  
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 Different types of scaffolds have been used in oral mucosa and skin 

reconstruction. These types can be divided in several categories: (1) naturally 

derived scaffolds, such as amniotic membrane (Nakamura et al., 2003; 

Moriyama et al., 2001); (2) collagen-based scaffolds (Ma et al., 2003); (3) 

gelatin-based scaffolds (Lee at el., 2003; Mao et al., 2003; Choi et al., 2011; 

Hong et al., 2001); (4) fibrin-based materials (Rodriguez et al., 2012; Sanchez-

Quevedo et al., 2007); (5) hybrid or synthetic scaffolds (El Ghalbzouri et al., 

2004)  

 Cell source. The type and origin of fibroblasts and keratinocytes are 

important factors in oral mucosa reconstruction. Fibroblasts are usually 

isolated from the dermal layer of the skin or by oral mucosa biopsy, and are 

used at early passages for tissue engineering, because it has been 

demonstrated that the extracellular matrix production by dermal fibroblasts 

decreases as the passage number increases (Takeda et al., 1992; 

Khorramizadeh et al., 1999). Keratinocytes can be obtained from different 

sites of the oral cavity, such as the hard palate (Cho et al., 2000), gingiva 

(Yoshizawa et al., 2004), or buccal mucosa (Bhargava et al., 2004). Normal 

human keratinocytes should also be used at very early passages.  

 Culture medium. The commonly used culture medium for oral mucosa 

reconstruction is Dulbecco's modified Eagle medium (DMEM)-Ham's F-12 

medium (3:1), supplemented with fetal calf serum(FCS), glutamine, 

epidermal growth factor (EGF),hydrocortisone, adenine, insulin, transferrin, 

tri-iodothyronine, fungizone, penicillin, and streptomycin. 

 Applications of tissue engineered tissues. There are generally two major 

applications for bioengineered tissues: (1) clinical applications, and (2) as in 

vitro test systems and models. It is important to realize that tissue 

engineering approaches may be different for each purpose. As an example, for 

clinical applications such as grafting, transplantation, and guided tissue 

regeneration, a biodegradable scaffold with optimal mechanical properties is 

desirable, because it will be replaced by the host tissue, and it must resist 

natural forces in the oral cavity, while a non biodegradable scaffold may 
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result in a foreign body reaction. Also, transmission of infection and tissue 

rejection are major issues. The scaffold should have maximum biostability to 

maintain its structure throughout the testing procedure.  

 Until now, the morphological and functional characteristics of the two 

tissues of interest in the present study, cornea and oral mucosa, have been 

described. Not only these characteristics are important when generating a 

tissue-like replacement by means of tissue engineering, but also the physical 

properties, such as optical and mechanical properties, of the tissue substitute 

are of interest. A major step in improving medicine is the step of identifying 

different, effective and efficient methods for diagnosis and treatment of 

abnormal or diseased tissues. One of the problems often associated with 

conventional medical therapies and diagnostic tools is that they often cause 

pain and discomfort to the patient. However, the current trends in healthcare 

have seen a shift towards improved medical therapies and diagnostics with 

emphasis on patient comfort. This has led to the development of many non-

invasive medical techniques and devices. Non-invasive methods often utilise 

some form of light either a laser, LED etc. and therefore knowledge about the 

interaction between the tissue and these light sources is important. 

Determination of the optical properties of tissue, such as the absorption and 

scattering coefficients (ߤ௔ and ߤ௦, respectively) is thus a fundamental property 

in refining the available as well as optimising new optically based methods 

and technologies in health care and life sciences. 
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La medicina regenerativa es un área emergente que busca la 

reparación o sustitución de tejidos y órganos mediante la aplicación de 

métodos procedentes, entre otros, de la ingeniería tisular. Es importante 

señalar que la evaluación de los tejidos generados en laboratorio mediante 

ingeniería tisular constituye un aspecto fundamental de la terapia celular y 

tisular en el ámbito de la medicina regenerativa y de la sanidad pública. A 

este respecto, el Real Decreto 1301/2006 (BOE 270 de 11 de noviembre de 

2006) establece disponer de sistema de control de calidad de los procesos que 

se suceden desde la obtención de las células y los tejidos hasta su 

implantación, así como la necesidad de investigar nuevos sistemas de 

valoración que aseguren la idoneidad de los tejidos, lo cual obligan a que la 

investigación en este campo tenga carácter multidisciplinar.  

Nuestro grupo de investigación ha generado en laboratorio sustitutos 

tisulares de cornea y mucosa oral humanas basados en biomateriales de 

fibrina y fibrina-agarosa con una posible utilidad, en última instancia, en la 

investigación básica y la práctica clínica. Específicamente, el estudio de las 

propiedades ópticas de dichos biomateriales es fundamental tanto para el 

control de calidad, como para aplicaciones médicas de diagnóstico y 

tratamiento. En concreto, en el caso de los tejidos generados en laboratorio 

para remplazar corneas afectados por distintas enfermedades y patologías, el 

estudio de sus características ópticas es fundamental para su viabilidad. 

Dentro de un marco general, la distribución cuantitativa de la intensidad de 

la luz en medios no homogéneos, tal como tejidos biológicos, puede obtenerse 

mediante la solución de la ecuación de transporte radiativo. No obstante, en 

estos medios debido a las inhomogeneidades e irregularidades inherentes a 

sus configuraciones físicas, no existe una solución analítica de la ecuación de 

transporte. A pesar de ello, resolviendo dicha ecuación es posible obtener una 

estimación de la distribución de la intensidad de la luz en este tipo medios. La 

solución aproximada de la ecuación de transporte requiere conocer los valores 

de los coeficientes de absorción y esparcimiento del medio y por tanto, son 

necesarios métodos experimentales apropiados para medir estas propiedades 

ópticas.  
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Por todo ello, en la presente Tesis Doctoral nos planteamos los 

siguientes objetivos: 

Objetivo general: 

Evaluar tejidos humanos generados mediante ingeniería tisular 

basados en fibrina-agarosa utilizando métodos ópticos.   

Objetivos específicos: 

1. Estudiar las propiedades reológicas de sustitutos de estroma corneal 

nanoestructurados y no nanoestructurados de fibrina y fibrina-agarosa.  

2. Desarrollar un método óptico para la evaluación de la calidad óptica  y 

evaluar sustitutos de estroma corneal basados en fibrina, fibrina-agarosa y 

colágeno.  

3. Determinar las propiedades ópticas de un modelo de córnea lamelar 

anterior humana generado mediante ingeniería tisular basado en fibrina-

agarosa. 

4. Determinar las propiedades ópticas de un modelo biomimético de 

mucosa oral humana generado mediante ingeniería tisular basado en fibrina 

y fibrina-agarosa. 

 De acuerdo con el planteamiento de estos objetivos, la presente Tesis 

Doctoral se estructura a continuación en 4 capítulos, cada uno describiendo 

los materiales y la metodología utilizados, los resultados obtenidos y su 

correspondiente discusión, con el fin de cumplir con los objetivos propuestos 

(capítulos 3-6). El capítulo 7 presenta las conclusiones finales de nuestro 

estudio. Todas las referencias que se proporcionan en el capítulo 8, mientras 

que el capítulo 9 enumera las publicaciones científicas relacionadas con el 

trabajo presentado en esta Tesis 
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Regenerative medicine is an emerging field that seeks to repair or 

replace tissues and organs by applying different methods including, among 

others, tissue engineering techniques. Importantly, the assessment of the 

tissues generated in laboratory by tissue engineering is a fundamental aspect 

of cell and tissue therapy in the field of regenerative medicine and public 

health. In this regard, the Spanish Real Decreto 1301/2006 (BOE 270 of 

November 11th, 2006) has established that the research developed in this 

field has to be provided with quality control systems for the processes that 

occur from the procurement of cells and tissues to its implementation, and to 

investigate new evaluation systems to ensure the suitability of the tissues. 

This requires that research in the biomedical field has to be 

multidisciplinary. 

Our research group has generated in laboratory cornea and human oral 

mucosa tissue substitutes based on fibrin and fibrin-agarose biomaterials, 

with potential value in basic research and clinical practice. Specifically, the 

study of the optical properties of such biomaterials is critical for quality 

control, as for medical diagnosis and treatment. In the case of bioengineered 

tissues generated in the laboratory in order to replace corneas affected by 

various diseases and disorders, the study of their optical characteristics is 

essential for their suitability for possible clinical applications. In a general 

context, the quantitative distribution of the light intensity in inhomogeneous 

media, such as biological tissues, can be obtained using the solution of the 

radiative transport equation. However, there is no analytic solution of the 

transport equation for these media, due to inhomogeneities or irregularities 

inherent to their physical configurations. Nonetheless, solving this equation it 

is possible to obtain an estimation of the distribution of light intensity in such 

media. The approximate solution of the transport equation requires the 

knowledge of the absorption and scattering coefficients of the medium and 

therefore appropriate experimental methods are needed to measure these 

optical properties. 
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Therefore, in this PhD thesis we set the following objectives: 

 

Main objective: 

To evaluate human tissues generated by tissue engineering based on 

fibrin-agarose using optical methods. 

 

Specific objectives: 

1. To study the rheological properties of fibrin and fibrin-agarose 

nanostructured and no nanostructured corneal stroma substitutes. 

2. To develop an optical method for optical quality evaluation and to 

evaluate corneal stroma substitutes based on fibrin, fibrin-agarose and 

collagen. 

3. To determine the optical properties of a model of human anterior 

lamellar cornea generated by tissue engineering based on fibrin-agarose. 

4. To determine the optical properties of a biomimetic model of human 

oral mucosa generated by tissue engineering based on fibrin and fibrin-

agarose. 

 

According to these objectives, this PhD thesis is then structured in 4 

Chapters, each one describing the materials and methodology used, the 

results and corresponding discussion obtained in order to accomplish the 

proposed objectives (Chapters 3-6). Chapter 7 shows the final conclusions of 

our study. All the references are provided in Chapter 8, whereas Chapter 9 

enumerates the published papers related with the work presented in this 

Thesis.
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BACKGROUND 

 

 

 Fibrin hydrogels are an attractive material for use in tissue 

engineering since their principal component, the fibrin, is a polymeric protein 

that together with platelets acts to form a thrombus or blood clot and as such 

constitutes a intrinsic scaffold for repair and regeneration (Orlando et al., 

2012). Fibrin hydrogels are biocompatible, biodegradable and possess a 

suitable interaction with cells and other macromolecules (Breen et al., 2009; 

Ahmed et al, 2008; Bensaid et al., 2003; Sierra, 1993;). Therefore, fibrin has 

been used as a scaffold to deliver cells, drugs and therapeutic molecules in a 

wide range of tissue engineering applications (Steward, 2012; Ahearne et al., 

2011; Pelaez et al, 2009; Bhang et al., 2007; Eyrich et al., 2007; Willerth et 

al., 2007; Albes et al, 1994;). Being a naturally occurring physiological 

scaffold, it supports angiogenesis and tissue repair (Amrani et al., 2001). In 

addition, fibrin naturally contains sites for cellular binding, and has been 

shown to have excellent cell seeding effects and good tissue development (Ye 

et al., 2000). Moreover, modification and functionalization of fibrin matrices 

has been used to provide controlled release of genes (Trentin et al., 2006) and 

growth factors (Schmoekel et al., 2005). Furthermore, fibrin gels can be 

produced from the patients’ own blood and used as an autologous scaffold for 

the seeded cell without the potential risk of a foreign body reaction (Ye at al., 

2000).  

 Agarose is a typical naturally-occurring polysaccharide that is known 

to form thermoreversible gels when a homogeneous solution is cooled from 

99°C to a temperature below the ordering temperature, which is around 35°C 

for normal agarose (Normand et al., 2000). Agarose gels are widely used in 
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various fields of biomedical research, particularly in tissue culture systems, 

because it permits growing cells and tissues in a three-dimensional 

suspension (Sakay et al., 2007). In addition, they have been investigated as 

delivery vehicles for drugs (Jain et al., 2006; Liu and Li, 2005) and living cells 

(Sakai et al., 2005; Yang et al., 1994). Moreover, due to their soft tissue-like 

mechanical properties and biocompatibility, agarose gels have been 

investigated as potential scaffolds for neural (Jain et al., 2006) and cartilage 

(Gruber et al., 2006; Gruber et al., 1997) tissue engineering.  

 Using tissue engineering techniques, biological substitutes that restore, 

maintain, or improve tissue function or even a whole organ have been 

developed (Langer and Vacanti, 1993). In the past years several researchers 

have focused their efforts on the development of an autologous artificial 

substitute of the human cornea by tissue engineering (González-Andrades et 

al., 2009; Alaminos et al., 2006; Nishida, 2003; Reichl and Muller-Goymann, 

2003; Schneider et al., 1999), reducing this way the risk of rejection. In this 

context, our research group generated a novel biomaterial based on a mixture 

of human fibrin and agarose that allowed the successful development in vitro 

of substitutes for rabbit (Alaminos et al., 2006) and human cornea (González-

Andrades et al., 2009).  

 The rheological properties of biomaterials used in tissue engineering 

are important for establishing appropriate mechanical support to cells within 

load bearing defects and facilitating manipulation of these constructs prior to 

implantation (Rosso et al, 2005). Additionally, several studies have shown 

that the stiffness of a substrate can direct cellular activity, such as 

attachment, migration and differentiation (Murphy et al., 2012; Haugh et al., 

2011; Engler et al., 2006; Yeung et al., 2005; Engler et al., 2004;). Thus 

rheological properties take on further importance, since they can affect the 

clinical performance of the substitute. Thus, in the development of a 

bioengineered construct that could replace a diseased cornea, it is necessary 

to accurately evaluate these properties. Since the cornea provides protection 
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absorbent paper were put above and below the sample to facilitate 

dehydration of the artificial tissue. To prevent the stromal construct sticking 

to the paper layers, a filter nylon membrane (0.4μm pore size) was settled 

between both faces of the sample and the paper layers. Then, a flat crystal 

surface was set on top of the system and a total of 1000Pa of pressure was 

applied to compress the bioengineered tissues. Figure 3.4 shows a schematic 

representation of the nanostructuring bioreactor. The process was carried out 

for 3–5min, and then the nanostructured tissues were removed from the 

chamber and maintained in PBS until the moment of the analysis.  

 

Figure 3.4. Squematic representation of the nanostructuring method. 

 

 All corneal construct samples (approximately 0.5 mm thick) were 

generated and analyzed in triplicate. 
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 First, steady-state shear stress versus shear rate (ߪ versus ௗఊ

ௗ௧
) 

experiments were conducted. A shear stress ramp was applied to record the 

corresponding shear rate at time intervals of 3s. The rheograms showed a 

plastic behavior, characterized by the yield stress required to provoke the 

viscous deformation of the materials studied. Hence the yield stress ߪ௬ was 

determined by fitting the ߪ െ ௗఊ

ௗ௧
 data in the post-yield regime to the Bingham 

equation 

ߪ  ൌ ௬ߪ ൅ ߟ
ௗఊ

ௗ௧
        (3.1) 

 Oscillatory tests were also performed by applying a sinusoidal shear 

stress (ߪ ൌ ߛ) and recording the subsequent sinusoidal strain (ݐ߱݊݅ݏ଴ߪ ൌ

ݐሺ߱	଴sinߛ ൅  ሻ). The constitutive equation for linear viscoelasticity can beߜ

expressed as (Macosko, 1994) 

,ሺ߱∗ߪ ሻݐ ൌ ,ሺ߱∗ߛሺ߱ሻ∗ܩ  ሻ        (3.2)ݐ

where ܩ∗ሺ߱ሻ is the complex rigidity modulus, ߪ∗ is the oscillatory shear 

stress, and ߛ∗ is the oscillatory shear strain in complex notation. The real 

part of the rigidity modulus, ܩᇱ is the elastic or storage modulus, and its 

imaginary part, ܩ′′, is the viscous or loss modulus. Equation (3.2) assumes a 

linear dependence between ߪ∗and ߛ∗, which is usually accomplished for low 

stress amplitude values into the so-called viscoelastic linear region (VLR). 

 Two kinds of oscillatory measurement were performed: 

(i) VLR determination. A stress of increasing amplitude (ߪ଴) and constant 

frequency (߱= 1 Hz) was applied to the sample: ܩᇱ and ܩ′′ were constant 

(amplitude independent) until a critical ߪ଴ was reached. This stress 

corresponds to the upper limit of the VLR. 

(ii) Oscillograms. A stress of amplitude 2Pa (within the VLR) was applied, 

with frequencies ranging between 0.1 and 10Hz, and both ܩᇱ and ܩ′′  were 

recorded as a function of ߱. 
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 Statistical analysis. As normality (and homogeneity of variance) 

assumptions were not satisfied, non-parametric tests were used. To test the 

significance of observed differences between the study groups, the Kruskal–

Wallis one-way analysis of variance by ranks (K–W) and the Mann–Whitney 

U test (M–W) were applied. A value of p<0.05 was considered to be 

statistically significant. The statistical analysis was performed using the 

SPSS 20.0 software package (Chicago, USA). 

The Rho-de-Spearman correlation coefficient (ρ) was also determined 

between all the parameters measured in this study. 

 

RESULTS AND DISCUSSION 

 

 Sequential analysis of extracellular matrix deposition 

 Histochemical analysis of the bioengineered cornea stromas using 

picrosirius staining revealed the presence of neoformed collagen fibrils after 

seven weeks of development in culture for fibrin scaffolds, for both the N-

NCCs and the NCCs. Stromas with 0.1% agarose concentrations showed no 

collagen deposition for the entire study period (eight weeks of development in 

culture). Illustrative images of the sample analysis using picrosirius staining 

are shown in Figure 3.7. However, proteoglycans staining of the corneal 

substitutes analyzed in this work using safranin O histochemistry proved 

completely negative for all samples, suggesting that these components were 

absent from the different tissue constructs.  

 

 Rheological properties 

 Steady-state measurements. The existence of yield stress or minimum 

stress needed for the corneal constructs to start to flow was observed. The 

data in the post-yield regime were fitted to equation (3.1). From the intercept 



 
APPLICATION OF OPTICAL METHODS FOR THE EVALUATION OF HUMAN TISSUES GENERATED BY TISSUE ENGINEERING 

75 

of this fitting, the yield stress of each material was determined. Figure 3.8 

shows the yield stress values corresponding to the different bioengineered 

corneal-stroma substitutes (N-NCCs and NCCs) and to the control native 

cornea. 

 

Figure 3.7. Histochemical analysis of collagen synthesis as determined by picrosirius staining 

in the different samples analyzed in the present work after two, seven and eight weeks of 

development in culture. Percentages correspond to the agarose concentration in the fibrin-

agarose scaffolds. NCC: nanostructured cornea constructs; N-NCC: non-nanostructured 

cornea constructs. Arrows indicate collagen deposition. Bars size: 50µm. 

 

 This evaluation was made as a function of the culture time. No 

degradation was detected in the bioengineered corneal samples for culture 

times of over three weeks. 
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 As shown in the Figure 3.9, the yield stress of the N-NCCs decreased 

with increasing time in culture (0>ߩ). This result is confirmed by the Rho-de-

Spearman correlation coefficient, that, for the fibrin constructs was 0.520-=ߩ 

whereas for the fibrin-agarose was 0.756-=ߩ, in both cases statistically 

significant differences (p<0.001) being found. For the fibrin NCCs, no 

significant correlation was found between the yield stress and the time in 

culture (0.071=ߩ, p=0.328). Contrary to what happens for the fibrin-agarose 

N-NCCs, for the nanostructured samples a positive correlation was found 

between the yield stress and the time in culture (567=ߩ, p<0.001), i.e. the 

yield stress increases with increasing time in culture (e.g., it varies from 

4.67± 0.23Pa for the first week until 28.91 ±1.44Pa for seventh week in 

culture). Table 3.1 shows the correlation coefficients found for the time in 

culture and the rheological parameters studied in this work. 

 

Rho-de-Spearman 
correlation coefficient 

Yield stress 

 (࢟࣌)

Elastic 
modulus 

 (′ࡳ)

Viscous 
modulus 

 (′′ࡳ)

Fibrin 

N-NCC 
-0.520 

p<0.001 

-0.727 

p<0.001 

-0.470 

p<0.001 

NCC 
0.071 

p=0.328 

-0.378 

p<0.001 

-0.4998 

p<0.001 

Fibrin-
agarose 

N-NCC 
-0.756 

p<0.001 

0.456 

p<0.001 

0.614 

p<0.001 

NCC 
0.567 

p<0.001 

0.511 

p<0.001 

0.066 

p=0.360 

Table 3.1. Rho-de-Spearman coefficient found for the correlation between time in culture and 

rheological parameters. 
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Figure 3.8. Yield stress values corresponding to the different bioengineered corneal-stroma 

substitutes. 
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 When comparing these values of the corneal constructs, non-

nanostructured and nanostructured, with the yield stress values of the 

porcine control cornea, it was found that the NCCs with 0.1% agarose 

concentration were the ones that most exactly resembled the native tissue 

yield stress, especially after four weeks of development in culture. 

Specifically, the fibrin with 0.1% agarose concentration NCCs after four to 

eight weeks in culture had yield stress values very close to that of the porcine 

control cornea, except for the sixth week. This observation might be explained 

by interaction between the agarose and the fibrin gel that influences the 

properties of the biomaterial (Ionescu et al., 2010), since the nanostructuring 

technique dehydrated the fibrin–agarose constructs, making them more 

resistant. In this case, nanostructured bioengineered corneas could be more 

stiff than N-NCCs due to the lack of water within the fibril mesh and due to 

the existence of complex three dimensional interactions among the fibrils as a 

consequence of the nanostructuring process. The nanostructuring process is 

therefore able to irreversibly modify the biomaterial used for the generation 

of an artificial tissue and to increase the elasticity and resistance of this 

tissue. These properties are essential for the proper function of the artificial 

tissue once implanted in the human cornea. 

 Oscillatory measurements. Studies of the elastic (ܩ′) and viscous (ܩ′′) 

moduli were also performed on the corneal stroma equivalents and native 

porcine cornea. In Figure 3.9, the oscillogram for the fibrin NCC after five 

weeks in culture is displayed as an example of the oscillograms determined 

for all the samples (but not all are shown for brevity). The elastic and viscous 

moduli of each sample were determined at the frequency of 1Hz (with shear 

amplitudes into the VLR).  
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Figure 3.9. Oscillogram example for the fibrin NCC after five weeks in culture. The elastic 

 moduli of each sample were determined at the frecuency of 1 Hz (’’ܩ) and the viscous (’ܩ)

(with shear amplitudes into the VLR) 

 

 Previous works have determined the rheological behavior of strips of 

cornea by performing normal (or compressive) stress–strain tests for 

determining the values of the Young modulus (Hoeltzel et al., 1992; Nash et 

al., 1982; Andreassen et al., 1980; Nyquist, 1968), whereas others have 

measured the Young modulus of the cornea in intact eyes (Hjortdal and Koch-

Jensen, 1992; Jue and Maurice, 1986). Due to the viscoelastic behavior of the 

cornea (Kobayashi et al., 1973), its mechanical properties cannot be fully 

described by a single elastic parameter such as the Young modulus. Until 

now, only in a recent work of Grobe and Reichl (2011) have the shear 

viscoelastic moduli of human cornea been determined. In their work, the 

elastic (storage) modulus of a human corneal equivalent based on collagen 

was 1500Pa and the viscous (loss) modulus 125Pa, but this large variation in 

0,1 1 10
0,1

1

10

M
o

du
lu

s 
(P

a
)

Frecuency (Hz)

 G'        G''



 
APPLICATION OF OPTICAL METHODS FOR THE EVALUATION OF HUMAN TISSUES GENERATED BY TISSUE ENGINEERING 

80 

values is due to the method of testing (the measurement parameters differ 

from the ones used in the present study). 

 The variation of the elastic and viscous moduli values with time in 

culture, both for the N-NCCs (top) and NCCs (bottom), as for the native 

porcine cornea is shown in Figures 3.10 and 3.11, respectively. 

 In the present study, for all cases analyzed,	ܩ′ was higher than ܩ′′ (M–

W p < 0.001), at a frequency of 1Hz, suggesting that these biomaterials are 

more elastic than viscous. It can be seen that, for both types of biomaterial 

(NCCs and N-NCCs), in the first stages of development in culture, the corneal 

stroma substitutes show almost constant ܩ′ values, contrary to what happens 

for times longer than five weeks in culture, for which these values decrease 

for the fibrin substitute (N-NCC: 0.727-=ߩ, p<0.001; NCC: 0.378-=ߩ, p<0.001) 

and increase for the fibrin-agarose one (N-NCC:0.456=ߩ, p<0.001; NCC: 

 p<0.001). The elastic modulus values of the NCCs were three to six ,0.511=ߩ

times higher than those of the N-NCCs (M–W p <0.001). Regarding the 

viscous behavior of the samples studied in this work, ܩ′′ had almost constant 

values in the case of the N-NCCs (with a mean value of 3.09±0.84 Pa), while, 

for the NCCs, the ܩ′′ values were two to six times higher (M–W p < 0.001), 

varying from 6.44±0.32Pa to 19.30±1.05Pa. From table 3.1 it can be seen that 

for the fibrin samples, the correlations with the elastic and viscous moduli 

were negative for both N-NCCs and NCCs, while for the fibrin-agarose the 

same correlations were found to be positive. The differences found were 

statistical significant. 

  



 
APPLICATION OF OPTICAL METHODS FOR THE EVALUATION OF HUMAN TISSUES GENERATED BY TISSUE ENGINEERING 

81 

 

 

Figure 3.10. Temporal variation of elastic modulus values of the N-NCCs (top) and NCCs 

(bottom), and of the control porcine cornea. 
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Figure 3.11. Temporal variation of viscous modulus values of the N-NCCs (top) and NCCs 

(bottom), and of the control porcine cornea. 
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 In addition, Figures 3.10 and 3.11 show that the N-NCCs did not 

accomplish the elasticity and viscosity displayed by the ex vivo native porcine 

cornea. Moreover, the fibrin NCCs had elasticity values in the range of the 

control cornea for the first two weeks in culture. For longer periods of time, 

these values rapidly decreased, reaching only 25% of the elastic modulus 

values of the porcine cornea. The fibrin-agarose NCCs displayed elasticity 

values similar to those of the control corneal and even higher than the native 

tissue itself in the fourth week in culture. Whereas the viscosity values are 

concerned, a similar behavior was observed. In this case, the viscous modulus 

values for the fibrin NCCs reached 50% of the viscosity values of the control 

cornea after 2 weeks in culture, while for the fibrin-agarose NCCs the 

viscosity values were in the values range of the native tissue during the 

entire time period analyzed in the present work.  

 The large variation in the moduli values determined in these studies 

may be due to the three-dimensional structure of the tissue after the 

nanostructuring process. Note that the nanostructuring method refers to a 

structural change involving the generation of links less than one micron in 

size between the fibrin fibers and the molecules of agarose. This process 

includes dehydration via mechanical compression that changes the elasticity 

of the construct (Enrione et al., 2010), and thus allows the generation of a 

novel biomaterial with improved/optimal levels of consistency and flexibility 

that cannot be attained naturally. 

 As stated above, the highest values of ܩ′ and ܩ′′ were found for the 

NCCs with a small concentration of agarose (0.1%) supporting the idea that 

the agarose content and nanostructuring technique had an important role in 

the changes that occurred in the viscoelasticity of the artificial corneal 

constructs. These values were determined for an oscillatory shear stress of 1 

Hz, well within the order of the natural oscillations of the human cornea. By 

contrast, the elastic and viscous modulus values of the human cornea 

reported by Wang and collaborators (Wang et al., 1996) were (1.8±0.4) 106 Pa 

and (1.5±0.4)·106 Pa, respectively. However, it should be noted that in this 
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latter work the exciting frequency applied by ultrasound was as high as 

2.25MHz, a value far from the natural mechanical frequencies of the human 

eye. 

 The statistical analysis determined significant differences when 

comparing the N-NCCs and the NCCs for both types of bioengineered human 

corneas (fibrin and fibrin-agarose) (p<0.001), suggesting that the agarose 

concentration and nanostructuring technique can notably influence the 

biomechanical properties of the biomaterials. These results agree with the 

findings of Orwin and collaborators (Orwin et al., 2003), who stated that 

changes in the viscoelastic behavior of the corneal stroma can be influenced 

by the matrix composition and culture time. Also, Haugh and collaborators 

(Haugh et al., 2012) showed that the nanostructuring technique (plastic 

compression) significantly increased the compressive properties of fibrin gels 

without impairing cellular viability and subsequent extracellular matrix 

synthesis. The authors concluded that this method of generation of 

bioengineered tissues may provide a useful tool in tissue engineering 

applications that require an increase in gel density and mechanical properties 

prior to implantation or at the inset in vitro culture.  

 In previous studies, non-nanostructured fibrin with 0.1% agarose 

biomaterials were used for the development of a bioengineered animal 

(Alaminos et al., 2006) and human cornea (González-Andrades et al. 2009; 

Ionescu et al., 2010; Cardona et al., 2011). In addition, this biomaterial has 

been efficiently used for the development of other tissue types in the 

laboratory, including oral mucosa (Sanchez-Quevedo et al., 2007; Garzón et 

al., 2009), periodontal tissues (Garzón et al., 2009) and even bone, cartilage, 

adipose, and neural tissues (Nieto-Aguilar et al., 2011). Data obtained in our 

study showed that the nanostructured construct of fibrin with 0.1% agarose 

had an intriguing time-dependent rheological behavior. In this regard, the 

properties of this type of corneal substitute were similar to those of the fibrin 

substitutes in the first two weeks of culture (lower elastic modulus), whilst, 

for larger periods of time in culture, this rheological behavior resembled that 
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of the native tissue (higher elastic modulus) (Figure 3.11). Besides, fibrin 

with 0.1% agarose concentration displayed elastic and viscous modulus values 

in the values range of the native porcine tissue for all times of culture 

studied, except for the sixth week in culture in the case of the viscous 

modulus. This result suggests that the nanostructured fibrin with 0.1% 

agarose biomaterial is a proper substitute for corneal application and 

regeneration. In addition, the nanostructuring technique represents a step 

forward in the generation of corneal substitutes for clinical application by 

means of tissue engineering, since the NCCs have more appropriate 

rheological characteristics, due to their similarity with those of the native 

porcine cornea chosen as control, than the N-NCCs. 

 However, note that the principal functions of the human cornea are the 

refraction and transmission of light. Therefore, for these bioengineered 

corneas to be potentially useful from a clinical standpoint, their optical 

quality and levels of transparency need to be additionally determined. 
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BACKGROUND 

 

 

 Sight has been a primary factor of advantage in natural selection and 

evolution, thereby conferring great importance to proper operation of the 

visual system and, above all, the maintenance of corneal transparency 

(Fernald, 2000). The cornea’s primary physiologic functions are transmission 

and refraction of incident light as well as protection of the intraocular 

structures from trauma and pathogens (Bennett and Weissman, 2004). Also, 

the cornea is responsible for more than 60% of the total refractive power of 

the eye, playing a vital part in the process of focusing incoming light onto the 

retina for posterior visual processing (Land and Fernald, 1992). 

 To fulfill an optimal vision situation, the cornea must efficiently 

transmit incident light by maintaining its transparency. If the transparency 

of a native cornea cannot be maintained at a minimum functional level for the 

patient, the corneal transplantation is usually the next step toward 

improvement of the optical quality of patient’s visual system. Once 

transplanted, it has been reported that the major cause of corneal graft 

failure is allograft rejection (Barandan-Rafii et al., 2007; Sangwan et al., 

2005, Alldredge et al., 1981). 

 Using tissue engineering development techniques, several biomaterials 

have been used as substitutes of the corneal stroma, including collagen 

(Torbet et al., 2007; Orwin and Hubel, 2000; Minami et al., 1993;), chitosan 

(Chen et al., 2005), polyglycolic acid (Hu et al., 2005), and fibrin (Han et al., 

2002). 

 Fibrin is an important biomaterial used for many tissue engineering 

applications (Eyrich et al., 2007; Farhat et al., 2006; Willerth et al., 2006; 
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Birla et al., 2005; Cox et al., 2004; Yamada et al, 2003;). As shown in Chapter 

3, it has been used together with a small amount of agarose to succesfully 

develop a human cornea substitute with rheological properties similar to the 

ones of a native cornea.  

 Another important biomaterial with a vast range of applications both 

in vivo and in vitro is collagen, one of the major components of the human 

extracellular matrix and subsequently one of the most abundant structural 

proteins within connective tissue. In the specific case of the cornea, the 

collagen is found within the stroma, which lies below the corneal epithelium, 

and comprises predominantly type I and V collagens (Newsome et al., 1982). 

In the stroma, collagen fibrils are highly aligned and packed in tight sheets. 

This high level of organization of the collagen fibrils it is directly correlated 

with the transparency of the cornea (Maurice, 1957). If used as a substrate, it 

has been shown that the collagen is highly compatible with low levels of 

immunogenicity (Bell et al., 1979), making it an excellent structure for tissue 

engineering applications. In a recent study, Mi and collaborators (Mi et al., 

2010a), showed that compressed collagen scaffold embedded with keratocytes 

produced a novel, thin, mechanically strong, transparent, and potentially 

transplantable membrane. Such a scaffold was found to facilitate the 

survival, proliferation, stratification, and differentiation of limbal epithelial 

cells into corneal epithelial cells, thereby demonstrating the suitability of this 

new substrate for tissue engineering ocular surface models. 

 The optical characterization of these biomaterials is essential to ensure 

their proper functionality since they are intended to replace the principal 

refractive component of the eye and, to a great extent, the main responsible of 

image-forming. One of the most common problems found when assessing 

optical quality of biomaterials is that specific equipment, such as light 

detectors, spectrophotometers, a laser or a homogeneous light source, are not 

available in the biological sciences departments where artificial tissues are 

generated. In this case, proper measurements of the 

transmitted/reflected/absorbed/scattered incident light throughout the 
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samples are impossible to perform. In some cases, the assessment of tissue 

transparency is made by simply placing the sample on top of a reference 

image and visually estimating the similarities with a control sample. All 

observations are subjective and observer-dependent and no quantitative data 

are provided (Fu et al., 2010; Proulx et al., 2010; Xu et al., 2008). In this 

sense, it becomes of high interest the development of a simple, yet precise 

method, which can be easily implemented in the biological laboratories and 

which will allow the researchers to report quantitative and physically 

relevant data on the optical quality of their bioengineered tissues.  

 As a first intent to overcome (address) this issue, we developed, using a 

digital single lens reflex (DSLR) camera, a backlight Liquid Cristal Display, 

digital bar patterns and a subsequent image analysis, a non-invasive method, 

based on the determination of the Contrast Transfer Function (CTF), for 

evaluating the optical quality of artificial human corneal tissues. 

 The Contrast Transfer Function (CTF) is defined as a measure of 

contrast between adjacent objects, and provides information on how faithfully 

an optical system reproduces (or transfers) details from the object to the 

image of the same object produced by the optical system. Thus, it represents 

an important measurement tool of the optical quality of an imaging system. 

In our study, the optical system is represented by the bioengineered corneal 

constructs generated by tissue engineering.  

Therefore, the aim of this study was to develop an optical method for the 

evaluation of the optical quality and to evaluate corneal stroma substitutes 

based on fibrin, fibrin-agarose and collagen in order to determine their 

suitability for potential clinical use.  
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MATERIALS AND METHODS 

 

 Construction of corneal equivalents with a fibrin-agarose stromal 

substitutes.  

 Corneal stroma substitutes consisted of cultured human keratocytes 

entrapped in (1) a gel of human fibrin, and (2) gel of human fibrin with 0.1% 

type VII agarose. They were generated following the method described on 

Chapter 3.  

 Samples of the fibrin-agarose corneal constructs were studied after 2 

and 4 weeks of development in culture.  

 

 Construction of the collagen gels.  

 Stromal keratocytes were isolated from human corneas stripped of both 

epithelium and endothelium. After the corneal epithelial and endothelial cells 

had been dissected, the remaining stroma was cut into small fragments and 

washed in a solution prepared with 10ml of Dulbecco’s minimal essential 

medium and Ham’s F12 medium (DMEM/F12, 1:1) and 20mg of collagenase 

(Sigma Aldrich/Gibco) during 3 hours at 37°C in 5% CO2. The culture of the 

corneal cells was performed using a trypsin (Sigma Aldrich/Gibco) solution at 

37°C for 10 minutes. Once the cells had been harvested by centrifugation, 

stromal keratocytes were cultured in DMEM/F12 medium and incubated at 

37C in 5% CO2 under standard culture conditions. The culture medium was 

changed every 3 days.  

 Acellular and cellular collagen gels were generated as previously 

described by Brown and collaborators (Brown et al., 2005) with some 

modifications. The acellular gels were prepared by neutralising 2 ml sterile 

rat-tail type I collagen (2.2 mg/ml in 0.6% acetic acid, First Link Ltd) in 0.5 
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ml modified Eagle's minimum essential medium (Fisher Scientific), 0 and 

0.25 ml 1 M sodium hydroxide (Fisher Scientific). In the case of the cellular 

gels, 0.077mL keratocytes suspended in basal medium (2.6·106 cells/mL) were 

added to the previous mixture. The solutions were gently mixed and cast into 

circular moulds (aprox. 2.2cm diameter) prior to gelling at 37°C, 5% CO2 for 

30 min.  

 Following the initial setting of the gels, they were then subsequently 

compacted by a combination of compression and dehydration. Specifically, 

collagen gel compaction was achieved by placing a metallic grid on a double 

layer of absorbent paper and on top of it a layer of nylon mesh (50-µm mesh 

size). The collagen gel was then placed on the nylon mesh, covered with a 

second nylon mesh, and loaded with a 134g weight for different time periods 

(1 and 3 min) at room temperature, leading to the formation of a flat collagen 

sheet protected between two nylon meshes (Figure 4.1) (Feng et al., 2012).  

 

 

Figure 4.1. Manufacture of compressed collagen gels (Feng et al., 2012). 

 

 After compression, gels were kept in serum free media (DMEM 

supplemented with antibiotics (1%), ascorbic acid (0.25mg/ml), Insulin 

Transferin Selenium supplement (1%), glutamine (1%) and glucose (1mg/ml) 

at 37C, 5% CO2. The compressed collagen gels were left to develop in culture 

during 10 days before optical measurements were performed.  
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 All the manufacturing processes, including the generation and the 

development of the collagen gels, as well as all optical analysis were 

performed at the Laboratory of Stem Cells and Nanomaterials at the 

University of Reading, UK. 

 It should be mentioned that, for the fibrin and fibrin-agarose corneal 

constructs the use of the CTF method was aimed to determine differences in 

the optical quality due to matrix composition and time of development in 

culture (two and four weeks), whereas for the collagen gel, these differences 

should be accounted for different compression time (one and three minutes) 

and the presence or absence of corneal cells in the gel.  

 

 Experimental setup. 

 For the optical evaluation of the bioengineered corneal constructs, five 

digital bar patterns with increasing frequencies (0.20, 0.40, 0.65, 1.00 and 

2.00 cycles/mm) were designed and displayed on a LCD screen (Figure 4.2)  

 

Figure 4.2. Digital bar patterns with increasing frequencies used to determine the CTF. 
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 For each photograph, a central area of 450x200 pixels was manually 

selected, a plot profile was carried out and the minimum (Imin) and maximum 

(Imax) gray values were determined (Figure 4.4). The results obtained for the 

10 images were averaged.  

 Using the maximum and minimum gray values obtained, the input (i) 

and output (o) modulations were calculated as 

௜݊݋݅ݐ݈ܽݑ݀݋ܯ ൌ
௜,௠௔௫ܫ െ ௜,௠௜௡ܫ

௜,௠௔௫ܫ ൅ ௜,௠௜௡ܫ
 

௢݊݋݅ݐ݈ܽݑ݀݋ܯ ൌ
௢,௠௔௫ܫ െ ௢,௠௜௡ܫ

௢,௠௔௫ܫ ൅ ௢,௠௜௡ܫ
 

 

 Consequently, the CTF is given by  

ܨܶܥ ൌ
௢݊݋݅ݐ݈ܽݑ݀݋ܯ
௜݊݋݅ݐ݈ܽݑ݀݋ܯ

 

 

Figure 4.4. Example of the images obtained and the area considered for the CTF values 

calculation: A. Output modulation; B. Input modulation. 

B

A

B
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 All image analysis steps were performed using the public domain 

software ImageJ (NIH, Bethesda USA).   

 

 Statistical analysis 

 To study the variations in the CTF values, we used the Mann-Whitney 

U statistical test, a non-parametric test that enables the pair-wise 

comparison of two distributions. This statistical test was used because the 

samples do not fulfill the test of homogeneity of variance. A significance value 

below 5% was considered as statistically significant 

 To determine the level of similarity between two different distributions, 

the VAF (variance accounting for) coefficient with Cauchy-Schwarz’s 

inequality was used as follows: 

ܨܣܸ ൌ
ሺ∑ ܽ௞ܾ௞ሻ௞

ଶ

ሺ∑ ܽ௞
ଶ

௞ ሻሺ∑ ܾ௞
ଶ

௞ ሻ
 

where ܽ௞ is the value of each absorption or scattering (for each wavelength) 

and ܾ௞ is the equivalent for another measurement. The closer this coefficient 

gets to unity (100%), the more similar the curves are. 

 

RESULTS AND DISCUSSION  

 

 The non-invasive method and experimental set-up proposed allow 

evaluating the optical quality of bioengineered corneal constructs without 

modifying the conditions of culture. The newly proposed CTF-based method 

provides indirect control of tissue development, by addressing the optical 

quality of the bioengineered corneal constructs depending on their time of 

development in culture and matrix composition. Also, it is suitable to 

evaluate different compression times for collagen gels, differentiating, from 

an optical point of view, between cellular and acellular collagen constructs.  
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 Study of the fibrin and fibrin-agarose human corneal substitutes.  

 Figure 4.5 shows the CTF values as a function of the frequency 

(cycles/mm) for the a) fibrin and b) fibrin–0.1% agarose corneal substitutes 

after 2 and 4 weeks of development in culture. Table 4.1 presents the results 

of the VAF comparisons between fibrin and fibrin–0.1% agarose constructs, 

both after the two periods of time culture considered.  

 The values of the contrast transfer function decrease with increasing 

frequency in all cases. It is important to highlight that, from 0.65 cycles/mm 

on, the CTF values are reduced by approximately 70% with respect to the 

values recorded for 0.2 cycles/mm. This severe drop is expected to critically 

affect the optical quality of the system. The area under the graph is an 

indirect measure of the magnitude of the CTF values for all frequencies, and 

is an accurate tool for comparison between different types of constructs and/or 

development periods. For both the fibrin and the fibrin–0.1% agarose 

constructs, although the behavior of the CTF graph is almost identical 

(VAF≥99.47% in all cases) (Table 4.1), for the second week of development the 

area under the graph is higher than for the fourth week, although the values 

are very similar (0.4846 compared to 0.4320 for the fibrin substitute and 

0.4991 compared to 0.4662 for the fibrin-agarose substitute). The small 

differences found between the second and fourth week of development in 

culture for each type of constructs, suggest that, in what concerns the CTF, 

no major changes occur between these two time periods. However, the 

statistical analysis revealed significant differences between the second and 

fourth week fibrin samples (p=0.012), contrary to what happened for the 

fibrin-agarose samples (p=0.396). These results are in good agreement with 

existing literature. In a recent study, Cardona and collaborators (Cardona et 

al., 2011), studying the transparency of the same type of constructs as the 

ones used in our study, found that the number of cells tended to remain 

constant in the fibrin-agarose corneal substitutes during the second and 

fourth week of development in culture, whereas in the case of the fibrin 

constructs a 50% increase was observed. These findings could explain the 
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statistical differences obtained in our study for the fibrin-based bioengineered 

corneas. 

 When comparing the two different types of fibrin-based bioengineered 

corneal substitutes, both for 2 weeks (0.4991 compared to 0.4846) and 4 

weeks (0.4662 compared to 0.4320), the fibrin–0.1% agarose construct 

registered higher values of CTF. These results suggest that the fibrin–0.1% 

agarose construct performs better, in terms of CTF, than the fibrin construct, 

overtaking this latter one in terms of optical quality. Besides, no statistically 

significant differences were found between the two types of corneal constructs 

for the second week in culture (p=0.237), whereas for the fourth week in 

culture these differences became significant (p=0.025) Our results are 

confirmed by Cardona and collaborators (Cardona et al., 2011) who studied 

the transparency of these two types of corneal substitutes and concluded that 

the fibrin–0.1% agarose construct was the corneal model that most resembled 

the ex vivo native cornea and, considering its transparency values, it is a 

suitable candidate for the generation of bioengineered tissues for corneal 

applications. In addition, taking into account the rheological properties found 

in Chapter 3, the fibrin – 0.1% agarose nanostructured construct is the model 

that most resembled the physical behaviour of the native cornea and it might 

serve as an adequate candidate for the generation of an artificial complete 

cornea, not only for transplanting use but also for conducting pharmaceutical 

testing and biomedical research.  
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Figure 4.5. CTF values for the fibrin and fibrin-agarose human corneal substitutes after two 

and four weeks of development in culture 
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VAF 

FIBRIN FIBRIN-AGAROSE 

Development in culture 

2 weeks  4 weeks 2 weeks 4 weeks 

FIBRIN 
2 weeks 100% 

   
4 weeks 99.47% 100% 

  

FIBRIN-
AGAROSE 

 2 weeks 99.57% 99.40% 100% 
 

 4 weeks 99.89% 99.69% 99.28% 100% 

Table 4.1. Statistical VAF values for comparison between the the fibrin and fibrin-agarose 

human corneal substitutes 

 

 Study of the compressed collagen gels.  

 In Figure 4.6 are plotted the CTF values as a function of frequency for 

both the cellular and acellular collagen gels for a) 1min and b) 3min of 

compression times. Table 4.2 shows the results of the VAF comparisons for 

the cellular and acellular gels and for the two compression times studied. As 

it can be observed in Table 4.2, the behavior of the CTF is very similar for 

both types of collagen gels and for the two different compression times (VAF ≥ 

98.20 in all cases). 

 As the case of fibrin-based corneal constructs, the values of the CTF 

registered for 0.65 cycles/mm decreased with respect to the values registered 

for 0.2cycles/mm, but the relative drop in values is significantly lower, around 

40% (compared to 70% in the fibrin constructs case). Still, this loss of 

sensitivity is expected to affect the final optical quality of the system. From 

our results, independently of the compression time, the cellular collagen gels 

presented higher CTF values than the acellular ones (area under graph 

0.9888 compared to 0.7631 for 1min and 1.010 compared to 0.9389 for 3min), 

statistically significant differences being found when comparing cellular and 



 
APPLICATION OF OPTICAL METHODS FOR THE EVALUATION OF HUMAN TISSUES GENERATED BY TISSUE ENGINEERING 

102 

acellular gels for each time of compression (p<0.001). The corneal 

transparency is mainly dependent on the arrangement of the collagen fibers 

within stroma and on the variation of the refractive index between the 

different cellular components (Mourant et al., 2000). Jester and collaborators 

(Jester et al., 1999) pointed out the critical importance of minimizing the 

refractive index fluctuations between cytoplasm and environment for corneal 

transparency. Therefore, the presence of cells in the compressed collagen gels 

analyzed in this study could contribute to the changes in corneal clarity, 

remodeling the gels structure and reducing the variations in refractive index 

between the collagen gel components. On the other hand, several reports 

(Meek et al., 2003; Mourant et al., 1995; Benedek, 1971) revealed that 

microstructural alterations, irregular organizations of the extracellular 

matrix or the cells of the tissue could also lead to fluctuations of the 

transparency of a tissue. In our case, although for the shortest time of 

compression (1min) the differences between the two types of collagen gel 

corneal substitutes are considerably high (p<0.001), for a longer compression 

time (3min) these differences narrow (p<0.001), mainly due to the notable 

increase in acellular CTF values.  

 Plastic compressed collagen gel is a superior biomaterial in terms of its 

speed and ease of production and its ability to be manipulated in a clinically 

relevant manner without breakage. The plastic compression of collagen gels 

was validated as an appropriate method for ocular surface tissue engineering 

since it was reported that leads to the generation of a potentially excellent 

biomaterial for use in therapeutic tissue engineering (Mi  et al., 2010b). 

Compressed collagen gels can produce corneal constructs with a more similar 

cell morphology, cell density and level of cell stratification to the normal 

cornea and also support better cell–matrix and cell–cell attachments, 

suggesting a more robust construct. When we compare the two different times 

of plastic compression, the CTF values increase with longer compression time 

(area under graph 1.010 compared to 0.9888 for cellular gels and 0.9389 

compared to 0.7631 for acellular gels). These results are in good agreement 

with previous studies, which related higher compression times with 
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successful biomaterials. Levis and collaborators (Levis et al., 2010) 

demonstrated that 5 minutes compressed collagen constructs can form the 

basis of a biomimetic tissue model for in vitro testing and could potentially 

provide a suitable alternative to amniotic membrane as a substrate for limbal 

epithelial cell transplantation. In a more recent work, longer compression 

times, as long as 15 minutes, but with a considerably lower load (only 35g), 

were used to successfully generate a novel carrier for expanded human 

corneal endothelial cells for transplantation (Levis et al. 2012)  

 However, our statistical analysis found no statistically significant 

differences for the comparisons between the two cellular gels (p=0.756), 

contrary to the comparisons between the two acellular gels (p<0.001). 

 In view of our results, although no significant differences were 

obtained, the cellular compressed collagen corneal constructs with 3 minutes 

of compression time presented the highest CTF values, positioning itself as 

the biomaterial with the best optical quality among the corneal substitutes 

studied. However, future studies, involving different (and longer) compression 

times as well as different loads should be performed in order to possess a 

broader picture of the optical quality of these collagen corneal substitutes.  
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Figure 4.6. CTF values for the compressed collagen gels (cellular and acellular). 
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VAF  

Compression Time 

 1min 

Compression Time 

 3min 

Cellular Acellular Cellular Acellular 

Compression 
Time 1min 

Cellular 100% 
   

Acellular 99.98% 100% 
  

Compression 
Time 1min 

Cellular 98.36% 98.20% 100% 
 

Acellular 99.89% 99.88% 98.98% 100% 

Table 4.2. Statistical VAF values for comparison between the acellular and cellular 

compressed collagen gels (1 min: CC1; 3 min: CC3) 

 

 Comparison between the fibrin. fibrin-agarose and cellular collagen gel. 

 The newly proposed CTF-based method was also used to compare the 

fibrin, fibrin–0.1% agarose and cellular collagen gels (with 1 and 3 minutes 

compression times), in order to assess their optical quality. Since the collagen 

gels were developed in culture for only 10 days, only the fibrin and fibrin – 

0.1% agarose substitutes after 14 days (2 weeks) of development in culture 

were used for comparison. In spite of the different methods used to generate, 

on one side the fibrin and fibrin-agarose substitutes, and secondly the 

collagen gels, we consider that their comparison could be of interest in order 

to establish which type of cornea replacement has better optical quality.  

 Figure 4.7 show the CTF values as a function of frequency (cycles/mm) 

for the studied corneal substitutes. Table 4.3 present the results of the VAF 

analysis for the fibrin and fibrin–0.1% agarose and cellular collagen gels with 

1 and 3 minutes of compression time.  

 The compressed cellular collagen gels presented significantly higher 

CTF values than the fibrin or fibrin – 0.1% agarose constructs after 2 weeks 

of development (p<0.001) (area under graph 0.9888 and 1.010 compared to 
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0.4846 and 0.4991). As previously described, the fibrin based constructs 

experience a severe drop of the CTF values for frequencies higher than 0.65 

cycles/mm, thus resulting in different behaviour of the CTF graph, as 

reflected by the low VAF values (VAF ≤ 88.16% in all cases). In general, the 

cellular collagen gels present relative values of the contrast transfer function 

two times greater than the values registered for the fibrin-based corneal 

substitutes, especially for higher frequencies. 

 

Figure 4.7. Comparison between the CTF values of the fibrin and fibrin-agarose constructs 

after 2 weeks of culture, and the cellular compressed collagen gels 
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VAF FIBRIN 
FIBRIN-

0.1% 
AGAROSE 

Cellular Collagen 

Compression 
Time  
1min 

Compression 
Time 
3min 

FIBRIN 100%  
  

FIBRIN-0.1% AGAROSE 99.57% 100% 
  

Compression Time 1min 88.16% 86.08% 100% 
 

Compression Time 3min 87.95% 86.02% 99.98% 100% 

Table 4.3. Statistical VAF values for comparison between the 2 week fibrin and fibrin-

agarose and compressed collagen gels (1 min: CC1; 3 min: CC3) 

 As an overview, although the generation methods used in each case are 

different, from all types of potentially corneal substitutes analyzed with this 

method, the cellular collagen gels after a 3 minutes compression time showed 

the best optical quality, in terms of transfer of details from the object to the 

image, with considerably higher CTF values for all studied frequencies. 

Unfortunately, collagen is very expensive to purify, and there is variability in 

the crosslink density, fiber size, and trace impurities in the isolated collagen 

(Crabb, 2007). Moreover, the collagen used in the present study has animal 

origin and therefore has the potential to transmit disease, and can cause an 

immunogenic response (Crabb, 2007). In contrast, the fibrin-agarose 

constructs can be produced from the patient’s own blood and used as an 

autologous scaffold for the seeded keratocytes without the potential risk of a 

foreign body reaction. In addition, the experience acquired by our group 

developing fibrin-agarose corneal substitutes (Cardona et al., 2011; Ionescu et 

al., 2011; Ionescu et al., 2010; Gonzalez-Andrades et al., 2009; Alaminos et 

al., 2006) encourage us to continue investigating their properties. Therefore, 

Chapter 5 of the present Thesis describes the optical properties of a partial 

bioengineered human cornea based on fibrin-0.1% agarose, in order to 

establish, taking into account the previous results on rheological properties 

and CTF values, its suitability for clinical use. 

 



 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
5. OPTICAL PROPERTIES OF  

AN ANTERIOR LAMELLAR HUMAN CORNEA  
MODEL BASED ON FIBRIN-AGAROSE  
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BACKGROUND 

 

  

 Corneal transparency has been the subject of numerous studies over 

the last few years (Qazi et al., 2010; Sardar et al., 2009; Meek et al., 2003; 

Jester et al., 1999). It is now generally accepted that corneal transparency 

depends on the destructive interference of the incoming light that is scattered 

away and on the absorption of light by the corneal tissue itself.  

 Several researchers have demonstrated that the scattering of light in 

the human cornea depends mostly on the stromal extracellular matrix, and 

scattering will increase if the fibril diameter increases or if the spatial 

arrangement or the hydration level of the fibrils is altered (Meek et al., 2003; 

Freund et al., 1995; Freund et al., 1986). In contrast, other studies suggest 

that corneal cells might play a relevant role and that stromal keratocytes 

significantly contribute to corneal light scattering (Maurice et al., 1957). In 

fact, Jester and collaborators (Jester et al., 1999) suggested that stromal cells 

contain different corneal ‘cristallins’, which affect the refractive index of the 

cell cytoplasm, allowing most of the light to reach the cornea with very low 

scattering levels. However, situations in which corneal keratocytes change 

their morphology or spill their contents could result in a significant increase 

of the scattering capacities of the stromal keratocytes (Moller-Perdersen et 

al., 2000). For all these reasons, the evaluation of the optical behavior of 

native cornea and the different bioengineered models of the human cornea, 

developed as an alternative solution to corneal transplantation due to the 

shortage of donor organs and to complications resulting from this procedure, 

is an essential part of the quality-control process of these bioengineered 
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tissues where cells are maintained under specific cell-culture conditions in 

which cell proliferation rate is unusually high. 

 Regarding the previously developed fibrin-agarose human cornea 

model, biological features such as cells survival rate and proliferation, protein 

expression, and morphological characteristics (intercellular junctions) were 

determined using immunocytochemistry and microscopy techniques. Only 

recently, Cardona and collaborators (Cardona et al., 2011) evaluated the 

transparency of fibrin and fibrin-agarose corneal stroma substitutes 

generated by tissue engineering. The authors used the Kubelka-Munk 

equations to determine the scattering and absorption coefficients of these 

cornea models and compared them to the ones of a control porcine cornea and 

a theoretical cornea model proposed by Van der Berg and Tan (1994). The 

simplicity of the Kubelka-Munk model has made it a popular method for 

measuring the optical properties of tissues. Unfortunately, the assumptions 

that this model implies on isotropic scattering, matched boundaries and 

diffuse irradiance are atypical of the interaction of laser light with tissue. 

Despite attempts to extend the Kubelka-Munk model to collimated irradiance 

(van Gemert et al., 1987; Atkins, 1969; Kottler, 1960) and anisotropic 

scattering (Jacques and Prahl, 1987; Atkins, 1969; Meador and Weaver, 

1979), this method remains a weak approximation for laser light propagation 

in tissue (Niemz, 2007).  

 In this work, we have evaluated the optical properties of a model of 

human artificial cornea based on fibrin-agarose scaffolds using the inverse 

adding-doubling (IAD) method that involves direct measurements of 

reflectance and transmittance of the samples and a Monte Carlo simulation 

to determine the scattering and absorption coefficients. Part of the novelty of 

the current investigation is the use of the IAD method to quantify the optical 

properties of a novel artificial cornea model generated by tissue engineering 

using human components (human corneal keratocytes and human plasma–

derived fibrin) and a small concentration of agarose. In addition, the 

nanostructuring technique used in this Thesis proved to be adequate for 
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generating bioengineered human corneas with improved rheological 

properties (Chapter 3).  

 Inverse adding-doubling is a method for generating the optical 

properties of scattering and absorbing materials. Reflection and transmission 

measurements, usually made with an integrating sphere, are converted to the 

optical properties of the sample (scattering and absorption coefficients) using 

the computer program iad, developed by Professor Scott Prahl (Prahl, 2012). 

This program has been extensively tested and validated for accuracy and 

precision (Sardar et al., 2007; Yust et al., 2012) and it has been widely used to 

determined the optical characteristics of different biological tissues (Sardar et 

al., 2009; Bashkatov et al., 2005; Ishii et al., 2008; Honda et al., 2009). The 

general idea is that measurements of reflection and transmission are fed into 

the program to extract the intrinsic optical properties of the sample to be 

studied. The program does this by repeatedly guessing the optical properties 

and comparing the expected observables with those that have been made. 

Upon matching, those optical properties used to generate the expected 

observables are the ones that characterize the sample. 

 

THEORETICAL BACKGROUND 

 

 Few numerical or analytical options exist that accurately simulate the 

light propagation in samples with arbitrary scattering and absorption ratios, 

anisotropic scattering and boundaries (Prahl, 1995). The diffusion equation, 

random walk models, Kubelka-Munk or Chandrasekhar’s X and Y functions 

are the common approximations used in this situation, but they place 

restrictions on one or more of the basic tissue properties. The adding-doubling 

(van de Hulst, 1980) allows accurate solution of the radiative transfer 

equation for anisotropic scattering and mismatched boundaries. We have 

selected this method because it works naturally with layered samples, yields 

reflection and transmission readily and it has important light using 
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diagnostic applications (Prahl, 1995). Furthermore, the only parameters 

needed when measuring the optical properties of biological samples are the 

total reflection and transmission of the sample (Ishii et al., 2008; Sardar et 

al., 2007; Bashkatov et al., 2005; Prahl et al., 1993). 

 

 General description of the adding-doubling method. The doubling 

method requires the knowledge of the reflection and transmission properties 

of a single thin homogeneous layer. If the slab doubles its thickness, the 

reflection and transmission of this slab are found by juxtaposing two identical 

slabs and summing the contributions from each slab (van de Hulst, 1980; 

Plass et al., 1973). The reflection and transmission of an arbitrarily thick slab 

are obtained by repeatedly doubling until the desired thickness is reached. 

The adding method allows the simulation of a media with different layers 

and/or reflection at boundaries, extending in this way the doubling method to 

dissimilar slabs (Prahl, 1995).  

 The adding-doubling method has the advantage that it requires only 

integrations over angle, the physical interpretation of the results can be made 

at each step, the method is equivalent for isotropic and anisotropic scattering, 

and results are obtained for all angles of incidence used in the integration 

(Irvine, 1975). The disadvantages are that it is (1) difficult to calculate 

internal fluences, (2) restricted to layered geometries with uniform 

irradiation and (3) necessary for each layer to have homogeneous optical 

properties. In practice, the first issue is not a problem since internal fluences 

are often not needed. Still, if fluences are needed at a certain depth, they can 

be calculated by finding the reflection and transmission matrices for light 

propagation through the material above that depth as well as the matrices for 

everything below. These matrices are then used to obtain the upward and 

downward radiance at the interface between these layers. The fluence follows 

directly once the radiance as a function of angle is known. Issues (2) and (3) 

represent restrictions on the sample geometry: the samples must have 

homogeneous layers and be uniformly illuminated. Prahl (Prahl et al., 1993) 
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used the adding-doubling method to solve the radiative transport equation 

and implemented it into the development of the inverse adding-doubling (iad) 

program, inverse implying a reversal of the usual process of calculating 

reflection and transmission from optical properties.  

 As stated before, the IAD method involves direct measurements of 

reflection and transmission of the samples (usually performed using 

integrating spheres) and a Monte Carlo simulation to determine the 

scattering and absorption coefficients. Figure 5.1 shows the steps followed in 

this method (Prahl et al., 1993).  

 

 

Figure 5.1. Schematic representation of the IAD method steps (Prahl, 1988). The method 

involves guessing the optical properties of a tissue, calculating the reflection and 

transmission for these properties, comparing the calculated with the measured reflection and 

transmission, and repeating this process until the calculated and measured transmission 

match. (courtesy of Prof. Scott Prahl) 
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The set of optical properties that generates reflection and transmission values 

matching the measured values is taken as the optical properties of the 

sample. The results obtained with the IAD method are accurate for all optical 

properties and have been validated for a variety of biological tissues (Sardar 

et al., 2009; Bashkatov et al., 2005; Sardar and Levy, 1998; Cheong et al., 

1990). 

 However, the following assumptions are made when using the IAD 

method:  

- no time dependence; 

- a geometry consisting of uniform layers of finite thickness and 

infinite extent in directions parallel to the surface; 

- tissue layers with uniform scattering and absorbing properties; 

- uniform illumination by collimated or diffuse light.  

 

 Integrating sphere theory. An integrating sphere is an optical 

component consisting of a hollow spherical cavity with its interior covered 

with a diffuse white reflective coating, with small holes for entrance and exit 

ports (Figure 5.2).  

 

Figure 5.2. Integrating sphere  
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Different variables are needed when describing the light propagation within 

an integrating sphere. There are variables describing areas within the 

sphere, reflection and transmission of the sphere wall, detector and sample, 

and illumination power. Table 5.1 and 5.2 show the notations used to describe 

the areas within the sphere, and the reflection, transmission and light power 

respectively.  

Description Area Normalized area 

Inside area of the sphere ܣ 
ܣ
ܣ
ൌ 1 

Area of the sample port ܣ௦ 
௦ܣ
ܣ
ൌ ܽ௦ 

Area of the detector port ܣௗ 
ௗܣ
ܣ
ൌ ܽௗ 

Area of the entrance port ܣ௘ 
௘ܣ
ܣ
ൌ ܽ௘ 

Area of the sphere wall ܣ௪ 

௪ܣ
ܣ
ൌ ܽ௪ 

ܽ௪ ൌ 1 െ ܽ௦ െ ܽ௘ െ ܽௗ 

Table 5.1. Notations of the areas within the integrating sphere 

 

Description Reflection Transmission Light Power 

Sphere wall ݎ௪  ௪ܲ 

Detector ݎௗ  ௗܲ 

Reference standard ݎ௦௧ௗ   

Sample 

Diffuse illumination 

Collimated illumination 

 

 ௦ݎ

 ௦ௗ௜௥௘௖௧ݎ

 

 ௦ݐ

 ௦ௗ௜௥௘௖௧ݐ

௦ܲ 

 

 

Incident illumination   ܲ 

Table 5.2. Notations of the reflection, transmission and light power when using an 

integrating sphere 
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 Single integrating sphere. The integrating spheres have the advantage 

that they collect almost all the light reflected by or transmitted through a 

sample. The fraction of light that is redirected to the detector after having 

interacted with the sample depends on the sphere geometry and the 

reflectivity of the sphere walls and sample. The sphere gain is a concept that 

describes the increase in the irradiance on the detector due to the reflective 

sphere walls. It is not a constant of the sphere, varying with the reflectance of 

the sphere.  

 If the sphere is illuminated with a diffuse light of power ܲ that reaches 

all of the parts of the sphere (the light is not blocked by a baffle), then the 

multiple reflections that light suffers within the sphere will increase the 

power falling on non-white areas of the sphere. Note that the subsequent 

reflections are restricted by the baffle situated between the sample and the 

detector. The total light power falling on the different regions of the sphere 

after first incidence, for the diffuse light is: 

௪ܲ
ሺଵሻ ൌ ܽ௪ܲ,           ௦ܲ

ሺଵሻ ൌ ܽ௦ܲ,          ௗܲ
ሺଵሻ ൌ ܽௗܲ.      (5.1) 

 The second incidence on the wall is 

௪ܲ
ሺଶሻ ൌ ܽ௪ݎ௪ ௪ܲ

ሺଵሻ ൅ ሺ1 െ ܽ௘ሻݎௗ ௗܲ
ሺଵሻ ൅ ሺ1 െ ܽ௘ሻݎ௦ ௦ܲ

ሺଵሻ      (5.2) 

 The light from the detector and sample are multiplied by ሺ1 െ ܽ௘ሻ and 

not by ܽ௪ because the light from the detector (or sample) is not allowed to hit 

either the detector or sample. On the ݇th incidence, the light that hits the 

walls has the same form as above  

௪ܲ
ሺ௞ሻ ൌ ܽ௪ݎ௪ ௪ܲ

ሺ௞ିଵሻ ൅ ሺ1 െ ܽ௘ሻݎௗ ௗܲ
ሺ௞ିଵሻ ൅ ሺ1 െ ܽ௘ሻݎ௦ ௦ܲ

ሺ௞ିଵሻ      (5.3) 

 Since the light falling on the sample or detector can only come from the 

wall due to the baffle, then  

௦ܲ
ሺ௞ሻ ൌ ܽ௦ݎ௪ ௪ܲ

ሺ௞ିଵሻ,             ௗܲ
ሺ௞ሻ ൌ ܽௗݎ௪ ௪ܲ

ሺ௞ିଵሻ      (5.4) 

 Therefore, the incident light on the wall for the ݇th incidence becomes 
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௪ܲ
ሺ௞ሻ ൌ ܽ௪ݎ௪ ௪ܲ

ሺ௞ିଵሻ ൅ ሺ1 െ ܽ௘ሻݎ௪ሺܽௗݎௗ ൅ ܽ௦ݎ௦ሻ ௪ܲ
ሺ௞ିଶሻ      (5.5) 

 The total power that will hit the detector is  

ௗܲ ൌ ܽௗܲ ൅ ∑ ܽௗݎ௪
ஶ
௞ୀଶ ௪ܲ

ሺ௞ିଵሻ ൌ ܽௗܲ ൅ ܽௗݎ௪
௔ೢାሺଵି௔೐ሻሺ௔೏௥೏ା௔ೞ௥ೞሻ

ଵି௔ೢ௥ೢ ିሺଵି௔೐ሻ௥ೢ ሺ௔೏௥೏ା௔ೞ௥ೞሻ
ܲ     (5.6) 

 The gain ܩሺݎ௦ሻ in the irradiance on the detector relative to a black 

sphere is defined as  

௦ሻݎሺܩ ൌ
௉೏/஺೏
௉/஺

ൌ 1 ൅ ௥ೢ

௔ೢ

௔ೢାሺଵି௔೐ሻሺ௔೏௥೏ା௔ೞ௥ೞሻ

ଵି௔ೢ௥ೢ ିሺଵି௔೐ሻ௥ೢ ሺ௔೏௥೏ା௔ೞ௥ೞሻ
      (5.7) 

 The gain for a detector in a transmission sphere is similar (Pickering et 

al., 1992). For a black sphere (ݎ௪ ൌ ௦ݎ  ,0 ൌ 0, and ݎௗ ൌ 0) the gain is ܩሺ0ሻ ൌ 1.  

 In summary, the gain gives the number of times light bounces within 

the sphere compared to a black sphere. Ideally, a constant gain is required 

when doing the experimental measurements.  

 Single sphere measurements. The power falling on the detector in a 

single reflectance sphere is  

ௗܲ ൌ ܽௗ ∙ ሺ݈݅݊݅ܽ݅ݐ	݉ݎ݋݂݅݊ݑ	݁ݏݑ݂݂݅݀	ݐ݄݈݃݅ሻ ∙  ௦ሻ      (5.8)ݎሺܩ

 In a typical measurement, the initial diffuse light arises from (a) the 

incident light that hits the sphere wall before the sample and (2) the incident 

light that first hits the sample. If we define as ݂ the fraction of light that first 

hits the sphere wall, then the first reflection is ݎ௪݂ܲ. However, this is not 

uniformly diffuse. Therefore, the light must hit the walls one more time 

before becoming uniform. The first portion is given by ݂ݎ௪ଶሺ1 െ ܽ௘ሻܲ. 

 The light reflected by the sample is ሺ1 െ ݂ሻݎ௦ௗ௜௥௘௖௧ܲ. Since the baffle 

doesn’t allow the reflected light to directly hit the detector, the light must 

bounce of the sphere walls to become a uniform diffuse source. Thus, the 

contribution is  ሺ1 െ ݂ሻݎ௦ௗ௜௥௘௖௧ሺ1 െ ܽ௘ሻݎ௪ܲ. 

 The measured reflection is  
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ܴ൫ݎ௦ௗ௜௥௘௖௧, ௦൯ݎ ൌ ܽௗሺ1 െ ܽ௘ሻݎ௪ൣሺ1 െ ݂ሻݎ௦ௗ௜௥௘௖௧ ൅ ௪൧ܲݎ݂ ∙  ௦ሻ      (5.9)ݎሺܩ

 For the measured transmission we obtain a similar relation 

ܶ൫ݎ௦ௗ௜௥௘௖௧, ௦൯ݎ ൌ ܽᇱௗݐ௦ௗ௜௥௘௖௧ݎᇱ௪ሺ1 െ ܽᇱ௘ሻܲ ∙  ௦ሻ      (5.10)ݎᇱሺܩ

 In order to not have a power dependence, the sample reflectance is 

defined as 

ோܯ ൌ ௦௧ௗݎ
ோ൫௥ೞ೏೔ೝ೐೎೟,௥ೞ൯ିோሺ଴,଴ሻ

ோሺ௥ೞ೟೏,௥ೞ೟೏ሻିோሺ଴,଴ሻ
      (5.11) 

 ோ is the ratio of the difference in power measured between a sample and anܯ

open sample port to the difference in power measured between a reflection 

standard and an open sample port. The experimental setup for each 

measurement is showed in Figure 5.3. 

 

 

Figure 5.3. Integrating sphere reflection measurements needed to make a reflectance 

measurement using a single integrating sphere. 

 

 By subtracting the dark signal measurement, error is reduced 

especially for low reflection sample. In addition, ܴሺ0,0ሻ is largely a measure of 

the fraction of light that initially is incident on the sphere wall ݂. Subtraction 

of ܴሺ0,0ሻ implies that the effect of ݂ is accounted for without a direct method 

for measuring its value. 
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 Similarly, the measured transmittance is defined as  

்ܯ ൌ
்൫௥ೞ೏೔ೝ೐೎೟,௥ೞ൯ି்೏ೌೝೖ

்ሺ଴,଴ሻି்೏ೌೝೖ
      (5.12) 

 Figure 5.4 specifies the experimental setup for the three measurements 

needed.  

 Note that the reflectance and transmittance values determined using 

the method described before, have a range between 0 and 1. Also, another 

important aspect is understanding the difference between reflection (or 

transmission) and reflectance (or transmittance). Reflection is light reflected 

by the sample, whereas reflectance is light reflected by the sample 

normalized by the incoming light (as shown in equation 5.11). The same idea 

applies to transmission and transmittance. 

 

 

Figure 5.4. Integrating sphere transmission measurements needed to make a transmittance 

measurement using a single integrating sphere. 

 

 Sphere parameters. To fully evaluate the reflectance and transmittance 

of the sample, a sphere calibration is needed. The reflectance of the sphere 

wall ݎ௪ is critical. It can be determined with two measurements that use 

diffuse illumination. One measurement has an open sample port (ܴ଴
ௗ௜௙௙௨௦௘) 

and the other a reflectance standard in the sample port (ܴ௦௧ௗ
ௗ௜௙௙௨௦௘). To obtain 

ܶ൫ݐܿ݁ݎ݅݀ݏݎ , ൯ݏݎ ܶ݀ ሺ0,0ሻܶ݇ݎܽ
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the light diffuse, the incident light is directed on the sphere wall, between the 

baffle and the sample port (Figure 5.5) 

 

 

Figure 5.5. Experimental setups needed to determine the sphere wall reflectance ݎ௪. 

 

 A solution for the sphere wall reflectance is then  

௪ݎ ൌ
ଵି

ೃబ
೏೔೑೑ೠೞ೐

ೃೞ೟೏
೏೔೑೑ೠೞ೐

൭ଵି
ೃబ
೏೔೑೑ೠೞ೐

ೃೞ೟೏
೏೔೑೑ೠೞ೐൱ሺ௔ೢାሺଵି௔೐ሻሺ௔೏௥೏ା௔ೞ௥ೞ೟೏ሻ

      (5.13) 

 

 Ultimately, only two calibration measurements (per integrating 

sphere), ܴ଴
ௗ௜௙௙௨௦௘ and ܴ௦௧ௗ

ௗ௜௙௙௨௦௘ are necessary to perform sphere correction. 

There are six other constants to be calculated: the normalized area of the 

sphere wall ܽ௪, the normalized area of the sample port ܽ௦, the normalized 

area of the detector ܽௗ, the normalized area of the entrance port ܽ௘, the 

reflectance of the detector ݎௗ, the reflectance of the reference standard ݎ௦௧ௗ. 

These parameters in combination with six additional measurements form a 

complete set of data necessary to implement in the IAD Monte Carlo 

simulation in order to determine optical properties, three reflection 
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measurements ܴሺݎ௦ௗ௜௥௘௖௧, ,௦௧ௗݎ	௦ሻ, ܴሺݎ  ௦௧ௗሻ and ܴሺ0,0ሻ, and three transmissionݎ

measurements ܶሺݎ௦ௗ௜௥௘௖௧,  .௦ሻ, ܶሺ0,0ሻ and ௗܶ௔௥௞ݎ

 

 Monte Carlo Simulation. The Monte Carte simulation used by the IAD 

method was specially designed to study the light propagation in biological 

tissues (Prahl, 1988). The accuracy of the Monte Carlo technique is 

proportional to 1/√ܰ, where ܰ is the photons number considered in the 

simulation. Therefore, in order to have an acceptable relative error, the 

number of photons must be between 10଺ and 10ଽ and computation time must 

be elevated.  

 The method begins by launching a photon downwards into the tissue. 

The photon is then moved a distance ∆ݏ where it may be absorbed, scattered, 

propagated undisturbed, internally reflected or transmitted out of the tissue. 

If it escapes from the tissue, the reflection or transmission of the photon is 

recorded, and if it is absorbed, the position of the absorption is recorded. Once 

this process has ended, a new photon is launched. The process of launching 

new photon is repeated until the desired number of photons has been 

propagated. The recorded reflection, transmission absorption or scattering 

profiles will approach true values (for a tissue with specified optical 

properties) as the number of photons propagated is getting close to infinity.  

 The distance ∆ݏ the photon is moved each propagation step within the 

tissue is variable. The stepsize ∆ݏ is chose in such a way that it is the 

distance at which the photon is either scattered or absorbed. It can be 

generated as a function of random number ߦ uniformly distributed between 

zero and one  

ݏ∆ ൌ െ ln  (5.14)      ߦ
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Figure 5.6. Schematic representation of the variable stepsize Monte Carlo technique 

(courtesy of Prof. Scott Prahl) 
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 This way, the photon is forced either to scatter or to be absorbed after 

each propagation step. Thus, the probability that it is scattered is equal to the 

ratio of the scattering coefficient to the sum of the absorption and scattering 

coefficients (albedo). Therefore, the photon is scattered if  

ߦ ൏ ఓೌ
ఓೌାఓೞ

ൌ ܽ      (5.15) 

 Otherwise, the photon is absorbed. If the photon is scattered then a 

new photon direction is chosen based on the phase function, otherwise the 

photon is absorbed. The process is repeated until the photon is absorbed. 

Figure 5.6. resumes this variable stepsize Monte Carlo technique.  

 In order to reduce the number of photons used in the Monte Carlo 

simulation, a weight is assigned to each photon as it enters the tissue 

(implicit capture technique). Since the weight of the photon is reduced by the 

probability of absorption after each propagation step, this technique provides 

absorption information at each photon step rather than just at times when 

the photon is completely absorbed (Wang et al., 2009). In the case of the 

variable stepsize Monte Carlo, when propagating many photons (a packet) 

along each path through the tissue, the packet’s weight is reduced by a factor 

of ሺ1 െ ܽሻ, this factor representing the fraction of photons absorbed at each 

propagation step. Thus, the weight coefficient is reduced accordingly and the 

photon packet keeps propagating until this coefficient drops below a specified 

tolerance. However, the weight coefficient never reaches zero value and 

continuing to propagate a photon with a very small weight adds little 

relevant information to the propagation in tissue. Furthermore, if all the 

remaining weight is absorbed or discarded, the energy conservation is 

violated. This is the reason why, a technique called the Russian roulette is 

applied to terminate the photon once its weight has reached a value below a 

specified minimum. This technique gives a photon with ݓ weight one chance 

in ݉ to ‘survive’ with a ݉ݓ weight or else its weight is reduced to zero. 

Thereby, the energy conservation is not compromised. Figure 5.7 shows the 
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schematic representation of the Monte Carlo variable step size with the 

implicit capture technique. 

 Another technique that can be used to improve statistics is splitting. 

When a photon with ݓ weight passes into a more ‘interesting’ region, it can be 

split into ݉ different photons, each one with a ݓ/݉ weight. This way, energy 

is conserved and statistics improves. If the region is less ‘interesting’, then 

roulette is the technique used to reduce the number of photons in that region.  

 The Monte Carlo simulation uses reflection and transmission 

measurements made with integrating spheres. It was included in the iad 

program to obtain an accurate evaluation of the optical properties of the 

samples studied.  
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Figure 5.7. Schematic representation of the Monte Carlo variable stepsize with the implicit 

capture technique (courtesy of Prof. Scott Prahl). 
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MATERIALS AND METHODS 

 

 The materials used in this work were generated using the same 

method described in Chapter 3 seeding epithelial cells on top of the human 

corneal stroma substitutes. Taking into account the results obtained in the 

previous Chapters, in this study only fibrin with 0.1% agarose concentration 

constructs were used. 

 

 Isolation and culture of human cells.  

 To obtain epithelial cells, the corneal scleral rings of the human 

corneas were dissected by cutting circumferentially, approximately 1mm on 

either side of the cornea and conjunctival junction, according to published 

methods (Chen at el., 2005.). Split thickness limbal rings were cut into 2mm2, 

100µm thickness explants that were placed, epithelial side up, directly on a 

culture plate containing a small amount of culture medium, to allow the 

explants to attach to the culture surface. Six hours later, the tissue was 

submerged in DMEM medium supplemented with 10% FCS (Sigma-Aldrich), 

4 mM L-glutamine and 1% antibiotic solution (Invitrogen-Gibco). To prevent 

fibroblast overgrowth and favor epithelial growth (Talbot et al., 2006), in 

some cases, the corneal scleral rings were cocultivated in the absence of a 

feeder cells layers. Stromal keratocytes were isolated as described in Chapter 

3. 

 

 Construction of corneal equivalents with a fibrin-agarose stromal 

substitutes.  

 Anterior lamellar corneal substitutes consisted of cultured human 

keratocytes entrapped in a gel of human fibrin with 0.1% type VII agarose. 
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They were generated following the method described on Chapter 3. Twenty-

four hours after the stromal substitute had solidified, human epithelial cells 

were seeded on top of the constructed stroma (500,000 epithelial cells per 

construct), and cultured for 2 weeks submerged in culture medium (Figure 

5.8). When epithelial cells reached confluence, the air–liquid culture 

technique was used for two more weeks. 

 

Figure 5.8. Serial construction of human corneal substitutes using porous culture inserts. 

First, a fibrin-agarose stromal substitute with keratocytes embedded is constructed in direct 

contact with the porous membrane of the plastic insert. Then, epithelial cells are seeded on 

top. The air–liquid culture technique is used to promote epithelial stratification and full 

formation of the corneal equivalent. 

 

 Samples of the bioengineered partial human corneas were studied 

weekly until four weeks of development in culture. Before proceeding to the 

optical measurements, the samples were nanostructured, using the same 

technique described in Chapter 3, and kept in phosphate buffered saline 

(PBS) until the moment of analysis (Figure 5.9).  
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Figure 5.9. Before and after nanostructuring of the anterior lamellar human cornea 

substitute: A. Material used for nanostructuring technique; B. Non-nanostructured corneal 

construct and C. Nanostructured corneal construct 

 

 As controls, 3 fresh porcine corneas (Figure 5.10) were obtained from 

adult pigs immediately after death and analyzed under the same conditions 

as the artificial corneal constructs. 

 

 

Figure 5.10. Porcine cornea used as control sample.  

 

 

 

A B C
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 Microscopic evaluation of the artificial corneal construct.  

 Samples for scanning electron microscopy (SEM) were fixed in 

cacodylate-buffered 2.5% glutaraldehyde and postfixed in 1% osmium 

tetroxide for 90 minutes. After fixation, the samples were dehydrated in 

increasing concentrations of acetone (30%, 50%, 70%, 95% and 100%), critical 

point dried, mounted on aluminum stubs, sputter coated with gold according 

to routine procedures (Sanchez-Quevedo et al., 1994), and examined in a 

scanning electron microscope (Quanta 200; FEI, Eindhoven, The 

Netherlands) using a high vacuum mode. The corneal construct evaluated by 

SEM corresponds to the second week of development in culture.  

 

 Phantoms. 

 To mimic light distribution in living tissues, phantoms that simulate 

the optical characteristics of tissues are often used. Tissue phantoms are 

designed and utilized to calibrate optical devices. In 2006, Prof. Scott Prahl 

and collaborators (Moffit et al., 2006) proposed a method for the preparation 

of a polyurethane phantom to simulate the optical properties of biologic 

tissues. The phantom consisted of three components: polyurethane, absorbing 

chromophores and a scattering agent. The authors repeatedly determined the 

optical properties of the phantom using the inverse adding-doubling method 

and established that they were stable over a period of 14 months, making the 

optical phantom suitable for use as reference standard.  

 To ensure the accuracy of the experimental setup used in our study, a 

polyurethane optical phantom with known optical properties was measured. 

It was obtained by courtesy of Prof. Dr. Scott Prahl from the University of 

Oregon. Figure 5.11 illustrates the phantom used in our study.  
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Figure 5.11. Polyurethane optical phamtom used for the calibration of the experimental 

setup. 

 

 Reflectance and transmittance measurements.  

 Inverse adding doubling was used to find the scattering and absorption 

of the artificial human corneas and native porcine corneas using total 

reflection and total transmission measurements made with a single 

integrating sphere. Three measurements on each sample were made. Figure 

5.12 shows the experimental setup used for the reflection and transmission 

measurements.  

 Total diffuse reflection measurements were made using a 158.2mm-

diameter integrating sphere (Oriel, model 70674. Newport. USA) (Figure 

5.13) with an 11mm-diameter detector port and a 15mm-diameter sample 

port with a baffle between ports. The entrance port had 15mm diameter. The 

measurements were performed for the bioengineered human corneas and 

native porcine corneas at 457.9nm, 488nm and 514.5nm from an argon ion 

laser (Stellar-Pro-L Model, Modu-Laser, USA) and 632.8nm from a He-Ne 

laser (30564 Model, Research Electro-Optics, USA). The maximum output 

power of the lasers was 1000mW±5% for the argon laser and 12 mW for the 

He-Ne laser. The diameter of both argon and He-Ne lasers beams was 2mm. 
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Figure 5.12. Experimental setup used to perform the reflection and transmission 

measurements. 

 

Figure 5.13. Integrating sphere used in the present work: A. Geometry parameters; B. 

Reflectance spectrum. 

 

 A schematic of the experimental setup for measuring the total diffuse 

reflectance and total diffuse transmittance is shown in Figure 5.14. Neutral 

density filters were used to reduce the intensity of the incident lasers beams 
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in order to prevent oversaturation of the detector. The detector (53-2754 

Model, Coherent, USA) was attached to the integrating sphere and powered 

by a rresearch power supply (C2719, Hamamatsu, Japan). The signal from 

the detector was measured by a digital multimeter (34401A Model, Agilent 

Technologies, USA). Three reflection measurements were made on each 

sample. Measurements were referenced to a 98% Optopolymer reflectance 

standard (OPST3-C, Optopolymer, Germany) and a dark measurement (with 

the sample port open) (see Figure 5.3 and 5.4). The measured reflectance (ܯோ) 

was calculated using equation 5.11.  

 Although values of the sphere wall reflectivity are given by the 

manufacturer, the reflectivity may change if port reducers are used. 

Measurements of ܴ଴
ௗ௜௙௙௨௦௘ and ܴ௦௧ௗ

ௗ௜௙௙௨௦௘ were performed as shown in Figure 

5.15 (following the setup in Figure 5.5) in order to calculate the reflectance of 

the sphere wall ݎ௪. The integrating sphere was rotated with respect to the 

collimated beam so that the light was directed upon the sphere wall between 

the sample port and the baffle. The normalized area of the sphere wall ܽ௪, 

sample port ܽ௦, detector ܽௗ, entrance port ܽ௘ were also measured. Finally, 

when calculating the sphere wall reflectance ݎ௪ (equation 5.13), we assumed 

that the reflectance of the detector was null.  

 The same integration sphere used for the reflection measurements was 

also used for the total diffuse transmission measurements. A mirror system 

diverted the laser beam as shown in Figure 5.14B. Therefore, the sample was 

not moved after the reflection measurements, and the reflection and 

transmission measurement were performed in the same spot of the sample. In 

this setup, only two ports were open, the 15mm-diameter sample port and the 

11mm-diameter detector port with a baffle between ports. Again, three 

transmission measurements were made on each tissue sample. 

Measurements were referenced to 100% with the lasers illuminating the open 

port hole, and a dark measurement with an open port but with no 

illumination from the lasers. The measured transmittance (்ܯ) was 

calculated using equation 5.12.  
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Figure 5.14. Schematic representation of the experimental setup, A) Configuration for 

Reflection measurements; and B) Configuration for Transmission measurements. 
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Figure 5.15. Schematic representation of the experimental setup used for the reference 

sphere calibration measurements. 
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 Two other values are needed in the iad program to determine optical 

properties. The thickness of each tissue sample was measured using a Nikon 

Eclipse 90i light microscope (Nikon Instruments Inc., USA). The refractive 

index of the artificial human corneas samples was measured using an Abbe 

refractometer at 589nm (PCE Iberica, Spain). Changes in the refractive index 

over the wavelengths used in the present study were assumed negligible and, 

therefore, we considered the refractive index measured with the Abbe 

refractometer as constant for all the wavelengths studied in the present work.  

 

 Sample handling.  

 Biological tissue samples provide a unique challenge to evaluate 

optically. Tissue dehydration affects the refractive index of the tissue (Meek 

et al., 2003; Goodfellow et al., 1978), its scattering characteristics (Huang and 

Meek, 1999) and even absorption (Farrell et al., 1973). Therefore, the 

artificial human cornea and the porcine cornea were sandwiched between 

glass slides to limit the rate at which they dehydrated and provide support, 

and also to define the boundary conditions. PBS was used to ensure a good 

refractive index matching between the sample and the slide and to secure the 

hydration level of the samples. 

 Compression of tissue can lead to an increase in scattering and 

absorption due to a reduction in tissue volume that increases chromophore 

and scatterer concentrations (Tuchin, 2007). This is not a problem when 

using the IAD method since the program calculates the Fresnel reflections of 

incident light from the sample. The flat surface that sandwiching the samples 

produces, simplifies the accounting for Fresnel reflections.  

 

 Inverse adding-doubling (iad) program.  

The iad program was developed by Prof. Scott Prahl from the University of 

Oregon and it is available at http://omlc.ogi.edu/software/. The measured 
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reflectance (ܯோ) and transmittance (்ܯ) are input data to the program along 

with experiment specific values. The values included the thickness and 

refractive index of the sample and any cover slides, the number of sphere 

used, the port diameters for each sphere, the reflectance of the wall of each 

sphere, and the reflectance of the calibration standard.  

 The basic structure of the data file the iad program uses consists of a 

header section followed by the effective measurements of reflectance and 

transmittance. The header describes details of the experiment and was 

designed to be:  

 (1) easily annotated,  

 (2) sufficiently flexible to accommodate all common experiments,  

 (3) readily analyzed by computer,  

 (4) filled with entries that have a simple physical meaning,  

 (5) a complete description of the experimental geometry, and  

 (6) devoid of rarely-used parameters.  

 An example of header of the data files used in the present work 

consists of  
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IAD1      # Must be first four characters 
 
# The order of the entries is important  
# Anything after # is ignored 
 
1.3365 # Index of refraction of the sample 
1.5  # Index of refraction of the top and bottom slide 
0.322  # (mm) Thickness of the sample 
1  # (mm) Thickness of the slides 
2  # (mm) Diameter of the laser beam 
0.9554 # Reflectance of the calibration standard 
1  # Number of spheres used during each measurement 
 
# Properties of the integrating sphere used for reflection measurement 
 
158.2  # (mm) Sphere diameter 
15  # (mm) Sample port diameter 
15  # (mm) Entrance port diameter 
11  # (mm) Detector port diameter 
0.9246 # Reflectance of the sphere wall 
 
# Properties of the integrating sphere used for reflection measurement 
 
158.2  # (mm) Sphere diameter 
15  # (mm) Sample port diameter 
15  # (mm) Entrance port diameter 
11  # (mm) Detector port diameter 
0.9246 # Reflectance of the sphere wall 
5  # Number of measurements 
 

#Lambda    M_R    M_T       M_U      r_w          r_std 
457 0.21487 0.62431 0 0.9246 0.9554 
488 0.18942 0.61791 0 0.9324 0.9548 
514 0.12245 0.67958 0 0.9127 0.9544 
633 0.16221 0.73173 0 0.9327 0.9519 

 

Note: M_U represents the measured unscattered transmission and was not 

studied in the present work. The program allows the assignation of zero value 

to the parameter that is unknown.  
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 The iad program is run from the command line. It is used with data 

files that contain header like the one shown before. Also, the program consists 

of command line switches that assign different values to variables that have 

not been measured. Figure 5.16 lists some of the command line options.  

 

Figure 5.16. Command line options of the iad program. 
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 For each sample and time in culture studied, an .rxt file was created 

containing the header and measurements values experimentally obtained.  

 The program logic is schematized by the flow chart in Figure 5.17. The 

program initializes by calculating a course grid for measured reflectance and 

transmittance values with preset absorption (ߤ௔) and scattering coefficients 

 and anisotropy (݃) (when unscattered transmission is input) with the (௦ߤ)

adding-doubling algorithm. The lost light through the sample edges is 

initialized to zero. The adding-doubling algorithm then loops to calculate the 

diffuse and direct reflectance and transmittance for a set of optical 

coefficients (ߤ௔, ߤ௦ and ݃), subtracts the lost light proportionally for the 

diffuse and direct fractions, and calculates the total reflectance and 

transmittance. The process is repeated by changing the optical coefficients 

until the calculated values equal the measured values. When they match, the 

Monte Carlo simulation is performed to calculate the fraction of lost light. 

The adding-doubling loop is repeated to find new optical coefficients with the 

lost light correction. The Monte Carlo simulations are repeated until both the 

change in the predicted absorption and scattering coefficients is less than 

0.1%. 
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Figure 5.17. The logic flow of the inverse adding-doubling program (courtesy of Prof. Scott 

Prahl). 
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 Statistical analysis.  

 To study the variations in reflectance, transmittance, scattering and 

absorption levels, we used two statistical tests: the Kruskal-Wallis one-way 

analysis of variance by ranks, which is a nonparametric method for testing 

average equality of measures among groups, and the Mann-Whitney U test. 

This latter test is a non-parametric test that enables the pair-wise 

comparison of two distributions. These two non parametric tests were used 

because the samples do not fulfill the test of homogeneity of variance. A 

significance value below 5% was considered as statistically significant.  

 To determine the level of similarity of two different distributions, the 

VAF (variance accounting for) coefficient with Cauchy-Schwarz’s inequality 

was used as follows: 

ܨܣܸ ൌ
ሺ∑ ܽ௞ܾ௞ሻ௞

ଶ

ሺ∑ ܽ௞
ଶ

௞ ሻሺ∑ ܾ௞
ଶ

௞ ሻ
 

where ܽ௞ is the value of each absorption or scattering (for each wavelength) 

and ܾ௞ is the equivalent for another measurement. The closer this coefficient 

gets to unity (100%), the more similar the curves are. 

 

RESULTS AND DISCUSSION 

 

 Experimental setup calibration.  

 Reflection and transmission measurements under the same 

configuration as the one used for the artificial and control samples studied in 

this work were performed three times for the optical phantom used as 

calibration standard. The experimental values obtained for the measured 

reflectance ܯோ and transmittance ்ܯ are shown in Figure 5.18.  
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Figure 5.18. Measured reflectance (ܯோ) and transmittance (்ܯ) of the optical phantom. 

 

 The refractive index of the phantom was 1.5 and its thickness 1.72mm. 

The average scattering anisotropy coefficient was considered to be 0.6, since 

this was also the value that the manufacturer used to calculate the true 

optical values of the phantom. These values together with ܯோ and ்ܯ were 

implemented in the iad program and the absorption (ߤ௔) and reduced 

scattering (ߤ′௦) coefficients were determined. Figure 5.19 shows the 

comparison between the experimental and true values (given by the 

manufacturer) of the absorption (ߤ௔) and reduced scattering (ߤ′௦) coefficients 

of the optical phantom. The relative error is displayed in Table 5.3. 
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Figure 5.19. Experimental and true values of the absorption (ߤ௔) and reduced scattering (ߤ′௦) 

coefficients of the optical phantom 

 

 

Relative error  µa µ’s 

457.9nm 0.83% 6.60% 

488nm 6.40% 8.86% 

514.5nm 4.89% 0.53% 

632.8nm 8.93% 4.57% 

Table 5.3. Relative error between the calculated absorption (ߤ௔) and reduced scattering (ߤ′௦) 

coefficients values and the true values of the optical phantom. 
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 The values of the optical properties of the phantom, determined using 

our single integrating sphere setup are consistent with the true values given 

by the manufacturer. The maximum error for both absorption and reduced 

scattering coefficients was less than 9% in all cases. Each of these errors was 

considered when the optical properties determination of the different samples 

analyzed in this Thesis were determined.  

 

 Microscopic evaluation of the fibrin-agarose corneal construct.  

 Since no scanning electron microscopy images were taken for the 

control cornea, used in this work for comparison with the optical properties, 

the microscopic evaluation of the fibrin-agarose corneal construct was 

referenced to SEM images of normal native corneas from published papers 

(Mi et al., 2010).  

 The SEM analysis of the fibrin-agarose corneal construct showed that 

the epithelial cells were evenly distributed on the surface of the construct and 

homogenous in shape and size (Figure 5.20A), similar to the ones of the 

control cornea (black box in Figure 5.20A).  

 Also, the fibers within the artificial cornea seemed densely packed and 

homogeneous (Figure 5.20B) with a morphology similar to the control cornea, 

although not equally organized (black box in Figure 5.20B) 
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Figure 5.20. Scanning electron micrographs of the artificial fibrin-agarose human cornea: A. 

Epithelium; B. Stroma. The black boxes show the corresponding corneal layers of a control 

cornea (Mi et al., 2010) 

 

 Optical properties of bioengineered human cornea substitutes.  

 Measurements of the reflectance and transmittance were repeated 

three times for each sample of bioengineered human corneas (3 samples/week 

of analysis) and for each control porcine cornea. These experimental values 

together with their standard error are presented in Figure 5.21.  

 The spectral distribution analysis showed that the reflectance values of 

both artificial and native samples displayed an almost constant behavior for 

all the wavelengths studied, whereas the transmittance values tended to 

increase with increasing wavelengths. Statistically significant differences 

were found when comparing the reflectance and transmittance values for the 

shorter wavelengths (457.9 and 488nm) with the ones for the larger 

wavelengths (514.5 and 632.8nm), except for the third week sample (p=0.828 

for ܯோ and p=0.128 for ்ܯ). It can be clearly seen that all artificial samples 

followed the optical behavior of the control cornea (VAF values higher than 

98.63%; Table 5.3), exhibiting for all wavelengths higher transmittance than 

reflectance, as it would be expected for human cornea substitutes.  
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Figure 5.21. Comparison between the values of the measured transmittance and reflectance 

of all the samples studied in the present Thesis 

 

Comparison between the 
control cornea and 

bioengineered cornea after 
MR MT ࢙′ࣆ ࢇࣆ 

One week 
99.22% 

p<0.001 

99.20% 

p<0.001 

86.79% 

p<0.001 

97.43% 

p<0.001 

Two weeks 
98.63% 

p<0.001 

98.73% 

p<0.001 

71.98% 

p=0.105 

96.45% 

p<0.001 

Three weeks 
99.59% 

p<0.001 

99.35% 

p<0.001 

34.52% 

p=0.164 

95.35% 

p<0.001 

Four weeks 
98.96% 

p=0.016 

99.87% 

p=0.140 

95.26% 

p<0.001 

95.79% 

p<0.001 

Table 5.4. Statistical VAF values for the comparison between control cornea and 

bioengineered cornea. 
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 Thus, the human artificial corneas are able to transmit the specific 

wavelengths analyzed in the present study, mimicking the natural optical 

behavior of the native cornea. In all cases, the bioengineered human corneas 

had transmittance values higher than the 60% transparency threshold 

established by Ventura (Ventura et al., 2000) for quality tissues suitable for 

corneal transplantation. 

 Time of development in culture was an influencing factor on these 

experimental results. The reflectance values increased until the second week 

of development in culture and decreased for the following two weeks 

analyzed, reaching values similar to those of the control cornea after four 

weeks in culture. The statistical analysis revealed significant differences for 

all comparisons performed between the reflectance values of the different 

artificial samples and also for all comparisons with the control cornea 

(p<0.001). Whereas transmittance, in the initial stage (first and second 

weeks), the bioengineered corneas displayed the lowest transmittance values, 

except for the 514.5nm wavelength. In addition, no significant differences 

were found between the transmittance values of the first and second week 

samples (p=148) and the fourth week sample and the control cornea (p=140).  

 As in the case of reflectance, the values of transmittance obtained for 

the artificial fibrin-agarose constructs were very similar to the ones obtained 

for the control cornea, for the last two weeks studied, except the value 

obtained for the 632.8nm wavelength in the third week. Note that high 

similarities with the native control cornea were found for both reflectance and 

transmittance (for all wavelengths), in the fourth week of development in 

culture. Moreover, the statistical p-value was 0.016 in the case of reflectance 

and 0.140 for transmittance, showing that the differences between the control 

cornea and the fourth week artificial sample were not statistically significant 

in the case of transmittance, contrary to what happened for reflectance. 

 In order to implement the measured reflectance and transmittance 

values in the iad program, the refractive index and thickness of the samples 

were also determined. The measured refractive index values varied from 
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1.330 to 1.340 for the artificial human corneas. For each sample, 

measurements were repeated three times and the obtained values agreed 

within 5%. For all of the iad calculations, an average value of 1.335 was 

assumed for all the artificial samples analyzed. The variation of the refractive 

index of the porcine cornea was reported to be within the 1.373-1.405 range 

(Miclea et al., 2011). In our study, an average value of 1.375 was considered. 

Since only measurements of the diffuse reflection and transmission were 

made, the average scattering anisotropy coefficient of both artificial and 

control cornea was assumed to be 0.9, based on the results obtained by 

previous authors (Sardar et al., 2009; Cheong et al. 1990) who found that the 

range of the anisotropy coefficient for ocular tissues is 0.85-0.99. 

 The calculated reduced scattering and absorption coefficients of the 

artificial and control corneas showed variation across the wavelengths 

studied (Figure 5.22 A and B).  

 The absorption coefficient values decreased with increasing 

wavelength, except for the samples analyzed in the third week of 

development where a slight increase was observed for the 632.8nm 

wavelengths. One remarkable characteristic of the human cornea is its ability 

to protect the deeper corneal structures against the radiation of short 

wavelengths (Podskochy, 2004). Therefore, any artificial corneal construct 

generated by tissue engineering to replace this native tissue has to fulfill this 

requirement. In our case, the highest absorption coefficient values were 

recorded for the shortest wavelengths (457.9, 488nm). In addition, the 

statistical comparison between the absorption values obtained for the shorter 

wavelengths (457.9 and 488nm) and the ones for larger wavelengths (514.5 

and 632.8nm) found significant difference for each week studied, except the 

third one (p=0.509). Since the reflectance and transmittance values were time 

in culture dependent, their variation is consequently reflected in the 

scattering and absorption values.  
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igure 5.22. Optical properties of the bioengineered human cornea and native porcine cornea 

as determined by the iad program: A. Absorption coefficient values; B. Scattering coefficient 

values 
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 The artificial corneas showed absorption coefficients whose values 

decreased in the third week of culture before slightly increase in the fourth 

week. The control cornea displayed small absorption values for the specific 

wavelengths studied with significant differences between the short and the 

large wavelengths (p=0.005). 

 Although, similar values were reached by the bioengineered cornea 

after three weeks in culture with no significant differences (p=0.164), the high 

value registered for the 632.8nm makes that the overall absorption spectral 

behavior after three weeks  differ from the one of the control porcine cornea 

(VAF=34.52%-Table 5.4)  

 The optical analysis of the fibrin-agarose corneal constructs revealed 

that the spectral behavior of the reduced scattering coefficient was similar to 

the control cornea although the values were higher in all cases (p<0.001, 

VAF>95.35%-Table 5.4). The order in the organization of the fibers and cells 

that constitute the native cornea affects how light interacts with the tissue 

(Mourant et al., 2000; Meek et al., 2003). In this sense, the high level of 

organization acquired by native cornea explains the lower scattering values. 

Nevertheless, the reduced scattering coefficient values decreased with 

increasing wavelength (except in the third week) and were higher than the 

absorption values. These results are in agreement with existing literature 

(Tuchin, 2007; Klose and Larsen, 2006; Cheong et al., 1990;) that states that 

scattering prevails over absorption in biological tissues. As in the case of 

absorption, the statistical comparison between the reduced scattering values 

obtained for the shorter wavelengths (457.9 and 488nm) and the ones for 

larger wavelengths (514.5 and 632.8nm) found significant difference for each 

week studied. Time in culture also played an important role in the scattering 

properties of the artificial human cornea. In general, the highest values were 

registered in the second week in culture, while the lowest ones after three 

weeks. Statistically significant differences were found for all comparisons 

made between all the samples analyzed (p<0.001).   
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 Overall, taking into account the optical properties values obtained in 

the present study, the artificial fibrin-agarose human corneal substitutes 

shared many similarities with native control cornea after four weeks of 

development in culture. Moreover, the fact that no significant differences 

were found between the transmittance values of the control cornea and the 

fourth week artificial sample encourages us to recommend a period of four 

weeks for the development of artificial fibrin-agarose human cornea before it 

can be considered for several clinical purposes.  

 

 

 



 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
6. OPTICAL PROPERTIES OF  

A BIOMIMETIC MODEL OF HUMAN ORAL MUCOSA  
BASED ON FIBRIN AND FIBRIN-AGAROSE 
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BACKGROUND 

 

 

 Understanding the effects of the interaction between light and 

biological tissues are important not only for those tissues that compose the 

eye (main organ of vision), but also for those who undergo laser surgery. 

Laser applications are of particular interest in oral soft tissues surgery due to 

the many advantages that it may offer compared to conventional instruments 

(Sulieman, 2005). In particular, laser equipments can be easily used for 

surgical treatment of vascular lesions such as haemangioma and 

lymphangioma, thanks to the possibility to control bleeding and avoid the use 

of suture (Deppe and Horch, 2007). They can be used not only for treatment 

but also for diagnosis. Goldman (1965) was the first in using the laser 

technology in dentistry. The distribution and propagation of photons in laser-

irradiated tissues are strongly influenced by the fundamental optical 

properties such as scattering and absorption. Therefore, determining the 

fundamental properties of tissues has become imperative since establishing a 

diagnostic or development of imaging devices for oral diseases in the spectral 

range of interest requires a detailed knowledge of optical parameters to 

predict performance and effectiveness (Sardar, 2007).  

 The human oral mucosa is commonly affected by a high number of 

clinical disorders including congenital abnormalities, infection, periodontal 

diseases, traumatism, neoplasms, lichen planus and pemphigus vulgaris 

(Muñoz-Corcuera et al., 2009; Albandar. 2005; Porter and Leao, 2005) that 

could result in large tissue defects.  

 Reconstruction of these defects represents a real challenge since 

maxillofacial surgeons are often confronted with the lack of oral mucosa to 
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replace the excised tissues (Song et al., 2004). The oral mucosa acts as a 

barrier against the external environment. Loss of this barrier function causes 

dehydration and a high risk of infection. Reconstructions in the oral cavity, as 

required after tumor resections or cleft palate repair, are often complicated by 

similar problems. In the last two decades, the field of tissue engineering has 

provided new solutions to these problems. By using tissue engineering 

techniques, some researchers have recently proposed different methods for 

construction of an organotypic substitute of the oral mucosa (Sanchez-

Quevedo et al., 2007; Schultze-Mosgau et al., 2004; Song et al., 2004; Lauer 

and Schimming, 2001). In a recent work on the effects of fibrin and fibrin-

agarose on the extracellular matrix profile of bioengineered oral mucosa, San 

Martin and collaborators (San Martin et al., 2013) showed that the artificial 

oral substitutes displayed histological and molecular similarities with native 

human oral mucosa stroma. In addition, they observed that the nature of the 

biomaterial influenced the behaviour of the oral stromal fibroblasts, thereby 

modulating their growth, protein synthesis, and collagen fibrillogenesis. 

 Although some of the histological and morfological properties of tissue-

engineered oral mucosa have been described (Moharamzadeh, 2007; Sánchez-

Quevedo et al., 2007), to the best of our knowledge a systematic investigation 

of the propagation of light radiation through artificial human oral mucosa 

have not been performed. In this sense, the use of lasers can represent an 

important measurement tool in the investigation of propagation of light 

throughout the tissue and also a quality control instrument for the adequacy 

of the artificial specimen compared with the native one. 

 The aim of the present work is to provide an estimation of the optical 

properties of artificial human oral mucosa in the visible region, using the 

inverse adding doubling (IAD) method (Prahl et al., 1993). One integrating 

sphere is employed to measure the diffuse reflectance and diffuse 

transmittance for a new nanostructured model of artificial human oral 

mucosa and, also, for native rabbit oral mucosa, used as control sample. 
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MATERIALS AND METHODS 

 

 Human tissue samples 

 Twenty small biopsies of oral mucosa were obtained from healthy 

donors undergoing minor oral surgery during local anesthesia at the School of 

Dental Sciences at the University of Granada, Spain. They corresponded to 

normal keratinized oral mucosa located at the retromolar trigonum. 

Immediately after extraction, all tissues were kept in a transport medium at 

4ºC containing Dulbecco’s Modified Eagle’s Medium (DMEM), 100U/ml 

penicillin G, 100µl/ml streptomycin and 0.25µg/ml amphotericin B, and 

processed before 24h. All patients provided informed consent to participate in 

the study and the study was approved by the local research committee.  

 

 Construction of oral mucosa substitutes by tissue engineering 

 The materials used in the present work were generated employing the 

same method described in Chapter 3, with the difference that the cells used 

this time were human oral mucosa fibroblasts. Briefly, primary cultures of 

oral mucosa fibroblasts were generated as previously described (Sanchez-

Quevedo et al., 2007). Stromal samples were isolated from small fragments of 

oral mucosa, using collagenase I (Invitrogen-Gibco) at 37 ◦C for 6 h. Once the 

cells had been harvested by centrifugation, stromal fibroblasts were cultured 

in DMEM supplemented with 10% fetal bovine serum (FBS, Sigma- Aldrich), 

4 mM L-glutamine, and 1% antibiotic–antimycotic solution (Invitrogen-

Gibco). All cells were incubated at 37ºC in 5% carbon dioxide under standard 

culture conditions. 

 Then, 2 types of bioengineered oral mucosa stromal substitute were 

generated in the laboratory: human fibrin and fibrin with 0.1% agarose 
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concentration stromas. In both cases, 21 ml of human plasma were added to 

1.8 ml of DMEM in which 250,000 cultured fibroblasts had been previously 

suspended, and 200 μL of tranexamic acid (Amchafibrin, Fides-Ecofarma, 

Valencia, Spain) were added to avoid spontaneous fibrinolysis. Then, 2 ml of 

1% of CaCl2 were added to the solution to precipitate the polymerization 

reaction of the hydrogel. In the case of the fibrin–agarose gels, previously 

melted type VII agarose dissolved in PBS (phosphate-buffered saline) was 

supplemented in the last step. After polymerization, 15 ml of culture medium 

were added to the surface of the bioengineered oral mucosa substitutes, which 

were incubated at 37ºC in 5% carbon dioxide. Samples of the different oral 

mucosa substitutes were studied weekly until four weeks of development in 

culture. 

 Acellular fibrin and fibrin-agarose constructs were also generated 

following the same construction protocol in order to evaluate the influence of 

the oral fibroblasts on the optical properties of the artificial oral mucosa 

substitutes. 

 Once generated before being subjected to the optical measurements all 

samples were nanostructured, following the method described in Chapter 3 

(Hadjipanayi et al., 2011).  

 The thickness of the samples was determined using a Nikon Eclipse 90i 

light microscope (Nikon Instruments Inc., USA). All bioengineered oral 

mucosa tissues were generated and analyzed in triplicates. As controls, 3 

fresh rabbit oral mucosa were obtained from adult rabbits immediately after 

death and were subjected to the same optical tests as the bioengineered 

artificial oral mucosa constructs.  

 

 Determination of the optical properties  

Inverse adding doubling was used to find the scattering and absorption of the 

artificial human oral mucosa and native rabbit oral mucosa using total 
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fibrin with 0.1% agarose concentration) were successfully generated in the 

laboratory and could be used as in vitro models for investigations of 

experimental pharmacology or toxicology tests, thus avoiding the need for 

animal research (Alaminos et al., 2006,  Sanchez-Quevedo et al., 2007). 

Previous results by Sanchez-Quevedo and collaborators (Sanchez-Quevedo et 

al., 2007) on the histological and histochemical evaluation of the human oral 

mucosa constructs developed by tissue-engineering, using the same method 

for the generation of the constructs that we used in the present work, proved 

that the fibrin-agarose complexes satisfy the criteria for biomaterials used in 

tissue engineering of the human oral mucosa. Nevertheless, the novel 

technique of nanostructuring that we used for the successful development of 

human bioengineerd corneas (Ionescu et al., 2011), contributes to provide also 

useful solutions for the generation of artificial oral tissues by tissue 

engineering, since reconstructions in the oral cavity, as required after tumor 

resections, are often complicated. Moreover, Haugh and collaborators (Haugh 

et al., 2012) showed that the plastic compression (concept the 

nanostructuring technique is based on) significantly increases the 

compressive properties of fibrin gels without impairing cellular viability and 

subsequent extracellular matrix synthesis. 

 Nowadays, laser-assisted procedures complement conventional 

treatment in many cases of oral disorders; in some areas laser treatment 

being now considered the therapy of choice. When applying these therapies, 

the precise knowledge of the optical properties of examined tissue and also of 

the surrounding tissues, acquires great importance. For this, the IAD 

algorithm provides an accurate estimation of the optical properties for 

biological tissues, such as artificial human oral mucosa and native rabbit oral 

mucosa tissues studied in the present work, from measurements of the index 

of refraction, scattering anisotropy coefficient, diffuse total reflectance and 

diffuse total transmittance.  

 The measured refractive index values varied from 1.330 to 1.340. For 

each sample, measurements were repeated three times and the obtained 
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values agreed to within 5%. For all of the IAD calculations, an average value 

of 1.335 was assumed for all samples analyzed. Since only measurements of 

the diffuse reflection and transmission were made, the average scattering 

anisotropy coefficient of both artificial and control oral mucosa tissues was 

assumed to be 0.9, based on the results obtained by Cheong et al. (1990) who 

found that the range of the anisotropy coefficient for biological tissues is 0.73-

0.99.  

 The thickness of the sample was measured weekly and immediately 

after the nanostructuration process, and values between 0.15 and 1mm were 

obtained.  

 The total diffuse reflectance (ܴௗ) and total diffuse transmittance ( ௧ܶ) 

measured at 457.9nm, 488nm, 514.5nm from the argon laser and 632.8nm 

from the He-Ne laser, along with the values of the thickness, refractive index 

and scattering anisotropy coefficient, were input into the iad program. The 

output of the IAD program consisted of the reduced scattering (ߤ′௦) and 

absorption (ߤ௔) coefficients, listed in Table 6.1 and Table 6.2, respectively.  

 The fibrin oral mucosa samples displayed values of reduced scattering 

coefficient higher than the ones of the fibrin-0.1% agarose oral mucosa 

constructs (p<0.001). In general, as expected for biological tissues, the 

reduced scattering decreased with increasing wavelength. The time of 

maturation in culture played an important role in the development of the 

scattering properties of the bioengineered samples. The scattering properties 

of the fibrin and fibrin with 0.1% agarose artificial tissues increased until the 

second week in culture, decreased for the third week, to increase again in the 

fourth week in culture. This increase is more pronounced for the fibrin 

sample, which showed the highest reduced scattering coefficient values after 

four weeks of development in culture, than for the fibrin-0.1% agarose 

sample, which showed the highest reduced scattering coefficient values after 

only two weeks of development in culture. Nevertheless, these maximum 

values of the reduced scattering for both fibrin and fibrin with 0.1% agarose 

bioengineered samples were similar to that of the native rabbit oral mucosa, 
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with statistically significant differences in the second week of development in 

culture both for fibrin (p=0.025) and fibrin with 0.1%-agarose (p=0.003) 

 

Reduced Scattering coefficient (mm-1) 

Wavelength 
(nm) 

Fibrin oral mucosa sample 
Native rabbit 

T1 T2 T3 T4 

457.9 2.402 3.654 2.618 4.394 3.446 

488 2.047 3.562 2.255 4.137 3.199 

514.5 1.806 3.098 2.646 3.870 2.870 

632.8 1.697 2.698 1.721 2.705 2.639 

 
Fibrin-0.1% agarose oral mucosa sample 

Native rabbit 
T1 T2 T3 T4 

457.9 1.527 3.285 1.284 1.468 3.446 

488 1.526 2.573 1.220 1.289 3.199 

514.5 1.789 2.849 1.133 1.666 2.870 

632.8 1.166 2.102 0.993 1.008 2.639 

Table 6.1. Reduced scattering coefficient values as calculated using the iad program. 

 

 San Martin et al., (2013) analyzed the number of cells in the fibrin and 

fibrin-agarose oral mucosa substitutes and found that the fibrin construct 

displayed a higher number of cells than the fibrin-0.1% agarose ones after 

two and four weeks of development in culture. Moreover, these cells numbers 

were similar to the one of human oral mucosa. In addition they revealed a 

complete degradation of the most of the fibrin in the fibrin constructs after 

four weeks of development in culture, whereas the fibrin degradation was 

much slower in the fibrin-0.1% agarose constructs. These findings together 

with the fact that the majority of light scattering in biological tissue is due to 

the cells themselves (Mourant et al, 2000) could explain the values of 

scattering coefficient of the fibrin and fibrin-0.1% agarose human oral mucosa 

substitutes and their similarity with the native tissue. Besides, the statistical 
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analysis revealed no significant differences between the artificial constructs 

and the native rabbit oral mucosa when a general comparison was performed 

(p=0.098) 

 When comparing the scattering values of the cellular constructs with 

the ones of the acellular ones, higher values were obtained for these last 

substitutes (Figure 6.2) (p<0.001). In addition, similar with what happens for 

the cellular constructs, the fibrin acellular constructs displayed scattering 

values higher than the fibrin-agarose constructs (p<0.001). Thus, the small 

addition of agarose to the fibrin scaffold plays an important role on the 

scattering properties of the artificial human oral mucosa substitutes, 

statistically significant differences being found when comparing the different 

materials (p<0.001). One approach that is used when studying the light 

scattering by biological tissues states that the scattering depends on the 

spatial refractive index variation among the different components of the 

tissues (Mourant et al., 1998). In our case, the lower scattering values of the 

cellular constructs suggest that artificial tissues suffer a remodeling of the 

internal organization of tissue components when cells are encapsulated in the 

scaffolds. This would produce a decrease in the spatial refractive index 

variation and, therefore a decrease in the scattering coefficient values. 
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Figure 6.2. Comparison between the scattering coefficient values of acellular (straight line) 

and cellular (dash line) oral mucosa constructs based on fibrin and fibrin-agarose. 
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Absorption coefficient (mm-1) 

Wavelength 
(nm) 

Fibrin oral mucosa sample 
Native rabbit 

T1 T2 T3 T4 

457.9 0.063 0.068 0.048 0.147 0.237 

488 0.069 0.100 0.005 0.177 0.225 

514.5 0.014 0.000 0.185 0.024 0.159 

632.8 0.000 0.088 0.000 0.081 0.237 

 
Fibrin-0.1% agarose oral mucosa sample 

Native rabbit 
T1 T2 T3 T4 

457.9 0.012 0.175 0.000 0.028 0.237 

488 0.006 0.054 0.000 0.032 0.225 

514.5 0.037 0.038 0.000 0.023 0.159 

632.8 0.014 0.029 0.000 0.040 0.237 

Table 6.2. Absorption coefficient values as calculated using the iad program. 

 

 All the artificial constructs of human oral mucosa displayed small or no 

absorption properties. The values of the absorption coefficient of the control 

rabbit oral mucosa showed variation across the wavelengths studied 

decreasing with increasing wavelength. Statistically significant differences 

were found when comparing the absorption values of the artificial constructs 

at all times of development in culture with the ones of the control rabbit oral 

mucosa sample (K-W and M-W p<0.001). In biological tissue the responsible 

cellular components for the absorption are proteins and nucleic acids. Our 

results suggest that the cells in the artificial fibrin and fibrin-agarose oral 

mucosa constructs were not committed to the synthesis and secretion of an 

important amount of absorbing components during the period of time studied 

in the present work. 

 Strikingly, when comparing acellular and cellular fibrin constructs 

during each week of development in culture, it can be seen that the cellular 
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substitutes had higher absorption values than the acellular ones for the last 

two weeks studied in the present work, contrary to what happened for the 

first stage in culture (first and second week). However, no clear behavior was 

established.  

 For the fibrin-agarose constructs, no clear influence of the cells on the 

absorption properties of the oral mucosa substitutes was noticed when 

performing the comparison between acellular and cellular substitutes, 

although no statistically significant differences were found (p=0.397). This 

observation support the statement made before, that no important absorbing 

components are synthesized or secreted in important quantities in the 

artificial human oral mucosa.  

 The results regarding the optical properties of the nanostructured oral 

mucosa artificial substitutes determined in the present study complete a 

comprehensive analysis on the morphological, histochemical and rheological 

characterization of artificial human oral mucosa constructs generated by 

tissue engineering and based on fibrin and fibrin-agarose. Previous studies by 

Rodriguez and collaborators (Rodriguez et al., 2012) proved that the addition 

to fibrin of a small amount of agarose allows the rheological stability of the 

oral mucosa substitute to be maintained. Moreover, San Martin and 

collaborators (San Martin et al., 2013) show that these type of bioengineered 

tissues present histological and molecular similarities with native human 

oral mucosa stroma. In addition, they observed that the nature of the 

biomaterial behavior influenced the oral stromal fibroblasts, thereby 

modulating their growth, protein synthesis, and collagen fibrillogenesis. This 

feature, together with its viscoelastic and optical behavior could make the 

fibrin and fibrin-0.1% agarose bioengineered tissues appropriate for clinical 

use in human oral mucosa applications. 

 Also, the absorption and scattering properties evaluated represent 

important tools that can be used to estimate the penetration depth of light in 

tissues as a function of wavelength, which is a crucial parameter in view of 

the possible application of optical in vivo imaging in clinical diagnosis 
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Figure 6.3. Comparison between the absorption coefficient values of acellular (straight line) 

and cellular (dash line) oral mucosa constructs based on fibrin and fibrin-agarose 
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 Nevertheless, for these bioengineered oral mucosas to be potentially 

useful from a clinical standpoint, the correlation between the optical 

properties and the structure and internal features that define the human oral 

mucosa should be additionally determined. 

 In summary, the actual values of the absorption and scattering 

coefficients for the artificial and native tissues reported in the present study 

provide useful references and data for practical applications requiring the 

knowledge of the light transport through this type of tissues when using laser 

therapy. The results of this work suggest that the optical parameters of 

biological tissues in the diffuse theory model can be determined using the 

measuring technology of light radiation, and the optical parameters of 

bioengineered tissues and native tissues can be compared and analyzed. This 

provides a new method of information analysis for the quality control of the 

development of the artificial nanostructured oral mucosa substitutes.  
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1. El estudio de las propiedades reológicas de sustitutos de estroma corneal 

basados en fibrina y fibrina-agarosa, nanoestructurados y no 

nanoestructurados, nos permite afirmar que la técnica de nanoestructuración 

incrementa significativamente las propiedades viscoelásticas de los 

constructos de fibrina y fibrina-agarosa. Además, el sustituto corneal 

nanoestructurado de fibrina con una concentración de 0,1% de agarosa 

presenta valores de los módulos elástico y viscoso similares a los de la córnea 

nativa para todos los períodos de tiempo en cultivo analizados. Esto 

demuestra que el novedoso método de nanoestructuración utilizado en esta 

Tesis Doctoral proporciona soluciones útiles para la generación de tejidos 

artificiales con características reológicas adecuadas para aplicaciones en 

medicina regenerativa. 

 

2. En esta Tesis Doctoral se ha desarrollado un montaje experimental que 

permite, por medio de un método no invasivo (CTF), evaluar la calidad óptica 

de constructos de estroma corneal humana generadas en laboratorio sin 

modificar las condiciones de cultivo. El uso de una pantalla de cristal líquido 

para presentar los patrones de barras es una técnica versátil que permite la 

modificación rápida y fácil de la frecuencia espacial de los mismos. La técnica 

es dinámica y fiable, y puede ser fácilmente implementada en laboratorio 

como un primer paso para el control de la calidad óptica de sustitutos 

corneales artificiales. Además, el uso de este método no se limita a 

constructos corneales, pudiendo proporcionar buenos resultados para la 

evaluación óptica de cualquier biomaterial translúcido. 

La utilización de este método para la evaluación de constructos corneales 

generados mediante ingeniería tisular a base de fibrina, fibrina-agarosa y 

colágeno nos permite concluir que, al comparar el mismo tipo de constructos, 

los sustitutos de fibrina-agarosa después de cuatro semanas de desarrollo en 

cultivo y los geles de colágeno comprimidos durante tres minutos presentan 

los mejores valores de CTF. Sin embargo, dadas las desventajas de los geles 

de colágeno, el modelo corneal de fibrina con una concentración de agarosa del 
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0,1% podría ser el mejor candidato para el diseño in vitro de un modelo córnea 

humana. 

 

3. El desarrollo de un setup experimental utilizando una única esfera 

integradora y láseres de Argón y Helio-Neón, basado en el método Inverse 

Adding-Doubling y una posterior simulación Monte Carlo ha permitido la 

evaluación y caracterización óptica de un modelo de córnea lamelar anterior 

humana generado mediante ingeniería tisular basado en fibrina-agarosa. 

Este modelo corneal, después de cuatro semanas de desarrollo en cultivo, 

presenta valores de reflectancia y transmitancia similares a los de la córnea 

nativa, sin diferencias estadísticamente significativas. El esparcimiento 

(scattering) es la propiedad óptica que afecta en mayor medida la propagación 

de la luz a través de este tipo de tejidos, prevaleciendo sobre la absorción. 

Aunque los valores de los coeficientes de esparcimiento y absorción son 

mayores que los de la córnea nativa, su comportamiento espectral es muy 

similar. De acuerdo a estos resultados,  y teniendo en cuenta sus adecuadas 

características reológicas, podemos afirmar que el modelo de córnea lamelar 

anterior propuesto en esta Tesis Doctoral podría ser utilizado para el 

tratamiento de defectos de la córnea anterior, así como para otras 

enfermedades de la córnea, y para la realización de pruebas farmacológicas y 

en investigación biomédica. 

 

4. El método Inverse Adding-Doubling junto con una posterior simulación 

Monte Carlo han sido utilizados para la determinación de las propiedades 

ópticas de esparcimiento y absorción de un modelo biomimético de mucosa 

oral humana generada por ingeniería tisular a base de fibrina y fibrina-

agarosa. De forma análoga a lo que ocurre en los tejidos nativos, el 

esparcimiento es el fenómeno más importante que afecta la propagación de la 

luz en este tipo de tejidos biogenerados. Los sustitutos de mucosa oral 

presentan valores del coeficiente de absorción que no alcanzan los valores de 
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la mucosa oral nativa. Esto sugiere que los fibroblastos no sintetizan o no 

secretan una cantidad considerable de componentes capaces de absorber luz 

durante el periodo de tiempo en cultivo estudiado en esta Tesis Doctoral. Al 

comparar constructos celulares y acelulares, se ha demostrado que las células 

desempeñan un papel importante en el comportamiento de las propiedades 

ópticas, especialmente en el esparcimiento, siendo éstas capaces de remodelar 

la estructura interna de los modelos biomiméticos de mucosa oral humana. 

Ambos tipos de sustitutos de mucosa oral generados en el laboratorio (fibrina 

y fibrina-agarosa), comparten muchas similitudes con la mucosa oral nativa 

en términos de esparcimiento. La caracterización óptica de los sustitutos de 

mucosa oral realizada en esta Tesis Doctoral, podría ser de utilidad para el 

diseño de modelos de propagación de la luz en la cavidad oral y para predecir 

daños generados durante la exposición a la luz láser usada con fines 

terapéuticos. 

 

5. Se han diseñado y aplicado con éxito métodos ópticos y reológicos para la 

evaluación de distintos tipos de tejidos humanos generados mediante 

ingeniería tisular. El uso de estos métodos permite determinar propiedades 

ópticas (reflectancia, transmitancia, esparcimiento, absorción y CTF) y 

reológicas (elasticidad y viscosidad) tanto de los tejidos artificiales como de los 

correspondientes tejidos nativos, con el fin de establecer controles de calidad 

de estos tejidos para posibles aplicaciones clínicas, así como para 

investigación biomédica básica.  
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1. The study of rheological properties of fibrin and fibrin-agarose, both 

nanostructured and non-nanostructured corneal stroma substitutes, shows 

that the nanostructuring technique significantly increases the viscoelastic 

properties of the fibrin and fibrin-agarose constructs. In addition, the fibrin 

with 0.1% agarose concentration nanostructured corneal substitute has 

elastic and viscous moduli values similar to the ones of native corneas for all 

analyzed periods of time in culture, proving that the novel nanostructuring 

method used in this study provides useful solutions for the generation of 

artificial tissues with proper rheological characteristics for applications in 

regenerative medicine.  

 

2. An experimental non-invasive set-up that allows the optical quality 

evaluation of bioengineered constructs without modifying the culture 

conditions (method CTF) has been developed. The use of a LCD screen to 

present the bar patterns is a versatile technique, enabling quick and easy 

modification of the spatial frequency of the bar patterns. The technique is fast 

and reliable and it can be easily implemented in laboratories as a first step 

for the optical quality control of bioengineered corneal substitutes. 

Noteworthy, the use of this method is not limited to corneal constructs, and it 

is expected to provide good results in the optical evaluation of any translucent 

biomaterial. 

The application of this method for the evaluation of bioengineered corneas 

based on fibrin, fibrin-agarose and collagen, allows us to conclude that, when 

comparing the same type of constructs, the fibrin-agarose substitutes 

corresponding to four weeks of development in culture and the collagen gels 

compressed for three minutes, have the best CTF values. However, due to the 

disadvantages that the collagen gels display, the fibrin with 0.1% agarose 

concentration could be a better candidate for the design of an in vitro human 

cornea model.  
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3. The development of an experimental setup using a single integrating 

sphere and Argon and Helium-Neon Lasers, based on the Inverse Adding 

Doubling method and a subsequent Monte Carlo simulation has allowed the 

optical evaluation and characterization of the human anterior lamellar cornea 

model generated by tissue engineering based on fibrin-agarose. After four 

weeks of development in culture, the values of reflectance and transmittance 

of this bioengineered cornea are similar to those of the native cornea, with no 

statistically significant differences. Scattering is the optical property that 

mainly affects the light propagation through this type of tissues, prevailing 

over absorption. Although the values of the scattering and absorption 

coefficients of the bioengineered constructs were higher than the ones of the 

native cornea, their spectral behavior was very similar. According to these 

results and the appropriate rheological characteristics, we can state that the 

fibrin–0.1% agarose anterior cornea model proposed in this Thesis could serve 

as a bioengineered tissue generated to repair defects of the anterior cornea, as 

a treatment for different kinds of corneal diseases and also for conducting 

pharmaceutical testing and biomedical research.  

 

4. The Inverse Adding-Doubling method together with a subsequent Monte 

Carlo simulation have been used to determine the scattering and absorption 

properties of the biomimetic fibrin and fibrin-agarose model of human oral 

mucosa generated by tissue engineering . Analogously to what happens in 

native tissues, scattering dominates the light propagation in the 

bioengineered tissues. The absorption properties of the bioengineered oral 

mucosa did not reach the native oral mucosa values, suggesting that the 

fibroblasts were not able to synthesize and secrete considerable amounts of 

absorbing components during the culture period of time studied in this 

Thesis. When comparing the cellular and acellular constructs, we found that 

cells play an important role in the optical properties behavior, especially in 

scattering, since cells could be able to remodel the internal structure of the 

biomimetic human oral mucosa models. Both fibrin and fibrin-agarose oral 
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mucosa substitutes generated in the laboratory by tissue engineering shared 

many similarities with native human oral mucosa stroma in terms of 

scattering properties. The optical characterization of the bioengineered oral 

mucosa samples reported in this Thesis could be useful for the design of light 

propagation models for the oral cavity and to predict damage during exposure 

to laser light used for therapeutic purposes. 

 

5. Optical and rheological methods have been successfully developed and 

applied for the evaluation of different types of human tissues generated by 

tissue engineering. The use of these methods allows to determine optical 

(reflectance, transmittance, scattering, absorption and CTF) and rheological 

(elasticity and viscosity) properties of both bioengineered and corresponding 

native tissues, as part of the required quality control for potential clinical 

applications as well as for use in basic biomedical investigation.  
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