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1. Introducción y Conclusiones

En este capítulo, se presenta una introducción al análisis y la predicción de las series
temporales y las principales conclusiones de la tesis en castellano. La introducción muestra
las posibilidades y limitaciones de la predicción, así como los conceptos generales de
predicción autorregresiva y evaluación de predictores. Además, se muestran los objetivos
propuestos para este trabajo y las conclusiones alcanzadas.

1.1. Análisis de series temporales

Una serie temporal es un tipo de dato especial, que toma en cuenta el tiempo explícitamente.
Típicamente es una realización de las mismas mediciones a lo largo de diferentes puntos en el
tiempo. Las series temporales son ubicuas en la vida cotidiana, desde la predicción meteorológica,
al procesamiento de señales (audio), las finanzas, la Economía, el tráfico, la Física, la Biología, la
Medicina y la Psicología. A lo largo de los últimos 40 años, el análisis de series temporales se ha
convertido en una importante área de investigación, cuyos principales campos son la Estadística,
la Econometría, la Física y las Ciencias de la Computación.

Los objetivos y métodos para el análisis de series temporales son variados. Tradicionalmente, se
agrupan en tareas de modelado, predicción y/o caracterización de series temporales. Además, con
la disponibilidad hoy en día de enormes cantidades de datos, nuevas tareas adquieren importancia
en las Ciencias de la Computación, en su mayoría relacionadas con la minería de datos de series
temporales, como la segmentación y el indexado de estas series.

Aunque todas estas aplicaciones tengan propósitos diferentes, comparten algunos conceptos ge-
nerales y están relacionadas entre sí. La caracterización de series temporales implica encontrar
descripciones estadísticas generales de las series. Puede usarse para complementar el modela-
do o la predicción, en el sentido de que se utiliza como un primer paso para encontrar buenos
métodos en posteriores etapas, y para encontrar limitaciones globales. El modelado de series tem-
porales busca entender el sistema subyacente que provoca la dinámica de las series. Por su parte,
la predicción busca predecir futuros valores de las series, habitualmente con un horizonte tempo-
ral bastante corto. Aunque el modelado y la predicción están relacionados, se trata de conceptos
diferentes. El entendimiento del comportamiento global del sistema no implica necesariamente
las mejores predicciones a corto plazo, y para obtener un buen rendimiento en estas predicciones
a menudo no es necesario conocer y entender el sistema subyacente. Esto puede validarse con
experimentos relativamente sencillos, como en [42].

1
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Figura 1.1.: Tres ejemplos de series temporales de distintos contextos de aplicación. La primera
serie es un electrocardiograma de un ritmo cardiaco humano normal [61]. La segunda
serie es una medición de un Far-Infrared-Laser en estado caótico [78]. La tercera serie
es la tasa de interés mensual del Reino Unido [6].

Algunos ejemplos típicos de series temporales se presentan en la Figura 1.1. Un electrocar-
diograma (ECG) muestra la actividad eléctrica periódica del corazón. Esta actividad refleja las
distintas contracciones que tienen lugar en un corazón en funcionamiento para bombear la sangre
al resto del cuerpo. En Medicina y Biología, cada uno de estos ciclos se divide comúnmente en on-
das P, Q, R, S y T. Dependiendo de las características de estas ondas, los médicos pueden encontrar
anormalidades y problemas. Como el sistema subyacente se comprende razonablemente bien, la
serie temporal puede modelarse de esta manera, y el modelado tiene aplicaciones importantes en
Medicina y Biología. Sin embargo, en este ejemplo, la realización de predicciones probablemen-
te no sea útil. La segunda figura muestra una medición de un Far-Infrared-Laser en un estado
caótico. También en este caso, el modelado de la serie temporal y la comprensión del sistema sub-
yacente son las tareas principales, aunque esta serie ha sido usada en competiciones de predicción
en el pasado. El tercer ejemplo de la figura es la tasa de interés mensual en el Reino Unido. Aquí,
la predicción es claramente una tarea valiosa, dado que una predicción buena o mala puede te-
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ner un gran impacto económico. Sin embargo, la dinámica subyacente es difícil de analizar y de
comprender.

Este trabajo se centra en la predicción de series temporales, donde valores individuales del futu-
ro cercano de las series son extrapolados. Sin embargo, a través de las relaciones entre el modelado
y la predicción de series temporales, se abarcarán también algunos aspectos del modelado.

1.2. Predicción: posibilidades y limitaciones

En la predicción, la suposición fundamental es que el futuro depende del pasado. Dos conceptos
importantes son la predicción univariante y multivariante. En la predicción univariante, la su-
posición es que el futuro de una serie temporal depende (principalmente) de su propio pasado, de
forma que el conocimiento sobre este pasado es suficiente para realizar una predicción útil. En pre-
dicción multivariante, también se tienen en cuenta variables exógenas (por ejemplo, mediciones
de otras fuentes).

Un requisito importante para el análisis y la predicción de series temporales son los datos,
que a menudo se encuentran abundantemente disponibles hoy en día. Además, los métodos de
predicción son genéricos y fáciles de aplicar, de modo que las predicciones pueden realizarse y
son realizadas para prácticamente todo. Sin embargo, una capacidad fundamental para un buen
predictor es entender las posibilidades y limitaciones de la predicción, para determinar la utilidad
de los resultados.

La previsibilidad de los fenómenos del mundo real varía en gran medida. Por ejemplo, la hora
del crepúsculo del día de mañana (o de un día dentro de 7 años) o la programación de televisión de
mañana se pueden predecir de forma bastante precisa. En cambio, predecir los números de lotería
del día de mañana es imposible, aunque están disponibles muchos datos acerca de los números de
lotería del pasado. Hay muchos fenómenos del mundo real que no son predecibles de ningún modo
significativo, o al menos no son predecibles con la precisión suficiente para que las predicciones
sean útiles. Es en gran medida responsabilidad de los predictores distinguir entre los casos donde
la metodología aplicada funcionará, y los casos en los que no.

Otro problema es que la incertidumbre real puede no estar bien representada en los datos. Éstos
pueden parecer regulares y predecibles, hasta que un evento único e impredecible ocurre. Entonces
puede ser importante si el evento se considera como un outlier (es decir, sin importancia para la
serie en general y sus aplicaciones), o si el evento es precisamente la parte más importante del
fenómeno y la aplicación. La predicción tal y como se entiende en este trabajo no trata sobre prever
cambios drásticos e inesperados. Se trata de los procedimientos cotidianos en los que se basan
muchos sistemas informáticos para la planificación, la facturación, el control y la administración.

Según Hyndman y Athanasopoulos [34], tres factores contribuyen a la previsibilidad: (1) el en-
tendimiento de los factores implicados en la creación de los fenómenos que se quieren predecir, (2)
de cuántos datos se dispone, y (3) si la predicción realizada afectará al futuro.

Por tanto, para realizar predicciones es importante disponer de datos. Además, es importante
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entender al menos parcialmente el sistema subyacente, para determinar si los datos son repre-
sentativos y suficientes para la tarea de predicción a realizar. Y finalmente, después de realizar la
predicción, ésta no debería alterar el comportamiento real de la variable objetivo.

El objetivo de utilizar métodos matemáticos para la predicción, como es el caso de este trabajo,
es modelar adecuadamente patrones repetitivos y características centrales de datos pasados. El
ruido y los eventos únicos e impredecibles no son útiles en tal entorno de predicción. Por tanto, la
idea central es separar la serie temporal en una parte de valor predictivo, y otra parte de ruido.
La parte de valor predictivo debe ser modelada adecuadamente, sin las influencias causadas por
el ruido.

Hay muchas aplicaciones en las que la predicción proporciona muy buenos resultados y se utili-
za con éxito, por ejemplo cuando se predice el consumo eléctrico, la retirada de efectivo de cajeros
automáticos, los datos relacionados con el tráfico como el caudal de coches de ciertas calles o inter-
secciones, la carga de trabajo de centros de llamada, la carga de almacenes y las reservas de hotel
o vuelos, entre otros. Pero ciertamente hay otros ejemplos, especialmente los relacionados con la
crisis financiera global de 2008, en los cuales la predicción falló estrepitosamente. Las predicció-
nes en Economía de precios, tasas de intercambio, o cotización de acciones, por ejemplo, tienen
varias dificultades. Los datos suelen ser abundantes, pero los sistemas subyacentes no se entien-
den correctamente y las predicciones pueden afectar al futuro en gran medida, pues estas series
temporales no suelen ser funciones de su propio pasado, sino de las expectativas de la gente acerca
de su futuro.

A continuación se presenta un ejemplo que ilustra algunos aspectos básicos de la predicción y
la previsibilidad. La primera serie de la Figura 1.2 muestra la temperatura media entre septiem-
bre de 2009 y marzo de 2012 en París, Francia. El pronóstico meteorológico es probablemente la
aplicación más conocida de las técnicas de predicción. La serie tiene un fuerte patrón estacional,
que podría utilizarse para la predicción (es fácil predecir que el próximo invierno será más frío
que el próximo verano, y que la tempreatura será aproximadamente la misma que este invierno).
Además, la serie es estable en el sentido de que la predicción ingenua (naïve), que consiste sim-
plemente en tomar como predicción el último valor conocido, es un resultado a corto plazo básico
pero útil. Sin embargo, para la predicción meteorológica existen disciplinas de investigación espe-
cializadas que intentan comprender el fenómeno subyacente, identificar los factores que influyen
en él como la temperatura (la temperatura se ve mayoritariamente influenciada por el número de
horas diarias de luz solar, la advección térmica, la velocidad del viento y la nubosidad), y tomar
mediciones periódicas de estas variables, para poder realizar el pronóstico.

La segunda serie temporal de la Figura 1.2 presenta el consumo eléctrico diario en Francia en el
mismo periodo. Se ven fuertes patrones semanales así como un fuerte patrón estacional, que tiene
una correlación negativa respecto a la temperatura: cuanto más frío es el tiempo, más energía se
consume. Toda esta información puede utilizarse para la predicción, bien usando solamente los pa-
trones semanales y estacionales del pasado de las series (predicción univariante), o bien utilizando
los patrones en combinación con predicciones de temperatura específicas, lo cual es claramente
mejor. Esto permite predicciones razonablemente precisas para el consumo de electricidad.
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Figura 1.2.: La primera serie es la temperatura media en París (obtenida de:
http://academic.udayton.edu/kissock/http/Weather/). La segunda serie es el con-
sumo diario de energía en la Francia metropolitana, exceptuando Córcega (fuente:
http://www.rte-france.com). La tercera serie es el índice “Powernext gas spot”, que
representa el precio del gas en Francia (fuente: http://www.powernext.fr).

Un hecho a resaltar es que hacia el final de la serie de temperaturas, hay un periodo en febrero
de 2012 de tiempo muy frío. Durante ese tiempo, hubo una ola muy fría en toda Europa central.
Se aprecia este periodo de muy bajas temperaturas directamente reflejado en un pico de consumo
eléctrico esos días.

Con esto en mente, se trata ahora de observar una tarea de predicción distinta. La tercera
serie temporal es el índice “Powernext gas spot”, que refleja el precio del gas en Francia, para el
mismo periodo de tiempo. Hay que notar que, durante la ola fría de febrero de 2012, los precios
del gas tienen un pico muy acusado. Es razonable asumir que este pico está causado por el periodo
de tiempo frío, probablemente debido a carencias de suministro o incidentes similares. Teniendo
en cuenta solamente el pasado del precio del gas, el evento era claramente impredecible, dado
que no se había comportado de tal manera anteriormente. Y, aunque en este caso particular la
serie está relacionada con la temperatura, esta relación es mucho más indirecta que en el caso
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del consumo eléctrico, y en los datos previos antes de este evento extremo, los precios del gas no
parecen tener ninguna conexión con la temperatura. Por consiguiente, probablemente no se trate
de que el tiempo frío en sí mismo llevó a la subida del precio del gas, sino más bien que el hecho
de que la intensidad y la duración del frío fueron inesperados. En resumen, predecir el precio del
gas en este ejemplo es mucho más difícil que predecir el consumo eléctrico.

1.3. Un entorno general de predicción

Un concepto importante relacionado con la previsibilidad es la estacionaridad. La idea fundamen-
tal de la estacionaridad es que las características estadísticas principales de la serie temporal no
cambian a lo largo del tiempo. La estacionaridad puede definirse formalmente como sigue (ver
Cryer y Chan [18]). Una serie temporal xt es estrictamente estacionaria, si para cualesquiera pun-
tos en el tiempo t1, . . . , tn y cualquier parámetro de desplazamiento k, la distribución conjunta de
xt1 , . . . , xtn y xt1−k , . . . , xtn−k es la misma.

Una serie temporal xt es estacionaria débil o de segundo orden, si los momentos de primer y
segundo orden no cambian en el tiempo. Es decir, la función media es constante en el tiempo, y la
covarianza sólo depende del desplazamiento temporal entre dos valores de la serie temporal (de
aquí se extrae directamente que la varianza también es constante en el tiempo):

E(xt1 )= E(xt1−k )

y

Cov(xt1 , xt2 )= Cov(xt1−k , xt2−k )

para cualesquiera puntos temporales xt1 , xt2 , y cualquier desplazamiento k. Si la media y la
covarianza existen, la estacionaridad estricta implica estacionaridad débil.

Es una práctica común en predicción limitar las consideraciones a series temporales estacio-
narias, y a casos especiales de no-estacionaridad. La no-estacionaridad se maneja típicamente
mediante pasos de preprocesamiento. La des-tendencia y des-estacionalización se utilizan para eli-
minar cambios determinísticos en la media. Otros métodos comunes son, por ejemplo, diferenciar
o logaritmizar la serie para obtener estacionaridad. Si no puede hallarse ningún preprocesamiento
adecuado para eliminar la no-estacionaridad, puede ser apropiado no utilizar el pasado completo
de la serie para la predicción, sino solamente una parte del final [20], o la predicción puede no ser
posible [20, 39].

Dado que en una serie temporal estacionaria las correlaciones son constantes en el tiempo,
en el sentido de que dependen solamente del retraso pero no del punto exacto en el tiempo, una
función de autocorrelación significativa puede calcularse. La función de autocorrelación determina
los retrasos en la serie temporal que muestran una correlación significante. En la Figura 1.3 se
muestra un ejemplo.
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Figura 1.3.: La imagen superior muestra una serie temporal, generada por un proceso lineal au-
torregresivo. La imagen inferior representa su función de autocorrelación.

De este modo, es posible identificar los retrasos temporales relevantes para la predicción, cons-
truir una matriz cuyas columnas son las versiones retrasadas de la serie temporal (ver la Tabla 1.1
para una ilustración), y utilizar esa matriz como entrada para un método de regresión. Esta ar-
quitectura de modelo se llama modelo autorregresivo de orden fijo, y el paso de preprocesamiento
consistente en construir la matriz se llama empotrado (embedding) de la serie temporal. Hay que
señalar que al igual que la estacionaridad justifica directamente el uso del modelo autorregresivo
de orden fijo, si la serie no es estacionaria el uso de esta arquitectura de modelo puede no dar
buenos resultados. Sea x(t) una serie temporal, y sea d el parámetro de desplazamiento del má-
ximo retraso que se pretende usar para la predicción. Encontrar un modelo de predicción puede
definirse como encontrar una función F (lineal o no-lineal), tal que

x(t)= F(x(t−1), . . . , x(t−d))+ e(t), (1.1)

donde e(t) es una serie temporal de términos de error independientes e idénticamente distri-
buidos (i.i.d.). Esta definición refleja directamente la separación de información útil y ruido ya
mencionada en la Sección 1.2. Por tanto, el concepto clave de esta definición no es sólo encon-



1.4. Evaluación de predictores 8

índice retraso 4 retraso 3 retraso 2 retraso 1 objetivo
... ...

7 14 10 26 11 -13
8 10 26 11 -13 -15
9 26 11 -13 -15 -8

10 11 -13 -15 -8 35
11 -13 -15 -8 35 40
12 -15 -8 35 40 -8
13 -8 35 40 -8 -16
14 35 40 -8 -16 7
15 40 -8 -16 7 17

... ...

Cuadro 1.1.: Ejemplo de una serie temporal preprocesada para la regresión, usando los últimos
cuatro valores (valores retrasados) para predecir el valor actual.

trar una separación, sino encontrarla de modo que se produzcan errores i.i.d., para que F capture
adecuadamente toda la información valiosa para la predicción.

Usando el entorno de la Ecuación 1.1, un modelo autorregresivo lineal (como en Box y Jen-
kins [13]) se define escogiendo F de forma que calcule una combinación lineal de los valores pasa-
dos de la serie:

x(t)= a0 +
d∑

i=1
aix(t− i)+ e(t). (1.2)

Aquí, a0, . . . ,ad son los coeficientes del modelo lineal (que deben ser estimados durante la cons-
trucción del modelo). Con z(t)= (1, x(t−1), x(t−2), . . . , x(t−d))T y a= (a0, . . . ,ad), la Ecuación 1.2
se presenta en notación vectorial:

x(t)= az(t)+ e(t). (1.3)

La Figura 1.4 muestra una gráfica dispersa tridimensional de la serie de la Figura 1.3, donde
los valores de la serie temporal en el tiempo t se representan junto a los valores en los tiempos
t−1 y t−2. En esta gráfica pueden verse claramente las relaciones lineales entre los valores en un
tiempo dado, y los valores de retraso uno y dos.

1.4. Evaluación de predictores

Después de haber especificado un predictor y estimado sus parámetros, es importante establecer
su calidad. Una crítica de Taleb [73] es que en Economía, los científicos realizan predicciones sin
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Figura 1.4.: Gráfica dispersa tridimensional de la serie de la Figura 1.3. Los valores de la serie
temporal en el tiempo t se representan junto a los valores en los tiempos t−1 y t−2.
Se puede identificar una relación lineal entre los tres retrasos temporales, y el plano
azul muestra una regresión lineal de los datos.

ningún feedback acerca de cuán buenas fueron las predicciones. Otras críticas son que ni los exper-
tos humanos ni los métodos automáticos de predicción son capaces de predecir las variables más
importantes [50, 51], y que las personas tienden a subestimar en gran medida la incertidumbre
de las predicciones. Teniendo esto en cuenta, la evaluación es un aspecto central de la predicción,
dado que éstas siempre pueden realizarse, pero es necesario medir su calidad para saber si serán
útiles o incluso si pueden ser peligrosas o dañinas.

Uno de los primeros en medir sistemáticamente la calidad de los métodos de predicción fue Ma-
kridakis en las llamadas competiciones M, M [47], M2 [48], y M3 [49]. En estas competiciones,
se pedía a los participantes que proporcionaran predicciones para muchas series temporales dife-
rentes. Las predicciones eran entonces evaluadas en conjuntos de test (que no se proporcionaban
previamente a los participantes) consistentes en los valores posteriores de las respectivas series,
y los errores se calcularon utilizando diferentes medidas. Desde los inicios del trabajo en evalua-
ción de predicciones, este campo aún es hoy en día un área activa de investigación, y una parte
importante del trabajo de esta tesis se ha llevado a cabo en este campo.

Además de diferentes tipos de predicciones, medidas de error, y vías para el particionado de
datos, otra pregunta importante es qué consecuencias tienen las predicciones incorrectas. Las
predicciones no se suelen hacer per-se, sino con el objetivo de tomar decisiones informadas. Depen-
diendo de la predicción la decisión puede variar, y el error debería tomar en cuenta de qué manera
resultarán de las predicciones decisiones equivocadas. Un ejemplo de este caso son las medidas de
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Figura 1.5.: Clasificación esquemática de las partes principales de esta tesis.

precisión direccional que miden si la predicción es capaz de anticipar correctamente la dirección
(es decir, si una variable sube o baja), dado que éste suele ser un criterio importante en el que se
basan las decisiones.

1.5. Objetivos de esta tesis

El objetivo de este trabajo es explorar los diferentes aspectos del proceso de predicción en su con-
junto, con el fin de lograr un buen rendimiento de predicción en problemas prácticos. La idea es
que se deben tener en cuenta la identificación, la estimación y la evaluación del modelo, para en-
contrar y poder utilizar los modelos más adecuados para una tarea concreta. Con respecto a los
modelos y su evaluación, el objetivo de este trabajo es considerar problemas tanto teóricos como
prácticos para mejorar diversos aspectos de los algoritmos, los métodos, las prácticas y el software
del estado del arte. Se lleva a cabo una investigación sobre nuevos procedimientos y se presen-
tan implementaciones de software de calidad, que hacen reproducible la investigación y ayudan
en la difusión y la transferencia de tecnología. La Figura 1.5 ilustra esto con una clasificación
esquemática de las partes principales de la tesis.

Concretamente, con respecto a los modelos de predicción, se propone una nueva técnica de pre-
dicción de series temporales, que combina el procedimiento NCSTAR con un potente algoritmo
memético de optimización, y se muestra que es competitiva respecto a otras técnicas utilizadas
en el área, manteniendo las ventajas de un procedimiento de construcción estadísticamente bien
fundamentado y la posibilidad de ser interpretada por sistemas basados en reglas difusas. En re-
lación con este trabajo, se proporcionan implementaciones para el lenguaje de programación R de
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la clase de algoritmos meméticos utilizada. Además, se implementa un paquete completo de redes
neuronales para R, que incluye muchos modelos de redes neuronales que pueden ser utilizados
para la predicción, como perceptrones multicapa, redes recurrentes de Elman y Jordan, redes de
función base-radial, etc.

Con respecto a la evaluación de los predictores, nuestro objetivo es el estudio de la materia des-
de una perspectiva de las Ciencias de la Computación, así como establecer buenas prácticas para
la evaluación de predictores que empleen métodos de Inteligencia Computacional. Se lleva a cabo
una revisión de los métodos existentes, para luego poner énfasis en la validación cruzada para
series temporales, donde se propone el uso de un esquema de evaluación de predictores mediante
validación cruzada por bloques, aprovechando así las ventajas de la validación cruzada y eludien-
do sus problemas cuando se emplea en la predicción de series temporales. Además, se estudia la
validación cruzada en el caso de uso especial de las medidas de precisión de la predicción direc-
cional. Una implementación de toda la metodología de evaluación de predictores se presenta en el
paquete tsExpKit para R. Además de la evaluación de predictores, el paquete también estandari-
za los formatos de datos, las descripciones de métodos, y la configuración experimental, con el fin
de facilitar la realización de experimentos bien documentados y reproducibles.

1.6. Conclusiones

Hemos desarrollado nuevos métodos, nuevas normas de evaluación, e implementaciones fácilmen-
te utilizables para la predicción de series temporales. Por lo tanto, la tesis pretende resolver pro-
blemas en todas las fases del procedimiento de predicción, y pretende ser de utilidad práctica,
tanto por su teoría como por las implementaciones de software.

Los modelos de transición entre regímenes entrenados con algoritmos meméticos son procedi-
mientos eficientes de modelado y predicción de series temporales. Son métodos híbridos que aúnan
modelos estadísticos con procedimientos de optimización basados en Inteligencia Computacional
(IC). Tienen las ventajas de solidez matemática y de fácil interpretación, y pueden ser predictores
precisos, como sugiere el estudio realizado.

La familia de algoritmos meméticos con cadenas de búsqueda local es un procedimiento de op-
timización de IC del estado del arte. No sólo se ha utilizado para ajustar los parámetros de los
modelos de transición entre regímenes, sino que también se ha implementado como un paquete de
R, de modo que pueda utilizarse para optimización global por la comunidad de usuarios de R. Se
ha demostrado en un estudio que es competitivo y a menudo mejor que muchas otras implemen-
taciones en R de algoritmos de optimización. Además, se han implementado dos nuevos paquetes
de software para el lenguaje de programación R. tsExpKit facilita la realización de experimentos
estructurados y reproducibles para la predicción de series temporales, y RSNNS es un paquete que
proporciona un conjunto de herramientas de redes neuronales para la comunidad de R. Este últi-
mo contiene muchas implementaciones estándar de arquitecturas de red de las que carecía R, y es
bastante exitoso, dado que ya tiene una cantidad considerable de usuarios.
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En nuestros estudios de evaluación de los procedimientos de predicción, se realizó un extenso
análisis del estado del arte, y se señaló que en el caso de los modelos autorregresivos puros para el
pronóstico de series temporales estacionarias, la validación cruzada por bloques se puede utilizar
sin problemas teóricos ni prácticos. Al utilizar los métodos de IC para la predicción, éste es con
mucho el caso de uso más común, por lo que la validación cruzada por bloques podría convertirse
en un procedimiento estándar para la evaluación de métodos de IC para la predicción de series
temporales. Además, la validación cruzada es de particular interés cuando se utilizan medidas de
precisión direccional, ya que las medidas de este tipo realizan una binarización y con ello pierden
información, de modo que es posible que en las aplicaciones prácticas el procedimiento de evalua-
ción tradicional no sea capaz de diferenciar los modelos. La validación cruzada puede superar este
problema, ya que usa más datos para calcular las medidas de error.
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2. Introduction

This chapter gives a general introduction into time series analysis and forecasting.
Then, it shows possibilities and limitations of forecasting, and presents the general frame-
works for autoregressive forecasting and for forecast evaluation. Furthermore, it presents
the objectives of this work and its structure.

2.1. Time series analysis

A time series is a special data type, which explicitly takes time into account. It is typically a
realization of the same measurements at different points in time. Time series are ubiquitous in
everyday life, from weather forecasting, to signal processing (audio), to finance and economics, to
traffic sciences, to physics, biology, medicine, and psychology. Throughout the last 40 years, time
series analysis has grown into an important area of research, getting important input mainly from
Statistics, Econometrics, Physics, and Computer Science.

The objectives and methods of time series analysis may be various. They are traditionally
grouped into modeling, prediction, and/or characterization tasks of the time series. Furthermore,
with the availability of huge amounts of data nowadays, in Computer Science new tasks become
important, mostly connected with mining of time series data, like segmentation and indexing of
time series.

Though all of these applications may have different purposes, they share some general concepts
and are related to each other. Time series characterization means to find general statistical de-
scriptions of the series. It may be used to complement modeling or forecasting, in the sense that
it is used as a first step to find good methods for the next step, and to find overall limitations.
Time series modeling aims to understand the underlying system that causes the dynamics in the
series. Forecasting aims to predict future values of the series, usually with a rather short time
horizon. Though modeling and prediction are related, they are not the same. Understanding the
overall behavior of the system does not necessarily yield the best short-term forecasts, and in order
to perform well in (short-term) forecasting, it is often not necessary to know and understand the
underlying system (this can be validated with relatively easy experiments, as in [42]).

Some typical examples of time series analysis are given in Figure 2.1. An electrocardiagram
(ECG) shows the periodic electrical activity of the heart. This activity reflects the different con-
tractions taking place in a functioning heart in order to pump blood through the body. In medicine
and biology, one such cycle is commonly divided into P, Q, R, S, and T wave. Depending on the

14
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Figure 2.1.: Three examples of time series from different application contexts. The first series is
an electrocardiogram of a normal human cardiac rhythm [61]. The second series is a
measurement from a Far-Infrared-Laser in a chaotic state [78]. The third series is the
monthly UK interest rate [6].

characteristics of these waves, physicians can find abnormalities and problems. As the underlying
system is understood pretty well, the time series can be modeled in this way, and the modeling
has important applications in medicine and biology. However, in this example, making forecasts is
probably not very useful. The second figure shows a measurement from a Far-Infrared-Laser in a
chaotic state. Also in this case, modeling the time series and understanding the underlying system
are the primary tasks, though this series was also used in forecasting competitions in the past.
The third example from the figure is the monthly UK interest rate. Here, forecasting clearly is a
valuable task, as a good/bad forecast may have great economic impact. However, the underlying
dynamics are difficult to analyze and understand.

The focus of this work is time series forecasting, where single values in the near future of the
time series are to be extrapolated. However, through the connections of time series modeling and
forecasting, we will also touch some aspects of modeling.
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2.2. Forecasting: possibilities and limitations

In prediction, the fundamental assumption is that the future depends on the past. Important
concepts are univariate and multivariate forecasting. In univariate forecasting, the assumption is
that the future of a time series depends (mostly) on its own past, so that knowledge only about the
time series’ past is sufficient to perform a useful forecast. In multivariate forecasting, exogeneous
variables, i.e., measurements from other sources, are also taken into account.

An important prerequisite for time series analysis and forecasting are data, which are often
abundantly available nowadays. Furthermore, forecasting methods are generic and easy to apply,
so that forecasts can be performed and are performed for nearly everything. However, a funda-
mental ability of a good forecaster is to understand the possibilities and limitations of forecasting,
in order to assess the usefulness of a forecast.

Predictability of real-wold phenomena varies widely. E.g., the time of tomorrows sunset (or the
time of sunset on a day 7 years from now) or tomorrows TV program schedules can be forecast quite
accurately. In contrast, forecasting tomorrow’s lottery numbers is pretty much impossible, though
a lot of past lottery-number data may be available. There are many real-world phenomena that
are not foreseeable in any meaningful way, or at least not foreseeable with the precision necessary
for the forecast to be useful. And it is largely the forecasters responsibility to distinguish between
cases where the applied methodology will work, and cases where it won’t.

Another problem is that the true uncertainty may not be represented well in the data. The data
may seem pretty regular and predictable, until a single, unforeseeable event happens. Then it
may be important, if the unforeseeable event can be considered an outlier, i.e., not important for
the overall series and the intended applications, or if the outlier is precisely the most important
part of the phenomenon and the application. Forecasting as we understand it in this work is
not about foreseeing drastic, unexpected changes. It is about procedures that are the every day
work-horses in the background of many computer systems used for planning, pricing, control, and
administration.

Following Hyndman and Athanasopoulos [34], three factors contribute to predictability: (1) how
well we understand the factors that are involved in the creation of the phenomenon we want to
forecast, (2) how much data we have, and (3) if the forecast we make will affect the future.

So, in order to forecast, it is important to have data. Then, it is important to understand at least
in part the underlying system, in order to assess if the data are representative and sufficient for
the forecasting task to perform. And then, after forecasting, the forecast should not change the
actual behavior of the target variable.

The aim of using mathematical methods for forecasting, as in this work, is to model adequately
repetitive patterns and central characteristics of past data. Noise and unique, unforeseeable
events are not useful in such a forecasting framework. So, the central idea is to separate the
time series into a part with predictive value, and a part of noise. The part of predictive value then
has to be modeled accurately, without distraction caused by the noise.

There are lots of applications where forecasting yields very good results and the forecasts are
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Figure 2.2.: The first series is the daily average temperature for Paris (obtained from:
http://academic.udayton.edu/kissock/http/Weather/). The second series is the
amounts of daily energy consume of metropolitan France, except Corsica (source:
http://www.rte-france.com). The third series is the Powernext gas spot index, which
represents the gas price in France (source: http://www.powernext.fr).

used successfully, for example when predicting electricity consumption, ATM cash withdrawal
amounts, traffic related data such as car throughput of certain streets and crossings, call center
load, warehouse load, hotel bookings, flight bookings, and others. But there are certainly other
examples, especially in relation with the 2008 global financial crisis, where forecasting greatly
failed. Predictions in Economics of, e.g., prices, exchange rates, or stock quotations, have several
difficulties. Data is usually abundant, but the underlying systems are not understood well and the
forecasts may greatly affect the future, as such time series are usually not functions of their own
past, but of people’s expectations about their future.

In the following, we present an example that illustrates some basic aspects of forecasting and
predictability. The first series of Figure 2.2 shows the daily average temperature from September
2009 until March 2012 in Paris, France. Weather forecasting is probably the most well-known
application of forecasting techniques. The series has a strong seasonal pattern, which could be
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used for forecasting (it is pretty easy to foresee that next winter it will be colder than next summer,
and that it will be more or less the same temperature as this winter). Also, the series is stable
in the sense that the naïve forecast, which is simply to take the last known value as the forecast,
would give us a basic but usable short-term forecasting result. However, for weather forecasting
there exist specialized research disciplines that try to understand the underlying phenomena,
identify the factors that influence, e.g., the temperature (temperature is mostly influenced by
the number of daylight hours, thermal advection, wind speed, and cloud cover), and then take
adequate, periodic measurements of these variables, in order to perform the forecasting.

The second time series of Figure 2.2 shows the daily consumption of electrical energy in France
in the same time period. We see strong weekly patterns and a strong seasonal pattern which has
a negative correlation with the temperature: The colder it gets, the more energy is consumed.
All this information can be used for forecasting, either by only using the weekly and seasonal
patterns from the past of the series (univariate forecasting) or, which is in this case clearly better,
the patterns in combination with the domain-specific temperature forecasts. This enables pretty
accurate forecasts for the electricity consumption.

One thing we note is that towards the end of the temperature series, there is a period in Febru-
ary 2012 of very cold weather. During that time, there was a strong cold wave in all of central
Europe. We see this period of very low temperatures directly reflected in a peak of electricity
consumption on those days.

Having this in mind, we now want to take a look at another forecasting task. The third time
series is the Powernext gas spot index, which reflects the gas price in France, for the same time
period. Note that, during the cold wave of February 2012, the gas prices have a very sharp peak.
It is reasonable to assume that this peak is caused by the period of cold weather, probably due to
supply shortages or similar incidents. Taking into account only the past of the gas price, the event
was clearly not predictable. The series has just not behaved in a similar way before. And, though
in this particular case the series has a relationship to the temperature, this relationship is much
more indirect than in the electricity consumption case, and in the data before this extreme event,
the gas price seems not to have any connection with the temperature. So, it is probably more the
case that not the cold weather itself yielded to the high gas price, but more the fact that intense
and duration of the cold weather was unexpected. In summary, forecasting the gas price in this
example is much more difficult than forecasting energy consumption.

2.3. A general forecasting framework

An important concept related to predictability is stationarity. The fundamental idea of stationarity
is that the main statistical characteristics of the time series do not change over time. Stationarity
can be formally defined as follows (see Cryer and Chan [18]). A time series xt is strictly stationary,
if for any time points t1, . . . , tn and any lag parameter k, the joint distribution of xt1 , . . . , xtn and
xt1−k , . . . , xtn−k is the same.
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Figure 2.3.: The upper image shows a time series, which is generated from a linear autoregressive
process. The lower image shows its autocorrelation function.

A time series xt is weakly/second order stationary, if the first and second order moments do not
change over time. I.e., the mean function is constant over time, and the covariance only depends
on the time lag between two time series values (from this follows directly that also the variance is
constant over time):

E(xt1 )= E(xt1−k )

and

Cov(xt1 , xt2 )= Cov(xt1−k , xt2−k )

for any time points xt1 , xt2 , and any lag k. If mean and covariance exist, weak stationarity
follows from strict stationarity.

It is common practice in forecasting to limit considerations to stationary time series, and to
special cases of non-stationarity. The non-stationarity is then typically tackled by pre-processing
steps. De-trending and de-seasonalization are used to remove deterministic changes in the mean.
Other common methods are, e.g., to differentiate or logarithmize the series to achieve stationarity.
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If no appropriate pre-processing can be found to remove non-stationarity, it may be appropriate not
to use the whole past of the series for forecasting but only a part from the end [20], or forecasting
may not be possible at all [20, 39].

index lag 4 lag 3 lag 2 lag 1 target
... ...

7 14 10 26 11 -13
8 10 26 11 -13 -15
9 26 11 -13 -15 -8

10 11 -13 -15 -8 35
11 -13 -15 -8 35 40
12 -15 -8 35 40 -8
13 -8 35 40 -8 -16
14 35 40 -8 -16 7
15 40 -8 -16 7 17

... ...

Table 2.1.: Example of a time series pre-processed for regression, using the last four values (lagged
values) to predict the current value.

As in a stationary time series, correlations are constant over time, in the sense that they only
depend on the lag, but not on the exact point of time, a meaningful autocorrelation function can
be calculated. The autocorrelation function determines the lags of the time series that show (sig-
nificant) correlation. An example is given in Figure 2.3.

In this way, it is possible to identify the time lags which are relevant for forecasting, construct
a matrix whose columns are the lagged versions of the time series (see Table 2.1 for an illustra-
tion), and use this matrix as inputs to a regression method. This model architecture is called the
autoregressive model of fixed order, and the pre-processing step to construct the matrix is called
embedding of the time series. We note that, as stationarity directly justifies the use of the autore-
gressive model of fixed order, if the series is not stationary, use of this model architecture may not
yield good results. Let x(t) be a time series, and let d be the delay parameter of the maximal lag
we want to use for forecasting. Finding a forecasting model can then be defined as finding a (linear
or non-linear) function F, such that

x(t)= F(x(t−1), . . . , x(t−d))+ e(t), (2.1)

where e(t) is a time series of independent, identically distributed (i.i.d.) error terms. This
definition reflects directly the separation of useful information and noise already mentioned in
Section 2.2. So, the key concept of this definition is not just to find a separation, but to find
the separation in a way to make the errors i.i.d., so that F adequately captures all information
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Figure 2.4.: Three dimensional scatter plot of the series from Figure 2.3. the values of the time
series at time t are plotted against the values at time t−1 and t−2. A linear relation-
ship between the three time lags can be identified, and the blue plane shows a linear
regression of the data.

valuable for forecasting.
Using the framework of Equation 2.1, a linear autoregressive model (as in Box and Jenkins [13])

is defined by choosing F in a way that it computes a linear combination of past values of the series:

x(t)= a0 +
d∑

i=1
aix(t− i)+ e(t). (2.2)

Here, a0, . . . ,ad are the coefficients of the linear model (that need to be estimated during model
building). With z(t) = (1, x(t−1), x(t−2), . . . , x(t−d))T and a = (a0, . . . ,ad), Equation 2.2 becomes
in vector notation:

x(t)= az(t)+ e(t). (2.3)

Figure 2.4 shows a three dimensional scatter plot of the series from Figure 2.3, where the values
of the time series at time t are plotted against the values at time t−1 and t−2. From this plot,
we can clearly see the linear relationship between the values at a given time and the values of lag
one and lag two.
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2.4. Predictor evaluation

After having specified a predictor and estimated its parameters, it is important to assess its qual-
ity. A critique of Taleb [73] is that in Economics, scientists perform forecasts without any feedback
on how good the forecasts were. Other critiques are that both human experts and automatic fore-
casting methods are not capable of forecasting the most important variables [50, 51], and that
humans tend to greatly underestimate the uncertainty of forecasts. Taking this into account,
evaluation is a central aspect in forecasting, as forecasts can be always made, but in order to know
whether they will be useful, or whether they may even be dangerous and harmful, we need to
assess their quality.

One of the first to systematically assess the quality of forecasting methods was Makridakis in
the so-called M-competitions, M [47], M2 [48], and M3 [49]. Within these competitions, the partic-
ipants were asked to provide forecasts for a lot of different time series. The forecasts were then
evaluated on test sets (not disclosed to the participants beforehand) consisting of the following val-
ues of the respective series, and errors were calculated using different error measures. However,
since the early beginnings of the work on forecast evaluation, the field is still today an active area
of research, and an important part of the work on the thesis was carried out in this field.

Besides different types of forecasts, error measures, and ways for data partitioning, another
important question is, which consequences wrong forecasts have. The forecasts are usually not
performed for the sake of forecasting, but in order to take informed decisions. Depending on
the forecast, the decision may vary, and the error should take into account, in which way wrong
decisions result from the forecasts. One example here are directional accuracy measures that
measure if the forecast is able to correctly predict the direction, i.e., whether a variable rises or
falls, as this is typically an important criterion on which decisions are based.

2.5. Objectives of this work

The aim of this work is to explore different aspects of the whole forecasting process, in order to
achieve good forecasting performance in practical problems. The idea is that we need to consider
model identification, model estimation, and model evaluation, to find and be able to use the best
suited models for a concrete task. Then, both regarding models and model evaluation, the aim of
this work is to consider theoretical and practical problems, to improve over various aspects of the
state of the art of algorithms and methods, best practices, and software. We both investigate on
new procedures and present good software implementations, which make research reproducible
and help in diffusion and technology transfer. Figure 2.5 illustrates this with a schematic classifi-
cation of the main parts of the thesis.

Concretely, regarding forecasting models, we propose a new technique for time series prediction,
which combines the NCSTAR procedure with a powerful memetic optimization algorithm, and we
show that it is competitive to other techniques used in the field, while having the advantages of
a statistically well-founded building procedure and the possibility for its interpretation by fuzzy
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Figure 2.5.: Schematic classification of the main parts of the thesis.

rule-based systems. Related to this work, we provide implementations for the R programming
language of the used class of memetic algorithms. Furthermore, we implement a comprehensive
neural network package for R, which includes many neural network models that can be used for
forecasting, such as multi-layer perceptrons, recurrent Elman- and Jordan-type networks, radial
basis function networks, etc.

With respect to predictor evaluation, our aim is to study this field from a Computer Science
perspective, and to find best practices for evaluation of predictors that employ methods of Compu-
tational Intelligence. We perform a review of existing methods and focus then on cross-validation
for time series, where we propose the use of a blocked cross-validation predictor evaluation scheme,
thus exploiting the strengths of cross-validation, while circumventing its problems when employed
in time series forecasting. Also, we study cross-validation in the special use case of directional fore-
cast accuracy measures. A practical implementation of all the predictor evaluation methodology
is presented with the package tsExpKit for R. Besides predictor evaluation, the package also
standardizes data formats, method descriptions, and experimental setup, in order to facilitate
realization of well-documented, reproducible experiments.

2.6. Structure of the document

The thesis consists of two main parts. In the first part, named PhD Dissertation, we resume
and connect the content of the whole thesis. This chapter, Chapter 2, provides an introduction
to the topic in general. The next chapter, Chapter 3, presents the main concepts and results of
the thesis, and Chapter 4 concludes. The second main part of the thesis presents the journal
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papers that were written within the work on the thesis. Each chapter in the second part is an
independent publication. The first publication presents the approach of regime switching models
combined with memetic algorithms for parameter estimation. The second publication presents
the software package for memetic algorithms created within this work, Rmalschains. The third
publication presents another software package for neural networks, RSNNS. The forth publication
reviews predictor evaluation methodology, and proposes blocked cross-validation as a substitute
for usual out-of-sample evaluation. Finally, the fifth publication presents the special case of using
blocked cross-validation together with directional accuracy measures.



3. Discussion of the Results

In this chapter we point out and discuss the most important concepts and results of
the research.

3.1. Regime-switching models adjusted with evolutionary
algorithms

In this section, we describe the work that was performed within the thesis on the time series
model family of regime-switching models. We investigated on the use of memetic algorithms for
parameter estimation of such models. The associated journal paper is:

C. Bergmeir, I. Triguero, D. Molina, J.L. Aznarte, and J.M. Benítez. Time Series Modeling
and Forecasting Using Memetic Algorithms for Regime-Switching Models. IEEE Transactions on
Neural Networks and Learning Systems, 2012, 23(11), 1841-1847.

Furthermore, during this work, the memetic algorithm family that we used was implemented
as an R package, which is presented in the publication:

C. Bergmeir, D. Molina, and J.M. Benítez. Memetic Algorithms with Local Search Chains in
R: The Rmalschains Package. Journal of Statistical Software, 2012, (submitted).

The software is discussed in more detail in Section 3.2. In this section, we focus on the theoret-
ical aspects.

With the work of Box and Jenkins [13], linear autoregressive (AR) models became a standard
procedure in time series forecasting. However, linearity is a pretty strong assumption, and more
flexible models are desirable (in this context, note that the abbreviation “AR” usually stands for
linear autoregressive models, and not non-linear ones).

A popular extension of the Box-Jenkins methodology to non-linearity is the approach of Tong [75].
Its central idea is to use several linear models for different parts of the series. The resulting models

25
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are called piece-wise linear models. Which linear model to use concretely is determined by a func-
tion, called threshold function, which takes certain characteristics of the time series and/or exoge-
nous signals into account. The threshold function partitions the time series into non-overlapping
regions, and different linear models, called “regimes” in this context, are used to model the regions.
E.g., in a time series in which general periods of rise and fall alternate, the threshold variable can
determine whether at a certain time point the series is in the rising or the falling case. The periods
of rise can then be modeled by a linear model, and the periods of fall by another one.

In general, a piece-wise linear model is defined as follows:

x(t)=
k∑

j=1
f j(th j(t))a jz(t)+ e(t). (3.1)

Here, f j are nonlinear functions that determine, how the combination of the linear models is
performed, and th j are the threshold functions. This general equation enables the definition of
various models, depending on the choice of f j and th j. In the so-called threshold autoregressive
model (TAR), we use the indicator function for combination, which has a logical condition as ar-
gument and returns one if the condition is met, and zero otherwise. Using threshold constants
c0, . . . , ck with −∞= c0 < c1 < ...< ck =∞, the functions f j are defined as follows:

f j(th j(t)) := I
(
th j(t) ∈ (c j−1, c j]

)
(3.2)

Then, choosing th j(t) as a concrete lagged value x(t− d) of the time series, we define the so-
called self-exciting TAR (SETAR) model. Use of the indicator function yields very abrupt changes.
This may not be natural and not desirable in the model. To get smoother transitions between the
regimes, e.g., the logistic function can be used, and we obtain the smooth transition autoregressive
model (STAR). The logistic function is defined as follows:

f j(th j(t))= 1
1+exp(−γ j(th j(t)− c j))

. (3.3)

Finally, also within the STAR models, various proposals of threshold functions are present in
the literature. In this work, we use the following threshold function to define the neuro-coefficient
STAR (NCSTAR) model:

th j(t)=ω jw(t). (3.4)

The vector w(t) contains all relevant lagged and exogenous variables, which are weighted using
the weights vector ω j. The weights vector has the same dimension as w(t), and is normalized to
length one, i.e., ‖ω j‖ = 1. In our work, we assume w(t) = (x(t−1), x(t−2), . . . , x(t− d))T , i.e., no
exogenous variables are used and all lagged values used in the autoregression also contribute to
the threshold. The model is called “neuro-coefficient” STAR, because it can be interpreted as a
linear model with coefficients that change over time, and which are determined by a multi-layer
perceptron [2].
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The model was originally proposed by Medeiros and Veiga [53], who also presented a statistically
founded, iterative building procedure, which involves a statistical test of linearity. As long as
non-linearity remains in the residuals, the method adds new regimes to the model (i.e., it adds
hidden units to the multi-layer perceptron). Another advantage, besides the well-defined building
procedure, is that this kind of model can be interpreted in terms of fuzzy rule-based systems
(FRBS) [2, 4, 3, 5]. So, the modeling results can be used not only in a black-box manner, but can
also be used to interpret the findings and to gain insight into the factors that contribute to the
behavior of the time series.

However, a potential weakness in the original NCSTAR building procedure is the fitting algo-
rithm. Medeiros and Veiga use a combination of a grid search and a local search procedure, in
order to determine the non-linear parameters of the model. The fitting procedure directly affects
the accuracy of the model and the behavior of the iterative building procedure.

Complementarily, evolutionary algorithms [21] have proven to be efficient optimization tech-
niques in a broad range of application fields [76]. In this work, we evaluate a memetic algorithm
family, called memetic algorithms with local search chains (MA-LS-Chains) [54], for using it to
substitute the original fitting algorithm.

The NCSTAR model has the non-linear parameters γ j, c j, and ω j with j = 1, . . . ,k as in Equa-
tions (3.3) and (3.4), which model the transitions between regimes, and linear parameters which
represent the regimes. The linear parameters can be computed in a closed-form solution, once the
non-linear parameters are fixed, i.e., in every evaluation of the fitness function during optimiza-
tion. The γ j scale with the series, so we use normalized data to be able to define a domain for the
γ j.

The original model fitting procedure is a combination of grid search and local search. It draws
randomly a huge amount of initial solutions for a new regime to add, and evaluates the fitness of
these initial solutions combined with the regimes already present. Then, the best solution from
these initial solutions is chosen, and a local search algorithm, concretely the Levenberg-Marquardt
algorithm [56], is used to improve on all parameters of this solution.

Within our work, we replaced this fitting procedure with MA-CMA-Chains [54], a memetic al-
gorithm with local search chains that employs CMA-ES [29] as the local search strategy. The
MA-LS-Chains paradigm employs a steady-state genetic algorithm [79], together with the BLX–α
operator [23] for crossover, the negative assortative mating strategy [27] as its selection method,
replace worst as replacement strategy, and the BGA operator [58] for mutation.

In order to compare the performance of the new algorithm, we performed an experimental study
on time series from the NNGC1, NN5,1 and Santa Fe [78] forecasting competitions (30 series in
total), where we compared the algorithm to two versions of the original algorithm and to five
standard methods in the field.

The results were analyzed both for average performance and using statistical testing proce-
dures. The analysis indicates that the proposed algorithm is able to outperform the compared

1See http://www.neural-forecasting-competition.com
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methods in terms of accuracy. As interpretability is an important advantage of the NCSTAR
model, furthermore we performed an analysis about the amount of regimes (which translates into
amount of hidden units or amount of fuzzy rules) that are generated by the original and by the
proposed building procedures. The proposed building procedure generates with approx. 6 rules
on average slightly more rules than the original procedure with 5.5 rules. However, we do not
consider this as an important change w.r.t. interpretability, so that the proposed method yields
more accurate results, with mainly preserving interpretability.

3.2. Software for Computational Intelligence in time series
research

In this section, we present the software projects that were realized within the thesis. Usually,
software development is not appreciated much in Computer Science research. The focus is on
inventing new algorithms and methods. Robust, usable implementations, which promote the re-
search results and facilitate reproducing and using the methods are often disregarded and not
considered within the scope of research. However, this attitude is changing in the research com-
munity. In many fields of Computer Science, there is nowadays a gap between the state of the
art and the methods that people outside of the narrow research field are actually using. This has
mostly to do with the availability of working, usable implementations.

Also, open source is now a widely accepted licensing and distribution form for software, and
initiatives for open data and open access publishing of scientific results gain importance. This
openness of data, source code, and research publications, greatly facilitates and accelerates re-
search, verification, reproduction, and exploitation of the results.

Regarding this new way in which research is carried out, a pretty complete environment is the
ecosystem around the R programming language [65]. R is an open source programming language
for statistical computing. It is an interpreted, functional, rapid prototyping language, and the
de-facto standard in statistical computing. R offers the possibility to write plugins (which are
called “packages” in R), which can easily be published by uploading them to the Comprehensive R
Archive Network (CRAN)2. Furthermore, there are tools for in-source documentation [81], report
generation [45], and unit testing [80]. With the Journal of Statistical Software, there is further-
more an open access journal where high-quality software of this type can be published.

All our projects were realized as packages for the R programming language. Besides the pack-
age Rmalschains, which implements the MA-LS-Chains algorithm family, the packages tsExpKit
and RSNNS were implemented. The package tsExpKit is an infrastructure package to facilitate
time series research, and it implements all of the evaluation methodology presented in Section 3.3.
RSNNS is a neural network toolbox package that implements many neural network standard archi-
tectures and learning algorithms.

2http://cran.r-project.org
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There are two publications associated with this section. The first publication presents the
package Rmalschains, explains its theory, its implementation, and performs a comparison of
Rmalschains and other packages available in R for optimization:

C. Bergmeir, D. Molina, and J.M. Benítez. Memetic Algorithms with Local Search Chains in
R: The Rmalschains Package. Journal of Statistical Software, 2012, (submitted).

The package RSNNS is presented in the second publication, where we also give an overview of all
the neural network architectures implemented, and compare the package to other neural network
implementations in R:

C. Bergmeir and J.M. Benítez. Neural Networks in R Using the Stuttgart Neural Network
Simulator: RSNNS. Journal of Statistical Software, 2012, 46, 1-26.

In the following, we discuss the software packages in more detail:

3.2.1. tsExpKit

The time series experimentation kit tsExpKit is a package facilitating experimental setup and
evaluation of the experiments in time series research. It implements all methods explained in
Section 3.3. Furthermore, it facilitates parallelization of experiments, and implements its own
standard format for time series (based on the zoo [83] package). It helps with the creation of time
series data repositories, where the time series are stored in a unified data format. Experimenta-
tion, documentation, and reproducibility are facilitated by, e.g., caching results of preprocessing
and storing experiment results in a unified data format.

3.2.2. Rmalschains

The package Rmalschains was implemented in the first place for the work presented in Sec-
tion 3.1. However, the MA-LS-Chains algorithm family is a general optimization framework, with
many potential applications. In this section, we focus on the software implementation, its benefit
for the R community, and its advantages over available alternatives.

In general optimization, the goal is to find parameter values for a given function that maximize
or minimize the output of the function. In this context, a parameter configuration is usually called
a solution, the function to optimize is called target- or fitness function, and the output of the
function is called fitness. Optimization problems need to be solved in many modern applications
and in nearly all fields of modern science and engineering. As nowadays the problems to solve are
often complex, a mathematical analysis is not feasible or too expensive and time consuming. Also,
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evaluating all solutions in the parameter space in a brute-force manner is usually not possible,
due to the size of the parameter space and limitations of computational resources. Problems of
this type are traditionally tackled with local search algorithms, which start with one solution and
find a way through the parameter space by altering this solution. However, as new solutions are
only searched in the neighborhood of the current solution, local characteristics of the search space,
such as local optima or flat regions, may lead to unwanted results. In order to tackle this problem,
in the literature there are many meta-heuristics proposed, using different methods to find their
way through the parameter space to a good solution, evaluating only a small fraction of all possible
configurations.

A popular family of meta-heuristics are evolutionary algorithms, which use a set of possible
solutions, the population. The solutions in the population, also called individuals in this context,
are combined and altered by crossover and mutation operators, and solutions with the best fitness
are favored, so that the population moves towards better fitness values. By evaluating a set of
solutions in parallel, evolutionary algorithms avoid getting stuck in local optima and perform well
exploring the search space. But they may lack exploitative power to find the best solution in
a determined region. In contrast, local search techniques can improve quickly on a determined
solution, reaching the local optimum.

Memetic algorithms [57, 41] are a hybridization between evolutionary algorithms and local
search methods. The idea is to combine the strengths of both algorithm types, thus exploring
the search space with the evolutionary algorithm and using the local search to exploit promis-
ing regions by finding local optima. In this context, an important question is which regions are
considered to be promising, and how the overall amount of function evaluations that is to be dedi-
cated to the local search will be distributed among regions, so that the local search is applied more
intensely to more promising regions.

MA-LS-Chains solves this issue by applying the local search various times over the same solu-
tion, with a fixed amount of iterations. Then, the final state of the local search is saved, and reused
as initial state in a subsequent local search application to the same individual. It uses a steady-
state genetic algorithm [79], negative assortative mating [27], the BLX–α crossover operator [23],
the replace worst replacement strategy, and the BGA mutation operator [58].

Different local search algorithms are implemented in Rmalschains, namely the CMAES algo-
rithm [29], which can be considered the state of the art in local search methods, the Nelder-Mead
downhill simplex [60, 59], the Solis-Wets’ algorithm [71], and an adaptation of the latter one to
high-dimensional problems, where in every iteration a subset of all parameters is chosen for opti-
mization (called “Subgrouping Solis-Wets”).

There is already a host of choices of optimization methods present in R. However, MA-LS-Chains
performed well in several optimization competitions (BBOB’2009, CEC’2010, and in experiments
subsequent to CEC’2005), and it takes high-dimensional optimization into account. Also, following
the “No Free Lunch” theorem [82], there cannot be one single algorithm that performs best on
all types of problems, so especially in optimization it is valuable to be able to evaluate different
algorithms for a concrete problem.
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Besides these general justifications and motivations for making available MA-LS-Chains as an
R package, we performed a study comparing other packages on CRAN to Rmalschains.

Concretely, we use the functions/packages bobyqa, which implements the algorithm of Pow-
ell [63], cmaes, which implements the CMAES algorithm, DEoptim, which implements differential
evolution [64], dfoptim, which implements the Nelder-Mead and the Hooke-Jeeves algorithms,
malschains_cmaes, malschains_sw, which are methods from Rmalschains with different lo-
cal search techniques, optim_BFGS and optim_L-BFGS-B, which are two different versions of the
Broyden-Fletcher-Goldfarb-Shanno algorithm, PSO, which implements a particle swarm optimiza-
tion, Rsolnp, which implements a sequential quadratic programming (SQP) solver, GenSA, which
implements generalized simulated annealing [77], and rgenoud, a genetic algorithm which also
allows for applying local search.

We use the benchmark of Lozano et al. [46], consisting of 19 benchmark functions, and use it
with problem dimensions of 2, 10, 30, 50, 100, 200, 500, and 1000. Here, we consider dimensions
2, 10, 30, 50 low-dimensional, dimensions 100 and 200 medium-dimensional, and dimensions
500 and 1000 high-dimensional. As many algorithms involve randomness in some form, each
algorithm is run 25 times on each problem and every dimension. We measure running time and
average error of the methods. For the average error, rankings of the algorithms are analyzed.

With application of the methods to problems with very different dimensionality, the focus of the
analysis is on scalability of the methods. Our analysis takes into account three different causes for
methods not scaling well: execution time, memory usage, and errors/exceptions during program
execution.

The results show that the Rmalschains methods in terms of average error are very compet-
itive, and perform best for dimensions 30, 50, and 100. However, the CMAES algorithm has a
complexity of O(n3), so it inherently does not scale well. This is why both the available CMAES
implementation in R and the MA-CMA-Chains implementation in Rmalschains cannot be used
for dimensions larger than 100. For higher dimensions, MA-LS-Chains with the Solis-Wets’ solver
achieves best results in terms of accuracy, so that we can conclude that Rmalschains is a compet-
itive implementation of a memetic algorithm family, thus being of use to the R community.

3.2.3. RSNNS

When developing new time series forecasting methods and assessing their performance, besides
the evaluation methodology presented in Section 3.3, it is important to compare newly developed
methods to the state-of-the-art. Therefore, it is convenient to have a canon of implementations of
standard methods. In R there are already many Computational Intelligence (CI) methods and re-
gression methods available, which can be used for autoregression. Also, a lot of statistical forecast-
ing methodology is readily available. However, during the work on the thesis, we observed a lack
for a comprehensive neural network standard library, and especially recurrent neural networks
that are relevant for time series forecasting were not available in R. So we decided to implement a
standard library of neural networks for R. As it is good practice to reuse code and comply to stan-
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dards whenever possible, we decided to adapt an existing software, the Stuttgart neural network
simulator (SNNS), for this purpose, and the newly implemented package is called RSNNS.

The SNNS is a neural network software implemented in C, which contains many high-quality
implementations of neural network standard procedures. In terms of network architectures,
SNNS implements multi-layer perceptrons (MLP) [69], recurrent Elman-, and Jordan networks [22,
37], radial basis function networks (RBF) [62], RBF with dynamic decay adjustment [10, 32],
Hopfield networks [31], time-delay neural networks [43], self-organizing maps (SOM), associa-
tive memories, learning vector quantization networks (LVQ) [40], and different types of adap-
tive resonance theory networks (ART) [28], concretely ART1 [15], ART2 [14], and ARTMAP [16]
nets. Furthermore, it implements a wide variety of initialization, learning, update, activation, and
pruning functions, adding up to more than 270 in total. For example, learning functions include
standard backpropagation, backpropagation with momentum term, backpropagation through time
(BPTT) [70], Quickprop [25], resilient backpropagation [68, 67], backpercolation [38], (recurrent)
cascade-correlation [24, 26], counterpropagation [30], scaled conjugate gradient [55], and TACOMA
learning [44].

SNNS has not seen active development since 1998. So, although the methods are well im-
plemented in the kernel, the GUI is antiquated and cumbersome, and there are no satisfactory
possibilities for automation and parallelization of the learning procedures, as well as for graphical
visualization of the results. These issues were resolved in RSNNS. The whole SNNS kernel was
ported to C++, encapsulating it in one class to get rid of global variables, and therewith allowing
for managing more than one network at a time, which is convenient for automation and essen-
tial for parallelization. Furthermore, a high-level interface for the kernel was implemented in R,
containing many functions that allow for the use of the original SNNS functions with interfaces
that integrate seamlessly into the style of R programming. Though absolute download numbers
cannot be assessed due to the distributed nature of CRAN, we note that the package receives a lot
of attention in the R community, leading to more than 6000 downloads of the associated journal
paper, and a flow of constant bug reports, ask for support, and feature requests by users. So, to
conclude, RSNNS fills a gap in the functionality of R, and implements important functionality that
many users appreciate.

3.3. Predictor evaluation

The evaluation of predictors is not trivial, and a field of active research. We contribute to this
field in the following ways. We perform a systematic review of the whole process of predictor
evaluation. Then, we focus on the last step, the model selection procedure, where we perform
empirical studies characterizing quantitatively the effects of cross-validation, both with respect to
typical application scenarios when using CI methods, and in a study using directional accuracy
measures. The review of prediction evaluation procedures together with the study employing CI
methods is published as:
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C. Bergmeir and J.M. Benítez. On the use of cross-validation for time series predictor evalu-
ation. Information Sciences, 2012, 191, 192-213.

The study about cross-validation with directional accuracy measures is presented in the follow-
ing publication:

C. Bergmeir, M. Costantini, and J.M. Benítez. On the usefulness of cross-validation for
directional forecast evaluation. Journal of Forecasting, 2013, (submitted).

This section summarizes the main points of the review, and the main results of the two empirical
studies.

3.3.1. Review of predictor evaluation methodology

Throughout the last decades, a vast amount of different forecasting methods was proposed in the
literature. Comparing forecasting methods and finding out which ones perform best for particular
applications is an important endeavor. A generic evaluation methodology for regression, classifi-
cation, and forecasting methods is as follows:

(i) identification and estimation/fitting of the models

(ii) calculation of the errors for every data point (for every data set, and possibly both for training
and test set)

(iii) calculation of the (average) error measures per model and training/test set

(iv) use of a model selection procedure to determine the best model (per data set or overall)

In machine learning and other regression and classification tasks, application of this methodol-
ogy is straightforward, and a commonly accepted consensus exists. After (i) calculating predictions
for the target values, (ii) quadratic loss is used, which is optimal under the assumption that the
errors are normally distributed, and (iii) the root mean square error is calculated. Finally (iv),
k-fold cross-validation is used to randomly partition the data into k sets, obtain k error measures
by using each of the k sets once as test set, and averaging over these k measures to get the final
error measure.

In time series forecasting, such a consensus does not exist. It usually depends on the application,
which forecast horizons are to be used for prediction, and which lagged values are to be taken into
account (i). Also the loss that is associated with certain characteristics of the errors in (ii) often
depends on the application, so that, e.g., percentage errors, errors relative to benchmark methods,
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Figure 3.1.: A general evaluation framework for classification, regression, and time series pre-
diction. While in classification and regression, a general consensus for evaluation
practice exists, in time series prediction, a host of choices exists for every step of eval-
uation, many of which are application dependent.

or directional errors are used. Depending on the distribution of the errors, also the methods that
are appropriate for averaging (iii) change. E.g., computation of the mean or the median of squared
or absolute errors is common [19, 35]. Finally, as a model selection procedure (iv), cross-validation
has both theoretical and practical problems. A fundamental assumption of cross-validation is that
the data are independent and identically distributed (i.i.d.) [1]. Both assumptions may not hold for
a time series, as the data is usually autocorrelated, and time-evolving effects may alter the data
distribution over time. Regarding the practical problems, it may be the case that the forecasting
method needs sequential input data, and cannot handle missing values (which are reserved for
testing) properly. So, in forecasting often the last part of a series is withhold for testing. We call
this evaluation mode last block evaluation. This type of evaluation is easy to perform in practice
and does not have the theoretical problems of cross-validation. Furthermore, it often coincides
with the intended application. However, last block evaluation does not make use of the data in the
way cross-validation does, so that there are also various proposals in the literature regarding step
(iv) for time series. An illustration of the evaluation procedure gives Fig. 3.1. In the following, we
have a closer look at the evaluation process.
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fixed origin
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rolling window

training and test set
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Figure 3.2.: There are many different types of data partitioning and different forecast horizons
during forecasting.

Data partitioning and forecasting horizons

Which forecast horizons to use, i.e., what to forecast, and which values to use as inputs, usually
depends on the application. This needs to be taken into account when partitioning the data into
training and test set.

Following Tashman [74], we classify the different forecasting procedures as follows (see also
Fig. 3.2):

• fixed origin: In this type of forecasting, the test set is not available when performing the
forecasts. So, every forecast for the test set has a different horizon, depending on its distance
in time from the training set.

• rolling origin update: Here, the model is estimated using the training set, but past values
from the test set are used as input for the model, as they become available. The model is not
altered/retrained during this process. For CI methods, this is the most common use case.

• rolling origin recalibration: In this forecasting type, the model is retrained/readjusted for
every prediction in the test set, as the values become available.

• rolling window: As in rolling origin recalibration, the model is retrained for every prediction
in the test set. But the size of the training set is fixed, so that the oldest values are discarded,
as new data becomes available. This procedure is especially useful when the data is non-
stationary (and changes are slow).

All the aforementioned forecasting types can be used with different horizons, and across dif-
ferent time series, which yields to a wide variety of different forecasting procedures that may be
examined for a given set of time series. An example for application-dependence is the procedure
usually employed in time series forecasting competitions, such as the M3 [49], M43, or NN3 [17],
3http://m4competition.com
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NN5, or NNGC14 competitions. As the test set cannot be disclosed to the participants while they
perform forecasting, only fixed origin forecasting is applicable here.

Errors and error measures

After forecasting, the predictions need to be compared to the target values in order to assess their
quality. Therefore, errors which measure the deviation from the target value are computed, and
averaged to an error measure, which ideally represents well the characteristics of the errors a
forecaster can expect when using a certain method. Following the classification of Hyndman and
Koehler [35], we classify types of errors and error measures into four categories, which are scale-
dependent errors, percentage errors, relative errors, and relative error measures. However, as in
time series forecasting the expected loss resulting from an error often depends on the application,
there are several other evaluation measures. A type of measure which gets increasingly popular
in Econometrics are directional accuracy measures [11, 12], which we also consider in our work.

Cross-validation for time series forecasting

A standard evaluation technique in regression and classification is k-fold cross-validation [72]. For
this method, the available data is partitioned randomly into k sets. Then, every set is used once as
the test set, and the training set consists of all other sets. In this way, k independent realizations
of the error measure are obtained, instead of only one. So, a more robust error measure can be
computed, and a better estimation of the “true” error can be achieved.

A fundamental assumption of cross-validation is that the data are independent and identically
distributed (i.i.d.). In time series prediction, this is usually not the case, as the data have interde-
pendence (which is precisely what is used for the forecasting), and time-evolving effects may occur,
so that the distribution of the data may change over time. Because of these problems, there is a lot
of work in the literature which proposes adaptations of cross-validation for the time series case.

Correct use of cross-validation for time series has a strong connection with stationarity of the
time series. If the series is stationary, it is possible to find a maximal lag order after which the val-
ues are approximately independent. As the dependencies are precisely what is used for modeling,
correct model order identification, which is crucial for modeling, also becomes important for the
evaluation, as the chosen model order can be used as the time period after which two values are
approximately independent. For a value in the test set, then all values from the training set within
this period have to be omitted. The procedure is presented, e.g., by McQuarrie and Tsay [52]. It
is often referred to as modified cross-validation [1]. We call it in the following non-dependent
cross-validation. The problem of this procedure is that, depending on the time period chosen to
omit, heavy loss of data will occur, which annihilates the advantages of cross-validation of making
better use of the data, or use of the procedure may not be feasible at all.

4http://www.neural-forecasting-competition.com
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cross-validation

non-dep. cross-validation

blocked cross-validation

last block

Figure 3.3.: Training (blue) and test (orange) sets for different types of evaluation procedures for
time series.

The solution we promote for this problem of wasting data is to choose the training and test
sets as blocks of data (following the ideas of Racine [66]), so that values have to be omitted only
at the borders of these data blocks. We call this procedure k-fold blocked cross-validation. See
Fig. 3.3 for illustrations of traditional cross-validation, non-dependent cross-validation, the pro-
posed block scheme, and last block evaluation. So, using blocked cross-validation, the theoretical
issues of unmet preconditions can be resolved in an elegant way. Now we want to have a look at
the practical issues. When using CI methods for forecasting, typically only pure non-linear autore-
gressive models are used. In this context, missing values can be handled without problems, as the
autoregression is performed by applying general regression methods to the embedded version of
the time series. In this embedded version, which is a data matrix, withholding data is a straight-
forward task, as only the respective rows need to be removed from the matrix. Compare this to,
e.g., exponential smoothing, or models with a moving average part, where for the computation of
each new value all past values are necessary.

3.3.2. Experimental studies of cross-validation in predictor evaluation

In this section, we discuss the two experimental studies on the practical consequences of using
different model selection procedures. The first study focuses on typical application cases of fore-
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casting with CI methods. The second study focuses on the use of cross-validation together with
directional accuracy measures.

Cross-validation in forecasting using CI methods

In order to examine and quantify the consequences of the use of different model selection methods
in a real-world application scenario, we performed an experimental study. The experiments are
designed to answer the following questions, for a typical application setup for CI methods used for
forecasting:

• Do the dependencies in the data lead to underestimation of the error, when using traditional
cross-validation without modifications?

• Do any time-evolving effects occur, in the sense that data taken from the end of the series
for validation yields different results from taking the data from somewhere in between?

• Does the use of cross-validation yield more robust error measures?

In order to answer these questions, the following experimental setup was used. Besides the
partitioning into training and test set, which depends on the evaluation procedure used, we with-
hold an additional validation set, from the end of the series. Then, for each series, predictors are
trained, and forecasts are performed for the respective test sets, and error measures E in−set are
computed using the model selection procedures. Also, error measures Eout−set are computed on
the validation set. Then, the quotients

QE = Eout−set

E in−set

are computed for every series and every method.
Using QE , the questions from above can be answered in the following way: If cross-validation

systematically underestimates the error, the QEs would be systematically greater than one. The
results presented in the associated journal paper indicate that this is not the case. There is a
bias in the error measures, but not in the expected way of a continuous underestimation, and the
bias is not stable, in the sense that it depends a lot more on the error measure used than on the
model selection procedure. But the cross-validation is more robust in the sense that the errors as
the results have less spread and fewer outliers. So, within the study no practical consequences
of the dependent data could be found, i.e., also when not used correctly, cross-validation yields a
good error estimate for the examined cases. Furthermore, no stable time-evolving effects could be
found in the study, and it could be verified, that the cross-validation yields more robust results in
practice.
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Cross-validation with directional accuracy measures

In a second study, we focused on an interesting particular case of the methodology presented,
namely for the case when directional accuracy measures are used. As these measures perform
a binarization, and therewith loose information, here use of cross-validation can be especially
valuable.

In this study, we performed a Monte Carlo simulation with a similar setup as the first study
on cross-validation. The difference is that much more series were used, and both univariate and
multivariate forecasting was considered, but only linear data generation processes and models
were used. The results confirm the results of the first study, that cross-validation yields more
robust and precise error estimates. Furthermore, with respect to particularities of the directional
accuracy measures, we considered an application of UK interest rate forecasting. Our application
shows, that if the amount of data is limited and the models yield similar results, due to the bina-
rization of directional accuracy measures, the models may not be distinguishable any more when
using last block evaluation. The cross-validation has considerable advantages here, and allows to
discern the models, as it uses more data.



4. Conclusions

In this chapter we present some concluding remarks and lines of future research.

4.1. Summary and concluding remarks

We have developed new methods, new evaluation standards, and readily usable implementations
for time series forecasting. So, the thesis aims to resolve problems in all phases of the forecasting
procedure, and aims to be of practical use, both by its theory as by its software implementations.

Regime-switching models trained with memetic algorithms are efficient time series modeling
and forecasting procedures. They are hybrid methods of statistical models with Computational
Intelligence (CI) optimization procedures. They have the advantages of mathematical soundness
and interpretability, and can be accurate forecasters, as our study suggests.

The algorithm family of memetic algorithms with local search chains is a state-of-the-art CI
optimization procedure. We not only used it for adjusting the parameters of regime-switching
models, but also implemented it as an R package, so that it can be used for global optimization
by the R community. We showed in a study that it is competitive and often better than many
other implementations of optimization algorithms of R. We furthermore implemented two more
software packages for the R programming language, tsExpKit facilitates realization of structured,
reproducible experiments for time-series forecasting, and RSNNS is a package which provides
a neural network toolkit for the R community. It contains many standard implementations of
network architectures R was lacking of, and it is pretty successful, with a considerable amount of
users.

In our studies of predictor evaluation procedures, we performed an extensive study of the state
of the art, and pointed out that in the case of pure autoregressive models for forecasting station-
ary time series, blocked cross-validation can be used without theoretical and practical problems.
When using CI methods for forecasting, this is by far the most common application use case, so
that blocked cross-validation could become a standard procedure in the evaluation of CI methods
for time series forecasting. Also, cross-validation is of particular interest when directional accu-
racy measures are used, as this kind of measures performs a binarization and therewith looses
information, so that it may occur in practical applications that the traditional out-of-sample eval-
uation procedure is not capable any more of distinguishing models. Cross-validation can overcome
this problem, as it uses more data to calculate the error measures.
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4.2. Future work

There are many paths open to follow from the work of the thesis in all three main lines of our
research, i.e., regarding new methods, software, and evaluation. Concretely, we plan for the future
to continue work on the following:

• Regarding hybrid forecasting methods, we plan to continue our work with the hybridization
of exponential smoothing methods, in the line of Bermudez et al. [7, 8, 9]. Therefore, a
research stay with Rob Hyndman is scheduled, who is an expert in the field of exponential
smoothing [33, 36].

• Work on software is an ongoing process, and all the software packages are implemented in a
way that facilitates maintenance. Furthermore, we are currently working on R packages for
fuzzy rule-based systems and the exponential smoothing methods.

• With respect to evaluation procedures, next steps can be the work on forecast combination
and meta-learning, together with time series characterization. We already implemented
some basics in order to work on this topic in the tsExpKit package, and efforts in this field
will be extended in the future.
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Time Series Modeling and Forecasting Using Memetic
Algorithms for Regime-Switching Models

Christoph Bergmeir, Isaac Triguero, Daniel Molina,
José Luis Aznarte, and José Manuel Benítez

Abstract— In this brief, we present a novel model fitting pro-
cedure for the neuro-coefficient smooth transition autoregressive
model (NCSTAR), as presented by Medeiros and Veiga. The
model is endowed with a statistically founded iterative building
procedure and can be interpreted in terms of fuzzy rule-based
systems. The interpretability of the generated models and a
mathematically sound building procedure are two very important
properties of forecasting models. The model fitting procedure
employed by the original NCSTAR is a combination of initial pa-
rameter estimation by a grid search procedure with a traditional
local search algorithm. We propose a different fitting procedure,
using a memetic algorithm, in order to obtain more accurate
models. An empirical evaluation of the method is performed,
applying it to various real-world time series originating from
three forecasting competitions. The results indicate that we can
significantly enhance the accuracy of the models, making them
competitive to models commonly used in the field.

Index Terms— Autoregression, memetic algorithms,
neuro-coefficient smooth transition autoregressive model
(NCSTAR), regime-switching models, threshold autoregressive
model (TAR).

I. INTRODUCTION

Time series prediction and modeling is an important
interdisciplinary field of research, involving among others
Computer Sciences, Statistics, and Econometrics. Made pop-
ular by Box and Jenkins [1] in the 1970s, traditional mod-
eling procedures combine linear autoregression (AR) and
moving average. But, since data are nowadays abundantly
available, often complex patterns that are not linear can be
extracted. So, the need for nonlinear forecasting procedures
arises. Commonly used in this context are procedures, such
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as multilayer perceptrons or support vector machines [2], and
recent developments focus on recurrent neural networks [3],
[4], generalized regression neural networks [5], and other
regression procedures from machine learning.

But following the ideas of Box and Jenkins [1], a special
type of nonlinear models, mainly developed by Tong [6], are
piecewise linear models, which allow for modeling a series
using various linear models assigned to different zones of the
series. A threshold variable is then used to switch between
the linear models. Many different types of these so-called
threshold AR models can be found in the literature [6], [7].
If the threshold variable is chosen to be a lagged value of the
time series, the model is called self-exciting threshold AR.
Taking into account that the series are usually continuous, it
may often be better if the change from one regime to the
other is not performed by a sudden change, but merely using
a smooth, differentiable function, such as the Gaussian or
logistic function, which leads to smooth transition AR models.

Using this theory, Medeiros and Veiga [8] developed the
neuro-coefficient smooth transition AR (NCSTAR), which
uses a neural network to learn the threshold variable as a
weighted sum of the inputs from the training data. Further-
more, those authors presented an iterative building procedure
based on statistical testing to define the number of hidden units
of the neural network.

All these models (in the following, we call the model family
*TAR) have the advantage that there is a theory to translate
them to fuzzy rule-based systems (FRBS) [9]–[12], which
makes their interpretability more accessible.

Accuracy and interpretability are usually considered
contradictory goals. In many modeling approaches, accuracy
is strived for and interpretability is hardly considered.
In contrast, the focus of fuzzy modeling initially was to
obtain interpretable systems with acceptable accuracy, as the
seminal purpose of FRBSs is to exploit the descriptive power
of linguistic variables in linguistic fuzzy modeling [13]. Only
in later developments, the focus was broadened to concentrate
solely on accuracy in precise fuzzy modeling, and nowadays
often a tradeoff between accuracy and interpretability is aimed
at, e.g., by using multiobjective optimization algorithms [13].

So, although the sole use of FRBSs does not guarantee
interpretability, their overall design as systems of rules makes
them more accessible to humans. Furthermore, the question of
measuring interpretability of FRBSs is an important subject of
ongoing research in the area [14], and there exists certain con-
sensus that important matters for interpretability are the overall
number of rules, and easily understandable rule premises with
few input variables [14]. Also, FRBSs are used in the literature
to give interpretations to not only *TAR models [9], but also
to other model classes like, e.g., neural networks [15], and
support vector machines [16].

2162–237X/$31.00 © 2012 IEEE
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As the iterative building procedure of the NCSTAR
model controls the overall number of regimes, the resulting
models typically have only few rules, and can be considered
interpretable in this sense.

For model identification and estimation, the NCSTAR model
uses a combination of a grid search (GS) procedure and a local
search (LS) to optimize its parameters. This optimization step
is crucial during the iterative building procedure, as it both
influences the behavior of the test that determines the number
of regimes, and the overall accuracy of the method. On the
other hand, evolutionary algorithms (EAs) [17] have proven to
be very efficient techniques in various fields of optimization
problems [18], especially in the optimization of neural network
parameters [19], [20]. They have also been applied in various
time series prediction problems [21]–[24].

In particular, memetic algorithms [17], [25] are well-suited
for continuous optimization, where high precision in the
solutions has to be achieved [26], as they combine the evo-
lutionary paradigm with LS strategies. In this brief, we will
use memetic algorithms based on local search chains (MA-
LS-Chains) [27]. Our aim is to combine the strength of EAs
to find good parameters, with the benefits of the NCSTAR
model, in order to develop a building procedure which results
in equally interpretable, but more accurate models for time
series (in comparison to the original NCSTAR method).

The structure of this brief is as follows. Section II details
the theoretical background of the threshold autoregressive
models. Section III discusses the memetic algorithm scheme
employed, namely MA-LS-Chains. Section IV presents the
proposed algorithm, which combines the NCSTAR model with
the MA-LS-Chains optimization method. Section V presents
the performed experimental setup, and Section VI discusses
the results. Finally, Section VII concludes this brief.

II. NEURO-COEFFICIENT SMOOTH TRANSITION

AUTOREGRESSIVE MODEL: NCSTAR

We define an autoregressive model for a time series x(t)
with a function F and a series e(t) of independent, identically
distributed error terms in the following way:

x(t) = F(x(t − 1), . . . , x(t − d))+ e(t). (1)

The delay parameter d determines which lagged values are
used as input for the method. From this general definition,
various time series models can be derived according to the
choice of F .

In a linear autoregression, F performs a linear combination
of the past values

x(t) = a0 +
d∑

i=1

ai x(t − i)+ e(t). (2)

With z(t) = [1, x(t − 1), x(t − 2), . . . , x(t − d)]T , and a =
[a0, . . . , ad ], (2) becomes in vector notation

x(t) = az(t)+ e(t). (3)

When F is to be a nonlinear function, a popular approach
is to use mixtures of linear models

x(t) =
k∑

j=1

f j (th j (t))a j z(t)+ e(t). (4)

Here, two important lines of research can be found in the
literature [6], [7]: 1) regarding the (nonlinear) functions f j

that are used for mixing and 2) composition of the threshold
function th j (t). This function can, for instance, take into
account exogenous variables, lagged values, or combinations
of both. In the threshold AR model (TAR), the functions f j

are chosen to be index functions I j that switch between the
different linear models, depending on the current threshold
value th j (t), using threshold constants c0, . . . , ck with −∞ =
c0 < c1 < · · · < ck = ∞, in the following way:

I j (th j (t)) =
{

1, if th j (t) ∈ (c j−1, c j ]
0, otherwise.

(5)

In the self-exciting TAR, for instance, the threshold variable
is defined as th j (t) := x(t − d) [7]. As the index function
causes abrupt changes, which might not be desirable, another
possibility is to use the logistic function, that is

f j (th j (t)) = (1+ exp(−γ j (th j (t)− c j )))
−1. (6)

This defines the logistic smooth transition autoregressive
model (LSTAR) [7]. Here, the parameter c j can still be
interpreted as the threshold between two regimes, and the
parameter γ j is the slope parameter of the logistic function,
which determines the smoothness of the change in the logistic
function [7].

There are some other possibilities to choose the functions f j

and th j (t), to generate other models. The most relevant for our
work, the NCSTAR, is a modification of the LSTAR model,
with

th j (t) = ω j w(t). (7)

Here, w(t) is a vector containing all variables that are
relevant for the threshold, that is, lagged values and/or
exogenous variables. In the following, we will use w(t) =
[x(t − 1), x(t − 2), . . . , x(t − d)]T . And ω j is a vector of
weights with ‖ω j‖ = 1, which has the same length as w(t).

The NCSTAR model has some interesting properties.
Medeiros and Veiga [8] presented an iterative building pro-
cedure based on statistical tests for this type of model, and
Aznarte and Benítez [9] showed that “NCSTAR models are
functionally equivalent to Additive TSK FRBS with logistic
membership function.” Thus, with the NCSTAR, we have a
model at hand with a powerful iterative building procedure
that can be interpreted in terms of a fuzzy rule-based system.

The parameters of NCSTAR can be divided into linear and
nonlinear ones. After having fixed the nonlinear parameters,
the linear parameters can be computed in a closed-form solu-
tion. In the original version of the NCSTAR [8], a combination
of GS and LS is used to determine good settings for the
nonlinear parameters. The nonlinear parameters are γ j , c j , and
ω j for j = 1, . . . , k as in (5) and (6), with ωi j ∈ [−1, 1], and
‖ω j‖ = 1. Whenever during the iterative procedure a new
regime is added, starting values for this regime j are chosen
in the following way [8].

1) ω j is drawn from a uniform distribution, and normalized
afterwards to ensure its norm is 1. If ω1 j < 0, ω j :=
−ω j . This is performed M times, so that we obtain M
vectors ωm

j (with m = 1, . . . , M).
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2) For every ωm
j , c j is defined to be the median of ωm

j x,
with x being the embedded time series.

3) A grid of N values is defined to choose γ n
j (with n =

1, . . . , N) as γ n
j := n.

Hence, a total of N × M candidate solutions for the new
regime are generated. The parameter γ j is scale-dependent,
so the series are normalized before NCSTAR model building.
The best parameter set, appended to the regimes yet present,
is used then to initialize the LS algorithm, which improves on
all values of the current model. In the original publication, the
Levenberg–Marquardt algorithm [28] is used for the LS.

III. MEMETIC ALGORITHMS WITH LOCAL

SEARCH CHAINS: MA-LS-CHAINS

Evolutionary algorithms [17] are used nowadays success-
fully in a wide range of optimization problems. They evaluate
a population of candidate solutions and alter and combine
them to new solutions, substituting iteratively the candidate
solutions by better suited variants. A central idea of EAs
states that, with the use of several candidate solutions, better
coverage of the search space will be achieved, and getting
stuck in a particular local optimum will be avoided.

When using EAs, a tradeoff has to be made between ex-
ploring new unknown areas of the search space and exploiting
already known good solutions to reach the local optimum in
their neighborhood. This problem is important for continuous
optimization problems, such as the one addressed in this brief,
as results of high precision are required.

Memetic algorithms combine EAs with LS in order to
explore more intensely the most promising areas of the search
space. Instead of a generational approach for the EA, where the
whole population is substituted by a new one, in this context
a steady-state approach is better suited, where only single
individuals are substituted. When using an elitist algorithm,
it is then possible to maintain the results of the LS in the
population.

In the MA-LS-Chains paradigm [27], we use a steady-state
genetic algorithm [29] designed to maintain population diver-
sity high by combining the BLX–α crossover operator [30]
with a high value for its associated parameter (the default is
alpha = 0.5), the negative assortative mating strategy [31] as
its selection method, replace worst as replacement strategy,
and the BGA mutation operator [32].

Another central idea of MA-LS-Chains is that, not only are
the individuals stored, but also the current state of the LS for
each individual. As a result, it becomes possible to interrupt
the LS after a fixed number of iterations (the parameter istep
of the method), and later resume it from the same state.
In this way, MA-LS-Chains adapts the intensity of the LS to a
solution in function of the fitness of that solution. The process
of interrupting and later continuing LS is called LS chaining.
In these LS chainings, the final state of the LS parameters after
each LS application becomes the initial point of a subsequent
LS application over the same solution, continuing the LS. In
this way, MA-LS-Chains applies a higher intensity to the most
promising solutions. Finally, the parameter effort controls the
ratio of function evaluations used for LS over those used for
the genetic algorithm.

Different LS algorithms can be used within the MA-LS-
Chains paradigm. MA-CMA-Chains [27] uses the covariance
matrix adaptation evolution strategy (CMA-ES) [33]. Though
CMA-ES is itself an EA, it performs well in detecting and
exploiting local structures. A drawback is that it does not
scale well with the amount of parameters, as it employs
complex mathematical operations. However, in our application
this is of minor importance, as the amount of parameters
is relatively low (for instance, a NCSTAR with order 4 and
10 regimes has 60 nonlinear parameters).

See [27] for a more detailed discussion of the MA-CMA-
Chains algorithm.

IV. NCSTAR FITTED WITH MA-LS-CHAINS

In order to apply the MA-LS-Chains paradigm to replace
the combination of GS and LS of the original NCSTAR, some
adjustments are necessary.

The individuals of the population of the MA-LS-Chains
algorithm consist of vectors X = [

γ1, . . . , γk, c1, . . . , ck,
ω11, . . . , ωd1, . . . , ω1k, . . . , ωdk

]
, which are realizations of the

nonlinear parameters γ j , c j , and ω j with j = 1, . . . , k of
a NCSTAR model with k transitions (and therewith k + 1
regimes).

The process for model building is then the following (also
shown in Algorithm 1): first, the series is tested for linearity. If
the linearity assumption can be rejected, the series is assumed
to be nonlinear, and the iterative building procedure is started.
Otherwise, a linear model is built (a one-regime NCSTAR
is a linear model). Within the iterative procedure, in the kth
iteration, a (k+1)-regime NCSTAR is built. In every iteration,
the following is executed.

1) A randomly initialized regime is added to the last
iterations’ solution, and this solution is added to the
initial population. The rest of the population is initialized
randomly. A uniform distribution constrained by the
parameter domains given below is used.

2) The nonlinear parameters for all k transitions are fixed
with the optimization algorithm (the linear parame-
ters are computed for every evaluation of the fitness
function).

3) The residuals of the built model are tested for linearity.
4) If the test indicates that a new regime should be added,

the algorithm goes back to step (1). Otherwise, the
method terminates.

It is important to properly constrain the values for γ j and c j .
A regime that is relevant only for few training data leads
to numerical problems, and unreasonable linear parameters,
which may lead to very unexpected forecasts. Furthermore, if
the γ j are high, the NCSTAR deteriorates to a TAR model.

So, we restrict the nonlinear parameters in the following
way.

1) For a time series x , we define the domain of the γ j to
be γ j ∈ [0, γ0 · (max(x) − min(x))], with γ0 being a
parameter of the method.

2) The thresholds c j are constrained to lie into the
[min(x), max(x)] interval. In preliminary experiments,
we also evaluated the less narrow interval [−mth, mth],
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Algorithm 1 NCSTAR-MA-LS Algorithm
1: NCSTAR ← a linear model fitted to the series
2: k ← 0 {the current number of transitions}
3: Test for linearity (H0 : γ1 = 0).
4: if H0 is not rejected then
5: {The series is assumed to be linear.}
6: return NCSTAR
7: else
8: repeat
9: {Add a new regime to NCSTAR.}

10: k ← k + 1
11: Build a random initial population.
12: Add a new, randomly initialized regime to NCSTAR.
13: Add vector X of non-linear parameters of current

NCSTAR to the population.
14: Run MA-LS-Chains using the initial population.
15: Store the result in NCSTAR.
16: Test for the addition of another regime (H0 : γk+1 = 0).
17: until H0 is not rejected
18: end if
19: return NCSTAR

with mth =
√

d · max(|min(x)|, |max(x)|). But because
of the numerical problems mentioned earlier, the former
turned out to be a better choice for the threshold domain.

3) In order to handle the constraint ‖ω j‖ = 1, ω j is
encoded with n-dimensional polar coordinates [34], so
that ωi j ∈ [0, π] for i = 1, . . . , (d − 1), and ωd j ∈
[0, 2π].

V. EXPERIMENTAL SETUP

In order to analyze the performance of the proposed method,
an experimental study was carried out, which is detailed in
this section. We comment on the time series data and the
algorithms used, as well as on the results that were obtained.

A. Time Series Used for the Experiments

We use data from the NNGC1 and NN5 forecasting com-
petitions,1 and from the Santa Fe [35] competition. The high-
frequency data, that is, weekly, daily, and hourly data from
the NNGC1, are used. The weekly data are those related to
the oil industry, such as import quantities or prices. The daily
series are throughput measures of several car-tunnels, and the
hourly data are arrival times of planes at airports and trains at
metro stations.

The NN5 competition data are daily cash withdrawal
amounts at different ATMs in the UK, measured over a period
of 2 years. There is a so-called full dataset consisting of
111 series, and a reduced dataset containing 11 series. We
use the reduced dataset. There are missing values present in
the series, so we use one of the methods proposed for this
dataset [36] to fill the gaps.

Regarding the Santa Fe data, from the six datasets, we
only use data where our methods are applicable. Some of

1Available at http://www.neural-forecasting-competition.com.

the datasets have a special focus and would require special
treatment. For instance, there are series with nonuniform mea-
surement intervals, series with missing values, and a problem
where the objective is to learn a concept out of many series.

The augmented Dickey–Fuller test [37] was applied to the
series, in order to use only stationary series (*TAR models
are, as ARMA models, only applicable to stationary
series [6]). Furthermore, series are excluded for which the lin-
earity test, performed during the building procedure, suggests
linearity. In this case, the one-regime NCSTAR that is built is
a linear AR model which has no nonlinear parameters, so that
the optimization procedure is not executed at all.

In total, 30 series are used, which are all available in the
KEEL-dataset repository [38].2

For the experiments, we withhold 20 percent from the end
of every series as test set, and the rest of the data is used
for model building. Furthermore, as mentioned above, the
series are normalized to zero mean and unitary variance. The
normalization parameters are computed on the training sets,
and then applied to both training set and corresponding test set.

B. Applied Algorithms

The experiments were carried out with the programming
language R [39]. Our code is based on the implementations
of *TAR models in the package tsDyn [40]. The MA-LS-
Chains algorithm is available in the package Rmalschains [41].
Instead of the Levenberg–Marquardt algorithm, the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm was used, which
is available in R by the function optim [42].

To analyze the effects of the parameter domains discussed
in Section IV, we use the original method furthermore with
a box-constrained version of the algorithm, the large-scale
bound-constrained BFGS (L-BFGS-B) algorithm, which is
available through the same function optim [42]. We call
these two algorithms the NCSTAR and the NCSTAR-BOX,
respectively. The version of the algorithm using MA-CMA-
Chains for optimization is called NCSTAR-MA-CMA.

The original methods were used with N = 20, and
M = 1000, which are the values proposed by the original
authors [8]. The N = 20 values for each γ j are chosen equidis-
tant within the domain for the γ j as defined in Section IV,
using γ0 = 20 within all of our experiments. The LS algorithm
is run with a maximum of 1000 iterations. So, this yields
a number of approx. 21 000 function evaluations per newly
added regime in total.

To yield comparable results, the MA-CMA-Chains
algorithm is used with the same amount of function
evaluations. It is used with the parameter settings effort = 0.5,
alpha = 0.5 (which are the default parameters of the algorithm
recommended by the authors), istep = 300 (the method has
a low sensitivity w.r.t. this parameter [27]), and a population
size of 70 individuals. Although we evaluated other parameter
sets in preliminary experiments, it turned out that these values
are good reliable choices.

Besides the comparison within NCSTAR models, we also
performed a study comparing the proposed method with other

2Available at http://sci2s.ugr.es/keel/timeseries.php.
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TABLE I

PARAMETERS USED THROUGHOUT THE EXPERIMENTS

Algorithm Parameters

SVR cost = 10, gamma = 0.2, epsilon = 0.1

MLP size = 15, decay = 0.0147, maxit = 1000

NNET size = 9, decay = 0.1, maxit = 1000

methods commonly employed for time series forecasting.
Namely, we used ε-support vector regression (SVR), different
versions of the multilayer perceptron (MLP) trained with
standard backpropagation and with the BFGS, multivariate
adaptive regression splines (MARS) [43], and a linear model.

SVR is available in R through the package e1071, which
implements a wrapper to LIBSVM [44]. The BFGS-trained
MLP (which in the following we call NNET) is available
through the nnet package [42]. The MLP with standard
backpropagation is available in the package RSNNS [45]
(and will be called MLP in the following). MARS is available
from the package mda.

Table I shows the parameters that are used throughout the
experiments (for the methods that require parameters to be set).
The parameters are determined in the following way. First,
a parameter grid is defined empirically for every method.
Then, the parameter set performing best on a set of test series
(artificial series generated from a NCSTAR process) w.r.t. the
root mean squared error (RMSE) on the respective test sets is
chosen.

VI. RESULTS AND DISCUSSION

For all of the 30 series, models were trained, predictions
were made on the test set, and the RMSE was computed
for these predictions. As both the original and the proposed
NCSTAR building procedures are nondeterministic, the whole
process was executed ten times, and the respective arithmetic
means of the RMSE from the ten executions were used. As the
series are normalized, comparing the RMSE of the different
series is feasible. Fig. 1 shows box and whisker plots of the
RMSE, and Table II shows averaged values over all series. The
results indicate that NCSTAR-MA-CMA performs best within
the compared methods, as it yields the lowest averaged RMSE.

However, this measure may be heavily influenced by
outliers, and may not represent the distribution of the er-
rors adequately. Especially in situations like ours, where the
distributions are close together (see Fig. 1), this may lead
to erroneous conclusions. So, in order to perform a more
sophisticated evaluation of the results, we perform an analysis
of the frequencies with which the methods outperform each
other. Therefore, we use nonparametric statistical tests for
multiple comparisons.

Concretely, we use the Friedman rank-sum test for multiple
comparisons to detect statistically significant differences, and
the post-hoc procedure of Hochberg [46] to characterize those
differences [47].3

3More information can be found on the thematic web site of SCI2S about
Statistical Inference in computational intelligence and data mining. Available
at http://sci2s.ugr.es/sicidm.
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Fig. 1. Box and whisker plots for the RMSE obtained on the test sets of the
series for every method. The boxes contain 50% of the data, the middle line
is the median. The whiskers extend to the most extreme values.

TABLE II

RMSE AVERAGED OVER ALL SERIES,

FOR THE METHODS COMPARED

RMSE

NCSTAR-MA-CMA 0.579

NNET 0.608

NCSTAR-BOX 0.612

SVR 0.614

MLP 0.617

NCSTAR 0.623

MARS 0.667

AR 0.765

At first, we perform a comparison among the NCSTAR
methods, to clearly determine the possible advantages of the
method that is proposed in this brief bears. The Friedman
test detects highly significant differences on a significance
level of α = 0.01 ( p-value < 2.81 · 10−5). Because it
obtains the best ranking, NCSTAR-MA-CMA is chosen as
the control method, and the Hochberg post-hoc procedure is
applied. Table III shows the results. As Hochberg’s procedure
is highly significant (with a significance level of α = 0.01)
for all compared methods, it is clear that NCSTAR-MA-CMA
performs significantly better than the original versions of the
algorithm.

In a second step, we compare NCSTAR-MA-CMA to the
other benchmarks. The Friedman test shows highly significant
differences (p-value < 2.43·10−8). Table IV shows the results,
which indicate that NCSTAR-MA-CMA also performs signif-
icantly better than the benchmark methods we compare it to.

In combination, the results indicate that NCSTAR-MA-
CMA is the best method, both in terms of the absolute value
of the error as well as the frequency with which it outperforms
the other methods. It especially outperforms the original algo-
rithm, thus improving the accuracy of the generated NCSTAR
models.
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TABLE III

COMPARISON WITHIN THE NCSTAR METHODS. AVERAGE RANKS

AND ADJUSTED p-VALUES FOR THE FRIEDMAN TEST

USING THE Post-hoc PROCEDURE OF HOCHBERG

Average Rank pHochberg

NCSTAR-MA-CMA 1.37 –

NCSTAR-BOX 2.27 4.91 · 10−4

NCSTAR 2.37 2.15 · 10−4

TABLE IV

COMPARISON WITH THE BENCHMARK METHODS. AVERAGE RANKS

AND ADJUSTED p-VALUES FOR THE FRIEDMAN TEST

USING THE Post-hoc PROCEDURE OF HOCHBERG

Average Rank pHochberg

NCSTAR-MA-CMA 1.93 –

NNET 3.23 7.12 · 10−3

SVR 3.23 7.12 · 10−3

MLP 3.36 7.12 · 10−3

MARS 4.53 2.94 · 10−7

AR 4.70 5.09 · 10−8

TABLE V

AMOUNT OF REGIMES PRESENT IN THE MODELS, AVERAGED

OVER ALL SERIES AND OVER TEN RUNS

Amount of Regimes

NCSTAR-BOX 5.467

NCSTAR 5.513

NCSTAR-MA-CMA 5.940

Another issue is the interpretability of the model. All the
NCSTAR building procedures produce the same kind of mod-
els, only the amount of regimes varies. The question is whether
the NCSTAR-MA-CMA procedure yields a comparable num-
ber of rules. Table V shows the results. The original proce-
dure generates on average 5.5 regimes, and NCSTAR-MA-
CMA produces with an average of 5.9 regimes approximately
0.4 regimes more than the original methods. We consider this
not to be a qualitative change in the interpretability, as an
average of up to nine fuzzy rules is considered interpretable
by human beings.

VII. CONCLUSION

We investigated the use of memetic algorithms within the
iterative NCSTAR building procedure. In every iteration, a
statistical test determines if a new regime is to be added, or
if the process should terminate. If a new regime is added,
the whole model is readjusted using the MA-CMA-Chains
algorithm. With the combination of a building procedure that
is well-founded on statistics, the possibility to interpret the
model as an FRBS, and the advanced optimization procedures,
we obtained a model that is flexible and robust in terms of
construction, interpretability, and accuracy.

The combination of the NCSTAR model with the
MA-CMA-Chains algorithm for optimization produces signif-
icantly more accurate results than the original methods.

Moreover, by using a powerful optimization algorithm,
NCSTAR is also competitive with other procedures commonly
employed in time series forecasting with machine learning
procedures. So, NCSTAR-MA-CMA is an algorithm that can
be used to build accurate and interpretable models for time
series.

REFERENCES

[1] G. Box and G. Jenkins, Time Series Analysis: Forecasting and Control.
San Francisco, CA: Holden-Day, 1970.

[2] S. F. Crone, M. Hibon, and K. Nikolopoulos, “Advances in forecasting
with neural networks? Empirical evidence from the NN3 competition
on time series prediction,” Int. J. Forecast., vol. 27, no. 3, pp. 635–660,
Jul.–Sep. 2011.

[3] L. C. Chang, P. A. Chen, and F. J. Chang, “Reinforced two-step-ahead
weight adjustment technique for online training of recurrent neural
networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 8, pp.
1269–1278, Aug. 2012.

[4] D. Li, M. Han, and J. Wang, “Chaotic time series prediction based on
a novel robust echo state network,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 23, no. 5, pp. 787–799, May 2012.

[5] W. Yan, “Toward automatic time-series forecasting using neural net-
works,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 7, pp. 1028–
1039, Jul. 2012.

[6] H. Tong, Non-Linear Time Series: A Dynamical System Approach
(Oxford Statistical Science). Oxford, U.K.: Clarendon Press, 1990.

[7] P. H. Franses and D. Van Dijk, Nonlinear Time Series Models in
Empirical Finance. Cambridge, U.K.: Cambridge Univ. Press, 2000.

[8] M. C. Medeiros and A. Veiga, “A flexible coefficient smooth transition
time series model,” IEEE Trans. Neural Netw., vol. 16, no. 1, pp. 97–
113, Jan. 2005.

[9] J. L. Aznarte and J. M. Benitez, “Equivalences between neural-
autoregressive time series models and fuzzy systems,” IEEE Trans.
Neural Netw., vol. 21, no. 9, pp. 1434–1444, Sep. 2010.

[10] J. L. Aznarte, M. C. Medeiros, and J. M. Benitez, “Linearity testing
for fuzzy rule-based models,” Fuzzy Sets Syst., vol. 161, no. 13, pp.
1836–1851, Jul. 2010.

[11] J. L. Aznarte, J. M. Benitez, and J. L. Castro, “Smooth transition autore-
gressive models and fuzzy rule-based systems: Functional equivalence
and consequences,” Fuzzy Sets Syst., vol. 158, no. 24, pp. 2734–2745,
Dec. 2007.

[12] J. L. Aznarte, M. C. Medeiros, and J. M. Benitez, “Testing for remaining
autocorrelation of the residuals in the framework of fuzzy rule-based
time series modelling,” Int. J. Uncertain., Fuzziness Knowl.-Based Syst.,
vol. 18, no. 4, pp. 371–387, 2010.

[13] J. Casillas, F. Herrera, R. Pérez, M. J. del Jesus, and P. Villar, “Special
issue on genetic fuzzy systems and the interpretability-accuracy trade-
off,” Int. J. Approx. Reason., vol. 44, no. 1, pp. 1–3, 2007.

[14] M .J. Gacto, R. Alcalá, and F. Herrera, “Interpretability of linguistic
fuzzy rule-based systems: An overview of interpretability measures,”
Inf. Sci., vol. 181, no. 20, pp. 4340–4360, 2011.

[15] J. M. Benitez, J. L. Castro, and I. Requena, “Are artificial neural
networks black boxes?” IEEE Trans. Neural Netw., vol. 8, no. 5, pp.
1156–1164, Sep. 1997.

[16] J. L. Castro, L. D. Flores-Hidalgo, C. J. Mantas, and J. M. Puche,
“Extraction of fuzzy rules from support vector machines,” Fuzzy Sets
Syst., vol. 158, no. 18, pp. 2057–2077, 2007.

[17] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing.
Berlin, Germany: Springer-Verlag, 2003.

[18] I. Triguero, S. García, and F. Herrera, “IPADE: Iterative prototype
adjustment for nearest neighbor classification,” IEEE Trans. Neural
Netw., vol. 21, no. 12, pp. 1984–1990, Dec. 2010.

[19] R. Rojas, Neural Networks: A Systematic Introduction. New York:
Springer-Verlag, 1996.

[20] C. Harpham, C. W. Dawson, and M. R. Brown, “A review of genetic
algorithms applied to training radial basis function networks,” Neural
Comput. Appl., vol. 13, no. 3, pp. 193–201, 2004.

[21] H. Du and N. Zhang, “Time series prediction using evolving radial
basis function networks with new encoding scheme,” Neurocomputing,
vol. 71, nos. 7–9, pp. 1388–1400, 2008.

[22] A. F. Sheta and K. De Jong, “Time-series forecasting using GA-tuned
radial basis functions,” Inf. Sci., vol. 133, nos. 3–4, pp. 221–228, 2001.



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2012 1847

[23] C. G. da Silva, “Time series forecasting with a non-linear model and the
scatter search meta-heuristic,” Inf. Sci., vol. 178, no. 16, pp. 3288–3299,
2008.

[24] V. M. Rivas, J. J. Merelo, P. A. Castillo, M. G. Arenas, and J. G. Castel-
lano, “Evolving RBF neural networks for time-series forecasting with
EvRBF,” Inf. Sci., vol. 165, nos. 3–4, pp. 207–220, 2004.

[25] N. Krasnogor and J. Smith, “A tutorial for competent memetic al-
gorithms: Model, taxonomy, and design issues,” IEEE Trans. Evol.
Comput., vol. 9, no. 5, pp. 474–488, Oct. 2005.

[26] H. Kita, “A comparison study of self-adaptation in evolution strategies
and real-coded genetic algorithms,” Evol. Comput., vol. 9, no. 2, pp.
223–241, 2001.

[27] D. Molina, M. Lozano, C. García-Martínez, and F. Herrera, “Memetic
algorithms for continuous optimisation based on local search chains,”
Evol. Comput., vol. 18, no. 1, pp. 27–63, 2010.

[28] J. J. Moré, “The Levenberg–Marquardt algorithm: Implementation and
theory,” in Proc. Biennial Conf. Numer. Anal., 1978, pp. 104-116.

[29] D. Whitley, “The GENITOR algorithm and selection pressure: Why
rank-based allocation of reproductive trials is best,” in Proc. 3rd Int.
Conf. Genet. Algorithms, 1988, pp. 116–121.

[30] L. J. Eshelman and J. D. Schaffer, “Real-coded genetic algorithm and
interval schemata,” in Proc. Found. Genet. Algorithms, 1993, pp. 187–
202.

[31] C. Fernandes and A. Rosa, “A study of non-random matching and
varying population size in genetic algorithm using a royal road function,”
in Proc. Congr. Evol. Comput., 2001, pp. 60–66.

[32] H. Mühlenbein and D. Schlierkamp-Voosen, “Predictive models for the
breeder genetic algorithm in continuous parameter optimization,” Evol.
Comput., vol. 1, pp. 25–49, Mar. 1993.

[33] N. Hansen and A. Ostermeier, “Adapting arbitrary normal mutation
distributions in evolution strategies: The covariance matrix adaptation,”
in Proc. IEEE Conf. Evol. Comput., May 1996, pp. 312–317.

[34] L. E. Blumenson, “A derivation of n-dimensional spherical coordinates,”
Amer. Math. Monthly, vol. 67, no. 1, pp. 63–66, Jan. 1960.

[35] A. S. Weigend and N. A. Gershenfeld, Time Series Prediction: Fore-
casting the Future and Understanding the Past. Reading, MA: Addison-
Wesley, 1994.

[36] J. D. Wichard, “Forecasting the NN5 time series with hybrid models,”
Int. J. Forecast., vol. 27, no. 3, pp. 700–707, 2011.

[37] S. E. Said and D. A. Dickey, “Testing for unit roots in autoregressive-
moving average models of unknown order,” Biometrika, vol. 71,
pp. 599–607, Nov. 1984.

[38] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, S. García,
L. Sánchez, and F. Herrera, “KEEL data-mining software tool: Data set
repository, integration of algorithms and experimental analysis frame-
work,” J. Multiple-Valued Logic Soft Comput., vol. 17, nos. 2–3, pp.
255–287, 2011.

[39] R. Development Core Team, A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Computing,
2009.

[40] A. F. Di Narzo, J. L. Aznarte, and M. Stigler. (2009). tsDyn: Time Series
Analysis Based on Dynamical Systems Theory [Online]. Available:
http://CRAN.R-Project.org/package=tsDyn

[41] C. Bergmeir, D. Molina, and J. M. Benítez. (2012). Con-
tinuous Optimization Using Memetic Algorithms with Local
Search Chains (MA-LS-Chains) in R [Online]. Available:
http://CRAN.RProject.org/package=Rmalschains

[42] W. N. Venables and B. D. Ripley, Modern Applied Statistics with S.
New York: Springer-Verlag, 2002.

[43] J. H. Friedman, “Multivariate adaptive regression splines,” Ann. Stat.,
vol. 19, pp. 1–67, Mar. 1991.

[44] C.-C. Chang and C.-J. Lin. (2001). LIBSVM: A Li-
brary for Support Vector Machines [Online]. Available:
http://www.csie.ntu.edu.tw/_cjlin/libsvm

[45] C. Bergmeir and J. M. Benítez, “Neural networks in R using the Stuttgart
neural network simulator: RSNNS,” J. Stat. Softw., vol. 46, no. 7, pp.
1–26, 2012.

[46] Y. Hochberg and D. Rom, “Extensions of multiple testing procedures
based on Simes’ test,” J. Stat. Plann. Inf., vol. 48, no. 2, pp. 141–152,
1995.

[47] S. García, A. Fernández, J. Luengo, and F. Herrera, “Advanced non-
parametric tests for multiple comparisons in the design of experiments
in computational intelligence and data mining: Experimental analysis of
power,” Inf. Sci., vol. 180, no. 10, pp. 2044–2064, 2010.



Memetic Algorithms with Local Search
Chains in R: The Rmalschains Package

C. Bergmeir, D. Molina, and J.M. Benítez. Memetic Algorithms with Local Search
Chains in R: The Rmalschains Package. Journal of Statistical Software, 2012, (sub-
mitted).

• Status: Submitted

• Impact Factor (JCR 2011): 4.010

• Subject category:

– COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS (3/99 Q1)

– STATISTICS & PROBABILITY (1/116 Q1)

57



JSS Journal of Statistical Software
MMMMMM YYYY, Volume VV, Issue II. http://www.jstatsoft.org/

Memetic Algorithms with Local Search Chains in R:

The Rmalschains Package

Christoph Bergmeir
University of Granada

Daniel Molina
University of Cádiz
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Abstract

Global optimization is an important field of research both in Mathematics and Com-
puter Sciences. It has applications in nearly all fields of modern Science and Engineering.
Memetic algorithms are powerful problem solvers in the domain of continuous optimiza-
tion, as they offer a trade-off between exploration of the search space using an evolu-
tionary algorithm scheme, and focused exploitation of promising regions with a local
search algorithm. In particular, we describe the memetic algorithms with local search
chains (MA-LS-Chains) paradigm, and the R package Rmalschains, which implements
it. MA-LS-Chains has proven to be effective compared to other algorithms, especially in
high-dimensional problem solving. In an experimental study, we explore the advantages
of using MA-LS-Chains in comparison to other optimization methods already available in
R.

Keywords: continuous optimization, memetic algorithms, MA-LS-Chains, R, Rmalschains.

1. Introduction

Global optimization, i.e., finding the inputs to a function that yield minimal/maximal out-
put, is an important mathematical problem with applications in nearly all fields of modern
science and engineering. Nowadays, as the functions to optimize are often complex and high-
dimensional, mathematical analysis may be difficult, costly or even impossible. In contrast,
computational power is abundant, and optimization has evolved to an important line of re-
search in Computer Sciences. Here, meta-heuristics are developed for general optimization
that treat the target function in a black-box manner, i.e., no preconditions or further infor-
mation is required, such as continuity, differentiability, or derivatives of the function.

One such meta-heuristic, which led to a vast amount of successful algorithms and implemen-
tations in the past years, is the evolutionary algorithm (EA) framework (Bäck, Fogel, and
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Michalewicz 1997). Here, a population of possible solutions is evolved by altering (mutation)
the solutions, and by letting them interact with each other (crossover). The candidate solu-
tions are evaluated for their fitness, and newly created solutions replace the solutions with
worst fitness, in order to converge around the region with best fitness. Using a population
allows EAs to perform good exploration of the search space, but sometimes they are not
capable of exploiting a promising region to reach the local optimum of that region. So, the
solutions they obtain are sometimes not accurate. Local search (LS) methods, on the other
hand, can improve very quickly a solution, but they are not able to explore a complex search
domain, as they have the tendency to get stuck in local optima.

Memetic algorithms (MA) (Moscato 1999; Krasnogor and Smith 2005) are a hybridization
between EA and LS methods, with the objective to take advantage of both the exploration
power of EAs and the exploitative power of the LS, therewith improving the overall results
(Goldberg and Voessner 1999). As not all solutions are equally good, MAs can obtain best
results if they apply the LS method with a higher intensity, i.e., using more evaluations, to
the most promising solutions, which are the ones with best fitness.

In this paper, we present the package Rmalschains for R (R Development Core Team 2009)
that implements various variants of the memetic algorithm with local search chains paradigm
(MA-LS-Chains) (Molina, Lozano, Garćıa-Mart́ınez, and Herrera 2010). MA-LS-Chains is
an MA whose main feature lies in its ability to apply the LS various times on the same
solution. The final state of the LS parameters after each LS application becomes the initial
point of a subsequent LS application over the same solution, creating an LS chain. This way,
MA-LS-Chains adapts the intensity of the LS to a solution in function of its quality.

The MA-LS-Chains algorithm family has proven to be very effective in continuous optimiza-
tion problems in the past. MA-SW-Chains, which employs the Solis-Wets’ algorithm (SW) for
LS, was the competition winner of CEC’2010 for high-dimensional optimization (Tang, Li, and
Suganthan 2010). MA-CMA-Chains, which employs the covariance matrix adaptation evolu-
tion strategy (CMAES) as LS (see Section 2), performed very well in the BBOB’2009 com-
petition (Hansen, Auger, Ros, Finck, and Poš́ık 2010), and also on the data of the CEC’2005
competition (Deb and Suganthan 2005; Garćıa, Molina, Lozano, and Herrera 2009); though
it did not take part in the official competition, it was evaluated using the same conditions in
Molina et al. (2010).

There is already a host of choices for continuous optimization methods that are readily avail-
able in R, Section 4 gives an overview. However, one important result in Computer Science
research on optimization is the “No Free Lunch” theorem (Wolpert and Macready 1997),
which states that there cannot be a general, non-problem specific optimization algorithm
that performs always better than all other methods. This is due to the fact that a method
which takes into account problem specific knowledge has the potential to perform better
than general methods. And though most optimization algorithms do not take into account
problem-specific knowledge explicitly, they are usually implicitly better/worse suited for cer-
tain types of problems. So, taking this into account together with the good performance of
MA-LS-Chains, especially for high-dimensional problems, we find it justified to present an-
other package for optimization to the R community. The Rmalschains package also performed
well in a recent study by Burns (2012), and in Section 5, we perform a comparison of our
package to other methods, with a focus on high-dimensional problems.

The algorithm is implemented in C++, and encapsulated in a library called librealea (Molina
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2012), so that it can also be used outside of R. Rmalschains uses Rcpp (Eddelbuettel and
François 2011) to make the functionality of librealea accessible from within R. The package
Rmalschains is available from the Comprehensive R Archive Network (CRAN) at http://

CRAN.R-project.org/package=Rmalschains. Also, the interested reader can find further
information on the state of the art of EAs on the thematic web site of our research group on
“Evolutionary Algorithms and other Metaheuristics for Continuous Optimization Problems”
(http://sci2s.ugr.es/EAMHCO/).

The remainder of this paper is structured as follows. Section 2 presents the theory of the
MA-LS-Chains algorithm, and Section 3 shows a brief example of the usage of the package.
Section 4 gives an overview on the other packages available in R for continuous optimiza-
tion, and Section 5 shows experiments comparing the methods already present in R with
Rmalschains. Section 6 concludes the paper.

2. The theory of the algorithm

In the following, we describe briefly the general scheme of the MA-LS-Chains algorithm and
its main components, i.e., the EA and the LS methods employed. For more details, the reader
may refer to Molina et al. (2010).

2.1. General scheme

The algorithm was designed with the idea that the LS should be applied with higher intensity
on the most promising regions. As promising regions, we consider the areas/regions where
solutions with good fitness are located.

MA-LS-Chains is a steady-state MA that is combined with different methods for the LS. It
uses a steady-state genetic algorithm (SSGA) as EA (Whitley 1989). Different from a gen-
erational algorithm, where the genetic operators are applied to large parts of the population
simultaneously, in a steady-state EA only single individuals are used at a time to generate
offspring, which replaces other single individuals of the population.

MA-LS-Chains allows for improving the same solution several times, thus creating an LS
chain. Also, it uses a mechanism to store the final state of the LS parameters along with
the solution, after each LS application. In this way, the final state of an LS application on a
solution can be used for the initialization of a subsequent LS application on the same solution,
continuing the LS.

The general algorithm is shown in Algorithm 1. After generating the initial population, in
a loop the following is executed: The SSGA is run with a certain amount of evaluations
nfrec. Then, the set SLS is built with the individuals of the population that have never
been improved by the LS, or that have been improved by the LS but with an improvement (in
fitness) superior to δmin

LS , where δmin
LS is a parameter of the algorithm (by default δmin

LS = 10−8).
If |SLS | 6= 0, the LS is applied with an intensity of Istr to the best individual in SLS . If SLS is
empty, the whole population is reinitialized except for the best individual which is maintained
in the population.

With this mechanism, if the SSGA obtains a new best solution, it should be improved by the
LS in the following application of the LS method.
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Algorithm 1 Pseudocode of MA-LS-Chains

1: Generate the initial population
2: while not termination-condition do
3: Perform the SSGA with nfrec evaluations
4: Build the set SLS of individuals which can be refined by LS
5: Pick the best individual cLS in SLS
6: if cLS belongs to an existing LS chain then
7: Initialize the LS operator with the LS state stored with cLS
8: else
9: Initialize the LS operator with the default LS parameters

10: end if
11: Apply the LS algorithm to cLS with Istr, giving crLS
12: Replace cLS by crLS
13: Store the final LS state with crLS
14: end while

2.2. The evolutionary algorithm

The SSGA applied is specifically designed to promote high population diversity levels by
means of the combination of the BLX − α crossover operator (Eshelman and Schaffer 1993)
with a high value for its associated parameter (we use a default of α = 0.5) and the negative
assortative mating (NAM) strategy (Fernandes and Rosa 2001). Diversity is favored as well
by means of the BGA mutation operator. The replacement strategy used is Replacement
Worst (RW) (Goldberg and Deb 1991). The combination NAM-RW produces a high selective
pressure.

Crossover: The BLX − α operator (Eshelman and Schaffer 1993) performs crossover in
the following way. Let a, b ∈ R be the respective numbers at the ith position of two indi-
viduals. Without loss of generality, we assume a < b. Using the distance d = b − a, the
outcome z of the crossover operation is a random number chosen uniformly from the in-
terval [a− d · α, b+ d · α]. It can be shown (Nomura and Shimohara 2001) that values of

α >
√
3−1
2 ≈ 0.366 yield a spread of the individuals in the distribution, whereas smaller values

of α lead to a concentration of the individuals.

Negative assortative mating Assortative mating means that the individuals which are
crossed are not chosen fully at random, but depending on their similarity. According to
whether crossing of similar or dissimilar individuals is favored, the strategy is called positive
or negative assortative mating. We use a mating strategy proposed by Fernandes and Rosa
(2001), which favors diversity in the population. The algorithm chooses 4 individuals, and
computes the similarity (in form of the Euclidean distance) between the first one and all others.
Then, the first individual and the individual with maximal distance from it are chosen for
mating.

Mutation: The BGA operator This is the operator of the breeder genetic algorithm
(BGA) (Mühlenbein and Schlierkamp-Voosen 1993). Its main purpose is to assure diversity
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in the population. Let c ∈ [a, b] be the value at the ith position of the individual subject to
mutation, with a, b ∈ R being the corresponding upper and lower domain bounds. Let r be
the mutation range, normally defined as 0.1 · (b−a). Then, a new value c′ for the ith position
of the chromosome, lying in the interval [c− r, c+ r], is computed in the following way:

c′ = c± r ·
15∑

k=0

αk2−k,

where addition or subtraction are chosen with a probability of 0.5, and the αk are chosen
as either zero or one, with a probability for one of p(αk = 1) = 1

16 . So, the probability of
generating a c′ in the neighborhood of c is very high.

The replacement worst strategy This is a standard replacement strategy, where the
worst individuals are replaced by better ones. It generates high selective pressure, so that
in combination with the negative assortative mating, many different solutions are generated
throughout the search, but only the best ones are kept in the population.

2.3. The local search method

Within the MA-LS-Chains paradigm, different methods for the LS can be used, depending
on the application. Usually, the CMAES strategy works best. But as the CMAES algorithm
does not scale well with the amount of parameters, for high-dimensional problems other LS
strategies, such as the Solis-Wets’ or the Subgrouping Solis-Wets’ solver are to be preferred
(Molina, Lozano, Sánchez, and Herrera 2011).

CMAES The CMAES algorithm (Hansen, Müller, and Koumoutsakos 2003) can be con-
sidered the state of the art in continuous optimization. Thanks to the adaptability of its
parameters, its convergence is very fast and obtains very good results. An implementation is
present in R in the package cmaes (Trautmann, Mersmann, and Arnu 2011). CMAES is an
algorithm that uses a distribution function to obtain new solutions, and adapt the distribution
around the best created solutions. The global scheme can be observed in Figure 1.

Its only parameters are the initial average of the distribution ~m and the initial σ. MA-CMA-
Chains sets the individual to optimize cLS as ~m, and as the initial σ value the half of the
distance of cLS to its nearest neighbor in the EA’s population.

Figure 1: Example of convergence of the CMAES algorithm.
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Solis-Wets’ algorithm The algorithm presented by Solis and Wets (1981) is a randomized
hill climber with adaptive step size. Starting from the current position cLS in the search
space, two candidate solutions are generated in the following way. Using a multivariate
normal distribution that has the same dimension as cLS and a standard deviation of ρ, a
sample is drawn and used as distance d to compute the candidate solutions cLS + d and
cLS −d. If the better one of the candidate solutions is better than cLS , cLS is updated to this
new solution and a success is recorded. If cLS is better than both of the candidate solutions,
cLS is not updated and a failure is recorded. After several successes/failures in a row, ρ is
increased/decreased. Furthermore, there is a bias term added, to put the search momentum
to regions that are promising. This term is continuously updated using its previous value and
d. For details, see Molina et al. (2010).

Subgrouping Solis-Wets’ In this adaptation to high-dimensional data of the Solis-Wets’
algorithm, a subgroup of the overall amount of parameters is chosen randomly, and then
optimized for a certain amount of evaluations (defined by the parameter maxEvalSubset).
Then, a new subset is chosen. In the current implementation, the subsets contain 20% of the
overall amount of variables.

Nelder-Mead downhill simplex This method, presented by Nelder and Mead (1965)
(see also Nelder and Singer (2009)), is a popular standard algorithm for optimization without
using derivatives. In R, it is the standard method of the optim function (Venables and Ripley
2002). Also, it is implemented in the packages neldermead (Bihorel and Baudin 2012), dfoptim
(Varadhan, University, Borchers, and Research. 2011), gsl (Hankin 2006), and nloptr (Johnson
2012). A simplex, which is the generalization of a triangle (in 2 dimensions), or a tetrahedron
(in 3 dimensions) in n dimensions, is entirely defined by n + 1 points. In this algorithm, in
an n-dimensional parameter space, the simplex is initialized using n+ 1 candidate solutions.
Then, the simplex is evolved according to the fitness of its vertices using the operations:
reflection (about the opposite face of the simplex), reflection and expansion, contraction,
and shrinkage. In this way, the simplex is moved “downhill” to find a local minimum of
the function. Motivated by this form of movement, the method is sometimes also called
the amoeba method (Press, Teukolsky, Vetterling, and Flannery 2007). The method needs
for initialization n + 1 candidate solutions. However, in MA-LS-Chains, there is only one
candidate solution cLS from which the LS is started. A common way to solve this problem
is to generate the n other candidate solutions from cLS as cLS + λiei, i = 1, . . . , n, with the
ei being unit vectors and λi a scaling factor for the respective parameter dimension, which is
usually set to one.

3. A simple example

We use minimization of the n-dimensional Rastrigin function as an example, which is a com-
mon benchmark in global optimization (Mühlenbein, Schomisch, and Born 1991). The func-
tion is defined as follows:

f(~x) = 10n+
n∑

i=1

(
x2i − 10 cos(2πxi)

)
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x1

x2

f(x1,x2)
Figure 2: The 2-dimensional Rastrigin function, in the [−5.12, 5.12]-interval of the two input
parameters.

It has a global minimum at f(~0) = 0. The cosine causes a lot of local optima, so that this
function is considered a difficult optimization problem. In R, it can be implemented as follows:

R> rastrigin <- function(x) 10 * length(x) + sum(x^2 - 10 * cos(2 * pi * x))

Figure 2 shows the 2-dimensional case for the input parameters in the [−5.12, 5.12]-interval.
The malschains function can then be used to minimize the function (for maximization, the
objective function would have to be inverted). For the 30-dimensional Rastrigin function, the
optimization is performed, e.g., with the following command:

R> res <- malschains(rastrigin, lower = seq(-5.12, -5.12, length = 30),

+ upper = seq(5.12, 5.12, length = 30),

+ maxEvals = 200000, trace = FALSE,

+ control = malschains.control(popsize = 50,

+ istep = 300, ls = "cmaes"))

LS: CMAESHansen: cmaes

CMAES::Neighborhood: 0.5

RatioLS: 0.500000

Istep: 300

LS::Effort: 0.500000

EA::MaxEval: 200000

Popsize: 50
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Time[ALG]: 670.00

Time[LS]: 2070.00

Time[MA]: 2750.00

RatioTime[ALG/MA]: 24.36

RatioTime[LS/MA]: 75.27

NumImprovement[EA]:41%

Here, the first parameter is the objective function, the parameters lower and upper define
the lower and upper bounds of the search space, and also define the amount of parameters
that the optimizer assumes the objective function to have. The parameter maxEvals defines
the maximal number of function evaluations that are to be used. The parameter trace is
used to control whether the output will be verbose or not. Finally, the control parameter
can be used to define parameters of the optimization method itself. In the example, we use
the parameter popsize to set the population size of the EA, the parameter istep to set the
amount of function evaluations within each run of the LS, and the parameter ls, to set the
type of LS to use.

In this configuration, i.e., with trace = FALSE, the output indicates the type of LS, the
parameters applied, the time that was spent for both EA and LS, and the improvement that
was achieved with the EA as a percentage of the total improvement.

The solution is a list containing the individual with the lowest objective function (called sol),
and its fitness:

R> res

$fitness

[1] 9.689643e-09

$sol

[1] 1.636650e-06 -1.747430e-07 -9.084372e-07 1.413892e-06

[5] -1.416422e-06 -1.604717e-06 3.015395e-07 -4.882431e-07

[9] -9.831059e-07 -1.982626e-06 1.193813e-07 -3.979552e-07

[13] -1.356330e-06 -4.948536e-07 -1.410579e-07 7.184787e-07

[17] -2.792303e-06 -2.515960e-06 1.019090e-06 1.250221e-06

[21] -3.079762e-07 -2.549811e-06 3.145459e-07 -2.071679e-06

[25] -9.839809e-07 -1.692443e-07 -1.455749e-07 7.567179e-07

[29] -4.598565e-07 1.090013e-06

It can be seen, that the solution is near to the global optimum of zero both for all values of
the solution and the fitness.

4. Other packages in R for continuous optimization

Throughout the last years, a rich variety of packages in R for optimization was developed. A
constantly updated overview is provided at the “CRAN Task View: Optimization and Mathe-
matical Programming” (http://cran.r-project.org/web/views/Optimization.html). In
the following, we present methods from the section “General Purpose Continuous Solvers” of
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that task view, in which our package is also present. Some packages are omitted in the follow-
ing overview because they are not applicable in our context or because they are very similar
to other packages (e.g., there are various implementations of the Nelder-Mead method). The
following non-population-based methods are present:

• The optim function (Venables and Ripley 2002) from the stats package is the standard
optimization function in R. It implements a number of LS methods, like the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method, a box-constrained version of it, called L-
BFGS-B, simulated annealing, the Nelder-Mead method, and a conjugate-gradient al-
gorithm.

• The package dfoptim (Varadhan et al. 2011) implements derivative-free optimization
algorithms. Concretely, the Nelder-Mead and the Hooke-Jeeves algorithms are imple-
mented. The Nelder-Mead algorithm can be used within our package as the LS.

• The package minqa (Bates, Mullen, Nash, and Varadhan 2012) implements derivative-
free optimization methods using quadratic approximation. Within the package, the
function bobyqa implements the algorithm of Powell (2009).

• Rsolnp (Ghalanos and Theussl 2011) uses a nonlinear augmented Lagrange multiplier
method solver, based on sequential quadratic programming (SQP), for optimization.

• The package GenSA (Yang Xiang, Gubian, Suomela, and Hoeng 2011) implements
generalized simulated annealing (Tsallis and Stariolo 1996).

• The package cmaes (Trautmann et al. 2011) implements the CMAES algorithm, which
we use as an LS algorithm, and presented in Section 2.3.

And there are also some implementations of population-based methods:

• The packages DEoptim, and RcppDE (Mullen, Ardia, Gil, Windover, and Cline 2011;
Ardia, Boudt, Carl, Mullen, and Peterson 2011) implement differential evolution (DE),
an EA that uses difference vectors of the individuals for crossover and mutation (Price,
Storn, and Lampinen 2005). RcppDE is a reimplementation of DEoptim in C++ using
the package Rcpp, in order to achieve shorter computation times. The packages yield
the same results in terms of accuracy.

• The package rgenoud (Mebane Jr. and Sekhon 2011) implements a genetic algorithm
that is also able to use an LS algorithm for improvement of single individuals. The LS
employed is the BFGS algorithm. It is applied after each iteration to the individual
with the best fitness or used as a genetic operator.

• The package PSO (Bendtsen 2006) implements a particle swarm optimization (PSO),
known as Standard PSO 2007 (SPSO-07)1.

5. Experimental study: Comparison with other algorithms

1http://www.particleswarm.info/Programs.html
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In this section, we compare Rmalschains with the packages discussed in Section 4. The
comparison is performed using a benchmark which contains 19 scalable objective functions
with different characteristics. Our analysis considers accuracy and execution time of the
methods with a fixed amount of function evaluations. Accuracy measures directly the quality
of the solution, and may be considered the primary criterion to assess performance of a
method. But execution time may be critical as well, in the sense that application of many
methods is not feasible if problem dimension and complexity grow. Experiments are performed
in different use cases, with medium-, and high-dimensional data, to analyze the behavior of the
methods in detail, especially regarding the high-dimensional use case. Results are presented
as diagrams, showing execution time and ranking of average accuracy, and as statistical tests
assessing the significance of the results obtained for accuracy.

5.1. Test suite and experimental conditions

We use the well-known benchmark of Lozano, Molina, and Herrera (2011), which is especially
good to test the scalability of the algorithms. This test set is composed of 19 scalable function
optimization problems (also see http://sci2s.ugr.es/eamhco/testfunctions-SOCO.pdf):

• 6 Functions: F1 − F6 of the CEC’2008 test suite. A detailed description may be found
in Tang (2008).

• 5 Shifted Functions: Schwefel’s Problem 2.22 (F7), Schwefel’s Problem 1.2 (F8), Ex-
tended f10 (F9), Bohachevsky (F10), and Schaffer (F11).

• 8 Hybrid Composition Functions (F12 − F19): These functions are non-separable func-
tions built by combining two functions belonging to the set of functions F1 − F11.

In the comparison, we follow the guideline proposed by the authors of the benchmark. We
apply the test suite for dimensions 2, 10, 30, 50, 100, 200, 500, 1000. We consider the cases
with dimensions 2, 10, 30, and 50 as low-dimensional problems, the cases with dimensions
100 and 200 as medium-dimensional problems, and the cases with dimensions 500 and 1000
as high-dimensional problems. Each algorithm is run 25 times for each test function, and the
average error, with respect to the known global optimum, is obtained. Each run stops when
a maximum of fitness evaluations is reached, called MaxFES, depending on the dimension D
in the following way: MaxFES= 5000 ·D.

To use a MaxFES instead of a maximum iteration number allows us to make a fair compar-
ison between optimization methods that have a very different structure. Unfortunately, for
several of the considered packages (rgenoud, cmaes, DEoptim, RcppDE), only the maximum
of iterations can be defined, but not a MaxFES. In these cases, we count the number of fitness
evaluations, and we return the best solution of the first MaxFES evaluations. Then, we use
the callCC function from the base package to stop the algorithm.

The experiments are performed on a Sun Grid Engine (SGE) cluster. Parallelization is per-
formed in the way that the different algorithms are run sequentially on the benchmark func-
tions, and execution of different algorithms is parallelized. The nodes of the cluster have
each an Intel(R) Core(TM) i7 CPU with a frequency of 2.80 GHz, and 24 GB of RAM.
We establish the following limits: One R session (one algorithm executed with a particular
dimension on all benchmarks 25 times) is limited to 6 GB of RAM, and a maximal global
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execution time of 10 days. This is approx. 30 min for every execution of one algorithm, and
seems reasonable taking into account that computation of the fitness within the benchmark
functions is considerably less expensive than in usual real-world problems.

5.2. Parameters and used methods

The aim of this work is to make a comparison between different packages on CRAN that can
be used for optimization. In order to simulate the most general use of the packages, we have
decided to compare the results using the packages in the most simple and straightforward
way, which is with their default parameters.

The only parameter that we define for the benchmark is the population size, as usually this
parameter should be adapted in function of the dimensionality, and maintaining constant this
parameter for all dimensions could result in degeneration of the method’s errors. According
to the authors of the test suite (Lozano et al. 2011), this parameter is set to min(10 ·D, 100)
for algorithms involving a population like DE and PSO.

The functions optim and malschains apply an improvement method indicated as a parameter
from a predefined list. We apply optim using the BFGS and L-BFGS-B algorithms, and our
function malschains using CMAES (the default method), and SW (the Solis-Wets’ solver),
because it is a more adequate method for higher dimensional problems, due to its lower com-
putation time. These methods will be called in the following optim_BFGS, optim_L-BFGS-B,
malschains_cmaes, and malschains_sw. All other applied methods have the same name as
their respective packages/functions, namely bobyqa (from the package minqa), cmaes, DEop-
tim, RcppDE, dfoptim, PSO, and Rsolnp. The packages rgenoud and GenSA are not included,
because their memory requirements prevented obtaining results for dimensions greater than
30.

Some packages require an initial solution, for these algorithms we generate a solution randomly
within the parameter domains (using function runif), and pass this initial solution to these
functions.

5.3. Results in average error

In this section, we study the average error for medium dimension (D ≤ 200). Results with
higher dimensions (up to 1000) are analyzed in Section 5.5. For each function we rank the
algorithms according to the average error. The algorithms with best results have the lowest
ranks.

Figure 3 shows the average ranking for all the algorithms considered for dimension ≤ 100.
The lower the ranking, the better the algorithm. An interesting conclusion we can draw from
the figure is that DEoptim (and with the same results RcppDE) is initially the algorithm with
best results, but with increasing dimensionality, the algorithm performs worse. With respect
to our package, we can observe that the Rmalschains methods perform best for dimension 50
and greater. The packages PSO and cmaes also perform well.

Figure 4 shows the results for dimensions 10, 50, 100, and 200. Methods malschains_cmaes

and cmaes are omitted here, as their execution time reached the established limit. As rankings
are computed, it is not possible to omit the algorithms only in the higher dimensions, which
is why the results are presented here again also for the lower dimensions. In Figure 4 we
can observe that malschains_sw obtains the best results, while the performance of DEoptim
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Figure 3: Average ranking for algorithms and dimension ≤ 100.

Figure 4: Average ranking for algorithms and dimension ≤ 200.

decreases very quickly as the dimension grows.
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Figure 5: Average computation time for each package (in ms, log scale).

5.4. Analysis of computation time

Though computation time depends greatly on implementation details (e.g., if everything is
implemented in pure R, or if C or C++ code is used), from a user perspective, when a package
has to be chosen for a concrete application, such an analysis can be very valuable.

For each package and function we run once the optimization function and we measure its
computation time (using the microbenchmark package (Mersmann 2011)) removing every
I/O operation (by function capture.output from the utils package). Table 1 shows the
average computation time in milliseconds. This is graphically illustrated in Figure 5 (note
that in the analysis of computation time DEoptim and RcppDE are shown separately).

Figure 5 shows that optim algorithms are the fastest, and cmaes is the slowest method for
higher dimensions. PSO has an average computation time, and it is the algorithm whose run-
ning time increases the least with the dimension. The malschains_cmaes algorithm has the
same increasing ratio as cmaes but it maintains for dimension ≤ 100 a moderate computation
time (in dimension 100, 47 seconds on average against the 28 minutes of cmaes).

5.5. Scalability

Many real problems require optimization of large numbers of variables. Thus, an important
aspect of an algorithm is its scalability. Unfortunately, many algorithms have serious limita-
tions in the number of dimensions they can handle. The main reason is usually the increasing
computation time (as it can be seen in Section 5.4), but there are others, such as memory
requirements, program errors, or accumulated error with the dimension.

In this section, we study the scalability of the different packages. First, we identify the



14 MA-LS-Chains in R: Rmalschains

A
lg

o
rith

m
\
D

im
5

1
0

3
0

50
10

0
200

500
1000

b
o
b
y
q
a

2
.0

8
6
.3

4
94.0

3
81

1.94
1827

0.6
3

254440.10
-T

-
–

D
E

o
p

tim
4
0
2
.3

0
7
7
0
.4

5
2
7
27.2

2
513

8.34
1297

2.3
6

37580.78
177020.90

656181.60

R
cp

p
D

E
2
8
7
.8

3
3
2
2
.0

6
1
0
44.5

6
251

5.88
491

7.3
5

14383.89
85628.93

361631.10

cm
a
es

3
9
3
.1

5
2
6
7
1
.9

8
2
0
7
86.8

0
10211

3.30
169543

0.0
0

-T
-

–
–

d
fo

p
tim

9
.5

1
2
2
.2

6
59.0

7
10

0.07
59

2.7
4

1809.29
4615.43

58617.32

m
a
lsch

a
in

s
cm

a
es

4
4
.8

5
1
3
7
.6

9
8
88.9

5
718

8.50
4723

7.2
0

352899.50
-T

-
–

m
a
lsch

a
in

s
sw

2
9
.1

4
1
0
8
.0

8
4
40.3

2
108

5.85
569

3.4
8

17961.84
121082.20

570921.00

o
p
tim

B
F

G
S

1
.8

5
3
.6

1
36.6

6
8
8.57

46
2.2

8
3144.69

11872.38
-E

-

o
p
tim

L
-B

F
G

S
-B

1
.7

7
4
.0

1
61.9

4
9
3.80

40
4.2

1
1887.32

-E
-

–

P
S

O
1
2
0
0
.4

8
1
4
2
7
.2

2
2
0
02.2

8
261

1.18
393

4.6
3

6655.85
15833.53

35383.74

R
so

ln
p

4
3
5
.3

1
5
1
7
.6

1
9
57.7

3
137

3.02
330

5.1
9

9321.46
-T

-
–

rg
en

o
u

d
3
9
6
9
5
.3

8
-M

-
–

–
–

–
–

–

G
en

S
A

2
1
6
.6

2
5
3
7
.9

5
-M

-
–

–
–

–
–

T
a
b
le

1
:

T
im

e
(in

m
s)

fo
r

ea
ch

o
p

tim
iza

tio
n

p
a
ckage.

T
h
e

d
iff

eren
t

errors
are:

T
:

tim
e

lim
it

w
as

reach
ed

.
M

:
m

em
ory

lim
it

w
as

rea
ch

ed
.

E
:

p
ro

g
ra

m
ex

ited
w

ith
erro

r.



Journal of Statistical Software 15

Figure 6: Average ranking for scalable algorithms and dimension ≤ 1000.

Figure 7: Average computation time for large dimension(in ms, log scale).

packages that have scalability problems, considering Table 1:
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• The package rgenoud is not scalable, as it reaches the established memory limit for
dimension 10. Furthermore, the average computation time for dimension 5 is 39 seconds,
when the average of the other algorithms is only around 200 milliseconds.

• The package bobyqa is not scalable for higher dimensions, as it reaches the established
limit of computation time.

• The package GenSA is not scalable by memory requirement from dimension 30 onward.

• Package cmaes with its default parameters is not very scalable, since the computational
complexity of the CMAES algorithm is O(n3). From dimension 10 on it is the slowest
algorithm, and reaches the time limit at dimension 200.

• Package Rmalschains with the cmaes method requires a lower computation time than
cmaes, but with a similar increasing velocity.

• Although optim is the function with the lowest computation time for the majority of
dimension values, for higher dimensions, namely 500 with method BFGS and 1000 with
method L-BFGS-B, it terminates with an error message (“initial value of ‘vmmin’ not
finite”).

• Though in Table 1 it seems that package Rsolnp is not too expensive, it takes a variable
computing time, and the overall computations for dimension ≥ 200 was not finished
within the established time limits.

In terms of accuracy, Figure 6 shows the ranking for the algorithms that could be executed
up to dimension 1000. We can observe that malschains_sw obtains the best results for high
dimensional problems.

Results for the execution time are shown in Figure 7. We can observe that the differences in
time between the majority of algorithms, except PSO and dfoptim, are very similar. dfoptim
is the algorithm with lowest computation time, but taking into account its fast increase in
computation time, it probably performs similar as the other methods for dimensions higher
than 1000. PSO is the algorithm that maintains the lowest increase in computation time with
the dimension.

5.6. Statistical analysis of the results on accuracy

So far we performed graphical analyses of the results. In this section, we complement the
analysis of the accuracy using statistical tests, to confirm that the differences found so far are
“real”, i.e., unlikely to be generated by pure chance.

For the comparisons we use the non-parametric test framework presented by Derrac, Garćıa,
Molina, and Herrera (2011). In particular, we use Friedman’s test for detecting if the differ-
ences are statistically relevant. Then, we apply the post-hoc Holm’s test to compare which
algorithms are statistically worse than the best one.

First, we apply Friedman’s test. Results are in Table 2, and we can observe that in all cases
there are statistically significant differences, on a significance level of α = 0.01.

Because there are statistically significant differences, we apply the Holm’s test against the
best algorithm. Table 3 shows the results for dimensions 2 and 10 against DEoptim, the
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Dimension Test value #Algorithms p value Hypothesis

2 8.475 10 8.967e-9 Rejected
10 6.497 10 7.470e-7 Rejected
30 3.611 10 0.00076 Rejected
50 3.159 10 0.00243 Rejected

100 3.947 9 0.00326 Rejected
200 4.195 9 0.00353 Rejected
500 3.947 5 0.00326 Rejected

1000 12.307 4 1.015e-5 Rejected

Table 2: Results of Friedman’s test for different dimensions, significance level α = 0.01

Algorithm z = (R0 −Ri)/SE p value α/i Hypothesis

Dimension 2

bobyqa 5.7598 8.419E-09 0.00556 Rejected
dfoptim 5.3044 1.130E-07 0.00625 Rejected
optim L-BFGS-B 4.7954 1.623E-06 0.00714 Rejected
optim BFGS 4.0185 5.857E-05 0.00833 Rejected
malschains sw 3.9381 8.212E-05 0.01000 Rejected
cmaes 3.6970 0.0002 0.01250 Rejected
malschains cmaes 2.7594 0.0058 0.01667 Rejected
Rsolnp 2.5718 0.0101 0.02500 Rejected

PSO 1.7146 0.0864 0.05000 Not Rejected

Dimension 10

bobyqa 4.9026 9.459E-07 0.00556 Rejected
dfoptim 4.3668 1.261E-05 0.00625 Rejected
optim L-BFGS-B 3.9649 7.342E-05 0.00714 Rejected
optim BFGS 3.4827 0.0005 0.00833 Rejected
Rsolnp 3.4023 0.0007 0.01000 Rejected
cmaes 3.3487 0.0008 0.01250 Rejected

malschains sw 1.6342 0.1022 0.01667 Not Rejected
malschains cmaes 1.5806 0.1140 0.02500 Not Rejected
PSO 1.1788 0.2385 0.05000 Not Rejected

Table 3: Results of the Holm’s test for dimension using DEoptim as reference algorithm,
significance level α = 0.05

algorithm with best ranking for these dimensions. DEoptim is significantly better than the
other algorithms except PSO and, for dimension 10, the Rmalschains methods. For dimensions
30, 50, and 100, malschains_sw is the best algorithm. Table 4 shows the results of Holm’s
test. We can see that malschains_sw is significantly better than bobyqa, dfoptim, and the
optim methods.

Table 5 shows the results for higher dimensions, namely dimensions 200, 500, and 1000, for the
algorithms that were applicable in these dimensions. We can see that malschains_sw is the
best algorithm, significantly better than DEoptim, bobyqa, dfoptim, and PSO for dimensions
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Algorithm z = (R0 −Ri)/SE p value α/i Hypothesis

Dimension 30, malschains sw as reference algorithm

bobyqa 3.9113 9.179E-05 0.00556 Rejected
dfoptim 3.3220 0.0009 0.00625 Rejected
optim L-BFGS-B 2.8397 0.0045 0.00714 Rejected

optim BFGS 2.5183 0.0118 0.00833 Not Rejected
Rsolnp 2.4111 0.0159 0.01000 Not Rejected
cmaes 1.7681 0.0770 0.01250 Not Rejected
PSO 1.3395 0.1804 0.01667 Not Rejected
DEoptim 0.8037 0.4216 0.02500 Not Rejected
malschains cmaes 0.6430 0.5203 0.05000 Not Rejected

Dimension 50, malschains cmaes as reference algorithm

bobyqa 3.8578 0.0001 0.00556 Rejected
optim BFGS 2.8397 0.0045 0.00625 Rejected
optim L-BFGS-B 2.7326 0.0063 0.00714 Rejected

dfoptim 2.4647 0.0137 0.00833 Not Rejected
Rsolnp 2.3575 0.0184 0.01000 Not Rejected
cmaes 1.6610 0.0967 0.01250 Not Rejected
DEoptim 1.5538 0.1202 0.01667 Not Rejected
PSO 1.2859 0.1985 0.02500 Not Rejected
malschains sw 0.2679 0.7888 0.05000 Not Rejected

Dimension 100, malschains sw as reference algorithm

bobyqa 4.1257 3.697E-05 0.00556 Rejected
DEoptim 3.8042 0.0001 0.00625 Rejected
dfoptim 2.8397 0.0045 0.00714 Rejected

optim BFGS 2.5183 0.0118 0.00833 Not Rejected
optim L-BFGS-B 2.3575 0.0184 0.01000 Not Rejected
Rsolnp 2.1432 0.0321 0.01250 Not Rejected
cmaes 1.8753 0.0608 0.01667 Not Rejected
PSO 1.6610 0.0967 0.02500 Not Rejected
malschains cmaes 0.3751 0.7076 0.05000 Not Rejected

Table 4: Results of the Holm’s test for dimension, significance level α = 0.05

200 or 500, and significantly better than DEoptim for dimension 1000.

In summary, for dimension ≥ 30, Rmalschains offers the best results. Especially for higher
dimensions, i.e., dimension ≥ 100, malschains_sw does not only scale well, but also achieves
the best results in terms of accuracy.

6. Conclusions

MA-LS-Chains is an algorithm framework of memetic algorithms with local search chains.
It uses a steady-state genetic algorithm in combination with an LS method. Different LS
methods are implemented. The algorithm chooses the individual on which to run the LS on
according to its fitness and its possibility to be enhanced with the LS. The LS is run for a fixed
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Algorithm z = (R0 −Ri)/SE p value α/i Hypothesis

Dimension 200

DEoptim 4.0872 4.366E-05 0.00625 Rejected
bobyqa 3.4356 0.0006 0.00714 Rejected
PSO 2.7248 0.0064 0.00833 Rejected

dfoptim 2.4879 0.0129 0.01000 Not Rejected
optim BFGS 2.1325 0.0330 0.01250 Not Rejected
Rsolnp 1.8363 0.0663 0.01667 Not Rejected
optim L-BFGS-B 1.7178 0.0858 0.02500 Not Rejected
malschains cmaes 0.2369 0.8127 0.05000 Not Rejected

Dimension 500

DEoptim 5.0273 4.974E-07 0.01250 Rejected
dfoptim 2.5649 0.0103 0.01667 Rejected
PSO 2.4623 0.0138 0.02500 Rejected

optim BFGS 1.7442 0.0811 0.05000 Not Rejected

Dimension 1000

DEoptim 4.6493 3.331E-06 0.01667 Rejected

PSO 1.8848 0.0595 0.02500 Not Rejected
dfoptim 1.2566 0.2089 0.05000 Not Rejected

Table 5: Results of the Holm’s test for high dimension using malschains_sw as reference
algorithm, significance level α = 0.05

number of iterations, with the possibility to be continued on in a later stage of the algorithm.
The algorithm is very effective, especially in high-dimensional problems. This was proven in
various optimization competitions, and in our experiments. We presented an implementation
in R, thus making the algorithm available to the R community and facilitating its use in
general. We performed a rigorous experimental study comparing it to other general purpose
optimizers already available in R, both with respect to quality of the results, as with respect
to execution time. The study proved the good performance of the algorithm, especially in
higher-dimensional problems.

Acknowledgements

This work was supported in part by the Spanish Ministry of Science and Innovation (MICINN)
under Project TIN-2009-14575. C. Bergmeir holds a scholarship from the Spanish Ministry
of Education (MEC) of the “Programa de Formación del Profesorado Universitario (FPU)”.

References

Ardia D, Boudt K, Carl P, Mullen KM, Peterson BG (2011). “Differential Evolution with
DEoptim.” The R Journal, 3(1), 27–34.
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Department of Computer Science and Artificial Intelligence,
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Abstract

Neural networks are important standard machine learning procedures for classification
and regression. We describe the R package RSNNS that provides a convenient interface
to the popular Stuttgart Neural Network Simulator SNNS. The main features are (a) en-
capsulation of the relevant SNNS parts in a C++ class, for sequential and parallel usage
of different networks, (b) accessibility of all of the SNNS algorithmic functionality from
R using a low-level interface, and (c) a high-level interface for convenient, R-style usage
of many standard neural network procedures. The package also includes functions for
visualization and analysis of the models and the training procedures, as well as functions
for data input/output from/to the original SNNS file formats.

Keywords: neural networks, SNNS, R, RSNNS.

1. Introduction

This paper presents the package RSNNS (Bergmeir and Beńıtez 2012) that implements an
R (R Development Core Team 2011) interface to the Stuttgart Neural Network Simulator
(SNNS, Zell et al. 1998). The SNNS is a comprehensive application for neural network model
building, training, and testing. Today it is still one of the most complete, most reliable,
and fastest implementations of neural network standard procedures. The main advantages
of RSNNS, rendering it a general purpose comprehensive neural network package for R, are
threefold. (a) The functionality and flexibility of the SNNS kernel is provided within R.
(b) Convenient interfaces to the most common tasks are provided, so that the methods of
SNNS integrate seamlessly into R, especially with respect to the scripting, automation, and
parallelization capabilities of R. Finally, (c) enhanced tools for visualization and analysis of
training and testing of the networks are provided.

The RSNNS is available from the Comprehensive R Archive Network (CRAN) at http:
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//CRAN.R-project.org/package=RSNNS. Moreover, a web page including fully detailed ex-
amples of usage at different abstraction levels and further information is available at http:

//sci2s.ugr.es/dicits/software/RSNNS.

The remainder of this paper is structured as follows. Section 2 describes the main features of
the SNNS software, together with references to general introductions to neural networks and to
original publications. Section 3 presents the general software architecture and implementation
details of the package. Section 4 presents the high-level interface of the package. Section 5
gives an overview of the included example datasets, and Section 6 shows some examples for the
usage of the package. Section 7 compares the presented package with packages and solutions
yet available in R, and discusses strengths and limitations. Finally, Section 8 concludes the
paper.

2. Features of the original SNNS software

SNNS consists of three main components: a simulation kernel, a graphical user interface
(GUI), and a set of command line tools. It was written for Unix in C and the GUI uses X11.
Windows ports exist. SNNS was developed at University of Stuttgart and is now maintained at
University of Tübingen. The last version where the authors added new functionality is version
4.2 that was released in 1998. In 2008, version 4.3 was released, which includes some patches
contributed by the community (http://developer.berlios.de/projects/snns-dev/) that
mainly add a Python wrapping. Furthermore, in this version a license change was performed
from a more restrictive, academic license to the Library General Public License (LGPL).

To the best of our knowledge SNNS is the neural network software that supports the highest
number of models. The neural network types implemented differ greatly in their manner
of operation, their architecture, and their type of learning. As giving a comprehensive in-
troduction to neural networks in general or detailed descriptions of the methods’ theories is
beyond the scope of this paper, we give a brief overview of the methods present in SNNS
in the following, together with references to the original literature. Various comprehensive
introductions to neural networks exist, to which the interested reader may refer, e.g., Rojas
(1996) covers many of the neural networks implemented in SNNS. Haykin (1999) and Bishop
(2003) also give comprehensive introductions, and Ripley (2007) gives a good introduction
from a statistical point of view.

Network architectures implemented in SNNS contain multi-layer perceptrons (MLP, Rosen-
blatt 1958), recurrent Elman-, and Jordan networks (Elman 1990; Jordan 1986), radial basis
function networks (RBF, Poggio and Girosi 1989), RBF with dynamic decay adjustment
(Berthold and Diamond 1995; Hudak 1993), Hopfield networks (Hopfield 1982), time-delay
neural networks (Lang et al. 1990), self-organizing maps (SOM), associative memories, learn-
ing vector quantization networks (LVQ, Kohonen 1988), and different types of adaptive res-
onance theory networks (ART, Grossberg 1988), namely ART1 (Carpenter and Grossberg
1987b), ART2 (Carpenter and Grossberg 1987a), and ARTMAP (Carpenter et al. 1991) nets.
It implements a wide variety of initialization, learning, update, activation, and pruning func-
tions, adding up to more than 270 in total. For example, update functions allow serial, ran-
domized, topologically ordered, or synchronous update of the units. The adaptive resonance
theory networks can be trained step-wise or directly until they reach a stable state. Learning
functions include standard backpropagation, backpropagation with momentum term, back-
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propagation through time (BPTT, Rumelhart et al. 1986), Quickprop (Fahlman 1988), re-
silient backpropagation (Riedmiller and Braun 1993; Riedmiller 1994), backpercolation (Jurik
1994), (recurrent) cascade-correlation (Fahlman and Lebiere 1990; Fahlman 1991), counter-
propagation (Hecht-Nielsen 1987), scaled conjugate gradient (Møller 1993), and TACOMA
learning (Lange et al. 1994). Activation functions include many activation functions common
in neural networks, such as different step functions, the logistic and tanh functions, the linear
function, the softmax function, etc. An example of a pruning function implemented is optimal
brain damage (OBD, Cun et al. 1990). For a comprehensive overview of all functions along
with explanations of their parameters, as well as some theoretical background, we refer to Zell
et al. (1998), and Zell (1994).

The GUI offers tools for easy development and precise control of topologies, learning and
analyzing processes. Finally, some additional functionality is scattered along a set of command
line tools which for example allow to create networks, convert networks to standalone C code,
or to perform some analysis tasks.

3. Package architecture and implementation details

RSNNS provides convenient access to the major part of the SNNS application. To achieve
this, the SNNS kernel and some parts of the GUI code for network generation (see Section 3.1)
were ported to C++ and encapsulated in one main class. All code is included in a library,
which ships with RSNNS. We call this fork of SNNS (as well as its main class) SnnsCLib

throughout this paper and the software. To make the SnnsCLib functionality accessible from
within R, the package Rcpp (Eddelbuettel and François 2011) is used. The SnnsCLib class
has an equivalent S4 class in R, called SnnsR: the low-level interface of the package. As
SnnsR can be used to access directly the kernel API (called “krui” within SNNS), all of the
functionality and flexibility of the SNNS kernel can be taken advantage of. But, as it maps
C++ functions directly, its usage might seem unintuitive and laborious to R programmers.
Therefore, a high-level R interface is present by the S3 class rsnns and its subclasses. This
interface provides an intuitive, easy to use, and still fairly flexible interface so that the most
common network topologies and learning algorithms integrate seamlessly into R. All of these
components are detailed in the remainder of this section.

3.1. The SNNS fork SnnsCLib

SNNS is written as pure C code. It can only manage one neural network at a time that is
represented as a global state of the program. Porting it to C++ and encapsulating it in a
class bears the advantage that various instances can be used sequentially or in parallel. The
code basis of SnnsCLib is the SNNS version 4.3 with a reverse-applied Python patch1. All
code from the SNNS kernel and some code taken from the GUI to create networks of different
architectures (within SNNS known as the “bignet” tool)2 was copied to the src folder of the

1The patch prepares SNNS for Python wrapping, which is not needed in our context. Furthermore, it caused
some problems during the porting to C++. So we decided to reverse-apply it, so that everything included in
the patch was removed from the source.

2There is a tool in SNNS that assists in network generation, the so-called bignet tool. Though this tool is
located within the source code of the GUI, there are a lot of important functions for network generation that
depend strongly on kernel functionality and whose only connection to the GUI is, that they receive some input
from there. These functions were also included in SnnsCLib.
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package. SNNS has header files with a file name extension of .h, containing public function
declarations, and others with a file name extension of .ph, the private headers. These were
merged into one .h file, each. The body file extensions were renamed from .c to .cpp. As all
code is to be encapsulated in one C++ class, the merged .h files are included (with #include)
in the private section of the SnnsCLib class definition. This procedure has the advantage that
in the original code relatively few things had to be changed: In the header files, the changes
mainly include removal of static keywords and the moving of variable initializations to the
constructor of SnnsCLib. As these variables are not anymore initialized automatically to zero,
variable initializations for all variables of this type were added. In the body files, (a) SNNS-
internal includes were substituted with an include of SnnsCLib.h, (b) static variables within
functions were turned into member variables of SnnsCLib, (c) all function declarations were
changed to declarations of member functions of SnnsCLib, and (d) calls to the function table
are now done using the this pointer and C++ -style function pointers.

3.2. The R low-level interface class and C++ wrapping

To use the SnnsCLib functionality from R we employ Rcpp. Every function from SnnsCLib

has a corresponding wrapper function, e.g., the wrapper for the function to set the current
learning function setLearnFunc is implemented as follows:

RcppExport SEXP SnnsCLib__setLearnFunc( SEXP xp, SEXP learning_func ) {

Rcpp::XPtr<SnnsCLib> snnsCLib( xp );

std::string p1 = Rcpp::as<std::string>( learning_func );

int err = snnsCLib->krui_setLearnFunc( const_cast<char*>( p1.c_str() ) );

return Rcpp::List::create( Rcpp::Named( "err" ) = err );

}

A pointer to the current SnnsCLib object is in all such functions present as the first parameter.
The other parameters are converted and passed to the corresponding SNNS function. In this
example, the only parameter learning_func gives the name of the function to be set as the
current learning function. The result of the wrapper function is typically a named list. If a
return value for err is present, then an error handling is implemented (see below).

The corresponding part of SnnsCLib on the R side is the S4 class SnnsR. Each SnnsR object
has an external pointer to its corresponding SnnsCLib object. If the object factory is used, a
SnnsCLib object is generated automatically and the pointer is initialized with this object:

snnsObject <- SnnsRObjectFactory()

SnnsR contains a convenient calling mechanism for member functions of its instances based
on the calling mechanism suggested by Rcpp. The $ operator is overloaded and can be used
for function calling as illustrated by the following example. The function used earlier as an
example, SnnsCLib__setLearnFunc, can be called like this:

snnsObject$setLearnFunc("Quickprop")

The $ operator first searches an R function with the name SnnsR__setLearnFunc. If no such
function is present, R’s calling mechanism is used to call the corresponding C++ function from
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R class Description

mlp Multi-layer perceptron
dlvq Dynamic learning vector quantization network
rbf Radial basis function network
rbfDDA RBF network using the dynamic decay adjustment algorithm
elman Recurrent Elman network
jordan Recurrent Jordan network
som Self-organizing map
art1 ART network for binary patterns
art2 ART network for real-valued patterns
artmap ART network for supervised learning of binary patterns
assoz Autoassociative memory

Table 1: Models directly accessible from the R high-level interface.

SnnsCLib. This has the advantage that a function from SnnsCLib can be replaced completely
transparently by a function implemented in R, which typically might call the original SnnsCLib
function after some error checking and preprocessing, or perform some postprocessing. Also,
functions not present in the original SNNS can be added in this way, either implemented
in R or in C++. A preprocessing currently implemented is automatic loading of an object
serialization of the SnnsCLib object, if it is not present. This mechanism is used by the
high-level interface objects to allow them to be saved and loaded by the usual R mechanisms
for saving and loading. A postprocessing currently implemented in the $ operator is an error
handling. If in the result list the member err is present and not equal to zero, then the SNNS
function error is called, which translates the error code to a text message. This text message
then is displayed as an R warning.

3.3. R high-level interface classes

The most convenient way to use the RSNNS is through its high-level R interface composed
of the S3 class rsnns and its subclasses. The classes currently implemented are shown in
Table 1.

The subclasses typically implement a process of five steps:

1. Check and preprocess the input.

2. Generate an rsnns object using the object factory rsnnsObjectFactory, setting train-
ing, update, and initialization function and their parameters.

3. Create/load a network architecture by directly accessing functions of the SnnsR object
created within the rsnns object: rsnnsObject$snnsObject$...

4. Train the network, using either the function train.rsnns or direct access again.

5. Postprocess the output.

The train.rsnns function directly saves all training results in the rsnns object, e.g., in
rsnnsObject$fitted.values.
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4. Using the R high-level interface

The high-level interface of the RSNNS package provides a comfortable way to develop and
deploy the most common models of neural nets. The classes present in this interface enable
convenient use of the models in R, as a model can be built with a single command, and many
standard methods known from other models in R are present, such as predict to apply the
models to new data, or print and summary to show characteristics of the models.

The interface is very similar for all models. As an example of use, we show the interface for
the multi-layer perceptron mlp:

R> mlp(x, y, size = 5, maxit = 100, initFunc = "Randomize_Weights",

+ initFuncParams = c(-0.3, 0.3), learnFunc = "Std_Backpropagation",

+ learnFuncParams = c(0.2, 0.0), updateFunc = "Topological_Order",

+ updateFuncParams = 0.0, hiddenActFunc = "Act_Logistic",

+ shufflePatterns = TRUE, linOut = FALSE, inputsTest = NULL,

+ targetsTest = NULL)

The parameters reflect the five processing steps discussed in Section 3.3:

� Training data: x, y. x is a matrix or vector containing the training inputs. If the
method is a supervised learning method, also training targets y have to be supplied.

� The network architecture parameters: size. The mlp has one architecture parameter,
size, which defines the amount of neurons in the hidden layers.

� Number of iterations: maxit. The parameter maxit defines the number of iterations,
i.e., the number of training epochs to perform.

� Initialization function: initFunc, initFuncParams. The initialization function initial-
izes the components of the network, i.e., mainly the weights of the connections between
the units. Depending on the network architecture and the learning method to use, an
appropriate initialization function has to be chosen, e.g., there are learning procedures
where weights have to be initialized with a determined value such as 0.0 or 1.0, in other
procedures, random initialization may be best, or in methods where the weights repre-
sent prototypes they are usually initialized in a way to cover the whole input space. As
the initialization function has a close connection to the architecture of the network, it
is usually not necessary to alter the defaults that are set in the high-level functions.

� Learning function: learnFunc, learnFuncParams. The learning function defines how
learning takes place in the network. It is a central characteristic of the network. For
some network architectures, e.g., the ART networks, there is essentially only one type
of learning function, which has to be used then. For other networks, such as the MLP,
a host of choices exists. Depending on the function, the parameters have different
meanings, e.g., for Std_Backpropagation, there are two parameters, the step width
of the gradient descent η, and the maximal difference dmax between target value and
output that is tolerated, i.e., that is propagated as error of value zero.

� Update function: updateFunc, updateFuncParams. The update function defines how
activation is propagated through the network. As it is the case for the initialization
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function, an update function that suits the network architecture has to be chosen, so
that it usually is not necessary to alter the defaults. E.g., in feed-forward networks
normally the function Topological_Order is used, which calculates unit activations in
the topological order of the units, which means especially that activation of the units
in the input layer is calculated before activations in the first hidden layer etc., so that
the activation is propagated through the network from the input to the output layer.
In many architectures, the same parameters that are used for the learning function can
be used for the update function.

� Special parameters for the method: hiddenActFunc, shufflePatterns, linOut. Of-
ten, parameters particular to the method are present. In the mlp, the hiddenActFunc

parameter specifies the activation function of the hidden units, shufflePatterns de-
fines, whether patterns will be internally shuffled by SNNS before training or not, and
linOut defines, whether the activation function of the output units will be the linear or
the logistic function, making it suitable for classification or regression.

� Optional test data: inputsTest, targetsTest. Providing test data directly at the
model building stage has the advantage that after each epoch the error on the test set
is computed, and can later be used to analyze the training process. As the data at this
stage is exclusively used to compute this iterative error, providing test data here is only
interesting for supervised learning methods. In any case, the predict function can be
used later to obtain results on test data, both in supervised and unsupervised learning
scenarios.

Initialization, learning, and update function names together with their parameters are directly
passed to the SNNS kernel. For their documentation, we refer to Zell et al. (1998). In the
SNNS kernel, each of the parameter sets has a maximal length of five. A list of all available
functions in the SNNS kernel can be obtained by getSnnsRFunctionTable. Their name,
type, number of input- and output parameters are shown:

R> getSnnsRFunctionTable()[196:202, ]

name type #inParams #outParams

196 Counterpropagation 4 3 3

197 Dynamic_LVQ 4 5 5

198 Hebbian 4 3 3

199 JE_BP 4 3 3

200 JE_BP_Momentum 4 5 5

201 JE_Quickprop 4 5 5

202 JE_Rprop 4 4 4

As a short example, the easiest way to train a model is using the default parameters, only
setting the training inputs, and – if required by the model – the training outputs. The generic
print function implemented for rsnns objects can then be used to get information about the
architecture, the functions, and the parameters used by the model:

R> encoder <- mlp(inputs, targets)

R> encoder



8 RSNNS: Neural Networks in R Using the SNNS

Class: mlp->rsnns

Number of inputs: 8

Number of outputs: 8

Maximal iterations: 100

Initialization function: Randomize_Weights

Initialization function parameters: -0.3 0.3

Learning function: Std_Backpropagation

Learning function parameters: 0.2 0

Update function:Topological_Order

Update function parameters: 0

Patterns are shuffled internally: TRUE

Compute error in every iteration: TRUE

Architecture Parameters:

$size

[1] 5

All members of model:

[1] "nInputs" "maxit"

[3] "initFunc" "initFuncParams"

[5] "learnFunc" "learnFuncParams"

[7] "updateFunc" "updateFuncParams"

[9] "shufflePatterns" "computeIterativeError"

[11] "snnsObject" "archParams"

[13] "IterativeFitError" "fitted.values"

[15] "nOutputs"

The summary function that is implemented in the rsnns class generates a textual represen-
tation of the net in the original SNNS file format, and displays it (output of the function is
omitted here):

R> summary(encoder)

After training, the model can be used for prediction on new data, or the visualization capabil-
ities of R can be used to analyze the training process and the models performance on training
and test data. Examples are given in Section 6.

5. Included datasets

A fairly convenient feature in R is the inclusion of datasets along with software packages.
This is important for standardized tests as well as for examples of the usage of the package
(as presented in Section 6). Various datasets are present in the original SNNS examples,
covering a wide variety of network types and possible applications. The functions presented
in Section 6.5 were used to convert all pattern files with fixed-size patterns included as example
data in SNNS to data accessible within R. All the data is available in RSNNS through the
list snnsData:

R> data("snnsData")

R> names(snnsData)
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[1] "art1_letters.pat" "artmap_test.pat"

[3] "eight_016.pat" "laser_999.pat"

[5] "letters_with_classes.pat" "spirals.pat"

[7] "trainValidMAP.pat" "xor_rec1.pat"

[9] "art2_tetra_high.pat" "artmap_train.pat"

[11] "eight_160.pat" "letseq_test.pat"

[13] "nettalk.pat" "sprach_test.pat"

[15] "validMAP.pat" "xor_rec2.pat"

[17] "art2_tetra_low.pat" "bdg_TDNN.pat"

[19] "encoder.pat" "letseq_train.pat"

[21] "patmat.pat" "sprach_train.pat"

[23] "art2_tetra_med.pat" "font.pat"

[25] "letters_auto.pat" "som_cube_norm.pat"

[27] "testMAP.pat" "art2_tetra.pat"

[29] "dlvq_ziff_100.pat" "laser_1000.pat"

[31] "letters.pat" "som_cube.pat"

[33] "trainMAP.pat" "xor.pat"

The columns of the datasets are named according to whether they are input or output to the
net. The convenience functions inputColumns and outputColumns can be used to pick the
right columns according to their names. Furthermore, the function splitForTrainingAndTest

can be used to split the data in a training and a test set. So, for example the laser dataset
can be loaded and preprocessed with:

R> laser <- snnsData$laser_1000.pat

R> inputs <- laser[, inputColumns(laser)]

R> targets <- laser[, outputColumns(laser)]

R> patterns <- splitForTrainingAndTest(inputs, targets, ratio = 0.15)

Also, use of datasets from the KEEL dataset repository (http://sci2s.ugr.es/keel/
datasets.php) is possible. Reference results for various models are provided at the pack-
age homepage at http://sci2s.ugr.es/dicits/software/RSNNS/.

6. Examples

In this section we illustrate the use of the package with examples for regression, classification,
and clustering. Furthermore, we comment on some other useful functionality and on the
benefits of using both RSNNS and a separate installation of the original SNNS software. All
examples shown here and various other ones that illustrate both the use of the high-level and
the low-level interface are included in the package as demos. In R the command demo() gives
a list of available demos, e.g., the demo "laser" can be started with demo("laser"). The
examples can also be found at the package web page referred to above.

6.1. Recurrent neural networks for regression

In this example, we show the use of an Elman network (Elman 1990) for time series regression.
After loading the data as seen in Section 5, the model is trained in a way similar to the one
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Figure 1: (a) The laser example time series. (b) The first 100 values of the series (black), and
the corresponding fits (green).

shown in Section 4. Meaningful default values (especially for the function to use) are already
given, so it is often sufficient just to adjust the learning parameters:

R> model <- elman(patterns$inputsTrain, patterns$targetsTrain,

+ size = c(8, 8), learnFuncParams = c(0.1), maxit = 500,

+ inputsTest = patterns$inputsTest, targetsTest = patterns$targetsTest,

+ linOut = FALSE)

The powerful tools for data visualization in R come handy for neural net modeling. For
example, input data and fitted values can be visualized in the following way (the plots are
shown in Figure 1):

R> plot(inputs, type = "l")

R> plot(targets[1:100], type = "l")

R> lines(model$fitted.values[1:100], col = "green")

In addition to the visualization tools already available in R, various other methods for visual-
ization and analysis are offered by the package. The function plotIterativeError generates
an iterative error plot that shows the summed squared error (SSE), i.e., the sum of the squared
errors of all patterns for every epoch. If a test set is provided, its SSE is also shown in the
plot, normalized by dividing the SSE through the test set ratio (which is the amount of pat-
terns in the test set divided by the amount of patterns in the training set). The function
plotRegressionError can be used to generate a regression plot which illustrates the quality
of the regression. It has target values on the x-axis and fitted/predicted values on the y-axis.
The optimal fit would yield a line through zero with gradient one. This optimal line is shown,
as well as a linear fit to the actual data. Using standard methods of R, also other evalua-
tion techniques can be implemented straightforwardly, e.g., an error histogram (the plots are
shown in Figure 2):
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Figure 2: An Elman net trained with the laser example dataset. (a) The iterative error plot of
both training (black) and test (red) error. (b) Regression plot for the training data, showing
a linear fit in the optimal case (black), and to the current data (red). (c) Regression plot for
the test data. (d) An error histogram of the training error.

R> plotIterativeError(model)

R> plotRegressionError(patterns$targetsTrain, model$fitted.values)

R> plotRegressionError(patterns$targetsTest, model$fittedTestValues)

R> hist(model$fitted.values - patterns$targetsTrain)

6.2. Multi-layer perceptron for classification

Performing classification or regression is very similar with the package. The neural output is
typically set to the logistic function instead of the linear function, and an output neuron is
used for each possible class. Training targets force the activation of the neuron representing
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the correct class, i.e., using the logistic function its output should be close to one. The other
neurons should output values close to zero. Methods of pre- and postprocessing to facilitate
such a procedure are present in RSNNS. In the following, we present an example of how
to train a multi-layer perceptron using the standard backpropagation algorithm (Rumelhart
et al. 1986). We use the well-known iris dataset included in R for this example.

The data is loaded, shuffled, and preprocessed. The function decodeClassLabels gener-
ates a binary matrix from an integer-valued input vector representing class labels. With
splitForTrainingAndTest, the data is split into training and test set, that can then be
normalized using the function normTrainingAndTestSet, which has different normalization
types implemented. We use a normalization to zero mean and variance one, which is the
default setting:

R> data("iris")

R> iris <- iris[sample(1:nrow(iris), length(1:nrow(iris))), 1:ncol(iris)]

R> irisValues <- iris[, 1:4]

R> irisTargets <- iris[, 5]

R> irisDecTargets <- decodeClassLabels(irisTargets)

R> iris <- splitForTrainingAndTest(irisValues, irisDecTargets, ratio = 0.15)

R> iris <- normTrainingAndTestSet(iris)

The training data of this structure can then be used for training the multi-layer perceptron
(or any other supervised learning method):

R> model <- mlp(iris$inputsTrain, iris$targetsTrain, size = 5,

+ learnFuncParams = 0.1, maxit = 60, inputsTest = iris$inputsTest,

+ targetsTest = iris$targetsTest)

R> predictions <- predict(model, iris$inputsTest)

Again, iterative and regression error plots can be used for analysis, but the regression error
plot is less informative than for a regression problem (see Figure 3). Also, a function for
displaying receiver operating characteristics (ROC) is included in the package. ROC plots are
usually used for the analysis of classification problems with two classes. With more classes,
for every class a ROC plot can be generated by combining all other classes to one class, and
using the output of only the output of the corresponding neuron for drawing the ROC plot
(see Figure 3 for examples):

R> plotIterativeError(model)

R> plotRegressionError(predictions[, 2], iris$targetsTest[, 2], pch = 3)

R> plotROC(fitted.values(model)[, 2], iris$targetsTrain[, 2])

R> plotROC(predictions[, 2], iris$targetsTest[, 2])

However, using ROC plots in this way might be confusing, especially if many classes are
present in the data. Yet in the given example with three classes it is probably more informative
to analyze confusion matrices, using the function confusionMatrix. A confusion matrix
shows the amount of times the network erroneously classified a pattern of class X to be a
member of class Y. If the class labels are given as a matrix to the function confusionMatrix,
it encodes them using the standard setting. Currently, this standard setting is a strict winner-
takes-all (WTA) algorithm that classifies each pattern to the class that is represented by the
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Figure 3: A multi-layer perceptron trained with the iris dataset. (a) The iterative error
plot of both training (black) and test (red) error. (b) The regression plot for the test data.
As a classification is performed, ideally only the points (0, 0) and (1, 1) would be populated.
(c) ROC plot for the second class against all other classes, on the training set. (d) Same
as (c), but for the test data.

neuron having maximal output activation, regardless of the activation of other units. For
other encoding algorithms, the class labels can be encoded manually. In the following example,
besides the default, the 402040 method is used, which is named after its default parameters,
the two thresholds l = 0.4, and h = 0.6. In this configuration, these two thresholds divide
the [0, 1]-interval into a lower part with 40% of the values, a middle part of 20% of the values
and an upper part containing 40% of the values. The method classifies a pattern to the
corresponding class of an output neuron, if this output neuron has an activation in the upper
part, and all other neurons have an activation in the lower part. Otherwise, the pattern is
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treated as unclassified. In the current implementation, unclassified patterns are represented
by a zero as the class label. If WTA is used with standard settings, no unclassified patterns
occur. Both 402040 and WTA are implemented as described in Zell et al. (1998). In the
following, we show the calculation of confusion matrices for the training and the test dataset:

R> confusionMatrix(iris$targetsTrain, fitted.values(model))

predictions

targets 1 2 3

1 42 0 0

2 0 40 3

3 0 1 41

R> confusionMatrix(iris$targetsTest, predictions)

predictions

targets 1 2 3

1 8 0 0

2 0 7 0

3 0 0 8

R> confusionMatrix(iris$targetsTrain, encodeClassLabels(fitted.values(model),

+ method = "402040", l = 0.4, h = 0.6))

predictions

targets 0 1 2 3

1 0 42 0 0

2 5 0 38 0

3 3 0 0 39

Finally, we can have a look at the weights of the newly trained network, using the function
weightMatrix (output is omitted):

R> weightMatrix(model)

6.3. Self-organizing map for clustering

A self-organizing map is an unsupervised learning method for clustering (Kohonen 1988).
Similar input patterns result in spatially near outputs on the map. For example, a SOM can
be trained with the iris data by:

R> model <- som(irisValues, mapX = 16, mapY = 16, maxit = 500,

+ targets = irisTargets)

The targets parameter is optional. If given, a labeled version of the SOM is calculated,
to see if patterns from the same class are present as groups in the map. As for large pat-
tern sets calculation of the outputs can take a long time, the parameters calculateMap,
calculateActMaps, calculateSpanningTree, and saveWinnersPerPattern can be used to
control which results are computed. Component maps are always computed. The results in
more detail are:
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� model$actMaps: An activation map is simply the network activation for one pattern.
The activation maps list actMaps contains a list of activation maps for each pattern.
If there are many patterns, this list can be very large. All the other results can be
computed from this list. So, being an intermediary result, with limited use especially if
many patterns are present, it is not saved if not explicitly requested by the parameter
calculateActMaps.

� model$map: The most common representation of the self-organizing map. For each
pattern, the winner neuron is computed from its activation map. As unit activations
represent Euclidean distances, the winner is the unit with minimal activation. The map
shows then, for how many patterns each neuron was the winner.

� model$componentMaps: For each input dimension there is one component map, showing
where in the map this input component leads to high activation.

� model$labeledMap: A version of the map where for each unit the target class number
is determined, to which the majority of patterns where the neuron won belong to. So,
performance of the (unsupervised) SOM learning can be controlled using a problem that
could also be trained with supervised methods.

� model$spanningTree: It is the same as model$map, except that the numbers do not
represent the amount of patterns where the neuron won, but the number identifies the
last pattern that led to minimal activation in the neuron. In contrast to the other results
of SOM training, the spanning tree is available directly from the SNNS kernel. As the
other results are probably more informative, the spanning tree is only interesting if the
other functions require high computation times, or if the original SNNS implementation
is needed.

The resulting SOM can be visualized using the plotActMap function which displays a heat
map, or by any other R standard method, e.g., persp. If some units win much more often
than most of the others, a logarithmic scale may be appropriate (plots are shown in Figure 4):

R> plotActMap(model$map, col = rev(heat.colors(12)))

R> plotActMap(log(model$map + 1), col = rev(heat.colors(12)))

R> persp(1:model$archParams$mapX, 1:model$archParams$mapY, log(model$map + 1),

+ theta = 30, phi = 30, expand = 0.5, col = "lightblue")

R> plotActMap(model$labeledMap)

The component maps can be visualized in the same way as the other maps (Figure 5 shows
the plots):

R> for(i in 1:ncol(irisValues)) plotActMap(model$componentMaps[[i]],

+ col = rev(topo.colors(12)))

6.4. An ART2 network

ART networks (Grossberg 1988) are unsupervised learning methods for clustering. They offer
a solution to a central problem in neural networks, the stability/plasticity dilemma, which
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(a) SOM of the iris example
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(d) SOM, with target class labels

Figure 4: A SOM trained with the iris dataset. (a) A heat map that shows for each unit
the amount of patterns where the unit won, from no patterns (white) to many patterns (red).
(b) Same as (a), but on a logarithmic scale. (c) Same as (b), but as a perspective plot instead
of a heat map. (d) Labeled map, showing for each unit the class to which the majority of
patterns belong, for which the unit won.

means, that in general it is difficult in neural networks to learn new things without alter-
ing/deleting things already present in the net. In ART networks, plasticity is implemented
in the way that new input patterns may generate new prototypes/cluster centers, if they
are not represented yet by another prototype of the net. Stability is present, as a proto-
type is not altered by all new patterns, but only by new patterns that are similar to the
prototype. The ART1 networks (Carpenter and Grossberg 1987b) only allow binary input
patterns, ART2 (Carpenter and Grossberg 1987a) was developed for real-valued inputs. In
the SNNS example art2_tetra, which we reimplement here, the inputs are noisy coordinates
of the corners of a tetrahedron.
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Figure 5: (a)–(d) Component maps for the SOM trained with the iris data. As the iris

dataset has four inputs, four component maps are present that show for each input, where in
the map it leads to high activation.

The architecture parameter f2Units defines the amount of hidden units present in the f2-layer
of the network, and so gives the maximal amount of clusters that can be saved in the net (for
details, see Zell et al. (1998) and Herrmann (1992)).

The model can be built in the following way:

R> patterns <- snnsData$art2_tetra_med.pat

R> model <- art2(patterns, f2Units = 5,

+ learnFuncParams = c(0.99, 20, 20, 0.1, 0),

+ updateFuncParams = c(0.99, 20, 20, 0.1, 0))

For visualization of this example, it is convenient to use the R package scatterplot3d (Ligges
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Figure 6: An ART2 network trained with noisy input data which represent the corners of
a three-dimensional tetrahedron. (a) Data with medium noise level, the method correctly
assumes four different clusters and clusters the points correctly. (b) Data with high noise
level. The method generates three clusters. Note that the points of two of the corners are
in one cluster though they are not spatially near. As ART2 uses normalized vectors, it only
is able to take into account the direction of the vectors, which yields this unintuitive result
(Herrmann 1992).

and Maechler 2003), for three-dimensional scatter plots:

R> library("scatterplot3d")

R> scatterplot3d(patterns, pch = encodeClassLabels(model$fitted.values))

Figure 6 shows this scatter plot, and the result of the same processing, but using as input
data snnsData$art2_tetra_high.pat, which has more noise added.

6.5. Combined use of RSNNS and independent SNNS software

While RSNNS includes the major part of SNNS functionality, there are some bits left out,
which can be interesting for some specific purposes: for example, the SNNS GUI is a very
convenient tool for interactive visual development of a neural network topology or for manual
analysis of a network weight’s role. RSNNS offers functionality to interact with SNNS. This
includes mainly reading/writing native dataset files (.pat, where files containing patterns
with variable length are currently not supported) or neural network files (.net), as well as a
rudimentary parser for .res files. This way, data and networks can be interchanged with an
installation of the original SNNS, e.g., to visualize the network architecture in SNNS, or to
train a net in SNNS and use R to analyze the capabilities of the net.

R> exportToSnnsNetFile(model, filename)

R> readPatFile(filename)

R> savePatFile(inputs, targets, filename)

R> readResFile(filename)
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The .pat file methods make use of the original SNNS methods. Furthermore, .net files can
be loaded and saved with the normal SNNS kernel methods loadNet and saveNet.

7. Neural network packages in R

In this section, we review the packages available directly in R or from CRAN implementing
neural networks, and compare their functionality with algorithms available through RSNNS.
As all neural network packages we are aware of on CRAN implement either feed-forward
networks or Kohonen networks (LVQ, SOM), we discuss the packages grouped accordingly
in this section. Furthermore, we give a general discussion about the functionality that has
become available through RSNNS to R, and on general limitations of both SNNS and the
wrapper package.

The only package present on CRAN yet that tackles connection between SNNS and R is
write.snns (Castejón Limas et al. 2007), which implements a function to export data from R
to a SNNS pattern file (.pat). This functionality is included in RSNNS, using directly the
original SNNS functions for input and output of pattern files.

7.1. Feed-forward neural networks

There are several packages available for R that implement multi-layer perceptrons. Further-
more, implementations of quantile regression neural networks and flexible radial basis function
networks exist.

nnet The package nnet (Venables and Ripley 2002) is part of the recommended R packages
that usually ship directly with R. So, nnet can be considered the R standard neural network
package. It implements a multi-layer perceptron with one hidden layer. For weight adjust-
ment, it does not use backpropagation nor one of its variants, but a general quasi-Newton
optimization procedure, the BFGS algorithm. Ripley (2007) argues that to “use general al-
gorithms from unconstrained optimization [...] seems the most fruitful approach”. A similar
method, the scaled conjugate gradient (SCG, Møller 1993), is implemented in SNNS. SCG
combines a conjugate gradient approach with ideas from the Levenberg-Marquardt algorithm.
Møller (1993) compares SCG with standard backpropagation, another conjugate gradient al-
gorithm, and the BFGS algorithm. In his comparison, the SCG performs best.

AMORE The package AMORE (Castejón Limas et al. 2010) implements the “TAO-robust
backpropagation learning algorithm”(Perńıa Espinoza et al. 2005), which is a backpropagation
learning algorithm designed to be robust against outliers in the data. Furthermore, adaptive
backpropagation and adaptive backpropagation with momentum term, both in online and
batch versions, are implemented. The algorithms use an individual learning rate for each
unit. Adaptive backpropagation procedures are not implemented in this way in SNNS, but
using different learning rates for the units or the weights is a common idea for enhancing
neural network learning procedures, and e.g., resilient backpropagation, which is implemented
in SNNS, adapts the learning rate for each weight.

Furthermore, the package aims at giving a general framework for the implementation of
neural networks (http://rwiki.sciviews.org/doku.php?id=packages:cran:amore), i.e.,
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for defining units, their activation functions, connections, etc. The SNNS kernel interface
implements such structures that are used internally by the algorithms implemented in SNNS.
This interface can be accessed by the low-level interface functions of RSNNS.

neuralnet The package neuralnet (Fritsch et al. 2010) implements standard backpropagation
and two types of resilient backpropagation (Riedmiller and Braun 1993; Riedmiller 1994).
These algorithms are also available in SNNS, in implementations of the original authors of
the algorithms. Furthermore, the package implements a “modified globally convergent version
of the algorithm” presented by Anastasiadis et al. (2005), and a method for “the calculation
of generalized weights”, which are not present in SNNS.

monmlp The package monmlp (Cannon 2011a) implements a multi-layer perceptron with
partial monotonicity constraints (Zhang and Zhang 1999). The algorithm allows for the def-
inition of monotonic relations between inputs and outputs, which are then respected during
training. If no constraints are defined, the algorithms behave as the usual, unconstrained
versions. Implemented are standard backpropagation, and learning using a nonlinear least-
squares optimizer. Furthermore, a stopping criterion using a bootstrap procedure is imple-
mented. In SNNS, monotonic constraints methods are not implemented. Regarding the
standard procedures, backpropagation and SCG, which uses a general optimizer, are present
in SNNS. Stopping criteria are not implemented in SNNS, but as this part is controlled by
RSNNS in the R code, could be considered for future versions of the package.

qrnn The package qrnn (Cannon 2011b) implements a quantile regression neural network,
which can be used to produce probability density forecasts, especially in environments with
both continuous and discrete input variables. This is not implemented in SNNS.

frbf The package frbf (Martins 2009) implements an algorithm for flexible radial basis func-
tions (Falcao et al. 2006). The algorithm can be used for classification only. The algorithm
constructs in a first phase of unsupervised learning the network topology from the training
data, and later uses different kernels for each class. The algorithm is not included in SNNS,
but standard radial basis functions are. Furthermore, an algorithm that also is only suitable
for classification and constructs the network topology on its own is present with the RBF
dynamic decay adjustment algorithm (Berthold and Diamond 1995).

7.2. Kohonen networks

Several packages in R implement SOMs. The version that is implemented in SNNS uses
Euclidean distance and a quadratic neighborhood.

class The package class (Venables and Ripley 2002) is one of the recommended packages
in R . It implements a SOM with rectangular or hexagonal grid, and the learning vector
quantization algorithms LVQ1, LVQ2.1, LVQ3, and OLVQ. LVQ1 only adapts the winning
prototype, whereas LVQ2.1 and LVQ3 also adapt the second best prototype. OLVQ uses
a different learning rate for every unit. An implementation of LVQ is present in SNNS,
where it is called dynamic LVQ, because it starts with an empty network/codebook, and
adds successively new units.
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som The package som (Yan 2010) implements a self-organizing map, focused on its applica-
tion in gene clustering. It has hexagonal and rectangular topologies implemented, as well as
basic visualization functionality.

kohonen The package kohonen (Wehrens and Buydens 2007) implements a standard SOM,
as well as a supervised SOM with two parallel maps, and a SOM with multiple parallel maps.
It is based on the package class. It has hexagonal and quadratic neighborhood relationships
implemented, as well as toroidal maps. Besides the usual Euclidean distance, for class labels
the Tanimoto distance can be used.

When class labels are available, there are various potential possibilities of how to use them
during SOM training. An easy possibility is to use them (as in Section 6.3) merely during
visualization. Another possibility that can be used with the standard SOM, is to add the class
labels as additional feature, possibly with a weighting. However, the method implemented in
this package, presented by Melssen et al. (2006), uses two different maps. The algorithm is an
enhancement of counterpropagation (Hecht-Nielsen 1987), which is implemented in SNNS.

Besides the supervised versions of the SOM, the package also offers various visualization
possibilities for the maps.

wccsom The package wccsom (Wehrens 2011) is another package from the authors of the
kohonen package. It implements another distance measure, the weighted cross-correlation
(WCC). Furthermore, it implements maps that start with few units, and add additional units
during training by interpolation. This way, training can be performed faster.

7.3. Possibilities and limitations of RSNNS

So far, neural network methods are scattered along several packages. RSNNS addresses this
lack of a standard neural network package in R by making the SNNS functionality usable from
R, and therewith offering a uniform interface to many different standard learning procedures
and architectures. For those models or algorithms for which there are already implementations
available in R, such as for resilient propagation, standard backpropagation, or DLVQ, RSNNS
offers alternatives that can be used complementary and for comparison. Regarding SOMs,
there exist yet sophisticated packages in R, which offer powerful visualization procedures and
flexible network construction, so use of the SOM standard implementation in RSNNS will
usually not have benefits. But RSNNS also makes available a lot of architectures and learning
procedures that were not present for R before, to the best of our knowledge, such as partial
recurrent neural networks (Jordan and Elman nets), the ART theory, associative memories,
Hopfield networks, the cascade correlation networks, or network pruning algorithms.

SNNS is a robust and fast software with standard implementations of a large amount of neural
network techniques (see Section 2), validated by many years of employment by a huge group
of users. Though RSNNS successfully overcomes some of the main problems that the use
of SNNS in a modern experiment design raises, some others persist. As active development
terminated in 1998, newer network types are not present. However, building a comprehensive
up-to-date neural network standard package is a difficult task. The packages currently avail-
able from CRAN mainly focus on implementation of special types of architectures and/or
learning functions. An important question in this context seems, if RSNNS could provide
a suitable architecture to add new network types. Though SNNS in general is well-written
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software with a suitable architecture and kernel API, to extend the kernel, knowledge of its
internals is necessary, and the networks would need to be added directly in SnnsCLib, as the
current wrapping mechanism of RSNNS is one-way, i.e., RSNNS provides no mechanisms
that allow to implement learning, initialization, or update functions for use from within the
SNNS kernel in R.

Regarding other limitations of the wrapping mechanism itself, the low-level interface offers
full access to not only the kernel user interface, but also some functions that were not part
of the kernel (bignet), and some functions that were not part of the original SNNS, but
implemented for SnnsCLib. Some functions of the kernel interface are currently excluded
from wrapping (see the file KnownIssues, that installs with the package), but this does not
limit the functionality of RSNNS, as those functions usually implement redundant features,
or features that can be easily reimplemented from R. So, with the low-level interface, all of
the functionality of SNNS can be used.

In contrast to the direct mapping of the SNNS kernel to R functions of the low-level interface,
the high-level interface implements task-oriented functionality that is mainly inspired by the
original SNNS examples. The high-level functions define the architecture of the net, and
the way the learning function is called (e.g., iteratively or not). So, the high-level functions
are still pretty flexible, and e.g., the function mlp is suitable for a wide range of learning
functions. Naturally, there are cases where such flexibility is not necessary, so for example
the ART networks are only suitable for their specific type of learning.

8. Conclusions

In this paper, we presented the package RSNNS and described its main features. It is essen-
tially a wrapper in R for the well-known SNNS software. It includes an API at different levels
of trade-off between flexibility/complexity of the neural nets and convenience of use. In addi-
tion it provides several tools to visualize and analyze different features of the models. RSNNS
includes a fork of SNNS, called SnnsCLib, which is the base for the integration of the SNNS
functionality into R, an environment where automatization/scriptability and parallelization
play an important role. Through the use of Rcpp, the wrapping code is kept straightforward
and well encapsulated, so that SnnsCLib could also be used on its own, in projects that do
not use R. Flexibility and full control of the networks is given through the RSNNS low-level
interface SnnsR. The implemented calling mechanism enables object serialization and error
handling. The high-level interface rsnns allows for seamless integration of many common
SNNS methods in R programs.

In addition, various scenarios exist where the combined usage of the original SNNS and
RSNNS can be beneficial. SNNS can be used as an editor to build a network which afterwards
can be trained and analyzed using RSNNS. Or, a network trained with RSNNS can be saved
along with its patterns, and SNNS can be used for a detailed analysis of the behavior of the
net (or parts of the net or even single units or connections) on certain patterns.

As discussed in Section 7, packages currently available in R are focused on distinct network
types or applications, so that RSNNS is the first general purpose neural network package for
R, and could become the new standard for neural networks in R.
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a b s t r a c t

In time series predictor evaluation, we observe that with respect to the model selection
procedure there is a gap between evaluation of traditional forecasting procedures, on the
one hand, and evaluation of machine learning techniques on the other hand. In traditional
forecasting, it is common practice to reserve a part from the end of each time series for
testing, and to use the rest of the series for training. Thus it is not made full use of the data,
but theoretical problems with respect to temporal evolutionary effects and dependencies
within the data as well as practical problems regarding missing values are eliminated.
On the other hand, when evaluating machine learning and other regression methods used
for time series forecasting, often cross-validation is used for evaluation, paying little atten-
tion to the fact that those theoretical problems invalidate the fundamental assumptions of
cross-validation. To close this gap and examine the consequences of different model selec-
tion procedures in practice, we have developed a rigorous and extensive empirical study.
Six different model selection procedures, based on (i) cross-validation and (ii) evaluation
using the series’ last part, are used to assess the performance of four machine learning
and other regression techniques on synthetic and real-world time series. No practical
consequences of the theoretical flaws were found during our study, but the use of cross-
validation techniques led to a more robust model selection. To make use of the ‘‘best of
both worlds’’, we suggest that the use of a blocked form of cross-validation for time series
evaluation became the standard procedure, thus using all available information and
circumventing the theoretical problems.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Time series forecasting methods have become indispensable tools in a broad field of applications to understand and fore-
cast, e.g., technical, physical, and economic data. They are nowadays used to make important decisions with far-reaching
consequences, and evaluating the procedures’ performance is crucial. Assessing an estimate of the error a predictor produces
on average can be done for different purposes. Besides the common case, where a general measure of the reliability and accu-
racy of a system is needed, evaluation often becomes necessary to choose the best one out of different methods and/or
parameter sets. Also, researchers proposing a new method are interested in the question, whether the new method performs
better than the state-of-the-art methods. This is usually determined by the application and comparison of all the methods on
a set of benchmarking data or within competitions. The steps usually involved in such an assessment are (i) computing the
methods’ results on the test data (ii) calculating the errors of these results with respect to reference data under the use of a
loss function, (iii) computing an error measure from the errors, and (iv) using a model selection procedure to examine the
distribution of the error measure and/or to find the best model that would be used in the final application.
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In classification and regression, the standard procedures are to use a quadratic loss function (as a normal distribution of the
error is assumed), the root mean squared error as error measure, and cross-validation as the model selection procedure. How-
ever, in time series prediction such a consensus does not exist yet. Characteristics of the series such as the amount of observed
values, the periodicity, or the complexity of the generating processes can be very different, as well as the types of forecasts
needed (one-step-ahead, one-to-24-step-ahead, etc.). With the different nature of series, types of forecasts, and evaluation
purposes, not only the methods that perform well and yield accurate forecasts vary, but also the evaluation techniques that
guarantee robust, meaningful error estimates. The errors computed should be the ones that are relevant for the intended
application, and the measure should be a good summary of the error distribution. With respect to this, important questions
are whether the procedures achieve adequacy and diversity. Adequacy means that for each relevant horizon enough forecasts
are available, whereas diversity means that the measured error should not depend on special events within the time series
[47]. Finally, the model selection procedure should represent and use the distribution of the error measure reasonably.

In traditional forecasting of economic data, the analyzed series mainly represent yearly, quarterly, or monthly acquired
data, so that series hardly reach a length longer than a couple of hundreds of values. Furthermore, data generation processes
are often complex and poorly represented in the time series itself, so that the amount of information that can potentially be
extracted and used for forecasting is limited. Methods widely used are linear methods (made popular by Box and Jenkins [8])
such as autoregression (AR), moving average (MA), or combinations of these (ARMA) Based on these methods, various ap-
proaches exist to tackle non-stationarity in the series. A possibility is to use the derivative of the series as input (ARIMA).
Or seasonal decomposition procedures, e.g., the STL procedure [16], are used to decompose the series into (deterministic)
trend and seasonality, and a stochastic process of the residuals that is stationary.

Regarding non-linear methods, threshold AR models (TAR) are used to partition the (stationary) time series into linear
pieces, so that they can be modeled by linear methods. A regime-switching mechanism then decides, which linear model
to use [48]. These models have evolved to a host of choices, and combining them with machine learning techniques is getting
increasingly popular [6,20,24]. Neural networks are also popular [7,21,52], but as for this type of time series problems com-
plex methods do not necessarily yield better results (this was one of the conclusions of the M3 forecasting competition [36]),
their use is not always appropriate.

For evaluation, usually a part at the end of each series is reserved and not used during model generation. This is often
called out-of-sample evaluation [47]. To avoid confusion with other evaluation techniques, we will call validation using a
set taken from the end of the series last block validation.

Another application scenario is the problem a forecaster faces when implementing a concrete application in fields where
time series are longer and the underlying processes are better represented, such as in electrical load or price forecasting, traf-
fic-related data or other technical or physical data. Within these applications, the forecaster is typically interested in the
forecast of only one concrete time series, and methods that perform well on that particular series. Machine learning tech-
niques and traditional methods seem to outperform each other on time series with different characteristics. Though these
characteristics are to the best of our knowledge not well specified so far [21], machine learning techniques usually work well
on long series with high-frequency data [7]. So, in this scenario the use of neural networks, machine learning techniques in
general and other regression techniques is popular [1,2,13,14,27,39], also as it is often possible to find non-linear patterns in
the data, due to the large amount of observed values. The machine learning techniques and other general regression methods
used in this context take lagged values of the time series as input to perform an autoregression. With the use of regression
methods, also evaluation techniques known from this field are applied to the time series forecasts. Besides the use of statis-
tical measures such as the Akaike and Bayesian information criteria (AIC, BIC), it has become common practice to use cross-
validation techniques within regression, and so such methods are also used in the literature to evaluate autoregressions on
time series [1,13,39].

We observe that, especially with respect to the model selection procedure, researchers might often be unaware of the
advantages and risks of the methods they use. Cross-validation makes full use of the data, i.e., all available data is used both
for testing and training. Hence, diversity and adequacy of the evaluation is achieved. But, as during autoregression the same
values are used both as part of the input and as reference data, the training set and the test set are not independent if ran-
domly chosen. And the time series might be generated by a process that evolves over time, thus hurting the fundamental
assumptions of cross-validation that the data are independent and identically distributed (i.i.d.) [3]. On the other side, be-
sides simulating the real-world application, last block evaluation solves these theoretical problems straightforwardly, and
practical problems of missing values during training (as they are reserved for testing) do not arise. But it does not make full
use of the data, so that especially in a competition situation, where the validation set is not available to the participants,
some problems with respect to adequacy and diversity arise. Only one forecast per series and horizon can be calculated,
and the error measure might, rather than being representative, reflect characteristics of the validation set not present neither
in the rest of the series nor in future data.

The most important questions regarding this issue seem to be whether the theoretical problems are relevant in practice and
therefore standard cross-validation might mislead the user and is applied erroneously in such situations, whether advantages
of cross-validation prevail, yielding more robust results, and whether the theoretical shortcomings of cross-validation can be
solved in a practical manner. With the aim of gaining further insight into the issue, we present a comprehensive and rigorous
empirical study on this, using various cross-validation and last block techniques to evaluate machine learning and general
regression methods. Performing an empirical study on this topic is also motivated by the fact, that asymptotic behavior known
from theory of the evaluation methods might be quite different from their performance on small test sets [12].
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Furthermore, we analyze the different problems of cross-validation in more detail. The problem of dependencies within
training and test set can be solved by using blocks of data rather than choosing data randomly. The problem of time evolving
effects is closely related to stationarity of the series, so that it can be tackled with known tools for detecting and removing
stationarity from the series.

Complete experimental results as well as high-resolution color graphics and complementary information can be found at
http://sci2s.ugr.es/dicits/papers/CV-TS.

The remainder of the paper is structured as follows. Section 2 presents traditional methods of evaluation in detail, regard-
ing data splitting in training and test set, and error measures proposed for forecast evaluation. Section 3 details how regres-
sion techniques are used for forecasting and how they are evaluated, using cross-validation. Section 4 discusses the design of
the experiments that are carried out within our work, and Section 5 shows the results. Section 6 summarizes the conclusions
drawn from the paper.

2. Traditional predictor evaluation

The most common approach for data partitioning within traditional forecast evaluation is last block evaluation, as choos-
ing the validation set in this way typically corresponds to the later use case of the system (the continuous forecasting of
upcoming values), and the model can be trained and used as in a normal application situation. Furthermore, as we assume
that the future depends on the past, the natural dependencies in the data are respected.

However, also within last block evaluation there exist different possibilities for choosing how to use the available data for
model building and for evaluation, which are discussed in Section 2.1.

After choice and computation of pairs of forecasts and known reference values, important issues are the choice of a loss
function, i.e., how the errors are computed and scaled, and the choice of an error measure that defines which errors are aver-
aged in what way. Literature on this topic is discussed in Section 2.2.

2.1. Data partitioning and forecast horizons

Depending on the length of the last block and the process applied to the individual series, it may be the case that only few
forecasts per time series and/or horizon are available (see Section 2.1.1). Adequacy and diversity of the error measure may
then be obtained by averaging over different series, or over different horizons, see Section 2.1.2.

2.1.1. Individual series
When evaluating forecasts on individual series, there are mainly four possibilities for training and evaluation, which we

name similar to Tashman [47] fixed-origin, rolling-origin-recalibration, rolling-origin-update, and rolling-window evaluation. In
the following, let the forecast origin be the time point of the last known value, from which the forecast is performed. For
example, if a daily time series over a certain period, that ends on day t with value xt, is used to forecast the value xt+k of
day t + k, the forecast origin is t.

Fixed-origin evaluation is typically applied during forecasting competitions. A forecast for each value present in the test
set is computed using only the training set. The forecast origin is fixed to the last point in the training set. So, for each horizon
only one forecast can be computed. Obvious drawbacks of this type of evaluation are, that characteristics of the forecast ori-
gin might heavily influence evaluation results, and, as only one forecast per horizon is present, averaging is not possible
within one series and one horizon.

Within rolling-origin-recalibration evaluation, forecasts for a fixed horizon are performed by sequentially moving values
from the test set to the training set, and changing the forecast origin accordingly. For each forecast, the model is recalibrated
using all available data in the training set, which often means a complete retraining of the model.

Rolling-origin-update evaluation is probably the normal use case of most applications. Forecasts are computed in analogy
to rolling-origin-recalibration evaluation, but values from the test set are not moved to the training set, and no model recal-
ibration is performed. Instead, past values from the test set are used merely to update the input information of the model.
Both types of rolling-origin evaluation are often referred to as n-step-ahead evaluation, with n being the forecast horizon
used during the evaluation. Tashman [47] argues that model recalibration probably yields better results than updating.
But recalibration may be computationally expensive, and within a real-world application, the model typically will be built
once by experts, and later it will be used with updated information as new values are available, but it will certainly not be
rebuilt.

Rolling-window evaluation is similar to rolling-origin evaluation, but the amount of data used for training is kept con-
stant, so that as new data is available, old data from the beginning of the series is discarded. Rolling-window evaluation
is only applicable if the model is rebuilt in every window, and has merely theoretical statistical advantages, that might be
noted in practice only if old values tend to disturb model generation.

2.1.2. Different series and horizons
Using forecasts of different horizons to compute an average error raises some problems. Values of different horizons have

different statistical properties. With increasing horizon the uncertainty and the variance increases. This issue might be

194 C. Bergmeir, J.M. Benítez / Information Sciences 191 (2012) 192–213



addressed with a loss function that takes into account the horizon (as defined, e.g., by Kunst and Jumah [35]). But as the rel-
ative performance of methods depends on the forecast horizon used [18,36], an average calculated from forecasts of different
horizons is potentially misleading.

Time series of different lengths are normally combined by keeping the length of the validation set constant, though
depending on the overall procedure this may not be necessary. When averaging over different time series, it should be taken
into account that there are very different types of time series. A method might be suited well for a certain type of series, but
show weak performance on other types. So, without notions neither of the intended application nor of the time series types
present in the evaluation database, averaging over different time series might be misleading. An obvious case of this problem
is that time series with different time intervals such as yearly, monthly, and daily data should not be used for the compu-
tation of an averaged error measure.

A good test database should contain (according to Tashman [47]) heterogeneous groups of homogeneous time series.
Within a homogeneous group adequacy may be achieved, and within the groups, diversity may be achieved. Thus, a good
test database could compensate for the shortcomings of fixed-origin evaluation, what is especially important during fore-
casting competitions.

2.2. Accuracy measures

The purpose of error measures is to obtain a clear and robust summary of the error distribution [15]. It is common prac-
tice to calculate error measures by first calculating a loss function (usually eliminating the sign of the single errors) and then
computing an average. Let in the following yt be the observed value at time t, also called the reference value, and let byt be the
forecast for yt. The error Et is then computed by yt � byt . Hyndman and Koehler [31] give a detailed review of different accu-
racy measures used in forecasting and classify the measures into these groups:

2.2.1. Scale-dependent measures
Standard error measures, where absolute errors AEt ¼ jyt � byt j or squared errors SEt ¼ ðyt � byt Þ

2 are averaged by arithme-
tic mean M or median MD, leading to the mean absolute error MAE, the median absolute error MDAE, the mean squared
error MSE or the root mean squared error:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

t¼1
ðyt � byt Þ

2

r
: ð1Þ

As these widely used standard error measures are scale-dependent, they cannot be used to compare and average errors
across heterogeneous time series.

2.2.2. Percentage errors
To overcome scale-dependency, the error can be divided by the reference value, thus defining the percentage error:

PEt ¼ 100
yt � byt

yt
: ð2Þ

In analogy to scale-dependent measures, the mean absolute percentage error:

MAPE ¼ 1
n

Xn

t¼1

100
yt � byt

yt

����
����; ð3Þ

the median absolute percentage error MDAPE, the root mean squared percentage error RMSPE, or the root median squared
percentage error RMDSPE can be computed.

The main problem regarding these measures is that they have to deal with infinite values if one yt equals zero, or with
undefined values, if byt ¼ yt ¼ 0 for one t. Time series containing zero values are common in many applications, e.g., in return
on investment curves, or in traffic delay time series. Also, if the time series consists of real numbers and it is unlikely that
exact zeros occur, percentage errors at small values are high (as the denominator gets small), and so the measures show a
skewed distribution. By using the median for averaging (MDAPE, RMDSPE), these problems are easier to deal with, as single
infinite or undefined values do not necessarily result in an infinite or undefined measure.

The so-called symmetric measures such as sMAPE or sMDAPE try to overcome these shortcomings. However, they are not
as symmetric as their names suggest: the symmetry with respect to the interchange of forecast and reference value is ob-
tained at the cost of loosing the symmetry that forecasts only differing in sign should result in the same error [26]. Further-
more, in their original definitions these measures are even able to take negative values; the definition of the sMAPE as it is
used in the NNGC11 competition circumvents at least the latter shortcoming by using absolute values in the denominator:

sMAPE ¼ 1
n

Xn

t¼1

100
jyt � byt j

mt
; with mt ¼

jytj þ j byt j
2

: ð4Þ

1 http://www.neural-forecasting-competition.com.
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But the main problems when dealing with reference values and forecasts close and equal to zero persist.

2.2.3. Relative errors
Another possibility is not to scale using the reference value, but with the help of the error of a benchmark method B, where

normally the naïve method is used, which uses the last known reference value as forecast. The relative error is defined as:

REt ¼
yt � byt

yt � ŷtB
; ð5Þ

where ŷtB is the forecast for yt obtained by the benchmark method. Using the RE, e.g., the mean relative absolute error MRAE,
or the median relative absolute error MDRAE can be defined. However, general problems of the percentage error measures
persist. If the naïve method is used as benchmark, and two subsequent values are zeros, the relative error measures might
evaluate to infinity. If in addition the forecast is correct and takes a value of zero, the result is undefined.

2.2.4. Relative measures
Instead of calculating a relative error for each forecast value, averaged error measures can be computed for the forecasting

method and a benchmark method. Using, e.g., the MAE, the relative MAE can be defined as:

RELMAE ¼ MAE
MAEB

: ð6Þ

The RELRMSE with the naïve method as benchmark is also known under the name of Theil’s U [31]. Relative measures are
able to circumvent many of the problems the other error measures have, as they do not have problems with zeros in the
forecasts or the reference values (only if all values would be zero). A shortcoming of these measures is, that they cannot
be computed as straightforward over various time series as measures based on percentage errors or relative errors. A second
averaging step has to be performed to calculate the average of the relative measures computed on various time series. This is
especially a problem, if there is only one forecast per time series and/or horizon available (as it is the case in forecasting com-
petitions). Then, calculating, e.g., the RELMAE for each series with only one forecast and later calculating the mean over this
measure across different series results in computing the overall MRAE, with all problems discussed.

Another problem, present in both relative errors and relative measures, is that the use of a benchmark may introduce
unexpected or undesired behavior of the measures. The desired behavior of comparing the methods’ performance to a
benchmark may lead to the behavior that the measure represents rather characteristics of the benchmark. E.g., if there is
a negative relation of lag one present in the series, the series tends to short-term oscillations and is less smooth, so that
the benchmark will perform badly. Then, low values of the RELMAE in this situation, if compared or averaged with values
of a similar series with positive feedback of lag one may be misleading. This shortcoming can be overcome by the usage
of a more sophisticated benchmark like an ARIMA model. However, this might induce new problems and complicate error
calculation and interpretability in general. Additionally, the performance of the naïve forecast may be sensitive to the hori-
zon used, which might also lead to misinterpretation.

2.2.5. Others
As illustrated, all commonly used error measures have shortcomings, and no commonly accepted measure exists so far

that is robust, scale-independent, easy to compute, use, and interpret. There is ongoing research on this topic. Hyndman
and Koehler [31] propose to scale errors using the in-sample error of a benchmark method, namely the naïve method. They
define the scaled error as

SEt ¼
yt � ŷt

1
n�1

Pn
i¼2jyi � yi�1j

: ð7Þ

With the help of this error, e.g., the mean absolute scaled error MASE or the median absolute scaled error MDASE can be
computed. The MASE has the advantage, that it has no problems with zeros in the input data in practice and that it can
be used in a straightforward way to average across time series. However, its interpretation might be difficult and it uses
a benchmark method, which has the shortcomings already discussed.

Chen and Yang [15] present several further normalization approaches, as well as some measures theoretically founded on
the Kullback–Leibler divergence. Some of these are further discussed by Kunst and Jumah [35].

3. Cross-validation and regression for time series

Cross-validation is one of the most important tools in the evaluation of regression and classification methods. Its use is
outlined in Section 3.1. If general regression techniques are used in time series forecasting (see Section 3.2), cross-validation
is often used for evaluation in these applications as well, in spite of the theoretical problems that may arise. On the contrary,
in traditional forecasting standard cross-validation receives little attention due to both theoretical and practical problems.
Instead, a variety of validation techniques customized for time series can be found in the literature, which are discussed
in Section 3.4.
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3.1. Cross-validation and related methods in regression

In regression and classification, the main concern is usually the generalization ability of the system, i.e., its performance
on unseen data. To get a valid estimation of this performance, data used for testing is typically not used for model building.

This raises two problems. Firstly, the data used for testing has to be omitted during training, although the system would
probably yield better results if it had been trained with all available data, especially if the amount of data is small. Secondly,
in a statistical sense the data available to the researcher is only one possible realization of a stochastic process sample, and so
also the acquired error measure is one sample of a stochastic variable that has its possible realizations and probability dis-
tribution. This relates directly to adequacy and diversity of the accuracy measure. Depending on the amount of data avail-
able, the test set often cannot be chosen large, as the data in the test set cannot be used during training, which decreases
adequacy. Diversity is decreased, as the measure computed might represent characteristics only observable in the test
set, not in the rest of the data.

To tackle these problems, in classification and regression it is common practice to use k-fold cross-validation [3,46], where
all available data is randomly partitioned into k sets. Then, the whole training or model fitting procedure, as well as the cal-
culation of the error is performed k times, with every set being once used as the test set, and the other sets being used for
model building. So, the method finally acquires k independent realizations of the error measure, and all data is used as well
for training as for testing. Averaging the k obtained error measures yields an overall error measure that typically will be more
robust than single measures.

In traditional regression and model selection theory, another popular way is to consider complexity of the models, as
more complex models are more likely to overfit the data, which yields bad generalization abilities. In this context, a model
with not more than the necessary amount of complexity is called a parsimonious model [19]. Model complexity is usually
defined by the amount of parameters the model requires. Measures computing this kind of error, i.e., the error of fit with
penalizing the amount of parameters are, e.g., the Akaike and Bayesian information criteria (AIC, BIC). Some authors discuss
the relation of these measures and cross-validation. Shao [43] demonstrates that AIC and leave-one-out cross-validation
(LOOCV) converge and asymptotically show the same behavior. However, Arlot and Celisse [3] argue that in a practical sit-
uation cross-validation is applicable to a wide range of problems, so that without knowledge of the data it is likely to yield
better results than penalized information criteria.

3.2. Regression for time series prediction

As the name autoregressive (AR) model suggests, AR calculates an estimate for a future value using determined lagged
values from the past. So, a regression of the time series on itself is performed. To use standard regression techniques for auto-
regression, time series must be preprocessed through an embedding step. The lags that are to be used as inputs are identified
and a data matrix is built as seen in Table 1.

If autoregression is performed in this way, technically cross-validation can be performed as in normal regression. How-
ever, as the embedding procedure may use heavily overlapping parts of the time series (as illustrated in Table 1), the data
used for regression is not statistically independent, so that one of the key assumptions of cross-validation is not met [3].

3.3. Stationarity and cross-validation

An important concept in time series research is stationarity, which means that the basic statistics of the time series do not
change over time. A series is defined to be stationary (see, e.g., Cryer and Chan [19]), if for any time points t1, . . . , tn, and any
lag parameter k, the joint distribution of xt1 ; . . . ; xtn and xt1�k; . . . ; xtn�k is the same. From this follows especially, with n = 1,
that the xt are identically distributed, which is important for our work as this is one of the assumptions of cross-validation.

A related but weaker definition, sometimes referred to as second-order stationarity, is to define a series as (second-order)
stationary if the mean remains constant throughout the series, and the autocorrelation of two values only depends on the

Table 1
Example of a time series preprocessed for regression, using the last four values (lagged values) to predict the current value. Lines in boldface are values that are
used for testing within the current iteration of cross-validation, the other ones are used for training.

Index Lag4 Lag3 Lag2 Lag1 Target

. . . . . .

7 14 10 26 11 �13
8 10 26 11 �13 �15
9 26 11 �13 �15 �8

10 11 �13 �15 �8 35
11 �13 �15 �8 35 40
12 �15 �8 35 40 �8
13 �8 35 40 �8 �16
14 35 40 �8 �16 7
15 40 �8 �16 7 17

. . . . . .
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relative position of the values (the lag) within the series. From this definition follows that all values of the series have the
same mean and variance. If all the joint distributions are Gaussian, the two concepts of stationarity are identical [19].

Non-stationarity has to be taken into account throughout the whole modeling process, not only during model selection.
Depending on the type of stationarity, it can be easily removed by a preprocessing step such as differentiation (as done in
ARIMA models) or a procedure that removes trend and seasonality. Also, with the Dickey–Fuller unit root test [42], the series
can be checked for stationarity. If non-stationarity cannot be removed by such a preprocessing step, the model building pro-
cedure may require a processing step that determines, which parts of the series to include in the modeling, as proposed by
Deco et al. [22], or prediction of the series might even be an impossible task [22,33].

Furthermore, for non-stationary series last block evaluation might be misleading as well, as the block chosen for testing
might be very different from the training data, and the unknown future may also be different from the training data, the test
data, or from both of these. Following Inoue and Kilian [32], and also Kunst [34], we could argue that in time series forecast-
ing, the last block of a series might be the most relevant one, being probably most related to the data to predict. However,
cases are easily imaginable where this is not the case, and if the last block in fact is the most important part, we suggest that
it would be more appropriate to take this information into account while building the model (e.g., by weighting), and not just
for its evaluation. Because of these difficulties it is common practice in time series forecasting to assume stationary time
series.

Also, w.r.t. the application of cross-validation, the problem of dependent data can be dealt with more easily in the frame-
work of stationarity. As the autocorrelation function only depends on the lags, it can be analyzed as a function of these. In a
stationary series, often the number of lags with significant autocorrelation is small [19]. So we can assume that there is a
constant h such that xi and xj are approximately independent, if ji � jj > h [3,37,41].

It is worth noting, that actually the method outlined in Section 3.2 also is motivated by a stationarity assumption, as
choosing particular lagged values as inputs for the forecasting procedure would not make sense, if their dependence on
the value that is to be forecast would continuously change. So, if we assume that the model was built taking into account
all lagged values with relevant correlations, the order of the model gives a good estimation on the number of values that
are dependent and should therefore be omitted during cross-validation.

3.4. Cross-validation and related methods for time series

In addition to the theoretical problems of unmet basic assumptions, using cross-validation for the evaluation of tradi-
tional forecasting procedures leads to practical problems. As the partitions are chosen randomly, missing values have to
be taken into account during model construction. Depending on the forecasting method, this can be a straightforward or
a very difficult task. E.g., if the autocorrelation function is used during the model construction process, missing values might
skew that function and eventually yield bad results.

Also, practical consequences of the theoretical problems have been observed in some cases in the literature, which will be
discussed in the following. And various evaluation methods especially for time series have been proposed.

3.4.1. Methods based on the last block
As evaluation techniques based on the last block circumvent the discussed problems, various authors describe evaluation

techniques based on the last block. Hjorth [29,30] proposes a procedure called ‘‘forward validation’’, which basically com-
putes a weighted sum of one-step-ahead forecasts by the rolling-origin-recalibration procedure. The weights are normalized
and depend on the number of parameters and the forecast origin: As the model is recalibrated, depending on the forecast
origin more or less data is available for model construction. Finally, the method yielding the minimal error in forward val-
idation is chosen. Additionally, the author presents an estimation for the bias that might be introduced by the model selec-
tion procedure in the error measure. Therefore, the forward validation procedure is performed using the chosen model
subsequently on subseries of the last block, so that a set of error samples is obtained. The difference between the error mea-
sure of the last block and the mean of these subsequently calculated error measures can then be used as an estimate for the
bias introduced by the model selection procedure. Wagenmakers et al. [50] use the so-called accumulative prediction error
(APE) for model selection, which is the sum of one-step-ahead forecasts computed by rolling-origin-recalibration evaluation.
The authors argue that this process has a strong theoretical justification by being related to the AIC and BIC. The advantage
using the APE instead of AIC or BIC is according to them, that the APE is not only sensitive to the number of parameters, but
also to their functional form. Both the forward validation method and the APE use rolling-origin-recalibration evaluation.

Inoue and Kilian [32] show, that information criteria such as AIC or BIC asymptotically perform better than evaluation on
the last block of the series. They also admit the shortcoming that evaluation with the last block only uses a part of the infor-
mation available, and so looses potentially important information.

3.4.2. Cross-validation with omission of dependent data
A brief review for methods of this type of cross-validation is given by Arlot and Celisse [3]. To solve the theoretical prob-

lems of cross-validation with correlated data, stationarity is assumed, and not only data that is used for testing is removed
from the training set, but also data that is not independent from the data that is used for testing. The procedure is described,
e.g., by McQuarrie and Tsai [37], and is often called modified cross-validation (MCV) [3]. We call it in the following
non-dependent cross-validation. Burman et al. [9] present a related approach which they call h-block cross-validation. They
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perform LOOCV, and remove the values correlated with the test values in both axis directions from the training set. Hart [28]
presents a procedure he names time series cross-validation (TSCV), which simultaneously estimates an optimal bandwidth
and the autocorrelation function of the data. Kunst [34] proposes the use of cross-validation with removed dependent values
with a subsequent bootstrapping procedure. A related field is non-parametric regression with correlated errors. As in this
field, no autoregression is performed and the series are not necessarily stationary, it can be seen as a preprocessing step
for trend estimation within time series problems. Opsomer et al. [38] show that standard cross-validation chooses smaller
bandwidths in a kernel estimator regression framework if autocorrelation of the error is high, so that the method overfits the
data. They state, that depending on the regression method and the parameters to choose, short-range dependence has weak
influence, whereas long-range dependence often has a high influence on the model selection process. Carmack et al. [10]
present a method they call far casting cross-validation (FCCV), which is similar to h-block cross-validation, and tackles espe-
cially the problem of multivariate data by defining a neighborhood radius of dependent data to remove. They also present
results with their method in a bandwidth selection framework for non-parametric regression, and show that LOOCV under-
estimates the error in certain cases.

Depending on the amount of lags used and the number of folds during cross-validation, omission of dependent values can
lead to a significant loss of data or even to the removal of all data available for training (see Fig. 1). So, non-dependent cross-
validation methods are only applicable in certain cases, where folds contain a low percentage of the overall data, or the
amount of relevant lags is small. It has to be noted, that LOOCV is not only computationally costly, but in contrast to k-fold
cross-validation it is also asymptotically not consistent (which would mean that with the amount of available data going to
infinity, the probability of selecting the best model goes to one) [44].

3.4.3. Cross-validation with blocked subsets
Snijders [45] uses cross-validation with ‘‘non-interrupted time series as validating sub-samples’’. We call this type of

cross-validation in the following blocked cross-validation. In particular, the last block can be one of these validating sub-sam-
ples. In that early study, the author compares blocked cross-validation with last block evaluation, using basic linear forecast-
ing methods. As there is no clear tendency in the results, the use of last block evaluation is suggested as it is less costly to
compute: last block evaluation only involves one training and evaluation step, whereas cross-validation involves these steps
for every sub-sample. Racine [41] presents a method named hv-block cross-validation. It extents the h-block method in the
way that not a single value is used for testing, but a block of data of size v. The author points out, that the method is asymp-
totically consistent for general stationary processes. In his experimental study that focuses on model selection capabilities
and does not explicitly state error values, he shows that hv-blocked cross-validation yields better model selection perfor-
mance than v-blocked cross-validation (where h = 0, so that no dependent values are omitted), if the series are large, i.e.,
longer than 500 values; on series with 5000 values his method achieves 10% higher probability for choosing the correct mod-
el. However, in practice such long series are often not available, and the task is not the choice of a true model (often there is
no true underlying model at all), but the determination of a model that yields good forecasting performance. In particular,
Kunst [34] showed that the model with the best forecasting performance is not always the true model, i.e., the model that
generated the data.

4. Design of the experiments

As seen in Section 3.4, many authors state the theoretical problems when cross-validation is to be used for time series
prediction, and many methods have been proposed to circumvent these problems. Furthermore, some results on synthetic
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Fig. 1. Example of values that are used for training and test within one iteration of a 5-fold cross-validation procedure. Assuming a forecast procedure that
uses the last four values to predict the next one, for every point in the test set values in a radius of four cannot be used for training, if independence has to be
achieved. This leads to areas, in which nearly all points have to be excluded from training.
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and real-world data within bandwidth selection in regression suggest, that standard cross-validation might favor overfitting
methods.

But it remains unclear, if these problems have significant consequences in practice when using machine learning tech-
niques in real-world applications. This question is important, as in such a scenario often standard cross-validation is used
for evaluation. Another question is, if standard cross-validation could be replaced by another, theoretically better-founded
method (last block, blocked cross-validation, etc.), that is equally robust and easy in its use, yielding the same quality of
results.

To address those issues we have developed a thorough experimental study with the following objectives:

� To determine if dependency within the data has effects on the cross-validation, e.g., in the way, that the cross-validation
procedure systematically underestimates the error. This can be done by comparing randomly chosen evaluation sets to
blocked sets.
� To determine if effects of temporal evolution can be found, by comparing evaluations that use data from the end of the

series to evaluations that use data from somewhere in between. It has to be noted, that we will consider in this study only
(second-order) stationary series, which is common practice in time series forecasting, as stated in Section 3.3.
� To determine if cross-validation yields a more robust error measure, by making full use of the data in the way that it uses

all data for training and testing.

In order to cover a broad amount of application situations, the experiments on different model selection procedures will
be carried out using machine learning and general regression methods, synthetic and real-world datasets, and various error
measures.

4.1. Applied models and algorithms

We have considered a selection of representative machine learning and general regression methods: a support vector
regression, a multi-layer perceptron, a linear fitting method, and lasso regression [23]. All methods used are available in
packages within the statistical computing language R [40]. We use the implementation of an epsilon support vector regres-
sion algorithm with a radial kernel from the LIBSVM [11] (that is wrapped in R by the package e1071), and employ a multi-
layer perceptron of the nnet package [49]. Furthermore, we use lasso regression and the linear fit model present in the R
base package. The latter one is a traditional (linear) forecasting method, i.e., an AR model with fixed order that can be applied
in the same way as the other regression methods (without the potential need for treatment of missing values during order
determination). In the following, the methods will be called svmRadial, nnet, lasso, and lm.

Table 2
The parameter grid that is generated for the neural network method, which has
two parameters, size and decay. The size is chosen by the model selection
procedures from {3, 5, 9}, and the decay from {0.00316, 0.0147, 0.1}.

Size Decay

1 3 0.00316
2 5 0.00316
3 9 0.00316
4 3 0.01470
5 5 0.01470
6 9 0.01470
7 3 0.10000
8 5 0.10000
9 9 0.10000
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Fig. 2. (a) Generated parameters to simulate an AR or MA model, respectively. In order to obtain a stationary (AR) or invertible (MA) process, the
coefficients have to fulfill certain constraints that are respected within our generation process, e.g., the sum of all coefficients has to be smaller than one and
the absolute value of the last coefficient has to be smaller than one [19]. Higher coefficients tend to be small. (b) Autocorrelation function of a time series
generated using the AR model with the parameters from (a).

200 C. Bergmeir, J.M. Benítez / Information Sciences 191 (2012) 192–213



All methods are applied with different parameter configurations. Therefore, for each method a parameter grid is determined
empirically (on time series that are available in R, but not used throughout our study, e.g., the ‘‘canadian lynx’’ dataset), which is
fixed throughout all of the experiments. The model selection procedures choose for each model and time series the best param-
eter combination from the grid. The nnet has two parameters, size and decay. The model selection procedures choose the size
from {3, 5, 9}, and the decay from {0.00316, 0.0147, 0.1}. As an example, the grid is shown in Table 2. The svmRadial method
has two parameters, cost and gamma, which we defined to be chosen from {0.1, 1, 10, 100, 1000}, and {0.0001, 0.001, 0.01, 0.2},
respectively. The lasso has one parameter, fraction, that was chosen from {0.10, 0.36, 0.63, 0.90}. The linear model lm has no
free parameters to be determined during model selection.

4.2. Benchmarking data

Both synthetic and real-world data were used throughout our study, in order to analyze the evaluation methods’ behavior
under controlled conditions and in real-world application scenarios. Using the data, three use cases were defined for the
experiments, see Section 4.2.3. All data is made available in the KEEL-dataset repository.2

4.2.1. Synthetic data
Linear and non-linear time series are simulated for the study. Linear series are generated by an ARMA process:

yt ¼ a1yt�1 þ a2yt�2 þ � � � þ akyt�k þwt � b1wt�1 � b2wt�2 � � � � � blwt�l; ð8Þ

where l and k are the numbers of lags that influence the current value, and wt, . . . , wt�l are i.i.d. Gaussian distributed random
variables. In order to obtain a process that has a stationary AR part and an invertible MA part, the coefficients a1, . . . , ak, and
b1, . . . , bl, have to be chosen in a way that the roots of their characteristic polynomials have an absolute value greater than
one, respectively [19]. In analogy to model fitting, where the final model usually is checked by unit root tests for stationarity
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Fig. 3. Within the study, a validation set is withhold from model building and model selection: the out-set. From the other values, the in-set, values are
chosen for training and testing according to the model selection procedure, for example (a) one set of standard cross-validation, and (b) last block
evaluation. Due to the embedding, values from the very beginning of the series cannot be used as targets, and to make the validation independent of the in-
set, the first values of the out-set are omitted as well.

2 http://sci2s.ugr.es/keel/timeseries.php.
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and invertibility (e.g., by using the Dickey–Fuller unit root test [42]), parameters could be generated randomly and then
checked for validity. However, if l (or k, respectively) is large finding valid parameters is not trivial (see Fig. 2) and random
generation may take a long time, as lots of potential parameters have to be generated and tested. Instead of this generate-
and-test approach, we sample the roots of the characteristic polynomials randomly from a uniform distribution in the inter-
val [�rootmax, �1.1] ^ [1.1, rootmax], with rootmax being a parameter to be chosen. From this roots, the coefficients can then be
computed by algebraic standard methods. It has to be noted, that the characteristic polynomials are constrained to have real-
valued roots. Initial values are chosen randomly, and the first 2 �max(l, k) + 1 values of every series are discarded to remove
effects of these values. The procedure is used to simulate AR processes by setting the coefficients of the MA part to zero, and
vice versa.

Non-linear time series are simulated by a similar procedure, introducing non-linearities in the following way. Parameters
for an AR model are generated as described above. Then, for every lag, a non-linear function is chosen randomly from cos (x),
sin (x), arctan (x), tanh (x), and exp � x

c

� �
(where c is a constant value; throughout our experiments we used c = 10,000). Series

are simulated as within the AR model, but with application of the corresponding non-linear function to every yt�1, . . . , yt�l.

4.2.2. Real-world data
Data from the Santa Fe forecasting competition [51] and the NNGC13 competition are used.
The Santa Fe competition data set consists of six time series sets, all of them with several thousands of values. Five of these

sets are taken from real-world applications, i.e., laser generated data, physiological data, currency exchange rate data,
astrophysical data, and audio data. The sixth series is computer generated. Out of this data, we use five time series: the laser
generated data, two series of the physiological data, the computer generated series, and a continuous part of the astrophysical

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

RELMAE

Error in−set

Er
ro

r o
ut

−s
et

CV
blockedCV
noDepCV
lastBlock
secondBlock
secondCV

(a)

40 60 80 100

40
60

80
10

0

MDAPE

Error in−set

Er
ro

r o
ut

−s
et

(b)

0.4 0.6 0.8 1.0

0.
4

0.
6

0.
8

1.
0

MDRAE

Error in−set

Er
ro

r o
ut

−s
et

(c)

Fig. 4. Point plots for scenario (AS1) (synthetic data with few significant lags), using different error measures. Every point represents the in-set and out-set
errors of one method applied to one dataset, with its parameters selected by one of the model selection procedures. As we use four methods and, within this
scenario 40 datasets, 160 points are present for every one of the six model selection procedures.

3 http://www.neural-forecasting-competition.com/datasets.htm.
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data. The other data is not used as it requires special treatment (time stamps instead of uniform intervals, missing values, learn-
ing one concept from many time series), which is not the focus of our work.

From the NNGC1 data, the high-frequency data is used, i.e., weekly, daily, and hourly data. The weekly data are economic
data related to the oil industry (gasoline prices, amount of imports to the U.S., etc.). The daily time series are measures of
traffic volume passing several tunnels, and the hourly data are average late arrival times and arrival times of airports and
metro systems.
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Fig. 5. Point plots for scenario (AS1), using MDAPE as error measure, with single plots for every model selection procedure. Each symbol indicates a
different dataset and each color a method. The methods are: (black) svmRadial, (red) nnet, (blue) lasso, (green) lm. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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4.2.3. Application scenarios
Application of cross-validation without dependent values is not feasible if relevant lags are too large. So, synthetic and

real-world data was used with only few and small relevant lags. Additionally, a simulation study was performed with data
containing larger and more lags. Then, cross-validation without dependent values cannot be applied. Thus, three different
scenarios were analyzed within the study:

� For application scenario one (AS1), synthetic data with significant autocorrelations in only few and small lags (between
one and five) were considered, so that cross-validation without dependent values is applicable. Time series with 1000
values were generated with the simulation methods for AR, MA, ARMA, and non-linear time series presented in Section
4.2.1. The ARMA series were simulated with the same order of the AR and the MA part, and autocorrelations in the first
one to five lags were used, i.e., l = k, l, k 2 {1, 2, 3, 4, 5}. For every lag, values of 5.0 and 10.0 were used for the rootmax

parameter. So, in total 40 time series were simulated.
� To analyze behavior of the methods on time series that have autocorrelations in more and larger lags, application scenario

two (AS2) uses synthetic data with autocorrelations in the last 10–30 lags. Cross-validation without dependent values has
to be omitted then. Series were simulated in analogy to scenario (AS1), but with k, l 2 {10, 15, 20, 25, 30}.
� Application scenario three (AS3) considers real-world data (with using four lags, to enable the use of cross-validation

without dependent values). All real-world series are tested with the Augmented Dickey–Fuller test [42] for stationarity.
The series that do not pass the test are not used. Though the non-stationary series are most likely to show poor perfor-
mance under cross-validation, as stated in Section 3.3, experiments are likely to be only valid for these particular series.
Also, it is likely that the forecasting models would show poor performance as well, possibly indicating that these series
would require special preprocessing for non-stationarity, which is not the focus of this study. So, finally a total of 29 real-
world time series is used, five from the Santa Fe competition, and 24 from the NNGC1 competition data.

4.3. Data preparation and partitioning

During this study we will use rolling-origin-update evaluation with one-step-ahead forecasting, since this is the most
common way such models are used.

As discussed earlier, last block evaluation simulates the typical real-world application scenario of forecasting systems. So,
we withhold from every series a percentage pds of values as ‘‘unknown future’’ for validation. In the following, we will call
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this dataset the validation set, the out-of-sample set, or shortly the out-set, as it is completely withhold from all other model
building and model selection processes. The remaining data accordingly will in the following be called the in-set. The out-set
is chosen in such a way that the later in-set evaluation can be performed without problems. That is, values from its beginning
are removed according to the number of lags that later will be used for training, so that the out-set is independent of the
other data, and it is chosen in a way that the amount of data remaining in the in-set can be partitioned equally, e.g., if 5-fold
cross-validation is to be used, the remaining amount of data will be divisible by five. The process is illustrated in Fig. 3.
Throughout our experiments, we use pds = 0.8, i.e., 20% of the data is used as out-set.

The in-set data is used for model building and model selection in the following way: the lags lds to be used for forecasting
are chosen. For synthetic series, the lags are known, as they were specified during data generation, for the real-world data
they have to be estimated. To have the possibility to use all model selection procedures (especially the procedure that re-
moves dependent values, see Section 4.4), four lags are used for real-world series. This seems feasible, as the focus of this
study does not lie in the actual performance of the methods, but in the performance of the model selection procedures. Then,
the data is embedded as already discussed in Section 3.2.

4.4. Compared model selection procedures

From the embedded versions of the data, training and test sets are generated according to different model selection strat-
egies. The procedures are then used for choosing the parameters of each method, as the model selection procedures are ap-
plied with each method and each parameter configuration, and for each method, the parameter set that produced the
minimal error within the model selection procedure is chosen. This error is furthermore used as an estimate of the overall
error, and is later compared to the errors that the methods (with these parameter configurations) produce on the out-set. We
consider six different model selection strategies, named CV, blockedCV, noDepCV, lastBlock, secondBlock, and
secondCV.
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For CV, standard 5-fold cross-validation is applied, i.e., the embedded data is partitioned randomly into five sets, and
within five turns every set is used as test set, while the other sets are used for training. For blockedCV, 5-fold cross-valida-
tion is applied on data that is not partitioned randomly, but sequentially into five sets. So, the problem of dependent values is
resolved (except for some values at the borders of the blocks, which can be removed). The problem that a system evolving
over time might have generated the time series and render results of cross-validation incorrect remains. During noDepCV,
5-fold cross-validation without the dependent values is applied: the sets generated for CV are used, but according to the lags
used for embedding, dependent values are removed from the training set. As stated earlier, depending on the lags used a lot
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Fig. 8. Point plots for scenario (AS2), using MDAPE as error measure, with single plots for every model selection procedure. Each symbol indicates a
different dataset and each color a method. The methods are: (black) svmRadial, (red) nnet, (blue) lasso, (green) lm. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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of values have to be removed, so that this model selection procedure only can be applied if the amount of lags is not large
compared to the number of cross-validation subsets, i.e., in AS1 and AS3. The evaluation type lastBlock uses only the last
set of blockedCV for evaluation. To study in more detail the effects of using a connected evaluation set or random chosen
values, and the effect of using data from the end or from somewhere in between, secondBlock evaluation uses not the last
but the second block of blockedCV for evaluation, and secondCV uses only the second subset of CV. The different types of
data sampling within the model selection procedures illustrates Fig. 3.

The other methods discussed in Section 3.4, namely forward validation and APE, cannot be used, as no recalibration of the
models is performed within our experiments.

4.5. Computed error measures

Though we do not compute average measures over multiple time series, as the study employs various different time ser-
ies, only the use of scale-independent error measures is feasible in order to achieve results that can be compared among
themselves. As some of the series contain zero values, measures based on percentage errors or on scaled errors are only
applicable, if a robust averaging is used, e.g., the median. So, we calculate the MDAPE and MDRAE. Furthermore, as for every
time series and the horizon used many values are available, the use of relative measures (e.g., RELMAE) is possible. Within
these, we use the naïve forecast (i.e., the last known value) as a benchmark. It has to be noted, that by using this benchmark,
a difference between blocked and unblocked validation modes exists, as during unblocked modes the naïve forecasts might
also be present in the training set as lagged and target values, whereas this is not the case for blocked validation modes (if
the borders of the sets are removed).

Furthermore, the additional validation procedure we apply enables the scaling of the error directly by the error on the
out-set. For this purpose, also scale-dependent measures such as the RMSE can be used.

4.6. Plots and statistical tests

The in-set error, estimated by the model selection procedure, is compared to the error on the out-set. If the model selec-
tion procedure produces a good estimate for the error the two errors should be very similar. Therefore, we analyze plots of
points (Ein�set, Eout�set). If the errors are equal, these points all lie on a line with origin zero and gradient one. In the following,
we call this type of evaluation point plots.
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Fig. 9. Box plots of scenario (AS2).
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Additionally to the point plots, we analyze box-and-whisker plots containing directly the value of the quotient (Eout�set/
Ein�set), which is especially interesting with the use of scale-dependent measures like the RMSE, as with using the quotient a
normalization takes place, so that the results are comparable.

Statistical significance of the results is explored with the following non-parametric tests: the Friedman test in its imple-
mentations of García et al. [25] is used to determine if the distributions of the quotient (Eout�set/Ein�set) for the model selec-
tion procedures differ in their location parameter (the median). And the Fligner–Killeen test [17] (that is available in R) is
used to determine if these distributions differ in their dispersion.

5. Experimental results and analysis

The complete results can be found at http://sci2s.ugr.es/dicits/papers/CV-TS. In the following, a selection of the results is
presented.

5.1. Plots of the results

Fig. 4 shows point plots for scenario AS1, using different error measures. It can be observed that the RELMAE yields a less
scattered distribution than MDAPE and MDRAE. The in-set error tends to overestimate the out-set error, especially when
using relative measures, i.e., RELMAE or MDRAE. No systematical difference between different model selection procedures
can be determined in this plot. To further examine the different model selection procedures, Fig. 5 shows the results of
Fig. 4 in more detail, only for the MDAPE measure, but with the results of every model selection procedure in a different plot.
Fig. 6 shows the results of Fig. 5 as a box plot, again including all error measures of Fig. 4, and furthermore including the
RMSE. Figs. 5 and 6 show graphically that the methods using only a single set for evaluation, i.e., lastBlock, secondBlock,
and secondCV lead in general to more disperse, less robust results. Few differences between the model selection procedures
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of the form of a bias are present. Furthermore, the difference is not in the way expected w.r.t. the theoretical problems of
cross-validation (due to the dependencies within the values, an underestimation when applying cross-validation could
occur).

Within the scenario AS2, noDepCV is not applicable any more. Point plots and box plots analogous to the plots of scenario
AS1 are shown in Figs. 7–9. The results confirm the results of scenario AS1.
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to colour in this figure legend, the reader is referred to the web version of this article.)

C. Bergmeir, J.M. Benítez / Information Sciences 191 (2012) 192–213 209



Figs. 10–12 show the results of scenario AS3, where real-world data is used. The results on real-world data basically con-
firm the simulation results, but contain more noise. For real-world data a priori it is unknown, which delayed values are rel-
evant, and no sophisticated methods to solve such problems were used within our study, so on some datasets the methods
perform worse than the naïve forecast. This leads to the ‘‘traces’’ in Fig. 10, when measures that employ a benchmark are
used.

5.2. Some results of parameter selection

Tables 3 and 4 show examples in scenario AS3 for the differences in choosing the parameters by distinct model selection
procedures, and error measures, respectively. The examples illustrate that both the model selection procedure and the error
measure used influences in the choice of the parameter set.

5.3. Statistical evaluation

The Friedman test shows high significance (p < 0.001) in the difference of medians for the groups of all model selection
procedures, for all combinations of scenarios and error measures, except for AS3 with RMSE, where a p-value of 0.126 was
obtained. As the data results from different methods (e.g., not from a test and a control sample), we cannot expect the result-
ing points to have exactly the same distributions. So, the statistical significance in the difference shows merely that the
amount of data points is high enough to obtain a stable result. As a statistical test does not express the size or relevance
of the difference found, their consequences for the practice are often unclear [53]. Also, in the forecasting community the
use of statistical tests in general is discussed controversially [4,5]. Therefore, we perform an analysis of the medians and their
differences in Table 5. The table shows that with respect to under or overestimation of the error, no difference between the
model selection procedures can be found. The differences in the accuracy with which the in-set error predicts the out-set
error are small, and vary with the characteristics of the data and the error measures. So, e.g., choice of the error measure
seems more relevant than choice of the model selection procedure.

Table 6 shows results of the Fligner–Killeen test. Though the difference between lastBlock and the cross-validation pro-
cedures is not always statistically significant, the table clearly shows the trend that the difference between the last block
evaluation and the cross-validation methods is bigger than difference among the cross-validation methods.
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Table 6
p-Values of the Fligner test. First column: Fligner test for differences in variance, applied to the group of all model selection procedures (6 procedures for AS1
and AS3, and 5 procedures for AS2). Columns 2–4: Tests of interesting pairs of methods (without application of a post hoc procedure).

All CV, lB bCV, lB CV, bCV

RELMAE AS1 0.000 0.002 0.000 0.307
AS2 0.010 0.119 0.087 0.849
AS3 0.005 0.115 0.050 0.618

MDAPE AS1 0.000 0.018 0.004 0.444
AS2 0.108 0.943 0.424 0.529
AS3 0.005 0.007 0.013 0.784

MDRAE AS1 0.000 0.020 0.007 0.701
AS2 0.001 0.346 0.369 0.983
AS3 0.054 0.256 0.163 0.737

RMSE AS1 0.000 0.448 0.508 0.707
AS2 0.000 0.230 0.047 0.433
AS3 0.078 0.028 0.008 0.644

Table 5
Medians and differences in the median. The columns are: CV, bCV, and lB: Median of (Eout�set/Ein�set) values for the procedures CV, blockedCV, and lastBlock,
diminished by one. The optimal ratio of the errors is one (which would result in a zero in the table), as then the in-set error equals the out-set error, and hence is
a good estimate. Negative values in the table indicate a greater in-set error, i.e., the out-set error is overestimated. A positive value, on the contrary, indicates
underestimation. CV-lB, CV-bCV, and bCV-lB: differences of the absolute values of CV, bCV, and lB. A negative value indicates that the minuend in the difference
leads to a value nearer to one, that is, to a better estimate of the error.

CV bCV lB CV-lB CV-bCV bCV-lB

RELMAE AS1 �0.067 �0.062 �0.069 �0.002 0.005 �0.007
AS2 �0.072 �0.075 �0.098 �0.026 �0.003 �0.023
AS3 0.022 0.003 0.005 0.017 0.019 �0.002

MDAPE AS1 �0.012 �0.002 0.020 �0.007 0.011 �0.018
AS2 �0.071 �0.070 �0.039 0.033 0.001 0.031
AS3 �0.028 �0.033 �0.012 0.017 �0.005 0.022

MDRAE AS1 �0.060 �0.060 �0.059 0.001 0.000 0.001
AS2 �0.074 �0.081 �0.059 0.014 �0.007 0.021
AS3 0.065 0.041 0.060 0.005 0.025 �0.020

RMSE AS1 0.012 0.015 0.006 0.006 �0.003 0.010
AS2 0.022 0.027 0.017 0.005 �0.005 0.010
AS3 0.061 0.046 0.060 0.002 0.015 �0.013

Table 3
Parameter sets that are chosen by the different model selection procedures, using MDAPE, for the laser data of the Santa
Fe competition. The numbers represent the index of the parameter set within the parameter grid, as shown in Table 2 for
nnet. For svmRadial, the relevant sets 18, 19, and 20 all define the parameter gamma to be 0.2, and the parameter cost
to be 10, 100, and 1000, respectively. In the method lasso, 4 means the only present parameter fraction is set to 0.9.

svmRadial nnet lasso

CV 19 4 4
blockedCV 19 8 4
noDepCV 20 4 4
lastBlock 19 3 4
secondBlock 18 7 4
secondCV 18 4 4

Table 4
Parameter sets that are chosen by the different error measures, using standard cross-validation, for the laser data of the
Santa Fe competition. The numbers represent the index in the parameter grid, as in Table 3.

svmRadial nnet lasso

RELMAE 19 3 4
MDAPE 19 4 4
MDRAE 19 4 3
RMSE 19 3 4
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6. Conclusions

In this paper, we reviewed the methodology of evaluation in traditional forecasting and in regression and machine learn-
ing methods used for time series. We observed that with the use of general regression methods and machine learning tech-
niques, also techniques usually used for their evaluation (especially cross-validation) are used within the time series
problems. This raises theoretical concerns, as the data contains dependencies and time-evolving effects may occur. On
the other hand, in traditional forecasting only the last part of every series is typically used for evaluation, thus not exhausting
the available information.

Because of the shortcomings that the commonly used methods have, various other methods have been proposed in the
literature. We grouped these in Section 3.4 into methods based on the last block, methods that use non-dependent cross-
validation, and blocked cross-validation methods.

In order to analyze the shortcomings of the popular methods and to evaluate the potential benefit from the use of other
methods in common application situations, we performed a thorough empirical study. It includes the comparison of six
model selection procedures (among others cross-validation and last block evaluation) on forecasts of four different methods
for synthetic and real-world time series.

Using standard 5-fold cross-validation, no practical effect of the dependencies within the data could be found, regarding
whether the final error is under- or overestimated. On the contrary, last block evaluation tends to yield less robust error mea-
sures than cross-validation and blocked cross-validation. The non-dependent cross-validation procedure also yields robust
results, but might lead to a waste of data and therewith is not applicable in many cases.

Regarding time-evolving effects, no differences could be found, as using the last block and using a block taken from some-
where within the data (we used the second block of the blocked cross-validation) showed a similar behavior. This is not sur-
prising, as we limited the study to stationary time series. However, assuming stationary time series is a common and
reasonable assumption in many applications.

Though no practical problems with standard cross-validation could be found, we suggest the use of blocked cross-vali-
dation, together with an adequate control for stationarity, since it makes full use of all available information both for training
and testing, thus yielding a robust error estimate. And theoretical problems are solved in a practical manner, as assuming
stationarity and approximate independence after a certain amount of lags coincides with common assumptions of many
application scenarios.
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Abstract

The purpose of this work is to investigate the usefulness of a predic-
tor evaluation framework which combines a blocked cross-validation
scheme with directional accuracy measures. The advantage of using
a blocked cross-validation scheme with respect to the standard out-
of-sample procedure is that cross-validation yields more precise error
estimates since it makes full use of the data. In order to quantify the
gain in precision when directional accuracy measures are considered,
we provide a Monte Carlo analysis using univariate and multivariate
models. The experiments indicate that more precise estimates are ob-
tained with the blocked cross-validation procedure.
An application is carried out on forecasting UK interest rate for illus-
tration purposes. The results show that the cross-validation scheme
has considerable advantages over the standard out-of-sample evalu-
ation procedure as it makes possible to compensate for the loss of
information due to the binary nature of the directional accuracy mea-
sures.
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1 Introduction

Assessing and evaluating the accuracy of forecasting models and forecasts is
an important and long-standing problem which a forecaster always faces when
choosing among various available forecasting methods. This paper aims at
investigating the usefulness of a blocked cross-validation (BCV) scheme along
with directional accuracy measures for forecast evaluation. Several forecast
error measures such as scale-dependent, percentage and relative measures
have been largely used for forecast evaluation (see Armstrong and Fildes
(1995); Taylor and Bunn (1999); Parigi et al. (2000); Meade (2002); Baffigi
et al. (2004); Hyndman and Koehler (2006); Schumacher (2007); Marcellino
(2008); Jumah and Kunst (2008); Costantini and Pappalardo (2010); Frale
et al. (2010); Costantini and Kunst (2011); Ahumada (2012), Pavlidis et al.
(2012) among others).

However, Blaskowitz and Herwartz (2009) point out that directional fore-
casts can provide a useful framework for assessing the economic forecast value
when loss functions (or success measures) are properly formulated to account
for the realized signs and realized magnitudes of directional movements. In
this regard, Blaskowitz and Herwartz (2009, 2011) propose several directional
accuracy measures which assign a different loss to the forecast, depending on
whether it correctly forecasts the direction (rise/fall) of the time series or
not. The idea behind this kind of measures is that there are many situations
where the correct prediction of the direction of the time series can be very
useful, even if the forecast is biased (an investor buys stock, if its price is
expected to rise, Blaskowitz and Herwartz (2009); a central bank tends to in-
crease the interest rate, if the inflation is expected to rise, Kim et al. (2008)).
For purposes of out-of-sample (OOS) forecast evaluation, the sample is di-
vided into two parts. A fraction of the sample is reserved for initial parameter
estimation while the remaining fraction is used for evaluation. However, this
procedure may fail to work well when the overall amount of data is limited
and/or a lot of parameters are to be estimated. As the directional accuracy
measures use the predictions in a binary way (correct/incorrect prediction of
direction), the problems are even more prominent when using such measures.
Here, the cross-validation scheme can considerably improve the forecast di-
rectional accuracy provided that the data used for forecasting are stationary
(see Arlot and Celisse (2010)). In this context, the use of the directional
forecasting accuracy is also recommended since changes in the sign are fre-
quent with stationary data (no increasing/decreasing trend).
This paper makes a contribution to the existing literature by investigat-
ing whether, and to what extent, the k-fold BCV procedure proposed by
Bergmeir and Beńıtez (2012) may provide better results in terms of forecast
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directional accuracy than the standard OOS procedure. The use of the k-
fold blocked scheme is suggested since it yields more precise error measures,
and this paper aims at evaluating if this benefit is also retained when the
forecasts are tested for directional accuracy. To this end, we provide a Monte
Carlo analysis using simple univariate and multivariate linear autoregressive
models. These models are likely to show a rather conservative behavior com-
pared to more complex models regarding the differences in the outcome of
the forecast evaluation, as more complex models require more data for pa-
rameter estimation, so that the observed effects may be even stronger with
complex models. The Monte Carlo results show that the advantage of using
a BCV scheme is quite remarkable.
Furthermore, we offer an empirical application to the UK interest rate data.
The forecast results show that the BCV scheme has considerable advantages
over the standard OOS evaluation procedure as it makes possible to compen-
sate for the loss of information due to the binary nature of the directional
accuracy measures.
The rest of the paper is organized as follows. Section 2 reviews the BCV
procedure. Section 3 describes the directional accuracy measures. Section 4
provides the Monte Carlo results. Section 5 discusses our empirical findings,
and Section 6 concludes.

2 Blocked cross-validation

In k-fold cross-validation (see Stone (1974)), the overall available data is ran-
domly partitioned into k sets of equal size: each of the k sets is used once
to measure the OOS forecast accuracy, and the other k − 1 sets are used
to build the model. The k resulting error measures are averaged using the
mean to calculate the final error measure. The advantage of cross-validation
is that all the data is used both for training (initial estimation) and testing,
and the error measure can be computed k times instead of only one. There-
fore, by averaging over the k measures, a more reliable evaluation of the true
model performance can be obtained. Since the cross-validation scheme re-
quires the data to be i.i.d. (see Arlot and Celisse (2010)), modified versions
of cross-validation for time series analysis have been proposed (for a large
survey see Bergmeir and Beńıtez (2012)). Identical distribution translates to
stationarity of the series (Racine, 2000), and independence can be assured
by omitting dependent values during testing (see, e.g., McQuarrie and Tsai
(1998) or Kunst (2008) for the procedure). Depending on the amount of folds
and the specification of the model, removal of dependent values may yield
to a considerable loss of data, and even may result in an insufficient amount
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of data for model estimation. A solution to this problem is to choose the k
folds as blocks of sequential data (see also Racine (2000)). This scheme along
with the procedure of omitting only the data from the borders of these data
blocks during evaluation yields k-fold BCV (Bergmeir and Beńıtez, 2012).

In Figure 1, we present a simple example to show how the BCV procedure
works in practice (see also Bergmeir and Beńıtez (2011)). For the OOS
evaluation, the test set is chosen from the end of the series, and the training
set is not interrupted by the test set. For the BCV scheme, there are cases
in which the test set interrupts the training set, so that it consists of two
non-continuous parts. Because of this, for some forecasting models (e.g.,
exponential smoothing methods or models with a moving average part) the
use of cross-validation may not be straightforward, as it may be difficult for
the model estimation procedure to handle missing values in the training set.
However, this is not an issue in the broad class of (linear or non-linear) pure
autoregressive models of fixed order, as in the embedded form of the series
only the respective rows have to be removed before estimating the model.

3 Directional accuracy measures

Conventional measures of forecasting accuracy are based on the idea of a
quadratic loss function in that larger errors carry proportionally greater
weight than smaller ones. Such measures respect the view that forecast eval-
uation should concentrate on all large disturbances whether or not they are
associated with directional errors which are of no special interest in and of
themselves. However, several studies argue that incorrectly predicted direc-
tions are among the most serious errors a forecast can make (see Chung and
Hong (2007); Kim et al. (2008); Solferino and Waldmann (2010); Blaskowitz
and Herwartz (2009, 2011), Clatworthy et al. (2012) among others). In this
respect, this study applies some directional accuracy measures (Blaskowitz
and Herwartz (2009, 2011)) for forecast evaluation.
Using the indicator function I, the directional error (DE) for h-step-ahead
forecasting is defined as:

DEt = I(I((ŷt+h − yt) > 0) = I((yt+h − yt) > 0))

where yt is the current value of the series, ŷt+h is the value of the forecast,
and yt+h is the true value of the series at time t + h. Using DE, a general
framework for the directional accuracy (DA) can be obtained:

DAt =

{
a for DEt = 1
b for DEt = 0

4
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In this framework, a correct prediction of the direction gets assigned a

value a, which can be interpreted as a reward, and an incorrect prediction
gets assigned a value b, a penalty. In our study, we use a = 1 and b = −1.
Based on the DA, several directional accuracy measures can be defined.
The mean directional accuracy (MDA) is defined straightforwardly as the
mean of the DA:

MDA = mean(DAt)

This measure acquires well the degree up to which the predictor is able
to correctly predict the direction of the forecast, and it is robust to outliers.
However, it does not take into account the actual size of the change, so it
does not measure the economic value of the forecast (the predictor can be
able to forecast the direction in cases of low volatility quite well, but it can
fail when the volatility is high). Therefore, we use the directional forecast
value (DV), which multiplies DA by the absolute value of the real changes,
thus assessing better the actual benefit/loss of a correct/incorrect direction
of the prediction.
The mean DV (MDV) is defined as:

MDV = mean(|yt+h − yt| ·DAt)

In order to have a scale-free measure, the absolute value of the change
can be divided by the current value of the series (Blaskowitz and Herwartz,
2011). Then, the mean directional forecast percentage value (MDPV) can
be defined as follows:

MDPV = mean

( ∣∣∣∣
yt+h − yt

yt

∣∣∣∣ ·DAt

)

4 Monte Carlo experiment

In this section, we provide a Monte Carlo analysis. Specifically we consider
two different experiments. In the first experiment, we generate series from
a stable AR(3) process, while in the second one the data is generated from
a bivariate VAR(2) model. In both experiments, one-step-ahead predictions
are considered. The experiments are performed with the R programming
language (R Development Core Team, 2009) in the following way.

Series are first generated and partitioned into a data set which is available
to the forecaster, the in-set, and a set of data from the end of the series as
unknown future, the out-set. We use 70 percent of the data as in-set, and the
rest of the data as out-set. Then, the in-set is partitioned into training and
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test sets using the OOS and 5-fold BCV procedures (20 percent of the in-set
are used as test set, so that the OOS evaluation coincides with the last fold
of the BCV). Models are then built and values of the test sets are predicted
and the directional accuracy measures presented in Section 3 are calculated
using the OOS and 5-fold BCV procedures. In this way, we obtain error
estimates using only the data of the in-set. Then, we build models using all
data of the in-set, and predict the values of the out-set and calculate the
directional accuracy measures on the out-set (see also Figure 2). So, for each
model type we obtain an error estimate using only the in-set data, and a
reference error measure on the future of the series, the out-set data. This
enables a comparison of the in-set error estimates (using OOS and BCV) and
the out-set errors. See also Bergmeir and Beńıtez (2012) for the procedure.
We calculate the root mean squared error of the in-set estimates with respect
to the out-set errors, and call this measure in the following the root mean
squared predictive accuracy error (RMSPAE). It is defined as follows:

RMSPAE =

√√√√ 1

n

n∑

i=1

(M out−set
i −M in−set

i )2

Here, n is the number of series, i.e., trials in the Monte Carlo simulation,
and M is the directional accuracy measure in consideration (MDA, MDV, or
MDPV), calculated for one model and one series. In the case of M in−set, the
OOS or BCV procedure is used on the in-set, and in the case of M out−set, the
data of the in-set are used for training, and the data of the out-set are used
for testing. Series with lengths of 50, 70, 100, 150, 200, 250, 300, 350, 400,
450, 500, 550, and 600 values are used. For each length, 1000 experiments
are conducted.

4.1 Univariate case

Series are generated from a stable AR(3) process. Real-valued roots of the
characteristic polynomial are chosen randomly from a uniform distribution in
the interval [−rmax,−1.1]∪ [1.1, rmax], with rmax=5.0. From these roots, the
coefficients of the AR model are computed (for a more detailed description
of the procedure, see Bergmeir and Beńıtez (2012)). The first 100 time series
observations are discarded to avoid possible initial value effects. For each
iteration, new coefficients and a new series are generated in this way. For
forecasting purposes, we consider AR models that use 1 to 5 lagged values,
AR(1) - AR(5). Evaluation is performed using OOS and 5-fold BCV. As
percentage measures such as the MAPE and the MDPV are heavily skewed
when the series have values close to zero (see, e.g., Hyndman and Koehler
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(2006))1, for each series we subtract the minimum of the series from all values
(to obtain a series of non-negative values), and then we increment all values
by 1, to achieve a series which only contains values greater 1.

Table 1 reports the RMSPAE results for the directional accuracy measures
discussed in Section 3 for BCV and OOS schemes. A series length of 100 is
considered in the table.2

We clearly see that the values for BCV are consistently smaller than the
respective values of OOS evaluation. This means that the measures calcu-
lated on the in-set using BCV estimates more precisely the out-set measures.
So, using BCV we can estimate more precisely the directional accuracy that
is to be expected for a given method when using it for forecasting unknown
future values of the series.

Figure 3 shows the RMSPAEs for the series of all lengths when an AR(3)
model is considered. The results indicate that the RMSPAE in general de-
creases with increasing length of the series, so that the directional accuracy
is estimated more precisely if more data are available. Also, advantages of
cross-validation are greatest if the series are short which can be the case in
empirical applications.

4.2 Multivariate case

The purpose of the multivariate Monte Carlo simulation study is to verify
the robustness of the results in Section 4.1. The data generating process is a
bivariate VAR(2) model. Series are generated as in Section 4.1. Eigenvalues
for the companion matrix of the VAR model are generated, with an absolute
value smaller than 1, in order to obtain a stable model (Lütkepohl, 2006).
The companion matrix is generated from these eigenvalues by the proce-
dure described by Boshnakov and Iqelan (2009). The covariance matrix is
randomly chosen by generating an upper triangular matrix from a uniform
distribution in the [−1, 1] interval where the elements on the diagonal are set
equal to 1. Therefore, a random symmetric matrix is built up. The random
values necessary for the VAR process are then drawn from a Gaussian distri-
bution, and multiplied by the Cholesky form of the covariance matrix. As in
the univariate experiment, the first 100 observations are discarded and the
resulting series are shifted to prevent problems with percentage measures (by
incrementing each value by 1 and subtracting the minimum of the series).

Along with the VAR(2) model, two other models are used for forecasting
purposes, namely the bivariate VAR(1) and VAR(3) model. In Table 2, the

1This is also confirmed in unreported preliminary experiments.
2To save space, results for other series lengths are not reported here. They are available

upon request.
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Monte Carlo results of RMSPAE for the directional accuracy measures using
BCV and OOS evaluation procedures for series of length 100 are reported.3

The results confirm those in the univariate case. From Table 2, it can be seen
that the RMSPAE is consistently smaller using the BCV procedure, so that
BCV provides a more precise estimate of the directional accuracy. Figure 4
shows the Monte Carlo results in terms of RMSPAE for series of all lengths
when a VAR(2) model is considered. The findings observed in the univariate
are then confirmed and the advantage of using the cross-validation scheme is
preserved and it is also bigger with shorter series.

5 Empirical application

In this section, we offer an application to UK interest rate as an example of
the use of BCV in practice. While the findings of the Monte Carlo simulation
show superiority of BCV over OOS in general, we now focus on the partic-
ularity of directional accuracy measures of binary output, which potentially
leads to a loss of information. The main purpose of our study is neither
to support or establish an economic theory nor to show the suitability of a
particular method, but to investigate the usefulness of the cross-validation
scheme along with directional accuracy measures. Therefore we consider sim-
ple linear models for forecasting the UK quarterly interest rate.4 In order to
have a realistic setup with regard to the evaluation procedures, we do not
perform a partition of the data into in-set and out-set, but just use OOS
and BCV evaluation in the way it would be used in an empirical application.
Therefore, we do not compute the RMSPAE, but we provide the results of the
directional accuracy measures. The data set consists of quarterly annualized
real GDP growth, quarterly annualized inflation rate and the three-month
Treasury bill rate. The data is taken from the OECD Main Economic In-
dicators database and it covers the period 1965:1-2011:1.5 GDP growth is
defined as 400 times the log difference of GDP and inflation is similarly de-
fined using CPI. The interest rate is used without any change. The series
are shown in Figure 5. All the series have been tested for stationarity using
the DF-GLS unit root test of Elliott et al. (1996). The results show that the
inflation and GDP growth rates are stationary at 5% level (the statistics are
-3.102 and -5.129, respectively) while interest rate is stationary at 10% level
(the statistics is -1.920).

3As in the univariate case, results for series of other lengths are not reported here to
save space. They are available upon request.

4For a forecasting exercise on UK interest data see also Barnett et al. (2012).
5The CPI data has been seasonally adjusted using Tramo seats.
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In the application, we consider a trivariate VAR model with interest, CPI

inflation and GDP growth rates (VAR3), a bivariate VAR model with interest
and CPI inflation rates (VARcpi) and a bivariate VAR model with interest
and GDP growth rates (VARgdp). All the VAR models are of order two (a
common or a recommended model in macroeconomic systems, see Lütkepohl
(2006)).

Table 3 reports the results. It should be noted that the MDV measure
yields negative values for the OOS procedure. This result may be due to
the fact that the last part of the sample period of the series is fairly stable.
Furthermore, we note that the OOS procedure is not capable of distinguishing
the VAR3 model from the VARgdp model as we obtain the exactly same
values for all the directional measures, while the cross-validation procedure
determines the model performances more precisely since it uses all the sample
period for the forecast evaluation. This result is examined in more detail
in Figure 6. It should be noticed that in the last fold of BCV, which is
also used for OOS evaluation, all models yield identical results in terms of
the directional accuracy, with the exception of the VARcpi which yields an
incorrect directional forecast in one case (the other two models are able to
correctly predict the direction). Using OOS, it is harder to distinguish the
forecasting performance among the models (the VAR3 and VARgdp models
yields the same results). In this regard, findings show that BCV may help
distinguish models’ forecasting performances in terms of directional forecast
accuracy.

6 Conclusions

This paper investigates the usefulness of a predictor evaluation framework
which combines a k-fold blocked cross-validation scheme with directional ac-
curacy measures. The advantage of using a blocked cross-validation scheme
with respect to other procedures such as the standard out-of-sample proce-
dure is that the cross-validation allows to obtain more precise error estimates
since it makes full use of the data. In this paper we evaluate whether, and to
what extent, the k-fold blocked cross-validation procedure may provide more
precise results than the standard out-of-sample procedure even when dealing
with directional forecast accuracy. To this end, a Monte Carlo analysis is
performed using simple univariate and multivariate linear models.
An empirical application is carried out on forecasting UK interest rate data.
The results show that the standard out-of-sample procedure may fail to
detect the best performance among different forecasting models while the
cross-validation helps obtain this. This may suggest the use of the block
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cross-validation scheme when dealing with directional forecast evaluation.

References

H.A. Ahumada. Break detectability and mean square forecast error ratios
for selecting estimation windows. Journal of Forecasting, 31(8):688–705,
2012.

S. Arlot and A. Celisse. A survey of cross-validation procedures for model
selection. Statistics Surveys, 4:40–79, 2010.

S. Armstrong and R. Fildes. On the selection of error measures for compar-
isons among forecasting methods. Journal of Forecasting, 14:67–71, 1995.

A. Baffigi, R. Golinellli, and G. Parigi. Bridge models to forecast the euro
area GDP. International Journal of Forecasting, 20:447–460, 2004.

A. Barnett, H. Mumtaz, and K. Theodoridis. Forecasting UK GDP growth,
inflation and interest rates under structural change: a comparison of mod-
els with time-varying parameters. Working Paper 450, Bank of England,
2012.
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Figure 1: Training and test sets chosen for traditional OOS evaluation, and
5-fold BCV. Blue dots represent points from the time series in the training
set and orange dots represent points in the test set. In the example, we
assume that the model uses two lagged values for forecasting, which is why
at the borders always two values are omitted.
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Figure 2: Illustration of the Monte Carlo experiments. The data are parti-
tioned into an in-set, which is used for BCV and OOS evaluation, and an
out-set (green), which is completely withheld. After model estimation and
estimation of the directional accuracy measures, the models are estimated
again, using all available data in the in-set, to forecast the unknown future
(the out-set). This is a typical application scenario of forecasting. In our
experiments, then the directional accuracy measures are calculated on the
out-set, and the error estimates given by BCV and OOS evaluation can be
compared to the reference errors calculated on the out-set.
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Table 1: Univariate results. OOS and 5-fold BCV procedures.

MDA MDV MDPV
RMSPAE 5-fold BCV

AR(1) 0.1803 0.9035 0.2922
AR(2) 0.1830 0.9025 0.2926
AR(3) 0.1820 0.9045 0.2927
AR(4) 0.1838 0.9059 0.2928
AR(5) 0.1864 0.9069 0.2933

RMSPAE OOS
AR(1) 0.2697 1.1790 0.3908
AR(2) 0.2775 1.1798 0.3908
AR(3) 0.2756 1.1817 0.3911
AR(4) 0.2733 1.1799 0.3905
AR(5) 0.2743 1.1812 0.3909

Notes: Series of length 100. The RMSPAE is calculated over 1000 trials.
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Figure 3: Monte Carlo standard deviations of the forecast errors for an AR(3)
model. Series of different lengths.
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Figure 4: Monte Carlo standard deviations of the forecast errors for a VAR(2)
model. Series of different lengths.

Table 2: Multivariate results. OOS and 5-fold BCV procedures.
MDA MDV MDPV

RMSPAE 5-fold BCV
VAR(1) 0.2203 0.3050 0.0452
VAR(2) 0.2157 0.2765 0.0493
VAR(3) 0.2212 0.2772 0.0522

RMSPAE OOS
VAR(1) 0.3220 0.4106 0.0664
VAR(2) 0.3132 0.3968 0.0729
VAR(3) 0.3299 0.4182 0.0781

Notes: Series of length 100. The RMSPAE is calculated over 1000 trials.
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Figure 5: UK quarterly interest rate, CPI inflation rate and GDP growth
rate.
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Table 3: UK interest rate forecasting results. OOS and 5-fold BCV proce-
dures.

MDA MDV MDPV
5-fold BCV

VAR3 0.1778 0.0819 0.0165
VARcpi 0.2444 0.1122 0.0152
VARgdp 0.1556 0.1013 0.0181

OOS
VAR3 0.1667 -0.0048 0.0191

VARcpi 0.1111 -0.0161 0.0036
VARgdp 0.1667 -0.0048 0.0191

Notes: The values for 5-fold BCV are averaged error measures over the 5 folds. VAR3

includes interest, CPI inflation and GDP growth rates; VARcpi interest and CPI inflation
rates; VARgdp interest and GDP growth rates. Note that the table does not report the

RMSPAE as Tables 1 and 2, but it shows the values of the directional accuracy
measures.
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Figure 6: UK quarterly interest rate forecasts. Forecasts and directional accuracy of the
three different VAR models are shown. The directional accuracy as defined in Section 3 only
takes the values -1 and 1. As the models obtain very similar results in terms of forecasts, it
may be difficult to distinguish them w.r.t. their directional accuracy performance.
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