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Electroacoustic techniques are promising tools for the size determination and electrokinetic

characterization of concentrated colloidal suspensions. When particles are not homogeneous in

size and/or density, the dynamic mobility obtained is a kind of average of the mobilities of

every particle. In this paper, we try to discern which averaging procedure provides a better

description of the dynamic mobility of bidisperse suspensions consisting of a mixture of two

very different types of particles. The results show that the amplitude of the sound wave induc-

ed by an applied ac field (electrokinetic sonic amplitude) is not just the sum of the amplitudes

of the waves generated by every particle but has a larger contribution from the larger particles,

although the small size entities considerably influence the behaviour of the latter because of

their interference in the fluxes of the fluid and ions around them.
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INTRODUCTION

Concentrated colloidal systems exhibit a wide spectrum of

phenomena that have their origin in interactions between

particles. Colloidal aggregation, rheological properties,

electrorheological and magnetorheological effects,1–3 anom-

alous electroorientation of elongated particles,4 the presence

of new phases or phase separation due to depletion in bi-

disperse systems5 are some of the new topics of increas-

ing interest to workers in the field.

However, in such concentrated systems, the descrip-

tion of the system by classical techniques, like dynamic

light scattering or microelectrophoresis, is essentially

useless, since they are based on optical methods. In con-

trast, the electroacoustic determination of dynamic mo-

bility (the ac counterpart of classical, or dc, electropho-

retic mobility) becomes extremely useful to describe the

electrical state of the particle/solution interface. Also, this

technique provides the dependence of dynamic mobility

on the frequency of the external electric field, that is, much

more information than that available with a single value

such as electrophoretic mobility.

There are two such techniques. One involves the ge-

neration of a pressure wave when an ac electric field is

applied to the suspension: the amplitude of the sound

wave, AESA, is known as electrokinetic sonic amplitude,

and so we speak of the ESA effect. The second method,

reciprocal of ESA, is based on the determination of the

electric potential induced by the passage of a sound wave

through the system. It is called the colloid vibration po-

tential (CVP) or colloid vibration current (CVI) depend-

ing on the quantity measured. After the very early works
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on the subject, particularly those by Debye, and Booth

and Enderby,6–9 O’Brien10,11 carried out an investigation

on the physical foundations of electroacoustic techniques,

based on the concept of dynamic electrophoretic mobi-

lity, ud*, a complex quantity that is in fact proportional to

the ESA signal, from which it can be derived:11

AESA ∞ f
Dr

rm
du* (1)

where f is the volume fraction of solids and Dr = rp –

rm is the density contrast, rp (rm) being the density of

the particles (dispersion medium). The dynamic mobility

ud* is the constant of proportionality between the electro-

phoretic velocity of the particle and the ac electric field,

at zero pressure gradient.

In this work, we analyze the way how to use the dy-

namic mobility of bidisperse systems for their electroki-

netic characterization. In Ref. 12, the authors demonstra-

ted that in the case of homogeneous mixtures, we would

expect a kind of average value between the mobilities of

both particles. However, as we will see, such a law is

obeyed only in the case of slight polydispersity.

Theoretical Background

Charged colloidal particles in aqueous suspensions mi-

grate under the action of an electric field. The forces act-

ing on each particle are of electric and viscous origin,

and come, basically, from the action of the external field

on the particle’s charge, the viscous friction with the

fluid (also in motion because of the effect of the field on

the charged double layer), and, eventually, the local field

generated by the polarized double layer. To this we must

add the hydrodynamic and electrical interactions between

particles, if their concentration is large enough. An ap-

proximate formula accounting for these effects is:13–15

ud* =
2

3

e e z

h

0 m (1–C*) G* (2)

where z is the zeta potential, h the viscosity of the me-

dium, e0 the vacuum permittivity, em the relative permit-

tivity of the medium, and C* the induced dipole coef-

ficient related to the induced dipole
�

d by the expression:

�

d = 4pe0ema3 [C1 – iC2]
�

E0 (3)

where a is the particle radius and C1 and C2 are the real

and imaginary parts of C*. In Eq. (2), G* is the complex

function that accounts for the particle and fluid inertia in

the presence of an applied field of frequency w given by:

G* =
1

1
9

3 2
2

+

+ + +

l

l
l r

r
( )

D

m

(4)

In this expression,

l = (1+i)
w r

h

a2

2

m (5)

corresponds to the product ka, where k is the complex

wave vector of the fluid velocity wave provoked by the

oscillations of particles in the viscous liquid under the

action of the external electric field.16 It must be noted

that Eq. (2) is only valid if the particle size a is much

larger than the double layer thickness, given by the

Debye length k–1:

k–1 =
k T

z e ni i
i

N

B me e0

2 2

1

∞

=
∑

(6)

where N is the total number of ionic species in the

medium, zie is the charge of the i-th ion and ni
∞ its bulk

number concentration, kB the Boltzmann constant and T

the absolute temperature. Recall that the so-called thin

double layer approximation is usually written as ka > 1.

Hence, in the first approximation, the dynamic elec-

trophoretic mobility will be determined by the zeta po-

tential, and both the dipole coefficient and inertia factor

at each frequency.

Recall that if an alternating electric field is applied,

the dipole coefficient depends on its frequency because

of the different time scales of the various phenomena that

contribute to the induced dipole. Hence, like, for instance,

the permittivity of the suspension, dynamic mobility will

exhibit one or more relaxation phenomena, in addition

to the high-frequency decline, always present because of
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Figure 1. Real (a) and imaginary (b) parts of the dynamic mobility
of a suspension of spherical particles in 0.5 mmol dm–3 KCl, with
f = 1 %, z = –100 mV and the particle radii indicated.



inertia. For example, in Figure 1 we plot the real (a) and

the imaginary part (b) of the mobility of an aqueous

suspension of spherical particles.13,17

The curves corresponding to different particle radii

show well defined increases (at low frequencies) and de-

creases (high frequencies), with characteristic frequencies

clearly dependent on the size, and very easy to observe

in the imaginary component of the mobility ud
* (part (b))

of Figure 1. The low-frequency raise is associated with

the Maxwell-Wagner-O’Konski (MWO) relaxation of the

induced dipole:18–19 below the characteristic frequency,

the different conductivities of the particle and solution

provoke accumulation of counterions on one side of the

particle, and depletion on the opposite side, thus produc-

ing a contribution to the dipole. If the frequency is in-

creased above that value, the ionic electromigration does

not have time to occur, and the dipole coefficient de-

creases, i.e., the modulus of the mobility increases. The

characteristic frequency of this MWO relaxation is:

wMWO =
( ) ( )

( ) ( )

1 2

1 20 0

− + +
− + +

f k f k

f e e f e e

p m

p m

(7)

where f is the volume fraction of solids, kp and km are

the conductivity of the particle and solution, respecti-

vely, and ep is the dielectric constant of the particle. For

the case of insulating particles with a charged interface,

this equation can be still used after substituting kp by the

effective conductivity of a particle plus its ionic atmo-

sphere due to the excess of ions in the EDL (kp = 2ks / a

for ka >> 1 and kp = 2ks / k–1 for ka < 1, where ks is

the surface conductivity of the EDL19).

As mentioned, for high enough frequencies, the mo-

bility decreases due to the inertia of the particle. If this is

small enough (solid and dashed lines in Figure 1), this

decrease is well separated from the MWO relaxation. In

this case, we can expect an increase of the mobility mo-

dulus followed by inertial decay (Figure 1a). Accordingly,

the imaginary part of ud* should exhibit two peaks (Fig-

ure 1b). However, for colloids a few hundred nanometers

in size (dotted line in Figure 1), the Maxwell-Wagner re-

laxation will be hidden by inertial decay.

As regards concentrated systems, the model has to

be dramatically changed because we have to consider the

hydrodynamic interactions between particles and, if the

double layers overlap, also their electrical interactions.

This problem is usually overcome by means of cell mo-

dels,20,21 where the suspension is substituted by a single

particle surrounded by a finite shell of electrolyte, and

with some appropriate boundary conditions for the elec-

tric and hydrodynamic problems. Details of the model

can be found in Refs. 13, 22, and 23. The important re-

sults are: (i) the mobility decreases with the volume frac-

tion of solids f; (ii) both the Maxwell-Wagner relaxation

and the inertial decrease take place at higher frequencies

when we increase f, and (iii) the amplitude of the Max-

well-Wagner relaxation decreases under the same condi-

tions.

EXPERIMENTAL

The suspensions were composed of two kinds of particles:

UCM190 polystyrene spheres and A300 silica spheres

(aerosil A300, Degussa-Hüls AG) both negatively charged.

Their sizes and electrophoretic mobilities (classical or DC,

ue) are detailed in Table I. The size was obtained from trans-

mission electron microscope pictures. The mobilities were

measured in a Malvern Zetasizer 2000 (Malvern Instruments,

England). Dynamic mobility was determined by the Electro-

acoustic Sonic Amplitude (ESA) technique, using an Acou-

stoSizer II (Colloidal Dynamics, USA). In this device, the

particles vibrate under the action of an oscillating electric

field generating a sonic wave, whose amplitude (AESA) is

given by Eq. (1). In the case of our bidisperse systems, we

used an average density contrast and the total volume fraction

of solids as input data. The method is particularly suitable

for evaluation of the electrokinetic properties of concentrated

colloidal suspension.6,24

All experiments were carried out at 25 °C.

RESULTS

Figure 2 displays the experimental results obtained for

the suspensions of UCM190 latex particles, and two salt

concentrations. The size and zeta potential of the particles

are such that the MWO relaxation (increase in Re(ud*) and

minimum in Im(ud*) are clearly observed for the two KCl

concentrations, while the inertial fall (and its correspond-

ing maximum in Im(ud*) is just suggested by the experi-

mental data, considering the frequency range accessible

to the instrument (n = 1–18 MHz). Interestingly, the cell

model13 (lines in Figure 2) is capable of describing the

results with high accuracy. Table II displays the zeta po-
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TABLE I. Identification of the particles used, together with their radii
and dc electrophoretic mobilities ue in 0.5 mmol dm–3 KCl so-
lutions

Particle Radius / nm ue / 10–8 m2 V–1 s–1

UCM190

A300

168

7.0

–4.3

–2.5

TABLE II. Zeta potential for the best fit of the model of Ref. 13 to
the experimental results of dynamic mobility of the suspensions in-
dicated

Suspension z / mV

UCM190 4.77 % + 0.1 mmol dm–3 KCl

UCM190 4.77 % + 0.5 mmol dm–3 KCl

A300 5.22 % + 0.5 mmol dm–3 KCl

–200

–150

–16



tentials required to get such a good proximity between

theory and experiment.

Figure 3 shows the experimental results for suspen-

sions of A300. In this case, no Maxwell-Wagner effect is

observed, since the particles are very small, and, in ad-

dition, the characteristic frequency of the inertial decrease

is beyond the frequency range available. Because of this

(and also because of the high probability of aggregation

between such small particles), the cell model does not

provide an accurate description of the data if we use the

TEM particle radius (Table I) and the best-fit zeta po-

tential given in Table II.

Figures 4 and 5 present the real and imaginary parts

of the mobility of UCM190 suspensions (always with

4.77 % volume fraction) with different added concentra-

tions of A300, for KCl 0.1 mmol dm–3 (Figure 4) and

KCl 0.5 mmol dm–3 (Figure 5). As observed, upon ad-

dition of even small amounts of aerosil, the mobility de-

creases sharply, approaching the values corresponding to

pure aerosil suspensions. The MWO relaxation reported
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Figure 2. Real and imaginary parts of the dynamic mobility of the
suspension UCM190 4.77 %, 0.1 mmol dm–3 KCl (a) and 0.5
mmol dm–3 KCl (b). Solid lines are the best fit of the cell model of
Ref. 13, using the zeta potential as a fitting parameter (Table II)
and the radius deduced from TEM pictures.
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Figure 3. Real (a) and imaginary (b) parts of the dynamic mobility
of the suspension A300 5.22 %, 0.5 mmol dm–3 KCl. Lines are
the best fit of the cell model of Ref. 13.
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Figure 4. Real (a) and imaginary (b) parts of the dynamic mobility
of the suspension UCM190 4.77 % and 0.1 mmol dm–3 KCl, and
the concentrations (% volume fraction) of A300 indicated in the
Figure.
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Figure 5. The same as Figure 4 but for 0.5 mmol dm–3 KCl.



in Figure 2 for UCM190 disappears, and the inertial

decrease is greatly reduced. The effect is more evident

for KCl 0.1 mmol dm–3, where even the position of the

inertial peak changes (see Figure 4b).

DISCUSSION

Let us first consider the effect of ionic strength on the

dynamic mobility of our suspensions. Figure 2 (corres-

ponding to latex particles alone) allows the observation

of the main features of this effect. Increasing the ionic

strength reduces the amplitude of the MWO relaxation,

and shifts its characteristic frequency to higher values.

This frequency change is immediately explained by the

dependence of wMWO on km displayed in Eq. (7). Con-

cerning the amplitude of the relaxation, it must be recal-

led that increasing the ionic strength brings about a larg-

er accumulation of positive ions on the left side of the

particle and of negative ones on its right side (for a field

directed from left to right). This tends to make the induced

dipole coefficient more negative, and hence closer to its

high frequency value Re(C*) = –1/2. This proximity of

low and high frequency values of the dipolar coefficient

renders the MWO amplitude smaller.

In the case of mixed suspensions, Figures 4 and 5,

corresponding, respectively, to 0.1 mmol dm–3 and 0.5

mmol dm–3 KCl, demonstrate that such features, although

observable, are considerably hidden by the addition of

aerosil because of negligible variations of its dynamic mo-

bility with frequency. Nevertheless, for aerosil concen-

trations below 0.91 %, the shift of the MWO characte-

ristic frequency to higher values as well as the flattening

of the frequency dependence of the mobility can be seen

when the concentration of KCl is changed from 0.1

mmol dm–3 to 0.5 mmol dm–3.

However, the key point of our investigation is the

understanding of the effects that the addition of A300

provokes on the dynamic mobility of suspensions. In or-

der to rule out the simple influence of the predominance

of one type of particles over the other, we will compare

our mobility determinations in mixed suspensions con-

taining (a % UCM190 + b % A300) with systems con-

taining b % A300 (b between 0.452 and 1.79). The re-

sults are shown in Figure 6 for two KCl concentrations

(0.1 mmol dm–3 and 0.5 mmol dm–3). Strikingly, in the

case of mixtures, the presence of UCM190 is almost

completely masked by the A300 silica, even though the

volume fraction of the latter is smaller, and its zeta po-

tential lower. Not only the absolute values of the mobi-

lity approach the A300 mobility, but also the Maxwell-

Wagner effect disappears, like in the A300 spectrum (see

Figure 3). The phenomenon is more evident the larger the

concentration of A300.

Recall that in polydisperse systems the ESA signal

is weighted by both the density contrast and concentra-

tion of the particles. If we assume that the ESA signal is

a superposition of the individual sonic waves generated

by every kind of particle, then the total signal will be:

AESA ∝ u D D
D

Dd

m

d* ( ) ( )
( )

f
r

r

D

0

∞

∫ (8)

where D is the diameter, ud
*(D) is the dynamic mobility

of particles with diameter D, f(D) is their concentration,

and Dr(D) is their corresponding density contrast. If we
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Figure 6. Real and imaginary parts of the dynamic mobility of the mixtures of UCM190 4.77 % and different concentrations of A300 (full
symbols) and of the suspensions of A300 alone at the same concentrations (open symbols) always in 0.1 mmol dm–3 KCl (a) and 0.5
mmol dm–3 KCl (b) A300 concentrations: 0.452 % (�: mixture; �: aerosil alone); 0.910 % (�: mixture, �: aerosil); 1.79 % (�: mixture;
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restrict ourselves to the case of a bidisperse suspension,

then, taking into account Eqs. (1) and (8):

AESA ∝ ud*
Dr

r
f

m

=
u uU U U A A A

m

* *f r f r

r

D D+
(9)

and the effective dynamic mobility of the mixture will

be given by:

ud* =
u uU U U A A A
* *f r f r

r f

D D

D

+
(10)

where the subscript indicates the UCM190 particles (U)

and A300 particles (A).

Accordingly, a possible approach to evaluation of

the effective dynamic mobility involves using Eq. (10),

inserting in it the dynamic mobilities of the individual par-

ticles. Since such mobilities depend on the concentration

of particles in the medium, the use of Eq. (10) would re-

quire knowing the mobility of every particle in its actual

environment in the experimental system, but of course

we do not have experimental access to it. Hence, the first

approximation is to consider that the concentration effect

is independent of the kind of particles that surround a giv-

en one: for instance, the UCM190 particles are assumed

to have the same mobility in a mixture (4.77 % UCM190

+ 0.452 % A300) as in a suspension 5.22 % UCM190

(i.e., the total volume fraction of the mixture). With this

assumption, and using Eq. (10), we have constructed the

theoretical predictions shown in Figure 7. In this figure,

we compare the experimental ud* for mixtures 4.77 %

UCM190 + 0.452 % A300 (full squares) with the theo-

retical predictions of Eq. (10) using the following for the

individual mobilities of each type of particles:

u

u

U

A

Experimental mobility of UCM190 with

Exp

* : . %

* :

f = 4 77

erimental mobility of A300 with f =





 0 452. %

This choice corresponds to the open circles in Fig-

ure 7. If we assume:

u

u

U

A

Experimental mobility of UCM190 with

Exp

* : . %

* :

f = 5 22

erimental mobility of A300 with f =





 5 22. %

the result is given by the open squares in Figure 7. It is

clear that none of the averaging procedures is capable to

accurately reproduce the dynamic mobility of the systems.

Nevertheless, the closest approach between the experimen-

tal data and the estimated averaged mobility is obtained

when the mobility of each kind of particle participates in

Eq. (10) as if the other particles were absent. In addition,

Figure 7 shows that the weight of the larger particles on

the average mobility is greater than estimated by the

simple mixture formula. We can conclude, in agreement

with previous works on similar suspensions,25,26 that the

mixture does not behave as the superposition of the two

components, but rather that the behaviour of the system

is mostly dominated by the larger colloidal entities, while

the role of the smaller particles is to perturb the fluid and

ionic flows around the large ones. Hence, the significant

effect that, according to Figure 6, the silica particles have

on the dynamic mobility of the bidisperse systems must

be a consequence of their influence on the non-equili-

brium double layer structure of the latex particles in the

presence of the field.

CONCLUSIONS

In this work, an evaluation has been carried out of the

dynamic mobility of bidisperse suspensions consisting of

168 nm latex particles and 7 nm silica particles. Our re-

sults indicate that silica has a very significant effect on

the electrokinetic behaviour of mixed systems. Compa-

rison between experimental data and different evalua-

tions of the average mobility suggest that this important

influence is due to the perturbation of fluid and ionic

flows around large particles due to the presence of small

particles, and it cannot be explained by a simple super-

position of the mobilities of the two populations.
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0.452 %; �: Theoretical predictions of the mixture formula Eq.
(10) using the experimental data of the single components
UCM190 4.77 % and A300 0.452 %; �: Theoretical predictions
of the mixture formula Eq. (10) using the experimental data of the
single components UCM190 5.22 % and A300 5.22 %.
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SA@ETAK

Elektroakusti~na karakterizacija bidisperznih suspenzija

María L. Jiménez, Francisco J. Arroyo, Silvia Ahualli, Raúl Rica i Ángel V. Delgado

Elektroakusti~ke tehnike su vrlo korisne za odre|ivanje veli~ine i elektrokineti~ku karakterizaciju koncen-

triranih koloidnih suspenzija. Kada ~estice nisu homogene po veli~ini i/ili gusto}i, dobivena dinami~ka pokret-

ljivost je neka vrsta prosjeka pokretljivosti svih ~estica. U radu se poku{alo razlu~iti koji postupak uprosje~ivanja

najbolje opisuje dinami~ku pokretljivost bidisperznih suspenzija koje se sastoje od smjese dviju vrlo razli~itih

tipova ~estica. Rezultati pokazuju da amplituda zvu~nog vala inducirana primijenjenim elektri~nim poljem nije

samo zbroj amplituda valova koje generiraju pojedine ~estice, nego ve}i udjel u ukupnom iznosu pripada ve}im

~esticama. Ipak, i utjecaj malih ~estica je zna~ajan zbog njihove interferencije u toku fluida i iona oko njih.

ELECTROACOUSTICS OF BIDISPERSE SUSPENSIONS 459

Croat. Chem. Acta 80 (3-4) 453¿459 (2007)


