UNIVERSIDAD DE GRANADA
FACULTAD DE CIENCIAS
DEPARTAMENTO DE FISICA APLICADA

DETERMINACION EXPERIMENTAL DE DIFERENCIAS DE COLOR:
NORMALIZACION COLORIMETRICA Y MODELOS DE VISION

JOSE ANTONIO GARCIA GARCIA
Determinación experimental de diferencias de color: normalización colorimétrica y modelos de visión

Visado en Granada, a 18 de Marzo de 1991.

LOS DIRECTORES DE LA MEMORIA

Fdo: Dr. D. F. Javier Romero Mora, Prof. Titular de Optica de la Universidad de Granada.

Fdo: Dr. D. Enrique F. Hita Villaverde, Catedrático de Optica de la Universidad de Granada.

Memoria presentada para aspirar al grado de DOCTOR EN CIENCIAS.

Fdo: José Antonio García García. Licenciado en Ciencias (Sección Físicas).
INDICE:

Capítulo 1: Introducción y Objetivos

Capítulo 2: Umbrales Diferenciales de Color
 2.1.- Introducción
 2.2.- Revisión de datos experimentales
 2.3.- Bibliografía

Capítulo 3: Teorías y Modelos de la Visión del Color
 3.1.- Introducción
 3.2.- Ideas previas a las teorías tricromáticas
 3.3.- Teoría tricromática de Young-Helmhotz
 3.3.1.- Young
 3.3.2.- Teoría de Young-Helmholtz
 3.4.- Diagrama de cromaticidad y curvas fundamentales de respuesta
 3.5.- Dicromatismo
 3.6.- Modelos neurales
 3.6.1.- Introducción a la teoría de colores oponentes
 3.6.2.- Teorías de zonas
 a) Teoría de Müller y modelo matemático de Judd
 b) Modelo de Hurvich y Jameson
 3.7.- Modelos actuales de la visión del color
 3.7.2.- Modelo de Boynton (1986)
 a) Descripción general
 b) Espectros de acción de cono y funciones de mezcla

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>PAG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>33</td>
</tr>
<tr>
<td>2.1</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>36</td>
</tr>
<tr>
<td>3.3</td>
<td>38</td>
</tr>
<tr>
<td>3.3.1</td>
<td>38</td>
</tr>
<tr>
<td>3.3.2</td>
<td>39</td>
</tr>
<tr>
<td>3.4</td>
<td>44</td>
</tr>
<tr>
<td>3.5</td>
<td>55</td>
</tr>
<tr>
<td>3.6</td>
<td>64</td>
</tr>
<tr>
<td>3.6.1</td>
<td>64</td>
</tr>
<tr>
<td>3.6.2</td>
<td>66</td>
</tr>
<tr>
<td>3.7</td>
<td>80</td>
</tr>
<tr>
<td>3.7.1</td>
<td>80</td>
</tr>
<tr>
<td>3.7.2</td>
<td>88</td>
</tr>
<tr>
<td>a)</td>
<td>88</td>
</tr>
<tr>
<td>b)</td>
<td>92</td>
</tr>
</tbody>
</table>
c) Especificación de luminancia

d) Diagrama de cromaticidad propuesto: Diagrama Luther

3.8.- Bibliografía

Capítulo 4: Fórmulas de Diferencias de Color

4.1.- Introducción
4.2.- Coeficientes metros y parámetros asociados
4.3.- Método de comparación numérica de dos grupos de elipses
4.4.- Fórmulas de diferencias de color obtenidas en nuestro laboratorio: FDC-G*
4.5.- Nuevas fórmulas de diferencias de color
4.6.- Bibliografía

Capítulo 5: Dispositivo Experimental

5.1.- Características generales
5.2.- Sistema de producción de estímulos
5.3.- Sistema de yuxtaposición de estímulos y de observación
5.4.- Puesta a punto del dispositivo experimental
5.5.- Calibrado del dispositivo
 5.5.1.- Descripción general
 5.5.2.- Respuesta spectral de la fotocélula. Efectividad del monocromador
 5.5.3.- Realización de calibrados
 5.5.4.- Puesta a punto del sistema de calibrado
5.6.- Bibliografía

Capítulo 6: Método General y Desarrollo de las Experiencias

6.1.- Descripción y justificación del método ex-
perimental 169
6.2.- Descripción y justificación de los parámetros experimentales 175
 6.2.1.- Parámetros Fotométricos 176
 6.2.2.- Parámetros Temporales 182
 6.2.3.- Parámetros Visuales 183
 6.2.4.- Observadores 184
6.3.- Desarrollo de las experiencias 187
6.4.- Evaluación de los datos experimentales 189
6.5.- Bibliografía 193

Capítulo 7: Resultados Experimentales 195
7.1.- Variabilidad entre observadores 195
7.2.- Resultados experimentales en el diagrama de cromaticidad CIE-1931 200
7.3.- Resultados experimentales en el espacio de excitación de conos 227
7.4.- Bibliografía 255

Capítulo 8: Análisis y Discusión de los Resultados 257
8.1.- Comparación interobservadores 257
8.2.- Comparación de los resultados experimentales con las fórmulas de diferencias de color 274
8.3.- Estudio de nuestros resultados en el espacio CIE-1931 y comparación con los de otros autores 286
8.4.- Análisis de nuestros resultados en el espacio de excitación de conos 303
8.5.- Bibliografía 317

Capítulo 9: Aportaciones y Conclusiones 319
Capítulo I:

Introducción y Objetivos.
I.- INTRODUCCIÓN Y OBJETIVOS.

Cuando una tarea de investigación comienza, se plantea a menudo reflexionar sobre las causas que la han motivado y los caminos que se han seguido hasta llegar a ella. En el caso de este trabajo de doctorado, su motivación y su génesis se encuentran directamente enmarcadas con lo que ha sido la línea de investigación principal del Grupo de Optica de Granada desde los años 70. Esta línea, el estudio de la discriminación cromática y la influencia que sobre la misma tienen las distintas condiciones de observación, ha dado los suficientes frutos como para que, en un momento dado, se planteara realizar un trabajo como el presente, en el que se quiere abordar la determinación experimental de diferencias de color de forma global. La confianza que supone conocer a fondo las condiciones experimentales bajo las que se han de realizar las medidas de umbrales diferenciales de color, nos hace plantearnos la determinación de los mismos en un conjunto de estímulos de color lo suficientemente significativo, como para esperar que el resultado resulte clarificador en la normalización de diferencias de color que la comunidad científica demanda.
Este trabajo, aunque planteado de forma autónoma en el seno de nuestro grupo de investigación, coincide en sus intereses con lo expresado por la CIE a cerca de la fijación de diferencias de color fiables, Robertson (1978). Este organismo ha elaborado un conjunto de recomendaciones, no seguidas en su totalidad por ningún grupo hasta la fecha, para la medida de diferencias de color que resulten generalizables y puedan establecerse como patrones. Estas recomendaciones se refieren al número de observadores, niveles de iluminación, tipos de adaptación, método de medida, etc. El origen de las mismas radica en la necesidad de disponer de un conjunto de datos elaborados para unos mismos observadores y por un mismo número de investigadores que eviten la dispersión existente de resultados experimentales hasta la fecha. En efecto, es difícil extraer conclusiones comunes de los trabajos hasta ahora llevados a cabo en este campo, debido a la gran variedad de condiciones de observación empleadas. Por otra parte, la tarea experimental en este tipo de experiencias es, a menudo, tediosa y muy sacrificada. Los observadores han de realizar un gran número de medidas, por lo que deben estar muy motivados. Esto hace difícil que algún grupo aborde en su totalidad un trabajo como el que la CIE plantea.

Sin embargo, en nuestro grupo de investigación se entendió que era posible realizar la parte fundamental de este trabajo, si era adecuado el planteamiento de las experiencias. En esta idea nos vimos apoyados por lo expresado por un investigador de la categoría en este campo del Prof. MacAdam, cuando expresaba en la Reunión Anual de la Sociedad Americana de Optica (OSA) en 1985, MacAdam (1985), la necesidad de que se obtuvieran umbrales diferenciales de color para un conjunto de estímulos a lo largo de todo el diagrama de cromaticidad, con un número suficiente de observadores, en un nivel de luminancia claramente fotópico y, lo que es más importante, con un método experimental de determinación...
del umbral basado sobre experiencias puramente de discriminación, como era el que precisamente nuestro grupo había venido utilizando desde los años 70. Estas ideas fueron así mismo transmitidas por el Prof. MacAdam al Prof. Hita en una carta personal en la que animaba a este grupo de investigación a que abordara este trabajo. Tales sugerencias suponían, de hecho, una autocritica, ya que sus propios trabajos de determinación global de umbrales de discriminación, MacAdam (1942), Brown y MacAdam (1949), y los de otros autores, Brown (1957) y Wyszecki y Fielder (1971), fueron realizados con experiencias en las que el umbral se determinaba a partir de las igualaciones de color llevadas a cabo por el observador. Esto ha sido ampliamente criticado, por no tratarse de experiencias puramente de discriminación y por la falta de objetividad en las medidas que implica este método experimental. Además, resultaba paradójico que los resultados de mayor repercusión en este campo fueran los de MacAdam (1942), obtenidos para un sólo observador.

En consecuencia, nuestras experiencias se plantearon como una nueva determinación de umbrales diferenciales de color a lo largo de todo el diagrama cromático, bajo unas condiciones de observación patrón y con un método experimental de gran objetividad ampliamente probado. A pesar de lo cual, quisimos fijar previamente el número de observadores mínimo necesario para una posterior generalización de nuestros resultados.

No podíamos dejar que este trabajo se vierase limitado a una ardua tarea experimental para la fijación de diferencias de color patrón, sin que extrajéramos las consecuencias que del mismo podían deducirse en aspectos directamente implicados con la Colorimetria Diferencial. En este sentido, era inmediato que nos planteáramos extraer conclusiones de los resultados obtenidos en cuanto a la bondad de distintas fórmulas de diferencias de color...
para representarlos. Es de destacar que dentro del Grupo de investigación de Optica de esta Universidad, se han realizado varios estudios sobre espacios de representación de color y sobre las fórmulas a ellos asociadas e incluso se han elaborado fórmulas propias.

Entendemos, además, que de un trabajo dentro de la Colorimetría, o más en general, de lo que conocemos como Ciencia del Color, siempre pueden extraerse ideas que permitan un mejor conocimiento del sistema humano de visión del color. En la actualidad se encuentra necesario un conocimiento mayor de los mecanismos de la visión del color, y consideramos la realización del presente trabajo una buena oportunidad para ahondar en este campo y así unirnos a los esfuerzos que se realizan por distintos científicos en el Mundo. Nuestra idea ha sido relacionar nuestros resultados con los modelos de visión del color más actuales y, por ello, nos presentaba un gran interés volcarlos sobre el espacio de excitación de conos propuesto por Boynton (1986). Este espacio, basado sobre modelos oponentes de visión del color, nos permite deducir directamente las características en cuanto a la discriminación de los distintos mecanismos de la visión del color, lo que no ocurre en el sistema CIE-1931 (x,y,Y). Pensando en la utilización de este sistema, la elección de los estímulos a estudiar no fue casual sino deliberada, de forma que coincidieran sobre las líneas de igual excitación de los distintos mecanismos.

Los objetivos planteados se han visto reflejados sobre los distintos capítulos en los que se ha dividido esta memoria. Tras una revisión, en el capítulo 2, de la bibliografía en el campo de la determinación experimental de diferencias de color, con especial detenimiento en el caso de los umbrales diferenciales de color, hemos realizado, en el capítulo 3, una extensa puesta al día de las teorías y modelos de la visión del color. Tal revisión
Introducción y objetivos

la hemos considerado de interés ya que la evolución reciente de las ideas en este terreno hace precisa la actualización en castellano de este tema, que nos servirá posteriormente para centrar el análisis y discusión de los resultados.

En el capítulo 4 comenzamos con una breve revisión en el tema de fórmulas de diferencias de color y pasamos a realizar una nueva aportación propia en este campo, consistente en la mejora de la fórmula propuesta anteriormente por nuestro grupo. Ésta y otras propuestas por la CIE serán discutidas sobre nuestros resultados experimentales en el capítulo 8, si bien una primera comparación entre ellas y con resultados clásicos en Colorimetría se realiza en este capítulo.

Posteriormente, en los capítulos 5 y 6, se da cuenta detallada del dispositivo experimental empleado y el método de medida seguido. Se hace especial hincapié sobre las condiciones de observación empleadas y el método de ajuste del elipsoide de discriminación que se adoptará como representativo del umbral diferencial de color.

Tras exponer, en el capítulo 7, los resultados experimentales obtenidos en los sistemas de representación CIE-1931 y de excitación de conos, pasamos en el capítulo 8, a realizar la discusión de estos resultados. Esta discusión ha quedado dividida en cuatro apartados que atienden al análisis comparativo de datos interobservadores, la comparación con datos de otros autores, el estudio de nuestros resultados sobre las fórmulas de diferencias de color y el análisis de los mecanismos de visión del color en cuanto a la discriminación en el espacio de excitación de conos.

Por último, en el capítulo 9, resumimos las principales
Introducción y objetivos

aportaciones y conclusiones que, desde nuestra opinión, aporta la presente memoria y dejaremos una puerta abierta a futuras investigaciones en esta materia.
BIBLIOGRAFIA.

BOYNTON, R.M.; "A system of photometry and colorimetry based on cone excitations", Color Res. & Appl., 11, 244-252 (1986).

CAPÍTULO II:

UMBRALES DIFERENCIALES DE COLOR.
II.- UMBRALES DIFERENCIALES DE COLOR.

2.1.- INTRODUCCION.

Desde que en 1931 se adoptó el sistema CIE en colorimetría, éste ha demostrado ser una herramienta de gran valor tanto para la investigación científica como para la práctica industrial. Sin embargo, la distancia entre dos colores en el diagrama CIE de cromaticidad (x,y) que son justamente diferentes, dista mucho de ser constante a lo largo del mismo.

Existe una gran necesidad de unas ecuaciones (fórmulas de diferencias de color) que relacionen las distancias en el espacio de color con las diferencias perceptibles entre dos colores cualesquiera. En la industria de productos coloreados tales como pinturas, plásticos o textiles es extremadamente útil predecir si el producto fabricado igualará el color deseado o, todavía más importante, si dos ejemplares de un mismo producto serán tan iguales como para que puedan ser usados indistintamente.

La investigación en la percepción de diferencias de color, también ha sido estimulada por el deseo de conocer como trabaja el sistema humano de visión del color. Este sistema es tan complicado y está afectado por tantas condiciones de observación que a
menudo, en las investigaciones, hay que usar simplificaciones de las situaciones en las que los objetos son vistos en la realidad.

Las teorías más simples de discriminación de color se elaboran sobre el concepto de umbral, entendido éste como la región del espacio de color dentro de la cual los colores representados no presentan diferencias perceptibles con respecto a uno dado, ocurriendo lo contrario con los representados fuera del mismo. Sin embargo, las teorías modernas de detección de señales, reconocen que el concepto de un umbral es mucho más complicado, Nachmias (1972). Una serie de estímulos idénticos produce una serie de estados, distribuidos estadísticamente alrededor de una media. Cuando un observador tiene que discriminar entre dos estímulos, está ante una tarea estadística y, por tanto, en primer lugar, la decisión estará basada en criterios sobre los que pueden influir instrucciones basadas en experiencias previas, y, en segundo lugar, estímulos físicamente idénticos podrán ser juzgados como diferentes, creando así un índice de falsa alarma.

Un tema estrechamente relacionado con la discriminación de color es el de los sistemas de ordenación de color. En particular, el sistema Munsell está basado en principios de percepción del color, intentando ordenar colores en escalas de tono, saturación y claridad. Cerca del umbral, tales escalas podrían estar relacionadas con la discriminabilidad porque la magnitud percibida de una diferencia podría ser juzgada en base a la certeza en la discriminación. Sin embargo, para grandes diferencias, las estimaciones de magnitud pueden estar basadas en escalas sensoriales que no están relacionadas con los mecanismos que limitan la discriminación, Stevens (1961).

Nuestro trabajo se centra sobre el estudio de la discriminación cromática y está basado en la determinación de
umbrales diferenciales de color. Las medidas en este campo se relacionan de forma directa con el cálculo de tolerancias de color, siendo éste el problema de mayor interés técnico que se presenta en la Colorimetría Diferencial. Además, la comunidad científica está muy interesada en el análisis de los mecanismos visuales de discriminación cromática, ya que de ello se puede extraer gran información a cerca de la codificación que hace el sistema visual humano de la información cromática. Por esto, en el apartado siguiente vamos a abordar la revisión de los datos experimentales de discriminación cromática que hemos encontrado más sobresalientes hasta la fecha, ya que estos han sido el punto de partida en la elaboración de nuestras propias experiencias.
2.2.- REVISIÓN DE DATOS EXPERIMENTALES.

Los colorímetros visuales han sido muy utilizados en los estudios de discriminación del color. Con ellos es relativamente fácil conseguir un gran número de estímulos y actuar sobre las condiciones de observación como variables a fijar en las experiencias. En algunos estudios, los estímulos han diferido unos de otros en sólo una dimensión (luminancia, pureza, longitud de onda, etc.), si bien, en otros, han diferido en dos o incluso tres dimensiones.

Los estudios sobre la discriminación en luminancia, suelen presentar sus resultados representando gráficamente el logaritmo de la fracción de Weber frente a la luminancia. Las curvas obtenidas muestran claramente la transición de las condiciones escotópicas a fotópicas de iluminación. El umbral decrece gradualmente hasta luminancias alrededor de 100 cd/m². Por encima de este nivel, ΔL/L permanece prácticamente constante con un ligero incremento para niveles más altos. La forma exacta de la curva y, en particular, el valor mínimo de ΔL/L depende de un número de factores temporales y espaciales que han sido revisados por Blackwell (1972).

Los estudios más completos de discriminación de pureza son los de Martin et al. (1933) y Priest y Brickwedde (1938). La principal conclusión es la existencia de un mínimo alrededor de 570 nm cuando se estudia en función de la longitud de onda dominante. El tamaño de una diferencia de pureza justamente perceptible, en el diagrama CIE-1931, en función de la pureza, se incrementa cuando disminuye ésta, prácticamente para todas las longitudes de onda dominantes. Estas experiencias se hicieron con una iluminancia retiniana de 30 td y un campo de 2º con un campo circundante oscuro.
La discriminación en longitud de onda ha sido estudiada más que otras formas de discriminación de color, probablemente por la importancia de la longitud de onda en la determinación de la naturaleza física de un estímulo de color. Cuando un umbral de discriminación de longitud de onda se representa frente a la longitud de onda, la curva obtenida presenta mínimos alrededor de 490 nm y 580 nm, y máximos alrededor de 460 nm y 540 nm. Sin embargo, los detalles de la curva varían considerablemente de unos estudios a otros e incluso, de unos observadores a otros dentro del mismo estudio. McCree (1960) mostró que la forma de la curva de discriminación de longitud de onda varía considerablemente como función de la iluminancia retiniana. Las mayores diferencias se presentan en los alrededores de 460 nm. Una de las posibles causas de estas diferencias puede surgir como consecuencia de la transmittancia del cristalino y el pigmento macular. Tanto el cristalino como el pigmento macular tienen una densidad relativamente alta alrededor de 460 nm, Ruddock (1972).

El primer trabajo que aborda el estudio de diferencias de color en todo el diagrama cromático es el de Wright (1941), en el que el autor analiza la discriminación a lo largo de 35 líneas en el diagrama de cromaticidad. El experimento se desarrolló presentándole al observador un campo bipartito de 2°, con un campo circundante oscuro. El observador actuaba sobre uno de los semicampos de tal forma que variaba las cantidades en la mezcla aditiva de los estímulos monocromáticos que formaba el estímulo estudiado, juzgando en qué momento se rompía la igualación inicialmente establecida. Las variaciones del estímulo variable se daban en tono y saturación, manteniendo la misma luminancia. Los umbrales diferenciales obtenidos son los que se muestran en la figura 2.1. Estos umbrales, como se puede observar a simple vista, ya indican una característica importante del diagrama de
Figura 2.1.- Resultados experimentales de Wright (1941).

cromaticidad CIE-1931: la falta de uniformidad del mismo, pues aparecen notables diferencias de tamaño en las mínimas diferencias perceptibles para las distintas tonalidades estudiadas. Las medidas se realizaron con un colorímetro visual diseñado por el propio Wright y que también fue utilizado para las medidas que sirvieron para definir el observador patrón CIE-1931.

Tras este interesante trabajo se planteó la necesidad de no restringirse al estudio de "umbrales de línea", y abordar qué ocurre cuando se compara un color de referencia con otros situados alrededor de él, en distintas direcciones del diagrama cromático.
En base a esta idea surge el trabajo de MacAdam (1942) en el que un único observador, PGN, realiza igualaciones de color, a luminancia constante, actuando sobre los mandos de un colorímetro visual con el que puede controlar una de las dos mitades del campo de observación. En una misma dirección se realiza varias veces la igualación, tomando la desviación estándar como medida de la discriminación. En cada uno de los 25 estímulos estudiados se midieron las desviaciones estándar en diferentes direcciones y a partir de ellas se obtuvo un contorno elíptico como representativo del umbral de cromaticidad. Lo original en el trabajo de MacAdam

Figura 2.2.- Resultados experimentales de MacAdam (1942), 10 veces aumentados.
reside principalmente en la adopción de la elipse como representativa del umbral diferencial de cromaticidad, si bien tales elipses son una aproximación teórica a los resultados experimentales, como ya se ha comentado. Los umbrales de MacAdam se muestran en la figura 2.2. MacAdam realizó sus experiencias con un campo circular bipartito de 2° y una luminancia de 48 cd/m², rodeado por un campo iluminado por el iluminante C con una luminancia de 24 cd/m². Otras características de su dispositivo experimental son la observación binocular y la utilización de una pupila artificial de 2.6 mm de diámetro.

El trabajo de MacAdam y su posterior ampliación a umbrales diferenciales de color, introduciendo como nueva variable la luminancia, Brown y MacAdam (1949), se puede considerar básico con referencia al posterior desarrollo que ha sufrido la colorimetría diferencial. Sin duda ésto llama la atención ya que, independientemente de las críticas a las que puede estar sujeto el método experimental utilizado, los resultados obtenidos lo son para un solo observador, lo que ha sido ampliamente discutido, incluso por ellos mismos en el segundo de los trabajos mencionados. En efecto, la variabilidad que se encuentra entre los resultados correspondientes a distintos observadores en los datos de umbrales diferenciales de color, hace difícil, en principio, cualquier intento de generalización, Wyszecki (1972).

La distribución de sucesivas igualaciones de color respecto a un centro fijo ha sido también estudiada por otros métodos por Silberstein y MacAdam (1945). En efecto, si se supone que estas igualaciones se distribuyen normalmente en el espacio del color, se demuestra que el lugar geométrico de los puntos con una misma desviación es un elipsoide (o una elipse, representable en el diagrama cromático CIE-1931, si nos referimos a estímulos de igual luminancia). Silberstein y MacAdam analizan los datos
correspondientes a la experiencia de MacAdam (1942) y concluyen que esencialmente esos datos son consistentes con suponer una distribución normal o gaussiana de las igualaciones. También Brown (1952-a) e Hita et al. (1982-b, 1985) han comprobado experimentalmente esta presunción de normalidad con resultados hasta cierto punto positivos.

De todos modos algunos autores han mostrado objeciones respecto a esa geometría de los umbrales, Parra (1970), Dupont-Henius (1977) e Hita et al. (1982), aunque no proponen soluciones alternativas. En la mayor parte de las investigaciones suelen adoptarse elipsoides o elipses para representar los umbrales, también por ser para estos casos la geometría más manejable por procedimientos estadísticos o matemáticos y la que permite comparar más fácilmente los resultados con los de otros autores. En cualquier caso, no está de más tener en cuenta las limitaciones que ofrece este tipo de representación, en particular si se consideran diferencias de color de tamaño superior al umbral, Robertson (1978).

En el trabajo de Brown y MacAdam (1949), las experiencias se realizaron con un dispositivo experimental distinto al que anteriormente había usado MacAdam (1942), cuyas características más importantes son: campo circular bipartito de 2° con uno circundante oscuro, visión monocular y pupila natural. Estudiaron 38 estímulos con una luminancia, variable para cada uno, comprendida entre 2 y 34 cd/m²; para los que, dos observadores, WRJB y DLM, obtuvieron los correspondientes elipsoides de igualación de color. Si cortamos los elipsoides por un plano de luminancia constante que pase por su centro, obtenemos la sección principal, o elipse de igualación de cromaticidad. En la figura 2.3 se representan estas elipses en el diagrama de cromaticidad CIE-1931, obtenidas por el observador WRJB.
Figura 2.3.- Resultados experimentales de Brown y MacAdam (1949) para el observador WRJB, 10 veces aumentados.

Ante la posible variabilidad entre observadores, Brown (1957), se plantea un nuevo trabajo con 12 observadores. Las experiencias se realizaron con un dispositivo cuyo campo fotométrico era circular bipartito de 10° con un campo circundante acromático \((x = 0.357, y = 0.344)\) con una luminancia de 9 cd/m². La visión elegida fue binocular. Se estudiaron 22 estímulos con luminancia comprendida entre 10.3 y 20.6 cd/m². Para cada uno de los estímulos, cada observador obtiene su umbral diferencial de color y a partir de estos doce umbrales obtiene el umbral diferencial de color de cada estimulo, al que llama media. En la
Figura 2.4.- Secciones elípticas principales en el diagrama CIE-1931 obtenidas como media de doce observadores por Brown (1957) 10 veces aumentadas.

Figura 2.4 se representan las secciones elípticas principales de los umbrales de color medios, en el diagrama de cromaticidad CIE-1931.

Tanto en el trabajo de Brown y MacAdam (1949) como en el de Brown (1957), los observadores realizan igualaciones actuando sobre los mandos de un colorímetro. A partir de estas igualaciones se obtiene la ecuación del elipsoide de discriminación de color, de forma tal que el 95% de las igualaciones queden dentro del
elipsoide.

El efecto del tamaño del campo, cromaticidad del campo circundante y el nivel de luminancia sobre los elipsoides de igualación de color fueron estudiados por Brown (1951, 1952-b). En general, los elipsoides obtenidos con diferentes tamaños de campos son similares en orientación y forma, difieren en tamaño, Brown (1952-b). En cuanto al nivel de luminancia, los resultados son similares dentro del margen de 3 a 30 cd/m², para niveles más bajos, las elipses de cromaticidad se alargan y orientan hacia la línea de confusión tritán, Brown (1951).

Otros parámetros experimentales estudiados han sido el tiempo de exposición de los estímulos a comparar, Siegel (1965), Hita et al. (1982-a), el tipo de fusión de primarios (espacial o temporal), Hita et al. (1979), el modo de comparación entre estímulos (sucesiva o simultánea), Uchikawa e Ikeda (1981), Uchikawa (1983), Romero et al. (1986) y el grado de metamerismo en las igualaciones de partida, Hita et al. (1986). De las conclusiones de estos trabajos extraemos las condiciones de observación fijadas en nuestras experiencias, que son las descritas en el capítulo 6 de esta memoria.

Otros resultados clásicos en el uso de colorímetros visuales para la determinación de umbrales diferenciales de color son los de Wyszecki y Fielder (1971-a), que estudiaron una zona más reducida del diagrama cromático que la de trabajos previos, debido al conjunto de primarios que utilizaron. En este trabajo se determinaron los umbrales diferenciales de color de 28 estímulos de color, empleando tres observadores, GW, AR y GF. Estos realizaban igualaciones entre dos campos hexagonales yuxtapuestos de 3° cada uno que estaban rodeados por un campo blanco de 6 cd/m² y un diámetro de 40°. La visión elegida fue binocular con pupila
Figura 2.5.- Resultados experimentales de Wyszecki y Fielder (1971-a) para los tres observadores.

natural y la luminancia de los estímulos era de alrededor de 12 cd/m². Para cada estímulo se realizaban cerca de 30 igualaciones en el espacio del color, que eran ajustadas a un elipsoide de tal forma que el 95% de ellas quedasen en su interior; una modificación de este método es el que utilizamos en nuestro trabajo para el cálculo de los umbrales y que posteriormente se detallará. En la figura 2.5 se muestran las resultados experimentales de Wyszecki y Fielder (1971-a). Cuatro de los 28 estímulos fueron estudiados varias veces, por los tres observadores, en distintas ocasiones, encontrándose los resultados que se muestran en la figura 2.6. En esta figura puede apreciarse
Figura 2.6.- Secciones elípticas principales, representadas en el diagrama CIE, de los umbrales obtenidos por los mismos observadores en distintas ocasiones, Wyszecki y Fielder (1971-a).

una gran diferencia entre los resultados obtenidos en distintas ocasiones. En un trabajo posterior, Wyszecki y Fielder (1971-b), han realizado además estudios de igualación de diferencias de color obteniendo elipses que guardan cierta correlación con las elipses iniciales de igualación de color, si bien es superior el área de estas últimas, en particular cuando aumenta el tamaño de la diferencia de color patrón que se iguala.

22 Determinación experimental de diferencias de color...
Junto a los resultados precedentes se desarrolla otro problema de índole más práctico relativo a la necesidad industrial de evaluar tolerancias de color y de medir la diferencia de color correspondiente a dos muestras de objetos coloreados, bajo unas determinadas condiciones de observación. Los acuerdos iniciales en este terreno se llevan a cabo mediante muestras que definen los valores límites aceptables, siendo en particular muy utilizadas las del atlas Munsell. Los valores de claridad, tono y croma del sistema Munsell han servido de base para distintas fórmulas que evaluían numéricamente la diferencia de color de dos muestras. La renotación Munsell, Newhall et al. (1943), permitió mejorar la utilidad del sistema y ponerlo en conexión con el CIE.

Entre los estudios más completos en este campo se encuentran los de Davidson y Friede (1953), Kuehni (1971), Jaeckel (1973) y McDonald (1980). Davidson y Friede (1953) obtuvieron, a partir de sus datos experimentales, las elipses de discriminación que incluyen las muestras que habían sido aceptadas como iguales en el 50% o más de las veces que fueron presentadas y excluyen el resto. También Kuehni (1972) obtuvo dichas elipses aunque por un método matemático distinto. En uno y otro caso las elipses obtenidas resultaron estar giradas con respecto a las obtenidas por MacAdam (1942) con colorímetros visuales.

Muchos de los trabajos en objetos de color surgen en la propia industria y su objetivo fundamental es desarrollar fórmulas de diferencias de color que sean aplicables a la situación particular en la que se llevan a cabo. En este sentido debemos destacar los trabajos de McLaren (1971), Rich et al. (1975), Kuehni y Marcus (1979) y McDonald (1980).

Por último, en este aspecto, es destacable por su actualidad y generalidad los trabajos que se han desarrollado en
la Universidad de Bradford, en conexión con las recomendaciones de la CIE. Cheung y Rigg (1986) han calculado diferencias de color aproximadamente umbrales para los 5 estímulos CIE, por diferentes métodos. Posteriormente, Luo y Rigg (1986) han realizado un trabajo de homogeneización en base a los resultados experimentales de 13 trabajos previos bien conocidos en la Colorimetria de objetos, complementados por sus propios resultados experimentales.

Como se ha indicado anteriormente, otro de los aspectos que hemos considerado en nuestro trabajo ha sido el relacionar la obtención de umbrales de discriminación cromática con los modelos de visión del color. Esto ha sido tratado hasta la fecha en pocas ocasiones, en especial a la luz de los últimos modelos de visión del color de carácter oponente. Es de destacar el trabajo de Boynton y Kambe (1980) en el que los autores calculan los umbrales de discriminación cromática a lo largo de dos direcciones críticas, el eje tritán, donde las discriminaciones sólo dependen del cono azul (B), y el eje rojo-verde, donde dependen del cociente de excitación de los conos rojo (R) y verde (G).

Boynton y Kambe (1980) realizaron sus experimentos presentando al observador un campo circular bipartito de 2° con un intervalo de separación de 6' y con un campo circundante oscuro. La iluminación retiniana fue siempre constante e igual a 120 td. Inicialmente los dos semicampos eran iguales; para comenzar la sesión el observador actuaba sobre un botón de control y, tras discorrir un tiempo impredecible de 3 a 11 s, comenzaba a variar la cromaticidad del semicampo de la derecha en una de las dos direcciones estudiadas. El observador actuaba de nuevo sobre el botón de control en el momento en el que notaba diferencias entre ambos semicampos y volvía a actuar cuando era capaz de decir en qué dirección se había producido el cambio. El trabajo fue llevado a cabo con cuatro observadores.
Las conclusiones más importantes que Boynton y Kambe (1980) obtuvieron en su trabajo las podemos resumir en los siguientes puntos:

1) Las discriminaciones dependientes del cono azul están afectadas por nivel de excitación de dicho cono (B) y son independientes del cociente de excitación de R y G. Los resultados obtenidos se adaptan bien a una ecuación de la forma $\Delta B/B + B_o = K$, donde B_o y K son constantes, obteniendo una fracción de Weber óptima del 18% aproximadamente.

2) Las discriminaciones dependientes del intercambio de la excitación de los conos rojo-verde tienen una fracción de Weber óptima del 2% aproximadamente. Este cociente se incrementa, aunque no mucho, con el desequilibrio del cociente rojo verde y por un incremento del nivel de excitación del cono azul.

3) Los umbrales de discriminación obtenidos son aproximadamente trece veces mayores que los obtenidos por MacAdam (1942).

En el mismo sentido del trabajo de Boynton y Kambe (1980) es el que Miyahara et al. (1990) han presentado en la última reunión anual de la Sociedad Americana de Optica en noviembre de 1990. Miyahara et al. (1990), han medido los umbrales de discriminación de 20 estímulos a lo largo de dos ejes críticos: el eje tritán y el eje rojo-verde. Han utilizado tres tipos de campos circundantes, uno oscuro y los otros dos, uno blanco y otro amarillo de igual luminancia, llegando a conclusiones muy parecidas a las que obtuvieron Boynton y Kambe (1980). Se está a la espera de una publicación detallada de estos resultados.

Por último, no podemos dejar de citar el trabajo de Nagy et al. (1987) en el que los autores llevan los resultados de umbrales de igualación de color obtenidos por MacAdam (1942),
Umbrales diferenciales de color

Brown y MacAdam (1949) y Wyszecki y Fielder (1971-a) al espacio de excitación de conos normalizado de luminancia constante. Los ejes de este espacio, L - 2M y S, son muy parecidos a los llamados ejes cardinales de la visión del color, Krauskopf et al. (1982). Estos ejes y las demás características del espacio de excitación de conos serán analizados posteriormente en este trabajo. Al analizar estos datos clásicos en Colorimetría en el espacio de excitación de conos y normalizar las elipses de discriminación correspondientes, Nagy et al. (1987) encontraron que la forma de éstas no variaba significativamente con la cromaticidad, observador o condiciones experimentales; además, los contornos de discriminación son predecibles a partir de los umbrales en los dos ejes cardinales de este espacio. Estos umbrales sobre los ejes varían con las cromaticidades, observadores y condiciones experimentales de acuerdo con leyes simples.
2.3.- BIBLIOGRAFIA.

CAPÍTULO III:

TEORÍAS Y MODELOS DE LA VISIÓN DEL COLOR.
III.- TEORÍAS Y MODELOS DE LA VISIÓN DEL COLOR.

3.1.- INTRODUCCIÓN.

En el presente capítulo pretendemos hacer una revisión de las diferentes teorías y modelos de la visión del color. Partiendo de las primeras teorías tricromáticas llegaremos hasta los modelos que actualmente son más aceptados. Nuestro objetivo es doble, de una parte, el desarrollo histórico de las distintas teorías y modelos, lo que desde nuestro punto de vista presenta un gran interés, y de otra, llegar a conocer los modelos actuales de la visión del color y, en particular, el modelo de Boynton (1986), puesto que, como ya hemos comentado, uno de los objetivos que nos proponemos en el presente trabajo es llevar nuestros resultados experimentales al espacio de excitación de conos que se deriva de él.

Una teoría de la visión del color debe explicar o ayudar a comprender un grupo de fenómenos visuales y hacer predicciones sobre otros diferentes, de forma que se permita así la contrastación experimental de las premisas subyacentes a la propia teoría. Dado que la percepción del color es un proceso muy complejo, cuyo estudio arranca de la determinación física de los estímulos que la provocan y finaliza en su interpretación por el...
cerebro, cualquier teoría que intente explicarla ha de tener en cuenta aspectos de índole muy diversa:

a) Aspectos psicofísicos, como las igualaciones colorimétricas cuyo comportamiento viene descrito por las leyes de Grassmann.

b) Aspectos fisiológicos, es decir, la acción que la luz produce en los receptores retinianos y su codificación en impulsos nerviosos.

c) Aspectos psicológicos que den cuenta de la decodificación de estas señales en el cerebro.

Desde un punto de vista macroscópico, en primer lugar se intentan explicar los resultados obtenidos para un observador normal, así como los casos más importantes de visión defectiva. Éstos últimos suministran un típico ejemplo en el que, observando el "funcionamiento anómalo" de un mecanismo, podemos extraer amplia información sobre el funcionamiento correcto del mismo. Por ello, y por tratarse de técnicas de análisis que proporciona la misma naturaleza, los casos de dicromatismo y monocromatismo han desempeñado un papel esencial en la elaboración y formulación de las distintas teorías que históricamente han aparecido sobre el funcionamiento de la percepción visual. Junto a estos tipos de visión normal y anómala, aparecen una serie de fenómenos visuales (fenómeno Bezold-Brücke, efectos de adaptación, inducción simultánea y sucesiva, etc.) que intentarán ser explicados por las teorías y modelos de mayor complejidad.

A partir de 1950 aproximadamente, la explicación macroscópica ha sido en parte postergada por la realización masiva de experimentos muy elaborados, encaminados a desentrañar el soporte fisiológico que sustenta los resultados obtenidos cuando el observador es tratado como un mecanismo de entrada y salida. Aunque estos experimentos (microespectrofotometría, medidas
Teorías y modelos de la visión del color

electrofisiológicas, etc.) tienen un gran interés desde el punto de vista fisiológico, no son objeto de nuestro estudio, ya que los modelos de visión del color que analizaremos tienen su soporte sobre medidas psicofísicas de la visión.
3.2.- IDEAS PREVIAS A LAS TEORÍAS TRICROMÁTICAS.

Históricamente, la primera investigación moderna en percepción del color fue realizada probablemente por Isaac Newton, en 1666, cuando encontró que la luz blanca no era una radiación única sino que podía ser dispersada por un prisma en un espectro de gradaciones de color que cambiaban continuamente.

También el carácter subjetivo del color fue entendido perfectamente por Newton: "Los rayos, hablando con propiedad, no son coloreados. En ellos no hay nada más que un cierto poder y disposición para excitar una sensación de éste o ese color" y continuó preguntándose: "¿No producen diferentes clases de rayos, vibraciones de magnitudes diferentes, las que, de acuerdo con ello, excitan las sensaciones de los diferentes colores, de una manera bastante análoga a las vibraciones del aire que, de acuerdo a sus magnitudes, excitan las sensaciones de los diferentes sonidos?, ¿y, en particular, los rayos más refrangibles no excitarán las vibraciones más cortas, produciendo una sensación de violeta oscuro, y los menos refrangibles las más largas, para producir la sensación de rojo profundo, y las diferentes clases intermedias de rayos, vibraciones de magnitudes intermedias, para producir las sensaciones de los diversos colores intermedios?", Newton (1671).

La dificultad principal en la síntesis de Newton era su discordancia con el viejo tricromatismo visual, que, se pensaba en su tiempo, residía en una propiedad desconocida de la luz. Así, en 1757 Lomonosov postula, en el marco de la teoría corpuscular de la luz, la existencia de tres tipos de partículas: las grandes, que son vistas como rojas; las de tamaño medio, como amarillas; y las pequeñas, como azules. En 1777, Palmer escribe, en el contexto de la teoría ondulatoria, "Cada rayo de luz está compuesto por tres
rayos de luz únicamente: uno de estos rayos es análogo al amarillo, otro, al rojo y otro, al azul... La superficie de la retina está compuesta de fibras de tres clases y cada una de éstas es excitada de una forma propia por uno de los tres rayos de luz... Yo me arriesgo a afirmar que nosotros nunca hemos visto los colores primarios en un grado absoluto de pureza" y continúa diciendo, "Cualquier deficiencia en sensibilidad de estas tres clases de fibras, así como una excesiva sensibilidad de alguna clase, constituye visión falsa".

Pese a estos conceptos pioneros, desarrollados junto con ideas a veces erróneas, la ciencia del color -como tal- no comenzará su despegue hasta que se produzca, en el siglo XIX, la asimilación de la explicación ondulatoria de la luz y el carácter subjetivo de la percepción cromática que había sido señalado por Newton.
3.3.- TEORIA TRICROMATICA DE YOUNG-HELMHOLTZ.

3.3.1.- Young.

A principios del siglo XIX, la opinión que prevalecía era que los colores y sus mezclas eran propiedades de la luz como consecuencia de manipulaciones externas al ojo. Casi cien años después de Newton, Thomas Young (1773-1829) presentó pruebas convincentes de la propagación ondulatoria de la luz y de la posibilidad de medir su longitud de onda por medio de fenómenos interferenciales. Convencido, como estaba, del carácter continuo del espectro, intuyó genialmente la naturaleza retiniana de la trivarianza visual y propuso, en consecuencia, una teoría tricromática básica que incluía términos físicos y fisiológicos:

"Como es casi imposible concebir que cada punto de la retina contenga un número infinito de partículas, cada una capaz de vibrar al unísono con cada onda posible, se hace necesario suponer este número limitado, por ejemplo, a los tres colores principales, rojo, amarillo y azul, y que cada una de estas partículas es capaz de ser puesta en movimiento, más o menos fuertemente, por ondas que están más o menos próximas al unísono perfecto. Cada filamento sensitivo del nervio deberá constar de tres porciones, una para cada color principal", Young (1802).

En esta cita de 1802 de la teoría de Young, los colores "principales" eran rojo (magenta), amarillo y azul (cian), que son los primarios convencionales para mezclas substractivas tales como las realizadas con pigmentos por un artista (el verde, por ejemplo, se obtiene mezclando azul y amarillo). Pero para mezclas aditivas, del tipo de las que originan los colores en la retina o en la televisión, son los primarios rojo, verde y azul (la
superposición de luz verde y roja da amarillo). Más tarde, en 1807, Young asignaba el carácter de "sensaciones simples" al rojo, verde y violeta.

Frente a la idea de Newton de bandas de "sintonización" muy estrechas para las "fibras" nerviosas, Young sugirió la hipótesis de tres bandas anchas de sensibilidad espectral cuyos máximos, escogidos partiendo de estudios de ceguera cromática, estarían en las regiones del espectro correspondientes a las "sensaciones primarias" ya señaladas. Las sensaciones de color dependerían entonces de las razones de activación de estos tres tipos de "fibras", siguiéndose de esta afirmación la idea fundamental, dentro de esta teoría, de que ningún tipo de fibra podía originar, por sí misma, un mensaje del que pudiera deducirse un color.

A pesar de los términos simples en que se formula esta primera teoría tricromática moderna, debe reconocerse que todas estas ideas fueron desarrolladas antes de que se conociera absolutamente nada de la fisiología de la retina ni del trabajo experimental de Maxwell, que veremos posteriormente; el argumento era puramente lógico, no siendo más que una hipótesis plausible basada en hechos físicos conocidos. Posteriormente, la hipótesis de Young fue ignorada durante bastantes años y en 1831, Brewster, explicaba aún físicamente la trivarianza.

3.3.2. Teoría de Young-Helmholtz.

La idea de Young de que el tricromatismo es fisiológico y no físico, no fue acogida con interés hasta que Helmholtz en 1852, después de alguna resistencia, proporcionó a la teoría de Young el respaldo de su autoridad personal. La teoría de Young de las
sensaciones de color, a pesar del tremendo adelanto que supone respecto a su tiempo, permaneció desconocida hasta que este autor -Helmholtz- y Maxwell dirigieron la atención hacia ella: "Es suficiente asumir que el nervio óptico es capaz de recoger sensaciones de diferentes clases, sin intentar encontrar porqué el sistema de estas sensaciones visuales es como es".

La trivarianza de la percepción del color se vió reforzada por los trabajos de Grassmann (1853) y Maxwell (1855). Este realizó cuidadosos experimentos de igualación de color y mostró que los colores que generan las luces espectrales podían ser igualados satisfactoriamente con mezclas de otros colores primarios procedentes de las regiones roja, verde y azul del espectro, lo que no es exactamente cierto con los conocimientos actuales de mezclas aditivas. Sobre la base de estos experimentos desarrolló un tratamiento cuantitativo de las mezclas de color, que permite la predicción de las cantidades de los tres colores primarios escogidos adecuadamente, que son necesarios para igualar un estímulo espectral de una longitud de onda dominante y pureza determinadas.

Helmholtz desarrolló aún más las ideas de Young y el primer esbozo que realiza de las curvas de sensibilidad espectral aparece en la figura 3.1. A continuación citamos al propio Helmholtz (1896) en el comentario que acompaña a esta figura:

1) "El ojo está provisto de tres sistemas distintos de fibras nerviosas. La estimulación del primero excita la sensación de rojo, la del segundo, la de verde y la estimulación del tercero, la de violeta.

2) Las luces incidentes excitan estos tres tipos de fibras en grados variables, dependiendo de su longitud de onda. Las
Figura 3.1.- Primer esbozo, realizado por Helmholtz, de las curvas de sensibilidad espectral de los tres tipos de fibras.

fibras sensibles al rojo son las más estimuladas por las longitudes de onda más largas, y las fibras sensibles al violeta, por luces de longitud de onda más corta. Pero ésto no significa que cada color del espectro no estimule los tres tipos de fibras, algunas débil y otras fuertemente; por el contrario para explicar una serie de fenómenos es necesario asumir que ésto es exactamente lo que ocurre. Suponiendo que los colores del espectro están ordenados horizontalmente en su secuencia natural, desde el rojo al violeta, las tres curvas han de tomarse para indicar algo así como el grado de excitación de los tres tipos de fibras, número uno para las sensibles al rojo, número dos al verde y número tres al violeta”.

En 1867 Helmholtz escribía: “Tres tipos de sustancias descomponibles fotoquímicamente están depositadas en los órganos finales de los nervios ópticos y cada una de ellas tiene una sensibilidad diferente para las diferentes partes del espectro”, señalando así, por primera vez, el carácter fotoquímico del proceso inicial de la visión.
Figura 3.2.- Representación esquemática de la teoría tricromática.

En lo que respecta a las igualaciones de color realizadas por observadores normales, los resultados pueden ser interpretados en términos de un mecanismo del tipo ilustrado en la figura 3.2. El haz de luz incidente, con una composición energética espectral dada, está representado por las flechas en la parte izquierda del diagrama. Antes de alcanzar los receptores sensibles de la retina, los rayos han de atravesar algunos medios absorbentes -cristalino, humores y pigmento macular- representados por M. En la etapa receptora P se supone la existencia de tres tipos de receptores con sensibilidades máximas en las regiones roja, verde y azul del espectro, en las que un rayo de luz de frecuencia dada provocará una respuesta proporcional a la sensibilidad del receptor de esa frecuencia. Las señales generadas en cada una de las fibras son transmitidas directamente al cerebro, donde las sensaciones de color experimentadas se correlacionan en modo directo y simple con las tres señales del receptor.

Antes de continuar exponiendo los últimos aspectos de la
teoría de Young-Helmholtz, así como sus derivaciones posteriores, vamos a presentar una serie de conceptos que jugarán un papel central en las sucesivas aproximaciones que se hagan al problema de la visión del color.
3.4.- DIAGRAMA DE CROMATICIDAD Y CURVAS FUNDAMENTALES DE RESPUESTA.

En los experimentos de igualación de color realizados por Maxwell, se trataba de reproducir una luz C mezclando aditivamente tres luces simples "espectrales", Ú, V y W, denominadas primarios.

Para ello se envía un flujo de luz C del color C sobre una playa de un campo bipartito, y flujos variables U, V, W de los tres primarios sobre la otra mitad del campo. Una vez conseguida la igualación, el resultado puede expresarse en la forma:

\[C \bar{C} = U \bar{U} + V \bar{V} + W \bar{W} \]

donde U, V y W son los valores triestímulo del color que estamos igualando.

Maxwell demostró que, si prescindimos de la luminancia del estímulo, las características cromáticas del mismo pueden representarse gráficamente usando un triángulo cuyos vértices representan los estímulos primarios usados en las igualaciones. Las coordenadas de cromaticidad de la luz igualada pueden hallarse con las cantidades:

\[u = \frac{U}{U + V + W} \quad v = \frac{V}{U + V + W} \quad w = \frac{W}{U + V + W} \]

demostrándose que éstas no son sino las distancias que se separan al punto que representa al estímulo de cada uno de los lados del triángulo (figura 3.3.). La versión moderna estandarizada CIE 1931 de este tipo de representación, utiliza primarios irreales X, Y, Z para conseguir que la región delimitada por el lugar espectral y la línea de los púrpuras sea interna al triángulo cuyos vértices son los primarios citados. El resultado se muestra en la figura.
Figura 3.3.- Triángulo de Maxwell.

Figura 3.4.- Diagrama de cromaticidad CIE-1931.
3.4, junto con una estimación de la cromaticidad de los estímulos visuales según su posición en el diagrama. Evidentemente, si elegimos un sistema de primarios U, V, W distintos, los valores triestímulo y las coordenadas de cromaticidad variarán.

Además, para normalizar la percepción psicofísica del color, pueden hallarse los valores triestímulo correspondientes a estímulos monocromáticos con energía unidad que cubran todo el espectro; los resultados de este experimento nos dan unas funciones denominadas "de mezcla de color" $(\bar{x}_\lambda, \bar{y}_\lambda, \bar{z}_\lambda)$, a partir de las cuales pueden hallarse las coordenadas de cromaticidad de cualquier estímulo de color si conocemos la curva de distribución espectral de energía asociada al mismo (P_λ) en la forma:

\[
X = \int_{\text{vis}} \bar{x}_\lambda P_\lambda \, d\lambda; \quad Y = \int_{\text{vis}} \bar{y}_\lambda P_\lambda \, d\lambda; \quad Z = \int_{\text{vis}} \bar{z}_\lambda P_\lambda \, d\lambda
\]

\[
x = \frac{X}{X + Y + Z}; \quad y = \frac{Y}{X + Y + Z}; \quad z = \frac{Z}{X + Y + Z}
\]

Cuando estas curvas de mezcla se expresan en términos de un sistema dado de estímulos de referencia, adoptan una forma que es característica de esos estímulos. Así, si escogemos estímulos monocromáticos de longitudes de onda $\lambda_u = 700$ nm, $\lambda_v = 546.1$ nm y $\lambda_w = 435.8$ nm, las curvas que resultan son las llamadas \bar{r}_λ, \bar{g}_λ y \bar{b}_λ. En la figura 3.5 se muestran las funciones de mezcla para el sistema CIE-1931. Sin embargo, debe quedar claro que cualquier sistema de funciones de mezcla que resulten de una elección particular de primarios, es capaz de representar los datos de igualación de color obtenidos. También es plausible pensar, dado que a cada sistema de curvas le
Figura 3.5.- Funciones de mezcla CIE 1931.

corresponde un conjunto de primarios, que sólo hay una triada de curvas que representan las sensibilidades reales de cada uno de los mecanismos receptores postulados en la teoría de Young-Helmholtz. Estas curvas, denominadas curvas "fundamentales" de respuesta, son importantes en tanto que conducen a una interpretación más directa de los datos visuales en términos de procesos fisiológicos.

Los primarios "fundamentales", tal como se entiende en la teoría tricromática de Young-Helmholtz, (término acuñado por Donders en 1880) son los que generan las curvas de respuesta "fundamentales" y, por definición, son tales que cada uno de ellos excitaría única y exclusivamente uno de los mecanismos fisiológicos de respuesta. Dado que la teoría tricromática asume
que las curvas de sensibilidad espectral de estos mecanismos fisiológicos están solapadas y son de banda ancha, ninguno conjunto de estímulos reales es capaz de cumplir este requisito y los estímulos "fundamentales", al ser necesariamente irreales, se convierten en meras extrapolaciones matemáticas cuya determinación es de sumo interés como medio para derivar las curvas de respuesta fundamentales, (en la localización de los estímulos fundamentales en un diagrama cromático $U V W$, subyace la existencia de una transformación lineal que relacione ambas triadas de valores triestímulo y que permite la derivación de las curvas de respuesta fundamentales cuando conocemos las funciones de mezcla experimentales \hat{u}_{λ}, \hat{v}_{λ} y \hat{w}_{λ} medidas a partir de igualaciones de color utilizando estímulos primarios reales U, V y W). Debemos de tener claro, por tanto, que al localizar dichos estímulos primarios no estamos definiendo ninguna sensación primaria o fundamental.

La obtención de estas curvas de respuesta fundamental ha sido, a lo largo de la historia, uno de los objetivos más perseguidos dentro del campo de la visión del color. Aunque la obtención de muchas de ellas se ha basado en el estudio del dicromatismo, que nosotros analizaremos con posterioridad, hagamos una breve revisión de algunas de ellas.

Aunque las primeras curvas de respuesta fundamental (figura 3.6.) fueron derivadas por Maxwell a partir de especulaciones sobre la forma del lugar espectral en el diagrama cromático, la primera determinación clásica de estas curvas es realizada por König (1893) partiendo de datos obtenidos para visión normal y anormal del color. Dado que estas curvas, que se muestran en la figura 3.7., fueron derivadas antes de que se conocieran datos sobre la protanopía, König combinó los puntos de confusión protanópico y deuteranópico con un primario azul.
Teorías y modelos de la visión del color

Figura 3.6.- Curvas de respuesta fundamentales derivadas por Maxwell.

Figura 3.7.- Curvas de respuesta fundamentales derivadas por König (1903).

Determinación experimental de diferencias de color...
Figura 3.8.- Curvas de respuesta fundamentales derivadas por Hecht (1932).

imaginario cuya apariencia era de equilibrio entre el púrpura y el verde.

Tras estas primeras curvas, muchas han sido las que se han obtenido, y como una mera ilustración destacamos algunas de ellas. La figura 3.8. muestra las derivadas por Hecht (1932) a partir de datos de discriminación cromática y mezcla de color; las curvas de respuesta fundamental de Wright (1946), que fueron obtenidas a partir de datos de adaptación cromática, se muestran en la figura 3.9. Además, cabe destacar, las obtenidas por Pitt (1944) combinando los datos procedentes de dicrómatas con los obtenidos por Walters (1942) con adaptación cromática y las obtenidas por Stiles (1939) a partir de estudios de percepción umbral del color con distintas condiciones de adaptación. Estas dos últimas se muestran en las figuras 3.10. y 3.11., respectivamente.
Figura 3.9.- Curvas de respuesta fundamentales derivadas por Wright (1946).

Figura 3.10.- Curvas de respuesta fundamentales derivadas por Pitt (1944).
Figura 3.11.- *Curvas de respuesta fundamentales derivadas por Stiles (1939).*

En las últimas décadas, dos curvas de respuesta fundamental, o como también se les conoce "series de espectro de acción de conos", han sido obtenidas y son generalmente aceptadas. Estas son las obtenidas por Smith y Pokorny (1972, 1975), y las de Vos y Walraven (1971). En los próximos párrafos vamos a comentarlas con un poco más de detenimiento, ya que además de tener una gran vigencia, en las de Smith y Pokorny se basa el modelo de excitación de conos propuesto por Boynton (1986) al que, como hemos comentado, pretendemos llevar los resultados de discriminación cromática que obtengamos en el presente trabajo experimental.

En la figura 3.12. se muestran las curvas de Smith y Pokorny que fueron obtenidas en la Universidad de Chicago y que son muy parecidas a las que obtuvieron Vos y Walraven (1971). Ambas presentan las siguientes características comunes:
Figura 3.12.- *Curvas de espectro de acción de conos derivadas por Smith y Pokorny (1975).*

- Los conos L y M (llamamos conos L a los sensibles a largas longitudes de onda, M a los sensibles a medianas longitudes de onda y S a los sensibles a cortas longitudes de onda) son sensibles al espectro visible completo, con sensibilidad máxima aproximadamente en 565 y 540 nm, respectivamente.

- En las longitudes de onda largas, la sensibilidad del cono L excede mucho a la del cono M.

- El cociente de la excitación de los conos M y L es máximo en aproximadamente 465 nm; para cada longitud de onda menor de 465 nm hay otra mayor tal que, si se ajusta la luminancia, corresponderían a estímulos que ven iguales personas que careciesen de conos S.
- El espectro de acción de los conos S tiene el máximo aproximadamente en 440 nm, descendiendo rápidamente para largas longitudes de onda de forma que, para supuestos prácticos, los conos S son insensibles más allá de 520 nm.
3.5.- **DICROMATISMO.**

Frente al comportamiento trivariante del observador normal, las personas dicrómatas pueden igualar cualquier estímulo de color que se les presente combiniendo únicamente dos estímulos primarios. Esta bivariancia se traduce en que los dicrómatas sólo pueden hacer dos de los tres tipos de distinciones que realiza el observador normal: una acromática (claro-oscuro) y otra cromática (amarillo-azul o verde-rojo, según el tipo de deficiencia).

Para un observador que tiene ceguera rojo-verde, el espectro aparece azul en el extremo de ondas cortas y amarillo en el de ondas largas. Estas regiones, que señalan los tonos percibidos están separadas por una zona carente de tonalidad (neutra) que se sitúa en torno a 495 nm. Atendiendo a la forma de la curva de eficiencia luminosa, se distinguen dos subtipos: protanopía y deuteronopía. En la primera, la curva de eficiencia luminoso fotópica presenta valores anormalmente bajos para las longitudes de onda largas y su máximo, situado en torno a 540 nm, muestra un desplazamiento claro en relación al valor normal de 555 nm. En el caso del deuteronope, la curva de eficiencia es prácticamente normal (fig. 3.13).

Dado que, para flujos radiantes iguales, los estímulos de onda larga aparecen más oscuros para el protanope que para el observador normal, estos individuos han sido llamados frecuentemente observadores "ciegos al rojo". Esta terminología, sin embargo, es inadecuada puesto que encubre el hecho de que estos sujetos tampoco perciben determinados tonos verdes. Para el caso de los deuteronopes, hay aún menos justificación para el término "ceguera al verde" puesto que la región media del espectro aparece a los mismos con igual claridad que al observador normal.
Figura 3.13.- Curvas de eficiencia luminosa para los observadores protanope, deuteranope y tricrómatas normal.

El segundo gran grupo de dicrómatas está constituido por los observadores que no discriminan entre azul y amarillo, por lo que sólo ven tonos rojos y verdes en el espectro. Para estos tritanopes, el espectro parece rojo en el extremo de ondas largas y verde en la región de ondas cortas (una zona neutra en torno a 570 nm separa ambas regiones). Este tipo de incapacidad va asociada a una curva de eficiencia luminosa normal. Los sujetos que la padecen han sido denominados frecuentemente como "ciegos al azul", con el mismo desacierto que en los casos anteriores, puesto que olvidan la incapacidad para detectar el amarillo.

Lo que queda por decir de la teoría de Helmholtz se refiere principalmente a los resultados que corresponden a las combinaciones de las sensaciones roja, verde y violeta, tanto para
visión normal como anómala del color. Helmholtz estableció que la estimulación igual y simultánea de las sensaciones primarias rojo y verde daba lugar a la sensación amarilla; que la sensación azul proviene de la estimulación simultánea de las sensaciones primarias verde y violeta, y que la estimulación equilibrada de las tres sensaciones primarias daba blanco. Así mismo, postuló que las distintas clases de dicromatismo eran formas reducidas de la visión tricromática normal, basándose en que las igualaciones de color realizadas por un observador normal se mantenían válidas para estos tipos de visión defectiva.

Sobre este supuesto, las curvas de sensibilidad (curvas de respuesta fundamental) "roja" y "verde" en la protanopía y deuteranopía tendrán, caso de existir, la misma forma que en el caso normal (fig. 3.14-a), pero reducidas por factores C_r y C_v respectivamente (fig. 3.14-b). Además, dado que estos tipos de dicrómatas tienen problemas de discriminación en la región rojo-amarilla-verde del espectro, hemos de asumir que los procesos rojo y verde en tales observadores conducen, finalmente, a la misma cualidad de sensación, con lo que el mecanismo trirreceptor normal degenera en dos procesos de respuesta conducentes a las sensaciones "azul y amarilla".

Para derivar las zonas iso-cromáticas de estos observadores en términos del diagrama de cromaticidad tricromático procederemos siguiendo el razonamiento geométrico de Helmholtz: supongamos un estímulo C especificado, para el tricrómata normal, por la ecuación unitaria

$$C = r'R' + v'V' + a'A'$$

donde R', V' y A' son los estímulos "fundamentales", es decir, los estímulos hipotéticos capaces de activar uno solo de los tres...
Figura 3.14. (a y b).- Cálculo de las posiciones de los estímulos fundamentales rojo \((R') \) y verde \((V') \) en el diagrama de cromaticidad.
procesos receptores. Aun cuando estos primarios no correspondan directamente a las sensaciones roja, verde y azul del observador normal, en lo que sigue continuaremos manteniendo esta confusión histórica, puesto que es necesario para la derivación de estos estímulos por algunos autores posteriores.

Dentro del sistema de sensaciones postulado por Helmholtz, cualquier estímulo que origine la misma razón de la respuesta azul a la respuesta compuesta (roja + verde) tendrá la misma apariencia que C para el dicromata, siempre que la claridad sea la misma en uno y otro caso. Por tanto, el lugar geométrico de los estímulos pertenecientes a una zona iso-cromática vendrá determinada por la ecuación

\[
\frac{a'}{C_r r' + C_v v'} = k
\]

siendo \(r', v' \) y \(a' \) las coordenadas de cromaticidad en el diagrama \(R', V', A' \) y \(k \) una constante para la zona particular en cuestión.

Utilizando la ecuación del plano unidad

\[
r' + v' + a' = 1
\]

la condición queda en la forma

\[
r'(1 + k C_r) + v'(1 + k C_v) = 1
\]

que es la ecuación de una recta en las variables \(r' \) y \(v' \). Sustituyendo en dicha expresión, podemos comprobar que el punto

\[
Q = \left(\frac{C_v}{C_v - C_r}, \frac{-C_r}{C_v - C_r} \right)
\]
pertenece a todas las rectas de confusión sin importar el valor de la constante k que las define. Esto es posible por corresponderse con un estímulo irreal carente de luminosidad.

Observando la figura 3.15 puede comprobarse, por semejanza de triángulos, la relación

$$\frac{QR'}{QV'} = \frac{C_r}{C_v}$$

de forma que la razón de QR' a QV' proporciona la reducción relativa en las sensibilidades de los sistemas receptores rojo y verde.

Helmholtz establece entonces, que si la protanopía se debiera a la total inactividad de los receptores al rojo,

![Diagrama de cromaticidad](image)

Figura 3.15.- *Localización del punto de intersección de las zonas isocromáticas en el diagrama de cromaticidad $R' V' A'$.***
tendríamos $C_r = 0$ y, en consecuencia, $QR' = 0$ con lo que los puntos R' y Q coincidirían, de forma que el punto co-puntual protanópico revelaría la localización del estímulo fundamental R'. De forma similar, para la deuteranopía se obtendría que la intersección de las líneas de confusión correspondientes señalaría la situación del estímulo fundamental V'. Finalmente, si los mecanismos receptores al rojo y al verde fueran inhibidos en proporciones idénticas ($C_r = C_v$), Q estaría situado en el infinito y las líneas de confusión serían paralelas.

Desde el punto de vista de la mezcla de estímulos, la dicromacia se refleja en la supresión de uno de los estímulos físicos primarios, puesto que las igualaciones colorimétricas son bivariantes. Sin embargo, atendiendo a los mecanismos receptores que conducen a la percepción del color, existe una amplia variedad de hipótesis sobre lo que se ha perdido específicamente: ¿fundamentales?, ¿primarios?, ¿receptores?, ¿fotopigmentos?, etc.

Las primeras nociones de "pérdida" en la explicación del dicromatismo congénito, fueron expresadas en términos de las llamadas "sensaciones fundamentales", que se consideró eran roja, verde y azul (o violeta). Se asumió que uno de los sistemas dicromáticos retenía las sensaciones verde y azul, careciendo de la "fundamental roja" ("ceguera al rojo"), otro tipo experimentaba las sensaciones rojo y azul pero carecía de la "fundamental verde" ("ceguera al verde") y un tercero se pensaba que retenía las sensaciones roja y verde, pero carecía de la fundamental azul ("ceguera al azul"). Esta idea, por su sencillez y elegancia, fue sostenida durante algún tiempo por autoridades como Helmholtz (hasta 1896), König (1903) y Von Kries (1911).

Helmholtz (1866), guiado por los resultados teóricos de Maxwell, realizó un análisis del dicromatismo, en base a sistemas
de sensación perdidos, que le condujo al establecimiento explícito de los colores que serían percibidos en cada caso. Así "el rojo del espectro... tendría que aparecer, a las personas ciegas al rojo, como un verde saturado de baja luminosidad.... el amarillo del espectro aparecerá como verde saturado brillante... verde... una sombra pálida del verde" etc.

Los esquemas simples de pérdida fueron cuestionados inmediatamente a la luz de numerosos hechos que contradecían algunos postulados básicos de la posición teórica adoptada, particularmente, que el amarillo es originado por la mezcla de las sensaciones roja y verde, y el blanco por la combinación de las tres sensaciones básicas. Por ejemplo, los sujetos normales son capaces de ver amarillos en regiones retinianas donde no se percibe ni el rojo ni el verde ("ceguera periférica al color"); todos los dicrómatas que carecen de alguna sensación tonal específica ven aún "blancos" y, finalmente, estos observadores perciben claramente los amarillos y azules, aún cuando no puedan experimentar las sensaciones roja y verde.

Otro tipo de dificultades son las relacionadas con los datos de eficiencia luminosa espectral obtenidos con observadores dicrómatas. Así, los modelos más simples de Young-Helmholtz conducen a esperar, en el caso deuterano -pérdida del "fundamental" medio espectral- una curva de eficiencia luminosa bimodal, lo cual no ocurre. La modificación de König (1897) de este modelo básico, en el que la luminosidad se asigna exclusivamente al primario de onda larga, conduce al resultado, aún más desconcertante, de que los protanopes serían completamente ciegos al perder el "fundamental" de onda larga.

En su interés inicial por la "ceguera al color" cuando un sujeto normal observa usando la periferia retiniana, Fick (1874)
propuso que, en contraste con el sistema de curvas de sensibilidad con máximos en las regiones de longitud de onda corta, media y larga del espectro, las curvas "R" y "V" correspondientes a la periferia tenían máximos que coincidían en la región media del espectro. Esta suposición explicaría la percepción de amarillos, azules, claros y oscuros en las zonas de la retina alejadas de la fóvea. Si seguímos desplazándonos hacia la periferia, llegamos a un límite en el que la visión comienza a ser monocromática, correspondiendo este caso a la superposición de las tres curvas de sensibilidad en una misma región espectral. Al tratar posteriormente las dicromacias, Fick (1896) consideró tres posibilidades: para un tipo propuso que la excitabilidad de las fibras "rojas" corresponde a la de las "verdes", para un segundo tipo la "verde" se desplaza hasta coincidir con la "azul" y para el tercero la "roja" ocupa la región espectral del "azul".

Los razonamientos de Fick condujeron a Helmholtz (1896) a la adopción de una variante del mecanismo postulado por aquél, en el que se transcribía la idea de fibra en términos fotoquímicos.
3.6.- **MODELOS NEURALES.**

3.6.1.- **Introducción a la Teoría de Colores Oponentes.**

La teoría tricromática de Young-Helmholtz es inadecuada para explicar la apariencia de los colores. No puede explicar razonablemente, por ejemplo, por qué la mezcla de luces percibidas como roja y verde conduce a la sensación de amarillo (un color cualitativamente diferente a los mezclados) o por qué ese amarillo, mezclado en proporción adecuada con azul, puede conducir a la sensación de un blanco perfecto (no se explica cómo las respuestas de los tres tipos de conos pueden sumar sus luminosidades y cancelar sus atributos de color, cuando son excitados simultáneamente). Helmholtz no consideró digno de interés averiguar las razones por las que el sistema de las sensaciones visuales es como es, y tampoco ésto preocupó a la mayoría de los científicos tricromáticos, formados en el campo de la física, cuyo interés se centraba en la explicación de los fenómenos en los que el ojo funciona como elemento de comparación y en los casos de funcionamiento anómalo del mismo.

La apariencia de los colores, sin embargo, sí que interesó a Hering, fisiólogo alemán del siglo XIX, que expuso sus ideas en una serie de informes a la Academia Imperial de Ciencias de Viena en el período 1872-1874 y que fueron publicados como una monografía, Hering (1878). Además de intentar resolver las dificultades encontradas por las teorías tricromáticas, este autor pretendía mostrar por qué no experimentamos nunca las sensaciones simultáneas rojo-verde, por un lado, y amarillo-azul por otro. Para ello, postuló la existencia de tres procesos oponentes generados en algún lugar del proceso visual: un proceso claro-oscuro, otro amarillo-azul y un tercero rojo-verde.
De acuerdo con esta sugerencia, sólomente son posibles tres tipos de visión reducida: ceguera rojo-verde, causada por el no funcionamiento del proceso rojo-verde, permaneciendo las sensaciones de blanco-negro y amarillo-azul; ceguera amarillo-azul, causada por el no funcionamiento de este proceso, persistiendo la discriminación blanco-negro y rojo-verde; y ceguera total cromática por supresión de los dos procesos oponentes cromáticos. A pesar de la explicación plausible que reciben la ceguera cromática total y la tritanopía, este enfoque del dicromatismo no permite explicar la curva de eficiencia luminosa que acompaña a la protanopía.

A los problemas internos subyacentes en la formulación de Hering, se añadió su radical oposición a la teoría tricromática establecida y a la doctrina fisiológica de J. Müller, según la cual cada tipo de fibra nerviosa era capaz de conducir únicamente un tipo de información cualitativa. Estos factores, junto con la ausencia total de soporte experimental con que fue formulada, provocaron que la sugerencia de Hering permaneciera en el olvido durante muchos años.

Mientras que en la teoría de Young-Helmholtz, la codificación del tono de un color era representada por una correspondencia uno a uno entre actividades de receptor y tonos fundamentales (usualmente especificados como rojo, verde y azul), en las ideas de Hering se asocia la codificación del tono con modos oponentes de respuesta generados en el sistema neural visual y no correlacionados en la forma uno a uno con las absorciones de receptor.
3.6.2.- Teorías de Zonas.

Como hemos visto, la teoría tricromática explica los resultados obtenidos en una amplia gama de experimentos psicofísicos, pero es incapaz de predecir la forma en que los estímulos aparecen al observador normal (carácter aparentemente simple del amarillo, fenómenos de Bezold-Brücke y Helmholtz-Kohlraush, etc.). Esto, sin embargo, es logrado con éxito considerable por la teoría de colores oponentes, formulada inicialmente por Hering y expuesta en el apartado anterior.

Cada una de estas teorías puede explicar un conjunto de fenómenos visuales muy específicos, según predomine la fase receptora o neural en el origen de los mismos. La unificación de ambos enfoques, considerados contrapuestos durante muchos años, comenzó con Donders (1881), quien realizó la primera sugerencia explícita de que para explicar las diferentes formas de visión, era necesario tener en cuenta más de un estadio de actividad. Las opciones en este mismo sentido, fueron formuladas posteriormente por Hering (1887), König (1897) y Von Kries (1905), condujeron a la elaboración de teorías zonales específicas que combinan una primera fase tricromática a nivel receptoral con un segundo estadio de procesamiento neural regido por mecanismos de colores oponentes. Esta construcción mixta proporciona mayor número de grados de libertad y enriquece la explicación de los fenómenos relacionados con la percepción visual.

Un ejemplo de esta potencialidad puede verse en la explicación de la dicromacia. Si las interpretaciones de este tipo de deficiencia toman en cuenta las cualidades sensoriales perdidas, asociadas con los fallos de discriminación cromática experimentados, es obvio entonces concluir que, tanto en la protanopía como en la deuteranopía, el proceso rojo-verde ha
dejado de desempeñar las funciones que se le atribuyen en la visión tricromática normal. Dentro de la teoría tricromática, se postula que esta pérdida ocurre en la fase receptoral: la pérdida o fusión de las entradas espectralmente selectivas que alimentan a los canales oponentes, provoca la pérdida del carácter oponente de los mismos, (pérdidas a nivel fotoquímico). Alternativamente, la existencia de receptores con curvas de absorción normales podría ser anulada por un deterioro en el proceso de elaboración posterior en forma de señales oponentes (pérdidas a nivel neural).

Nos gustaría señalar que la forma en la que se produzca la reducción dicromática no argumenta ni en favor ni en contra de la utilización de los puntos copuntuales para la obtención de las curvas de respuesta fundamentales. En este método no es necesario asumir que la pérdida de uno de los mecanismos receptores corresponde a la ausencia de uno de los fotopigmentos.

a) Teoría de Müller y modelo matemático de Judd.

En la teoría de Müller (1930) se postulan tres etapas de procesamiento identificadas como: 1) un estadio inicial fotoquímico, 2) una fase química intermedia, y 3) un estadio final que corresponde a la excitación de las fibras del nervio óptico.

El modelo matemático que Judd (1949, 1951) desarrolló a partir de las ideas esbozadas por Müller, traduce a términos cuantitativos contrastables las ideas de éste. En la elaboración de este modelo se incorporan las propiedades de igualación de color de los tricrómatas normales así como de deuteranopes y protanopes, se tienen también presentes los estímulos percibidos como acromáticos por los distintos tipos de dicrómatas y, también, la localización espectral del estímulo que genera la sensación de...
amarillo único. A partir de todas estas exigencias resulta un sistema de curvas de sensibilidad cuya validez matemática es incuestionable: el problema en este caso es esencialmente una cuestión fisiológica, no matemática.

Cada uno de los tres tipos de conos postulados en la primera etapa tiene su propio fotopigmento con propiedades específicas de absorción espectral y vienen caracterizados por funciones de respuesta que, en el modelo de Judd, pueden ser expresadas como combinación lineal de las funciones de mezcla CIE-1931 del tricrómatas normal en la forma (figura 3.16-a):

\[
\hat{p}_1(\lambda) = 3.1956 \, \hat{x}_\lambda + 2.4478 \, \hat{y}_\lambda - 0.6434 \, \hat{z}_\lambda
\]

\[
\hat{p}_2(\lambda) = -2.5455 \, \hat{x}_\lambda + 7.0492 \, \hat{y}_\lambda + 0.4963 \, \hat{z}_\lambda
\]

\[
\hat{p}_3(\lambda) = 5.0000 \, \hat{z}_\lambda
\]

En el estadio de codificación intermedia, las respuestas de cono son convertidas en dos señales simbolizadas por \(\alpha_1(\lambda)\) y \(\alpha_2(\lambda)\) que corresponden a los procesos (figura 3.16-b):

Rojo amarillento-Verde azulado (amR-aV)

\[\alpha_1(\lambda) = \hat{p}_1(\lambda) - \hat{p}_2(\lambda)\]

y Amarillo verdoso-Azul rojizo (vAm-rA)

\[\alpha_2(\lambda) = 0.0151 \, \hat{p}_1(\lambda) - 0.3849 \, \hat{p}_2(\lambda) - 0.4000 \, \hat{p}_3(\lambda)\]

La tercera etapa, de tipo Hering, conduce a la elaboración de dos señales cromáticas oponentes (figura 3.16-c)
Figura 3.16 a,b,c.- *Curvas de sensibilidad para las distintas etapas del modelo de Müller-Judd.*
r-v: $\beta_1(\lambda) = \alpha_1(\lambda) - 0.6265 \alpha_2(\lambda) = 6.325 \ (\tilde{x}_\lambda - \tilde{y}_\lambda)$

am-a: $\beta_2(\lambda) = \alpha_2(\lambda) + 0.1622 \alpha_1(\lambda) = 2.004 \ (\tilde{y}_\lambda - \tilde{z}_\lambda)$

y una señal que dará lugar a la sensación acromática (V_d en la figura 3.16-d)

b-n: $\beta_3(\lambda) = 0.0075 \tilde{p}_1(\lambda) + 0.1912 \tilde{p}_2(\lambda) + 0.0013 \tilde{p}_3(\lambda) + 0.0810 \alpha_1(\lambda) + 0.0024 \alpha_2(\lambda) = 2.004 \ (\tilde{y}_\lambda - \tilde{z}_\lambda)$

La teoría de Müller explica los casos de dicromatismo como pérdida de procesos en la segunda o tercera etapa del modelo: la no acción de los procesos amR-aV y vAm-rA (en la segunda etapa) corresponde a los casos de protanopía y tritanopía; la pérdida del mecanismo r-v (en la tercera etapa) corresponde a la deuteranopía y, finalmente, el fallo simultáneo de los dos procesos que generan

![Figura 3.16 d.- Curvas de eficiencia luminosa para protanopes y deuteranopes determinadas usando el modelo de Müller-Judd.](image-url)
la sensación cromática en la tercera fase, conduce a la ceguera total al color.

El modelo consigue explicar, de esta forma, las sensaciones experimentadas por los dicrómatas, incluyendo las curvas de eficiencia luminosa asociadas a los mismos (figura 3.16-d).

b) Modelo de Hurvich y Jameson.

Antes de que la evidencia fisiológica confirmara la existencia de procesos oponentes en el mecanismo visual, Hurvich y Jameson realizaron una experiencia psicofísica crucial que suministró a la idea de Hering una base cuantitativa análoga a la proporcionada a la teoría tricromática de Young-Helmholtz por los datos de mezcla de color.

Hurvich y Jameson (1955) razonaron que sería posible cancelar el tono de un estímulo espectral, superponiéndole luz de longitud de onda "opuesta" a la de la que se quiere cancelar. Por ejemplo, una luz naranja de 600 nm parece contener componentes roja y amarilla. Usando un estímulo de cancelación verde, es posible anular la contribución roja, obteniéndose un amarillo único: la cantidad de luz verde requerida para realizar la anulación, puede emplearse como medida de la intensidad de la componente roja que es cancelada en la luz naranja original. De igual forma, usando un estímulo de cancelación azul, es posible anular la componente amarilla del naranja original y obtener así un rojo único.

Los resultados de este experimento, para un observador, se muestran en la figura 3.17. La valencia cromática, en ordenadas,
Figura 3.17.- Resultados del experimento de cancelación cromática de Hurvich y Jameson.

se refiere a la cantidad de componente cancelatoria -expresada en unidades de energía relativa- requerida para cancelar el tono opONENTE del "test" presentado a igual energía, y longitud de onda variable. La figura muestra las longitudes de onda largas, como rojas ligeramente amarillentas, correspondiendo ésto a la gran cantidad de verde que se requiere para cancelar la componente roja y a la cantidad mucho menor de azul, necesaria para cancelar el amarillo residual.

En la región central del espectro, los verdes-amarillos están flanqueados por el amarillo único (580 nm) a la derecha, y por el verde único (500 nm) a la izquierda. Cuando la longitud de onda se hace menor, aparece una pequeña región azul-verde que termina en azul único (475 nm). Aunque las longitudes de onda más
cortas son vistas como azul predominantemente, el rojo aparece en esta parte del espectro y es cancelado, al igual que ocurría con las longitudes de ondas largas, por la adición de verde.

A partir de estos resultados -invirtiendo las curvas azul y verde, para indicar el carácter oponente frente al amarillo y el rojo- se obtienen las curvas de respuesta representadas, para un observador, en la figura 3.18. Se admite que estas funciones son combinaciones lineales de las funciones de mezcla y esta hipótesis permite a Hurvich y Jameson adoptar una estructura matemática básica para su modelo, similar a la usada por Judd en la formulación cuantitativa de la teoría de Müller.

De acuerdo con la teoría de colores oponentes en la

Figura 3.18.- Curvas de respuesta para los procesos oponentes, obtenidas experimentalmente para un observador.
formulación inicial de Hurvich y Jameson, las funciones de respuesta cromática representan el efecto diferencial de la luz sobre cuatro substancias "A", "V", "Am" y "R" con sensibilidades espectrales expresadas como combinación lineal de las funciones de mezcla (figura 3.19). Las curvas de respuesta cromática y acromática pueden derivarse entonces, por hipótesis, a partir de estas curvas de sensibilidad y expresarse como combinación lineal de las funciones de mezcla del observador patrón (figura 3.20).

\[
\begin{align*}
\text{am}(\lambda) - a(\lambda) &= k_1[-0.0039 \ x_{\lambda} + 0.3998 \ y_{\lambda} - 0.3999 \ z_{\lambda}] \\
\text{r}(\lambda) - v(\lambda) &= k_2[1.0065 \ x_{\lambda} - 1.0006 \ y_{\lambda} - 0.0051 \ z_{\lambda}] \\
\text{b}(\lambda) - n(\lambda) &= (k_3 - k_4)[0.0078 \ x_{\lambda} + 40.0042 \ y_{\lambda} + 0.0018 \ z_{\lambda}]
\end{align*}
\]

Aunque las curvas construidas mediante tales transformaciones sean adecuadas para explicar una larga serie de fenómenos, no hay ninguna exigencia teórica para que sean cuatro específicamente. Este modelo teórico no se ve afectado de forma importante por el número de substancias y es posible construirlo partiendo de tres curvas de sensibilidad similares a las presentadas. Sólo consideraciones fisiológicas permitirán discernir entre las distintas posibilidades.

En expresiones correspondientes a las funciones de respuesta, los factores \(k \) dependen del nivel de luminancia, suministrando esta característica del modelo un amplio campo de acción que nos permite explicar satisfactoriamente algunas características de la visión normal del color así como fenómenos de segundo orden asociados a la misma.

74 Determinación experimental de diferencias de color...
Figura 3.19.- *Curvas de sensibilidad espectral para las cuatro substancias receptoras en el primer modelo de Hurvich-Jameson.*

En este modelo, la protanopía y deuteronopía se explican como consecuencia del no funcionamiento del sistema cromático rojo-verde. En el caso del deuteranope, se supone que las substancias receptoras son las mismas que en el observador normal; para el protanope, sin embargo, se mantiene la forma relativa de las cuatro curvas pero el conjunto experimenta un ligero desplazamiento hacia las longitudes de onda más cortas. De esta forma pueden deducirse, usando los mismos coeficientes de transformación, curvas de respuesta con diferentes sensibilidades espectrales que aparecen representadas en la figura 3.21, y que dan cuenta de las características de discriminación cromática y de eficiencia luminosa de ambos tipos de dicrómatas.
Figura 3.20.- Funciones de respuesta cromática para el observador patrón CIE-1931.

Figura 3.21.- Protanopía y deuteranopía en el modelo de Hurvich-Jameson.
Análogamente, la tritanopía puede explicarse por la supresión del mecanismo oponente amarillo-azul (figura 3.22), y los resultados predichos están de acuerdo con los medidos experimentalmente.

A medida que avanzamos en la historia de la ciencia del color, los modelos se van haciendo más complicados, respondiendo esta progresiva elaboración al deseo de explicar fenómenos de segundo y tercer orden que no se consideraban en las primeras formulaciones.

Así, eligiendo hipótesis y criterios simples, el modelo de Hurvich y Jameson predice correctamente la discriminación en longitud de onda y hace extensible esta explicación a distintos niveles de luminancia, procediendo para ello al ajuste de los factores \(k_i \) en cada caso (figura 3.23).

![Figura 3.22. Tritanopía en el modelo de Hurvich-Jameson.](image)

Determinación experimental de diferencias de color...
Figura 3.23.- *Predicción de la discriminación en longitud de onda por el modelo de Hurvich-Jameson.*

De igual forma, puede explicarse el efecto Bezold-Brücke. Consiste éste en que los tonos no únicos, es decir, tonos binarios como amarillo-rojo, amarillo- verde, azul-verde y azul-rojo, sufren cambios importantes en el tono cuando se varía la luminancia de la luz espectral que los genera. Los amarillos y los azules son acentuados en relación a los rojos y a los verdes cuando se incrementa el nivel de luminancia y, viceversa, cuando éste disminuye.

Para explicarlo, el modelo postula un valor inferior de la constante k_1 respecto a k_2 en el nivel umbral ($k_1 = 0.8$ y $k_2 = 1.0$), pero atribuye a k_1 un ritmo de incremento mayor que provoca que esta constante supere a k_2 cuando la luminancia es alta ($k_1 =$
1.0 y \(k_2 = 0.8 \). Los resultados predichos, incorporando esta sencilla hipótesis, están en acuerdo satisfactorio con la predicción experimental.

Hurvich y Jameson han seguido trabajando para perfeccionar este modelo, fruto de este trabajo es lo que llamaremos "Modelo de Hurvich y Jameson (1957)"; que expondremos en apartados posteriores.
3.7.- MODELOS ACTUALES DE LA VISION DEL COLOR.

Debido al elevado número de fenómenos que ha de explicar una teoría completa de la visión del color, y a la variada naturaleza de los mismos, los modelos dentro de este campo han proliferado bastante, sin que ninguno de ellos solucione la totalidad de los problemas planteados. En este apartado vamos a comentar los más desarrollados fisiológicamente y cuantitativamente (Jameson y Hurvich, 1957; Ingling y Tsou, 1977; Guth et al., 1980), dedicaremos después, un apartado especial al modelo propuesto por Boynton (1986), pues recoge las líneas básicas en las que el acuerdo es casi unánime y porque uno de los objetivos de este trabajo será llevar al espacio de excitación de conos, que se deriva de él, los resultados de discriminación cromática que obtengamos.

Las figura 3.24-a, b, c muestran diagramas de los dos primeros estadios de visión del color según los modelos de Hurvich y Jameson, (1957), Ingling y Tsou, (1977), y Guth et al. (1980), respectivamente. Cada una de estas teorías se fundamenta sobre un cuerpo de datos de visión del color, y no hay argumentos suficientes hasta la fecha para decidir cuál es la más apropiada. Un elemento común a todos estos modelos es que en un primer estadio consta de tres tipos de fotoreceptores, conos, cuyos máximos de sensibilidad espectral se encuentran en una región diferente del espectro visible. La sensibilidad del receptor es, en todos los casos, una transformación lineal de las funciones triestímulo CIE-1931 y por el momento los modelos pueden ser considerados idénticos en este primer estadio.
Teorías y modelos de la visión del color

En general, los modelos también pueden ser considerados parecidos en el segundo estadio. En éste, cada modelo presenta dos mecanismos oponentes, un proceso rojo sobre verde (T) y otro azul sobre amarillo (D) y un mecanismo de luminancia no oponente (A). A pesar de esta similaridad global, las transformaciones de las señales de las salidas de los fotorreceptores en los mecanismos del segundo estadio, esquematizado por el modelo de fibras eléctricas y sus polaridades en la figura 3.24, difieren de unas teorías a otras. Así, tanto el modelo de Hurvich y Jameson como el de Ingling tienen entradas desde los receptores sensibles a longitud de onda corta (S) al mecanismo T, así como entradas desde los conos sensibles de longitud de onda larga (L) y de polaridad opuesta a aquellos de longitud de onda media (M). El modelo de Guth no tiene entrada de S al sistema T. De hecho, hay evidencias...
Figura 3.24-b.- *Modelo de Guth et al. (1980).*

de ambos puntos de vista. Los datos de los experimentos de denominación de color, Boynton et al. (1964) y Luria (1967), y los estudios de cancelación de tono, Jameson y Hurvich (1955), Ingling et al. (1978) y Wooten y Werner (1978), están de acuerdo con el punto de vista de Hurvich-Jameson e Ingling. Los datos de estudios de aditividad en luminosidad, Guth et al. (1969) y Kranda y King-Smith (1979), y de adaptación selectiva de los mecanismos de colores oponentes, Krauskopf et al. (1982), apoyan el punto de vista de Guth.

Otra diferencia importante entre los modelos hace referencia a la entrada desde los receptores S al sistema de luminancia acromático. Mientras que los modelos de Guth e Ingling especifican que solo L y M se suman para dar A, el modelo de

La observación de la figura 3.24, revela también que, mientras los modelos de Hurvich-Jameson e Ingling tienen entrada desde receptores M al sistema D de la misma polaridad que la entrada desde L, el mecanismo D de Guth no recibe ninguna entrada desde M. De hecho, hay evidencias de que los receptores M

Los modelos también difieren críticamente con respecto a como las señales de salida del segundo estadio se combinan para la detección y juicios de discriminación. Hurvich y Jameson utilizan una regla por cuyo mecanismo la respuesta se suma para obtener la magnitud de sensación, V.

\[V = |T| + |D| + |A| \]

En contraste, los modelos de Guth e Ingling usan una regla de sumación vectorial, donde la magnitud sensación se da por la raíz cuadrada de la suma de las señales de salida al cuadrado de los mecanismos del segundo estadio. Ésto es,

\[V = (T^2 + D^2 + A^2)^{1/2} \]

La regla de sumación vectorial se ha demostrado que es consistente con las reglas de sumación para mecanismos independientes derivados de la teoría de detección de señales, Massof y Starr (1980).

Veamos ahora la definición cuantitativa de estos modelos.

Los mecanismos de color de los observadores tricrómatas normales, según los modelos de visión de colores oponentes, pueden resumirse en la notación matricial general siguiente

\[
\begin{bmatrix}
A \\ T \\ D
\end{bmatrix} =
\begin{bmatrix}
a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}
\end{bmatrix}
\begin{bmatrix}
L \\ M \\ S
\end{bmatrix}
\]
donde L, M y S son las respuestas de los fotorreceptores para un modelo dado y A, T y D representan la respuesta de la luminancia y de los canales oponentes, rojo-verde y amarillo-azul, respectivamente. Los coeficientes a_{ij} especifican la transformación de la salida de los receptores al mecanismo de color del segundo estadio.

Tanto el modelo de Guth como el de Ingling usan los receptores fundamentales derivados por Smith y Pokorny. Estos pueden expresarse como una transformación lineal de los primarios de la CIE revisados por Judd, en la forma:

$$\begin{pmatrix} L \\ M \\ S \end{pmatrix} = \begin{pmatrix} 0.2435 & 0.8524 & -0.0516 \\ -0.3954 & 1.1643 & 0.0837 \\ 0 & 0 & 0.6220 \end{pmatrix} \begin{pmatrix} X' \\ Y' \\ Z' \end{pmatrix}$$

donde X', Y' y Z' son los valores triestímulo.

Las respuestas de los receptores para el modelo de Hurvich y Jameson, expresadas en términos de los valores triestímulo de la CIE-1931, X, Y, Z, son:

$$\begin{pmatrix} L \\ M \\ S \end{pmatrix} = \begin{pmatrix} 0 & 6.5341 & 0.1336 \\ -0.3368 & 7.0009 & 0.0020 \\ 0.3329 & 6.4671 & -0.1347 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$

Las ecuaciones de transformación receptor a mecanismo para cada uno de los modelos son las siguientes:

- Modelo de Hurvich-Jameson

$$\begin{pmatrix} A \\ T \\ D \end{pmatrix} = \begin{pmatrix} 0.85 & 1.50 & 0.01 \\ 1.66 & -2.23 & 0.37 \\ 0.34 & 0.06 & -0.71 \end{pmatrix} \begin{pmatrix} L \\ M \\ S \end{pmatrix}$$

Determinación experimental de diferencias de color...
- Modelo de Guth et al.

\[
\begin{pmatrix}
A \\
T \\
D
\end{pmatrix} = \begin{pmatrix}
0.5967 & 0.3654 & 0 \\
0.9553 & -1.2836 & 0 \\
-0.0248 & 0 & 0.0483
\end{pmatrix}\begin{pmatrix}
L \\
M \\
S
\end{pmatrix}
\]

- Modelo de Ingling

\[
\begin{pmatrix}
A \\
T \\
D
\end{pmatrix} = \begin{pmatrix}
0.6 & 0.4 & 0 \\
1.2 & -1.6 & 0.4 \\
0.24 & 0.11 & -0.7
\end{pmatrix}\begin{pmatrix}
L \\
M \\
S
\end{pmatrix}
\]

En la figura 3.25 se representan las funciones \(A(\lambda), T(\lambda)\) y \(D(\lambda)\) de los canales de luminancia y oponentes respectivamente, postuladas por el modelo de Guth, Massof y Benzschawel (1980).

En cuanto a los mecanismos de color de los dicrómatas, tanto el modelo de Guth como el de Hurvich y Jameson ven las distintas formas como pérdida de uno de los tres fotorreceptores. Ésto es, pérdida de fotorreceptores \(S\) en los tritanopes, \(M\) en los deuteranopes y \(L\) en los protanopes. A pesar de la evidencia de que la pérdida de un fotorreceptor es muy simplificada, Scheibner y Boynton (1968), Nathans et al. (1986), esta hipótesis ha demostrado ser muy útil para interpretar un alto número de datos de visión foveal en dicrómatas.

Las versiones tritanope, deuteranope y protanope del modelo de Guth se pueden definir en términos de los fundamentales de Smith y Pokorny como:

\[
\begin{pmatrix}
A \\
T
\end{pmatrix} = \begin{pmatrix}
0.5967 & 0.3654 \\
0.9553 & -1.2836
\end{pmatrix}\begin{pmatrix}
L \\
M
\end{pmatrix}
\]
Figura 3.25.- Funciones $A(\lambda)$, $T(\lambda)$ y $D(\lambda)$ según el modelo de Guth et al.

$$
\begin{pmatrix}
A \\
D
\end{pmatrix} =
\begin{pmatrix}
0.9621 & 0 \\
-0.0400 & 0.0483
\end{pmatrix}
\begin{pmatrix}
L \\
S
\end{pmatrix}
$$

Y

$$
\begin{pmatrix}
A \\
D
\end{pmatrix} =
\begin{pmatrix}
0.9621 & 0 \\
-0.0400 & 0.0483
\end{pmatrix}
\begin{pmatrix}
M \\
S
\end{pmatrix}
$$

respectivamente. Notemos que la única diferencia entre las ecuaciones para los deuteranopes y los protanopes es que M se sustituye por L.
3.7.2.- Modelo de Boynton (1986).

a) Descripción General.

En 1986, Boynton propuso un modelo de visión del color que, en líneas generales, está de acuerdo con los modelos más recientes, que han sido expuestos en el apartado anterior. En lo que sigue, pretendemos hacer una descripción detallada de él puesto que será necesario para el desarrollo de la presente memoria.

Las señales procedentes de los tres tipos de conos, que se designan atendiendo a la región del espectro visible en la que presentan una máxima sensibilidad, como L, sensibles a largas longitudes de onda, M sensibles a medias longitudes de onda y S sensibles a cortas longitudes de onda, son pronto transformadas en dos canales de color opONENTE y un canal de luminancia como se muestra en la figura 3.26. La existencia de estos procesos ha sido confirmada experimentalmente en monos, Boynton (1982), Thornton y Pugh (1983), Mollon (1982).

Como se puede observar en la figura 3.26, el canal de luminancia es alimentado con la suma de las señales procedentes de los conos L y M, así la luminancia es L + M. La diferencia entre las señales procedentes de los conos L y M dan lugar al primer canal opONENTE de cromaticidad. La contribución de los conos L a la cromaticidad es la mitad de lo que contribuyen a la luminancia, de ahí que el canal opONENTE de cromaticidad quede especificado como L - 2M. Para justificar esto, observemos los espectros de acción de conos de Smith y Pokorny (1975), figura 3.27, y tomemos, por ejemplo, la longitud de onda de 575 nm; si el canal de cromaticidad fuera L - M veríamos un naranja rojizo cuando en
Figura 3.26.- *Modelo de Boynton (1986).*

realidad se trata del amarillo único. Las contribuciones de los conos L y M han de estar equilibradas para esta longitud de onda, esto lo conseguimos si tomamos la curva L/2, que también está dibujada en la figura 3.27, que equilibra la curva M precisamente en esta longitud de onda. Éste y otros ejemplos nos llevan a la evidencia de que el canal de cromaticidad queda especificado como L - 2M. Teniendo en cuenta ésto, si el efecto del cono L excede al del cono M, el resultado es positivo y la señal diferencia es interpretada en un estadio superior del procesamiento significando rojo. Si, por el contrario, la señal diferencia es negativa se interpreta significando verde. Por esta razón, la señal diferencia se dice que es transmitida por un canal cromático rojo-verde (r-g). La señal de color oponente varía con la contribución de los
conos L y M, ésto depende de la distribución espectral de la luz incidente. Los conos S también influyen en el balance del canal rojo-verde como se quiere indicar con la línea discontinua de la figura 3.26. Esta influencia se comentará con posterioridad.

Un segundo tipo de canal oponente, llamado amarillo-azul (y-b), se muestra en la figura 3.26. En esa figura, los conos de la parte superior son los mismos que los de abajo; se han dibujado dos veces para visualizar mejor los distintos procesos. El canal oponente amarillo-azul recibe una señal amplificada con signo negativo desde valores relativamente pequeños del cono S y una señal de largas longitudes de onda desde la suma de excitación de los conos L y M. Para largas y medias longitudes de onda los conos S son insensibles, siendo entonces la señal positiva e interpretándose como amarillo. Para longitudes de onda cortas la señal procedente de S supera a L + M, interpretándose como azul. Por último, el tono que se percibe depende de una comparación de la información suministrada por las dos clases de canales oponentes.

El canal de luminancia recibe una suma de las señales generadas en los conos L y M. Esta señal es siempre positiva y no recibe ninguna contribución desde los conos S. Las señales L + M se transmiten por fibras nerviosas distintas de aquellas que llevan la señal L - 2M.

Para entender mejor todo lo dicho, imaginemos que miramos un campo de luz monocromática y vamos variando su longitud de onda desde larga hasta corta. Consideremos un espectro de acción de conos, como el mostrado en la figura 3.27. Para longitudes de onda largas, la excitación del cono L/2 excede a la de M y se ve rojo. Si la longitud de onda es acortada, la diferencia rojo-verde se hace menor hasta alrededor de 575 nm donde las señales de cono L/2
y M están equilibradas. A causa de que los conos S son insensibles a largas longitudes de onda, el resultado es una sensación que no es ni rojo ni verde, resulta ser amarilla. Si acortamos más la longitud de onda entonces M excede a L/2 y se ve verde con disminución del amarillamiento hasta cerca de 500 nm, donde S equivale a L + M, el canal amarillo-azul está equilibrado y se ve un verde único. En longitudes de onda aún más cortas, el azul reemplaza al verde. Si la longitud de onda es todavía más corta, el alto nivel de excitación del cono S desequilibra el canal oponente rojo-verde en dirección al rojo, produciendo violeta.

Figura 3.27.- Espectro de acción de cono obtenidas por Smith y Pokorny (1975).
b) Espectros de acción de conos y funciones de mezcla.

Los espectros de acción de conos estimados por distintos autores difieren en detalles. Los mostrados en la figura 3.27. fueron obtenidos por Smith y Pokorny (1972 y 1975) en la Universidad de Chicago. Son muy similares a las funciones derivadas por Vos y Walraven (1971) y las características comunes a ambas ya han sido comentadas con detenimiento en un apartado anterior. En ellas, se podrían tener en cuenta factores como, por ejemplo, los pigmentos inertes del cristalino, el cual absorbe luz de forma selectiva, o la diferencia individual en los espectros de acción de conos pero, aunque son problemas importantes, son de segundo orden en el presente contexto.

Boynton propone usar la serie de espectros de acción de conos obtenida por Smith y Pokorny, cuyas funciones se obtuvieron a partir de experimentos con dicrómatas. Estas funciones son transformaciones lineales de las funciones de mezcla de observadores normales. Ésto plantea qué funciones de mezcla deben ser usadas. Se plantea también si el sistema propuesto debe ser compatible con el sistema CIE de tal forma, por ejemplo, que las coordenadas de cromaticidad de un sistema puedan ser transformadas al otro.

Las funciones de mezcla propuestas por la CIE en 1931 fueron las obtenidas de los datos de Wright (1928-1929) y Guild (1931). Las transformaciones apropiadas fueron desarrolladas de tal forma que el valor de la luminancia de un estímulo fuera proporcional al valor triestímulo Y, haciendo coincidir \(\tilde{Y}_\lambda \) con la función \(V(\lambda) \) la cual había sido normalizada en la década previa. En los años siguientes se hizo evidente que la función \(V(\lambda) \) infraestimaba el poder de estimulación de las longitudes de onda más cortas del espectro visible. Judd (1951), propuso una serie
corregida de datos para remediar este problema. Desde entonces han sido usados ampliamente aunque sin sanción oficial de la CIE. Las funciones de Smith y Pokorny y las de Vos y Walraven son transformaciones de los datos de Judd. El presente modelo se basa en las funciones de mezcla corregidas por Judd y en los espectros de acción de conos derivadas por Smith y Pokorny que son transformaciones lineales de aquellas.

c) Especificación de la luminancia.

En la figura 3.28 se muestran las funciones L y M de Smith y Pokorny para luces espectrales de igual luminancia. Como se vé,

![Diagrama](image)

Figura 3.28.- Funciones L y M de Smith y Pokorny para un espectro de luminancia constante e igual a la unidad.

Determinación experimental de diferencias de color...
las sensibilidades relativas de los conos L y M se hacen imágenes especulares la una de la otra, por que ellas deben sumar uno para todas las longitudes de onda. Si observamos la función $L/(L+M)$, de izquierda a derecha, notaremos que disminuye, teniendo un mínimo para 465 nm, volviendo después a crecer. Si trazamos una línea horizontal que corte dos veces a $L/(L+M)$ nos dará los pares de longitudes de onda que serían confundidos por una persona que careciese de conos S.

Consideremos un estímulo que produzca una iluminación

![Diagrama de S-trolands](image)

Figura 3.29.- *S-troland por troland para todas las longitudes de onda.*
retiniana de 1.0 td. Sabemos, entonces, que \(L + M = 1 \), pero no sabemos lo que valen \(L \) y \(M \). Esta información la tendremos si conocemos la distribución de radiancia espectral del estímulo y el espectro de acción de los conos \(L \) y \(M \). La figura 3.28 dá esta información para luces espectrales. Estas componentes se denominan troland-L (L-td) y troland-M (M-td). Queda sin especificar el nivel de excitación de los conos S. Boynton y Kambe (1980), definen una unidad que especifica el nivel de excitación del cono S, el S-td. Por definición, 1 S-td es el nivel de excitación del cono S afectado por 1 td de blanco equienergético (cuando se ilumina con 1 td de luz blanca equienergética).

Si tenemos una iluminación retiniana de 1 td, la luz monocromática que produce 1 S-td puede determinarse en el diagrama CIE-1931, trazando una línea desde el punto (1,0) que pase por el punto \((0.333, 0.333)\) hasta que corte al lugar espectral, ésto ocurre en 498 nm. La figura 3.29 muestra el número de S-td asociados a 1 td de luz monocromática para cada una de las longitudes de onda.

d) Diagrama de cromaticidad propuesto: Diagrama Luther.

El paso final es desarrollar un diagrama, "diagrama Luther", de cromaticidad basado en los conceptos anteriores. Ésto se muestra en la figura 3.30, MacLeod y Boynton (1979). Un diagrama similar había sido propuesto por Luther (1927) y otro diagrama parecido fue publicado por Fry (1935), el cual carece de algunas propiedades interesantes a causa de su afirmación de que los conos S contribuyen a la luminancia. El "diagrama Luther" es un diagrama de cromaticidad a luminancia unidad. En abscisas, de izquierda a derecha, aparece la relación del nivel de excitación del cono L, "r", y, de derecha a izquierda el del cono M, "g". La
Figura 3.30.- *Diagrama Luther de cromaticidad.*

suma de la excitación de L y M es en todos sitios igual a 1. En ordenadas el nivel de excitación del cono S, b. Las unidades en las que se especifica el nivel de excitación del cono S son distintas de las que especifican el de L y M.

Este diagrama conserva la mayoría de las propiedades del diagrama cromático CIE-1931:
- Las mezclas de colores se trazan conectando líneas rectas.
- El lugar espectral es lineal o convexo por lo que, los colores no espectrales caen dentro de la línea del lugar espectral y la línea de los púrpuras que une sus extremos.
- La regla del centro de gravedad se aplica para
determinar donde, a lo largo de una línea mezcla, un color queda especificado.

Además, el diagrama tiene una serie de ventajas no encontradas en el diagrama CIE:

- Este es un diagrama de excitación de conos. En cualquier punto, una distancia horizontal representa un cambio de excitación del cono L acompañado de uno igual del cono M. Similarmente, un desplazamiento en una línea vertical significa un cambio de excitación del cono S.

- En este diagrama la representación de un estímulo que sea mezcla de otros dos cumple la propiedad de situarse en la línea que une a las representaciones de éstos a distancias inversamente proporcionales a la luminancia aportada por cada estímulo de la mezcla. En el diagrama CIE estas distancias eran inversamente proporcionales a cantidades de cada estímulo que precisaban unidades tricromáticas especiales.

Si ignoramos las pequeñas diferencias de las funciones de mezcla modificadas por Judd, en las que se basa este sistema, con respecto a las funciones de mezcla CIE-1931, en el diagrama cromático CIE-1931 podemos trazar líneas que representen niveles constantes de excitación de los conos. Así, si trazamos líneas de pendiente negativa radiando desde el punto F(1,0), los puntos de cada una de estas líneas, tienen el mismo nivel de excitación del cono S variando el cociente de excitación de los conos L y M. Estas líneas se corresponden con líneas horizontales en el diagrama Luther. Análogamente, si trazamos líneas radiando desde el punto copuntual tritanópico T(0.175,0), los puntos de cada una de estas líneas tendrán el mismo nivel de L/M, variando el nivel de excitación de los conos S. Estas líneas se corresponden con líneas verticales en el diagrama Luther.
El diagrama de cromaticidad Luther tiene también algunas limitaciones que pasamos a comentar. En primer lugar, no es un diagrama de cromaticidad "uniforme". Por ejemplo, los umbrales en la dirección vertical se representan por distancias crecientes conforme ascendemos en el gráfico. Esto refleja un hecho básico en psicofisiología: cuanto más grande es el nivel de excitación del cono S, más grande es la cantidad adicional necesaria para producir un umbral discriminable, Rodieck (1973), Le Grand (1949). En segundo lugar, en el diagrama Luther, el blanco queda muy cerca del lugar espectral rojo-verde. Esto sería un defecto si uno quiere hacer determinaciones gráficas usando este diagrama. Por otra parte, esta cercanía representa un hecho de fisiología que no es evidente en el diagrama CIE: solamente se necesita un 2%, como mucho, del nivel de excitación del cono S para volver un amarillo espectral en un blanco neutro.

Si representamos la gama de colores correspondientes a objetos opacos reales sobre el diagrama Luther, cuyos límites pueden ser especificados en términos del concepto de colores óptimos, primero desarrollado por Schrödinger (1920) y después especificado en el sistema CIE por MacAdam (1935), obtenemos la zona sombreada de la figura 3.30. Los colores óptimos son aquellos de un factor de luminancia mínimo del 10% respecto del iluminante D_65. El área sombreada de la figura 3.30 muestra que no es necesario usar la parte más alta del diagrama por que los colores de superficie no son capaces de producir estos niveles de excitación del cono S a reflectancias razonables.

Podríamos entonces reajustar la ordenada y así alejar más el blanco del lugar espectral para visualizar mejor las mezclas de colores.
3.8.- BIBLIOGRAFÍA.

BOYNTON, R.M.; "A system of photometry and colorimetry based on cone excitations", Color Res. & Appl., 11, 244-252 (1986).

MAXWELL, J. C.; "Experiments on colour, as perceived by the eye, with remarks on colour-blindness", Transactions of the Royal Society (Edimburg), 21, 275-298 (1855).

CAPÍTULO IV:

FÓRMULAS DE DIFERENCIAS DE COLOR.
IV.- FÓRMULAS DE DIFERENCIAS DE COLOR.

4.1.- INTRODUCCION.

Prácticamente desde que, por imperativos de la industria, comienza en este siglo el desarrollo formal de la Colorimetría, se une al problema de la medida del color el de establecer la correspondencia entre las distancias definidas en un sistema de representación del color determinado y las diferencias de sensación cromática percibida. Una de las características, que pronto es puesta de manifiesto, es que los sistemas de representación de color adoptados, en especial el conocido CIE-1931, no son uniformes en el sentido de que iguales diferencias de sensación no se corresponden con iguales distancias en el espacio. Le Grand (1970), Parra (1970), Hita et al. (1982), se han cuestionado la estructura riemanniana del espacio de color y Crawford (1970) muestra que las elipses de discriminación no son esencialmente simétricas, lo cual podría indicar la no linealidad del sistema de discriminación del color. Por otra parte, los trabajos realizados en el campo de la determinación de umbrales diferenciales de color, problema fundamental asociado a la especificación de tolerancias de color en la industria, han mostrado una gran variabilidad en los resultados obtenidos según
las condiciones experimentales utilizadas en las experiencias, lo que ha dificultado la generalización de diferencias de color específicas para su aplicación práctica.

A pesar de ésto, cuando se trata de trabajos de un marcado interés práctico en el cálculo de tolerancias de color, se acepta generalmente en Colorimetría diferencial la representación de los umbrales diferenciales de color mediante elipsoides de discriminación. Aceptada para el espacio de representación del color CIE-1931 una métrica riemanniana, la determinación de fórmulas que especifiquen las diferencias de color para cualquier punto del espacio, se puede llevar a cabo desde distintos puntos de vista. Así, una forma sería la determinación en el espacio CIE-1931 de los coeficientes del tensor métrico, g_{ij}, como función de x, y, Y, a partir de los resultados experimentales obtenidos en la determinación de umbrales diferenciales de color. En este campo es de destacar como principal logro la fórmula FMC, Chickering (1967), deducida a partir de los trabajos de MacAdam (1942, 1943), que, si bien se ajusta a los resultados de este autor, presenta inconvenientes en su aplicación debido a su excesiva elaboración y complejidad.

Otra forma de obtenerlas parte de la idea de transformar el espacio CIE-1931 en otro espacio de representación del color a través de una transformación, lineal o no, de forma que, en el nuevo espacio, se pueda suponer una métrica euclidéa. En este campo han sido muchas las aportaciones, siendo las más recientes y de mayor repercusión, las conocidas por CIELUV, CIELAB y LABNHU, que serán consideradas por nosotros para realizar un análisis comparativo con nuestros propios resultados. Estas fórmulas han sido muy cuestionadas por distintos autores, Pointer (1981), Kuehni (1982), Hita et al. (1983-84), MacAdam (1985), pudiendo constatarse su falta de acuerdo con los resultados experimentales...
y su imposibilidad para generar un espacio uniforme de color.

A la vista de lo expuesto, se desprende la necesidad de la deducción de una fórmula de diferencias de color, tal que pueda ser aplicada con fiabilidad y sin excesiva complejidad en los problemas prácticos de la industria y el comercio. Ésto es lo que nos mueve en el presente capítulo a estudiar las fórmulas desarrolladas por nosotros en trabajos previos, Romero et al. (1989), FDC-G*, y a obtener una nueva fórmula de diferencias de color que mejore en lo posible la anterior.
4.2.- COEFICIENTES METRICOS Y PARAMETROS ASOCIADOS.

En el diagrama cromático CIE-1931, a cualquier punto definido por las coordenadas \(x, y\), podemos, en principio, asociarle una elipse de discriminación de color, cuya expresión matemática vendría dada por:

\[
(dS)^2 = g_{11} \Delta x^2 + 2g_{12} \Delta x \cdot \Delta y + g_{22} \Delta y^2
\]

donde \(\Delta x\) es la diferencia de la coordenada \(x\) del centro de la elipse y cualquier punto de ella; \(\Delta y\) es la diferencia de la coordenada \(y\), para el mismo par de puntos, y \(g_{11}, g_{12}\) y \(g_{22}\) son constantes para cada elipse. Es decir, podemos definir sobre el diagrama un elemento de línea, siendo los coeficientes del tensor métrico, \(g_{ij}\), distintos para cada punto, como se desprende del análisis de las características del diagrama cromático en cuanto a discriminación en color.

Cada elipse también estará definida por sus parámetros asociados: semieje mayor, \(a\), semieje menor, \(b\), orientación, \(\Theta\), y área, \(A\), siendo los semiejes las distancias mayor y menor desde el centro hasta un punto de la elipse y el ángulo \(\Theta\) es el que forman el eje mayor y el eje de abscisas.

Existen unas relaciones que nos ligan los coeficientes \(g_{11}, g_{12}\) y \(g_{22}\) y los parámetros asociados a la elipse, que son las siguientes:

\[
g_{11} = \frac{\cos^2\Theta}{a^2} + \frac{\sin^2\Theta}{b^2}
\]

\[
g_{12} = \sin\Theta \cdot \cos\Theta \left(\frac{1}{a^2} - \frac{1}{b^2} \right)
\]
Fórmulas de diferencias de color

\[g_{22} = \frac{\text{sen}^2 \Theta}{a^2} + \frac{\cos^2 \Theta}{b^2} \]

Estas expresiones nos van a permitir, una vez conocidos los coeficientes \(g_{11}, g_{12} \) y \(g_{22} \), calcular los parámetros característicos de la elipse (a, b, \(\Theta \)), en la forma:

\[\Theta = \frac{1}{2} \arctg \frac{2g_{12}}{g_{11} - g_{22}} \]

\[\text{con } \Theta < 90^\circ \text{ si } g_{12} < 0 \]

\[\text{y } \]

\[\text{con } \Theta > 90^\circ \text{ si } g_{12} > 0 \]

\[a = \frac{1}{\left(g_{22} + g_{12} \cotg \Theta \right)^{1/2}} \]

\[b = \frac{1}{\left(g_{11} - g_{12} \cotg \Theta \right)^{1/2}} \]

A partir de estos parámetros fundamentales de una elipse podemos utilizar cualquier otro que los relacione. Así, nos interesa definir el área y la relación de semiejes, que serían:

\[A = \Pi \cdot a \cdot b \]

\[R = \frac{b}{a} \]

ambos parámetros se utilizarán para analizar los resultados experimentales.
4.3.- **METODO DE COMPARACION NUMERICA DE DOS GRUPOS DE ELIPSES.**

Podemos comparar dos grupos de elipses desde varios puntos de vista. Así, podemos llevar a cabo una comparación gráfica que nos de una idea pormenorizada de las similitudes, diferencias y donde radican éstas. Este tipo de comparación la usaremos posteriormente en este trabajo. Sin embargo, nos interesa ver ahora un método que nos permita evaluar de una forma global las diferencias entre dos grupos de elipses que tengan los mismos centros; este método puede ser un método numérico. En nuestro caso, hemos elegido el propuesto por MacAdam (1965) que pasamos a describir a continuación.

A una determinada serie de n elipses obtenidas bajo unas determinadas condiciones, las designaremos con G mayúsculas, sus coeficientes serán G_{11}, G_{12} y G_{22}, con lo cual cada una de ellas estará definida por la ecuación:

$$G_{11} \Delta x^2 + 2G_{12} \Delta x \Delta y + G_{22} \Delta y^2 = (dS)^2$$ \hspace{1cm} (1)

con sus centros localizados en (x_o, y_o) en el diagrama de cromaticidad CIE-1931 (x, y). La cantidad $(dS)^2$ es constante y fijada igual a c^2.

A la serie de n elipses obtenidas por otro procedimiento, las designaremos con g minúscula, sus coeficientes serán g_{11}, g_{12} y g_{22} y las ecuaciones que las definen vendrán dadas por la expresión:

$$g_{11} \Delta x^2 + 2g_{12} \Delta x \Delta y + g_{22} \Delta y^2 = (ds)^2$$ \hspace{1cm} (2)

y sus centros igualmente localizados en (x_o, y_o).
Fórmulas de diferencias de color

Es evidente que las elipses obtenidas, por uno y otro procedimiento, tienen los mismos centros \((x_o, y_o)\) pero generalmente se diferenciarán en su orientación, tamaño y forma (relación de semiejes).

MacAdam optimizó los parámetros de la fórmula de diferencias de color de Friele, usando la desviación cuadrática media como un criterio para cuantificar la bondad del ajuste entre las elipses obtenidas por los dos procedimientos que se comparan. Su método fue también utilizado por Chickering (1967) y nosotros seguiremos esencialmente la misma aproximación, excepto en algunos pequeños matices que hemos introducido.

La principal idea del método es seleccionar primero un número de puntos en el diagrama, sobre la elipse "G", espaciados uniformemente, sobre una proyección circular de esa elipse. La figura 4.1 ilustra el procedimiento. La elipse dada, centrada en \((x_o, y_o)\), es transformada en un círculo y el punto de cromaticidad 1 con coordenadas determinadas por \((x_1, y_1 = 0)\) es proyectado como punto 1'; cualquier número deseado, m, de puntos están entonces situados uniformemente a lo largo del semicírculo. En la figura 4.1, un total de \(m = 18\) puntos han sido elegidos, separados por intervalos de \(10^\circ\). Aquellos puntos son proyectados otra vez en el elipse, y sus correspondientes valores de \((x_i, y_i)\) son determinados.

Cuando los valores de \(x_i, y_i\) son insertados en la ecuación (1) obtenemos, por supuesto, valores de "dS" exactamente igual a "c" en cada caso. No obstante, cuando los mismos valores de \(x_i, y_i\) son insertados en la ecuación (2), que define las elipses obtenidas por el segundo método (g) en el mismo centro de coordenadas \((x_o, y_o)\), obtenemos valores "ds" que generalmente se
Figura 4.1.- *Método de comparación de elipses de MacAdam (1965).*

desviarán de "c" como una función de i.

La desviación cuadrática media puede ser calculada para esta elipse y, siguiendo el mismo procedimiento, para cualquier otra elipse de la serie. Para "n" elipses y "m" puntos sobre cada una, nosotros calculamos una desviación cuadrática media global en la forma:

\[
<e^2> = \frac{1}{mn} \sum_{j=1}^{n} \sum_{i=1}^{m} \left(\frac{\alpha(ds)_{ij} - c}{c} \right)^2
\]

(3)

en términos de "c", donde "\(\alpha\)" es un factor de corrección introducido para ajustar, si se desea, los tamaños de las elipses
obtenidas por el segundo método "g", con los tamaños que sean más comparables con aquellos de las elipses del primer método "G". En particular ajustando

\[\alpha = \frac{c}{\frac{1}{m} \frac{1}{n} \sum_{j=1}^{n} \sum_{i=1}^{m} (ds)_{ij}} \]

obtenemos una desviación cuadrática media \(<e_{i}^{2}>\), donde el promedio de todas las \(mn\) diferencias de cromaticidad, \((ds)_{ij}\), para las elipses "g" es igual al promedio de las diferencias correspondientes para las elipses "G", el cual, por supuesto, es igual a "c".

La desviación cuadrática media contribuye a aumentar las grandes diferencias \((ds)_{ij}\), más que las diferencias más pequeñas y el uso de la desviación cuadrática absoluta puede realmente ser una medida más apropiada de la bondad de ajuste de las dos series de elipses.

La desviación cuadrática absoluta se define por:

\[<d> = \frac{1}{n} \frac{1}{m} \sum_{j=1}^{n} \sum_{i=1}^{m} \left| \frac{\alpha (ds)_{ij}}{c} - 1 \right| \]

donde \(\alpha\) es de nuevo el factor normalizador ya comentado con anterioridad.

Si bien los métodos numéricos usados aquí proporcionan un camino relativamente rápido de hacer una valoración de la conformidad entre dos series de elipses, estos métodos no proporcionan ninguna pista hacia posibles desviaciones...
sistemáticas entre las elipses correspondientes. Estas deben ser descubiertas por otros métodos, tales como los métodos gráficos, que posteriormente serán introducidos en la discusión de los resultados.
4.4.- FORMULAS DE DIFERENCIAS DE COLOR
OBTENIDAS EN NUESTRO LABORATORIO: FDC-G*.

En un trabajo previo, Romero et al. (1989), obtuvimos unas fórmulas de diferencias de color, FDC-G*, que nos permiten calcular los coeficientes métricos \(g_{ij} \) para cualquier punto del diagrama cromático CIE-1931 en función de sus coordenadas de cromaticidad. La obtención de dichas fórmulas se llevó a cabo siguiendo el método que a continuación expondremos muy brevemente.

Para conseguir una amplia base de datos de los coeficientes métricos sobre la cual realizar el ajuste de dichos coeficientes que nos lleve a la obtención de la fórmula de diferencias de color, recurrimos al trabajo de MacAdam (1943), en el que el autor generaliza a todo el diagrama cromático los resultados experimentales que previamente había obtenido, MacAdam (1942), con un error que él mismo estima en el 15%. La figura 4.2. recoge los resultados de MacAdam (1943). Gracias a este trabajo, podemos asignarle a cada punto del diagrama cromático su correspondiente valor de \(g_{11} \), \(g_{12} \) y \(g_{22} \). Seleccionamos, entonces, una serie de puntos representativos de todo el diagrama cromático, en concreto, tomamos un total de 534 puntos equidistantes entre sí 0.025 en coordenadas de cromaticidad (x,y), tanto en horizontal como en vertical, le asignamos a cada uno de ellos su valor correspondiente de los coeficientes métricos según las gráficas ya mencionadas de MacAdam (1943) y buscamos la función de "x" e "y" que mejor se ajusta para cada uno de los coeficientes. Este ajuste lo llevamos a cabo mediante ordenador, utilizando el programa 2R de regresión multiple paso a paso de la librería de aplicaciones estadísticas BMDP de la Universidad de California (UCLA). Este programa trabaja con una serie de funciones preestablecidas, que en nuestro caso son funciones elementales de "x" y de "y" que sólo incluyan sumas, productos o inversas de estas variables, de entre
Figura 4.2.- *Resultados de MacAdam (1943)* para los coeficientes g_{ij}. Los valores que se expresan deben ser multiplicados por 10^4.
las cuales busca las que se ajustan mejor a los valores de los coeficientes \(g_{ij} \) que le hemos dado. El programa incluye una serie de parámetros estadísticos que nos permiten valorar la bondad del ajuste. Trabajando de esta forma, obtuvimos una fórmula para cada uno de los coeficientes métricos, lo que constituye la fórmula de diferencias de color.

Esta fórmula de diferencias de color así obtenida presentaba el problema de que para valores altos de "x" y de "y"

Figura 4.3.- División del diagrama cromático CIE-1931 en cinco zonas para obtener las fórmulas FDC-G°.
el semieje mayor de la elipse de discriminación "a" salía imaginario, lo que unido al interés en simplificar lo máximo posible las expresiones de las fórmulas, nos llevó a dividir el diagrama cromático en cinco zonas y obtener para cada una, por el procedimiento ya descrito, una fórmula de diferencias de color, idea esta ya expresada por Kuehni (1982).

En la figura 4.3 aparecen las cinco zonas en las que se dividió el diagrama cromático: AZULES, VERDES, NARANJAS, ROJOS y ACROMÁTICOS. Estas zonas quedan determinadas por los doce puntos que aparecen en la figura cuyas coordenadas de cromaticidad son las siguientes: (1) = (0.315,0.215); (2) = (0.222,0.302); (3) = (0.390,0.445); (4) = (0.490,0.385); (5) = (0.310,0.150); (6) = (0.230,0.205); (7) = (0.125,0.275); (8) = (0.300,0.400); (9) = (0.420,0.500); (10) = (0.450,0.450); (11) = (0.550,0.380); (12) = (0.400,0.325).

Para cada una de estas zonas se obtuvo una fórmula de diferencias de color que notaremos como: FDC-A (Azules), FDC-V (Verdes), FDC-N (Naranjas), FDC-R (Rojos) y FDC-C (Acromáticos). Al conjunto de las cinco fórmulas lo llamaremos FDC-G*. Estas fórmulas son las que a continuación se expresan:

FDC-A:

\[
g_{11} = \left[1047.244 + \frac{34.186 - 239.130 \cdot x}{y} - \frac{1967.544 \cdot y}{x + y} + \frac{182.493 \cdot y}{x} - \frac{0.873}{x^2} \right] \cdot 10^4
\]

\[
2g_{12} = \left[923.375 - 1218.056 \cdot x - \frac{1213.075 \cdot x}{x + y} - \frac{154.531 \cdot y}{x} \right] \cdot 10^4
\]
Fórmulas de diferencias de color

\[
g_{22} = \left(-802.643 + (1835.061 - 4362.785 \cdot x) \cdot y + 5361.953 \cdot x^2 + \right. \\
\left. + \frac{162.750}{x + y} + \frac{4.998}{y} - \frac{0.050}{y^2} - \frac{0.422}{x^2} \right) \cdot 10^4
\]

FDC-V:

\[
g_{11} = \left(79.466 - 307.984 \cdot x + 854.974 \cdot x^2 - 72.313 \cdot x \cdot y - \right. \\
\left. - \frac{28.652}{x + y} - 0.648 \cdot \frac{y}{x} + \frac{4.812}{y^2} \right) \cdot 10^4
\]

\[
2g_{12} = \left(-16.253 - 332.176 \cdot x + \frac{25.745}{x + y} + 135.978 \cdot x \cdot y + \right. \\
\left. + \frac{260.266 \cdot x \cdot y}{x + y} - \frac{2.813 \cdot x \cdot y}{x - y} \right) \cdot 10^4
\]

\[
g_{22} = \left(-6.165 + 221.473 \cdot x^2 - 21.788 \cdot x \cdot y + \frac{0.431}{x \cdot y} - \frac{0.456 \cdot y}{x} + \right. \\
\left. + \frac{11.781}{x + y} - 69.955 \cdot x - \frac{0.006}{x^2} + \frac{0.963}{y^2} + 2.3 \cdot y^2 \right) \cdot 10^4
\]

FDC-N:

\[
g_{11} = \left(231.988 - 162.962 \cdot x^2 - \frac{34.238}{y} - \frac{13.758}{x \cdot y} \right) \cdot 10^4
\]

\[
2g_{12} = \left(-83.127 + 37.493 \cdot x + \frac{30.989 \cdot y}{x} \right) \cdot 10^4
\]
Fórmulas de diferencias de color

\[g_{22} = \left(-27.246 + \frac{49.241 \cdot x}{y} \right) \cdot 10^4 \]

FDC-R:

\[g_{11} = \left(126.473 - \frac{9.132 \cdot x}{y} - \frac{91.671 + 61.655 \cdot y}{x} + \frac{34.631}{x^2} \right) \cdot 10^4 \]

\[2g_{12} = \left(213.375 + 748.080 \cdot y^2 - 946.554 \cdot x \cdot y - \frac{70.755}{x + y} - \frac{12.625 \cdot x}{y} - \frac{19.740}{x^2} \right) \cdot 10^4 \]

\[g_{22} = \left(111.684 + 109.355 \cdot x^2 - 108.599 \cdot x \cdot y - \frac{15.181 \cdot x}{y} + \frac{2.515}{x \cdot y} - \frac{91.057 \cdot y}{x} \right) \cdot 10^4 \]

FDC-C:

\[g_{11} = \left(-23.146 + \frac{10.532}{y^2} \right) \cdot 10^4 \]

\[2g_{12} = \left(358.385 + \frac{40.111}{x^2} - \frac{222.251}{x} - \frac{14.701}{y^2} \right) \cdot 10^4 \]
Fórmulas de diferencias de color

\[g_{22} = \left(-2.931 - 173.461 \cdot x^2 + \frac{35.684}{y} - \frac{5.108}{x^2} \right) \cdot 10^4 \]

En la presente memoria hemos ampliado el estudio realizado previamente, Romero et al. (1989), sobre la adecuación de la fórmula FDC-G* para la representación de resultados experimentales. Nos planteamos tres aspectos importantes. De una parte, comprobar el ajuste entre las fórmulas FDC-G* y los datos de MacAdam (1943) a partir de los cuales fueron obtenidas, en segundo lugar, y como aspecto más importante, ver su adecuación a resultados experimentales clásicos en colorimetría diferencial como son los de MacAdam (1942), Brown y MacAdam (1949) y Wyszecki y Fielder (1971) y en tercer lugar, planteamos la discrepancia que pudiera existir entre los resultados obtenidos para los puntos situados en los límites entre zonas si calculamos su elipse de discriminación con una u otra fórmula de las zonas que separa.

Para llevar a cabo las distintas comparaciones antes comentadas, recurrimos al método numérico de comparación de dos grupos de elipses que hemos analizado en un apartado anterior de este mismo capítulo.

Estudiamos primero el ajuste entre los datos de MacAdam (1943) y las fórmulas. Para ello, tomamos puntos equiespaciados en cada una de las zonas en las que hemos dividido el diagrama cromático y les calculamos su correspondiente elipse de discriminación a partir de los datos de MacAdam (1943). Obtenemos, también, la elipse correspondiente para cada uno de esos puntos a partir de las fórmulas de diferencias de color de la zona en la que se encuentre dicho punto. Tendremos, por tanto, dos conjuntos de elipses, con iguales centros pero obtenidas por procedimientos...
distintos, que podremos comparar. Los resultados obtenidos se muestran en la tabla IV.1.

Para ver la adecuación de las fórmulas de diferencias de color a los resultados experimentales obtenidos por diversos autores, comparamos los resultados experimentales de MacAdam (1942), Brown y MacAdam (1949) y Wyszecki y Fielder (1971) con los que se obtendrían al aplicar las fórmulas a los distintos puntos experimentales. Los resultados obtenidos figuran en la tabla IV.2 en la que además se muestra también una comparación entre los diversos observadores que intervinieron en cada una de las experiencias antes comentadas, a fin de poder hacernos una idea más clara de los resultados que dan estas fórmulas.

Por último, nos planteamos las posibles discrepancias que pueda haber en las líneas de separación de dos zonas al aplicar las fórmulas correspondientes a cada una de ellas. Para ello, operaremos de la siguiente forma: tomamos 5 puntos en la línea de separación de las zonas AZUL y VERDE, otros 5 en la de separación AZUL-ACROMATICO y otros 5 en la AZUL-ROJA y calculamos sus elipses de discriminación mediante las fórmulas de las dos zonas, de esta forma tendremos un conjunto de 15 elipses obtenidas mediante la fórmula FDC-A (Azul) y otro, con los mismos centros, obtenido al aplicar las fórmulas de las zonas limítrofes. Podremos, entonces, comparar los dos grupos de elipses. Los resultados de esta comparación figuran en la tabla IV.3 donde se les ha nombrado como "LIMITES AZULES". De una forma similar se han obtenido las comparaciones de los "LIMITES VERDES", "LIMITES NARANJAS", "LIMITES ROJOS" y "LIMITES ACROMATICOS", si bien, este último conjunto consta de 20 puntos como es fácil comprender de todo lo dicho anteriormente.

Analizaremos ahora los resultados expresados en las tablas
Fórmulas de diferencias de color

Tabla IV.1.- Comparación entre los datos de MacAdam (1943) en las distintas zonas del diagrama cromático y las distintas fórmulas. Entre paréntesis el número de puntos sobre los que se realiza la comparación.

<table>
<thead>
<tr>
<th>ZONA</th>
<th>FORMULA</th>
<th>(<e_1>)</th>
<th>(<d_1>)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZULES (20)</td>
<td>FDC - A</td>
<td>0.202</td>
<td>0.134</td>
<td>0.974</td>
</tr>
<tr>
<td></td>
<td>CIELUV</td>
<td>0.499</td>
<td>0.378</td>
<td>0.608</td>
</tr>
<tr>
<td></td>
<td>CIELAB</td>
<td>0.747</td>
<td>0.501</td>
<td>0.548</td>
</tr>
<tr>
<td></td>
<td>LABNHU</td>
<td>0.790</td>
<td>0.521</td>
<td>0.536</td>
</tr>
<tr>
<td>VERDES (28)</td>
<td>FDC - V</td>
<td>0.204</td>
<td>0.117</td>
<td>0.983</td>
</tr>
<tr>
<td></td>
<td>CIELUV</td>
<td>0.327</td>
<td>0.276</td>
<td>0.756</td>
</tr>
<tr>
<td></td>
<td>CIELAB</td>
<td>0.562</td>
<td>0.424</td>
<td>0.525</td>
</tr>
<tr>
<td></td>
<td>LABNHU</td>
<td>0.402</td>
<td>0.335</td>
<td>0.735</td>
</tr>
<tr>
<td>NARANJAS (20)</td>
<td>FDC - N</td>
<td>0.015</td>
<td>0.011</td>
<td>1.002</td>
</tr>
<tr>
<td></td>
<td>CIELUV</td>
<td>0.157</td>
<td>0.130</td>
<td>1.071</td>
</tr>
<tr>
<td></td>
<td>CIELAB</td>
<td>0.460</td>
<td>0.367</td>
<td>0.748</td>
</tr>
<tr>
<td></td>
<td>LABNHU</td>
<td>0.229</td>
<td>0.200</td>
<td>1.257</td>
</tr>
<tr>
<td>ROJOS (28)</td>
<td>FDC - R</td>
<td>0.077</td>
<td>0.049</td>
<td>0.982</td>
</tr>
<tr>
<td></td>
<td>CIELUV</td>
<td>0.293</td>
<td>0.227</td>
<td>0.612</td>
</tr>
<tr>
<td></td>
<td>CIELAB</td>
<td>0.548</td>
<td>0.376</td>
<td>0.811</td>
</tr>
<tr>
<td></td>
<td>LABNHU</td>
<td>0.545</td>
<td>0.342</td>
<td>0.890</td>
</tr>
<tr>
<td>ACROMATICOS (16)</td>
<td>FDC - C</td>
<td>0.111</td>
<td>0.095</td>
<td>0.986</td>
</tr>
<tr>
<td></td>
<td>CIELUV</td>
<td>0.287</td>
<td>0.216</td>
<td>0.826</td>
</tr>
<tr>
<td></td>
<td>CIELAB</td>
<td>0.321</td>
<td>0.267</td>
<td>1.105</td>
</tr>
<tr>
<td></td>
<td>LABNHU</td>
<td>0.312</td>
<td>0.247</td>
<td>1.196</td>
</tr>
</tbody>
</table>
Fórmulas de diferencias de color

anteriores. En primer lugar, como aspecto general, se puede indicar que los resultados obtenidos con las fórmulas por nosotros deducidas, FDC-G*, se adecúan muy bien a los datos que proporcionan las gráficas de MacAdam (1943), pues, al hacer el estudio de cada una de las fórmulas de diferencias de color en cada una de las zonas, tabla IV.1, los valores de las desviaciones cuadráticas medias y absolutas variarían desde unos valores de 0.015 y 0.011 para la zona de los naranjas hasta 0.202 y 0.134 para la zona de los azules, respectivamente. Era de esperar que el ajuste fuera mejor en la zona de los naranjas y de los rojos que en la zona de los azules, pues los valores de los coeficientes \(g_{ij} \) en dichas zonas variarían mucho más lentamente que en ésta; así, desplazarnos 0.025, en coordenadas de cromaticidad, en la zona de los naranjas o de los rojos, supone una variación pequeña del valor correspondiente del coeficiente \(g_{ij} \), lo que supone que los errores sistemáticos sean pequeños y que, por tanto, el ajuste de estos valores sea muy bueno. Sin embargo, un desplazamiento de 0.025 en la zona de los azules supone un cambio considerable del coeficiente \(g_{ij} \), lo que hace entender que el ajuste en esa zona no sea tan bueno. Estos valores de las distintas desviaciones calculadas son, sin embargo, más pequeños, por tanto más adecuados, que los obtenidos cuando se estudian otros tipos de ajuste, como el de las fórmulas CIELUV, CIELAB o LABNHU sobre esos mismos conjuntos de puntos.

En consecuencia, podemos asegurar que las FDC-G* son un buen ajuste de los coeficientes, \(g_{ij} \), de MacAdam (1943) y que las fórmulas que proporcionan nos permiten obtener unas elipses muy parecidas a las que se obtienen con las gráficas de MacAdam (1943), como se puede comprobar observando la figura 4.4 en la que se comparan las elipses obtenidas con los gráficos de MacAdam, y las obtenidas con las fórmulas FDC-G*, CIELUV y CIELAB, para cuatro puntos del diagrama cromático.
Figura 4.4.- Comparación entre las elipses de MacAdam (1943) (1) y las que se obtienen con las fórmulas FDC-G* (2), CIELUV (3) y CIELAB (4) para cuatro puntos del diagrama cromático.
Analicemos la aplicabilidad de estas fórmulas sobre resultados experimentales de discriminación cromática, tabla IV.2.

Tabla IV.2.- Comparación entre los resultados experimentales de distintos autores y los que dan, para esos puntos, las distintas fórmulas. Se incluye también la comparación de los resultados para distintos observadores de cada una de las experiencias.

<table>
<thead>
<tr>
<th>PUNTOS</th>
<th>FORMULA</th>
<th>(\langle e_i \rangle)</th>
<th>(\langle d_i \rangle)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACADAM</td>
<td>FDC - G*</td>
<td>0.181</td>
<td>0.139</td>
<td>0.943</td>
</tr>
<tr>
<td></td>
<td>CIELUV</td>
<td>0.359</td>
<td>0.276</td>
<td>0.646</td>
</tr>
<tr>
<td></td>
<td>CIELAB</td>
<td>0.491</td>
<td>0.391</td>
<td>0.777</td>
</tr>
<tr>
<td></td>
<td>LABNHU</td>
<td>0.491</td>
<td>0.382</td>
<td>0.815</td>
</tr>
<tr>
<td></td>
<td>FMC</td>
<td>0.176</td>
<td>0.142</td>
<td>1.010</td>
</tr>
<tr>
<td>(1942) (25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BROWN Y MACADAM</td>
<td>FDC - G*</td>
<td>0.291</td>
<td>0.228</td>
<td>1.061</td>
</tr>
<tr>
<td>(1949) Ob: WRB</td>
<td>CIELUV</td>
<td>0.398</td>
<td>0.329</td>
<td>0.833</td>
</tr>
<tr>
<td>(34)</td>
<td>CIELAB</td>
<td>0.359</td>
<td>0.283</td>
<td>1.113</td>
</tr>
<tr>
<td></td>
<td>LABNHU</td>
<td>0.386</td>
<td>0.300</td>
<td>1.216</td>
</tr>
<tr>
<td></td>
<td>FMC</td>
<td>0.303</td>
<td>0.243</td>
<td>1.170</td>
</tr>
<tr>
<td></td>
<td>Ob : DLM</td>
<td>0.253</td>
<td>0.212</td>
<td>0.910</td>
</tr>
<tr>
<td>WYSZECKI Y FIELDER</td>
<td>FDC - G*</td>
<td>0.412</td>
<td>0.336</td>
<td>1.333</td>
</tr>
<tr>
<td>(1971) Ob: GW</td>
<td>CIELUV</td>
<td>0.539</td>
<td>0.391</td>
<td>1.093</td>
</tr>
<tr>
<td>(28)</td>
<td>CIELAB</td>
<td>0.507</td>
<td>0.396</td>
<td>1.459</td>
</tr>
<tr>
<td></td>
<td>LABNHU</td>
<td>0.440</td>
<td>0.355</td>
<td>1.667</td>
</tr>
<tr>
<td></td>
<td>FMC</td>
<td>0.477</td>
<td>0.363</td>
<td>1.420</td>
</tr>
<tr>
<td></td>
<td>Ob : GF</td>
<td>0.280</td>
<td>0.223</td>
<td>0.860</td>
</tr>
<tr>
<td></td>
<td>Ob : AR</td>
<td>0.327</td>
<td>0.237</td>
<td>0.830</td>
</tr>
</tbody>
</table>
Al fijar nuestra atención en los resultados obtenidos en las comparaciones realizadas con los resultados experimentales de MacAdam (1942), nos encontramos que los mejores resultados se obtienen con las fórmulas FDC-G* y FMC, siendo ambos muy similares. Conviene recordar que las fórmulas FMC se obtuvieron con la idea de que se ajustaran a estos datos experimentales siendo mucho más complejas en su aplicabilidad que las deducidas por nosotros. Valores sucesivamente más altos se obtienen para las fórmulas CIELUV, LABNHU y CIELAB. Estos resultados vienen a corroborar de forma explícita lo que podíamos ser apuntado de los análisis gráficos de Pointer (1981) y Kuehni (1982), de los que se desprende, en especial para las fórmulas CIELUV y CIELAB, una notable falta de adecuación de las mismas a la hora de representar los datos experimentales de MacAdam (1942).

Para analizar los resultados obtenidos sobre los datos experimentales de Brown y MacAdam (1949) y Wyszecki y Fielder (1971), se ha incluido una comparación entre los resultados obtenidos por los diversos observadores utilizados en las citadas experiencias. Si nos fijamos en estos datos, observaremos que al comparar los resultados de distintos observadores se presentan valores superiores de \(e_i \) y \(d_i \) que los que se obtenían con las fórmulas FDC-G* en los puntos experimentales de MacAdam (1942), lo que nos indica que las diferencias entre las elipses experimentales de MacAdam (1942) y las que generan en esos puntos las fórmulas FDC-G* son más pequeñas que la variabilidad entre observadores que aparece en estos experimentos.

Al observar la comparación realizada sobre los puntos experimentales de Brown y MacAdam (1949), nos encontramos que los resultados obtenidos para las desviaciones cuadráticas media y absoluta son bastante más similares entre sí que en casos anteriores, aunque podemos resaltar un mejor comportamiento de las
Fórmulas de diferencias de color

FDC-G* y FMC que las fórmulas CIELUV, CIELAB y LABNHU. Incluso, es de destacar, que los resultados obtenidos con la fórmula FDC-G* son comparables a los que aparecen entre los dos observadores. Ésto nos lleva a la conclusión de que las fórmulas obtenidas por nosotros, FDC-G*, son las que dan unos resultados más parecidos a los resultados experimentales de Brown y MacAdam (1949).

De todas las comparaciones realizadas, las que dan peores resultados son las que se han realizado sobre los puntos experimentales de Wyszecki y Fielder (1971). Este experimento, incluso, muestra una alta variabilidad entre observadores como se deduce de los valores obtenidos de las desviaciones cuadráticas media y absoluta para la comparación entre observadores. Dentro de los altos valores de las desviaciones que se obtienen al comparar las distintas fórmulas con los puntos experimentales de Wyszecki y Fielder (1971) con el observador GW, las que presentan mejores resultados son, de nuevo, las fórmulas FDC-G*. Un valor comparable, aunque superior, es el que se obtiene con las fórmulas LABNHU y FMC. Por último, las fórmulas CIELUV y CIELAB alcanzan unos valores aún más altos.

Como se puede deducir de todo lo expuesto, la fórmula con la que se obtienen unos resultados que se aproximan mejor a los experimentales es, sin duda, la FDC-G*, obteniendo también buenos resultados la FMC mientras que con las demás hay unas diferencias considerables.

Por último, pasemos a comentar los resultados obtenidos en los puntos que delimitan las distintas zonas en las que hemos dividido el diagrama cromático y que aparecen en la tabla IV.3.

Las comparaciones realizadas sobre los conjuntos "ímites azules", "ímites verdes", "ímites naranjas" y "ímites rojos"
Fórmulas de diferencias de color

Tabla IV.3.- Resultados de la comparación en los puntos de separación de las distintas zonas con las fórmulas FDC-G*

<table>
<thead>
<tr>
<th>LÍMITES</th>
<th>$<e_i>$</th>
<th>$<d_i>$</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>LÍMITES AZULES</td>
<td>0.226</td>
<td>0.172</td>
<td>1.061</td>
</tr>
<tr>
<td>LÍMITES VERDES</td>
<td>0.202</td>
<td>0.144</td>
<td>0.923</td>
</tr>
<tr>
<td>LIM. NARANJAS</td>
<td>0.119</td>
<td>0.099</td>
<td>1.035</td>
</tr>
<tr>
<td>LÍMITES ROJOS</td>
<td>0.137</td>
<td>0.109</td>
<td>0.875</td>
</tr>
<tr>
<td>L. ACROMÁTICOS</td>
<td>0.484</td>
<td>0.290</td>
<td>0.855</td>
</tr>
</tbody>
</table>

arrojan unos resultados que pueden ser considerados como satisfactorios, puesto que los valores obtenidos de las desviaciones cuadráticas media y absoluta son, en todos los casos, inferiores a los que se obtienen si comparamos los resultados experimentales de los distintos observadores que participaron en los distintos trabajos aquí estudiados. Sin embargo, los valores de las desviaciones cuadráticas que se obtienen al realizar la comparación sobre los 20 puntos escogidos sobre los límites de la zona de los acromáticos, son bastante más altos de lo que sería de desear, puesto que alcanzan valores de más del doble de los obtenidos para los otros conjuntos.

A la vista de todo lo expuesto se puede concluir que, las fórmulas obtenidas por nosotros, FDC-G*, son un buen ajuste de los gráficos de MacAdam (1943) y que, además, se adecúan mejor a
resultados experimentales clásicos en colorimetría que las fórmulas propuestas por la CIE, CIELUV y CIELAB. Sin embargo, presentan el problema de qué fórmula usar para obtener las elipses de discriminación de los puntos situados en los límites de las zonas, ya que existen discrepancias entre los resultados que se obtendrían si se aplicara una u otra de las fórmulas de las zonas que separan dichos límites. Por esta razón, sería conveniente obtener unas nuevas fórmulas que, manteniendo, en lo posible, los buenos resultados de las FDC-G*, mejoren los resultados que éstas presentan en los límites de separación de las distintas zonas en las que hemos dividido el diagrama cromático.
4.5.- **NUEVAS FORMULAS DE DIFERENCIAS DE COLOR.**

De todo lo comentado en el apartado anterior, se deduce que el principal problema de las fórmulas de diferencias de color, FDC-G*, surge en las discrepancias que presentan al aplicarlas a los puntos límites de las distintas zonas, en especial, en los puntos límites de la zona acromática en la que, como podemos ver en la tabla IV.3, la comparación realizada hace que las desviaciones cuadrática media y absoluta alcancen valores excesivamente altos. Con el fin de evitar en lo posible este problema es por lo que surge la idea de volver a obtener otras nuevas fórmulas de diferencias de color, que llamaremos FDC-G** y en cada una de las zonas las notaremos como FDC-A* (Azules),

Tabla IV.4.- **Número de puntos usados para la obtención de las fórmulas FDC-G* y FDC-G** en las distintas zonas del diagrama cromático.**

<table>
<thead>
<tr>
<th>ZONA</th>
<th>FDC-G*</th>
<th>FDC-G**</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZUL</td>
<td>74</td>
<td>96</td>
</tr>
<tr>
<td>VERDE</td>
<td>258</td>
<td>277</td>
</tr>
<tr>
<td>NARANJA</td>
<td>28</td>
<td>44</td>
</tr>
<tr>
<td>ROJA</td>
<td>118</td>
<td>139</td>
</tr>
<tr>
<td>ACROMATICA</td>
<td>62</td>
<td>96</td>
</tr>
</tbody>
</table>
Fórmulas de diferencias de color

FDC-V* (Verdes), FDC-N* (Naranjas), FDC-R* (Rojos) y FDC-C* (Acromáticos).

Para la obtención de las nuevas fórmulas seguimos el mismo procedimiento que se usó para las fórmulas FDC-G* y que hemos comentado anteriormente. La diferencia radica en el número de puntos utilizados para realizar el ajuste que nos permitirá obtener la fórmula correspondiente a cada zona. Mientras que antes utilizamos sólo los puntos interiores a una zona concreta, ahora incluimos una serie de puntos, que sin estar en ella, le son próximos. Así, garantizamos un mejor ajuste en las regiones de intersección. En la tabla IV.4 se indican el número de puntos usados en cada zona del diagrama cromático para llevar a cabo el ajuste que dará origen a las fórmulas FDC-G* y a las FDC-G**.

De esta forma, obtuvimos las fórmulas FDC-G**, que son las que a continuación se expresan:

\[g_{11} = \left\{ \begin{array}{c} -676.1572 - 2600.5701 \cdot y + 11625.7812 \cdot x \cdot y + \frac{1785.3381 \cdot x}{x + y} \\ - \frac{60.4908 \cdot x}{y} + \frac{245.4438 \cdot y}{x} - 16225.3672 \cdot x^3 \end{array} \right\} \cdot 10^4

\[2g_{12} = \left\{ \begin{array}{c} 726.0991 - \frac{10.8511 \cdot y}{x^2} + 6546.8203 \cdot x^3 + \\ \frac{86.4672 - 1717.2627 \cdot x - 1877.5732 \cdot x \cdot y}{x + y} \end{array} \right\} \cdot 10^4 \]
Fórmulas de diferencias de color

\[g_{22} = \left(-802.643 + (1835.061 - 4362.785 \cdot x) \cdot y + 5361.953 \cdot x^2 + \right. \\
\left. + \frac{162.750}{x + y} + \frac{4.998}{y} - \frac{0.050}{y^2} - \frac{0.422}{x^2} \right) \cdot 10^4 \]

FDC-V*:

\[g_{11} = \left(31.884 + 628.8538 \cdot x^2 - 40.8330 \cdot x \cdot y - \frac{193.5842 \cdot x}{y} \right. \\
\left. + \frac{56.5662 \cdot x}{y^2} \right) \cdot 10^4 \]

\[2g_{12} = \left(12.6619 - 309.9365 \cdot x + \frac{10.9256 + 283.8657 \cdot x \cdot y}{x + y} \right. \\
\left. + \frac{2.3717}{y^2} + \frac{11.4629 \cdot (x + y) - 50.3868 \cdot x \cdot y}{x - y} \right) \cdot 10^4 \]

\[g_{22} = \left(-111.600 + 13.140 \cdot y + 146.8736 \cdot x^2 + \frac{0.5471}{x \cdot y} + \right. \\
\left. + \frac{19.2261 + 81.3142 \cdot y}{x + y} + \frac{32.0989 \cdot x}{y} - \frac{0.0147}{x^2} \right) \cdot 10^4 \]

FDC-N*:

\[g_{11} = \left(185.0556 - \frac{59.1992}{y} \right) \cdot 10^4 \]
Fórmulas de diferencias de color

\[2g_{12} = \left(-78.5605 + 44.4614 \cdot x^2 + \frac{34.1053 \cdot y}{x} \right) \cdot 10^4 \]

\[g_{22} = \left(-69.6904 - 116.3547 \cdot x^2 + 102.0176 \cdot y^2 + \frac{94.6614 \cdot x}{y} \right) \cdot 10^4 \]

FDC-R*:

\[g_{11} = \left(162.1613 - 60.9021 \cdot y - \frac{151.4214}{x} + \frac{47.2541}{x^2} - \frac{0.1478}{y^2} \right) \cdot 10^4 \]

\[2g_{12} = \left(361.5684 - 383.6528 \cdot x^2 - 197.4956 \cdot x \cdot y + \frac{0.4752}{y^2} - \frac{168.6579}{x + y} - \frac{18.7323}{x^2} \right) \cdot 10^4 \]

\[g_{22} = \left(284.7444 - \frac{50.1703 + 295.9292 \cdot y}{x} - \frac{27.0183}{y} + \frac{9.3903}{x \cdot y} + \frac{66.5281 \cdot y}{x^2} \right) \cdot 10^4 \]

FDC-C*:

\[g_{11} = \left(-48.4842 + 202.4059 \cdot y^2 + \frac{9.9211}{y^2} \right) \cdot 10^4 \]
Fórmulas de diferencias de color

\[2g_{12} = \left(265.0225 - \frac{169.5876}{x} + \frac{29.9762}{x^2} - \frac{11.1889}{y^2} \right) \cdot 10^4 \]

\[g_{22} = \left(-13.3640 - 76.6235 \cdot x^2 + \frac{30.1306}{y} - \frac{3.5293}{x^2} \right) \cdot 10^4 \]

Una vez obtenidas las nuevas fórmulas de diferencias de color, FDC-G**, pasamos a realizar un estudio que nos permita observar su adecuación. Este estudio lo vamos ha llevar a cabo siguiendo las tres líneas ya expuestas anteriormente, es decir, ver su adecuación a los datos de MacAdam (1943), tabla IV.5, compararlas con los resultados experimentales ya comentados, tabla IV.6, y por último observar los resultados que se obtienen en los puntos de separación de dos zonas cuando se calculan sus elipses de discriminación mediante las fórmulas de las dos zonas que separan, tabla IV.7.

En una primera observación de la tabla IV.5, notamos que la adecuación de las nuevas fórmulas a los datos de MacAdam (1943) es bastante satisfactoria, si bien, las desviaciones cuadráticas media y absoluta son, en general, un poco más altas que las que se obtenían cuando se realizaba la comparación de las FDC-G* con estos datos. Esta cuestión era de prever puesto que si se aumenta el número de puntos sobre los que se realiza el ajuste, es razonable que éste no sea tan bueno. De todas formas, los resultados obtenidos son muy inferiores a los que se obtenían cuando se comparaban los datos de MacAdam (1943) con las demás fórmulas (CIELUV, CIELAB y LABNHU).

Si nos fijamos ahora en los resultados obtenidos en cada
Tabla IV.5.- Resultados de la comparación de los datos de MacAdam (1943) y las fórmulas FDC-G** en las distintas zonas del diagrama cromático.

<table>
<thead>
<tr>
<th>ZONA</th>
<th>FORMULA</th>
<th>(<e_1>)</th>
<th>(<d_1>)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZULES (20)</td>
<td>FDC - A*</td>
<td>0.187</td>
<td>0.147</td>
<td>1.067</td>
</tr>
<tr>
<td>VERDES (28)</td>
<td>FDC - V*</td>
<td>0.310</td>
<td>0.165</td>
<td>0.939</td>
</tr>
<tr>
<td>NARANJAS (20)</td>
<td>FDC - N*</td>
<td>0.020</td>
<td>0.015</td>
<td>1.002</td>
</tr>
<tr>
<td>ROJOS (28)</td>
<td>FDC - R*</td>
<td>0.093</td>
<td>0.065</td>
<td>1.009</td>
</tr>
<tr>
<td>ACROM. (16)</td>
<td>FDC - C*</td>
<td>0.133</td>
<td>0.109</td>
<td>0.985</td>
</tr>
</tbody>
</table>

una de las zonas notaremos que los correspondientes a las zonas Azul, Naranja, Rojo y Acromática son del mismo orden, y en algún caso inferior, a los que se obtenían para esas mismas zonas con las fórmulas FDC-G*. Sin embargo, en la zona Verde los resultados son un poco más elevados, sin que por ello puedan ser considerados como malos.

Al analizar la comparación realizada entre las fórmulas FDC-G** y los datos experimentales de MacAdam (1942), Brown y MacAdam (1949) y Wyszecki y Fielder (1971), tabla IV.6, podemos notar, en una primera observación, que los resultados son muy parecidos a los que se obtenían cuando se realizaba la comparación, sobre estos mismos puntos, con las fórmulas FDC-G*. Es de destacar el resultado que se obtiene al realizar la
Tabla IV.6.- Resultados de la comparación realizada entre los datos experimentales de distintos autores y los que, para esos puntos, se obtienen con las fórmulas FDC-G**.

<table>
<thead>
<tr>
<th>PUNTOS</th>
<th>(<e>)</th>
<th>(<d>)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACADAM (1942)</td>
<td>0.193</td>
<td>0.147</td>
<td>1.020</td>
</tr>
<tr>
<td>BROWN Y MACADAM (1949) Ob: WRB</td>
<td>0.329</td>
<td>0.268</td>
<td>1.137</td>
</tr>
<tr>
<td>WYSZECKI Y FIELDER (1971) Ob: GW</td>
<td>0.403</td>
<td>0.327</td>
<td>0.518</td>
</tr>
</tbody>
</table>

Comparación entre las elipses experimentales de Wyszecki y Fielder (1971) y las que se obtienen, para los mismos puntos, con las fórmulas FDC-G**, puesto que mejora con respecto a los resultados de la tabla IV.2. Con los otros dos conjuntos de puntos, MacAdam (1942) y Brown y MacAdam (1949), los resultados obtenidos son muy parecidos a los que ya se obtenían con las fórmulas FDC-G*, aunque levemente aumentan los valores de \(<e> \) y \(<d> \). En cualquier caso, los resultados obtenidos mejoran los que, para estos puntos experimentales, proporcionan las fórmulas CIELUV, CIELAB y LABNHU.

Por último, fijemos nuestra atención en los resultados que se obtienen en los puntos de separación de las distintas zonas del diagrama cromático cuando se comparan las elipses de discriminación que se obtendrían en ellos si se aplican las fórmulas de las dos zonas que separan, tabla IV.7. Es de destacar...
Tabla IV.7.- Resultados de la comparación en los puntos de separación de las distintas zonas con las fórmulas FDC-G**.

<table>
<thead>
<tr>
<th>LIMITES</th>
<th>$<e_1>$</th>
<th>$<d_1>$</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIMITES AZULES</td>
<td>0.239</td>
<td>0.176</td>
<td>1.192</td>
</tr>
<tr>
<td>LIMITES VERDES</td>
<td>0.202</td>
<td>0.146</td>
<td>0.902</td>
</tr>
<tr>
<td>LIM. NARANJAS</td>
<td>0.106</td>
<td>0.081</td>
<td>1.033</td>
</tr>
<tr>
<td>LIMITES ROJOS</td>
<td>0.230</td>
<td>0.168</td>
<td>0.795</td>
</tr>
<tr>
<td>L. ACROMATICOS</td>
<td>0.212</td>
<td>0.147</td>
<td>0.955</td>
</tr>
</tbody>
</table>

que los altos valores de las desviaciones cuadráticas media y absoluta que se obtenían en los "Límites Acromáticos" con las fórmulas FDC-G*, que nos llevaron a la deducción de las nuevas fórmulas, se reducen considerablemente cuando se lleva a cabo la comparación con las fórmulas FDC-G**, siendo ahora estos valores comparables a los que se obtienen debido a la variabilidad entre observadores. Por consiguiente, podemos asegurar que el objetivo fundamental que nos movió a la obtención de nuevas fórmulas de diferencias de color se ha conseguido.

En cuanto a los resultados que se obtienen para los límites de las otras zonas, podemos decir que se mantienen similares, e incluso mejoran, a los que ya se obtenían con las fórmulas FDC-G*, con lo que creemos que son unos resultados satisfactorios. En la figura 4.5 a-d se muestran las elipses de
Fórmulas de diferencias de color

Figura 4.5.- Elipses de discriminación, para cuatro puntos limítrofes entre las zonas, calculadas por las dos fórmulas de las zonas que separa cada uno.

Determinación experimental de diferencias de color...
discriminación cromática para cuatro puntos de separación de las distintas zonas en las que hemos dividido el diagrama cromático, calculadas con las fórmulas de las zonas que separa. En concreto, el punto (0.230,0.205) de separación de las zonas azul y acromática, el (0.300,0.400) de separación de la verde y acromática, el (0.450,0.450) de la naranja y acromática, y el (0.335,0.225) de la roja y acromática.

Como resumen de todo lo dicho, podemos concluir asegurando que las fórmulas FDC-G** se ajustan bien a los datos de MacAdam (1943), además con ellas se obtienen resultados similares o mejores que con otras fórmulas al compararlas con resultados experimentales. En los límites de las zonas, no presentan grandes discrepancias sino que, por el contrario, son comparables a las diferencias que aparecen entre observadores en experiencias clásicas en colorimetría, como podemos ver en la tabla IV.2.

Las discrepancias obtenidas entre los distintos observadores en los trabajos ya comentados, es una de las razones que nos llevará a realizar un estudio de la variabilidad inter-observador que existe al determinar el umbral diferencial de cromaticidad. Utilizando ocho observadores, calcularemos la ellipse de discriminación de cada uno de ellos, sobre un mismo estímulo, con lo que podremos valorar las posibles diferencias que existan entre ellos y el método experimental que utilizamos.
4.6.- BIBLIOGRAFIA.

CAPÍTULO V:

DISPOSITIVO EXPERIMENTAL.
V.- DISPOSITIVO EXPERIMENTAL.

5.1.- CARACTERÍSTICAS GENERALES.

El dispositivo experimental utilizado para la realización de las medidas en la presente memoria responde, en términos generales, a las características que usualmente poseen los instrumentos dedicados al estudio de la colorimetría diferencial. Son éstas, principalmente, la utilización de colorímetros visuales que permitan una gran gama en la obtención de estímulos y alta reproducibilidad de los mismos, un sistema de observación adecuado al tipo de visión requerido, solidez y versatilidad propias para la realización de un gran número de medidas, como en el caso que nos ocupa, así como la posibilidad de calibrado espectrorradiométrico del sistema en forma fiable.

A fin de sistematizar la descripción del conjunto experimental, hemos dividido éste en tres partes:

1) Sistema de producción de estímulos
2) Sistema de yuxtaposición de estímulos y de observación
3) Sistema de calibrado

que serán objeto de los siguientes apartados. La figura 5.1 muestra un esquema general del dispositivo.
Figura 5.1.- *Esquema general del dispositivo experimental.*
5.2.- SISTEMA DE PRODUCCION DE ESTIMULOS.

La obtención tanto de los estímulos de referencia como de los estímulos que se presentan a comparar con el primero, se ha realizado mediante el conjunto comprendido por los colorímetros C1 y C2 más las cavidades integradoras I1 e I2, tal como se muestra en la figura 5.1.

Los colorímetros mencionados son del tipo Donaldson para colorímetros visuales. Ambos van provistos de lámparas de halógeno SILVANIA FFX 500 w / 220 v, alimentadas a la red a través de un estabilizador BOAR - 2000 ST (0.3% de precisión de regulación, margen de tensión de entrada 190 - 260 v, margen de frecuencia 45 - 55 Hz). La curva de emisión espectral relativa de este tipo de lámparas se muestra en la figura 5.2, conforme al calibrado realizado de una de ellas en el Instituto de Optica "Daza de Valdés" del C.S.I.C. Antes de iniciar las medidas las lámparas fueron envejecidas, durante aproximadamente 20 horas, a fin de asegurar aún más la estabilidad de su emisión.

Cada colorímetro consiste básicamente en una placa portadora de filtros que incluye la posibilidad de dejar pasar más o menos flujo luminoso procedente de cada uno de ellos mediante diafragmas, y un sistema óptico de lentes asociado al mismo. Este sistema óptico consiste en una pareja de lentes condensadoras, que en el caso de C1 tienen distancias focales de 37.5 y 47.5 cm y diámetro de 20 cm, y en el caso de C2 una distancia focal para cada lente de la pareja de 30 cm y diámetro de 15 cm. La colocación de la lámpara en el colorímetro es tal que se sitúe en el plano focal objeto de la primera de las lentes, de manera que sobre los filtros incida luz colimada.

Entre las dos lentes de cada colorímetro se sitúa la placa
Figura 5.2.- Curva de emisión de las lámparas utilizadas.

metálica en la que se alojan los tres filtros, rojo, verde y azul, en orificios apropiados. Estos filtros serán los responsables de la cromaticidad de los primarios a utilizar. Sobre cada uno de los orificios, la placa lleva colocados diafragmas cuya apertura se puede variar mediante un sistema de tracción modificando así el área del filtro que suministra cada primario. Ésto nos permite obtener una gran variedad de estímulos, combinando la luz que de cada uno de los filtros deja pasar los diafragmas. Las figuras 5.3a y 5.3b muestran las placas metálicas portadoras de los filtros de los colorímetros C1 y C2, con el sistema de diafragmas de apertura variable de cada uno de ellos. El sistema que hace
Figura 5.3 a y b.- Placas metálicas portadoras de los filtros. a) Colorímetro de referencia, b) colorímetro variable.
Dispositivo experimental

variar el área de los diafragmas está dotado de muelles de tracción que garantizan la reproducibilidad de las aperturas de los filtros para todas las posiciones correspondientes de los tornillos de control.

Mediante la segunda lente del condensador de cada colorímetro se hace incidir la luz emergente de los filtros sobre el orificio de entrada de la cavidad integradora, donde se realizará la mezcla aditiva de las luces que dejan pasar los filtros en las cantidades que regulan los diafragmas. A fin de aprovechar al máximo la luz emitida por las lámparas, se han situado los colorímetros con respecto a las cavidades integradoras de forma tal que la imagen del filamento se forme sobre los orificios de entrada de cada una de las cavidades. En estos orificios circulares A1 y A2 de 1.5 cm de diámetro se han situado sendos vidrios difusores, a fin de que la luz entre ya a la cavidad parcialmente difundida, así como para proteger el interior de la misma.

Las dos cavidades integradoras, I1 e I2, en las que se realiza la fusión de los primarios, son cavidades cilíndricas idénticas y están recubiertas en su interior de MgO, sobre una superficie cromada de acuerdo con las normas convencionales es este sentido, Keitz (1955). Esta capa de MgO fue periódicamente renovada a fin de garantizar que la fusión de los primarios se realiza convenientemente. El diámetro de la cavidad es de 7 cm y la altura de 4 cm, teniendo las tres ventanas en su plano ecuatorial a 120° cada una. Por una de ellas se producirá la entrada y por otra la salida de la luz una vez mezclada en la cavidad. Las cavidades integradoras que utilizamos son bastante más pequeñas que las utilizadas en trabajos previos, Hita et al. (1982); con ello hemos pretendido aumentar significativamente la luminancia de los estímulos a estudiar, como así se ha conseguido.

150 Determinación experimental de diferencias de color...
Figura 5.4.- *Cavidad integradora*.

La figura 5.4 muestra una de las cavidades que se han utilizado en nuestro trabajo.

Los filtros utilizados en ambos colorímetros son de la casa SCHOTT interferenciales modelo AL (20 nm de ancho de banda) cuyas curvas de transmitancia se muestran en la figura 5.5. Es de notar que el conjunto de filtros es idéntico en ambos colorímetros, debido a que hemos estado interesados en partir de igualaciones isómeras en la determinación de umbrales diferenciales de color, como posteriormente comentaremos.

Los colorímetros han sido convenientemente refrigerados.
Antes de desarrollar la presente memoria, quiero expresar mi más sincero agradecimiento a todas aquellas personas que, de una forma o de otra, la han hecho posible.

A los doctores Romero Mora e Hita Villaverde, que, además de dirigir este trabajo de una manera eficaz, han sido mis maestros y sus palabras de aliento nunca faltaron.

Al doctor Jiménez del Barco Jaldo, siempre dispuesto a solucionar cualquier problema y a asesorar en todas las dudas que surgen a lo largo del tiempo. Su ayuda ha sido de gran valor.

A los doctores Melgosa Latorre y Rubiño López, que colaboraron en aspectos concretos del trabajo.

A los profesores García y Beltrán y Jiménez Cuesta, cuya ayuda, tanto material como moral, ha sido importantísima.

A todos los demás compañeros del Departamento.

He de resaltar la valiosa colaboración de todos los observadores y muy especialmente de mi mujer, Pilar, y de mi hermano, Emilio José, que, además de realizar todas las medidas experimentales, me prestaron un apoyo constante a lo largo de todo el trabajo.
Figura 5.5.- Curvas de transmitancia de los filtros utilizados.

por ventiladores, a fin de evitar el calentamiento excesivo de los filtros, lo que podría originar cambios en sus curvas de transmitancia espectral, J. Juan (1974). Por otra parte se han tomado precauciones para aislar los colorímetros del resto del sistema y evitar así luces parasítas.
Dispositivo experimental

5.3.- SISTEMA DE YUXTAPOSICION DE ESTIMULOS Y DE OBSERVACION.

Una vez generados los 2 estímulos de color a estudiar, el dispositivo experimental debe permitirnos su comparación bajo unas determinadas condiciones experimentales de observación.

En nuestro caso pretendemos estudiar la discriminación cromática por comparación simultánea, observando parejas de estímulos yuxtapuestos en un campo fotométrico circular y bipartito, pues este tipo de campo es el más utilizado tradicionalmente en la colorimetría diferencial.

Nuestro dispositivo experimental dispone de sendos dobletes acromáticos de 70 mm de apertura y 127 mm de distancia focal. Estos dobletes se designan como L1 y L2 en el esquema general de la figura 5.1 y están colocados en sus correspondientes jinetillos sobre bancos ópticos de modo que las ventanas de salida de las cavidades integrantes están justamente en sus planos focales objeto. De los dobletes emergen, por tanto, haces de luz colimados que se yuxtaponen mediante un cubo fotométrico K de 6 cm de arista, tras sufrir reflexión total y un cambio de dirección de 90 grados el haz procedente del colorímetro de referencia (cfr. figura 5.1).

A continuación del cubo fotométrico, pegado a su cara, se sitúa un último diafragma circular D que permite obtener el tamaño y tipo de campo fotométrico deseados. A continuación del diafragma se ha colocado un obturador electromagnético O, también sobre un jinetillo. El obturador consiste en un placa negra soldada a una varilla de hierro que penetra en el interior de una bobina, la cual actúa como electroimán bajo el control de un generador de pulsos eléctricos. Se puede controlar la duración de los pulsos...
A Pilar
A mi familia
así como también el intervalo de tiempo entre pulsos sucesivos; durante el cual el experimentador actúa sobre los mandos de control del colorímetro variable.

Finalmente, en el extremo del banco óptico se sitúa una mentonera dotada de un obturador de ojo que permite la observación monocular. La mentonera dispone de mecanismos de desplazamiento vertical y horizontal para que cada observador pueda acoplarse adecuadamente conforme al eje óptico del sistema. La posición del diafragma D nos permite observar nítidamente un campo circular y bipartito de 2 grados y campo circundante obscuro. En consecuencia el tipo de visión empleado es visión directa. Las ventajas de este tipo de observación frente a la visión de tipo maxwelliano estarían fundamentalmente en la mayor comodidad del observador, que no ha de usar dentonera y una pupila artificial, al tiempo que las condiciones de observación son más próximas a las de discriminación cromática en la vida ordinaria, como pretendemos según los objetivos de nuestro trabajo. Con posterioridad trataremos más detalladamente el tipo de visión elegida.
5.4.- **PUESTA A PUNTO DEL DISPOSITIVO.**

Antes de iniciar las medidas experimentales se procede al montaje de los distintos componentes del dispositivo, tomando todas las precauciones necesarias para minimizar las posibles causas de errores sistemáticos y garantizar la reproducibilidad de las medidas.

En primer lugar los distintos componentes ópticos deben mantener sus posiciones relativas frente a posibles vibraciones. Con este fin, todo el dispositivo va sobre una mesa de amplia base a la que están unidos mediante tornillos de presión los colorímetros y los bancos ópticos utilizados. Jinetillos EALING con desplazamiento vertical y horizontal permiten situar adecuadamente los componentes ópticos sobre bancos ópticos de perfil ZEISS y una vez conseguidas las posiciones correctas se sellan los jinetillos a ellos.

Mediante un anteojo enfocado al infinito se sitúan los dobletes acromáticos de modo que en su plano focal objeto se encuentren las ventanas de salida de las cavidades integradoras. Posteriormente se procede a la alineación de todos los componentes mediante la utilización de un láser de He-Ne de 0.5 mw, que se emplea para materializar el eje óptico del sistema.

El dispositivo generador de impulsos eléctricos que actúa sobre el sistema de obturación ha sido previamente calibrado empleando un reloj GRIFFIN-GEORGE TKL-900 V de alta sensibilidad, al cual va acoplada una célula fotoeléctrica. Con esta medida conocemos el tiempo de exposición real y el de adaptación a la obscuridad entre presentaciones sucesivas, sin el error que pudiera derivarse de las inercias mecánicas en la chapa obturadora.
Respecto a la constancia en la producción de estímulos hemos de recordar que las fuentes luminosas se encuentran alimentadas a través de un estabilizador y han sido inicialmente envejecidas. Este mismo estabilizador se utiliza también para alimentar todos los instrumentos radiométricos de medida que usamos en la realización de los calibrados y que posteriormente indicaremos.

Como hemos indicado, el efecto de foco calorífico de las fuentes luminosas y su influencia en la transmitancia de los filtros espectrales es controlado también mediante turboventiladores refrigerantes, de modo que las medidas se desarrollan con una temperatura estacionaria. Análogamente otros efectos menores, tal y como el envejecimiento de la capa difusora de MgO, Lozano (1978), son controlados a través de la realización de calibrados periódicos y frecuentes; de este modo se garantiza que los valores de las radianzas utilizados en los cálculos posteriores coinciden con los valores reales que se observan, dentro del error instrumental del dispositivo. En cualquier caso éste no es un problema grave ya que el calibrado se hace a la salida de las cavidades.

Hemos comprobado que no se detectan diferencias en las coordenadas de cromaticidad y luminancia si calibramos un estímulo inmediatamente antes y después de la determinación experimental de su umbral.

Puesto que la adaptación del observador es a la obscuridad, se ha dispuesto una cabina que aisla dicho observador respecto al resto del dispositivo y le permite realizar sus juicios sin conocimiento alguno de las variaciones de los estímulos que ejecuta el experimentador. Se evitan así también los
Dispositivo experimental

posibles efectos táctiles que pudiera tener el manejo por parte del observador de los dispositivos que controlan la variación de los estímulos a comparar.
5.5.- CALIBRADO DEL DISPOSITIVO.

El cálculo de los umbrales de cromaticidad requiere del conocimiento de las coordenadas de cromaticidad y luminancia relativa de los diferentes estímulos producidos. Con este fin se ha dispuesto un sistema de calibrado de los colorímetros y un programa de cálculo que nos permiten conocer las radiancias espectrales relativas de los estímulos generados por cada colorímetro para cada una de las posibles posiciones de los diafragmas de los filtros del mismo.

5.5.1.- Descripción General.

Por lo dicho anteriormente, el calibrado del dispositivo experimental podemos dividirlo en dos partes, una de medidas experimentales sobre el dispositivo, y otra de cálculo por ordenador de las coordenadas de cromaticidad y luminancia relativa de los estímulos analizados.

Para la primera, es decir la medida en el laboratorio de la radiancia relativa de los estímulos, se ha dispuesto de un sistema formado por un espectrorradiómetro M (figura 5.1). Consiste éste en un monocromador JOBIN-YVON HV-20, de red de difracción (1200 líneas/mm), el cual separa espectralmente el haz incidente en su rendija de entrada, con una resolución de 2, 4 u 8 nm según las rendijas que utilicemos a la entrada y salida. Acoplado a él se dispuso, sobre la rendija de salida, un fotodiodo de silicio, EG&G modelo 4000-B (1 cm², responsividad 10⁷ v/w, Rᵣ = 200 MΩ a 230 nm, corriente de oscuridad 5pA, impedancia de salida 500 Ω) que incluye etapa de amplificación. La señal del fotodiodo es recibida sobre un dispositivo indicador digital RACAL-DANA 4003 (resolución 1 μV, precisión 0.04%, 10 MΩ impedancia de entrada en
continuas), con el que se realizaron las lecturas.

La elección del monocromador y fotodiodo mencionados se basa, de una parte, en las necesidades que se nos plantearon a la hora de llevar a cabo la experimentación que nos ocupa, y de otra, las posibilidades que ofrecen las características de los mismos. Así, como se ha indicado, el monocromador permite resoluciones en el espectro visible del orden de 2, 4 y 8 nm, según utilicemos las rendijas de las que va provisto de 0.5, 1 o 2 mm, resoluciones que se ajustan muy bien a las necesidades que en colorimetría se plantean. En nuestro caso se han utilizado las rendijas de 1 mm lo que ha significado realizar los calibrados de 5 en 5 nm.

Por otra parte, se ha elegido un fotodiodo de Silicio como elemento fotosensible frente a otro dispositivo de alta respuesta, como pudiera ser un fotomultiplicador, debido a que, si bien éstos suelen presentar sensibilidades más altas y menor nivel de ruido, los fotodiodos presentan las ventajas de mayor estabilidad, menor dimensión y peso, mejor estabilidad antichoque, resistencia frente a vibraciones y prácticamente carecer de efecto micrófono, Zaidel (1979).

Evidentemente, la respuesta que registramos sobre el elemento de lectura no es una medida directa de la radiancia spectral del estímulo. Los distintos elementos del sistema presentan respuestas selectivas a lo largo del espectro que habrán de tenerse en cuenta a la hora de obtener una medida correcta, es decir, la efectividad del monocromador y la respuesta espectral del fotodiodo. Estas dos características de elementos del sistema de calibrado serán objeto de descripción en el siguiente apartado.
5.5.2.- Respuesta espectral de la fotocélula. Efectividad del monocromador.

Para la efectividad del monocromador hemos tomado la curva que el fabricante suministra de este parámetro. La curva del fabricante se muestra en la figura 5.6, cayendo dentro del comportamiento que normalmente presenta una red de difracción por reflexión para la efectividad.

Respecto de la respuesta espectral del fotodiodo de Silicio, se llevó a cabo su medida en el Instituto de Optica "Daza

Figura 5.6.- Efectividad relativa del monocromador H-20.
De Valdés", que es el único centro español homologado de radiometría. Los resultados, dentro del espectro visible, se muestran en la figura 5.7, donde se observa que ésta es creciente a lo largo del espectro, lo que genera en nuestro caso valores más bajos en las medidas para las longitudes de onda cortas en el visible.

La linealidad de la fotocélula fue comprobada sobre el dispositivo, haciendo incidir sobre ella un determinado estímulo y variando la intensidad que le llega mediante polarizadores. Se obtiene una alta correlación en el ajuste lineal entre la respuesta de la fotocélula y la intensidad incidente.

\[S_\lambda \]

\[0.1 \]

\[0.5 \]

\[1.0 \]

\[\lambda \text{ (nm)} \]

Figura 5.7.- Responsividad espectral relativa del fotodiodo de silicio HUV-4000B.
5.5.3.- Realización de Calibrados.

La radiancia espectral de los estímulos provenientes de la cavidad integradora fue determinada mediante la inclusión en el banco óptico que soporta el sistema de observación del monocromador M, de tal forma que intercepte el haz colimado que emerge del dado fotométrico.

En estas condiciones, la radiancia espectral relativa del estímulo vendrá dada por:

$$R_\lambda = \frac{M_\lambda}{\epsilon_\lambda \cdot S_\lambda}$$

donde M_λ es la medida en mv sobre el multímetro, ϵ_λ la efectividad del monocromador y S_λ la respuesta espectral del fotodiodo.

Al colorímetro C2, por su condición de ser el que proporciona los estímulos a comparar con el de referencia, se le ha exigido una gran reproducibilidad, es decir, que proporcione siempre que se sitúen los mandos en una misma posición el mismo estímulo bajo el punto de vista radiométrico. Por otra parte, debido al número elevado de estímulos que se analizan durante las experiencias, se ha implicado la necesidad del calibrado global del mismo, realizándose el cálculo de las coordenadas de cromaticidad de los estímulos utilizados para la determinación de un umbral diferencial, mediante ordenador. Para ello, se procede a calibrar la luz proveniente de cada uno de los filtros por separado, para las distintas posiciones de los mandos que regulan los diafragmas. De esta forma se obtienen matrices 241×9, una para cada filtro, en las que las filas representan posiciones del mando y las columnas longitudes de onda seleccionadas para el calibrado, siendo los elementos de las matrices las radiancias obtenidas para
cada longitud de onda y posición de mando, tras tener en cuenta la curva de respuesta espectral del fotodiodo y la efectividad del monocromador.

De esta forma, y ayudado por el hecho de que los filtros utilizados no solapan sus curvas de transmisión, podemos determinar la radiancia espectral de un estímulo sin más que conocer las posiciones de mando de los diafragmas que regulan las cantidades de cada primario, azul, verde y rojo. La radiancia espectral del estímulo será la suma de ellas, con lo que será inmediato determinar sus valores triestímulos y coordenadas de cromaticidad.

En cualquier caso la reproducibilidad de los calibrados fue probada realizándose medidas en las que determinadas posiciones de mando del colorímetro fueran repetidamente

<table>
<thead>
<tr>
<th>FILTROS</th>
<th>AZUL</th>
<th>VERDE</th>
<th>ROJO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>435</td>
<td>505</td>
<td>635</td>
</tr>
<tr>
<td></td>
<td>440</td>
<td>510</td>
<td>640</td>
</tr>
<tr>
<td></td>
<td>445</td>
<td>515</td>
<td>645</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>520</td>
<td>650</td>
</tr>
<tr>
<td></td>
<td>455</td>
<td>525</td>
<td>655</td>
</tr>
<tr>
<td></td>
<td>460</td>
<td>530</td>
<td>660</td>
</tr>
<tr>
<td></td>
<td>465</td>
<td>535</td>
<td>665</td>
</tr>
<tr>
<td></td>
<td>470</td>
<td>540</td>
<td>670</td>
</tr>
<tr>
<td></td>
<td>475</td>
<td>545</td>
<td>675</td>
</tr>
</tbody>
</table>

Debemos considerar que los valores fueron determinados experimentalmente y son aproximados.
colocadas, ya fuera en el sentido de abrir o cerrar el diafragma. Además, la reproducibilidad del calibrado fue probada a lo largo del tiempo en que se toman medidas durante una sesión de experimentación (alrededor de 12 minutos).

Las longitudes de onda seleccionadas en el calibrado se especifican en la tabla V.1.

5.5.4.- Puesta a punto del sistema de Calibrado.

Antes de la realización de los calibrados, hay que tener en cuenta una serie de aspectos, relacionados con los mismos, que pasamos a detallar. En este sentido, hemos asegurado un correcto alineamiento del sistema de calibrado con el resto del dispositivo y que la rendija del monocromador quede completa y uniformemente iluminada durante la realización de los calibrados. Además, se ha tenido cuidado de ajustar a cero, previamente y a lo largo de las medidas, la respuesta del fotodiodo cuando no es iluminado, a fin de restar la corriente de oscuridad, lo que se ha realizado mediante un potenciómetro en la etapa de amplificación. Así mismo, se ha elegido una escala en el multímetro digital que permita una lectura estabilizada de la señal, evitándose las fluctuaciones debidas al ruido de los elementos de medida. Esta escala nos dará el principal error instrumental que se introduce en la realización de las medidas.

En cuanto al uso del monocromador, hemos considerado su resolución y la reproducibilidad de las posiciones que fijan las longitudes de onda seleccionadas. Lo primero ha sido ya ampliamente expuesto en los apartados anteriores y sólo mencionaremos que para los calibrados realizados ésta ha sido de 4 nm, lo que se ajusta bien a los cálculos colorimétricos, Seve
Dispositivo experimental

(1982).

En relación a lo segundo, hemos comprobado, mediante un láser de He-Ne y lámparas de Na y Hg, que las longitudes de onda que el mando indica, coinciden con las realmente seleccionadas. Además, como técnica de trabajo, hemos actuado siempre sobre el mando en el mismo sentido de giro, a fin de evitar posibles inercias mecánicas.

Por último, y con referencia al cálculo explícito de los valores triestímulos, a partir de la resolución del monocromador, hemos realizado la suma espectral para el cálculo de los mismos, de 5 en 5 nm, según las consideraciones expuestas en el apartado de realización de calibrado, basadas en el trabajo de Seve (1982). Es de notar, que implicitamente siempre se comete un error en el cálculo de los valores triestímulos al pasar de la integral a la sumatoria, debido a que la radiancia espectral no puede ser medida continuamente y a que las funciones de mezcla están tabuladas para puntos determinados del espectro, lo que ha sido estudiado por Krystek (1982).

En resumen, hemos estimado el error en nuestra medida habiendo adoptado éste como el asociado al escalón mínimo de variación de las mandos del colorímetro, expresado en términos de diferencias de coordenadas de cromaticidad y luminancia. Esta elección es recíproca, y por tanto sirve para fijar el tamaño del escalón, que en cualquier caso, hemos calculado que engloba los errores sistemáticos mencionados.

Por otra parte, los errores accidentales los hemos considerado sujetos a la propagación de errores en colorimetría, descrita por Nimeroff (1957) y Wyszecki (1959), lo que, por otro lado, fundamenta el cálculo estadístico del elipsoide de
Dispositivo experimental

discriminación representativo del umbral.
5.6. BIBLIOGRAFÍA.

KRYSTEK, M.; "Calculation of tristimulus values from spectral data with regard to measurement uncertainties", Optik, 62, 49-58 (1982).

CAPÍTULO VI:

MÉTODO GENERAL Y DESARROLLO DE LAS EXPERIENCIAS.
VI.- MÉTODO GENERAL Y DESARROLLO DE LAS EXPERIENCIAS.

6.1.- DESCRIPCION Y JUSTIFICACION DEL METODO EXPERIMENTAL.

Cuando nos hemos planteado elegir un método experimental de medida del umbral diferencial de color hemos tenido en cuenta una serie de consideraciones importantes. Se basan éstas, principalmente, en el deseo de que las medidas sean ajenas, en lo posible, a las condiciones psicológicas particulares del observador. Se trata de que los resultados, si bien característicos de un observador determinado, no vengan afectados por aspectos asociados a situaciones psicológicas determinadas del mismo, en momentos y circunstancias dados, ligados a una medida concreta. Además, ha de procurarse que la intervención del observador en la medida se limite a una actuación como "elemento de cero", en la que éste esté exento de realizar funciones sobre los instrumentos y en el desarrollo de las experiencias, ya que ello podría condicionar las respuestas del mismo. Es, pues, nuestra intención, que el observador quede al margen de todo lo que pudiera afectar a la objetividad de las medidas.

Buscamos un método de trabajo que permita evitar los problemas planteados. De un lado conseguir objetividad en las
Método general y desarrollo de las experiencias

respuestas del observador durante la realización de las medidas y además, evitar la variabilidad de respuesta inherente al propio observador. En la línea de estos planteamientos, el método de los "estímulos constantes" parece el más indicado, frente a otros comunes en la literatura, como el del "error medio" o el de los "límites".

De los dos últimos, el primero se basa en la realización de igualaciones de color, actuando el observador, normalmente para ello, sobre los mandos del colorímetro. Este método supone, por tanto, la aparición de posibles efectos táctiles, Le Grand (1972), que pueden afectar a las medidas, así como la evaluación de los resultados mediante la asimilación de éstos a una distribución normal de probabilidad. Es de esperar que este método, utilizado por MacAdam (1942) y por Wyszecki y Fielder (1971), esté más condicionado por la propia variabilidad del observador que otros en los que el observador no tenga participación activa en las experiencias.

El segundo método de los mencionados, el de los "límites", supone la variación continua de los estímulos hasta apreciar diferencias respecto de una igualación previa de estímulos. Este método, en general, no parece presentar reproducibilidad y exactitud en la determinación del umbral, lo que se ha verificado en nuestro caso con experiencias previas. Por otra parte, pueden influir parámetros, como la velocidad en la variación del estímulo o la adaptación continua al estímulo en el que se pretende detectar una diferencia, como indica Le Grand (1972).

A la vista de lo expuesto, el método de los "estímulos constantes" parece ser el que presenta mejores características de objetividad y reproducibilidad en las medidas, así como unas posibilidades en la evaluación de los resultados superiores a los
Método general y desarrollo de las experiencias

anteriormente expuestos. Mediante este método podemos asegurar la actividad única del observador como "instrumento de cero", ya que la función a realizar por el mismo durante las observaciones es exclusivamente responder si ve iguales, o no, dos estímulos que se le presenten a comparar. De acuerdo con ésto, nuestras sesiones experimentales han consistido esencialmente en las presentaciones sucesivas de un campo circular bipartito en cuya mitad izquierda se presenta el estímulo de referencia y en la de la derecha el estímulo variable a comparar con el primero, anotándose tras cada una de ellas, la respuesta que el observador da a cerca de su igualdad o desigualdad. En todos los casos experimentales, la frecuencia en la presentación de estímulos ha sido tal que, desarrollándose la sesión para el estudio del umbral de un solo estímulo de referencia, los estímulos variables presentados no hayan seguido ninguna norma en su orden de presentación, siendo ésta siempre al azar. De esta forma, aseguramos que el observador no pueda hacer juicios previos sobre los estímulos que se le van a presentar, ni está influido por evoluciones determinadas.

Evidentemente, los estímulos dados a comparar con el de referencia han estado siempre próximos a éste en el espacio de color. De hecho, se ha pretendido rodear al estímulo de referencia de una "nube" de puntos (estímulos), tal que sus extremos representen a colores que sean considerados como "claramente distintos" del de referencia por el observador. La obtención de esta nube de puntos corresponde a movimientos determinados de los mandos del colorímetro, que describiremos posteriormente, y persigue unos objetivos claros. Ha sido nuestra intención el no poner restricciones al ojo en su funcionamiento, como podrían ser las derivadas de trabajar a luminancia o cromaticidad constante. En cualquier caso, son muchos los autores que, tratando de determinar las características de la discriminación cromática, ya sea por ejemplo el estudio de umbrales de cromaticidad, trabajan
en sus experiencias a luminancia constante para la obtención de estos umbrales.

En nuestra opinión, cuando el objeto de estudio está relacionado con los aspectos cromáticos de la discriminación, no se deben imponer restricciones al funcionamiento usual del ojo humano, tales como las mencionadas. De hecho, si pretendemos aproximarnos en lo posible a las condiciones de la vida ordinaria, no encontramos en ésta con frecuencia condiciones de luminancia o cromaticidad constante, y sí, una variabilidad continua de las mismas. Así pues, en la realización de nuestro trabajo, no hemos impuesto ninguna de estas limitaciones en los estímulos a comparar, realizándose las experiencias con variación simultánea de luminancia y cromaticidad.

Como anteriormente mencionábamos, la obtención de la nube de puntos en el espacios de color alrededor del estímulo de referencia, la posibilita la variación de la apertura de los diafragmas que regulan la luz que se deja pasar a través de cada filtro del colorímetro.

Mediante la variación, en las diferentes direcciones posibles de estas aperturas, a partir de una igualación inicial isómera, obtenida mediante cálculos espectrofotométricos, se fijan una serie de estímulos que rodean al inicial, que son los presentados a comparar con el de referencia. De esta forma, se consigue la nube de puntos que nos va a permitir calcular el umbral representativo de la capacidad de discriminación en color del observador para el caso estudiado, siempre que se asegure que el estímulo de referencia quede completamente rodeado en el mayor número de direcciones posibles. Ésto lo hemos conseguido, en nuestro caso, moviéndonos como muestra la figura 6.1 en un hipotético espacio dado por los mandos de nuestro colorímetro.
Figura 6.1.- *Esquema ilustrativo de las diferentes direcciones en que nos movemos para obtener el umbral diferencial de color.*

Cada uno de los estímulos variables que forman la nube, fue presentado 10 veces al observador para que éste juzgara su igualdad, o no, con el estímulo de referencia. La secuencia de presentación de estímulos fue siempre al azar, como se ha indicado previamente, a fin de promediar las condiciones psicológicas, asociadas a la discriminación, del observador. Se le ha asignado a cada punto un peso estadístico, igual al número de veces que el observador responde que ve iguales los estímulos de referencia y variable.

Con objeto de que el observador no varíe la posición de su
cabeza, las respuestas sobre igualdad o desigualdad de estímulos fueron emitidas por el observador mediante un sistema de interruptores que accionaban pilotos luminosos de respuesta, encargándose el experimentador de registrarlas.

La evaluación estadística del umbral a partir de la nube de puntos y sus pesos asociados, ha sido objeto de un apartado de la presente memoria que dentro de este capítulo incluimos.

A fin de evitar la fatiga del observador, la toma de respuestas en las sesiones experimentales no excedió en su duración más de 12 min. Como consecuencia de ello, se ha precisado para la determinación de un umbral un número de ellas (alrededor de 25) tal que nos permite la obtención de datos a distintas horas del día y en distintos días, lo que, por otra parte, perseguimos. En efecto, de trabajos como los de Wyszecki (1972) e Hita y Romero (1981), se desprende esta necesidad cuando se realizan este tipo de experiencias, con el fin de promediar las condiciones psicológicas temporales del observador, y así hacer las medidas lo más independiente posible de la variabilidad que, según las experiencias de estos autores, puede apreciarse en resultados de discriminación cromática cuando se evalúan umbrales obtenidos en situaciones particulares, tales como en un solo día, etc. De aquí también la conveniencia de obtener para un solo punto de la nube un amplio número de respuestas.

Aspectos más detallados de las medidas y el desarrollo propio de la experimentación, se aportan en los apartados posteriores dedicados a tal fin.
6.2.- DESCRIPCION Y JUSTIFICACION DE LOS PARAMETROS EXPERIMENTALES.

_previamente, durante la descripción del dispositivo experimental utilizado para la realización de las medidas en la presente memoria, se han detallado y justificado algunos de los parámetros de la experimentación. A pesar de ello, pretendemos en este apartado hacer una revisión de nuevo de éstos, junto con los hasta ahora no especificados y que determinan el conjunto de condiciones experimentales que ha sido preciso fijar para la determinación de los umbrales en la forma pretendida.

Para describir los parámetros experimentales de nuestras experiencias, se ha hecho una clasificación de los mismos atendiendo a la siguiente división, la cual pasaremos a detallar.

a) Parámetros Fotométricos:
 1) Estímulos estudiados
 2) Nivel de luminancia
 3) Carácter de la igualación
 4) Tipo de fusión de primarios

b) Parámetros Temporales:
 1) Tiempo de exposición de estímulos
 2) Tiempo intermedio entre presentaciones de estímulos

c) Parámetros Visuales:
 1) Tipo de visión
 2) Modo de apariencia del estímulo
 3) Area y zona de la retina a estimular
 4) Tamaño y forma del campo
 5) Adaptación previa
6) Adaptación temporal y espacial

d) Observadores: Características y número.

6.2.1. Parámetros fotométricos.

Los estímulos que han sido objeto de estudio en el trabajo experimental, se indican, con sus coordenadas de cromaticidad en el sistema CIE-1931, en la tabla VI.1. Así mismo, la figura 6.2 muestra la situación de dichos estímulos en el diagrama cromático CIE-1931 (x,y). La luminancia de todos y cada uno de los estímulos se ha fijado en 12 cd/m².

Como puede observarse en la figura 6.2, la elección de los estímulos a estudiar no ha sido caprichosa sino que se han seguido una serie de consideraciones que pasamos a comentar. En primer lugar, nos hemos propuesto que los estímulos a estudiar estén distribuidos por todo el diagrama cromático y que todos ellos tengan la misma luminancia. Los primarios de que disponemos determinan un triángulo dentro del cual han de estar confinados los estímulos a estudiar, ésto, evidentemente, condiciona su distribución. El hecho de exigir que todos los estímulos tengan igual luminancia es otro condicionante más para conseguir nuestro objetivo. Sin embargo, creemos que se puede considerar que tenemos una buena distribución, ya que todas las zonas del diagrama cromático son estudiadas.

Además, hemos tenido en cuenta, para elegir los estímulos, la posibilidad de estudiar varios de ellos que, teniendo el mismo nivel de excitación del cono S, tengan distinto nivel de excitación de L - 2M y también estímulos en los que manteniendo constante el nivel L - 2M varíe la excitación del cono S. Para
Método general y desarrollo de las experiencias

Tabla VI.1.- Coordenadas de cromaticidad en el diagrama CIE-1931 de los 20 estímulos estudiados.

<table>
<thead>
<tr>
<th>ESTIMULO</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.356</td>
<td>0.155</td>
</tr>
<tr>
<td>2</td>
<td>0.446</td>
<td>0.232</td>
</tr>
<tr>
<td>3</td>
<td>0.501</td>
<td>0.279</td>
</tr>
<tr>
<td>4</td>
<td>0.569</td>
<td>0.337</td>
</tr>
<tr>
<td>5</td>
<td>0.291</td>
<td>0.170</td>
</tr>
<tr>
<td>6</td>
<td>0.357</td>
<td>0.269</td>
</tr>
<tr>
<td>7</td>
<td>0.402</td>
<td>0.335</td>
</tr>
<tr>
<td>8</td>
<td>0.464</td>
<td>0.426</td>
</tr>
<tr>
<td>9</td>
<td>0.248</td>
<td>0.181</td>
</tr>
<tr>
<td>10</td>
<td>0.294</td>
<td>0.295</td>
</tr>
<tr>
<td>11</td>
<td>0.327</td>
<td>0.377</td>
</tr>
<tr>
<td>12</td>
<td>0.373</td>
<td>0.490</td>
</tr>
<tr>
<td>13</td>
<td>0.213</td>
<td>0.189</td>
</tr>
<tr>
<td>14</td>
<td>0.239</td>
<td>0.318</td>
</tr>
<tr>
<td>15</td>
<td>0.258</td>
<td>0.415</td>
</tr>
<tr>
<td>16</td>
<td>0.287</td>
<td>0.558</td>
</tr>
<tr>
<td>17</td>
<td>0.171</td>
<td>0.347</td>
</tr>
<tr>
<td>18</td>
<td>0.169</td>
<td>0.463</td>
</tr>
<tr>
<td>19</td>
<td>0.167</td>
<td>0.652</td>
</tr>
<tr>
<td>20</td>
<td>0.163</td>
<td>0.201</td>
</tr>
</tbody>
</table>

Determinación experimental de diferencias de color...
Figura 6.2.- Situación en el diagrama cromático CIE-1931 de los 20 estímulos estudiados.
conseguir ésto, hemos construido una retícula trazando 4 líneas sobre el diagrama cromático que confluyan en el punto (1,0), todos los estímulos que están en una de estas líneas tienen el mismo nivel de excitación del cono S variando el de L - 2M, y 5 líneas que confluyan en el punto de confusión tritán (0.175,0), los estímulos de cada una de estas líneas tienen el mismo nivel L - 2M variando el nivel de excitación del cono S, con lo que hemos tomado sus puntos de corte para ser estudiados, tal como aparece en la figura 6.2.

De lo dicho se desprende que disponemos de los siguientes conjuntos de estímulos atendiendo a la excitación de los conos:

a) Cinco grupos en los que L - 2M permanece constante y varía la excitación de S:
 1) Estímulos 1, 2, 3 y 4, con L - 2M = 54.4 td
 2) Estímulos 5, 6, 7 y 8, con L - 2M = 14.9 td
 3) Estímulos 9, 10, 11 y 12, con L - 2M = -6.8 td
 4) Estímulos 13, 14, 15 y 16, con L - 2M = -22.2 td
 5) Estímulos 17, 18, 19 y 20 con L - 2M = -39.9 td

aunque el estímulo 20 queda ligeramente fuera de la línea 5, para realizar las distintas comparaciones, lo hemos considerado en ella, puesto que es mínima la diferencia.

b) Cuatro grupos en los que el nivel de excitación del cono S es constante y varía el nivel de excitación de los conos L y M:
 1) Estímulos 1, 5, 9, 13 y 20, con S = 374.1 td
 2) Estímulos 2, 6, 10, 14 y 17, con S = 164.8 td
 3) Estímulos 3, 7, 11, 15 y 18, con S = 94.1 td
 4) Estímulos 4, 8, 12, 16 y 19, con S = 32.4 td

El hecho de haber elegido estos estímulos para ser
Método general y desarrollo de las experiencias

estudiados, nos va ha permitir, en primer lugar, tener un conjunto suficientemente amplio de umbrales de cromaticidad, obtenidos para un mismo nivel de luminancia y distribuidos por todo el diagrama cromático CIE 1931, que podrán ser comparados entre sí y con los obtenidos con otros autores, en trabajos ya clásicos en colorimetría.

En segundo lugar, la distribución que tenemos de los estímulos hace que, al llevar los resultados obtenidos al espacio de excitación de conos, podamos estudiar como varía el umbral de discriminación de cromaticidad al variar la excitación del cono S para distintos niveles de excitación de los conos L y M y viceversa, a luminancia constante.

Cuando elegimos el nivel de luminancia de los estímulos a estudiar nos encontramos, por una parte, con el deseo de tener un nivel más alto que el que se usó en trabajos previos de este laboratorio y además, que fuera del orden del de otros trabajos clásicos en colorimetría, y de otra, con las limitaciones debidas al dispositivo experimental. Esta idea es la que nos hizo construir una cavidad integradora más pequeña que la esfera usada en trabajos previos, Hita et al. (1982), con lo que, efectivamente, hemos conseguido subir un orden de magnitud el nivel de luminancia. El hecho de exigir que todos los estímulos tengan igual luminancia, unido a las dificultades que se encuentran experimentalmente para conseguir estímulos azules de luminancia alta, ha condicionado la elección global de los estímulos. Debido a las limitaciones que imponen los colorímetros Donaldson, como los que disponemos, teníamos que comprobar que se podían obtener todos los estímulos a estudiar en ese nivel de luminancia y todos los de la nube asociada a cada caso sin que se llegara a cerrar o abrir por completo uno de los diafragmas. A pesar de todo ésto, hemos conseguido que todos los estímulos
tengan un nivel de luminancia de 12 cd/m², que es un valor muy
parecido al de otros trabajos clásicos en colorimetría, (Brown y
MacAdam (1949): de 1 a 34 cd/m²; MacAdam (1942): 48 cd/m²;
Wyszecki y Fielder (1971): 12 cd/m²). Este nivel cae dentro del
fotópico, con un valor de iluminación retiniana aproximado de 145
td. Trabajos como los de Brown (1951) y Walraven (1962), parecen
indicar que el nivel de luminancia no afecta significativamente a
los resultados en la discriminación cromática dentro de niveles
fotópicos, sin llegar al deslumbramiento. La luminancia de los
estímulos se ha medido mediante un colorímetro TOPCON-BM5,
previamente calibrado, y que tiene una tolerancia del 5%.

Una vez elegidos los estímulos a estudiar, es decir, los
valores de sus x, y, Y, se determinaron las posiciones de los
diafragmas en el colorímetro que los reproducían mediante un
programa de cálculo desarrollado a partir de los datos del
calibrado. De esta forma, se consigue reproducir una determinada
pareja de coordenadas de cromaticidad, dentro del error asociado
al tamaño del escalón fijado en las posiciones de los diafragmas
del colorímetro.

Con respecto al tipo de fusión de primarios, tal como se
puede deducir del dispositivo experimental, se ha utilizado la
fusión espacial de los mismos mediante el uso de una cavidad
integrante. Trabajos anteriores realizados en el departamento,
Hita y Jiménez (1980), muestran que no parece influir en la
discriminación el tipo de fusión empleada, ya sea temporal o
espacial, lo que nos lleva a decidirnos por la segunda debido a la
facilidad en su obtención frente a la temporal.

Por último, con respecto al carácter de las igualaciones,
como ya se ha indicado anteriormente, se ha trabajado en
condiciones de igualación de partida isómera. Al no ser objeto de
estudia ninguno de los aspectos relacionados con el metamerismo, capítulo este de gran interés actual en la colorimetría, se convino trabajar con parejas de filtros iguales, debido a una mayor sencillez en la realización de igualaciones y en los calibrados.

6.2.2.- Parámetros Temporales.

A continuación pasamos a especificar y justificar los distintos parámetros temporales a tener en cuenta en nuestras experiencias.

Las sesiones experimentales comenzaban con una adaptación previa del observador a la oscuridad durante un tiempo aproximado de 10 minutos. Este tiempo inicial de adaptación permite situar al ojo del observador en unas condiciones de partida independientes del tipo de iluminación a que pudiera haber estado sometido antes del inicio de la sesión experimental. Tiempos de adaptación similares se encuentran usualmente en la literatura, encontrándose que, pequeñas variaciones en los mismos, no afectan a los resultados en la discriminación.

Con respecto a los tiempos de exposición y entre exposiciones sucesivas, éstos fueron fijados en 1.0 y 9.0 segundos, respectivamente. Las razones que nos movieron a utilizar estos tiempos se basan en trabajos anteriores realizados en nuestro laboratorio, Hita et al. (1980 y 1982), en los que el tiempo de exposición es analizado como parámetro que puede influir en la discriminación cromática por comparación simultánea de estímulos. Los resultados muestran que la discriminación mejora hasta tiempos alrededor de 1 s, a partir del cual se estabiliza e incluso empeora. El tiempo de 9.0 s entre presentaciones sucesivas
es suficiente para que el experimentador actúe sobre los mandos del colorímetro y para que el observador recupere su adaptación a la oscuridad, no habiéndose detectado efectos de post-imágenes.

Otro tiempo a tener en cuenta, es el de duración de las sesiones que, como ya se ha comentado, se fijó en 22 minutos con el fin de evitar la fatiga del observador.

6.2.3.- Parámetros Visuales.

Como se desprende de la división hecha previamente, varios son los parámetros que, inherentes a la visión, conviene especificar, ya sean desde el punto de vista del tipo de visión y sus características principales, como los relacionados con los procesos de adaptación que se han llevado a cabo durante las experiencias.

Respecto al modo de visión, no es maxwelliana pero sí reúne las principales características de ésta. En concreto la visión es central, foveal y con luz dirigida; hemos sustituido la fijación de la cabeza del observador mediante una dentonera, que le daba una fijación total, por una mentonera que le hace estar más cómodo e inmóvil y hemos suprimido el uso de una pupila artificial, en relación a experiencias previas, Hita et al. (1982). Esta modificación nos aproxima más al modo usual de observación. Además, este tipo de visión y la maxwelliana dan resultados prácticamente idénticos en relación a los umbrales obtenidos, como más tarde veremos, lo que, unido a las otras ventajas expuestas, nos indujo a su elección.

La visión elegida ha sido monocular y foveal, habiéndose fijado un campo de 2°. De este modo eludimos los problemas
Método general y desarrollo de las experiencias

derivados de activar una zona más amplia de la retina (posible intrusión de bastones o fenómenos relacionados con la mancha de Maxwell) y utilizamos con fiabilidad las funciones de mezcla del observador patrón CIE-1931, recomendadas para campos menores de 4 grados, para calcular las coordenadas de cromaticidad correspondientes. El tamaño del campo fijado es, además, muy normal en colorimetría; trabajos clásicos como MacAdam (1942), Brown y MacAdam (1949) o Wyszecki y Fielder (1971) utilizan campos de 2° los dos primeros y 3° el tercero, siendo su forma circular, circular y hexagonal, respectivamente.

Respecto de la forma del campo y su apariencia, como se puede desprender de la descripción del dispositivo experimental, este era circular bipartito estando sus dos partes divididas por una línea vertical oscura de 6'. El modo de apariencia de los estímulos fue de apertura. Corresponde éste, al caso como el que tenemos, en el que se trabaja con luces "dirigidas" y no provenientes de la luz difundida por una superficie difusora (modo de objeto). Este tipo de visión se considera más útil cuando se pretenden analizar aspectos básicos relacionados con la visión del color.

Con respecto a los parámetros de adaptación, distinguiremos entre la adaptación previa a las medidas que se llevó a cabo en cualquiera de las sesiones experimentales y que, como ya se ha comentado con detenimiento, fue a la oscuridad y la adaptación realizada durante las medidas que, como en el caso de MacAdam (1942), fue también a la oscuridad.

6.2.4.- Observadores.

Para la realización de nuestro estudio se han prestado a
Método general y desarrollo de las experiencias

la experimentación ocho observadores, a los que hemos identificado por las iniciales AG, TL, MM, LJ, JR, PL, EG y JA. Sus edades, respectivamente, eran de 23, 24, 31, 34, 32, 34, 23 y 33 años, siendo siete varones y una mujer (PL). Su visión al color es considerada "normal", tras pruebas realizadas mediante el test de Ishihara, del Colegio Médico de Tokio, de Farnsworth D-15 y el anomaloscopio de Pickford-Nicolson, para la detección de anomalías en la visión del color. Tres de los observadores no poseen ningún tipo de ametropía y los cinco restantes las tienen corregidas. Los cinco primeros sólo participaron en las medidas realizadas con el estímulo (0.294, 0.295) con el que se pretendía llegar a conclusiones sobre la variabilidad de la discriminación cromática con un alto número de observadores (ocho). Los tres últimos participaron en el conjunto total de medidas del presente trabajo.

Aunque, en el momento de comenzar las medidas, las mayoría de ellos poseían experiencia en este campo de investigación, habiendo actuado como observadores en anteriores trabajos, dispusieron de un tiempo de acomodación al dispositivo experimental y al método de observación.

Se consideran estas características de los observadores como "normales" en una población, y por tanto, aptas para la realización de este tipo de investigación, lo que no quita el interés que pudiera tener la realización de estas medidas con observadores dicrómatas, o en general con anómalos a la visión del color, pero que se sale de los límites de este trabajo.

Del estudio realizado por Ronchi y Ferrara Mori (1963) se desprende que en la mayor parte de los trabajos que se realizan en el campo de la visión utilizan dos observadores, seguidos por los que utilizan tres y uno. Así, por ejemplo, Wyszecki y Fielder (1971) utilizan tres observadores, Brown y MacAdam (1949) dos...
observadores y MacAdam (1942) utiliza un único observador. Aunque estos trabajos sean clásicos y muy aceptados no han estado exentos de críticas, debido a la alta variabilidad intra e inter observadores que presentan, Wyszecki (1971). Por ello, es por lo que hemos realizado un estudio en fase inicial con ocho observadores y a la vista de los resultados obtenidos, así como de las circunstancias comentadas en el capítulo 1, continuamos con tres.
6.3.- DESARROLLO DE LAS EXPERIENCIAS.

En apartados anteriores se ha descrito cómo se llevaba a cabo cada una de las sesiones experimentales, por ello, en este apartado nos vamos a fijar fundamentalmente en cómo se han ido desarrollando las experiencias a lo largo del tiempo que ha durado el trabajo experimental.

Se comenzó realizando una serie de sesiones que tenían como objetivo que los observadores se habituasen al dispositivo experimental, al tiempo que iban adquiriendo experiencia en este tipo de investigación. Una vez que ésto se hubo conseguido, se comenzó con el trabajo experimental propiamente dicho.

La primera fase del trabajo fue el estudio de un estímulo por parte de un número elevado de observadores, para lo que nos dispusimos a la elección del estímulo que debíamos usar y a elegir el número de observadores adecuado que nos pueda llevar a conclusiones en cuanto a la variabilidad interobservadores. El estímulo elegido fue el (0.294, 0.295), acromático, que se encuentra en una zona en la que, muy próximos a él, hay estímulos que han sido estudiados en otros trabajos, MacAdam (1942), Brown y MacAdam (1949), Wyszecki y Fielder (1971). El número de observadores que creímos conveniente fue de ocho, puesto que, siendo un número suficiente como para generalizar resultados, no es tan grande como para que el trabajo se haga interminable.

 Dependiendo de las características de cada observador, cada uno de éstos, realizó entre 25 y 34 sesiones experimentales, lo que llevó a obtener una nube de puntos alrededor del de referencia de entre 142 y 208 estímulos, lo que supone entre 1420 y 2080 observaciones para cada observador. Las sesiones fueron repartidas a lo largo del tiempo de tal forma que cada observador

Determinación experimental de diferencias de color... 187
realizaría sesiones a distintas horas del día y en distintos días. Esta fase supuso la realización de un total de 240 sesiones experimentales.

En una segunda fase, nos dispusimos a estudiar los 19 estímulos restantes de los ya comentados en un apartado anterior. Hay que señalar que el estudio de estos estímulos no se hizo en el orden en que figuran en la tabla VI.1, sino que al finalizar el estudio de un estímulo se pasaba a otro que estuviese en una zona del diagrama cromático totalmente distinta del anterior, el objeto era hacer totalmente independiente el estudio de un punto del anterior y del posterior. Esta segunda fase del trabajo experimental ha supuesto la realización de un total de más de 1500 sesiones experimentales, lo que ha supuesto alrededor de 90000 observaciones.
6.4.- EVALUACION DE LOS DATOS EXPERIMENTALES.

Con el fin de determinar el umbral diferencial de color a partir de la nube de puntos obtenida en cada caso, se ha utilizado un método estadístico de ajuste basado en los estudios en propagación de errores en colorimetría, Wyszecki (1959).

Mediante este método estadístico, fundamentado en el análisis de la varianza de las coordenadas y pesos de los puntos de la nube en el espacio de color, se ajusta un elipsoide de discriminación que asegura el 95% de la suma total de los pesos dentro de él. Objetivo por tanto del método es la obtención de los coeficientes que definen la ecuación del elipsoide en la forma:

\[
A(x - x_p)^2 + B(y - y_p)^2 + C(Y - Y_p)^2 + 2D(x - x_p)(y - y_p) + \\
+ 2E(y - y_p)(Y - Y_p) + 2F(x - x_p)(Y - Y_p) = 7.81
\]

en el espacio CIE-1931, e igualmente en cualquier otro sistema de representación del color (Excitación de Conos, CIELAB, ...), y donde \(x_p, y_p, Y_p\) son las coordenadas del centro del elipsoide, obtenidas como media ponderada de las coordenadas de los puntos utilizados en la determinación del umbral.

A partir de la ecuación del elipsoide, se han determinado sus parámetros característicos (volumen, semiejes, puntos extremos, ...) sin más que aplicar los métodos de la geometría analítica.

Por otra parte, y a fin de caracterizar el umbral diferencial de cromaticidad, se ha analizado la sección elíptica obtenida al cortar el elipsoide por un plano de luminancia constante que pase por su centro. A esta elipse, que tendría de
ecuación:

\[A(x - x_p)^2 + B(y - y_p)^2 + 2D(x - x_p)(y - y_p) = 7.81 \]

se le ha determinado, con el fin de caracterizar la discriminación cromática del observador, sus semiejes, área, orientación y excentricidad. De esta forma, el valor cuantitativo del umbral diferencial de cromaticidad se ha asociado al área de la sección mencionada, llamada usualmente principal, y el del umbral diferencial de color al volumen del elipsoide.

Otros parámetros, como orientación y excentricidad, aportan datos interesantes de la discriminación al ser analizados en el diagrama cromático.

Con respecto al umbral diferencial de luminancia, este se ha definido, según la literatura al respecto, como el logaritmo de la fracción de Weber, es decir:

\[\log \frac{\Delta L}{L} \]

donde \(\Delta L \) sería la variación en luminancia y \(L \) la luminancia correspondiente al estímulo estudiado.

Para determinar al umbral diferencial de luminancia a partir de la ecuación del elipsoide de discriminación, se ha tomado una línea de coordenadas de cromaticidad constante, que pasa por el centro del elipsoide, tomándose \(\Delta L \) como la diferencia de las luminancias de los puntos del elipsoide que corta la línea definida.

El cálculo del elipsoide de discriminación fue realizado por ordenador según un programa anteriormente utilizado en el
Método general y desarrollo de las experiencias

Departamento, Hita (1975). Sin embargo, algunas modificaciones se le han hecho con referencia al cálculo de algunos parámetros actuales y la inclusión de subrutas que permiten el dibujo de las secciones del elipsoide a distintas valores de la luminancia, así como la distribución de los pesos estadísticos respecto de las secciones. Ésto se realiza presentando los puntos estudiados que quedan en un intervalo de luminancia deseado superior e inferior a la sección a dibujar, mediante un número que indica el peso del estímulo que representa ese punto.

Respecto a los sistemas de representación, hemos de indicar que se han utilizado el diagrama de cromaticidad CIE-1931 y el diagrama cromático de excitación de conos, "diagrama Luther". El primero de los diagramas ya ha sido comentado suficientemente. Con respecto al segundo decir que es un diagrama en el que, en abscisas, figura la diferencia de excitación de los conos L y M (L - 2M), y en ordenadas, el nivel de excitación del cono S, siendo un diagrama a luminancia constante.

Es conveniente resaltar, que no se ha hecho una transformación de un diagrama a otro, sino que cada uno de los estímulos utilizados para el ajuste en el diagrama CIE, se ha transladado al diagrama de excitación de conos calculándoselo sus correspondientes valores de L - 2M, S y L + M (luminancia del estímulo) y ajustando, por el procedimiento ya descrito, su correspondiente elipsoide de discriminación. Una vez obtenido éste, obtendremos el umbral de discriminación de cromaticidad cortando el elipsoide por un plano de luminancia constante que pase por su centro, como ya se ha comentado anteriormente.

Para llevar a cabo la transformación de cada estímulo al diagrama de excitación de conos baste recordar la relación existente entre los espectros de acción de los conos según el

Determinación experimental de diferencias de color...
Método general y desarrollo de las experiencias

modelo de Boynton L_λ, M_λ y S_λ y las funciones de mezcla modificadas por Judd (x', y', z'), que es la siguiente:

$$L_\lambda = 0.15514\tilde{x}_\lambda + 0.54321\tilde{y}_\lambda - 0.03286\tilde{z}_\lambda$$

$$M_\lambda = -0.15514\tilde{x}_\lambda + 0.45684\tilde{y}_\lambda + 0.03286\tilde{z}_\lambda$$

$$S_\lambda = \tilde{z}_\lambda$$

En consecuencia, para calcular los valores de L, M y S correspondientes a un estímulo de radiancia espectral R_λ, utilizaremos las expresiones siguientes:

$$L = \int_{vis} R_\lambda L_\lambda d\lambda; \quad M = \int_{vis} R_\lambda M_\lambda d\lambda; \quad S = \int_{vis} R_\lambda S_\lambda d\lambda$$
6.5.- **BIBLIOGRAFÍA.**

HITA, E.; "Influencia de las condiciones experimentales en los umbrales diferenciales de color", Tesis Doctoral, Universidad de Granada (1975).

Capítulo VII:

Resultados Experimentales.
VII.- RESULTADOS EXPERIMENTALES.

A continuación pasamos a exponer los resultados obtenidos en las experiencias realizadas, para su posterior análisis y discusión.

7.1.- VARIABILIDAD ENTRE OBSERVADORES.

Como ya hemos indicado con anterioridad, el primer objetivo propuesto en esta memoria ha sido estudiar la variabilidad que presentan los resultados de discriminación cromática obtenidos para distintos observadores, puesto que son pocos los trabajos que abordan el tema, de entre los que podemos destacar el de Brown (1957), y, sin embargo, es uno de los aspectos que más críticas ha recibido, Wyszecki y Fielder (1971), Lozano (1988).

Para llevar a cabo este estudio, hemos elegido el estímulo acromático (0.294,0.295) en el diagrama de cromaticidad CIE-1931, en el que un total de ocho observadores han obtenido su umbral diferencial de color siguiendo el método experimental descrito en el capítulo anterior.
En la tabla VII.1 se muestran los parámetros característicos de la sección elíptica principal (umbral diferencial de cromaticidad) del elipsoide de discriminación obtenido para cada uno de los observadores al estudiar dicho estímulo. Así mismo, en dicha tabla, figura también el logaritmo de la fracción de Weber de la luminancia. Estas mismas elipses de discriminación cromática de los ocho observadores se han dibujado en el diagrama de cromaticidad CIE-1931 y son las que aparecen en la figura 7.1.

Tabla VII.1.- *Resultados experimentales para el estímulo (0.294,0.295), en el diagrama CIE-1931, para los ocho observadores.*

<table>
<thead>
<tr>
<th>ESTIMULO</th>
<th>OBS</th>
<th>b/a</th>
<th>Θ</th>
<th>AREA x10⁴</th>
<th>log (\frac{\Delta L}{L})</th>
</tr>
</thead>
<tbody>
<tr>
<td>x = 0.294</td>
<td>AG</td>
<td>0.32</td>
<td>62.73</td>
<td>9.14</td>
<td>-0.901</td>
</tr>
<tr>
<td></td>
<td>EG</td>
<td>0.36</td>
<td>59.38</td>
<td>9.82</td>
<td>-0.838</td>
</tr>
<tr>
<td></td>
<td>JA</td>
<td>0.37</td>
<td>60.77</td>
<td>4.16</td>
<td>-1.056</td>
</tr>
<tr>
<td></td>
<td>JR</td>
<td>0.26</td>
<td>64.00</td>
<td>4.97</td>
<td>-1.065</td>
</tr>
<tr>
<td>y = 0.295</td>
<td>LJ</td>
<td>0.27</td>
<td>62.25</td>
<td>4.39</td>
<td>-1.118</td>
</tr>
<tr>
<td></td>
<td>MM</td>
<td>0.32</td>
<td>67.99</td>
<td>12.51</td>
<td>-0.820</td>
</tr>
<tr>
<td></td>
<td>PL</td>
<td>0.33</td>
<td>63.62</td>
<td>3.57</td>
<td>-1.111</td>
</tr>
<tr>
<td></td>
<td>TL</td>
<td>0.46</td>
<td>71.41</td>
<td>6.37</td>
<td>-0.895</td>
</tr>
</tbody>
</table>
Figura 7.1.- *Resultados experimentales* para los ocho observadores para el estímulo 0.294,0.295 en el diagrama de cromaticidad CIE-1931.
Resultados experimentales

Pasamos todos los puntos de la nube obtenida experimentalmente alrededor del estímulo de referencia, al espacio de excitación de conos y, siguiendo el procedimiento de ajuste ya descrito, obtenemos el umbral diferencial de cromaticidad en este espacio. Los resultados obtenidos son los que aparecen en la tabla VII.2. Asimismo, las elipses de discriminación cromática en el espacio de excitación de conos, han sido dibujadas y son las que aparecen en la figura 7.2.

Tabla VII.1.- Resultados experimentales para los ocho observadores en el espacio de excitación de conos.

<table>
<thead>
<tr>
<th>ESTÍMULO</th>
<th>OBS</th>
<th>b/a</th>
<th>Θ</th>
<th>AREA</th>
<th>log $\frac{\Delta L}{L}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AG</td>
<td>0.089</td>
<td>91.15</td>
<td>2.747</td>
<td>-0.928</td>
</tr>
<tr>
<td></td>
<td>EG</td>
<td>0.099</td>
<td>91.87</td>
<td>3.042</td>
<td>-0.881</td>
</tr>
<tr>
<td></td>
<td>JA</td>
<td>0.105</td>
<td>91.59</td>
<td>1.224</td>
<td>-1.090</td>
</tr>
<tr>
<td></td>
<td>JR</td>
<td>0.073</td>
<td>90.84</td>
<td>1.453</td>
<td>-1.104</td>
</tr>
<tr>
<td></td>
<td>LJ</td>
<td>0.077</td>
<td>91.19</td>
<td>1.333</td>
<td>-1.138</td>
</tr>
<tr>
<td></td>
<td>MM</td>
<td>0.087</td>
<td>89.81</td>
<td>3.956</td>
<td>-0.847</td>
</tr>
<tr>
<td></td>
<td>PL</td>
<td>0.090</td>
<td>90.85</td>
<td>1.081</td>
<td>-1.127</td>
</tr>
<tr>
<td></td>
<td>TL</td>
<td>0.127</td>
<td>88.95</td>
<td>2.055</td>
<td>-0.915</td>
</tr>
</tbody>
</table>

Determinación experimental de diferencias de color...
Figura 7.2.- Resultados experimentales para los ocho observadores en el espacio de excitación de conos.
7.2.- RESULTADOS EXPERIMENTALES EN EL DIAGRAMA DE CROMATICIDAD CIE-1931.

Una vez realizado el estudio de la variabilidad inter e intra observadores y a la vista de los resultados obtenidos, que analizaremos en profundidad en el capítulo siguiente, pasamos a la obtención del umbral diferencial de color de 20 estímulos, distribuidos por todo el diagrama CIE-1931, para tres observadores.

Los estímulos estudiados se han numerado del 1 al 20 y su localización en el diagrama cromático es la que aparece en la figura 6.3. Las coordenadas de cromaticidad de estos estímulos figuran en la tabla VI.2.

En la tabla VII.3 se muestran los parámetros característicos de la elipse de discriminación cromática: relación de semiejés, orientación y área, y el logaritmo de la fracción de Weber de la luminancia, para los veinte estímulos estudiados, para cada uno de los tres observadores que realizaron las experiencias.

En las figuras 7.3-22 se han representado las elipses de discriminación cromática de los tres observadores para cada uno de los estímulos.

Por último, con objeto de facilitar la visión de conjunto, se han representado las 20 elipses obtenidas por un observador para los 20 estímulos en el diagrama CIE-1931. Así, en la figura 7.23 aparecen los resultados del observador EG, en la 7.24 los del observador JA y en la 7.25 los del observador PL.
Tabla VII.3.- Parámetros característicos de las ellipses de discriminación cromática obtenidas para los 20 estímulos estudiados en el diagrama de cromaticidad CIE-1931 para los tres observadores.

<table>
<thead>
<tr>
<th>ESTIMULO</th>
<th>OBS</th>
<th>b/a</th>
<th>Θ</th>
<th>AREA x104</th>
<th>Log ΔL/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EG</td>
<td>0.39</td>
<td>27.36</td>
<td>4.52</td>
<td>-0.736</td>
</tr>
<tr>
<td>x = 0.356</td>
<td>JA</td>
<td>0.35</td>
<td>31.54</td>
<td>2.53</td>
<td>-0.891</td>
</tr>
<tr>
<td>y = 0.155</td>
<td>PL</td>
<td>0.24</td>
<td>33.16</td>
<td>2.29</td>
<td>-0.867</td>
</tr>
<tr>
<td>2</td>
<td>EG</td>
<td>0.38</td>
<td>30.55</td>
<td>6.00</td>
<td>-0.808</td>
</tr>
<tr>
<td>x = 0.446</td>
<td>JA</td>
<td>0.30</td>
<td>34.28</td>
<td>3.89</td>
<td>-0.957</td>
</tr>
<tr>
<td>y = 0.232</td>
<td>PL</td>
<td>0.35</td>
<td>32.75</td>
<td>3.39</td>
<td>-0.936</td>
</tr>
<tr>
<td>3</td>
<td>EG</td>
<td>0.56</td>
<td>16.68</td>
<td>4.48</td>
<td>-0.885</td>
</tr>
<tr>
<td>x = 0.501</td>
<td>JA</td>
<td>0.49</td>
<td>20.26</td>
<td>3.22</td>
<td>-0.969</td>
</tr>
<tr>
<td>y = 0.279</td>
<td>PL</td>
<td>0.70</td>
<td>21.08</td>
<td>2.16</td>
<td>-1.002</td>
</tr>
<tr>
<td>4</td>
<td>EG</td>
<td>0.57</td>
<td>31.98</td>
<td>7.40</td>
<td>-0.814</td>
</tr>
<tr>
<td>x = 0.569</td>
<td>JA</td>
<td>0.35</td>
<td>31.54</td>
<td>2.53</td>
<td>-0.891</td>
</tr>
<tr>
<td>y = 0.155</td>
<td>PL</td>
<td>0.24</td>
<td>33.16</td>
<td>2.29</td>
<td>-0.867</td>
</tr>
<tr>
<td>5</td>
<td>EG</td>
<td>0.30</td>
<td>48.88</td>
<td>2.62</td>
<td>-0.992</td>
</tr>
<tr>
<td>x = 0.291</td>
<td>JA</td>
<td>0.33</td>
<td>46.37</td>
<td>2.01</td>
<td>-1.046</td>
</tr>
<tr>
<td>y = 0.170</td>
<td>PL</td>
<td>0.33</td>
<td>45.59</td>
<td>2.95</td>
<td>-0.972</td>
</tr>
<tr>
<td>6</td>
<td>EG</td>
<td>0.37</td>
<td>49.26</td>
<td>8.11</td>
<td>-0.925</td>
</tr>
<tr>
<td>x = 0.357</td>
<td>JA</td>
<td>0.43</td>
<td>47.10</td>
<td>4.12</td>
<td>-1.098</td>
</tr>
<tr>
<td>y = 0.269</td>
<td>PL</td>
<td>0.37</td>
<td>49.85</td>
<td>5.40</td>
<td>-0.969</td>
</tr>
</tbody>
</table>

Determinación experimental de diferencias de color...
Tabla VII.3.- Continuación.

<table>
<thead>
<tr>
<th>ESTIMULO</th>
<th>OBS</th>
<th>b/a</th>
<th>Θ</th>
<th>AREA x10^4</th>
<th>Log (\frac{AL}{L})</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>EG</td>
<td>0.68</td>
<td>50.14</td>
<td>6.28</td>
<td>-0.918</td>
</tr>
<tr>
<td>8</td>
<td>EG</td>
<td>0.82</td>
<td>43.13</td>
<td>8.94</td>
<td>-0.833</td>
</tr>
<tr>
<td>9</td>
<td>JA</td>
<td>0.75</td>
<td>37.36</td>
<td>5.38</td>
<td>-1.011</td>
</tr>
<tr>
<td>10</td>
<td>EG</td>
<td>0.53</td>
<td>50.86</td>
<td>5.59</td>
<td>-1.043</td>
</tr>
<tr>
<td>11</td>
<td>JA</td>
<td>0.32</td>
<td>59.41</td>
<td>3.23</td>
<td>-0.953</td>
</tr>
<tr>
<td>12</td>
<td>PL</td>
<td>0.31</td>
<td>62.86</td>
<td>1.79</td>
<td>-1.092</td>
</tr>
<tr>
<td>13</td>
<td>EG</td>
<td>0.42</td>
<td>59.34</td>
<td>1.64</td>
<td>-1.020</td>
</tr>
<tr>
<td>14</td>
<td>JA</td>
<td>0.36</td>
<td>60.77</td>
<td>4.16</td>
<td>-1.056</td>
</tr>
<tr>
<td>15</td>
<td>PL</td>
<td>0.33</td>
<td>63.62</td>
<td>3.57</td>
<td>-1.111</td>
</tr>
<tr>
<td>16</td>
<td>EG</td>
<td>0.59</td>
<td>59.80</td>
<td>7.83</td>
<td>-0.866</td>
</tr>
<tr>
<td>17</td>
<td>JA</td>
<td>0.66</td>
<td>67.15</td>
<td>4.38</td>
<td>-0.990</td>
</tr>
<tr>
<td>18</td>
<td>PL</td>
<td>0.49</td>
<td>66.32</td>
<td>5.39</td>
<td>-0.967</td>
</tr>
<tr>
<td>19</td>
<td>EG</td>
<td>0.37</td>
<td>70.06</td>
<td>10.73</td>
<td>-1.034</td>
</tr>
<tr>
<td>20</td>
<td>JA</td>
<td>0.46</td>
<td>70.51</td>
<td>11.00</td>
<td>-1.007</td>
</tr>
<tr>
<td>21</td>
<td>PL</td>
<td>0.35</td>
<td>68.09</td>
<td>12.70</td>
<td>-1.000</td>
</tr>
<tr>
<td>22</td>
<td>EG</td>
<td>0.33</td>
<td>70.07</td>
<td>2.20</td>
<td>-0.910</td>
</tr>
<tr>
<td>23</td>
<td>JA</td>
<td>0.33</td>
<td>72.71</td>
<td>1.49</td>
<td>-1.039</td>
</tr>
<tr>
<td>24</td>
<td>PL</td>
<td>0.30</td>
<td>72.94</td>
<td>1.32</td>
<td>-1.071</td>
</tr>
</tbody>
</table>

Determinación experimental de diferencias de color...
<table>
<thead>
<tr>
<th>ESTIMULO</th>
<th>OBS</th>
<th>b/a</th>
<th>Θ</th>
<th>AREA x10⁴</th>
<th>Log (ΔL / L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>EG</td>
<td>0.46</td>
<td>77.47</td>
<td>5.80</td>
<td>-0.778</td>
</tr>
<tr>
<td>x = 0.239</td>
<td>JA</td>
<td>0.48</td>
<td>73.13</td>
<td>3.43</td>
<td>-0.937</td>
</tr>
<tr>
<td>y = 0.318</td>
<td>PL</td>
<td>0.48</td>
<td>71.34</td>
<td>5.02</td>
<td>-0.859</td>
</tr>
<tr>
<td>15</td>
<td>EG</td>
<td>0.65</td>
<td>91.04</td>
<td>12.31</td>
<td>-0.723</td>
</tr>
<tr>
<td>x = 0.258</td>
<td>JA</td>
<td>0.67</td>
<td>89.41</td>
<td>10.62</td>
<td>-0.773</td>
</tr>
<tr>
<td>y = 0.415</td>
<td>PL</td>
<td>0.58</td>
<td>71.71</td>
<td>10.35</td>
<td>-0.730</td>
</tr>
<tr>
<td>16</td>
<td>EG</td>
<td>0.41</td>
<td>84.69</td>
<td>2.877</td>
<td>-0.686</td>
</tr>
<tr>
<td>x = 0.287</td>
<td>JA</td>
<td>0.56</td>
<td>98.70</td>
<td>10.96</td>
<td>-0.758</td>
</tr>
<tr>
<td>y = 0.558</td>
<td>PL</td>
<td>0.36</td>
<td>80.78</td>
<td>12.79</td>
<td>-0.864</td>
</tr>
<tr>
<td>17</td>
<td>EG</td>
<td>0.49</td>
<td>114.39</td>
<td>12.16</td>
<td>-0.680</td>
</tr>
<tr>
<td>x = 0.171</td>
<td>JA</td>
<td>0.56</td>
<td>95.25</td>
<td>5.96</td>
<td>-0.934</td>
</tr>
<tr>
<td>y = 0.347</td>
<td>PL</td>
<td>0.61</td>
<td>103.37</td>
<td>9.29</td>
<td>-0.819</td>
</tr>
<tr>
<td>18</td>
<td>EG</td>
<td>0.51</td>
<td>122.20</td>
<td>19.88</td>
<td>-0.572</td>
</tr>
<tr>
<td>x = 0.169</td>
<td>JA</td>
<td>0.58</td>
<td>127.90</td>
<td>13.62</td>
<td>-0.700</td>
</tr>
<tr>
<td>y = 0.463</td>
<td>PL</td>
<td>0.59</td>
<td>114.02</td>
<td>13.68</td>
<td>-0.707</td>
</tr>
<tr>
<td>19</td>
<td>EG</td>
<td>0.44</td>
<td>103.79</td>
<td>3.238</td>
<td>-0.502</td>
</tr>
<tr>
<td>x = 0.167</td>
<td>JA</td>
<td>0.42</td>
<td>105.05</td>
<td>22.79</td>
<td>-0.558</td>
</tr>
<tr>
<td>y = 0.652</td>
<td>PL</td>
<td>0.39</td>
<td>99.52</td>
<td>3.08</td>
<td>-0.540</td>
</tr>
<tr>
<td>20</td>
<td>EG</td>
<td>0.37</td>
<td>88.02</td>
<td>3.91</td>
<td>-0.782</td>
</tr>
<tr>
<td>x = 0.163</td>
<td>JA</td>
<td>0.61</td>
<td>90.82</td>
<td>1.74</td>
<td>-0.943</td>
</tr>
<tr>
<td>y = 0.201</td>
<td>PL</td>
<td>0.37</td>
<td>88.39</td>
<td>1.47</td>
<td>-0.916</td>
</tr>
</tbody>
</table>

Determinación experimental de diferencias de color...
Figura 7.3.- Resultados experimentales para el estímulo 1 para los observadores EG, JA y PL en el diagrama de cromaticidad CIE-1931.
Figura 7.4.- Resultados experimentales para el estímulo 2 para los observadores EG, JA y PL en el diagrama de cromaticidad CIE-1931.
Figura 7.5.- Resultados experimentales para el estímulo 3 para los observadores EG, JA y PL en el diagrama de cromaticidad CIE-1931.
Resultados experimentales

Figura 7.6.- Resultados experimentales para el estímulo 4 para los observadores EG, JA y PL en el diagrama de cromaticidad CIE-1931.
Figura 7.7.- Resultados experimentales para el estímulo 5 para los observadores EG, JA y PL en el diagrama de cromaticidad CIE-1931.
Figura 7.8.- Resultados experimentales para el estímulo 6 para los observadores EG, JA y PL en el diagrama de cromaticidad CIE-1931.
Figura 7.9.- Resultados experimentales para el estímulo 7 para los observadores EG, JA y PL en el diagrama de cromaticidad CIE-1931.
Resultados experimentales

Figura 7.10.- Resultados experimentales para el estímulo 8 para los observadores EG, JA y PL en el diagrama de cromaticidad CIE-1931.

Determinación experimental de diferencias de color...
Figura 7.11.- Resultados experimentales para el estímulo 9 para los observadores EG, JA y PL en el diagrama de cromaticidad CIE-1931.
Figura 7.12.- Resultados experimentales para el estímulo 10 para los observadores EG, JA y PL en el diagrama de cromaticidad CIE-1931.
Figura 7.13.- Resultados experimentales para el estímulo 11 para los observadores EG, JA y PL en el diagrama de cromaticidad CIE-1931.
Figura 7.14.- Resultados experimentales para el estímulo 12 para los observadores EG, JA y PL en el diagrama de cromaticidad CIE-1931.
Figura 7.15.- Resultados experimentales para el estímulo 13 para los observadores EG, JA y PL en el diagrama de cromaticidad CIE-1931.
Figura 7.16.- Resultados experimentales para el estímulo 14 para los observadores EG, JA y PL en el diagrama de cromaticidad CIE-1931.
Figura 7.17.- Resultados experimentales para el estímulo 15 para los observadores EG, JA y PL en el diagrama de cromaticidad CIE-1931.
Figura 7.18.- Resultados experimentales para el estímulo 16 para los observadores EG, JA y PL en el diagrama de cromaticidad CIE-1931.
Figura 7.19.- Resultados experimentales para el estímulo 17 para los observadores EG, JA y PL en el diagrama de cromaticidad CIE-1931.
Figura 7.20.- Resultados experimentales para el estímulo 18 para los observadores EG, JA y PL en el diagrama de cromaticidad CIE-1931.
Figura 7.21.- Resultados experimentales para el estímulo 19 para los observadores EG, JA y PL en el diagrama de cromaticidad CIE-1931.
Figura 7.22.- Resultados experimentales para el estímulo 20 para los observadores EG, JA y PL en el diagrama de cromaticidad CIE-1931.
Figura 7.23.- Resultados experimentales del observador EG para los 20 estímulos estudiados en el diagrama de cromaticidad CIE-1931.
Figura 7.24.- Resultados experimentales del observador JA para los 20 estímulos estudiados en el diagrama de cromaticidad CIE-1931.
Figura 7.25.- Resultados experimentales del observador PL para los 20 estímulos estudiados en el diagrama de cromaticidad CIE-1931.
7.3.- RESULTADOS EXPERIMENTALES EN EL ESPACIO DE EXCITACIÓN DE CONOS.

Cada uno de los puntos que constituyen la nube alrededor del estímulo que se está estudiando, lo hemos llevado al espacio de excitación de conos con las transformaciones que relacionan al sistema CIE-1931 con este espacio, y que se dan en el último apartado del capítulo 6. De esta forma obtenemos una nube de puntos en el espacio de excitación de conos, la cual, por el ajuste ya descrito, nos dará el umbral diferencial de color en dicho espacio para el estímulo en cuestión. Si cortamos estos elipsoides por un plano de igual luminancia que pase por su centro e igual a 145 td, tendremos las elipses de discriminación cromática en este espacio de luminancia constante.

Operando de la forma descrita en el párrafo anterior, hemos obtenido las elipses de discriminación cromática en el espacio de excitación de conos a luminancia constante para los 20 estímulos estudiados y para los tres observadores. Los parámetros característicos de estas elipses de discriminación: relación de semiejes, orientación y área, así como el logaritmo de la fracción de Weber de la luminancia del elipsoide de discriminación de color, son los que se muestran en la tabla VII.4. En esta tabla, figura también el centro de cada una de las elipses expresado en trolands.

Las elipses obtenidas para cada estímulo para los tres observadores se han representado y aparecen en las figuras 7.26 a 7.45 que siguen.

El conjunto de las veinte elipses de discriminación cromática de un mismo observador, también se han representado y aparecen en la figura 7.46, las del observador EG, en la 7.47, las
Resultado experimentales

del observador JA, y en la 7.48, las obtenidas por PL.

Otros datos característicos de las elipses en este espacio, que puedan ser necesarios, serán expuestos en el capítulo siguiente a medida que se vaya realizando el análisis y la discusión de los mismos.
Tabla VII.4.- Parámetros característicos de las elipses de discriminación cromática obtenidas para los 20 estímulos estudiados en el espacio de excitación de conos por los tres observadores.

<table>
<thead>
<tr>
<th>ESTÍMULO</th>
<th>OBS</th>
<th>b/a</th>
<th>Θ</th>
<th>AREA</th>
<th>Log $\frac{\Delta L}{L}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EG</td>
<td>0.142</td>
<td>90.83</td>
<td>988.7</td>
<td>-0.869</td>
</tr>
<tr>
<td>L - 2M = 54.5</td>
<td>JA</td>
<td>0.126</td>
<td>90.54</td>
<td>496.4</td>
<td>-1.042</td>
</tr>
<tr>
<td>S = 373.2</td>
<td>PL</td>
<td>0.086</td>
<td>91.26</td>
<td>459.6</td>
<td>-1.098</td>
</tr>
<tr>
<td>2</td>
<td>EG</td>
<td>0.187</td>
<td>92.06</td>
<td>387.9</td>
<td>-1.019</td>
</tr>
<tr>
<td>L - 2M = 53.7</td>
<td>JA</td>
<td>0.146</td>
<td>91.33</td>
<td>239.8</td>
<td>-1.196</td>
</tr>
<tr>
<td>S = 167.9</td>
<td>PL</td>
<td>0.174</td>
<td>91.36</td>
<td>209.3</td>
<td>-1.129</td>
</tr>
<tr>
<td>3</td>
<td>EG</td>
<td>0.380</td>
<td>94.75</td>
<td>162.9</td>
<td>-1.079</td>
</tr>
<tr>
<td>L - 2M = 54.2</td>
<td>JA</td>
<td>0.345</td>
<td>95.49</td>
<td>116.8</td>
<td>-1.147</td>
</tr>
<tr>
<td>S = 95.5</td>
<td>PL</td>
<td>0.409</td>
<td>88.23</td>
<td>80.3</td>
<td>-1.150</td>
</tr>
<tr>
<td>4</td>
<td>EG</td>
<td>0.394</td>
<td>91.20</td>
<td>151.9</td>
<td>-1.015</td>
</tr>
<tr>
<td>L - 2M = 55.3</td>
<td>JA</td>
<td>0.557</td>
<td>107.89</td>
<td>53.6</td>
<td>-1.189</td>
</tr>
<tr>
<td>S = 33.9</td>
<td>PL</td>
<td>0.409</td>
<td>93.81</td>
<td>73.4</td>
<td>-1.183</td>
</tr>
<tr>
<td>5</td>
<td>EG</td>
<td>0.065</td>
<td>90.69</td>
<td>409.0</td>
<td>-0.954</td>
</tr>
<tr>
<td>L - 2M = 16.0</td>
<td>JA</td>
<td>0.075</td>
<td>90.98</td>
<td>317.0</td>
<td>-1.008</td>
</tr>
<tr>
<td>S = 376.5</td>
<td>PL</td>
<td>0.077</td>
<td>91.21</td>
<td>451.6</td>
<td>-1.013</td>
</tr>
<tr>
<td>6</td>
<td>EG</td>
<td>0.125</td>
<td>91.07</td>
<td>327.1</td>
<td>-0.921</td>
</tr>
<tr>
<td>L - 2M = 15.0</td>
<td>JA</td>
<td>0.144</td>
<td>91.53</td>
<td>167.3</td>
<td>-1.110</td>
</tr>
<tr>
<td>S = 169.3</td>
<td>PL</td>
<td>0.120</td>
<td>90.99</td>
<td>218.1</td>
<td>-0.954</td>
</tr>
</tbody>
</table>

Determinación experimental de diferencias de color...
Tabla VII.4.- Continuación.

<table>
<thead>
<tr>
<th>ESTIMULO</th>
<th>OBS</th>
<th>b/a</th>
<th>Θ</th>
<th>AREA</th>
<th>Log $\frac{\Delta L}{L}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>EG</td>
<td>0.271</td>
<td>90.38</td>
<td>124.5</td>
<td>-0.876</td>
</tr>
<tr>
<td>L - 2M =</td>
<td>JA</td>
<td>0.227</td>
<td>88.67</td>
<td>79.2</td>
<td>-1.037</td>
</tr>
<tr>
<td>S =</td>
<td>PL</td>
<td>0.164</td>
<td>90.78</td>
<td>97.3</td>
<td>-1.112</td>
</tr>
<tr>
<td>8</td>
<td>EG</td>
<td>0.404</td>
<td>94.25</td>
<td>88.9</td>
<td>-0.821</td>
</tr>
<tr>
<td>L - 2M =</td>
<td>JA</td>
<td>0.380</td>
<td>95.78</td>
<td>54.9</td>
<td>-1.032</td>
</tr>
<tr>
<td>S =</td>
<td>PL</td>
<td>0.261</td>
<td>92.48</td>
<td>57.7</td>
<td>-1.064</td>
</tr>
<tr>
<td>9</td>
<td>EG</td>
<td>0.058</td>
<td>91.16</td>
<td>421.1</td>
<td>-0.977</td>
</tr>
<tr>
<td>L - 2M =</td>
<td>JA</td>
<td>0.077</td>
<td>90.77</td>
<td>209.1</td>
<td>-1.033</td>
</tr>
<tr>
<td>S =</td>
<td>PL</td>
<td>0.056</td>
<td>90.63</td>
<td>213.6</td>
<td>-1.106</td>
</tr>
<tr>
<td>10</td>
<td>EG</td>
<td>0.099</td>
<td>91.87</td>
<td>304.2</td>
<td>-0.881</td>
</tr>
<tr>
<td>L - 2M =</td>
<td>JA</td>
<td>0.105</td>
<td>91.59</td>
<td>122.4</td>
<td>-1.090</td>
</tr>
<tr>
<td>S =</td>
<td>PL</td>
<td>0.090</td>
<td>90.85</td>
<td>108.1</td>
<td>-1.127</td>
</tr>
<tr>
<td>11</td>
<td>EG</td>
<td>0.206</td>
<td>92.80</td>
<td>112.5</td>
<td>-0.894</td>
</tr>
<tr>
<td>L - 2M =</td>
<td>JA</td>
<td>0.229</td>
<td>91.22</td>
<td>69.2</td>
<td>-1.018</td>
</tr>
<tr>
<td>S =</td>
<td>PL</td>
<td>0.171</td>
<td>90.85</td>
<td>78.2</td>
<td>-0.991</td>
</tr>
<tr>
<td>12</td>
<td>EG</td>
<td>0.172</td>
<td>90.06</td>
<td>70.0</td>
<td>-1.082</td>
</tr>
<tr>
<td>L - 2M =</td>
<td>JA</td>
<td>0.210</td>
<td>90.56</td>
<td>72.6</td>
<td>-1.036</td>
</tr>
<tr>
<td>S =</td>
<td>PL</td>
<td>0.159</td>
<td>90.54</td>
<td>85.7</td>
<td>-1.019</td>
</tr>
<tr>
<td>13</td>
<td>EG</td>
<td>0.054</td>
<td>90.82</td>
<td>250.5</td>
<td>-1.013</td>
</tr>
<tr>
<td>L - 2M =</td>
<td>JA</td>
<td>0.053</td>
<td>90.47</td>
<td>174.1</td>
<td>-1.154</td>
</tr>
<tr>
<td>S =</td>
<td>PL</td>
<td>0.049</td>
<td>90.40</td>
<td>145.8</td>
<td>-1.181</td>
</tr>
</tbody>
</table>

230 Determinación experimental de diferencias de color...
Tabla VII.4.- Continuación.

<table>
<thead>
<tr>
<th>ESTÍMULO</th>
<th>OBS</th>
<th>b/a</th>
<th>Θ</th>
<th>AREA</th>
<th>Log ΔL_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>EG</td>
<td>0.122</td>
<td>90.71</td>
<td>140.5</td>
<td>-0.929</td>
</tr>
<tr>
<td>L - 2M =</td>
<td>JA</td>
<td>0.128</td>
<td>91.52</td>
<td>80.2</td>
<td>-1.092</td>
</tr>
<tr>
<td>S =</td>
<td>PL</td>
<td>0.126</td>
<td>91.95</td>
<td>112.4</td>
<td>-0.998</td>
</tr>
<tr>
<td>15</td>
<td>EG</td>
<td>0.250</td>
<td>90.09</td>
<td>130.2</td>
<td>-0.844</td>
</tr>
<tr>
<td>L - 2M =</td>
<td>JA</td>
<td>0.240</td>
<td>90.84</td>
<td>110.0</td>
<td>-0.919</td>
</tr>
<tr>
<td>S =</td>
<td>PL</td>
<td>0.204</td>
<td>92.36</td>
<td>106.1</td>
<td>-0.888</td>
</tr>
<tr>
<td>16</td>
<td>EG</td>
<td>0.209</td>
<td>89.44</td>
<td>122.3</td>
<td>-0.889</td>
</tr>
<tr>
<td>L - 2M =</td>
<td>JA</td>
<td>0.328</td>
<td>89.29</td>
<td>47.7</td>
<td>-0.990</td>
</tr>
<tr>
<td>S =</td>
<td>PL</td>
<td>0.170</td>
<td>90.37</td>
<td>60.4</td>
<td>-1.083</td>
</tr>
<tr>
<td>17</td>
<td>EG</td>
<td>0.167</td>
<td>88.71</td>
<td>216.1</td>
<td>-0.891</td>
</tr>
<tr>
<td>L - 2M =</td>
<td>JA</td>
<td>0.159</td>
<td>91.20</td>
<td>103.6</td>
<td>-1.072</td>
</tr>
<tr>
<td>S =</td>
<td>PL</td>
<td>0.196</td>
<td>90.49</td>
<td>156.2</td>
<td>-0.949</td>
</tr>
<tr>
<td>18</td>
<td>EG</td>
<td>0.345</td>
<td>86.83</td>
<td>154.4</td>
<td>-0.800</td>
</tr>
<tr>
<td>L - 2M =</td>
<td>JA</td>
<td>0.371</td>
<td>90.26</td>
<td>105.5</td>
<td>-0.847</td>
</tr>
<tr>
<td>S =</td>
<td>PL</td>
<td>0.293</td>
<td>90.10</td>
<td>107.5</td>
<td>-0.891</td>
</tr>
<tr>
<td>19</td>
<td>EG</td>
<td>0.298</td>
<td>90.27</td>
<td>87.6</td>
<td>-0.890</td>
</tr>
<tr>
<td>L - 2M =</td>
<td>JA</td>
<td>0.287</td>
<td>89.47</td>
<td>62.2</td>
<td>-0.992</td>
</tr>
<tr>
<td>S =</td>
<td>PL</td>
<td>0.233</td>
<td>90.03</td>
<td>85.9</td>
<td>-0.985</td>
</tr>
<tr>
<td>20</td>
<td>EG</td>
<td>0.057</td>
<td>90.79</td>
<td>390.5</td>
<td>-0.974</td>
</tr>
<tr>
<td>L - 2M =</td>
<td>JA</td>
<td>0.097</td>
<td>91.00</td>
<td>160.4</td>
<td>-1.117</td>
</tr>
<tr>
<td>S =</td>
<td>PL</td>
<td>0.060</td>
<td>90.78</td>
<td>136.8</td>
<td>-1.157</td>
</tr>
</tbody>
</table>

Determinación experimental de diferencias de color...
Figura 7.26.- Resultados experimentales para el estímulo 1 para los observadores EG, JA y PL en el espacio de excitación de conos.
Figura 7.27.- Resultados experimentales para el estimulo 2 para los observadores EG, JA y PL en el espacio de excitación de conos.
Figura 7.28.- Resultados experimentales para el estímulo 3 para los observadores EG, JA y PL en el espacio de excitación de conos.
Figura 7.29.- Resultados experimentales para el estímulo 4 para los observadores EG, JA y PL en el espacio de excitación de conos.
Figura 7.30.- Resultados experimentales para el estímulo 5 para los observadores EG, JA y PL en el espacio de excitación de conos.
Figura 7.31.- Resultados experimentales para el estímulo 6 para los observadores EG, JA y PL en el espacio de excitación de conos.
Figura 7.32.- Resultados experimentales para el estímulo 7 para los observadores EG, JA y PL en el espacio de excitación de conos.
Figura 7.33.- Resultados experimentales para el estímulo 8 para los observadores EG, JA y PL en el espacio de excitación de conos.
Figura 7.34.- Resultados experimentales para el estímulo 9 para los observadores EG, JA y PL en el espacio de excitación de conos.
Figura 7.35.- Resultados experimentales para el estímulo 10 para los observadores EG, JA y PL en el espacio de excitación de conos.
Figura 7.36.- Resultados experimentales para el estímulo 11 para los observadores EG, JA y PL en el espacio de excitación de conos.
Figura 7.37.- Resultados experimentales para el estímulo 12 para los observadores EG, JA y PL en el espacio de excitación de conos.
Figura 7.38.- Resultados experimentales para el estímulo 13 para los observadores EG, JA y PL en el espacio de excitación de conos.
Figura 7.39.- Resultados experimentales para el estímulo 14 para los observadores EG, JA y PL en el espacio de excitación de conos.
Figura 7.40.- Resultados experimentales para el estímulo 15 para los observadores EG, JA y PL en el espacio de excitación de conos.
Figura 7.41.- Resultados experimentales para el estímulo 16 para los observadores EG, JA y PL en el espacio de excitación de conos.
Figura 7.42.- Resultados experimentales para el estímulo 17 para los observadores EG, JA y PL en el espacio de excitación de conos.
Figura 7.43.- Resultados experimentales para el estímulo 18 para los observadores EG, JA y PL en el espacio de excitación de conos.
Figura 7.44.- Resultados experimentales para el estímulo 19 para los observadores EG, JA y PL en el espacio de excitación de conos.
Figura 7.45.- Resultados experimentales para el estímulo 20 para los observadores EG, JA y PL en el espacio de excitación de conos.

Determinación experimental de diferencias de color...
Figura 7.46.- Resultados experimentales del observador EG para los 20 estímulos estudiados en el espacio de excitación de conos.
Figura 7.47.- Resultados experimentales del observador JA para los 20 estímulos estudiados en el espacio de excitación de conos.
Figura 7.48.- Resultados experimentales del observador PL para los 20 estímulos estudiados en el espacio de excitación de conos.
7.4.- BIBLIOGRAFIA.

CAPÍTULO VIII:

ANÁLISIS Y DISCUSIÓN DE LOS RESULTADOS.
VIII.- ANÁLISIS Y DISCUSIÓN DE LOS RESULTADOS.

8.1.- COMPARACION INTEROBSERVADORES.

Como ya se ha descrito anteriormente, la fase inicial de nuestro trabajo consistió en un estudio de la variabilidad interobservadores de los resultados de discriminación cromática. Los resultados obtenidos se han expuesto en el apartado 7.1 del capítulo anterior. Pasaremos, ahora, a analizar y discutir estos resultados.

Una primera observación de las figuras 7.1 y 7.2 ya nos indica que los resultados obtenidos para los distintos observadores son muy parecidos, tanto en el diagrama de cromaticidad CIE-1931, figura 7.1, como en el espacio de excitación de conos, figura 7.2. En estas figuras puede observarse como las distintas elipses se superponen determinando claramente la zona de discriminación. Así mismo, las tablas VII.1 y VII.2, en las que se muestran los parámetros característicos de la elipse de discriminación cromática obtenidos por cada uno de los observadores en los dos sistemas de representación antes comentados, nos confirman esta idea, ya que nos muestran unos resultados que presentan una pequeña variabilidad entre ellos. Así, por ejemplo, puede observarse que, en el diagrama CIE-1931,
tabla VII.1, la orientación de las elípses obtenidas es muy parecida para todas ellas, estando sus valores comprendidos en un margen de unos 10°, siendo su valor medio 64.02°, con una desviación típica de 3.66°. La relación de semiejes también toma valores semejantes, estando casi siempre alrededor de 0.32, concretamente, la media de sus valores es 0.336, con una desviación típica de 0.059. Si observamos los valores obtenidos para el área de las elípses, notaremos que también son similares, aunque, precisando más, podemos ver que cuatro observadores obtuvieron áreas de alrededor de 4.10^{-4} y las de los otros son significativamente más altas, llegando en un caso a obtener un área tres veces superior. Hemos realizado la media y la desviación típica de estos valores resultando ser $6.86\cdot10^{-4}$ y $3.04\cdot10^{-4}$, respectivamente. Los hechos, antes comentados, ponen de manifiesto que las mayores diferencias se encuentran en cuanto a la capacidad cuantitativa de discriminación (área), no habiendo, prácticamente, diferencia en cuanto a orientación y forma de la elipse.

Si fijamos nuestra atención en la tabla VII.2, donde se muestran los resultados de los ocho observadores en el espacio de excitación de conos, veremos que son aún más similares entre sí que en el diagrama de cromaticidad CIE. Así las relaciones de semiejes son del orden 0.1 o inferiores, las orientaciones están en un intervalo de 3° alrededor de los 90° y las áreas están en una relación parecida a la comentada para el diagrama CIE. La posible variación que presentan estos datos en este espacio será analizada en profundidad en un apartado posterior de este mismo capítulo, de ahí que, a partir de ahora, fijemos nuestro estudio sobre variabilidad sóloamente en el diagrama cromático CIE-1931.

Para valorar mejor estos resultados, los hemos comparado con los que obtuvo Brown (1957) para doce observadores con un método experimental, como ya se ha dicho, distinto. De todos los
Figura 8.1.- Orientación de la ellipse de discriminación obtenida para cada observador en el estímulo: a) estudiado por nosotros, b) Brown (1957).
puntos que estudió Brown, hemos elegido para nuestra comparación el (0.308, 0.307), que es el más próximo al estudiado por nosotros. Esta comparación se ha hecho gráficamente, representando en la parte superior de las figuras nuestros resultados y en la inferior los que obtuvo Brown.

En la figura 8.1, se muestran las orientaciones de las elipses obtenidas en ambos casos, apreciándose que mientras que nuestros resultados se mantienen muy similares entre sí y alrededor de los 60°, los de Brown presentan una gran dispersión puesto que, aunque predominan los valores entre 30° y 60°, los hay también de menos de 10° y algunos próximos a 180°.

En cuanto a la comparación realizada sobre la relación de semiejes, figura 8.2, se puede decir que los resultados de ambos trabajos son bastante parecidos, si bien hay que indicar que las relaciones de semiejes obtenidas por Brown son aproximadamente el doble de las que nosotros obtuvimos, lo que nos indica que las elipse obtenidas en su trabajo son más redondeadas que las nuestras.

La característica más importante que se puede deducir de la comparación entre las áreas obtenidas en nuestras experiencias, figura 8.3, y las de Brown (1957), es que las elipses obtenidas por éste son unas 100 veces más pequeñas que las que se obtuvieron en nuestras experiencias. Sin duda, ésto es debido a los diferentes métodos usados, ya que, mientras en el trabajo de Brown, los observadores realizaban igualaciones de los dos semicampos, en nuestras experiencias, como ya se ha comentado, se sigue un proceso exclusivo de discriminación. En cuanto a la variabilidad existente en este parámetro entre los distintos observadores, ésta es muy parecida en ambos trabajos, siendo difícil precisar en cuál hay menor variabilidad entre los
Figura 8.2.- Relación de semiejes de la ellipse de discriminación obtenida para cada observador en el estímulo: a) estudiado por nosotros, b) Brown (1957).
Análisis y discusión de los resultados

Figura 8.3.a

Area

Figura 8.3.b

Area

Figura 8.3.- * Área de la elipse de discriminación obtenida para cada observador en el estímulo: a) estudiado por nosotros, b) Brown (1957). Los valores representados han sido multiplicados por 10^4, en nuestro caso, y por 10^6 los datos de Brown.*
Análisis y discusión de los resultados

observadores.

Las diferencias, con respecto al área, entre observadores vienen asociadas a las distintas capacidades de discriminación cromática global de ellos, aún siendo todos considerados con visión normal del color. Éste es un resultado que aparece siempre que se realizan experiencias en visión y es consecuencia de la variabilidad inherente a la especie humana. No nos preocupa tanto que se presente esta variabilidad, que se entiende como "normal", como el establecer los límites de la misma en observadores normales. Por ello, hemos continuado nuestras experiencias con observadores que cubran la variabilidad encontrada. En concreto, los observadores EG, JA y PL son los que han realizado el conjunto completo de medidas, perteneciendo, el primero, al conjunto de tres observadores que hemos comentado que presentan unos valores mayores de los umbrales y, los dos restantes, al conjunto de los que presentan una mayor capacidad de discriminación.

Como resumen de todo lo dicho en cuanto a variabilidad de resultados entre observadores en el trabajo de Brown (1957) y el nuestro, podemos decir que los resultados obtenidos por nosotros son muy parecidos entre sí, habiendo entre ellos una variabilidad menor que la que presentan los resultados obtenidos por Brown (1957).

Una vez estudiados las variaciones de los parámetros característicos de la elipse de discriminación cromática para los ocho observadores, es el momento de analizar las variaciones en el umbral de luminancia para estos observadores. Para ello, hemos representado, figura 8.4, la fracción de Weber de la luminancia para cada uno de los observadores. Como puede apreciarse en dicha figura, las variaciones en este parámetro son muy parecidas a las que encontrábamos al analizar el área, es decir, un grupo de
Figura 8.4.- *Fracción de Weber de la luminancia*
($\Delta L/L$) obtenida por cada observador para el estímulo (0.294, 0.295).

Cuatro observadores cuya fracción de Weber es muy parecida y del orden o inferior a 0.1, y el resto con una fracción de Weber algo superior pero parecida entre ellos. Ésto parece indicar que la variabilidad en el umbral de luminancia va unido a la capacidad de discriminación cromática del observador y que la obtención de valores mayores de discriminación cromática implica unos mayores en luminancia.

Con objeto de completar nuestro estudio sobre la variabilidad interobservadores, pasamos a continuación a comparar entre sí los resultados obtenidos por los tres observadores que realizaron en nuestro trabajo el total de las medidas, los obtenidos por los tres observadores que participaron en el trabajo...
de Wyszecki y Fielder (1971) y los dos que intervinieron en el de Brown y MacAdam (1949). Esta comparación la hemos realizado por dos métodos, numérico y gráfico, que pasamos a comentar.

Por el método de comparación numérica entre dos grupos de elipses, descrito en el capítulo 4, comparamos el conjunto total de elipses obtenidas por un observador con las obtenidas por otro en los mismos estímulos. De esta forma, comparamos entre sí los resultados obtenidos por los tres observadores que han intervenido en nuestra experiencia. En la tabla VIII.1 se muestran los resultados de estas comparaciones, además, se incluyen las comparaciones entre los observadores que intervinieron en los trabajos de Wyszecki y Fielder (1971) y Brown y MacAdam (1949) que dan Wyszecki y Fielder (1971) en su trabajo.

Al analizar esta tabla encontramos, en primer lugar, que los valores más pequeños de las desviaciones cuadráticas media y absoluta se dan al comparar los resultados entre nuestros observadores, concretamente entre los resultados de los observadores PL y JA. Los resultados obtenidos al comparar los datos de los distintos observadores en los trabajos de Wyszecki y Fielder y Brown y MacAdam, son significativamente más altos, siendo el más elevado y, por tanto, donde se encuentran las mayores diferencias entre elipses, el resultado de la comparación entre los observadores GW y AR del trabajo de Wyszecki y Fielder (1971).

El parámetro α, como comentaremos posteriormente, nos da idea de la diferencia de tamaños entre grupos de elipses. Si es próximo a 1, es que estas diferencias globales son mínimas. Como se observa en la tabla VII.1 los observadores PL y JA presentan bastante similitud en el tamaño de sus elipses, lo que corrobora lo predicho al comentar las diferencias en el área entre
Análisis y discusión de los resultados

Tabla VIII.1.- Resultados de la comparación realizada entre los datos de distintos observadores que participaron en un mismo trabajo experimental.

<table>
<thead>
<tr>
<th>TRABAJOS</th>
<th>OBSERVA.</th>
<th>(<e_1>)</th>
<th>(<d_1>)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUESTRAS EXPERIENCIAS</td>
<td>EG - JA</td>
<td>0.206</td>
<td>0.153</td>
<td>0.758</td>
</tr>
<tr>
<td></td>
<td>EG - PL</td>
<td>0.201</td>
<td>0.167</td>
<td>0.790</td>
</tr>
<tr>
<td></td>
<td>PL - JA</td>
<td>0.175</td>
<td>0.142</td>
<td>0.937</td>
</tr>
<tr>
<td>WYSZECKI Y FIELDER</td>
<td>GW - GF</td>
<td>0.280</td>
<td>0.223</td>
<td>0.860</td>
</tr>
<tr>
<td></td>
<td>GW - AR</td>
<td>0.327</td>
<td>0.237</td>
<td>0.830</td>
</tr>
<tr>
<td></td>
<td>WRB - DLM</td>
<td>0.253</td>
<td>0.212</td>
<td>0.910</td>
</tr>
</tbody>
</table>

observadores y la elección de éstos para el conjunto completo de las experiencias.

Para llevar a cabo la comparación gráfica, hemos realizado una serie de figuras en las que se representa, en abscisas, los estímulos estudiados y, en ordenadas, el parámetro a estudiar, orientación, relación de semiejes y área, para cada uno de los observadores.

La figura 8.5 muestra la variación de la orientación entre observadores para cada estímulo. En la parte superior aparecen nuestros resultados y en la inferior los de Wyszecki y Fielder (1971). Si observamos cada columna (estímulo) veremos que los resultados de nuestros observadores están siempre muy próximos, mientras que en el trabajo de Wyszecki y Fielder hay una mayor
Figura 8.5.- Orientación obtenida para los tres observadores que participaron estudiando: a) 20 estímulos de nuestras experiencias, b) 28 estímulos del trabajo de Wyszecki y Fielder.
variabilidad entre las orientaciones de cada observador para cada uno de los estímulos. Es de destacar que, en nuestros resultados experimentales, sólo se observa una cierta variación, en este parámetro, en los estímulos 4, 15, 16 y 18. Estos estímulos están localizados, uno (el 4) muy próximo al lugar espectral en la zona de los rojos y, los otros tres, en la zona de los verdes.

Para estudiar los otros parámetros, relación de semiejes y área, operamos de forma similar a como lo hemos hecho con la orientación. Representamos en la figura 8.6 la relación de semiejes de cada uno de los estímulos para los dos trabajos y, en la figura 8.7, el área de cada uno de ellos. De la figura 8.6 podemos deducir que los resultados, en cuanto variabilidad, de ambos trabajos son muy parecidos. Respecto a nuestros datos podemos decir que, aunque hay estímulos que dan la misma relación de semiejes para los tres observadores, estímulos 4, 5, 13, 14, hay otros en los que se presenta cierta variación, estímulos 3, 7, 8, 11. En cuanto a los datos de Wyszecki y Fielder ocurre algo parecido.

Sin embargo, la variabilidad que se observa entre las áreas, figura 8.7, es mucho más pequeña para los dos trabajos, aunque hay que tener en cuenta que las elipses obtenidas en el trabajo de Wyszecki y Fielder lo son para un conjunto de estímulos que están en una zona muy restringida del diagrama cromático y, por tanto, no podemos saber que ocurriría en otras zonas del mismo. Aún así hay estímulos que presentan una gran variabilidad, como por ejemplo el estímulo 19. De ahí, también, que el tamaño sea muy parecido para todas ellas. Es de notar que las áreas de las elipses de discriminación cromática obtenidas por Wyszecki y Fielder son aproximadamente 10 veces más pequeñas que las que obtuvimos en nuestro trabajo. La razón, al igual que en el trabajo de Brown (1957), puede ser debida al hecho de que los
Figura 8.6.- Relación de semiejes obtenida para los tres observadores que participaron estudiando: a) 20 estímulos de nuestras experiencias, b) 28 estímulos del trabajo de Wyszecki y Fielder.
Figura 8.7.- * Área obtenida para los tres observadores que participaron estudiando: a) 20 estímulos de nuestras experiencias (multiplicadas por 10^4), b) 28 estímulos del trabajo de Wyszecki y Fielder (multiplicadas por 10^5).*
observadores, en este trabajo, realizaban igualaciones de color. Pensamos que, las elipses así obtenidas, deben nombrarse como elipses de igualación de color mejor que de discriminación cromática. Con respecto a la variación del área en los estímulos estudiados por nosotros, decir también que la mayor variabilidad se presenta en aquellos estímulos de tonalidad verde, que suelen presentar un área mayor en el diagrama CIE (x,y).

A la vista de todo lo dicho podemos resumir diciendo que, con respecto a la orientación, nuestros resultados presentan mucha menor variabilidad que el resto de los resultados previos en este campo. Respecto a la relación de semiejes, hay que señalar una variabilidad significativa tanto en nuestros datos experimentales como en los de Brown (1957) y los de Wyszecki y Fielder (1971). Esta pequeña variabilidad en las orientaciones y más importante en la relación de semiejes implica una facilidad para fijar la capacidad de discriminación de un observador según distintas direcciones en el diagrama cromático, lo que no lo permiten las elipses obtenidas por el método de igualación de color. En efecto, si la orientación de las elipses de discriminación puede quedar fijada dentro de un pequeño margen, la variación en la capacidad de discriminación según direcciones del diagrama CIE (x,y) vendrán reflejadas aproximadamente sobre la distinta longitud de los semiejes de las elipses. Ésto influirá tanto sobre el área que se obtenga de cada elipse como sobre las distintas relaciones de semiejes que se encuentren. En este sentido, la variabilidad mostrada en este parámetro nos estaría indicando que la capacidad de discriminación según direcciones del diagrama cambia de unos observadores a otros. Como quiera que podemos distinguir direcciones de discriminación rojo-verde y amarillo-azul dentro del diagrama y que las elipses se parecen orientar preferentemente sobre estas líneas, podríamos estar en condiciones de abordar un estudio de la visión cromática diferencial según mecanismos de
visión y su variabilidad con el observador. Este estudio, sin embargo, lo facilita extraordinariamente el pasar los resultados obtenidos al espacio de excitación de conos, en el que las consecuencias a este respecto pueden ser extraídas de forma directa. En general, respecto las variaciones que aparecen en las áreas es significativo resaltar el hecho de que esta crezca a medida que crece el área del estímulo estudiado (estímulos en la zona de los verdes).

La capacidad de discriminación en luminancia parece seguir las pautas de las encontradas para el área de las elipses; es decir, los observadores presentan distintos valores de la fracción de Weber de igual forma que presentan mayor o menor capacidad de discriminación en cromaticidad. Por tanto, podríamos extraer la conclusión de que en la habilidad de discriminación de color, en su acepción completa, es decir, incluyendo sus tres atributos: luminosidad, tono y saturación, no se presentan diferencias al separar los atributos unidos a la luminancia de los unidos a la cromaticidad, siendo pareja la capacidad de discriminación global a la de discriminación de aspectos diferenciales de la percepción cromática.

Como último apunte a todo lo dicho sobre la variabilidad entre observadores, podemos preguntarnos como se reflejan sobre el aspecto real de las elipses las diferencias encontradas en sus parámetros característicos. Para ello, disponemos de las figuras 7.3 a 7.22, en las que se representan las elipses obtenidas por los tres observadores para los veinte estímulos estudiados.

Al observar estas figuras en su conjunto, notaremos que las elipses obtenidas por los tres observadores son muy parecidas, destacando estímulos como el 5, 6, 10, 13, y 14, en los que, prácticamente, no hay diferencia entre las tres elipses. Quizás,
Análisis y discusión de los resultados

los dos casos más significativos de variabilidad sean los que se dan en los estímulos 4 y 16, ambos bastante próximos al lugar espectral por la zona de los naranjas y rojos, en los que, aún habiendo una diferencia apreciable en la orientación, las elipses determinan una zona del diagrama muy similar. Hay que resaltar que, prácticamente en todos los estímulos, la elipse de un observador es mayor que la de los otros dos, pero manteniendo su orientación y relación de semiejes similar a la de aquellos. Ésto nos indica que, aunque la capacidad de discriminación de un observador sea menor, guarda una misma relación con respecto a la de otros observadores.

Si relacionamos la variabilidad de los observadores con la posición en el diagrama cromático que ocupa el estímulo sobre la que se estudia, parece que las mayores diferencias se dan en aquellos en los que la proporción de rojo y verde es muy alta con respecto a la de azul, es decir, aquellos estímulos que se encuentran próximos al lugar espectral en la zona que va del rojo al amarillo-verdoso.

A modo de conclusión de este estudio sobre la variabilidad de los observadores, podemos decir que, nuestro método experimental proporciona unos resultados de umbrales diferenciales de color que demuestran que existe poca variación de un observador a otro, sobre todo en cuanto a orientación y en menor medida en cuanto a relación de semiejes y área, y que, por tanto, es un método adecuado para la obtención de umbrales diferenciales de color generalizables y normalizables.
8.2.- COMPARACION DE LOS RESULTADOS EXPERIMENTALES CON LAS F.D.C.

En el capítulo 4, hicimos un estudio de la adecuación, tanto de las fórmulas de diferencias de color deducidas por nosotros, FDC-G* y FDC-G**, como de las propuestas por la CIE, CIEUV, CIELAB y LABNHU, a los datos experimentales de MacAdam (1942), Brown y MacAdam (1949) y Wyszecki y Fielder (1971). Pretendemos, ahora, completar este estudio viendo la adecuación de dichas fórmulas a los resultados experimentales obtenidos por

Figura 8.8.- Orientaciones experimentales obtenidas para el estímulo (0.294,0.295) y las que preveen las fórmulas: FDC-G* (1), FDC-G** (2), CIEUV (3), CIELAB (4) y LABNHU (5).
Análisis y discusión de los resultados

nosotros.

Comenzamos este estudio con el estímulo estudiado por los ocho observadores. En la figura 8.8 se ha representado con un punto la orientación que cada observador obtuvo para la elipse de discriminación de ese estímulo, y por una línea, distinta en cada caso, la orientación que cada fórmula de diferencia de color prevee para la elipse asociada a dicho estímulo. Como se puede observar, las orientaciones experimentales están muy próximas a las que preveen las fórmulas FDC-G* y FDC-G**, propuestas por nosotros. Sin embargo, las orientaciones previstas por las otras fórmulas se alejan de las datos experimentales, en especial la de la fórmula CIELAB que dá una diferencia de aproximadamente 30° con respecto a ellas.

Operamos de forma similar para estudiar la relación existente entre la relación de semiejes obtenida experimentalmente y la que preveen las distintas fórmulas para ese estímulo. En la figura 8.9 se ha hecho esta representación. Como puede verse en esta figura, los resultados experimentales están muy próximos a los que generan las fórmulas propuestas por nosotros, siendo, en este caso, las fórmulas CIELUV y CIELAB las que más se alejan de ellos.

Podríamos haber realizado una gráfica similar para el estudio del área, pero, dado que las fórmulas preveen un área aproximadamente 100 veces menor de la que se obtiene experimentalmente, no sería posible sacar información de ella en cuanto al comportamiento de las distintas fórmulas.

Como se puede deducir de estas dos figuras, las fórmulas que mejor se adecúan a los datos experimentales para este estímulo, son las fórmulas propuestas por nosotros, en especial en
Análisis y discusión de los resultados

Figura 8.9.- Relaciones de semiej es obtenidas experimentalmente para el estímulo (0.294,0.295) y las que preveen las fórmulas: FDC-G* (1), FDC-G** (2), CIELUV (3), CIELAB (4) y LABNHU (5).

lo referente a la orientación, si bien, respecto a la relación de semiej es, también tienen un buen comportamiento.

Aunque estos resultados ya son muy significativos, no hay que olvidar que son para un sólo punto del diagrama cromático y, por lo tanto, no es suficiente para saber el comportamiento de una fórmula en todo él. Por esta razón, debemos estudiar la adecuación de las fórmulas al conjunto de los 20 estímulos estudiados por nosotros que están distribuidos por todo el diagrama cromático.
Análisis y discusión de los resultados

El primer paso para llevar a cabo este estudio, ha sido realizar una comparación numérica, por el método ya descrito, entre los resultados experimentales y los que, para esos mismos puntos, generan las distintas fórmulas. Los resultados de esta comparación son los que aparecen en la tabla VIII.2. Como puede apreciarse en ella, los resultados más bajos de las desviaciones cuadráticas media y absoluta, siempre los dá la fórmula FDC-G*, si bien, los que proporciona la fórmula FDC-G** son prácticamente iguales a los anteriores. Sin embargo, las otras fórmulas, dan unos resultados de las desviaciones más elevados, siendo de destacar la fórmula CIELAB como la que más se aleja de nuestros datos experimentales.

Si recordamos las tablas IV.2 y IV.6 en las que se daba la comparación de las distintas fórmulas con los datos experimentales de otros autores, nos daremos cuenta que nuestras fórmulas, a los datos que mejor se adecúan, es a los de MacAdam (1942), lo cual es lógico pues, en cierto modo, nos basamos en ellos para deducirlas. Ahora bien, la adecuación a nuestros datos experimentales es mejor que a los de Brown y MacAdam (1949) y que a los de Wyszecki y Fielder (1971). Así mismo, es significativo indicar también, como las fórmulas propuestas por la CIE dan resultados más próximos a nuestros resultados experimentales que a los de otros autores, como se puede ver, al ser los valores de las desviaciones cuadráticas más bajos.

Es importante, también, que comentemos el parámetro "\(\alpha \)" que aparece en las tablas, ya que, hasta ahora, no lo hemos hecho. Dicho parámetro nos dá información sobre las diferencias de tamaño de los dos grupos de elipses que estamos comparando. Así, un valor de \(\alpha \) próximo a 1 nos indicará que los tamaños de ambos grupos son muy similares. Ésto ocurre, por ejemplo, entre las elipses de
MacAdam (1942) y las que dan nuestras fórmulas. Por el contrario, a medida que \(\alpha \) se vaya alejando de 1 indicará una mayor diferencia de tamaño entre ambos conjuntos de elipses. Éste hecho ya empezaba

Tabla VIII.2.- Resultados de comparar los datos experimentales de cada observador con los que proporcionan las distintas fórmulas de diferencias de color.

<table>
<thead>
<tr>
<th>OBSERVADOR</th>
<th>FORMULA</th>
<th>(<e_1>)</th>
<th>(<d_1>)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>FDC - G*</td>
<td>0.220</td>
<td>0.179</td>
<td>0.144</td>
</tr>
<tr>
<td></td>
<td>FDC - G**</td>
<td>0.236</td>
<td>0.180</td>
<td>0.142</td>
</tr>
<tr>
<td></td>
<td>CIELUV</td>
<td>0.268</td>
<td>0.212</td>
<td>0.109</td>
</tr>
<tr>
<td></td>
<td>CIELAB</td>
<td>0.403</td>
<td>0.311</td>
<td>0.134</td>
</tr>
<tr>
<td></td>
<td>LBNHU</td>
<td>0.370</td>
<td>0.290</td>
<td>0.147</td>
</tr>
<tr>
<td></td>
<td>FDC - G*</td>
<td>0.278</td>
<td>0.193</td>
<td>0.147</td>
</tr>
<tr>
<td></td>
<td>FDC - G**</td>
<td>0.278</td>
<td>0.195</td>
<td>0.145</td>
</tr>
<tr>
<td></td>
<td>CIELUV</td>
<td>0.252</td>
<td>0.201</td>
<td>0.115</td>
</tr>
<tr>
<td></td>
<td>CIELAB</td>
<td>0.399</td>
<td>0.298</td>
<td>0.145</td>
</tr>
<tr>
<td></td>
<td>LBNHU</td>
<td>0.344</td>
<td>0.274</td>
<td>0.158</td>
</tr>
<tr>
<td>JA</td>
<td>FDC - G*</td>
<td>0.199</td>
<td>0.160</td>
<td>0.118</td>
</tr>
<tr>
<td></td>
<td>FDC - G**</td>
<td>0.201</td>
<td>0.163</td>
<td>0.115</td>
</tr>
<tr>
<td></td>
<td>CIELUV</td>
<td>0.257</td>
<td>0.214</td>
<td>0.089</td>
</tr>
<tr>
<td></td>
<td>CIELAB</td>
<td>0.332</td>
<td>0.277</td>
<td>0.113</td>
</tr>
<tr>
<td></td>
<td>LBNHU</td>
<td>0.312</td>
<td>0.258</td>
<td>0.123</td>
</tr>
</tbody>
</table>
a darse cuando se comparaban las elipses de Wyszecki y Fielder (1971) con las previstas por las distintas fórmulas. Pero es en la comparación con nuestros datos experimentales cuando alcanza mayor importancia. Como puede verse en la tabla VIII.2, \(\alpha \) es siempre inferior a 0.2, llegando, en algún caso, a ser inferior a 0.1. Este dato nos indica que, las elipses obtenidas en nuestras experiencias, son mucho más grandes que las que se dan con las distintas fórmulas. Ésto no es extraño puesto que, como ya hemos comentado, nuestras elipses se han obtenido con un método experimental exclusivo de discriminación, mientras que, las distintas fórmulas, se han obtenido casi siempre, basándose en datos experimentales de igualación de color.

Para completar nuestro estudio de la adecuación de las fórmulas a nuestros resultados experimentales, hemos realizado, también, una comparación gráfica, buscando, no sólo una visualización de las posibles diferencias, sino, además, dónde radican éstas.

En la figura 8.10 se ha representado con un símbolo la orientación experimental obtenida por cada observador para cada estímulo y con tres líneas distintas, las que preveen las fórmulas FDC-G**, CIELUV y CIELAB para esos mismos estímulos. No hemos incluido las orientaciones previstas por las fórmulas FDC-G* y LABNHU con el objeto de que se puedan visualizar mejor los resultados.

Una primera observación de esta figura nos indica como la fórmula que más se aproxima a los datos experimentales es la FDC-G**, incluso, en algunos estímulos da resultados iguales a los experimentales; ver, por ejemplo, los estímulos 2, 7, 13, 14 ó 19. Sólo en algún caso hay diferencias algo mayores, aun siendo menores que para las otras fórmulas, por ejemplo, estímulo 17 ó
Figura 8.10.- Orientaciones experimentales y previstas por las distintas fórmulas para los 20 estímulos estudiados.
18.

Las fórmulas CIELUV y CIELAB tienen un comportamiento similar, si bien, casi siempre, es más próximo el resultado dado por la fórmula CIELUV a los experimentales que el de la fórmula CIELAB.

El hecho de que la fórmula CIELAB presente grandes discrepancias en cuanto a orientación con respecto a los datos experimentales clásico en Colorimetría en la zona de los naranjas, y que dio origen a la propuesta de la fórmula LABNHU, Richter (1980), se puede observar también en la figura 8.10. Si nos fijamos en el estímulo 8, que es, de los que nosotros hemos estudiado, el que está en la zona de los naranjas, veremos la gran discrepancia que existe entre los datos experimentales y la fórmula CIELAB. El estímulo 12, próximo a esta zona, corrobora este mismo hecho.

Para analizar el comportamiento de las distintas fórmulas con respecto a la relación de semiejes, hemos realizado una figura similar a la anterior, figura 8.11. De esta figura es más difícil poder extraer conclusiones respecto al comportamiento de las distintas fórmulas de diferencias de color, puesto que, la variabilidad existente entre observadores es mayor que la que hay en cuanto a la orientación. De todas maneras, parece ser que la fórmula que mejor se adapta a los resultados experimentales es la fórmula FDC-G**, aunque no hay una gran diferencia con respecto a las demás.

Sin embargo, no podemos utilizar este tipo de representación para analizar el comportamiento respecto de las áreas de las elipses de discriminación cromática, puesto que, como ya hemos comentado, el tamaño dado por las fórmulas es,
Figura 8.11.- Relaciones de semiejes experimentales y previstas por las distintas fórmulas para los 20 estímulos estudiados.
Análisis y discusión de los resultados

aproximadamente, 100 veces menor del que se obtiene experimentalmente.

Como última comparación en este apartado y a modo de ejemplo, hemos elegido cuatro estímulos de los 20 estudiados por nosotros y hemos representado las elipses de discriminación obtenidas para ellos por el observador PL junto a las que, para esos puntos, preveen las fórmulas FDC-G**, CIÈLUV y CIÈLAB. Estas representaciones aparecen en la figura 8.12, donde los semiejes de las elipses obtenidas por las distintas fórmulas han sido multiplicados por 10, ya que, como ya se ha comentado, las fórmulas preveen, en general, un área, aproximadamente, 100 veces menores que las obtenidas en nuestras experiencias. Los estímulos elegidos han sido el 2 de coordenadas (0.446,0.232), 8 (0.464,0.426), 9 (0.248,0.181) y 15 (0.258,0.415) pues están en zonas bien diferenciadas del diagrama cromático, concretamente, en las zonas Roja, Naranja, Verde y Azul, respectivamente.

Al observar esta figura se pueden deducir las mismas conclusiones que se han venido comentando como consecuencia de la comparación global entre grupos de elipses, puesto que, salvadas las diferencias debidas a las áreas, notaremos como la fórmula que genera una elipse que más se aproxima a la obtenida experimentalmente es la FDC-G**. Así mismo, la fórmula CIÈLUV obtiene buenos resultados, siendo, de nuevo, la que más se separa de la elipse experimental, la fórmula CIÈLAB.

A la vista de todo lo expuesto en este apartado, podemos concluir nuestro estudio sobre la adecuación de las distintas fórmulas de diferencias de color a nuestros datos experimentales, diciendo que las fórmulas que mejor se adaptan son las fórmulas propuestas por nosotros, FDC-G**, en especial, en lo referente a la orientación, donde las diferencias entre los datos
Figura 8.12.- Comparación entre la elipse obtenida por el observador PL (1) para los cuatro estímulos comentados en el texto y las que generan las fórmulas FDC-G** (2), CIELUV (3) y CIELAB (4).
experimentales y los propuestos por ellas son mínimas.

Después de analizadas las distintas fórmulas sobre los datos de distintos autores, capítulo 4, y de haberlo hecho, también, sobre nuestros propios datos experimentales, podemos asegurar que las fórmulas, de todas las estudiadas, que mejor comportamiento tienen, son las FDC-G**, puesto que, en todas las comparaciones realizadas son las que aportan resultados más satisfactorios.
8.3.- **ESTUDIO DE NUESTROS RESULTADOS EN EL ESPACIO CIE-1931 Y COMPARACIÓN CON LOS DE OTROS AUTORES.**

En los apartados precedentes de este mismo capítulo, hemos estudiado dos de los objetivos propuestos en esta memoria, la variabilidad de los resultados con los distintos observadores y la adecuación de las fórmulas de diferencias de color, FDC-G**, a nuestros resultados experimentales. Pretendemos, ahora, analizar éstos en el diagrama CIE-1931, buscando las características generales que presentan según la zona del diagrama cromático en la que se encuentre el estímulo estudiado. Simultáneamente, los iremos comparando con los que otros autores obtuvieron en sus trabajos. Dado que antes hemos expuesto suficientemente los resultados de Wyszecki y Fielder (1971), centraremos esta comparación sobre los de MacAdam (1942) y los de Brown y MacAdam (1949) que estudiaron estímulos que, como en nuestro caso, están distribuidos por todo el diagrama cromático y no como los de Wyszecki y Fielder que están restringidos a la zona central de dicho diagrama.

Para llevar a cabo este estudio, iremos analizando los parámetros característicos de la elipse de discriminación de cada uno de los estímulos estudiados, así como el umbral de luminancia. Comenzaremos, precisamente, por analizar este último parámetro.

En la figura 8.13 se ha representado la fracción de Weber de la luminancia obtenida por cada observador para cada uno de los estímulos estudiados. De esta figura podemos extraer una serie de consecuencias que pasamos a comentar. En primer lugar, encontramos que la fracción de Weber para un observador, EG, es siempre, excepto para un estímulo, mayor que la que obtienen los otros dos observadores, lo que indica una capacidad de discriminación...
Figura 8.13.- Fracción de Weber obtenida por los tres observadores para los 20 estímulos estudiados.
distinta y propia para cada observador, de acuerdo con lo que hemos comentado sobre este parámetro cuando lo analizábamos en el apartado anterior para los ocho observadores. Así mismo, está de acuerdo con el hecho de que este observador obtenga también un área de la elipse de discriminación mayor que los otros observadores, como se puede observar en la figura 8.7.

Al ver como varía la fracción de Weber con los distintos estímulos, se pone de manifiesto que, hasta el estímulo 13, ésta permanece prácticamente constante con valores comprendidos entre 0.1 y 0.15, aproximadamente. Sin embargo, a partir del estímulo 14, crece progresivamente llegando, en el estímulo 19, a alcanzar un valor próximo a 0.3. Estos valores más altos de la fracción de Weber coinciden con los estímulos que, en el diagrama cromático CIE-1931, se encuentran localizados en la zona de los verdes, siendo ésta más alta cuanto más alta es la coordenada "y" del estímulo.

Una posible explicación a este hecho partiría de considerar la contribución relativa de cada primario para la obtención de los estímulos. En efecto, en el caso de los estímulos de tono verde, el contenido en el primario verde será relativamente más importante que el de los otros dos primarios con respecto al resto de los estímulos. Si consideramos que el primario verde es generado por un filtro interferencial con pico de transmittancia en 525 nm, se deduce que, teniendo en cuenta la forma de la curva de eficiencia luminosa, la contribución a la luminancia total del estímulo de este filtro es muy importante. Es decir, pequeñas variaciones en la apertura del diafragma del colorímetro que regula este primario, se traducen en variaciones importantes de la luminancia. Sin embargo, los mecanismos de visión del color parecen actuar, como ponen de manifiesto los trabajos de adaptación cromática, de forma que la excitación
intensa de un determinado estímulo implica la perdida de sensibilidad a las variaciones sobre ese mismo estímulo. Es lo que se conoce de forma general como un mecanismo de adaptación. Lo mostrado en cuanto al umbral de luminancia para los estímulos verdes encontraría una explicación sobre esta teoría o, mejor dicho, ayudarían a la corroboración de la misma, ya que un alto contenido de primario verde implicaría una menor sensibilidad a las variaciones en el mismo y, por tanto, en la luminancia.

A pesar de que parece que con estos comentarios quedaría justificado el hecho mostrado en la figura 8.13, hemos de tener una cierta precaución en esta interpretación de los resultados, debido al método adoptado para el ajuste del elipsoide y a las características del espacio CIE-1931. Lo indicado de que una pequeña variación en la apertura del diafragma que regula el primario verde implica una variación importante en la luminancia, hace que el error instrumental asociado a esta variable sea también importante. Además, en el espacio CIE-1931, dos de las variables se refieren a la cromaticidad y otra a la luminancia lo que no supone una homogeneidad de carácter de las mismas, como ocurriría si lo que tuviéramos fuera los tres valores triestímulo. Por todo ello, encontramos necesario posponer el tomar conclusiones definitivas respecto del umbral de luminancia a cuando analicemos el mismo en el espacio de excitación de conos, en el que las tres dimensiones obedecen a mecanismos de la visión relacionados linealmente con los valores triestímulo asociados con los fundamentales de Smith y Pokorny.

Una vez analizado, en principio, el umbral de luminancia, pasamos a los parámetros característicos de la elipse de discriminación cromática. Comenzamos analizando la orientación, con respecto a la cual hemos consideramos interesante relacionar la orientación de las elipses de discriminación con el ángulo que
la línea tritán, que pasa por el centro de la elipse, forma con el eje de abscisas. Para ello, en la figura 8.14, se han representado las orientaciones obtenidas por los tres observadores para los 20 estímulos con un símbolo distinto para cada uno y, con una línea, la orientación de la línea tritán correspondiente. Dado que los estímulos estudiados por nosotros fueron escogidos de tal forma que hubiera cuatro en cada línea tritán, en la figura se han dividido los estímulos en grupos de cuatro, que corresponden a cada una de estas líneas. En general, las orientaciones obtenidas experimentalmente están muy próximas a la de la línea tritán, siendo más destacable éste hecho en los grupos de estímulos centrales, es decir, en aquellos cuya orientación está alrededor de 60°. En cambio, para el primer grupo, quedan las orientaciones

Figura 8.14.- Orientaciones experimentales y de la línea tritán de los 20 estímulos para los tres observadores que participaron en nuestro trabajo.
experimentales, en general, por debajo de la de la línea tritán, y, para el último, quedan por encima de dicha línea. Es decir, las elipses de discriminación cromática parecen orientarse, a lo largo de todo el diagrama cromático, hacia las líneas tritán, apareciendo las mayores diferencias, con respecto a esta línea, cuando nos encontramos en la parte alta de los verdes o en la zona de los rojos próxima al lugar espectral.

Para poder comparar estos resultados, en cuanto a la orientación, con los de otros autores, hemos representado las orientaciones que obtuvo el observador PGN en el trabajo de MacAdam (1942), figura 8.15, y los de los observadores WRJB y DLM en el trabajo de Brown y MacAdam (1949), figura 8.16. En estas

Figura 8.15.- Orientaciones obtenidas por el observador PGN en el trabajo de MacAdam (1942) y de la línea tritán que pasa por cada punto.
Figura 8.16.- Orientaciones de las elipses obtenidas en el trabajo de Brown y MacAdam (1949) y de la línea tritán que pasa por cada punto.
Análisis y discusión de los resultados

figuras, tras el número que identifica cada uno de los estímulos, se ha puesto una letra que nos indica la zona del diagrama en la que se encuentra, así, tendremos A (azules), V (verdes), N (naranjas), R (rojos) y C (acromáticos). Como se puede apreciar en la primera de estas figuras, las orientaciones obtenidas en el trabajo de MacAdam cumplen lo dicho para las obtenidas en nuestro trabajo, es decir, están muy próximas a las de las líneas tritán y tan sólo se alejan mínimamente de ellas los estímulos de la zona más alta de los verdes y los rojos próximos al lugar espectral.

De la figura 8.16, que representa las orientaciones obtenidas en el trabajo de Brown y MacAdam podemos extraer resultados parecidos a los expuestos anteriormente, aunque la mayor variabilidad existente entre los resultados hacen que sean éstos menos concluyentes. Así, por ejemplo, es de destacar que, en la mayoría de los casos, la orientación de la línea tritán queda por encima de la orientación experimental, excepto en la zona de los verdes que sucede al contrario. Por otra parte, los valores de las orientaciones experimentales no están tan próximos a los de las líneas tritán, como sucedía anteriormente, aunque parecen tender a orientarse según estas líneas. En cualquier caso, se hace difícil extraer conclusiones definitivas de estos datos experimentales.

En la figura 8.6.a del primer apartado del presente capítulo, representábamos la relación de semiejes de las elipses de discriminación cromática obtenidas por los tres observadores en los 20 estímulos estudiados por nosotros. Se observa, en principio, una gran variabilidad en este parámetro, como ya habíamos apuntado. De todas formas, es interesante comentar algunas cuestiones con respecto al mismo. En primer lugar, los puntos cuyas elipses tienen la relación de semiejes más pequeña son los que se encuentran en la zona de los azules, éste es el
Análisis y discusión de los resultados

caso de los estímulos 1, 5, 9, 13 y 20, que tienen una relación de semiejes siempre inferior a 0.4. Sin embargo, cuando estudiamos puntos que están próximos al lugar espectral por la zona de los naranjas-rojos (estímulos 3, 4, y 8), las relaciones de semiejes se hacen mucho más altas, llegando, incluso, a valer 0.8, y, por tanto, las elipses son más redondeadas.

Con la idea de comparar estos resultados con los obtenidos por otros autores, hemos representado, figura 8.17, la relación de semiejes de las 25 elipses obtenidas por el observador PGN en el trabajo de MacAdam (1942), y, en la figura 8.18, las de las elipses obtenidas por los dos observadores que intervinieron en el trabajo de Brown y MacAdam (1949).

![Diagrama de Relación de Semiejes](image)

Figura 8.17.- Relaciones de semiejes de las elipses de los 25 estímulos estudiados en el trabajo de MacAdam (1942).
Figura 8.18.- Relaciones de semiejés de las elipses de los 38 estímulos estudiados en el trabajo de Brown y MacAdam (1949).
Como se puede apreciar en la primera de estas dos figuras, las elipses obtenidas en el trabajo de MacAdam (1942) tienen una relación de semiejes que es siempre igual o inferior a 0.5, siendo en la zona de los azules donde son más elongadas y en las de los rojos, por el contrario, donde están más redondeadas. Comparándolas con las obtenidas en nuestras experiencias, lo más interesante es destacar que, en general, son más elongadas que las nuestras, si bien cumplen también el hecho de tener menor relación de semiejes las de los estímulos azules y mayor la de los estímulos rojos.

Una primera observación de la figura 8.18, nos indica que las elipses que se obtuvieron en el trabajo de Brown y MacAdam (1949), son mucho más redondeadas que las anteriores, puesto que sus relaciones de semiejes son más altas. Sin embargo, hay una serie de características comunes a las obtenidas en nuestras experiencias y a las de MacAdam que podemos citar. Así, las elipses más elongadas son, de nuevo, las que están en la zona de los azules; sin embargo, no aparece tan claramente el hecho de que las de la zona roja sean las más redondeadas.

Las características encontradas con respecto a la orientación y relación de semiejes en este espacio nos dan pie para hacer algunos comentarios sobre el diagrama CIE-1931 en cuanto a su capacidad para el análisis de mecanismos de la visión del color. El hecho de que la orientación de las mismas se confunda, en la mayoría de los casos experimentales, con las de las líneas de confusión tritán nos indica que en este diagrama se muestra la presencia clara de los dos mecanismos de visión, tritán y rojo-verde, con una capacidad de discriminación más débil en el primero de ellos. Es decir, nos mostraría que el sistema visual humano es menos sensible a discriminación tritán, conocida

296 Determinación experimental de diferencias de color...
Análisis y discusión de los resultados

normalmente como amarillo-azul, que a la rojo-verde. En cierto sentido, ésto presentaría cierta coherencia con el hecho de que se presenten anomalías del tipo tritán cuando varían ciertas condiciones de observación, campos muy reducidos, Brown (1952) o tiempos de exposición muy breves, Hita et al. (1982), o bien en la mayoría de las patologías que indican anomalías en la visión del color, lo que, además, podría estar relacionado con la menor presencia de conos azules en la fóvea.

Es de notar, así mismo, que las elipses se orienten por debajo de las líneas de confusión tritán cuando el contenido en el primario verde es menor, estímulos 3, 4 y 8, y por encima cuando es mayor, estímulos 15-19, lo que podría interpretarse en base a menor sensibilidad relativa del mecanismo rojo-verde, cuando queda más desequilibrado el balance de este mecanismo. Estos resultados se verán corroborados en el apartado siguiente sobre el espacio de excitación de conos.

En el mismo sentido, la mayor elongación de las elipses para los estímulos azules y la menor para los rojos, podría explicarse sobre el mayor y menor contenido de primario azul, respectivamente, lo que llevaría a una menor o mayor sensibilidad en la discriminación del mecanismo tritán.

A pesar de lo expuesto en estos comentarios podemos extraer la conclusión general de que el diagrama CIE-1931 no es muy adecuado para analizar mecanismos de visión del color. En efecto, nuestra discusión se ha basado sobre la posición de las líneas de confusión de anómalos en la visión del color y sobre el mayor o menor contenido de los distintos primarios, el cual además es difícil de evaluar sobre el diagrama. Por otra parte, en éste no se recoge la excitación efectiva de la distribución energética espectral de cada estímulo sobre los distintos tipos de

Determinación experimental de diferencias de color...
fotorreceptores y tampoco se puede visualizar la codificación posterior que los mecanismos de visión hagan sobre las señales que generan éstos. Por ello, hemos encontrado interesante pasar nuestros resultados al espacio de excitación de conos en el que podemos evaluar cuantitativamente, conforme al modelo de Boynton, la discriminación cromática por mecanismos de forma separada.

Por último, nos disponemos a analizar el área de las elipses de discriminación obtenidas y compararlas con las de otros autores. En la figura 8.7.a se han representado las áreas de las elipses obtenidas por los tres observadores para los 20 estímulos. El primer hecho que aparece en esta figura es el que el área de la elipse obtenida por el observador EG es siempre, salvo algún caso, superior a las obtenidas por los otros observadores, lo que nos está indicando una capacidad de discriminación distinta para cada observador. Prescindiendo de este hecho, vamos a discutir estos resultados comparándolos con los de MacAdam (1942), figura 8.19, y con los de Brown y MacAdam (1949), figura 8.20.

Observando las tres figuras, salta a la vista una cuestión ya comentada con anterioridad, las elipses obtenidas por nosotros son unas 100 veces más grandes que las de los otros dos trabajos. Dado que este hecho ya ha sido estudiado, nos centraremos en las variaciones de este parámetro para los distintos estímulos.

La primera cuestión común a resaltar de estas tres figuras es que las elipses se hacen más grandes en la zona de los verdes, y en ella, tanto mayor cuánto más alta es la coordenada "y". En el caso de los resultados de MacAdam, la elipse de área más grande llega a ser 75 veces la más pequeña. Sin embargo, en nuestras experiencias y en las de Brown y MacAdam, sólo llegan a ser unas 25 veces mayores.
Figura 8.19.- *Areas de las elipses obtenidas en el trabajo de MacAdam (1942) multiplicadas por 10^6.*

En los tres trabajos queda patente que las elipses que presentan menor área son los correspondientes a estímulos que se encuentran en la zona de los azules del diagrama cromático. Así mismo, es común a los tres trabajos, el hecho de que en las zonas roja, naranja y acromática, las áreas no presentan pautas claras de comportamiento como las mencionadas en las zonas azul y verde.

El hecho de que las elipses sean más grandes para los estímulos verdes y más pequeñas para los azules se ha asociado tradicionalmente a las características de la definición del diagrama CIE-1931, es decir, a los primarios empleados y a sus...
Figura 8.20.- *Areas de las elipses obtenidas en el trabajo de Brown y MacAdam (1949)* multiplicadas por \(10^6\).
unidades asociadas. En cualquier caso, es interesante anotar algunas de las características vistas en cuanto a la comparación en el tamaño de las elipses de unos estímulos a otros, cuando analizamos el trabajo de MacAdam por un lado y el de Brown y MacAdam y el nuestro por otro. Como hemos indicado, en el primero de estos trabajos las elipses son en general más elongadas y las diferencias de tamaño mayores. No encontramos otra diferencia a resaltar entre los dos grupos de trabajos que pueda justificar estas discrepancias mas que el hecho de que MacAdam obtuviera sus elipses trabajando a luminancia constante, mientras que las nuestras y las de Brown y MacAdam son el resultado de umbrales globales de discriminación. Parecería que el restringir los estímulos a comparar al caso de que todos tengan igual luminancia, acentuaría las diferencias encontradas entre las elipses de discriminación. A pesar de ello, desde el principio de este trabajo hemos entendido que la via correcta de estudio de discriminación implica no forzar al ojo a un funcionamiento que no es el habitual en él, es decir, con variaciones simultáneas de luminancia y cromaticidad. En cualquier caso, las figuras 8.15, 17 y 19, que muestran los resultados de MacAdam, nos hacen ver lo apropiado de los mismos para la extracción de conclusiones, a pesar de que éstas se vean limitadas por el hecho de que estos resultados fueron obtenidos para un sólo observador.

Como resumen de todo lo comentado en este apartado, con respecto a los parámetros característicos del elipsoide de discriminación, podemos decir que, en cuanto al umbral de luminancia, éste se mantiene, casi siempre, alrededor de 0.1, creciendo ostensiblemente para aquellos estímulos que se encuentran en la zona de los verdes, llegando a tomar un valor próximo a 0.3.

Respecto a las elipses de discriminación cromática, se
puede afirmar que sus orientaciones se acercan bastante a las de las líneas tritán que pasan por su centro, separándose levemente las correspondientes a estímulos situados en la zona de los rojos y en la de los verdes. Un comportamiento similar ocurre con las obtenidas por MacAdam y, en menor proporción, con las obtenidas por Brown y MacAdam.

La relación de semiejes presenta una mayor variabilidad, aunque podemos resaltar la mayor elongación de las elipses en la zona de los azules y la menor en la de los rojos anaranjados. Parecido comportamiento se encuentra en los resultados de MacAdam y Brown y MacAdam, si bien, los de aquel muestran unas elipses, en general, más elongadas en todo el diagrama cromático.

Por último, en las áreas, también, se encuentra un comportamiento similar para los tres trabajos, es decir, áreas más pequeñas en la zona de los azules, que se van haciendo más grandes hasta encontrarse, en los verdes, las de mayor tamaño.
8.4.- ANALISIS DE NUESTROS RESULTADOS EN EL ESPACIO DE EXCITACION DE CONOS.

Como último apartado de este capítulo de análisis y discusión de los resultados, nos disponemos a realizar un estudio de los resultados experimentales obtenidos en el espacio de excitación de conos. Estos resultados se han expuesto en el capítulo anterior en la tabla VII.4 y en las figuras 7.26 a 7.48.

Una primera observación de las figuras 7.46 a 7.48, que recogen el conjunto de las 20 elipses obtenidas por cada observador en el espacio de excitación de conos, nos indica dos hechos destacables: 1) todas las elipses se orientan alrededor de 90°, es decir, se orientan en la dirección del eje S que da la excitación del cono S; 2) aunque el tamaño de las elipses crece a medida que lo hace el nivel de excitación del cono S, la diferencia de sus tamaños es menor que la que se daba en el diagrama CIE, y por tanto, este espacio demuestra ser mucho más uniforme que el diagrama de cromaticidad CIE-1931. El primero de estos hechos hace que podamos considerar los ejes de la elipse de discriminación como umbral de discriminación en cada uno de los ejes cardinales de la visión del color, el eje L - 2M y el S, ya que tendríamos que calcular su proyección sobre dichos ejes para lo cual habría que multiplicar por el coseno del ángulo que forman los semiejes de la elipse con los ejes del espacio, que, al ser éste muy pequeño, vale, aproximadamente, 1. La segunda afirmación la hacemos después de tener en cuenta que, mientras en el diagrama CIE obteníamos elipses unas 25 veces mayores que otras, en este espacio, el peor de los casos, son unas 10 veces mayores. Una comprobación más detallada de todo lo dicho podemos encontrarla sin más que revisar las figuras 7.26 a 7.45, en las que se representan las elipses obtenidas por los tres observadores para cada estímulo en este espacio, y la tabla VII.4, donde se dan los
parámetros característicos de las elipses de discriminación y el logaritmo de la fracción de Weber de la luminancia.

De acuerdo con lo dicho anteriormente, vamos a identificar el semieje mayor de la elipse "a" con ΔS, umbral de discriminación en el eje S, y el semieje menor "b" con $\Delta(L - 2M)$, umbral de discriminación en el mecanismo $L - 2M$. Pasamos, ahora, a ver cómo varían estos umbrales de discriminación.

En primer lugar, vamos a ver como varía el umbral de discriminación en el eje S con el nivel de excitación del cono S. Para ello, hemos realizado la figura 8.21 en la que se representa ΔS frente a S para los cinco niveles distintos de excitación del mecanismo $L - 2M$.

Una primera observación de esta figura ya nos indica que el umbral de discriminación en el cono S crece a medida que lo hace su nivel de excitación, hecho éste apuntado en trabajos previos, Rodieck (1973), y que queda aquí plenamente confirmado. De todas formas, particularizando más en esta figura, podemos observar también que cuando pasamos del primer estímulo, que tiene un nivel de excitación del cono S de unos 32 td, al segundo, de unos 94 td, ΔS permanece prácticamente constante y es, a partir de este nivel, cuando crece de una forma importante. Sólo cuando $L - 2M = 15$ td, se aprecia un cierto crecimiento al pasar de 32 a 94 td. Que el balance rojo-verde esté más o menos equilibrado no parece influir en la variación de ΔS con S, puesto que las cinco figuras, en las que en cada una hay un nivel distinto de $L - 2M$, presentan resultados muy similares. Así, tanto la primera figura, en la que el balance rojo-verde está desequilibrado hacia el verde, como las demás, que expresan una contribución cada vez más importante del cono L (rojo), hasta la última, en que el balance está claramente desplazado hacia el rojo, reflejan el

304 Determinación experimental de diferencias de color...
Figura 8.21.- Variación de \(\Delta S \) frente al nivel de excitación del cono \(S \) para cinco niveles distintos del balance rojo-verde (\(L - 2M \)).
Figura 8.22.- Variación de ΔS con el nivel de excitación del mecanismo $L - 2M$ para cuatro niveles distintos de excitación del cono S.

Determinación experimental de diferencias de color...
mismo tipo de crecimiento de ΔS frente a S.

Podríamos preguntarnos, así mismo, cómo varía ΔS al variar $L - 2M$. Para intentar responder a esta pregunta hemos representado ΔS frente a $L - 2M$ para los cuatro niveles de excitación del cono S, figura 8.22. De ella parece extraerse la conclusión de que ΔS es independiente del balance rojo-verde, puesto que, aunque para niveles altos de S (dos primeras figuras) oscila fuertemente, se mantiene dentro de los mismos márgenes y, para los otros dos niveles de S (figuras inferiores), toma, prácticamente, el mismo valor, independientemente del de $L - 2M$ o del observador de que se trate.

Una vez analizada la discriminación debida al cono S, nos disponemos a estudiar el umbral de discriminación en el otro eje cardinal de este espacio, el eje $L - 2M$. Para ello, estudiaremos las posibles variaciones de $\Delta(L - 2M)$ al variar $L - 2M$ y al variar el nivel de excitación del cono S.

Analizaremos primero las variaciones de $\Delta(L - 2M)$ con $L - 2M$, figura 8.23. Observando las cuatro figuras que constituyen la figura 8.23, notaremos como el valor de $\Delta(L - 2M)$ decrece, en general, al aumentar $L - 2M$ hasta que éste alcanza valores próximos a cero y a partir de entonces comienza a crecer. Ésto parece indicar que cuando el balance rojo-verde está equilibrado ($L - 2M = 0$), el umbral de discriminación en este eje es mínimo y, a medida que se desequilibra bien sea hacia el rojo o hacia el verde, este crece considerablemente. El distinto nivel de excitación del cono S que tengamos no parece influir en esta conclusión, aunque, para un nivel de $S = 94$ td (figura inferior izquierda), es donde queda más palpable.

Si nos planteamos la posible variación de $\Delta(L - 2M)$ con el
Figura 8.23.- Variación de $\Delta(L - 2M)$ con el nivel de $L - 2M$ para los cuatro niveles de excitación del cono S.

Determinación experimental de diferencias de color...
Figura 8.24.- Variación de Δ(L - 2M) con el nivel de excitación del cono S para cinco valores de L - 2M.
nivel de excitación del cono S, figura 8.24, para los cinco niveles de $L - 2M$, llegaremos a la conclusión de que el nivel de excitación del cono S no afecta a $\Delta(L - 2M)$. En efecto, si observamos las cinco figuras que constituyen la 8.24, veremos que el valor de $\Delta(L - 2M)$ permanece prácticamente constante al variar S, si bien, en algún caso pudiera dar la impresión de que va decreciendo, figura correspondiente a $L - 2M = -39$ td, o de que crece para algún observador en particular para un caso concreto, observador EG en la figura de $L - 2M = 54$ td.

A la vista de todo lo expuesto hasta aquí, se pueden extraer algunas conclusiones que resumimos en los siguientes puntos:

1) La variación del umbral de discriminación en cada uno de los ejes de este espacio sólo depende del nivel de excitación en el eje correspondiente. Así, ΔS sólo depende del nivel de excitación de S, pero no del de $L - 2M$, e $\Delta(L - 2M)$ sólo depende de $L - 2M$ y no del nivel de S.

2) El umbral de discriminación en el eje S, ΔS, crece a medida que lo hace el nivel de S.

3) El umbral de discriminación a lo largo del eje $L - 2M$, $\Delta(L - 2M)$, alcanza un mínimo cuando el mecanismo rojo-verde está equilibrado ($L - 2M = 0$) y crece a medida que lo hace la contribución de uno de los conos respecto al otro.

Como ya decíamos, en el capítulo 2, un trabajo muy interesante, que estudia la capacidad de discriminación a lo largo de los ejes críticos de la visión del color, es el de Boynton y Kambe (1980); compararemos, ahora, los resultados obtenidos en nuestro trabajo con los obtenidos por estos autores.

En líneas generales, los resultados de ambos trabajos son similares. Es significativo encontrar que Boynton y Kambe llegan a
Análisis y discusión de los resultados

las tres mismas conclusiones expuestas un poco antes como resumen de nuestros resultados, a pesar de que su método experimental es muy distinto del empleado por nosotros. Sus umbrales de discriminación resultan ser 13 veces más grandes que los ejes de las elipses de igualación del color obtenidas por MacAdam (1942), mientras que, los obtenidos en nuestro trabajo, son unas 10 veces mayores. Pueden encontrarse otras diferencias cuantitativas respecto de nuestros datos experimentales.

Según Boynton y Kambe (1980), sus resultados de discriminación dependientes del cono S, se adaptan a la ecuación:

\[
\frac{\Delta S}{S} = 0.18 + \frac{k S_o}{S}
\]

donde \(k \) es una constante característica de cada observador, debida a su distinta capacidad de discriminación, y que, en su caso, varía de 0.5 a 4, y \(B_o \) es otra constante fija e igual a 44.5 td.

De esta ecuación se deduce que cuanto mayor es el nivel de excitación del cono S menor es el segundo sumando de la ecuación y, por tanto, \(\Delta S/S \) será levemente superior a 0.18; pero a medida que S sea más pequeño, ese sumando tendrá mayor importancia, lo que hará que \(\Delta S/S \) se haga mucho mayor.

Estas mismas conclusiones se pueden observar en nuestros resultados con pequeñas diferencias que pasamos a comentar. En la tabla VIII.3, aparecen nuestros resultados de \(\Delta S/S \) medios, para los distintos niveles de excitación del cono S. Encontramos distintos resultados para cada observador debido a su distinta capacidad de discriminación, pero no llegan a ser tan altos como los encontrados por Boynton y Kambe. Así mismo, podemos ver como \(\Delta S/S \) crece a medida que desciende el valor de S, pero sus valores
Análisis y discusión de los resultados

Tabla VIII.3.- Valores de $\Delta L/L$ y $\Delta S/S$ obtenidos en nuestras experiencias y en las de Boynton et al. (1983).

<table>
<thead>
<tr>
<th>TRABAJOS</th>
<th>OBS.</th>
<th>$\Delta L/L$</th>
<th>$\Delta S/S$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuestras</td>
<td>EG</td>
<td>0.0116</td>
<td>0.350</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.149</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.118</td>
</tr>
<tr>
<td></td>
<td>JA</td>
<td>0.0093</td>
<td>0.235</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.111</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.109</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.084</td>
</tr>
<tr>
<td></td>
<td>PL</td>
<td>0.0086</td>
<td>0.301</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.122</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.117</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.096</td>
</tr>
<tr>
<td>Boynton</td>
<td>RMB</td>
<td>0.0074</td>
<td>0.29</td>
</tr>
<tr>
<td>et al.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>CXO</td>
<td>0.014</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>ALN</td>
<td>0.017</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>GMB</td>
<td>0.017</td>
<td>0.30</td>
</tr>
</tbody>
</table>

son mucho más pequeños que los obtenidos por ellos, ya que mientras Boynton y Kambe obtenían valores siempre superiores a 0.18, en nuestras experiencias sólo se pasa ese valor en el caso de una excitación del cono S muy pequeña, para la que sí toma un valor muy superior.

En el caso de $\Delta L/L$, Boynton y Kambe, estiman unos valores alrededor de 0.02, mientras que, en nuestro caso, como se puede ver en la tabla VIII.3 es, aproximadamente, la mitad.

En esa misma tabla, se ha incluido también, los valores de $\Delta L/L$ y $\Delta S/S$ obtenidos por Boynton et al. (1983) cuando estudiaron el estímulo (0.270,0.190), en coordenadas CIE, a un nivel de luminancia de 120 td, que supone un nivel de excitación del cono S alto. Estos valores son del orden de los obtenidos por Boynton y Kambe (1980) para $\Delta L/L$ y mayores que los que estos autores y
nosotros aportamos para $\Delta S/S$. Es difícil extraer más conclusiones de la comparación con este trabajo ya que estos autores sólo estudiaron un estímulo, al estar en realidad interesados en el análisis de la fórmula CIÉLAB en el espacio de excitación de conos.

Uno de los objetivos de este último trabajo era la obtención del umbral de discriminación en cada uno de los ejes críticos y normalizarlos a la unidad, podríamos hablar entonces de unidades de discriminación en cada uno de los ejes. Esta idea llevó a Nagy et al. (1987) a trasladar al espacio de excitación de conos las elipses obtenidas en los trabajos de MacAdam (1942), Brown y MacAdam (1949) y Wyszecki y Fielder (1971) y normalizarlas dividiendo los semiejes de cada una de ellas por la unidad de discriminación que determinan sobre cada uno de los ejes del espacio. Aunque esta idea presenta un cierto interés, nosotros no la hemos tenido en cuenta a la hora de tratar nuestros resultados por que pensamos que con ella se pierde información, ya que implica una normalización elipse a elipse.

Como resumen de la comparación realizada entre nuestros datos experimentales y los obtenidos en el trabajo de Boynton y Kambe podríamos decir que, las conclusiones que se derivan de ellos, coinciden en líneas generales, aunque existen pequeñas diferencias cuantitativas que, entre otras razones, pueden ser debidas al distinto método experimental empleado.

Por último, nos hemos planteado estudiar como varía el umbral de luminancia en este espacio. Con este fin, hemos representado la fracción de Weber de la luminancia para los 20 estímulos y los tres observadores en la figura 8.25. De esta figura deducimos, en primer lugar, que el umbral de luminancia para el observador EG es siempre, excepto para el estímulo 12,
Figura 8.25.- Umbral de luminancia obtenido para los veinte estímulos por los tres observadores en el espacio de excitación de conos.
Análisis y discusión de los resultados

mayor que la obtenida por los otros dos observadores, hecho también observado en la misma representación realizada para los valores obtenidos en el espacio CIE, que, desde nuestro punto de vista, está relacionado con la distinta capacidad de discriminación de cada observador. Así mismo, podemos notar como el valor del umbral luminancia es menor en este espacio que en el CIE, especialmente en los estímulos verdes en los que en el CIE alcanzaba valores muy altos y, sin embargo, en el espacio de excitación de conos tiene valores similares al que aparece en los demás estímulos. De hecho, podemos deducir de esta figura que el umbral de luminancia apenas varía con el estímulo, manteniéndose dentro de la propia variabilidad interobservador. Este resultado no concuerda con lo visto en la figura 8.13 que nos mostraba el umbral de luminancia en el espacio CIE-1931, lo que, en principio, parecería contradictorio, ya que, salvo factores de proporcionalidad, la luminancia en un caso y en otro está definida prácticamente de igual forma \((L_\lambda + M_\lambda = V_\lambda)\).

Como indicábamos al comentar la figura 8.13, el crecimiento del umbral para estímulos de tono verde en el espacio CIE-1931, podría verse falseado por el error instrumental en la luminancia y por el método de ajuste en un espacio en el que mezclamos coordenadas de cromaticidad con luminancia (valor triestímulo). Por ello, encontraremos más fiables los resultados que se muestran en la figura 8.25 referentes al espacio de excitación de conos. De hecho, en este espacio quedan especificados de forma separada los tres mecanismos de visión del color del modelo de Boynton, los que a su vez se relacionan de forma lineal con la excitación de los tres tipos de conos. Así, el canal que lleva la información de la luminancia \((L + M)\) queda claramente diferenciado y tratado al mismo nivel que los otros dos canales cromáticos, lo que hace más fácil su estudio y caracterización.
Por otra parte, el resultado mostrado en cuanto a la independencia de la discriminación en este mecanismo con la cromaticidad de los estímulos parece corroborar el modelo, ya que implica una clara separación del canal acromático de los dos cromáticos, que tienen un carácter oponente, opuesto al acromático que es aditivo. A la vista de estos datos cabría concluir que el umbral de luminancia sólo podría venir afectado por el nivel de luminancia de los estímulos, lo que no se observa en nuestros resultados ya que es el mismo en todos los estímulos estudiados.
8.5.- **BIBLIOGRAFIA.**

CAPÍTULO IX:

APORTACIONES Y CONCLUSIONES.
IX.- APORTACIONES Y CONCLUSIONES.

Las principales aportaciones y conclusiones de esta memoria de doctorado las podemos resumir en los siguientes apartados:

1) Se ha realizado una extensa revisión y puesta al día del tema de teorías y modelos de la visión del color que abarca desde las primeras teorías tricromáticas hasta el análisis comparativo de los tres modelos de colores oponentes más actuales. A continuación se ha estudiado con detenimiento el modelo de Boynton que determina el espacio de excitación de conos al que hemos llevado nuestros resultados experimentales.

2) Se ha elaborado una nueva fórmula de diferencias de color, FDC-G**, que mejora la anteriormente propuesta por nuestro laboratorio, FDC-G*. Al comparar esta fórmula con las fórmulas de diferencias de color CIELUV, CIELAB y LABNHU sobre datos clásicos en Colorimetría Diferencial, hemos encontrado que FDC-G** se adecúa mejor que el resto para la representación de dichos datos experimentales.

3) Se ha mejorado el dispositivo experimental usado anteriormente en nuestro laboratorio para la determinación de...
umbrales diferenciales de color. En especial, se ha introducido una nueva cavidad integradora que permite obtener niveles de luminancia diez veces superiores a los de trabajos previos. Así mismo, se ha optimizado el método experimental a partir del establecimiento previo de las condiciones de observación a emplear en este tipo de experiencias.

4) Se han determinado experimentalmente los umbrales diferenciales de color de un conjunto de 20 estímulos distribuidos por todo el diagrama de cromaticidad CIE-1931, con un nivel de luminancia de 12 cd/m² y para tres observadores. Los estímulos se sitúan sobre líneas de confusión tritán y rojo-verde. El conjunto de estas medidas, junto con las realizadas para un estímulo por ocho observadores, ha supuesto un total de alrededor de 100000 comparaciones de color.

5) Al estudiar la variabilidad interobservadores en la determinación de umbrales diferenciales de color, encontramos que éstas son menores en nuestro trabajo que en los realizados por otros autores. Esto es debido al método experimental empleado en nuestras experiencias, que permite una mayor objetividad y reproducibilidad en las medidas. El hecho de que se encuentren muy pequeñas diferencias en las orientaciones de las elipses de discriminación y mayor variabilidad en la relación de semiejes, implica una facilidad para fijar la capacidad de discriminación de un observador según distintas direcciones del diagrama cromático, lo que no lo permiten las elipses obtenidas por el método de igualación de color. Los resultados del estudio de las diferencias interobservador, nos ha llevado a fijar en tres el número suficiente de observadores para la realización del resto de nuestras experiencias.

6) Los semiejes mayores de las elipses de discriminación
obtenidas en el diagrama CIE-1931, se orientan principalmente a lo largo de las líneas de confusión tritán. Las desviaciones de este comportamiento, se presentan cuando el estímulo tiene un alto contenido en rojo o en verde. Así mismo, las elipses de mayor elongación aparecen en la zona de los azules y las menos en la zona próxima al lugar espectral rojo-verde. Estos resultados coinciden, en parte, con los obtenidos por otros autores utilizando un método experimental distinto. La interpretación de estos resultados en el diagrama CIE-1931 se hace difícil, ya que, este diagrama no recoge la excitación efectiva de los estímulos sobre los distintos tipos de fotorreceptores y la codificación posterior que, de las señales que generan éstos, hagan los mecanismos de visión.

7) El tamaño de las elipses de discriminación obtenidas es alrededor de 100 veces mayor que las deducidas utilizando métodos de igualación de color. Las características generales en el diagrama CIE-1931 del área de las elipses son similares a las obtenidas por otros autores, es decir, áreas más pequeñas en la zona de los azules, que se van haciendo más grandes hasta encontrarse, en la zona de los verdes, las de mayor tamaño. Las diferencias máximas en el tamaño de las áreas de unos estímulos a otros son menores que las encontradas en elípses de igualación de color obtenidas a luminancia constante. En este caso, las elipses tienen, en general, mayor elongación que las obtenidas por nosotros.

8) Se ha observado que una mayor capacidad de discriminación cromática lleva consigo una mayor capacidad de discriminación en luminancia tanto en el espacio CIE como en el de excitación de conos. Sin embargo, el espacio CIE presenta dificultades de interpretación en el umbral de cromaticidad asociado al área y en el umbral de luminancia asociado a la
fracción de Weber cuando éstos toman valores altos. Hechos que se evidencian en una mayor variabilidad entre observadores y en una mayor influencia de los errores asociados a las medidas.

9) De los resultados obtenidos en el espacio de excitación de conos, observados globalmente, concluimos que todas las elipses se orientan alrededor de 90°, es decir, en la dirección del eje S. Esto hace que podamos considerar los ejes de la elipse de discriminación como umbral de discriminación en cada uno de los ejes cardinales de la visión del color, el eje L - 2M y el S. Además, aunque el tamaño de las elipses crece a medida que lo hace el nivel de excitación del cono S, la diferencia de sus tamaños es menor que la que se daba en el diagrama CIE, y por tanto, demuestra ser más uniforme que el diagrama de cromaticidad CIE-1931.

10) En cuanto al umbral de discriminación del cono S decir que, dicho umbral crece a medida que lo hace el nivel de excitación del cono S, sobre todo cuando este nivel es superior a 100 td. Los valores de $\Delta S/S$ varían entre 0.09 y 0.45 dependiendo del nivel de excitación del cono S. Sobre este umbral de discriminación no influye el valor de L - 2M.

11) Hemos encontrado que el umbral de discriminación en el mecanismo L - 2M, alcanza un valor mínimo cuando el balance rojo-verde está equilibrado, creciendo, aunque en poca medida, cuando está desequilibrado, ya sea por una mayor contribución del cono L o del cono M. Los valores de $\Delta L/L$ son inferiores a 0.02. La distinta excitación del cono S no afecta al umbral de discriminación del mecanismo rojo-verde.

12) Al comparar los resultados experimentales obtenidos por nosotros en el espacio de excitación de conos con los
obtenidos por otros autores, encontramos que éstos coinciden en líneas generales, si bien las características apuntadas de los mecanismos de discriminación se muestran más claramente en nuestro trabajo. Se presentan algunas diferencias de tipo cuantitativo que radican, fundamentalmente, en que, los umbrales de discriminación obtenidos por nosotros en los dos ejes del diagrama, son sensiblemente más pequeños que los obtenidos en otros trabajos, lo cual puede ser debido a los distintos métodos experimentales empleados.

13) Al analizar el umbral de luminancia en el espacio de excitación de conos se observa que éste permanece prácticamente constante para los 20 estímulos estudiados, tomando un valor la fracción de Weber entorno a 0.1. Este resultado, que muestra una independencia entre el umbral de luminancia y la cromaticidad del estímulo, parece corroborar el modelo, ya que implica una clara separación del canal acromático de los dos canales cromáticos. Por tanto, el umbral de luminancia sólo podría venir afectado por el nivel de luminancia de los estímulos, lo que no se puede observar en nuestros resultados ya que es el mismo en todos los estímulos estudiados.

14) Posiblemente, uno de los resultados experimentales de más interés de este trabajo, radica en la similitud e igualdad de los umbrales obtenidos por los distintos observadores. El hecho de que se haya considerado usualmente los datos de MacAdam para un sólo observador como referencia en el cálculo de tolerancias de color, nos inclina a pensar que, dados nuestros resultados experimentales, éstos puedan ser presentados como patrones con un índice de fiabilidad y reproducibilidad muy superiores a los hasta ahora considerados, y así se va a proponer a la C.I.E.
Los resultados obtenidos y la discusión realizada nos hace pensar en cubrir nuevas etapas en el análisis de los distintos mecanismos de la visión del color en cuanto a la discriminación. En concreto, los siguientes pasos podrían estar encaminados a estudiar la influencia del tamaño del test, ampliando nuestro estudio a campos de 10° y mayores, lo que, probablemente, pondría de manifiesto la influencia de fenómenos como la intrusión de bastones o la mancha de Maxwell. Otro aspecto interesante sería estudiar estímulos de niveles de luminancia distintos, lo que podría ser útil para analizar las diferencias entre modelos de visión del color, como la posible contribución de las conos S a la luminancia, y así como, para ver la posible variación del umbral de luminancia con ésta.