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ABSTRACT

PIEZOELECTRIC TRANSDUCER DESIGN
OPTIMIZATION

To respond to the design of a torsion sensor into mechanical ultra-

sonic tissue applications, it is necessary to use FEM Finite Element

Models. Through a simplified analytical model of torsion transducer,

we determine the resonant frequency for a torque transducer ultra-

sonic waves. It is computationally validated. More specifically the

idea is to refine and optimize the design to be applied to the detection

of preterm birth identifying changes in the consistency of the cervical

tissue through the shear modulus measurements. Therefore, a model

with a disk transmitter and a ring receiver for easy accessibility was

performed and sensitivity analysis to find the range of optimal design

values with this application was calculated. Therefore, it is neces-

sary to optimize the piezoelectric transducer model design regarding

two types of parameters. On one hand the design parameters, and on

the other hand the model parameters that characterize the specimen.

The forward problem is obtained by performing a three-dimensional

finite element simulation. The experimental measurements are sim-

ulated by adding a gaussian noise as a percentage of the RMS of

the numerically predicted signals. In addition, a semi-analytical es-

timate of the probability of detection (POD) is developed to provide

a rational criterion to optimize the experimental design.



RESUMEN

OPTIMIZACIÓN DEL DISEÑO DE UN
TRANSDUCTOR PIEZOELÉCTRICO

Para responder al diseño de un sensor de torsión con aplicaciones

a la mecánica tisular ultrasónica, es necesario el uso de modelos de

elementos finitos FEM como procedimiento directo. A través de un

modelo simplificado de análisis de transductor de torsión, se deter-

mina la frecuencia de resonancia que se valida computacionalmente.

Más específicamente, la idea es refinar y optimizar el diseño que debe

aplicarse a la detección de parto prematuro identificar los cambios

en la consistencia del tejido del cuello uterino a través de medidas

del módulo G . Por lo tanto, se elige un modelo con un disco trans-

misor y un anillo receptor para facilitar la accesibilidad en el diseño

y se realizó un análisis de sensibilidad para encontrar el rango de

valores óptimos con esta aplicación. Para optimizar el diseño del

modelo del transductor piezoeléctrico con respecto a dos tipos de

parámetros. Por un lado los parámetros de diseño, y por otra parte

los parámetros del modelo que caracterizan la muestra. Las medi-

ciones experimentales se simulan mediante la adición de un ruido

gaussiano como un porcentaje de la RMS de las señales predichas

numéricamente. Además, una estimación semi-analítica de la proba-

bilidad de detección (POD) se ha desarrollado para proporcionar un

criterio racional para optimizar el diseño experimental.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Piezoelectric ceramic materials, such as lead zirconate titanate (PZT) are

now widely used in solid-state actuators and sensors which were designed

for numerous applications, such as precision positioning, noise and vibra-

tion sensing and cancellation, linear motors, and ultrasound techniques in

our case. This work focuses on designing and optimizing a transducer ca-

pable of transmitting and receiving torsional ultrasound waves. In many of

those applications, a large torsional displacement is required, for example,

in robotics to achieve the micropositioning, in CD drivers, in helicopters

to control the trailing edge flaps (TEF) of rotor blades, etc. Otherwise

torsional actuators are capable of producing both large torque and large

angular displacement in a compact package, sufficient to meet many smart

structures requirements, and can be tailored for a variety of application re-

quirements [1]. Longitudinal-torsional coupling have been explored, such as

exponential decay horns and layering of different materials, but in our case

is an effect to minimize [2].

There are several optimization criteria of ultrasonic sensors, where the

1
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conventional characteristics of performance have been being replaced with

time. For example, the use of center frequency (maximum frequency in the

amplitude spectrum) and the round trip insertion loss1 (which is a parame-

ter associated with the frequencies that fall in the passband of a filter) are

not the most appropriate when applied to models of multi spectrum. The

new parameters such as centroid frequency and energy factor round, has

showed they are more suitable. Other new features describing the wave-

form and amplitude spectra have been introduced to improve the input

parameters of the optimization algorithm, which facilitates the extension

for different applications as is the case in this study. The great advantage

of doing a design and manufacturing it is that the overall performance we

get is explicit and quantitative but also takes into account the point of

view of application to which it is addressed, thus avoiding the ambiguous

response that can find customer [4].

The combined use of finite element simulation and optimization meth-

ods involves a convenient way to design ultrasonic transducers. When using

the finite element analysis (FEA) based on the optimization of transducers

requires a global cost function as a criteria to minimize, that depends on

the model evaluation. The evaluation of cost functions for different char-

acteristics of the transducers, and comparison of results for the different

simulations and the resulting sound field carry different design alternatives

[5], [6]. The use of finite element analysis combined with the multi-objective

decision makes it possible to produce a good design of ultrasonic sensor in

1One measure of overall round-trip efficiency is insertion loss. Efficiency is measured

by comparing the power load resistor Rf with the transducer in place to the power there

without the transducer. Insertion loss is defined as the ratio of the power in Rf over

that available from the source generator. IL(f) = Wf

Wg
= [|Vf

Vg
|2(Rf+Rg

Rf
)] and in dB, it is

ILdB(f) = 10log10IL(f). Where Wf is the power in Rf and Vg is the source.[3]
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tip shape and operating frequency, where the conflict of multiple criteria

concerning vibration, impedance and acoustic effects of transducer are op-

timized while the design time and is very satisfactory for decisions of the

designer. As a result, significantly improves the standard values of all the

criteria considered [7]. Transfer matrix methods the design of a Langevin

transducer has been formulated as a constrained multiobjective optimiza-

tion problem involving continuous and discrete design variables [8].

The piezoelectric transducers convert electrical signals into mechanical

vibrations and vice versa. Bolt-clamped Langevin Type (BLT), consist of

piezoelectric disks and two elastic blocks fitted at each end, efficiently gen-

erating mechanical vibrations of the desired frequencies. They generally

be applied as actuators in most applications. Most of them use longitudi-

nal vibration in the thickness direction of the piezoelectric disk. However

there are studies where torsional vibrations generated by elastic rod work-

ing as a viscous sensor. From the analytical point of view the shear BLT

studied by deriving the equations features and modes of vibration [9],[10].

The longitudinal bending mode is composed of a symmetrical structure, the

piezoelectric ceramic elements are located near the geometric center of the

transducer [11],[12]. At first they were designed to generate uniform droplets

micro [13], but are also used in the near field acoustic levitation (NFAL)

which caused the coupling of the longitudinal mode of the Langevin type

transducer with the flexural mode of the top plate used in the areas of non-

destructive evaluation, underwater acoustics and bioengineering [14]. And

there is also the case of micro torsional mirrors, optical scanners used as in

high frequency. The micro torsional mirror consists of a driving mechanism

and a reinforced mirror plate. And have four advantages fundamentally

the driving voltage is lower due to the use of the gap-closing parallel-plate
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electrodes, and the traveling distance is remarkably magnified by the lever

mechanism; the mirror plate is subjected to a pure torque generated by the

driving mechanism, thereby preventing wobble motion of the mirror plate;

the stiffness and flatness of the mirror plate is increased by incorporating

a reinforced frame, which improves the optical performance of the scanner;

and the mirror can be used at a higher scanning frequency due to the higher

vibration mode of the three-mass system [15].

The numerical approaches used can be used to evaluate other types of

transducer designs and to establish tolerance limits for each of the design

parameters required to maintain transducer performance within a specified

range [16]. Also, the differential equations of piezoelectric torsional motions

are derived in terms of the circumferential displacement and the electric po-

tential [9]. The analysis shows that compliance effects increase with applied

shear rate and that the effects of torsional and axial compliance are coupled

in measurements of the shear stress and first normal stress difference [17].

The analytical models of the transducers system are established on the basis

of electromechanical equivalent circuitry theory, vibration theory and wave

theory, which lay the foundation for determining the initial topological in-

formation of the ultrasonic transducer. The resonance frequency, vibration

displacement nodes and rule of ultrasonic energy transmission are acquired

by making modal and harmonic analysis [18].

The application of ultrasonic sensors in the clinical field, is covered

mainly by the ultrasound waves through the treatment of P type, so that

there is a high interest in the design of optimized efficiency transducers. A

specific contribution is to reduce the pulse length acoustic transmitter trans-

ducer, this improves the bandwidth of the transducer and thus reduces their
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factor Q (quality factor or selectivity factor is a parameter which measures

the ratio between the energy reactive stored and dissipated during a com-

plete cycle of the signal). Another optimization can be performed in the

dynamic range of the transducer, which is of great importance because of

the extremely large differences in reflectance that occurs in the human body

[19].

Moreover, the intensity of 100 mW/cm2 is considered clinically safe even

for prolonged exposure, and is intended to clinically relevant therapeutic

applications, including treatment of wounds and transdermal drug delivery.

Being able to produce this level of intensity with only 15 − 20 V offers a

complete wireless portable use attractive and both patients and doctors,

and potentially increasing patient compliance with doctors recommenda-

tions [20].

It is worth mentioning the case of devices designed to measure the stiff-

ness in the regeneration of distraction osteogenesis, although it is not an

ultrasonic sensor, torsional rigidity is evaluated by applying a torque mini-

mum. This method exhibits strong predictive power for the torsional rigidity

in bone fractures, and has great potential for monitoring of fracture healing

[21].

The aim of this work is to design an ultrasonic transducer for clinical ap-

plications in the field of tissue characterization with high sensitivity, which

can be defined and made now or in the near future. Since the design for the

frequency dependent attenuation in biological tissues is an important topic

for research in this field.
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We propose a feasible torque transducer to record information on the

mechanical shear modulus in tissues, then it was simulated under a FEM

(Finite Element Model) in FEAP software, revealing the main mechanisms.

Subsequently confirmed with an analytical model to find the main correla-

tions between the parameters of the numerical model.

The results obtained after a parametric sensitivity analysis in both di-

mensions of the transducer as in the layers of tissue through which the wave

propagates relate the possibility of manufacturing the second sensor design

optimal.
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1.2 Thesis Organization

This thesis is organized as follows: The present chapter deals with the mo-

tivation and organization of the research work presented herein. Chapter

2 is dedicated to direct model formulation in finite element models of two

possible torsional piezoelectric sensors for medical diagnostic and sensitiv-

ity analysis of the best model. It is presented in the format of a scientist

paper prepared to be submitted to Special Issue "Piezoelectric Sensors and

Actuators" - Sensors (ISSN 1424-8220). Chapter 3 treats the optimization

of the model developed in the previous chapter using the inverse problem

and the formulation of the POD (Probability of Detection) of pathologies in

soft tissue, which is also prepared to be submitted to Ultrasonics -Elselvier

(ISSN: 0041-624X). Finally, this document is closed with two appendices:

Appendix A develops the formulation of the 3D laminate piezoelectric val-

idation and Appendix B is dedicated to the Torsion Sensor Model algo-

rithms, developed for this research.



Chapter 2

FEM: Finite element model and

sensitivity analysis for torsion

transducer

2.1 Introduction

To respond to the design of a torsion sensor into mechanical ultrasonic tis-

sue applications, it is necessary to use FEM Finite Element Models. Using

a simplified analytical model of torsion transducer, we determine the res-

onant frequency for a torque transducer ultrasonic waves. Using FEAP

software, we model the sensor consists of materials such as steel, piezoelec-

tric ceramic. In a first model A the notion torque sensor for applications

in tissue mechanics is generalized. It is manufactured and validated in tis-

sue consisting mainly collagen. In a second design B, more specifically the

idea is to refine and optimize the design to be applied to the detection of

preterm birth identifying changes in the consistency of the cervical tissue

through the shear modulus measurements. Therefore, a model with a disk

transmitter and a ring receiver for easy accessibility was performed and sen-

8
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sitivity analysis to find the range of optimal values for the design with this

application was calculated.

2.2 Finite Element Analysis

The modeled transducer is a torsion type with PZT-5A ceramics, with a

steel top and bottom central discs and external rings respectively. The op-

erating frequency predicted for the transducer, and subsequently verified

by experiment, is 28 kHz. The piezoelectric properties of PZT-5A are pro-

vided by the material library in FEAP, and the Rayleigh stiffness damping

is calculated from the appropriate material, as cited in a variety of sources.

Excitation is provided by a boundary condition of 100 V peak-to peak

with spike function based on Heaviside function:

f = AH(t)H(D − t) t
D

(2.1)

where A is amplitude, H is Heaviside function, D is the distance to origin

in x axe and t is time.
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Figure 2.1: Spike function
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Each FE model yields longitudinal (Z) and tangential (X) vibration

amplitude data for a point on the edge with reference to the mode shape,

these amplitude data can be combined to yield torsionality.[2]

2.2.1 Piezoelectric FEM

Piezoelectricity is described analytically within constitutive equation, de-

fined how stress (T), strain (S), charge-density displacement (D), and elec-

tric field (E) interact.

Constitutive law (in Strain-Charge form) is:

S = SE · T + dt · E (2.2)

D = d · T + εT · E (2.3)

Strain-charge to stress-charge transformation have been used to intro-

duce piezoelectric properties according material definition in FEAP (Finite

Elements Analysis Program) Software developed by R.Taylor[22]:

CE = S−1
E (2.4)

e = d · S−1
E (2.5)

εS = εT − d · S−1
E · d

t (2.6)

2.2.2 Model A description

The numerical tool selected for solving the response of the model (forward

problem) is the Finite Element Method (FEM). A 8-node quadratic finite

element and 26 blocks, has been implemented. That solves the model given

by constitutive equations describe below:
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S = SE · T + dt · E (2.7)

D = d · T + εT · E (2.8)

where stress (T), strain (S), charge-density displacement (D), and elec-

tric field (E)

And the equilibrium and compatibility describe below:

∇ ·D = 0; E = −∇φ (2.9)

∇S · T = 0; S =
1

2
(∇u+∇ut) (2.10)

where u = (u,w) denotes the displacement in directions x and z, re-

spectively, and φ is the electric potential or voltage. Finally, the following

standard sign criteria is used: the electric field and stress values are con-

sidered positive for the direction of polarization of the material and for

tractions, respectively.

Piezoelectric element was developed in using the research academic finite

element code FEAP [22], and was validated against the analytical solutions

obtained for a piezoelectric 3D laminate liable to 100V of voltage. [23]

A 3D model of the piezoelectric sensor is simulated by a FEM (Finite

Elements Method) using FEAP[24]. 8-noded 3D solid hexaedric elements

using a structured mesh are adopted in order to avoid remeshing perturba-

tion on sensitivity analyses. Linear elastic constitutive laws are used with 4

degrees of freedom per node. Anisotropy is considered since the sensors are

placed to generate a prevalent transverse wavefront. The model is reduced

by considering biaxial symmetry (one quarter of the problem is simulated).

The design parameters implied in finite elements model are summarized in

table 1.
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Parameter Value / range Units

Diameter of sensor 14.224 [mm]

Ceramic thickness 5.08 [mm]

Piezoelectric material thickness 0.010 [mm]

Metal thickness 1 [mm]

Resin thickness 2 [mm]

Angle of section π/4 [rad]

Angle of support to parametrization asin(b/R) [rad]

Total time 3000 [µ s]

Incremental time 20 [µ s]

High of piezoelectric material 10 [mm]

Width of piezoelectric material 1 [mm]

long of piezoelectric material 3 [mm]

Table 2.1: Parameters properties implied in sensor mesh analysis.

The model system in which the defect will be sought is defined by the

specimen geometry and material, the boundary conditions, the applied dis-

placement, and the detected displacement as output data. The transducer

simulated consists of a four material sensor. The mechanical and geometri-

cal material properties of the stratified system are summarized in Table 2.1

and represented in Figure 1.

Lead Zirconate Titanate (PZT-5A) piezoelectric material has been tested

in design process characterized by next properties:

• Crystal symmetry class: Uniaxial

• Density: 7750 kg/m3
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Figure 2.2: FEM for Sensor in Model A

• Compliance:

SE =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

16.4 −5.74 −7.22 0 0 0

−5.74 16.4 −7.22 0 0 0

−7.22 −7.22 18.8 0 0 0

0 0 0 47.5 0 0

0 0 0 0 47.5 0

0 0 0 0 0 44.3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∗ 10−12m2/N

(2.11)

• Piezoelectric Coupling:

d =

∣∣∣∣∣∣∣∣∣∣
0 0 0 0 584 0

0 0 0 584 0 0

−171 −171 374 0 0 0

∣∣∣∣∣∣∣∣∣∣
∗ 10−12C/N (2.12)

• Relative permittivity:

εT
ε0

=

∣∣∣∣∣∣∣∣∣∣
1730 0 0

0 1730 0

0 0 1730

∣∣∣∣∣∣∣∣∣∣
, ε0 = 8.854 ∗ 10−12F/m (2.13)
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The system in which the defect will be sought is defined by the geometry,

material of the specimen, the boundary conditions, and applied loads and

the measuring points as output data.

The transducer consists of a 90 grades sector with four materials piezo-

electric, aluminium, ceramic and resin. The PZT-5A laminate is considered

as rectangular shaped of size Lx 1 [mm], Ly 1 [mm] and Lz 3 [mm], as

shown in Fig. 1. This sample is excited by electrical load, and its response

is measured at Ni = 4 points along the lower boundary of the sensor. The

selection of electrical load is one of the goals of this study. It should be

noted that the electrical loads generate mechanical displacements (inverse

effect).

Figure 2.3: Sensor A: Valpey Fischer fabrication
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2.2.3 Model B description

Due to the difficulty that may lead to mechanical parameter measurement

and detection of soft tissue pathologies with the model A, we decided to

develop a design a model B where the sensor S-wave receiver is a circular

crown shape that can be encapsulated in one device.

The geometry is similar to the above but obviously changes the receiving

transducer and boundary conditions, as is done by a new finite element

calculation (FEM). The new specimen comprises a 90 degree sector of a

circular crown 90 degrees. The cyclic boundary conditions ensures that the

behavior is appropriate for 360 degrees.

The PZT-5A laminate is considered as rectangular shaped of size Lx 3 [mm],

Ly 1 [mm] and Lz 1 [cm] too, as shown in Fig. 2.4.

Parametrization in FEAP consists in 86 blocks within disc transmitter,

crown receiver and two layers of dermic and connective tissue respectively.

2.2.4 Parametric model

The torque sensor simulation was based on the dimensions of the simplified

analytical model, spelled out in the table below, where A, B and L are the

width, length and thickness of the sheet of piezoelectric respectively, dd, ds

and dr are the diameters of the piezo disk, disk and ring respectively, and

Lz and the song and the thickness of the ring.

The following describes a scheme with the outline of the transmitter and

reception consensuses:

The materials were used in the design, steel, aluminum, carbon fiber

and ceramic pmma with the following mechanical properties:
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Design Parameters Optimal dimensions [mm] Label

Width piezo 1 A

Length piezo 1 B

Thickness piezo 2 L

Inner distance 5 dd

Outer radius 8.5 ds

Inner radius 13 dR

Length outer sensor 2 e

Steel thickness 8 Lz

Table 2.2: Previous dimensions of sensors

Material Young Modulus [MPa] Poisson coefficient Density [kg/m3]

Steel 210 0.3 7800

Aluminium 65 0.3 2700

Carbon 150 0.3 1500

Pmma 3 0.3 1200

Ceramic 80 0.3 1800

Table 2.3: Materials used in the design

2.3 Simplified model of torsion transducer

A simplified analytical model of the fundamental oscillatory movement of

the torsion ultrasonic transducer is derived. To this end, a number of as-

sumptions are carried out mainly on the relevance of elements of the design

and on their movement shape (eigenmode), in order to arrive at a single

degree of freedom system. Second, the piezoelectric element is assumed

to have a predominant deformation law uniformly distributed and linearly

proportional to the electrical excitation.
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Figure 2.4: The geometry of the transducer

2.3.1 Assumptions

1. Reduction to a single-degree-of-freedom system, where the eigenprob-

lem reduces to a single frequency and a single mode (steady-state

movement shape).

2. Movement is assumed to be dominated by torsion rotation θ in radians.

3. Dynamic equilibrium of torsional moment:

kθ + Iθ̈ = 0 (2.14)

where k is the stiffness in [Nm/rad] and I is the inertia.

4. Steady-state solution has the form:

θ = θ0 sin (ωt) (2.15)

as the transient one is neglected for computing the eigenvalue.
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5. Natural frequency (eigenvalue that fulfills the equilibrium 2.14):

ω =

√
k

I
(2.16)

in [rad/s], or f = ω
2π

in [Hz].

6. Stiffness of piezoceramic due to moment:

k =
M

θ
(2.17)

where M is the applied torsional moment.

7. Since each of the n piezoceramic elements is dominated by shear defor-

mation, and they are located at distance d from the center of rotation

M = ndF = ndabσxz (2.18)

where F is the resulting force of the shear stress σxz applied over the

area a× b of the element.

8. The element described above deforms due to the shear stress the

amount εxz, which creates the differential displacement u = l/εxz be-

tween upper and lower sides separated distance l. This links to the

rotation of the circular array of piezoceramic elements,

θ = u/d = l/dεxz (2.19)

9. The effective length of the piezoelectric elements is reduced as leff ' 2l

to account for the flexibility of the clamping into the mass. Hence,

θ = leff/dεxz.

10. The piezoceramic behaves linearly elastic

σxz = G∗εxz (2.20)

with modified shear stiffness G∗ adding piezoelectric coupling [9].
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11. The inertia against rotation is dominated by the mass blocks of density

ρ, which are either cylindrical or annular (ring-shaped) of radius r.

The inertia of the piezoelectric and other elements is comparatively

neglectible.

12. Inertia and mass of cylinder:

I =
mr2

2
, m = πr2hρ (2.21)

where h is the height of the cylinder (in the axial direction).

13. Inertia and mass of ring:

I = mr2, m = 2πrheρ (2.22)

where e is the thickness of the ring (in the radial direction).

2.3.2 Subsystem eigenfrequency in the case of cylinder

mass

Combining equations 2.14 to 2.21,

f =
1

2π

√
nabd2G
π
2
leffhr4ρ

(2.23)

2.3.3 Subsystem eigenfrequency in the case of ring mass

Combining equations 2.14 to 2.22,

f =
1

2π

√
nabd2G

2πleffher3ρ
(2.24)

When the transducer contains both a cylinder mass and a ring mass for

each of the transmitting and receiving subsystems, their eigenfrequencies

should be matched in order to maximize the combined resonance amplifica-

tion.
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2.3.4 Validation

Given the frequency of resonance FEM model we proceed to measure the

time between peaks of cycles and it is found that coincide with the frequen-

cies of the sensor with the degree of error which is described in the next

table.

Disc Frequency [Hz] 2.7977e+04

Ring Frequency [Hz] 2.8180e+04

FEM Frequency [Hz] 2.8169e+04

Error 1 (%) 0.6802

Error 2 (%) -0.0392

Table 2.4: Validation analytic design vs. FEM
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Figure 2.5: example of measurement validating simple design

2.4 Convergence

The convergence was based on finding the time increment should vary in a

range between 12[ns] and 3200[ns] obtained as described by the following

figures 25[ns] as the optimal time step:

The study of convergence of the model geometry was obtained from

twelve mesh parameters q3, n, m, n2, q5, q2, q1, q4, l, p, l1 and l2 and once
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Figure 2.6: Time step convergence
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Figure 2.7: High incremental time time step convergence

found adequate for convergence is made one second refinement four param-

eters m1, m2, m3 and m4 to refine the mesh and find optimal convergence.

The following chart describes the geometry of the mesh:

Starting the mesh had the following dimensions:

where n, m and q1 remained intact in the refinement to maintain the

boundary conditions of the model. Ten configurations were evaluated in

order to obtain the best refine mesh: m1, m2, m3 and m4 like (2222),

(1422), (1242), (1224), (1111), (2211), (1211), (1121), (1112) and (2422),
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Figure 2.8: The geometry of the mesh

2.5 Sensitivity Analysis

2.5.1 Sensitivity Sensor Dimensions Analysis

Sensitivity analysis was based on varying the dimensions of the model in

the following ranges showing in next table.

The first part of the study of sensitivity for the model parameters con-

cerning the geometrical dimensions of the sensor within the ranges obtained.

It follows that as the width of the piezo A from 0.75 to 2.00 [mm] increase

therefore the P-wave amplitude for high frequency as the frequency. How-

ever, the S-wave amplitude at low frequency both outside and inside the ring
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Mesh Parameters First dimensions Refine mesh

q3 2 2m1

n 1 1

m 1 1

n2 1 1m1

q5 8 4m4

q2 1 1

q1 1 1

q4 3 1m4

l 6 3m2

p 4 2m3

l1 6 3m4

l2 6 3m4

Table 2.5: Previous mesh dimensions

is indifferent to this range. The same applies to the thickness of piezoelec-

tric B, as increases of 0.75 to 2.00 [mm] increase both the P-wave amplitude

for high frequency and frequency. However, the S-wave amplitude at low

frequency both outside and inside the ring is indifferent to this range.

In the case of the range of values obtained for the piezoelectric length

L of 0.50 to 4.00 [mm] as we increase this range the amplitude of P-waves

in ring decreases as the frequency, amplitude S waves at low frequency and

amplitude of S waves in the ring at low frequency.

Thereafter, we analyze the sensitivities regarding design ranges for the

sensor geometry. Denoting by dd the distance from the center of the sensor

transmitter to the center of the piezoelectric, to vary the range from 1.50

to 3.50 [mm], we find that with increasing this distance, reduce the ampli-

tude of the P waves to high frequency and the frequency increases, but is
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Figure 2.9: Mesh convergence

irrelevant in this range for the S wave amplitude at low frequency.

The following sensitivity analysis model parameter ds regarding the dis-

tance from the center of the sensor transmitter to the sensor outside of

reception, differs regarding others. The range of distances ranging from

1.75 to 5.75[mm], and with increasing amplitude of high frequency waves P

decreases, however this distance increases as the frequency is directly pro-

portional, as happens with the amplitude of waves at low frequency S . The

voltage signal increases as the outer radius distance.

The next parameter to be analyzed is dR regarding the inner radius from

the center of the transmission sensor to the center of the piezoelectric sensor

on the ring. Here, the range varies between 11.5 and 17 [mm]. There is no

significant change by varying the dimensions of the geometry of this distance

as increases established ranges except that frequency decreases under this

assumption.

The following parameter was studied for which sensitivity analysis was e
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Design Parameters Range Reference [mm] Label

Width piezo [0.75, 2] 1 A

Length piezo [0.5, 2] 1 B

Thickness piezo [0.5, 4] 2 L

Inner distance [1.5, 3.5] 2.5 dd

Outer radius [1.75, 5.75] 4.25 ds

Inner radius [11.5, 17] 13 dR

Length outer sensor [1.5, 2.5] 2 e

Steel thickness [3, 13] 8 Lz

Table 2.6: Ranges of design dimensions
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Figure 2.10: Sensitivity width piezo total time 200 radial displacement disc
and voltage signal

defined as the width of the outer ring is receiving sensor. The ranges studied

varied between 1.50 and 2.50[mm] and found no significant differences in

the outcome of the movement both in the internal sensor as in the ring or in

the amplitudes of the signal voltages in the total time estimated 200[ mus].

Notably only the S wave amplitude at low frequency in radial displacement

decreases as this distance.

Finally parameter Lz sensitivity was analyzed which is defined as the

thickness of steel ring receiver sensor. The ranges taken into account in

the study were from 1.50 to 2.50[mm], and it follows that as the thickness
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Figure 2.11: Sensitivity width piezo total time 200 turn displacement disc
and radial displacement ring
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Figure 2.12: Sensitivity thickness piezo total time 200 radial displacement
disc and voltage signal

increases of reception sensor steel decreases the P wave amplitude high

frequency, just as the frequency decreases and so does the amplitude of

waves at low frequency S both radially and circumferentially. The amplitude

signal voltage hardly changes for noticing this range one is a small delay in

time to the highest values.

Outside the field of obstetrics and gynecology, which is the first applied

target on which this project focuses, a technology for diagnosis based on

mechanical properties has a vast potential for other tissues, like breast or

prostate tumors or liver disorders. As an example, breast cancer screening

faces an important limitation due to the ionizing nature of the established

mammography. This has motivated several scientists to propose various

ultrasound-based diagnosis techniques. An example of the success of quan-
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Figure 2.13: Sensitivity thickness piezo total time 200 turn displacement
disc and radial displacement ring
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Figure 2.14: Sensitivity length piezo total time 200 radial displacement
disc and voltage signal

titative sonography is given by Yonetsu[25], who show that quantitative

techniques provide effective results in direct diagnosis of differentiation in

benign or malignant tumors and their type. Since nodules show up very

strongly by a drastic consistency change, the proposed diagnosis technol-

ogy based on mechanical properties could have a strong impact on several

health issues and become an excellent candidate for future research.

Another potential is to create and publish a database of in vivo mechan-

ical properties of various tissues and organs, which is currently unavailable

and much needed by the biomechanics scientific community. These exam-

ples envisage the scientific and technological long term horizon of the idea

behind this project.
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Figure 2.15: Sensitivity length piezo total time 200 turn displacement disc
and radial displacement ring

Cause/Effect ACP (HF ) ω(Frequency) AS(LF ) ACS(LF )

A ↑ ↑ ↑ - -

B ↑ ↑ ↑ - -

L ↑ ↓ ↓ ↓ ↓ or(−)

Table 2.7: Cause-effect table of ranges and amplitudes

2.5.2 Sensitivity Tissue Analysis

Hereinafter, the calculation of the sensitivity of the model parameters re-

lating to the tissue is developed, both of dermal tissue layer and the layer

of connective tissue, which were chosen as significant within the B model.

The parameters where sensitivity was measured were the S-wave velocity

in both dermic tissue and connective tissue P-wave speed both the dermic

tissue and the connective tissue, besides the thickness of the connective

tissue and dermic tissue, checking as varying the voltage signal, and both

longitudinal and radial displacements. The ranges were chosen by central

reference to those included in the simplified analytical model and were as

follows:

For the S wave velocity of [20, 380] [m/s], for the speed of P-waves prop-

agating in tissue [1200, 1800] [m/s] and for the thicknesses layers of dermic

tissue and connective tissue [0.3, 0.7] [mm].
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Figure 2.16: Sensitivity inner distance total time 200 radial displacement
disc and voltage signal
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Figure 2.17: Sensitivity inner distance total time 200 turn displacement
disc and radial displacement ring

By varying the speed of S waves from modifying the Young’s modu-

lus and Poisson’s ratio of dermal tissue, we find that the high-frequency

amplitude of P waves is independent of the range of values used in the sen-

sitivity analysis , however the frequency increases with increase the speed

of S waves, so does the amplitude of S waves at low frequency in the radial

displacement of the ring, but the S wave amplitude low frequency decreases

as the speed increases in S waves in the radial displacement of the disc.

By varying the speed of S waves from modifying the Young’s modu-

lus and Poisson’s ratio of dermal tissue, we find that the high-frequency

amplitude of P waves is independent of the range of values used in the sen-
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Figure 2.18: Sensitivity outer radius total time 200 radial displacement
disc and voltage signal
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Figure 2.19: Sensitivity length outer radius time 200 turn displacement
disc and radial displacement ring

sitivity analysis , however the frequency increases with increase the speed

of S waves, so does the amplitude of S waves at low frequency in the radial

displacement of the ring, but the S wave amplitude low frequency does not

vary with the speed increases in S waves in the radial displacement of the

disc.

Hereinafter, the calculation of the sensitivity of the model parameters

relating to the tissue is developed, both of dermal tissue layer and the layer

of connective tissue, which were chosen as significant within the B model.

The parameters where sensitivity was measured were the S-wave velocity

in both dermic tissue and connective tissue P-wave speed both the dermic

tissue and the connective tissue, besides the thickness of the connective
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Figure 2.20: Sensitivity inner radius total time 200 radial displacement
disc and voltage signal
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Figure 2.21: Sensitivity length inner radius time 200 turn displacement
disc and radial displacement ring

tissue and dermic tissue, checking as varying the voltage signal, and both

longitudinal and radial displacements. The ranges were chosen by central

reference to those included in the simplified analytical model and were as

follows:

Hereinafter, the calculation of the sensitivity of the model parameters

relating to the tissue is developed, both of dermal tissue layer and the layer

of connective tissue, which were chosen as significant within the B model.

The parameters where sensitivity was measured were the S-wave velocity

in both dermic tissue and connective tissue P-wave speed both the dermic

tissue and the connective tissue, besides the thickness of the connective

tissue and dermic tissue, checking as varying the voltage signal, and both

longitudinal and radial displacements. The ranges were chosen by central
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Figure 2.22: Sensitivity thickness outer sensor total time 200 radial dis-
placement disc and voltage signal
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Figure 2.23: Sensitivity thickness outer sensor total time 200 turn displace-
ment disc and radial displacement ring

reference to those included in the simplified analytical model and were as

follows:

Hereinafter, the calculation of the sensitivity of the model parameters

relating to the tissue is developed, both of dermal tissue layer and the layer

of connective tissue, which were chosen as significant within the B model.

The parameters where sensitivity was measured were the S-wave velocity

in both dermic tissue and connective tissue P-wave speed both the dermic

tissue and the connective tissue, besides the thickness of the connective

tissue and dermic tissue, checking as varying the voltage signal, and both

longitudinal and radial displacements. The ranges were chosen by central

reference to those included in the simplified analytical model and were as

follows:
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Figure 2.24: Sensitivity steel thickness total time 200 radial displacement
disc and voltage signal
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Figure 2.25: Sensitivity steel thickness total time 200 turn displacement
disc and radial displacement ring

2.6 Conclusions
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Cause/Effect ACP (HF ) ω(Frequency) AS(LF ) ACS(LF )

dd ↑ ↓ ↑ - -

ds ↑ ↓ ↑ ↑ ↑

dR ↑ - ↓ - -

e ↑ - - ↓ -

Lz ↑ ↓ ↓ ↓ ↓

Table 2.8: Cause-effect table of ranges and amplitudes for piezoelectric
geometry
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Figure 2.26: Sensitivity of dermic tissue total time 200 turn radial dis-
placement disc and voltage signal varying second wave speed

0 50 100 150 200
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time, t [µs]

u
d
is

c
r

[n
m
]

 

 
c s=2 0 [m/ s ]

c s=1 0 0 [m/ s ]

c s=2 0 0 [m/ s ]

c s=3 0 0 [m/ s ]

c s=3 8 0 [m/ s ]

0 50 100 150 200
−1

−0.5

0

0.5

1

Time, t [µs]

u
r
in

g
θ

[n
m
]

Figure 2.27: Sensitivity of dermic tissue total time 200 turn displacement
disc and radial displacement ring varying second wave speed
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Figure 2.28: Sensitivity of connective tissue total time 200 turn radial
displacement disc and voltage signal varying second wave speed
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Figure 2.29: Sensitivity of connective tissue total time 200 turn displace-
ment disc and radial displacement ring varying second wave speed
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Figure 2.30: Sensitivity of dermic tissue total time 200 turn radial dis-
placement disc and voltage signal varying primary wave speed
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Figure 2.31: Sensitivity of dermic tissue total time 200 turn displacement
disc and radial displacement ring varying primary wave speed
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Figure 2.32: Sensitivity of connective tissue total time 200 turn radial
displacement disc and voltage signal varying primary wave speed
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Figure 2.33: Sensitivity of connective tissue total time 200 turn displace-
ment disc and radial displacement ring varying primary wave speed
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Figure 2.34: Sensitivity of dermic tissue thickness total time 200 turn
radial displacement disc and voltage signal
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Figure 2.35: Sensitivity of dermic tissue thickness total time 200 turn
displacement disc and radial displacement ring
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Figure 2.36: Sensitivity of connective tissue thickness total time 200 turn
radial displacement disc and voltage signal
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Figure 2.37: Sensitivity of connective tissue thickness total time 200 turn
displacement disc and radial displacement ring

Cause/Effect ACP (HF ) ω(Frequency) AS(LF ) ACS(LF )

cs dermic↑ - ↑ ↓ ↑

cs connective↑ - ↑ - ↑

cp dermic↑ - - - -

cp connective↑ - - - -

Tz↑ - - - ↑

Tc↑ - - - (-) or ↑

Table 2.9: Cause-effect table of ranges and amplitudes for transducers
geometry

Design Parameters Optimal dimensions [mm] Label

Width piezo 0.75-1 A

Length piezo 0.75-1 B

Thickness piezo 3 L

Inner distance 2-2.5 dd

Outer radius 4.25 ds

Inner radius 15 dR

Length outer sensor 2 e

Steel thickness 5 Lz

Table 2.10: Final dimensions of transducer
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Figure 2.38: Different states of torsional transducer



Chapter 3

POD: Probability Of Detection of

Pathologies in soft tissue

Reliable quantification of the stiffness modulus of soft tissue is an open is-

sue with relevance for the diagnostic of pathologies that appear as drastic

changes in the consistency of the tissue. For this task, we propose to design

a piezoelectric transducer for non-destructive testing based on an identifi-

cation inverse problem, to reconstruct the stiffness modulus of the tissue

using ultrasonics. Therefore, it is necessary to optimize the piezoelectric

transducer model design regarding two types of parameters. On one hand

the design parameters, and on the other hand the model parameters that

characterize the specimen. The forward problem is obtained by performing

a three-dimensional finite element simulation. The experimental measure-

ments are simulated by adding a gaussian noise as a percentage of the RMS

of the numerically predicted signals. In addition, a semi-analytical estimate

of the probability of detection (POD) is developed to provide a rational

criterion to optimize the experimental design. An advanced noise filtering

algorithm allow us to maximize the POD. This work aims to (i) evaluate the

optimal piezoelectric transducer design of the model-based POD. A second

goal is (ii) a simulated experiment based on the three dimensional model

40



41

of wave propagation generated by the proposed piezoelectric transducer de-

sign. Finally, (iii) a parametric study is carried out to extract practical

parameters for final tissular applications.
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3.1 Introduction

The physical principle to mechanically characterize the tissue is the follow-

ing. A physical magnitude is propagated along the medium to be analyzed,

which distorts the wave until it is measured at an accessible surface (see

Fig. 3.1). The mechanical parameters responsible for the modification of

the wave can be inferred from the measured one under certain circumstances

by means of the inverse problem theory discussed later. Ultrasound is cho-

sen as the physical magnitude for several reasons. First, it is a mechanical

wave, controlled by and therefore most sensitive to the mechanical param-

eters than any other indirect measurement. Second, the wave is generated

at a low strain regime, which has been observed to be more sensitive to

variations due to pathology than high strain (Matsumura et al [26]).

Figure 3.1: Simplified system for measuring ultrasound wave distortion
through tissue and reconstruct mechanical properties.

Very scarce and indirect conclusions about mechanical properties ana-

lyzed by quantitative ultrasound have been reported specifically for cervical

tissue. Bigelow et al [27] recently proposed measurement of ultrasonic at-

tenuation through cervical tissue but concluded that too large variances in

their experimental setup did not allow a statistically significant correlation

with gestational age. A similar approach is recently being proposed for

animals by McFarlin et al [28, 29]. These results indicate that a combina-

tion of quantitative ultrasonic parameters have the potential for extracting

information for characterizing tissue condition.

Static or slow viscoelastic mechanical constitutive laws and their values

were reported by Bader et al [30] for skin and by Ahuja [31] for various
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internal tissues. However, values measured at medium and high frequency

seem to differ several order of magnitudes. At audible frequency dynamics,

a linear viscoelastic model was proposed by Pereira et al [32] to fit the

experimental observations.

3.2 Inverse Procedure

The problem of nondestructive characterization of mechanical tissue proper-

ties is solved by a model-based inverse problem (IP) approach that consists

of two steps: (i) to excite the system applying displacement, and (ii) to

measure the response (displacements). A finite element method model is

used in the forward procedure that is explained in detail in the last chapter.

The inverse procedure presented aims at characterizing mechanical prop-

erties in a soft tissue (degree of degradation) and determine its extent. The

testing consists of two steps: (1) to disturb a tissue with a known excita-

tion function and (2) to measure its response at one locations in the soft

tissue. We assume that the dynamic behavior of the tissue in its health and

pathologies states is predictable using a well-calibrated model.

Then, the measured signal is processed to solve the inverse problem, i.e.,

to determine the changes in the tissue from its original state. A genetic

algorithm search tool (Rus et al[33], Goldberg[34]) is used to minimize the

discrepancy between the experimental readings and the numerically pre-

dicted trial response, by means of a cost functional designed to calibrate for

coherent uncertainties and noise, and providing maximal robustness and

sensitivity.
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3.2.1 Cost functional

The readings from the sensors are denoted by ψ for the theoretical or syn-

thetic case, and ψx for the experimental case. A reading ψ0 in the health

state of the tissue is defined for calibration, and the measurement to analyze

is defined as,

Φ =
ψ − ψ0

RMS(ψ0)
(3.1)

where the RMS values are defined for a discrete function f in time domain

f(ti) at N sampling points as,

RMS(f) =

√√√√ 1

N

N−1∑
i=0

f(ti)2 (3.2)

A residual γ is defined from the misfit or discrepancy Φx − Φ between

the measurements.

γ = (Φx − Φ) (3.3)

The cost functional f or fitness function is defined after a residual vector

γ of size Ni as the quadratic form,

f =
1

2
|γ|2 =

1

2

1

Ni

Ni∑
i=1

γ2
i (3.4)

It is useful to define an alternative version of the cost functional denoted

as f l, with the property of improving the sensitivity while approaching the

optimum, just by introducing a logarithm and a small value ε to ensure its

existence. This definition particularly enhances the convergence speed when

the minimization is tackled by with genetic algorithms or other random

search algorithms (see Rus et al.[35]),

f l = log(f + ε) (3.5)
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3.2.2 Probability of detection

The POD gives an idea of the probability that a pathology is positively

detected, given a specimen, a pathology size and some noise and system

uncertainty conditions.

The detection and characterization of pathologies is based on the inter-

pretation of the alterations of the measurements due to the presence of the

pathology. Other model uncertainties and system noises also alter these

measurements. We can estimate the POD by the probability that the al-

teration of the measurement caused by the pathology is larger than that

caused by the noise. If we label the alteration on the measurement read-

ings caused by the pathology as the signal component, and the alteration

generated by the noise as noise, the former definition can be formulated as

(see Rus et al.[33]),

POD = P

(
|signal|2

|noise|2
> 1

)
(3.6)

Furthermore, three variables are be considered in the problem of max-

imizing the probability of detection (POD), the level of noise, denoted by

σ, the location and extent of the pathologies, denoted by p, and the cost

functional that collects the effects of those in a scalar function f , as defined

above.

We propose a new criterium of POD associated to multivariable patholo-

gies amount with different references. It is define as follow.

RPOD = min
patp

POD(patp) (3.7)

POD(patp) = P

(
|signal(patp)|2

|noise(patp)|2
> 1

)
(3.8)

where pat = {∆Gc = Gc − G̃c,∆Gd = Gd − G̃d}, G is shear modulus,
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G̃ is reference measurement of shear modulus, and c and d are parameters

relative to connective and dermic tissue respectively, r is range of pathology

and p are parameters associated to model design.

From the definition of the simulated noise, the dependency of the vari-

ation of the measurement with increasing noise is also linear. These two

considerations about linearity support the proposal that the measurements

on a specimen with noise and with pathology can be expressed as Taylor

series expansion centered at the case without noise and without pathology

, and neglecting higher order terms (hot) than linear,

ψi(p, σ) = ψi(0, 0) + p
∂ψi
∂p

(0, 0)︸ ︷︷ ︸
signal

+σ
∂ψi
∂σ

(0, 0)︸ ︷︷ ︸
noise

+hot (3.9)

where i = 1, ..., Ni are the measuring points. The first term on the right

hand side is the measurement at point i without noise nor pathology. The

second term is the alteration of that measurement due to the presence of

the pathology only, and is labeled signal, following the reasoning above.

The third term is the alteration of the signal originated by the noise only

(noise).

The second term of the Taylor series (equation 3.9) depends on the

sensitivity of the measurements on the pathology, and can be approximated

by finite differences,

∂ψi
∂p

(p0, 0) = ψi,p(p0, 0) =
ψi(p0 + ∆p, 0)− ψi(p0 −∆p, 0)

2∆p
(3.10)

where p0 → 0 is a small pathology used to guarantee that the FEM captures

the perturbations produced at small ∆p (since the case p = 0 with no

pathology needs to be computed with a topologically different mesh), in

order to compute ψi,p(p0, 0) ≈ ψi,p(0, 0). In addition, a central difference

scheme, which yields an error of the order O(∆p2), becomes available. Since
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the noise component is linear by definition, a forward difference scheme is

adopted, whose O(∆σ) error is sufficient.

Some authors [36] propose that the parameters ∆p and ∆σ should be

two orders of magnitude smaller than the values at which the derivative

should be computed. However, an estimation of these parameters is stud-

ied. It shows ψi,p(0, 0) and ψi,σ(0, 0) versus ∆p and ∆σ, respectively, for

a pathology at the center of the bridge deck. ∆p = ∆σ = 10−2 is shown

to produce a stable value of the derivative for the case of the single mea-

surement represented, but the same result is obtained for all 18 measuring

points.

The third term of the Taylor series (equation 3.9) can be directly derivated

if the equation 3.6 is assumed,

∂ψi
∂σ

= ξiRMS(ψFEM
i ) = ξiRMS (3.11)

Equations (3.9), (3.11) and the relationship |Yi|2 = 1
m

∑m
i=1 Y

2
i , can be

combined into (3.6) to obtain,

POD = P

(
p2 1

Ni

∑Ni
i=1(ψi,p(0, 0))2

σ2RMS2 1
Ni

∑Ni
i=1 ξ

2
i

> 1

)
= P


p2 >

RMS2σ2
∑Ni

i=1 ξ
2
i

Ni∑
i=1

(ψi,p(0, 0))2

︸ ︷︷ ︸
Sp


(3.12)

If the noise generator ξi is a random variable, the POD is a probability of

the stochastic variable p2, described by the cumulative probability density

function F ,

POD = F

(
RMS2σ2

∑Ni
i=1 ξ

2
i

Sp

)
(3.13)
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Using Monte Carlo techniques and error propagation theory the noise in

the measurement points can be concluded to follow a normal distribution

(Rus et al[33]). Assuming this distribution, the squared sum of the noise

ξi is known to follow a Chi-square distribution, since
∑Ni

i=1 ξ
2
i −→ χ2

Ni
(e.g.

[37]). The parameter of the Chi-square distribution is the number of degrees

of freedom Ni, which in this case is the number of measurement points. In

the case that Ni > 10, the Chi-square distribution can be approximated

by a Gaussian or normal N distribution χ2(Ni) ≈ N(Ni − 2/3,
√

2Ni) with

mean Ni− 2/3 and standard deviation
√

2Ni. This approximation in (3.13)

yields,

p2 −→ N

[
RMS2σ2(Ni − 2/3)

Sp
,
RMS2σ2

√
2Ni

Sp

]
(3.14)

Since F (x) =
∫ x
−∞ f(y)dy is the cumulative of the normal probability

density function f , whose inverse is x = G(F (x)), the useful pathology area

to noise ratio p/σ can be expressed from (3.14) given a POD level as,

p

σ
=

√
RMS2(Ni − 2/3)

Sp

(
1 +G[POD]

√
2Ni

Ni − 2/3

)
(3.15)

Note that the analytical expression (3.14) is only valid for noise with

normal distribution at the measurement points.

To maximize the POD is necessary to define a pessimistic approach that

is formulated below. It consists in minimizing the minimum vector of the

POD pathologies, applied to a range of values for model parameters. POD

compound will be appreciate in effects of POD in next sections.

RPOD = min
p

min
patp

POD(patp) (3.16)
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3.3 Numerical Results

The purpose of the numerical results is to obtain conclusions about which

experimental design is better in characterizing mechanical tissue properties.

To the latter end, three independent criteria are evaluated numerically:

The effects of the excitation and driving frequency combination on (i) the

measurements, (ii) the cost function and (iii) the POD, are studied for a set

of configurations. The scope is to extract some a priori thumb rules that

allow to select those with a more accessible minimum in the cost function,

and guarantee satisfactory results for a minimization algorithm.

3.3.1 Excitation, model displacement

Consider the specimen described above.

A sample of resulting measurements is shown in Figure 3.2.
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Figure 3.2: Simulated measurements for model design, noise 0.10%

The results of the simulated signal with a 10% of noise are consistent

with the response in the FEM model described in the previous chapter.
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3.3.2 Effects on cost functional

The shape of the cost function provides another subjective way to evaluate

the sensitivity of the numerically predicted signals, based on the following

criteria:

• The existence of local or global minima affects the convergence of the

search algorithm.

• Steep minima are better than those providing soft valleys, due to

algorithm convergence performance.

• Valleys that present shapes close to circular are considered as an in-

dicator of uncoupled mechanical properties of soft tissue parameters.

Figure 3.3 shows a slice of the multidimensional cost function as func-

tions of the parameters Gd and Gc for configuration of the model.

3.3.3 Effects on POD

The aforementioned criteria is aimed at evaluate the local behavior of the

cost functional, regardless of the noise effects. Maximizing the POD enables

to find the smallest pathology given the largest noise levels, independently

of the robustness of the convergence of the search. Figure 3.4 shows an ex-

ample of the POD estimation for one excitation configuration for increasing

pathological values, whereas the dependency of the POD on the pathology

extent is illustrated for a fixed noise level that amounts to 0.1%.

3.3.4 POD optimization

Once identified the effects of the POD, the optimization is calculated to

demonstrate if the POD improved by optimal design.
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Figure 3.3: Cost functional as a function of the parameters with reference
Gd and Gc

The first four graphs show the regions of maximum POD over the 8 pa-

rameters of the model, the fifth graph relates the genetic algorithms search

with a population of 20 individuals and 50 mutations and the best value

and the last graph shows the optimized parameters for the best POD .
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Figure 3.4: Dependency of the POD on the pathology amount.

3.4 Conclusions and impact

3.4.1 Conclusions

In this chapter, we have developed a strategy based on the inverse problem

to optimize the model developed in the previous chapter.

First we define a cost function as the difference between the experimental

and theoretical signals and other statistical tools. Then, we define the POD

(Probability of detection) as the probability that the signal is greater than

the noise through a Taylor series expansion and a finite difference scheme.

After reformulated this concept to the case that concerns us, the better

prediction of probability of detection for preterm birth. Through three ref-

erences in different stages of gestation by G modulus, 300, 3000 and 30000,

RPODD is defined as robust probability of detection with a pessimistic ap-
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Figure 3.5: POD optimization

proach, the minimum of the minimum value of POD vector of components

associated with pathological range of values in parameters p of the model.

Finally algorithms are developed on the RPOD, obtained best results

optimized design through this criterion as shown above graphs.

3.4.2 Impact

A parametric study is performed in order to assess how sensor design pa-

rameters and vehicle characteristics control the identifiability. This serves

as design criteria to guarantee the feasibility of robust monitoring.

Improvements in the treatment of preterm infants have helped to greatly

improve their survival. However, these infants remain vulnerable to many
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complications, including respiratory, gastrointestinal, immune system, cen-

tral nervous system, hearing, and vision problems. The effects may last well

beyond childhood and include cerebral palsy, mental retardation, visual and

hearing impairments, behavior and social-emotional concerns, mother suf-

fering, learning difficulties, and poor health and growth[38]. Babies born

before 32 weeks have the greatest risk for death and poor health outcomes,

however infants born between 32 and 36 weeks, which make up the greatest

number of preterm births, are still at higher risk for health and developmen-

tal problems compared to those infants born full term. The annual societal

economic burden associated with preterm birth, that affects 8.1-12.7% of all

births in Europe[39] (and increasing over the last 40 years[40]) was at a min-

imum $26 billion in 2005 in the US, or $51600 per infant born preterm [41].

Nearly two thirds of this cost was for medical care. There is currently no

test that can accurately predict a preterm birth with sufficient anticipation

to allow effective actions, and little is known about how a preterm birth can

be prevented. Treatment has been primarily focused on slowing contrac-

tions, which has helped reduce the rates of mortality and morbidity. Yet

therapies and interventions for the prediction and the prevention of preterm

birth are still greatly needed.

Outside the field of obstetrics and gynecology, which is the first applied

target on which this project focuses, a technology for diagnosis based on

mechanical properties has a vast potential for other tissues, like breast or

prostate tumors or liver disorders. As an example, breast cancer screening

faces an important limitation due to the ionizing nature of the established

mammography. This has motivated several scientists to propose various

ultrasound-based diagnosis techniques. An example of the success of quan-

titative sonography is given by Yonetsu[25], who show that quantitative

techniques provide effective results in direct diagnosis of differentiation in
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benign or malignant tumors and their type. Since nodules show up very

strongly by a drastic consistency change, the proposed diagnosis technol-

ogy based on mechanical properties could have a strong impact on several

health issues and become an excellent candidate for future research.

Another potential is to create and publish a database of in vivo mechan-

ical properties of various tissues and organs, which is currently unavailable

and much needed by the biomechanics scientific community. These exam-

ples envisage the scientific and technological long term horizon of the idea

behind this project.



Appendix A

3D piezoelectric laminate

validation

A.1 Analytic 1D validation

Consider the wave propagation in a structure with a piezoelectric layer

of thickness h. The piezoelectric relations are assumed linear and quasi-

stationary electric field is considered.

In rectangular Cartesian coordinates, the stress equations of motion are

given by

3∑
j=1

Tij,j = ρüi (A.1)

for i = 1, 2, 3 where Tij is the stress tensor, ui the mechanical displace-

ment, ρ the mass density, and subscript ”j” indicates differentiation with

respect to xj. The electric displacement Di satisfies Maxwell´s equation,

3∑
i=1

Di,i = 0 (A.2)

The electric field Ei (for i = 1, 2, 3) is related to the electric potential φ

56
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by

Ei = −φi (A.3)

With the constitutive equations:

S = SET + dtE (A.4)

D = dT + εTE (A.5)

where S is Strain, SE, dt, d and εT are respectly.

Using maxwell equation and dynamic equilibrum we have:

∇(SET + dtE) = ∇S (A.6)

SE∇T + dt∇E = ∇∇Su (A.7)

SEρü+ dt∇E = ∇∇Su (A.8)

On the other side,

∇(dT + εTE) = 0 (A.9)

d∇T + εT∇E = 0 (A.10)

dρü+ εT∇E = 0 (A.11)

d∇T = −εT∇E (A.12)

− ε−1
T d∇T = ∇E (A.13)
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Thus, substituting in equation (8):

SEρü− dtε−1
T dρü = ∇∇Su (A.14)

And,

4φ = ε−1
T dρü (A.15)

Piezoelectric coefficients:

K =



0.1271e− 06 −0.0445e− 6 −0.0560e− 6 0 0 0

−0.0445e− 6 0.1271e− 6 −0.0560e− 6 0 0 0

−0.0560e− 6 −0.0560e− 6 0.1457e− 6 0 0 0

0 0 0 0.3681e− 6 0 0

0 0 0 0 0.3681e− 6 0

0 0 0 0 0 0.3433e− 6


(A.16)

where:

SEρ− dtε−1
T dρ = K (A.17)

and,

L =


0 0 0 0 0.2616e− 8 0

0 0 0 0.2616e− 8 0 0

−0.0780e− 8 −0.0780e− 8 0.1705e− 8 0 0 0


(A.18)

where:

ε−1
T dρ = L (A.19)

The constitutive equations are different for different dependent on the

types of piezoelectric materials considered. In this paper, the piezoelectric
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material of hexagon crystal structure, class 0.05 mm, is employed. For other

types of piezoelectric material, the constitutive equations should be changed

accordingly. Assuming the six-fold axes of the piezoelectric material parallel

to the x3-direction, its constitutive equations can be expressed in the form:

S11 = SE11T11 + SE12T22 + SE13T33 − dT31E3, (A.20)

S22 = SE12T11 + SE11T22 + SE13T33 − dT31E3, (A.21)

S33 = SE13T11 + SE13T22 + SE33T33 − dT33E3, (A.22)

S23 = SE44T23 − dT15E2, (A.23)

S13 = SE44T13 − dT15E1, (A.24)

S12 = SE66T12 = 0.5(SE11 − SE12)T12, (A.25)

D1 = d15T13 + εT11E1, (A.26)

D2 = d15T23 + εT11E2, (A.27)

D3 = d31T11 + d31T22 + d33T33 + εT33E3, (A.28)

where the coefficients d, SE and ε are the elastic, piezoelectric and di-

electric constants, and the strain components are defined as:

S11 = u1,1 S2,2 = u2,2 S33 = u3,3 (A.29)

S23 = u2,3 + u3,2 S13 = u3,1 + u1,3 S12 = u2,1 + u1,2. (A.30)

Restricted to 3-direction:

u3,3 = SE33T33 − dT31E3 (A.31)

D3 = d33T33 + εT33E3 (A.32)

Derivating two expressions, results

u3,33 = SE33T33,3 − dT31E3,3 (A.33)

0 = d33T33,3 + εT33E3,3 (A.34)
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u3,33 = SE33ρü3 − dT31E3,3 (A.35)

0 = d33ρü3 + εT33E3,3 (A.36)

Thus,

u3,33 = SE33ρü3 − dT31E3,3 (A.37)

E3,3 = −d33ρü3/ε
T
33 (A.38)

u3,33 = SE33ρü3 + dT31d33ρü3/ε
T
33 (A.39)

E3,3 = −d33ρü3/ε
T
33 (A.40)

u3,33 = (SE33 + dT31d33/ε
T
33)ρ︸ ︷︷ ︸

K33

ü3 (A.41)

E3,3 = −d33ρü3/ε
T
33 (A.42)

And the we have two systems of PDE:

∂2u

∂x2
= K33

∂2u

∂t2
(A.43)

∂φ

∂x
= d33ρ/ε

T
33︸ ︷︷ ︸

L33

∂2u

∂t2
(A.44)

Boundary conditions

u(0, t) = f(t) (A.45)

u3,3(x, t)|x=L = SE33T
imp
33 − dT33E

imp
3 (A.46)

u(x, t) =
1

T

∞∑
−∞

ũ(x, ωn)e2πωnt (A.47)
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being ωn = n
T

Equation can be rewritten as,

1

K33

ũ(n)′′(x, ω) + ω2
nũ

(n)(x, ω) = 0 (A.48)

Therefore, a general harmonic solution to equation 48 can be stated as,

ũ(n)(x, ω) = ũ(n),f (x, ω) + ũ(n,)b(x, ω) = A(n) · e−iknx +B(n) · e−iknx (A.49)

where ũ(n),f (x, ω) and ũ(n),b(x, ω) stand for the forward- and backward-

propagating parts of the linear displacement, respectively. The upper index

(n) denotes the order of the considered harmonic component, with respect

to the natural frequency ω. kn denotes the complex wave number and re-

sults from, kn = ωn
cp

= nk = nk̄(1− iα), n ∈ N∗ where k̄ and α respectively

denote the real part of the wave number and the Rayleigh damping coeffi-

cient [42].

To complete the analytical formulation of the problem, first we developed

for the problem amplitude 1D static and then frequency for the 1D dynamic

problem.

• Amplitude for static 1D case:

T = 0 (A.50)

E = 100V (A.51)

S33 = u3,3 =
∂u3

∂x3

(A.52)
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Then,

u3(t) =

∫ L

0

S33dx3 = S33

∫ L

0

dx3LS33 (A.53)

Using (A.4) we conclude that,

S = SE T︸︷︷︸
=0

+dtE (A.54)

• Speed v for the 1D case dynamic steady

T = 0 (A.55)

E = 100V (A.56)

Where E is an electric pulse.

Given (A.47):

u3(x, t) = Re[uampl3 ei(ω(t−x
c

))] = uampl3 sin(ω(t− x

c
)) (A.57)

Considering equation (A.43) we deduce that:

u3,xx = K33u3,tt (A.58)

(
ω

c
)2uampl3 sin(ω(t− x

c
)) = K33ω

2uampl3 sin(ω(t− x

c
)) (A.59)

Whereby the speed is as follows:

c =

√
1

K33

(A.60)



A.2 Results 63

A.2 Results

To validate that the piezoelectric element introduced in the torque sensor as

a 3D laminate had the desire effect, a finite elements model was calculated

whose displacements response coincided with the results of the analytical

model based on the constitutive equations of piezoelectric. Following figures

shows that FEAP software response coincides with that expected in the

analytical formulation.
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Figure A.1: Dynamic 1D problem

Using dynamic displacement response, is possible to deduct the time

that begins the movement of the transient part and find the wave speed for
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comparison with the analytical model.

-2.00E+04

-1.59E+04

-1.18E+04

-7.70E+03

-3.60E+03

 5.00E+02

 4.60E+03

 8.70E+03

 1.28E+04

 1.69E+04

 2.10E+04

 2.49E+03

 2.41E+04

_________________ Prin. Stress  1 

               Time = 9.60E-07

-2.00E+04

-1.59E+04

-1.18E+04

-7.70E+03

-3.60E+03

 5.00E+02

 4.60E+03

 8.70E+03

 1.28E+04

 1.69E+04

 2.10E+04

-3.90E+04

 3.23E+05

_________________ Prin. Stress  1 

               Time = 3.84E-06

-2.00E+04

-1.59E+04

-1.18E+04

-7.70E+03

-3.60E+03

 5.00E+02

 4.60E+03

 8.70E+03

 1.28E+04

 1.69E+04

 2.10E+04

-6.80E+04

 2.80E+05

_________________ Prin. Stress  1 

               Time = 6.90E-06

-2.00E+04

-1.59E+04

-1.18E+04

-7.70E+03

-3.60E+03

 5.00E+02

 4.60E+03

 8.70E+03

 1.28E+04

 1.69E+04

 2.10E+04

-7.47E+04

 2.68E+05

_________________ Prin. Stress  1 

               Time = 8.34E-06

-2.00E+04

-1.59E+04

-1.18E+04

-7.70E+03

-3.60E+03

 5.00E+02

 4.60E+03

 8.70E+03

 1.28E+04

 1.69E+04

 2.10E+04

-1.81E+05

 1.22E+05

_________________ Prin. Stress  1 

               Time = 1.18E-05

-2.00E+04

-1.59E+04

-1.18E+04

-7.70E+03

-3.60E+03

 5.00E+02

 4.60E+03

 8.70E+03

 1.28E+04

 1.69E+04

 2.10E+04

-8.97E+04

 1.35E+05

_________________ Prin. Stress  1 

               Time = 4.63E-05

Figure A.2: Different states of piezoelectric 3D element

The result of FEAP developed with FEM gives a similar result to an-

alytically deduced. The following table shows the outcomes in speed and

the degree of error being validated 3D piezo material for implementing the

calculation of the torque sensor design.
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Analytical speed 8.5e3 [m/s]

FEAP speed 8.3e3 [m/s]

Speed percentage of error 1.19 %

Analytical displacement voltage 3.74e-8 [V ]

FEAP displacement voltage 1.482e-8 [V ]

Voltage percentage of error 25.1 %

Table A.1: Validation 1D piezo material



Appendix B

Torsion sensor model algorithms

This appendix provides a summary of the algorithms developed in calcu-

lating the properties of the piezoelectric material used in the finite element

model, the model design through which the sensitivities were analyzed, and

the analytical simplified design codes for validation of the results.

1 %%Aluminum , ceramics and resin materials in terms of stiffness matrix%

2 %Juan Melchor 22−12−2012%

3

4 %Young's Modulus Aluminum, steel, ceramic and resin respectively%

5 %E=70e9;

6 E=210e9;

7 %E=130e9

8 %E=2250e6

9

10 %Poisson coefficient Aluminum, steel, ceramic and resin respectively%

11 %nu=0.33;

12 nu=0.33;

13 %nu=0.24

66
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14 %nu=0.33

15

16 %Stiffness matrix%

17 C=(E/((1+nu)*(1−2*nu)))*[1−nu nu nu 0 0 0; nu 1−nu nu 0 0 0; ...

18 nu nu 1−nu 0 0 0; 0 0 0 (1−2*nu)/2 0 0; 0 0 0 0 (1−2*nu)/2 0; ...

19 0 0 0 0 0 (1−2*nu)/2 ]

20

21 time=(0:20e−8:40e−5)';

22 freqc=35e3;

23 f=isgen(freqc,freqc*1.8,time); f=f/max(abs(f));

24 forcef=[time,f];

25 save('forcef','forcef','−ascii');

26

27 load Psensbcp5a.dis

28 timd=Psensbcp5a(:,1);

29 dis=Psensbcp5a(:,2:end);dis=dis/max(max(abs(dis)));

30 plot(timd*1e6,dis,time*1e6,f,'m−−');

31 legend('u2_A','u2_B','u1_B','u3_B','excitation','Location','Best');
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1 %PZT−5A piezoelectric properties%

2 %Juan Melchor

3 %−− 8/03/11 19:28 −−%

4

5 %% Default properties

6

7 %r Density [kg/m^3]%

8 r=7750;

9

10 %S=S_{E} Compliance [m^2/N]%

11 S=[ 16.4 −5.74 −7.22 0 0 0 ; ...

12 −5.74 16.4 −7.22 0 0 0 ; ...

13 −7.22 −7.22 18.8 0 0 0 ; ...

14 0 0 0 47.5 0 0 ; ...

15 0 0 0 0 47.5 0 ; ...

16 0 0 0 0 0 44.3 ]*10^(−12);

17

18 %C=C_{E} Stiffness [N/m^2]%

19 C=inv(S)

20

21 %d Piezoelectric coupling [C/N]%

22 d=[ 0 0 0 0 584 0 ; ...

23 0 0 0 584 0 0 ; ...

24 −171 −171 374 0 0 0 ]*10^(−12);

25

26 %e=d*C_{E} [C/m^2]%

27 e=d*C

28

29 %Eps = Dielectric permitivity [F/m]%

30 Eps=[ 1730 0 0 ; ...

31 0 1730 0 ; ...

32 0 0 1700 ];

33

34 %% For analitic validations
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35

36 %Analytical validation coefficients in displacement 3x3x3x3%

37 c2=S*r−d'*inv(Eps)*d*r;

38 c3=inv(c2);

39

40 %Coefficients of analytical validation 3x3x3%

41 k=inv(Eps)*d*r;

42

43 %% Material rotation

44 %% Exchanging Z <−> X (equivalent to 90º on Y) + rotate pi / 4 around Z

45 % Rotation matrices L of ij [6*6] and l i [3*3]

46 ly=[1 0 0 ; ...

47 0 0 1 ; ...

48 0 1 0];

49 Ly=[1 0 0 0 0 0 ; ...

50 0 0 1 0 0 0 ; ...

51 0 1 0 0 0 0 ; ...

52 0 0 0 1 0 0 ; ...

53 0 0 0 0 0 1 ; ...

54 0 0 0 0 1 0];

55 alpha=pi/4;

56 CS=cos(alpha);

57 SN=sin(alpha);

58 lz=[ CS −SN 0 ; ...

59 SN CS 0 ; ...

60 0 0 1];

61 Lz=[ CS^2 SN^2 0 0 0 −2*CS*SN ; ...

62 SN^2 CS^2 0 0 0 2*CS*SN ; ...

63 0 0 1 0 0 0 ; ...

64 0 0 0 CS −SN 0 ; ...

65 0 0 0 SN CS 0 ; ...

66 CS*SN −CS*SN 0 0 0 −1+2*CS^2];

67 LZ=[ CS^2 SN^2 0 0 0 2*CS*SN ; ...

68 SN^2 CS^2 0 0 0 −2*CS*SN ; ...
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69 0 0 1 0 0 0 ; ...

70 0 0 0 CS SN 0 ; ...

71 0 0 0 −SN CS 0 ; ...

72 −CS*SN CS*SN 0 0 0 −1+2*CS^2];

73 % Constants rotation using Lz

74 Cy = Ly*C *Ly';

75 Cyz = Lz*Cy *Lz'

76

77 Epsy = ly*Eps *ly';

78 Epsyz= lz*Epsy*lz'

79

80 dy = ly*d*C *Ly';

81 dyz = lz*dy *Lz'

82

83 % Constants rotation using LZ

84 Cy = Ly*C *Ly';

85 Cyz = LZ*Cy *LZ' % not change significantly compared to using Lz

86

87 Epsy = ly*Eps *ly';

88 Epsyz= lz*Epsy*lz' % not change

89 dy = ly*d*C *Ly'

90 dyz = lz*dy *LZ' % I think this definition is more likely
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1 % simulate torsion sensor

2 % [meas time]=fpx_mea_senstor(model,ex)

3 % Guillermo Rus Carlborg 2012−04−15

4 % Juan Melchor 2012−07−10

5

6

7 %function [meas time]=fpx_mea_senstor(model,ex)

8 %fpx_vars; ip_vars; cd lib_fpx;

9

10 model=[ 1 1 2 ... % AxBxL piezo [mm]

11 5 8.5 13 ... % piezo_ diameters disk, disc, ring[mm]

12 2 8 ]; % edge and thickness of the ring [mm]

13 ex=0; % 0: experimental − 1: trial

14 ip_noise=0; clear('fpx_noisreal'); tic;

15

16 name='senstor1';

17

18 switch 1, % choose material

19 case 1, ec=210e9; nc=0.3; rc=7800; surname='_steel' ...

20 % Young + Poisson + density of steel

21 case 2, ec= 65e9; nc=0.3; rc=2700; surname='_aluminium' ...

22 % Young + Poisson + density of aluminum

23 case 3, ec=150e9; nc=0.3; rc=1500; surname='_carbon' ...

24 % Young + Poisson + density of carbon fiber

25 case 4, ec= 3e9; nc=0.3; rc=1200; surname='_pmma' ...

26 % Young + Poisson + density of PMMA

27 case 5, ec= 80e9; nc=0.3; rc=1800; surname='_ceramic' ...

28 % Young + Poisson + density of ceramic

29 end; dc=2e4;

30

31 %%Sensitivity of tissue

32

33 switch 3, % choose material

34 case 1, e1=284887500; n1=0.4792; r1=1070;...
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35 surname=sprintf('%s_c1',surname); % cp 1500 cs 300

36 case 2, e1= 1.2763e8; n1=0.4910; r1=1070; ...

37 surname=sprintf('%s_c2',surname); % cp 1500 cs 200

38 case 3, e1=282480000; n1=0.4667; r1=1070; ...

39 surname=sprintf('%s_c3',surname); % cp 1200 cs 300

40 end;

41

42 %e1=8.0220e+06; n1=0.4994; r1=1070; surname=sprintf('%s_csd6',surname); %cs 50

43

44 % switch cpu (), %Varying in dermal tissue cs

45 % case 1, e1=1.2839e+06; n1=0.4999; r1=1070;

46 ... surname=sprintf('%s_csd1',surname); %cs 20

47 % case 2, e1=3.2025e+07; n1=0.4965; r1=1070;

48 ... surname=sprintf('%s_csd2',surname); %cs 100

49 % case 3, e1=1.2718e+08; n1=0.4857; r1=1070;

50 ... surname=sprintf('%s_csd3',surname); %cs 200

51 % case 4, e1=282480000; n1=0.4667; r1=1070;

52 ... surname=sprintf('%s_csd4',surname); %cs 300

53 % case 5, e1=4.4630e+08; n1=0.4443; r1=1070;

54 ... surname=sprintf('%s_csd5',surname); %cs 380

55 % case 6, e1=8.0220e+06; n1=0.4994; r1=1070;

56 ... surname=sprintf('%s_csd6',surname); %cs 50

57 % end;

58 % switch cpu (), %Varying in connective tissue cs

59 % case 1, e2=1.2839e+06; n3=0.4999; r2=1200;

60 ... surname=sprintf('%s_csc1',surname); %cs 20

61 % case 2, e2=3.2025e+07; n3=0.4965; r2=1200;

62 ... surname=sprintf('%s_csc2',surname); %cs 100

63 % case 3, e2=1.2718e+08; n3=0.4857; r2=1200;

64 ... surname=sprintf('%s_csc3',surname); %cs 200

65 % case 4, e2=282480000; n3=0.4667; r2=1200;

66 ...surname=sprintf('%s_csc4',surname); %cs 300

67 % case 5, e2=4.4630e+08; n3=0.4443; r2=1200;

68 ... surname=sprintf('%s_csc5',surname); %cs 380



73

69 % end;

70

71 % switch cpu (), %Varying in dermal tissue cp

72 % case 1, e1=282480000; n1=0.4667; r1=1070;

73 ... surname=sprintf('%s_cpd1',surname); %cp 1200

74 % case 2, e1=2.8427e+08; n1=0.4759; r1=1070;

75 ... surname=sprintf('%s_cpd2',surname); %cp 1400

76 % case 3, e1=284887500; n1=0.4792; r1=1070;

77 ... surname=sprintf('%s_cpd3',surname); %cp 1500

78 % case 4, e1=2.8539e+08; n1=0.4818; r1=1070;

79 ... surname=sprintf('%s_cpd4',surname); %cp 1600

80 % case 5, e1=2.8615e+08; n1=0.4857; r1=1070;

81 ... surname=sprintf('%s_cpd5',surname); %cp 1800

82 % end;

83 % switch cpu (), %Varying in connective tissue cp

84 % case 1, e2=282480000; n3=0.4667; r2=1200;

85 ... surname=sprintf('%s_cpc1',surname); %cp 1200

86 % case 2, e2=2.8427e+08; n3=0.4759; r2=1200

87 ;... surname=sprintf('%s_cpc2',surname); %cp 1400

88 % case 3, e2=284887500; n3=0.4792; r2=1200;

89 ... surname=sprintf('%s_cpc3',surname); %cp 1500

90 % case 4, e2=2.8539e+08; n3=0.4818; r2=1200;

91 ... surname=sprintf('%s_cpc4',surname); %cp 1600

92 % case 5, e2=2.8615e+08; n3=0.4857; r2=1200;

93 ... surname=sprintf('%s_cpc5',surname); %cp 1800

94 % end;

95

96 %e1=282480000; n1=0.4667; r1=1070;

97 ...%surname=sprintf('%s_youngtiss%d',surname,e1);

98 ... % Young + Poisson + density of dermic tisue

99 %e2= 50e6; n3=0.49; r2=1200;

100 ... % Young + Poisson + density of connectic tisue

101 d1=2e4;

102 ...%2.^cpu(); surname=sprintf('%s_ray%d',surname,d1);
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103 ... % Rayleigh attenuation in dermal tissue

104 d2=d1; % Rayleigh attenuation in connective tissue

105 e2= e1; n3= n1; r2= r1; % Young + Poisson + density of connectic tisue

106

107 %%%Choosing tissue defining

108 Tz= 0.5e−3; %dermal tissue thickness

109 Tc= 0.5e−3; %connective tissue thickness

110 Rt= 1.0e−3; %tissue extension

111

112

113 % switch cpu (), %Varying thickness dermal

114 % case 1, Tz= 0.3e−3; surname=sprintf('%s_Tz1',surname); %Tz 0.3e−3

115 % case 2, Tz= 0.4e−3; surname=sprintf('%s_Tz2',surname); %Tz 0.4e−3

116 % case 3, Tz= 0.5e−3; surname=sprintf('%s_Tz3',surname); %Tz 0.5e−3

117 % case 4, Tz= 0.6e−3; surname=sprintf('%s_Tz4',surname); %Tz 0.6e−3

118 % case 5, Tz= 0.7e−3; surname=sprintf('%s_Tz5',surname); %Tz 0.7e−3

119 % end;

120 %

121 % switch cpu (), %Varying thickness connective

122 % case 1, Tc= 0.3e−3; surname=sprintf('%s_Tc1',surname); %Tc 0.3e−3

123 % case 2, Tc= 0.4e−3; surname=sprintf('%s_Tc2',surname); %Tc 0.4e−3

124 % case 3, Tc= 0.5e−3; surname=sprintf('%s_Tc3',surname); %Tc 0.5e−3

125 % case 4, Tc= 0.6e−3; surname=sprintf('%s_Tc4',surname); %Tc 0.6e−3

126 % case 5, Tc= 0.7e−3; surname=sprintf('%s_Tc5',surname); %Tc 0.7e−3

127 % end;

128

129 m1=1; m2=2; m3=1; m4=1;

130 ... % to be reliable with dt = 25e−9 and capture high frequency

131

132 %m1=2; m2=4; m3=2; m4=2;

133 ... % to be reliable with dt = 25e−9 and capture high frequency

134

135 % switch cpu(), % Mesh refinement

136 % case 0, m1=1; m2=2; m3=1; m4=1; surname=[surname,''];
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137 % case 1, m1=2; m2=2; m3=1; m4=1; surname=[surname,'_2refdisc'];

138 % case 2, m1=4; m2=2; m3=1; m4=1; surname=[surname,'_4refdisc'];

139 % case 3, m1=1; m2=4; m3=1; m4=1; surname=[surname,'_2refhdisc'];

140 % case 4, m1=1; m2=8; m3=1; m4=1; surname=[surname,'_4refhdisc'];

141 % case 5, m1=1; m2=2; m3=2; m4=1; surname=[surname,'_2refhpiezo'];

142 % case 6, m1=1; m2=2; m3=4; m4=1; surname=[surname,'_4refhpiezo'];

143 % case 7, m1=1; m2=2; m3=1; m4=2; surname=[surname,'_2reftissue'];

144 % case 8, m1=1; m2=2; m3=1; m4=4; surname=[surname,'_4reftissue'];

145 % end;

146

147 %%% calculate the stiffness matrix and pass it on to FEAP down by

148 %%% parameters

149

150 a =model(1)*1e−3; % piezo width design

151 b =model(2)*1e−3; % piezo thickness design

152 pz=model(3)*1e−3; % piezo length design

153 dd=model(4)*1e−3/2; % distance sensor piezo internal design

154 ds=model(5)*1e−3/2; % means of the external radius of sensor design

155 dR=model(6)*1e−3/2; % inner radius of the sensor design

156 e =model(7)*1e−3; % external sensor design thickness

157 Lz=model(8)*1e−3; % ceramic thickness design

158

159 % switch cpu(), % choose material

160 % case 1, a=(model(1)−0.25)*1e−3; surname='_ancho1' % width 1 piezo

161 % case 2, a=(model(1)−0.5)*1e−3; surname='_ancho2' % width 2 piezo

162 % case 3, a=model(1)*1e−3; surname='_anchoref' % width ref piezo

163 % case 4, a=(model(1)+0.5)*1e−3; surname='_ancho3' % width 3 piezo

164 % case 5, a=(model(1)+1)*1e−3; surname='_ancho4' % width 4 piezo

165 % %end;

166 % %switch cpu(), % choose material

167 % case 6, b=(model(2)−0.5)*1e−3; surname='_espesor1' % piezo 1 thickness

168 % case 7, b=(model(2)−0.25)*1e−3; surname='_espesor2' % piezo 2

169 % thickness

170 % case 8, b=model(2)*1e−3; surname='_espesorref' % piezo ref thickness
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171 % case 9, b=(model(2)+0.5)*1e−3; surname='_espesor3' % piezo 3

172 % thickness

173 % case 10, b=(model(2)+1)*1e−3; surname='_espesor4' % piezo 4 thickness

174 % %end;

175 % %switch cpu(), % choose material

176 % case 11, pz=(model(3)−1.5)*1e−3; surname='_longitud1'

177 ... % piezo 1 length

178 % case 12, pz=(model(3)−1)*1e−3; surname='_longitud2'

179 ... % piezo 2 length

180 % case 13, pz=model(3)*1e−3; surname='_longitudref'

181 ... % piezo ref length

182 % case 14, pz=(model(3)+1)*1e−3; surname='_longitud3'

183 ... % piezo 3 length

184 % case 15, pz=(model(3)+3)*1e−3; surname='_longitud4'

185 ... % piezo 4 length

186 % %end;

187 % %switch cpu(), % choose material

188 % case 16, dd=(model(4)/2−1)*1e−3; surname='_distanciai1'

189 ... % internal distance 1 piezo

190 % case 17, dd=(model(4)/2−0.5)*1e−3; surname='_distanciai2'

191 ... % internal distance 2 piezo

192 % case 18, dd=model(4)*1e−3/2; surname='_distanciairef'

193 ... % internal distance ref piezo

194 % case 19, dd=(model(4)/2+0.5)*1e−3; surname='_distanciai3'

195 ... % internal distance 3 piezo

196 % case 20, dd=(model(4)/2+1)*1e−3; surname='_distanciai4'

197 ... % internal distance 4 piezo

198 % %end;

199 % %switch cpu(), % choose material

200 % case 21, ds=(model(5)/2−1)*1e−3; surname='_radioext1'

201 ... % means of the external radius 1

202 % case 22, ds=(model(5)/2−0.5)*1e−3; surname='_radioext2'

203 ...% means of the external radius 2

204 % case 23, ds=model(5)*1e−3/2; surname='_radioextref'
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205 ... % means of the external radius ref

206 % case 24, ds=(model(5)/2+0.5)*1e−3; surname='_radioext3'

207 ... % means of the external radius 3

208 % case 25, ds=(model(5)/2+1)*1e−3; surname='_radioext4'

209 ... % means of the external radius 4

210 % %end;

211 % switch cpu(), % choose material

212 % case 1, dR=(model(6)/2−0.5)*1e−3; surname='_radioint1' % inner radius

213 % of the sensor 1

214 % case 2, dR=(model(6)/2−1)*1e−3; surname='_radioint2' % inner radius

215 % of the sensor 2

216 % case 3, dR=model(6)*1e−3/2; surname='_radiointref' % inner radius

217 % of the sensor ref

218 % case 4, dR=(model(6)/2+2)*1e−3; surname='_radioint3' % inner radius

219 % of the sensor 3

220 % case 5, dR=(model(6)/2+4)*1e−3; surname='_radioint4' % inner radius

221 % of the sensor 4

222 % end;

223 % %switch cpu(), % choose material

224 % case 31, e=(model(7)−0.5)*1e−3; surname='_espesorext1'

225 ... % external sensor thickness 1

226 % case 32, e=(model(7)−0.25)*1e−3; surname='_espesorext2'

227 ... % external sensor thickness 2

228 % case 33, e=model(7)*1e−3; surname='_espesorextref'

229 ... % external sensor thickness ref

230 % case 34, e=(model(7)+0.25)*1e−3; surname='_espesorext3'

231 ... % external sensor thickness 3

232 % case 35, e=(model(7)+0.5)*1e−3; surname='_espesorext4'

233 ... % external sensor thickness 4

234 % %end;

235 % %switch cpu(), % choose material

236 % case 36, Lz=(model(8)−5)*1e−3; surname='_espesorcer1'

237 ... % ceramic thickness 1

238 % case 37, Lz=(model(8)−3)*1e−3; surname='_espesorcer2'
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239 ... % ceramic thickness 2

240 % case 38, Lz=(model(8)−1)*1e−3; surname='_espesorcer3'

241 ... % ceramic thickness 3

242 % case 39, Lz=model(8)*1e−3; surname='_espesorcerref'

243 ... % ceramic thickness ref

244 % case 40, Lz=(model(8)+1)*1e−3; surname='_espesorcer4'

245 ... % ceramic thickness 4

246 % case 41, Lz=(model(8)+3)*1e−3; surname='_espesorcer5'

247 ... % ceramic thickness 5

248 % case 42, Lz=(model(8)+5)*1e−3; surname='_espesorcer6'

249 ... % ceramic thickness 6

250 % end;

251 pl=−1; %if ¬ismac(), pl=−1; end; % pintar (1=si, −1=no)

252 %dt=.05e−6*(2.^cpu()); surname=sprintf('%s_dt%d',surname,round(dt*1e9));

%

253 %time increment

254 dt=3200e−9; surname=sprintf('%s_dtfinemesh%d',surname,round(dt*1e9));

% time increment

255 tt=200e−6; %surname=sprintf('%s_tt%d',surname,round(tt*1e6));

% total time

256 %tt=10e−6; % total time

257 time=0:dt:tt;

258 pd=1e6; % very conductive dielectric properties

259 pc=0.; % little conductive dielectric properties

260 R=dd+a/2; %

261 c=ds−R;

262 n=1; % first sensor mesh division

263 b1=asin(b/2/R); % second angle

264 mz=Lz; % thickness of the ceramic external sensor

265 Rs=dR; % total radius

266 a2=3.14159/4−b/2/Rs;

267 b2=3.14159/4+b/2/Rs;

268 P1=(Rs−a/2)*cos(3.14159/4)+b/2*sin(3.14159/4); % piezo vertex 1

269 P2=(Rs−a/2)*sin(3.14159/4)−b/2*cos(3.14159/4); % piezo vertex 2
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270 P3=(Rs+a/2)*cos(3.14159/4)+b/2*sin(3.14159/4); % piezo vertex 3

271 P4=(Rs+a/2)*sin(3.14159/4)−b/2*cos(3.14159/4); % piezo vertex 4

272 P5=(Rs+a/2)*cos(3.14159/4)−b/2*sin(3.14159/4); % piezo vertex 5

273 P6=(Rs+a/2)*sin(3.14159/4)+b/2*cos(3.14159/4); % piezo vertex 6

274 P7=(Rs−a/2)*cos(3.14159/4)−b/2*sin(3.14159/4); % piezo vertex 7

275 P8=(Rs−a/2)*sin(3.14159/4)+b/2*cos(3.14159/4); % piezo vertex 8

276 %frr=[.2e4 2e4];

277 %freqc=frr(1)*exp(log(frr(2)/frr(1))*fpx_design(1)); % frequency

278 %bandwidth=freqc*fpx_design(2); % width of 1D band

279 %rsr=[.005 .02];

280 %rs=rsr(1)*exp(log(rsr(2)/rsr(1))*fpx_design(3)); % radius of sensor

281

282 %f=isgen(freqc,bandwidth,time);

283 f=time'*0; ld=ceil(length(f)/100); f(1+(0:ld))=(0:ld)/ld; % excitation = spike

284 ft=[time' f];

285 save('−ascii','forcef','ft');

286

287 fid1=fopen('param','w'); % write blocks for FEAP

288 fprintf(fid1,'PARAmeters \n'); % write parameters block

289 fprintf(fid1,'a =%13.9g \n',a );

290 fprintf(fid1,'b =%13.9g \n',b );

291 fprintf(fid1,'dR=%13.9g \n',dR);

292 fprintf(fid1,'ds=%13.9g \n',ds);

293 fprintf(fid1,'dd=%13.9g \n',dd);

294 fprintf(fid1,'d1=%13.9g \n',d1);

295 fprintf(fid1,'d2=%13.9g \n',d2);

296 fprintf(fid1,'Lz=%13.9g \n',Lz);

297 fprintf(fid1,'e =%13.9g \n',e );

298 fprintf(fid1,'pz=%13.9g \n',pz);

299 fprintf(fid1,'dt=%13.9g \n',dt);

300 fprintf(fid1,'tt=%13.9g \n',tt);

301 fprintf(fid1,'pl=%13.9g \n',pl);

302 fprintf(fid1,'Tz=%13.9g \n',Tz);

303 fprintf(fid1,'Tc=%13.9g \n',Tc);
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304 fprintf(fid1,'Rt=%13.9g \n',Rt);

305 fprintf(fid1,'R=%13.9g \n',R);

306 fprintf(fid1,'c=%13.9g \n',c);

307 fprintf(fid1,'n=%13.9g \n',n);

308 fprintf(fid1,'n2=%13.9g \n',1*m1);

309 fprintf(fid1,'m=%13.9g \n',1);

310 fprintf(fid1,'l=%13.9g \n',3*m2);

311 fprintf(fid1,'l1=%13.9g \n',3*m4);

312 fprintf(fid1,'l2=%13.9g \n',3*m4);

313 fprintf(fid1,'lm=%13.9g \n',3);

314 fprintf(fid1,'o=%13.9g \n',2*n);

315 fprintf(fid1,'q1=%13.9g \n',1);

316 fprintf(fid1,'q2=%13.9g \n',1);

317 fprintf(fid1,'q3=%13.9g \n',2*m1);

318 fprintf(fid1,'q4=%13.9g \n',1*m4);

319 fprintf(fid1,'q5=%13.9g \n',4*m4);

320 fprintf(fid1,'q6=%13.9g \n',2);

321 fprintf(fid1,'p=%13.9g \n',2*m3);

322 fprintf(fid1,'a1=%13.9g \n',3.14159/4);

323 fprintf(fid1,'b1=%13.9g \n',b1);

324 fprintf(fid1,'mz=%13.9g \n',Lz);

325 fprintf(fid1,'u=%13.9g \n',100);

326 fprintf(fid1,'Rs=%13.9g \n',Rs);

327 fprintf(fid1,'a2=%13.9g \n',a2);

328 fprintf(fid1,'b2=%13.9g \n',b2);

329 fprintf(fid1,'P1=%13.9g \n',(Rs−a/2)*cos(3.14159/4)+b/2*sin(3.14159/4));

330 fprintf(fid1,'P2=%13.9g \n',(Rs−a/2)*sin(3.14159/4)−b/2*cos(3.14159/4));

331 fprintf(fid1,'P3=%13.9g \n',(Rs+a/2)*cos(3.14159/4)+b/2*sin(3.14159/4));

332 fprintf(fid1,'P4=%13.9g \n',(Rs+a/2)*sin(3.14159/4)−b/2*cos(3.14159/4));

333 fprintf(fid1,'P5=%13.9g \n',(Rs+a/2)*cos(3.14159/4)−b/2*sin(3.14159/4));

334 fprintf(fid1,'P6=%13.9g \n',(Rs+a/2)*sin(3.14159/4)+b/2*cos(3.14159/4));

335 fprintf(fid1,'P7=%13.9g \n',(Rs−a/2)*cos(3.14159/4)−b/2*sin(3.14159/4));

336 fprintf(fid1,'P8=%13.9g \n',(Rs−a/2)*sin(3.14159/4)+b/2*cos(3.14159/4));

337 fprintf(fid1,'\n');
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338 fclose(fid1);

339

340 fid1=fopen('materials','w'); % write blocks for FEAP

341 fprintf(fid1,'MATErial 1 \n');

342 % fprintf(fid1,' user,3,0,1,2,3,4 \n');

343 % fprintf(fid1,' bf1 %13.9g \n',0);

344 % fprintf(fid1,' bf2 %13.9g \n',0);

345 % fprintf(fid1,' bf3 %13.9g \n',0);

346 % fprintf(fid1,' cE11 %13.9g \n',ec/(1+nc)/(1−2*nc)*(1−nc));

347 % fprintf(fid1,' cE12 %13.9g \n',ec/(1+nc)/(1−2*nc)*nc);

348 % fprintf(fid1,' cE13 %13.9g \n',ec/(1+nc)/(1−2*nc)*nc);

349 % fprintf(fid1,' cE22 %13.9g \n',ec/(1+nc)/(1−2*nc)*(1−nc));

350 % fprintf(fid1,' cE23 %13.9g \n',ec/(1+nc)/(1−2*nc)*nc);

351 % fprintf(fid1,' cE33 %13.9g \n',ec/(1+nc)/(1−2*nc)*(1−nc));

352 % fprintf(fid1,' cE44 %13.9g \n',ec/(1+nc)/(1−2*nc)*(1−2*nc)/2);

353 % fprintf(fid1,' cE55 %13.9g \n',ec/(1+nc)/(1−2*nc)*(1−2*nc)/2);

354 % fprintf(fid1,' cE66 %13.9g \n',ec/(1+nc)/(1−2*nc)*(1−2*nc)/2);

355 % fprintf(fid1,' e11 %13.9g \n',0);

356 % fprintf(fid1,' e12 %13.9g \n',0);

357 % fprintf(fid1,' e13 %13.9g \n',0);

358 % fprintf(fid1,' e14 %13.9g \n',0);

359 % fprintf(fid1,' e15 %13.9g \n',0);

360 % fprintf(fid1,' e16 %13.9g \n',0);

361 % fprintf(fid1,' e21 %13.9g \n',0);

362 % fprintf(fid1,' e22 %13.9g \n',0);

363 % fprintf(fid1,' e23 %13.9g \n',0);

364 % fprintf(fid1,' e24 %13.9g \n',0);

365 % fprintf(fid1,' e25 %13.9g \n',0);

366 % fprintf(fid1,' e26 %13.9g \n',0);

367 % fprintf(fid1,' e31 %13.9g \n',0);

368 % fprintf(fid1,' e32 %13.9g \n',0);

369 % fprintf(fid1,' e33 %13.9g \n',0);

370 % fprintf(fid1,' e34 %13.9g \n',0);

371 % fprintf(fid1,' e35 %13.9g \n',0);
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372 % fprintf(fid1,' e36 %13.9g \n',0);

373 % fprintf(fid1,' eps11 %13.9g \n',pd);

374 % fprintf(fid1,' eps12 %13.9g \n',0);

375 % fprintf(fid1,' eps13 %13.9g \n',0);

376 % fprintf(fid1,' eps21 %13.9g \n',0);

377 % fprintf(fid1,' eps22 %13.9g \n',pd);

378 % fprintf(fid1,' eps23 %13.9g \n',0);

379 % fprintf(fid1,' eps31 %13.9g \n',0);

380 % fprintf(fid1,' eps32 %13.9g \n',0);

381 % fprintf(fid1,' eps33 %13.9g \n',pd);

382 % fprintf(fid1,' rho %13.9g \n',rc);

383 %fprintf(fid1,'MATErial 1 \n'); % Solid material

384 fprintf(fid1,' SOLID \n');

385 fprintf(fid1,' ELAStic ISOTropic %13.9g %13.9g \n',ec,nc);

386 fprintf(fid1,' density mass %13.9g \n',rc);

387 fprintf(fid1,' damping rayleigh %13.9g %13.9g \n',dc,0);

388 fprintf(fid1,'\n');

389 fprintf(fid1,'MATErial 4 \n'); % Dermic tissue

390 fprintf(fid1,' SOLID \n');

391 fprintf(fid1,' ELAStic ISOTropic %13.9g %13.9g \n',e1,n1);

392 fprintf(fid1,' density mass %13.9g \n',r1);

393 fprintf(fid1,' damping rayleigh %13.9g %13.9g \n',d1,0);

394 fprintf(fid1,'\n');

395 fprintf(fid1,'MATErial 5 \n'); % connective tissue

396 fprintf(fid1,' SOLID \n');

397 fprintf(fid1,' ELAStic ISOTropic %13.9g %13.9g \n',e2,n3);

398 fprintf(fid1,' density mass %13.9g \n',r2);

399 fprintf(fid1,' damping rayleigh %13.9g %13.9g \n',d2,0);

400 fprintf(fid1,'\n');

401 fclose(fid1);

402

403 %if and(isunix,not(ismac)), unix('./dynfeap <y');

404 if and(isunix,not(ismac)), unix('./feap_mse2 <y');

405 else, unix('./rfeap−2 <y'); end; % run FEAP
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406 meas=load('−ascii','Psensordef2a.dis');

407 time=meas(:,1); meas=meas(:,2:end); %read output

408

409 % Add experimental noise

410 if ex, nois=real(ip_noise); else, nois=imag(ip_noise);end; % exp/trial?

411 if ¬exist('fpx_noisreal'), fpx_noisreal=randn(size(meas)); end;

412 meas=meas+real(nois)*fpx_noisreal*rms(meas); % add noise

413 %meas(:,1:2)=meas(:,1:2)*1e3; figure(1); plot(time*1e6,meas);

414 ...legend('Voltage','Voltage','Disp 2 ring',

415 ...'Disp 1 disc','Disp 2 disc','Disp 3 disc');

416 meas(:,1)=meas(:,1)*1e3;

417 figure(1); plot(time*1e6,meas); ...

418 legend('Voltage','Disp 2 ring','Disp 1 disc','Disp 2 disc'...

419 ,'Disp 3 disc','Disp 1 tissue','Disp 2 tissue','Disp 3 tissue');

420 print('−depsc',['eps/',name,surname]); save(['eps/',name,surname]); toc,

421

422 %cd .. , end
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1 % launch job to mse2.ugr.es

2 % Guillermo Rus Carlborg [grus@ugr.es] 2011−03−22

3 % Juan Melchor 2012−07−10

4 % requires configuring ssh without password on mse2:

5 ...http://tuxvoid.blogspot.com/2008/01/how−to−ssh−or−scp−without−password.html

6

7 action = 2; % 1 − launch, 2 − retrieve

8 n1s = 1:5; % which cpu:s

9 mainfile = 'fpx_mea_senstor.m';

10 remotedir = 'senstor';

11 filecontents = {'feapname' 'Isensordef2' 'cpu.m' 'isgen.m' 'rms.m'...

12 'feap_mse2' 'y' 'launch.sh' 'merge.sh' mainfile}; ...

13 fid2=fopen('filelist.txt','w'); fprintf(fid2,'%s\n',...

14 filecontents{:}); fclose(fid2);

15

16 switch action

17 case 1 % send files and launch job

18 % script to remotely multiply folders from master to cpu??, and run all jobs

19 fid1=fopen('launch.sh','w');

20 for n1=n1s; fprintf(fid1,'rm −r cpu%02d \n',n1); end;

21 for n1=n1s; fprintf(fid1,'rsync −avu master/ cpu%02d/ \n',n1); end;

22 for n1=n1s; fprintf(fid1,'cd cpu%02d ; matbg %s out.txt ; cd .. \n',n1,mainfile);...

23 end; fclose(fid1);

24 % script to remotely merge from cpu?? to master

25 fid1=fopen('merge.sh','w');

26 for n1=n1s; fprintf(fid1,'rsync −avu cpu%02d/ master/ \n',n1); end;...

27 fclose(fid1);

28 % send local files to remote master folder; remotely run ./launch.sh

29 unix(['rsync −avu −−files−from=filelist.txt . grus@mse2.ugr.es:',remotedir,...

30 '/master']);

31 unix(['ssh grus@mse2.ugr.es ''cd '...

32 ,remotedir,';chmod 744 master/*.sh; mv master/*.sh . ; ./launch.sh'' ']);

33 delete('filelist.txt','launch.sh','merge.sh');

34
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35 case 2 % retrieve ( remotely run ./merge.sh ; get files from eps/ )

36 unix(['ssh grus@mse2.ugr.es ''cd ',remotedir,' ; ./merge.sh'' ']);

37 unix(['rsync −avv grus@mse2.ugr.es:',remotedir,'/master/eps/ eps/ ']);

38 end;
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1 % Juan Melchor 31−5−2012

2 %E young modulus and n Poisson coeficent with wave speed determinated

3

4 cp=1500; % speed of p−wave

5

6 cs=50; % speed of s−wave

7

8 %cp=sqrt(E*(1−n)/((1+n)*(1−2*n))/1070);

9

10 %cs=sqrt(E/2*(1+n)/1070);

11

12 %ncp^2*(2*(1+n))=((1+n)*(1−2*n))*cs^2/(1−n);

13

14 n=(cp^2*1070−2*cs^2*1070)/(2*cp^2*1070−2*cs^2*1070); %(M−2*G)/(2*M−2*G)

15

16 E=cs^2*1070*(3*cp^2*1070−4*cs^2*1070)/(cp^2*1070−cs^2*1070); %G(3M−4G)/(M−G)

17

18

19 % steel

20 % ec=210e9; nc=0.3; rc=7800;

21 % E=ec;n=nc;r=rc;

22 % cp=sqrt(E*(1−n)/((1+n)*(1−2*n))/r)

23 % cs=sqrt(E/2*(1+n)/r)
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1 %% Simplified torsion transducer design

2 %% Guillermo Rus 2012−01−31

3 %% Juan Melchor 2012−07−15

4

5 % Approximations: reduction to a single−degree−of−freedom system

6 % Movement = torsion rotation $\theta$

7 % Dynamic equilibrium: $k\theta+I\ddot{\theta}=0$

8 % Steady−state solution: $\theta=\thetao^0sin(\omega t)$

9 % Natural frequency (eigenvalue): $\omega=\sqrt(k/I)$ $f=\omega/(2\pi)$

10 % Stiffness of piezoceramic due to moment: $k=M/\theta$

11 % $M=ndF=ndab\sigma_{xz}$

12 % $\theta=u/d=l/d \epsilon_{xz}$

13 % Inertia of cylinder: $I=mr^2/2$ $m=hr^2\pi\rho$

14 % Inertia of ring: $I=mr^2$ $m=hre2\pi\rho$

15

16 % Cylinder

17

18 % Metal disc

19 r= 8.5e−3/2;% radius [m]

20 h= 8.0e−3; % thickness [m]

21 dens= 7800; % steel density [kg/m^3]

22

23 % Piezoceramic blockç

24 a= 1.0e−3; % side a [m]

25 b= 1.0e−3; % side b [m]

26 l= 2.0e−3; % length [m]

27 d= 2.5e−3; % distance from axis [m]

28 le=2*l; % effective length (including flexibility of clamp)

29 n= 4; % number of blocks

30 mu=75e9; % shear modulus [Pa]

31

32 f=1/2/pi*sqrt((n*a*b*d^2*mu)/(pi/2*le*h*r^4*dens))

33

34 % Ring
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35

36 % Metal disc

37 r=13.0e−3/2;% radius [m]

38 %h= 4.0e−3; % thickness [m]

39 %dens= 7800; % steel density [kg/m^3]

40 e= 2.0e−3; % ring thickness [m]

41

42 % Piezoceramic block

43 %a= 1.2e−3; % side a [m]

44 %b= 1.2e−3; % side b [m]

45 %l= 2.0e−3; % length [m]

46 d= r; % distance from axis [m]

47 %le=2*l; % effective length (including flexibility of clamp)

48 %n= 4; % number of blocks

49 %mu=75e9; % shear modulus [Pa]

50

51 f=1/2/pi*sqrt((n*a*b*d^2*mu)/(2*pi*le*h*e*r^3*dens))
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