
Universidad de Granada

Departamento de Ciencias de la Computación
e Inteligencia Artificial

Hybrid and Constructive Metaheuristics:

Methods and Applications

Tesis Doctoral

Francisco Javier Rodŕıguez Dı́az

Granada, Noviembre de 2012

Editor: Editorial de la Universidad de Granada
Autor: Francisco Javier Rodríguez Díaz
D.L.: GR 856-2013
ISBN: 978-84-9028-453-7

Universidad de Granada

Hybrid and Constructive Metaheuristics:

Methods and Applications

MEMORIA QUE PRESENTA

Francisco Javier Rodŕıguez Dı́az

PARA OPTAR AL GRADO DE DOCTOR EN INFORMÁTICA

Noviembre de 2012

DIRECTORES

Dr. Manuel Lozano Márquez
Dr. Carlos Garćıa Mart́ınez

Departamento de Ciencias de la Computación
e Inteligencia Artificial

La memoria titulada “Hybrid and Constructive Metaheuristics: Methods and Applications”,
que presenta D. Francisco Javier Rodŕıguez Dı́az para optar al grado de doctor, ha sido realizada
dentro del Máster Oficial de Doctorado “Soft Computing y Sistemas Inteligentes” del Departamento
de Ciencias de la Computación e Inteligencia Artificial de la Universidad de Granada bajo la
dirección de los doctores D. Manuel Lozano Márquez y D. Carlos Garćıa Mart́ınez.

El doctorando y los directores de la tesis garantizamos, al firmar esta tesis doctoral, que el
trabajo ha sido realizado por el doctorando bajo la dirección de los directores de la tesis, y hasta
donde nuestro conocimiento alcanza, en la realización del trabajo se han respetado los derechos de
otros autores a ser citados cuando se han utilizado sus resultados o publicaciones.

Granada, Noviembre de 2012

El Doctorando

Fdo: Francisco Javier Rodŕıguez Dı́az

Los Directores

Fdo: Manuel Lozano Márquez Fdo: Carlos Garćıa Mart́ınez

Esta tésis doctoral ha sido desarrollada bajo la financiación de los fondos asociados al proyec-
to P08-TIC-4173 de la Junta de Andalućıa y los proyectos TIN2007-66523 y TIN2011-24124 del
Ministerio de Economı́a y Competitividad.

Table of Contents

I. PhD dissertation 1

1. Introducción . 1

1. Introduction . 5

2. Problem statement . 9

2.1. Optimisation . 9

2.2. Black-box problems . 10

2.3. Parallel Machines Scheduling Problem . 10

2.4. Quadratic Minimum Spanning Tree Problem 13

2.5. Metaheuristics . 13

2.5.1. Simulated Annealing . 15

2.5.2. Evolutionary Algorithms . 16

2.5.3. Greedy Randomised Adaptive Search 17

2.5.4. Iterated Greedy . 18

2.6. Hybrid Metaheuristics . 19

3. Justification . 21

4. Objectives . 23

5. Joint Discussion of Results . 24

5.1. A Simulated Annealing Method Based on a Specialised Evolutionary Algorithm 24

5.2. Hybrid Metaheuristics Based on Evolutionary Algorithms and Simulated An-
nealing: Taxonomy, Comparison, and Synergy Test 26

5.3. GRASP with Path-Relinking for the Non-Identical Parallel Machine Schedu-
ling Problem with Minimising Total Weighted Completion Times 29

5.4. An Iterated Greedy Algorithm for the Large-Scale Unrelated Parallel Machi-
nes Scheduling Problem . 31

5.5. Tabu Search with Strategic Oscillation for the Quadratic Minimum Spanning
Tree . 33

6. Conclusiones . 35

6. Conclusions . 37

vii

viii TABLE OF CONTENTS

7. Future Work . 39

II. Publications: Published, Accepted and Submitted Papers 41

1. A simulated annealing method based on a specialised evolutionary algorithm 41

2. Hybrid Metaheuristics Based on Evolutionary Algorithms and Simulated Annealing:
Taxonomy, Comparison, and Synergy Test . 59

3. GRASP with path-relinking for the non-identical parallel machine scheduling pro-
blem with minimising total weighted completion times 75

4. An Iterated Greedy Algorithm for the Large-Scale Unrelated Parallel Machines Sche-
duling Problem . 95

5. Tabu Search with Strategic Oscillation for the Quadratic Minimum Spanning Tree . 131

Bibliograf́ıa 151

Table of Figures

1. Space of I&D [BR03] . 14

2. SA model . 15

3. Basic scheme of an EA . 17

4. Basic scheme of GRASP . 17

5. Basic scheme of GRASP construction phase . 18

6. Basic scheme of IG . 19

7. Number of publications and citations per year for HMs-EA/SA (Web of Science) . . 22

8. SASEA model . 24

9. Average rankings of the HMs-EA/SA versions . 28

10. Synergy study: HMs-EA/SA vs. Standalone SA, Canonical GAs, and CHC 29

ix

Part I. PhD dissertation

1. Introducción

Un problema de optimización consiste en la selección de la mejor configuración para un conjunto
de variables de acuerdo a unos determinados criterios. Los problemas de optimización se pueden
clasificar básicamente en dos categoŕıas dependiendo de si las variables son reales o discretas. Dentro
de los problemas de optimización con variables discretas, encontramos los denominados problemas
de optimización combinatoria. De acuerdo a [PS82], en los problemas de optimización combinatoria
buscamos un determinado objeto como un entero, una permutación o un grafo de entre un conjunto
finito (o posiblemente infinito numerable).

Debido a la importancia de los problemas de optimización en la industria y en la ciencia, la
comunidad cient́ıfica ha realizado grandes esfuerzos para desarrollar nuevos algoritmos para afrontar
esta clase de problemas. Estos algoritmos se han aplicado para resolver incontables aplicaciones
reales. Solo por nombrar algunas de estas aplicaciones, podemos destacar que estos algoritmos son
usados por las compañ́ıas aéreas para planificar las rutas aéreas y las poĺıticas de precios, por las
grandes compañ́ıas para planificar la localización de sus almacenes, por los procesadores de texto
para decidir donde introducir espacios en blanco para justificar un determinado párrafo y por las
tiendas de comercio electrónico para recomendar productos a sus clientes.

Los métodos existentes para optimización combinatoria se pueden clasificar en dos categoŕıas:
métodos exactos y algoritmos aproximados. Los métodos exactos garantizan que se va a encontrar
una solución óptima para cada instancia finita del problema en un tiempo limitado [PS82, NW88].
Sin embargo, muchos de los problemas que aparecen son NP duros, lo que hace dif́ıcil que se puedan
diseñar algoritmos exactos eficientes para dichos problemas. Por lo tanto, los algoritmos aproxima-
dos, que se centran en encontrar buenas soluciones en un tiempo reducido, han incrementado su
importancia en los últimos años.

Entre los algoritmos aproximados, las metaheuristicas [BR03, GK03, SM08] se han establecido
como una de las alternativas más prometedoras para afrontar los problemas de optimización com-
binatoria. Las metaheuŕısticas son una familia de algoritmos que constan de un proceso iterativo
que gúıa una heuŕıstica subordinada de forma que se combinan de forma inteligente conceptos
para la exploración y explotación del espacio de búsqueda asociado al problema de optimización
combinatorio. Las metaheuŕısticas se han aplicado para resolver problemas dentro de diversos cam-
pos, mostrando su habilidad para proporcionar buenas soluciones (no necesariamente óptimas) en
un tiempo razonable. Existe un grupo de metaheuŕısticas que siguen paradigmas diferenciados y
son conocidas como metaheuŕısticas clásicas, ya que tienen un amplio bagaje histórico. Este gru-

2 Part I. PhD dissertation

po está formados por métodos como enfriamiento simulado [KGV83] (SA), búsqueda tabú [GL97],
búsqueda local iterativa [LMS03], búsqueda en entornos variables [MH97], procedimiento de búsque-
da voraz aleatorizado [FR95] (GRASP), algoritmos evolutivos [BFM97] (EAs) y búsqueda dispersa
[Lag03].

Además, durante los últimos años, ha aparecido un grupo de algoritmos que se caracteriza
porque no se limita a seguir los conceptos de una única metaheuŕıstica clásica sino que combina
lo mejor de distintas metaheuŕısticas (e incluso otros métodos de optimización) de forma que la
combinación de las mismas se comporte mejor y dicha combinación produzca una sinergia positiva.
Estas aproximaciones se conocen como metaheuŕısticas h́ıbridas (HMs) [Tal02, Rai06a, Blu10]. El
éxito y la importancia de esta ĺınea de investigación se ve reflejado en el número creciente de
aplicaciones de las metaheuŕısticas h́ıbridas y en la existencia de eventos cient́ıficos centrados en
esta temática como la serie Workshops on Hybrid Metaheuristics.

SA fue presentado en 1983, siendo una de las primeras propuestas de lo que conocemos como
metaheuŕısticas clásicas. Sin embargo, SA es todav́ıa objeto de estudio por parte de muchos trabajos
y se aplica para resolver problemas de optimización bien por si solo o como componente de otros
algoritmos de búsqueda [HJJ03, SSF02, GML09b]. SA es conocido por ser el primer algoritmo
que extend́ıa los métodos de búsqueda local añadiendo una estrategia para escapar de óptimos
locales. Los algoritmos de búsqueda locales realizan un proceso de búsqueda iterativo que trata
de mejorar la solución actual mediante la exploración de soluciones cercanas a la misma. La idea
principal de SA es permitir movimientos hacia soluciones de peor calidad que la solución actual.
La probabilidad de realizar estos movimientos hacia peores soluciones va decreciendo a lo largo del
proceso de búsqueda.

Los EAs [BFM97, ES03] son actualmente una de las metaheuŕısticas más populares y son
usados por muchos investigadores para resolver problemas complejos. Son métodos estocásticos de
búsqueda que tratan de imitar el proceso de evolución natural y están basados en el concepto de una
población de individuos (los cuales representan puntos del espacio de búsqueda de un determinado
problema), utilizando operadores probabiĺısticos tales como la mutación, selección, y (a veces) cruce
para evolucionar hacia individuos con mejores valores de adaptación. Existe una gran variedad de
EAs ligeramente diferentes como la programación evolutiva [Fog95], las estrategias de evolución
[BS02] y los algoritmos genéticos [Gol89]. Los EAs presentan grandes ventajas cuando se afrontan
problemas de optimización complejos, ya que pueden localizar prometedoras regiones dentro de
espacios de búsqueda muy grandes y complejos. Otras ventajas son su simplicidad, flexibilidad y
robustez para responder a situaciones cambiantes.

La hibridación de los EAs está adquiriendo gran popularidad por su habilidad para tratar con
problemas reales caracterizados por su complejidad, presencia de ruido, imprecisión, incertidumbre
y vaguedad [GA07a, PT99, MS10, VRH09]. En particular, la combinación de SA y EAs para diseñar
HMs destaca por su importancia dentro del campo de las hibridaciones de los EAs [TB05, LZXM10,
WWR05, CWYH09, TW10].

Aparte de las metaheuŕısticas basadas en la búsqueda de nuevas soluciones cercanas a la actual,
como SA, o en la combinación de varias soluciones, como los EAs, encontramos otro grupo de me-
taheuŕısticas que se basan en la construcción de nuevas soluciones añadiendo en cada paso un nuevo
elemento a una solución parcial. Este tipo de metaheuŕısticas son conocidas como metaheuŕısticas
constructivas y podemos encontrar en la literatura diverso ejemplos como la búsqueda voraz itera-
tiva (IG) [JB95], GRASP [FR95] y la optimización basada en colonias de hormigas [DS04]. Los
métodos constructivos son usualmente los más rápidos de entre los métodos aproximados, sin em-
bargo, a menudo la calidad de las soluciones encontradas nos es tan buena como en los métodos
de búsqueda local [CHS02]. Por lo tanto, la mayoŕıa de las metaheuŕısticas constructivas incluyen

1. Introducción 3

métodos de búsqueda local para mejorar la calidad de las soluciones obtenidas después de la etapa
de construcción.

GRASP [FR89, FR95] es una metaheuŕıstica multiarranque para optimización combinatoria que
consta de dos fases: construcción y fase de refinamiento. El mecanismo de construcción de soluciones
proporciona una solución inicial usando una heuŕıstica aleatorizada, permitiendo de esta manera
que se obtengan soluciones en diferentes áreas del espacio de búsqueda. Cada solución se obtiene
añadiendo, paso a paso, a una solución parcial un nuevo elemento seleccionado de entre un conjunto
restringido de candidatos. La fase de refinamiento parte de la solución obtenida anteriormente y
realiza perturbaciones locales para obtener una solución localmente óptima con respecto a un
vecindario predefinido. Este proceso formado por estas dos fases es iterativo y se realiza hasta que
se alcanza una condición de parada definida por el usuario. Al final de este proceso iterativo, el
algoritmo devuelve la mejor solución encontrada a lo largo de todo el proceso. GRASP es usado
muy a menudo para afrontar problemas reales [RR03] debido a su simplicidad.

IG [CL96, JB95, RS07] es una metaheuŕıstica muy efectiva, desarrollada recientemente para
afrontar problemas de optimización combinatoria y que sigue un sencillo principio. Además, es fácil
de implementar y muestra un rendimiento excelente, de hecho, es considerada como estado del arte
para un considerable número de problemas [FPR10, FL08, LLYL11, URS10]. IG, iterativamente,
trata de mejorar la solución actual eliminando elementos de la solución actual y completando
después la solución parcial obtenida mediante un procedimiento constructivo. Además, IG suele
utilizar procedimientos de refinamiento local para mejorar la calidad de las soluciones obtenidas
después de las fases de destrucción y reconstrucción.

Al mismo tiempo, existen en la actualidad múltiples trabajos que se centran en estudiar las
hibridaciones de las metaheuŕısticas constructivas. En la literatura encontramos, entre otros ejem-
plos, hibridaciones entre algoritmos de colonias de hormigas y algoritmos genéticos [CK12] o lógica
difusa [YLJ12], GRASP y encadenamiento de trayectorias [SCD+12] o optimización basada en
nubes de part́ıculas [MMD10] e IG y búsqueda en entornos variables [LB10].

Para nuestro estudio, hemos considerado problemas en dos escenarios diferentes. En el primero,
no disponemos de conocimiento espećıfico acerca del problema para usarlo a lo largo del proceso de
búsqueda, excepto el proporcionado por la propia representación y las restricciones del problema.
Estos problemas son conocidos como problemas de caja negra [CLM05, GDLM08]. En segundo lugar,
afrontamos problemas en entornos en los que disponemos de conocimiento espećıfico, tales como
la estructura de la función objetivo. En particular, hemos considerado dos problemas diferentes: el
problema de la planificación de trabajos en máquinas paralelas [McN59] y el problema del árbol de
expansión cuadrático mı́nimo [AX92].

Los problemas de caja negra aparecen en multitud de aplicaciones cient́ıficas y de ingenieŕıa
donde no se dispone de información útil para reforzar el proceso de búsqueda. Estos problemas
son comunes cuando se optimizan modelos dinámicos computacionalmente costosos, ingenieŕıa de
bioprocesos o cuando la evaluación de las soluciones se lleva a cabo mediante simulaciones. Los
algoritmos independientes del contexto son una herramienta útil en estos casos, ya que solo requieren
conocer el dominio y el tipo de las variables de decisión para poder ser aplicados. El modelo de
algoritmo genético original propuesto por Holland [Hol75] pertenece a esta clase de métodos.

La planificación de trabajos en máquinas paralelas consiste en asignar un conjunto de trabajos
en alguna de las máquinas disponibles, de forma que la asignación resultante satisfaga ciertos reque-
rimientos. Dentro de la formulación general del problema, existen diversas variantes dependiendo
de las caracteŕısticas de las máquinas o las condiciones del mecanismo de planificación. Entre sus
principales aplicaciones reales destaca la optimización de los procesos productivos en la industria
o la planificación de procesos en ordenadores con múltiples nodos de procesamiento [Wot07].

4 Part I. PhD dissertation

El problema del árbol de expansión cuadrático mı́nimo es una extensión del conocido problema
del árbol de expansión mı́nimo [J.B56], donde además de los costos asociados a cada arista, tenemos
costos asociados a pares de aristas. Este problema se ha estudiado en profundidad en la literatura
debido a su aplicación en una amplia variedad de entornos, como el transporte, las telecomuni-
caciones, sistemas de riego y transporte de enerǵıa. El problema aparece, por ejemplo, cuando se
transfiere combustible de una tubeŕıa a otra en situaciones en las que el costo depende de la interfaz
entre las dos tubeŕıas. Esta misma interacción por parejas la encontramos en la conexión de cables
subterráneos y en superficie en una red de carreteras con penalizaciones por retorno [SS10, ZG98].

En esta memoria, presentamos la investigación que hemos realizado en las dos áreas comen-
tadas anteriormente: 1) métodos de optimización para entornos de caja negra mediante HMs que
combinan SA y EAs y 2) metaheuŕısticas constructivas para los problemas de la planificación en
máquinas paralelas y del árbol de expansión cuadrático mı́nimo. Con especto a la primera tarea,
hemos realizado un estudio del estado del arte en cuanto a HMs-EA/SA para optimización combi-
natoria, clasificando los métodos encontrados de acuerdo a la taxonomı́a propuesta para este tipo
de métodos. Además, hemos presentado nuevos modelos de HMs-EA/SA que cubren categoŕıas
de la taxonomı́a en las cuales no exist́ıa ninguna HM-EA/SA en la literatura. Con respecto a la
segunda tarea, hemos identificado los métodos estado del arte para el problema de la planifica-
ción de trabajos en máquinas paralelas y el problema del árbol de expansión cuadrático mı́nimo y
hemos explorado metaheuŕısticas constructivas que sean competitivas con respecto a los métodos
existentes en la literatura. Para llevas a cabo estas tareas, esta memoria se ha estructurado en dos
partes:

La Parte I está dedicada a la definición del problema, la discusión de los métodos propuestos
y las conclusiones obtenidas.

La Parte II contiene las publicaciones asociadas.

En la Parte I, después de la Introducción, continuamos con la definición del problema y las
técnicas usadas (Sección 2), los problemas abiertos que justifican esta tesis (Sección 3) y los objeti-
vos que nos planteamos en la misma (Sección 4). Después, en la Sección 5, resumimos los trabajos
realizados a lo largo de esta tesis, resaltando los resultados y conclusiones más importantes obte-
nidos. Finalmente, presentamos las conclusiones globales de esta tesis y terminamos con el trabajo
futuro a realizar después de esta tesis (Sección 7).

En la Parte II, con el objetivo de desarrollar los objetivos propuestos, proporcionamos un com-
pendio de cinco publicaciones relacionados con el estudio emprendido en esta tesis:

Un método de enfriamiento simulado basado en algoritmos evolutivos especializados.

Metaheuŕısticas h́ıbridas basadas en algoritmos evolutivos y enfriamiento simulado: taxo-
nomı́a, comparativa y estudio de sinergia.

GRASP con encadenamiento de trayectorias para el problema de la planificación en máquinas
no idénticas con minimización del tiempo total de finalización ponderado.

Un algoritmo IG para el problema de planificación en máquinas no relacionadas para alta
escalabilidad.

Búsqueda tabú con oscilación estratégica para el problema del árbol de expansión cuadrático
mı́nimo.

1. Introduction 5

1. Introduction

An optimisation problem concerns the selection of the best configuration of a set of variables
according to some criteria. Optimisation problems can be basically divided into two categories
depending on whether these variables are real-valued or discrete. Among the optimisation problems
with discrete variables, we find a type called combinatorial optimisation problems. According to
[PS82], in combinatorial optimisation problems we are looking for an object such as an integer,
permutation or graph from a finite (or possibly countable infinite) set.

Due to the importance of combinatorial optimisation problems in science and industry, resear-
chers have devoted great efforts to develop new algorithms to tackle these problems. Algorithms
for combinatorial optimisation problems arise in countless real-world applications. Just to name a
few, these algorithms are used by airline companies to schedule flights and decide their respective
prices, by large companies to dedice where and what to stock in their wharehouses, by delivery
companies to decide the routes for their trucks, by GPS navigators to provide driving directions, by
word-processors to decide where to introduce blank spaces to justify a paragraph and by webshops
to recommend products to their clients.

The existing methods for combinatorial optimisation are classified into two categories: exact
and approximate algorithms. Exact methods guarantees to find an optimal solution for every finite
size instance in a bounded time [PS82, NW88]. However, many problems arising in practice are
NP-hard and so it is unlikely that we can design exact efficient algorithms for these problems. Thus,
the use of approximate algorithms, which focus on finding good solutions in a reduced amount of
time, has increased greatly in recent years.

Among approximate algorithms, metaheuristics [BR03, GK03, SM08] have been established as
one of the most practical approach to deal with combinatorial optimisation problems. Metaheuris-
tics are a family of approximate methods conformed by iterative processes that guide a subordinate
heuristic by combining intelligently different concepts for exploring and exploiting the search space
associated to the combinatorial optimisation problem. Metaheuristics have been applied to problems
from very different fields, showing its ability to provide acceptably good solutions (not necessarily
optimal) in a reasonable amount of time. There is a group of metaheuristics that follow distinct pa-
radigms and are usually cited as classical metaheuristics, as they have a well-established historical
background. This group includes methods such as simulated annealing [KGV83] (SA), tabu search
[GL97], iterated local search [LMS03], variable neighbourhood search [MH97], greedy randomised
adaptive search procedure [FR95] (GRASP), evolutionary algorithms [BFM97] (EAs), and scatter
search [Lag03].

Furthermore, over the last few years, a large number of search algorithms have been presented
that do not simply follow the concepts of one single classical metaheuristic, but attempt to obtain
the best from a set of metaheuristics (and even other kinds of optimisation methods) that perform
together and complement each other to produce a profitable synergy from their combination. These
approaches are commonly referred to as hybrid metaheuristics (HMs) [Tal02, Rai06a, Blu10]. The
increasing number of applications of hybrid metaheuristics and the existence of scientific events
focused on this subject such as the series of Workshops on Hybrid Metaheuristics show the success
and importance of this specific line of research.

SA [KGV83, AK89, HJJ03] was presented in 1983, becoming one of the first proposals within
classical metaheuristics. However, SA is still the object of further studies [BSMD08], applied to
many optimisation problems, or used as a component of other search algorithms [HJJ03, SSF02,

6 Part I. PhD dissertation

GML09b]. SA is commonly said to be the first algorithm extending local search methods with an
explicit strategy to escape from local optima. Local search algorithms try to iteratively improve the
current solution by performing movements to neigbouring solutions. The fundamental idea of SA
is to allow moves resulting in solutions of worse quality than the current solution. The probability
of making such a move is decreased during the search process.

EAs [BFM97, ES03] are currently one of the most popular metaheuristics, being the tool of
choice for many researchers to face challenging problems. They are stochastic search methods that
mimic the metaphor of natural biological evolution and rely on the concept of a population of
individuals (representing search points in the space of potential solutions to a given problem),
which undergo probabilistic operators such as mutation, selection, and (sometimes) recombination
to evolve toward increasingly better fitness values of the individuals. There has been a variety of
slightly different EAs such as evolutionary programming [Fog95], evolutionary strategies [BS02], and
genetic algorithms [Gol89]. EAs offer practical advantages to researchers facing difficult optimisation
problems because they may locate high performance regions of vast and complex search spaces.
Other advantages include the simplicity of the approach, their flexibility, and their robust response
to changing circumstances.

The hybridisation of EAs is becoming popular due to its ability to handle several real-world
problems involving complexity, noise, imprecision, uncertainty, and vagueness [GA07a, PT99, MS10,
VRH09]. In particular, it is remarkable the use of SA to design HMs with EAs (HMs-EA/SA) due
to its prominent role in the field of hybrid EAs [TB05, LZXM10, WWR05, CWYH09, TW10].

Besides metaheuristics based on the search for new solutions close to the current one, like
SA, or by combining solutions, like EAs, we find another group of metaheuristics that generate
new solutions by adding one element at a time to a partial solution. This type of methods are
known as constructive metaheuristics and we find several examples in the literature such as iterated
greedy (IG) [JB95], GRASP [FR95], and ant colony optimisation [DS04]. Constructive methods
are typically the fastest between approximate ones, however, they often return solutions of inferior
quality with regards to local search algorithms [CHS02]. Thereby, to improve the quality of final
solutions, most constructive metaheuristics include a local search method after the construction
phase.

GRASP [FR89, FR95] is a multi-start two-phase metaheuristic for combinatorial optimisation
basically consisting of a solution construction phase and an improvement phase. The solution
construction mechanism builds an initial solution using a randomised heuristic procedure, whose
randomness allows solutions to be obtained in different areas of the solution space. Each solution is
randomly produced step-by-step by uniformly adding one new element from a restricted candidate
list to the current solution. The improvement phase then takes the incumbent solution and performs
local perturbations in order to get a locally optimal solution with respect to some predefined
neighbourhood. The two-phase process of GRASP is iterative, that is, it continues until a user-
defined termination condition is met. The best solution generated during this iterative process is
kept as the overall result. Due to its simplicity, GRASP is often used for real-world applications
[RR03].

IG [CL96, JB95, RS07] is a very effective metaheuristic recently developed for combinatorial
optimization problems that follows a very simple principle, is easy to implement and can show
excellent performance; in fact, it has exhibited state-of-the-art performances for a considerable
number of problems [FPR10, FL08, LLYL11, URS10]. IG algorithms try to improve iteratively a
solution by removing elements from this solution and completing the resulting partial solution using
a constructive procedure. Moreover, IG algorithms may make use of an improvement phase that
takes the incumbent solution after destruction and reconstruction and performs local perturbations

1. Introduction 7

in order to find a better solution close to the incumbent one.

At the same time, constructive metaheuristics are being the subject of many studies on their
hybridisations. In the literature, we find, among many other examples, hybridisations between
ACO and GAs [CK12], ACO and fuzzy clustering [YLJ12], GRASP and path relinking [SCD+12],
GRASP and particle swarm optimisation [MMD10], and IG and variable neighbourhood search
[LB10].

For our study, we have considered problems in two distinct scenarios. In the first one, problems
in which no useful knowledge that can be used during the solving process is available, except that
provided by the problem representation and constraints. These problems are known as black-box
problems [CLM05, GDLM08]. In the second one, we tackle problems in environments with specific
knowledge, such as information about the structure of the objective function. In particular, we have
considered two different problems: parallel machines scheduling problem [McN59] and quadratic
minimum spanning tree problem [AX92].

Black-box problems appear in many scientific and engineering optimisation issues where there
is not information to be exploited that might reinforce the search process. These problems are
common when optimising computationally expensive dynamic models, bioprocess engineering, or
where the evaluation of the solutions is carried out by simulations. To address these problems,
context independent algorithms are applied due to they only require the type and domain of the
decision variables to perform a search on the solution space. The original genetic algorithm proposed
by Holland [Hol75] belongs to this class of methods.

Parallel machines scheduling problem consists in allocating a set of jobs in any of the available
machines, so that the resulting allocation satisfies certain requirements. Within the general formu-
lation, there are many variations in response to the different components of the problem, such as
the machines features or the conditions of the scheduling mechanism. Among its practical applica-
tions are the optimisation of production processes in manufacturing industry and the optimisation
of process allocation in computer systems with multiple processing nodes [Wot07].

The quadratic minimum spanning tree problem is an extension of the well-known minimum
spanning tree problem [J.B56], where in addition to edge costs, we have costs associated with pairs
of edges. This problem has been widely studied in the literature due to its applications in a wide
variety of settings, including transportation, telecommunication, irrigation, and energy distribution.
The problem appears, for example, when transferring oil from one pipe to another in a situation
where the cost depends on the type of interface between two pipes. The same pairwise interaction
effect arises in the connection of aboveground and underground cables in a road network with turn
penalties [SS10, ZG98].

In this thesis memory, we present the research performed on the issues commented above: 1)
optimisation methods for black-box environments based on HMs combining SA and EAs and 2)
constructive metaheuristics for non-uniform parallel machines scheduling and quadratic minimum
spanning tree problems. With regards to the first task, we have performed a study of the state-
of-the-art HMs-EA/SA for combinatorial optimisation, classifying them according to a proposed
taxonomy for this kind of methods. Moreover, we have presented new HMs-EA/SA that cover
categories of the proposed taxonomy for which there are no previous HMs-EA/SA in the literature.
Finally, we have compared the experimental performance of the most representative HMs-EA/SA
and state-of-the-art methods for combinatorial optimisation. With regards to the second task, we
have identified the state-of-the-art metaheuristics for the non-uniform parallel machines scheduling
problem and the quadratic minimum spanning tree problem and we have explored constructive
metaheuristics that result competitive with regards to state-of-the-art methods. To perform these
tasks, we have structured this memory in two parts:

8 Part I. PhD dissertation

Part I is dedicated to the problem statement, the discussion of proposed methods and the
conclusions drawn.

Part II contains publications associated with this study.

In Part I, after Introduction, we continue with the problem statement and the techniques used
(Section 2), open problems that justify this thesis (Section 3), and the objectives proposed in
it (Section 4). Later, in Section 5, we summarise the works performed throughout this thesis,
highlighting most interesting results obtained together with the conclusions. Finally, we present
the overall conclusions of this thesis (Section 6) and end with future research that remains open
after the work performed in this thesis (Section 7).

In Part II, with the aim of developing the proposed objectives, we provide a compendium of
five publications related to the accomplished study:

A simulated annealing method based on a specialised evolutionary algorithm.

Hybrid metaheuristics based on evolutionary algorithms and simulated annealing: taxonomy,
comparison, and synergy test.

GRASP with path-relinking for the non-identical parallel machine scheduling problem with
minimising total weighted completion times.

An iterated greedy algorithm for the large-scale unrelated parallel machines schedulling pro-
blem.

Tabu search with strategic oscillation for the quadratic minimum spanning tree.

2. Problem statement 9

2. Problem statement

In this section, we develop the problem statement and the techniques used to solve it with the
following sections: Section 2.1 introduces the problem of optimisation; Sections 2.2, 2.3, and 2.4
describe black-box problems, scheduling on parallel machines problem, and quadratic minimum
spanning tree problem, respectively. Then, we describe the basic concepts of metaheuristics in
Section 2.5 and provide a more detailed description of those metaheuristics that play a major role
in this thesis such as SA (Section 2.5.1), EAs (Section 2.5.2), GRASP (Section 2.5.3), and IG
(Section 2.5.4); Finally, we introduce hybrid metaheuristics in Section 2.6.

2.1. Optimisation

Optimisation problems consist in finding the best configuration of a set of variables attending
to certain criteria. More formally, an optimisation problem P = (S, f) is defined by the following
elements:

A set of variables X = {x1, ..., xn}.

Variable domains D1, ...,Dn.

Constraints among variables.

An objective function f to be minimised (or maximised), where f : D1 × · · · ×Dn → R.

The search space is conformed by the set of all possible feasible assignments to the variables:
S = {s = {(x1, v1), · · · , (xn, vn)}|vi ∈ Di, s satisfies all the constraints}. The solution s∗ ∈ S with
minimum (or maximum) objective value, that is, f(s∗) ≤ (≥) f(s) ∀s ∈ S, is known as a global
optimum.

Attending to the variables domain of the problem, optimisation problems may be divided into
two categories: those in which the solutions are encoded with real variables and those in which
the solutions are encoded with discrete variables. Within the latter are combinatorial optimisation
problems in which we are looking for an solution from a finite (or possibly countable infinite) set
[PS82].

Combinatorial problems arise in many different fields such as economy, commerce, engineering,
industry, or medicine. These problems are often very hard to solve in practise. In fact, the inherent
difficulty of solving such problems is shown by the fact that many of them are known to be NP-hard
[GJ90], which means there is no algorithm known for solving them in polynomial time, assuming
that P 6= NP . Despite this fact, many of these problems have to be solved in a huge number of
practical settings and therefore researchers have proposed a large number of methods to deal with
them.

The proposed algorithms may be divided into two different categories: exact and approximate
methods. Exact methods guarantee to find an optimal solution for every finite size instance in a
bounded time [PS82, NW88]. These methods include tecniques such as backtracking, branch and
bound, dynamic programming, etc [BB96, PS82]. However, poor performance of exact methods
for many problems has encouraged the design of several types of approximate algorithms. These

10 Part I. PhD dissertation

methods sacrifice the guarantee of finding an optimum solution for obtaining good solutions in a
short amount of time.

2.2. Black-box problems

For many scientific and engineering optimisation problems, there is no useful knowledge that can
be used during the solving process (black-box problems). These problems appear when optimising
computationally expensive dynamic models, bioprocess engineering, or where the evaluation of the
solutions is carried out by means of simulations. To address these problems, context-independent
algorithms [CLM05, GDLM08] can be applied. These algorithms refer to methods that do not ta-
ke advantage of problem structure to explore the solution space because they have no knowledge
of specific characteristics of the objective function. They operate by treating the objective fun-
ction evaluation as a black box. The solution representation is the only information that could be
considered as part of the problem context.

Most metaheuristics are flexible and applicable to a wide range of optimisation problems, allo-
wing the design of general purpose optimisers. In fact, the original model of genetic algorithms
proposed by Holland [Hol75] belongs to this class of methods. Other recent proposals of this kind
of methods include scatter search [GDLM10], a genetic algorithm specialised in intensification
[GML09a], and SA [RH05]. Moreover, nowadays, general purpose optimisation is an issue in several
commercial tools such as OptQuest (by OptTek Systems, Inc.) and Evolver (by Palisade Corp.).
In particular, OptQuest includes several metaheuristics as optimisation tool, such as tabu search,
genetic algorithms, and scatter search.

In order to perform the study on the behaviour of HMs-EA/SA as context independent optimi-
sers, we have designed a test suite composed of 27 binary combinatorial optimisation problems, 13
of which were artificial problems and the remaining 14 were obtained from real-world applications.
Table I.1 outlines their name, number of bits (D), a value (f∗) that stands for either the fitness
value of the global optimum, known best solution, or upper bound presented in the literature, and
reference. All of them have been formulated as maximisation problems. BQP and Maxcut instances
can be obtained from the corresponding files from the BiqMacLibrary1, and Multiple knapsack
problems, from the SAC − 94Suite2.

2.3. Parallel Machines Scheduling Problem

Scheduling problems deal, in general, with the allocating of resources over time to perform a set
of tasks that are parts of certain processes, such as computational and manufacturing processes;
see, for example, [BEP+07], for an extensive revision of scheduling problems. In particular, the
parallel machines scheduling problem considers a set of n jobs that have to be processed on m
parallel machines so that the resulting allocation is optimal, according to some criterion. Note that
a job may be processed by only one machine at a time, and a machine can process at most one job
at a time. If a job j is processed on a machine i, it will take a positive integral processing time pij.
Furthermore, each job has a non-negative integer weight wj . In the case of the identical parallel
machines scheduling problem, each job has the same processing time regardless of the machine
employed. By contrast, in the case of non-identical parallel machines, the processing time of a job

1http://biqmac.uni-klu.ac.at/
2http://elib.zib.de/pub/Packages/mp-testdata/ip/sac94-suite/

2. Problem statement 11

Table I.1: Test suite for context independent optimisation

Prob. Name D f∗ Ref.

1 Royal road problem (400, 8) 400 1 [FM93]

2 Trap problem 36 220 [Thi04]

3 Deceptive problem 39 390 [GKD89]

4 Bipolar deceptive problem 396 1 [PGCP00]

5 Overlapping deceptive problem 399 1 [PGCP00]

6 M-Sat(100,1200,3) 100 1 [SHS03]

7 M-Sat(100,2400,3) 100 1 [SHS03]

8 NkLand(48,4) 48 1 [Kau89]

9 NkLand(48,12) 48 1 [Kau89]

10 HIFF(2, 5, true) 32 192 [WP99]

11 HIFF(3, 4, false) 81 211 [WP99]

12 PPeaks(10,100) 100 1 [Kau89]

13 PPeaks(100,100) 100 1 [Spe00]

14 PPeaks(50,150) 150 1 [Spe00]

15 PPeaks(50,200) 200 1 [Spe00]

16 BQP(bqp50-1) 50 2098 [Bea98]

17 BQP(bqp500-1) 500 116586 [Bea98]

18 BQP(be120.3.3) 120 Not known [Bea98]

19 BQP(be200.8.5) 200 Not known [Bea98]

20 Maxcut(pm1s 80.6) 80 73 [Kar72]

21 Maxcut(w09 100.2) 100 2738 [Kar72]

22 Maxcut(g05 100.5) 100 1436 [Kar72]

23 Maxcut(pw05 100.6) 100 8217 [Kar72]

24 Maxcut(ising2.5-250 5555) 250 7919449 [Kar72]

25 Multiple knapsack p. (weish03) 30 4115 [Thi02]

26 Multiple knapsack p. (pet5) 28 12400 [Thi02]

27 Multiple knapsack p. (pb4) 29 95168 [Thi02]

12 Part I. PhD dissertation

depends on the selected machine, in two different ways:

Uniform parallel machines: the processing time of job j on machine i is determined as pij =
pj/si, where pj is the processing time of job j and si is the speed of machine i.

Unrelated parallel machines: the values of pij are unrelated.

Since the introduction of this problem by McNaughton in [McN59], it has received much atten-
tion and many papers have been published in this area. For an in-depth review, interested readers
may consult the survey by Cheng and Sin [CS90] and Mokotoff [Mok01], the chapter devoted to
scheduling on parallel processors in [BEP+07] and a recent special issue on computational intelli-
gence in scheduling [KTBS10]. Different real-world applications of scheduling on parallel machines
can be found in the literature, covering a wide variety of fields such as human resources [RG87],
production management [Bux89, DC91, PR00], mail facilities [JBdS92], robotised systems [Roc98],
sport tournaments [CTA99], and chemical processes [BH00].

In the literature, we find different criteria to evaluate a particular scheduling. Below, we describe
some of the most important ones:

Total weighted completion times: the objective is to schedule the jobs in such a way that the
sum of the weighted completion times of the jobs is minimised: minimise

∑n
i=1 wj ∗Cj , where

Cj represents the completion time of job j for a given schedule.

Maximum makespan: the objective is to find a feasible schedule of minimum completion time:
minimise argmax{Cj : j = 1, · · · , n}.

Maximum lateness: taking into account that each job has a due date dj > 0 by
which time the job should be completed, the objective is to minimise maximum lateness:
minimise argmax{Cj − dj : j = 1, · · · , n}.

Total weighted tardiness: the objective is to minimise the total weighted tardiness
minimise

∑n
i=1 wj ∗ Tj , where Tj = max(Cj − dj , 0).

According to the notation proposed by Azizoglu et al. [AK99] and Allahverdi et al. [AGA99],
each problem is denoted by a standard notation conformed by three fields: α|β|γ. The first one is
related to the machines type: identical (Pm), uniform (Qm) and unrelated (Rm) parallel machines.
The second field specifies conditions and information of the scheduling. Some conditions we can
find in the literature are [LY09]: non-zero job ready time or dynamic release date (rj), preem-
ptive scheduling (pmtn), precedence constraints (prec), sequence-independent setup time (STsi),
and sequence-dependent setup time (STsd). Finally, the last one gives us information about the
performance criteria: total weighted completion times (

∑

wj ∗ Cj), makespan (Cmax), maximum
lateness (Lmax) and total weighted tardiness (

∑

wj ∗ Tj).

In this thesis, we focus on the problem of scheduling on non-identical parallel machines with
minimising total weighted completion times (Qm, RM ||

∑

wj ∗Cj). It is interesting to note that the
majority of the studies have concentrated on the case of identical parallel machines [BM73, BP94,
EP74, SAB88], despite the fact that non-identical parallel machines schedules have more practical
relevance.

2. Problem statement 13

2.4. Quadratic Minimum Spanning Tree Problem

The quadratic minimum spanning tree problem (QMSTP) is an extension of the well-known
minimum spanning tree problem, where in addition to edge costs, we have costs associated with
pairs of edges. The problem was first introduced by Assad and Xu [AX92, W95], who showed
that it is NP-hard. The QMSTP has been widely studied in the literature due to its applications
in a wide variety of settings, including transportation, telecommunication, irrigation, and energy
distribution. The problem appears, for example, when transferring oil from one pipe to another in
a situation where the cost depends on the type of interface between two pipes. The same pairwise
interaction effect arises in the connection of aboveground and underground cables in a road network
with turn penalties [SS10, ZG98].

More formally, we may define the QMSTP as follows. Let G = (V,E) be an undirected graph
where V = {v1, · · · , vn} is the vertex set and E = {e1, · · · , em} is the edge set. Consider that
each edge and each pair of edges has an associated cost. In mathematical terms, we have two cost
functions: w : E → ℜ+ and c : (E × E) − {(e, e),∀e ∈ E} → ℜ+ where as in previous approaches
[RG08, PG10], we assume that c(ei, ej) = c(ej , ei) for i, j = 1, ...,m. The QMSTP consists of finding
a spanning tree T of G with edge set ξ(T) ⊆ E that minimises:

∑

ei∈ξ(T)

∑

ej∈ξ(T)
ei 6=ej

c(ei, ej) +
∑

e∈ξ(T)

w(e).

2.5. Metaheuristics

Metaheuristics [BR03, GK03, RH02, SM08, VOR99] have become one of the most popular tool
to deal with combinatorial optimisation problems. In fact, metaheuristics are widely recognised
as the most promising methods to address complex optimisation problems [AL97, MF04, Ree93].
Metaheuristics are methods that combine, at a high level of abstraction, approximate methods with
the aim of exploring efficiently and effectively S.

In order to find high-quality solutions, metaheuristics have to be able to exploit intensively
the regions of the search space with good solutions, while they move to unexplored regions when
necessary. The concepts associated with these objectives are often called intensification and diver-
sification, although the terms exploitation and exploration are sometimes used instead, mainly in
the EA field. Therefore, of great importance hereby is that a dynamic balance is given between
diversification and intensification.

Intensification and diversification can be understood as an effect of the components that conform
a metaheuristic. In [BR03], they introduce a unified view of both concepts, in such way that
each algorithmic or functional component of a metaheuristic that provides an intensification or
diversification effect is defined as a I&D component. In contrast to the vision characterised by
the unique identification as intensification or diversification components, I&D components have
both effects. This unified view appears also in [GL97], where it is mentioned that intensification
and diversification are not radically opposed. On the contrary, the best form of each one contains
aspects of the other one. This way, there is a whole spectrum of alternatives.

This spectrum of alternatives is shown in [BR03] by means of a triangle where the corners
correspond to extreme examples of I&D components (Figure 1). The corner OG corresponds to
the I&D components that are guided solely by the objective function of problem considered. An
example very close to this kind of component would be choosing the best neighbour in a local search

14 Part I. PhD dissertation

Figure 1: Space of I&D [BR03]

method. The corner NOG includes I&D components led by one or more functions other than the
objective function, without the use of randomness. An example would be to create a solution, in
a deterministic way, according to a report of frequencies. The third corner (R) comprises I&D
components that are completely random. The creation of a solution totally random would be in
this corner. According to the description of the corners, it is clear that OG corresponds to I&D
components with a very high intensification effect and low diversification. Furthermore, the segment
NOG-R corresponds to I&D components with a highly diversification effect and low intensification.
During the past 30 years, different metaheuristics have emerged, looking to find a balance between
intensification and diversification of various forms.

Metaheuristics can be classified according to different features. Depending on the selected fea-
ture, we obtain a classification or another, resulting from a specific viewpoint. Next, we highlight
four features that give rise to four classification schemes of metaheuristics:

Origin inspired by nature. An intuitive way of classifying metaheuristics is according to the
origin of them. We find nature-inspired algorithms such as genetic algorithms, SA or ant
colony optimisation [DMC96, DS04], among others, and non-inspired by nature methods as
tabu search or iterated local search.

Number of solutions processed at the same time. Another feature that can be used to classify
metaheuristics is the number of solutions processed at the same time. The algorithms that
work on a single solution are called trajectory-based methods. Some examples are local search
methods, tabu search, iterative local search or variable neighbourhood search. They all des-
cribe a path in the search space during execution. The population-based methods, by contrast,
perform a search process that describes the evolution of a set of points in the search space.
Genetic algorithms and ant colony optimisation, among others, belong to this group.

2. Problem statement 15

Figure 2: SA model

Memory usage. A very important feature for classifying metaheuristics is the use (or not)
of information obtained along the search performed, that is, if they employ memory or not.
Memory-less methods decide the next action according solely to the current state of the
search process. Many metaheuristics include, increasingly, memory usage. We can highlight
tabu search as the first metaheuristic in which memory mechanisms acquire a major relevance.

Generation of new solutions: According to the way new solutions are generated we can dis-
tinguish between three types of metaheuristics: by means of neighbourhood structures (tabu
search or variable neighbourhood search), adding step by step components to partial solutions
to complete new solutions (GRASP, IG, or ant colony optimisation), and combining different
solutions (EAs).

2.5.1. Simulated Annealing

SA [AK89, KGV83] is an optimisation technique analogous to the physical process of annealing.
SA starts with a high temperature T and any initial state (Xc). A neighbourhood operator is
applied to the current state Xc (having energy f(Xc)) to yield state Z (having energy f(Z))
(see Fig. 2). Then, an acceptance mechanism decides which state becomes the new current state.
Acceptance mechanism takes into account the current temperature of the system: worse solutions
are more often accepted with high temperature. The application of the neighbourhood operator
and the probabilistic acceptance of newly generated states are repeated either a fixed number of
iterations or until a quasi-equilibrium is reached. The entire above-described procedure is performed
repeatedly, each time starting from the current state and from a lower T .

The idea behind SA is to protect diversification in the initial stages and intensification later : at
the initial stages, high T values favour the exploration of the search space, accepting new states
almost regardless their energy; later, low T values increase exploitation, accepting only new better
states.

There are two main acceptance mechanisms proposed in the literature: metropolis and logistic
rules [AK02]. They define the probability of Z being the new current state. Equations (I.1) and
(I.2) show metropolis and logistic acceptance mechanisms, respectively, for minimisation problems.

16 Part I. PhD dissertation

On the other hand, there exist several cooling schemes, such as logarithmic, fast, and geometric
ones [AK02]. Equation (I.3) shows geometric cooling scheme (α is a cooling factor often assumed
to be a constant in the interval [0,9, 1)).

p(Z) =

{

1 if f(Z) < f(Xc)

e(f(X
c)−f(Z))/T if f(Z) ≥ f(Xc)

(I.1)

p(Z) = 1−
1

1 + e(f(X
c)−f(Z))/T

(I.2)

T ← α · T (I.3)

Convergence to global optimum is guaranteed for SA if a stationary distribution is reached at
each temperature, followed by sufficiently slow cooling, such as logarithmic [VA87]. However, it
usually leads to excessive long runs and practitioners use to apply faster cooling schemes at fixed
number of iterations [SK91].

2.5.2. Evolutionary Algorithms

EAs are inspired by the ability of species to evolve and adapt to environment changes. EAs
differ from the previous optimisation techniques in that they involve a search from a population
of solutions, not from a single point. In each iteration, a set of operators is applied to individuals
of the current population to generate the individuals of the next generation. These operators are
commonly referred to as crossover operator or recombination when new individuals are created from
the information of more than one individual of the current population, and mutation operator, when
new individuals are generated from only an old one. The evolution of the population of individuals is
guided by the fitness value of each individual, which commonly is the value of the objective function
when evaluating this individual as a solution to the problem. Individuals with better fitness are
most likely to produce offspring. This idea fits with the principle of natural evolution: survival of
the fittest, allowing nature to adapt to changing environments.

Currently, there is a variety of methods belonging to the class of EAs. We highlight the following
families: evolutionary programming [FOW66, Fog95], evolution strategies [BS02, Rec73, Rec94],
genetic algorithms [Gol89, Hol75] and differential evolution [PSL05, SP97]. They all follow a process
of evolution, which resembles the pseudocode shown in Figure 3, with slight differences between
them.

Commonly, individuals in the population of an EA represent solutions to the problem, but also
could represent partial solutions or solution sets, for example. Generally, the representations are
closely linked to the problem being treated, being the most used bit strings, integers, real numbers
or permutations of n integers. In the context of genetic algorithms, individuals hold the genotype
whereas the associated solution is known as phenotype. Thus, there is a differentiation between the
solution and its representation. The choice of a proper representation is crucial to the success of an
EA.

In each iteration, the algorithm must decide which individuals should survive and become part of
the population of the next generation. This is done through a selection scheme. In the generational
scheme, individuals of the next generation are chosen exclusively from the population of descendants
(P ′ and P ′′). In this case, we usually keep the best solution found so far, which is known as elitism. If

2. Problem statement 17

Input: f

Output: Xb

P ← GenerateInitialPopulation();1

Evaluate(P);2

while stopping condition is no met do3

P ′ ← Recombination(P);4

P ′′ ← Mutation(P ′);5

Evaluate(P ′′);6

P ← SelectIndividuals(P ′′ ∪ P ′ ∪ P);7

Xb ← BestFoundIndividual();8

end9

return Xb;10

Figure 3: Basic scheme of an EA

it is possible that individuals of the current population are selected to be part of the new population,
then the scheme is known as steady-state.

2.5.3. Greedy Randomised Adaptive Search

GRASP is a multi-start or iterative process in which each iteration consists of two steps: cons-
truction and local search. The construction phase builds a feasible solution that is refined during
the local search phase, obtaining a local minimum. This process is repeated until a termination
condition is met. The best solution found along the whole search process is returned as result.
Figure 4 shows the pseudocode of a basic GRASP scheme.

Input: f,N

Output: Xb

while stopping condition is no met do1

Xc ← GreedyRandomisedConstruction();2

Xc ← LocalSearch(N);3

Xb ← KeepBestsolution(Xc,Xb);4

end5

return Xb;6

Figure 4: Basic scheme of GRASP

The construction phase is accomplished by means of the function
GreedyRandomisedConstruction(). This function performs an iterative process to construct
a complete solution, adding at each step a new component to the partial solution until a complete
solution is obtained. There is a set of candidate elements formed by all elements that can be incor-
porated to the partial solution and a greedy function to evaluate all the candidate elements. This
greedy function usually represents the variation in the objective function due to the incorporation

18 Part I. PhD dissertation

of this element to the partial solution. At each step, the best α candidate elements are included
in a restricted candidate list (RCL). The element to be incorporated into the partial solution
is picked uniformly at random from RCL. Once the selected element has been included in the
current partial solution, the candidate list is updated and the contribution value for each element
in the candidate list is revised according to the greedy function. In Figure 5, the pseucocode of the
GRASP construction phase is outlined.

Input:

Output: Xc

Xc ← ∅;1

while Xc is not completed do2

RCL← BuildRCL();3

s← SelectRandomElement(RCL);4

Xc ← AddElement(Xc, s);5

UpdateContributionValues();6

end7

return Xc;8

Figure 5: Basic scheme of GRASP construction phase

The number of elements α included in the RCL determines the degree of randomness of the
construction function. In the extreme cases, when α = 1 and α is equal to the length of the candidate
list, the construction phase is totally deterministic and totally random, respectively. Therefore, the
election of a α value is critical to perform a suitable sampling of the search space. A review of the
most important methods for determining α value is found in [PR02].

2.5.4. Iterated Greedy

IG algorithm generates a sequence of solutions by iterating over two main phases: destruction
and construction. During the destruction phase some components of a previously constructed com-
plete solution are removed. Then, construction procedure applies a greedy constructive heuristic to
complete this partial solution. Once a candidate solution has been completed, an acceptance crite-
rion decides whether the newly constructed solution will replace the current solution. This iterative
process is performed until an stopping criteria is met. Moreover, IG algorithms may make use of a
local improvement phase that takes the incumbent solution after destruction and construction and
performs local perturbations in order to improve locally the quality of the incumbent solution. The
pseudocode of the IG algorithm is showed in Figure 6.

During the destruction step, as mentioned above, a number of elements are dropped from the
current complete solution. This parameter and the acceptance criterion are key in order to ensure
IG proper operation. In the literature, we can find different acceptance criteria:

’Replace if better’ acceptance criterion. The new solution (Xi) is accepted only if its objective
function value is better than the one of Xc [YC10].

An IG algorithm using the ’Replace if better’ acceptance criterion may lead to stagnation
of the search due to insufficient diversification [RS07]. In order to avoid this, different ac-

2. Problem statement 19

Input: f

Output: Xb

Xc ← GenerateInitialSolution();1

while stopping condition is no met do2

Xp ← Destruction(Xc);3

Xi ← Construction(Xp);4

Xi ← LocalSearch(Xi) (optional);5

Xb ← KeepBestSolution(Xc,Xb);6

Xc ← SelectNewCurrentSolution(Xc,Xi);7

end8

return Xb;9

Figure 6: Basic scheme of IG

ceptance criteria consider replacing the current solution by the new solution although its
objective function value is worse. In [RS07], a simulated annealing acceptance criterion is em-
ployed, whereas in [LMGM11], the improved solution Xi becomes the new current solution
independently of its objective function value.

2.6. Hybrid Metaheuristics

Especially over the last years, it has appeared a large number of algorithms that do not purely
follow the concepts of one single traditional metaheuristic, but they combine various algorithmic
ideas from different metaheuristics, sometimes also from outside of the traditional metaheuristics
field. These approaches are commonly referred to as hybrid metaheuristics. The main motivation
behind such hybridisations of different algorithmic concepts is usually to obtain better performing
systems that exploit and unite advantages of the individual algorithms, i.e. hybrids methods may be
benefited from synergy [Rai06b, BPRR11]. The vastly increasing number of reported applications
of hybrid metaheuristics and dedicated scientific events such as the series of Workshops on Hybrid
Metaheuristics document the popularity, success, and importance of this specific line of research.
In fact, currently it seems that choosing an adequate hybrid approach is determinant for achieving
a high performance in solving difficult problems [Rai06b, GA07b, BPRR11].

The great significance and popularity has led to the appearence of multiple works that
try to classify the different approaches of hybrid metaheuristics existing in the literature
[Cot98, Tal02, EAK05, BRA05, CTA05, PR05]. Through these taxonomies, it is intended to facili-
tate the comparison of different hybrid methods and the evaluation of their performance [GA07b].
In [Rai06a], Raidl presents a new taxonomy, trying to merge the most important aspects of previous
classifications and at some points extending them. This taxonomy contemplates different features
of the hybrid approaches in order to classify them:

What we hybridise, i.e. which kind of algorithms. We might combine (a) different metaheuris-
tics, (b) metaheuristics with specific algorithms for the tackled problem , or (c) metaheuristics
with other techniques coming from fields like operations research and artificial intelligence.
Optimisation methods from other fields that have been successfully combined with metaheu-

20 Part I. PhD dissertation

ristics are exact approaches like branch and bound, dynamic programming, and integer linear
programming and soft-computing techniques like neural networks and fuzzy logic [BPRR11].

Level (or strength) at which the different algorithms are combined. High-level combinations
retain the individual identities of the original algorithms and cooperate over a relatively well
defined interface; there is no direct, strong relationship of the internal workings of the algo-
rithms. On the contrary, algorithms in low-level combinations strongly depend on each other,
which may mean that individual components or functions of the algorithms are exchanged.

Order of execution. In the batch or sequential model, one algorithm is strictly performed after
the other one. On the contrary, in the interleaved and parallel models the algorithms might
interact in more sophisticated ways. A detailed classifications of hybrid parallel metaheuristics
can be found in [CTA05, EAK05].

Control strategy. In integrative approaches, one algorithm is considered a subordinate, em-
bedded component of another algorithm. Whereas, in collaborative combinations, algorithms
exchange information, but are not part of each other.

3. Justification 21

3. Justification

Nowadays, challenging hard optimisation problems arise from the technological advance of many
human activities. Mainly, they are characterised by being dynamic problems, by the high number
of implied decision variables and the complex relationships among them. Thus, new optimisation
algorithm proposals are required to effectively affront these problems. Metaheuristics have been
established as one of the most practical approaches to deal with combinatorial optimisation pro-
blems, being widely recognised as the most promising methods to address complex optimisation
problems [AL97, MF04, Ree93]. In fact, research in metaheuristics has been very active during the
last decades, facing successfully a wide spectrum of problems that are very hard to solve optimally.

Over the last few years, a large number of search algorithms have been presented that do not
simply follow the concepts of one single metaheuristic, but attempt to obtain the best from a
set of metaheuristics (and even other kinds of optimisation methods). The main motivation for
the hybridisation of different optimisation algorithms is to exploit the complementary nature of
different optimisation strategies, assuming that the hybrid approach will benefit from the synergy
between them. In fact, the choice of an appropriate mix of complementary algorithmic concepts
can be the key to obtain high performance methods to solve complex optimisation problems. In
addition, working with hybrid metaheuristics is an opportunity for collaboration between research
communities specialised in different metaheuristics and other optimisation methods. The existence
of conferences and working groups focused on hybrid metaheuristics shows the growing popularity of
this methodology. There is also specific books on this subject [BARS08, MSV10] and a considerable
number of review articles [BPRR11, LGM10, Rai06b, RPB10, JBT09].

Among optimisation problems, there are problems in which there is no useful knowledge that
can be used during the search process. These problems are known as black-box problems and
appear frequently in scientific and engineering environments, in particular, it may come out when
optimising computationally expensive dynamic models, in bioprocess engineering, or where the
evaluation of the solutions is carried out by means of simulations. Context-independent algorithms
may be a way to deal with these problems. These algorithms only need to know the domain and
type of the variables and operate by considering the objective function as a black box. We may
highlight that context-independent optimisers play an important role in several commercial software
packages for optimisation such as OptQuest (by OptTek Systems, Inc.) and Evolver (by Palisade
Corp.).

It is important to note that the first genetic algorithm was conceived as a context-independent
algorithm. Since then, EAs have been applied successfully on a huge variety of problems. For
this reason, we think that EAs may be a key ingredient to develop high-performance context-
independent algorithms. At the same time, the hybridisation of EAs is becoming popular due
to its ability to handle several real-world problems involving complexity, noise, imprecision,
uncertainty, and vagueness [GA07a, PT99, MS10, VRH09]. A wide variety of metaheuristics
such as tabu search [LGH10], greedy randomised adaptive search procedure [CF04], and ite-
rated local search [LGM10], among others, have been employed to develop hybrid approaches
with EAs. In particular, it is remarkable the prominent role of SA in the field of hybrid EAs
[TB05, LZXM10, WWR05, CWYH09, TW10]. The current relevance of HMs-EA/SA can be shown
through the visibility of this topic at the ISI Web of Science. Figure 7 shows an important number of
publications and citations per year, as well as an increasing trend. We can conclude that, although
the first items related to this topic appeared in 1992, nowadays HMs-EA/SA are subject of great
interest and there is an important research community associated to their study. For the reasons

22 Part I. PhD dissertation

set out so far, we have considered the use of HMs-EA/SA to tackle black-box problems.

 0

 50

 100

 150

 200

 250

 300

 350

1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011

 0

 10

 20

 30

 40

 50

C
ite

d

P
ub

lis
he

d

Years

Cited
Published

Figure 7: Number of publications and citations per year for HMs-EA/SA (Web of Science)

On the other hand, it is unquestionable that, in those cases where we deal with specific problems
for which we have information that can be used during the search process, metaheuristics can
improve their behaviour by using this information. In this thesis, moreover, we have chosen two
specific problems for which we have considered using their specific information during the search
process. These problems are scheduling on non-identical parallel machines with minimising total
weighted completion times and quadratic minimum spanning tree. We have selected these problems
due to their challenging nature, the interest of the scientific community on them, and their practical
applications. In the case of scheduling on parallel machines, different real-world applications can be
found on a wide variety of fields such as human resources, production management, mail facilities,
robotised systems, sport tournaments, and chemical processes. For the quadratic minimum spanning
tree, it has a wide variety of settings, including transportation, telecommunication, irrigation, and
energy distribution.

To deal with these problems, we have considered two different metaheuristics: GRASP and IG.
They belong to the constructive metaheuristics group and they consider using specific information of
the problem during the construction step. Moreover, GRASP and IG usually include a local search
method after the construction phase, during which information on the problem is also employed to
guide the search. Currently, GRASP and IG has become a tool of choice to deal with challenging
optimisation problems due to their efficiency and relative simplicity, exhibiting state-of-the-art
performances for a considerable number of problems [FPR10, FL08, LLYL11, URS10, RR03].

We may highlight that hybridisations containing GRASP or IG are also subject of research
[MMD10, LB10]. It is especially remarkable the interest on the hybridisations between GRASP
and path-relinking [ABR03, ARPT05, LM99, RUW02]. This great interest and their promising
results led us to consider also hybrids models between GRASP or IG and other metaheuristics
to deal with scheduling on non-identical parallel machines and quadratic minimum spanning tree
problems.

4. Objectives 23

4. Objectives

The aim of this thesis is to perform an in-depth study of HMs-EA/SA, focusing on their ap-
plication as context-independent optimisers for binary combinatorial problems, and the analysis of
GRASP and IG as a tool to tackle two challenging combinatorial optimisation problems: scheduling
on non-identical parallel machines and quadratic minimum spanning tree. To achieve this aim, we
have set the following objectives:

To paint a more complete picture of HMs-EA/SA than ever before. To do so, we structure
and organise the knowledge about the HM-EA/SA approaches found in the literature by
proposing a taxonomy for HMs-EA/SA based on those conceived by Talbi [Tal02] and Raidl
[Rai06a] for hybrid metaheuristics.

To develop new HMs-EA/SA that cover categories of the proposed taxonomy for which there
are no previous HMs-EA/SA in the literature.

To study the empirical behaviour of the different kinds of approaches according to the propo-
sed taxonomy, analysing what schemes provide a better performance. At the same time, we
aim to compare the behaviour of the best performing HM-EA/SA approaches against some
state-of-the-art methods for binary combinatorial problems

To study the synergistic relationships created by the hybridisation of EAs and SA in these
approaches. The combination in a suitable manner of the complementary algorithmic concepts
can provide hybrid approaches with a better performance than those obtained by EAs or SA
separately.

To perform an study on the state-of-the-art methods for scheduling on non-identical parallel
machines and quadratic minimum spanning tree problems.

To develop new methods based on constructive metaheuristics, specifically GRASP and IG, for
scheduling on non-identical parallel machines and quadratic minimum spanning tree problems
that are competitive with state-of-the-art metaheuristics for these problems.

To compare the behaviour of GRASP and IG models depending on the configuration and
components considered.

24 Part I. PhD dissertation

5. Joint Discussion of Results

This section shows a summary of the different proposals presented in this dissertation, and it
presents a brief discussion about the obtained results by each one.

5.1. A Simulated Annealing Method Based on a Specialised Evolutionary Al-

gorithm

As we mentioned in Section 3, the hybridisation of EAs is becoming vey popular, facing hard
problems in very different fields. In particular, it is remarkable the dominance of SA as component
of the hybridisations of EAs. In this work, we present a new HM-EA/SA for binary combinatorial
optimisation problems (SASEA). SASEA represents a novel approach to the development of HMs-
EA/SA, proposing a SA method in which the neighbourhood function is performed by means of an
specialised EA. The flexibility offered by the evolutionary paradigm allows specialised models to
be obtained with the aim of performing as other search methods do, but more satisfactorily. This
practise is a recent alternative to design new hybrid metaheuristics [GML08, GML09a, LHKM04,
NI08, LGM10]. SASEA is conformed by a steady-state EA that creates one single candidate solution
at each iteration, by crossing over the current solution and another one from the population.
Afterwards, SASEA applies an acceptance mechanism, e.g. metropolis or logistic, to decide which
solution becomes the new current solution, either the candidate solution or the current one. The
other solution is inserted into the population by a replacement strategy. The general scheme of
SASEA is shown in Figure 8.

Figure 8: SASEA model

In addition to this new approach when designing hybrid models, SASEA presents a second
important novelty, promoting a novel neighbourhood structure that presents two specific characte-
ristics.

It explores larger and dynamic neighbourhood sizes. Classic SA algorithms for binary opti-
misation usually consider one-flip operator, which flips just one bit of the current solution, to
explore the neighbourhood of the current solution. However, SASEA may flip several bits of
the current solution and the number of flips is adapted dynamically at each iteration.

5. Joint Discussion of Results 25

Neighbourhood exploration is guided by the mate to promote diversification and/or intensifi-
cation. At initial stages of the search process, it intends to promote diversification by coupling
the current solution with dissimilar individuals; whereas at latter stages, it attempts promo-
ting intensification by pairing with similar individuals. This feature is further enhanced by
the crossover mechanism employed by SASEA.

Both larger and dynamic neighbourhood sizes [Yao91, Liu99] and neighbourhood exploration
guided by non-uniform probability distributions [Fox93, VT07] are reported in the literature as
elements that may enhance efficiency of SA.

In this work, we present an extensive experimental study on the test suite outlined in Table I.1.
This study is divided into three parts:

In the first one, we compare the performance of SASEA with regards to classic SA and a SA
model with dynamic neighbourhood (dynamic SA). SASEA obtains better results than the
dynamic SA on almost all the problems considered. Moreover, classic SA and SASEA attain
comparable results on many problems. However, SASEA shows a light superiority on several
artificial problems (royal road, deceptive and bipolar deceptive, and three ppeaks instances)
and two multiple knapsack problems.

Secondly, we study the behaviour of other HMs-EA/SA existing in the literature focused
on the evolution of a set of solutions in parallel. Thus, the notion of evolving populations
from EAs is the centre of attention and SA ideas just define some actions on its members.
Comparing the behaviour of SASEA and these approaches, we observe that most of the
algorithms early get trapped in local optima or suffer premature convergence to poor solutions.
Then, they have difficulties to improve further. However, the search process of SASEA is
quietly driven toward promising solutions, overcoming local optima and reaching better final
results than the other methods.

Finally, we compare the performance of SASEA with regards to several state-of-the-art opti-
misers for binary combinatorial optimisation. These optimisers show a similar behaviour to
HMs-EA/SA studied before. Most of the methods seem to get trapped in local optima early
or experience slow convergence toward good solutions. However, though SASEA reaches so-
lutions of equal quality later, its ability to protect diversification at the initial stages of the
process and gradually increase intensification, lets SASEA to overcome local optima and reach
better results.

The main conclusions of this work are the following:

The neighbourhood structure of SASEA, which dynamically adapts its size and can be used
to promote intensification and/or diversification, becomes beneficial when compared to the
classic neighbourhood structure (one-flip) of SA and another one presented in the literature
that dynamically adapts its size.

The alternative scheme for combining ideas from SA and EAs introduced by SASEA may
outperform other hybrid metaheuristics based on SA and EAs.

SASEA provides a significantly better performance than other state-of-the-art algorithms for
binary-coded problems, on the test suite considered.

26 Part I. PhD dissertation

The associated journal article to this part is:

C. Garćıa-Mart́ınez, M. Lozano, F.J. Rodŕıguez, A simulated annealing method based on
a specialised evolutionary algorithm. Applied Soft Computing 12:2 (2012) 473-488. doi:
10.1016/j.asoc.2011.11.007.

5.2. Hybrid Metaheuristics Based on Evolutionary Algorithms and Simulated

Annealing: Taxonomy, Comparison, and Synergy Test

The good results obtained by the proposed HM-EA/SA in the previous work and the difference
in performance compared to other HMs-EA/SA lead us to make a thorough study of such methods.
The aim of this study is threefold. Firstly, we attempt to paint a more complete picture of HMs-
EA/SA than ever before. To do so, we structure and organise the knowledge about the HM-EA/SA
approaches found in the literature by proposing a taxonomy for HMs-EA/SA which particularises
the taxonomies conceived by Talbi [Tal02] and Raidl [Rai06a] for hybrid metaheuristics. Secondly,
we study the empirical behaviour of the different kinds of approaches according to the proposed
taxonomy, analysing what schemes provide a better performance. Finally, we study the synergistic
relationships created by the hybridisation of EAs and SA in these approaches.

In Table I.2, we summarise the HMs-EA/SA found in the literature and the category they
belong to according to the taxonomy proposed in this work. We may highlight that we have found
categories for which, as far as we know, there are no HMs-EA/SA that can be classified into
them. With the intention to fill this gap in the literature and thus perform a more comprehensive
study, in this work, we have presented two HMs-EA/SA that belong to these unexplored categories:
DCHCSA and GA-PSA.

In order to compare the behaviour of the different approaches according to the proposed taxo-
nomy, we have chosen a representative set of the HMs-EA/SA found in the literature. This set has
been built combining recent proposals and those that best fit the general scheme of each category.
In Figure 9, we can see the average ranking obtained by each algorithm on the test suite presented
in Table I.1 and the category to which it belongs. Ranking for each algorithm is computed accor-
ding to Friedman’s test, so that the lower its ranking is, the better its results on this test suite
are. Figure 9 presents the ranking of each algorithm in a way that the height of each column is
proportional to the ranking of its associated algorithm and the colour and shape depends on the
category to which it belongs. In view of these results, in this work we have obtained the following
conclusions about the different approaches to construct HMs-EA/SA:

Those categories in which the hybridisation EA/SA is built employing incomplete formula-
tions of either EA or SA, i.e. isolated components of SA or EAs are used to compose the
resulting HM-EA/SA, present the poorest performance. On the contrary, those conceived as
hybrid metaheuristics composed of self-contained EAs and SAs show better performances.

The integrative approach is present in three out of the four best ranked HMs-EA/SA. In
these hybrid approaches, one metaheuristic is specialised in to play a specific role inside the
other metaheuristic. Specifically, in AGA, SA affords EA refined solutions and, in SALGeS
and GAMSA, EA acts as an SA neighbourhood operator.

The good results shown by GAMSA and SALGeS evidence the effectiveness of the novel
hybridisation paradigm, which involves replacing some components in metaheuristics with

5. Joint Discussion of Results 27

Table I.2: Taxonomy for HMs-EA/SA

General Categories
HM-EA/SA

Instances
Categories

Collaborative

Teamwork

Multiple EAs DCHCSA

and SAs

Multiple SAs SSSA [TB05],

CSA [XSVB06],

ESA [AY05],

GAMSA [RDGML10]

Relay

EA then SA HHSAGA [CLPM07],

SAGA [BHS89]

SA then EA GA-PSA

Integrative
TeamWork

MA with SA AGA [LKH93],

as local search GASAHA [HDCL10],

IGA-SA [LW07],

GSAAL [ZWJZ08],

GSAA [LZXM10]

SA-based EA HGA-BTS [Gol90],

selection GESA [YP95],

HGA-BS[DT92]

SA-based EA SAGACIA [LJ00],

mutation and ARSAGA [HH06],

crossover GSAAIA [HQ06],

HGA-SAM/R [Adl93]

SA-based EA PRSA [MG95],

replacement PGSA [WWR05],

GSA [CFW98],

NPOSA [COC98],

MPGSAA [CWYH09],

GSA-MLE [YTY07]

Relay
EA-based SA SALGeS [GML09b]

component GAMSA [RDGML10]

28 Part I. PhD dissertation

Figure 9: Average rankings of the HMs-EA/SA versions

customised EAs (evolutionary components [LGM10]) to develop the same work more effecti-
vely and with a relatively low computational cost, employed in these approaches.

The teamwork collaborative hybridisation technique, instantiated by DCHCSA, presents bet-
ter results than the relay collaborative approaches, represented by HHSAGA and GA-PSA.

Finally, to complete the in-depth study on HMs-EA/SA, we have studied the synergy produced
by the combination of the composing metaheuristics. Synergy is one of the most important aspects
when analysing the behaviour of a hybrid metaheuristic. In fact, exploiting the complementary
character of the different optimisation strategies involved in hybrid metaheuristics is the main
motivation behind the hybridisation, that is, hybrids are believed to benefit from synergy [BPRR11].
In order to assess the amount of synergy that appears when combining two or more components, or
whether it does or does not appear, the usual practise involves the comparison between the hybrid
algorithm and the sole usage of its components [Ant09, PTCY10, HLS05]. In this work, we have
studied the synergy produced by combining SA and EAs in hybrid metaheuristics with regards to
the sole usage of its components.

Figure 10 summarises the results of the synergy study accomplished in this work. In this figure,
we show for each HM-EA/SA whether its results are statistically better than (+), worse than (−)
or equal to those of a standalone SA, canonical generational and steady-state genetic algorithms
(CGGA and CSSGA), and CHC [ES91]. In addition, last column indicates whether the correspon-
ding algorithm presents a complete positive result in terms of synergy (green circle), only partially
(orange circle) or there is no any synergy (red circle) according to the previous results. In light
of the results outlined in Figure 10, we conclude that the simple combination of several metaheu-
ristics does not ensure success. It is necessary to study the way the composing metaheuristics are
combined in order to achieve a positive synergy between them. In fact, only three out of eleven
HMs-EA/SA present a complete or partial positive result in terms of synergy.

The associated journal article to this part is:

F.J. Rodŕıguez, C. Garćıa-Mart́ınez, M. Lozano, Hybrid Metaheuristics Based on Evolutionary
Algorithms and Simulated Annealing: Taxonomy, Comparison, and Synergy Test. IEEE Transac-

5. Joint Discussion of Results 29

Figure 10: Synergy study: HMs-EA/SA vs. Standalone SA, Canonical GAs, and CHC

tions on Evolutionary computation. In Press. doi: 10.1109/TEVC.2012.2182773.

5.3. GRASP with Path-Relinking for the Non-Identical Parallel Machine Sche-

duling Problem with Minimising Total Weighted Completion Times

In this work, we tackle the problem of scheduling a set of jobs on a set of non-identical para-
llel machines with the goal of minimising the total weighted completion times (Section 2.3). The
research efforts to deal with this problem have focused on three main research lines: exact pro-
cedures, approximation algorithms through solving relaxations of the problem, and metaheuristic
procedures. Exact algorithms are generally limited to problem instances of moderate size, due to
the exponential increase in CPU time and memory when the problem size increases. Therefore, in
practice, approximate algorithms are necessary to find (not necessarily optimal) solutions to the
considered problem. In particular, there are in the literature different approaches based on me-
taheuristics such as genetic algorithms [ZJLK10, LPF11], tabu search and multi-start local search
[VH02], and differential evolution and variable neighbourhood descent [ZJLK10].

To deal with this problem, in this work we have considered the application of a GRASP me-
taheuristic (Section 2.5.3), which follows a constructive methodology to explore the search space
unlike metaheuristics presented so far in the literature to face this problem. GRASP has been succe-
fully applied to deal with several real-world applications [RR03] and it is very often combined with
path-relinking [Glo96]. Path-relinking consists of exploring trajectories that connect high-quality
solutions and, generally, may lead to significant improvements in solution quality when combined
with GRASP [ABR03, ARPT05, LM99, RUW02].

30 Part I. PhD dissertation

The proposed hybrid between GRASP and path-relinking extends the basic GRASP scheme
by incorporating path-relinking into two different steps of our proposal. Firstly, path-relinking
is incorporated as an improvement procedure of solutions obtained after each iteration of basic
GRASP. For this, a set of so-called elite solutions (P) is used to store high-quality solutions found
during the search process. Path-relinking is then generally applied to the solution generated in the
current iteration and one solution from P . In particular, we have employed backward path-relinking
that considers as initial solution the best from the current solution and a solution from P . Secondly,
we incorporate evolutionary path-relinking as a post-processing phase for our proposal, applying
path-relinking to pairs of solutions chosen from the set P . Each resulting offspring solution is tested
for membership in the population of the next generation.

Among the contributions that are made in this paper, we highlight the following:

We have presented an hybrid method between GRASP and path-relinking to deal with this
problem, presenting a novel approach through a constructive metaheuristic unlike other me-
taheuristics proposed in the literature so far. Path-relinking has been included in the proposed
method as an improvement procedure for both solutions provided by the basic GRASP and
solutions of the elite set.

We have proposed a greedy randomised procedure, which is responsible for providing initial
solution to our method, based on a previous greedy algorithm [WLR01].

The improvement phase of the proposed hybrid algorithm between GRASP and path-relinking
combines two different local search methods. On the one hand, we have considered a variable
neighbourhood descent proposed before [ZJLK10]. On the other hand, we have employed a
simple local search based on insertion moves. Both methods are executed alternatively, and,
since variable neighbourhood descent is more time-consuming than the simple local search
method, the variable neighbourhood descent procedure is only used every a certain number
of iterations.

We have performed an experimental study on a set of instances with up to 200 jobs and 20
machines, considering both uniform and unrelated cases. We should point out that the majority
of the studies performed so far have concentrated on the case of identical parallel machines. This
study has three objectives:

To find a suitable configuration for the different parameters of the proposed hybrid approach
between GRASP and path-relinking.

To compare the performance of previous metaheuristics for this problem and our porposal.

To study the synergy produced by the combination of pure GRASP and path-relinking in the
proposed approach.

The main conclusions of this work are the following:

The proposed hybrid algorithm between GRASP and path-relinking outperforms the compe-
ting algorithms from the literature on both uniform and unrelated parallel machines.

The combination of basic GRASP with path-relinking helps us to achieve solutions of higher
quality than those obtained by the pure GRASP.

5. Joint Discussion of Results 31

Instances with a large number of jobs and machines represents a great challenge for methods
dealing with this problem.

The associated journal article to this part is:

F.J. Rodŕıguez, C. Blum, C. Garćıa-Mart́ınez, M. Lozano, GRASP with path-relinking for the
non-identical parallel machine scheduling problem with minimising total weighted completion times.
Annals of Operations Research. In Press. doi: 10.1007/s10479-012-1164-8.

5.4. An Iterated Greedy Algorithm for the Large-Scale Unrelated Parallel Ma-

chines Scheduling Problem

In this work, we pose deal with problems in which there is a large number of jobs and machines.
As we saw above, dealing with large-scale instances presents major challenges for metaheuristics. In
fact, nowadays, large scale optimisation problems have been one of the most interesting trends in the
last years for what concerns research on evolutionary algorithms and metaheuristics. This is due to
the fact that many real-world problems are of large size. Unfortunately, the performance of many
available optimisation algorithms deteriorates rapidly as the dimensionality of the search space
increases. Thus, scalability for high-dimensional problems becomes an essential requirement for
modern optimisation algorithms. In particular, we can find metaheuristics to face parallel machine
scheduling problems that incorporate techniques for dealing with large size instances [FPR11].
However, for the present problem, previous studies have focused on studying the performance of
the proposed metaheuristics on small/medium-size instances.

IG is a very simple and effective constructive metaheuristic recently developed for combina-
torial optimisation problems that follows a very simple principle, is easy to implement and can
show excellent performance; in fact, it has exhibited state-of-the-art performances for a conside-
rable number of problems [FPR10, FL08, LLYL11, URS10]. In addition, IG has shown a good
performance dealing with large instances on other problems [FPR11, LMGM11]. One of the most
important differences between IG and GRASP is that the former is able to use information from
previous iterations to more effectively explore the search space in subsequent iterations, which can
be beneficial when dealing with large-size instances. However, we should point out that hybrid
models between GRASP and path-relinking try to overcome this drawback through using the elite
solutions set that characterises path-relinking.

In this work, we have developed a model than combine IG with a local search method, allowing
reaching high-quality solutions especially for large-size instances, in scenarios with up to 1000 jobs
and 50 machines, which represents an extremely substantial difference with respect to previous
works. In particular, we have focused on instances contemplating unrelated parallel machines,
which represent the more general scenario. The main novelties of this work are the following:

In the first place, we have considered a new acceptance criterion to choose the new current
solution. A uniform random number pa between 0 and 1 is generated. If pa ≤ 0,5, candidate
solution becomes the new current solution, independently of its objective function value.
Otherwise, candidate solution is discarded. By using this acceptance criterion, we try to
avoid stagnation of the search due to insufficient diversification [RS07].

Secondly, we propose two destructive strategies for the destruction phase. The most simple and
extended strategy to perform the IG destructive procedure consists in randomly choosing the
elements to be deleted (DR). However, as it was showed by Fanjul et al. [FPR10] for the case

32 Part I. PhD dissertation

of scheduling on parallel machines with minimising makespan, more elaborated destruction
procedures can lead to better solutions. Based on this idea, we have studied two different
destruction strategies:

• In the first strategy (D1), one machine is uniformly selected at random and a binary
tournament is performed in order to select the job to be deleted from this machine.
Two jobs are randomly chosen and that with a lower pij/wj ratio will be dropped. This
destructive strategy tries to move the jobs scheduled at the beginning in each machine,
which are delaying the jobs scheduled after them, to a more suitable machine.

• The second strategy (D2) also randomly selects a machine. However, it defines a different
strategy to choose a job. In particular, this strategy selects the jobs whose processing
times are shorter in other machines, and, consequently, could be completed earlier in
there ([FPR10]). Once a machine i is selected, the job k that has the largest processing
time difference with respect to the other machines is deleted:

k = argmax{pij − plj : l = 1, . . . ,m; j = 1, . . . , n; l 6= i}.

We may highlight that we have used instances with unrelated parallel machines considering 20
different combinations of the number of jobs and the number of machines. Moreover, seven sets
of ten problem instances were randomly generated for each instance type following different ways
of choosing the processing time of job j on machine i (pij , i = 1, . . . , n and j = 1, . . . ,m) and
its weight (wj). All the instances used can be classified into two broad categories: correlated and
uncorrelated instances [FPR10].

The experimental study performed on this set of instances have two main goals: 1) to find
suitable values for the parameters of our model and understand their influence on the behaviour of
the algorithm and 2) to perform a comparison between the proposed method combining IG with
a local search method and state-of-the-art metaheuristics from the literature. From the results of
this study, we can obtain the following conclusions:

The use of the proposed acceptance criterion leads to the best results for our approach com-
pared with other acceptance criteria.

Using more elaborate destructive strategies such as D1 and D2 clearly improves the perfor-
mance of the proposed IG for what concerns correlated instances. However, when considering
the uncorrelated instances, there are no significant performance differences between D1 and
DR. Moreover, for uncorrelated instances, D2 provides a poorer performance than DR. Taking
these results into account, we consider that our model with D1 provides the best performance
over all the remaining alternatives.

The proposed IG obtains statistically better results than its competitors for the set of 140
different instance types contemplated in this work. In summary, this experimental analysis
confirms that the IG model presented in this work is a very attractive alternative to the
existing approaches for this problem, especially for large-size problem instances.

The associated journal article to this part is:

F.J. Rodŕıguez, M. Lozano, C. Blum, C. Garćıa-Mart́ınez, An Iterated Greedy Algorithm for
the Large-Scale Unrelated Parallel Machines Scheduling Problem. Computers & Operations
Research. Submitted on second revision.

5. Joint Discussion of Results 33

5.5. Tabu Search with Strategic Oscillation for the Quadratic Minimum Span-

ning Tree

In this work, we deal with the quadratic minimum spanning tree problem (QMSTP) (Section
2.4). This problem appears in real-world situations such as transferring oil from one pipe to another
in a situation where the cost depends on the type of interface between two pipes and the connec-
tion of aboveground and underground cables in a road network with turn penalties [SS10, ZG98].
Existing methods for solving this problem are divided into exact procedures (limited to small pro-
blems containing from 6 to 15 vertices) and metaheuristics such as genetic algorithms, artificial bee
colony, and tabu search.

We have explored two different metaheuristics to deal with the QMSTP: an hybrid metaheuristic
combining tabu search [GL97] and strategic oscillation [Glo77, GL97] (OS+TLS) and an IG (Section
2.5.4) constructive metaheuristic.

Tabu search is a trajectory-based metaheuristic that employs explicitly a search history with two
objectives: to escape from local optima and to implement a strategy to enhance diversification. The
basic tabu search selects the best neighbour solution, even if it is worse than the current solution.
To avoid cycles, it employs a short-term memory that intends to avoid moves towards solutions
already visited. Moreover, often, tabu search uses a long-term memory that gathers information
about whole search process to use it to guide the search. Strategic oscillation is closely linked to the
origins of tabu search, and operates by orienting moves in relation to a critical level, as identified
by a stage of construction.

In our SO+TLS approach for the QMSTP, we consider a constructive/destructive type of stra-
tegic oscillation, where constructive steps add elements and destructive steps drop elements (at
this point, we may highlight the resemblances between IG and strategic oscillation). SO+TLS for
QMSTP applies, in the first place, strategic oscillation and then tabu search is employed as a local
improvement procedure to solutions obtained by strategic oscillation. We may highlight that both
IG and strategic oscillation share the constructive procedures designed in this work for QMSTP.
However, strategic oscillation adds memory structures to construction and destruction phases, fo-
llowing a strategy that is in line with tabu search principles.

The main novelties of this work are the following:

We have presented a constructive metaheuristic based on the IG scheme and an hybrid ap-
proach between tabu search and strategic oscillation for the QMSTP.

As we mentioned above, in SO+TLS, tabu search is employed as local improvement procedure
to solutions obtained by strategic oscillation. For this, we have proposed a short term memory
tabu local search (TLS) based on a existing local search method [SS10] to which we add a
memory structure and apply candidate list strategies for move selection.

We have have developed two new constructive strategies (C1 and C2) for IG and strategic
oscillation based on Kruskal’s algorithm [J.B56] and the sequential fixing method proposed
by Assad and Xu [AX92], respectively. In addition, we have proposed a destructive strategy
for IG based on the reverse version of Kruskal’s algorithm.

We show commonalties shared by strategic oscillation and IG. At the same time, we identify
implications of their differences regarding the use of memory structures.

The experimental study performed in this work has the following main objectives:

34 Part I. PhD dissertation

To analyse the influence of the parameters and settings associated with IG.

To show the benefits of the use of memory structures in strategic oscillation and TLS.

To compare the behaviour of IG, OS+TLS, and a state-of-the-art memory-based approach
for the QMSTP (ITS [PG10]).

The main conclusions of this experimental study are the following:

The acceptance criterion has the largest impact on the IG performance. The best results are
achieved by the IG version considering the ’random walk’ acceptance criterion [LMGM11].
Moreover, IG version using C1 shows a clear advantage over those with C2. It is interesting
to remark that the simplest constructive algorithm, C1, becomes the most effective one.

The effects derived from the combination of the exploration power of TLS and a moderate
diversification by strategic oscillation, both effects derived from the use of memory structures,
are key for OS+TLS to attain a high level of robustness on the set of instances considered.

OS+TLS is superior for the most complex instance set, IG for the large instances, and ITS
becomes the winner for the case of the easiest instances.

Thus, regarding these results and with the aim of producing a robust operation, we have built
a hybrid algorithm, dubbed HSII, that combines OS+TLS, IG, and ITS. Specifically, HSII is a
relay collaborative hybrid metaheuristic [Tal02] that executes OS+TLS, IG, and ITS in a pipeline
fashion. The idea of this hybridisation scheme is: 1) to use OS+TLS as diversification agent to
reach good initial solutions for the most difficult problem instances, then 2) to allow IG enough
time to offer a suitable behaviour on large instances, and finally 3) to employ ITS as an effective
improvement procedure for refining the best solution found in the previous stages.

Finally, we expand the experimental study by comparing HSII behaviour with regards to state-
of-the-art methods for QMSTP and HSII components. The results of this study show that HSII
outperforms its competitors on most of the problem instances, achieving an acceptable level of
robustness across a wide range of different QMSTP instances.

The associated journal article to this part is:

M. Lozano, F. Glover, C. Garćıa-Mart́ınez, F.J. Rodŕıguez, R. Mart́ı, Tabu Search with Stra-
tegic Oscillation for the Quadratic Minimum Spanning Tree. IEE Transactions. Submitted on
second revision.

6. Conclusiones 35

6. Conclusiones

Esta sección resume brevemente los resultados obtenidos y presenta diversas conclusiones

1. Estudio de HMs-EA/SA para problemas de caja negra en optimización binaria
combinatoria.

En esta tesis, hemos proporcionado una visión general de las distintas formas en las que los
EAs y SA pueden ser combinados para obtener HMs-EA/SA. Hemos organizado las distintas
aproximaciones encontradas en la literatura mediante una taxonomı́a que extiende las pro-
puestas por Talbi y Raidl para metaheuŕısticas h́ıbridas [Tal02, Rai06a] y hemos propuesto
nuevos modelos de HMs-EA/SA que siguen enfoques no explorados hasta ahora en la litera-
tura. Además, hemos desarrollado, hasta donde sabemos, el primer estudio experimental en
el que se compara una gran variedad de modelos de HMs-EA/SA desde tres puntos de vista:

Hemos comparado el rendimiento de los modelos de HMs-EA/SA de forma individual
y por categoŕıas, extrayendo conclusiones relevantes acerca de las categorias de la taxo-
nomı́a presentada.

Hemos realizado un test de sinergia que ha identificado dos modelos de HMs-EA/SA
que realmente presentan caracteŕısticas sinergéticas.

Hemos comparado diversos modelos de HMs-EA/SA frente a algoritmos evolutivos es-
tado del arte, obteniendo prometedores resultados en el marco de pruebas considerado.

Nuestro estudio nos permitió obtener una conclusión destacada: la hibridación de los EAs y
SA es un área de investigación futura para encontrar algoritmos de búsqueda más eficientes.

2. Metaheuŕısticas h́ıbridas y constructivas para el problema de la planificación en
máquinas paralelas con minimización del tiempo total de finalización ponderado.

Para el problema de la planificación en máquinas paralelas con minimización del tiempo total
de finalización ponderado, hemos presentado dos aproximaciones distintas en esta tesis:

En primer lugar, hemos propuesto un algoritmo h́ıbrido para la planificación en máqui-
nas uniformes y no relacionadas que combina el esquema básico de GRASP con otros
elementos como encadenamiento de trayectorias y encadenamiento de trayectorias evolu-
tivo. Además, hemos realizado una comparativa entre el algoritmo propuesto y diversas
metaheuŕısticas existentes para este problema. Este estudio muestra que GRASP + en-
cadenamiento de trayectorias proporciona realmente el mejor rendimiento de entre los
algoritmos comparados. Además, elementos como la construcción voraz aleatorizada de
las soluciones iniciales y el encadenamiento de trayectorias, que distinguen el método
propuesto de las metaheuŕısticas anteriores, han mostrado sus utilidad para mejorar
la calidad de las soluciones y obtenerlas en un tiempo razonable. Finalmente, el mejor
rendimiento de la hibridación entre GRASP y el encadenamiento de trayectorias con
respecto al modelo básico de GRASP muestra que realmente se consigue una sinergia
beneficiosa de esta hibridación.

En segundo lugar, hemos propuesto un algoritmo IG para afrontar el problema de la pla-
nificación en máquinas paralelas no relacionadas, extendiendo este estudio a instancias
más grandes que en el trabajo anterior y considerando diferentes condiciones para la ge-
neración de las instancias. El estudio experimental realizado muestra que: 1) el algoritmo
IG propuesto es muy competitivo con respecto a los algoritmos estado del arte para este

36 Part I. PhD dissertation

problema; espećıficamente, podemos destacar las sustanciales mejores obtenidas cuando
afrontamos instancias de gran tamaño (consideran gran número de trabajos o máqui-
nas) y 2) nuestra propuesta de IG ha sido ejecutada sobre un gran número de instancias
diferentes, resultando ser muy robusta. Además, desde el punto de vista metodológi-
co, el algoritmo IG propuesto presenta dos novedades que pueden ayudar a mejorar el
rendimiento de IG en otros problemas de optimización. En primer lugar, el criterio de
aceptación con aleatoriedad ha resultado ser muy util para mejorar el rendimiento de
IG. En segundo lugar, la inclusión de una estrategia heuŕıstica en la fase de destrucción
ha permitido mejorar los resultados del algoritmo propuesto en ciertos tipos de instan-
cia dif́ıciles. De esta forma, pensamos que el uso de estrategias más elaboradas que la
simplemente aleatoria en la etapa de destrucción deben de ser consideradas cuando se
afrontan problemas de optimización complejos mediante IG.

3. Metaheuŕısticas h́ıbridas y constructivas para el problema del árbol de expansión
cuadrático mı́nimo.

Finalmente, en esta tesis, hemos tratado el problema del árbol de expansión cuadrático mı́ni-
mo y hemos comparado el comportamiento en el mismo de dos metaheuŕısticas que siguen una
estrategia constructiva como IG y la oscilación estratégica. Nuestra investigación demuestra
la efectividad de una estrategia que alterna etapas constructivas y destructivas, como fue
propuesto originalmente en la oscilación estratégica y más recientemente en IG.

Nuestras experimentos revelan que el método de oscilación estratégica basado en el uso de me-
moria es capaz de resolver mejor que los algoritmos existentes anteriormente instancias com-
plejas. Por otro lado, nuestra implementación de IG resulta más exitosa cuando se afrontan
instancias grandes pero no excesivamente complejas, mientras que la búsqueda tabú iterativa
(ITS) se comporta mejor en las instancias más fáciles. Basándonos en estos descubrimientos,
desarrollamos un método h́ıbrido, HSII, que combina estos tres algoritmos, lo que resultó ser
muy efectivo para todas las instancias, con la excepción de una clase de istancias donde ITS
continua siendo el ganador.

Para finalizar, la habilidad de las estrategias constructivas/destructivas para dar mejores re-
sultados en instancias grandes, junto con el valor del uso de memoria en instancias complejas
y de su ausencia en las más sencillas, invita a considerar otras formas de oscilación estratégi-
ca, particularmente, considerando el transpaso de los ĺımites de factibilidad (cuyo valor se
subrayó en [GH11]) y yendo más allá de la simple aleatorización en los movimientos destruc-
tivos introduciendo estrategias más avanzadas para seleccionar estos movimientos (como se
indicó en [GL97] y en nuestro trabajo previo sobre IG para el problema de la planificación en
máquinas paralelas).

6. Conclusions 37

6. Conclusions

This section briefly summarise the obtained results and present several conclusions.

1. Study of HMs-EA/SA for black-box problems in binary combinatorial optimisa-
tion.

In this thesis, we provided an overview of the ways EAs and SA may be combined with each
other to obtain HMs-EA/SA. We have organised the approaches found in the literature by
proposing a taxonomy based on those introduced by Talbi and Raidl for hybrid metaheuristics
[Tal02, Rai06a] and we have proposed new HM-EA/SA models that follow unexplored paths
so far in the literature. Moreover, we have developed, to our knowledge, the first experimental
study analysing a large spectrum of HM-EA/SA models from three points of view:

We have compared the performance of the HM-EA/SA models, individually and by
categories, extracting relevant conclusions regarding the categories of the presented ta-
xonomy.

We have performed a synergy test that has identified two HM-EA/SA models that really
provide synergistic properties.

We have compared HM-EA/SA models with the state-of-the-art evolutionary algorithms
for binary combinatorial optimisation, obtaining promising results on the considered
testbed.

Our study allowed us to draw an outstanding conclusion: the hybridisation of EAs and SA
becomes a prospective research area for finding more effective search algorithms.

2. Hybrid and constructive metaheuristics for scheduling on non-identical parallel
machines with minimising total weighted completion times.

For the non-identical parallel machines scheduling problem with minimising total weighted
completion times, we have proposed two different approaches in this thesis:

In the first place, we have proposed a hybrid algorithm for the scheduling on uniform
and unrelated parallel machines problem, which combines the basic GRASP scheme
with other elements such as path-relinking and evolutionary path-relinking. Moreover, we
have performed a comparative study between the proposed algorithm and the previously
existing metaheuristics for this problem. This study has shown that the GRASP + path-
relinking algorithm provides the best performance from among the studied algorithms.
In addition, elements such as the greedy randomised initial solutions and path-relinking,
which distinguish the proposed method from compared metaheuristics, have proven to be
quite useful increasing the quality of the solutions and achieving high-quality solutions
in a reasonable time. Finally, the better performance of the hybrid GRASP + path-
relinking over the pure GRASP shows that their combination really provide a profitable
synergy.

Secondly, we have proposed an IG algorithm to deal with the scheduling on unrelated
parallel machines problem, expanding the study to instances larger than the previous
work and considering different conditions for generating instances. The computational
experiments performed show that: 1) the proposed IG is very competitive with other

38 Part I. PhD dissertation

state-of-the-art algorithms for this problem; specifically, significant improvements were
obtained for large size problem instances (involving a large number of jobs or machines)
and 2) Our IG has been tested on a great number of different kinds of instances, proving
to be very robust. Moreover, from the methodological point of view, the proposed IG
presents two novel elements that can help to improve the performance of IG on other
optimisation problems. In the first place, the acceptance criterion including randomness
has proved to be quite useful to improve its performance. Secondly, the heuristic strategy
for the destruction step has allowed improving the results of the proposed IG on certain
types of difficult instances. This way, we think that using more elaborated strategies in
the destructive step than the classical random one should be considered when dealing
with complex optimisation problems thorough IG algorithms.

3. Hybrid and constructive metaheuristics for the quadratic minimum spanning tree
problem.

Finally, in this thesis, we have faced the quadratic minimum spanning tree problem and com-
pared the behaviour on this problem of two different metaheuristics that follow a constructive
strategy as SO and IG. Our research study demonstrates the effectiveness of a strategy for
solving this problem that alternates between constructive and destructive phases, as originally
proposed in strategic oscillation and more recently in IG method.

Our tests disclose that the memory-based strategic oscillation method is able to solve complex
instances better than other previous algorithms. On the other hand, our implementation of
the IG algorithm succeeds in performing most effectively for large problems that are not highly
complex, while the iterated tabu search (ITS) algorithm performs best in application to easier
instances. Based on these findings we developed a hybrid method, HSII, that combines these
three algorithms, which proved very effective across the board with the exception of one class
of problem instances, where ITS remained the winner.

Overall, the ability of the alternating constructive/destructive strategies to give superior
outcomes for larger problems, with memory proving valuable for complex problems and a
disregard for memory proving valuable for easier problems, invites further consideration of
other forms of strategic oscillation, particularly by crossing feasibility boundaries (whose value
is underscored in [GH11]) and by going beyond the reliance on randomisation in carrying
out destructive moves by introducing more advanced strategies for selecting these moves (as
indicated in [GL97] and in our previous work on IG for scheduling on parallel machines).

7. Future Work 39

7. Future Work

In this dissertation, we have performed an in-depth analysis of HMs-EA/SA for black-box
problems in binary combinatorial optimisation and we have proposed new metaheuristics based
on constructive methodologies for two challenging combinatorial optimisation problems: scheduling
on non-identical parallel machines with minimising total weighted completion times and quadratic
minimum spanning tree. In the previous section we have shortly mentioned some different results
that we have obtained in each area, but still there exists more work to be done. Next, we present
some future open research lines raised from the proposals made in this memory.

HMs-EA/SA for black-box problems.

The research line focused on HMs-EA/SA is indeed worthy of further studies. We will intend to
explore three interesting avenues of research. Firstly, multiobjective and constrained problems are
subject of great interest, existing in the literature a great number of proposals for dealing with
this kind of problems based on EAs [Deb01, CLV06, Coe02] and SA [PO08, HF06]. Therefore,
it is possible to adapt the design of HMs-EA/SA to this type of problems. Secondly, teamwork
collaborative HMs-EA/SA are able to take advantage of parallel hardware (multicore processors,
clusters, etc.) and software [CMT04] that has become very affordable and widely available nowadays.
This clearly favors the implementation on parallel hardware of HMs-EA/SA [WWR05, MG95,
CFW98] that may lead to improved results due to the speed-up in the search process, which becomes
a very appealing option for dealing with large-scale optimisation tasks. Finally, an important issue
when combining different algorithms concerns the number of evaluations that each algorithm should
consume throughout the run to create the conditions for the appearance of collaborative synergies
among all the composing algorithms. Adaptive strategies that identify the best performing technique
at each phase of the evolution with a minimum overhead [MS10, VRH09, LMPn10] may be used to
built adaptive HMs-EA/SA with the aim of allowing profitable synergies to arise from the adjusted
intervention of EAs and SA.

Hybrid and constructive metaheuristics for other combinatorial optimisation pro-
blems.

There are in the literature multiple variants of the scheduling on parallel machines problem
that appear when we add specific conditions and information of the scheduling such as due dates,
job release dates, setup times, preemptive scheduling, and precedence constraints. Considering all
these constraints in the parallel machines scheduling problem makes the approach to the problem
more faithful to the different conditions that can be found in real-world applications. However, at
the same time, the complexity of the problem grows significantly. Thus, we intend to modify the
different approaches presented in this thesis in order to consider some of these constraints.

Secondly, as we mentioned in Section 2.3, there are different objectives when dealing with
the scheduling on parallel machines problem: minimise total weighted completion times, minimise
maximum makespan or maximum lateness, and minimise total weighted tardiness. Most of the
works presented in the literature have focused on a single objective that is optimised independently,
however, many industries such as aircraft, electronics, semiconductors manufacturing, etc., have
tradeoffs to their scheduling problems where multiple objectives need to be considered in order
to optimise the overall performance of the system. Thus, an interesting avenue of research would
be the application, when considering more than one simultaneous objectives, of multi-objective
GRASP models that have recently appeared in the literature [RMVCD11] or population-based IG
models [BBB12] adapted for dealing with multiple objectives.

40 Part I. PhD dissertation

Finally, we intend to apply hybrid and constructive metaheuritics to tackle other challenging
optimisation problems such as the maximum diversity grouping problem [GLMD11], permutation
flowshop scheduling [RS08], and community detection in complex networks [HWJ+12].

Bio-inspired metaheuristics

During the past half century, a set of metaheuristics based on natural evolution and swarm
intelligence has appeared, showing a crucial impact on the optimisation field. We can highlight
EAs, ant colony optimisation, and particle swarm optimisation. In recent years, a new set of bio-
inspired techniques has appeared as result of the growing interest in discovering new strategies
used by living beings and whose implementation can provide benefits in the field of optimisation.
Within this new generation of bio-inspired methods, we can highlight algorithms such as artificial
bee colony [KGOK12], artificial immune systems [LZT11], biogeography-based optimisation [Sim08],
and bacterial foraging optimisation [DDAB09]. Our goal in this research avenue is twofold: 1) First,
we intend to analyse the performance of this new bio-inspired methods on the problems studied in
this thesis and new ones and 2) Secondly, we aim to explore new hybrid metaheuristics combining
novel bio-inspired methods and other metaheuristics analysed in this thesis: HMs-EA/SA, GRASP,
and IG.

Part II. Publications: Published,

Accepted and Submitted Papers

1. A simulated annealing method based on a specialised evolutio-

nary algorithm

The journal paper associated to this part is:

C. Garćıa-Mart́ınez, M. Lozano, F.J. Rodŕıguez, A simulated annealing method based on
a specialised evolutionary algorithm. Applied Soft Computing 12:2 (2012) 473-488. doi:
10.1016/j.asoc.2011.11.007.

• Status: Published.

• Impact Factor (JCR 2011): 2.612.

• Subject Category: Computer Science, Artificial Intelligence. Ranking 13 / 111 (Q1).

• Subject Category: Computer Science, Interdisciplinary Applications. Ranking 16 / 99
(Q1).

Applied Soft Computing 12 (2012) 573–588

Contents lists available at SciVerse ScienceDirect

Applied Soft Computing

j ourna l ho mepage: www.elsev ier .com/ locate /asoc

A simulated annealing method based on a specialised evolutionary algorithm

C. García-Martíneza,∗, M. Lozanob, F.J. Rodríguez-Díazb

a Department of Computing and Numerical Analysis, University of Córdoba, 14071, Spain
b Department of Computer Science and Artificial Intelligence, CITIC-UGR (Research Center on Information and Communications Technology), University of Granada, 18071, Spain

a r t i c l e i n f o

Article history:
Received 17 March 2010
Received in revised form 15 May 2011
Accepted 1 November 2011
Available online 15 November 2011

Keywords:
Simulated annealing
Evolutionary computation
Combinatorial optimisation
Hybrid algorithms

a b s t r a c t

The flexible architecture of evolutionary algorithms allows specialised models to be obtained with
the aim of performing as other search methods do, but more satisfactorily. In fact, there exist sev-
eral evolutionary proposals in the literature that play the role of local search methods. In this paper,
we make a step forward presenting a specialised evolutionary approach that carries out a search
process equivalent to the one of simulated annealing. An empirical study comparing the new model
with classic simulated annealing methods, hybrid algorithms and state-of-the-art optimisers concludes
that the new alternative scheme for combining ideas from simulated annealing and evolutionary
algorithms introduced by our proposal may outperform this kind of hybrid algorithms, and achieve
competitive results with regard to proposals presented in the literature for binary-coded optimisation
problems.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Metaheuristics (MHs) [1,2] arose around 30 years ago, extending
basic heuristic methods by means of their application in iterative
frameworks that augmented their exploration capabilities. Blum
and Roli [3] offer an overview of various existing methods. These
stochastic algorithms have proved to be useful when coping with
difficult optimisation problems because they usually obtain good
solutions in a reduced amount of time.

Over the last years, a large number of search algorithms were
reported that do not purely follow the concepts of one single classi-
cal MH, but they attempt to obtain the best from a set of MHs (and
even other kinds of optimisation methods) that perform together
and complement each other to produce a profitable synergy from
their combination. These approaches are commonly referred to as
hybrid MHs [4–6].

Simulated annealing (SA) [7,8] is commonly said to be the first
algorithm extending local search methods with an explicit strat-
egy to escape from local optima. The fundamental idea is to allow
moves resulting in solutions of worse quality than the current solu-
tion in order to escape from local optima. The probability of doing
such a move is decreased during the search process. Despite of
being proposed in 1983, SA is still object of further studies, tool
tackling many optimisation problems, and component of other
search algorithms [9–14]. Precisely, its outstanding role in the

∗ Corresponding author. Tel.: +34 957 212660; fax: +34 957 218630.
E-mail address: cgarcia@uco.es (C. García-Martínez).

MH field encourages further studies to obtain more effective SA
models.

Evolutionary algorithms (EAs) [15,16] rely on the concept of
a population of individuals, which undergo probabilistic opera-
tors such as mutation, selection, and (sometimes) recombination
to evolve toward increasingly better fitness values of the indi-
viduals. Genetic Algorithms, Evolutionary Strategies, Evolutionary
Programming and Genetic Programming are examples of this fam-
ily of MHs.

The flexibility offered by the evolutionary paradigm allows spe-
cialised models to be obtained with the aim of performing as other
search methods do, but more satisfactorily. This practice is a recent
alternative to design new hybrid MHs, and an overview of spe-
cialised EAs on intensification and diversification can be found in
[17]. In particular, there exist several evolutionary proposals acting
as local search methods and performing more effectively [18–21].

The design of hybrid MHs with ideas from the SA and EAs fields
is a fruitful research line. There exist several proposals in the lit-
erature that either introduce the acceptance mechanism of SA in
an EA [22,23], or apply a SA algorithm to optimise the members of
the population of an EA [24], or exploit the advantage of a popula-
tion of SA processes [25,26]. In this paper, we present SA based on a
specialised EA (SASEA), an innovative hybrid MH that brings out an
alternative scheme for combining ideas from SA and EAs. SASEA can
be seen as either a specialised EA that carries out the search pro-
cess typical of SA, or a SA approach based on ideas of the EA field. It
consists in a steady-state EA [27,28] that creates one single candi-
date solution at each iteration, by crossing over a given solution, or
current solution, and another one from the population. Afterwards,
SASEA applies an acceptance mechanism to decide which solution

1568-4946/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.asoc.2011.11.007

574 C. García-Martínez et al. / Applied Soft Computing 12 (2012) 573–588

Fig. 1. SA model.

becomes the new current solution, either the candidate solution or
the current one. The other solution is inserted into the population
by a replacement strategy.

We have carried out an experimental study, deeply extending
the one presented in García-Martínez and Lozano [29], on a test
suite composed of binary combinatorial optimisation problems,
with the aim of analysing the benefits of SASEA with regard to other
SA approaches, hybrid MHs with ideas from SA and EAs, and other
state-of-the-art search algorithms for this kind of problems. We
have concluded that the innovative scheme for combining ideas
from SA and EAs introduced by SASEA may improve the perfor-
mance of this kind of hybrid MHs, and achieve competitive results
with regard to state-of-the-art search algorithms.

The paper is set up as follows. In Section 2, SA is introduced. In
Section 3, we present SASEA. Its components are deeply described.
In Section 4, we define the empirical framework used to analyse
the benefits of SASEA. In Section 5, we analyse the neighbourhood
structure introduced by SASEA with regard to related work pre-
sented in the literature. We also conduct an empirical comparison
with two SA proposals and CHC. In Section 6, we outline the differ-
ences between SASEA and other hybrid MHs combining ideas from
EAs and SA. The benefits of SASEA with regard to those hybrid MHs
are empirically studied. In Section 7, we pit SASEA against state-
of-the-art search algorithms for binary-coded problems. Finally,
conclusions and future works are presented in Section 8.

2. Simulated annealing

SA [8,7] is an optimisation technique analogous to the physical
process of annealing. SA starts with a high temperature T and any
initial state (Xc). A neighbourhood operator is applied to the current
state Xc (having energy f(Xc)) to yield state Z (having energy f(Z))
(see Fig. 1). When tackling binary combinatorial optimisation prob-
lems, the most frequently applied neighbourhood operator is the
one-flip, which flips one bit of the current solution. Then, an accep-
tance mechanism decides which state becomes the new current
state. Acceptance mechanism takes into account the current tem-
perature of the system: worse solutions are more often accepted
with high temperature. The application of the neighbourhood oper-
ator and the probabilistic acceptance of newly generated states
are repeated either a fixed number of iterations or until a quasi-
equilibrium is reached. The entire above-described procedure is
performed repeatedly, each time starting from the current state
and from a lower T.

The idea behind SA is to protect diversification in the initial stages
and intensification later: at the initial stages, high T values favour
the exploration of the search space, accepting new states almost
regardless their energy; later, low T values increase exploitation,
accepting only new better states.

There are two main acceptance mechanisms proposed in the
literature: metropolis and logistic rules [30]. They define the prob-
ability of Z being the new current state. Eqs. (1) and (2) show
metropolis and logistic acceptance mechanisms, respectively, for
minimisation problems. On the other hand, there exist several cool-
ing schemes, such as logarithmic, fast, and geometric ones [30]. Eq.
(3) shows geometric cooling scheme, which is used in this work (˛
is a cooling factor often assumed to be a constant in the interval
[0.9, 1)):

p(Z) =
{

1 if f (Z) < f (Xc)
e(f (Xc)−f (Z))/T if f (Z) ≥ f (Xc)

(1)

p(Z) = 1 − 1
1 + e(f (Xc)−f (Z))/T

(2)

T ← ̨ · T (3)

Convergence to global optimum is guaranteed for SA if a sta-
tionary distribution is reached at each temperature, followed by
sufficiently slow cooling, such as logarithmic [31]. However, it usu-
ally leads to excessive long runs and practitioners use to apply faster
cooling schemes at fixed number of iterations [32].

3. SA based on a specialised EA

SASEA is a steady-state EA that creates one single candidate solu-
tion at each iteration, by crossing over the current solution and
another one from the population. Afterwards, SASEA applies an
acceptance mechanism, e.g. metropolis or logistic, to decide which
solution becomes the new current solution, either the candidate
solution or the current one. The other solution is inserted into the
population by a replacement strategy.

An outstanding feature of SASEA is that it describes a trajectory
in the search space, as classical SA procedures do. Both, classical
SA algorithms and SASEA, commence from a single solution and, at
each step, a candidate solution is generated using a neighbourhood
operator of some sort. They simply move the search from the cur-
rent solution to a candidate solution according to the acceptance
mechanism. The basic idea of SASEA is to use a SA accepting mecha-
nism as the move accepting criterion of the search and crossover as
the neighbourhood operator. In fact, the neighbourhood structure
defined by the crossover operator of SASEA, together with the indi-
vidual selected from the population, is one of the most important
differences with regard to classic SA methods. Several researchers
have pointed out that crossover operators may promote neighbour-
hood structures [33–36]. Precisely, first trajectory methods based
on crossover were suggested in 1995 [37,38], and they has been
applied to obtain different local EAs [20,21]. The main novelty of
SASEA concerns the application of these ideas to design a new SA
model.

SASEA can be seen as an extension of Binary-coded Local Genetic
Algorithm (BLGA) [39,19], a recent EA that performs local search to
an external solution. BLGA was compared with classic local search
methods obtaining promising results with regard to efficacy and
efficiency. SASEA extends BLGA by including the concepts that dis-
tinguish SA from local search methods: temperature, acceptance
criterion, and cooling scheme. In addition, some components are
modified in order to better fit the SA search process.

In Section 3.1, we describe steady-state EAs. In Section 3.2, we
introduce the general scheme of SASEA. Sections 3.3, 3.4 and 3.5
describe in detail, selection mechanism, crossover operator and
replacement strategy of SASEA, respectively.

C. García-Martínez et al. / Applied Soft Computing 12 (2012) 573–588 575

Fig. 2. Basic scheme of steady-state EAs.

3.1. Steady-state EAs

The generational EA creates new offspring from the members of
an old population using the genetic operators and places these indi-
viduals in a new population that becomes the old population when
the whole new population is created. The steady-state EA [27,28]
is different to the generational model in that there is typically one
single new member inserted into the new population at any one
time. A replacement/deletion strategy defines which member in the
current population is forced to perish (or vacate a slot) in order to
make room for the new offspring to compete (or, occupy a slot) in
the next iteration. Steady-state EAs are overlapping systems, since
parents and offspring compete for survival.

The basic algorithm step of steady-state EAs is shown in Fig. 2.
These steps are repeated until a termination condition is achieved.
In step 4, one can choose the replacement strategy (e.g., replacement
of the worst, the oldest, or a randomly chosen individual). In step 5,
one can choose the replacement condition (e.g., replacement if the
new individual is better or unconditional replacement).

3.2. General scheme of SASEA

Fig. 3 outlines the pseudocode of SASEA. It starts with a high
temperature T, an initial state Xc, and a random uniformly gener-
ated population (Pop). Then, the following steps are carried out (see
Fig. 4):

1. Mate selection: an individual Y is selected from the population
applying parametrised assortative mating (Section 3.3).

2. Crossover: Xc is crossed over with Y by means of guiding neigh-
bourhood exploration crossover operator, generating offspring Z
(Section 3.4). Notice that the crossover-based neighbourhood
structure has been depicted as a cloud in Fig. 4 to stress the
difference with classic neighbourhood structures of SA.

3. Acceptance: Z replaces Xc according to the applied acceptance
mechanism (metropolis, logistic, etc.).

Fig. 3. Pseudocode of SASEA.

Fig. 4. SASEA model.

4. Update population: if Z replaced Xc, then old Xc is inserted into
the population using restricted tournament selection (Section
3.5). Otherwise, Z is inserted in the population using the same
replacement scheme. This replacement strategy helps SASEA to
maintain a diverse set of solutions in Pop.

5. Annealing: if the cooling condition has been reached, apply the
selected cooling scheme, e.g. geometric cooling scheme.

All these steps are repeated until termination condition is
reached.

3.3. Parametrised assortative mating

Assortative mating is the natural occurrence of mating between
individuals of similar phenotype more or less often than expected
by chance. Mating between individuals with similar phenotype
more often is called positive assortative mating and less often is
called negative assortative mating. Fernandes and Rosa [40,41]
implement these ideas to design two mating selection mechanisms.
A first parent is selected by the roulette wheel method and nass indi-
viduals are selected with the same method. Afterwards, similarity
between each of these individuals and first parent is computed
(similarity between two binary-coded solutions is defined as the
Hamming distance between them). If assortative mating is nega-
tive, then the one with less similarity is chosen. If it is positive, the
genome more similar to the first parent is chosen to be the second
parent.

We introduce a new mating mechanism, called parametrised
assortative mating, that probabilistically regulates similarity
between mated individuals. First parent is always Xc and second
parent is chosen being more or less similar to Xc according to
a parameter of the operator (p) (ties are broken up by selecting
one element uniformly at random). Pseudocode of parametrised
assortative mating is presented in Fig. 5 (Random(Pop), uniformly
samples a solution from Pop).

Parameter p adjusts likeness mating trends of Xc. This parameter
takes values in the interval [0, 1]. If p is 0, Xc tends to mate dissimilar
individuals and as p moves closer to 1, Xc tends to mate individuals
more alike.

With the aim of preserving SA idea, to protect diversification in
the initial stages and intensification later, SASEA applies a deter-
ministic adaptation rule [42] on parameter p. At each iteration, it is
set to the fraction of consumed evaluations:

p = FEs

Max FEs
, (4)

where FEs is the number of consumed evaluations and Max FEs
is the maximum number of evaluations allowed. The objective is
to mate dissimilar individuals at the initial stages of the search

576 C. García-Martínez et al. / Applied Soft Computing 12 (2012) 573–588

Fig. 5. Parametrised assortative mating.

process, when p is close to 0, favouring diversification. Then,
to gradually tend to mating similar individuals at latter stages,
because p linearly approaches value 1, increasing intensification.

3.4. Guiding neighbourhood exploration crossover operator

SASEA applies a specific crossover, called guiding neighbourhood
exploration crossover operator, that is aimed at guiding the explo-
ration of the neighbourhood of Xc. It carries through two stages. At
the first stage, offspring is pushed from Xc toward the mate Y. Y can
be seen as an agent guiding the exploration of Xc neighbourhood.
Y also defines the intensity by which offspring is pushed away. If Y
is close to Xc, offspring is sampled next to Xc, otherwise, if Y is far
from Xc, offspring undergoes a stronger drive. At the second stage,
offspring experiences a stochastic perturbation depending on the
intensity of previous drive. The aim of the second stage is to add
randomness to neighbourhood exploration. This perturbation may
reduce, enforce previous drive, or even add new genetic material.
Fig. 6 represents the operation of the crossover operator.

Fig. 7 outlines pseudocode of guiding neighbourhood explo-
ration crossover operator. Random returns one element from the
given set, uniformly sampled at random, and N refers to the number
of bits of the problem. Given Xc and a mate Y:

1. The operator initially creates offspring Z as a copy of Xc and
detects differences with Y.

Fig. 6. Guiding neighbourhood exploration crossover operator.

2. First stage: genes from Y, where Y and Xc differ, are included in
Z with probability py, parameter of the operator.

3. Second stage: genes are flipped according to a probability that
depends on the number of genes from Y included in previous
stage.

4. At last, if offspring Z has not included genes from Y nor experi-
enced perturbation, a random uniformly chosen gene is flipped.

It is interesting to mention that this new crossover operator
shares some similarities with half uniform crossover operator (HUX)
of CHC [43]. In particular, first stage of guiding neighbourhood
and half uniform crossover operators actuate according to the dif-
ferences detected between both parents. Whereas half uniform
operator assigns exactly half of these differences to each produced

Fig. 7. Pseudocode of guiding neighbourhood exploration crossover operator.

C. García-Martínez et al. / Applied Soft Computing 12 (2012) 573–588 577

Fig. 8. Restricted tournament selection.

offspring, guiding neighbourhood exploration crossover operator
considers control parameter py for that assignation.

3.5. Restricted tournament selection

Crowding methods [44,45] attempt to maintain diversity in the
population by means of the replacement procedure as follows: new
individuals are more likely to replace existing individuals in the
parent population that are similar to themselves based on geno-
typic similarity. They have been used for locating and preserving
multiple local optima in multimodal functions.

SASEA uses restricted tournament selection [46] as the replace-
ment method. This strategy was applied previously by BLGA
[39,19]. Its main idea is to replace the closest individual R to the
one being inserted in the population, I, from a set of nT randomly
selected ones, uniformly and with-replacement, if I is better than
R. Possible ties are broken up by choosing one individual uniformly
at random. Fig. 8 outlines its pseudocode.

4. Empirical framework

We have carried out different experiments to analyse and assess
the efficacy of SASEA with regard to other algorithms for binary-
coded problems. In this section, we detail the test problems (Section
4.1) and running conditions (Section 4.2) that were used for the
following studies. Some comments on the no free lunch theorems
[47] are addressed in Section 4.3.

4.1. Test problems

Experiments were executed on a test suite composed of 27
binary-coded test problem instances from 12 different problem
classes, 8 classes (13 instances) from the artificial intelligence
field and 4 (14 instances) from real-world applications. They are
described in Appendix A. Table 1 outlines their name, number of
bits, and a value (f*) that stands for either the fitness value of the
global optimum, known best solution, or upper bound presented in
the literature. All of them have been formulated as maximisation
problems. BQP and Maxcut instances can be obtained from the cor-
responding files from the Biq Mac Library,1 and Multiple knapsack
problems, from the SAC-94 Suite.2 Though Table 1 indicates that 1
is the maximum possible fitness value for M-Sat and NkLand prob-
lems, there not usually exists any optimal solution with that fitness
value, which depends on the current problem instance.

For problems where the global optimum is the all-ones
string (Royal-road, Trap, Deceptive, Bipolar deceptive, Overlapping
deceptive, and HIFF ones), we firstly build a random bit string S
that will become the shifted optimum of the problem. The new fit-
ness value of a candidate solution X is computed as the original
fitness value of the string X ⊕ S (i.e., the result of applying first

1 http://biqmac.uni-klu.ac.at/.
2 http://elib.zib.de/pub/Packages/mp-testdata/ip/sac94-suite/.

Table 1
Tackled problems.

Prob. Name N f*

1 Royal road problem (400, 8) 400 1
2 Trap problem 36 220
3 Deceptive problem 39 390
4 Bipolar deceptive problem 396 1
5 Overlapping deceptive problem 399 1
6 NkLand(48,4) 48 1
7 NkLand(48,12) 48 1
8 HIFF(2, 5, true) 32 192
9 HIFF(3, 4, false) 81 211

10 PPeaks(10,100) 100 1
11 PPeaks(100,100) 100 1
12 PPeaks(50,150) 150 1
13 PPeaks(50,200) 200 1
14 M-Sat(100,1200,3) 100 1
15 M-Sat(100,2400,3) 100 1
16 BQP(bqp50-1) 50 5176
17 BQP(bqp500-1) 500 121,270
18 BQP(be120.3.3) 120 Not known
19 BQP(be200.8.5) 200 Not known
20 Maxcut(pm1s 80.6) 80 73
21 Maxcut(w09 100.2) 100 2738
22 Maxcut(g05 100.5) 100 1436
23 Maxcut(pw05 100.6) 100 8217
24 Maxcut(ising2.5-250 5555) 250 7,919,449
25 Multiple knapsack p. (weish03) 30 4115
26 Multiple knapsack p. (pet5) 28 12,400
27 Multiple knapsack p. (pb4) 29 95,168

exclusive OR between X and S, and subsequently, inversion). This
way, we avoid the biased advantages of some search algorithms
that tend to sample the all-ones string at the beginning of the search
process.

4.2. Running conditions

One advantage of trajectory MHs over other heuristics is that,
when solving some problems, the search space can be searched
very efficiently: instead of calculating the objective value of a
new candidate solution, it is sufficient to compute the difference
�f with regard to the fitness of the current solution by utilising
problem-specific knowledge. This technique, widely known as delta
evaluation [48], is highly profitable in terms of computation time
whenever feasible. For example, in the BQP problem, the calculation
of �f takes time O(n), while the calculation of the fitness takes O(n2).
As delta evaluation can be performed on several of the tackled prob-
lems (and many others [49]), it will be applied by all the trajectory
search methods (or trajectory search components) considered. In
particular, SASEA will apply delta evaluation as well, which is possi-
ble due to guiding neighbourhood exploration crossover operator,
applying a low py value, creates offspring near the first parent, i.e.,
few bits are changed.

In most real-world optimisation problems the evaluation of a
solution requires a simulation process that is usually very time-
consuming, i.e., solution evaluation is the bottleneck of the search
process. For that reason, in order to perform a fair comparison
between different search methods, we will run every algorithm
with the same budget of fitness evaluations (independently delta
evaluation is being applied or not, which does not affect the algo-
rithms’ performance in terms of efficacy). In general, each run of
a search algorithm on a test problem will perform at most 105 fit-
ness evaluations, but convergence characteristics will be studied
as well. The performance measure is the average of the best fitness
value found over 50 independent runs, because we are interested
in the regular performance of the compared algorithms, instead of
the best results attained.

578 C. García-Martínez et al. / Applied Soft Computing 12 (2012) 573–588

Non-parametric tests can be used for comparing the results of
different optimisers [50–52]. Given that the non-parametric tests
do not require explicit conditions for being conducted, it is rec-
ommended that the sample of results are obtained following the
same criterion, which is, to compute the same aggregation (average,
mode, etc.) over the same number of runs for each search algorithm
and problem. In particular, we have used the Wilcoxon matched-
pairs signed-ranks [53] test to compare the results of our proposal
with the ones of other MHs. We explain this statistical test, in detail,
in Appendix B.

4.3. On the no free lunch theorem

No free lunch theorem for optimisation [47] states that all not-
resampling algorithms that search for an extremum of a cost
function in a finite space perform exactly the same when averaged
over all possible fitness functions.

Since, the application of not-resampling algorithms on problems
with many variables usually involves impossible memory and/or
computation requirements (a general binary-coded problem with N
variables requires 2N evaluations to be solved to optimality), resam-
pling is allowed for most MHs. Though, no free lunch theorem is not
applicable to those cases, there is a belief, as many researchers write
so, that all (resampling) MHs might perform exactly the same when
averaged over all possible fitness functions, too. In particular, pro-
posals’ deficiencies are often explained by sentences like “According
to the no free lunch theory, it is impossible for algorithm X to outper-
form always”, even when they are being proposed. This fact points
out the significance of this theorem. Recently, Marshall and Hinton
[54] have proved that NFL theorems do not hold when considering
resampling algorithms, however, random search with replacement
is expected anyway to be the best approach when performances are
averaged over all possible functions (or closed under permutation
sets, as defined below).

Schumacher et al. [55] revealed that no free lunch theorem
even holds when averaging over subclasses of problems if and only
if these sub-classes are closed under permutations of the search
space. F is said to be a subclass of functions closed under per-
mutations if for any function f ∈ F and any permutation � of the
search space, f ◦ � is also in F (notice that the number of permu-
tations of a binary-coded search space with N variables is 2N !).
Later, Igel and Toussaint [56] suggested that the class of real-world
applications is hardly closed under permutations. In particular, they
proved that the class of problems with some topological structures
based on nontrivial neighbourhood relations is not closed under
permutations. This result implies that it might be possible to detect
performance differences between some algorithms when averaged
over the class of all real-world problems.

Since, our testbed is not closed under permutations, because
there exist some neighbourhood relations between the solutions
in their search spaces (notice that the procedure for shifting the
optimum of several problems does not close them under per-
mutations because neighbourhood relations are not affected and,
just because a maximum of 2N transformations are possible), it is
expected that the compared algorithms might not perform exactly
the same on average, and we could rank them according to the
average performance. Our intention is to analyse whether SASEA is
able to outperform its competitors when averaged on the consid-
ered testbed and under the specified running conditions, not to defy
the no free lunch theorem, but to forecast similar performances on
other real-world problems (with similar neighbourhood relations)
with regard to the compared algorithms. On the contrary, we know
that the set containing all the binary static combinatorial problems
is really closed under permutations, and thus, any averaged per-
formance difference should not to be expected. Finally, we shall

mention that, the practice followed in this work is widely applied
by the evolutionary computation community [57,58,34,59–63].

5. Study of the neighbourhood structure of SASEA

The neighbourhood structure of SASEA, as the result of the com-
bination of guiding neighbourhood exploration crossover operator
and the way parametrised assortative mating selects individuals
from the population, is a major difference with classic SA methods.
In Section 5.1, we point out the properties of the neighbourhood
structure promoted by SASEA. In Section 5.2, we empirically study
whether the new neighbourhood structure of SASEA outperforms
other SA neighbourhood structures for binary-coded problems
proposed in the literature. Besides, we empirically analyse the
performance synergy between guiding neighbourhood exploration
crossover operator and SASEA with regard to the one between HUX
and CHC in Section 5.3, according to the proper adjustment of its
parameter py.

5.1. Properties of the neighbourhood structure of SASEA

The neighbourhood structure promoted by SASEA presents the
following two properties:

• It explores larger and dynamic neighbourhood sizes: classic SA algo-
rithms for binary optimisation usually consider one-flip operator,
which flips just one bit of the current solution, to explore the
neighbourhood of Xc. However, SASEA may flip several bits of Xc

and the number of flips is adapted dynamically at each iteration.
When Xc is crossed over with dissimilar individuals, offspring
undergoes strong drives from Xc. This fact occurs at the ini-
tial stages of the search process because p is near to 0 and
parametrised assortative mating tries to mate Xc with unlike
individuals. On the opposite, when Xc and the mate are similar,
offspring is sampled close to Xc. It happens at last stages because
p is near to 1 and parametrised assortative mating attempts cou-
pling Xc with similar individuals.

This is a promising characteristic because Yao [64] theoretically
proved that employing larger and dynamic neighbourhood oper-
ators may enhance efficiency of SA. In fact, in Liu [65], the impact
of neighbourhood size on the performance of SA is analysed and
another SA algorithm with dynamic neighbourhood sizes is pro-
posed for flowshop scheduling problems. We shall mention as a
note that, though the ideas in Yao [64] and in SASEA point out in
the same direction, the study in Yao [64] does not explicitly cover
crossover-based neighbourhood structures.
• Neighbourhood exploration is guided by the mate to promote diversi-

fication and/or intensification: at the first stage, crossover operator
pushes Z from Xc toward the mate. Thus, mate guides the
exploration of Xc neighbourhood. At this point, parametrised
assortative mating becomes determinant: at initial stages of the
search process, it intends to promote diversification by cou-
pling Xc with dissimilar individuals; whereas at latter stages, it
attempts promoting intensification by pairing Xc with similar
individuals.

This characteristic has also been considered beneficial for
the performance of SA in previous works. Fox [66] states that
neighbourhood exploration might be guided by non-uniform
probability distributions. Instead of this blind exploration pro-
cess, he suggests that modified distributions might promote
diversification and/or intensification. A particular example for
continuous optimisation problems is found in [67]. The presented
neighbourhood exploration favours diversification in the initial
stages of the search process by sampling opposite neighbours.

C. García-Martínez et al. / Applied Soft Computing 12 (2012) 573–588 579

Table 2
SASEA vs. classic SA and dynamic SA (Wilcoxon’s test with p-value = 0.05 and critical
value = 107).

Algorithms R+ R− Sig. differences?

SASEA vs. classic SA 289.5 88.5 +
SASEA vs. Dyn. SA 377.5 0.5 +

5.2. Comparison with other SA neighbourhood structures

With the aim of analysing the significance of the neighbourhood
structure of SASEA, we compare the results of the proposal with
the ones of two other SA algorithms with different neighbourhood
structures, classic SA and dynamic SA [65], on the experimental
framework described in Section 4. Though SASEA was previously
compared with classic SA in [29], the latter is included here for the
sake of completeness.

Initial temperature was set in the following manner for all the
search algorithms: firstly, two random solutions are generated. We
set a desired probability pd of accepting the worst solution from the
best one. Then, we compute the corresponding T0 value, according
to the applied acceptance criterion. This procedure, which has not
been proposed before as far as we know, allows us to probabilisti-
cally get an appropriate value for the initial temperature according
to the range of the fitness function and a desired initial probability
for worse solutions, without consuming many evaluations.

Initial experiments comparing SASEA and classic SA showed
that geometric cooling and any of the two acceptance mechanisms
(metropolis or logistic) were the combinations that obtained the
best results for both models, classic SA and SASEA [29]. Besides,
best results were obtained with pd equal to 0.4, 100 iterations per
cooling event, and 0.99 as the cooling factor. Therefore, all methods
will apply geometric cooling, logistic acceptance mechanism, and
the mentioned parameters values.

Dynamic SA applies the following formula [65] to compute the
probability of flipping each bit of Xc:

1 +
(

N

2
− 1

) (
1 − FEs

Max FEs

)0.4
, (5)

where N is the number of bits of the problem, FEs is the number
of evaluations consumed, and Max FEs is the maximum number of
evaluations.

SASEA maintains 500 individuals in the population and nT is set
to 15 for restricted tournament selection (parameter values taken
from BLGA [39]). In addition, py, for the crossover operator, has been
set equal to 3/N, and nass to 10 for parametrised assortative mating.

Tables 8–10, in Appendix C, outline the results of the studied
algorithms when tackling each test problem. Table 2 summarises
the results of applying the Wilcoxon matched-pairs signed ranks
test for p-value = 0.05, where the values of R+ (associated to SASEA)
and R− of the test are specified. If R− is smaller than R+ and the
critical value of the test, SASEA is statistically better than the cor-
responding algorithm; if R+ is inferior to R− and the critical value,
SASEA is statistically worse than its competitor; if neither R+ nor R−

is smaller than the critical value, Wilcoxon test does not find sta-
tistical differences (p-value = 0.05 and 27 problem instances make
critical value to be 107). Last column indicates whether SASEA
performs statistically better (+), worse (−), or without significant
differences (∼) than its competitor.

From Table 2, we clearly notice that the optimisation process
performed by SASEA is statistically superior to the ones of the other
two algorithms. It is also interesting to see that SASEA outperforms
dynamic SA on almost every test problem because the associated
R− value is close to 0.

We have carried out a statistical analysis for p-value equal to
0.05 to measure the performance differences between SASEA and

 0.5

 0.6

 0.7

 0.8

 0.9

1

0 20000 40000 60000 80000 100000

F
itn

es
s

A
ve

ra
ge

Evaluations

SASEA
classic SA

dyncamic SA

Fig. 9. Convergence graphs of SA algorithms with different neighbourhood struc-
tures.

the other algorithms on each problem separately. This statistical
analysis is based on Mann–Whitney test [68]. Plus (+), minus (−),
and approximate (∼) signs in Tables 8–10 indicate superior, infe-
rior, or similar performance of SASEA, respectively, with regard to
the corresponding algorithm on each problem. We notice that:

• SASEA obtains better results than the dynamic SA on almost all
the problems considered. This fact is in accord with the results in
Table 2.
• Classic SA and SASEA attain comparable results on many prob-

lems. However, SASEA shows a light superiority on several
artificial problems (Royal road, Deceptive and Bipolar deceptive
problems, and three PPeaks ones) and two Multiple knapsack
ones. Classic SA achieves better results on just two problem
instances (Overlapping deceptive problem and Maxcut(ising2.5-
250 5555)).

Next, we study the behaviour of the three search algorithms
along the whole run. In order to obtain a convergence graph sum-
marising algorithms’ behaviours on all the problems, we have
accomplished the following two steps:

1. Taking into consideration highest and lowest fitness values
achieved by all the studied algorithms on each test problem,
we have normalised every result, along the whole runs, into the
interval [0, 1].

2. Subsequently, mean values, over the 27 problem instances, have
been obtained for each algorithm, along the 105 evaluations.

Fig. 9 shows the results for classic SA, dynamic SA, and SASEA.
From Fig. 9, we see that the results of SASEA are superior to both

SA algorithms along the whole run. Besides, we know that, at least
at the end of the run, the differences are statistically significant
(Table 2). On the other hand, we observe that dynamic SA lasts
too much time before leading the search process toward promising
solutions, which occurs when the number of flips on Xc is low. This
effect explains the poor results of dynamic SA in Tables 2 and 8–10.

The conclusion of this study is that the natural way SASEA
implements the ideas commented in Section 5.1, dynamic
neighbourhood sizes and guided neighbourhood exploration for
diversification and/or intensification, becomes beneficial to outper-
form the results of other SA approaches.

580 C. García-Martínez et al. / Applied Soft Computing 12 (2012) 573–588

Table 3
SASEA vs. CHC (Wilcoxon’s test with p-value = 0.05 and critical value = 107).

Algorithms R+ R− Sig. differences?

SASEA(3/N) vs. CHC(0.5) 339.5 38.5 +
SASEA(3/N) vs. CHC(0.3) 346.5 31.5 +
SASEA(3/N) vs. CHC(3/N) 378 0 +

SASEA(0.3) vs. CHC(0.5) 219.5 158.5 ∼
SASEA(0.3) vs. CHC(0.3) 302.5 75.5 +
SASEA(0.3) vs. CHC(3/N) 378 0 +

SASEA(0.5) vs. CHC(0.5) 157.5 220.5 ∼
SASEA(0.5) vs. CHC(0.3) 233.5 144.5 ∼
SASEA(0.5) vs. CHC(3/N) 378 0 +

5.3. Guiding neighbourhood and SASEA vs. HUX and CHC

In this section, we address the proper adjustment of parame-
ter py of guiding neighbourhood exploration crossover operator for
the proper operation of SASEA, and compare it with the operation
of HUX in CHC. The motivation is that both crossover operators
initially work according to the differences between the chosen par-
ents, however, our initial experiments suggested to set py to 3/N
(this is the probability of selecting genes from parent Y), whereas
the implicit parameter in HUX considers a value of 0.5 (it exchanges
exactly half of the differences between both parents) [69].

We have performed experiments according to the empirical
framework described in Section 4, comparing SASEA and CHC with
different parameter values for their crossover operators. In partic-
ular, we will compare the results of both algorithms with every
combination of values for py ∈ {3/N, 0.3, 0.5}. Notice that we have
implemented a HUX version that exchanges a number of differ-
ences between the parents that depends on the given parameter
py. The population of CHC consists of 50 individuals.

Table 3 presents every possible pairwise comparison between
both algorithms by means of Wilcoxon statistical test with p-
value = 0.05 (critical value is 107). Algorithms are denoted as
SASEA(py) and CHC(py), respectively. R+ and R− values are pre-
sented for every comparison. If R− is smaller than the critical value,
then, Wilcoxon test finds statistical differences favouring SASEA.
No statistical differences favouring CHC were obtained.

We observe that:

• SASEA(3/N) (which is the usual configuration) outperforms CHC
regardless the parameter value considered.
• Though CHC(0.5) seems to outperform SASEA(0.5), Wilcoxon test

does not find statistical differences.
• SASEA provides the best results when py = 3/N (because it outper-

forms all the CHC approaches), i.e., when Xc is perturbed locally,
which is at the foundation of classic SA methods. However, CHC
obtains its best results when py = 0.5 (it is more competitive with
regard to the SASEA instances), which coincides with its original
conception [43,69], i.e., when it performs a global search, which is
as well at the core of evolutionary algorithms. Nevertheless, when
both algorithms are tuned, Wilcoxon finds statistical differences
favouring SASEA.

To sum up, we may conclude that py has to be tuned according
to the demands of the algorithm: Xc must be modified locally for
trajectory methods such as SASEA, whereas a global exploration
has to be provided for methods such as CHC.

6. SASEA vs. other hybrid MHs based on SA and EAs

Nowadays, there exist several hybrid MH models combining
ideas from the EA and SA fields. Usually, their aim is to improve
the performance of SA when it is applied in a limited resources

framework, i.e., a maximum allotted time, number of evaluations,
etc. Several of these proposals are:

• Parallel recombinative SA (PRSA) [22]. It borrows the ideas from
EAs to maintain several copies of SA running in parallel, with
mutation as the neighbourhood operator, and crossover recom-
bining independent solutions. PRSA may be seen as an EA,
with random selection of parents, one-point-crossover and stan-
dard mutation operators, where offspring replace their parents
according to the acceptance mechanism of SA.
• Annealing-Genetic Algorithm (AGA) [24]. It is a SA algorithm

with the population-based state transition and with the
genetic-operator-based quasi-equilibrium control. AGA can be
understood as an EA where best solutions are optimised by SA
processes. AGA selects parents based on their fitness values and
applies two-point-crossover and mutation operators. Its inner
SA procedure considers the metropolis acceptance mechanism.
In addition, AGA includes a specific procedure to compute the
initial temperature (T0), and cooling scheme is applied at every
iteration.
• SA, Genetic Algorithm, Chemotaxis algorithm, Integrated Algorithm

(SAGACIA) [23]. SAGACIA is based on proper integration of SA,
Genetic Algorithm, and Chemotaxis Algorithm for solving com-
plex optimisation problems. It combines three mechanisms:
rough search, fine search and disturbance one. At the first stage,
new solutions are sampled in the neighbourhoods of the mem-
bers of the population; rough search usually makes large jumps
in the search space; then, new solutions replace their parents
according to the metropolis criterion. At the fine search stage,
the best member of the population is optimised by a local search
method with a budget of N evaluations (the number of bits of the
problem). At the latter stage, the members of the population are
disturbed with a low probability by a mutation operator.

Besides, we found other models that implement the idea of a
population of SA processes, which makes them to be similar to the
aforementioned hybrid MHs:

• Sample-Sort SA (SSSA) [25]. SSSA maintains an array of samplers
operating at static temperatures. At each iteration, each sampler
firstly considers to accept any of the states of its neighbour-
ing samplers; biased acceptance mechanisms are applied at this
phase; subsequently, each sampler performs a standard iteration
of SA. Metropolis acceptance mechanism is applied. SSSA includes
a specific procedure to compute the temperature of first and
last samplers. Afterwards, the temperature values of the other
samplers are set according to Tk = Tlast · ˛m−k, where m is the num-
ber of samplers and ̨ was previously computed satisfying that
Tfirst = Tlast · ˛m.
• Coupled SA (CSA) [26]. It considers a population of samplers where

the acceptance probability of any sampler making an uphill move
depends on the states of the other samplers. In particular, when
sampler ith generates a new solution Yi from the state Xi, the
probability of accepting such a move is:

exp
(f (Xi) − maxX∈�(f (X)))/T

�

� =
∑
X∈�

exp
(

f (X) − maxX∈�(f (X))
T

)
,

(6)

where � is the set of current states of the samplers. Notice that
the acceptance probability does not depends on f(Yi). Besides, CSA
includes a procedure that controls the temperature of the system.
The aim of this procedure is to maintain the variance of the accep-
tance probabilities of the samplers close to a desired variance
value, which is computed as 0.99 × (|samplers| − 1)/(|samplers|2).

C. García-Martínez et al. / Applied Soft Computing 12 (2012) 573–588 581

Table 4
SASEA vs. other hybrid MH (Wilcoxon’s test with p-value = 0.05 and critical
value = 107).

Algorithms R+ R− Sig. differences?

SASEA vs. PRSA 378 0 +
SASEA vs. AGA 354.5 23.5 +
SASEA vs. SAGACIA 312.5 65.5 +
SASEA vs. SSSA 377.5 0.5 +
SASEA vs. CSA 378 0 +

All the search algorithms described in this section emphasise
the evolution of a set of solutions in parallel. Thus, the notion of
evolving populations from EAs is the centre of attention and SA
ideas just define some actions on its members. SASEA is a new
alternative to this scheme for combining EAs and SA. Search process
performed by SASEA focuses on just one solution (Xc) that wanders
over the search space looking for the best configuration. SA ideas
govern this process, whereas EA components (i.e. mating selection
mechanism, crossover operator, and replacement strategy), which
operate on a population of solutions, just modifies Xc neighbour-
hood exploration. Because of that fact, SASEA can be seen either as
a SA approach based on a specialised EA or as a specialised EA that
carries out the search process of SA.

Now, we are interested in determining whether SASEA really
provides an improved alternative to the schemes for combining EAs
and SA. In order to do this, we pit SASEA against aforementioned
algorithms. The experimental framework is the one described in
Section 4. We have followed the recommendations of the original
publications for the parameters settings:

• PRSA applies a mutation probability equal to 1/N, which is high
enough for the mutation operator to be regarded as the neigh-
bourhood operator. Population size is set to 60, which is a
standard value for EAs. On the other hand, the remainder design
decisions were made as for SASEA: PRSA applies logistic accep-
tance criterion, geometric cooling with ̨ set to 0.99, 100 iteration
per cooling event, and pd is 0.4.
• AGA uses a mutation probability equal to 1/(10 · N), which is as

low as it occurs in EAs. Population size is 60. In addition, it applies
geometric cooling with ̨ equal to 0.99 as SASEA.
• SAGACIA uses a population with 60 individuals. Mutation prob-

ability for the rough search stage is set to 10/N, with the aim of
producing large jumps. Mutation probability for the disturbance
stage is 0.025. T0 is computed as for SASEA with pd set to 0.4.
• SSSA maintains 100 samplers. Neighbourhood size is 1, i.e., each

sampler may accept any of the two states of its consecutive sam-
plers (just one for the extreme samplers).
• CSA has 5 samplers. Its parameter ˛, for the variance control

procedure, is set to 0.05. In addition, its acceptance probability
formulae has been adapted for maximisation problems as:

exp
(minX∈�(f (X)) − f (Xi))/T

�

� =
∑
X∈�

exp
(

minX∈�(f (X)) − f (X)
T

)
,

(7)

Tables 8–10, in Appendix C, contain the results of the search
algorithms when tackling each test problem. Table 4 summarises
the results of applying the Wilcoxon matched-pairs signed ranks
test for p-value = 0.05. The superiority of SASEA is clearly seen on
the results presented in Table 4. Hence, the alternative scheme for
combining ideas from SA and EAs introduced by SASEA becomes
a promising research line to improve the performance of this kind
of hybrid MHs. In particular, these results show that a single SA
process consuming the allowed number of evaluations may obtain

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1

0 20000 40000 60000 80000 100000

F
itn

es
s

A
ve

ra
ge

Evaluations

SASEA
PRSA

AGA
SAGACIA

SSSA
CSA

Fig. 10. Convergence graphs of hybrids MHs based on SA and EAs.

better results than a set of SA processes that compete for the com-
putation resources.

Regarding the results of the algorithms on the problems
separately (see Tables 8–10), we notice that SASEA generally out-
performs its competitors, with the following exceptions:

• AGA attains similar results to those of SASEA on problems
NkLand(48,4), BQP(bqp50-1), and Multiple knapsack prob-
lem(pb4). It is interesting to see that SASEA obtains the best
results for those three problems and many algorithms get similar
results (7, 6, and 10 out of 12 algorithms, respectively). Therefore,
these problems seem to be easy to optimise. On the other hand,
AGA outperforms SASEA on just one problem, HIFF(2,5,true).
• SAGACIA achieves the good results of SASEA on the mentioned

easy problems and two another ones, M-Sat(100, 1200, 3) and
Maxcut(pm1s 80.6). Moreover, SAGACIA outperforms SASEA on
five problems: Overlapping deceptive problem, M-Sat(100, 2400,
3), and Maxcut problems w09-100.2, g05-100.5, and pw05-100.6.
These results are in accordance with the ones in Table 4 and SAGA-
CIA appears as the most competitive algorithm with regard to
SASEA among these hybrid MHs. In particular, SAGACIA obtains
better results than SASEA on three out of five Maxcut problems,
and it is surpassed on just one of them.

Fig. 10 shows convergence graphs for the studied algorithms,
obtained by the same procedure described in Section 5.2. We see
that most of the algorithms early get trapped in local optima or
suffer premature convergence to poor solutions. Then, they have
difficulties to improve further. However, the search process of
SASEA is quietly driven toward promising solutions, overcoming
local optima and reaching better final results than the other meth-
ods.

It is also interesting to notice that the graph of AGA surpasses
the one of SAGACIA, though its results were poorer according to the
statistical tests applied (Tables 4 and 8–10). The reason is that there
are several problems for which AGA gets better results than SAGA-
CIA, but not enough to outperform SASEA. On the contrary, SAGACIA
really outperforms SASEA on several problems, but obtains results
poorer than AGA on another ones (compare the results of AGA
and SAGACIA on Royal road, HIFF problems, and Maxcut(ising2.5-
250 5555), for instance).

582 C. García-Martínez et al. / Applied Soft Computing 12 (2012) 573–588

7. SASEA vs. state-of-the-art algorithms for binary
combinatorial problems

In this section, we intend to assess the performance of SASEA
with regard to relevant optimisers for binary-coded problems
found in the literature:

• Cross-generational elitist selection, Heterogeneous recombination,
and Cataclysmic mutation (CHC) [43]. Though this algorithm was
already considered in Section 5.3, it is included here for the sake of
completeness. CHC involves the combination of a selection strat-
egy with a very high selective pressure and several components
inducing diversity. CHC was tested against different Genetic Algo-
rithms, giving better results especially on hard problems [69]. So,
it has arisen as a reference point in the literature. Its population
consists of 50 individuals.
• Variable Dissortative Mating Genetic Algorithm (VDMGA) [41]. It

is a recent steady-state EA, similar to CHC, in which the number
of new chromosomes entering the population in each generation
is controlled on-line by a threshold value, genetic diversity, and
population’s state of convergence. The results in [41] displayed
the superior performance of VDMGA when compared to other
Genetic Algorithms in which CHC was included. Its population
size parameter is set to 100. In addition, the mutation probability
is set to 0.006.
• Sawtooth Genetic Algorithm (Saw-GA) [70]. It is a Genetic Algo-

rithm that uses a variable population size and periodic partial
reinitialisation of the population in the form of a saw-tooth func-
tion. For a wide range of problems, the performance of Saw-GA
was statistically superior to a standard and a micro Genetic Algo-
rithm. The average population size is set to 80; crossover and
mutation probabilities are set to 0.85 and 0.05, respectively;
period and amplitude parameters are adjusted to 40 and 75,
respectively.
• Context-Independent Scatter Search (CISS) [71]. CISS is a proposal

explicitly designed to tackle general binary-coded problems. Its
performance was compared with the one of several general-
purpose commercial optimisation tools, obtaining promising
results. Population and reference set sizes have been set to 300
and 6, respectively. The other parameters have been set as in [71].
• Versatile Quantum-inspired EA (vQEA) [72]. vQEA is a recent EA

approach based on quantum computing principles. It considers
the quantum bit (Qbit) as the smallest information unit, which is
defined by the probability at which the corresponding state (0
or 1) is likely to appear when it is collapsed, i.e., read or mea-
sured. vQEA considers a population of quantum individuals (a
quantum individual is composed of a Qbit string, a realization,
and an attractor) that evolve through quantum gate operations.
The population of vQEA is divided into g groups each containing
d individuals. Attractors are periodically synchronized between
individuals in the same group and between different groups.

vQEA considers a population of 10 individuals distributed into
an unique group. Attractors synchronization takes place every
generation and ��, associated to quantum gate, is �/100.

Tables 8–10, in Appendix C, show the results of the search algo-
rithms when tackling each test problem. Table 5 summarises the
results of applying the Wilcoxon matched-pairs signed ranks test
for p-value = 0.05. We notice that SASEA obtains results statistically
better than the ones of the other optimisers. In addition, differences
between R+ and R− values are relevant. Therefore, SASEA arises as
a promising tool to tackle binary-coded problems.

Taking a deeper look into Tables 8–10, we see that:

• Saw-GA is outperformed by SASEA on almost all the functions.
The statistical test does not find significant differences between

Table 5
SASEA vs. state-of-the-art optimisers (Wilcoxon’s test with p-value = 0.05 and criti-
cal value = 107).

Algorithms R+ R− Sig. differences?

SASEA vs. CHC 339.5 38.5 +
SASEA vs. VDMGA 325 53 +
SASEA vs. CISS 298.5 79.5 +
SASEA vs. Saw-GA 371.5 6.5 +
SASEA vs. vQEA 363.5 14.5 +

their results on just 5 problems, which are Trap, Deceptive,
NkLand(48, 4), and two Multiple knapsack problems, weish03
and pb4. An interesting fact is that the number of variables of
those problems is significantly low with regard to the ones of the
other problems.
• SASEA outperforms CHC on 17 out of the 27 problem instances

considered. In particular, SASEA generally shows superiority on
the M-sat, Maxcut, BQP, and Knapsack real-world problems. On
the other hand, CHC obtains statistically better results than SASEA
on two problems, Bipolar deceptive and PPeaks(10,100), and it
proves to be competitive with regard to SASEA on several another
ones: Trap, Nkland problems, HIFF(2, 5, true), PPeaks(100,100),
BQP(bqp50-1), Maxcut(ising2.5-250.5555), and Multiple knap-
sack problem pb4. According to these results, we did not find a
specific class of problems where CHC appeared superior to SASEA.
• VDMGA attains similar results to those of SASEA on many prob-

lems, however, it only achieves better results on just one problem,
Royal road. On the other hand, SASEA is superior to VDMGA on
M-sat, Maxcut, and BQP real-world problems.
• We see that SASEA achieves better results than CISS on several

artificial problems such as HIFF, Royal road, Trap, Deceptive and
Bipolar deceptive, and on real-world ones such as BQP and Max-
cut, too. On the other hand, CISS shows superiority on the artificial
Nkland problems, as well as on the Overlapping deceptive one.
In our opinion, its particular mechanisms to protect and enhance
diversification are the reasons for its good results on those com-
monly said complex problems. Both algorithms obtain similar
results on all the PPeaks and Multiple knapsack problems.
• Finally, SASEA outperforms vQEA almost on every function. vQEA

just obtains similar results to those of SASEA on three PPeaks
problems.

Fig. 11 shows convergence graphs for the studied optimisers.
They were obtained by the same procedure described in Section
5.2. The behaviour of the search algorithms are very similar to
those of the hybrid MHs in Section 6. Most of the methods seem to

 0.5

 0.6

 0.7

 0.8

 0.9

1

0 20000 40000 60000 80000 100000

F
itn

es
s

A
ve

ra
ge

Evaluations

SASEA
CHC

VDMGA
CISS

Sawtooth-GA
vQEA

Fig. 11. Convergence graphs of state-of-the-art optimisers and SASEA.

C. García-Martínez et al. / Applied Soft Computing 12 (2012) 573–588 583

get trapped in local optima early or experience slow convergence
toward good solutions. However, though SASEA reaches solutions
of equal quality later, its ability to protect diversification at the
initial stages of the process and gradually increase intensification,
by means of the proposed mating mechanism, crossover operator,
and replacement strategy, lets SASEA to overcome local optima and
reach better results.

8. Conclusion

In this work, we proposed SASEA, an innovative hybrid MH
based on a specialised EA that executes a search process equivalent
to the one of SA. We have performed several experimental studies
concluding that:

• The neighbourhood structure associated to the components of
SASEA, which dynamically adapts its size and can be used to pro-
mote intensification and/or diversification, becomes beneficial
when compared to the classic neighbourhood structure (one-flip)
of SA and another one presented in the literature that dynamically
adapts its size.
• The alternative scheme for combining ideas from SA and EAs

introduced by SASEA may outperform other hybrid MHs based
on SA and EAs.
• SASEA provides a significantly better performance than other

state-of-the-art algorithms for binary-coded problems, on the
test suite considered.

The research line focused in this paper is indeed worth of further
studies. We are currently extending our investigation to build evo-
lutionary models incorporating SASEA to perform a search process
on a set of points in parallel, and to take benefits from parallel hard-
ware. In addition, we intend to extend our investigation to different
test-suits, other coding schemes and other real-world problems,
such as training set selection in data mining [73].

Acknowledgements

This work was supported by Research Projects TIN2008-05854
and P08-TIC-4173.

Appendix A. Test suite

The test suite that we have used for the experiments consists
of 27 binary-coded test problem instances from 12 different prob-
lem classes, 8 classes (13 instances) from the artificial intelligence
field and 4 (14 instances) from real-world applications. They are
described in the following sections.

A.1. Royal road

To construct a royal road problem [74], we select a random opti-
mum string and break it up into a number of small building blocks.
We then assign values to each low-order schema and use those val-
ues to compute the fitness of a bit string X in terms of the schemes
of which it is an instance. The value of each low-order schema is
equal to its size. We have used a royal road problem with length
400 where low-order schemes consist of groups of 8 consecutive
bits.

A.2. Trap problem

Trap problem [36] consists of misleading subfunctions of differ-
ent lengths. Specifically, the fitness function f(x) is constructed by

Table 6
Fitness values of the subfunctions Fi .

0 1 2 3

F3 4 2 0 10
F2 5 0 10
F1 0 10

Table 7
Deceptive order-3 problem.

Chromosomes 000 001 010 100 110 011 101 111
Fitness 28 26 22 14 0 0 0 30

adding subfunctions of length 1 (F1), 2 (F2), and 3 (F3). Each sub-
function has two optima: the optimal fitness value is obtained for
an all-ones string, while the all-zeroes string represents a local opti-
mum. The fitness of all other string in the subfunction is determined
by the number of zeroes: the more zeroes, the higher the fitness
value. This causes a large basin of attraction toward the local opti-
mum. The fitness values for the subfunctions are specified in Table 6
where the columns indicate the number of ones in the subfunctions
F1, F2, and F3. The fitness function f(x) is composed of 4 F3 subfunc-
tions, 6 F2 subfunctions, and 12 F1 subfunctions. The overall length
of the problem is thus 36. There are 210 optima of which only one is
the global optimum: the string with all ones having a fitness value
of 220.

f (x) =
3∑

i=0

F3(x[3i:3i+2]) +
5∑

i=0

F2(x[2i+12:2i+13]) +
11∑
i=0

F1(x24+i) (A.1)

A.3. Deceptive problems

In deceptive problems [75], there are certain schemata that guide
the search toward some solution that is not globally competitive.
The schemata that have the global optimum do not bear signifi-
cance and so they may not proliferate during the genetic process.
The used deceptive problem consists of the concatenation of k sub-
problems of length 3. The fitness for each 3-bit section of the string
is given in Table 7. The overall fitness is the sum of the fitness of
these deceptive subproblems. We have used a deceptive problem
with 13 subproblems.

A.4. Bipolar deceptive problem

A deceptive function of order 3 is defined as

f 3
deceptive =

⎧⎪⎨
⎪⎩

0.9 if u = 0
0.8 if u = 1
0 if u = 2
1 otherwise

(A.2)

where u is the sum of three input bits.
A bipolar deceptive function of order 6 [76] is defined with the

use of deceptive subproblems of length 3 as follows:

f 6
bipolar(X) = f 3

deceptive(|3 − u|), (A.3)

where X is a vector of 6 binary variables, and u is the sum of the
input bits. We have included a bipolar problem with 66 f 6

bipolar
sub-

problems. The overall fitness is the average of the fitness of these
subproblems.

A.5. Overlap deceptive problem

A deceptive function composed of deceptive functions of order
3 (previous section) that are overlapping in one bit in a chain-like

584 C. García-Martínez et al. / Applied Soft Computing 12 (2012) 573–588

structure will be referred to as 3-deceptive with overlapping [76]. It
is defined as follows:

f3dec−overlap(X) =
(n−3)/2∑

i=0

f 3
deceptive(Si), (A.4)

where X = (X0, . . ., Xn−1) is a vector of bits, and Si is the concatenation
of bits X2i, X2i+1, and X2i+2. The overlap deceptive problem included
in the test suite consists of 199 f3dec−overlap subfunctions, making
the length of the problem to be equal to 399. The overall fitness is
the average of the fitness of the subfunctions.

A.6. NK-Landscapes

In the NK model [77], N represents the number of genes in a hap-
loid chromosome and K represents the number of linkages each
gene has to other genes in the same chromosome. To compute
the fitness of the entire chromosome, the fitness contribution from
each locus is averaged as follows:

f (s) = 1
N

N∑
i=1

f (locusi) (A.5)

where the fitness contribution of each locus, f(locusi), is determined
by using the (binary) value of gene i together with values of the K
interacting genes as an index into a table Ti of size 2K+1 of ran-
domly generated numbers uniformly distributed over the interval
[0, 1]. For a given gene i, the set of K linked genes may be randomly
selected or consist of the immediately adjacent genes.

We have used two set of instances of the NK-Landscape prob-
lem: one with N = 48 and K = 4, and another with N = 48 and K = 12.
They are denoted as NKLand(N, K). They have been obtained from
[78]. Each run i, of every search algorithm, uses a different seed
(seedi) for generating the NKLand(N, K) instance, i.e. the ith exe-
cution of every method has used the same seedi, whereas the jth
execution has used seedj.

A.7. Hierarchical if-and-only-if problems

Hierarchical if-and-only-if problems (HIFF) [79] are defined as
follows: A binary string X = (x1, . . ., xn), where n = kp, represents a
hierarchical block structure, where k is the number of sub-blocks in
a block, and p is the number of levels in the hierarchy. Blocks do not
need to consist of consecutive sub-blocks, i.e. they can be shuffled.
Each block at the bottom level of this hierarchy, consisting of k bits
each, will be converted into a single symbol by a transform function,
t. This transform function defines the meaning of each block. This
creates a new string (with length k(p−1)) that is the decoding of the
block structure to the first level. This process is repeated for each
level in the hierarchy to give the single symbol that is the meaning
of the whole structure. Thus, the recursive transform function, T,
transforms any block structure to its meaning, a single symbol:

T(X) =
{

xi if |X| = 1,
t(T(X1), . . . , T(Xk)) otherwise

(A.6)

where t is a base function that defines the resultant symbol from a
block of k symbols and Xi is the ith sub-block of X, i.e. {x(i−1)d+1, . . .,
xid} (where d = |B|/k).

Now we may use T(X) to construct f(X), the fitness of a block
structure. Specifically, the fitness of a block structure will be the
fitness contribution of its transform (scaled for its size) plus the

sum of the fitness of its sub-blocks. Hence the recursive function, f,
defined using the base function F:

f (X) =

⎧⎪⎨
⎪⎩

F(X) if |X| = 1,

|X|F(T(B)) +
k∑

i=1

f (Xi) otherwise
(A.7)

where F is a base function giving the fitness of a single bit.
We now give the base functions, F and t, that provide an inter-

esting fitness landscape. First we define t({A, B}) by arbitrarily
assigning 0 and 1 to the two solutions of IFF (i.e. t({0, 0}) = 0, t({1,
1}) = 1, and null for any other combination of 0, 1, and null). F(A)
naturally defines the two non-null transform values as desirable
and null as undesirable.

We have used two instances of this problem. The first one has
5 levels and 2 shuffled subblocks per block, and the second one, 4
levels and 3 consecutive subblocks per block.

A.8. P-Peak problems

P-Peak problem generator [80] creates instances with a certain
number of peaks (the degree of multi-modality). For a problem with
P peaks, P bit strings of length L are randomly generated. Each of
these string is a peak (a local optima) in the landscape. Different
heights can be assigned to different peaks based on various schemes
(equal height, linear, logarithm-based, and so on). To evaluate an
arbitrary solution S, first locate the nearest peak in Hamming space,
call it Peakn(S). Then, the fitness of s is the number of bits the string
has in common with Peakn(S), divided by L, and scaled by the height
of the nearest peak. In case there is a tie when finding the nearest
peak, the highest peak is chosen.

We have used different groups of P-Peak instances denoted as
PPeaks(P,L). Each run i, of every search algorithm, uses a different
seed (seedi) for generating the PPeaks(P,L) instance. Linear scheme
have been used for assigning heights to peaks in [0.6, 1].

A.9. Max-Sat problem

The satisfiability problem in propositional logic (SAT) [81] is the
task to decide whether a given propositional formula has a model.
More formally, given a set of m clauses {C1, . . ., Cm} involving n
boolean variables X1, . . ., Xn the SAT problem is to decide whether
an assignment of values to variables exists such that all clauses are
simultaneously satisfied.

Max-Sat is the optimisation variant of SAT and can be seen as
a generalisation of the SAT problem: Given a propositional for-
mula in conjunctive normal form (CNF), the Max-Sat problem is to
find a variable assignment that maximises the number of satisfied
clauses. It returns the percentage of satisfied clauses.

We have used two set of instances of the Max-Sat problem with
100 variables, 3 variables by clause, and 1200 and 2400 clauses,
respectively. They have been obtained from [78]. They are denoted
as M-Sat(n, m, l), where l indicates the number of variables involved
in each clause (3). Each run i, of every search algorithm, uses a
specific seed (seedi) for generating the M-Sat(n, m, l) instance, i.e.
ith execution of every method uses the same seedi, whereas jth
execution uses seedj.

A.10. Unconstrained Binary Quadratic Programming problem

The objective of the Unconstrained Binary Quadratic Program-
ming (BQP) [82] is to find, given a symmetric rational n × n matrix

C. García-Martínez et al. / Applied Soft Computing 12 (2012) 573–588 585

Q = (Qij), a binary vector of length n that maximises the following
quantity:

f (x) = xtQx =
n∑

i=1

n∑
j=1

qijxixj, xi ∈ {0, 1} (A.8)

We have used 4 instances with different values for n. They can
be obtained from the corresponding files from the Biq Mac Library.3

A.11. Max-Cut problem

The Max-Cut problem [83] is defined as follows: Let an undi-
rected and connected graph G = (V, E), where V = {1, 2, . . ., n} and
E ⊂ {(i, j) : 1 ≤ i < j ≤ n}, be given. Let the edge weights wij = wji be
given such that wij = 0 ∀(i, j) /∈ E, and in particular, let wii = 0.
The Max-Cut problem is to find a bipartition (V1, V2) of V so
that the sum of the weights of the edges between V1 and V2 is
maximised.

We have used 5 instances of the Max-Cut problem that can be
obtained from the corresponding files from the Biq Mac Library3

A.12. Unconstrained knapsack problem

This problem is a generalisation of the simple knapsack prob-
lem. We are given m knapsacks with capacities c1, c2, . . ., cm and n
objects each with a profit pi. Every object i has a weight wij when
it is included in the knapsack j. Note that contrary to the simple
knapsack problem the weights of the objects are not constant but
instead they depend on the knapsack they have been allocated to.
Objects are either allocated to all knapsacks or they are not allo-
cated at all. The goal is to find an allocation of the objects to the
knapsacks such that the total profit is maximised. Calling X = (x1,
. . ., xn) the allocation binary string, the goal can be formalised as
maximising

∑n
i=1xi · pi constrained by the knapsack capacities, or∑n

i=1wij · xi ≤ cj . Whenever at least one knapsack is overfilled the
string represents an infeasible solution. We include a penalty term
in the fitness function that becomes larger the farther the solution
is from feasibility. The fitness function to be maximised is:

f (x) =
n∑

i=1

pi · xi − s · max(pi) (A.9)

where s is the number of overfilled knapsacks.
We have used 3 instances of this problem that can be obtained

from the corresponding files from the SAC-94 Suite.4

Appendix B. Wilcoxon matched-pairs signed-ranks test

Wilcoxon’s test [53] is used for answering this question: do two
samples represent two different populations? It is a non-parametric
procedure employed in a hypothesis testing situation involving a

3 http://biqmac.uni-klu.ac.at/.
4 http://elib.zib.de/pub/Packages/mp-testdata/ip/sac94-suite/.

design with two samples. It is a pairwise test that aims to detect
significant differences between the behaviour of two algorithms.

The null hypothesis for Wilcoxon’s test is H0 : �D = 0; in the
underlying populations represented by the two samples of results,
the average of the difference scores equals zero. The alterna-
tive hypothesis is H1 : �D /= 0, but also can be used H1 : �D > 0 or
H1 : �D < 0 as directional hypothesis.

In the following, we describe the tests computations. Let di be
the difference between the performance scores of the two search
algorithms on ith out of N functions. The differences are ranked
according to their absolute values (we have previously normalised
the results of every algorithm on each test problem into the interval
[0, 1], taking into consideration highest and lowest fitness values
achieved on each test problem); average ranks are assigned in case
of ties. Let R+ be the sum of ranks for the functions on which the
second algorithm outperformed the first, and R− the sum of ranks
for the opposite. Ranks of di = 0 are split evenly among the sums; if
there is an odd number of them, one is ignored:

R+ =
∑
di>0

rank(di) + 1
2

∑
di=0

rank(di) and R− =
∑
di<0

rank(di)

+1
2

∑
di=0

rank(di) (B.1)

Let T be the smallest of the sums, T = min(R+, R−). If T is less than
or equal to the value of the distribution of Wilcoxon for N degrees
of freedom (Table B.12 in [84]), the null hypothesis of equality of
means is rejected.

The obtaining of the p-value associated to a comparison is per-
formed by means of the normal approximation for the Wilcoxon
T statistic (Section VI, Test 18 in [85]). Furthermore, the computa-
tion of the p-value for this test is usually included in well-known
statistical software packages (SPSS, SAS, R, etc.).

Appendix C. Results

Tables 8–10 show the average of fitness values obtained by
the studied search algorithms. Best results for each problem are
boldfaced. Moreover, we have carried out a statistical analysis
with p-value equal to 0.05 to measure the performance differences
between SASEA and the other algorithms on each problem sepa-
rately. This statistical analysis is based on Mann–Whitney test [68].
A plus sign (+) indicates that the performance of SASEA is superior
to the corresponding algorithm on that problem. A minus sign (−)
means that the performance of SASEA is inferior to the correspond-
ing algorithm on that problem. And an approximate sign (∼) is
written when the tests did not find significant differences between
the performances of SASEA and the corresponding algorithm on the
problem.

586 C. García-Martínez et al. / Applied Soft Computing 12 (2012) 573–588

Table 8
Results of the search algorithms on test problems 1–9.

Alg 1 2 3 4 5 6 7 8 9

Classic SA 0.988 + 218 ∼ 379 + 0.894 + 0.899 − 0.763 ∼ 0.741 ∼ 161 ∼ 175 ∼
Dyn. SA 0.181 + 215 + 379 + 0.857 + 0.760 + 0.745 + 0.717 + 146 + 152 +
PRSA 0.366 + 209 + 375 + 0.860 + 0.768 + 0.727 + 0.713 + 151 + 159 +
AGA 0.690 + 216 + 370 + 0.893 + 0.894 + 0.759 ∼ 0.714 + 179 − 171 +
SAGACIA 0.193 + 212 + 379 + 0.892 + 0.903 − 0.758 ∼ 0.734 + 154 + 155 +
SSSA 0.123 + 214 + 373 + 0.875 + 0.845 + 0.741 + 0.718 + 160 ∼ 156 +
CSA 0.065 + 179 + 365 + 0.813 + 0.635 + 0.674 + 0.692 + 116 + 120 +
CHC 0.337 + 220 ∼ 378 + 0.878 + 0.899 − 0.760 ∼ 0.746 ∼ 164 ∼ 170 +
VDMGA 1 − 220 ∼ 382 + 0.850 + 0.896 ∼ 0.765 ∼ 0.701 + 162 ∼ 176 ∼
Saw-GA 0.192 + 219 ∼ 385 ∼ 0.853 + 0.753 + 0.755 ∼ 0.713 + 155 + 155 +
CISS 0.130 + 210 + 378 + 0.892 + 0.915 − 0.761 ∼ 0.751 − 148 + 152 +
vQEA 0.536 + 219 + 366 + 0.886 + 0.894 + 0.747 + 0.710 + 137 + 154 +
SASEA 0.997 220 384 0.899 0.898 0.767 0.743 165 175

Table 9
Results of the search algorithms on test problems 10–18.

Alg 10 11 12 13 14 15 16 17 18

Classic SA 0.985 + 0.984 ∼ 0.987 + 0.985 + 0.958 ∼ 0.939 ∼ 5176 ∼ 121,270 ∼ 11,598 ∼
Dyn. SA 0.953 + 0.942 + 0.885 + 0.847 + 0.944 + 0.926 + 5139 + 55,573 + 9618 +
PRSA 0.841 + 0.828 + 0.805 + 0.747 + 0.933 + 0.921 + 4641 + 59,834 + 8140 +
AGA 0.988 + 0.976 + 0.967 + 0.980 + 0.953 + 0.936 + 5176 ∼ 117,034 + 11,597 +
SAGACIA 0.989 + 0.978 + 0.984 + 0.988 + 0.958 ∼ 0.939 − 5176 ∼ 119,805 + 11,598 +
SSSA 0.939 + 0.935 + 0.937 + 0.923 + 0.952 + 0.932 + 5152 + 80,116 + 10,792 +
CSA 0.680 + 0.709 + 0.656 + 0.627 + 0.912 + 0.903 + 3378 + 16,728 + 3958 +
CHC 0.994 − 0.990 ∼ 0.990 + 0.990 + 0.957 + 0.937 + 5174 ∼ 117,453 + 11,548 +
VDMGA 1 ∼ 0.990 ∼ 0.992 + 0.995 ∼ 0.957 + 0.938 + 5176 ∼ 120,948 + 11,589 +
Saw-GA 0.941 + 0.929 + 0.870 + 0.831 + 0.943 + 0.926 + 5159 + 51,714 + 9420 +
CISS 0.997 ∼ 0.991 ∼ 0.995 ∼ 0.993 ∼ 0.955 + 0.937 + 5176 ∼ 119,056 + 11,583 +
vQEA 0.999 ∼ 0.988 ∼ 0.996 ∼ 0.993 + 0.954 + 0.936 + 5167 + 117,401 + 11,529 +
SASEA 0.993 0.987 0.997 0.996 0.958 0.938 5176 121,265 11,598

Table 10
Results of the search algorithms on test problems 19–27.

Alg 19 20 21 22 23 24 25 26 27

Classic SA 50,447 ∼ 71 ∼ 2707 ∼ 1434 ∼ 8196 ∼ 7,585,236 − 4039 + 12,335 + 118,204 ∼
Dyn. SA 36,219 + 62 + 2324 + 1388 + 7957 + 5,136,800 + 4035 + 12,380 + 118,204 ∼
PRSA 34,193 + 51 + 2122 + 1366 + 7819 + 5,153,437 + 3915 + 12,189 + 116,566 +
AGA 50,311 + 70 + 2675 + 1422 + 8125 + 7,369,494 + 3965 + 11,994 + 118,204 ∼
SAGACIA 50,388 + 72 ∼ 2720 − 1435 − 8209 − 7,222,749 + 3960 + 12,279 + 118,204 ∼
SSSA 44,338 + 68 + 2529 + 1412 + 8074 + 6,546,047 + 3975 + 12,244 + 118,204 ∼
CSA 14,305 + 31 + 1510 + 1319 + 7463 + 2,812,404 + 3720 + 12,090 + 109,247 +
CHC 49,852 + 68 + 2623 + 1422 + 8153 + 7,526,181 ∼ 4005 + 12,396 + 118,204 ∼
VDMGA 50,428 + 69 + 2647 + 1423 + 8168 + 7,522,897 + 4003 + 12,398 ∼ 118,204 ∼
Saw-GA 34,427 + 61 + 2267 + 1385 + 7923 + 4,949,495 + 4074 ∼ 12,385 + 118,204 ∼
CISS 50,407 + 68 + 2681 + 1430 + 8190 ∼ 7,333,148 + 4096 ∼ 12,400 ∼ 118,204 ∼
vQEA 50,161 + 65 + 2551 + 1406 + 8102 + 7,249,980 + 3954 + 12,392 + 118,204 ∼
SASEA 50,444 72 2694 1434 8193 7,558,447 4081 12,399 118,204

References

[1] F. Glover, G. Kochenberger (Eds.), Handbook of Metaheuristics, Kluwer Aca-
demic Publishers, 2003.

[2] P. Siarry, Z. Michalewicz (Eds.), Advances in Metaheuristics for Hard Optimiza-
tion. Natural Computing, Springer, 2008.

[3] C. Blum, A. Roli, Metaheuristics in combinatorial optimization:
overview and conceptual comparison, ACM Comput. Surv. 35 (2003)
268–308.

[4] C. Blum, J. Puchinger, G.R. Raidl, A. Roli, Hybridmetaheuristics in combinatorial
optimization: a survey, Appl. Soft Comput. 11 (6) (2011) 4135–4151.

[5] G. Raidl, A unified view on hybrid metaheuristics, in: F. Almeida, M.B. Aguilera,
C. Blum, J.M. Vega, M.P. Pérez, A. Roli, M. Sampels (Eds.), Hybrid Metaheuristics,
Springer, 2006, pp. 1–12.

[6] E. Talbi, A taxonomy of hybrid metaheuristics, J. Heuristics 8 (2002) 541–564.
[7] S. Kirkpatrick, C. Gelatt Jr., M. Vecchi, Optimization by simulated annealing,

Science 220 (1983) 671–680.
[8] E. Aarts, J. Korst, Simulated Annealing and Boltzmann Machines, John Wiley &

Sons, 1989.

[9] H. Cheng, X. Wang, S. Yang, M. Huang, A multipopulation parallel
genetic simulated annealing-based QoS routing and wavelength assignment
integration algorithm for multicast in optical networks, Appl. Soft Comput. 9
(2009) 677–684.

[10] D. Henderson, S.H. Jacobson, A.W. Jacobson, The theory and practice of simu-
lated annealing, Handbook of Metaheuristics 57 (2003) 287–320.

[11] N. Li, J. Cha, Y. Lu, A parallel simulated annealing algorithm based on functional
feature tree modeling for 3D engineering layout design, Appl. Soft Comput. 10
(2010) 592–601.

[12] C. Queirolo, L. Silva, O. Bellon, M. Segundo, 3d face recognition using simulated
annealing and the surface interpenetration measure, IEEE Trans. Pattern Anal.
Mach. Intell. 32 (2010) 206–219.

[13] P. Salamon, P. Sibani, R. Frost, Facts, conjectures and improvements for sim-
ulated annealing, Monographs on Mathematical Modeling and Computation,
SIAM, 2002.

[14] R. Venkata Rao, P. Pawar, Parameter optimization of a multi-pass milling pro-
cess using non-traditional optimization algorithms, Appl. Soft Comput. 10
(2010) 445–456.

[15] T. Bäck, D. Fogel, Z. Michalewicz, Handbook of Evolutionary Computation, Insti-
tute of Physics Publishers, 1997.

C. García-Martínez et al. / Applied Soft Computing 12 (2012) 573–588 587

[16] A. Eiben, J. Smith, Introduction to Evolutionary Computing, Springer-Verlag,
2003.

[17] M. Lozano, C. García-Martínez, Hybrid metaheuristics with evolutionary
algorithms specializing in intensification and diversification: overview and
progress report, Comput. Oper. Res. 37 (2010) 481–497.

[18] C. García-Martínez, M. Lozano, Local search based on genetic algorithms, in: P.
Siarry, Z. Michalewicz (Eds.), Advances in Metaheuristics for Hard Optimization.
Natural Computing, Springer, 2008, pp. 199–221.

[19] C. García-Martínez, M. Lozano, Evaluating a local genetic algorithm as context-
independent local search operator for metaheuristics, Soft Comput. 14 (2010)
1117–1139.

[20] M. Lozano, F. Herrera, N. Krasnogor, D. Molina, Real-coded memetic algorithms
with crossover hill-climbing, Evol. Comput. 12 (2004) 273–302.

[21] N. Noman, H. Iba, Accelerating differential evolution using an adaptive local
search, IEEE Trans. Evol. Comput. 12 (2008) 107–125.

[22] S. Mahfoud, D. Goldberg, Parallel recombinative simulated annealing: a genetic
algorithm, Parallel Comput. 21 (1995) 1–28.

[23] B. Li, W. Jiang, A novel stochastic optimization algorithm., IEEE Trans. Syst. Man
Cybern. B (2000) 193–198.

[24] F.T. Lin, C.Y. Kao, C.C. Hsu, Applying the genetic approach to simulated annealing
in solving some np-hard problems, IEEE Trans. Syst. Man Cybern. 23 (1993)
1752–1767.

[25] D. Thompson, G. Bilbro, Sample-sort simulated annealing, IEEE Trans. Syst. Man,
Cybern. B 35 (2005) 625–632.

[26] S. Xavier-de-Souza, J. Suykens, J. Vandewalle, D. Bollé, Cooperative behavior in
coupled simulated annealing processes with variance control, in: Symposium
on Nonlinear Theory and Its Applications, 2006.

[27] G. Sywerda, Uniform crossover in genetic algorithms, in: J. Schaffer (Ed.),
Proc. of the Int. Conf. on Genetic Algorithms, Morgan Kaufmann, 1989,
pp. 2–9.

[28] D. Whitley, The GENITOR algorithm and selection pressure: why rank-
based allocation of reproductive trials is best, in: J. Schaffer (Ed.),
Proc. of the Int. Conf. on Genetic Algorithms, Morgan Kaufmann, 1989,
pp. 116–121.

[29] C. García-Martínez, M. Lozano, Simulated annealing based on local genetic
search, in: Proc. of the IEEE Int. Conf. Evolutionary Computation, 2009, pp.
2569–2576.

[30] E. Aarts, J. Korst, Selected topics in simulated annealing, in: Essays and Surveys
in Metaheuristics, Kluwer Academic Publishers Group, 2002, pp. 1–37.

[31] P. Van Laarhoven, E. Aarts, Simulated Annealing: Theory and Applications,
Kluwer Academic Publishers, Norwell, 1987.

[32] P. Strenski, S. Kirkpatrick, Analysis of finite length annealing schedules, Algo-
rithmica 6 (1991) 346–366.

[33] K. Deb, A population-based algorithm-generator for real-parameter optimiza-
tion, Soft Comput. 9 (2005) 236–253.

[34] C. García-Martínez, M. Lozano, F. Herrera, D. Molina, A. Sánchez, Global and local
real-coded genetic algorithms based on parent-centric crossover operators,
Eur. J. Oper. Res. 185 (2008) 1088–1113.

[35] M. Raghuwanshi, O. Kakde, Probability distribution based recombination oper-
ator to solve unimodal and multimodal problems, Int. J. Knowl. Intell. Eng. Syst.
10 (2006) 247–255.

[36] D. Thierens, Population-based iterated local search: restricting neighborhood
search by crossover, in: K. Deb, R. Poli, W. Banzhaf, H.G. Beyer, E. Burk, P. Dar-
wen, D. Dasgupta, D. Floreano, J. Foster, M. Harman, O. Holland, P. Lanzi, L.
Spector, A. Tettamanzi, D. Thierens, A. Tyrrel (Eds.), Proc. of the Genetic and
Evolutionary Computation Conf., Springer, 2004, pp. 234–245.

[37] T. Jones, Crossover, macromutation, and population-based search, in: L. Eshel-
man (Ed.), Proc. of the Sixth Int. Conf. on Genetic Algorithms, Morgan Kaufmann,
1995, pp. 73–80.

[38] U. O’Reilly, F. Oppacher, Hybridized crossover-based search techniques for pro-
gram discovery, in: Proc. of the World Conf. on Evolutionary Computation,
1995, pp. 573–578.

[39] C. García-Martínez, M. Lozano, D. Molina, A local genetic algorithm for binary-
coded problems, in: T. Runarsson, H.G. Beyer, E. Burke, J. Merelo-Guervós, L.
Whitley, X. Yao (Eds.), Proc. of the Int. Conf. on Parallel Problem Solving from
Nature, Springer, 2006, pp. 192–201.

[40] C. Fernandes, A. Rosa, A study on non-random mating and varying population
size in genetic algorithms using a royal road function, in: Proc. of the Congress
on Evolutionary Computation, IEEE Press, 2001, pp. 60–66.

[41] C. Fernandes, A. Rosa, Self-adjusting the intensity of assortative mating in
genetic algorithms, Soft Comput. 12 (2008) 955–979.

[42] G. Eiben, M. Schut, New ways to calibrate evolutionary algorithms, in: P.
Siarry, Z. Michalewicz (Eds.), Advances in Metaheuristics for Hard Optimization,
Springer-Verlag, 2008, pp. 153–177.

[43] L. Eshelman, J. Schaffer, Preventing premature convergence in genetic algo-
rithms by preventing incest, in: R. Belew, L. Booker (Eds.), Int. Conf. on Genetic
Algorithms, Morgan Kaufmann, 1991, pp. 115–122.

[44] S. Mahfoud, Crowding and preselection revised, in: R. Männer, B. Manderick
(Eds.), Parallel Problem Solving from Nature, Elsevier Science Publishers, 1992,
pp. 27–36.

[45] S.W. Mahfoud, Niching methods for genetic algorithms, Ph.D. Thesis, University
of Illinois, Champaign, IL, USA, 1995.

[46] G. Harik, Finding multimodal solutions using restricted tournament selection,
in: L. Eshelman (Ed.), Proc. of the Int. Conf. on Genetic Algorithms, Morgan
Kaufmann, 1995, pp. 24–31.

[47] D. Wolpert, W. Macready, No free lunch theorems for optimization, IEEE Trans.
Evol. Comput. 1 (1997) 67–82.

[48] M. Birattari, P. Balaprakash, T. Stützle, M. Dorigo, Estimation-based local search
for stochastic combinatorial optimization using delta evaluations: a case study
on the probabilistic traveling salesman problem, INFORMS J. Comput. 20 (2008)
644–658.

[49] P. Merz, On the performance of memetic algorithms in combinatorial optimiza-
tion, in: Second Workshop on Memetic Algorithms, Genetic and Evolutionary
Computation Conference, Morgan Kaufmann, 2001, pp. 168–173.

[50] J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the use of non-
parametric statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms, Swarm Evol. Comput. 1 (2011) 3–18.

[51] S. Garcia, A. Fernández, J. Luengo, F. Herrera, A study of statistical techniques
and performance measures for genetics-based machine learning: accuracy and
interpretability, Soft Comput. 13 (2009) 959–977.

[52] S. Garcia, D. Molina, M. Lozano, F. Herrera, A study on the use of non-parametric
tests for analyzing the evolutionary algorithms’ behaviour: a case study on the
CEC’2005 special session on real parameter optimization, J. Heuristics 15 (2009)
617–644.

[53] F. Wilcoxon, Individual comparisons by ranking methods, Biometrics 1 (1945)
80–83.

[54] J.A.R. Marshall, T.G. Hinton, Beyond no free lunch: realistic algorithms for arbi-
trary problem classes, in: IEEE Congress on Evolutionary Computation, 2010,
pp. 18–23.

[55] C. Schumacher, M. Vose, L. Whitley, The no free lunch theorem and description
length, in: Genetic and Evolutionary Computation Conference (GECCO), 2001,
pp. 565–570.

[56] C. Igel, M. Toussaint, On classes of functions for which no free lunch results
hold, Information processing letters 86 (2003) 317–321.

[57] E. Alba, B. Dorronsoro, The exploration/exploitation tradeoff in dynamic cellular
algorithms, IEEE Trans. Evol. Comput. 9 (2005) 126–142.

[58] G. Chen, C. Low, Z. Yang, Preserving and exploiting genetic diversity in evolu-
tionary programming algorithms, IEEE Trans. Evol. Comput. 13 (2009) 661–673.

[59] S. He, Q. Wu, J. Saunders, Group search optimizer: an optimization algorithm
inspired by animal searching behavior, IEEE Trans. Evol. Comput. 13 (2009)
973–990.

[60] D. Molina, M. Lozano, C. García-Martínez, F. Herrera, Memetic algorithms for
continuous optimization based on local search chains, Evol. Comput. 18 (2010)
27–63.

[61] P. Suganthan, N. Hansen, J. Liang, K. Deb, Y. Chen, A. Auger, S. Tiwari, Prob-
lem definitions and evaluation criteria for the CEC 2005 special session on real
parameter optimization, Technical Report, Nanyang Technological University,
2005.

[62] J. Vrugt, B. Robinson, J. Hyman, Self-adaptive multimethod search for global
optimization in real-parameter spaces, IEEE Trans. Evol. Comput. 13 (2009)
243–259.

[63] S. Yuen, C. Chow, A genetic algorithm that adaptively mutates and never revis-
its, IEEE Trans. Evol. Comput. 13 (2009) 454–472.

[64] X. Yao, Simulated annealing with extended neighbourhood, Int. J. Comput.
Math. 40 (1991) 169–189.

[65] J. Liu, The impact of neighbourhood size on the process of simulated annealing:
computational experiments on the flowshop scheduling problem, Comput. Ind.
Eng. 37 (1999) 285–288.

[66] B. Fox, Integrating and accelerating tabu search, simulated annealing, and
genetic algorithms, Ann. Oper. Res. 41 (1993) 47–67.

[67] M. Ventresca, H. Tizhoosh, Simulated annealing with opposite neighbors, in:
Proc. of the IEEE Symposium on Foundations of Computational Intelligence,
2007, pp. 186–192.

[68] H. Mann, D. Whitney, On a test of whether one of two random variables is
stochastically larger than the other, Ann. Math. Stat. 18 (1947) 50–60.

[69] D. Whitley, S. Rana, J. Dzubera, E. Mathias, Evaluating evolutionary algorithms,
Artif. Intell. 85 (1996) 245–276.

[70] V. Koumousis, C. Katsaras, A saw-tooth genetic algorithm combining the effects
of variable population size and reinitialization to enhance performance, IEEE
Trans. Evol. Comput. 10 (2006) 19–28.

[71] F. Gortazar, A. Duarte, M. Laguna, R. Martí, Context-independent scatter search
for binary problems, Technical Report, Colorado LEEDS School of Business, Uni-
versity of Colorado at Boulder, 2008.

[72] M. Platel, S. Schliebs, N. Kasabov, Quantum-inspired evolutionary algorithm,
IEEE Trans. Evol. Comput. 13 (2009) 1218–1232.

[73] J. Cano, F. Herrera, M. Lozano, On the combination of evolutionary algorithms
and stratified strategies for training set selection in data mining, Appl. Soft
Comput. 6 (2006) 323–332.

[74] S. Forrest, M. Mitchell, Relative building block fitness and the building block
hypothesis, in: L. Whitley (Ed.), Foundations of Genetic Algorithms 2., Morgan
Kaufmann, 1993, pp. 109–126.

[75] D. Goldberg, B. Korb, K. Deb, Messy genetic algorithms: motivation, analysis,
and first results, Complex Syst. 3 (1989) 493–530.

[76] M. Pelikan, D. Goldberg, E. Cantú-Paz, Linkage problem, distribution estimation,
and bayesian networks, Evol. Comput. 8 (2000) 311–340.

[77] S. Kauffman, Adaptation on rugged fitness landscapes, Lec. Sci. Complex 1
(1989) 527–618.

[78] K. De Jong, M. Potter, W. Spears, Using problem generators to explore the effects
of epistasis, in: T. Bäck (Ed.), Proc. of the Int. Conf. on Genetic Algorithms,
Morgan Kaufmann, 1997, pp. 338–345.

588 C. García-Martínez et al. / Applied Soft Computing 12 (2012) 573–588

[79] R. Watson, J. Pollack, Hierarchically consistent test problems for genetic
algorithms, in: Proc. of the Congress on Evolutionary Computation, 1999,
p. 1413.

[80] W. Spears, Evolutionary Algorithms: The Role of Mutation and Recombination,
Springer, 2000.

[81] K. Smith, H. Hoos, T. Stützle, Iterated robust tabu search for MAX-SAT, in: J.
Carbonell, J. Siekmann (Eds.), Proc. of the Canadian Society for Computational
Studies of Intelligence Conf., Springer, 2003, pp. 129–144.

[82] J. Beasley, Heuristic algorithms for the unconstrained binary quadratic pro-
gramming problem, Technical Report, The Management School, Imperial
College, 1998.

[83] R. Karp, Reducibility among combinatorial problems, in: R. Miller, J. Thatcher
(Eds.), Complexity of Computer Computations, Plenum Press, 1972, pp. 85–103.

[84] J. Zar, Biostatistical Analysis, Prentice Hall, 1999.
[85] D. Sheskin, The Handbook of Parametric and Nonparametric Statistical Proce-

dures, Chapman & Hall/CRC, 2000.

2. Hybrid Metaheuristics Based on Evolutionary Algorithms and Simulated Annealing: Taxonomy,
Comparison, and Synergy Test 59

2. Hybrid Metaheuristics Based on Evolutionary Algorithms and

Simulated Annealing: Taxonomy, Comparison, and Synergy

Test

The journal paper associated to this part are:

F.J. Rodŕıguez, C. Garćıa-Mart́ınez, M. Lozano, Hybrid Metaheuristics Based on Evolutio-
nary Algorithms and Simulated Annealing: Taxonomy, Comparison, and Synergy Test. IEEE
Transactions on Evolutionary computation. In Press doi: 10.1109/TEVC.2012.2182773.

• Status: Accepted.

• Impact Factor (JCR 2011): 3.341.

• Subject Category: Computer Science, Artificial Intelligence. Ranking 9 / 119 (Q1).

• Subject Category: Computer Science, Theory & Methods. Ranking 3 / 99 (Q1).

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. , NO. , 1

Hybrid Metaheuristics Based on Evolutionary
Algorithms and Simulated Annealing: Taxonomy,

Comparison, and Synergy Test
Francisco J. Rodriguez, Carlos Garcı́a-Martı́nez, and Manuel Lozano

Abstract—The design of hybrid metaheuristics with ideas
taken from the simulated annealing and evolutionary algorithms
fields is a fruitful research line. In this paper, we first present
an overview of the hybrid metaheuristics based on simulated
annealing and evolutionary algorithms presented in the literature
and classify them according to two well-known taxonomies
of hybrid methods. Secondly, we perform an empirical study
comparing the behaviour of a representative set of the hybrid
approaches based on evolutionary algorithms and simulated an-
nealing found in the literature. In addition, a study of the synergy
relationships provided by these hybrid approaches is presented.
Finally, we analyse the behaviour of the best performing hybrid
metaheuristic with regards to several state-of-the-art evolutionary
algorithms for binary combinatorial problems. The experimental
studies presented provide useful conclusions about the schemes
for combining ideas from simulated annealing and evolutionary
algorithms that may improve the performance of these kinds
of approaches and suggest that these hybrids metaheuristics
represent a competitive alternative for binary combinatorial
problems.

Index Terms—Hybrid metaheuristics, Simulated annealing,
Evolutionary algorithms, Combinatorial optimisation.

I. I NTRODUCTION

OVER the last few years, a large number of search
algorithms have been presented that do not simply follow

the concepts of one single classical metaheuristic [1], [2],
but attempt to obtain the best from a set of metaheuristics
(and even other kinds of optimisation methods) that perform
together and complement each other to produce a profitable
synergy from their combination. These approaches are com-
monly referred to ashybrid metaheuristics(HMs) [3], [4], [5].

Simulated annealing(SA) [6], [7], [8] is commonly said to
be the first algorithm extending local search methods with an
explicit strategy to escape from local optima. The fundamental
idea is to allow moves resulting in solutions of worse quality
than the current solution in order to escape from local optima.
The probability of making such a move is decreased during the
search process. Although it was proposed in 1983, SA is still
the object of further studies [9], applied to many optimisation
problems, or used as a component of other search algorithms

Francisco J. Rodriguez is with the Department of Computer Science
and Artificial Intelligence, University of Granada, Spain, 18071, e-mail:
fjrodriguez@decsai.ugr.es.

Carlos Garcı́a-Martı́nez is with the Department of Computing and Numer-
ical Analysis, University of Córdoba, Spain, 14071.

Manuel Lozano is with the Department of Computer Science and Artificial
Intelligence, University of Granada, Spain, 18071.

Manuscript received ; revised -

[8], [10]. It is precisely because of its outstanding role in the
metaheuristic field that further studies to obtain more effective
SA models are encouraged.

Evolutionary algorithms(EAs) [11], [12] are stochastic
search methods that mimic the metaphor of natural biological
evolution. EAs rely on the concept of apopulationof indi-
viduals (representing search points in the space of potential
solutions to a given problem), which undergo probabilistic
operators such as mutation, selection, and (sometimes) recom-
bination to evolve toward increasingly better fitness values of
the individuals. There has been a variety of slightly different
EAs that, basically, fall into three different categories that
have been developed independently from each other. These are
evolutionary programming[13], evolution strategies[14], and
genetic algorithms(GAs) [15]. EAs offer practical advantages
to researchers facing difficult optimisation problems because
they may locate high performance regions of vast and complex
search spaces. Other advantages include the simplicity of
the approach, their flexibility, and their robust response to
changing circumstances.

The hybridisation of EAs is becoming popular due to
its ability to handle several real-world problems involving
complexity, noise, imprecision, uncertainty, and vagueness
[16], [17], [18], [19]. A wide variety of metaheuristics such as
tabu search [20], greedy randomized adaptive search procedure
[21], and iterated local search [22], among others, have been
employed to develop hybrid approaches with EAs. In this
work, we focus on the use of SA to design HMs with EAs
(HMs-EA/SA) due to its prominent role in the field of the
hybrid EAs [23], [24], [25], [26], [27].

The current relevance of HMs-EA/SA can be shown through
the visibility of this topic at the ISI Web of Science. Figure
1 shows an important number of publications and citations
per year, as well as an increasing trend. We can conclude
that, although the first items related to this topic appeared
in 1992, nowadays HMs-EA/SA are subject of great interest
and there is an important research community associated to
their study. Moreover, in Figure 2 we can observe that the
number of works at the ISI Web of Science considering
HMs-EA/SA is greater than those of hybrid metaheuristics
combining EAs and other metaheuristics (greedy randomized
adaptive search procedure (GRASP), iterated local search
(ILS), variable neighbourhood descent (VND), iterated greedy
(IG), and tabu search). In addition, we can highlight that
many different instantiations of HMs-EA/SA are presented to
solve real-world problems covering domains that range from

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. , NO. , 2

 0

 50

 100

 150

 200

 250

 300

 350

1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011

 0

 10

 20

 30

 40

 50
C

ite
d

P
ub

lis
he

d

Years

Cited
Published

Fig. 1: Number of publications and citations per year for HMs-
EA/SA (Web of Science)

Fig. 2: Comparison between publications considering HMs-
EA/SA and hybrid algorithms combining EAs and other
metaheuristics (Web of Science)

the design of combinational circuits [28], routing problems in
telecommunications [29], cluster analysis [30], optimisation of
support vector machines parameters [31], scheduling problems
[32], protein structure prediction [33] and image processing
[34], to name but a few.

The goal in this article is threefold. Firstly, we attempt
to paint a more complete picture of HMs-EA/SA than ever
before. To do so, we structure and organise the knowledge
about the HM-EA/SA approaches found in the literature
by proposing a taxonomy for HMs-EA/SA based on those
conceived by Talbi [3] and Raidl [4] for HMs. Our second
objective is to study the empirical behaviour of the different
kinds of approaches according to the proposed taxonomy,
analysing what schemes provide a better performance. Finally,
we want to study the synergistic relationships created by the
hybridisation of EAs and SA in these approaches. Suitably
combining the complementary algorithms concepts can pro-
vide hybrid approaches with a better performance than that
obtained by EAs or SA separately.

The remainder of this paper is organized as follows. In
Section II, we present an overview of the HM-EA/SA ap-
proaches found in the literature and propose a taxonomy
that characterises them. In Section III, we describe the ex-
perimental framework employed in this work. In Section
IV, we compare the performance of a set of representative
HMs-EA/SA instances belonging to different categories. In
Section V, we analyse the performance of the groups of HMs-

TABLE I: Taxonomy for HMs-EA/SA

General Categories
HM-EA/SA

Instances
Categories

Collaborative

Teamwork

Multiple EAs DCHCSA

and SAs

Multiple SAs SSSA [23],

CSA [35],

ESA [36],

GAMSA [37]

Relay

EA then SA HHSAGA [38],

SAGA [39]

SA then EA GA-PSA

Integrative
TeamWork

MA with SA AGA [40],

as local search GASAHA [31],

IGA-SA [41],

GSAAL [42],

GSAA [24]

SA-based EA HGA-BTS [43],

selection GESA [44],

HGA-BS[45]

SA-based EA SAGACIA [46],

mutation and ARSAGA [47],

crossover GSAAIA [48],

HGA-SAM/R [49]

SA-based EA PRSA [50],

replacement PGSA [25],

GSA [51],

NPOSA [52],

MPGSAA [26],

GSA-MLE [53]

Relay
EA-based SA SALGeS [54]

component GAMSA [37]

EA/SA studied. In Section VI, we perform a synergy study of
the HMs-EA/SA compared. In Section VII, we pit the best
performing HM-EA/SA approach against some state-of-the-
art EAs for binary combinatorial problems. Finally, in Section
VIII, we present conclusions and future work.

II. HM S BASED ONEAS AND SA: OVERVIEW AND

TAXONOMY

We have grouped different instances of HMs-EA/SA ap-
pearing in the literature into two broad categories (Table I
summarises the HMs-EA/SA found and the category they
belong to). These two groups are specified following two well-
known existing taxonomies for HMs [3], [4], which are based
on the architecture of the algorithms:

• Collaborative HMs.These are based on the exchange of
information between different self-contained metaheuris-
tics (and possibly other optimisation techniques) running
sequentially or in parallel.

• Integrative HMs.In this case, one algorithm is considered
a subordinate, embedded component of a master meta-
heuristic, which governs the search process.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. , NO. , 3

Fig. 3: Multiple EAs and SAs running in parallel

A. Collaborative HMs-EA/SA

Collaborative HMs apply different self-contained meta-
heuristics. These metaheuristics can be regarded as black
boxes and the cooperation takes place through the exchange of
some kind of information. According to the way metaheuristics
are executed, collaborative HMs-EA/SA can be subdivided
into teamwork or relay categories [3].

1) Teamwork Collaborative HMs-EA/SA:In teamwork col-
laborative HMs, there are several metaheuristics that work in
parallel and exchange solutions, parameters, etc. from time
to time. To the best of our knowledge, there is no proposed
method arrangingmultiple EAs and SAsrunning in parallel.
However, we may easily devise teamwork collaborative HM-
EA/SA models based on distributed GAs [55]. In this scheme,
a single population is decentralised by partitioning it into sev-
eral subpopulations (islands or demes), where island GAs are
run performing sparse exchanges (migrations) of individuals.
It is easy to conceive a model that replaces some GAs with
SAs. In this case, we can consider some subpopulations that
are optimized by EAs and other subpopulations formed by
only one individual and optimised by an SA process (Figure
3). An instance of this kind of approach calledDCHCSAwill
be presented in Section IV.

There are several proposals in the literature worthy of men-
tion in this section, which consider the execution of multiple
SAs that cooperate to explore the search space by exchanging
solutions, parameters, etc (Figure 4). They do not consider the
application of self-contained EAs, but evolutionary concepts
underlie the general scheme. These algorithms consider a
population of agents that evolve by means of neighbourhood
and stochastic selection operators. For this reason, authors may
argue that they resemble EAs. Though these models are hardly
seen as HM-EA/SA approaches, they are considered in this
study for the sake of coverage. They are referred to asmultiple
SAs.

The evolutionary SA(ESA) algorithm [36] considers a
population of solutions. It selects one individual according to
the running selection rule, operates on it with a neighbourhood
operator, and evaluates whether to put it back into the pop-
ulation according to a particular replacement rule. The new

Fig. 4: Multiple cooperating SA processes

Fig. 5: EAs and SAs in a pipeline fashion

individual provided by the neighbourhood function is adopted
according to the Metropolis acceptance criterion. The ESA
algorithm can be seen as a population of multiple SA processes
that exchange their current solutions at every iteration.

Sample-sort SA(SSSA) [23] maintains an array of sam-
plers operating at static temperatures. At each iteration, each
one firstly considers whether to accept any of the states of
its neighbouring samplers. Then, each sampler performs a
standard iteration of SA.Coupled SA(CSA) [35] considers
a population of samplers where the acceptance probability of
any sampler making an uphill move depends on the states of
the other samplers.

2) Relay Collaborative HMs-EA/SA:In relay collaborative
HMs, several metaheuristics are executed in a pipeline fashion.
The output of each algorithm is supplied as the input to the
next one (Figure 5). Depending on the order of execution, two
kinds of basic approaches can be found:

a) EA then SA: In [38], the highly hybrid GA+SA
(HHSAGA) generates a number of random initial solutions
and runs a GA through a fixed number of iterations. After the
GA ends, each individual in the final population is optimised
by an SA (Figure 5.a). At the end of the execution of all
the SA processes, a new population is generated using the
solutions obtained by the SA processes. Then, the GA starts
again. This cycle is repeated until the termination condition
is reached. This scheme also appears in theparallel heuristic
SA+GA(SAGA) presented in [39].

b) SA then EA:By way of contrast, it is possible to
devise an algorithm that starts from SA and uses EAs to enrich
the solutions found (Figure 5.b). The scheme that most directly
fits this pattern is an EA that uses SA as a method to initialise
the population. An implementation of this scheme called GA-
PSA (GA with population initialised by SA) will be presented
in Section IV.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. , NO. , 4

Fig. 6: MA with SA as local search procedure

Fig. 7: EA with SA-based components

B. Integrative HMs-EA/SA

Integrative HMsaddress the functional composition of a
single optimisation method. In this kind of HMs, a given func-
tion of a metaheuristic is replaced by another metaheuristic
[3]. Integrative HMs can be also subdivided into teamwork or
relay categories.

1) Teamwork Integrative HMs-EA/SA:In teamwork in-
tegrative HMs, one metaheuristic (subordinate) becomes a
component of another population-based metaheuristic (master)
[3]. In the case of HMs-EA/SA, we can find the following
approaches:

a) Memetic algorithms with SA as local search proce-
dure: Memetic algorithms(MAs) [56] combine an EA in
charge of the global exploration with a local search procedure,
which is executed within the EA run, looking for a synergy
that takes benefits from both.

There are several instances of MAs in which the local
search is performed by means of SA (Figure 6).Annealing-GA
(AGA) [40] is an EA where the best solutions are optimised
by SA processes, which perform cooling at each iteration and
apply the Metropolis acceptance mechanism. Moreover, we
can find several recent proposals that apply this scheme to
solve real-world problems. In [31], aGA–SA hybrid algorithm
(GASAHA) is proposed to optimise the parameters of a
support vector machine. In each iteration, the GA operates on
the population using three basic genetic operators to produce a
new population. Afterwards, the GA applies the SA to the best
individual of the GA population to further improve it. In [24],
theGenetic simulated annealing algorithm(GSAA) deals with
a similar problem. In this case, an SA process improves all
the solutions. More examples of MAs based on SA can be
found in [41] (Improved GA-SA, IGA-SA) and [42] (Genetic
SA algorithm based localization, GSAAL).

b) SA-based EA component:Another teamwork integra-
tive HM-EA/SA approach consists of defining EA components

by using principles of the SA algorithm (Figure 7). Specifi-
cally, the EA components that have been replaced or extended
in the literature by the SA are the selection mechanism,
the crossover and mutation operators, and the replacement
strategy.

SA-based EA selection
In [43], a hybrid GA uses a Boltzmann tournament selec-

tion (HGA-BTS) function to provide asymptotic convergence.
This selection function uses pairwise probabilistic acceptance
and anti-acceptance mechanisms on three individuals from
the population. The anti-acceptance competition takes place
between two of the three selected individuals. The acceptance
competition takes place between the winner of this competition
and the other individual.

In [45], the number of offspring that an individual can
contribute to the next generation is calculated by implementing
Boltzmann scaling on the fitness function (Hybrid GA with
Boltzmann scaling, HGA-BS) by varying the selective pressure
as a function of the temperature.

In theguided evolutionary SA(GESA) algorithm [44], there
are two levels of competition. In the first one, the children
of the same family (i.e., generated from the same parents)
compete with each other and only the one with the best fitness
value survives. At the second level of competition, the best
child is compared with its parents to find the members for the
next generation. A Boltzmann probability is applied in order
to decide whether the child will be accepted.

SA-based EA mutation and crossover
The approach proposed in [49] combines SA with GA

by extending the mutation and crossover operators with SA
(hybrid GA with SAM/SAR, HGA-SAM/R). Mutated and re-
combined solutions are accepted according to the standard SA
acceptance condition.

In [48], the genetic SA algorithm-based inverse algorithm
(GSAAIA) uses the SA technique to control the mutation
operator in the EA. The member to be mutated is perturbed
according to the Gaussian probabilistic distribution function
and its variance is controlled by the SA technique.

Adaptive real-parameter SA-GA(ARSAGA) [47] with SA-
based mutation operator samples a new solution from the
neighbourhood of the solution generated by the crossover
operator. The new solution is accepted according to the SA
acceptance criterion. The same procedure is applied in the
SAGACIA algorithm (SA, GA, chemotaxis algorithm, inte-
grated, algorithm) [46] to accept new solutions during the
phase called rough search, which can be seen as a mutation
operator.

SA-based EA replacement
Parallel recombinative SA(PRSA) [50] iterates over a

population of solutions, employing a crossover operator and an
unary neighbourhood operator (mutation). Offspring replace
their parents according to the acceptance mechanism of SA.

In [52], an algorithm called (new population-oriented SA,
NPOSA) employs, in addition, a replacement strategy based
on the SA acceptance criterion. However, each individual has
its own local temperature according to the individual’s rank,

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. , NO. , 5

Fig. 8: SA with EA-based functions

settled by its cost value. If an individual finds that its own cost
is higher than those of the other individuals, then it raises its
local temperature to heighten the probability of uphill climbing
in the cost space. Otherwise, it drops its temperature to lower
this probability.

The genetic SA(GSA) is a parallel algorithm introduced in
[51] that maintains small independent populations of solutions
and performs periodic exchanges between the populations.
Each subpopulation generates a direction and distance in the
subpopulations grid to obtain a mating from another subpop-
ulation. After that, the crossover and mutation operators are
performed. A solution that replaces the resident candidate is
selected from the current resident candidate and the offspring.
An SA acceptance criterion is used to select this solution.
Another parallel hybrid genetic SA approach that uses the
SA acceptance mechanism to replace the solutions of the
population is presented in [25] (Parallel genetic SA, PGSA).

More examples that follow this scheme to get HMs-EA/SA
can be found in [26] (multi-population parallel genetic SA
algorithm, MPGSAA) and [53] (genetic SA algorithm, GSA-
MLE).

2) Relay Integrative HMs-EA/SA:This kind of HMs repre-
sents algorithms in which a given metaheuristic is embedded
into a trajectory-based metaheuristic [3]. Specifically, for the
HMs-EA/SA, an EA is used to perform one or more functions
in an SA process (Figure 8). TheSA based on local genetic
search(SALGeS) [54] presents an EA designed specifically to
play the role of the SA neighbourhood operator. In particular,
a steady-state EA creates one single candidate solution at
each iteration, by crossing over the current solution of the
master SA and another one from the population. Afterwards,
the master SA applies an acceptance mechanism to decide
which solution becomes the new current solution, either the
candidate solution or the current one. The other solution is
inserted into the population by a replacement strategy.

TheGA-based multiple SA(GAMSA) [37] extends the idea
of SALGeS by considering the execution of multiple SA
processes that share a unique steady-state EA. The existence
of several SA processes promotes diversification by exploring
different regions of the search space. On the other hand, the
population of the EA allows the SA agents to communicate
with one another in order to explore the search space. GAMSA
can be seen as a population of SA processes that cooperate
to explore the search space. In this sense, GAMSA can
be classified asteamwork collaborative. On the other hand,

<HM-EA/SA> → <design-issues-EA/SA><implementation-issue>
<design-issues-EA/SA> → <hierarchical-EA/SA><flat>
<hierarchical-EA/SA> → <LRH-EA/SA>|<LTH-EA/SA>|<HRH-EA/SA>

|<HTH-EA/SA>|LRH(<metaheuristic>(<HM-EA/SA>))|
LTH(<metaheuristic>(<HM-EA/SA>))

<LRH-EA/SA> → LRH(<SA-metaheuristic>(<EA-metaheuristic>))|
LRH(<LRH-EA/SA>(<metaheuristic>))

<LTH-EA/SA> → LTH(<EA-metaheuristic>(<SA-metaheuristic>))|
LTH(<LTH-EA/SA>(<metaheuristic>))|
LTH(<HTH-EA/SA>(<metaheuristic>))

<HRH-EA/SA> → HRH(<EA-metaheuristic>+<SA-metaheuristic>)|
HRH(<met-or-null>+HRH(<HM-EA/SA>+<met-or-null>))|
HRH(<SA-metaheuristic>+<EA-metaheuristic>)

<HTH-EA/SA> → HTH(<EA-metaheuristic>,<SA-metaheuristic>)|
HTH(<metaheuristic>,<HM-EA/SA>)

<EA-metaheuristic> → EA|
LTH(<EA-metaheuristic>(<metaheuristic>))|<HTH>

<SA-metaheuristic> → SA|
LRH(<SA-metaheuristic>(<metaheuristic>))

<met-or-null> → <metaheuristic> | null
<metaheuristic> → LS|TS|SA|GA|ES|GP|GH|AC|SS|

NM|CLP|<HM-EA/SA>

Fig. 9: Grammar for HMs-EA/SA

each SA process in GAMSA is an HM-EA/SA that can be
individually classified into theintegrative relaycategory.

C. Grammar for HMs-EA/SA

The HMs-EA/SA are a specialised category of the HMs,
and therefore any HM-EA/SA should be recognisable by the
grammar proposed by Talbi [3]. In this section, we present
a specialisation of this grammar that recognizes only the
HMs-EA/SA (Figure 9). Undefined non-terminal and terminal
symbols can be consulted in Talbi’s grammar.

Notice that we have decided to consider the parallel evo-
lution of a set of agents (<HTH>) as a kind of evolutionary
method (<EA-metaheuristic>). Besides this, we have included
the terminal symbolnull, which does nothing, in order to
simplify the<HRH-EA/SA> definition.

III. E XPERIMENTAL FRAMEWORK

A. Test Problems

In this section, we detail the test problems that were
used for the upcoming empirical studies. The test suite is
composed of27 binary combinatorial optimisation problems,
13 of which were artificial problems and the remaining14
were obtained from real-world applications. Table II outlines
their name, number of bits (D), a value (f∗) that stands
for either the fitness value of the global optimum, known
best solution, or upper bound presented in the literature, and
reference. All of them have been formulated as maximisation
problems. BQP and Maxcut instances can be obtained from the
corresponding files from theBiqMacLibrary1, and Multiple
knapsack problems, from theSAC − 94Suite2.

B. Running Conditions

In order to perform a fair comparison between different
search methods, we will run every algorithm with the same

1http://biqmac.uni-klu.ac.at/
2http://elib.zib.de/pub/Packages/mp-testdata/ip/sac94-suite/

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. , NO. , 6

TABLE II: Tackled test problems

Prob. Name D f∗ Ref.

1 Royal road problem (400, 8) 400 1 [57]

2 Trap problem 36 220 [58]

3 Deceptive problem 39 390 [59]

4 Bipolar deceptive problem 396 1 [60]

5 Overlapping deceptive problem 399 1 [60]

6 M-Sat(100,1200,3) 100 1 [61]

7 M-Sat(100,2400,3) 100 1 [61]

8 NkLand(48,4) 48 1 [62]

9 NkLand(48,12) 48 1 [62]

10 HIFF(2, 5, true) 32 192 [63]

11 HIFF(3, 4, false) 81 211 [63]

12 PPeaks(10,100) 100 1 [62]

13 PPeaks(100,100) 100 1 [64]

14 PPeaks(50,150) 150 1 [64]

15 PPeaks(50,200) 200 1 [64]

16 BQP(bqp50-1) 50 2098 [65]

17 BQP(bqp500-1) 500 116586 [65]

18 BQP(be120.3.3) 120 Not known [65]

19 BQP(be200.8.5) 200 Not known [65]

20 Maxcut(pm1s80.6) 80 73 [66]

21 Maxcut(w09 100.2) 100 2738 [66]

22 Maxcut(g05 100.5) 100 1436 [66]

23 Maxcut(pw05 100.6) 100 8217 [66]

24 Maxcut(ising2.5-2505555) 250 7919449 [66]

25 Multiple knapsack p. (weish03) 30 4115 [67]

26 Multiple knapsack p. (pet5) 28 12400 [67]

27 Multiple knapsack p. (pb4) 29 95168 [67]

budget of fitness evaluations. Each run of a search algorithm
on atest problem will perform at most105 fitness evaluations.
The performance measure is the average of the best fitness
values found over50 independent runs, because we are inter-
ested in the regular performance of the compared algorithms.
Moreover, the evolution of the best solution found throughout
the whole execution will be studied as well.

Non-parametric tests have been used to compare the results
of different optimisers [68] given they do not require explicit
conditions for being conducted. In particular, mean ranking for
each algorithm is firstly computed according to the Friedman
test [69]. This measure is obtained by computing, for each
problem, the rankingrj of the observed result for algorithmj,
assigning to the best of them the ranking1, and to the worst the
rankingJ (J is the number of algorithms). Then, an average
measure is obtained from the rankings of this method for all
the test problems. Secondly, theIman and Davenporttest [70]
is applied to check the existence of performance differences
between all the considered algorithms. Finally, theHolm test
[71], is used to detect performance differences between the
best ranked algorithm and the remainder. Moreover, we have
used theWilcoxon matched-pairs signed-rankstest to perform
pairwise comparisons.

IV. COMPARATIVE STUDY OF THE HMS BASED ONSA
AND EAS

A representative set of the algorithms revised in Section
II is chosen to study their behaviour experimentally. This set
has been built combining recent proposals and those that best
fit the general scheme of each category. Parameters related to
the SA process are fixed according to the study performed in
[54], for those algorithms whose original publications were
not clear:100 iterations per cooling event,0.99 as the cooling
factor, geometric cooling, and logistic acceptance mechanism.
Regarding the initial temperature, two random solutions are
firstly generated. We set a desired probabilitypd of accepting
the worst solution from the best one. Then, we compute the
correspondingT0 value, according to the applied acceptance
criterion. Thepd value is set to0.4. We have followed the rec-
ommendations of the original publications for the remaining
parameters. Next, we specify the rest of the parameter settings
of the HMs-EA/SA considered, grouped attending to their
corresponding category. Moreover the specification according
to the grammar presented in Section II-C is detailed for each
category or algorithm.

Teamwork Collaborative HMs-EA/SA (<HTH-EA/SA>)
(Section II-A1)

• Multiple EAs and SAs: we have developed an algorithm
following the guidelines in Section II-A1 (Figure 3) that
is called DCHCSA. It considers two CHC algorithms
and two SA processes that are executed in parallel.
The ring topology, alternating CHC and SA, is applied.
Every certain number of fitness evaluations, the current
solution of each SA is sent to the next CHC algorithm
anticlockwise. This solution replaces the worst solution
in the population of the CHC algorithm. At the same
time, each CHC algorithm sends its best solution found
so far to the next SA process anticlockwise. This solution
becomes the new current solution of this SA process. The
migration process takes place every75 fitness evaluations
of each algorithm.

• Multiple SAs: two approaches that belong to this cate-
gory are considered in the study.SSSA[23] maintains
100 samplers. The neighbourhood size is set to 1, i.e.,
each sampler may accept any of the two states of its
consecutive samplers (just one for the extreme samplers).
CSA[35] has 5 samplers. Its parameterα, for the variance
control procedure, is set to 0.05.

Relay Collaborative HMs-EA/SA (Section II-A2)

• EA then SA (HRH(EA+SA)): HHSAGA[38] considers
a generational GA. Its population size is set to 60. Two-
point-crossover is used. In order to adapt the algorithm
to the experimental framework described, only two steps
(one GA step and another SA step) are considered and
fitness evaluations are shared between GA and SA. The
GA stage consumes 75 percent of fitness evaluations and
the SA stage the remaining 25 percent.

• SA then EA (HRH(SA+EA)): GA-PSAimplements the
approach presented in Section II-A2, in which the popu-
lation of a GA is initialised by an SA (Figure 5.b). The

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. , NO. , 7

GA uses a population of 60 individuals. Mutation (one-
flip) and crossover (two-point-crossover) are considered
to evolve the individuals of the population. The method
used by the SA to initialise the population is similar
to that proposed in [40]. The population is filled with
the solutions generated within the SA trajectory until it
rejects the new solution proposed by the neighbourhood
operator. At that moment, a new SA trajectory starts from
another random solution. This process is repeated until
the population is filled up.

Teamwork Integrative HMs-EA/SA (LTH(EA(SA))) (Sec-
tion II-B1)

• MA with SA as local search procedure: AGA [40] uses a
mutation probability equal to1/(10 ·D). The population
size is set to 60.

• SA-based EA selection: GESA[44] maintains a popula-
tion of 100 individuals distributed into10 families. The
offspring are generated using two-step crossover.

• SA-based EA mutation: ARSAGA[47] sets the parame-
ters as follows: population size equal to40, crossover and
mutation probability equal to0.7 and0.01, respectively,
α = 0.9, β = 0.02, and Nfrozen = 10. Two-point-
crossover is applied.

• SA-based EA replacement: PRSA[50] applies a mutation
probability equal to1/D and the population size is set
to 60.

Relay Integrative HMs-EA/SA (LRH(SA(EA))) (Section
II-B2)

• EA-based SA component: For this study we have im-
plemented a simplified version ofSALGeS[54] in which
the individual from the population selected to perform
the crossover is chosen randomly and the individual
discarded from the current solution and the candidate one
replaces the worst solution from the GA population (only
if it is better). It considers a population size equal to500
and a probabilitypy = 1/D associated with the crossover
operator.

Teamwork Collaborative / Integrative Relay
• GAMSA [37] (LTH(HTH(SA,HTH(SA,...))(EA))): The

number of simultaneous SA processes is set to32, the
maximum number considered in the original publication.
The different SAs act sequentially, performing individual
iterations, and use the same selection and replacement
operators as the simplified SALGeS.

We have performed an experimental study comparing the
previous HMs-EA/SA in the experimental framework de-
scribed in Section III. In Figure 10, we can see graphically
the Holm test results (the Iman-Davenport test finds significant
performance differences between the considered algorithms
because its statistical value,117.166, is greater than its crit-
ical one, 1.822). The Holm test finds that the best results
are achieved by GAMSA. It detects significant differences
between GAMSA and CSA, ARSAGA, GESA, PRSA, SSSA,
HHSAGA, GA-PSA, and AGA.

Table III summarises the results of applying the Wilcoxon
test, with p-value = 0.05 and 0.1, to compare the results of

 1e-20

 1e-15

 1e-10

 1e-05

C
S

A

A
R

S
A

G
A

G
E

S
A

P
R

S
A

S
S

S
A

H
H

S
A

G
A

G
A

-P
S

A

A
G

A

D
C

H
C

S
A

S
A

LG
eS

Algorithm

Control algorithm GAMSA

p-value
α/(k-i)

Fig. 10: Holm test results

TABLE III: GAMSA vs. other HMs-EA/SA (Wilcoxon’s tests
with p-value=0.05 and 0.1 and critical value = 107 and 119,
respectively)

Algorithms R
+

R
− Sig. differences? 0.05/0.1

GAMSA vs DCHCSA 262 116 ∼/+

GAMSA vs SALGeS 259 113 ∼/+

GAMSA and the algorithms for which the Holm test does not
detect significant differences (DCHCSA and SALGeS). The
last column indicates whether GAMSA performs statistically
better (+), worse (−), or without significant differences (∼)
to its competitor. According to these results, the Wilcoxon test
determines that GAMSA is statistically better than DCHCSA
and SALGeS withp-value=0.1. It is worth noting the good be-
haviour of DCHCSA, a simple HM-EA/SA variant (teamwork
collaborative approach) derived from distributed GAs that, as
far as we know, had not been implemented before

Table VI, in Appendix A, shows the averaged results for
each test problem. Moreover t-test results, comparing GAMSA
(the best performing HM-EA/SA) and the remaining ap-
proaches, indicate for each instance whether GAMSA results
are statistically better (+), worse (−), or equal (∼) to those
of the other HMs-EA/SA. Regarding to these results, we see
that:

• In 23 out of 27 instances, SALGeS and GAMSA reach
the best solution found by any other HM-EA/SA ap-
proach.

• GAMSA obtains better results than PRSA, ARSAGA,
GESA, HHSAGA, SSSA, and CSA for almost every test
problem. For the remainder, the test performed does not
show statistical differences between its results and those
of its competitors.

• Only GA-PSA, AGA, DCHCSA, and SALGeS are able
to significantly improve the GAMSA results in some
instances. GA-PSA beats GAMSA on one problem, AGA
on two, DCHCSA on four, and SALGeS on five.

Next, we study the averaged behaviour of the HM-EA/SA
instances along the whole run by means of convergence

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. , NO. , 8

graphs, as follows (Figure 11):

• Taking into consideration the highest and lowest fitness
values achieved by all the algorithms for each test prob-
lem, we have normalised every result, throughout all the
runs, to the interval[0, 1].

• Then, mean values over the27 problems, have been ob-
tained for each algorithm throughout the105 evaluations.

In addition, Figure 12 shows the evolution of the averaged
rankings over the 27 problems of all the algorithms, when their
current best solutions according to the number of consumed
evaluations are compared. Notice that Figures 11 and 12 depict
two different kinds of information; in particular, averaged
convergence graphs may be strongly affected by distant fitness
values in a few functions, e.g. Royal Road; by contrast,
rankings are robust with regards to distant fitness values, but
may be strongly affected by small changes to many functions.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000

F
itn

es
s

A
ve

ra
ge

Evaluations

AGA
ARSAGA

CSA
DCHCSA

GESA
HHSAGA
SALGeS

PRSA

SSSA
GAMSA
GA-PSA

Fig. 11: Convergence graphs of the HMs-EA/SA

 0

 2

 4

 6

 8

 10

 12

 0 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000
 100000

M
ea

n
R

an
ki

ng

Evaluations

Fig. 12: Evolution of the ranking of the HMs-EA/SA

According to Figure 11, we may remark that:

• In the beginning of the execution, all the algorithms
but PRSA, GESA, ARSAGA, CSA, and SALGeS move
rapidly towards better solutions.

• Over the course of the 40,000 evaluations, SALGeS de-
feats all its competitors, considering the averaged fitness.

• In the intermediate stage of the execution, GAMSA
catches all its competitors but SALGeS and outperforms
them.

• In the latter stages, SALGeS seems to outperform
GAMSA according to the convergence graph. This be-
haviour can be explained by the fact that, as we men-
tioned before, averaged convergence graphs may be
strongly affected by distant fitness values in a few func-
tions. However, according to the Wilcoxon test results
for p-value=0.1 in Table III, we see that GAMSA out-
performs to SALGeS considering a statistical study.

According to Figure 12, we observe the following:
• All the algorithms but GAMSA, SALGeS, GA-PSA, and

HHSAGA more or less maintain their respective rankings
from the beginning of the execution until the end.

• GAMSA and SALGeS show an improving trend from the
beginning and reach the best rankings at the intermediate
stages.

• GA-PSA and HHSAGA have their best rankings at the
very beginning of the execution, but lose competitiveness
gradually.

• At the end of the execution, GAMSA is the most com-
petitive algorithm for all the problems in general.

V. PERFORMANCE OFHMS-EA/SA BY CATEGORIES

In this section, we study the behaviour of the HMs-EA/SA
by categories in order to assess the success of each group
of algorithms. In Figure 13, we can see the average ranking
obtained by each algorithm and the category to which it
belongs. HMs-EA/SA have been grouped by categories and
the height of each column is proportional to the ranking.
Therefore, the lower a column is, the better its associated
algorithm is. Taking into account this figure, we can conclude
the following:

Fig. 13: Average rankings of the HMs-EA/SA versions

• The‘multiple SAs’ category includes the CSA algorithm,
which presents the poorest performance among all the
studied algorithms. The other algorithm in this class,
SSSA, appears in the group of the five algorithms with
the worst average rankings. The three instances of the
‘SA-based EA component’ category (ARSAGA, GESA,
and PRSA) are among the algorithms forming this group
as well. A feature shared by these two categories is that

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. , NO. , 9

the hybridisation EA/SA is built employing incomplete
formulations of either EA or SA. Specifically, an effort
is made to incorporate principles of one of these meta-
heuristics in the other (population of solutions in SA,
multiple SAs, and SA acceptance criterion in EA, SA-
based EA component)

• Better performances are achieved by the algorithms in
the other categories. In this case, they are conceived
as HMs composed of self-contained EAs and SAs, and,
cooperating somehow.

• The integrative approach is present in three out of the
four best ranked HMs-EA/SA. They are AGA (MA with
SA as local search procedure), SALGeS, and GAMSA
(both belonging to EA-based SA component). In these
HMs, one metaheuristic is specialised in to play a specific
role inside the other metaheuristic. Specifically, in AGA,
SA affords EA refined solutions and, in SALGeS and
GAMSA, EA acts as an SA neighbourhood operator.

• The hybridisation technique used by SALGeS and
GAMSA, that involves replacing some components in
metaheuristics with customised EAs (evolutionary com-
ponents) to develop the same work more effectively
and with a relatively low computational cost, was also
studied in [22]. As an example, the authors contributed
an iterated local search algorithm with an evolutionary
perturbation method, which is a micro EA that effectively
explores in the neighbourhood of particular solutions.
This algorithm turned out to be very competitive with
state-of-the-art iterated local search metaheuristics for
binary optimisation problems. The suitable results shown
by GAMSA and SALGeS provide additional evidence for
the effectiveness of this novel hybridisation paradigm.

• The group of the four best performing algorithms is
completed by an HM-EA/SA belonging to the teamwork
collaborative approach (DCHCSA). Interestingly, it has
better results than the two algorithms representing the
relay collaborative approach (HHSAGA and GA-PSA).

We can highlight that the ranking obtained when comparing
the performance of the different HM-EA/SA approaches (Fig-
ure 13) may be used as a guideline for researchers attempting
to tackle specific optimisation problems by building HMs-
EA/SA, or even with other trajectory-based metaheuristics
(tabu search, local search procedures, guided local search,
etc.).

VI. A SYNERGY TEST

One of the most important aspects of studying the be-
haviour of an HM is to consider the synergy produced by
the combination of the composing metaheuristics. In fact,
exploring the complementary character of the different opti-
misation strategies involved in the hybrid metaheuristics is the
main motivation behind the hybridisation, that is, hybrids are
believed to benefit from synergy [72]. In order to assess the
amount of synergy that appears when combining two or more
components, or whether it does or does not appear, the usual
practise involves the comparison between the hybrid algorithm
and the sole usage of its components [73], [74], [75]. In this

section, we study the synergy produced by combining SA and
EAs of previous HMs-EA/SA with regards to the following
algorithms:

• Standalone SA(SA) [6], [7]. The parameter values are
those detailed in Section IV.

• Canonical generational GA(CGGA). This considers a
population of 60 individuals, binary tournament selec-
tion, one-flip mutation (probability0.006), and two-point
crossover (probability1).

• Canonical steady-state GA(CSSGA). The parameters and
operators are the same as in CGGA. In each iteration, two
offspring that replace their parents are generated.

• Cross-generational elitist selection, Heterogeneous re-
combination, and Cataclysmic mutation(CHC) [76]. This
is an EA that involves the combination of a selection
strategy with a very high selective pressure, and several
components inducing diversity.

Table IV (column ‘Comp. on results‘) summarises the
results of applying the Wilcoxon test withp-value = 0.05,
where the values ofR+ (associated to the HM-EA/SA) and
R− (associated to the single metaheuristic) of the test are
specified. According to these results, we may conclude that:

• SALGeS and GAMSA are the only HMs that perform
better that the sole application of SA, any canonical EA,
and CHC. So, we can state that this hybrid approach
(EA-based SA component) supplies a better performance,
exploiting and uniting the advantages of the individual
metaheuristics and, therefore, showing a profitable syn-
ergy.

• Considering the remaining hybridisations, only DCHCSA
presents a positive result in terms of synergy. The other
ones do not produce better results, for the considered
experimental framework, than the sole application of one
of their intrinsic metaheuristics. These results allow us
to conclude that the simple combination of several meta-
heuristics does not ensure success. It is necessary to study
the way the composing metaheuristics are combined in
order to achieve a positive synergy between them.

Finally, it is interesting to analyse the computational time
required for the HMs with regards to their standard counter-
parts. Table IV (column ‘Comp. on time‘) shows the results
of applying the Wilcoxon test, using as performance measure
the average over50 independent runs of the time employed
to perform105 fitness evaluation on each problem. The last
column indicates whether the corresponding HMs requires
statistically more time (−), less (+), or there is no significant
differences (∼) with regards to their standard counterparts. The
Wilcoxon test results show that all the HMs, but HHSAGA,
take statistically more time than SA to solve the considered
problems. On the contrary, it is significant that there is
no HMs exceeding the computational time required by the
most computationally expensive counterparts, the evolutionary
algorithms (CGGA, CSSGA, and CHC). In particular, we can
highlight that SALGeS and GAMSA, which are the only ones
that reach a profitable synergy and outperform the quality of
the solutions provided by all their standard counterparts, do not
exceed computational time required by their most expensive

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. , NO. , 10

counterparts, CGGA, CSSGA, and CHC.

VII. B EST PERFOMING HM-EA/SA VS.
STATE-OF-THE-ART EAS FORBINARY COMBINATORIAL

PROBLEMS

In this section, we intend to assess the performance of
GAMSA, the best performing HM-EA/SA, with regards to
other relevant EAs for binary combinatorial problems found
in the literature. The experiments are carried out on the test
suite detailed in Section III-A.

• CHC [76] was tested against different GAs, giving better
results, especially for hard problems [77]. So, it has
arisen as a reference point in the literature. Its population
consists of 50 individuals.

• Variable dissortative mating GA(VDMGA) [78]. This is
a steady-state EA, similar to CHC, in which the number
of new chromosomes entering the population in each gen-
eration is controlled on-line by a threshold value, genetic
diversity, and the population’s state of convergence. The
results in [78] show the superior performance of VDMGA
when compared to other GAs. Its population size is set
to 100. The mutation probability is set to0.006.

• Context-independent scatter search(CISS) [79]. CISS is
a proposal explicitly designed to tackle general binary
optimisation problems. Its performance was compared
with that of several general-purpose commercial opti-
misation tools, obtaining promising results. Population
and reference set sizes have been set to300 and 6,
respectively. The other parameters have been set as in
[79].

• Sawtooth GA(Saw-GA) [80]. This uses a variable pop-
ulation size and periodic partial reinitialisation of the
population in the form of a saw-tooth function. For
a wide range of problems, the performance of Saw-
GA was statistically superior to a standard GA and a
micro GA. The average population size is set to 80.
Crossover and mutation probabilities are set to 0.85 and
0.05, respectively. Period and amplitude parameters are
adjusted to 40 and 75, respectively.

• Versatile quantum-inspired EA(vQEA) [81]. vQEA is a
novel EA approach based on quantum computing princi-
ples. It considers the quantum bit (Qbit) as the smallest
information unit, which is defined by the probability
at which the corresponding state (0 or 1) is likely to
appear when it is collapsed, i.e., read or measured. vQEA
considers a population of quantum individuals (a quantum
individual is composed of a Qbit string, a realization,
and an attractor) that evolve through quantum gate oper-
ations. The population of vQEA is divided intog groups
each containingd individuals. Attractors are periodically
synchronized between individuals in the same group and
between different groups. vQEA considers a population
of 10 individuals distributed into a unique group. The
synchronization of attractors takes place every generation
and∆Θ, associated to quantum gate, is set toπ/100.

Table V summarises the results of applying the Wilcoxon
test for p-value = 0.05, where the values ofR+ (associated

TABLE IV: HMs-EA/SA vs. Standalone SA, Canonical GAs,
and CHC (Comparison on results and time) (Wilcoxon’s test
with p-value=0.05 and critical value = 107)

HMs Single Comp. on results Comp. on time

Metah. R+ R− Diff R+ R− Diff

CSA

SA 0 378 − 64 314 −

CGGA 0 378 − 321 57 +

CSSGA 100 278 − 358 20 +

CHC 0 378 − 309 69 +

ARSAGA

SA 0 378 − 24 354 −

CGGA 0 278 − 262 116 ∼

CSSGA 16 362 − 60 318 −

CHC 0 378 − 277 101 +

GESA

SA 0 378 − 38 340 −

CGGA 0 378 − 298 80 +

CSSGA 4 374 − 378 0 +

CHC 0 378 − 301 77 +

PRSA

SA 0 378 − 27 351 −

CGGA 10 368 − 288 90 +

CSSGA 0 378 − 279 99 +

CHC 1 377 − 277 101 +

SSSA

SA 0.5 377.5 − 48 330 −

CGGA 33.5 344.5 − 329 49 +

CSSGA 378 0 + 378 0 +

CHC 1 377 − 367 11 +

HHSAGA

SA 8 370 − 116 262 ∼

CGGA 88 290 − 378 0 +

CSSGA 377 1 + 378 0 +

CHC 46 332 − 378 0 +

GA-PSA

SA 7.5 370.5 − 68 310 −

CGGA 0 378 − 359.5 18.5 +

CSSGA 158.5 219.5 ∼ 210 168 ∼

CHC 52.5 325.5 − 355 23 +

AGA

SA 30.5 347.5 − 81 297 −

CGGA 237.5 140.5 ∼ 339 39 +

CSSGA 378 0 + 323 55 +

CHC 129.5 248.5 ∼ 345 33 +

DCHCSA

SA 206.5 171.5 ∼ 32 346 −

CGGA 330.5 47.5 + 276 102 +

CSSGA 378 0 + 306 72 +

CHC 328.5 49.5 + 325 53 +

SALGeS

SA 287.5 90.5 + 27 352 −

CGGA 374.5 3.5 + 174 204 ∼

CSSGA 378 0 + 192 186 ∼

CHC 343.5 34.5 + 160 218 ∼

GAMSA

SA 277.5 101.5 + 27 351 −

CGGA 352.5 25.5 + 188 190 ∼

CSSGA 378 0 + 214 164 ∼

CHC 333.5 44.5 + 199 179 ∼

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. , NO. , 11

TABLE V: GAMSA vs. state-of-the-art EAs (Wilcoxon’s test
with p-value=0.05 and critical value = 107)

Algorithms R+ R− Sig. differences?

GAMSA vs CHC 338.5 39.5 +

GAMSA vs VDMGA 286 92 +

GAMSA vs CISS 320 58 +

GAMSA vs Saw-GA 365.5 12.5 +

GAMSA vs vQEA 362.5 15.5 +

to GAMSA) andR− of the test are specified. We notice that
GAMSA obtains statistically better results than those of the
other EAs (R− values are lower than bothR+ ones and critical
values).

Table VI, in Appendix A, shows the results of the optimisers
when tackling each test problem. Moreover t-test results, com-
paring GAMSA (the best performing approach) and the other
algorithms, show whether there are significant differences for
each problem instance. Regarding to these results, we observe
that:

• In 19 out of 27 instances, GAMSA reaches the best
solution found by any algorithm studied in this section.

• Saw-GA and vQEA are able to reach better results
than GAMSA in one instance (Deceptive and Royal
Road respectively). CHC and CISS do the same in
NKLand(48,12). Moreover, CHC outperforms GAMSA
in Maxcut(ising2.5-2505555) and CISS, in Overlapping
Deceptive.

• VDMGA, the most competitive algorithm with regards
to GAMSA, attains better results on five instances (Royal
Road, HIFF(3,4,false), BQP(bqp500-1), Maxcut(ising2.5-
250 5555), and Deceptive instances).

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000

A
ve

ra
ge

d
F

itn
es

s

Evaluations

CHC
VDMGA

CISS
Saw−GA

vQEA
GAMSA

Fig. 14: Convergence graphs of state-of-the-art EAs and
GAMSA

As we see in Figure 14, at the initial stages, GAMSA expe-
riences lower convergence speed than most of its competitors,
except Saw-GA. However, GAMSA continues improving its
results at the intermediate and even at the final stages. This fact
allows GAMSA to catch its competitors up and to overtake
them at the latter stages. It is important to note that, according

to the convergence graph, though at the end of the execution
VDMGA seems to reach similar solutions to GAMSA, the
Wilcoxon test showed that GAMSA defeats VDMGA. This
can be explained by the fact that the differences achieved by
GAMSA are not too great, but it reaches positive differences
more frequently. The latter causes the Wilcoxon test to detect
significant differences.

In conclusion, this study shows that GAMSA really provides
a competitive alternative in the combinatorial binary optimi-
sation field, obtaining promising results on the considered
testbed.

VIII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we provided an overview of the ways EAs and
SA may be combined with each other to obtain HMs-EA/SA.
We have organised the approaches found in the literature by
proposing a taxonomy based on those introduced by Talbi
and Raidl for HMs [3], [4]. Moreover, we have developed, to
our knowledge, the first experimental study analysing a large
spectrum of HM-EA/SA models from three points of view:

• We have compared the performance of the HM-EA/SA
models, individually and by categories, extracting rele-
vant conclusions regarding the categories presented in the
presented taxonomy.

• We have performed a synergy test that has identified
two HM-EA/SA models that really present synergistic
properties.

• We have compared the best performing HM-EA/SA
model with the state-of-the-art evolutionary algorithms
for binary combinatorial optimisation.

Our study allowed us to draw an interesting conclusion: the
hybridisation of EAs and SA becomes a prospective research
area for finding more effective search algorithms.

Finally, we should remark that the research line focused
on in this paper is indeed worthy of further studies. We
will intend to explore three interesting avenues of research.
Firstly, multiobjective and constrained problemsare subject
of great interest, existing in the literature a great number
of proposals for dealing with this kind of problems based
on EAs [82], [83], [84] and SA [85], [86]. Therefore, it
is possible to adapt the design of HMs-EA/SA to this type
of problems. Secondly, teamwork collaborative HMs-EA/SA
are able to take advantage of parallel hardware (multicore
processors, clusters, etc.) and software [87] that has become
very affordable and widely available nowadays. This clearly
favors the implementation on parallel hardwareof HMs-
EA/SA [25], [50], [51] that may lead to improved results
due to the speed-up in the search process, which becomes a
very appealing option for dealing with large-scale optimisation
tasks. Finally, an important issue when combining different
algorithms concerns the number of evaluations that each
algorithm should consume throughout the run to create the
conditions for the appearance of collaborative synergies among
all the composing algorithms. Adaptive strategies that identify
the best performing technique at each phase of the evolution
with a minimum overhead [18], [19], [88] may be used to
built adaptive HMs-EA/SAwith the aim of allowing profitable

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. , NO. , 12

TABLE VI: Results of the binary optimisers on each test
problem

Pr. CHC VDMGA Saw-GA CISS vQEA GAMSA

1 0.337+ 1− 0.192+ 0.130+ 0.536− 0.394

2 220∼ 220∼ 219∼ 210+ 219+ 220

3 378∼ 382− 385− 378∼ 366+ 378

4 0.878+ 0.850+ 0.853+ 0.892+ 0.886+ 0.899

5 0.899+ 0.896+ 0.753+ 0.915− 0.894+ 0.906

6 0.957+ 0.957+ 0.943+ 0.955+ 0.954+ 0.959

7 0.937+ 0.938+ 0.926+ 0.937+ 0.936+ 0.939

8 0.760+ 0.765∼ 0.755+ 0.761+ 0.747+ 0.766

9 0.746− 0.701+ 0.713+ 0.751− 0.71+ 0.741

10 164+ 162+ 155+ 148+ 136+ 185

11 170∼ 176− 155+ 152+ 154+ 169

12 0.994+ 1∼ 0.941+ 0.997∼ 0.999∼ 1

13 0.990+ 0.990+ 0.929+ 0.991+ 0.988+ 0.998

14 0.990+ 0.992+ 0.870+ 0.995+ 0.996+ 0.999

15 0.990+ 0.995+ 0.831+ 0.993+ 0.993+ 0.998

16 5174∼ 5176∼ 5159+ 5176∼ 5168+ 5176

17 117453∼ 120948− 51714+ 119056∼ 117402+ 119264

18 11548+ 11589+ 9420+ 11583+ 11530+ 11599

19 49852+ 50428+ 34427+ 50407+ 50162+ 50465

20 68+ 69+ 61+ 68+ 65+ 73

21 2623+ 2647+ 2267+ 2681+ 2552+ 2716

22 1422+ 1423+ 1385+ 1430+ 1407+ 1435

23 8153+ 8168+ 7923+ 8190+ 8102+ 8204

24 7526181− 7522897− 4949495+ 7333148+ 7249980+ 7422326

25 4005+ 4003+ 4074∼ 4096∼ 3955+ 4081

26 12396+ 12398∼ 12385+ 12400∼ 12393+ 12400

27 118204∼ 118204∼ 118204∼ 118204∼ 118204∼ 118204

synergies to arise from the adjusted intervention of EAs and
SA.

APPENDIX A
RESULTS

Table VI and Table VII show the average fitness values
obtained by the studied search algorithms. The best results for
each problem are presented in boldface. Moreover, we have
carried out a statistical analysis withp-value equal to 0.05 to
measure the performance differences between GAMSA, the
best performing HM-EA/SA, and the other algorithms for each
problem separately. This statistical analysis is based ont-test,
when normality and heteroscedasticity conditions are satisfied,
andMann-Whitney, otherwise [89], [69].

IE
E

E
T

R
A

N
S

A
C

T
IO

N
S

O
N

E
V

O
L

U
T

IO
N

A
R

Y
C

O
M

P
U

TA
T

IO
N

,
V

O
L

.
,

N
O

.
,

13

TABLE VII: Results of the HMs-EA/SA on each test problem

Pr. PRSA GA-PSA ARSAGA GESA AGA HHGASA SSSA CSA DCHCSA SALGeS GAMSA

1 0.366∼ 0.579− 0.085+ 0.104+ 0.690− 0.548+ 0.123+ 6.52e−02 + 0.338∼ 0.997− 0.394

2 209+ 217+ 188+ 201+ 216+ 211+ 214+ 179+ 220 ∼ 220 ∼ 220

3 375+ 378∼ 363+ 376+ 370+ 374+ 373+ 365+ 382− 379− 378

4 0.860+ 0.883+ 0.826+ 0.875+ 0.893+ 0.893+ 0.875+ 0.813+ 0.88+ 0.895+ 0.899

5 0.768+ 0.864+ 0.671+ 0.777+ 0.894+ 0.896+ 0.845+ 0.635+ 0.896+ 0.9 + 0.906

6 0.933+ 0.955+ 0.916+ 0.932+ 0.953+ 0.953+ 0.952+ 0.912+ 0.957+ 0.958+ 0.959

7 0.921+ 0.936+ 0.906+ 0.917+ 0.936+ 0.935+ 0.932+ 0.903+ 0.938+ 0.939 ∼ 0.939

8 0.727+ 0.744+ 0.673+ 0.72+ 0.759+ 0.737+ 0.741+ 0.674+ 0.766 ∼ 0.766 ∼ 0.766

9 0.713+ 0.721+ 0.675+ 0.71+ 0.714+ 0.709+ 0.718+ 0.692+ 0.743∼ 0.737∼ 0.741

10 151+ 126+ 113+ 120+ 179∼ 128+ 160+ 116+ 187 ∼ 176+ 185

11 159+ 164+ 124+ 144+ 171− 152+ 156+ 120+ 178 − 176− 169

12 0.841+ 0.987+ 0.725+ 0.842+ 0.988+ 0.993+ 0.939+ 0.680+ 0.998∼ 0.989∼ 1

13 0.828+ 0.976+ 0.73+ 0.857+ 0.976+ 0.979+ 0.935+ 0.709+ 0.993+ 0.995+ 0.998

14 0.805+ 0.979+ 0.687+ 0.79+ 0.967+ 0.98+ 0.937+ 0.656+ 0.996+ 0.994+ 0.999

15 0.747+ 0.987+ 0.659+ 0.759+ 0.980+ 0.979+ 0.923+ 0.627+ 0.997+ 0.992∼ 0.998

16 4641+ 5164+ 3771+ 4325+ 5176 ∼ 5146+ 5152∼ 3378+ 5176 ∼ 5176 ∼ 5176

17 59834+ 95978+ 26523+ 46188+ 117034+ 111884+ 80116+ 16728+ 120215− 121266 − 119264

18 8140+ 11588∼ 5022+ 7537+ 11597∼ 11408+ 10792+ 3958+ 11597∼ 11599 ∼ 11599

19 34193+ 49759+ 19042+ 27767+ 50311+ 50298+ 44338+ 14305+ 50410+ 50456+ 50465

20 51+ 68 + 34 + 52 + 70 + 67 + 68 + 31 + 70 + 72 ∼ 73

21 2122+ 2623+ 1564+ 2076+ 2675+ 2564+ 2529+ 1510+ 2667+ 2700+ 2716

22 1366+ 1420+ 1324+ 1366+ 1422+ 1414+ 1412+ 1319+ 1431+ 1433+ 1435

23 7819+ 8150+ 7514+ 7826+ 8125+ 8123+ 8074+ 7463+ 8187+ 8202∼ 8204

24 5153437+ 7285193+ 3230924+ 4975365+ 7369494+ 7275664+ 6546047+ 2812404+ 7545615− 7563823 − 7422326

25 3915+ 3922+ 3732+ 3620+ 3965+ 3793+ 3975+ 3720+ 4053+ 4052+ 4081

26 12189+ 12094+ 12084+ 11934+ 11994+ 11913+ 12244+ 12090+ 12400 ∼ 12398+ 12400

27 116566+ 118204 ∼ 111258+ 112481+ 118204 ∼ 117156∼ 118204 ∼ 109247+ 118204 ∼ 118204 ∼ 118204

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. , NO. , 14

ACKNOWLEDGMENT

This work was supported by Research Projects TIN2008-
05854 and P08-TIC-4173.

REFERENCES

[1] F. Glover and G. Kochenberger, Eds.,Handbook of Metaheuristics.
Kluwer Academic Publishers, 2003.

[2] P. Siarry and Z. Michalewicz, Eds.,Advances in Metaheuristics for Hard
Optimization, ser. Natural Computing. Springer, 2008.

[3] E. Talbi, “A taxonomy of hybrid metaheuristics,”J. Heuristics, vol. 8,
no. 5, pp. 541–564, 2002.

[4] G. Raidl, “A unified view on hybrid metaheuristics,” inHybrid Meta-
heuristics, F. Almeida, M. B. Aguilera, C. Blum, J. M. Vega, M. P.
Pérez, A. Roli, and M. Sampels, Eds., vol. LNCS 4030. Springer,
2006, pp. 1–12.

[5] C. Blum, “Hybrid Metaheuristics – Guest Editorial,”Computers &
Operations Research, vol. 37, no. 3, pp. 430–431, 2010.

[6] S. Kirkpatrick, C. Gelatt Jr, and M. Vecchi, “Optimization by simulated
annealing,”Sci., vol. 220, no. 4598, pp. 671–680, 1983.

[7] E. Aarts and J. Korst,Simulated Annealing and Boltzmann Machines.
John Wiley & Sons, 1989.

[8] D. Henderson, S. Jacobson, and A. Jacobson, “The theory and practice
of simulated annealing,” inHandbook of Metaheuristics. Kluwer
Academic Publishers Group, 2003, pp. 287–319.

[9] S. Bandyopadhyay, S. Saha, U. Maulik, and K. Deb, “A simulated
annealing-based multiobjective optimization algorithm: AMOSA,”IEEE
Trans. Evol. Comput., vol. 12, no. 3, pp. 269–283, 2008.

[10] P. Salamon, P. Sibani, and R. Frost,Facts, Conjectures and Improve-
ments for Simulated Annealing, ser. Monographs on Mathematical
Modeling and Computation. SIAM, 2002.

[11] T. Bäck, D. Fogel, and Z. Michalewicz,Handbook of Evolutionary
Computation. Institute of Physics Publishers, 1997.

[12] A. Eiben and J. Smith,Introduction to Evolutionary Computing.
Springer-Verlag, 2003.

[13] D. Fogel, Evolutionary Computation: Toward a New Philosophy of
Machine Intelligence. IEEE Press, 1995.

[14] H. Beyer and H. Schwefel, “Evolution strategies–a comprehensive
introduction,” Nat. Comput., vol. 1, no. 1, pp. 3–52, 2002.

[15] D. Goldberg,Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing Co., 1989.

[16] C. Grosan and A. Abraham, “Hybrid evolutionary algorithms: method-
ologies, architectures, and reviews,” inHybrid Evolutionary Algorithms,
C. Grosan, A. Abraham, and H. Ishibuchi, Eds. Springer, 2007, pp.
1–17.

[17] P. Preux and E. Talbi, “Towards hybrid evolutionary algorithms,”Int.
Trans. Oper. Res., vol. 6, no. 6, pp. 557–570, 1999.

[18] R. Mallipeddi and P. Suganthan, “Ensemble of constraint handling
techniques,”IEEE Trans. Evol. Comput., vol. 14, no. 4, pp. 561–579,
2010.

[19] J. Vrugt, B. Robinson, and J. Hyman, “Self-adaptive multimethod search
for global optimization in real-parameter spaces,”IEEE Trans. Evol.
Comput., vol. 13, no. 2, pp. 243–259, 2009.

[20] Z. Lü, F. Glover, and J. Hao, “A hybrid metaheuristic approach to solving
the UBQP problem,”Eur. J. Oper. Res., vol. 207, no. 3, pp. 1254–1262,
2010.

[21] C. Cotta and A. Fernandez, “A hybrid GRASP - Evolutionary algorithm
approach to Golomb ruler search,” inParallel Problem Solving from
Nature - PPSN VIII, ser. LNCS, X. Yao, E. Burke, J. Lozano, J. Smith,
J. MereloGuervos, J. Bullinaria, J. Rowe, P. Tino, A. Kaban, and
H. Schwefel, Eds., vol. 3242, 2004, pp. 481–490.

[22] M. Lozano and C. Garcı́a-Martı́nez, “Hybrid metaheuristics with evo-
lutionary algorithms specializing in intensification and diversification:
Overview and progress report,”Comput. Oper. Res., vol. 37, pp. 481–
497, 2010.

[23] D. Thompson and G. Bilbro, “Sample-sort simulated annealing,”IEEE
Trans. Syst., Man, Cybern. B, vol. 35, no. 3, pp. 625–632, 2005.

[24] G. Liu, D. Zhou, H. Xu, and C. Mei, “Model optimization of svm for
a fermentation soft sensor,”Exp. Syst. App., vol. 37, no. 4, pp. 2708 –
2713, 2010.

[25] Z. Wang, Y. Wong, and M. Rahman, “Development of a parallel
optimization method based on genetic simulated annealing algorithm,”
Parallel Comput., vol. 31, no. 8-9, pp. 839–857, 2005.

[26] H. Cheng, X. Wang, S. Yang, and M. Huang, “A multipopulation
parallel genetic simulated annealing-based QoS routing and wavelength
assignment integration algorithm for multicast in optical networks,”App.
Soft Comput., vol. 9, no. 2, pp. 677–684, 2009.

[27] L. Tang and X. Wang, “An improved particle swarm optimization
algorithm for the hybrid flowshop scheduling to minimize total weighted
completion time in process industry,”IEEE Trans. Control Syst. Technol.,
vol. 18, no. 6, pp. 1303–1314, 2010.

[28] I. Obregon and A. Pawlovsky, “A hybrid SA-EA method for finding the
maximum number of switching gates in a combinational circuit,”IEICE
Electronics Express, vol. 5, no. 18, pp. 756–761, 2008.

[29] Y. Xu and R. Qu, “Solving multi-objective multicast routing problems
by evolutionary multi-objective simulated annealing algorithms with
variable neighbourhoods,”J. Oper. Res. Soc., vol. 62, pp. 313–325, 2011.

[30] B. Firouzi, M. Sadeghi, and T. Niknam, “A new hybrid algorithm based
on PSO, SA, and k-means for cluster analysis,”Int. J. Innov. Comput.
Inf. Control, vol. 6, no. 7, pp. 3177–3192, 2010.

[31] W. Hong, Y. Dong, L. Chen, and C. Lai, “Taiwanese 3G mobile phone
demand forecasting by SVR with hybrid evolutionary algorithms,”Exp.
Syst. App., vol. 37, no. 6, pp. 4452 – 4462, 2010.

[32] R. M’Hallah, “Minimizing total earliness and tardiness on a single
machine using a hybrid heuristic,”Comput. Oper. Res., vol. 34, no. 10,
pp. 3126 – 3142, 2007.

[33] A. Tantar, N. Melab, and E. Talbi, “A grid-based genetic algorithm
combined with an adaptive simulated annealing for protein structure
prediction,” Soft Comput., vol. 12, no. 12, pp. 1185–1198, 2008.

[34] S. Bhandarkar and H. Zhang, “Image segmentation using evolutionary
computation,”IEEE Trans. Evol. Comput., vol. 3, no. 1, pp. 1–21, 1999.

[35] S. Xavier-de-Souza, J. Suykens, J. Vandewalle, and D. Bollé, “Cooper-
ative behavior in coupled simulated annealing processes with variance
control,” in Symposium on Nonlinear Theory and its Applications, 2006,
pp. 114–119.

[36] M. Aydin and V. Yigit, Parallel Simulated Annealing, ser. Parallel
Metaheuristics: A New Class of Algorithms. Wiley, 2005, pp. 267–288.

[37] F. Rodriguez-Diaz, C. Garcia-Martinez, and M. Lozano, “A GA-based
multiple simulated annealing,” inIEEE Congress on Evolutionary Com-
putation, 2010, pp. 195–201.

[38] D. Chen, C. Lee, C. Park, and P. Mendes, “Parallelizing simulated
annealing algorithms based on high-performance computer,”J. Global
Optim., vol. 39, no. 2, pp. 261–289, 2007.

[39] D. Brown, C. Huntley, and A. Spillane, “A parallel genetic heuristic
for the quadratic assignment problem,” inProceedings of the third
international conference on Genetic algorithms. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1989, pp. 406–415.

[40] F. Lin, C. Kao, and C. Hsu, “Applying the genetic approach to simulated
annealing in solving some NP-hard problems,”IEEE Trans. Syst., Man,
Cybern., vol. 23, no. 6, pp. 1752–1767, 1993.

[41] X. Li and X. Wei, “An improved genetic algorithm-simulated annealing
hybrid algorithm for the optimization of multiple reservoirs,”Water Res.
Manag., vol. 22, pp. 1031–1049, 2007.

[42] Q. Zhang, J. Wang, C. Jin, and Q. Zeng, “Localization algorithm
for wireless sensor network based on genetic simulated annealing
algorithm,” in Wireless Communications, Networking and Mobile Com-
puting, 2008. WiCOM ’08. 4th International Conference on, 2008, pp.
1–5.

[43] D. Goldberg, “A note on boltzmann tournament selection for genetic
algorithms and population-oriented simulated anealing,”Complex Syst.,
vol. 4, pp. 445–460, 1990.

[44] P. Yip and Y. Pao, “Combinatorial optimization with use of guided
evolutionary simulated annealing,”IEEE Trans. Neural Netw., vol. 6,
no. 2, pp. 290–295, 1995.

[45] M. De la Maza and B. Tidor, “Increased flexibility in genetic algorithms:
The use of variable boltzmann selective pressure to control propagation,”
in Proc. of the ORSA CSTS Conference - Computer Science and
Operations Research: New Developments in their Interfaces, 1992, pp.
425–440.

[46] B. Li and W. Jiang, “A novel stochastic optimization algorithm,”IEEE
Trans. Syst., Man, Cybern. B, vol. 30, pp. 193–198, 2000.

[47] S. Hwang and R. He, “A hybrid real-parameter genetic algorithm for
function optimization,”Adv. Eng. Inform., vol. 20, no. 1, pp. 7–21, 2006.

[48] W. Han and P. Que, “Defect reconstruction of submarine oil pipeline
from mfl signals using genetic simulated annealing algorithm,”J. Jpn.
Petr. Inst, vol. 49, pp. 145–150, 2006.

[49] D. Adler, “Genetic algorithm and simulated annealing: a marriage
proposal,” in Proc. of the IEEE international conference on neural
network, 1993, pp. 1104–1109.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. , NO. , 15

[50] S. Mahfoud and D. Goldberg, “Parallel recombinative simulated anneal-
ing: A genetic algorithm,”Parallel Comput., vol. 21, no. 1, pp. 1–28,
1995.

[51] H. Chen, N. Flann, and D. Watson, “Parallel genetic simulated annealing:
a massively parallel simd algorithm,”IEEE Trans. Parallel Distrib. Syst.,
vol. 9, no. 2, pp. 126–136, 1998.

[52] H. Cho, S. Oh, and D. Choi, “A new evolutionary programming approach
based on simulated annealing with local cooling schedule,” inProc. of
the Congress on Evolutionary Computation, 1998, pp. 598–602.

[53] Z. Yang, Z. Tian, and Z. Yuan, “GSA-based maximum likelihood
estimation for threshold vector error correction model,”Comput. Stat.
Data Anal., vol. 52, no. 1, pp. 109 – 120, 2007.

[54] C. Garcı́a-Martı́nez and M. Lozano, “Simulated annealing based on
local genetic search,” inProc. of the IEEE Int. Conf. Evolutionary
Computation, 2009, pp. 2569–2576.

[55] F. Herrera and M. Lozano, “Gradual distributed real-coded genetic
algorithms,” IEEE Trans. Evol. Comput., vol. 4, no. 1, pp. 43–63, 2000.

[56] N. Krasnogor and J. Smith, “A tutorial for competent memetic al-
gorithms: Model, taxonomy and design issues,”IEEE Trans. Evol.
Comput., vol. 9, no. 5, pp. 474–488, 2005.

[57] S. Forrest and M. Mitchell, “Relative building block fitness and the
building block hypothesis,” inFoundations of Genetic Algorithms 2,
L. Whitley, Ed. Morgan Kaufmann, 1993, pp. 109–126.

[58] D. Thierens, “Population-based iterated local search: restricting neigh-
borhood search by crossover,” inProc. of the Genetic and Evolutionary
Computation Conf., ser. LNCS, K. Deb, R. Poli, W. Banzhaf, H.-G.
Beyer, E. Burk, P. Darwen, D. Dasgupta, D. Floreano, J. Foster, M. Har-
man, O. Holland, P. Lanzi, L. Spector, A. Tettamanzi, D. Thierens, and
A. Tyrrel, Eds., vol. 3103. Springer, 2004, pp. 234–245.

[59] D. Goldberg, B. Korb, and K. Deb, “Messy genetic algorithms: moti-
vation, analysis, and first results,”Complex Syst., vol. 3, pp. 493–530,
1989.

[60] M. Pelikan, D. Goldberg, and E. Cantú-Paz, “Linkage problem, distri-
bution estimation, and bayesian networks,”Evol. Comput., vol. 8, no. 3,
pp. 311–340, 2000.

[61] K. Smith, H. Hoos, and T. Stützle, “Iterated robust tabu search for MAX-
SAT,” in Proc. of the Canadian Society for Computational Studies of
Intelligence Conf., ser. LNCS, J. Carbonell and J. Siekmann, Eds., vol.
2671. Springer, 2003, pp. 129–144.

[62] S. Kauffman, “Adaptation on rugged fitness landscapes,”Lec. Sci.
Complex., vol. 1, pp. 527–618, 1989.

[63] R. Watson and J. Pollack, “Hierarchically consistent test problems
for genetic algorithms,” inProc. of the Congress on Evolutionary
Computation, vol. 2, 1999, p. 1413.

[64] W. Spears,Evolutionary Algorithms: The Role of Mutation and Recom-
bination. Springer, 2000.

[65] J. Beasley, “Heuristic algorithms for the unconstrained binary quadratic
programming problem,” The Management School, Imperial College,
Tech. Rep., 1998.

[66] R. Karp, “Reducibility among combinatorial problems,” inComplexity
of Computer Computations, R. Miller and J. Thatcher, Eds. Plenum
Press, 1972, pp. 85–103.

[67] D. Thierens, “Adaptive mutation rate control schemes in genetic algo-
rithms,” in Proc. of the Congress on Evolutionary Computation, 2002,
pp. 980–985.

[68] S. Garcia, D. Molina, M. Lozano, and F. Herrera, “A study on the
use of non-parametric tests for analyzing the evolutionary algorithms’
behaviour: A case study on the CEC’2005 special session on real
parameter optimization,”J. Heuristics, vol. 15, pp. 617–644, 2008.

[69] J. Zar,Biostatistical Analysis. Prentice Hall, 1999.
[70] R. Iman and J. Davenport, “Approximations of the critical region of the

Friedman statistic,” inCommunications in Statistics, 1980, pp. 571–595.
[71] S. Holm, “A simple sequentially rejective multiple test procedure,”

Scand. J. Stat., vol. 6, pp. 65–70, 1979.
[72] C. Blum, J. Puchinger, G. Raidl, and A. Roli, “Hybrid metaheuristics in

combinatorial optimization: A survey,”App. Soft Comput., vol. 11, pp.
4135–4151, 2011.

[73] C. Antonio, “A study on synergy of multiple crossover operators in
a hierarchical genetic algorithm applied to structural optimisation,”
Structural and Multidisciplinary Optimization, vol. 38, no. 2, pp. 117–
135, 2009.

[74] F. Peng, K. Tang, G. Chen, and X. Yao, “Population-based algorithm
portfolios for numerical optimization,”IEEE Trans. Evol. Comput.,
vol. 14, no. 5, pp. 782–800, 2010.

[75] F. Herrera, M. Lozano, and A. Sánchez, “Hybrid crossover operators for
real-coded genetic algorithms: An experimental study,”Soft Comput.,
vol. 9, no. 4, pp. 280–298, 2005.

[76] L. Eshelman and J. Schaffer, “Preventing premature convergence in
genetic algorithms by preventing incest,” inInt. Conf. on Genetic
Algorithms, R. Belew and L. Booker, Eds. Morgan Kaufmann, 1991,
pp. 115–122.

[77] D. Whitley, S. Rana, J. Dzubera, and E. Mathias, “Evaluating evolution-
ary algorithms,”Artif. Intell., vol. 85, pp. 245–276, 1996.

[78] C. Fernandes and A. Rosa, “Self-adjusting the intensity of assortative
mating in genetic algorithms,”Soft Comput., vol. 12, no. 10, pp. 955–
979, 2008.

[79] F. Gortazar, A. Duarte, M. Laguna, and R. Martı́, “Context-independent
scatter search for binary problems,” Colorado LEEDS School of Busi-
ness, University of Colorado at Boulder, Tech. Rep., 2008.

[80] V. Koumousis and C. Katsaras, “A saw-tooth genetic algorithm combin-
ing the effects of variable population size and reinitialization to enhance
performance,”IEEE Trans. Evol. Comput., vol. 10, no. 1, pp. 19–28,
2006.

[81] M. Platel, S. Schliebs, and N. Kasabov, “Quantum-inspired evolutionary
algorithm: A multimodel EDA,” IEEE Trans. Evol. Comput., vol. 13,
no. 6, pp. 1218–1232, dec. 2009.

[82] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms.
Wiley, 2001.

[83] C. Coello, G. Lamont, and D. Veldhuizen,Evolutionary Algorithms for
Solving Multi-Objective Problems. Springer-Verlag New York, Inc.,
2006.

[84] C. Coello, “Theoretical and numerical constraint-handling techniques
used with evolutionary algorithms: a survey of the state of the art,”
Comput. Meth. Appl. Mech. Eng., vol. 191, no. 11-12, pp. 1245 – 1287,
2002.

[85] C. Pedamallu and L. Ozdamar, “Investigating a hybrid simulated an-
nealing and local search algorithm for constrained optimization,”Eur. J.
Oper. Res., vol. 185, no. 3, pp. 1230–1245, 2008.

[86] A. Hedar and M. Fukushima, “Derivative-free filter simulated annealing
method for constrained continuous global optimization,”J. Global
Optim., vol. 35, no. 4, pp. 521–549, 2006.

[87] S. Cahon, N. Melab, and E. Talbi, “ParadisEO: A framework for the
reusable design of parallel and distributed metaheuristics,”J. Heuristics,
vol. 10, no. 3, pp. 357–380, 2004.

[88] A. LaTorre, S. Muelas, and J. Peña, “A MOS-based dynamic memetic
differential evolution algorithm for continuous optimization: a scalability
test,” Soft Comput., pp. 1–13, 2010.

[89] D. Sheskin,The Handbook of Parametric and Nonparametric Statistical
Procedures. Chapman & Hall/CRC, 2000.

PLACE
PHOTO
HERE

Francisco J. RodriguezBiography text here.

Carlos Garcı́a-Martı́nez Biography text here.

Manuel Lozano Biography text here.

3. GRASP with path-relinking for the non-identical parallel machine scheduling problem with minimising
total weighted completion times 75

3. GRASP with path-relinking for the non-identical parallel ma-

chine scheduling problem with minimising total weighted com-

pletion times

The journal paper associated to this part is:

F.J. Rodŕıguez, C. Blum, C. Garćıa-Mart́ınez, M. Lozano, GRASP with path-relinking for the
non-identical parallel machine scheduling problem with minimising total weighted completion
times. Annals of Operations Research. In press. doi: 10.1007/s10479-012-1164-8.

• Status: Accepted.

• Impact Factor (JCR 2011): 0.840.

• Subject Category: Operations Research & Management Science. Ranking 41 / 77 (Q3).

Ann Oper Res
DOI 10.1007/s10479-012-1164-8

GRASP with path-relinking for the non-identical parallel
machine scheduling problem with minimising total
weighted completion times

F.J. Rodriguez · C. Blum · C. García-Martínez ·
M. Lozano

© Springer Science+Business Media, LLC 2012

Abstract In this work, we tackle the problem of scheduling a set of jobs on a set of non-
identical parallel machines with the goal of minimising the total weighted completion times.
GRASP is a multi-start method that consists of two phases: a solution construction phase,
which randomly constructs a greedy solution, and an improvement phase, which uses that
solution as an initial starting point. In the last few years, the GRASP methodology has
arisen as a prospective metaheuristic approach to find high-quality solutions for several dif-
ficult problems in reasonable computational times. With the aim of providing additional re-
sults and insights along this line of research, this paper proposes a new GRASP model that
combines the basic scheme with two significant elements that have been shown to be very
successful in order to improve GRASP performance. These elements are path-relinking and
evolutionary path-relinking. The benefits of our proposal in comparison to existing meta-
heuristics proposed in the literature are experimentally shown.

Keywords Non-identical parallel machine scheduling problem with minimising total
weighted completion times · Metaheuristics · GRASP · Path-relinking

1 Introduction

The non-identical parallel machine scheduling with minimising total weighted completion
times (SNIM-WCT) considers a set J of n independent jobs that have to be processed on a
set M of m parallel non-identical machines. Each job j ∈ J has to be processed by exactly
one of the m parallel machines and no machine can process more than one job at the same

F.J. Rodriguez (�) · M. Lozano
Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
e-mail: fjrodriguez@decsai.ugr.es

C. Blum
ALBCOM Research Group, Technical University of Catalonia, Barcelona, Spain

C. García-Martínez
Department of Computing and Numerical Analysis, University of Córdoba, Córdoba, Spain

Ann Oper Res

time. A job j is processed on a given machine until completion, i.e., without pre-emption.
The processing time of a job j on a machine i is a pre-defined, finite positive number pij .
Furthermore, each job j has a non-negative integer weight wj . The objective is to sched-
ule the jobs in such a way that the sum of the weighted completion times of the jobs is
minimised:

Minimise
n∑

i=1

wj ∗ Cj ,

where Cj represents the completion time of job j for a given schedule. In the case of the
identical parallel machine scheduling problem, each job has the same processing time re-
gardless of the machine employed. By contrast, in the case of non-identical parallel ma-
chines, the processing time of a job depends on the selected machine, in two different ways:

– Uniform parallel machines: the processing time of job j on machine i is determined as
pij = pj/si , where pj is the processing time of job j and si is the speed of machine i.

– Unrelated parallel machines: the values of pij are unrelated.

According to the standard notation proposed by Azizoglu and Kirca (1999a) and Al-
lahverdi et al. (1999), the problems considered in this work are notated in the literature in
the following manner: Qm/Rm||∑wj ∗ Cj . Bruno et al. (1974) and Lenstra et al. (1977)
showed that the problem of minimising the total weighted completion time on two identical
machines is NP-hard. So, we can conclude that the more general schemes considered in this
work are also NP-Hard.

A mixed integer linear programming formulation for the SNIM-WCT problem is pro-
vided for the sake of completeness. Let xt

ji = 1 if the job j is processed in the t th position
(unit time) on machine i and 0, otherwise. And a variable Ct

ji denotes the completion time
of the job j scheduled in the t th position on machine i. The model is stated by Azizoglu and
Kirca (1999b) as:

min
∑

j

∑

i

∑

t

wj · Ct
ji · xt

ji (1)

subject to:
∑

i

∑

t

xt
j i = 1 ∀j, (2)

∑

j

xt
j i ≤ 1 ∀t, i, (3)

Ct
ji =

n∑

r=1

t−1∑

s=1

pir · xs
ri + pij ∀j, t, i, (4)

xt
ji ∈ {0,1} ∀j, t, i. (5)

It is important to note that we can find multiple real-life applications of the scheduling on
parallel machines problem in different fields. These fields include human resources (Rosen-
bloom and Goertzen 1987), production management (Buxey 1989; Dodin and Chan 1991;
Pendharkar and Rodger 2000), mail facilities (Jarrah et al. 1992), robotised systems (Rochat
1998), sport tournaments (Croce et al. 1999), and chemical processes (Brucker and Hurink
2000).

The greedy randomised adaptive search procedure (GRASP) (Feo and Resende 1989;
Feo and Resende 1995) is a multi-start two-phase metaheuristic for combinatorial optimi-
sation basically consisting of a solution construction phase and an improvement phase. The

Ann Oper Res

solution construction mechanism builds an initial solution using a greedy randomised pro-
cedure, whose randomness allows solutions to be obtained in different areas of the solution
space. Each solution is randomly produced step-by-step by uniformly adding one new ele-
ment from a restricted candidate list to the current solution. The improvement phase then
takes the incumbent solution and performs local perturbations in order to get a locally op-
timal solution with respect to some predefined neighbourhood. Different local search algo-
rithms can be defined according to the chosen neighbourhood. The two-phase process of
GRASP is iterative, that is, it continues until a user-defined termination condition—such
as the maximum allowed CPU time or the maximum number of iterations—is met. The
best solution generated during this iterative process is kept as the overall result. Due to its
simplicity, GRASP is often used for real-world applications (Resende and Ribeiro 2003).

Path-relinking (Glover 1996) is an enhancement to the basic GRASP procedure, which
consists of exploring trajectories that connect high-quality solutions. Generally, path-
relinking may lead to significant improvements in solution quality (Aiex et al. 2003;
Aiex et al. 2005; Laguna and Marti 1999; Ribeiro et al. 2002). The use of path-relinking
within a GRASP procedure, as an intensification strategy applied to each locally opti-
mal solution, was first proposed by Laguna and Marti (1999). In this work, we propose a
GRASP+PR algorithm that combines the basic GRASP scheme with path-relinking to deal
with the SNIM-WCT problem.

The remainder of this paper is structured as follows. In Sect. 2, we present an overview
of the existing research on the SNIM-WCT problem. In Sect. 3, we describe the proposed
GRASP+PR. In Sect. 4, we present an empirical study, which is designed to: (1) analyse
the influence of our algorithms’ parameters and their values, (2) understand the algorithms’
behaviour, and (3) compare the results with those of other approaches from the literature. In
Sect. 5, we discuss conclusions and further work. Finally, in Appendix a list of abbreviations
used in this work is provided (Table 9).

2 Literature review

Scheduling problems deal, in general, with the allocating of resources over time to perform
a set of tasks that are parts of certain processes, such as computational and manufacturing
processes; see, for example, Blazewicz et al. (2007), for an extensive revision of scheduling
problems.

As mentioned before, in this work we focus on the problem of scheduling on parallel
machines. Since the introduction of this problem by McNaughton (1959), it has received
much attention and many papers have been published in this area. For an in-depth review,
interested readers may consult the reviews by Cheng and Sin (1990) and Mokotoff (2001),
the chapter devoted to scheduling on parallel processors in Blazewicz et al. (2007) and a
recent special issue on computational intelligence in scheduling (Kendall et al. 2010). It is
interesting to note that the majority of the studies have concentrated on the case of identical
parallel machines (Baker and Merten 1973; Belouadah and Potts 1994; Elmaghraby and
Park 1974; Sarin et al. 1988), despite the fact that non-identical parallel machine schedules
have more practical relevance. In what follows, for the sake of conciseness, we mainly focus
on the non-identical parallel machine problem considering the total weighted completion
time criterion.

The research efforts to deal with the SNIM-WCT problem have focused on three main
research lines: exact procedures, approximation algorithms through solving relaxations of
the problem, and metaheuristic procedures. Concerning exact procedures, since the consid-
ered problem is NP-hard, there are few works that present exact algorithms to solve the

Ann Oper Res

SNIM-WCT problem. Azizoglu and Kirca (1999a) designed a branch and bound algorithm
to solve the Q||wjCj problem. Computational results indicate that the proposed branch-
and-bound algorithm is capable of solving instances with up to two machines and 25 jobs
or three machines and 20 jobs, within a reasonable time. The same authors (Azizoglu and
Kirca 1999b) developed another branch and bound algorithm for the R||wjCj problem us-
ing a depth first search strategy. Computational experiments are performed with randomly
generated instances of the same maximal size as mentioned above. Finally, Chen and Powell
(1999) proposed a decomposition approach for solving the SNIM-WCT problems exactly.
The decomposition approach first formulates these problems by means of integer program-
ming, and then reformulates the integer programs as a set partitioning problem strategy.
The proposed algorithm can solve instances with up to 20 machines and 100 jobs within a
reasonable time.

Exact algorithms are generally limited to problem instances of moderate size, due to the
exponential increase in CPU time and memory when the problem size increases. There-
fore, in practice, approximate algorithms are necessary to find (not necessarily optimal)
solutions to the considered problem. In the first place, we can find approximate algo-
rithms that, in general, try to find optimal solutions to relaxations of the problem, such
as linear relaxations and convex quadratic programming relaxations (Hall et al. 1997;
Hall et al. 1996; Phillips et al. 1997; Schulz and Skutella 1997; Schulz and Skutella 2002;
Skutella 2001). In Li and Yang (2009), we find a detailed review of this kind of approximate
algorithms and models for the non-identical parallel machines scheduling problem. Sec-
ondly, there are different approaches based on metaheuristics. Weng et al. (2001), for exam-
ple, reviewed six existing heuristics and provided a new heuristic algorithm for the SNIM-
WCT problem. The computational experiments performed considered four, six, eight, 10
and 12 machines, as well as 40, 60, 80, 100 and 120 jobs. Later, Vredeveld and Hurkens
(2002) presented two types of neighbourhood functions. The first function is called the
jump neighbourhood. It consists of selecting a job j and a machine i so that job j is not
scheduled on machine i. Then job j is moved to machine i. The second one is called swap
neighbourhood. For this neighbourhood, two jobs j and k must be selected and assigned to
different machines. The corresponding neighbouring solution is obtained by interchanging
the machine allocations of the two selected jobs. These two neighbourhood functions are
applied in two metaheuristics based on a local search:

– Multistart iterative method. This procedure iteratively applies a first improvement local
search to randomly generated solutions.

– Tabu search. Just like any other tabu search method, this algorithm improves the previ-
ously defined local search by storing some information about solutions visited in past
iterations in a so-called tabu list in order to avoid cycling.

Zaidi et al. (2010) presented four new metaheuristics to tackle the SNIM-WCT problem:

– A generational genetic algorithm that starts by initialising chromosomes randomly and
applies selection by linear ranking. Selected individuals produce offspring by means of
uniform crossover, and, finally, mutation is applied to the produced offspring.

– A differential evolution algorithm. This evolutionary algorithm generates trial vectors
from an initial population of solutions in vector form. At each step, differential evolution
mutates existing vectors by adding weighted random vector differentials to them. If the
fitness of the trial vector is better than that of the target vector, the trial vector replaces the
target vector in the next generation.

Ann Oper Res

– Finally, Zaidi et al. (2010) provide a variable neighbourhood descent method which is
incorporated into the two evolutionary algorithms described above. The two resulting hy-
brid approaches explore the neighbourhood of the high-quality solutions obtained by the
genetic algorithm or differential evolution by means of variable neighbourhood descent.

Recently, Lin et al. (2011b) presented another genetic algorithm approach to deal with
unrelated parallel machines scheduling using three different performance criteria. In partic-
ular, the proposed approach initialises the population adding some solutions generated by
heuristics methods. The remaining ones are generated randomly to provide enough diver-
sity. Roulette wheel selection is used to choose a new population with respect to a fitness-
proportional probability distribution. The crossover and mutation schemes are those pro-
posed by Cheng et al. (1995). Elitism is considered by removing two chromosomes and
adding the best two previous chromosomes to the new generation if they are not selected
through the roulette-wheel-selection process. The experimental study performed compares
the proposed genetic algorithm with a set of heuristics. Results show that the proposed al-
gorithm outperforms the competing heuristics.

Finally, it is important to note that metaheuristics have also been widely used to solve the
problem of scheduling on unrelated parallel machines considering other performance cri-
teria. Tabu search, simulated annealing and genetic algorithms were applied in Glass et al.
(1994) to deal with the problem of minimising the maximum makespan in the context of
unrelated parallel machines. The same problem has been tackled recently by means of an
iterated greedy metaheuristic (Fanjul-Peyro and Ruiz 2010) and an ant colony optimisation
algorithm, in which sequence-dependent setup times are considered (Arnaout et al. 2010). It-
erated greedy and a fast simple local search algorithm have also been employed to solve the
unrelated parallel machines scheduling problem with the goal of makespan minimisation,
considering optional machines and job selection (Fanjul-Peyro and Ruiz 2012). In addition,
in Fanjul-Peyro and Ruiz (2011), a set of metaheuristics based on a size-reduction of the un-
related parallel machines problem with the goal of makespan minimisation has been studied
in order to produce solutions of very good quality in a short amount of time.

Chen and Chen (2009) presented a hybrid metaheuristic combining tabu search and
variable neighbourhood descent to minimise the total weighted tardiness concerning un-
related parallel machines. The same problem but considering the total tardiness criteria and
sequence- and machine-dependent setup times in the presence of due date constraints was
tackled with an iterated greedy algorithm in Lin et al. (2011a). In Feng and Lau (2008),
a new metaheuristic (squeaky wheel optimisation) was proposed to solve the parallel ma-
chines scheduling problems with non-uniform sequence-dependent setup times, job process-
ing times, due dates, and earliness/tardiness penalty weights. The cases considering uniform
and identical parallel machines have also been tackled with metaheuristics. Anghinolfi and
Paolucci (2007) tackled the problem of minimising the total weighted tardiness of uniform
parallel machines by means of a hybrid metaheuristic based on simulated annealing, tabu
search and variable neighbourhood search. Finally, tabu search was proposed by Waligora
(2009) to minimise the maximum makespan in the context of identical parallel machines.

3 GRASP+PR for the SNIM-WCT problem

In this section, we develop a GRASP+PR model to tackle the SNIM-WCT problem. Firstly,
in Sect. 3.1, we provide a general overview of basic GRASP and methods for its enhance-
ment. Then, in Sect. 3.2, we present the proposed GRASP+PR for the SNIM-WCT problem.
Finally, in Sects. 3.3, 3.4, 3.5, 3.6 and 3.7, we provide detailed descriptions of the different

Ann Oper Res

algorithmic components of the proposal: the greedy randomised construction of solutions,
the improvement procedure, path-relinking, the update of the set of elite solutions, and evo-
lutionary path-relinking, respectively.

3.1 Basic GRASP and enhancements

Basic GRASP is an iterative process in which each iteration consists of two phases: solution
construction and solution improvement. The construction phase generates a feasible solu-
tion, whose neighbourhood is explored by the improvement procedure. The best solution
obtained over all iterations is returned as the result.

In the solution construction phase, GRASP makes use of a greedy function in a ran-
domised way. At each step, the current partial solution may be extended by adding one
component from a set E of opportunely defined solution components. Greediness is used
to choose a set of the most promising solution components from E. In GRASP, this set is
known as the restricted candidate list (RCL). In order to generate this set, each solution
component e ∈ E is evaluated by means of a greedy function g(·), where g(e) denotes the
greedy value of e. In a value-based construction, the restricted candidate list is then defined
as follows:

{
e ∈ E : g∗ ≤ g(e) ≤ g∗ + α · (g∗ − g∗

)}
,

where g∗ = min{g(e) : e ∈ E}, g∗ = max{g(e) : e ∈ E}, and α is a parameter satisfying
0 ≤ α ≤ 1. After the generation of the candidate list, one solution component from this set
is chosen uniformly at random.

The path-relinking method consists of exploring trajectories that connect an initial solu-
tion and a guiding solution. This is done by iteratively introducing attributes of the guiding
solution into the initial solution. At each step, all moves that incorporate attributes of the
guiding solution are analysed and the best of these moves is chosen. The general idea is that
a trajectory connecting two high-quality solutions may contain even better solutions. For the
incorporation of path-relinking into GRASP, the basic GRASP scheme is extended with a
set P of so-called elite solutions. Note that P is used to store high-quality solutions found
during the search process. Path-relinking is then generally applied to the solution generated
in the current iteration and one solution from P . In forward path-relinking the initial solu-
tion is chosen as the worst of these two solutions. On the contrary, backward path-relinking
interchanges the roles of both solutions, assigning the role of the initial solution to the better
solution of the two. The main advantage of the latter approach over forward path-relinking
comes from the fact that, in general, there are more high-quality solutions near the better
solution. Experiments performed by Aiex et al. (2005) and Resende and Ribero (2003) have
shown that backward path-relinking usually outperforms forward path-relinking.

Resende and Werneck (2004) introduced evolutionary path-relinking as a post-processing
phase for GRASP. The basis of evolutionary path-relinking is a population of solutions. The
set P of elite solutions generated by GRASP is taken as the initial population. The popu-
lation management of evolutionary path-relinking is the same as that employed by steady
state evolutionary algorithms, therefore, the size of the population does not change over
time. For the generation of the next population, path-relinking is applied to a set of pairs of
solutions chosen from the current population. Each resulting offspring solution is tested for
membership in the population of the next generation.

3.2 GRASP+PR

The GRASP+PR algorithm proposed to tackle the SNIM-WCT problem combines the ba-
sic GRASP scheme with backward path-relinking as an intensification method, performed

Ann Oper Res

Input: Tmax, freqVND, freqEvol, maxElite
Output: s∗
s∗ ← NULL;1

iter ← 0;2

P ← ∅;3

while computation time limit Tmax not reached do4

s ← GreedyRandomizedSolution();5

if iter%freqVND == 0 then6

s ← VariableNeighborhoodDescent(s);7

else8

s ← SimpleLocalSearch(s);9

end10

if |P | > 2 then s ← PathRelinking(s,P) end;11

UpdateEliteSet(s,P);12

if s∗ == NULL then13

s∗ ← s;14

else15

if f (s) < f (s∗) then s∗ ← s end;16

end17

iter ← iter + 1;18

if iter%freqEvol == 0 then EvolutionaryPathRelinking(P) end;19

end20

EvolutionaryPathRelinking(P);21

Fig. 1 GRASP+PR

throughout the execution of the algorithm. Moreover, evolutionary path-relinking is applied
both during the execution of GRASP, every pre-defined number of iterations, and as a post-
optimisation method after the termination of GRASP. The general scheme of the proposed
GRASP+PR algorithm is shown in Fig. 1.

The GRASP+PR procedure requires the input of values for four parameters. Tmax denotes
the computation time limit, freqVND determines the frequency at which variable neighbour-
hood descent is applied to the incumbent solution s, freqEvol determines the frequency of
applying evolutionary path-relinking as an intensification method at the end of an iteration,
and maxElite is the maximum number of solutions in P , the set of elite solutions. At the
start of the algorithm, P is initialised to the empty set, and the best found solution s∗ points
to NULL. Moreover, the iteration counter iter is initialised to zero.

At each iteration, the following actions are taken. First, a solution is constructed by func-
tion GreedyRandomizedSolution() (see Sect. 3.3). Second, depending on variable freqVND,
either a simple local search procedure or a more sophisticated variable neighbourhood de-
scent method is applied to the incumbent solution s. Both functions—SimpleLocalSearch(s)

and VariableNeighborhoodDescent(s)—are detailed in Sect. 3.4. Next, in case the set P of
elite solutions already contains more than two solutions, backward path-relinking is applied
in function PathRelinking(s,P) (see Sect. 3.5). After that, procedure UpdateEliteSet(s,P)

is responsible for updating the current set P of elite solutions with solution s generated by
path relinking (see Sect. 3.6). At the end of each iteration, depending on freqEvol, evolu-
tionary path-relinking is applied in function EvolutionaryPath-Relinking(P) to the set P of

Ann Oper Res

elite solutions (see Sect. 3.7). The algorithm ends by applying the function Evolutionary-
PathRelinking(P) once more, and by returning the best solution found during the search
process (s∗). This way of using evolutionary path-relinking was proposed in Aiex et al.
(2005), Resende et al. (2010), Resende and Werneck (2004). A detailed description of all
the above-mentioned functions is provided in the following sections.

3.3 Greedy randomised solution construction

In this section, a description of function GreedyRandomizedSolution() (see line 5 of the
algorithm in Fig. 1) is given. For the purpose of constructing solutions we have used the
solution construction mechanism of the heuristic proposed in (Weng et al. 2001). This choice
is motivated by the fact that this heuristic was reported as obtaining the best solutions from
among several heuristics studied in the same work.

At this point it is important to clarify the structure of a feasible solution. Remember that
a solution is obtained by assigning each job j ∈ J (where J is the set of n jobs) to exactly
one machine i ∈ M (where M is the set of m machines).

Accordingly, the construction of a solution simply consists of assigning each job to ex-
actly one machine. In our case this is done as follows. First, the processing time of a machine
i ∈ M is denoted by ti . These machine processing times are initialised to zero at the start
of a solution construction. At each solution construction step, set J ⊆ J denotes the set of
so-far unassigned jobs. Each of these jobs may be assigned to any of the m machines. The
greedy value g(i, j) for the assignment of a job j ∈ J to a machine i ∈ M is determined as
follows:

g(i, j) = ti + pij

wj

At each construction step, the restricted candidate list RCL is formed by the possible as-
signments that have the best greedy values. The assignment that is finally chosen at a certain
construction step is selected uniformly at random from RCL. The procedure to construct
a greedy randomised solution ends when all jobs are assigned to machines. At this point
a complete solution s is returned. The detailed pseudocode of the procedure is shown in
Fig. 2.

3.4 Improvement methods

The improvement phase of the proposed GRASP+PR algorithm consists of functions Vari-
ableNeighborhoodDescent(s) and SimpleLocalSearch(s) (see lines 7 and 9 of the algorithm
in Fig. 1). The aim of both functions is to find a better solution close to the solutions gener-
ated by the greedy randomised solution construction. The variable neighbourhood descent
method executed in VariableNeighborhood-Descent(s) function was proposed by Zaidi et al.
(2010). It uses two different neighbourhoods. The first neighbourhood is defined via in-
sertion moves, where each possible move is generated by randomly selecting one job and
assigning this job to a different (arbitrarily chosen) machine. The second neighbourhood
works with swap moves. Each swap move consists of randomly selecting two jobs from two
different machines and swapping the jobs. As it is more time-consuming than the simple
local search method outlined below, the variable neighbourhood descent procedure is only
used every freqVND iterations. In the remaining iterations, function SimpleLocalSearch(s)

executes a simple local search method based on insertion moves.

Ann Oper Res

Input:
Output: s

J ← J ;1

Let s be an empty solution;2

while J 	= ∅ do3

g∗ ← min{g(i, j) : i ∈ M,j ∈ J };4

g∗ ← max{g(i, j) : i ∈ M,j ∈ J };5

RCL ← {(i, j) : g∗ ≤ g(i, j) ≤ g∗ + α · (g∗ − g∗)};6

(k, l) ← Choose randomly from RCL;7

Assign job l to machine k in solution s;8

J ← J\{l};9

end10

Fig. 2 Greedy randomised solution construction

3.5 Path-relinking

As mentioned before, path-relinking is an intensification strategy that generates new so-
lutions by exploring trajectories that connect high-quality solutions. These trajectories are
generally produced by iteratively introducing features from a so-called guiding solution into
an initial solution. This iterative process stops once the trajectory has reached the guiding
solution. In this work we chose the option of assigning the role of guiding solution to the
worse solution of the two solutions chosen for path-relinking. This scheme is known as
backward path-relinking.

In the following we give a description of the path-relinking function Path-Relinking(s,P)

from line 11 of the algorithm in Fig. 1. First, in addition to solution s, which is an input
parameter of function PathRelinking(s,P), a second solution s ′ must be chosen in order to be
able to apply path-relinking. This solution is chosen from the set of elite solutions P . For this
purpose a distance measure Dist(s1, s2) is introduced which gives a measure of the distance
between two solutions s1 and s2. More specifically, Dist(s1, s2) is defined as the number of
jobs that are not assigned to the same machine in s1 and s2. Then, s ′ ∈ P is chosen as the
solution with the largest distance from s. Moreover, we define set Δ(s1, s2) ⊆ J as the set of
jobs that are not assigned to the same machine in s1 and s2. Henceforth we refer to the jobs
in Δ(s1, s2) as solution features. Next, the worse of the two solutions s and s ′ is denoted by
sg—that is, the guiding solution—while the remaining solution is denoted by sc , the current
solution. At this moment, an iterative process is initiated which selects at each step exactly
one job j ∗ ∈ Δ(sc, sg) and assigns this job in solution sc to machine mach(j ∗, sg), where
mach(j ∗, sg) refers to the machine to which job j ∗ is assigned in solution sg . The resulting
solution is denoted by mov(sc, sg, j

∗). Job j ∗ is chosen as follows:

j ∗ = argmin
{
f

(
mov(sc, sg, j)

) : j ∈ Δ(sc, sg)
}

The complete pseudocode of the designed path-relinking procedure can be seen in Fig. 3.

3.6 Management of the set of elite solutions

The application of the path-relinking function PathRelinking(s,P) (see the algorithm in
Fig. 1) produces a solution s as output. This solution is considered as a candidate to be

Ann Oper Res

Input: s, P

Output: spr

s ′ ← argmax{Dist(s, ŝ) : ŝ ∈ P };1

sc ← argmin{f (s), f (s ′)};2

sg ← argmax{f (s), f (s ′)};3

s ← sg ;4

while |Δ(sc, sg)| > 1 do5

j ∗ ← argmin{f (mov(sc, sg, j)) : j ∈ Δ(sc, sg)};6

sc ← mov(sc, sg, j
∗);7

if f (sc) < f (s) then8

s ← sc;9

end10

end11

Fig. 3 Path-relinking

inserted into the set of elite solutions P . If the number of solutions in P is less than its max-
imum size (maxElite), s is simply inserted into P . By contrast, if the elite set has reached its
maximum size, s replaces the solution ŝ which is most similar to s of all the solutions s ′ ∈ P

with a worse objective function value than s. For this purpose the distance measure Dist(., .),
as introduced in Sect. 3.5, is used. The procedure described in this section is implemented
by function UpdateEliteSet(s,P) from line 12 of the algorithm in Fig. 1.

3.7 Evolutionary path-relinking

Evolutionary path-relinking (see function EvolutionaryPathRelinking(P) from lines 19
and 22 of the algorithm in Fig. 1) applies path-relinking to all pairs of solutions contained
in the set P of elite solutions. Each application of the path-relinking function produces a
solution spr which is then considered for inclusion in P . For this purpose, function UpdateEl-
iteSet(., .) as described in Sect. 3.6 is used. The complete pseudocode of the evolutionary
path-relinking procedure is shown in Fig. 4. Note that function PathRelinking(s, s ′) imple-
ments exactly the same procedures as outlined in Sect. 3.5, except that the two solutions for
the application of path-relinking are already given as input parameters.

4 Experimental comparison

In this section, we describe the experiments carried out in order to study the behaviour of
the GRASP+PR model presented in the previous section. Firstly, we detail the experimental
setup and the statistical methods applied (Sect. 4.1). Then we present and analyse the re-
sults obtained from different experiments carried out with the proposed GRASP+PR. Our
aims are: (1) to analyse the influence of parameter α (see Fig. 3) on the behaviour of the
algorithm (Sect. 4.2), (2) to carry out a comparison between our proposal and existing meta-
heuristics from the literature (Sect. 4.3), and (3) to investigate the way path-relinking affects
GRASP+PR performance (Sect. 4.4).

Ann Oper Res

Input: P

Output:
P ′ ← P ;1

foreach s ∈ P do2

foreach s ′ ∈ P such that f (s ′) > f (s) do3

spr ← PathRelinking(s, s ′);4

UpdateEliteSet(spr ,P
′);5

end6

end7

P ← P ′;8

Fig. 4 Evolutionary path-relinking

4.1 Experimental setup

Our own algorithm (GRASP+PR) as well as all competitor algorithms have been imple-
mented in C++ and the source code has been compiled with gcc 4.4.1. All experiments were
conducted on a computer with a 3.2 GHz Intel Xeon processor with 2 GB of RAM running
Fedora Linux V11. As mentioned before, in this work we consider problem instances with
both uniform and unrelated parallel machines. We considered problem instances from 11
different combinations of the number of jobs (n) and the number of machines (m). These
11 instance types are shown in the first two columns of Table 1. Moreover, the same table
shows—in the 3rd column—the maximum CPU time allotted for each instance type (2n

seconds). For each of the 11 instance types ten problem instances were randomly generated,
which is a common choice in recent works dealing with this or related problems (Fanjul-
Peyro and Ruiz 2010; Zaidi et al. 2010), in the following manner:

– Concerning the SNIM-WCT problem with uniform parallel machines, the speed of the
m machines and the weights of the n jobs were chosen uniformly at random from
{1, . . . ,10}. In addition, the job processing times (pj) were chosen uniformly at random
from {1, . . . ,100}.

– Concerning the SNIM-WCT problem with unrelated parallel machines, the weights of
the n jobs were selected uniformly at random from {1, . . . ,10} and the processing time of
job j on machine i (pij , i = 1, . . . , n and j = 1, . . . ,m) was chosen uniformly at random
from {1, . . . ,100}.

In total, this amounts to 110 problem instances for each problem type (that is, uniform or
parallel machines).

Non-parametric tests (Garcia et al. 2008) have been used to compare the results of the
different optimisation algorithms under consideration. The only condition to be fulfilled for
the use of non-parametric tests is that the algorithms to be compared should have been tested
under the same conditions (that is, the same set of problem instances, the same stopping
conditions, the same number of runs, etc.). Specifically, we have considered two alternative
methods based on non-parametric tests to analyse the experimental results:

– The first method is the application of Iman and Davenport’s test (1980) with Holm’s
method (1979) as a post-hoc procedure. The first test may be used to see whether there
are significant statistical differences among the algorithms in a certain set of tested algo-
rithms. If such differences are detected, then Holm’s method is employed to compare the
best algorithm (that is, the control algorithm) with the remaining ones.

Ann Oper Res

Table 1 11 instance types
considered concerning the
SNIM-WCT problem with
uniform and unrelated parallel
machines. The last table column
provides the maximum CPU time
limit for each instance type (in
seconds)

Number of jobs (n) Number of machines (m) Time limit (s)

20 5 40

10 40

50 5 100

10 100

20 100

100 5 200

10 200

20 200

200 5 400

10 400

20 400

Table 2 Parameters values
Parameter Value

Elite set size (maxElite) 10

Frequency evolutionary path-relinking (freqEvol) 20

Frequency VND (freqVND) 20

– The second method is the utilisation of Wilcoxon’s matched-pairs signed-ranks test
(1945). With this test, the results of two algorithms may be directly compared.

4.2 Study of parameter α

In this section, we present a study of the influence of parameter α which is associated with
the generation of the restricted candidate lists. Note that with rather low values of α the
resulting restricted candidate lists are rather small, which means that the generated solutions
are rather close to the greedy solution. On the other hand, with rather high values of α, the
size of the restricted candidate lists is rather large, and the solution construction is more
biased towards exploration.

In order to study the influence of α, we applied GRASP+PR with five different settings
(α = {0.02,0.05,0.1,0.2,0.5}) once to each of the 220 problem instances, considering the
SNIM-WCT problem with uniform and with unrelated machines. The values for the remain-
ing three parameters were fixed after tuning by hand as shown in Table 2.

Then for each of the 22 problem types—11 concerning uniform parallel machines, and
11 considering unrelated parallel machines—the average result for each of the five algorithm
versions was computed. Based on these average results, a ranking of the five algorithm ver-
sions was computed for each problem type. More specifically, the algorithm version with the
best average result for a certain problem type was assigned rank 1, while the algorithm ver-
sion with the worst average result obtained rank 5. Finally, we computed for each algorithm
version the average rank (over the ranks for the 22 problem types). These average ranks are
shown in the form of bar plots for all five algorithm versions in Fig. 5. The algorithm version
with the smallest value for α—that is, α = 0.02—has obtained the best average rank. This
means that solutions close to the greedy solution are a good starting point for the exploration

Ann Oper Res

Fig. 5 Average rankings
obtained by five versions of
GRASP+PR, as defined by five
different settings for parameter α

Table 3 Comparison, using Holm’s test, of four GRASP+PR versions (α ∈ {0.05,0.1,0.2,0.5}) with the
control algorithm using α = 0.02

α (alg. version) z p-value alpha/i Diff.?

0.25 2.574349 0.010043 0.0125 yes

0.1 2.002271 0.045256 0.016667 no

0.05 1.287174 0.198033 0.025 no

0.5 0.095346 0.92404 0.05 no

of promising areas of the search space. Therefore, the setting of α = 0.02 will be used for
all experiments presented in subsequent sections.

In order to study the statistical significance of these results, we applied Iman and Daven-
port’s test (the level of significance considered was 0.05). The results show the existence of
significant differences among the five different algorithm versions: the statistical value 2.81
is greater than the critical value of 2.48. With regard to this result, we have compared the
control algorithm—GRASP+PR with α = 0.02, which is the best ranked algorithm—with
the other four GRASP+PR versions, by means of Holm’s test. Tables 3 provides all corre-
sponding values (z, p-value, and alpha/i) concerning a significance level of 0.05. The last
column indicates whether Holm’s test finds statistical differences between the control algo-
rithm and the corresponding algorithm version. If the corresponding p-value is smaller than
the adjusted alpha, the test detects significant differences between them, which means that
the control algorithm is better. Although Holm’s test does not detect significant differences
between version using α = 0.02 and the remainder (except that using α = 0.25), we will use
α = 0.02 because it obtained the best averaged ranking.

4.3 Comparison to existing approaches

In this section, we compare GRASP+PR to different approaches found in the literature
for tackling the SNIM-WCT problem. More specifically, we considered the following ap-
proaches (see also Sect. 2):

– Iterative multistart method (MultiS) (Vredeveld and Hurkens 2002).
– Tabu search (Tabu) (Vredeveld and Hurkens 2002).

Ann Oper Res

Table 4 Results of the studied algorithms averaged over the 10 instances of each of the 11 instance types.
These results concern the case of uniform parallel machines

n m GRASP+PR GA+H DE DE+VND GA GA+VND Tabu MultiS

200 20 28166 30230.3 44700 34236.6 44410.9 29724.3 28183 28178

200 10 53613.4 57721.5 75544.7 59772.6 76638.3 53620 53819.7 53664.3

200 5 121694.1 128153.2 140363.2 124379.4 146625.9 121671 122969.7 122003

100 20 6266.4 6684.3 8498.3 6846.5 8367.6 6281.4 6278.6 6272.8

100 10 9814 10488.1 11841.1 9841.2 12426.2 10151.2 9835.7 9819.6

100 5 18252.1 19382.3 19643.7 18408.7 21080.7 18662 18267.3 18252.3

50 20 2263.2 2378.5 3214.8 2279.4 3506.2 2280 2278.2 2260.7

50 10 4020.9 4250.7 4983.9 4046.3 5615.5 4047.8 4046.4 4031.1

50 5 7699.3 7966.8 8149.3 7712.1 8948.6 7708.3 7721.2 7698.9

20 10 1164.2 1223.5 1220.6 1169.8 1415.5 1172.2 1170.5 1164.2

20 5 1932.3 1988.7 1934.1 1933.8 2105 1942.5 1936.3 1932.3

– Genetic algorithm (GA) (Zaidi et al. 2010).
– Differential evolution (DE) (Zaidi et al. 2010).
– Hybrid approaches with variable neighbourhood descent (GA+VND and DE+VND)

(Zaidi et al. 2010).
– A second version of a genetic algorithm (GA+H) (Lin et al. 2011b).

All these approaches were re-implemented in C++ using the same data structures as
GRASP+PR. The parameter values used for each considered algorithm are those recom-
mended in the original works. In order to assure a fair comparison, each algorithm was
applied under the same conditions as GRASP+PR; that is, each algorithm was applied ex-
actly once to each of the 220 problem instances. Moreover, the same CPU time limits were
used as with GRASP+PR (see Table 1).

4.3.1 Case 1: uniform parallel machines

Table 4 presents the results of all algorithms averaged over the 10 instances for each of the
11 problem types. The best result for each instance type is indicated in bold. In addition, we
have undertaken a comparative analysis by means of Wilcoxon’s test. Table 5 summarises
the results of this test by providing the values of R+ (associated with GRASP+PR) and
R− (associated with the corresponding competitor). The last table column indicates whether
Wilcoxon’s test found statistical differences between GRASP+PR and the corresponding
competitor algorithm. If min(R+,R−) is less than or equal to the critical value, the test has
detected significant differences between the algorithms, which means that one algorithm
outperforms the other. If this is the case and if R− = min(R+,R−), then GRASP+PR is
statistically better than the corresponding competitor algorithm.

The results of the algorithms and the additional statistical analysis allows us to make the
following observations:

– The proposed GRASP+PR statistically outperforms all competing algorithms (see Ta-
ble 5).

– Concerning the results shown in Table 4, GRASP+PR obtains the best average result in 8
out of 11 instances types.

Ann Oper Res

Table 5 GRASP+PR versus competitors using Wilcoxon’s test (significance level α = 0.05, critical value =
10; significance level α = 0.1, critical value = 13) concerning the case of uniform parallel machines

Competitor R+ R− Diff.? α = 0.05/0.1

GA+H 66 0 yes/yes

DE 66 0 yes/yes

DE+VND 66 0 yes/yes

GA 66 0 yes/yes

GA+VND 64 2 yes/yes

Tabu 66 0 yes/yes

MultiS 53.5 12.5 no/yes

Table 6 Results of the studied algorithms averaged over the 10 instances of each of the 11 instance types.
These results concern the case of unrelated parallel machines

n m GRASP+PR GA+H DE DE+VND GA GA+VND Tabu MultiS

200 20 17002 17332.6 156913.1 89286.5 149463.9 17029.8 17066.8 17053

200 10 52933.2 53739.9 253703.8 73739 256803.9 52986.6 53039.2 52986.3

200 5 182120 183357.4 459479.4 182161.4 483989.6 182201.7 182710.9 182189.1

100 20 5602.5 5877.6 41668 9087.1 42760.8 9099.1 5657.1 5621.1

100 10 14921.4 15171.1 57545.7 14965.6 66673.8 19645.2 14992.5 14935.8

100 5 45961.5 46406.9 90685.7 46012.2 116467.4 46012.2 46014.5 45967.9

50 20 1833.4 1923.1 10295.8 1855.9 12807.6 1855.9 1858.5 1834.1

50 10 4611.2 4726 11581.2 4626.5 17043 4626.5 4654.8 4611.2

50 5 12625.1 12781.5 14407.9 12634.4 28506.6 12665.2 12642.6 12625.1

20 10 1298.9 1332.2 1315.2 1300.8 3881.5 1303 1298.9 1298.9

20 5 2512.2 2569.7 2512.2 2512.2 4641.9 2529.8 2512.2 2512.2

– MultiS and GA+VND are the best competitors of GRASP+PR. Especially for smaller
problem instances, MultiS is able to match the results of GRASP+PR.

– The differences between the performance of DE and GA and their respective hybridiza-
tions with VND allow us to conclude the importance of local search procedures in order
to reach high-quality solutions.

4.3.2 Case 2: unrelated parallel machines

The same experimental evaluation was repeated concerning the 110 problem instances for
the case of unrelated parallel machines. Table 6 presents the results of all algorithms aver-
aged over the 10 instances for each of the 11 problem types. The best result for each instance
type is again indicated in bold. As in the case of uniform parallel machines, we have under-
taken a comparative analysis by means of Wilcoxon’s test. Table 7 summarises the results
of this test.

The following observations can be made with respect to the results of the algorithms and
the additional statistical analysis:

– The proposed GRASP+PR outperforms, again, the competing algorithms from the litera-
ture in a statistically significant way (see Table 7).

Ann Oper Res

Table 7 GRASP+PR versus competitors using Wilcoxon’s test (significance level α = 0.05, critical value =
10; significance level α = 0.1, critical value = 13) concerning the case of unrelated parallel machines

Competitor R+ R− Diff.? α = 0.05/0.1

GA+H 66 0 yes/yes

DE 65.5 0.5 yes/yes

DE+VND 65.5 0.5 yes/yes

GA 66 0 yes/yes

GA+VND 66 0 yes/yes

Tabu Search 64.5 1.5 yes/yes

Multistart 61 5 yes/yes

Table 8 GRASP+PR versus pure GRASP. Results of Wilcoxon’s test (significance level α = 0.05, critical
value = 10; significance level α = 0.1, critical value = 13)

Competitor R+ R− Diff.? α = 0.05/0.1

GRASP (Uniform par. machines) 55 11 no/yes

GRASP (Unrelated par. machines) 53 13 no/yes

– It is worth noting that GRASP+PR is able to achieve the best average performance for
all 11 instance types. For the largest problem instances the results of GRASP+PR are not
matched by any of the competing algorithms.

– As in the uniform instances, there is a great difference between the performance of DE
and GA and their respective hybridizations with VND. Again, the local search procedure
helps to significantly improve the quality of the obtained solutions.

4.4 Influence of path-relinking on GRASP+PR

The experimental results presented in this section aim at studying the influence of path-
relinking on the performance of GRASP+PR. For this purpose we have repeated all experi-
ments with pure GRASP, that is, the algorithm proposed in Sect. 3 without the path-relinking
components. GRASP parameters are the same as those studied in Sect. 4.2 for GRASP+PR
in order to focus exclusively on the effect of path-relinking on the behaviour of GRASP+PR.
The Table 8 summarises the results of applying Wilcoxon’s test with p-value = 0.05 and p-
value = 0.1 both for the case of uniform and unrelated parallel machines, where the values
of R+ (associated with GRASP+PR) and R− (associated with pure GRASP) are specified.
Wilcoxon’s test determines that GRASP+PR is statistically better than pure GRASP for
both problem versions. This allows us to conclude that the combination of basic GRASP
with path-relinking and evolutionary path-relinking helps us to achieve solutions of higher
quality than those obtained by the pure algorithm version.

5 Conclusions

This paper has proposed a GRASP+PR algorithm for the SNIM-WCT problem, which com-
bines the basic GRASP scheme with other elements such as path-relinking and evolutionary
path-relinking. Moreover, we have performed a comparative study between the proposed

Ann Oper Res

algorithm and the previously existing metaheuristics for this kind of problem. This study
has shown that the GRASP+PR algorithm provides the best performance from among the
studied algorithms. In addition, elements such as the greedy randomised initial solutions and
path-relinking, which distinguish GRASP+PR from compared metaheuristics, have proven
to be quite useful increasing the quality of the solutions and achieving high-quality solu-
tions in a reasonable time. So, we can conclude from the experiments performed that this
algorithm stands out as an excellent alternative to the existing methods for the SNIM-WCT
problem.

We believe that the GRASP+PR algorithm presented in this paper is a significant contri-
bution, worthy of future study. We will intend to explore two interesting avenues of research.
Firstly, to adapt the GRASP+PR approach for its application to other variants of schedul-
ing problems on parallel machines. Secondly, to build hybrid metaheuristics combining the
proposed GRASP+PR with other salient metaheuristics for the SNIM-WCT problem.

Acknowledgements This work was supported by grant TIN2011-24124 of the Spanish government and
by grant P08-TIC-4173 of the Andalusian regional goverment.

Appendix: Abbreviations

Table 9 List of abbreviations

Abbreviation Description

CPU Control Processing Unit

DE Differential Evolution

GA Genetic Algorithm

GRASP Greedy Randomized Adaptive Search Procedure

MultiS Iterative MultiStart method

PR Path Relinking

RAM Random Access Memory

RCL Restricted Candidate List

SNIM-WCT Scheduling on Non-Identical parallel Machines with Minimising the total Weighted
Completion Times

VND Variable Neighbourhood Descent

References

Aiex, R., Binato, S., & Resende, M. (2003). Parallel GRASP with path-relinking for job shop scheduling.
Parallel Computing, 29(4), 393–430.

Aiex, R., Resende, M., Pardalos, P., & Toraldo, G. (2005). GRASP with path relinking for three-index as-
signment. INFORMS Journal on Computing, 17(2), 224–247.

Allahverdi, A., Gupta, J., & Aldowaisan, T. (1999). A review of scheduling research involving setup consid-
erations. Omega, 27(2), 219–239.

Anghinolfi, D., & Paolucci, M. (2007). Parallel machine total tardiness scheduling with a new hybrid meta-
heuristic approach. Computers & Operations Research, 34(11), 3471–3490.

Arnaout, J. P., Rabadi, G., & Musa, R. (2010). A two-stage ant colony optimization algorithm to minimize the
makespan on unrelated parallel machines with sequence-dependent setup times. Journal of Intelligent
Manufacturing, 21, 693–701.

Azizoglu, M., & Kirca, O. (1999a). On the minimization of total weighted flow time with identical and
uniform parallel machines. European Journal of Operational Research, 113(1), 91–100.

Ann Oper Res

Azizoglu, M., & Kirca, O. (1999b). Scheduling jobs on unrelated parallel machines to minimize regular total
cost functions. IIE Transactions, 31(2), 153–159.

Baker, K., & Merten, A. (1973). Scheduling with parallel machines and linear delay costs. Naval Research
Logistics Quarterly, 20, 793–804.

Belouadah, H., & Potts, C. (1994). Scheduling identical parallel machines to minimize total weighted com-
pletion time. Discrete Applied Mathematics, 48(3), 201–218.

Blazewicz, J., Ecker, K., Pesch, E., Schmidt, G., & Weglarz, J. (2007). International handbooks on in-
formation systems. Handbook on scheduling: models and methods for advanced planning. Secaucus:
Springer.

Brucker, P., & Hurink, J. (2000). Solving a chemical batch scheduling problem by local search. Annals of
Operations Research, 96(1), 17–38.

Bruno, J., Coffman, E., & Sethi, R. (1974). Scheduling independent tasks to reduce mean finishing time.
Communications of the ACM, 17(7), 382–387.

Buxey, G. (1989). Production scheduling: practice and theory. European Journal of Operational Research,
39, 17–31.

Chen, C. L., & Chen, C. L. (2009). Hybrid metaheuristics for unrelated parallel machine scheduling with
sequence-dependent setup times. The International Journal of Advanced Manufacturing Technology,
43(1), 161–169.

Chen, Z. L., & Powell, W. (1999). Solving parallel machine scheduling problems by column generation.
INFORMS Journal on Computing, 11(1), 78–94.

Cheng, R., Gen, M., & Tozawa, T. (1995). Minmax earliness/tardiness scheduling in identical parallel ma-
chine system using genetic algorithms. Computers & Industrial Engineering, 29(1–4), 513–517.

Cheng, T., & Sin, C. (1990). A state-of-the-art review of parallel-machine scheduling research. European
Journal of Operational Research, 47(3), 271–292.

Croce, F. D., Tadei, R., & Asioli, P. (1999). Scheduling a round robin tennis tournament under courts and
players availability constraints. Annals of Operations Research, 92, 349–361.

Dodin, B., & Chan, K. H. (1991). Application of production scheduling methods to external and internal audit
scheduling. European Journal of Operational Research, 52(3), 267–279.

Elmaghraby, S., & Park, S. (1974). Scheduling jobs on a number of identical machines. AIIE Transactions,
6(1), 1–13.

Fanjul-Peyro, L., & Ruiz, R. (2010). Iterated greedy local search methods for unrelated parallel machine
scheduling. European Journal of Operational Research, 207(1), 55–69.

Fanjul-Peyro, L., & Ruiz, R. (2011). Size-reduction heuristics for the unrelated parallel machines scheduling
problem. Computers & Operations Research, 38(1), 301–309.

Fanjul-Peyro, L., & Ruiz, R. (2012). Scheduling unrelated parallel machines with optional machines and jobs
selection. Computers & Operations Research, 39(7), 1745–1753.

Feng, G., & Lau, H. (2008). Efficient algorithms for machine scheduling problems with earliness and tardiness
penalties. Annals of Operations Research, 159, 83–95.

Feo, T., & Resende, M. (1989). A probabilistic heuristic for a computationally difficult set covering problem.
Operations Research Letters, 8(2), 67–71.

Feo, T., & Resende, M. (1995). Greedy randomized adaptive search procedures. Journal of Global Optimiza-
tion, 6(2), 109–133.

Garcia, S., Molina, D., Lozano, M., & Herrera, F. (2008). A study on the use of non-parametric tests for
analyzing the evolutionary algorithms’ behaviour: A case study on the CEC’2005 special session on
real parameter optimization. Journal of Heuristics, 15, 617–644.

Glass, C. A., Potts, C. N., & Shade, P. (1994). Unrelated parallel machine scheduling using local search.
Mathematical and Computer Modelling, 20(2), 41–52.

Glover, F. (1996). Tabu search and adaptive memory programing—advances, applications and challenges. In
Interfaces in computer science and operations research (pp. 1–75). Norwell: Kluwer Academic.

Hall, L. A., Shmoys, D. B., & Wein, J. (1996). Scheduling to minimize average completion time: off-line and
on-line algorithms. In Proceedings of the seventh annual ACM-SIAM symposium on discrete algorithms,
SODA’96 (pp. 142–151). Philadelphia: Society for Industrial and Applied Mathematics.

Hall, L., Schulz, A., Shmoys, D., & Wein, J. (1997). Scheduling to minimize average completion time: off-
line and on-line approximation algorithms. Mathematics of Operations Research, 22(3), 513–544.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics,
6, 65–70.

Iman, R., & Davenport, J. (1980). Approximations of the critical region of the Friedman statistic. Communi-
cations in Statistics. Theory and Methods, 9(6), 571–595.

Jarrah, A. I. Z., Bard, J. F., & de Silva, A. H. (1992). A heuristic for machine scheduling at general mail
facilities. European Journal of Operational Research, 63(2), 192–206.

Ann Oper Res

Kendall, G., Tan, K., Burke, E., & Smith, S. (2010). Preface for the special volume on computational intelli-
gence in scheduling. Annals of Operations Research, 180, 1–2.

Laguna, M., & Marti, R. (1999). GRASP and path relinking for 2-layer straight line crossing minimization.
INFORMS Journal on Computing, 11(1), 44–52.

Lenstra, J., Rinnooy-Kan, A., & Brucker, P. (1977). Complexity of machine scheduling problems. In B. K. P.
L. Hammer, E. L. Johnson & G. Nemhauser (Eds.), Studies in integer programming, annals of discrete
mathematics (Vol. 1, pp. 343–362). Amsterdam: Elsevier.

Li, K., & Yang, S. L. (2009). Non-identical parallel-machine scheduling research with minimizing to-
tal weighted completion times: models, relaxations and algorithms. Applied Mathematical Modelling,
33(4), 2145–2158.

Lin, S. W., Lu, C. C., & Ying, K. C. (2011a). Minimization of total tardiness on unrelated parallel machines
with sequence- and machine-dependent setup times under due date constraints. The International Jour-
nal of Advanced Manufacturing Technology, 53, 353–361.

Lin, Y., Pfund, M., & Fowler, J. (2011b). Heuristics for minimizing regular performance measures in unre-
lated parallel machine scheduling problems. Computers & Operations Research, 38(6), 901–916.

McNaughton, R. (1959). Scheduling with deadlines and loss functions. Management Science, 6(1), 1–12.
Mokotoff, E. (2001). Parallel machine scheduling problems: a survey. Asia-Pacific Journal of Operational

Research, 18(2), 193–242.
Pendharkar, P., & Rodger, J. (2000). Nonlinear programming and genetic search application for production

scheduling in coal mines. Annals of Operations Research, 95(1), 251–267.
Phillips, C., Stein, C., & Wein, J. (1997). Parallel machine scheduling problems: a survey. SIAM Journal on

Discrete Mathematics, 10(4), 573–598.
Resende, M., Marti, R., Gallego, M., & Duarte, A. (2010). GRASP and path relinking for the max-min

diversity problem. Computers & Operations Research, 37(3), 498–508.
Resende, M., & Ribeiro, C. (2003). Greedy randomized adaptive search procedures. In F. Glover & G.

Kochenberger (Eds.), Handbook of metaheuristics (pp. 219–249). Norwell: Kluwer Academic.
Resende, M., & Ribero, C. (2003). A GRASP with path-relinking for private virtual circuit routing. Networks,

41, 104–114.
Resende, M., & Werneck, R. (2004). A hybrid heuristic for the p-median problem. Journal of Heuristics,

10(1), 59–88.
Ribeiro, C., Uchoa, E., & Werneck, R. (2002). A hybrid GRASP with perturbations for the steiner problem

in graphs. INFORMS Journal on Computing, 14(3), 228–246.
Rochat, Y. (1998). A genetic approach for solving a scheduling problem in a robotized analytical system.

Journal of Heuristics, 4, 245–261.
Rosenbloom, E., & Goertzen, N. (1987). Cyclic nurse scheduling. European Journal of Operational Re-

search, 31, 19–23.
Sarin, S., Ahn, S., & Bishop, A. (1988). An improved branching scheme for the branch and bound procedure

of scheduling n jobs on m parallel machines to minimize total weighted flowtime. International Journal
of Production Research, 26(7), 1183–1191.

Schulz, A., & Skutella, M. (1997). Random-based scheduling: new approximations and LP lower bounds.
In Proceedings of the first international symposium on randomization and approximation techniques in
computer science (Random’97) (pp. 119–133). Berlin: Springer.

Schulz, A. S., & Skutella, M. (2002). Scheduling unrelated machines by randomized rounding. SIAM Journal
on Discrete Mathematics, 15, 450–469.

Skutella, M. (2001). Convex quadratic and semidefinite programming relaxations in scheduling. Journal of
the ACM, 48, 206–242.

Vredeveld, T., & Hurkens, C. (2002). Experimental comparison of approximation algorithms for scheduling
unrelated parallel machines. INFORMS Journal on Computing, 14(2), 175–189.

Waligora, G. (2009). Tabu search for discrete-continuous scheduling problems with heuristic continuous re-
source allocation. European Journal of Operational Research, 193(3), 849–856.

Weng, M., Lu, J., & Ren, H. (2001). Unrelated parallel machine scheduling with setup consideration and a
total weighted completion time objective. International Journal of Production Economics, 70(3), 215–
226.

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics, 1, 80–83.
Zaidi, M., Jarboui, B., Loukil, T., & Kacem, I. (2010). Hybrid meta-heuristics for uniform parallel machine

to minimize total weighted completion time. In Proc. of 8th international conference of modeling and
simulation (MOSIM’10).

4. An Iterated Greedy Algorithm for the Large-Scale Unrelated Parallel Machines Scheduling Problem 95

4. An Iterated Greedy Algorithm for the Large-Scale Unrelated

Parallel Machines Scheduling Problem

The journal paper associated to this part is:

F.J. Rodŕıguez, M. Lozano, C. Blum, C. Garćıa-Mart́ınez, An Iterated Greedy Algorithm for
the Large-Scale Unrelated Parallel Machines Scheduling Problem. Computers & Opera-
tions Research. Submitted on second revision.

• Status: Submitted on second revision

• Impact Factor (JCR 2011): 1.720.

• Subject Category: Computer Science, Interdisciplinary Applications. Ranking 33 / 99
(Q2).

• Subject Category: Engineering, Industrial. Ranking 7 / 43 (Q1).

• Subject Category: Operations Research & Management Science. Ranking 10 / 77 (Q1).

An Iterated Greedy Algorithm for the Large-Scale

Unrelated Parallel Machines Scheduling Problem

F.J. Rodrigueza, M. Lozanoa, C. Blumb, C. Garćıa-Mart́ınezc

aDepartment of Computer Science and Artificial Intelligence, University of Granada,
Granada, Spain

bALBCOM Research Group, Technical University of Catalonia, Barcelona, Spain
cDepartment of Computing and Numerical Analysis, University of Córdoba, Córdoba,

Spain

Abstract

In this work, we tackle the problem of scheduling a set of jobs on a set of

unrelated parallel machines with minimising the total weighted completion

times as performance criteria. The iterated greedy metaheuristic generates

a sequence of solutions by iterating over a constructive heuristic using de-

struction and construction phases. In the last few years, iterated greedy

has been employed to solve a considerable number of problems. This is be-

cause it is based on a very simple principle, it is easy to implement, and

it often exhibits an excellent performance. Moreover, scalability for high-

dimensional problems becomes an essential requirement for modern optimi-

sation algorithms. This paper proposes an iterated greedy model for the

above-mentioned scheduling problem to tackle large-size instances. The ben-

efits of our proposal in comparison to existing metaheuristics proposed in the

literature are experimentally shown.

Keywords: Iterated greedy, unrelated parallel machines, large-scale

optimisation, scheduling

1. Introduction

The unrelated parallel machine scheduling with minimising total weighted

completion times problem (UPMS) considers a set of n jobs that have to be

processed on m unrelated parallel machines so that the sum of the weighted

completion times of the jobs is minimised. Different real-world applications

of scheduling on parallel machines can be found in the literature, covering a

Preprint submitted to Computers and Operations Research May 23, 2012

*Manuscript
Click here to view linked References

wide variety of fields such as human resources [1], production management

[2, 3, 4], mail facilities [5], robotized systems [6], sport tournaments [7], and

chemical processes [8].

The problem of minimising the total weighted completion time on two

identical machines is NP-hard [9, 10]. Since the introduction of this prob-

lem by McNaughton in [11], different approaches to solve it have been pre-

sented. In the first place, there are exact procedures based on branch and

bound [12, 13] and mathematical programming [14]. However, these ap-

proaches show limitations to solve large problem instances (branch and bound

is limited to a maximum of 25 jobs and 5 machines, while the largest in-

stances solved by mathematical programming have 100 jobs and 10 ma-

chines). Therefore, approximate algorithms are the most common way to

tackle this problem. Within this latter category, we distinguish two com-

pletely different schemes: 1) approximate algorithms that, in general, try to

find optimal solutions to relaxations of the problem (a review of the different

proposals that fit this scheme can be found in [15]) and 2) algorithms based

on metaheuristics, including different approaches such as local search meth-

ods [16], genetic algorithms [17], tabu search [16], and a greedy randomized

adaptive search procedure [18].

Nowadays, large scale optimisation problems have been one of the most

interesting trends in the last years for what concerns research on evolutionary

algorithms and metaheuristics. This is due to the fact that many real-world

problems are of large size. Unfortunately, the performance of many avail-

able optimisation algorithms deteriorates rapidly as the dimensionality of

the search space increases. Thus, scalability for high-dimensional problems

becomes an essential requirement for modern optimisation algorithms. In

particular, we can find metaheuristics to face parallel machine scheduling

problems that incorporate techniques for dealing with large size instances

[19]. However, for the UPMS problem, we can observe that the previous stud-

ies has focused on studying the performance of the proposed metaheuristics

on small/medium-size instances (up to 200 jobs) [17, 16, 18].

In this paper, we propose an iterated greedy (IG) algorithm [20, 21, 22]

that allows reaching high-quality solutions especially for large-size instances,

in scenarios with up to 1000 jobs and 50 machines. IG is a very simple

and effective metaheuristic recently developed for combinatorial optimisation

problems that follows a very simple principle, is easy to implement and can

show excellent performance; in fact, it has exhibited state-of-the-art perfor-

mances for a considerable number of problems [23, 24, 25, 26]. IG algorithms

2

try to improve iteratively a solution by removing elements from this solution

and completing the resulting partial solution using a constructive procedure.

Moreover, IG algorithms may make use of an improvement phase that takes

the incumbent solution after destruction and reconstruction and performs

local perturbations in order to find a better solution close to the incumbent

one.

The remainder of this paper is structured as follows. In Section 2, we

present the UPMS problem in detail and give an overview of the existing

research on metaheuristics for this problem. In Section 3, we describe the

proposed IG. In Section 4, we perform an experimental analysis of the pro-

posal that has the following aims: 1) to study the IG behaviour depending

on the parameters and settings associated and 2) to compare its results with

state-of-the-art metaheuristics for the UPMS problem. Finally, in Section 5,

conclusions and further work are presented.

2. The UPMS problem

The UPMS problem can technically be described as follows. Given is a

set J of n jobs. Each job j ∈ J has to be processed on exactly one machine

i from a set M of m parallel machines. Note that a job may be processed by

only one machine at a time, and a machine can process at most one job at a

time. If a job j is processed on a machine i, it will take a positive integral

processing time pij whose value is determined arbitrarily. Furthermore, each

job has a non-negative integer weight wj . The objective is to schedule the jobs

so that the sum of the weighted completion times of the jobs is minimised:

Minimise

n
∑

i=1

wj · Cj,

where Cj is the time at which the job j is completed.

It is important to note that the jobs assigned to a specific machine are

processed in non-decreasing order with respect to the ratio between process-

ing time (pij) and weight (wj). This order is known as the weighted shortest

processing time (WSPT) order. According to [27], sequencing the jobs in

each machine following the WSPT ordering produces an optimal scheduling

for this machine. A mixed integer linear programming formulation for the

UPMS problem is provided for the sake of completeness. Let xij = 1 if the

job j is processed on machine i and 0, otherwise. The model is stated by

Vredeveld et al. [16] as:

3

min

n
∑

i=1

wj · Cj

subject to:
∑

i

xij = 1 ∀j,

Cj =

n
∑

i=1

xij · (pij +
∑

k≺ij

(pik · xik)) ∀j,

xij ∈ {0, 1} ∀i, j.

(1)

(2)

(3)

(4)

Constraint (3) ensures that the completion time of a job is its own pro-

cessing time plus the processing times of its predecessors (according to the

WSPT rule) on the machine on which it is scheduled and constraint (2) en-

sures that each job is scheduled on exactly one machine. According to the

standard notation proposed by Azizoglu et al. [28] and Allahverdi et al. [29],

the family of problems considered in this work is notated in the literature in

the following manner: Rm||
∑

wj ∗ Cj.

Different approaches considering a wide variety of metaheuristics have

been presented so far to deal with the UPMS problem. In the first place,

Weng et al. [30] presented seven constructive procedures for the UPMS prob-

lem and performed an experimental comparison between them. The compu-

tational experiments performed consider 4, 6, 8, 10 and 12 machines, and 40,

60, 80, 100 and 120 jobs. Three other constructive proceures were presented

by Li et al [17]. One of them was a completely new development, whereas

the other two were adaptations of those proposed by Alidaee et al [31] and

Koulamas [32].

Later, Vredeveld et al. [16] presented two metaheuristics based on local

search. These local search procedures make use of two types of different

neighbourhood functions. The first function is called the jump neighbourhood.

It consists in selecting a job j and a machine i such that job j is not scheduled
on machine i. Then job j is moved to machine i. The second one is called

swap neighbourhood. For this neighbourhood, two jobs j and k must be

selected and assigned to different machines. The corresponding neighbouring

solution is obtained by interchanging the machine allocations of the two

selected jobs. These two neighbourhood functions were applied in the two

metaheuristics based on local search proposed in [16]:

• Multistart iterative method. This procedure iteratively applies a first-

4

improvement local search to randomly generated solutions.

• Tabu search. This algorithm improves local search by storing informa-

tion about solutions visited in past iterations in a so-called tabu list

in order to avoid cycling, that is, returning to already visited solutions

over and over again.

Recently, Li et al [17] presented a genetic algorithm approach to deal with

unrelated parallel machine scheduling using three different performance cri-

teria. In particular, the proposed approach initialises the population adding

some solutions generated by heuristic methods. The remaining ones are gen-

erated randomly to provide enough diversity. Roulette wheel selection is used

for choosing a new population with respect to a fitness-proportional probabil-

ity distribution. The crossover and mutation schemes are the ones proposed

by Cheng et al. [33]. Elitism is considered by removing two chromosomes and

adding the best two previous chromosomes into the new population if they

are not selected through the roulette wheel process. The experimental study

performed compares the proposed genetic algorithm with a set of heuris-

tics. Results show that the proposed algorithm outperforms the competing

heuristics.

Finally, Rodriguez et al. [18] proposed a greedy randomized adaptive

search procedure (GRASP) to solve the problem of scheduling on unrelated

and uniform parallel machines. The proposed algorithm is a multi-start two-

phase metaheuristic basically consisting of a solution construction phase and

an improvement phase. The solution construction mechanism builds an ini-

tial solution using a greedy randomized procedure. This solution is improved

by means of a variable neighbourhood descent method. Moreover, the pro-

posed metaheuristic combines the basic GRASP scheme with backward path-

relinking as an intensification method. Computational experiments consider

instances with up to 200 jobs and compare the proposed algorithm with five

different metaheuristics proposed previously in the literature. This study

concludes that the proposed GRASP significantly outperforms the compet-

ing algorithms.

Moreover, it is important to note that metaheuristics have also been

widely used for solving the problem of scheduling on unrelated parallel ma-

chines with various performance criteria. Tabu search, simulated annealing

and genetic algorithms were applied in [34] to deal with the problem of min-

imising the makespan for unrelated parallel machines. The same problem

5

has been recently tackled by means of an iterated greedy metaheuristic by

Fanjul-Peyro et al. [23]. Chen et al. [35] presented an hybrid metaheuristic

combining tabu search and variable neighbourhood descent to minimise the

total weighted tardiness on unrelated parallel machines.

Uniform and identical parallel machines scheduling problems have also

been tackled with metaheuristics. Anghinolfi [36] faced the problem of min-

imising the total weighted tardiness on uniform parallel machines by means

of a hybrid metaheuristic based on simulated annealing, tabu search and

variable neighbourhood search. Zaidi et al. [37] presented four new meta-

heuristics to deal with the minimisation of the total weighted completion

times on uniform parallel machines: a generational genetic algorithm, a dif-

ferential evolution method, and two hybrid metaheuristics incorporating a

variable neighbourhood descent method into the genetic algorithm and the

differential evolution method. Finally, tabu search was proposed by Waligora

[38] to minimise the makespan on identical parallel machines.

3. IG for the UPMS problem

In this section, we develop an IG algorithm to tackle the UPMS problem.

The proposed IG tries to improve iteratively a solution through four different

stages: destruction, construction, improvement, and the acceptance criterion.

IG starts by generating an initial solution by means of a constructive proce-

dure. Then, it applies iteratively the above-mentioned four-step process until

a predefined stopping condition is satisfied. In the first place, some elements

of the current solution are dropped (destruction). Then, the resulting partial

solution is reconstructed using a constructive procedure (construction). A

local improvement phase is applied to the reconstructed solution in order

to improve its quality (improvement). Finally, IG chooses the new current

solution between the current solution and the solution obtained from the

improvement procedure (acceptance criterion).

Firstly, in Sections 3.1 and 3.2, we detail the constructive and destructive

procedures of the proposed IG. Then, in Section 3.3, we detail the local im-

provement phase. Finally, in Section 3.4, we provide a complete description

of the general scheme of the algorithm.

3.1. Constructive procedure

In this section, we outline the constructive procedure that is employed

in the initialisation and the construction steps of the IG algorithm. The

6

constructive procedure extends a partial solution by adding one component

from a set E of opportunely defined solution components. For the UPMS

problem, this set E is composed of all the pairs (j, i), where j is a job that

belongs to the set of unscheduled jobs (J), i ∈M . At each step, each solution

component e ∈ E is evaluated, searching for the most promising elements

from E, by means of a heuristic h(·), where h(e) denotes the heuristic value

of e. Then, the element e∗ = (j∗, i∗) such that e∗ = argmin{h(e) : e ∈ E}
is selected to be added to the current partial solution. Particularly, for the

UPMS problem, the job j∗ will be scheduled on machine i∗, deleting j∗ from
the set J . This process is repeated until set J is empty. The complete

pseudocode of the constructive procedure can be found in Figure 1.

Input: J,M, h(·)
Output: s
J ← J ;1

E = J ×M ;2

while J 6= ∅ do3

e∗ = (j∗, i∗)← argmin{h(e) : e ∈ E};4

Assign job j∗ to machine i∗ in solution s;5

J ← J\{j∗};6

E = E\{(j∗, i) : i = 1, . . . , m};7

end8

Figure 1: Constructive procedure

For the UPMS problem, we can find in the literature different heuristics

to determine at each step of the constructive procedure the job j∗ ∈ J and

the machine i∗ ∈M in which j∗ will be scheduled:

• Heuristic 1 (h1) [30]. In the first place, jobs are sorted in increasing or-

der according to their weighted processing time (pj/wj : j = 1, . . . , n),
where pj = (

∑m
i=1 pij)/m. At each step, the job from J with the lowest

weighted processing time (j∗) is assigned to the machine i∗, where

i∗ = argmin{ti + pij
∗

: i = 1, . . . , m},

being ti the completion time of the last job scheduled on the machine

i.

7

• Heuristic 2 (h2) [30]. The jobs are sorted in the same way as in h1.
Moreover, at each step the job from J with the lowest weighted pro-

cessing time (j∗) is assigned to the machine i∗ determined as follows:

i∗ = argmin{pij
∗

: i = 1, . . . , m}.

• Heuristics 3 (h3) and 4 (h4) [30] are the same as h1 and h2, respectively,
except that the jobs are sorted according to their weighted processing

time pj/wj, where pj = min{pij : i = 1, . . . , m}.

• Heuristic 5 (h5) [30] assigns at each step the job j∗ ∈ J to the machine

i∗ ∈M such that:

(i∗, j∗) = argmin{(ti + pij)/wj : i = 1, . . . , m; j = 1, . . . , n}.

• Heuristic 6 (h6) [17] employs two steps. In the first one, a job j∗ ∈ J
is selected according to:

j∗ = argmin{ti + pij/wj : i = 1, . . . , m; j = 1, . . . , n},

then, machine i∗ on which it will be processed is determined as follows:

i∗ = argmin{ti + pij
∗

/wj
∗

: i = 1, . . . , m}.

• Heuristic 7 (h7) [31] selects, in the first place, the machine i∗ ∈M with

the earliest starting time, i.e., i∗ = argmin{ti = min{ti : i = 1, . . . , }}.
After that, it assigns the job from J with the lowest weighted processing

time, j∗ = argmin{pi∗j/wj : j = 1, . . . , n}, on machine i∗.

• Heuristic 8 (h8) [32] selects the machine as h7. However, the selected

job j∗ ∈ J is determined such that j∗ = argmin{pi∗j : j = 1, . . . , n}.

3.2. Destructive procedure

In this section, we describe the destructive procedure performed by the

proposed IG. This destruction procedure is performed in an iterative way,

removing an element each time. The process stops when the number of

elements included in set J is equal to nd% of the elements of the current so-

lution. The most simple and extended strategy to perform the IG destructive

8

procedure consists in randomly choosing the elements to be deleted. How-

ever, as it was showed by Fanjul et al. [23] for the case of scheduling on

parallel machines with minimising makespan, more elaborated destruction

procedures can lead to better solutions. Based on this idea, we have studied

two different destruction strategies:

• In the first strategy (D1), one machine is uniformly selected at random

and a binary tournament is performed in order to select the job to be

deleted from this machine. Two jobs are randomly chosen and that

with a lower pij/wj ratio will be dropped. This destructive strategy

tries to move the jobs scheduled at the beginning in each machine,

which are delaying the jobs scheduled after them, to a more suitable

machine.

• The second strategy (D2) also randomly selects a machine. However, it

defines a different strategy to choose a job. In particular, this strategy

selects the jobs whose processing times are shorter in other machines,

and, consequently, could be completed earlier in other machines ([23]).

Once a machine i is selected, the job k that has the largest processing

time difference with resepct to the other machines is deleted:

k = argmax{pij − plj : l ∈M ; l 6= i}.

3.3. Improvement phase

The improvement phase aims to find a better solution close to the solution

generated by the destruction and construction procedures. In the following,

we revise different local search procedures for the UPMS problem that can

be used to perform this task:

• First-improvement local search based on jump moves (F-Jump) [16].

Given a solution s, a neighbour is generated by randomly selecting one

job and assigning this job to a different (arbitrarily chosen) machine.

The first neighbour of the current solution yielding an improvement

in the objective function is selected as the new current solution. This

process is repeated until no improvement is possible.

• First-improvement local search based on swap moves (F-Swap) [16].

This local search procedure works in the same way as the one men-

tioned above, except that the neighbour of the current solution s is

9

generated by interchanging two randomly selected jobs from two dif-

ferent machines.

• A variable neighbourhood descent (VND) method was proposed in [37]

to solve the problem of scheduling on uniform parallel machines. It

uses both jump and swap moves to generate the neighbourhood of the

current solution. In the first place, the neighbours are generated by

means of jump moves and then, once there is no possible improvement,

swap moves are applied. If a swap move leads to a better solution,

jump moves are applied again. It also considers the first-improvement

local search scheme. It is important to note that this procedure is more

time-consuming than the two local search methods outlined above. In

order to reduce its computational cost, we modified the VND method

by avoiding the return to jump moves after applying swap moves. This

way, it is more suitable for dealing with large-size instances.

3.4. General scheme of the proposed IG

The general scheme of the proposed IG is presented in Figure 2. It starts

by generating an initial solution (Initialise(s0, J, h)) by means of the con-

structive procedure described in Section 3.1. In this case, the constructive

procedure—using heuristic h(·)—generates a complete solution s starting

from an empty solution (s0). Then, the IG algorithm performs an itera-

tive process until a maximum computation time limit tmax is reached. Each

iteration consists of the following steps:

• In the destruction phase (Destruction(s, nd, J)), nd% of the elements of

the current solution s are deleted, resulting in a partial solution sd.

• The construction phase (Construction(sd, J, h)) makes use of the con-

structive procedure described in Section 3.1 to complete the partial

solution sd with the jobs from J . The resulting candidate solution is

labelled sc.

• In the improvement phase (Improvement(sc)), a local search procedure

is performed in order to find better solutions near the current solution

sc.

• Finally, an acceptance criterion (AcceptCriterion(sp, s)) decides whether
the solution returned by the improvement phase (sp) will become the

10

new current solution. The most used acceptance criteria are the fol-

lowing ones:

– ’Replace if better’ acceptance criterion (RB). The new solution

(sp) is accepted only if its objective function value is better than

the one of s [39].

– ’Random walk’ acceptance criterion (RW). An IG algorithm using

the RB acceptance criterion may lead to stagnation of the search

due to insufficient diversification [22]. In order to avoid this, dif-

ferent acceptance criteria consider replacing the current solution

by the new solution although its objective function value is worse.

In [22], a simulated annealing acceptance criterion is employed,

whereas in [40], the improved solution sp becomes the new cur-

rent solution independently of its objective function value. In this

work, we have considered a new acceptance criterion to choose

the new current solution. A uniform random number pa between

0 and 1 is generated. If pa ≤ 0.5, sp becomes the new current so-

lution, independently of its objective function value. Otherwise,

sp is discarded.

Input: tmax, nd, h
Output: s
J ← J ;1

Let s0 be an empty solution;2

s← Initialise(s0, J, h);3

while computation time limit tmax not reached do4

sd ← Destruction(s, nd, J);5

sc ← Construction(sd, J, h);6

sp ← Improvement(sc);7

if AcceptCriterion(sp, s) then8

s← sp;9

end10

end11

Figure 2: IG scheme

11

4. Computational experiments

In this section, we present the experiments performed in this work to

analyse the behaviour of the IG algorithm presented in the previous section.

Firstly, we outline the experimental framework used in this study (Section

4.1); then, we show and analyse the results obtained from different experi-

ments carried out with the proposed IG. These experiments have two main

goals: 1) to find suitable values for the IG parameters and understand their

influence on the behaviour of the algorithm (Section 4.2) and 2) to perform

a comparison between the proposed IG and state-of-the-art metaheuristics

from the literature (Section 4.3).

4.1. Experimental framework

All algorithms under consideration have been implemented in C++ and

the source code has been compiled with gcc 4.6. The experiments were con-

ducted on a computer with a 2.8 GHz Intel R© CoreTM i7-930 processor1 (8MB

cache, 4 cores and 8 threads) with 12 GB of RAM running FedoraTM Linux

V15. Each execution of an algorithm is performed sequentially, using a

unique thread. In this work, we have used instances with unrelated par-

allel machines considering 20 different combinations of the number of jobs

(n) and the number of machines (m). These 20 instance types are outlined

in the first two columns of Table 1. Moreover, in the same table we find—in

the 3rd column—the maximum CPU time allotted to each instance type (n
seconds). Seven sets of ten problem instances were randomly generated for

each instance type following different ways of choosing the processing time

of job j on machine i (pij , i = 1, . . . , n and j = 1, . . . , m) and its weight (wj).

• UC1 : In the first set, the processing time of job j on machine i was
chosen uniformly at random from [1, 100]. The weights of the n jobs

were selected uniformly at random from [1, 10]. These kind of instances

are known in the literature as uncorrelated [23].

• Moreover, it is frequent in the literature to find benchmarks where the

processing times are job or machine correlated [23].

– JC : Job correlated instances: processing time pij is determined

by the expression pij = bj + dij where bj values, associated to the

1More information: http://ark.intel.com/Product.aspx?id=41447

12

job j, are selected uniformly at random from the interval [1, 100]
and dij are chosen uniformly at random from [1, 20]. The weights

of the jobs were selected uniformly in the interval [1, 10].

– MC : Machine correlated instances: processing time pij is gener-

ated by the expression pij = ai + cij , being ai, associated to the

machine i, selected uniformly at random from [1, 100] and cij se-

lected uniformly at random from [1, 20]. The weights of the jobs

are generated as in the JC instances.

• UC2, UC3, UC4 : For uncorrelated instances, some recent works have

concentrated on uncorrelated instances dealing with others intervals for

the processing time values: [10, 100] (UC2 [41]), [100, 200] (UC3 [23])

and [100, 120] (UC4) [23]), among others. For the sake of completeness,

we have included three different sets that use these intervals for choos-

ing the processing time values. The weights of the jobs are generated

as in UC1.

• UC5 : In this work we additionally utilize a different interval for the

weights of the jobs concerning uncorrelated instances. In particular, we

use the interval [1, 100] for selecting uniformly at random the weights

of the jobs. The processing times are chosen as in UC1.

In order to assure the quality and the reliability of the results of our non-

deterministic IG algorithm, we present the average results over ten instances

generated randomly instead of executing ten times an algorithm over a unique

instance, which is a common choice in recent works dealing with this problem

[37] or other optimisation problems [42].

Non-parametric tests [43] have been used to compare the results of the

different algorithms under consideration. The only condition to be fulfilled

for the use of non-parametric tests is that the algorithms to be compared

should have been tested under the same conditions (that is, the same set of

problem instances, the same stopping conditions, the same number of runs,

etc). On the contrary, in order to use the parametric tests, it is necessary to

check the following conditions: independence, normality, and heteroscedas-

ticity. It has been observed that these conditions are not always met in the

data to be analysed [43]. In the first place, mean ranking for each algorithm

is computed according to Friedman’s test [44, 45]. This measure is obtained

by computing, for each problem, the ranking ra of the observed result for

13

Number of jobs (n) Number of machines (m) Time limit (seconds)

200

5

200
10

20

50

250

5

250
10

20
50

300

5

300
10
20

50

500

5

500
10

20

50

1000

5

1000
10

20

50

Table 1: 20 instance types considered for each of the seven sets of instances. The last table
column provides the maximum CPU time limit for each instance type (in seconds).

algorithm a, assigning to the best of them the ranking 1, and to the worst

the ranking |A| (A is the set of algorithms). An average measure is obtained

from the rankings of these methods for all the test problems. Then, we have

considered two alternative methods based on non-parametric tests to analyse

the experimental results:

• The first method is the application of Iman and Davenport’s test [46]

with Holm’s method [47] as a post-hoc procedure. The first test may be

used to see whether there are significant statistical differences among

the algorithms in a certain set. If such differences are detected, then

the Holm’s method is employed to compare the best algorithm (that is,

the control algorithm) against the remaining ones (Appendix Appendix

A).

• The second method concerns the utilisation of the Wilcoxon’s matched-

pairs signed-ranks test [48]. With this test, the results of two algorithms

may be directly compared (Appendix Appendix B).

4.2. Study of the proposed IG with different parameters

In this section, we investigate the effect of the different parameters and

the algorithmic components of IG on its behaviour: (1) the heuristic used in

14

the construction phase (Section 4.2.1), (2) the parameter nd, associated to

the destruction step, (3) the local search procedure (Section 4.2.3), (4) the

acceptance criterion (Section 4.2.4), and (5) the destruction strategy used

in the destruction step. The experimental framework used to perform this

study is the one described in Section 4.1. For the parameter study we have

considered a subset of the instances described in the previous section in order

to avoid overfitting. We have considered instances belonging to UC1, JC, and

MC with a number of jobs between 250 and 500.

4.2.1. Study of the heuristics for the constructive procedure

In this section, we have compared the performance of the proposed IG

using the different heuristics for the constructive procedure detailed in Sec-

tion 3.1. The values for the different parameters are fixed in the following

way: nd = 15%, F-jump as the improvement method, RW as the acceptance

criterion and random selection of machines and jobs in the destruction step.

Table 2 shows the mean ranking—in the 2nd column—of the IG algo-

rithm with a specific heuristic—as indicated in the 1st column—over the

instances selected for performing the tuning. In the first place, Iman and

Davenport’s test finds significant performance differences between the con-

sidered algorithms because the statistical value (26.67) is greater than the

critical one (2.047) for a level of significance α = 0.05. Then, we applied

Holm’s test in order to find significant performance differences between the

best ranked configuration (IG with the heuristic h6) and the other ones. The

third column shows whether Holm’s test finds significant differences between

the best ranked algorithm and the corresponding one (+), or if there are no

significant differences (∼).
As shown in Table 2, IG with heuristic h6 gets the best ranking and

Holm’s test finds significant performance differences with regard to h1, h3,

h7, and h8. We choose heuristic h6 for all remaining experiments, because

the best ranked configuration employs this setting.

4.2.2. Study of parameter nd

In this section, we study the influence of the value of parameter nd on

the performance of the IG proposed for the UPMS problem. This parameter

determines the number of jobs that will be unscheduled in the destructive

step with the aim of allocating them later to possibly different machines.

The remaining parameters are fixed with the following values: F-jump as

15

Heuristic of the construction step Ranking Holm

h6 2.83 Winner

h2 2.90 ∼
h4 3.06 ∼
h5 3.44 ∼
h3 5.17 +

h7 6.06 +

h1 6.19 +

h8 6.41 +

Table 2: Comparison, using Holm’s test, of eight IG versions using different heuristics.

the improvement procedure, RW as the acceptance criterion, and random

selection of machines and jobs in the destructive phase.

We have performed the study considering four different values for nd:

15%, 25%, 50%, and 75%. First, Iman and Davenport’s test finds significant

performance differences between the considered configurations for a level of

significance α = 0.05 (its statistical value, 10.56, is greater than its critical

one, 2.69). In Table 3, we present the results of Holm’s test—3nd column—

and the mean ranking—2nd column.

Value of parameter nd Ranking Holm

15% 1.66 Winner

75% 2.53 +

25% 2.64 +

50% 3.17 +

Table 3: Comparison, using Holm’s test, of four IG versions with different values for nd.

According to the results of Holm’s test in Table 3, the best ranked con-

figuration is the one that destroys 15% of elements from the current solu-

tion during the destructive step, exhibiting statistically significant differences

with respect to IG with all the remaining nd values. Clearly, the best results

are achieved by removing a small percentage of elements from the current

solution. We should point out that we set nd = 15% for the rest of our

experimentation, because IG has exhibited the best performance with this

setting.

16

4.2.3. Study of the performance of improvement methods

The objective of this section is to determine the improvement method

(from the ones presented in Section 3.3) that provides the best performance

when used within the proposed IG. In order to deal with this objective, we

have evaluated the performance in terms of solution quality. For this study,

we employ RW acceptance criterion and random selection of machines and

jobs in the destructive step.

In the first place, we have applied Iman and Davenport’s test (level of

significance α = 0.05) that has found significant performance differences

between the considered algorithms (the Iman-Davenport value is 52.06 and

the critical one is 3.13). Then, we have compared the best ranked algorithm,

IG with F-jump, with the other IG variants by means of the Holm’s test.

Improvement method Ranking Holm

F-jump 1.17 Winner

VND 2.13 +

F-swap 2.70 +

Table 4: Comparison, using Holm’s test, of three IG versions with different local improve-
ment methods.

The results are presented in Table 4—in the 3rd column—and show that

F-jump provides a statistically better performance with respect to F-swap

and VND. For this reason, we employ F-jump as improvement method for

the rest of our experimentation.

4.2.4. Study of the acceptance criterion

The acceptance criterion determines the starting solution for the next

iteration of the IG algorithm. In this section we compare the behaviour of

the proposed IG algorithm with respect to the acceptance criterion employed,

using random selection of machines and jobs in the destructive phase.

We have undertaken this comparative analysis by means of Wilcoxon’s

test, which compares the results of two IG versions with different acceptance

criteria. Table 5 contains the results for a level of significance α = 0.05
(critical value = 208), by providing the values of R+ (associated with IG

using the RW acceptance criterion) and R− (associated with IG using the

RB acceptance criterion). If R− is smaller than R+ and the critical value of

the test, IG-RW is statistically better than IG-RB; if R+ is inferior to R− and

17

the critical value, IG-RW is statistically worse than its competitor; if neither

R+ norR− is smaller than the critical value, theWilcoxon’s test does not find

statistical differences. The last column indicates whether IG-RW performs

statistically better (+), worse (−), or without significant differences (∼) than
IG-RB.

R+ R- Wilcoxon’s test result

IG-RB vs IG-RW 574 92 +

Table 5: IG-RW vs. IG-RB (Wilcoxon’s test with α = 0.05 and critical value = 208).

According to the results of Wilcoxon’s test presented in Table 5, the use

of the RW acceptance criterion leads to the best results for the IG algo-

rithm. These results reaffirm the conclusions of previous studies [40, 22] and

suggest that RW is possibly a good alternative also for solving other optimi-

sation problems. We choose the RW acceptance criterion for all remaining

experiments.

4.2.5. Study of the performance of different destruction strategies

In this section, we study the behaviour of the proposed IG depending

on the strategy used during the destruction step. We have performed this

study by means of Wilcoxon’s test in order to perform a pairwise comparison

between the results of IG with random selection of machines and jobs in the

destruction step (DR) and those of the IG models that employ destruction

strategies D1 and D2.

Table 6 provides the values of R+ (associated with IG using the destruc-

tion strategies D1 and D2) and R− (associated with IG using the destruction

strategy DR) (level of significance α = 0.05). In this table, the results for

the UC instances and the JC+MC instances are treated separately.

According to the results of Wilcoxon’s test as shown in Table 6, using

more elaborate strategies such as D1 and D2 clearly improves the perfor-

mance of the proposed IG for what concerns the JC+MC instances. However,

when considering the UC instances, Wilcoxon’s test does not show signifi-

cant performance differences for destruction strategy D1 and indicates that

for this kind of instances D2 provides a poorer performance than DR. Tak-

ing these results into account, we consider that IG-RW-D1 provides the best

performance over all the remaining alternatives.

18

JC+MC instances

R+ R- Critical value = 81

IG-RW-D1 vs IG-RW-DR 220 80 +

IG-RW-D2 vs IG-RW-DR 253 47 +

UC instances

R+ R- Critical value = 13

IG-RW-D1 vs IG-RW-DR 58 20 ∼
IG-RW-D2 vs IG-RW-DR 0 78 -

Table 6: Comparison between the destruction strategies by means of Wilcoxon’s test.

4.3. IG-RW-D1 vs. state-of-the-art metaheuristics for the UPMS problem

In this section we compare the IG-RW-D1 approach with different meta-

heuristics found in the literature for tackling the UPMS problem. More

specifically, we considered the following approaches (Section 3):

• Iterative multistart method (MultiS) [16].

• Tabu search (Tabu) [16].

• Genetic algorithm (GA) [17].

• GRASP + path relinking (GRASP) [18].

All these approaches were implemented in C++ using the same data

structures as the proposed IG. The parameter values used for each algo-

rithm are the ones recommended in the original works. For the IG-RW-D1

algorithm, the parameters are selected according to the experimental study

performed in Section 4.2: heuristic h6, nd = 15%, and F-jump. In order to

assure a fair comparison, each algorithm was applied under the same con-

ditions as IG-RW-D1, that is, each algorithm was applied exactly once to

each of the 1400 problem instances (see Table 1). Moreover, the same CPU

time limits as for IG-RW-D1 were used. In addition, we provide the results

obtained by IBM-ILOG-CPLEX, using the model stated in Section 2, to be

used as a reference point in the experimental study. The results that are pre-

sented for CPLEX were obtained with a computation time limit of 2 hours

for each problem instance.

19

4.3.1. Case 1: UC1 instances

Table 7 presents the results of all algorithms for the UC1 instances. Note

that these results are averaged over the 10 instances for each of the 20 problem

types. Hereby, a problem type is defined by specific values for n and m.

Table 7 provides two different measures: (1) the average result and (2) the

average relative percentage deviation (RPD), which is calculated as follows:

RPD =
Cmet(i)− Ccplex(i)

Ccplex(i)
· 100,

where Cmet(i) is the average value obtained by a given metaheuristic for the

instances of type i, and Ccplex(i) is the average of the solution value obtained

by CPLEX within a computation time limit of 2 hours. The best result con-

cerning the metaheuristics is indicated—both concerning the average solution

quality and the RPD—in each table row in bolface.

n m CPLEX GA GRASP MultiS Tabu IG-RW-D1
Sol. Sol. RPD Sol. RPD Sol. RPD Sol. RPD Sol. RPD

1000

50 * 82551 – 158604.6 – 1593174 – 1593174 – 81542 –

20 372192.4 373949.1 0.47 576481 55.00 3577016 981.80 3577016 965.26 372005.4 -0.05

10 1286840.3 1291135 0.33 2034004 58.16 8229562 543.43 8229562 539.73 1286803 -0.00

5 4501612.8 4506558 0.11 5280587 17.31 17162120 276.16 17162120 281.35 4501648 0.00

500

50 24248.3 23393.3 -3.52 25653.5 5.71 151931.7 484.77 151931.7 526.62 22854.3 -5.74

20 97140.7 98024.1 0.91 97082.9 -0.06 476167.7 340.77 476167.7 390.27 96985.4 -0.16
10 326886 329057.8 0.66 327037.8 0.05 1232319 283.66 1232319 277.55 326867 -0.01

5 1090245 1093097 0.26 1090345 0.01 3170840 190.20 3170840 191.07 1090260 0.00

300

50 10848.8 9910.1 -8.63 9678.1 -10.76 11844.8 27.75 11844.8 9,07 9621.5 -11.29

20 36561.5 37179.7 1.693 36524.1 -0.10 38132.4 3.19 38132.4 4.31 36489.3 -0.19

10 117841.1 118791.6 0.81 117856.2 0.01 120852 7.15 120852 2.55 117822.7 -0.02

5 389826.5 391163.3 0.34 389854.5 0.01 444678.4 10.80 444678.4 14.04 389831.8 0.00

250

50 7858.5 7258.3 -7.62 7042.6 -10.37 7352.3 -7.09 7352.3 -6.46 6998.5 -10.92

20 27594.4 28026.6 1.56 27577.4 -0.06 27672.7 0.28 27672.7 0.28 27554.9 -0.14
10 80333.9 81287.4 1.187 80341.3 0.01 80408.2 0.09 80408.2 0.09 80333.3 -0.00

5 284705.8 286048.8 0.47 284719.2 0.01 284846.6 0.08 284846.6 0.05 284711.6 0.00

200

50 5795.9 5138.5 -11.22 5006.6 -13.49 5062.7 -12.61 5062.7 -12.51 4989.4 -13.79

20 17026.4 17345 1.87 16995.8 -0.18 17066.8 0.06 17066.8 0.24 16983 -0.25

10 52918.1 53676.7 1.437 52925 0.01 53039.2 0.11 53039.2 0.23 52919.6 0.00

5 182100 183400.4 0.71 182113.6 0.01 182166 0.02 182166 0.04 182108.6 0.00

Global Av. RPD -0.956 5.329 164.770 167.568 -2.240

Table 7: Results of the studied algorithms for the UC1 instances.

The results of the algorithms allow us to make the following observations:

• The proposed IG-RW-D1 obtains the lowest global average RPD (see

last table row) among all methods compared in this study. It is worth

20

highlighting that IG-RW-D1, according to the value of global average

RPD, obtains on average better results than CPLEX with significantly

lower runtimes. The complexity of the problem is shown by the fact

that CPLEX is not able to find the optimal solution for any instance.

• IG-RW-D1 obtains the best average result for all instance types. This

is especially noteworthy for what concerns the complex instances with

a large number of jobs and machines. In fact, CPLEX is not able to

find a feasible solution for the instances with 1000 jobs and 50 machines

(as indicated by the asterisk). On the contrary, for large instances IG-

RW-D1 is able to reach high quality solutions that mostly improve over

those obtained by CPLEX.

• It is worth noting that, apart from IG-RW-D1, only GA performs (on

average) better than CPLEX. The performance of GRASP and, spe-

cially, of MultiS and Tabu degrades significantly for what concerns the

instances with more than 300 jobs.

4.3.2. Case 2: JC and MC instances

The same experimental evaluation was repeated concerning the 400 in-

stances from sets JC and MC. The detailed average results and RPDs of the

studied metaheuristics over the 10 instances for each of the 20 problem types

are shown in Tables 8 and 9, respectively.

The following observations can be made with respect to the results as

shown in Tables 8 and 9:

• The proposed IG-RW-D1 achieves the best global average RPD for

both instance sets (JC and MC). As suggested by Fanjul et al. [23] for

the problem of minimising the makespan in the context of unrelated

parallel machines, this kind of instances seems to represent a more

challeging problem than uncorrelated ones. In fact, the number of

instances in which IG-RW-D1 and the other metaheuristics are able

to reach better average results than CPLEX is considerably reduced

in comparison to the uncorrelated case. However, it is important to

highlight that, despite this fact, IG-RW-D1 obtains a better average

result than CPLEX for the JC instances (the global average RPD value

is −0.17). Moreover, for what concerns the MC instances, the global

average RPD is lower than 1%.

21

n m CPLEX GA GRASP MultiS Tabu IG-RW-D1
Sol. Sol. RPD Sol. RPD Sol. RPD Sol. RPD Sol. RPD

1000

50 * 1681082 – 1860562 – 2384658 – 2354086 – 1676338 –
20 2812214.7 4020891 0.03 4397002 6.67 5690978 28.87 5658121 28.38 3993860 -0.72

10 7992969.8 8041254 0.60 8696201 8.80 11322570 41.66 11366880 42.21 8000019 0.09

5 16468641.0 16510720 0.26 17208400 4.49 22368410 35.82 22468270 36.43 16470900 0.01

500

50 455696.3 441278.1 -3.11 456530.1 0.24 503967.8 10.66 497768.5 9.29 440223.3 -3.34

20 990823.3 1004954.4 1.43 1001098.5 1.04 1122845 13.33 1153897 16.46 994813.4 0.40

10 1946721.1 1968328 1.11 1953564 0.35 2386413 22.59 2368174 21.64 1950641 0.20

5 3960537.6 3981339 0.53 3962971 0.06 4960288 25.24 4896540 23.63 3961860 0.03

300

50 180707.9 179281.2 -0.78 184901 2.33 179148.7 -0.85 179130.7 -0.86 179103 -0.88
20 376898.4 384228.5 1.95 383863.7 1.85 378403.8 0.40 378783.3 0.50 380244.1 0.89

10 721510.6 732777.5 1.56 725082.2 0.49 728089.6 0.91 727883.3 0.88 724190.2 0.07

5 1454399.9 1466592 0.84 1455911 0.10 1489475 2.41 1488205 2.33 1455348 0.07

250

50 133957.5 131809.1 -1.60 136706.9 2.06 130900.3 -2.28 130869.6 -2.30 131725.6 -1.66

20 269330.4 275372 2.24 274606 1.96 269692.7 0.13 269789.6 0.17 272281.6 1.10

10 508920.1 518192.9 1.82 511824.3 0.57 509635.9 0.14 509635.9 0.14 511335.1 0.47

5 1017577.1 1028106 1.03 1018244 0.07 1019075 0.15 1018609 0.10 1018525 0.09

200

50 93210.3 91365.1 -1.97 94318 1.19 90742.6 -2.64 90848.7 -2.53 91397.3 -1.94

20 179713.8 183398.7 2.05 180621.4 0.51 179780.5 0.04 180057.3 0.19 181828.6 1.18

10 333166.1 340022.6 2.06 333605.4 0.13 333502.1 0.10 333566.5 0.12 335165.1 0.60

5 662227.1 670125.7 1.19 662420.4 0.03 662448.5 0.03 662454.4 0.03 663023.5 0.12

Global Av. RPD 0.59 1.73 9.30 9.31 -0.17

Table 8: Results of the studied algorithms for the JC instances

n m CPLEX GA GRASP MultiS Tabu IG-RW-D1
Sol. Sol. RPD Sol. RPD Sol. RPD Sol. RPD Sol. RPD

1000

50 * 1059816.4 – 1229773 – 2791200 – 2742746 – 1016939.3 –

20 2427184.9 2775194 23.95 2946319 36.01 6885581 307.66 6847211 305.28 2565055 9.56

10 4837163.3 5567272 15.14 5563880 15.17 14032600 191.16 14075400 192.17 4985071 3.01

5 12205493.2 13417679 10.25 12664642 3.98 29683830 150.67 29829520 151.77 12243061 0.34

500

50 256643.2 275730.4 7.50 271501.1 5.93 430804.1 67.87 429214.9 67.47 250819.9 -2.24

20 613633.6 688743.6 12.32 629461.8 0.59 945266.5 54.70 1021257.5 67.07 617157.2 0.58
10 1109898.1 1260246 13.59 1112615.9 0.26 2145814 94.69 2053756 85.90 1111212.5 0.12

5 2316674.1 2556277 10.84 2317241 0.03 4509104 101.77 4475050 99.97 2316942 0.01

300

50 155277.3 161737.5 4.17 156473.6 0.77 155540.6 0.17 154242.6 -0.68 155080.2 -0.12

20 326842.2 356135.9 8.99 331031.2 1.29 331163.6 1.38 331663.8 1.48 329766.9 0.90

10 540214.8 597591.7 10.70 541631.4 0.27 582245.9 8.07 573157.1 6.33 541385.4 0.22

5 1045814.3 1125015.4 7.72 1046170.6 0.03 1189685.7 13.97 1235179 19.27 1046159.3 0.03

250

50 90587.8 94908.8 4.80 90478.5 -0.10 88473.7 -2.31 88071.3 -2.76 89862.1 -0.78

20 217191.9 239618.3 10.34 219469.5 1.05 217265.2 0.04 217262.9 0.03 219497.1 1.06
10 508912.6 552872.8 9.13 510777.7 0.38 509260 0.07 509650.6 0.16 511137.1 0.44

5 930673.6 1003699.6 8.34 931087.9 0.05 960528.1 3.37 954203.7 2.85 931297.6 0.07

200

50 68725.9 72127 4.96 69643.7 1.34 67531.2 -1.73 67547.7 -1.70 69196.7 0.69

20 162849 176181.6 8.23 164387.3 -0.15 162610.3 -0.14 162692.7 -0.09 164627.5 1.10

10 344534.7 373137.2 8.69 344697.6 0.05 344464.6 -0.02 344492.1 -0.01 345944.5 0.40

5 828483.3 862823.1 5.04 828611.8 0.01 828666.5 0.02 828723.1 0.03 829178.9 0.08

Global Av. RPD 9.72 3.52 52.18 52.34 0.81

Table 9: Results of the studied algorithms for the MC instances

22

• Apart from IG-RW-D1, the best results are achieved again by GA and

GRASP, which highlights the importance of using heuristic information

for solving this problem. However, for the JC and MC instances, MultiS

and Tabu improve their performance with respect to the UC1 instances.

However, they are both not competitive for the largest instances.

• The instances in which IG-RW-D1 obtains the best results are those

with more than 250 jobs. It is important to note that the complexity

of an instance is further increased when considering a larger number of

machines. These instances represent a big challenge because the cost of

a job not only depends on the machine to which it is allocated but also

on the other jobs allocated to this machine. In order to minimise this

cost, it is necessary to consider the scheduling of these jobs on other

machines, resulting in a larger search space as the number of machines

increases. In fact, we notice that CPLEX experiences the greatest

difficulties in solving instances with a large number of machines, to

such an extent that it is not able to resolve those instances with 1000

jobs and 50 machines. For this reason, the good results of IG-RW-

D1 on these instances become highly significant (see, for example, the

average RPD for the JC instances with 500 jobs and 50 machines or

1000 jobs and 20 machines). Moreover, IG-RW-D1 reaches the best

average result for 11 out of 12 JC and MC instance types with more

than 250 jobs.

4.3.3. Case 3: Instance sets UC2, UC3, UC4, and UC5

In this section, we analyse the behaviour of the studied algorithms when

facing different intervals for processing times and weights concerning uncor-

related instances (sets UC2, UC3, UC4, and UC5). The detailed results of all

algorithms for instances sets UC2, UC3, UC4, and UC5 are shown in Tables

10, 11, 12, and 13, respectively. Again, the results are presented as averages

over the 10 instances for each of the 20 instance types.

Based on the results that are shown in these tables, we can make the

following observations:

• The behaviour of IG-RW-D1 on the different instances is quite robust,

reaching the best global average RPD for all four instance sets. More-

over, we should highlight that the global average RPD is lower than

0 in three out ot four sets (UC2, UC3, and UC5), which means that

23

n m CPLEX GA GRASP MultiS Tabu IG-RW-D1
Sol. Sol. RPD Sol. RPD Sol. RPD Sol. RPD Sol. RPD

1000

50 * 453429.9 – 546201.8 – 1975134 – 1964045 – 449911.3 –

20 1271735.5 1277098 0.42 1628732 28.06 4833726 280.10 4780005 275.87 1271480 -0.02

10 3062495.3 3070287 0.25 4172726 36.29 9923652 224.05 9881675 222.68 3062433 0.00

5 7950232.4 7958324 0.10 10121672 27.34 20145360 153.42 20130850 153.23 7950292 0.00

500

50 122240.5 123282.8 0.85 138485.4 13.29 254528.4 108.20 245229.9 100.60 121648.7 -0.48

20 325454.6 328010.2 0.78 333004.8 2.31 613012.4 88.36 610560.2 87.61 325421 -0.01
10 775560.5 778865.7 0.43 779495.2 0.51 1717337 121.47 1663783 114.58 775521.5 0.00

5 1949461.9 1953992 0.23 1949525 0.00 3891960 99.71 3903851 100.36 1949495 0.00

300

50 49271.6 49866.9 1.21 49169.4 -0.20 52138.9 5.82 51622.6 4.77 49040.4 -0.47

20 123300.9 124822.7 1.23 123339 0.03 124079 0.63 123666.7 0.30 123264.6 -0.03

10 283481.9 285240.5 0.62 283522.9 0.01 285004.6 0.54 284417 0.33 283480.8 0.00

5 703612.4 705684.8 0.29 703631.1 0.00 736162.2 4.60 744223.9 5.74 703623.1 0.00

250

50 35491.9 35856.9 1.03 35423.4 -0.19 35743.3 0.71 35746.9 0.72 35297.3 -0.54

20 88415.9 90072 1.87 88470.4 0.06 88648.9 0.26 88648.9 0.26 88401 -0.02
10 194239.7 196144 0.98 194253.9 0.01 194374.4 0.07 194374.4 0.07 194238.3 0.00

5 500819.7 502933.8 0.68 500844.1 0.00 500901.4 0.02 500901.4 0.02 500838.6 0.00

200

50 23926.8 24195.4 1.13 23814.9 -0.46 24039.3 0.47 24086.9 0.68 23666.1 -1.08

20 55539.7 56468.6 1.67 55538.9 0.00 55677 0.25 55753.8 0.39 55512.8 -0.05

10 124083.3 125445.3 1.10 124089 0.00 124143 0.05 124172.8 0.07 124078.9 0.00

5 317587.6 319098.6 0.48 317589.5 0.00 317636.4 0.02 317670.9 0.03 317593.4 0.00

Global Av. RPD 0.809 5.636 57.302 56.226 -0.142

Table 10: Results of the studied algorithms for the UC2 instances.

n m CPLEX GA GRASP MultiS Tabu IG-RW-D1
Sol. Sol. RPD Sol. RPD Sol. RPD Sol. RPD Sol. RPD

1000

50 * 3984904 – 4201080 – 5644122 – 5627207 – 3984770 –

20 9585440.5 9601832 0.17 10041829 4.76 13694150 42.86 13694000 42.86 9599480 0.15

10 19050140 19087210 0.19 19805210 3.96 27549150 44.61 27460940 44.15 19060170 0.05

5 38358062.5 38398500 0.11 39458960 2.87 53168930 38.61 53119970 38.48 38360640 0.01

500

50 1079109.4 1058084 -1.90 1103632 2.31 1182938 9.67 1174939 8.92 1058183 -1.90
20 2440544.1 2448320 0.32 2491829 2.10 2757078 12.97 2748709 12.62 2447621 0.29

10 4782366.9 4798311 0.33 4842889 1.27 5845448 22.23 5890625 23.17 4789561 0.15

5 9543204.7 9561636 0.19 9553104 0.10 11831300 23.97 11843450 24.10 9545302 0.02

300

50 422833.3 419773.1 -0.72 433845.2 2.61 421202.9 -0.38 420989.5 -0.44 419747.1 -0.73

20 921061.4 924945.2 0.42 926082.8 0.55 922666.8 0.17 922946.6 0.20 924686.3 0.39

10 1769001.3 1777483 0.48 1771032 0.11 1774620 0.32 1774552 0.31 1774309 0.30

5 3497177.7 3507447 0.29 3498301 0.03 3566101 1.97 3583271 2.46 3498964 0.05

250

50 303748.2 300458.9 -1.08 305999 0.74 300535.2 -1.06 300535.2 -1.06 300421 -1.09
20 643737.2 645955.3 0.34 644392.4 0.10 644584.8 0.13 644590.8 0.13 646003.4 0.35

10 1222891.9 1229416 0.53 1223587 90.08 1223840 90.11 1223840 90.11 1227566 0.38

5 2410684.1 2419658 0.37 2411108 0.02 2412329 0.07 2413125 0.10 2412441 0.07

200

50 200391.1 197590 -1.40 197976.2 -1.20 197632.9 -1.37 197692.2 -1.34 197588.3 -1.40

20 408787.6 410011.9 0.30 408808.8 0.01 408717.6 -0.02 408977 0.05 410189.9 0.34

10 766083.3 771066.9 0.65 766611.5 0.07 766616.3 0.07 766751.3 0.09 769795.3 0.48

5 1500296.5 1506830 0.44 1500489 0.01 1500543 0.02 1500668 0.02 1502025 0.12

Global Av. RPD 0.002 5.816 14.999 14.998 -0.103

Table 11: Results of the studied algorithms for the UC3 instances.

24

n m CPLEX GA GRASP MultiS Tabu IG-RW-D1
Sol. Sol. RPD Sol. RPD Sol. RPD Sol. RPD Sol. RPD

1000

50 * 4071939 – 4607063 – 7019613 – 6971324 – 4071032 –

20 9951473.7 9991976 0.41 11464520 15.20 17021480 71.04 17004110 70.87 9959041 0.08

10 20372680 20421070 0.24 23037960 13.08 34279380 68.26 34156180 67.66 20374550 0.01

5 42914670 42959370 0.10 47001330 9.52 67517990 57.33 67493510 57.27 38634110 0.00

500

50 1086830 1086342 -0.04 1179518 8.53 1336358 22.96 1339970 23.30 1085778 -0.10

20 2535361 2552478 0.68 2751157 8.51 3208921 26.57 3198752 26.17 2540576 0.21
10 5121221.8 5145794 0.48 5277252 3.05 7024595 37.16 7041798 37.50 5122909 0.03

5 10652000 10673610 0.20 10659560 0.07 14704310 38.05 14613490 37.19 10652360 0.00

300

50 433830.9 432616.4 -0.28 438741.6 1.13 437591.9 0.87 436591.7 0.64 432544.8 -0.30

20 958408.6 968057.4 1.07 960250.7 0.19 962368.4 0.41 962279.5 0.40 962721.2 0.45

10 1891772.6 1903944 0.64 1892705 0.05 1899072 0.39 1896938 0.27 1892871 0.06

5 3893283 3907244 0.36 3893540 0.01 4013626 3.10 4027654 3.45 3893603 0.01

250

50 311330.3 310129.2 -0.39 311322.3 0.00 310754.5 -0.18 310754.5 -0.18 309971.9 -0.44

20 672272.6 680170.5 1.17 674050.2 0.26 674648.4 0.35 674648.4 0.35 676637.7 0.65
10 672272.6 1317151 0.86 1306443 0.04 1306832 0.07 1306832 0.07 1307149 0.09

5 2696483 2709672 0.49 2698894 0.09 2699502 0.11 2700191 0.14 2698980 0.09

200

50 204683.1 204624 -0.03 205422.9 0.36 205008.5 0.16 205254.9 0.28 204665.7 -0.01

20 426070.1 431251.4 1.22 426946 0.21 427886.4 0.43 428385.1 0.54 429454.3 0.79

10 820636.5 829402.7 1.07 821385.2 0.09 821373.8 0.09 821755.2 0.14 821667.2 0.13

5 1688052.9 1697789 0.58 1688118 0.00 1688251 0.01 1688406 0.02 1688257 0.01

Global Av. RPD 0.464 3.179 17.219 17.162 0.093

Table 12: Results of the studied algorithms for the UC4 instances.

n m CPLEX GA GRASP MultiS Tabu IG-RW-D1
Sol. Sol. RPD Sol. RPD Sol. RPD Sol. RPD Sol. RPD

1000

50 * 730567.2 – 8206747 – 14678010 – 14144790 – 720833.4 –

20 3280547.9 3297686 0.52 19657160 498.76 35581280 985.11 35298260 976.22 3278131 -0.07

10 11342840 11380820 0.34 37045240 227.01 74212030 554.36 72928710 543.05 11341330 -0.01

5 39641030 39687760 0.23 78862350 99.37 154252300 289.75 152253900 284.69 39641340 0.12

500

50 218092.8 207665.4 -4.78 1638327 651.75 1192197 445.82 1126065.1 416.31 202680.8 -7.06
20 856585 866907.2 1.21 2917333 239.87 3178859 271.78 3429552 300.90 855383.1 -0.14

10 2884168.6 2904045 0.69 4885861 69.19 11292821 292.00 10994340 281.65 2883910 -0.01

5 9591324.5 9619952 0.30 10367767 8.17 27263140 184.64 27682160 189.00 9591595 0.00

300

50 94635.7 89250.6 -5.62 107165.2 13.26 102930.6 8.75 119149.8 26.16 86111.3 -8.93

20 325405.5 330998.9 1.73 325510.3 0.03 335057.5 2.96 341159 4.83 324884 -0.16

10 1044770 1055481 1.02 1045415 0.06 1086566 3.99 1065131 1.96 1044740 0.00

5 3441360.8 3457141 0.08 3441817 -0.37 3958431 14.53 3733453 7.95 3441397 -0.38

250

50 70199.9 65739.4 -6.28 63073.7 -10.09 63559.9 -9.39 63740.1 -9.16 62767.2 -10.53
20 246102.7 251679.7 2.27 246199.7 0.04 246544.1 0.18 246544.1 0.18 245690.1 -0.17

10 709430.8 717402.6 1.13 709620.7 0.03 710006.3 0.08 710006.3 0.08 709350.8 -0.01

5 2517440.1 2530354 0.51 2517609 0.01 2518102 0.03 2518604 0.05 2517514 0.00

200

50 50263.4 46597.3 -7.23 44819.7 -10.78 45028.1 -10.36 45047.2 -10.32 44585.5 -11.24

20 150662.1 154223.6 2.35 150500.7 -0.11 150667.7 0.01 151266 0.41 150309.8 -0.23

10 464978.8 472775.2 1.68 465113 0.03 465441.8 0.10 465929.6 0.21 464974.9 0.00

5 1603202.8 1614497 0.70 1603431 0.01 1603445 0.01 1603625 0.03 1603274 0.00

Global Av. RPD -0.482 94.012 159.703 158.641 -2.043

Table 13: Results of the studied algorithms for the UC5 instances.

25

IG-RW-D1 is on average better than CPLEX for these instance sets.

For what concerns the UC4 set, the average RPD is very close to zero.

This lets us conclude that IG-RW-D1 is very competitive with CPLEX

while using a much lower runtime.

• Moreover, IG-RW-D1 reaches the best average result for 61 out of 80

instance types. Especially noteworthy are the results for instances with

a rather large number of jobs and/or machines.

• Other metaheuristics such as MultiS and Tabu exhibit large variations

in their performance depending on the intervals considered, especially

for large instances. This fact shows that dealing with different inter-

vals can modify significantly the complexity of the problem for certain

metaheuristics.

• We can conclude that the performance of IG-RW-D1 on uncorrelated

instances is superior to the other metaheuristics independently of the

intervals used for the processing time values and the weight values.

4.3.4. Global summary by means of statistical tests

So far, in this section, we have analysed the results of different algorithms

using the average results obtained on the different types of instances. In this

section, we want to confirm that the observed differences are statistically

significant.

In order to perform a statistical analysis, we use the average result ob-

tained by each metaheuristic for the 140 different instance types—that is,

20 instance types in each of the seven result tables—employed in previous

sections. In the first place, we apply Iman and Davenport’s test to check the

existence of performance differences between all the considered algorithms.

Iman-Davenport finds significant performance differences between the consid-

ered algorithms because its statistical value, 67.41, is greater than its critical

one, 2.39, with a significance level α = 0.05. Then, we apply Holm’s test

to compare the best ranked algorithm (IG-RW-D1, see Table 14) with the

remaining algorithms.

As can be seen from the results of Holm’s test in Table 14, IG-RW-D1

obtains statistically better results than its competitors for the set of 140

different instance types contemplated in this work. In summary, this experi-

mental analysis conrfirms that IG-RW-D1 is a very attractive alternative to

the existing approaches for the UPMS problem.

26

Metaheuristic Ranking Holm

IG-RW-D1 1.64 Winner

GRASP 2.51 +

GA 3.49 +

MultiS 3.65 +

Tabu 3.71 +

Table 14: Comparison, using Holm’s test, over the whole set of instances.

5. Conclusions

This paper has proposed an IG algorithm (IG-RW-D1) to deal with the

UPMS problem. The computational experiments performed show that: 1)

the proposed IG-RW-D1 is very competitive with other state-of-the-art al-

gorithms for the UPMS problem; specifically, significant improvements were

obtained for large size problem instances (involving a large number of jobs or

machines) and 2) IG-RW-D1 has been tested on a great number of different

kinds of instances, proving to be very robust. Moreover, from the method-

ological point of view, IG-RW-D1 presents two novel elements that can help

to improve the performance of IG on other optimisation problems. In the

first place, the IG-RW-D1 acceptance criterion including randomness has

proved to be quite useful to improve its performance, showing that this kind

of acceptance criterion can help to improve the behaviour of IG algorithms

for other problems. Secondly, the heuristic strategy for the destruction step

has allowed improving the results of IG-RW-D1 on certain types of difficult

instances. This way, we think that using more elaborated strategies in the de-

structive step than the classical random one should be consider when dealing

with complex optimisation problems thorough IG algorithms.

We believe that the IG algorithm presented in this paper is a significant

contribution, worthy of future study. We will intend to explore two interest-

ing avenues of research. Firstly, to include memory-based mechanisms in IG

models that can help to face large size instances. Secondly, to adapt our IG

approach for its application to other variants of parallel machine scheduling

problem dealing with constraints such as jobs release dates and due times.

27

6. Acknowledgements

This work was supported by grants TIN2007-66523 and TIN2011-24124

of the Spanish government and by grant P08-TIC-4173 of the Andalusian

regional goverment. Moreover, Christian Blum acknowledges support from

the Ramón y Cajal program of the Spanish Ministry of Economy and Com-

petitiveness.

28

Appendix A. Holm’s Test

Iman and Davenport test is applied in the first place. The rejection of

the null hypothesis does not involve the detection of the existing differences

among the algorithms compared. It only inform us about the presence of dif-

ferences among all samples of results compared. In order to conduct pairwise

comparisons within the framework of multiple comparisons, we can proceed

with a post-hoc procedure. In this case, a control algorithm is chosen (the

configuration that reaches the best averaged ranking on the problems con-

sidered). Then, the post-hoc procedures proceed to compare the control

algorithm with the remaining algorithms. In order to do this, Holm’s test is

used. It computes p−value for each comparison. We will denote the p-values

ordered by p1, p2, . . . , pk−1 in the way that p1 ≤ p2 ≤ . . . ≤ pk−1. Holm’s test

compares then each pi with α/(k − i), where α is 0.05 and k is the number

of configurations compared, starting from the most significant p− value. If

p1 is below than α/(k − 1), the corresponding hypothesis is rejected and it

leaves us to compare p2 with α/(k− 2). If the second hypothesis is rejected,

we continue with the process. As soon as a certain hypothesis can not be

rejected, all the remaining hypotheses are maintained as supported. In this

case, the hypothesis to be rejected is there is no significant difference be-

tween both configurations. It is important to note that p − value, for each
comparison, is related to the averaged ranking obtained by this configuration

over the problems considered. The lower p− value is, the worse the ranking

obtained is.

Appendix B. Wilcoxon Matched-Pairs Signed-Ranks Test

Wilcoxon’s test is used for answering this question: do two samples rep-

resent two different populations? It is a non-parametric procedure employed

in a hypothesis testing situation involving a design with two samples. It is

the analogous of the paired t-test in non-parametrical statistical procedures;

therefore, it is a pairwise test that aims to detect significant differences be-

tween the behaviour of two algorithms.

The null hypothesis for Wilcoxon’s test is H0 : θD = 0; in the underlying

populations represented by the two samples of results, the average of the

difference scores equals zero. The alternative hypothesis is H1 : θD 6= 0, but

also can be used H1 : θD > 0 or H1 : θD < 0 as directional hypothesis.

In the following, we describe the tests computations. Let di be the differ-
ence between the performance scores of the two search algorithms on i-th out

29

of N functions. The differences are ranked according to their absolute values

(We have previously normalised the results of every algorithm on each test

problem into the interval [0, 1], taking into consideration highest and lowest

fitness values achieved on each test problem); average ranks are assigned in

case of ties. Let R+ be the sum of ranks for the functions on which the

second algorithm outperformed the first, and R− the sum of ranks for the

opposite. Ranks of di = 0 are split evenly among the sums; if there is an odd

number of them, one is ignored:

R+ =
∑

di>0 rank(di) +
1
2

∑

di=0 rank(di) and

R− =
∑

di<0 rank(di) +
1
2

∑

di=0 rank(di)
(B.1)

Let T be the smallest of the sums, T = min(R+, R−). If T is less than or

equal to the value of the distribution of Wilcoxon for N degrees of freedom

(Table B.12 in [45]), the null hypothesis of equality of means is rejected.

The obtaining of the p-value associated to a comparison is performed by

means of the normal approximation for the Wilcoxon T statistic (Sect. VI,

Test 18 in [49]). Furthermore, the computation of the p-value for this test is

usually included in well-known statistical software packages (SPSS, SAS, R,

etc.).

30

References

[1] Rosenbloom E, Goertzen N. Cyclic nurse scheduling. European Journal

of Operational Research 1987;31:19–23.

[2] Buxey G. Production scheduling: Practice and theory. European Jour-

nal of Operational Research 1989;39:17–31.

[3] Dodin B, Chan KH. Application of production scheduling methods to

external and internal audit scheduling. European Journal of Operational

Research 1991;52(3):267 –79.

[4] Pendharkar P, Rodger J. Nonlinear programming and genetic search ap-

plication for production scheduling in coal mines. Annals of Operations

Research 2000;95(1):251–67.

[5] Jarrah AIZ, Bard JF, de Silva AH. A heuristic for machine scheduling

at general mail facilities. European Journal of Operational Research

1992;63(2):192–206.

[6] Rochat Y. A genetic approach for solving a scheduling problem in a

robotized analytical system. Journal of Heuristics 1998;4:245–61.

[7] Croce FD, Tadei R, Asioli P. Scheduling a round robin tennis tourna-

mentunder courts and players availability constraints. Annals of Oper-

ations Research 1999;92:349–61.

[8] Brucker P, Hurink J. Solving a chemical batch scheduling problem by

local search. Annals of Operations Research 2000;96(1):17–38.

[9] Bruno J, Coffman E, Sethi R. Scheduling independent tasks to reduce

mean finishing time. Communications ACM 1974;17(7):382–7.

[10] Lenstra J, Rinnooy-Kan A, Brucker P. Complexity of machine schedul-

ing problems. In: P.L. Hammer E.L. Johnson BK, Nemhauser G, editors.

Studies in Integer Programming; vol. 1 of Annals of Discrete Mathemat-

ics. Elsevier; 1977, p. 343–62.

[11] McNaughton R. Scheduling with deadlines and loss functions. Manage-

ment Science 1959;6(1):1–12.

31

[12] Azizoglu M, Kirca O. On the minimization of total weighted flow time

with identical and uniform parallel machines. European Journal of Op-

erational Research 1999;113(1):91–100.

[13] Azizoglu M, Kirca O. Scheduling jobs on unrelated parallel machines to

minimize regular total cost functions. IIE Transactions 1999;31(2):153–

9.

[14] Chen ZL, Powell W. Solving parallel machine scheduling problems by

column generation. Informs Journal on Computing 1999;11(1):78–94.

[15] Li K, Yang SL. Non-identical parallel-machine scheduling research with

minimizing total weighted completion times: Models, relaxations and

algorithms. Applied Mathematical Modelling 2009;33(4):2145–58.

[16] Vredeveld T, Hurkens C. Experimental comparison of approximation

algorithms for scheduling unrelated parallel machines. Informs Journal

on Computing 2002;14(2):175–89.

[17] Lin Y, Pfund M, Fowler J. Heuristics for minimizing regular performance

measures in unrelated parallel machine scheduling problems. Computers

& Operations Research 2011;38(6):901–16.

[18] Rodriguez F, Blum C, Garćıa-Mart́ınez C, Lozano M. GRASP with

path-relinking for the non-identical parallel machine scheduling problem

with minimising total weighted completion times. Annals of Operations

Research 2012;In Press.

[19] Fanjul-Peyro L, Ruiz R. Size-reduction heuristics for the unrelated par-

allel machines scheduling problem. Computers & Operations Research

2011;38(1):301–9.

[20] Culberson JC, Luo F. Exploring the k-colorable landscape with iterated

greedy. In: Dimacs Series in Discrete Mathematics and Theoretical

Computer Science. American Mathematical Society; 1996, p. 245–84.

[21] Jacobs L, Brusco M. A local-search heuristic for large set-covering prob-

lems. Naval Research Logistics 1995;42:1129–40.

[22] Ruiz R, Stützle T. A simple and effective iterated greedy algorithm

for the permutation flowshop scheduling problem. European Journal of

Operational Research 2007;177(3):2033–49.

32

[23] Fanjul-Peyro L, Ruiz R. Iterated greedy local search methods for un-

related parallel machine scheduling. European Journal of Operational

Research 2010;207(1):55–69.

[24] Framinan J, Leisten R. A multi-objective iterated greedy search for

flowshop scheduling with makespan and flowtime criteria. OR Spectrum

2008;30:787–804.

[25] Lin SW, Lee ZJ, Ying KC, Lu CC. Minimization of maximum lateness on

parallel machines with sequence-dependent setup times and job release

dates. Computers & Operations Research 2011;38(5):809–15.

[26] Urlings T, Ruiz R, Stützle T. Shifting representation search for hybrid

flexible flowline problems. European Journal of Operational Research

2010;207(2):1086 –95.

[27] Elmaghraby S, Park S. Scheduling jobs on a number of identical ma-

chines. AIIE Transactions 1974;6(1):1–13.

[28] Azizoglu M, Kirca O. On the minimization of total weighted flow time

with identical and uniform parallel machines. European Journal of Op-

erational Research 1999;113(1):91 – 100.

[29] Allahverdi A, Gupta J, Aldowaisan T. A review of scheduling research

involving setup considerations. Omega 1999;27(2):219–39.

[30] Weng M, Lu J, Ren H. Unrelated parallel machine scheduling with setup

consideration and a total weighted completion time objective. Interna-

tional Journal of Production Economics 2001;70(3):215–26.

[31] Alidaee B, Rosa D. Scheduling parallel machines to minimize total

weighted and unweighted tardiness. Computers & Operations Research

1997;24(8):775 –88.

[32] Koulamas C. Decomposition and hybrid simulated annealing heuris-

tics for the parallel-machine total tardiness problem. Naval Research

Logistics 1997;44(1):109 –25.

[33] Cheng R, Gen M, Tozawa T. Minmax earliness/tardiness scheduling in

identical parallel machine system using genetic algorithms. Computers

& Industrial Engineering 1995;29(1-4):513–7.

33

[34] Glass CA, Potts CN, Shade P. Unrelated parallel machine scheduling us-

ing local search. Mathematical and Computer Modelling 1994;20(2):41–

52.

[35] Chen CL, Chen CL. Hybrid metaheuristics for unrelated parallel ma-

chine scheduling with sequence-dependent setup times. The Interna-

tional Journal of Advanced Manufacturing Technology 2009;43(1):161–

9.

[36] Anghinolfi D, Paolucci M. Parallel machine total tardiness scheduling

with a new hybrid metaheuristic approach. Computers & Operations

Research 2007;34(11):3471–90.

[37] Zaidi M, Jarboui B, Loukil T, Kacem I. Hybrid meta-heuristics for

uniform parallel machine to minimize total weighted completion time.

In: Proc. of 8th International Conference of Modeling and Simulation

(MOSIM10). 2010,.

[38] Waligora G. Tabu search for discrete-continuous scheduling problems

with heuristic continuous resource allocation. European Journal of Op-

erational Research 2009;193(3):849 –56.

[39] Ying KC, Cheng HM. Dynamic parallel machine scheduling with

sequence-dependent setup times using an iterated greedy heuristic. Ex-

pert Systems with Applications 2010;37(4):2848–52.

[40] Lozano M, Molina D, Garćıa-Mart́ınez C. Iterated greedy for the max-

imum diversity problem. European Journal of Operational Research

2011;214(1):31 –8.

[41] Ghirardi M, Potts C. Makespan minimization for scheduling unrelated

parallel machines: A recovering beam search approach. European Jour-

nal of Operational Research 2005;165(2):457–67.

[42] Gallego M, Laguna M, Marti R, Duarte A. Tabu search with strate-

gic oscillation for the maximally diverse grouping problem. Journal of

Operational Research Society 2011;In Press.

[43] Garcia S, Molina D, Lozano M, Herrera F. A study on the use of non-

parametric tests for analyzing the evolutionary algorithms’ behaviour:

34

A case study on the CEC’2005 special session on real parameter opti-

mization. Journal of Heuristics 2008;15:617–44.

[44] Friedman M. A comparison of alternative tests of significance for

the problem of m rankings. The Annals of Mathematical Statistics

1940;11(1):86–92.

[45] Zar J. Biostatistical Analysis. Prentice Hall; 1999.

[46] Iman R, Davenport J. Approximations of the critical region of the Fried-

man statistic. In: Communications in Statistics. 1980, p. 571–95.

[47] Holm S. A simple sequentially rejective multiple test procedure. Scan-

dinavian Journal of Statistics 1979;6:65–70.

[48] Wilcoxon F. Individual comparisons by ranking methods. Biometrics

1945;1:80–3.

[49] Sheskin D. The Handbook of Parametric and Nonparametric Statistical

Procedures. Chapman & Hall/CRC; 2000.

35

5. Tabu Search with Strategic Oscillation for the Quadratic Minimum Spanning Tree 131

5. Tabu Search with Strategic Oscillation for the Quadratic Mi-

nimum Spanning Tree

The journal paper associated to this part is:

M. Lozano, F. Glover, C. Garćıa-Mart́ınez, F.J. Rodŕıguez, R. Mart́ı, Tabu Search with Strate-
gic Oscillation for the Quadratic Minimum Spanning Tree. IEE Transactions. Submitted
on second revision.

• Status: Submitted on second revision

• Impact Factor (JCR 2011): 0.856.

• Subject Category: Operations Research & Management Science. Ranking 39 / 77 (Q3).

• Subject Category: Engineering, Industrial. Ranking 22 / 43 (Q3).

Tabu Search with Strategic Oscillation for the
Quadratic Minimum Spanning Tree

Manuel Lozano
Department of Computer Science and Artificial Intelligence,

University of Granada, Granada 18071, Spain, lozano@decsai.ugr.es

Fred Glover
OptTek Systems, Boulder (Co), USA, glover@opttek.com

Carlos Garćıa-Mart́ınez
Department of Computing and Numerical Analysis,

University of Córdoba, Córdoba 14071, Spain, cgarcia@uco.es

Francisco Javier Rodŕıguez
Department of Computer Science and Artificial Intelligence,

University of Granada, Granada 18071, Spain, fjrodriguez@decsai.ugr.es

Rafael Mart́ı
Department of Statistics and Operations Research

University of Valencia, Valencia, Spain, rmarti@uv.es

Abstract

The quadratic minimum spanning tree problem consists of determining a spanning tree
that minimizes the sum of costs of the edges and pairs of edges in the tree. Many algorithms
and methods have been proposed for this hard combinatorial problem, including several
highly sophisticated metaheuristics. In this paper we present a simple tabu search (TS)
for this problem that incorporates strategic oscillation (SO) by alternating between con-
structive and destructive phases. We show commonalties shared by this strategy and the
more recently introduced methodology called iterated greedy search, and identify implica-
tions of their differences regarding the use of memory structures. Extensive computational
experiments reveal that the proposed SO algorithm with embedded TS is highly effective
for solving complex instances of the problem as compared to the best metaheuristics in the
literature. We also introduce a hybrid method that proves similarly effective for problem
instances that are both simple and complex.

Keywords. Tabu search, strategic oscillation, adaptive memory programming, Quadratic
minimum spanning tree, iterated greedy.

1 Introduction

The Quadratic Minimum Spanning Tree Problem (QMSTP) has been widely studied in the lit-
erature due to its applications in a wide variety of settings, including transportation, telecom-
munication, irrigation, and energy distribution. The problem appears, for example, when
transferring oil from one pipe to another in a situation where the cost depends on the type of
interface between two pipes. The same pairwise interaction effect arises in the connection of
aboveground and underground cables in a road network with turn penalties [23, 28].

We may define the QMSTP as follows. Let G = (V,E) be an undirected graph where
V = {v1, · · · , vn} is the vertex set and E = {e1, · · · , em} is the edge set. Consider that each
edge and each pair of edges has an associated cost. In mathematical terms, we have two
cost functions: w : E → ℜ+ and c : (E × E) − {(e, e),∀e ∈ E} → ℜ+ where as in previous
approaches [2, 19], we assume that c(ei, ej) = c(ej , ei) for i, j = 1, ...,m. The QMSTP consists
of finding a spanning tree T of G with edge set ξ(T) ⊆ E that minimizes:∑

ei∈ξ(T)

∑
ej∈ξ(T)
ei ̸=ej

c(ei, ej) +
∑

e∈ξ(T)

w(e).

The QMSTP is an extension of the well-known minimum spanning tree problem, where in
addition to edge costs, we have costs associated with pairs of edges. The problem was first
introduced by Assad and Xu [1, 25], who showed that it is NP-hard.

1

This paper has two objectives: the primary objective is to investigate the strategic oscilla-
tion proposal to alternate between constructive and destructive phases as a basis for creating
a competitive method for the QMSTP, and the secondary objective is to compare memory-less
with memory based designs. The remainder of this paper is organized as follows. In Section
2, we give a background of Tabu Search (TS) and Strategic Oscillation (SO) that sets the
stage for the later specific algorithmic design we employ. We also refer to the more recent It-
erated Greedy (IG) approach which has some resemblances to strategic oscillation, and which
provides a basis for subsequent comparative testing. Section 3 gives an overview of particu-
lar metaheuristics that have previously been applied to the QMSTP. Section 4 describes our
proposed methods based on TS, SO and IG. In Section 5, we present empirical studies, which
are designed to: 1) analyze the influence of the parameters and settings of our methods, 2)
compare the different designs, paying special attention to the influence of memory structures,
3) obtain an algorithm with a robust performance across test problems with different charac-
teristics, and 4) compare its results with those of the best approaches from the literature. We
finish with the associated conclusions in Section 6 and our proposals for further extensions.

2 Background of Tabu Search and Strategic Oscillation

Tabu Search is a meta-heuristic that guides a local heuristic search procedure to explore the
solution space beyond local optimality. One of the main components of Tabu Search is its use
of adaptive memory, which creates a highly flexible search behavior. Memory-based strategies
which are the hallmark of tabu search approaches, are founded on a quest for “integrating
principles,” by which alternative forms of memory are appropriately combined with effective
strategies for exploiting them. The adaptive memory feature of TS allows the implementation
of procedures that are capable of searching the solution space economically and effectively.
Since local choices are guided by information collected during the search, TS contrasts with
memoryless designs that heavily rely on semi-random processes that implement a form of
sampling.

The structure of a neighborhood in tabu search goes beyond that used in local search
by embracing the types of moves used in constructive and destructive processes (where the
foundations for such moves are accordingly called constructive neighborhoods and destructive
neighborhoods). Following basic TS principles, memory structures can be implemented within
a constructive process to favor (or avoid) the inclusion of certain elements in the solution
previously identified as attractive (or unattractive). Such expanded uses of the neighborhood
concept reinforce a fundamental perspective of TS, which is to define neighborhoods in dynamic
ways that can include serial or simultaneous consideration of multiple types of moves.

This dynamic neighborhood approach applies not only to the types of neighborhoods used in
“solution improvement methods” (sometimes called “local search methods”) but also applies to
constructive neighborhoods used in building solutions from scratch - as opposed to transitioning
from one solution to another. Although it is commonplace in the metaheuristic literature to
restrict the word “neighborhood” to refer solely to transitions between solutions as embodied
in improvement methods, constructive neighborhoods have been proposed as an important
ingredient of search processes from the very beginning of the TS methodology, as documented
by Glover and Laguna [7]. Nevertheless, tabu search methods for exploiting constructive
neighborhoods have rarely been applied in computational studies.

Our tabu search approach for the QMSTP is additionally based on the strategic oscillation
methodology [7, 8]. Strategic oscillation (SO) is closely linked to the origins of tabu search,
and operates by orienting moves in relation to a critical level, as identified by a stage of
construction. In particular, we consider a constructive/destructive type of strategic oscillation,
where constructive steps “add” elements and destructive steps “drop” elements. As described in
Chapter 4 of [8], the alternation of constructive with destructive processes, which strategically
dismantle and then rebuild successive trial solutions, affords an enhancement of such traditional
constructive procedures.

2

More recently, constructive and destructive neighborhoods have been applied within a
simplified and effective method known as Iterated Greedy (IG) [10], which generates a sequence
of solutions by iterating over a greedy constructive heuristic using two main phases: destruction
and construction. IG is a memory-less metaheuristic easy to implement that has exhibited
state-of-the-art performance in some settings (see for example [4, 12, 21]). We identify links
between this more recent constructive/destructive approach and strategic oscillation by first
proposing an adaptation of the IG methodology to the QMSTP and then extending it to include
short term memory structures to create a tabu search approach based on strategic oscillation.

3 Previous Metaheuristics Applied to the QMSTP

Although exact procedures, including branch and bound [1, 25] and Lagrangian relaxation
[14], have been applied to the QMSTP, their success has been chiefly limited to problems
that may be classified as small, containing from 6 to 15 vertices. By contrast, metaheuristics
have been shown capable of finding high quality solutions to QMSTP problems over a wide
range of sizes, from small to significantly larger than those handled by exact methods. Early
genetic algorithms (GAs) implementations were made by Zhou and Gen [28], which proposed
a GA based on the Prüfer number to encode a spanning tree. The algorithm was tested on
QMSTP instances with up to 50 vertices and proved superior to two greedy algorithms proposed
in [1, 25]. More recently, Soak, Corne, and Ahn [22] developed another GA approach that
employed an edge-window-decoder encoding, (in which a tree is represented as a linear string
of node identifiers, and these in turn are interpreted as a set of edges). This GA implementation
was demonstrated to perform much better than GAs based on other encodings (including the
Prüfer number representation) on Euclidean instances containing between 50 and 100 nodes.
In related work, Gao and Lu [5] proposed another GA to address a QMSTP variant, the
fuzzy QMSTP, which was formulated as an expected value model with chance-constrained
programming and dependent-chance constrained programming. The authors suggested the
use of Prüfer number representation for the GA.

The Artificial bee colony method is another bio-inspired metaheuristic that has been a tool
of choice for dealing with the QMSTP [23], involving a swarm intelligence technique based on
the analogy to the intelligent foraging behavior of honey bees. To investigate the effectiveness
of this approach, the authors carried out experiments with problem instances of up to n = 250,
finding that artificial bee colony obtained better solutions than those achieved by the GA-based
methods of Zhou and Gen [28] and Soak et al [22].

Recently, Cordone and Passeri [2] proposed a tabu search implementation for the QMSTP
based on exchanges. At each iteration, the method adds a new edge to the current spanning
tree and removes one of the edges from the resulting loop. The tabu mechanism forbids recently
removed edges to be added into the solution and recently added edges to be removed for a
certain number of iterations. The algorithm was tested over a benchmark set of randomly gen-
erated instances with up to 30 vertices. However, no comparison with previous metaheuristics
is presented.

In the context of adaptive memory programming (the use of memory structures within
metaheuristics), Öncan and Punnen [14] presented a local search algorithm with tabu thresh-
olding. The algorithm was tested on different benchmark problems with sizes ranging from 6
to 100 vertices. Empirical results evidenced that the method improves upon the greedy algo-
rithms presented in [1, 25]. Finally, the most recent TS proposal is the highly effective Iterated
Tabu Search approach, proposed by Palubeckis [19] using two phases: solution perturbation
and TS. The method to perturb a solution (current spanning tree) relies on randomization: an
edge for removal and a non-tree edge for replacement are randomly selected from a candidate
list. At each iteration, the TS method examines all feasible exchange moves (replacement of
an edge in the tree) and the best admissible non-tabu move is performed. The removed and
added edges are labeled tabu for m

4 iterations. The TS method is run for a number of iterations
taken from the interval [Imin, Imax]. Computational results for problem instances with up to

3

50 vertices indicated that its performance (in terms of both solution quality and computational
time) surpasses those of the other metaheuristics included in their comparison, which consisted
of multistart simulated annealing, GA, and GA with local search.

4 New Metaheuristic Adaptations

In this section, we explore the adaptation of the TS and IG methodologies to obtain high
quality solutions to the QMSTP. We first describe in Section 4.1 the greedy constructive and
destructive algorithms that will be applied in both methods. Then, in Section 4.2, we provide
details of the improvement methods proposed in the literature for the QMSTP, which will be
employed as the local search phase of our IG for the QMSTP. Moreover, we describe the short
term memory structure that added to the local search creates the tabu search improvement
method of our TS for the QMSTP. Section 4.3 gives the entire IG method, showing how its
different elements interact; and finally, Section 4.4 completes the development by providing
the general overview of the TS algorithm with the Strategic Oscillation strategy.

4.1 Constructive and Destructive Methods

We begin by introducing two greedy constructive algorithms, C1 and C2, and a destructive
one, D, which may be used to build feasible solutions for the QMSTP. The two constructive
methods accomplish their task by adding, at each construction step, exactly one edge to a
current partial solution, which is a forest of G (disjoint union of trees). In order to describe
C1 and C2, we firstly define the contribution of an edge ei ∈ E to the total cost of a forest F
with edge set ξ(F) ⊆ E as:

Q(ei, F) = w(ei) +
∑

ej∈ξ(F)

c(ei, ej), i = 1, ...,m.

C1 is an iterative process that is similar to Kruskal’s algorithm [11]. At each iteration, the
algorithm considers the set S ⊆ E \ ξ(F) of all edges that can be used to feasibly augment
the current forest F (i.e., those edges whose inclusion would not result in a cycle) and adds
the feasible edge with the minimum contribution value across all elements in S, emin. We can
easily update Q(ei, F) for each ei, i = 1, ...,m by adding the value c(ei, emin) to it. We should
point out that given a spanning tree T , the objective function value z can be obtained from
the Q values with the expression:

z =
∑

ei∈ξ(T)

Q(ei, T).

The greedy constructive procedure C2 is based on the sequential fixing method proposed
by Assad and Xu [1, 25]. It proceeds like C1 but employing the following greedy function to
guide the iterative selection of edges (again, the lowest values are preferable):

Q2(ei, F) = Q(ei, F) +
n1

m1
·
∑
ej∈S
i ̸=j

c(ei, ej), i = 1, ...,m.

where m1 = |S| − 1 and n1 = n− 1− |ξ(F)|. Note that Q2 extends Q by further considering
interaction costs with the candidates edges for the tree in S (in this way, C2 is more complicated
than C1).

The greedy destructive algorithm is based on the reverse-delete algorithm (reverse version
of Kruskal’s algorithm). The algorithm starts with the original graph G and then it removes
one edge at a time until there are only n− 1 selected edges remaining. Specifically, it deletes
the edge e with the maximum contribution to the current graph that does not disconnect the
graph, emax. In this case, the Q values for each ei (i = 1, ...,m) are updated by subtracting
c(ei, emax) from them. In this method, we follow a lexicographical order for tie-breaking.

4

4.2 Local Search Methods

In this section, we describe three improvement methods, based on exchanges, previously pro-
posed for the QMSTP. Given a solution T , we exchange an edge ei ∈ ξ(T) with an edge
ej ∈ E\ξ(T) resulting on a tree T ′ with ξ(T ′) = ξ(T)∪{ej}\{ei}. Note that when we delete ei
from T , the tree is partitioned into two components and therefore, the edge ej is selected from
the set of edges connecting these two components of T in order to obtain a new feasible solution
(tree T ′). We observe that we can efficiently evaluate an exchange move without recomputing
the objective function from scratch. Let z be the value of the objective function of solution T .
The value z′ of the new solution T ′ may be directly computed as:

z′ = z − 2 ·Q(ei, T) + w(ei) + 2 ·Q(ej , T)− w(ej)− 2 · c(ei, ej).

In this way, the move value of the solutions in the neighborhood of a given solution can
be quickly evaluated, and once a move is chosen, the values Q(ei, T

′), k = 1, ..., n, may be
calculated as follows:

Q(ek, T
′) = Q(ek, T)− c(ek, ei) + c(ek, ej).

Based on the neighborhood defined by the exchanges above, we have studied three local
search methods:

• Best-improvement local search (BL). This is the classical local search method in which at
each iteration we explore the entire neighborhood and perform the best move. In other
words, the best choice strategy selects the move with the largest move value among all the
moves in the neighborhood. If it improves the current solution, we apply it and examine
in the next iteration the neighborhood of the new solution. Otherwise, the method stops.

• First-improvement local search (FL) [19]. This method implements the so-called first
choice strategy that scans the moves in the neighborhood in search for the first exchange
yielding an improvement in the objective function. At each iteration, an edge is randomly
selected from the current solution (ei ∈ ξ(T)) to be removed from it. Then, we examine
the edges out of the solution (ej ∈ E\ξ(T)) that can be added to ξ(T)\{ei}, producing a
new solution (spanning tree). We randomly select an edge ej and evaluate the associated
move. If it is an improving move, we perform it; otherwise, we randomly select a new
edge ej until we find an improving move or all the ej edges have been explored. In the
latter case we simply proceed to the next iteration in which a new edge ei is randomly
selected for removal. The procedure terminates when no further improvement is possible.

• ABC local search (AL) [23]. This is a hybrid method between the BL and the FL
described above. At each iteration, this local search randomly selects an edge from the
current solution (ei ∈ ξ(T)) to be removed from it. Then, it evaluates all the possible
edges that can be added to ξ(T)\{ei} and performs the best one if it improves the current
solution. The procedure terminates when no further improvement is possible.

These three methods represent typical implementations of a local search process. They ba-
sically resort to randomization or exhaustive exploration to select a move in the neighborhood
of a solution. Based on AL, we now propose a short term memory tabu local search (TLS) in
which we add a memory structure and apply candidate list strategies for move selection.

For each edge in the solution, ei ∈ ξ(T), we can compute a measure, m(ei) of its contribution
to the solution value:

m(ei) = w(ei) +
∑

ej∈ξ(T)
ej ̸=ei

c(ei, ej).

5

These measures are mapped onto probabilities for move selection. Specifically, at each
iteration of TLS, we probabilistically select an edge in the solution to be removed. The proba-
bilities are computed from the measure above, where the larger the contribution the larger the
probability to be selected (the probability of selecting edge ei is proportional to its contribution
m(ei)). Then, as in AL, we evaluate all the possible edges that can be added to ξ(T)\{ei},
but here we select the best one that is not tabu, regardless of whether it improves the current
solution (i.e., the move is executed even when the move value is not positive, resulting in a
deterioration of the current objective function value). Then, we update the measure values
and perform a new iteration. The moved edge(s) become tabu for TabuTenure iterations, and
therefore they cannot be selected for addition or removal during this time.

To implement our memory structure, we employ a one-dimensional array tabu(e), initially
set to −TabuTenure to permit initial selections, to store the iteration number when edge e
is moved. That is, if edge ei is removed from the solution and ej is added to the solution at
iteration iter, then tabu(ei) = tabu(ej) = iter. Then, in a subsequent iteration iter2, we say
that an edge e is tabu (and cannot be added to or removed from the solution) if

iter2 − tabu(e) < TabuTenure.

Note that although we use the same tenure value for both edges, an interesting variant is to
use a different tenure value for ei than for ej . In our experiments, however, we determined that
the effect of using different tenure values does not justify the increase in complexity related to
calibrating an additional search parameter.

4.3 Iterated Greedy

From an initial solution the IG method alternates between destructive and constructive phases
just as strategic oscillation does. During the destructive phase, some solution components are
removed from a previously constructed solution. The construction procedure then applies a
greedy constructive heuristic to reconstruct a solution. Once a newly reconstructed solution has
been obtained, an acceptance criterion is applied to decide whether it will replace the incumbent
solution. Additionally, an optional local search phase for improving the reconstructed solution
can be applied for improved outcomes.

An outline of the proposed IG is depicted in Figure 1. It starts from a complete initial
solution T (Initialise(); Step 1) and then iterates through a main loop which first generates a
partial candidate solution F by removing a fixed number of edges from the complete candidate
solution T (Destruction-phase(T, nd); Step 4) and next reconstructs a complete solution Tc

starting with F (Construction-phase(F); Step 5). In the local search phase (Local-Search-
phase(Tc); Step 6), an improvement procedure is performed in order to find better solutions
near the reconstructed solution. Before continuing with the next loop, an acceptance criterion
(AcceptCriterion(T, Ti); Step 10) decides whether the solution returned by the local search
procedure, Ti, becomes the new incumbent solution. The process iterates through these phases
until a computation limit tmax is reached. The best solution, Tb, generated during the iterative
process is kept to provide the final result.

In the algorithm in Figure 1 we apply the greedy destructive algorithm D (see Section
4.1) to obtain the initial solution Initialise(). Then we can apply either C1 or C2 constructive
algorithms (Section 4.1) to implement the Construction-phase(F). These methods insert nd

edges into the forest resulting from the destruction phase, obtaining a feasible spanning tree.
The Destruction-phase(T, nd) removes nd (a parameter of the algorithm) edges from the current
solution. These edges are selected at random as in many previous IG algorithms [20, 21, 26].
Finally, we can apply any of the three local search algorithms described in Section 4.2 as the
Local-search-phase(Tc).

We have considered two different following acceptance criteria in the scheme shown in
Figure 1:

6

Input: G, tmax, nd

Output: Tb

T ← Initialise();1

Tb ← T ;2

while tmax is not reached do3

F ← Destruction-phase(T, nd);4

Tc ← Construction-phase(F);5

Ti ← Local-Search-phase(Tc);6

if Ti is better than Tb then7

Tb ← Ti;8

end9

if AcceptCriterion(T, Ti) then10

T ← Ti;11

end12

end13

Figure 1: Iterated greedy pseudocode

• ‘Replace if better’ acceptance criterion (RB). The new solution is accepted only if it
provides a better objective function value [27].

• ‘Random walk’ acceptance criterion (RW). An IG algorithm using the RB acceptance
criterion may lead to stagnation situations of the search due to insufficient diversification
[20]. At the opposite extreme is the random walk acceptance criterion, which always
applies the destruction phase to the most recently visited solution, irrespective of its
objective function value. This criterion clearly favors diversification over intensification,
because it promotes a stochastic search in the space of local optima.

4.4 Tabu Search with Strategic Oscillation

Our SO approach for the QMSTP implements a 1-sided oscillation that does not cross into
infeasible space by adding more edges than necessary (which could be an interesting design
to test). It thus differs from instances of SO that are organized relative to feasibility and
infeasibility, involving a 2-sided oscillation that crosses that boundary.

An outline of the proposed SO is depicted in Figure 2. It starts from a complete initial
solution T and then iterates through a main loop which first generates a solution Ti by a
combination of a constructive procedure and a memory structure. Once a fully constructed
solution is obtained (and a limiting computational time has not yet been reached), we pass to
the Destructive Phase in which edges are removed from the complete candidate solution Ti.
Once a Turn Around point is reached, the method goes to the next Constructive Phase.

Note that in the SO algorithm the meaning of a best move depends not only on problem
context but on whether a Constructive or Destructive phase is being employed. The Turn
Around point itself may oscillate by creating partial solutions containing different numbers of
elements. The Constructive and Destructive processes can be interrupted at any point to apply
an Improvement Process that may or may not include memory structures. Often Improvement
Processes are applied only at the conclusion of a Constructive Phase, when a complete solution
is obtained, but they may be applied at other points as well. Sometimes applying them earlier
in a constructive process, for example, can remove deficient features that would otherwise be
inherited by later construction stages and that would create undesirable solutions.

In our SO method for the QMSTP we consider a constructive phase with two parts. In the
first one, we simply apply a greedy algorithm (C1 or C2, described in Section 4.1) but some
elements (those labeled as tabu) are not allowed to become part of the constructed solutions. In
the second part, we apply a short term tabu search (TLS) to improve the solution as described

7

Input: G, tmax, ntabu

Output: Tb

T ← Initialise();1

Tb ← T ;2

while tmax is not reached do3

// Destructive Phase

Ti ← T ;4

while Current solution Ti has not reached a Turn5

Around point do
Select a best element to drop from Ti subject to (po-6

tential) tabu restrictions.
Drop it from the (partial) solution Ti7

end8

// Constructive Phase

while Current solution Ti is not complete do9

Select a best element subject to tabu restrictions.10

Add it to the partial solution11

end12

T ′
i ← TLS Improvement Process(Ti, ntabu);13

if T ′
i is better than Tb then14

Tb ← Ti;15

end16

if AcceptCriterion(T, T ′
i) then17

T ← T ′
i ;18

end19

end20

Figure 2: Strategic Oscillation pseudocode

in Section 4.2. In line with this, our destructive phase for the QMSTP also incorporates
memory structures. As in the IG algorithm we randomly remove nd elements from the current
solution, but now, a number ntabu of these elements, ntabu ≤ nd, removed by the destruction
phase, are labeled tabu and thus not allowed to be added to the solution in the following
constructive phase. This strategy attempts to avoid looping over already visited solutions,
allowing the algorithm to advance towards diversified promising solutions. Note that the tabu
tenure in our memory structure is one entire iteration (destructive + constructive phases).
This memory structure may become decisive to ensure that SO performs an effective search
when dealing with complex problems (diversification is a key factor in this process). The level
of diversity induced by this technique is controlled by the ntabu parameter.

As customary in tabu search, we have implemented an aspiration criterion to overrule the
tabu status under certain circumstances. Note that specific situations may arise where the
construction of a feasible tree is not possible given the constraints imposed by this strategy.
When such an outcome is detected, the reference to tabu status is directly disabled (ntabu = 0)
during the current cycle to allow the creation of the new solution. (A common alternative is to
use a so-called “aspiration by default” which removes the tabu status from a certain number
of the least tabu elements, measured by reference to their unexpired tabu tenures.)

5 Computational Experiments

This section describes the computational experiments that we performed to assess the per-
formance of the IG and SO models presented in the previous sections. Firstly, we detail the
experimental setup and the statistical methods applied (Section 5.1), then, we analyze the

8

results obtained from different experimental studies carried out with these algorithms. Our
aim is: 1) to analyze the influence of the parameters and settings associated with IG, which
is a memory-less based algorithm (Section 5.2), 2) to show the benefits of the use of memory
structures in SO and TLS (Section 5.3), 3) to combine SO, IG, and ITS with the aim of ob-
taining a hybrid metaheuristic being able to show a robust operation for test problems with
different characteristics (Section 5.4), and 4) to compare the results of the hybrid algorithm
with those of other metaheuristic approaches for the QMSTP from the literature (Section 5.5).

5.1 Experimental Setup

The codes of all the studied algorithms have been implemented in C and the source code has
been compiled with gcc 4.6. The experiments were conducted on a computer with a 3.2 GHz
Intel R⃝ CoreTM i7 processor with 12 GB of RAM running FedoraTM Linux V15. We considered
three groups of benchmark instances for our experiments (in total constituting 83 instances),
which are described below and available at http://sci2s.ugr.es/qmst/QMSTPInstances.rar.

• The first set of benchmarks, henceforth denoted by CP, is composed of 36 instances,
ranging in size from 40 to 50 vertices, introduced by Cordone and Passeri (they are
publicly available1). For experimentation with these instances, the cutoff time for each
run was 10 seconds.

• Öncan and Punnen [14] present a transformation scheme to obtain QMSTP instances
from quadratic assignment problem (QAP) instances. They demonstrated that the op-
timum value of a QMSTP instance obtained with this transformation is equal to the
optimum value of the corresponding QAP instance. Particularly, the authors offered two
instance sets by transforming 15 QAP instances (from n = 24 to 60) by Nugent et al.
[13] and 14 QAP instances (from n = 24 to 50) by Christofides and Benavent [3] (whose
optimal solutions are known). They will be denoted by NUG and CHR, respectively.
The experiments reported in [14] showed that these instances are particularly challenging
for QMSTP algorithms. A time limit of 1000 seconds was assigned for these problems.

• The last group consists of two sets of large instances: RAND and SOAK. They were
generated exactly in the same manner as in [28] and [22], respectively. All the instances in
the RAND set represent complete graphs with integer edge costs uniformly distributed in
[1, 100]. The costs between edges are also integers and uniformly distributed in [1, 20]. In
the SOAK instances, nodes are distributed uniformly at random on a 500×500 grid. The
edge costs are the integer Euclidean distance between these points. The costs between
edges are uniformly distributed between [1, 20]. For each value of n ∈ {150, 200, 250},
there are 3 instances, leading to a total of 9 instances for each set. All methods were
stopped using a time limit that varied according to problem size (400, 1200, and 2000
seconds for problems from n = 150 to 250, respectively).

Non-parametric tests [6] have been used to compare the results of the different optimization
algorithms under consideration. The only condition to be fulfilled for the use of non-parametric
tests is that the algorithms to be compared should have been tested under the same conditions
(that is, the same set of problem instances, the same stopping conditions, the same number of
runs, etc). In the first place, average ranking for each algorithm is firstly computed according
to Friedman’s test. This measure is obtained by computing, for each problem instance, the
ranking ra of the observed results for algorithm a assigning to the best of them the ranking
1, and to the worst the ranking |A| (A is the set of algorithms). Then, an average measure is
obtained from the rankings of this algorithm for all test problems. For example, if a certain
algorithm achieves rankings 1, 3, 1, 4, and 2, on five problem instances, the average ranking is
1+3+1+4+2

5 = 11
5 . Note that the lower an average ranking is, the better its associated algorithm

1http://homes.dsi.unimi.it/∼cordone/research/qmst.html

9

is. We have considered two alternative methods based on non-parametric tests to analyze the
experimental results:

• The first method is the application of the Iman and Davenport test and the Holm method
as a post hoc procedure. The first test may be used to see whether there are significant
statistical differences among the compared algorithms. If differences are detected, then
Holm’s test is employed to compare the best algorithm (control algorithm) against the
remaining ones.

• The second method is the utilization of the Wilcoxon matched-pairs signed-ranks test.
With this test, the results of two algorithms may be directly compared. In statistical
terms, this test answers the question: Do the two samples represent two different pop-
ulations? In the context of algorithms’ comparison the Wilcoxon test determines if the
results of two methods are significantly different.

5.2 Study of the Memory-less Based Method: IG

In this section, we investigate the effect of the different parameters and strategies applied in
IG and their interactions. In particular, we consider:

• The acceptance criteria: RB and RW.

• The memory-less based improvement methods: FL, BL, and AL.

• The number of removed solution components nd=0.2n, 0.4n, 0.6n, and 0.8n.

With the purpose of fine-tuning this method, we employed two types of training problem
instances: 1) the 14 CHR instances and 2) 14 large instances from the SOAK and RAND sets
with n = 150 to n = 200. All the IG variants in this experiment apply C1 in the construction
phase (we will study the application of C2 in the next experiment). The IG methods were
stopped using a time limit of 360 seconds and one run was performed for each problem instance.

In each experiment, we compute for each instance the overall best solution value, BestValue,
obtained by the execution of all methods under consideration. Then, for each method, we
compute the relative deviation between the best solution value found by the method and the
BestValue. In Table 1, we report the average of this relative deviation (Dev) across all the
instances considered in each particular experiment and the number of instances (#Best) for
which the value of the best solution obtained by a given method matches BestValue. We also
show the average rankings (computed by the Friedman test) obtained by these IG variants
(Section 5.1).

In order to analyze the results, we have applied Iman-Davenport’s test (the level of signif-
icance considered was 0.05). We have observed the existence of significant differences among
the rankings (the statistical values, 79.41 and 160.16, are greater than the critical ones, 1.56
and 1.55, respectively). Then, we have compared the best ranked algorithm for each training
set (control algorithm), [RW, AL, 0.4n] and [RW, AL, 0.6n], with the other IG versions, by
means of Holm’s test (a post hoc statistical analysis) with p = 0.05. The last column in Table
1 indicates whether Holm’s test finds statistical differences between the control algorithm and
the corresponding algorithm.

We can draw the following conclusions from Table 1:

• The acceptance criterion has the largest impact on the IG performance. Unexpectedly,
the best outcomes (rankings) are obtained when the RW acceptance criterion is used
(Holm’s test confirms that its superiority is statistically significant). As a matter of
fact, it is unusual to find IG models in the literature employing this strategy (most of
them show a bias towards maintaining high quality solutions). Thus, we may remark
that the combination of the diversification provided by RW and the intensification of the
improvement procedure benefits the IG performance.

10

IG CHR Instances IG LARGE Instances
(AC, LS, nd) Av. Ran. Dev #Best Holm (AC, LS, nd) Av. Ran. Dev #Best Holm
RB FL 0.2n 21.5 6.1971 0 yes RB BL 0.8n 21.9 0.0530 0 yes
RB AL 0.4n 21.3929 6.2129 0 yes RB FL 0.8n 21.6667 0.0586 0 yes
RB BL 0.2n 21.2857 6.1791 0 yes RB AL 0.8n 21.6667 0.0526 0 yes
RB FL 0.4n 20.7143 6.1676 0 yes RB BL 0.6n 21.1667 0.0442 0 yes
RB BL 0.4n 20.2143 6.1697 0 yes RB AL 0.6n 20.6 0.0413 0 yes
RB AL 0.2n 20.0714 6.0514 0 yes RB FL 0.6n 19.8 0.0468 0 yes
RB AL 0.6n 18.6071 5.6991 0 yes RB BL 0.4n 17.3333 0.0247 0 yes
RB FL 0.6n 17.8571 5.5717 0 yes RB BL 0.2n 16.5333 0.0224 0 yes
RB BL 0.6n 17.7143 5.6132 0 yes RB FL 0.4n 15.9333 0.0222 0 yes
RB AL 0.8n 14.5714 4.7705 0 yes RB AL 0.4n 15.7 0.0214 0 yes
RB BL 0.8n 14.1429 4.7515 0 yes RB AL 0.2n 15.0333 0.0198 0 yes
RB FL 0.8n 13.9286 4.6530 0 yes RB FL 0.2n 14.6667 0.0205 0 yes
RW FL 0.8n 8.7857 0.1185 1 no RW BL 0.2n 10.5333 0.0088 0 yes
RW FL 0.6n 8.6429 0.0996 0 no RW BL 0.8n 10.1333 0.0081 0 yes
RW BL 0.6n 8.2857 0.0996 0 no RW AL 0.2n 9.4 0.0078 0 yes
RW BL 0.8n 7.9286 0.1136 1 no RW FL 0.2n 9 0.0073 0 yes
RW AL 0.8n 7.3214 0.0959 1 no RW FL 0.8n 7.5333 0.0065 0 no
RW BL 0.2n 6.2857 0.0775 2 no RW AL 0.8n 7.3333 0.0062 0 no
RW AL 0.6n 6.1429 0.0764 2 no RW BL 0.4n 7.2 0.0055 0 no
RW FL 0.2n 5.8571 0.0626 4 no RW AL 0.4n 4.7333 0.0038 1 no
RW AL 0.2n 5.5357 0.0633 3 no RW FL 0.4n 4.2333 0.0031 0 no
RW BL 0.4n 5.0714 0.0762 2 no RW BL 0.6n 4 0.0027 1 no
RW FL 0.4n 4.8929 0.0565 3 no RW FL 0.6n 2.1333 0.0010 4 no
RW AL 0.4n 3.25 0.0412 4 no RW AL 0.6n 1.7667 0.0005 9 no

Table 1: Results of the IG instances

• The choice of the value for nd has an important influence, as well, on the IG behavior.
For both instance sets, the three best ranked algorithms employed the same setting for
this parameter (0.4n for the CHR set and 0.6n for the large instances).

• Although the results of Holm’s test indicate that there are no significant differences in
the performance of the improvement procedures (and then, there exists little sensitivity
to changes in this IG component), we choose the ABC local search for all remaining
experiments involving IG since the best ranked configurations for the two instance sets
are based on this method.

We now undertake to analyze the effects of the greedy constructive algorithms (C1 and C2
described in Section 4.1) on the IG performance. We have implemented IGs with C1 and C2,
and the two best values of the nd parameter identified in the previous experiment (nd = 0.4n
and 0.6n). They apply the RW acceptance criterion and the ABC local search. The Iman
and Davenpor’s test indicates the existence of significant differences among the rankings (the
statistical values, 58.17 and 164.97 are larger than the critical ones, 2.84 and 2.82, respectively).

IG CHR Instances IG LARGE Instances
(Greedy, nd) Av. Ran. Dev #Best Holm (Greedy, nd) Av. Ran. Dev #Best Holm
C2 0.6n 3.6071 0.7424 0 yes C2 0.4n 3.9333 0.0102 0 yes
C2 0.4n 3.3929 0.6595 0 yes C2 0.6n 3 0.0084 0 yes
C1 0.6n 1.6786 0.0440 5 no C1 0.4n 2 0.0034 1 yes
C1 0.4n 1.3214 0.0098 10 C1 0.6n 1.0667 4.66E-05 14

Table 2: Results of IG versions with different greedy constructive algorithms

With regard to this result, we compare the best ranked IG for each instance set, [C1,
0.4n] and [C1, 0.6n], with the other IG variants, by means of Holm’s test. Table 2 reports its
results. Our main observation about the data in this table is that Holm’s test revealed the
clear advantage of C1 on C2. It is interesting to remark that, quite surprisingly, the simplest
constructive algorithm, when iterated inside IG, becomes the most effective one.

5.3 Study of the Memory Based Methods: SO and TLS

In this section, firstly, we present a series of preliminary experiments that were conducted to set
the values of the key search parameters of TLS (Section 4.2), TabuTenure and MaxIter. In par-

11

ticular, we have built different SO instances (RW,C1, and ntabu = 0.05) with nd = {0.4n, 0.6n},
TabuTenure = {2, 10, 50}, and MaxIter = {100, 200, 500}. Table 3 summarizes the results of
these algorithms and the conclusions of Holm’s test (the Iman-Davenport test finds significant
performance differences between the considered algorithms because its statistical values, 14.03
and 27.56, are greater than the critical ones, 1.669 and 1.665, respectively).

SO CHR Instances SO LARGE Instances
(nd, TT , MI) Av. Ran. Dev #Best Holm (nd, TT , MI) Av. Ran. Dev #Best Holm
0.6n 50 500 16.75 0.1947 0 yes 0.6n 50 500 15.2 0.0072 0 yes
0.4n 50 200 13.3929 0.1096 0 yes 0.6n 2 500 14.9333 0.0064 0 yes
0.6n 10 500 13 0.1204 1 yes 0.6n 10 500 14.6667 0.0067 0 yes
0.4n 50 500 12.6786 0.1259 1 yes 0.6n 2 200 13.3333 0.0062 0 yes
0.6n 50 100 12.6071 0.1156 2 yes 0.6n 10 200 13.0333 0.0059 0 yes
0.6n 50 200 12.1786 0.1298 3 yes 0.6n 2 100 12.7333 0.0060 0 yes
0.6n 10 200 12.1429 0.1065 1 yes 0.6n 50 100 12.5 0.0055 0 yes
0.4n 10 500 11.3571 0.1016 2 yes 0.6n 50 200 12.1667 0.0055 0 yes
0.6n 10 100 10.8571 0.0961 2 yes 0.6n 10 100 11.8333 0.0053 0 yes
0.4n 10 200 9.8214 0.0869 3 yes 0.4n 10 500 9.0333 0.0034 1 yes
0.4n 50 100 9.7857 0.0790 2 yes 0.4n 50 500 8.3 0.0034 1 yes
0.6n 2 500 6.1786 0.0324 5 no 0.4n 2 500 7.6 0.0029 0 no
0.4n 10 100 5.7143 0.0350 6 no 0.4n 2 200 5.2667 0.0020 0 no
0.6n 2 200 5.6429 0.0425 3 no 0.4n 50 200 5.1667 0.0018 3 no
0.6n 2 100 5.1429 0.0364 3 no 0.4n 10 200 4.8 0.0019 2 no
0.4n 2 200 4.8929 0.0327 4 no 0.4n 2 100 4.0667 0.0014 4 no
0.4n 2 100 4.8214 0.0342 4 no 0.4n 10 100 3.3333 0.0012 3 no
0.4n 2 500 4.0357 0.0164 5 0.4n 50 100 3.0333 0.0011 6

Table 3: Results of SO with TLS when applying different nd, TabuTenure, and MaxIter values

The results in Table 3 show that the best outcomes for the CHR instances are obtained
with the lowest TabuTenure value, and the ones for the large instances with the lowest MaxIter
values. Interestingly, the TabuTenure parameter had less impact on the performance of TLS
when dealing with large instances, and the same happens with the MaxIter parameter in
the case of CHR. Nevertheless, given the relatively robust performance achieved by using
nd = 0.4n, TabuTenure=10, and MaxIter = 100 (second best ranked algorithm for the large
instance set and Holm’s test did not detect significant differences between this configuration
and best one for CHR), we choose this setting for all remaining experiments involving this
local search operator.

Next, we investigate the effects of varying the ntabu parameter associated with SO (number
of removed elements that cannot be reinserted into the solution). In particular, we have gener-
ated 5 SO configurations with ntabu = {0.05nd, 0.1nd, 0.25nd, 0.5nd, nd}. In order to study the
results, we have applied Iman-Davenport’s test (the level of significance considered was 0.05).
We have observed the existence of significant differences among the rankings (the statistical
values, 7.85 and 277.66, are greater than the critical ones, 2.54 and 2.53, respectively). Then,
we analyze the performance of these SO instances by means of Holm’s test (Table 4).

SO CHR Instances SO LARGE Instances
(ntabu) Av. Ran. Dev #Best Holm (ntabu) Av. Ran. Dev #Best Holm
nd 4.2857 0.10776 yes 2 nd 5 0.02139 0 yes
0.5 nd 3.4286 0.06932 yes 4 0.5 nd 4 0.01429 0 yes
0.1 nd 2.9286 0.05291 no 3 0.25 nd 3 0.00697 0 yes
0.25 nd 2.7143 0.03983 no 3 0.1 nd 1.6 0.00129 6 no
0.05 nd 1.6429 0.00514 12 0.05 nd 1.4 0.00069 9

Table 4: Results of SO with different ntabu values

The results in Table 4 strongly reveal a clear superiority of the SO version with ntabu =
0.05nd for both instance sets. Clearly, too much diversity (high ntabu values) is not suitable
to allow SO to reach fitter search areas. To sum up, the effects derived from the combination
of the exploration power of TLS and a moderate diversification by SO (low ntabu values) are
sufficient to attain a high level of robustness for both instance sets.

12

5.4 Comparison Between IG, SO, and ITS

The first objective of this section is to compare the results for IG, SO, and Iterated Tabu
Search ITS [19]. ITS is another memory-based approach proposed to deal with the QMSTP
that has proved to be one of the most appealing contemporary metaheuristic approaches for
this problem and other combinatorial optimization problems with quadratic objective func-
tions, including the unconstrained binary quadratic optimization problems [15], the maximum
diversity problem [16], and the Max-2-SAT problem [17, 18]. We should point out that IG,
SO and ITS were run under the same computational conditions (machine, programming lan-
guage, compiler, and time limits; see Section 5.1) in order to enable a fair comparison between
them. We have used the source code of ITS provided by the author2. Henceforth, all studied
algorithms were run 10 times on each problem instance.

In Table 5, we have summarized the results of the IG and SO versions that achieved the
best outcomes in Sections 5.2 and 5.3, respectively, and the ones of ITS (best performance
measure values are outlined in boldface). For each algorithm, in column Avg-Dev , we include
the average of the relative deviations from BestValue (Section 5.2) of the solution values found
by the algorithm in the 10 runs on a set of problem instances and, in the case of the column
%best, we outline the percentage of runs in which the algorithm reached BestValue for the
instances in the corresponding group.

Inst. Set IG SO ITS HSII
Avg-Dev %best Avg-Dev %best Avg-Dev %best Avg-Dev %best

NUG 0.0745 0 0.0429 7.33 0.0104 15.33 0.0176 8.67
CHR 0.2434 10 0.0945 23.57 0.9918 10 0.0665 20
RAND 0.0016 8.89 0.0048 0 0.0046 0 0.0021 1.11
SOAK 0.001 6.67 0.0072 0 0.0016 3.33 0.0012 2.22
CP 0.0005 71.94 0.004 25.56 0.0004 77.50 0.0006 72.22

Avg. 0.0642 19.5 0.03068 11.292 0.20176 21.232 0.0176 20.844

Table 5: Comparison between IG, SO, ITS, and HSII

The results of IG, SO, and ITS (Table 5) allow us to make the following observations.

• The high Avg-Dev values for IG, SO, and, specially, for ITS on the CHR set suggest that
it includes the hardest QMSTP instances. Note that, in this case, the results of SO are
much better than those of its competitors. The high levels of diversity promoted by the
memory-based techniques in SO became decisive to guarantee an effective search when
dealing with these complex problem instances.

• For the large instance sets, RAND and SOAK, the Avg-Dev and %best measures for
IG show better quality than the ones for SO and ITS. We should note that, in contrast
with the previous case, SO obtained the lowest quality results. For problems with many
vertices, the action of the memory-based techniques in SO may produce detrimental
disruptions in the solutions, causing misbehavior in the SO search. However, the diver-
sification originated from the random deletion of elements during the destruction phase
in IG may be enough to favor the progress towards promising search zones.

• ITS outperforms IG and SO on the CP and NUG instance sets.

Hence, it seems that, somewhat unsurprisingly, there is no single best algorithm; SO is
superior for the most complex instance set, IG for the large instances, and ITS becomes the
winner for the case of the easiest instances. Thus, regarding these results and with the aim of
producing a robust operation, we have built a hybrid algorithm, dubbed HSII, that combines
SO, IG, and ITS. Specifically, HSII is a relay collaborative hybrid metaheuristic [24] that
executes SO, IG, and ITS in a pipeline fashion. First, SO is performed during the PSO% of the

2ITS is publicly available at http://www.soften.ktu.lt/∼gintaras/qmstp.html

13

imposed time limit and the best found solution becomes the initial solution for IG, which is
run during PIG% of this time. Finally, the output of IG is supplied as input to ITS. We have
set PSO and PIG to 25% and 50%, respectively. The idea of this hybridization scheme is: (1)
to use SO as diversification agent to reach good initial solutions for the most difficult problem
instances, then (2) to allow IG enough time to offer a suitable behavior on large instances, and
finally (3) to employ ITS as an effective improvement procedure for refining the best solution
found in the previous stages.

Table 5 has the Avg-Dev and %best values for HSII. In general, for most problem sets, this
algorithm might obtain Avg-Dev values very similar to the ones returned by the fittest algo-
rithms (or even better, as was the case for CHR). Thus, we may conclude that the combination
of the proposed IG and SO approaches along with ITS (by following a simple hybridization
scheme) resulted really advisable to achieve an acceptable level of robustness across a wide
range of different QMSTP instances.

5.5 HSII vs. State-of-the-art Metaheuristics for the QMSTP

In this section, we undertake a comparative analysis among HSII and the current best algo-
rithms for the QMSTP, ITS [19], ABC [23], and local search algorithm with tabu thresholding
(LS-TT) [14]. We should point out that HSII, ITS, and ABC were run under the same com-
putational conditions (Section 5.1). We have implemented ABC in C. Since we could not
obtain the source code of LS-TT, we have used the results reported in [14] for the NUG and
CHR instances to compare with our algorithm (they were obtained with a single run). The
parameter values used for each considered algorithm are the ones recommended in the original
works. Their results are outlined in Tables 9-13 in Appendix A. With the aim of determining
the position of SO and IG with regards to the state-of-the-art, we have included them in this
comparative study as well.

In order to detect the differences among HSII and the other algorithms, we have applied
Wilcoxon’s test. Tables 6-8 have the %best and Avg-Dev measures and summarize the results
of this procedure for p = 0.05, where the values of R+ (associated to HSII) and R− of the test
are specified. The last column indicates whether Wilcoxon’s test found statistical differences
between these algorithms. If min{R+, R−} is less than or equal to the critical value, this
test detects significant differences between the algorithms, which means that an algorithm
outperforms its opponent. Particularly, if this occurs and R− = min{R+, R−}, then HSII is
statistically better than the other algorithm. All large instances (RAND and SOAK) and
QAP based instances (NUG and CHR) have been grouped in order to apply the statistical
test to a significant number of instances.

Algorithm Avg-Dev %best R+ R− Diff?

IG 0.0005 71.94 300.0 366.0 no
SO 0.0040 25.56 628.5 1.5 yes
ITS 0.0004 77.50 174.5 455.5 yes
ABC 0.0061 20.28 661.0 5.0 yes
HSII 0.0006 72.22

Table 6: Comparison on the CP set (Wicoxon’s test; critical value = 208)

NUG set CHR set
Algorithm Avg-Dev %best Avg-Dev %best R+ R− Diff?

IG 0.0745 0 0.2459 10.00 434.0 1.0 yes
SO 0.0429 7.33 0.0965 22.86 294.5 140.5 no
ITS 0.0104 15.33 0.9965 10.00 196.0 210.0 no
ABC 0.2597 0.00 1.9261 0.00 435.0 0.0 yes
LS-TT 0.0671 0.00 0.2918 7.14 411.0 24.0 yes
HSII 0.0176 8.67 0.0686 20.00

Table 7: Comparison on the NUG and CHR sets (Wicoxon’s test; critical value = 126)

14

RAND set SOAK set
Algorithm Avg-Dev %best Avg-Dev %best R+ R− Diff?

IG 0.0016 8.89 0.0010 6.67 23.0 148.0 yes
SO 0.0048 0 0.0072 0 171.0 0.0 yes
ITS 0.0046 0 0.0016 3.33 162.0 9.0 yes
ABC 0.0111 0.00 0.0077 0.00 171.0 0.0 yes
HSII 0.0021 1.11 0.0012 2.22

Table 8: Comparison on the RAND and SOAK sets (Wicoxon’s test; critical value = 40)

The results presented in Tables 6-8 reveal the following.

• For large instances (Table 8), HSII has the upper hand in the statistical comparison over
its competitors (ABC and ITS).

• For complex instances (Table 7), our hybrid metaheuristic clearly obtained statistically
significant improvements relative to ABC and LS-TT. In addition, analyzing the compu-
tational time reported in [14] (where a Pentium IV PC at 3 GHz was used to carry out
experiments) for LS-TT on these instances (Tables 10 and 11), we may conclude that,
in general, LS-TT required more time than our hybrid algorithm (with a time limit of
1000 seconds). Therefore, our proposal outperforms this algorithm in all aspects, when
considering the results on the NUG and CHR instance sets.

On the other hand, Wilcoxon’s test did not detect significant differences between HSII
and ITS on these instances. According to the Avg-Dev and%best measures, our algorithm
clearly beats ITS for the CHR instances. For the case of the NUG instances, they show
similar values for the Avg-Dev measure, which explains that Wilcoxon’s test did not find
statistical differences between them when the two sets of instances were considered.

• HSII was found to be superior to ABC for the CP instances (Table 6), however, only
in this case, ITS could statistically outperform our proposal (even so, note that HSII
attained a similar %best value). It is worth mentioning that, in [19], iterated tabu search
proved superior to other advanced methods precisely on this instance set.

In summary, this experimental analysis confirms that our hybrid HSII approach is a very
attractive alternative to the existing approaches for the QMSTP.

Finally, we should note that SO achieved better Avg-Dev and %best values than ABC and
LS-TT in the case of the NUG and CHR sets (Table 7), and IG was able to outperform all
other algorithms on the RAND and SOAK sets (Table 8). These facts evidence the great
potential of the proposed SO and IG metaheuristics to effectively handle large and highly
complex problem instances, which posed real challenges for previous metaheuristic approaches
in the literature.

6 Conclusions

Our research study demonstrates the effectiveness of a strategy for solving the QMSTP that
alternates between constructive and destructive phases, as originally proposed in strategic
oscillation (SO) and more recently in the iterated greedy (IG) method. We limit consideration
of SO in this study to a one-sided oscillation that does not cross the feasibility boundary in
order to make it more comparable to the IG approach, and differentiate it from IG primarily
by introducing tabu search (TS) memory as in previous SO algorithms.

Our tests disclose that the memory-based SO method is able to solve complex QMSTP
instances better than other previous algorithms. On the other hand, our implementation
of the IG algorithm succeeds in performing most effectively for large problems that are not
highly complex, while the iterated tabu search (ITS) algorithm performs best in application
to easier instances. Based on these findings we additionally developed a hybrid method HSII

15

that combines these three algorithms, which proved very effective across the board with the
exception of one class of problem instances, where iterated tabu search remained the winner.

Overall, the ability of the alternating constructive/destructive strategies to give superior
outcomes for larger problems, with memory proving valuable for complex problems and a dis-
regard for memory proving valuable for easier problems, invites further consideration of other
forms of strategic oscillation, particularly by crossing feasibility boundaries (whose value is un-
derscored in [9]) and by going beyond the reliance on randomization in carrying out destructive
moves by introducing more advanced strategies for selecting these moves (as indicated in [7]).

Acknowledgments

We are thankful to Dr. Temel Öncan for providing the NUG and CHR instances used in
[14]. This work was supported by the Research Projects TIN2011-24124, TIN2009-07516,
TIN2012-35632, and P08-TIC-4173.

A Results of the Algorithms

Tables 9-13 outline the results of the algorithms concerning the experiment in Section 5.5. The
columns with heading ‘Ave’ (respectively, ‘Min’) present the difference between the average of
the objective function value of the solutions reached by an algorithm after 10 runs (respectively,
the objective function value of the best solution out of these 10 solutions) and the value in
the second column. Additionally, Tables 10 and 11 have the computational times required by
LS-TT to achieve their results (both of them were directly extracted from [14]).

Instance Best Known V. HSII ITS ABC
Ave Min Ave Min Ave Min

n40 m257 1 5945 0 0 0 0 13.8 0
n40 m257 2 56237 0 0 0 0 0 0
n40 m257 3 6925 0 0 0 0 0 0
n40 m257 4 57874 0 0 0 0 0 0
n40 m522 1 5567 3.2 0 0.6 0 24.8 18
n40 m522 2 51851 0 0 24.6 0 392.2 220
n40 m522 3 6456 0 0 0 0 18.9 18
n40 m522 4 53592 9.9 0 13 0 104.5 43
n40 m780 1 5368 0.5 0 0.9 0 68.1 13
n40 m780 2 49817 18.2 0 6.2 0 591.4 129
n40 m780 3 6208 0 0 1 0 8 0
n40 m780 4 51229 77.1 0 0 0 647.6 0
n45 m326 1 7521 0 0 0 0 1.4 0
n45 m326 2 70603 0 0 0 0 42.9 0
n45 m326 3 8720 0 0 0 0 4.7 0
n45 m326 4 72676 0 0 0 0 82 82
n45 m663 1 7161 16.8 0 15.7 0 51.9 44
n45 m663 2 66889 23.8 0 0 0 287.6 0
n45 m663 3 8225 0.6 0 0 0 36.3 25
n45 m663 4 68737 46 0 0 0 440.2 0
n45 m990 1 6944 7.3 1 4.7 0 76.9 47
n45 m990 2 64840 45.6 0 50.9 0 1048.3 583
n45 m990 3 7827 0 0 0 0 4 0
n45 m990 4 66508 148 0 141.9 0 1042.2 331
n50 m404 1 9393 0 0 0 0 34.1 24
n50 m404 2 88942 0 0 0 0 370.4 349
n50 m404 3 10717 0 0 0 0 0 0
n50 m404 4 91009 0 0 0 0 165 165
n50 m820 1 8958 10.5 0 1.3 0 76.8 33
n50 m820 2 84020 100.4 0 4.4 0 1256.6 601
n50 m820 3 10100 0 0 0 0 46.7 37
n50 m820 4 86231 147.6 0 18.7 0 1169.9 599
n50 m1225 1 8713 25.1 0 21 0 128.7 53
n50 m1225 2 81858 205.5 27 192.5 27 1128.1 450
n50 m1225 3 9836 8.4 0 1.9 0 47.8 20
n50 m1225 4 83838 31.6 0 102.1 0 883.6 43

Table 9: Results for CP instance set

16

Instance Opt. Value HSII ITS ABC LS-TT
Ave Min Ave Min Ave Min Ave/Min Time

nug12 578 0 0 0 0 165.8 78 27 639
nug14 1014 20.8 12 9.2 0 273.8 126 70 724
nug15 1150 16.8 2 10.2 0 334.6 254 115 1348
nug16a 1610 39.4 24 36.6 28 432 334 132 2311
nug16b 1240 33.2 6 28.4 8 369.8 240 110 2936
nug17 1732 58.6 42 49.2 36 475.8 334 142 3422
nug18 1930 74.8 54 61 34 488.6 294 126 3482
nug20 2570 127 92 100 74 645.4 330 290 5151
nug21 2438 137.2 102 106.8 64 870.6 604 260 5184
nug22 3596 190.2 154 161 116 1397.2 984 272 5482
nug24 3488 237.6 200 187 160 1133 852 386 5914
nug25 3744 252.6 196 224.4 210 1116.4 778 339 5983
nug27 5234 342.6 300 303.4 222 1481 1050 732 6025
nug28 5166 353.2 318 321.4 240 1300.2 1072 653 6087
nug30 6124 482 404 429.6 382 1775.8 1564 799 6227

Table 10: Results for NUG instance set

Instance Opt. Value HSII ITS ABC LS-TT
Ave Min Ave Min Ave Min Ave/Min Time

chr12a 9552 0 0 14625.6 7142 20331.4 4738 1618 783
chr12b 9742 92 0 16221.2 6614 22457 11810 1011 790
chr12c 11156 3 0 12243.8 6278 14143.2 4654 1556 783
chr15a 9896 446.6 56 16624.8 6822 27719.4 14328 1742 1239
chr15b 7990 1628 394 21137.8 9218 33899.8 20350 2155 1136
chr15c 9504 1035.6 0 19956.2 9798 25663.2 16062 3265 1254
chr18a 11098 3439.2 2736 22572.4 11398 31298.6 13856 1659 3325
chr18b 1534 3.4 0 0 0 1123 626 142 3354
chr20a 2192 225.8 84 162.4 40 4142.4 2550 253 4968
chr20b 2298 223.8 164 184.4 142 3435 1406 432 4652
chr20c 14142 7976 6064 31867.6 22416 50674.6 35700 15982 4763
chr22a 6156 312.6 178 269 234 3759.8 2532 2604 5089
chr22b 6194 336.6 202 249.4 120 4067.6 2714 2208 4741
chr25a 3796 929.6 514 787 504 7728.2 4744 5862 5223

Table 11: Results for CHR instance set

Instance Best Known V. HSII ITS ABC
Ave Min Ave Min Ave Min

RAND-150-1 192606 304.1 0 638.5 340 2223.1 1688
RAND-150-2 192607 315.8 0 762.9 427 2187 1611
RAND-150-3 192577 215.6 0 726.1 388 2112.8 1305
RAND-200-1 350517 506.6 0 1270.2 699 3874.3 2646
RAND-200-2 350389 513.4 0 1434.7 923 3756.3 3395
RAND-200-3 351057 228.4 0 883.8 409 2856.4 2112
RAND-250-1 556929 505.6 0 2306.5 1522 5585.8 4935
RAND-250-2 557474 376.1 0 2004.2 1346 4898 3230
RAND-250-3 556813 650.4 0 2676.8 2491 5423.3 4684

Table 12: Results for RAND instance set

Instance Best Known V. HSII ITS ABC
Ave Min Ave Min Ave Min

SOAK-150-1 206721 368.4 204 283.9 0 1557.2 931
SOAK-150-2 206761 519.5 341 392.6 0 2024.1 1445
SOAK-150-3 206781 173.2 0 178.6 21 1336.4 752
SOAK-200-1 370137 393.5 128 396.3 0 3196.8 2282
SOAK-200-2 369982 201.6 0 369 46 2311 1659
SOAK-200-3 370045 300.8 0 345.7 1 2860 2072
SOAK-250-1 581819 464.7 0 1250.4 463 4260.3 2980
SOAK-250-2 581691 322.3 0 1181.9 454 4132.7 2718
SOAK-250-3 581854 736.8 0 1671.8 854 4491.1 3863

Table 13: Results for SOAK instance set

17

References

[1] Assad A, Xu W. The quadratic minimum spanning tree problem. Naval Research Logistics
1992; 39: 399–417.

[2] Cordone R, Passeri G. Heuristic and exact approaches to the quadratic minimum span-
ning tree problem. In: Seventh Cologne-Twente Workshop on Graphs and Combinatorial
Optimization (CTW08), Gargnano, Italy, Universit degli Studi di Milano, 2008, pp. 52–55.

[3] Christofides N, Benavent E. An exact algorithm for the quadratic assignment problem.
Operations Research 1989; 37(5):760–8.

[4] Fanjul-Peyroa L, Ruiz R. Iterated greedy local search methods for unrelated parallel ma-
chine scheduling. European Journal of Operational Research 2010; 207: 55–69.

[5] Gao J, Lu M. Fuzzy quadratic minimum spanning tree problem. Applied Mathematics
and Computation 2005; 164: 773–788.

[6] Garćıa S, Molina D, Lozano M, Herrera F. A study on the use of nonparametric tests for
analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special
session on real parameter optimization. Journal of Heuristics 2009; 15: 617–644.

[7] Glover F, Laguna M. Tabu Search. Dordrecht: Kluwer, 1997.

[8] Glover F. Heuristics for Integer Programming Using Surrogate Constraints. Decision Sci-
ences 1977; 8: 156–166.

[9] Glover, F., Hao, J.K. The Case for Strategic Oscillation.Annals of Operations Research
2011; 183 (1): 163–173.

[10] Jacobs LW, Brusco MJ. A local-search heuristic for large set-covering problems. Naval
Research Logistics 1995; 42: 1129–1140.

[11] Kruskal JB. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society 1956; 7: 48–50.

[12] Lozano M, Molina D, Garćıa-Mart́ınez C. Iterated greedy for the maximum diversity
problem. European Journal of Operational Research 2011; 214: 31–38.

[13] Nugent CE, Vollman TE, Ruml J. An experimental comparison of techniques for the
assignment of facilities to locations. Operations Research 1968; 16: 150–73.

[14] Öncan T, Punnen AP. The quadratic minimum spanning tree problem: a lower bounding
procedure and an efficient search algorithm. Computers and Operations Research 2010;
37: 1762–1773.

[15] Palubeckis G. Iterated tabu search for the unconstrained binary quadratic optimization
problem. Informatica 2006; 17: 279–296.

[16] Palubeckis G. Iterated tabu search for the maximum diversity problem. Applied Mathe-
matics and Computation 2007; 189: 371–383.

[17] Palubeckis G. Solving the weighted Max-2-SAT problem with iterated tabu search. Infor-
mation Technology and Control 2008; 37: 275–284.

[18] Palubeckis G. A new bounding procedure and an improved exact algorithm for the Max-
2-SAT problem. Applied Mathematics and Computation 2009; 215: 1106–1117.

[19] Palubeckis G, Rubliauskas D, Targamadz A. Metaheuristic approaches for the quadratic
minimum spanning tree problem. Information Technology and Control 2010; 39(4): 257–
268.

18

[20] Ruiz R, Stützle T. A simple and effective iterated greedy algorithm for the permutation
flowshop scheduling problem. European Journal of Operational Research 2007; 177: 2033–
2049.

[21] Ruiz R, Stützle T. An Iterated Greedy heuristic for the sequence dependent setup times
flowshop problem with makespan and weighted tardiness objectives. European Journal of
Operational Research 2008; 187: 1143–1159.

[22] Soak SM, Corne DW, Ahn BH. The edge-window-decoder representation for tree-based
problems. IEEE Transactions on Evolutionary Computation 2006; 10: 124–144.

[23] Sundar S, Singh A. A swarm intelligence approach to the quadratic minimum spanning
tree problem. Information Sciences 2010; 180; 3182–3191.

[24] Talbi E-G. A taxonomy of hybrid metaheuristics. J Heuristics 2002; 8(5): 541–65.

[25] Xu W. On the quadratic minimum spanning tree problem. In: Gen M, Xu W, editors. Pro-
ceedings of 1995 Japan–China International Workshops on Information Systems, Ashik-
aga, Japan, 1995, pp. 141–148.

[26] Ying KC. Solving non-permutation flowshop scheduling problems by an effective iter-
ated greedy heuristic. International Journal of Advanced Manufacturing Technology 2008;
38(3–4): 348–354.

[27] Ying KC, Cheng HM. Dynamic parallel machine scheduling with sequence-dependent
setup times using an iterated greedy heuristic. Expert Systems with Applications 2010;
37(4): 2848–2852.

[28] Zhou G, Gen M. An effective genetic algorithm approach to the quadratic minimum
spanning tree problem. Computers and Operations Research 1998; 25: 229–237.

19

Bibliography

[ABR03] Aiex R., Binato S., y Resende M. (2003) Parallel GRASP with path-relinking for job
shop scheduling. Parallel Computing 29(4): 393–430.

[Adl93] Adler D. (1993) Genetic algorithm and simulated annealing: a marriage proposal. In
Proc. of the IEEE international conference on neural network, pp. 1104–1109.

[AGA99] Allahverdi A., Gupta J., y Aldowaisan T. (1999) A review of scheduling research
involving setup considerations. Omega 27(2): 219–239.

[AK89] Aarts E. y Korst J. (1989) Simulated Annealing and Boltzmann Machines. John Wiley
& Sons.

[AK99] Azizoglu M. y Kirca O. (1999) On the minimization of total weighted flow time with
identical and uniform parallel machines. European Journal of Operational Research
113(1): 91 – 100.

[AK02] Aarts E. y Korst J. (2002) Selected topics in simulated annealing. In Essays and
Surveys in Metaheuristics, pp. 1–37. Kluwer Academic Publishers Group.

[AL97] Aarts E. y Lenstra J. K. (Eds.) (1997) Local Search in Combinatorial Optimization.
John Wiley & Sons, Inc., New York, NY, USA.

[Ant09] Antonio C. (2009) A study on synergy of multiple crossover operators in a hierarchical
genetic algorithm applied to structural optimisation. Structural and Multidisciplinary
Optimization 38(2): 117–135.

[ARPT05] Aiex R., Resende M., Pardalos P., y Toraldo G. (2005) GRASP with path relinking
for three-index assignment. Informs Journal on Computing 17(2): 224–247.

[AX92] Assad A. y Xu W. (1992) The quadratic minimum spanning tree problem. Naval
Research Logistics 39(3): 399–417.

[AY05] Aydin M. y Yigit V. (2005) Parallel Simulated Annealing, pp. 267–288. Parallel
Metaheuristics: A New Class of Algorithms. Wiley.

[BARS08] Blum C., Aguilera M. J. B., Roli A., y Sampels M. (Eds.) (2008) Hybrid Metaheuris-
tics: An Emerging Approach to Optimization. Springer.

[BB96] Brassard G. y Bratley P. (1996) Fundamentals of algorithmics. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA.

151

152 BIBLIOGRAPHY

[BBB12] Bouamama S., Blum C., y Boukerram A. (2012) A population-based iterated greedy
algorithm for the minimum weight vertex cover problem. Applied Soft Computing
12(6): 1632 – 1639.

[Bea98] Beasley J. (1998) Heuristic algorithms for the unconstrained binary quadratic pro-
gramming problem. Technical report, The Management School, Imperial College.

[BEP+07] Blazewicz J., Ecker K., Pesch E., Schmidt G., y Weglarz J. (2007) Handbook on
Scheduling: Models and Methods for Advanced Planning (International Handbooks on
Information Systems. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[BFM97] Bäck T., Fogel D., y Michalewicz Z. (1997) Handbook of Evolutionary Computation.
Institute of Physics Publishers.

[BH00] Brucker P. y Hurink J. (2000) Solving a chemical batch scheduling problem by local
search. Annals of Operations Research 96(1): 17–38.

[BHS89] Brown D., Huntley C., y Spillane A. (1989) A parallel genetic heuristic for the qua-
dratic assignment problem. In Proceedings of the third international conference on
Genetic algorithms, pp. 406–415. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

[Blu10] Blum C. (2010) Hybrid Metaheuristics – Guest Editorial. Computers & Operations
Research 37(3): 430–431.

[BM73] Baker K. y Merten A. (1973) Scheduling with parallel machines and linear delay costs.
Naval Research Logistics Quarterly 20: 793–804.

[BP94] Belouadah H. y Potts C. (1994) Scheduling identical parallel machines to minimize
total weighted completion time. Discrete Applied Mathematics 48(3): 201–218.

[BPRR11] Blum C., Puchinger J., Raidl G., y Roli A. (2011) Hybrid metaheuristics in combi-
natorial optimization: A survey. App. Soft Comput. 11: 4135–4151.

[BR03] Blum C. y Roli A. (2003) Metaheuristics in combinatorial optimization: Overview
and conceptual comparison. ACM Comput. Surv. 35(3): 268–308.

[BRA05] Blum C., Roli A., y Alba E. (2005) An Introduction to Metaheuristic Techniques, pp.
1–42. John Wiley & Sons, Inc.

[BS02] Beyer H. y Schwefel H. (2002) Evolution strategies–a comprehensive introduction.
Nat. Comput. 1(1): 3–52.

[BSMD08] Bandyopadhyay S., Saha S., Maulik U., y Deb K. (2008) A simulated annealing-based
multiobjective optimization algorithm: AMOSA. IEEE Trans. Evol. Comput. 12(3):
269–283.

[Bux89] Buxey G. (1989) Production scheduling: Practice and theory. European Journal of
Operational Research 39: 17–31.

[CF04] Cotta C. y Fernandez A. (2004) A hybrid GRASP - Evolutionary algorithm approach
to Golomb ruler search. In Yao X., Burke E., Lozano J., Smith J., MereloGuervos
J., Bullinaria J., Rowe J., Tino P., Kaban A., y Schwefel H. (Eds.) Parallel Problem
Solving from Nature - PPSN VIII, volumen 3242 of LNCS, pp. 481–490.

BIBLIOGRAPHY 153

[CFW98] Chen H., Flann N., y Watson D. (1998) Parallel genetic simulated annealing: a mas-
sively parallel simd algorithm. IEEE Trans. Parallel Distrib. Syst. 9(2): 126–136.

[CHS02] Cordon O., Herrera F., y Stützle T. (2002) A review on the ant colony optimization
metaheuristic: Basis, models and new trends. Mathware & Soft Computing 9: 141–175.

[CK12] Ciornei I. y Kyriakides E. (2012) Hybrid ant colony-genetic algorithm GAAPI for
global continuous optimization. IEEE Trans. Syst., Man, Cybern. B 42(1): 234–245.

[CL96] Culberson J. C. y Luo F. (1996) Exploring the k-colorable landscape with iterated
greedy. In Dimacs Series in Discrete Mathematics and Theoretical Computer Science,
pp. 245–284. American Mathematical Society.

[CLM05] Campos V., Laguna M., y Mart́ı R. (2005) Context-independent scatter and tabu
search for permutation problems. INFORMS J. Comput. 17(1): 111–122.

[CLPM07] Chen D., Lee C., Park C., y Mendes P. (2007) Parallelizing simulated annealing
algorithms based on high-performance computer. J. Global Optim. 39(2): 261–289.

[CLV06] Coello C., Lamont G., y Veldhuizen D. (2006) Evolutionary Algorithms for Solving
Multi-Objective Problems. Springer-Verlag New York, Inc.

[CMT04] Cahon S., Melab N., y Talbi E. (2004) ParadisEO: A framework for the reusable
design of parallel and distributed metaheuristics. J. Heuristics 10(3): 357–380.

[COC98] Cho H., Oh S., y Choi D. (1998) A new evolutionary programming approach based
on simulated annealing with local cooling schedule. In Proc. of the Congress on
Evolutionary Computation, pp. 598–602.

[Coe02] Coello C. (2002) Theoretical and numerical constraint-handling techniques used with
evolutionary algorithms: a survey of the state of the art. Comput. Meth. Appl. Mech.
Eng. 191(11-12): 1245 – 1287.

[Cot98] Cotta C. (1998) A study of hybridisation techniques and their application to the
design of evolutionary algorithms. AI Communications 11(3-4): 223–224.

[CS90] Cheng T. y Sin C. (1990) A state-of-the-art review of parallel-machine scheduling
research. European Journal of Operational Research 47(3): 271 – 292.

[CTA99] Croce F. D., Tadei R., y Asioli P. (1999) Scheduling a round robin tennis tournamen-
tunder courts and players availability constraints. Annals of Operations Research 92:
349–361.

[CTA05] Cotta C., Talbi E.-G., y Alba E. (2005) Parallel Hybrid Metaheuristics, pp. 347–370.
John Wiley & Sons, Inc.

[CWYH09] Cheng H., Wang X., Yang S., y Huang M. (2009) A multipopulation parallel gene-
tic simulated annealing-based QoS routing and wavelength assignment integration
algorithm for multicast in optical networks. App. Soft Comput. 9(2): 677–684.

[DC91] Dodin B. y Chan K. H. (1991) Application of production scheduling methods to
external and internal audit scheduling. European Journal of Operational Research
52(3): 267 – 279.

154 BIBLIOGRAPHY

[DDAB09] Dasgupta S., Das S., Abraham A., y Biswas A. (2009) Adaptive computational che-
motaxis in bacterial foraging optimization: An analysis. IEEE Trans. Evol. Comput.
13(4): 919 –941.

[Deb01] Deb K. (2001) Multi-Objective Optimization Using Evolutionary Algorithms. Wiley.

[DMC96] Dorigo M., Maniezzo V., y Colorni A. (1996) The Ant System: Optimization by a
colony of cooperating agents. IEEE Trans. Syst., Man, Cybern. B 26(1): 29–41.

[DS04] Dorigo M. y Stützle T. (2004) Ant Colony Optimization. MIT Press.

[DT92] De la Maza M. y Tidor B. (1992) Increased flexibility in genetic algorithms: The use
of variable boltzmann selective pressure to control propagation. In Proc. of the ORSA
CSTS Conference - Computer Science and Operations Research: New Developments
in their Interfaces, pp. 425–440.

[EAK05] El-Abd M. y Kamel M. (2005) A taxonomy of cooperative search algorithms. In MJ
B., C B., A R., y M S. (Eds.) Hybrid Metaheuristics, volumen 3636 of LNCS, pp.
32–41. Springer.

[EP74] Elmaghraby S. y Park S. (1974) Scheduling jobs on a number of identical machines.
AIIE Transactions 6(1): 1–13.

[ES91] Eshelman L. y Schaffer J. (1991) Preventing premature convergence in genetic algo-
rithms by preventing incest. In Belew R. y Booker L. (Eds.) Int. Conf. on Genetic
Algorithms, pp. 115–122. Morgan Kaufmann.

[ES03] Eiben A. y Smith J. (2003) Introduction to Evolutionary Computing. Springer-Verlag.

[FL08] Framinan J. y Leisten R. (2008) A multi-objective iterated greedy search for flowshop
scheduling with makespan and flowtime criteria. OR Spectrum 30: 787–804.

[FM93] Forrest S. y Mitchell M. (1993) Relative building block fitness and the building block
hypothesis. In Whitley L. (Ed.) Foundations of Genetic Algorithms 2, pp. 109–126.
Morgan Kaufmann.

[Fog95] Fogel D. (1995) Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence. IEEE Press.

[FOW66] Fogel L., Owens A., y Walsh M. (1966) Artificial Intelligence Through Simulated
Evolution. John Wiley.

[Fox93] Fox B. (1993) Integrating and accelerating tabu search, simulated annealing, and
genetic algorithms. Ann. Oper. Res. 41: 47–67.

[FPR10] Fanjul-Peyro L. y Ruiz R. (2010) Iterated greedy local search methods for unrelated
parallel machine scheduling. European Journal of Operational Research 207(1): 55–69.

[FPR11] Fanjul-Peyro L. y Ruiz R. (2011) Size-reduction heuristics for the unrelated parallel
machines scheduling problem. Computers & Operations Research 38(1): 301–309.

[FR89] Feo T. y Resende M. (1989) A probabilistic heuristic for a computationally difficult
set covering problem. Operations Research Letters 8(2): 67–71.

BIBLIOGRAPHY 155

[FR95] Feo T. y Resende M. (1995) Greedy randomized adaptive search procedures. Journal
of Global Optimization 6(2): 109–133.

[GA07a] Grosan C. y Abraham A. (2007) Hybrid evolutionary algorithms: methodologies, ar-
chitectures, and reviews. In Grosan C., Abraham A., y Ishibuchi H. (Eds.) Hybrid
Evolutionary Algorithms, pp. 1–17. Springer.

[GA07b] Grosan C. y Abraham A. (2007) Hybrid evolutionary algorithms: Methodologies,
architectures, and reviews. In Hybrid Evolutionary Algorithms, pp. 1–17. Springer.

[GDLM08] Gortazar F., Duarte A., Laguna M., y Mart́ı R. (2008) Context-independent scatter
search for binary problems. Technical report, Colorado LEEDS School of Business,
University of Colorado at Boulder.

[GDLM10] Gortázar F., Duarte A., Laguna M., y Mart́ı R. (2010) Black box scatter search for
general classes of binary optimization problems. Computers & Operations Research
37(11): 1977–1986.

[GH11] Glover F. y Hao J.-K. (2011) The case for strategic oscillation. Annals of Operations
Research 183(1): 163–173.

[GJ90] Garey M. R. y Johnson D. S. (1990) Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA.

[GK03] Glover F. y Kochenberger G. (Eds.) (2003) Handbook of Metaheuristics. Kluwer
Academic Publishers.

[GKD89] Goldberg D., Korb B., y Deb K. (1989) Messy genetic algorithms: motivation, analysis,
and first results. Complex Syst. 3: 493–530.

[GL97] Glover F. y Laguna M. (1997) Tabu Search. Kluwer Academic Publishers.

[GLMD11] Gallego M., Laguna M., Mart́ı R., y Duarte A. (2011) Tabu search with strategic osci-
llation for the maximally diverse grouping problem. Journal of Operational Research
Society In Press.

[Glo77] Glover F. (1977) Heuristics for integer programming using surrogate constraints. De-
cision Sciences 8(1): 156–166.

[Glo96] Glover F. (1996) Tabu search and adaptive memory programing - advances, appli-
cations and challenges. In Interfaces in Computer Science and Operations Research,
pp. 1–75. Kluwer.

[GML08] Garćıa-Mart́ınez C. y Lozano M. (2008) Local search based on genetic algorithms. In
Siarry P. y Michalewicz Z. (Eds.) Advances in Metaheuristics for Hard Optimization,
Natural Computing, pp. 199–221. Springer.

[GML09a] Garćıa-Mart́ınez C. y Lozano M. (2009) Evaluating a local genetic algorithm as
context-independent local search operator for metaheuristics. Soft Comput. In press.

[GML09b] Garćıa-Mart́ınez C. y Lozano M. (2009) Simulated annealing based on local genetic
search. In Proc. of the IEEE Int. Conf. Evolutionary Computation, pp. 2569–2576.

[Gol89] Goldberg D. (1989) Genetic Algorithms in Search, Optimization and Machine Lear-
ning. Addison-Wesley Longman Publishing Co.

156 BIBLIOGRAPHY

[Gol90] Goldberg D. (1990) A note on boltzmann tournament selection for genetic algorithms
and population-oriented simulated anealing. Complex Syst. 4: 445–460.

[HDCL10] Hong W., Dong Y., Chen L., y Lai C. (2010) Taiwanese 3G mobile phone demand
forecasting by SVR with hybrid evolutionary algorithms. Exp. Syst. App. 37(6): 4452
– 4462.

[HF06] Hedar A. y Fukushima M. (2006) Derivative-free filter simulated annealing method
for constrained continuous global optimization. J. Global Optim. 35(4): 521–549.

[HH06] Hwang S. y He R. (2006) A hybrid real-parameter genetic algorithm for function
optimization. Adv. Eng. Inform. 20(1): 7–21.

[HJJ03] Henderson D., Jacobson S., y Jacobson A. (2003) The theory and practice of simulated
annealing. In Handbook of Metaheuristics, pp. 287–319. Kluwer Academic Publishers
Group.

[HLS05] Herrera F., Lozano M., y Sánchez A. (2005) Hybrid crossover operators for real-coded
genetic algorithms: An experimental study. Soft Comput. 9(4): 280–298.

[Hol75] Holland J. (1975) Adaptation in Natural and Artificial Systems. The University of
Michigan Press.

[HQ06] Han W. y Que P. (2006) Defect reconstruction of submarine oil pipeline from mfl
signals using genetic simulated annealing algorithm. J. Jpn. Petr. Inst 49: 145–150.

[HWJ+12] Huang Q., White T., Jia G., Musolesi M., Turan N., Tang K., He S., Heath J., y
Yao X. (2012) Community detection using cooperative co-evolutionary differential
evolution. In Coello C., Cutello V., Deb K., Forrest S., Nicosia G., y Pavone M.
(Eds.) Parallel Problem Solving from Nature - PPSN XII, volumen 7492 of LNCS,
pp. 235–244. Springer Berlin Heidelberg.

[J.B56] J.B. K. (1956) On the shortest spanning subtree of a graph and the traveling salesman
problem. In Proceedings of the American Mathematical Society, pp. 48–50.

[JB95] Jacobs L. y Brusco M. (1995) A local-search heuristic for large set-covering problems.
Naval Research Logistics 42: 1129–1140.

[JBdS92] Jarrah A. I. Z., Bard J. F., y de Silva A. H. (1992) A heuristic for machine scheduling
at general mail facilities. European Journal of Operational Research 63(2): 192–206.

[JBT09] Jourdan L., Basseur M., y Talbi E.-G. (2009) Hybridizing exact methods and me-
taheuristics: A taxonomy. European Journal of Operational Research 199(3): 620 –
629.

[Kar72] Karp R. (1972) Reducibility among combinatorial problems. In Miller R. y Thatcher
J. (Eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press.

[Kau89] Kauffman S. (1989) Adaptation on rugged fitness landscapes. Lec. Sci. Complex. 1:
527–618.

[KGOK12] Karaboga D., Gorkemli B., Ozturk C., y Karaboga N. (2012) A comprehensive survey:
artificial bee colony (abc) algorithm and applications. Artificial Intelligence Review
In Press: 1–37.

BIBLIOGRAPHY 157

[KGV83] Kirkpatrick S., Gelatt Jr C., y Vecchi M. (1983) Optimization by simulated annealing.
Sci. 220(4598): 671–680.

[KTBS10] Kendall G., Tan K., Burke E., y Smith S. (2010) Preface for the special volume on
computational intelligence in scheduling. Annals of Operations Research 180: 1–2.

[Lag03] Laguna M. (2003) Scatter Search. Kluwer Academic Publishers Boston, Mass.

[LB10] Lozano M. y Blum C. (2010) A hybrid metaheuristic for the longest common sub-
sequence problem. In Blesa M., Blum C., Raidl G., Roli A., y Sampels M. (Eds.)
Hybrid Metaheuristics, volumen 6373 of LNCS, pp. 1–15.

[LGH10] LÃ1
4 Z., Glover F., y Hao J. (2010) A hybrid metaheuristic approach to solving the

UBQP problem. Eur. J. Oper. Res. 207(3): 1254–1262.

[LGM10] Lozano M. y Garćıa-Mart́ınez C. (2010) Hybrid metaheuristics with evolutionary
algorithms specializing in intensification and diversification: Overview and progress
report. Comput. Oper. Res. 37: 481–497.

[LHKM04] Lozano M., Herrera F., Krasnogor N., y Molina D. (2004) Real-coded memetic algo-
rithms with crossover hill-climbing. Evol. Comput. 12(3): 273–302.

[Liu99] Liu J. (1999) The impact of neighbourhood size on the process of simulated annealing:
Computational experiments on the flowshop scheduling problem. Comput. Ind. Eng.
37: 285–288.

[LJ00] Li B. y Jiang W. (2000) A novel stochastic optimization algorithm. IEEE Trans.
Syst., Man, Cybern. B 30: 193–198.

[LKH93] Lin F., Kao C., y Hsu C. (1993) Applying the genetic approach to simulated annealing
in solving some NP-hard problems. IEEE Trans. Syst., Man, Cybern. 23(6): 1752–
1767.

[LLYL11] Lin S.-W., Lee Z.-J., Ying K.-C., y Lu C.-C. (2011) Minimization of maximum lateness
on parallel machines with sequence-dependent setup times and job release dates.
Computers & Operations Research 38(5): 809–815.

[LM99] Laguna M. y Marti R. (1999) GRASP and path relinking for 2-layer straight line
crossing minimization. Informs Journal on Computing 11(1): 44–52.

[LMGM11] Lozano M., Molina D., y Garćıa-Mart́ınez C. (2011) Iterated greedy for the maximum
diversity problem. European Journal of Operational Research 214(1): 31 – 38.

[LMPn10] LaTorre A., Muelas S., y Peña J. (2010) A MOS-based dynamic memetic differential
evolution algorithm for continuous optimization: a scalability test. Soft Comput. pp.
1–13.

[LMS03] Lourenço H., Martin O., y Stützle T. (2003) Iterated local search. In Glover F. y
Kochenberger G. (Eds.) Handbook of Metaheuristics, pp. 321–353. Kluwer Academic
Publishers.

[LPF11] Lin Y., Pfund M., y Fowler J. (2011) Heuristics for minimizing regular performance
measures in unrelated parallel machine scheduling problems. Computers & Operations
Research 38(6): 901–916.

158 BIBLIOGRAPHY

[LW07] Li X. y Wei X. (2007) An improved genetic algorithm-simulated annealing hybrid
algorithm for the optimization of multiple reservoirs. Water Res. Manag. 22: 1031–
1049.

[LY09] Li K. y Yang S.-L. (2009) Non-identical parallel-machine scheduling research with mi-
nimizing total weighted completion times: Models, relaxations and algorithms. Applied
Mathematical Modelling 33(4): 2145–2158.

[LZT11] Li Z., Zhang Y., y Tan H.-Z. (2011) IA-AIS: An improved adaptive artificial immune
system applied to complex optimization problems. Applied Soft Computing 11(8):
4692 – 4700.

[LZXM10] Liu G., Zhou D., Xu H., y Mei C. (2010) Model optimization of svm for a fermentation
soft sensor. Exp. Syst. App. 37(4): 2708 – 2713.

[McN59] McNaughton R. (1959) Scheduling with deadlines and loss functions. Management
Science 6(1): 1–12.

[MF04] Michalewicz Z. y Fogel D. B. (2004) How to solve it: modern heuristics. Springer-
Verlag New York, Inc., New York, NY, USA.

[MG95] Mahfoud S. y Goldberg D. (1995) Parallel recombinative simulated annealing: A ge-
netic algorithm. Parallel Comput. 21(1): 1–28.

[MH97] Mladenovic N. y Hansen P. (1997) Variable neighborhood search. Comput. Oper. Res.
24: 1097–1100.

[MMD10] Marinakis Y., Marinaki M., y Dounias G. (2010) A hybrid particle swarm optimization
algorithm for the vehicle routing problem. Engineering Applications of Artificial
Intelligence 23(4): 463 – 472.

[Mok01] Mokotoff E. (2001) Parallel machine scheduling problems: A survey. Asia-Pacific
Journal of Operational Research 18(2): 193 – 242.

[MS10] Mallipeddi R. y Suganthan P. (2010) Ensemble of constraint handling techniques.
IEEE Trans. Evol. Comput. 14(4): 561–579.

[MSV10] Maniezzo V., Stützle T., y VoB S. (Eds.) (2010) Matheuristics - Hybridizing Me-
taheuristics and Mathematical Programming, volumen 10 of Annals of Information
Systems. Springer.

[NI08] Noman N. y Iba H. (2008) Accelerating differential evolution using an adaptive local
search. IEEE Trans. Evol. Comput. 12(1): 107–125.

[NW88] Nemhauser G. L. y Wolsey L. A. (1988) Integer and combinatorial optimization.
Wiley-Interscience, New York.

[PG10] Palubeckis G Rubliauskas D T. A. (2010) Metaheuristic approaches for the quadratic
minimum spanning tree problem. Information Technology and Control 39(4): 257–268.

[PGCP00] Pelikan M., Goldberg D., y Cantú-Paz E. (2000) Linkage problem, distribution esti-
mation, and bayesian networks. Evol. Comput. 8(3): 311–340.

BIBLIOGRAPHY 159

[PO08] Pedamallu C. y Ozdamar L. (2008) Investigating a hybrid simulated annealing and
local search algorithm for constrained optimization. Eur. J. Oper. Res. 185(3): 1230–
1245.

[PR00] Pendharkar P. y Rodger J. (2000) Nonlinear programming and genetic search appli-
cation for production scheduling in coal mines. Annals of Operations Research 95(1):
251–267.

[PR02] Pitsoulis L. y Resende M. (2002) Greedy randomized adaptive search procedures. In
P.M.Pardalos y M.G.C.Resende (Eds.) Handbook of Applied Optimization, pp. 168–
181. Oxford University Press.

[PR05] Puchinger J. y Raidl G. (2005) Combining metaheuristics and exact algorithms in
combinatorial optimization: A survey and classification. In Mira J. y Álvarez J.
(Eds.) Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired
Approach, volumen 3562 of LNCS, pp. 113–124. Springer Berlin.

[PS82] Papadimitriou C. H. y Steiglitz K. (1982) Combinatorial optimization: algorithms and
complexity. Prentice-Hall, Inc., New York.

[PSL05] Price K., Storn R., y Lampinen J. (2005) Differential Evolution: A Practical Approach
To Global Optimization. Springer.

[PT99] Preux P. y Talbi E. (1999) Towards hybrid evolutionary algorithms. Int. Trans. Oper.
Res. 6(6): 557–570.

[PTCY10] Peng F., Tang K., Chen G., y Yao X. (2010) Population-based algorithm portfolios
for numerical optimization. IEEE Trans. Evol. Comput. 14(5): 782–800.

[Rai06a] Raidl G. (2006) A unified view on hybrid metaheuristics. In Almeida F., Aguilera
M. B., Blum C., Vega J. M., Pérez M. P., Roli A., y Sampels M. (Eds.) Hybrid
Metaheuristics, volumen LNCS 4030, pp. 1–12. Springer.

[Rai06b] Raidl G. R. (2006) A unified view on hybrid metaheuristics. In Hybrid Metaheuristics,
pp. 1–12.

[RDGML10] Rodriguez-Diaz F., Garcia-Martinez C., y Lozano M. (2010) A GA-based multiple
simulated annealing. In IEEE Congress on Evolutionary Computation, pp. 195–201.

[Rec73] Rechenberg I. (1973) Evolutionsstrategie: Optimierung Technischer Systeme nach
Prinzipien der Biologischen Evolution. Frommann-Holzboog.

[Rec94] Rechenberg I. (1994) Evolutionsstrategie’94. Frommann-Holzboog.

[Ree93] Reeves C. (1993) Modern Heuristic Techniques for Combinatorial Problems. John
Wiley & Sons, Inc.

[RG87] Rosenbloom E. y Goertzen N. (1987) Cyclic nurse scheduling. European Journal of
Operational Research 31: 19–23.

[RG08] R C. y G P. (2008) Heuristic and exact approaches to the quadratic minimum spanning
tree problem. In Seventh Cologne-Twente Workshop on Graphs and Combinatorial
Optimization (CTW08), pp. 52–55.

160 BIBLIOGRAPHY

[RH02] Ribeiro C. y Hansen P. (2002) Essays and Surveys in Metaheuristics. Kluwer Acade-
mic Publishers.

[RH05] Rosen S. L. y Harmonosky C. M. (2005) An improved simulated annealing simula-
tion optimization method for discrete parameter stochastic systems. Computers &
Operations Research 32(2): 343 – 358.

[RMVCD11] R. Mart́ı V. Campos M. R. y Duarte A. (2011) Multiobjective grasp with path relin-
king. Technical report, AT&T Labs Research.

[Roc98] Rochat Y. (1998) A genetic approach for solving a scheduling problem in a robotized
analytical system. Journal of Heuristics 4: 245–261.

[RPB10] Raidl G., Puchinger J., y Blum C. (2010) Metaheuristic hybrids. In Gendreau M. y
Potvin J.-Y. (Eds.) Handbook of Metaheuristics, volumen 146 of International Series
in Operations Research & Management Science, pp. 469–496. Springer US.

[RR03] Resende M. y Ribeiro C. (2003) Greedy randomized adaptive search procedures. In
Glover F. y Kochenberger G. (Eds.) Handbook of Metaheuristics, pp. 219–249. Kluwer
Academic Publishers.

[RS07] Ruiz R. y Stützle T. (2007) A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. European Journal of Operational Research
177(3): 2033–2049.

[RS08] Ruiz R. y Stützle T. (2008) An iterated greedy heuristic for the sequence depen-
dent setup times flowshop problem with makespan and weighted tardiness objectives.
European Journal of Operational Research 187(3): 1143–1159.

[RUW02] Ribeiro C., Uchoa E., y Werneck R. (2002) A hybrid GRASP with perturbations for
the steiner problem in graphs. Informs Journal on Computing 14(3): 228–246.

[SAB88] Sarin S., Ahn S., y Bishop A. (1988) An improved branching scheme for the branch
and bound procedure of scheduling n jobs on m parallel machines to minimize total
weighted flowtime. International Journal of Production Research 26(7): 1183–1191.

[SCD+12] Santamaŕıa J., Cordón O., Damas S., Mart́ı R., y Palma R. (2012) GRASP and path
relinking hybridizations for the point matching-based image registration problem.
Journal of Heuristics 18: 169–192.

[SHS03] Smith K., Hoos H., y Stützle T. (2003) Iterated robust tabu search for MAX-SAT. In
Carbonell J. y Siekmann J. (Eds.) Proc. of the Canadian Society for Computational
Studies of Intelligence Conf., volumen 2671 of LNCS, pp. 129–144. Springer.

[Sim08] Simon D. (2008) Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6):
702 –713.

[SK91] Strenski P. y Kirkpatrick S. (1991) Analysis of finite length annealing schedules.
Algorithmica 6: 346–366.

[SM08] Siarry P. y Michalewicz Z. (Eds.) (2008) Advances in Metaheuristics for Hard Opti-
mization. Natural Computing. Springer.

[SP97] Storn R. y Price K. (1997) Differential evolution–a simple and efficient heuristic for
global optimization over continuous spaces. J. Global Optim. 11(4): 341–359.

BIBLIOGRAPHY 161

[Spe00] Spears W. (2000) Evolutionary Algorithms: The Role of Mutation and Recombination.
Springer.

[SS10] Sundar S. y Singh A. (2010) A swarm intelligence approach to the quadratic minimum
spanning tree problem. Information Sciences 180(17): 3182 – 3191.

[SSF02] Salamon P., Sibani P., y Frost R. (2002) Facts, Conjectures and Improvements for
Simulated Annealing. Monographs on Mathematical Modeling and Computation.
SIAM.

[Tal02] Talbi E. (2002) A taxonomy of hybrid metaheuristics. J. Heuristics 8(5): 541–564.

[TB05] Thompson D. y Bilbro G. (2005) Sample-sort simulated annealing. IEEE Trans. Syst.,
Man, Cybern. B 35(3): 625–632.

[Thi02] Thierens D. (2002) Adaptive mutation rate control schemes in genetic algorithms. In
Proc. of the Congress on Evolutionary Computation, pp. 980–985.

[Thi04] Thierens D. (2004) Population-based iterated local search: restricting neighborhood
search by crossover. In Deb K., Poli R., Banzhaf W., Beyer H.-G., Burk E., Darwen
P., Dasgupta D., Floreano D., Foster J., Harman M., Holland O., Lanzi P., Spector L.,
Tettamanzi A., Thierens D., y Tyrrel A. (Eds.) Proc. of the Genetic and Evolutionary
Computation Conf., volumen 3103 of LNCS, pp. 234–245. Springer.

[TW10] Tang L. y Wang X. (2010) An improved particle swarm optimization algorithm for
the hybrid flowshop scheduling to minimize total weighted completion time in process
industry. IEEE Trans. Control Syst. Technol. 18(6): 1303–1314.

[URS10] Urlings T., Ruiz R., y Stützle T. (2010) Shifting representation search for hybrid
flexible flowline problems. European Journal of Operational Research 207(2): 1086 –
1095.

[VA87] Van Laarhoven P. y Aarts E. (1987) Simulated Annealing: Theory and Applications.
Kluwer Academic Publishers Norwell.

[VH02] Vredeveld T. y Hurkens C. (2002) Experimental comparison of approximation algo-
rithms for scheduling unrelated parallel machines. Informs Journal on Computing
14(2): 175–189.

[VOR99] Voß S., Osman I., y Roucairol C. (1999) Meta-Heuristics: Advances and Trends in
Local Search Paradigms for Optimization. Kluwer Academic Publishers Norwell.

[VRH09] Vrugt J., Robinson B., y Hyman J. (2009) Self-adaptive multimethod search for global
optimization in real-parameter spaces. IEEE Trans. Evol. Comput. 13(2): 243–259.

[VT07] Ventresca M. y Tizhoosh H. (2007) Simulated annealing with opposite neighbors. In
Foundations of Computational Intelligence, 2007. FOCI 2007. IEEE Symposium on,
pp. 186 –192.

[W95] W X. (1995) A hybrid metaheuristic for the longest common subsequence problem.
In M G. y W X. (Eds.) Proceedings of 1995 Japan–China International Workshops
on Information Systems, pp. 141–148.

162 BIBLIOGRAPHY

[WLR01] Weng M., Lu J., y Ren H. (2001) Unrelated parallel machine scheduling with setup
consideration and a total weighted completion time objective. International Journal
of Production Economics 70(3): 215–226.

[Wot07] Wotzlaw A. (2007) Scheduling Unrelated Parallel Machines: Algorithms, Complexity,
and Performance. VDM Verlag, Germany.

[WP99] Watson R. y Pollack J. (1999) Hierarchically consistent test problems for genetic
algorithms. In Proc. of the Congress on Evolutionary Computation, volumen 2, page
1413.

[WWR05] Wang Z., Wong Y., y Rahman M. (2005) Development of a parallel optimization
method based on genetic simulated annealing algorithm. Parallel Comput. 31(8-9):
839–857.

[XSVB06] Xavier-de-Souza S., Suykens J., Vandewalle J., y Bollé D. (2006) Cooperative behavior
in coupled simulated annealing processes with variance control. In Symposium on
Nonlinear Theory and its Applications, pp. 114–119.

[Yao91] Yao X. (1991) Simulated annealing with extended neighbourhood. Int. J. Comput.
Math. 40: 169–189.

[YC10] Ying K.-C. y Cheng H.-M. (2010) Dynamic parallel machine scheduling with sequence-
dependent setup times using an iterated greedy heuristic. Expert Systems with Ap-
plications 37(4): 2848–2852.

[YLJ12] Yu J., Lee S.-H., y Jeon M. (2012) An adaptive ACO-based fuzzy clustering algo-
rithm for noisy image segmentation. International Journal of Innovative Computing
Information and Control 8(6): 3907–3918.

[YP95] Yip P. y Pao Y. (1995) Combinatorial optimization with use of guided evolutionary
simulated annealing. IEEE Trans. Neural Netw. 6(2): 290–295.

[YTY07] Yang Z., Tian Z., y Yuan Z. (2007) GSA-based maximum likelihood estimation for
threshold vector error correction model. Comput. Stat. Data Anal. 52(1): 109 – 120.

[ZG98] Zhou G. y Gen M. (1998) An effective genetic algorithm approach to the quadratic
minimum spanning tree problem. Computers & Operations Research 25(3): 229–237.

[ZJLK10] Zaidi M., Jarboui B., Loukil T., y Kacem I. (2010) Hybrid meta-heuristics for uni-
form parallel machine to minimize total weighted completion time. In Proc. of 8th
International Conference of Modeling and Simulation (MOSIM’10).

[ZWJZ08] Zhang Q., Wang J., Jin C., y Zeng Q. (2008) Localization algorithm for wireless
sensor network based on genetic simulated annealing algorithm. In Wireless Commu-
nications, Networking and Mobile Computing, 2008. WiCOM ’08. 4th International
Conference on, pp. 1–5.

