
Universidad de Granada

Departamento de Ciencias de la Computación e
Inteligencia Artificial

Uncertain and Dynamic
Optimization Problems:

Solving Strategies and Applications

Doctoral Thesis

Doctoral Candidate:
Ignacio José Garćıa del Amo

Advisors:
David Alejandro Pelta

José Luis Verdegay Galdeano

Editor: Editorial de la Universidad de Granada
Autor: Ignacio José García del Amo
D.L.: GR 749-2013
ISBN: 978-84-9028-427-8

La memoria titulada “Uncertain and Dynamic Optimization Problems:
Solving Strategies and Applications”, que presenta D. Ignacio José Garćıa
del Amo para optar al grado de Doctor en Informática, ha sido realizada en el
Departamento de Ciencias de la Computación e Inteligencia Artificial de la Uni-
versidad de Granada, bajo la dirección de los doctores D. David Alejandro Pelta
y D. José Luis Verdegay Galdeano, del mismo departamento.

El doctorando y los directores de la tesis garantizamos, al firmar esta tesis
doctoral, que el trabajo ha sido realizado por el doctorando bajo la dirección
de los directores de la tesis, y hasta donde nuestro conocimiento alcanza, en la
realización del trabajo se han respetado los derechos de otros autores a ser citados
cuando se han utilizado sus resultados o publicaciones.

Granada, . de 2012

Ignacio José Garćıa del Amo

David Alejandro Pelta José Luis Verdegay Galdeano

— And I will need the help of, oh, sixty apprentices and journeymen from the
Guild of Cunning Artificers. Perhaps there should be a hundred. They will need to
work round the clock.

— Apprentices? But I can see to it that the finest craftsmen. . .
Leonard held up a hand.
— Not craftsmen, my lord — he said —. I have no use for people who have

learned the limits of the possible.

Terry Pratchett, The Last Hero

Contents

Agradecimientos V

Abstract VII

Resumen y conclusiones IX

1. Introduction 1
1.1. Context of the thesis . 2
1.2. Objectives . 8

2. Background 11
2.1. Problems . 11

2.1.1. Continuous DOPs . 12
2.1.1.1. Moving Peaks Benchmark (MPB) 12
2.1.1.2. The Ackley Function 14
2.1.1.3. The Griewank Function 15
2.1.1.4. The Rastrigin Function 15
2.1.1.5. The Rosenbrock Function 16
2.1.1.6. The Sphere Function 16

2.1.2. Discrete DOPs . 18
2.1.2.1. The Dynamic Knapsack Problem 18
2.1.2.2. The Dynamic Vehicle Routing Problem (DVRP) . 19
2.1.2.3. XOR-based Dynamic Problems 20

2.1.3. Problems chosen in the experiments of the thesis 21
2.2. Performance measures . 22

2.2.1. Offline Error . 22
2.2.2. Mean Fitness Error (MFE) 24
2.2.3. Offline Performance . 24
2.2.4. Weicker measures . 25
2.2.5. Performance measures chosen in the experiments of the thesis 26

2.3. Algorithms . 26

i

CONTENTS

2.3.1. Evolutionary Algorithms . 28

2.3.2. Particle Swarm Optimization 29

2.3.3. Other Algorithms . 30

2.3.4. Algorithms chosen in the experiments of the thesis 31

3. New algorithmic proposals for DOPs 35

3.1. Control particle trajectories of a PSO 35

3.1.1. Motivation . 35

3.1.2. Proposal . 36

3.1.3. Validation . 36

3.1.4. Conclusions . 40

3.2. Using heuristic rules in a mQSO . 40

3.2.1. Motivation . 41

3.2.2. Proposal . 45

3.2.2.1. Change Rule . 45

3.2.2.2. Rand Rule . 47

3.2.2.3. Both Rule . 50

3.2.3. Validation . 50

3.2.4. Conclusions . 56

3.3. Agents for DOPs . 57

3.3.1. Motivation . 57

3.3.2. Proposal . 57

3.3.2.1. Agents for continuous DOPs 60

3.3.2.2. Agents for discrete DOPs 60

3.3.3. Validation . 62

3.3.4. Conclusions . 65

3.3.4.1. Agents for continuous DOPs 65

3.3.4.2. Agents for discrete DOPs 67

3.4. Cooperative Strategies for DOPs 68

3.4.1. Motivation . 68

3.4.2. Proposal . 69

3.4.2.1. Cooperation modes 75

3.4.3. Validation . 77

3.4.3.1. First study: introducing CS 77

3.4.3.2. Second study: extending cooperation rules 85

3.4.4. Conclusions . 92

3.5. Overall conclusions . 93

ii

CONTENTS

4. SRCS: Statistical Ranking Color Scheme 95
4.1. Motivation . 95
4.2. Description of the SRCS technique 100
4.3. Comments on statistical issues for the SRCS technique 104
4.4. Applying SRCS: algorithm comparison for continuous DOPs 106

4.4.1. Motivation . 106
4.4.2. Algorithms used . 108
4.4.3. Validation . 110
4.4.4. Conclusions . 113

4.5. Conclusions . 119

5. Software design and implementation 121
5.1. DACOS . 121

5.1.1. Motivation . 121
5.1.2. DACOS Architecture . 124

5.1.2.1. Design Module . 126
5.1.2.2. Analysis and Visualization Module 128

5.1.3. Conclusions . 130
5.2. MODO Optimization Package . 131

5.2.1. Motivation . 132
5.2.2. Algorithms . 139
5.2.3. Problems . 142
5.2.4. Plugins . 145
5.2.5. Outstanding features . 149
5.2.6. Conclusions . 155

6. Conclusions 159
6.1. Is it possible to improve the existent algorithms, and, if possible,

what techniques can be used for that purpose? 159
6.2. What methodology should be applied in order to compare the per-

formance of different algorithms on a DOP? 165
6.3. What difficulties can we find when implementing these DOPs, al-

gorithms and performance measures, and how can we face them? . . 166
6.4. Summary of publications . 168

Bibliography 195

iii

CONTENTS

iv

Agradecimientos

Esta tesis ha sido el resultado de muchos años de esfuerzo y de trabajo, y como
cualquier empresa de larga duración y grandes aspiraciones, no ha estado exenta
de dificultades. No será la primera ni la última que emprenda en mi vida, pero
si he podido superar ésta en particular, ha sido no sólo porque me he subido a
hombros de gigantes, sino porque me he apoyado en hombros de compañeros. Es
justo por tanto reconocer y agradecer la ayuda que he recibido durante todo este
tiempo. Aśı, pues, gracias. . .

A mis directores de tesis, David y Curro, por haberme guiado con sus enseñan-
zas en esta inolvidable etapa de mi vida que ha sido el doctorado. Esta tesis es
fruto de los conocimientos y la experiencia investigadora que he adquirido en los
últimos años gracias a la ayuda y consejos de mis tutores, no sólo en el ámbito
académico, sino también en el personal.

A la Junta de Andalućıa, por financiar mi formación doctoral a través de su
programa de Proyectos de Excelencia. Dicha financiación también ha hecho posible
la presentación de algunos de los trabajos de esta tesis en congresos internaciona-
les de gran prestigio, aśı como mi estancia de investigación en la Universidad de
Brunel, en Uxbridge, UK.

A Shengxiang Yang, por haber sido mi tutor y un excelente anfitrión duran-
te dicha estancia, aśı como por animarme con sus ideas y su motivación en la
investigación que alĺı realicé.

A mis compañeros del grupo MODO. Si en la elaboración de una tesis doctoral
es crucial el apoyo de los directores e instituciones, no es menos importante el de
los compañeros de trabajo. En este sentido, me siento orgulloso de haber formado
parte del grupo MODO, cuyos miembros no sólo han colaborado activamente en
muchas de las investigaciones llevadas a cabo en esta tesis, sino que han traspa-
sado con creces las fronteras de lo laboral para convertirse en verdaderos amigos.
Desde aqúı quiero expresar mi cariño y respeto a Maite, Carlos, Antonio, Dago,
Pablo, Quique, Socorro, y muy especialmente, a Juanra y Ricardo. Estos años han
supuesto un crecimiento académico y profesional, pero nada puede compararse al
crecimiento personal que he vivido con vosotros. Las conversaciones, pensamientos,
ideas, ilusiones y aventuras que hemos compartido merecen un libro aparte.

v

AGRADECIMIENTOS

A mis compañeros de la Universidad de La Laguna, a Pepe, a Belén, a Marcos,
a Julio, a Cande, a Pino, a Miguel, a Pooky, a Rayco, a David. . . Y a todos aquéllos
que, aunque no pertenezcan a la ULL, mi mente no puede evitar asociarlos con
una sonrisa a los dos años que pasé alĺı: Kenneth, Silvija, Zrinka, Sergio. . . Tenerife
marcó el comienzo de mi carrera investigadora, y siempre estará presente en mi
memoria y en mi corazón.

A mis amigos. La vida es lo que pasa mientras estás ocupado haciendo el
doctorado, y gracias a ellos, puedo decir que he vivido. No quiero olvidarme de
los becarios de la UGR, de mis amigos de Madrid y Colmenar, de la gente de
taekwondo, o de los compañeros que conoćı (o reencontré) en Brunel. Demasiados
como para nombrarlos a todos. Iván, Iker e Isra merecen mención aparte, porque
siempre han estado ah́ı para lo bueno y para lo malo. Y con tantas coincidencias
seŕıa imposible pasar por alto a Núri.

A D. Manuel y a D. Lorenzo, porque muchos años después, todo lo que me
enseñaron todav́ıa sigue teniendo utilidad en mi vida. De ellos aprend́ı la impor-
tancia de hacer las cosas con la máxima calidad, dando siempre lo mejor de uno
mismo.

A toda mi familia, que siempre me ha apoyado, y a la que tanto quiero. Me
gustaŕıa dar las gracias con especial cariño a mis “yeyes”, Carmen y Mariano, y a
mi abuela Carmen y mi t́ıa Ma Carmen. A mis hermanos, Cristina, Carlos y Javier,
a Carlos y a Mariv́ı, y al pequeño Aarón, la alegŕıa más reciente de mi familia.
Y por supuesto, a Ester, quien con su cariño y apoyo incondicional ha llenado mi
vida. No os podéis imaginar cuántas sonrisas os debo.

Y muy especialmente a mis padres, porque no es posible entender quién soy sin
mencionarles de forma preeminente. Su amor, esfuerzo y dedicación han inspirado
siempre en mı́ el mayor de los cariños. A ellos quisiera dedicarles esta tesis con
todo mi agradecimiento.

Esta tesis ha sido financiada por la Junta de Andalućıa con los proyectos P07-
TIC-02970 y P11-TIC-8001, y por el Ministerio español de Ciencia e Innovación
a través de los proyectos TIN2008-01948 y TIN2011-27696-C02-01.

vi

Abstract

In the daily life we continuously face situations that can be formulated as
dynamic optimization problems (DOPs), where the additional presence of uncer-
tainty can make it even more difficult to solve them. Soft Computing techniques
have some properties that turn them into ideal candidates for dealing with this
type of problems. In this context, the thesis entitled “Uncertain and Dynamic
Optimization Problems: Solving Strategies and Applications” focuses in the study,
design and implementation of Soft Computing based methods to solve DOPs.

The research carried out in the thesis has produced new algorithms for DOPs,
like Cooperative Strategies (CS), the Agents algorithm, and several improvements
to a Particle Swarm Optimization (PSO) algorithm using a novel operator and
heuristic rules. Additionally, because of the necessities that emerged when analyz-
ing the experiments carried out, we developed a technique for comparing multiple
algorithms over multiple DOP scenarios, named SRCS. This technique is specially
well-suited for analyzing huge amounts of data. Lastly, we created a software tool
for the configuration and analysis of algorithms for DOPs, as well as a framework
for the implementation of this type of problems.

The results of this thesis have improved algorithms of the state of the art,
obtaining interesting conclusions like the important role of cooperation for such
purposes. Furthermore, the SRCS technique has allowed to discover which sce-
narios are most favorable for a set of algorithms, thus helping to identify general
trends and behaviours. Finally, the experience obtained during the implementa-
tion of these experiments has derived in a collection of highly useful software for
DOPs that has been made available to the research community as open source.

vii

ABSTRACT

viii

Resumen y conclusiones

Este caṕıtulo presenta un resumen de la introducción (Caṕıtulo 1) y conclu-
siones principales (Caṕıtulo 6) de esta tesis en lengua española, a fin de cumplir
con lo establecido en la normativa vigente de regulación de las enseñanzas oficiales
de Doctorado y del t́ıtulo de Doctor por la Universidad de Granada aprobadas por
Consejo de Gobierno de la Universidad de Granada en su sesión del 2 de Mayo
del 2012.

Vivimos un momento de la historia en el que nuestras necesidades sociales,
culturales y tecnológicas están fuertemente interrelacionadas. Ya no es posible
pensar en resolver algunas de esas necesidades sin abordar, aunque sea de manera
indirecta, alguna de las otras. Una aplicación informática que no tenga en cuenta
los factores socioculturales de los usuarios a los que va dirigida está destinada al
fracaso. Pero a la vez, y es aqúı donde reside el enorme potencial de crecimiento
que estamos experimentando, gracias a los recientes avances tecnológicos, podemos
resolver necesidades que antes no era posible solucionar, o hacerlo de formas hasta
hace poco impensables, abriendo un mundo de posibilidades a nuestro alcance.

En este contexto, muchas situaciones pueden ser modeladas como problemas
de optimización, donde el objetivo es encontrar la mejor solución posible, con los
recursos disponibles, que satisfaga un cierto criterio. Pensemos por ejemplo en la
mejor forma de ordenar un conjunto de resultados de una búsqueda en internet en
base a los términos introducidos y las preferencias de un usuario, o la forma óptima
de servir una compra a un conjunto de clientes de una ciudad, o la exploración
del grafo de amistades de una persona para sugerirle nuevos contactos lo más
afines posible, etc. Este área, el de la optimización, clásica ya en el entorno de la
investigación académica, se ha centrado históricamente en problemas estáticos y
bien definidos.

Sin embargo, avanzamos hacia un mundo cada vez más integrado, más interre-
lacionado, más globalizado. Los problemas y necesidades a resolver no son ya algo
perfectamente definido y acotado, sino que muchas veces implican dependencias
entre elementos muy diferentes y complejos de por śı. Estas dependencias, a veces
desconocidas, pueden desencadenar cambios muy rápidos a los que hay que dar
respuesta, incluso sin disponer de toda la información posible. Los retos a abordar

ix

RESUMEN Y CONCLUSIONES

implican, pues, ser capaces de adaptarnos a entornos cambiantes (y lo que es más,
que cambian cada vez más rápido), y de operar con información incompleta, difusa
o a veces incluso, contradictoria.

Pensemos en el ejemplo anterior de la búsqueda: es evidente que las preferen-
cias de un usuario no van a permanecer invariables a lo largo del tiempo, y lo que
hoy puede ser una recomendación útil por parte del sistema, mañana podŕıa dejar
de serlo porque la persona ha cambiado sus intereses; el sistema debe ser capaz de
adaptarse a este cambio. O podemos querer sugerir contactos en una red social a
alguien que no ha rellenado todos los datos de su perfil, y de quien, por tanto, no
disponemos de toda la información completa; la ausencia de información no debe
ser obstáculo para sugerir contactos usando los datos de los que śı disponemos.
Ejemplos de situaciones similares pueden encontrarse en otras áreas relevantes
(Economı́a, Meteoroloǵıa, Loǵıstica y Transporte, Bioqúımica, Telecomunicacio-
nes, etc.), y en todas ellas, los sistemas no sólo deben ser capaces de gestionar
estos problemas, sino de proporcionar soluciones con la mayor calidad posible.

En esta situación, necesitamos Sistemas Inteligentes que sean capaces de lidiar
con los problemas que surgen debido a la presencia de dinamismo e incertidumbre.

Contexto de la tesis

En el contexto de los Sistemas Inteligentes, una importante clase de problemas
son los conocidos con el nombre de problemas de optimización, habitualmente
asociados a tener que encontrar el máximo o mı́nimo valor que una determinada
función puede alcanzar en un cierto conjunto previamente especificado. Todo lo
relativo a estos problemas se enmarca dentro del cuerpo doctrinal denominado
Programación Matemática, que incluye una enorme variedad de situaciones, según
que se consideren casos lineales, no lineales, aleatoriedad, un solo decisor o varios
decisores, etc.

Los Problemas de Optimización Dinámicos (DOPs) es una categoŕıa de pro-
blemas de optimización dentro de la que se encuadran aquellos problemas donde
la función objetivo, las variables, las condiciones ambientales y/o la estructura
del problema pueden cambiar mientras el mismo problema se está resolviendo. La
formulación básica de un problema de este tipo es la siguiente:

DOP =

{
Optimizar f(x, t)
s.a. x ∈ F (t) ⊆ S, t ∈ T

}
(1)

donde

S ∈ Rn, S es el espacio de búsqueda.

x

RESUMEN Y CONCLUSIONES

t es el tiempo (puede ser también medido en términos de evaluaciones de la
función objetivo).

f : S × T → R, es la función objetivo que asigna a cada posible solución
x ∈ S en el instante t un valor numérico.

F (t), es el conjunto de soluciones factibles x ∈ F (t) ⊆ S en el instante t.

En muchas ocasiones, encontrar la mejor solución posible a un problema de
optimización suele ser una tarea compleja. Las causas de esto pueden ser múlti-
ples, como que los problemas tengan una complejidad computacional elevada y
no se pueda garantizar que hallemos la solución óptima en un tiempo razonable
(e.g., problemas NP-duros), o bien que el coste de evaluar una solución, ya sea
en términos económicos o temporales, sea elevado. La presencia de dinamismo
supone una dificultad añadida a la hora de resolver estos problemas. En este
contexto, las técnicas proporcionadas por la Soft Computing emergen
como candidatas ideales para afrontar estos problemas, especialmente
las Metaheuŕısticas.

El término “metaheuŕıstica” apareció por primera vez en un trabajo de Glo-
ver en 1986 [65], y resulta de la adición del término meta (“más allá” o “de un
nivel superior”) a la palabra heuŕıstica (del Griego, “heuriskein” — “descubrir”
o “encontrar” [161]). Las heuŕısticas son métodos de optimización por búsqueda
capaces de encontrar soluciones de alta calidad con un coste computacional razona-
ble, aunque su optimalidad o factibilidad no estén garantizadas. Normalmente las
heuŕısticas se consideran opuestas a los métodos exactos, ya que a éstos se les exije
que proporcionen optimalidad y factibilidad. En este sentido, las metaheuŕısticas
surgieron en un intento por estar “por encima de las heuŕısticas”, con la idea
de extraer las mejores partes de diversas heuŕısticas de éxito para crear métodos
genéricos que pudieran ser aplicados a una variedad más amplia de problemas y
conceptos, manteniendo a la vez las cualidades de “soluciones de alta calidad” y
“con un coste computacional razonable”.

Existe una enorme variedad de metaheuŕısticas con diferentes grados de com-
plejidad y capacidad de optimización: Local Search, Multi-Start Local Search,
Simulated Annealing, Tabu Search, Scatter Search, Greedy Randomize Adaptive
Search Procedure (GRASP), Variable Neighbourhood Search (VNS), Evolutionary
Algorithms (EA), Ant Colony Optimization (ACO), Particle Swarm Optimization
(PSO), etc. Cada una de estas metaheuŕısticas ha dado lugar a múltiples variacio-
nes, y es común la creación de metaheuŕısticas h́ıbridas combinando dos o más de
ellas, utilizando la arquitectura maestro-subordinado inherente a su definición.

Todas estas metaheuŕısticas están basadas en diferentes paradigmas y poseen
caracteŕısticas únicas que las distinguen de las demás. Sin embargo, todas ellas en
general (con la posible excepción de la sencilla Local Search) se basan en última

xi

RESUMEN Y CONCLUSIONES

instancia en combinaciones cuidadosamente calibradas de procesos de diversifica-
ción e intensificación.

La combinación de estos dos factores las hacen especialmente apropiadas para
resolver problemas de optimización global. Sin embargo, y esto es lo realmente
relevante para esta tesis, estas mismas caracteŕısticas les confieren una capaci-
dad de adaptación extraordinaria, a la vez que mantienen un gran potencial de
búsqueda. Todo esto las convierte en candidatas ideales para resolver problemas
de optimización que tengan presencia de dinamismo e incertidumbre.

Con el objetivo de abordar los retos que suponen este tipo de problemas y pro-
porcionar métodos capaces de dar soluciones a los mismos, se plantea el Proyecto
de Excelencia de la Junta de Andalućıa P07-TIC-02970, titulado “Modelos de Op-
timización Dinámicos e Imprecisos en Sistemas Inteligentes: Estudio de Métodos
de Solución y Aplicaciones”, dentro del cuál se enmarca esta tesis doctoral.

El núcleo del proyecto se estructura alrededor de los posibles escenarios que
pueden surgir cuando se combinan las componentes de los problemas (básicamente,
hablamos de función objetivo y restricciones), y las caracteŕısticas de dinamismo
e incertidumbre.

En el marco de este proyecto de investigación, esta tesis se centra en uno
de los escenarios estudiados: problemas de optimización con dinamismo
en la función objetivo.

Objetivos

Teniendo en cuenta la importancia de los DOPs, la necesidad de resolverlos,
y la previsible adecuación de la técnicas de Soft Computing para ello — especial-
mente las Metaheuŕısticas — se plantea como objetivo global de esta tesis el
estudio, diseño e implementación de métodos basados en Soft Compu-
ting para la resolución de DOPs. Para alcanzar este objetivo, hemos realizado
un conjunto de tareas orientadas a responder las siguientes cuestiones:

1. ¿Es posible mejorar los algoritmos existentes, y, en caso afirma-
tivo, qué técnicas se podŕıan usar para ello? Para responder a esta
pregunta será necesario ver qué tipos de algoritmos existen en el estado del
arte que sean capaces de operar en presencia de dinamismo, e investigar su
funcionamiento y los elementos que la forman. Pondremos especial interés
en investigar el papel que juega la cooperación entre estos elementos de cara
a mejorar la efectividad del algoritmo. Como objetivo secundario a la hora
de contestar a esta pregunta, buscaremos técnicas para mejorar los algorit-
mos existentes que, en la medida de lo posible, no sean exclusivas de dichos
algoritmos, sino que puedan aplicarse a otros de forma genérica.

xii

RESUMEN Y CONCLUSIONES

2. ¿Qué metodoloǵıa habŕıa que aplicar para comparar el rendimiento
de diferentes algoritmos sobre un DOP? La presencia de dinamismo
en la función objetivo obliga a redefinir cómo evaluamos el rendimiento de
un algoritmo. No basta con encontrar una solución al problema una vez: el
hecho de que el problema esté cont́ınuamente cambiando obliga a reportar
soluciones cada cierto tiempo. Intuitivamente, es mejor un algoritmo que
devuelva soluciones razonablemente buenas de manera sostenida, que uno
que encuentre la solución óptima una vez, pero que obtenga soluciones malas
el resto del tiempo. Con esta forma de evaluar el rendimiento, la comparación
de resultados se vuelve compleja, y para responder a la pregunta de este
punto, es necesario buscar formas novedosas de mostrar la información para
poder captar todo su significado e implicaciones.

3. ¿Qué dificultades podemos encontrarnos a la hora de implementar
estos DOPs, algoritmos y medidas, y cómo podemos afrontarlas?
Esta cuestión, más técnica y aplicada que las anteriores, se basa en la expe-
riencia acumulada durante la investigación, donde hemos podido comprobar
que pasar de la teoŕıa a la implementación práctica no siempre es fácil. La
implementación de los algoritmos, los problemas, los mecanismos de dina-
mismo e incertidumbre, y las medidas de rendimiento presentan cada una
sus propias particularidades. La respuesta a esta pregunta pretende ser un
compendio de dicha experiencia y las conclusiones obtenidas.

Para ello, la tesis está estructurada de la siguiente manera:

El Caṕıtulo 2 presenta el contexto de investigación en el que se desarrolla
esta tesis, con una breve revisión de la literatura en DOPs, centrándose en
los problemas, algoritmos y medidas de rendimiento más relevantes para los
objetivos de la tesis.

El Caṕıtulo 3 contiene las contribuciones algoŕıtimicas más significativas de
esta tesis, bien mediante mejoras a algoritmos existentes de la literatura, o
directamente con nuevos algoritmos que han sido desarrollados durante esta
investigación. Este caṕıtulo se centra principalmente en buscar respuestas a
la primera cuestión presentanda en los objetivos.

En el Caṕıtulo 4 introducimos una técnica nueva para comparar grandes
cantidades de datos de una forma comprensible y aportando significado. Es-
ta técnica, denominada SRCS, ha permitido extraer información muy va-
liosa sobre tendencias generales de algoritmos, aśı como recomendaciones
sobre qué algoritmo utilizar en cada situación. Este caṕıtulo está enfocado
principalmente a tratar de responder la segunda cuestión presentada en los
objetivos.

xiii

RESUMEN Y CONCLUSIONES

El Caṕıtulo 5 explora algunas de las dificultades y problemas a los que nos
enfrentamos durante la implementación de los experimentos, y explica cómo
los resolvimos. Este caṕıtulo se ocupa de los aspectos del software y la ex-
periencia que reunimos durante la investigación, y se centra por tanto en la
tercera cuestión presentada en los objetivos.

Finalmente, el Caṕıtulo 6 presenta las conclusiones obtenidas de esta tesis, el
conocimiento más relevante que hemos adquirido durante la experimentación,
y responde a las cuestiones planteadas en los objetivos. Este caṕıtulo también
incluye un resumen de las publicaciones más relevantes obtenidas durante la
realización de esta tesis.

Conclusiones

A ráız de las investigaciones llevadas a cabo en esta tesis y de las publicaciones
a las que han dado lugar, organizaremos las conclusiones obtenidas a partir de las
preguntas que se plantearon en los Objetivos.

¿Es posible mejorar los algoritmos existentes, y, en caso afir-
mativo, qué técnicas se podŕıan usar para ello?

Las investigaciones llevadas a cabo han producido, entre otros resultados, los
siguientes algoritmos nuevos o mejoras de existentes:

Un nuevo algoritmo para DOPs basado en Estrategias Cooperativas (CS) [69],
aśı como una mejora para dicho algoritmo con reglas más efectivas [70].

Un algoritmo basado en Agentes para DOPs, con resultados interesantes
en problemas continuos [40], y muy prometedores en problemas combinato-
rios [68].

Una serie de mejoras y estudios de propiedades de variantes del PSO para
DOPs basadas en el uso de reglas heuŕısticas (mQSO-Change,, mQSO-Rand
y mQSO-Both) [39,41,120].

Los algoritmos que hemos desarrollado abarcan un amplio espectro de métodos:
PSO con reglas heuŕısticas, metaheuŕısticas de trayectoria cooperativas o agentes.
Sin embargo, todos estos algoritmos tienen ciertas caracteŕısticas comunes:

1. Uso de poblaciones de soluciones. Todos estos métodos mantienen un
conjunto o conjuntos de soluciones que “conviven” a la vez en el transcurso

xiv

RESUMEN Y CONCLUSIONES

del proceso de búsqueda. Estas poblaciones de soluciones permiten diversifi-
car la búsqueda, algo de por śı importante en un problema de optimización
estático, y absolutamente imprescindible en un DOP.

2. Existencia de algún tipo de cooperación entre los elementos cons-
tituyentes. En el caso de las estrategias cooperativas esto es evidente, ya
que dicha cooperación es expĺıcita, y corre a cargo del coordinador central,
quien intercambia información entre las diferentes metaheuŕısticas. En el ca-
so de las diferentes variantes del PSO, las part́ıculas de un mismo swarm
están “conectadas” entre śı a través del best de dicho swarm, ya que sirve de
referencia en el movimiento de las part́ıculas. Además, en el caso del mQ-
SO, que posee múltiples swarms, existe un método de exclusión que impide
a dichos swarms acercarse demasiado unos a otros para evitar concentrar-
se en el mismo óptimo. Esta competición entre swarms a nivel local evita
que el algoritmo desperdicie demasiados recursos en un área, por lo que, en
cierto sentido, es una forma de cooperación a nivel global. Los agentes tam-
bién cooperan de forma impĺıcita, ya que explorar el espacio de búsqueda de
forma indirecta a través de la matriz obliga a que los agentes mejoren so-
luciones que muy probablemente han sido ya modificadas por otros agentes
anteriormente.

Estas caracteŕısticas vienen a confirmar el uso de algoritmos poblacionales como
tendencia general entre los más usados para DOPs. La segunda caracteŕıstica es
especialmente significativa en el contexto de esta tesis porque de alguna forma
indica una posible v́ıa a seguir de cara a mejorar algoritmos existentes. Todas las
modificaciones que hemos introducido a lo largo de esta investigación se basan
en fomentar la cooperación y aumentar el intercambio de información entre los
elementos del algoritmo.

Especialmente interesante es el caso de la regla Rand del mQSO con reglas
heuŕısticas [39]. La filosof́ıa de esta regla es muy similar a la del PSO con el
operador CPT [120] y al funcionamiento de las Estrategias Cooperativas (CS) [69,
70, 104]: observar el comportamiento de los elementos, y corregir los que lo estén
haciendo peor, ya sea tratando de imitar a los mejores, o parándolos temporalmente
para que no desperdicien recursos en momentos cŕıticos. Cuando este esquema de
cooperación se ha aplicado sobre un algoritmo, ha mejorado sus resultados en todos
los casos.

Por otra parte, de los resultados obtenidos en [40], llama la atención la abru-
madora supremaćıa de las CS en los problemas Ackley, Griewank y Rastrigin. Tal
y como se explica en ese trabajo, parece que las estrategias cooperativas están
especialmente indicadas cuando el DOP a resolver posee algún tipo de estructura
en las posiciones relativas de los óptimos locales. En cambio, en problemas don-
de no existe dicha estructura, como el caso del MPB, los resultados están mucho

xv

RESUMEN Y CONCLUSIONES

más igualados, y se aprecian mejor los comportamientos y tendencias de cada al-
goritmo. SORIGA es la mejor opción para entornos con cambios muy rápidos, el
mQSO + Regla Rand obtiene los mejores resultados para baja dimensionalidad,
y el algoritmo Agentes se comporta mejor en alta dimensionalidad y con creciente
severidad en los cambios.

Una interpretación que podemos hacer de esto es que el tipo de información
del entorno que utiliza CS para decidir cómo cooperar les permite sacar el máximo
partido a la estructura del problema. Esta información no es en cambio tan útil
en el MPB porque no hay estructura de la que se pueda aprovechar, y pierden por
tanto su ventaja. La cooperación impuesta por la regla Rand en el mQSO mejora
su rendimiento, pero no puede sin embargo superar las limitaciones inherentes
al propio algoritmo: las part́ıculas tienden a explorar el entorno siguiendo una
trayectoria y los swarms tienen un radio efectivo de acción, más allá del cual es
dif́ıcil que exploren. Esto no supone un gran inconveniente en problemas de baja
dimensionalidad, pero penaliza al algoritmo a medida que ésta aumenta, en favor
del algoritmo Agentes. Finalmente, SORIGA posee un mecanismo de cooperación
impĺıcito y genérico, que no usa conocimiento del problema. Esto es una desventaja
cuando las condiciones del problema son favorables a otras técnicas. Sin embargo,
dota al algoritmo de una gran robustez, y le permite obtener buenos resultados en
entornos con cambios muy rápidos, en situaciones en que los otros algoritmos no
han tenido tiempo para optimizar adecuadamente.

En el caso de los problemas discretos, el uso del algoritmo Agentes combinado
con un esquema de aprendizaje permite mejorar a uno de los métodos del estado
del arte en este área, AHMA. El uso de cooperación expĺıcita en este caso era
complicado de utilizar debido a que la estructura del problema no estaba clara
y era más bien aleatoria. Sin embargo, la cooperación impĺıcita de los Agentes
era apropiada para manejar estos escenarios, y el esquema de aprendizaje se pudo
incorporar sin ningún problema con este algoritmo, permitiendo superar al AHMA.

Adicionalmente, a partir de la experiencia que hemos adquirido durante el
desarrollo de los experimentos, hemos elaborado una clasificación de los algorit-
mos utilizados en esta tesis en función de dos criterios: capacidad de optimización
y flexibilidad. Cuando hablamos de capacidad de optimización nos referimos a
la habilidad de un algoritmo de producir soluciones de alta calidad, cercanas al
óptimo. Cuando hablamos de flexibilidad, nos referimos a un doble concepto: la
facilidad de un algoritmo, en tiempo de ejecución, para reaccionar a los cambios
en el entorno, y a la facilidad, en tiempo de diseño, para adaptar el algoritmo a
otros problemas (cómo de bien funciona el algoritmo en un problema nuevo con
unos valores estándar de sus parámetros, cuánto código hay que modificar o crear
para que funcione en otro problema, etc). Esta clasificación es un compendio de
los resultados obtenidos en los diferentes trabajos (especialmente [40], presentado

xvi

RESUMEN Y CONCLUSIONES

en la Sect. 4.4) y nuestra experiencia personal durante el desarrollo de los mismos.

En nuestra opinión, la familia del mQSO obtiene peores rendimientos en DOPs
que otras familias que hemos analizado. Tan sólo la variante heuŕıstica del mQSO-
Rand consigue buenos resultados en términos de capacidad de optimización en
algunos escenarios, gracias al esquema de cooperación que utiliza. Sin embargo,
este algoritmo contiene un número elevado de parámetros dependientes del proble-
ma, tales como el radio de las part́ıculas quantum, distancia mı́nima entre swarms,
los datos de configuración de las reglas, etc. Como vimos en [39,40], esto puede lle-
var a valores de parámetros que sólo funcionan bien en ciertos escenarios. Además,
el mQSO está espećıficamente diseñado para optimización cont́ınua, y contiene
algunas dependencias en la propia formulación del método que hacen muy com-
plicado portarlo a problemas discretos (las ecuaciones de movimiento, el concepto
de “distancia”, etc). Por todo ello, nuestra impresión es que esta familia es poco
flexible.

Respecto a la familia de las CS, es evidente que son las que más capacidad de
optimización tienen, a ráız de los resultados obtenidos en [40,69,70] . Además, son
razonablemente flexibles, ya que el CS se ha utilizado con éxito en una gran variedad
de problemas, incluyendo continuos y discretos. Sin embargo, el algoritmo CS es
bastante complejo, con varias capas de abstracción incluyendo la implementación
de los solvers, la implementación del coordinador, los parámetros de configuración,
mensajes de comunicación, pizarras, sincronización, etc. Esto implica que puede
ser necesario modificar una cantidad considerable de código para poder adaptar el
CS de un problema a otro. Por ello, creemos que este método tiene una flexibilidad
moderada.

Finalmente, la familia de Agentes y la de Algoritmos Evolutivos son, con di-
ferencia, las más flexibles de todas. Apenas utilizan parámetros, o los parámetros
poseen valores estándard muy buenos, lo que permite a ambas familias obtener un
rendimiento aceptable en la mayoŕıa de los problemas en sus primeras ejecucio-
nes. Por ejemplo, SORIGA no tiene parámetros dependientes del problema, y la
matriz por defecto 3x3 del algoritmo Agentes obtiene muy buenos resultados en
todos los experimentos realizados. Además, son capaces de funcionar bien incluso
en circunstancias extremas, como en DOPs con una elevada frecuencia de cambio
o severidad (ver [40]). A cambio, no exhiben una capacidad de optimización tan
elevada como las CS, pero son capaces de competir con el mQSO. Y en el caso
del Agents-Adaptativo, la flexibilidad aplicada a la selección de operadores le per-
mite obtener los mejores resultados de esta familia en términos de capacidad de
optimización.

En conclusión, los resultados de todos estos trabajos permiten afirmar que no
sólo es posible mejorar los algoritmos existentes, sino que además hemos
encontrado técnicas basadas en cooperación y esquemas de aprendiza-

xvii

RESUMEN Y CONCLUSIONES

je para hacerlo de forma genérica, con gran efectividad y flexibilidad.
Adicionalmente, hemos obtenido resultados que nos permiten conocer
cuáles son los escenarios más favorables para utilizar cada algoritmo.

¿Qué metodoloǵıa habŕıa que aplicar para comparar el ren-
dimiento de diferentes algoritmos sobre un DOP?

Los resultados obtenidos en diferentes fases de la investigación llevada a cabo
en esta tesis demuestran que un determinado algoritmo puede resultar efectivo en
un escenario de un DOP, y perder dicha efectividad en otro. Vimos un ejemplo de
esto en [39] con la regla Change en escenarios distintos al Escenario 2 del MPB, o
con el algoritmo Agentes al compararlo contra el AHMA en alguna configuración
del problema Royal Road en [68]. Este resultado es ampliamente conocido en la
literatura, normalmente conocido como el teorema no-free-lunch [171], i.e., ningún
algoritmo puede ser el mejor en todas las situaciones posibles.

Con el objetivo de poder obtener una visión más completa del comportamiento,
las fortalezas y las debilidades de un algoritmo, es necesario evaluar su rendimiento
en múltiples escenarios. Por otra parte, como ya se ha justificado anteriormente,
esta comparación puede producir demasiados resultados como para puedan ser
comprendidos en toda su magnitud si sólamente se usan datos puramente núme-
ricos.

Por todas estas razones, hemos desarrollado la técnica SRCS [38]. Esta técnica
comprime la información a mostrar en 2 fases:

1. Transformar los datos absolutos de rendimiento de los algoritmos en datos
relativos entre los algoritmos comparados, de manera que se pueda establecer
un ránking que determine si un algoritmo es mejor que otro en un escenario
dado.

2. Asignar colores a cada ránking, de manera que el rendimiento relativo de
cada escenario analizado pueda ser visualizado en una imagen a color.

Esta técnica permite visualizar los resultados de un gran número de experi-
mentos de manera comprensible, ayudando a identificar tendencias y patrones de
comportamiento de los algoritmos analizados. Por ello, gracias a SRCS se pue-
den sacar conclusiones muy prácticas, no sólo sobre qué algoritmo es el
mejor, sino — y esto es más importante — sobre en qué escenarios es
mejor utilizar uno u otro. SRCS ha sido utilizada en los trabajos [68] y [40],
donde su uso ha permitido extraer valiosas conclusiones.

xviii

RESUMEN Y CONCLUSIONES

¿Qué dificultades podemos encontrarnos a la hora de imple-
mentar estos DOPs, algoritmos y medidas, y cómo podemos
afrontarlas?

La investigación llevada a cabo en esta tesis ha tenido una fuerte componente
experimental. La implementación del sofware necesario para llevarla a cabo no ha
estado exenta de problemas, y de ella hemos extráıdo las siguientes lecciones:

Para obtener resultados útiles es necesario realizar un número potencialmente
alto de ejecuciones de algoritmos, posiblemente sobre un gran número de
variaciones de escenarios.

En muchos casos los algoritmos están basados en metaheuŕısticas y tienen
un factor aleatorio. Por ello, se debe repetir cada ejecución un cierto número
de veces con diferentes semillas para obtener una muestra estad́ısticamente
significativa de los resultados.

Debido al carácter aleatorio de los algoritmos, en el análisis de los resultados
es necesario utilizar herramientas estad́ısticas. El uso de paquetes software
con estas capacidades es por tanto casi obligatorio.

Los escenarios de pruebas suelen tener también una componente aleatoria en
el dinamismo. Sin embargo, al contrario que los algoritmos, esta componen-
te debe ser reproducible, para aśı garantizar que los experimentos de cada
método se realizan en igualdad de condiciones, con exáctamente el mismo
escenario.

La mayoŕıa de los algoritmos tienen un conjunto de parámetros que deben
establecerse antes de la ejecución, con un amplio rango de valores posibles.
Esto es especialmente complejo en los Sistemas de Optimización Coopera-
tivos (COS), donde cada componente puede tener su propio conjunto de
parámetros. Es por tanto muy recomendable disponer de mecanismos de
configuración que faciliten este proceso.

Una visualización del rendimiento de un algoritmo es extremadamente útil,
especialmente en las primeras etapas de un experimento. Las visualizacio-
nes ayudan a decidir si un problema está formulado correctamente y si el
algoritmo está evolucionando razonablemente. Si las visualizaciones pueden
realizarse en tiempo real, mejor aún.

Aunque existe una gran variedad de algoritmos para DOPs, la mayoŕıa de
ellos se basan en poblaciones de elementos, con algún tipo de cooperación
entre ellos, ya sea expĺıcita o impĺıcita. Esto abre la puerta a la creación de
jerarqúıas de clases y módulos que permitan la reutilización de componentes.

xix

RESUMEN Y CONCLUSIONES

De igual forma, aunque también existe una gran variedad de problemas
dinámicos, cada uno de ellos con su propia función objetivo, espacio de
búsqueda, etc., el proceso mediante el cuál se evalua una solución y se le
asigna un valor de fitness es normalmente común a todos ellos. Más aún,
las las caracteŕısticas que definen el dinamismo (tales como la frecuencia de
cambio, la severidad, el tipo de cambio, etc.), aśı como otro tipo de funcio-
nalidad extendida (incluyendo medidas de rendimiento, GUIs, estad́ısticas,
etc.), normalmente pueden intercambiarse entre los diferentes problemas. Al
igual que suced́ıa con los algoritmos, esto sugiere de nuevo que la creación
de un framework con estos componentes es posible.

A ráız de estos datos podemos sacar varias conclusiones. La primera de ellas
es que la configuración y ajuste inicial de algoritmos para DOPs no es
una tarea sencilla. Con el objetivo de aliviar esta situación, hemos creado una
herramienta basada en modelos de software, DACOS [42], que permite configu-
rar COS y visualizar su rendimiento en las fases iniciales de la experimentación.
DACOS fue diseñado para cubrir una amplia variedad de algoritmos y problemas,
pero para aquellos casos cuyas necesidades espećıficas requieran de su adaptación,
el uso de modelos de software permite hacerlo de manera semi-automática.

Por otra parte, las caracteŕısticas de los algoritmos usados en DOPs hacen que
muchos de los elementos que los componen, y hasta su misma estructura interna,
puedan ser reutilizados de un algoritmo a otro a la hora de implementarlo. La
misma situación se da en los problemas, donde los mecanismos de dinamismo son
compartidos entre ellos, y con frecuencia sólamente se diferencian en la función
objetivo. Esta situación se da también en las medidas de rendimiento, que mu-
chas veces sólo necesitan cierta información estándar de los algoritmos o de los
problemas, como el número de soluciones de la población del algoritmo, el valor
del óptimo, o el momento en que se produjo el último cambio, sim importar el
algoritmo o problemas particulares que se estén utilizando en ese momento.

Estas circunstancias han propiciado la creación de un framework para
DOPs con diferentes algoritmos, problemas, propiedades dinámicas y
medidas, que hemos ido desarrollando y mejorando a lo largo de toda esta in-
vestigación. Este framework ha tomado ideas de una publicación anterior del au-
tor [191], donde ya se diseñó una jerarqúıa de clases para metaheuŕısticas en pro-
blemas de optimización estáticos. El framework permite intercambiar diferentes
problemas, utilizar múltiples algoritmos, usar diferentes medidas de rendimiento,
y hasta visualizar resultados en tiempo de ejecución. Además, permite también la
introducción de incertidumbre estocástica en diferentes puntos de la evaluación de
una solución, que aunque no es el tema central de esta tesis, śı que es relevante
para los objetivos del proyecto de investigación en el que se enmarca, y ya ha
resultado de utilidad en otros trabajos en curso.

xx

Chapter 1

Introduction

We live in a moment in history in which our social, cultural and technological
necessities are strongly interrelated. It is no longer possible to think in solving
any of these necessities without addressing some of the others, even in an indirect
way. A computer application that does not consider the sociocultural factors
of the users it targets, is doomed to fail. But at the same time, and here is
where the enormous growing potential that we are experimenting resides, thanks
to the recent technological advances, we can solve necessities that were not possible
before, or do it in ways that were unthinkable until very recently, opening a world
of opportunities.

In this context, many situations can be modeled as optimization problems,
where the objective is to find the best possible solution that satisfies certain cri-
teria, within the available resources. Let’s think, for example, in the best way of
sorting a set of results in an internet search according to the introduced query and
the user preferences. Or the optimal way of serving a purchase to a set of customers
in a city. Or how to explore the friendship graph of a person in order to suggest
him new contacts as like-minded as possible. This field, optimization, classic in
academical research, has historically focused in static, well-defined problems.

However, we are moving towards an increasingly integrated, interrelated, and
globalized world. The problems and necessities to be solved are no longer some-
thing well-defined and bounded, but in many cases they imply dependencies be-
tween very different and complex elements. These dependencies, which can be
unknown, may trigger very fast changes that must be addressed, even without all
the information being available. The challenges we face therefore imply that we
must be able to adapt to changing environments (moreover, that change at an
increasingly fast rate), and to operate with incomplete, fuzzy, or sometimes even
contradictory information.

Think about, e.g., the previous example about an internet search. It is obvious
that user preferences are not going to remain static, and a useful recommendation

1

INTRODUCTION

today, could no be so tomorrow because the person has shifted his interests. The
system must be able to adapt to this change. Or we may want to suggest contacts
in a social network to someone who has not filled-in all the data of his profile;
this absence of information should not prevent us from suggesting him contacts
using the details that we do know. Examples of similar situations can be found
in other relevant areas (Economics, Meteorology, Logistics and Transportation,
Biochemistry, Telecommunications, etc.), and in all of them, systems must not
only be able to manage these problems, but to provide solutions with the highest
possible quality.

Given this situation, we need Intelligent Systems capable of dealing with the
problems that arise due to presence of dynamism and uncertainty.

1.1. Context of the thesis

In the context of Intelligent Systems, an important class of problems are those
known under the name of optimization problems, usually associated to finding the
maximum or the minimum value that a certain function can take among some pre-
viously specified domain. Everything related to these problems is framed within
the doctrinal body denoted Mathematical Programming, which includes an enor-
mous variety of situations, depending on whether we are considering linear cases,
non-linear cases, randomness, a single or multiple decision-makers, etc.

Dynamic Optimization Problems (DOPs) is a category of optimization prob-
lems that groups those in which the objective function, the constraints, the vari-
ables, the environment conditions and/or the structure of the problem itself may
change while it is being solved. The basic formulation of these type of problems
is as follows:

DOP =

{
Optimize f(x, t)
s.t. x ∈ F (t) ⊆ S, t ∈ T

}
(1.1)

where

S ∈ Rn, S is the search space.

t is the time (it may also be measured in terms of objective function evalua-
tions).

f : S × T → R, is the objective function that assigns a numerical value to
each possible solution x ∈ S at time t.

F (t), is the set of feasible solutions x ∈ F (t) ⊆ S at time t.

2

INTRODUCTION

In many occasions, finding the best possible solution of an optimization prob-
lem is a complex task. There can be multiple causes for this, like, e.g., that
finding this optimal solution in a reasonable time cannot be guaranteed because
of the computational complexity of the problem (e.g., NP-hard problems), or that
evaluating a solution is very expensive, either in economical or temporal terms.
The presence of dynamism in these problems implies another extra difficulty when
trying to solve them. In this context, the techniques provided by Soft
Computing emerge as ideal candidates for facing these problems.

In 1965, Lofti A. Zadeh introduced in [189] the concept of fuzzy set, allowing
an element to be member of a set in a gradual way, and not in an absolute way
as stablished by the classic set theory. In other words, in fuzzy sets theory, mem-
bership functions were allowed to take values in the [0, 1] interval, instead of the
classical (0, 1) set. Since then, applications and developments based in this sim-
ple concept have evolved extraordinarily in all knowledge fields, giving theoretical
fundament, structure and contents to a new area denominated Soft Computing,
which has become the founding seed of modern Intelligent Systems.

Zadeh himself proposed the first definition of Soft Computing in 1994 [188],
although in [190] he claimed that this idea dates back to 1990. The definition
proposed by Zadeh was the following:

Basically, soft computing is not a homogeneous body of concepts and
techniques. Rather, it is a partnership of distinct methods that in
one way or another conform to its guiding principle. At this juncture,
the dominant aim of soft computing is to exploit the tolerance for im-
precision and uncertainty to achieve tractability, robustness, and low
solution cost. The principal constituents of soft computing are fuzzy
logic, neurocomputing, and probabilistic reasoning, with the latter sub-
suming genetic algorithms, belief networks, chaotic systems, and parts
of learning theory. In the partnership of fuzzy logic, neurocomputing
and probabilistic reasoning, fuzzy logic is mainly concerned with impre-
cision and approximate reasoning; neurocomputing with learning and
curve-fitting; and probabilistic reasoning with uncertainty and belief
propagation.

As it usually happens in emerging areas, this first definition served the purpose
of categorizing a concept that was beginning to take shape, although this definition
was not too precise. It was rather an attempt of grouping several techniques and
concepts that aimed at dealing with the inherent uncertainty and imprecision of
real world problems.

This definition has evolved with years, and in 2008, Verdegay, Yager and Bonis-
sone [161] proposed a more precise and illustrative definition of what is Soft Com-
puting currently:

3

INTRODUCTION

The viewpoint that we will consider here (and which we will adopt in
the future) is another way of defining soft computing, whereby it is
considered to be the antithesis of what we might call hard computing.
This viewpoint is consistent with the one in [188,190]. Soft computing
could therefore be seen as a series of techniques and methods so that
real practical situations could be dealt with in the same way as humans
deal with them, i.e. on the basis of intelligence, common sense, consid-
eration of analogies, approaches, etc. In this sense, soft computing is a
family of problem-resolution methods headed by approximate reason-
ing and functional and optimization approximation methods, including
search methods. Soft computing is therefore in the theoretical basis
for the area of intelligent systems.

Verdegay et al. decompose Soft Computing into two big groups of problem-
solving methods: approximate reasoning, and functional approximation and ran-
domized search. In that same work, they introduce a second level of decomposition,
compatible with the categories initially proposed by Zadeh in [188]. With the per-
spective that time gives, it has been seen that some of these components are more
important than others, with four of them clearly standing out: probabilistic rea-
soning, fuzzy logic and fuzzy sets, neural networks and genetic algorithms (GA),
with GA being eventually superseded by the more generic class of evolutionary
algorithms (EA).

The authors also show that the combination of these second-level componentes
produces other emergent research areas that, by extension, are also grouped un-
der the definition of Soft Computing. Some examples of these combinations are:
hybrid probabilistic models, fuzzy event belief models, fuzzy neural systems, fuzzy
logic-based controllers adjusted with EA, neural systems with fuzzy-controlled
parameters, fuzzy genetic systems, etc. A more detailed analysis of these combi-
nations can be seen in [17,18].

Finally, Verdegay et al. deepen in the role that EAs play in the context of
Soft Computing as search-based optimization methods. It is easy to observe that
these algorithms belong to the family of metaheuristics, a class of methods that
act on the basis that “satisfaction is better than optimization”. In this sense,
metaheuristics may not always find optimal solutions, but they usually return
solutions that largely satisfy the decision-maker’s expectations, both in terms of
quality and computational time. The authors end up justifying the inclusion of
metaheuristics as the fourth second-level component of Soft Computing, replacing
EAs, since metaheuristics encompass a wider and more generic set of algorithms
that fulfill the same purpose than EAs. This last component, metaheuristics, is a
key concept in this thesis, and we will discuss it with more detail. Figure 1.1 shows
a diagram that summarizes the main components of Soft Computing according

4

INTRODUCTION

Figure 1.1 – Main components of Soft Computing, as defined in [161].

to [161].
The term “metaheuristic” appeared for the first time in a work by Glover in

1986 [65], and results from the addition of the prefix meta (meaning “beyond”
or “of a higher level”) to the word heuristic (from the Greek word “heuriskein”
— “to discover” or “to find out” [161]). Heuristics are search-based optimization
methods capable of finding high-quality solutions at a reasonable computational
cost, eventhough their optimality or feasibility are not guaranteed. Typically,
heuristics are considered to be opposed to exact methods, since these latter are
required to provide optimality and feasibility. In this sense, metaheuristics arose
as an attempt of being “above the heuristics”, with the idea of extracting the
best parts of different successful heuristics to create generic methods that could
be applied to a wider variety of problems and concepts, while maintaining the
“high-quality solutions”, “reasonable computational cost” properties.

Although there is no widely accepted formal definition of the term metaheuris-
tic, we can get a representation of its general notion from the following two pro-
posals:

Osman and Laporte [122] :“An iterative generation process which guides a
subordinate heuristic by combining intelligently different concepts for explor-
ing and exploiting the search space”

Voss et al. [162] : “An iterative master process that guides and modifies

5

INTRODUCTION

the operations of subordinate heuristics to efficiently produce high quality
solutions. It may manipulate a complete (or incomplete) single solution or a
collection of solutions at each iteration. The subordinate heuristics may be
high (or low) level procedures, or a simple local search, or just a construction
method”

There is an enormous number of metaheuristics with different degrees of com-
plexity and optimization capabilities: Local Search, Multi-Start Local Search,
Simulated Annealing, Tabu Search, Scatter Search, Greedy Randomize Adaptive
Search Procedure (GRASP), Variable Neighbourhood Search (VNS), Evolutionary
Algorithms (EA), Ant Colony Optimization (ACO), Particle Swarm Optimization
(PSO), etc. Each of these metaheuristics has given birth to multiple variations,
and hybrid metaheuristics are commonly created by combining two or more of
them, in a master-subordinate fashion inherent to its definition.

All these metaheuristics are based on different paradigms and possess unique
features that distinguish them from the others. However, in general, all of them
are ultimately based (with the possible exception of the simple Local Search) on
carefully callibrated combinations of diversification and intensification processes.

The combination of these two factors make them specially well-suited for solv-
ing global optimization problems. However, and this is the specially relevant part
for this thesis, these very same characteristics confer them an extraordinary capa-
bility for adaptation, while maintaining at the same time a high search potential.
For all these reasons, metaheuristics can be considered as ideal candidates for
solving optimization problems with dynamism and uncertainty.

Addressing the challenges posed by this type of problems and providing meth-
ods capable of dealing with them is the central issue of the research project P07-
TIC-02970 of the Andalusian Government, entitled “Uncertain and Dynamic Op-
timization Models in Intelligent Systems: A Study on Solving Strategies and Ap-
plications”, which is the framework of this doctoral thesis.

The core of the project is structured around the possible scenarios that may
arise when combining certain components of the problems — basically, we are
talking about the objective function and constraints —, with dynamism and un-
certainty. We can see a graphical representation of these combinations in Fig. 1.2,
where each cell is interpreted as an scenario associated with a kind of problem. In
these cells, the complexity, expressed as a grayscale, increases from top to bottom,
and from left to right.

Within the framework of this research project, this thesis focuses on one
of the scenarios studied: optimization problems with dynamism in the
objective function (Fig. 1.3).

6

INTRODUCTION

Figure 1.2 – Possible combinations of dynamism and uncertainty with the elements of
an optimization problem, i.e., objective function and constraints

Figure 1.3 – The main working scenario of this thesis is optimization problems with
dynamism in the objective function

7

INTRODUCTION

1.2. Objectives

Considering the importance of DOPs, the necessity of solving them, and the
expected suitability of Soft Computing techniques to do so — specially Meta-
heuristics —, the main objective of this thesis is to study, design and
implement Soft Computing based methods to solve DOPs. In order to
accomplish this objective, we performed a set of tasks aimed at answering the
following research questions:

1. Is it possible to improve the existent algorithms, and, if possible,
what techniques can be used for that purpose? In order to answer
this question it will be necessary to study the state-of-the-art algorithms that
are capable of operating in the presence of dynamism, and investigate how
they work and their constituent elements. We will put a special interest in
studying what role does cooperation among these elements play at improving
the effectiveness of an algorithm. As a secondary objective when answering
this question, we will search for improving techniques that are not exclusive
of certain algorithms, but that can be applied to most of them in a generic
way.

2. What methodology should be applied in order to compare the per-
formance of different algorithms on a DOP? The presence of dynamism
in the objective function makes it necessary to redefine how we evaluate the
performance of an algorithm. It is not enough to find a solution to the
problem once: since the problem is continuously changing, the solver must
periodically report a solution for the current environment. Intuitively, an
algorithm that returns reasonably good solutions in a sustainable fashion is
better than one that finds the optimal solution once, but obtains poor so-
lutions the rest of the time. With this way of evaluating the performance,
comparing results turns into a complex task, and in order to answer the
question of this item, it is necessary to search for novel ways of presenting
these results so that the researcher can fully understand their meaning and
implications.

3. What difficulties can we find when implementing these DOPs, al-
gorithms and performance measures, and how can we face them?
This question, more technical and application-oriented than the others, is
based on the experience gathered over the research, where we have learnt
that going from theory to practice is not always easy, nor direct. The imple-
mentation of algorithms, problems and performance measures present some
issues by its own. The answer to this question pretends to be a compendium
of such experience and the conclusions obtained.

8

INTRODUCTION

The thesis is structured as follows:

Chapter 2 presents the research background for this thesis, with a brief re-
view of the literature on DOPs, focusing on the problems, algorithms and
performance measures most relevant for the objectives of the thesis.

Chapter 3 contains the most significant algorithmic contributions of this
thesis, with either improvements to existent algorithms of the literature, or
directly new algorithms that were developed during the research. This chap-
ter is mainly focused on looking for answers to the first question presented
in the objectives.

In Chapter 4 we introduce a novel technique for comparing large amounts
of data in a comprehensive and meaningful manner. This technique, named
SRCS, has allowed to extract very valuable information regarding general
trends of algorithms, as well as recommendations on which algorithm to use
in which situation. This chapter is mainly focused on looking for answers to
the second question presented in the objectives.

Chapter 5 explores some of the difficulties and problems we faced during
the implementation of the experiments, and explains how we solved them.
This chapter is mostly concerned with software issues and the experience
gathered during the research process, therefore focused on the third question
presented in the objectives.

Finally, Chapter 6 presents the conclusions obtained from this thesis, the
most relevant knowledge acquired during the experimentation, and answers
the questions proposed in the objectives. This chapter also includes a sum-
mary of the most relevant publications obtained during the realization of
this thesis.

9

INTRODUCTION

10

Chapter 2

Background

With the purpose of facing the objectives of this thesis with an appropriate
perspective, in this chapter we will present a review of the different problems,
performance measures and algorithms most commonly used in the literature on
Dynamic Optimization.

As far as possible, we will try to offer a wide enough vision in order to be able
of understanding what is the current state of the art, the most used problems and
performance measures in the literature benchmarks, and the algorithms with high-
est popularity. We will also introduce in more detail those problems, performance
measures and algorithmic families which are more relevant for this thesis.

However, this chapter does not pretend to be an exhaustive review of the litera-
ture. The topic of dynamic optimization has been already reviewed in the past, and
the interested reader is referred to the books by Branke [23], Weicker [166], Mor-
rison [115], Yang [182], Jin and Branke [84], and the PhD thesis of Nguyen [118].
These works were mainly related to Evolutionary Optimization. Some special is-
sues were devoted to the dynamic optimization topic considering other kind of
methods, like [24, 25, 181]. More recently, Cruz, Gonzalez and Pelta published a
review [34] especially attuned with the objectives of this thesis.

2.1. Problems

Although there is a great variety of works on DOPs, most of them are focused
on synthetic problems, obtained by means of mathematical objective-functions
with artificially added dynamism. Among the smaller set of real-world applica-
tions of Dynamic Optimization, some of the most interesting examples include:
solving aerospace design problems [101], path planning for ships [109], financial
optimization [150], applied Dynamic Vehicle Routing Problems [74, 123], evolu-
tionary online data mining [36], predicting the position and orientation of moving

11

BACKGROUND

objects [139], optimization of salting truck routes [73], optimal design of an elas-
tic structure [117], control energy consumption and quality of service aspects on
Wireless Sensor Networks [129], tackle dynamic shortest path routing on mobile
ad hoc networks [179], etc.

However, these works, apart from being fewer than the synthetic ones, are
usually very specific, so the problem formulation and the applied methods are,
typically, non-generalizable. The objectives of this thesis include the design of
wide-range improving strategies and comparison techniques, and therefore, in order
to test them appropriately, it is necessary to use a controlled and reproducible
environment. Thus, the experiments performed in this thesis have focused
on synthetic problems.

Many of the synthetic problems used in the literature can be qualified as DOPs
generators. These generators start from a base fitness function, and then they ap-
ply transformations to the scenario according to some predefined parameters of the
problem. These transformations include shifting the origin of coordinates through
the search space, changing the “height” of the fitness functions used, dimension-
ality variations, XOR’ing the target solution with a bit-mask, etc. Additionally,
many features related to dynamism itself can also be controlled. Depending on the
corresponding parameter settings, it is usually possible to produce instances of the
scenario with a certain severity (i.e., magnitude of the change), change frequency
(i.e., how often changes are produced), etc.

A very usual way of producing this type of dynamic scenarios is by reusing
classic static optimization functions and adding them dynamism by means of pe-
riodic transformations of the environment. Among this group we can distinguish
between continuous and discrete DOPs. We will now review some of the most
important ones in each category.

2.1.1. Continuous DOPs

2.1.1.1. Moving Peaks Benchmark (MPB)

The MPB is a test benchmark for DOP’s originally proposed in [22]. It is
a maximization problem consisting in the superposition of m peaks, each one
characterized by its own height (h), width (w), and location of its centre (p). The
fitness function of the MPB is defined as follows:

MPB(x) = max
j

hj − wj
√√√√ n∑

i=1

(xi − pji)2

 , j = 1, ..,m (2.1)

where n is the dimensionality of the problem. The highest point of each peak

12

BACKGROUND

corresponds to its centre, and therefore, the global optimum is the centre of the
peak with the highest parameter h.

Dynamism is introduced in the MPB by periodically changing the parameters
of each peak j after a certain number of function evaluations (ω):

hj(t+ 1) =hj(t) + hs·N(0, 1) (2.2)

wj(t+ 1) =wj(t) + ws·N(0, 1) (2.3)

pj(t+ 1) =pj(t) + vj(t+ 1) (2.4)

Changes to both width and height parameters depend on a given severity for
each of them (ws and hs). Changes to the centre position depend on a shift vector
vj(t+1), which is a linear combination of a random vector r and the previous shift
vector vj(t) for the peak, normalized to length s (position severity, shift distance,
or simply severity):

vj(t+ 1) =
s

|r + vj(t)|
((1− λ)r + λvj(t)) (2.5)

The random vector r is created by drawing random numbers for each dimen-
sion and normalizing its length to s. Finally, parameter λ indicates the linear
correlation with respect to the previous shift, where a value of 1 indicates “total
correlation” and a value of 0 “pure randomness”.

One of the most used configurations of the MPB is the Scenario 2, described
in the web site of the MPB 1, and consisting on the set of parameters indicated in
Table 2.1.

The MPB is one of the most versatile problems in the continuous DOP lit-
erature, since with it, it is possible to control in very precise way many aspects
of the problem (e.g., the number of local optima, the position of the peaks, their
height, etc.), as well as the dynamism (changes in the position of the peaks: linear,
random, mixed; linearly increasing/decreasing changes in the height and width,
change frequency, etc.). Thus, the MPB is among the most used benchmarks (see,
e.g., [12, 14, 16, 26, 28, 52, 83, 88, 124, 138, 157, 193]; for a more detailed list, please
check Table 2.2 at the end of this chapter).

Additionally, Morrison developed in an independent way a generator for con-
tinuous DOPs named DF1 [113, 115], with a virtually equivalent functionality to
that of the MPB. The DF1 is also based in the composition of cone-like functions
that can independently vary their position, height and width. This generator has
also been used in many works that we include in this section given the similarity
between the DF1 and the MPB (see [51,54,55,115,128,140]).

1http://people.aifb.kit.edu/jbr/MovPeaks/

13

http://people.aifb.kit.edu/jbr/MovPeaks/

BACKGROUND

Parameter Value
Number of peaks (m) ∈ [10, 200]
Number of dimensions (d) 5
Peaks heights (hi) ∈ [30, 70]
Peaks widths (wi) ∈ [1, 12]
Change frequency (ω) 5000
Height severity (hs) 7.0
Width severity (ws) 1.0
Shift distance (s) ∈ [0.0, 3.0]
Correlation coefficient (λ) ∈ [0.0, 1.0]

Table 2.1 – Standard settings for the Scenario 2 of the Moving Peaks Benchmark

2.1.1.2. The Ackley Function

The Ackley function is a standard static-optimization function, defined by the
following equation:

Ackley(x) = −20 exp

−0.2

√√√√ 1

n

n∑
i=1

x2
i

− exp

(
1

n

n∑
i=1

cos(2πxi)

)
+ 20 + e

(2.6)

x ∈ [−32, 32], x∗ = 0n

where n is the number of dimensions. This function is highly multi-modal, with
its optimum at the 0n point (it’s a minimization problem).

When this function is used for producing dynamic environments, the dynamism
is usually achieved by means of shifting the origin of coordinates. The shifts can
be:

linear: the origin of coordinates o is added a certain shift s.

o(t+ 1) = o(t) + s (2.7)

random: the origin of coordinates o is added a shift value randomly chosen
in the interval [−s, s].

o(t+ 1) = o(t) + s ·N(−1, 1) (2.8)

semi-random: the origin of coordinates o is added a shift that goes from
totally random to totally linear (e.g., like in the MPB); parameter values

14

BACKGROUND

have the same meaning as the MPB (i.e., r is a random vector normalize to
length s, λ ∈ [0, 1] indicates randomness, where 1 means totally random and
0 means totally linear).

o(t+ 1) =
s

|r + o(t)|
((1− λ)r + λo(t)) (2.9)

other (e.g., circular, chaotic, etc.)

Given the shifted origin of coordinates o(t), the dynamic version of the Ackley
function is constructed as:

ackleydyn(x, t) = ackley(x− o(t)) (2.10)

This method of introducing dynamism into a static optimization function is
simple, efficient, and particularly convenient. The rest of the functions presented
here for continuous DOPs use this mechanism.

The Ackley function has been used in several works in the DOP literature, like,
e.g., [141,142].

2.1.1.3. The Griewank Function

The Griewank function is a standard static-optimization function, defined by
the following equation:

Griewank(x) =
n∑
i=1

x2
i

4000
−

n∏
i=1

cos

(
xi√
i

)
+ 1 (2.11)

x ∈ [−50, 50], x∗ = 0n

where n is the number of dimensions. This function is highly multi-modal, with
its optimum at the 0n point (it’s a minimization problem).

Dynamism is usually introduced into this function by means of the procedure
explained for the Ackley function, using equations 2.7, 2.8, 2.9 and 2.10.

Works using the Griewank function include [121,143,160,169].

2.1.1.4. The Rastrigin Function

The Rastrigin function is a standard static-optimization function, defined by
the following equation:

15

BACKGROUND

Rastrigin(x) =
n∑
i=1

(
x2
i − 10 cos(2πxi) + 10

)
(2.12)

x ∈ [−5, 5], x∗ = 0n

where n is the number of dimensions. This function is highly multi-modal, with
its optimum at the 0n point (it’s a minimization problem).

Dynamism is usually introduced into this function by means of the procedure
explained for the Ackley function, using equations 2.7, 2.8, 2.9 and 2.10.

The Rastrigin function is rather popular in the DOP literature, with examples
including [45,121,141–143,154,160].

2.1.1.5. The Rosenbrock Function

The Rosenbrock function is a standard static-optimization function, defined by
the following equation:

Rosenbrock(x) =
n−1∑
i=1

(
100(x2

i − xi+1)2 + (xi − 1)2
)

(2.13)

x ∈ [−10, 10], x∗ = 0n

where n is the number of dimensions. The optimum of the function is located at
the 0n point (it’s a minimization problem).

Dynamism is usually introduced into this function by means of the procedure
explained for the Ackley function, using equations 2.7, 2.8, 2.9 and 2.10.

The Rosenbrock function has been used in works like [82, 121,143,160].

2.1.1.6. The Sphere Function

The Sphere function (also referred to as the Moving Parabola problem in the
DOP literature) is a standard static-optimization function, defined by the following
equation:

Sphere(x) =
n−1∑
i=1

x2
i (2.14)

x ∈ [−100, 100], x∗ = 0n

where n is the number of dimensions. The optimum of the function is located at
the 0n point (it’s a minimization problem).

16

BACKGROUND

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

MPB

−20

0

20

−20

0

20

5

10

15

20

Ackley

−40

−20

0

20

40

−40

−20

0

20

40

1

2

3

Griewank

−4

−2

0

2

4

−4

−2

0

2

4

20

40

60

80

Rastrigin

−10

−5

0

5

10

−10

−5

0

5

10

200000

400000

600000

800000

1000000

1200000

Rosembrock

−100

−50

0

50

100

−100

−50

0

50

100

5000

10000

15000

20000

Sphere

Figure 2.1 – A 3D static snapshot of the MPB, Ackley, Griewank, Rastrigin, Rosenbrock
and Sphere functions, used in continuous DOPs.

17

BACKGROUND

Dynamism is usually introduced into this function by means of the procedure
explained for the Ackley function, using equations 2.7, 2.8, 2.9 and 2.10.

Examples of the use of the Sphere function include [3,4,21,121,141,142]. Also,
we can also find works that use this same function under the name of Moving
Parabola, like [1, 46,82].

2.1.2. Discrete DOPs

2.1.2.1. The Dynamic Knapsack Problem

The Knapsack Problem is a well-known problem in static combinatorial opti-
mization. In this problem, the objective is to fill a knapsack with objects, each
with a different profit value, so that the accumulated profit is maximized.

In the dynamic version, there are several ways of introducing dynamism:

periodically changing the profit of the objects (i.e., dynamism in the objective
function):

Knapsack(x, t) =
n∑
i=1

xivi(t) subject to
n∑
i=1

xiwi < W (2.15)

periodically changing the weights of the objects (i.e., dynamism in the con-
straints):

Knapsack(x, t) =
n∑
i=1

xivi subject to
n∑
i=1

xiwi(t) < W (2.16)

periodically changing the maximum capacity of the knapsack (i.e., dynamism
in the constraints):

Knapsack(x, t) =
n∑
i=1

xivi subject to
n∑
i=1

xiwi < W(t) (2.17)

any of the above:

Knapsack(x, t) =
n∑
i=1

xivi(t) subject to
n∑
i=1

xiwi(t) < W(t) (2.18)

Works based on the Dynamic Knapsack problem include [27, 84, 86, 137, 144,
164,178,183,184].

18

BACKGROUND

2.1.2.2. The Dynamic Vehicle Routing Problem (DVRP)

The Vehicle Routing Problem (VRP) consists in designing the optimal set of
routes for a fleet of vehicles in order to serve a given set of customers.

One of the most studied versions of VRP is Capacitated VRP (CVRP), where
all vehicles have the same capacity. The fitness of a solution is defined as the sum
of the costs of all its routes:

VRP(x) =
m∑
i=1

Cost(Ri) (2.19)

Cost(Ri) =
n∑
j=1

cij,j+1 +
n∑
j=1

δij,j+1 (2.20)

where Ri is the i-th route, cij,j+1 is the cost (distance) between node j and node
j + 1 of route i, and δij,j+1 is the service time needed to unload the vehicle.

Figure 2.2 – A representation of a solution (set of routes) for the Vehicle Routing
Problem (VRP).

The VRP is subject to the constraints that each vehicle cannot exceed a certain
maximum load L, and the distance covered by each route cannot exceed a certain
distance limit D:

∑
vj∈Ri

dj ≤ L (2.21)

Cost(Ri) ≤ D (2.22)

19

BACKGROUND

Dynamic VRP assumes that some kind of changes can affect the problem while
the algorithm is trying to solve it. These changes may involve incidences like
a car breakdown and traffic jams, as well as new order placements, unexpected
withdrawal of orders, etc. Typically, this is reflected as dynamic changes in the
constraints, where the maximum vehicle’s load and route’s distance may vary with
time:

∑
vj∈Ri

dj ≤ L(t) (2.23)

Cost(Ri) ≤ D(t) (2.24)

Works with the DOP literature using the DVRP include [74,110,123].

2.1.2.3. XOR-based Dynamic Problems

XOR-based Dynamic Problems are problems where the objective is to match
a target bit string that is periodically changed by means of exclusive-or (XOR)
operations. The fitness function used for evaluating the matching is usually based
on static functions, like One-Max, Plateau, Royal Road or Deceptive functions
(see Fig. 2.3 for a visualization of the fitness assigned by each of these functions
in a 4-bit matching case).

The way the dynamism is included into a stationary problem is well exemplified
in Yang [173,174]. The idea is to depart from a binary-encoded stationary function
f(~x) (~x ∈ {0, 1}l) and use a bitwise XOR operator in the fitness calculation. As-
suming that the environment changes every τ generations, for each environmental
period k the XOR-ing mask ~M(k) is incrementally generated as follows:

~M(k) = ~M(k − 1)⊕ ~T (k)

where ⊕ is the bitwise exclusive-or (XOR) operator (i.e. 1 ⊕ 1 = 0, 1 ⊕ 0 = 1,

0 ⊕ 0 = 0) and ~T (k) is an intermediary binary template randomly created with
ρ× l ones for environmental period k (cyclic or cyclic with noise changes were also

considered). For the first period k = 1, ~M(1) is set to a zero vector. Then, the
population at generation t is evaluated with the formula:

f(~x, t) = f(~x⊕ ~M(k))

where k = dt/ρe is the environmental period index. With the XOR generator
defined in this way, the parameter τ controls the speed of change while ρ ∈ (0.0, 1.0)
controls the severity of environmental changes. Bigger values of ρ mean more
severe environmental changes. The above procedure allows to change the fitness

20

BACKGROUND

0 1 2 3 4

0
1

2
3

4

OneMax

Matched bits

O
b
je

c
ti
ve

 v
a
lu

e

0 1 2 3 4

0
1

2
3

4

Plateau

Matched bits

O
b
je

c
ti
ve

 v
a
lu

e

0 1 2 3 4

0
1

2
3

4

Royal Road

Matched bits

O
b
je

c
ti
ve

 v
a
lu

e

0 1 2 3 4

0
1

2
3

4

Deceptive

Matched bits

O
b
je

c
ti
ve

 v
a
lu

e

Figure 2.3 – A representation of the OneMax, Plateau, Royal Road and Deceptive
functions for a 4-bit-matching problem, used in discrete DOPs.

landscape while keeping certain properties of the original landscape, like the total
number of optima and their values despite their locations are shifted.

Works using bit-string matching problems may use dynamic versions of the
One-Max function [44,58,163,173,174,177,178,183,185], the Plateau function [163,
175,178], the Royal Road function [58,59,151,163,164,173,177,183,184], Deceptive
functions [151,163,164,173–175,177,183–185], the dynamic XOR-based generator
described before [136,173,174,176], or other bit matching problems [84,111,147].

2.1.3. Problems chosen in the experiments of the thesis

The experiments carried out in this thesis have been performed both in discrete
and continuous DOPs, although the main focus has been put in these last ones.
In the case of continuous DOPs, most of the works that we will present have used
the Moving Peaks Benchmark (MPB), and the dynamic versions of the Ackley,
Griewank or Rastrigin problems (Fig. 2.1). The reasons for choosing the MPB are

21

BACKGROUND

obvious since this is one of the most used benchmarks of the literature. The Ackley,
Griewank and Rastrigin were added for having a broader test benchmark with a
reasonable difficulty (these functions are widely used and highly multimodal). In
the case of discrete DOPs, our experiments have used the OneMax, Plateau, Royal
Road and Deceptive problems (Fig. 2.3), based on the XOR-generator technique
explained in [173,174].

2.2. Performance measures

The difference between DOPs and static problems is that in the formers there
are changes in the environment during the optimization process. This changes may
include variations in the position of the optima and their objective value, which
can affect the performance measure.

Most of DOP performance measures use an approach based on averaging the
performance of an algorithm over the static period that takes place between two
consecutive changes, and then averaging again all the static measures obtained this
way during the execution process. Fig. 2.4 shows a representation of this approach
using different versions of the error as performance measure.

In some problems, the objective function’s value of the optimum is known, and
relative performance measures can be used, like, e.g., Error (the difference between
the algorithm’s best value so far and the optimum value), Accuracy (a sort of
normalized error), etc. In other cases, either the optimum’s value is unknown or the
researchers have decided not to use it, so absolute measures, such as Performance
(just the algorithm’s best value) are needed.

Finally, all these measures relate to a single execution of the algorithm. In
many cases, the methods used to solve DOPs are based in non-deterministic algo-
rithms (such as, e.g., metaheuristics), that include a stochastic component in their
execution. In order to guarantee that the obtained results are not produced by
chance, it is customary to perform several executions of the same algorithm with
different random seeds. This implies that when we measure the performance of an
algorithm like this, we will not have one single value of the Offline Error or Offline
Performance, but a sample of values. In order to compare performance measures
between algorithms, it will be necessary to use statistical tests that assess whether
the difference in the results is significant or not.

2.2.1. Offline Error

The Offline Error [28] measures the average of the error of the best solution
found by the algorithm since the last change, for every function evaluation, and
for all changes:

22

BACKGROUND

Figure 2.4 – Illustration of different performance measures of an algorithm in a DOP.
The upper part shows, from left to right, the performance while the environment re-
mains static, using different versions of error. The middle part shows an example of
the algorithm performance over several consecutive changes in the environment using
the avg. best error (the best error is displayed in the background). The sudden raisings
of the best error values indicate a change in the environment, and the offline error is
displayed at the right. Finally, in the lower part, several offline error measures are used,
since most algorithms for DOPs have an stochastic component and it is needed to repeat
their execution with different random seeds.

23

BACKGROUND

eoff =
1

Nc

Nc∑
i=1

1

Ne(i)

Ne(i)∑
j=1

(f ∗i − fij) (2.25)

where Nc is the total number of changes in the environment, Ne(i) is the total
number of evaluations allowed in the i-th change, f ∗i is the optimum value of the
i-th change, and fij is the best value found by the algorithm since the beginning
of the i-th change up to the j-th evaluation. If changes in the environment are
produced at a fixed rate (i.e., Ne(i) = Ne,∀i), the equation can be simplified as
follows:

eoff =
1

NcNe

Nc∑
i=1

Ne∑
j=1

(f ∗i − fij) (2.26)

This performance measure is one of the most used. Examples of works using
this measure include [6, 13,28,45,94,96,99,100,107,116,121,125,126,155,192].

2.2.2. Mean Fitness Error (MFE)

The Mean Fitness Error (MFE) was defined by Richter and Yang [134] as:

MFE =

[
1

T

T∑
t=1

(
f(xs(k), k)− max

xj(t) ∈ P (t)
f(xj(t), k)

)]
k=bγ−1(t)c

(2.27)

where max
xj(t)∈P (t)

f(xj(t), bγ−1tc) is the fitness value of the best-in-generation in-

dividual xj(t) ∈ P (t) at generation t, f(xs(bγ−1(t)c), bγ−1(t)c) is the maximum
fitness value at generation t, and T is the total number of generations used in each
run.

Works using the MFE include [55,133,134,139].

2.2.3. Offline Performance

The off-line performance was defined by Branke [28] as follows:

off-line performance(T) =
1

T

T∑
t=1

e
′

t (2.28)

with e
′

t = max {eτ , eτ+1, . . . , et} (2.29)

24

BACKGROUND

where et is the fitness of the solution evaluated by the algorithm at time t, and T
is the total number of time instants considered. τ represents the first time instant
right after the last change on the environment (on the problem) occurred. This
measure represents the average of the best values obtained on each time instant up
to the time T . If we further average the off-line performance for all the evaluations
and all the runs of an algorithm, we obtain the overall off-line performance, that
gives a good idea of the average performance of the algorithm through all the
optimization process.

This performance measure has been used in [55,133,134,139].

2.2.4. Weicker measures

A different approach from simply averaging performance values was taken by
Weicker [165]. He presented an in-depth analysis on this topic, mainly focusing on
EAs for dynamic environments, and he considered the evaluation of three charac-
teristics in a dynamic optimization process:

Accuracy: The optimization accuracy at time t is defined as:

accuracyt =
bestt −Mint

Maxt −Mint

where bestt is the fitness of the best candidate solution in the population at
time t, Maxt ∈ R is the best fitness value in the search space and Mint ∈ R
is the worst fitness value in the search space.

Stability: In the context of dynamic optimization, an adaptive algorithm
is called stable if changes in the environment do not affect the optimization
accuracy severely. Even in the case of drastic changes an algorithm should
be able to limit the respective fitness drop. The stability of an optimization
algorithm at time t is defined as:

stabilityt = max
{

0, accuracyt − accuracy(t−1)
}

The stability can not be relied as the only criterion to compare two algorithms
since it makes no statement on the accuracy level. It can be seen as a
consistency index of how reliably the algorithm keeps getting good results
through the whole optimization process.

Reactivity: An additional aspect that can be considered as a goal in a
dynamic optimization process is the ability of an adaptive algorithm to react

25

BACKGROUND

quickly to changes. The ε-reactivity of an algorithm at time t is:

react(t)ε = min
{

(t′ − t) | accuracyt
′

accuracyt
≥ (1− ε)

}
⋃
{maxgen− t}

where t, t′ ∈ N and t < t′ ≤ maxgen, with maxgen referring to the number of
generations in generation-based algorithms such as evolutionary algorithms.
Lower values for the reactivity mean a better and faster reaction to changes.

While these proposals were mainly oriented to evaluate EAs, they are usu-
ally applicable to any other type of algorithm or they are easily modifiable to be
adapted to other algorithms. In this way, the best of the population could be a
single algorithm solution if the algorithm does not use populations or the gener-
ations can be substituted by other progression steps like the number of problem
changes or fitness function evaluations.

2.2.5. Performance measures chosen in the experiments of
the thesis

In the experiments carried out in this thesis we have mainly used the Offline
Error and the Offline Performance. When it has been necessary to use sta-
tistical tests, we have chosen non-parametric tests, mostly a combination of the
Kruskal-Wallis test and the Mann-Whitney-Wilcoxon test, using Holm’s
adjustment for multiple comparisons when required.

2.3. Algorithms

Many algorithms used for dynamic optimization come from methods that have
been already used in static optimization, with some modifications to manage dy-
namism. Some of the main strategies for doing this are listed bellow.

Do not do anything. This technique, as simple as it seems, may be useful
sometimes. Certain algorithms are able of maintaining a sustainable diver-
sity through all their search process, so that when a change is produced,
the algorithm adapts to it automatically. Almost all metaheuristic methods
exhibit this characteristic to some extent. However, the main drawback of
this approach is that if the change is produced when the algorithm is in an
advanced convergence stage, the adaptation to the new environment is usu-
ally quite slow. This late reaction may result in the algorithm not finding a
good enough solution before the next change occurs.

26

BACKGROUND

Detect changes. This technique assumes that the algorithm is not informed
of changes, and that changes are detectable, usually by means of reevalu-
ating a set of solutions and comparing their value with the previous one.
If any of these “sentinel” solutions change their value, the environment is
assumed to have varied, and the mechanism for managing changes is acti-
vated. This mechanism may consist in reevaluating the rest of solutions,
randomly restarting the algorithm, temporarily increasing the diversity, etc.
This change detection based on reevaluation has the disadvantage of con-
suming a non-dismissible amount of time/evaluations that could be used for
searching the optimum.

Increase diversity. The objective of this technique is clear: if the optimum of
an environment changes, the higher the diversity of the algorithm, the higher
its probability of finding the new optimum quickly. This can be achieved by
different means: using multiple populations of solutions spread through all
the search space; evaluating solutions at random, independently of the most
promising areas; actively searching for solutions as much different as possible
from the current ones; etc. The problem with this technique is widely known
in optimization: the higher the effort invested in diversifying, the lower the
effort that can be dedicated to intensifying, and therefore, the lower the
quality of the solutions obtained.

Reuse previous information. Sometimes it happens that the environment
changes following a pattern. For example, a problem may alternate between
two states, or the optimum may move in a trajectory. In these cases, the use
of memory and learning techniques may help the algorithm to predict certain
valuable aspects of the problem — when will the next change take place, in
which position will the new optimum be, etc. — so that the algorithm is able
of responding more efficiently. The main disadvantages are, firstly, the higher
requirements of the algorithm for storing and processing this information,
and secondly, that a bad prediction may seriously penalize the search.

Normally, these strategies are not implemented in an isolated way, but are
usually combined in order to obtain the maximum effectiveness. As it can be
seen, all of them have advantages and disadvantages, and their use depends on
the algorithm and the researcher using them. However, it is generally accepted
that in a DOP it is better to follow the optimum reasonably close through all the
changes, rather than finding it very precisely once and loosing it completely when
the environment varies. Thus, increasing the diversity of the algorithm is a key
aspect when designing or adapting a method to DOPs.

Considering all of this, it is understandable that most of the algorithms in
the literature of DOPs are population-based metaheuristics, since they naturally

27

BACKGROUND

contribute to increase diversity, and many of the previously mentioned strategies
are easy to implement on them.

2.3.1. Evolutionary Algorithms

Evolutionary Algorithms (EAs) [78] are an example of population-based meta-
heuristics, and are also the most used algorithmic family in Dynamic Optimization.
Since the first known reference to EAs applied to dynamic optimization by Fogel
et al. [60], and the paper by Goldberg and Smith [67] almost twenty years later,
EAs have been the most common approach used to solve this kind of problems.

These algorithms are inspired by the evolution mechanisms that appear in na-
ture, such as natural selection and genetic recombination and mutation processes.
Evolutionary Algorithms evolve a population of solutions (also called individuals)
applying some selection, crossover and mutation operators to create the population
of the next generation. The process is summarized in Algorithm 2.1.

Algorithm 2.1: Evolutionary Algorithm

1 P ← population ;
2 Pnew ← ∅ ;

3 initializePopulation(P);
4 evaluatePopulation(P);

5 while stopping condition is not met do
6 while size(Pnew) < size(P) do
7 I1, I2 ← selectIndividualsForMating(P);
8 I3, I4 ← crossover(I1, I2);

9 I
′
3, I

′
4 ← mutation(I3, I4);

10 Pnew ← Pnew ∪ {I
′
3, I

′
4}

11 end
12 evaluatePopulation(Pnew);
13 P ← Pnew;
14 Pnew ← ∅ ;

15 end

Successful approaches of EAs to DOPs include using hypermutation [33] as an
adaptive operator in GAs. This technique maintains the whole population after a
change in the environment, but increases population diversity by drastically raising
the mutation rate for some number of generations. And Abbass et al. [1] introduced
the Extended Compact Genetic Algorithm (ECGA) to solve problems in dynamic
environments. Their approach is based on random restarts of the population at

28

BACKGROUND

each change so that diversity in the population can be increased at the beginning
of each new environment.

Random Immigrants GA (RIGA) and variations [71, 151, 178] deserve an es-
pecial mention due to its good results. RIGA is a GA specifically focused at
maintaining diversity. In every generation, RIGA replaces part of the population
by randomly generated individuals. This introduces new genetic material in every
time step and avoids the convergence of the whole population to a narrow region
of the search space.

The use of memory schemes has also provided good results to GAs, either
alone as abstract mechanisms [134, 176] or combined with other techniques such
as hyper-mutation [86] and random immigrants [179].

Multi-population GAs have been an extremely successful approach, like in the
case of the Self Organizing Scouts (SOS) introduced in [26], or in [30], where Bui,
Branke and Abbass apply multiobjective GAs for solving single-objective dynamic
functions.

2.3.2. Particle Swarm Optimization

Apart from EAs, the Particle Swarm Optimization (PSO) algorithm [87] is also
quite popular for continuous DOPs. The PSO is a population-based metaheuristic
where the individuals (particles) live within a population (swarm). In this algo-
rithm, the optimization process is not performed using an evolution metaphor like
EAs; instead, particles move around the solution space, visiting solutions according
to some movement equations.

The movement of the particles is performed in an “inertial” way, such that the
position of a given particle varies according to a velocity vector (2.30), and this
vector itself varies according to an acceleration vector (2.31). This acceleration
has 3 main components: an attraction vector to the best historical position visited
by the particle (2.32), an attraction vector to the current best particle of the
swarm (2.33), and the previous velocity vector of the particle (inertia) (2.34):

x(t+ 1) = x(t) + v(t+ 1) (2.30)

v(t+ 1) = v(t) + a(t+ 1) (2.31)

a(t+ 1) = χ[η1c1(xpbest − x(t)) (2.32)

+ η2c2(xgbest − x(t))] (2.33)

− (1− χ)v(t) (2.34)

where x, v and a are position, velocity and acceleration vectors respectively, xpbest
is the best so far position discovered by each particle, and xgbest is the best so

29

BACKGROUND

far position discovered by the whole swarm. Parameters η1, η2 > 2 are spring
constants, and c1 and c2 are random numbers in the interval [0.0, 1.0]. Since
particle movement must progressively contract in order to converge, a constriction
factor χ, χ < 1 is used, as defined by Clerc and Kennedy in [32]. This factor
replaces other slowing approaches in the literature, such as inertial weight and
velocity clamping [47].

The PSO has specific DOP-oriented proposals [14,31,83,124]. Some of the PSO
variants use charged particles for maintaining diversity (CPSO) [12]. However, one
of the most successful approaches is mQSO [15], which has been used in multiple
subsequent works [13,92,180].

A swarm in the mQSO is formed by two types of particles:

Trajectory particles (also known as classical or neutral). These are the par-
ticles used by the canonical PSO algorithm, which positions are updated
following the usual movement equations 2.30, 2.31, 2.32, 2.33, and 2.34.

Quantum particles. These particles were newly introduced in the mQSO
algorithm, and aim at reaching a higher level of diversity by moving randomly
within a hypersphere of radius r centered on xgbest. This random movement
is performed according to a probability distribution over the hypersphere, in
this case, a uniform distribution:

x(t+ 1) = randhypersphere(xgbest, r) (2.35)

Beside this, the general idea of the mQSO is to use a set of multiple swarms
that simultaneously explore the search space. This multi-swarm approach has the
purpose of maintaining the diversity, in addition to the use of quantum particles.
This is a key point for DOP’s, since the optimum can change at any time, and
the algorithm must be able to react and find a new optimum. In order to pre-
vent several swarms from competing over the same area, an inter-swarm exclusion
mechanism is also used, randomizing the worst swarm whenever two of them are
too close.

The mQSO pseudocode is shown in Algorithm 2.2.

2.3.3. Other Algorithms

Finally, other algorithms have been used in the DOP literature, like Ant Colony
Optimisation (ACO) [58,59,72,74,110], Differential Evolution (DE) [107], Cultural
Algorithms (CA) [128,140], Estimation-of-Distribution Algorithms (EDA) [19,20,
58,64,177], Immune-based Algorithms (IBA) [75,121,144,155,175,185], Extremal

30

BACKGROUND

Algorithm 2.2: The mQSO algorithm

1 Randomly initialize the particles in the search space;
2 while stopping condition is not met do
3 foreach swarm s do
4 Test for exclusion;
5 if s needs to be excluded then
6 Relocate s randomly;
7 end
8 else
9 Move particles according to equations 2.30, 2.31, 2.32, 2.33, 2.34

and 2.35 ;

10 end
11 Evaluate each particle position;
12 Update xpbest and xgbest;

13 end

14 end

Optimisation (EO) [116], and even Neural Networks (NN) [37, 153] (these ones
being the only non-metaheuristic approaches for solving DOPs).

Table 2.2 has been reproduced from [34], containing cross-references between
the most used problems of the DOP literature and the algorithms used for solving
them. Acronyms in the columns of the table indicate Ant Colony Optimisation
(ACO), Cooperative Strategies (CS), Cultural Algorithms (CA), Estimation-of-
Distribution Algorithms (EDA), Evolution Strategies (ES), Evolutionary Algo-
rithms (EA), Evolutionary Programming (EP), Genetic Algorithms (GA), Immune-
based Algorithms (IBA), Memetic Algorithms (MA), Self Organising Scouts (SOS),
Other Evolutionary Algorithms (OEA), Neural Networks (NN), Swarm Intelligence-
based methods (PSO), and Other (O).

2.3.4. Algorithms chosen in the experiments of the thesis

The algorithms and techniques reviewed suggest that cooperation plays an
important role in this type of problems. Moreover, all the metaheuristics ana-
lyzed were population-based ones. As it was already mentioned in the Objectives
(Sect. 1.2), this is an especially relevant aspect to consider in this thesis. In this
context, we can distinguish between those methods in which there is an implicit
collaboration among their components, an explicit collaboration, or a mix of both.
It can be considered, for example, that there is an implicit collaboration between
the elements of a GA, since although each solution is independent of the others, the

31

BACKGROUND

way of obtaining it by means of the crossover and mutation operators implies that
some information is exchanged among the population, spreading over it. However,
in the case of Collaborative Swarms, we can talk about an explicit collaboration,
by their own definition, but also about an implicit one, due to the movement
mechanism of a swarm’s particles, interrelated through the best. Fig. 2.5 shows a
graphical representation of this classification.

Metaheuristics

Population-based

Implicit cooperation Explicit cooperation

PSOEA ACO Collaborative Swarms... ...

Figure 2.5 – A classification of several population-based metaheuristics depending on
the type of cooperation among their constituent components.

In the research carried out by this thesis we have focused in population-based
metaheuristic algorithms, where we have tried to cover the widest possible
spectrum of types of cooperation. Therefore, we have designed new algorithms
that use implicit, explicit, and mixed cooperation. Furthermore, we have
proposed methods from different algorithmic families, including Swarm Intelli-
gence, Agents, and Cooperative Strategies (CS), comparing them in some
cases with state-of-the-art Evolutionary Algorithms (EA), thus covering a wide
variety of methods.

32

BACKGROUND

P
r
o
b
le

m
M

e
t
h
o
d
s

A
C
O

C
S

C
A

E
D
A

E
S

E
A

E
P

G
A

IB
A

M
A

S
O
S

O
E
A

N
N

P
S
O

O
R

e
a
l
W

o
r
ld

A
p
p
li
c
a
t
io

n
s

A
e
ro

sp
a
c
e
D
e
si
g
n

[1
0
1
]

C
a
r
D
is
tr
ib

u
ti
o
n

S
y
st
e
m

[1
0
9
]

E
v
o
lu

ti
o
n
a
ry

R
o
b
o
ti
c
s

[1
5
3
]

[1
5
3
]

F
in

a
n
c
ia
l
O
p
ti
m
iz
a
ti
o
n

P
ro

b
le
m
s

[1
5
0
]

M
o
b
il
e
A
d

H
o
c
N
e
tw

o
rk

s
[1
7
9
]

M
o
d
e
li
n
g

o
f
S
h
ip

T
ra

je
c
to

ry
[1
4
5
]

P
a
th

P
la
n
n
in

g
[4
9
]

[1
0
9
]

P
o
ll
u
ti
o
n

C
o
n
tr
o
l

[1
0
9
]

P
o
se

P
ro

b
le
m

[1
3
9
]

R
o
b
e
r
P
ro

b
le
m

[1
5
6
]

R
o
b
u
st

D
e
si
g
n

[8
,
6
6
,
7
3
,
9
7
,
1
3
5
]

[5
6
,
9
8
,
1
3
5
]

[8
1
]

[7
3
]

[8
1
]

S
a
lt
in

g
R
o
u
te

O
p
ti
m
iz
a
ti
o
n

[7
3
]

[7
3
]

S
tr
u
c
tu

ra
l
O
p
ti
m
iz
a
ti
o
n

[1
1
7
]

V
a
ri
e
d
-L

in
e
-S

p
a
c
in

g
H
o
lo
g
ra

p
h
ic

G
ra

ti
n
g

[9
8
]

W
ir
e
le
ss

S
e
n
so

r
N
e
tw

o
rk

s
[1
2
9
]

S
y
n
t
h
e
t
ic

D
y
n
.

P
r
o
b
le

m
s

D
F
1

G
e
n
e
ra

to
r
(c

o
n
e
s)

[1
2
8
,1

4
0
]

[5
1
,
1
1
5
]

[5
4
,
5
5
]

D
y
n
.
A
c
k
le
y

F
u
n
c
ti
o
n

[1
4
1
,1

4
2
]

D
y
n
.
B
it

M
a
tc
h
in

g
[8
4
]

[8
4
,
1
1
1
,
1
4
7
]

D
y
n
.
D
e
c
e
p
ti
v
e
F
u
n
c
ti
o
n
s

[1
7
7
]

[1
8
4
,
1
8
5
]

[1
5
1
,1

6
3
,1

6
4
,

1
7
3
–
1
7
5
,
1
7
7
,

1
8
3
,
1
8
5
]

[1
7
5
,

1
8
5
]

D
y
n
.
K
n
a
p
sa

c
k

P
ro

b
le
m

[2
7
,
8
4
,
8
6
,
1
8
4
]

[8
4
,
1
1
1
,
1
4
4
,

1
6
4
,
1
7
8
,
1
8
3
]

[1
4
4
]

D
y
n
.
O
n
e
m
a
x

F
u
n
c
ti
o
n

[5
8
]

[5
8
,
1
7
7
]

[4
4
,
1
8
5
]

[1
6
3
,1

7
3
,1

7
4
,

1
7
7
,
1
7
8
,
1
8
3
,

1
8
5
]

[1
8
5
]

D
y
n
.
P
la
te

a
u

F
u
n
c
ti
o
n
s

[1
6
3
,1

7
5
,1

7
8
]
[1
7
5
]

D
y
n
.
P
ro

b
le
m

G
e
n
e
ra

to
r

[8
5
]

[1
1
5
,
1
5
8
,
1
8
4
]

[9
3
]

[1
3
0
,1

3
1
,1

5
2
]
[1
5
5
]

[9
3
]

D
y
n
.
R
a
st
ri
g
in

F
u
n
c
ti
o
n

[1
4
1
,1

4
2
]

[1
5
4
]

[1
2
1
]

[4
5
,
1
4
3
,
1
6
0
]

D
y
n
.
R
o
y
a
l
R
o
a
d

F
u
n
c
ti
o
n

[5
8
,
5
9
]

[5
8
,
1
7
7
]

[1
8
4
]

[1
5
1
,1

6
3
,1

6
4
,

1
7
3
,
1
7
7
,
1
8
3
]

D
y
n
.
S
c
h
e
d
u
li
n
g

[1
0
5
]

[7
5
]

[5
]

D
y
n
.
S
p
h
e
re

[3
,
4
,
2
1
,

1
4
1
,
1
4
2
]

[1
2
1
]

D
y
n
.
V
e
h
ic
le

R
o
u
ti
n
g

P
ro

b
le
m

(D
V
R
P
)

[7
4
,
1
1
0
]

[7
4
,
1
2
3
]

G
ri
e
w
a
n
k

F
u
n
c
ti
o
n

[1
6
9
]

[1
2
1
]

[1
4
3
,
1
6
0
]

M
o
v
in

g
P
a
ra

b
o
la

[1
,
1
1
1
]

[4
6
,
8
2
]

M
o
v
in

g
P
e
a
k
s
B
e
n
c
h
m
a
rk

(M
P
B
)

[9
9
,

1
0
0
,

1
2
5
,

1
2
6
]

[1
0
7
]

[6
,
2
8
,
5
2
,
8
4
,
9
4
,

9
9
,
1
0
0
,
1
9
3
]

[2
9
,
3
0
,
8
4
,
8
8
,

1
1
1
,
1
3
8
,
1
5
7
]

[1
5
5
]

[2
6
,

2
8
,
9
9
,

1
0
0
]

[6
]

[2
,1

2
–
1
6
,4

5
,8

3
,

9
4
,
9
6
,
9
9
,
1
0
0
,

1
0
7
,
1
2
0
,
1
2
4
]

[2
,
1
1
6
]

R
o
se

n
b
ro

c
k

F
u
n
c
ti
o
n

[1
2
1
]

[8
2
,
1
4
3
,
1
6
0
]

S
h
a
k
y

L
a
d
d
e
r
H
y
p
e
rp

la
n
e
-D

e
f.

F
u
n
c
s.

[1
3
0
,
1
3
1
]

T
im

e
-L

in
k
a
g
e
N
u
m
e
ri
c
a
l
P
ro

b
le
m
s

[1
9
,
2
0
]

[1
9
,
2
0
]

T
ra

p
F
u
n
c
ti
o
n

b
a
se

d
S
y
n
th

e
ti
c
P
ro

b
le
m
s

[1
,
9
0
]

X
O
R
-b

a
se

d
S
y
n
th

e
ti
c
D
y
n
a
m
ic

P
ro

b
le
m
s

[1
3
6
]

[1
7
3
,1

7
4
,1

7
6
]

O
th

e
r

[5
9
,
7
2
]

[6
4
]

[1
6
7
]

[2
2
,
1
4
9
,
1
7
0
,
1
7
2
]

[1
1
1
,
1
1
2
]

[1
4
9
]

[3
7
]

[3
1
]

[3
6
,
1
8
6
]

T
a
b

le
2
.2

–
D

y
n

am
ic

p
ro

b
le

m
s

an
d

m
et

h
o
d

s
cr

os
s-

re
fe

re
n

ce
s

to
th

e
p

ap
er

s
w

h
er

e
th

ey
a
re

u
se

d
(t

a
b

le
o
b

ta
in

ed
fr

o
m

[3
4
])

.

33

BACKGROUND

34

Chapter 3

New algorithmic proposals for
DOPs

In this chapter we present the new algorithms that we have proposed for deal-
ing with DOPs. In some cases, these proposals consist in improving state of
the art algorithms by adding new operators, heuristic rules, etc. In other cases,
these proposals are based in the adaptation of a previously existent algorithm for
static problems that was never used for DOPs, so that it can now work for them.
These proposals cover very diverse algorithms, like mQSO, Cooperative Strategies
or Agents, and they have been applied both to continuous and discrete DOPs,
although the first ones clearly predominate over the second. The variety of al-
gorithms and scenarios used has allowed to extract interesting conclusions about
the role of cooperation among the constituent elements of a method when facing
a DOP.

3.1. Control particle trajectories of a PSO

In this section we present an operator for controlling the trajectory of the
particles of a multi-swarm PSO for DOPs. The operator, named Control Particle
Trajectory (CPT), is able to detect particles within a swarm that are wasting
function evaluations in non-promising areas, and “reset” them.

3.1.1. Motivation

In a DOP it is important to keep a balance between the time dedicated to
explore promising areas of the search space, and the intensification effort in the
zones where the best solutions have been found.

As we saw in Sect. 2.3.2, particles in a swarm move in an inertial way, according

35

NEW ALGORITHMIC PROPOSALS FOR DOPS

to equations 2.30, 2.31, 2.32, 2.33, and 2.34. This particle movement mechanism
helps maintaining the diversity during the search. However, this diversity may also
contribute to waste evaluations in non-promising areas. This can be verified by
means of the number of consecutive failures. We consider that a particle produces
a failure when there is a transition from a solution x(t) to another solution x(t+
1) such that the fitness function of x(t + 1), f(x(t + 1)), is worse than f(x(t)).
One single failure may not affect the algorithm’s performance, but if a “chain”
of consecutive failures occurs, it would result in a waste of resources, e.g., time,
evaluations, etc (see Fig. 3.1).

Figure 3.1 – Control particle trajectories of a PSO. Due to the PSO’s movement mech-
anism, a particle may enter a “bad” zone and produce several consecutive failures, thus
wasting resources.

3.1.2. Proposal

In order to deal with this situation, we have proposed a Control Particle Tra-
jectory (CPT) operator, that can detect if a particle is in that situation and “reset”
it. In order to do so, the CPT operator keeps the count of consecutive failures
for each particle. If the count of consecutive failures exceeds a given threshold,
the particle is repositioned at the best of its swarm, with a randomized velocity
vector.

3.1.3. Validation

In order to verify the efficiency of the CPT operator it is first necessary to
understand what is the typical behaviour of a particle regarding the number of
consecutive failures, so that an appropriate threshold can be established.

36

NEW ALGORITHMIC PROPOSALS FOR DOPS

With this objective in mind, we have performed a first experiment using a
multi-swarm PSO [15] without any kind of modification, and we have count the
number of consecutive failures for each particle, grouping them in a histogram.
The multi-swarm PSO used is formed by 10 swarms and 10 particles per swarm,
and we have used the typical configuration values for its parameters suggested by
the authors in the original paper [15]. The results can be seen in Fig. 3.2.

Figure 3.2 – Control particle trajectories of a PSO. A histogram of the number of
consecutive failures of a swarm’s particles, tested on the Scenario 2 of the MPB.

It is clear that having one failure is more frequent than having two. This
frequency monotonically decreases as the number of failures becomes higher. The
data show that it is extremely rare for a given particle to account for more than
10 failures in a row, so we can safely assume that the threshold to be used by the
CPT operator should be lower than 10.

Thus, in order to determine the exact value of the threshold, we have performed
a second experiment, in which we have added the CPT operator to the multi-swarm
PSO previously used. We have tested multiple values for the maximum number of
consecutive failures allowed (from 1 to 10), and we have logged several offline error
measures for each of them. The results can be seen in Table 3.1, where we have
also included the offline error of the multi-swarm PSO without the CPT operator,
as a reference (corresponding to the row with max failures = ∞). A graphical
representation of this experiment, for some representative values of max failures,
is shown in Fig. 3.3.

37

NEW ALGORITHMIC PROPOSALS FOR DOPS

Max Failures Mean (Std. Dev.) Min Max
∞ 1.52 (0.83) 0.51 5.00
1 3.06 (1.44) 0.65 7.92
2 0.40 (0.25) 0.13 1.11
3 0.52 (0.39) 0.16 2.43
4 0.85 (0.47) 0.29 2.07
5 1.18 (0.54) 0.26 2.93
6 1.44 (0.67) 0.51 3.09
7 1.45 (0.69) 0.49 3.15
8 1.50 (0.76) 0.48 4.19
9 1.48 (0.71) 0.51 3.38

10 1.52 (0.83) 0.51 5.00

Table 3.1 – Control particle trajectories of a PSO. Offline error values of a multi-swarm
PSO with the CPT operator, for different max failures values.

Figure 3.3 – Control particle trajectories of a PSO. Offline Error evolution of a PSO
over time for different values of max failures, tested on the Scenario 2 of the MPB.

38

NEW ALGORITHMIC PROPOSALS FOR DOPS

Additionally, we have performed variations of this experiment, keeping the
problem conditions established in the Scenario 2 of the MPB, but using values
for the change frequency of {500, 1000, 2000, 3000, 4000 and 5000} cost function
evaluations. In Fig. 3.4 we have depicted a graphical representation of the average
offline error versus several values of max failures, using the change frequency values
said before.

Figure 3.4 – Control particle trajectories of a PSO. Avg. Offline Error vs. max failures
of a PSO, for different values of change frequency (∆e), tested on the Scenario 2 of the
MPB.

Figure. 3.4 clearly shows that when max failures is set to 2, the offline error
of the PSO+CPT (from now on, mCPT-PSO) is consistently lower, for all the
change frequency values tested.

Finally, in a last experiment, we have compared the mCPT-PSO (max fail-
ures = 2) with two versions of the PSO introduced by Branke and Blackwell
in [15]: mCPSO (multi-Charged Particle Swarm Optimization) and mQSO (multi-
Quantum Swarm Optimization). For a fair comparison, we have used the same
multi-swarm configurations employed by mCPSO and mQSO in the original work.
In [15] these multi-swarm configurations had the form M(N1 + N2), where M
represents the total number of swarms, N1 the number of neutral particles (also
known as trajectory particles) in each swarm, and N2 the number of charged parti-
cles (for mCPSO) or the number of quantum particles (for mQSO) of each swarm.
For the mCPT-PSO, there is no distinction between particles, so this configuration
will be interpreted as M swarms, each one with N1 +N2 particles. Table 4 shows

39

NEW ALGORITHMIC PROPOSALS FOR DOPS

Configuration mCPSO mQSO mCPT-PSO
5 (10+10) 3.74 (0.14) 3.71 (0.15) 2.89 (0.16)
10 (5+5) 2.05 (0.07) 1.75 (0.06) 0.40 (0.04)
14 (4+3) 2.29 (0.07) 1.93 (0.06) 0.61 (0.06)
20 (3+2) 2.89 (0.07) 2.35 (0.07) 0.83 (0.06)
25 (2+2) 3.27 (0.08) 2.69 (0.07) 1.35 (0.08)

Table 3.2 – Control particle trajectories of a PSO. Offline error values (average and
standard deviation) for the mCPSO, mQSO and mCPT-PSO algorithms.

the average offline error and the standard deviation for the three algorithms. The
results clearly show the benefits of our proposal: the average error is much lower
for every configuration tested.

3.1.4. Conclusions

The proposed operator, CPT, improves the results of a multi-swarm PSO in
dynamic environments, decreasing the wasted evaluations, and doing all this using
a relatively simple mechanism. The results show that the optimum number of max
failures allowed to particles should be 2, before being stop and relocated around the
best particle of its swarm. This value consistently produces the best performance
in different test scenarios. Also, the mCPT-PSO has obtained very good results
when compared with other versions of a multi-swarm PSO.

This work was published in reference [120]:

“Controlling Particle Trajectories in a Multi-swarm Approach for Dynamic

Optimization Problems”, P. Novoa, D. A. Pelta, C. Cruz, and I. G. del Amo, in

Methods and Models in Artificial and Natural Computation. A Homage to Professor

Mira’s Scientific Legacy (J. Mira, J. Ferrández, J. Álvarez, F. de la Paz, and F. Toledo,

eds.), vol. 5601 of Lecture Notes in Computer Science, pp. 285–294, Springer Berlin /

Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02264-7_30.

3.2. Using heuristic rules in a mQSO

In this section we present 3 new variants of the classical algorithm mQSO that
use heuristic rules to improve its performance. The use of rules has produced very

40

http://dx.doi.org/10.1007/978-3-642-02264-7_30

NEW ALGORITHMIC PROPOSALS FOR DOPS

good results in other algorithms (e.g., CS, in Sect. 3.4), and allows to easily incor-
porate other successful approaches or variations of them, like the CPT operator
of Sect. 3.1.

3.2.1. Motivation

The idea of adding rules to the mQSO was derived from a previous work
in which we analyzed the properties of the two types of particles used by the
mQSO [41].

The objective of such work was to investigate what proportion of quantum
and trajectory particles provided more stability and performance to a mQSO in
different scenarios.

In order to find out this optimal ratio, we performed several experiments on
the Scenario 2 of the MPB. In these experiments we measured the average offline
error of the mQSO for different configurations of the Scenario 2, that included a
growing number of peaks from 5 up to 100, 2 different change frequencies (5000
and 200 function evaluations), and all possible combinations of quantum and tra-
jectory particles, with a maximum of 10 particles per swarm. These settings are
summarized in Table 3.3.

Parameter Value
Number of peaks ∈ [5, 100]
Change frequency 5000 (low freq.)

200 (high freq.)
Number of swarms 5
Number of t-particles ∈ [0, 10]
Number of q-particles 10− t
Number of changes 100
Number of runs (repetitions) 30

Table 3.3 – Using heuristic rules in a mQSO – Analysis of the properties of the mQSO
particles. Settings for the different experiments of the mQSO on Scenario 2 of the MPB.

The results obtained in the experiments (Tables 3.4 and 3.5) clearly show that
the particle combinations that obtain better results are the ones that use more
trajectory particles than quantum ones, approximately in the range between 6t4q
and 9t1q (here, xtyq means x trajectory particles and y quantum particles).

To be able to explain these results we performed one additional experiment, in
which we measured how many times the best particle of a swarm was a quantum
one, and how many times was a trajectory one. In order to give more information,

41

NEW ALGORITHMIC PROPOSALS FOR DOPS

Peaks 0t10q 1t9q 2t8q 3t7q 4t6q 5t5q 6t4q 7t3q 8t2q 9t1q 10t0q

5 4.39 3.73 2.91 2.59 2.27 2.10* 2.18 2.20 2.11 2.49 2.52

10 7.32 6.38 5.81 5.45 4.98 4.95 4.86 4.68* 4.93 4.95 5.11

15 8.1 7.35 6.55 6.07 6.23 5.90 6.17 5.90* 5.96 6.31 6.48

20 8.83 7.9 7.02 7.00 6.51 6.43 6.09* 6.34 6.90 6.37 6.89

25 8.45 8.08 7.55 7.21 6.68 6.36* 6.46 6.36 6.48 7.14 7.06

30 8.90 8.53 7.98 7.28 7.54 6.99 6.66* 6.72 6.71 7.28 7.16

35 9.19 8.18 8.29 7.86 7.28 7.05 6.77* 7.01 7.00 7.08 7.53

40 8.53 8.29 7.63 7.70 7.54 7.24 7.47 7.24 7.45 7.20* 7.52

45 8.59 8.52 7.51 7.18 7.24 6.87* 7.29 7.27 7.53 7.61 7.79

50 8.40 7.76 7.77 6.87 7.07 7.12 6.89 6.68* 7.19 7.08 8.01

55 8.79 8.53 7.77 7.20 7.60 6.72* 7.30 7.18 7.14 7.00 7.56

60 8.70 8.52 8.05 7.23 7.67 7.38 7.08* 7.13 7.34 7.34 7.77

65 8.58 7.77 7.70 7.51 7.46 6.67* 7.24 7.11 7.49 7.58 8.16

70 8.51 8.17 7.98 7.23 6.99* 7.30 7.13 7.07 7.28 7.2 8.08

75 8.55 7.89 7.76 7.26 6.90* 7.01 7.38 7.18 7.13 7.25 7.7

80 8.26 8.08 7.15 6.78 6.94 6.77 6.69* 6.96 6.91 7.1 7.20

85 8.78 8.14 7.23 7.51 7.24 7.37 7.09 6.91* 6.92 7.08 7.57

90 8.55 8.05 7.08 7.04 6.88 6.77 7.20 6.44* 6.81 7.09 7.58

95 8.43 7.96 7.72 7.27 6.86 6.87 6.74* 6.80 6.98 7.05 7.87

100 8.44 7.57 6.89 6.96 6.67 6.42* 6.68 6.58 6.45 6.99 7.63

Table 3.4 – Using heuristic rules in a mQSO – Analysis of the properties of the mQSO
particles. Mean values of the offline error for all the t-q configurations and number of
peaks (low change-frequency). Values marked with (*) indicate the best (lowest)
mean error. Values in bold-face indicate that no statistically significant difference exists
with respect to the best value in the row.

42

NEW ALGORITHMIC PROPOSALS FOR DOPS

Peaks 0t10q 1t9q 2t8q 3t7q 4t6q 5t5q 6t4q 7t3q 8t2q 9t1q 10t0q

5 19.80 18.95 18.72 18.76 19.88 19.67 17.84* 18.91 25.49 29.47 52.62

10 19.65 19.48 18.38 17.98 18.35 17.49 16.57* 17.52 17.89 17.78 29.23

15 19.67 18.22 17.58 17.06 16.36 16.04 15.77 16.54 15.36* 15.52 18.20

20 19.46 19.17 18.16 17.61 17.57 16.74 16.67 16.35 16.29 15.82* 16.85

25 18.29 17.79 17.01 16.97 16.05 16.05 15.92 15.48 15.33 15.15* 17.08

30 19.97 18.98 18.04 17.73 16.67 16.04 15.98 15.97 15.24* 15.35 17.57

35 19.35 18.65 18.15 17.82 17.35 16.77 15.99 15.17* 15.41 16.03 15.68

40 17.89 18.07 16.53 16.77 16.76 15.65 15.11 14.48 15.01 15.17 14.46*

45 17.97 17.47 16.57 16.85 15.92 15.80 14.85 15.11 15.36 15.56 14.77*

50 18.64 17.97 17.39 16.51 16.15 15.84 15.48 15.22 14.91 14.71* 14.99

55 18.20 17.56 17.15 16.43 16.35 15.87 16.17 15.31 14.56* 14.98 14.80

60 17.40 16.37 16.05 16.15 15.86 14.86 15.32 15.04 14.42* 14.54 14.74

65 18.35 17.33 16.17 16.53 16.63 15.95 15.69 15.25 14.98 14.86* 14.92

70 17.33 17.50 16.42 16.21 16.52 15.44 16.25 15.72 15.34 15.16 15.10*

75 17.76 17.89 16.49 16.55 16.62 15.61 15.41 15.68 15.55 15.08* 15.996

80 16.96 15.99 15.94 15.59 15.82 15.14 15.08 14.51* 16.06 15.04 15.15

85 16.78 16.69 16.39 15.30 15.01 15.33 15.15 14.37* 14.70 14.75 14.86

90 17.34 16.84 16.13 16.17 15.27 15.71 15.04 14.89 14.99 14.88* 15.32

95 17.56 16.84 16.57 15.80 15.57 15.25 15.29 15.26 14.48* 14.82 14.82

100 16.79 15.70 15.50 15.77 14.84 14.24 15.46 14.64 14.62 13.75* 14.40

Table 3.5 – Using heuristic rules in a mQSO – Analysis of the properties of the mQSO
particles. Mean values of the offline error for all the t-q configurations and number of
peaks (high change-frequency). Values marked with (*) indicate the best (lowest)
mean error. Values in bold-face indicate that no statistically significant difference exists
with respect to the best value in the row.

43

NEW ALGORITHMIC PROPOSALS FOR DOPS

we divided these data for each iteration of the algorithm between changes, so that
we could know not only which particle contributed more to the best of the swarm,
but also in which moment of the search (Fig. 3.5). For example, in the Scenario
2, with a change frequency of 5000 evaluations, the mQSO executes 100 iterations
between changes; thus, iterations 1-10 are the ones produced right after a change
in the environment, and iterations 90-100 are produced at the end, just before the
next change.

iteration (q−particles)

F
re

q
u

e
n

c
y

0 20 40 60 80 100

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0

iteration (t−particles)

0 20 40 60 80 100

Figure 3.5 – Using heuristic rules in a mQSO – Analysis of the properties of the mQSO
particles. Histogram representing the number of times that quantum particles and tra-
jectory particles contributed to their swarm’s best in a mQSO, distributed over the
100 iterations that the algorithm was executed between changes in the environment.
Left panel shows quantum particles distribution; right panel shows trajectory particles
distribution.

The results obtained (Fig. 3.5) clearly show that quantum particles are most
effective right after a change in the environment, because they increase the diversity
of the algorithm. However, as time goes by, their contribution to the best of the
swarm fades away, while trajectory particles lead the optimization process. This

44

NEW ALGORITHMIC PROPOSALS FOR DOPS

suggests that quantum particles are actually wasting function evaluations most of
the time except for the first moments after a change in the environment (although
their contribution cannot be neither dismissed, since these particles seem to give
some stability to the search).

Given the results, in that work we proposed a more efficient, fixed-ratio for the
particle types, 7t3q, improving the one suggested by Branke and Blackwell (5t5q)
in their original work on the mQSO [15].

However, we also believed that a better strategy would be to vary the pro-
portion of quantum/trajectory particles in a dynamic way over the execution of
the algorithm. We knew by previous works [69] that the use of rules could effec-
tively improve the performance of algorithms for DOPs. We therefore decided to
adopt this approach and incorporate heuristic rules to govern the behaviour of the
mQSO. Although the initial idea was to adapt the ratio of quantum/trajectory
particles, we soon realized that the use of rules had a much higher potential, and
we designed new rules for new behaviors.

3.2.2. Proposal

The addition of rules into the original mQSO algorithm is rather simple, and
the modifications are shown in bold-face in Algorithm 3.1, lines 5 and 15. Line 5
simply applies the rules to each swarm before moving or evaluating it, and line 15
gathers information about the mQSO performance for the last iteration.

3.2.2.1. Change Rule

The first rule created, named Change Rule, adjusts the proportions of each
particle type according to an approximation of their expected performance, as
observed in the experiments in [41]:

Change rule

IF a change in the environment has occurred recently

THEN temporarily increase the number of quantum particles of
a swarm and decrease the number of trajectory particles

It was observed that trajectory particles are more likely to find better solutions
than quantum particles through all the execution. Additionally, the experiments
showed that right after a change, trajectory particles tend to contribute to the best

45

NEW ALGORITHMIC PROPOSALS FOR DOPS

Algorithm 3.1: The mQSO algorithm with rules

1 Randomly initialize the particles in the search space;
2 while stopping condition is not met do
3 Detect changes in the environment;
4 foreach swarm s do
5 Apply rules to s;
6 Test for exclusion;
7 if s needs to be excluded then
8 Relocate s randomly;
9 end

10 else
11 Move particles;
12 end
13 Evaluate each particle position;
14 Update xpbest and xgbest;
15 Record s’s performance data;

16 end

17 end

Figure 3.6 – Using heuristic rules in a mQSO. Contribution of quantum and trajectory
particles to the gbest of a swarm in a mQSO. This figure illustrates the concepts used
in the Change Rule (θ, θd, θc, α and β), giving a graphical explanation for the chosen
values.

46

NEW ALGORITHMIC PROPOSALS FOR DOPS

of a swarm 60% of the times (we denote this proportion as α), while the quantum
particles contribute the remaining 40% (1− α). These differences are maintained
for a short period of time (θd, diversity period), and then slowly increase until they
stabilize to 80% for trajectory particles (β), and 20% for quantums (1−β), for the
rest of the execution until the next change (θc, convergence period). This behavior
is reasonable, since quantum particles move randomly and are better suited for
increasing diversity, which is more necessary, precisely, right after a change in the
environment. See Fig. 3.6 for a graphical explanation of these concepts.

Finally, we experimentally estimated that, in order for the quantum particles
to result beneficial after a change, a minimum of 5 iterations were needed (i.e., θd’s
minimum value should be 5, which implies that θ should be at least 34 iterations).
If θd is determined to be less than 5 iterations, the rule is disabled, leaving the
algorithm as a standard mQSO. A graphical explanation of the Change Rule is
shown in Fig. 3.7.

Parameter Value
θd 15% of total duration of θ
θd min. duration 5 iterations
θc 85% of total duration of θ
α 0.6
β 0.8

Table 3.6 – Using heuristic rules in a mQSO. Parameter settings for Change Rule

3.2.2.2. Rand Rule

The second rule, named Rand Rule, was originally designed for preventing
poorly performing swarms from consuming function evaluations that lead them
to no improvement, or that could be better used by other swarms. This rule is
inspired in the mechanisms behind the CPT operator (Sect. 3.1) and some of the
rules used by CS (Sect. 3.4). The rule can be summarized as follows:

Rand rule (I)

IF the performance of a swarm is bad

THEN relocate the swarm randomly or pause it if there is not
enough time

47

NEW ALGORITHMIC PROPOSALS FOR DOPS

Figure 3.7 – Using heuristic rules in a mQSO. Change Rule explanation: the rule
attempts to adjust the ratio of quantum vs. trajectory particles, in order to minimize
wasted function evaluations.

The problem here is how to determine what is a bad performance for a swarm.
A way of doing this is to compare its fitness with the rest of the swarms: if it
is among the worst, then it has a bad performance. However, a swarm may be
performing badly for many reasons, not all of them being necessarily punishable
(fluctuations in the fitness due to the random nature of the mQSO algorithm, the
swarm is still in a search process and has not yet converged, etc). Ideally, only
swarms which are in bad zones of the search space should be relocated. In order to
prevent a swarm in a possible good zone from being relocated due to temporary
low fitness situations, additional conditions must be met.

First, the low fitness situation should be maintained for a certain number of
consecutive iterations. If a swarm is among the worst ones only once, it may be
bad luck, but if it is repeatedly among the worst ones, then there is a chance that
the swarm is in a bad zone.

Second, it is necessary to check if a swarm has converged. A swarm in a search-
around phase may have a low fitness, but it still has room for improvement. On the
other hand, an already converged swarm with low fitness is more likely to be stuck
in a bad zone. The way in which convergence is detected for each swarm in this
rule is based on the swarm’s improvement ratio. The improvement of a swarm is
defined as the difference between the current fitness and the fitness of the previous
iteration. When a swarm is searching and has not converged, it usually makes
great improvements in the fitness from one iteration to another. Obviously, there
may be iterations in which the improvement is low, or even nonexistent, due to

48

NEW ALGORITHMIC PROPOSALS FOR DOPS

the random nature of the search. However, this low improvement situation is
unlikely, and usually does not last for too long. On the other hand, if a swarm
has converged close to a local optimum, it will make very small improvements, if
any, from one iteration to the next one. An example of this behavior is shown
in Figure 3.8. Therefore, if the improvement ratio of a swarm descends below a
certain percentage of its maximum improvement since the last change, it is a good
indicative that it has converged.

Figure 3.8 – Using heuristic rules in a mQSO. Typical evolution of the fitness and
improvement of a swarm in a mQSO. Improvement is defined as the difference between
two consecutive fitness (I = f(t)−f(t−1)). Improvement is bigger at the beginning of the
optimization process, and become smaller as the swarm converges. If the improvement
of a swarm falls bellow 15% of its historical maximum, we consider the swarm to have
converged.

If we combine all these conditions (being among the worst swarms, for a certain
number of consecutive iterations, with a low improvement rate that indicates that
the swarm has converged), it is very likely that the swarm is indeed located in a
bad zone. In this case, there is no point in wasting more function evaluations in
that zone, and the swarm should be better relocated. An special case is when the
algorithm is able to predict when changes in the environment will happen, and
the next change is very close. In this case, relocating the swarm may be useless,
since there may not be enough time for the swarm to converge. The swarm is then
temporarily paused and the rest of the swarms have more function evaluations left
available to improve their results. Therefore, the rule can be re-stated as:

49

NEW ALGORITHMIC PROPOSALS FOR DOPS

Rand rule (II)

IF a swarm’s fitness is among the worst AND
this situation lasts for several consecutive iterations AND
the swarm has converged

THEN relocate the swarm randomly or pause it if there is not
enough time left

The parameter settings for this rule are summarized in Table 3.7, and a graph-
ical explanation of the rule is shown in Fig. 3.9.

As a final comment, the Rand Rule requires that a swarm is considered to be
among the worst for at least 5 consecutive iterations. This in practice means, as
it also happened with the Change Rule, that it will be disabled for low change
period scenarios: if the environment changes too fast, the swarms will not have
enough time to converge and the rule will not be applied, leaving the mQSO +
Rand Rule as a standard mQSO for these cases.

Parameter Value
Min. improvement ratio 15% of historical maximum
Max. low improvement count 5
Percentage for bad performance 20%
Min. available time 20% of total duration of θ

Table 3.7 – Using heuristic rules in a mQSO. Parameter settings for Rand Rule

3.2.2.3. Both Rule

Finally, a third rule was used, which combines the previous ones (Change Rule
and Rand Rule). This combination is very simple: just check if any of the rules
can be applied, and if so, do it.

This rule uses the same settings as the Change Rule and Rand Rule combined,
which can be seen in their corresponding parameter settings tables (Tables 3.6 and
3.7).

3.2.3. Validation

In order to validate the heuristic rules proposed, we have studied their perfor-
mance in two different problems: the MPB and the dynamic version of the Ackley
function.

50

NEW ALGORITHMIC PROPOSALS FOR DOPS

Figure 3.9 – Using heuristic rules in a mQSO. Rand Rule explanation: in this example,
swarms S2, S3 and S4 have not yet converged. Swarms S1 and S5 have converged, and
of those, swarm S5 is in a bad zone (low fitness). It is therefore a candidate for random
relocation or pausing.

For each of these problems we have used different scenarios that include varia-
tions in the severity (from 2% up to 20%) and the frequency of the change (from
200 evaluations up to 5000), with 5 dimensions. For the case of the MPB, the
rest of the parameters are taken from the standard Scenario 2. The new proposals
have been compared with the mQSO base algorithm, that has also been executed
in the same test scenarios.

For every experiment conducted, the conditions were always the same. The
performance measure used was the offline error. Every algorithm was executed for
100 consecutive changes in the environment (we will refer to this as a run). In
order to obtain statistically meaningful results, the algorithms were executed for
50 independent runs, each of them with a different random seed. The comparison
of the algorithms was performed using the mean and standard deviation values for
the offline error through all these 50 runs.

All mQSO variants were configured with 5 swarms (m = 5), each of them
containing 10 particles: 8 trajectory and 2 quantum (note that for the cases of
Change Rule and Both Rule, this particle type ratio is varied right after a change
in the environment occurs).

The results for the change frequency variations of the MPB are shown in Ta-
ble 3.8 and Fig. 3.10; the severity variations of the MPB are shown in Table 3.9
and Fig. 3.11; the change frequency variations of the Ackley function are shown in
Table 3.10 and Fig. 3.12; and finally, the severity variations of the Ackley function
are shown in Table 3.11 and Fig. 3.13.

51

NEW ALGORITHMIC PROPOSALS FOR DOPS

Change mQSO mQSO mQSO mQSO
Freq. Change-Rule Rand-Rule Both

200 16.58 (2.09) 16.58 (2.09) 16.58 (2.09) 16.58 (2.09)
500 12.08 (1.63) 12.03 (1.74) 10.72 (1.50) 10.72 (1.50)

1000 9.62 (1.07) 9.98 (1.62) 6.35 (0.74) 6.37 (0.75)
1500 8.88 (1.47) 7.69 (1.05) 5.24 (0.52) 6.52 (0.65)
2000 8.22 (1.21) 7.50 (0.73) 4.60 (0.50) 7.07 (0.86)
2500 8.12 (1.11) 6.63 (0.71) 4.17 (0.43) 6.05 (0.64)
3000 7.63 (1.16) 6.22 (0.66) 3.93 (0.40) 5.39 (0.56)
3500 6.93 (1.02) 5.82 (0.62) 3.73 (0.41) 4.95 (0.48)
4000 7.23 (1.28) 5.52 (0.70) 3.55 (0.41) 4.64 (0.49)
4500 7.06 (1.04) 5.32 (0.59) 3.42 (0.39) 4.48 (0.52)
5000 6.87 (0.97) 5.24 (0.58) 3.25 (0.34) 4.28 (0.45)

Table 3.8 – Using heuristic rules in a mQSO. Results of the change frequency vari-
ations for Scenario 2 of the MPB (off. error mean and std. deviation).

1000 2000 3000 4000 5000

4
6

8
1
0

1
2

1
4

1
6

Change frequency (no. of evaluations between changes)

A
v
g
.
o
ff
li
n
e
 e

rr
o
r

mqso

mqso−rule−change

mqso−rule−rand

mqso−rule−both

Figure 3.10 – Using heuristic rules in a mQSO. Evolution of the offline-error vs.
change frequency for all the mQSO variants for the Scenario 2 of the MPB.

52

NEW ALGORITHMIC PROPOSALS FOR DOPS

Severity mQSO mQSO mQSO mQSO
Change-Rule Rand-Rule Both

2% 6.87 (0.97) 5.24 (0.58) 3.25 (0.34) 4.28 (0.45)
4% 6.91 (1.11) 5.96 (0.72) 3.74 (0.39) 4.92 (0.51)
6% 6.86 (0.82) 6.32 (0.61) 4.07 (0.39) 5.30 (0.54)
8% 6.61 (0.91) 6.70 (0.70) 4.34 (0.38) 5.67 (0.59)

10% 6.55 (0.78) 6.85 (0.71) 4.59 (0.43) 5.97 (0.61)
12% 6.46 (0.64) 7.06 (0.74) 4.83 (0.43) 6.16 (0.65)
14% 6.63 (0.75) 7.31 (0.72) 5.04 (0.44) 6.38 (0.55)
16% 6.73 (0.77) 7.46 (0.73) 5.27 (0.46) 6.46 (0.55)
18% 6.83 (0.70) 7.55 (0.63) 5.53 (0.46) 6.73 (0.60)
20% 6.90 (0.65) 7.69 (0.73) 5.76 (0.50) 6.89 (0.59)

Table 3.9 – Using heuristic rules in a mQSO. Results of the severity variations for
Scenario 2 of the MPB (off. error mean and std. deviation).

5 10 15 20

4
5

6
7

Severity (%)

A
v
g
.
o
ff
li
n
e
 e

rr
o
r

mqso

mqso−rule−change

mqso−rule−rand

mqso−rule−both

Figure 3.11 – Using heuristic rules in a mQSO. Evolution of the offline-error vs. sever-
ity of change for all the mQSO variants for the Scenario 2 of the MPB.

53

NEW ALGORITHMIC PROPOSALS FOR DOPS

Change mQSO mQSO mQSO mQSO
Freq. Change-Rule Rand-Rule Both

200 5.45 (0.44) 5.45 (0.44) 5.45 (0.48) 5.45 (0.48)
500 4.28 (0.27) 4.28 (0.28) 3.86 (0.12) 3.89 (0.13)

1000 3.60 (0.23) 3.53 (0.19) 3.01 (0.14) 3.04 (0.17)
1500 3.27 (0.18) 3.76 (1.02) 2.63 (0.13) 3.11 (0.23)
2000 2.99 (0.21) 3.91 (1.17) 2.39 (0.14) 3.00 (0.21)
2500 2.77 (0.15) 3.60 (1.11) 2.20 (0.14) 2.64 (0.19)
3000 2.67 (0.21) 3.39 (1.20) 2.06 (0.11) 2.39 (0.15)
3500 2.53 (0.16) 3.18 (1.16) 1.94 (0.11) 2.19 (0.11)
4000 2.42 (0.15) 2.99 (0.91) 1.82 (0.11) 2.07 (0.11)
4500 2.32 (0.18) 2.79 (1.00) 1.71 (0.09) 1.90 (0.08)
5000 2.24 (0.18) 2.68 (1.06) 1.67 (0.11) 1.78 (0.08)

Table 3.10 – Using heuristic rules in a mQSO. Results of the change frequency
variations for the Ackley function (off. error mean and std. deviation).

1000 2000 3000 4000 5000

2
3

4
5

Change frequency (no. of evaluations between changes)

A
v
g
.
o
ff
li
n
e
 e

rr
o
r

mqso

mqso−rule−change

mqso−rule−rand

mqso−rule−both

Figure 3.12 – Using heuristic rules in a mQSO. Evolution of the offline-error vs.
change frequency for all the mQSO variants, for the Ackley function.

54

NEW ALGORITHMIC PROPOSALS FOR DOPS

Severity mQSO mQSO mQSO mQSO
Change-Rule Rand-Rule Both

2% 2.24 (0.18) 2.68 (1.06) 1.67 (0.11) 1.78 (0.08)
4% 2.78 (0.17) 2.89 (0.48) 2.05 (0.10) 2.16 (0.07)
6% 2.94 (0.13) 3.16 (0.44) 2.14 (0.11) 2.36 (0.07)
8% 3.01 (0.16) 3.48 (0.58) 2.24 (0.08) 2.49 (0.08)

10% 3.07 (0.16) 3.54 (0.40) 2.30 (0.09) 2.60 (0.09)
12% 3.15 (0.17) 3.69 (0.42) 2.41 (0.09) 2.71 (0.06)
14% 3.23 (0.14) 3.89 (0.57) 2.49 (0.08) 2.81 (0.06)
16% 3.28 (0.12) 3.94 (0.35) 2.58 (0.08) 2.88 (0.11)
18% 3.40 (0.14) 4.02 (0.31) 2.65 (0.08) 2.98 (0.06)
20% 3.45 (0.14) 4.15 (0.41) 2.76 (0.07) 3.04 (0.07)

Table 3.11 – Using heuristic rules in a mQSO. Results of the severity variations for
the Ackley function (off. error mean and std. deviation).

5 10 15 20

2
.0

2
.5

3
.0

3
.5

4
.0

Severity (%)

A
v
g
.
o
ff
li
n
e
 e

rr
o
r

mqso

mqso−rule−change

mqso−rule−rand

mqso−rule−both

Figure 3.13 – Using heuristic rules in a mQSO. Evolution of the offline-error vs. sever-
ity of change for all the mQSO variants for the Ackley function.

55

NEW ALGORITHMIC PROPOSALS FOR DOPS

3.2.4. Conclusions

The results allow to extract several interesting conclusions. In the first place,
the use of the Rand rule drastically improves the performance of the mQSO, and it
is, by far, the rule that obtains the best results in all the tested scenarios. Secondly,
the Change rule was not as useful as it was expected. Although it improved the base
mQSO in the scenario for which it was conceived (the Scenario 2 of the MPB),
in general it obtained worse results than the rest, even worse than the original
mQSO, in many experiments. In the third place, the Both rule performance was
halfway between the first two rules, which suggests that these rules do not combine
well, and their behaviours and/or mechanisms are not additive.

The results outstand the importance of testing an algorithm in multiple sce-
narios: what a priori seemed a good proposal — the Change rule —, ended up
being a too specific adjustment for the Scenario 2 of the MPB. On the other hand,
the good results of the Rand rule consolidate the mechanism behind it when fac-
ing DOPs as a very effective one: (1) actively monitoring the performance of the
different elements of an algorithm; (2) evaluating them according to the average
performance of the rest; and (3) correcting, or even stopping, those elements that
are doing it worse.

The analysis of the particle properties was published in [41]:

“An Analysis of Particle Properties on a Multi-swarm PSO for Dynamic

Optimization Problems”, I. G. del Amo, D. A. Pelta, J. R. González, and P. Novoa,

in Current Topics in Artificial Intelligence (P. Meseguer, L. Mandow, and R. Gasca,

eds.), vol. 5988 of Lecture Notes in Computer Science, pp. 32–41, Springer Berlin /

Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14264-2_4.

and the research on the use of heuristic rules was published in [39]:

“Using heuristic rules to enhance a multiswarm PSO for dynamic envi-

ronments”, I. G. del Amo, D. A. Pelta, and J. R. González, in Proceedings of

the 2010 IEEE Congress on Evolutionary Computation (CEC-2010), pp. 1–8, 2010.

http://dx.doi.org/10.1109/CEC.2010.5586051.

56

http://dx.doi.org/10.1007/978-3-642-14264-2_4
http://dx.doi.org/10.1109/CEC.2010.5586051

NEW ALGORITHMIC PROPOSALS FOR DOPS

3.3. Agents for DOPs

In this section we present a DOP variant of a previous algorithm based on the
decentralized cooperation of a group of agents. We will briefly describe a first
implementation of this Agents algorithm for continuous DOPs published in [69]
(we will talk about this work in Sect. 3.4), and we will go into more details about
a second implementation for discrete DOPs, published in [68].

3.3.1. Motivation

In previous works [125, 126] we developed an algorithm named Agents that
consists in a set of agents that traverse a fixed-size matrix of solutions, trying to
improve each solution they arrive to in each step. Using this scheme, an agent can
improve a solution that was previously modified by another agent, thus producing
an implicit form of cooperation. This algorithm was originally applied to static
optimization problems, but everything seemed to indicate that adapting it to DOPs
was a feasible task.

Therefore, we proposed a first version of this method for continuous DOPs
in [69], a work that we will discuss in Sect. 3.4. In that section, we will focus on
the CS algorithm, and here we will give the details of the Agents implementation
used for the said work.

Additionally, up until now all the works that we have presented in this chapter
were focused in continuous DOPs. However, there are quite a high number of
discrete — or combinatorial — DOPs where the techniques and algorithms that
we have developed can be applied. The most used methods in the discrete DOPs
area are, by far, evolutionary algorithms. Thus, we believe that the introduction
of new methods can be quite beneficial. Among all the algorithms that we have
developed, the one that we think that can be better adapted to this kind of discrete
problems is Agents. Therefore, we hereby present an initial adaptation of Agents to
combinatorial DOPs. Additionally, we wanted to investigate the possibility of the
algorithm’s parameters being self-adaptable, in order to avoid their configuration.
For this purpose, a learning mechanism is necessary, and we therefore introduce
a novel learning scheme for these problems. This scheme has been implemented
separately in the Agents algorithm and in a basic Evolutionary Algorithm (EA),
in order to independently assess the benefits of the learning scheme. The work of
the Agents algorithm for combinatorial DOPs was published in [68].

3.3.2. Proposal

The Agents algorithm is a decentralized cooperative strategy that was originally
described in [125, 126]. It consists in a set of agents that traverse a fixed-size

57

NEW ALGORITHMIC PROPOSALS FOR DOPS

matrix, or grid, of solutions, trying to improve each solution they arrive to in each
step. The way in which these solutions are improved depend on the neighbors of
the cell in the grid, and the structure of the grid determines the topology of the
neighborhoods. In the implementation, a Moore neighborhood topology is used,
where a solution in the cell (i, j) is neighbor of (i−1, j−1), (i−1, j), (i−1, j+1),
(i, j− 1), (i, j+ 1), (i+ 1, j− 1), (i+ 1, j) and (i+ 1, j+ 1). Please note that with
this definition, close solutions in terms of grid neighborhoods do not necessarily
imply closeness in terms of solution-space distances. A graphical explanation of
these concepts is shown in Fig. 3.14.

Figure 3.14 – Agents for DOPs. A representation of the working mechanism of the
Agents algorithm: the agents move in a grid where each cell represents a solution of the
problem; as agents traverse the grid, they alter and improve the solutions.

Agents can be seen as a population-based decentralized cooperative algorithm
because the improvements of an agent are immediately available to the others.
When an agent is moving to the best neighbor solution of the grid, it will be
attracted by good grid-cell solutions that were stored by other agents. Therefore,
as the agents move through the grid, they will tend to act on those cells that other
agents have already improved.

Algorithm 3.2 presents the pseudocode of the main procedure of Agents. Ba-
sically, the algorithm is run until the stop condition is met, which will normally
be when the resources are exhausted (such as the time or the number of eval-
uations/changes of the objective function). For each iteration, the function de-
tectChanges() on line 4 is called. The change detection is done by recomputing
the fitness value of the best solution and comparing it with the previous one to

58

NEW ALGORITHMIC PROPOSALS FOR DOPS

Algorithm 3.2: Agents

1 initializeParameters(grid);
2 initializeParameters(agents);

3 while stopping condition is not met do
4 detectChanges() ;
5 foreach agent in grid do
6 if there is a better cell in neighborhood(agent) then
7 agent.position← best cell in neighborhood(agent);
8 else
9 agent.position← random cell in neighborhood(agent);

10 end

11 prevSolution← solution at agent.position;
12 newSolution← mutation(prevSolution) ;
13 evaluate(newSolution) ;

14 if newSolution improved prevSolution then
15 solution at agent.position← newSolution;
16 bestSolution← newSolution;

17 end

18 end

19 end

see if it has changed. If a change is detected, all the solutions of the grid are
reevaluated.

After this, each agent is executed, moving it to the best neighbor solution (in
terms of horizontal and vertical adjacency on the matrix) and trying to improve
the solution in that cell. Since the algorithm performs as many iterations of
the foreach loop as the number of agents, this loop is similar to a generation in
other population-based algorithms (this fact is important for comparison purposes
against this type of methods, specially for the work on discrete problems that will
be explained later).

To improve a solution, the agent uses the mutation() function on line 12. This
function is applied to prevSolution to generate newSolution. This newSolution
will replace prevSolution on the matrix if an improvement is produced. The
mutation() function is the place where optimization techniques can be implemented
in order to increase diversification or intensification. This is also the function that
contains the different strategies for dealing with continuous vs. discrete DOPs.

59

NEW ALGORITHMIC PROPOSALS FOR DOPS

3.3.2.1. Agents for continuous DOPs

In the case of the Agents algorithm for continuous DOPs introduced in [69],
the implementation of the mutation() function simply generates a new random
solution inside a hypershpere of radius perturbationRadius around the original
solution.

3.3.2.2. Agents for discrete DOPs

Regarding the Agents for discrete DOPs introduced in [68], there are several
differences with respect to the continuous DOPs version. The first one is that
solutions with equal fitness are also accepted as replacement solutions for the
matrix, and not only better ones. The reason for this change is that on many
combinatorial problems the fitness values vary on a discrete manner, so it is more
common to reach solutions with the same objective value. If the solutions of
the matrix were not replaced with the new ones in this case, the modification
effort would be lost, and the search process could stagnate. When we allow the
replacement of solutions with the same quality, we allow the search process to
evolve so it is able to escape from flat zones on the search landscape.

The second difference is the implementation of the mutation() function itself.
Generating a random solution inside a hypersphere is no longer viable for a dis-
crete/combinatorial problem. In this case, the implementation done for mutation()
is focused on the binary-encoded problems we are going to tackle (Sect. 3.3.3) and
it allows to perform changes to a given number of consecutive bits (numBits) by
flipping each of these bits with a given probability (flipProb). The starting bit for
the numBits will be chosen randomly and if the last bit of the solution is reached,
the remaining bits are taken from the initial solution bits (in a circular fashion).
Each of the numBits will then be flipped independently with flipProb probabil-
ity. In this way, if numBits = 1 and flipProb = 1, the mutation() function will
change just one random bit of the solution. If numBits = 3 and flipProb = 0.8,
the mutation() function will choose three consecutive random bits and flip each
one with an independent 80% probability. The full settings used for the mutation
operator are summarized in Table 3.12.

Additionally, as we anticipated in Sect. 3.3.1, the use of fixed parameters for
the configuration of an heuristic does not lead to robust results on different prob-
lems and instances. A detailed description of different approaches for adaptive
evolutionary algorithms on combinatorial problems can be seen on [146]. While
most of the ideas presented in that paper are feasible to be applied also to Agents,
additional challenges appear when we are dealing with DOPs. Since DOPs change
with time, it makes it more difficult to properly find out the best parameter set-
tings for the whole search process. Moreover, it is generally not possible to test all

60

NEW ALGORITHMIC PROPOSALS FOR DOPS

Variant Configuration
MutOp1 numBits = 1 and flipProb = 1
MutOp2 numBits = 2 and flipProb = 0.9
MutOp3 numBits = 3 and flipProb = 0.8
MutOp4 numBits = 4 and flipProb = 0.7
Adaptive Uses the adaptive scheme on all the previous variants

Table 3.12 – Agents for combinatorial DOPs. Mutation operator variants.

values for every parameter when the available time between two consecutive prob-
lem changes is short. Despite that, the use of some adaptive scheme will probably
improve the robustness of the algorithms and one of the goals of the Agents for
discrete DOPs work is to verify this claim.

Thus, we have implemented a credit-based adaptive scheme in a generic Learn-
ing library to discriminate among a set of configurations (values) of a given cri-
terion. Each configuration of the criterion will have an associated index or value
in the natural numbers. To implement this task, the library contains three main
methods:

learn(value, credit). Assigns an additional credit to the configuration of
the criterion represented by the value.

rouletteWheelSelection(). Applies roulette wheel selection to return one
of the learned values. That is, the probability of choosing each value corre-
sponds with the quotient between its credit and the sum of credits for all the
values of the criterion.

clearLearning(). Deletes learned values and credits.

Since it is not realistic to learn every possible parameter of the algorithms, our
approach will be to focus the learning on the configuration of the mutation() func-
tion. To achieve this, what we do is to consider the selection of the configuration
to use for the mutation operator as the criteria and to assign a numerical value to
every configuration variant that is going to be considered.

Initially, we will set the same credit for each configuration variant in order for
all of them to have an equal non-zero chance of being selected. Then, each time the
mutation operator is applied with a given operator configuration, the fitness change
between the received solution and the mutated solution is computed. If the fitness
was increased, the increment is added as an additional credit for that operator
configuration (using the learn function). Besides that, to try to adjust the learning
to the dynamic problem changes, when a change on the environment is detected,

61

NEW ALGORITHMIC PROPOSALS FOR DOPS

all the credits are restored to their initial values using a call to clearLearning()
and repeating the initialisation.

3.3.3. Validation

The validation of the Agents proposal for continuous DOPs will be discussed
in Sect. 3.4.3. Thus, we will not give the details of the said experimentation here,
and we will instead focus on the Agents for discrete DOPs.

In order to assess the discrete version of Agents, we have tested it over a set
of binary-encoded combinatorial DOPs, using the XOR generator technique [184].
These problems were explained in Sect. 2.1.2.3, and the objective is to match a
set of bits, were each group of 4 bits is evaluated according to the function being
used:

OneMax: Each matched bit adds 1 to the fitness.

Plateau: Three matched bits add 2 to the fitness while four matched bits
add 4 and any other amount of bits matched leads to a 0 contribution.

RoyalRoad: Each perfectly matched block adds 4 to the fitness. Partially
matched blocks have 0 fitness.

Deceptive: Fitness is 4 if all the 4 bits are matched. If not, the fitness for
the block is 3 minus the number of matched bits.

Please see Fig. 2.3 for a graphical explanation. Remember that the XOR
generator introduces dynamism every certain number of function evaluations by
changing ρ bits of the target optimal solution (ρ = severity of the change).

The experiments carried out over these problems had the objective of assessing
the validity of both the Agents algorithm for combinatorial DOPs and the learning
scheme previously mentioned. Therefore, we have structured the experimentation
in two stages:

1. To test the learning scheme, we have incorporated it to the Agents algo-
rithm, producing a version named adaptive. We have executed this adaptive
version, as well as the versions corresponding to the different mutation opera-
tors (Table 3.12) over multiple scenarios of the OneMax, Plateau, RoyalRoad
and Deceptive problems, and we have compared the results to see which one
was the best. Additionally, we introduced this same learning scheme into a
simple Evolutionary Algorithm (EA), and we have repeated the experimen-
tation conducted with the Agents, in order to have an additional source of
information.

62

NEW ALGORITHMIC PROPOSALS FOR DOPS

2. Afterwards, we have executed the best algorithm of each of the previous (the
best Agents and the best EA, which happened to be adaptive, the one with
the learning scheme) against one of the most recent algorithms in the state
of the art in these problems: the Adaptive Hill-climbing Memetic Algorithm
(AHMA) [163]. The conditions of this second experimentation were the
same as in the first one, but instead of comparing the results of a single
algorithm against different versions of itself, we compared one single version
of 3 algorithms against each other.

All the problems were configured to use a solution size of 100 bits (25 blocks of
4 bits). For each problem, the experiments performed consider different periods of
change (P ∈ {1200, 6000, 12000}) and different severities (ρ ∈ {0.1, 0.2, 0.5, 0.9}).
The period (P) is given as the number of evaluations of the objective function
between two consecutive changes. The severity of change (ρ) is used when a
change is produced (every P evaluations) to control how many bits of the optimal
solution are flipped. If l is the length of the solutions for the problem, the new
optimal solution after a change will be generated flipping ρ ∗ l bits on the previous
target optimal solution.

Regarding the configuration of the algorithms, we chose several values of the
number of agents and the dimension of the matrix for the Agents algorithm on the
basis of experience and the statistical results published for the continuous DOPs
case [69, 125, 126]. These values were tested again for the combinatorial DOPs
and the statistical analysis showed that the best configuration overall was to use 4
agents and a matrix of size 2× 2. These results are similar to the values obtained
for the continuous DOPs but with a smaller matrix size, that can be explained
by the nature of the problems tested, where it is probably better to do a good
intensification than to have a big diverse population. Moreover, the use of just
10 individuals was proven to be statistically better in the case of the EA. The
crossover and elitism chosen required no parameters, and since the population
size was small all the individuals were used for performing the negative/positive
assortative mating selection. Finally, since the problems used here correspond
to the paper where AHMA was published, we simply set the exact same original
parameter values published on [163].

To assess the performance of the algorithms, we have used the off-line perfor-
mance [28] that we defined in Sect. 2.2.3.

For the first experiment, we have considered all the mutation operator variants
that are shown on Table 3.12, each of which uses a different configuration of
the solution mutation operator (see the description of the mutation function on
Sect. 3.3.2.2). The values for the operators have been selected with an increasing
numBits and a decreasing flipProb. In this way, as the number of consecutive
bits affected gets bigger, the configurations allow for a higher probability of leaving

63

NEW ALGORITHMIC PROPOSALS FOR DOPS

some of the affected bits unchanged. The last variant (Adaptive) is a special variant
that, instead of using just a single configuration, uses all of them coupled with the
adaptive scheme (Sect. 3.3.2.2). Additionally, when using the adaptive scheme,
the initial credit assigned to each operator was set to the 10% of the sum of the
fitness of solutions in the current population plus the 10% of the number of bits on
a solution. This last addition is only included to guarantee that a non-zero initial
credit is assigned to each operator configuration even when all the solutions of the
population have 0 fitness. Since the time for learning is limited by the change
period for the problems, we have reduced the mutation operator variants to just 4
configurations, so it becomes easier to learn the proper operator to use in a faster
way. In this way, there are less values to learn, but we still have several different
mutation operator configurations and it is expected that the learning will find the
best performing ones for each algorithm / problem.

Finally, since the results for every possible algorithm, problem configuration
and mutation operator variant would be difficult to interpret if displayed as a nu-
merical table, we have used the SRCS technique [38] that will be explained later
in Chapter 4. The idea is to compare algorithms using the offline performances
for every run of each algorithm and configuration. As recommended in [9,63], first
we test for differences among the results of all algorithms for a given configura-
tion, using a non-parametric Kruskal-Wallis rank-sum test [89], with a significance
level of 0.05. If there is enough evidence, then a second non-parametric test, the
Wilcoxon’s rank-sum test [168], with a significance level of 0.05 is performed for
each pair of algorithms. This test allows to assess if there are significant differences
between any two samples. If the test concludes that there are such differences, the
algorithm with the highest overall offline performance adds 1 to its rank, and the
other adds −1. In case of a tie, both receive a 0. The range of the rank values for
n algorithms for any specific problem, period and severity will therefore be in the
[−n+1, n−1] interval. The higher the rank obtained, the better an algorithm can
be considered in relation to the other ones. These ranks will be displayed as colors
with the highest rank value (n− 1) being displayed as white and the lowest rank
value (−n + 1) being painted as red. The remaining rank values will be assigned
a gradient color between white and red. If we then group together the ranks of
an algorithm for a given problem with every possible different period and severity
we can obtain a colored matrix, where it is easy to get a good idea of how the
algorithm performs for that specific problem.

The results are arranged in a table-like way, with the columns indicating the
problem, and rows indicating the algorithm (or version of the algorithm). We will
therefore look for white or yellow cells, meaning that the algorithm in
that row is the best or one of the best for that particular problem con-
figuration. Red cells mean just the opposite, that the given algorithm

64

NEW ALGORITHMIC PROPOSALS FOR DOPS

obtains the worst results.

Problem
OneMax Plateau RoyalRoad Deceptive

A
d

ap
ti

ve

s
e
v
e
ri
ty

0.1

0.2

0.5

0.9

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

4

3

2

0

1

-1

-2

-3

-4

M
u

tO
p

1

s
e
v
e
ri
ty

0.1

0.2

0.5

0.9

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

4

3

2

0

1

-1

-2

-3

-4

M
u

tO
p

2

s
e
v
e
ri
ty

0.1

0.2

0.5

0.9

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

4

3

2

0

1

-1

-2

-3

-4

M
u

tO
p

3

s
e
v
e
ri
ty

0.1

0.2

0.5

0.9

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

4

3

2

0

1

-1

-2

-3

-4

M
u

tO
p

4

s
e
v
e
ri
ty

0.1

0.2

0.5

0.9

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

4

3

2

0

1

-1

-2

-3

-4

change period

1200 6000 12000

change period

1200 6000 12000

change period

1200 6000 12000

change period

1200 6000 12000

Figure 3.15 – Agents for combinatorial DOPs. Rank results for all the Agents variants.

Regarding the first experiment, the results for the comparison of the different
versions of the Agents algorithm are shown in Fig. 3.15, and the results for the
EA versions in Fig. 3.16.

The results for the second experiment, where the adaptive version of both
Agents and EA was executed in the same problems along with the AHMA algo-
rithm, are displayed in Fig. 3.17.

3.3.4. Conclusions

3.3.4.1. Agents for continuous DOPs

Regarding the Agents algorithm for continuous DOPs, as we will see in Sect. 3.4.3,
this proposal did not obtain as good results as the mQSO or the CS methods. Ini-
tially, we concluded that a reason for this could be that it was the first adaptation
of the Agents algorithm to DOPs, and that the implementation of the mutation

65

NEW ALGORITHMIC PROPOSALS FOR DOPS

Problem
OneMax Plateau RoyalRoad Deceptive

A
d

ap
ti

ve

s
e
v
e
ri
ty

0.1

0.2

0.5

0.9

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

4

3

2

0

1

-1

-2

-3

-4

M
u

tO
p

1

s
e
v
e
ri
ty

0.1

0.2

0.5

0.9

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

4

3

2

0

1

-1

-2

-3

-4

M
u

tO
p

2

s
e
v
e
ri
ty

0.1

0.2

0.5

0.9

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

4

3

2

0

1

-1

-2

-3

-4

M
u

tO
p

3

s
e
v
e
ri
ty

0.1

0.2

0.5

0.9

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

4

3

2

0

1

-1

-2

-3

-4

M
u

tO
p

4

s
e
v
e
ri
ty

0.1

0.2

0.5

0.9

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

4

3

2

0

1

-1

-2

-3

-4

change period

1200 6000 12000

change period

1200 6000 12000

change period

1200 6000 12000

change period

1200 6000 12000

Figure 3.16 – Agents for combinatorial DOPs. Rank results for all the EA variants.

Problem
OneMax Plateau RoyalRoad Deceptive

A
ge

n
ts

s
e
v
e
ri
ty

0.1

0.2

0.5

0.9

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

0

-1

E
A s
e
v
e
ri
ty

0.1

0.2

0.5

0.9

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

0

-1

A
H

M
A

s
e
v
e
ri
ty

0.1

0.2

0.5

0.9

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

0

-1

change period

1200 6000 12000

change period

1200 6000 12000

change period

1200 6000 12000

change period

1200 6000 12000

Figure 3.17 – Agents for combinatorial DOPs. Rank results of the Adaptive Agents
and EA variants against AHMA.

66

NEW ALGORITHMIC PROPOSALS FOR DOPS

function that we had chosen (a simple random perturbation of a solution within
a hypersphere) was not powerful enough to outperform the aforementioned algo-
rithms in these problems.

However, as it will be shown in Sect. 4.4, the Agents algorithm is indeed capable
of obtaining very good results. It is just that in [69] we did not use the test scenarios
in which this algorithm could exhibit its full potential (actually, high-dimensional
scenarios for the MPB case). We will discuss these results in more detail later, in
Sect. 4.4.

The results of the Agents implementation for continuous DOPs were published
in [69]:

“A cooperative strategy for solving dynamic optimization problems”, J. R.

González, A. D. Masegosa, and I. G. del Amo, Memetic Computing, vol. 3, no. 1,

pp. 3–14, 2010. http://dx.doi.org/10.1007/s12293-010-0031-x.

3.3.4.2. Agents for discrete DOPs

Regarding the Agents algorithm for discrete DOPs, we performed two experi-
ments: a first one in which we intended to validate the learning scheme proposed,
and a second one in which we compared a version of Agents and an EA using this
learning scheme against the AHMA.

The results of the first experiment show that some fixed mutation operators
are very well suited for certain problems (e.g., MutOp1, which flips only 1 bit,
and obtains the best results for the OneMax problem), but perform quite bad in
others (in this case, the MutOp1 was one of the worst for the RoyalRoad and
Deceptive problems). However, the learning scheme (the adaptive version of the
Agents and EA algorithms) is much more stable, always obtaining results among
the first positions in all problems. This situation is specially noticeable in the
Agents algorithm (Fig. 3.15), where the adaptive version always obtains the best
or the second best results. Therefore, we can conclude that the learning scheme
proposed significantly improves the results for this kind of problems.

Moreover, in the second experiment, it can be clearly seen that the Agents
algorithm outperforms the others in almost all tested scenarios (Fig. 3.17). Con-
sidering that AHMA is one of the state-of-the-art algorithms for combinatorial
DOPs, these results open a very promising research path.

The results of the Agents algorithm for discrete DOPs were published in [68]:

67

http://dx.doi.org/10.1007/s12293-010-0031-x

NEW ALGORITHMIC PROPOSALS FOR DOPS

“An Adaptive Multiagent Strategy for Solving Combinatorial Dynamic

Optimization Problems”, J. González, C. Cruz, I. G. del Amo, and D. Pelta,

in Nature Inspired Cooperative Strategies for Optimization (NICSO 2011) (D. Pelta,

N. Krasnogor, D. Dumitrescu, C. Chira, and R. Lung, eds.), vol. 387 of Stud-

ies in Computational Intelligence, pp. 41–55, Springer Berlin / Heidelberg, 2012.

http://dx.doi.org/10.1007/978-3-642-24094-2_3.

3.4. Cooperative Strategies for DOPs

In this section we present a novel algorithm for DOPs based in Cooperative
Strategies: trajectory metaheuristics that operate in an organized way thanks to
a central coordinator.

3.4.1. Motivation

In the area of DOPs, most of the algorithms used are based on populations of
solutions, but trajectory-based methods have received little attention. It is also
worth noting that the role of cooperation in population-based algorithms is most of
the time implicit, so we cannot objectively evaluate if this cooperation is beneficial
when facing a DOP.

In previous works [35, 103,127] we developed a method for static optimization
problems based on a set of heuristics or solvers that cooperate among them thanks
to a central coordinator. The said coordinator keeps a list of the local optima found
by the solvers, and uses a rule base to analyze the performance of each of them
and correct the behaviour of those with worst results. We denominate this method
Cooperative Strategies (CS).

The objective of this section is to present an adaptation of the CS algorithm
to DOPs, using trajectory-based techniques as solvers, and more precisely, tabu
search methods. Thus, we have been able to verify if these methods can be effec-
tively applied to DOPs. Furthermore, since the CS uses an explicit cooperation
mechanism, we could evaluate the role of such scheme in these type of problems.

Additionally, we had studied different rules that can be used by the coordinator
when correcting the behaviour of solvers, and we will show which are the most
effective ones in the test problems used.

68

http://dx.doi.org/10.1007/978-3-642-24094-2_3

NEW ALGORITHMIC PROPOSALS FOR DOPS

3.4.2. Proposal

The CS algorithm consists in a set of solvers/threads, where each solver imple-
ments a tabu search algorithm. The coordinator processes the information received
from them and produces subsequent adjustments of their behaviour by sending “or-
ders”. To achieve this exchange of data, a blackboard model is used [57]. In the
implementation, two blackboards are available: one where the solvers write the
reports of their performance and the coordinator reads them, and another, where
the orders are written by the coordinator and read by the solvers. This working
scheme is summarized in Fig. 3.18.

Figure 3.18 – CS for DOPs. A representation of the working mechanism of CS: a
group of tabu search solvers work together thanks to a central coordinator that uses
performance information and a rule base to modify the parameters of the solvers.

The CS starts with an initialization stage where parameters are given their
starting values. After that, all solvers asynchronously execute the tabu search al-
gorithm while sending and receiving information. The coordinator checks through
the input blackboard which solver provided new information and decides whether
its behaviour needs to be adapted using a rule base. If this is the case, it will
calculate a new behaviour which will be sent to the solvers through the output
blackboard. As for the solvers, once execution has begun, performance information
is sent and adaptation orders from the coordinator are received alternatively.

Regarding the tabu search implemented by the solvers, we should point out
that an important issue in continuous optimization is to determine the size of the

69

NEW ALGORITHMIC PROPOSALS FOR DOPS

movement when we search for better solutions around a specific point. A small
step size can lead to a significant waste of objective function evaluations, whereas a
big movement length makes it difficult to find solutions with enough accuracy. For
this reason it is interesting to use a large step size at the beginning of the search
in order to perform a better exploration of the solution space, and then reduce the
step size to obtain a better accuracy. In this way, in our implementation of the
tabu search, we start with a step size of length δinit and every time the exploration
of the neighbourhood of the current solution does not lead to a better one, this
size is halved. When two consecutive steps get to improve the current solution the
step size is multiplied by two. The length of the movement is delimited by the
interval [res, δinit], where res is a parameter which determines the precision of the
tabu search solvers.

The pseudocode for the tabu search of the solvers is presented in Algorithm 3.3,
assuming a minimization problem (for maximization problems, expressions like
f(x) < fbest should be replaced by f(x) > fbest). The method starts with an
initialization stage, after which a loop is repeated until the stop condition is ful-
filled. Within this loop, the procedure checks if the step size has been reduced
to a value lower than res. If so, it determines that the current solution is a local
minimum and checks if it is near to a previously visited local minimum (the dis-
tance between them is lower than LRR). To escape from it, the method applies
a diversification method performed according to procedure 2.1 of [77], in order to
restart the search in a non explored region, or to allow a certain number of non
improvement movements, respectively. After this, the method explores the neigh-
bourhood and checks if the chosen neighbour is better than the best solution found
so far. In this case, the step size is increased if two consecutive improvements have
taken place. Otherwise, it is halved.

The tabu search relies on a procedure for exploring the neighbourhood of a
solution. Here we use three different ways to explore it:

1. Optimistic search: In the first place, the algorithm tries a step in the
last good direction, i.e., the direction chosen in the previous neighbourhood
exploration, expecting this trajectory to still be good in the next iteration.

2. Approximate descent direction (ADD): If the last procedure does not
lead to an improvement, then the heuristic attempts to find a good descent
direction using the ADD method [76].

3. Tabu exploration: In the case that the two former movements do not work,
the algorithm carries out a more exhaustive search within the neighbourhood
generating 2n neighbours. More precisely, for each one of the n vectors
that compose the basis of the vector space defined by the problem, we take
two solutions in this direction, one in the positive sense and one in the

70

NEW ALGORITHMIC PROPOSALS FOR DOPS

Algorithm 3.3: Pseudocode of continuous tabu search

/* Initialization */

1 δ = δinit;
2 x = new solution;
3 xbest = x;
4 fbest = f(xbest);
5 consAdvances = 0;

6 while !stopCondition do
7 if δ < res then
8 δ = δinit;
9 if isNearLocalMinimum(xbest) then

/* If xbest is near a local optimum, apply the

diversification procedure */

10 x = diversification(xbest);
11 xbest = x;
12 fbest = f(xbest);
13 consAdvances = 0;

14 end
15 else

/* xbest is considered as a new local minimum */

16 acceptNoImp = maxNoImp;
17 addLocalMinimum(xbest);
18 fbest =∞;
19 consAdvances = 0;

20 end

21 end

22 x = exploreNeighbourhood(x, acceptNoImp, δ);

23 if f(x) < fbest then
24 xbest = x;
25 consAdvances = consAdvances+ 1;
26 if consAdvances == 2 then
27 δ = increaseStep(δ);
28 consAdvances = 0;

29 end
30 else
31 δ = reduceStep(δ);
32 acceptNoImp = acceptNoImp− 1;

33 end

34 end

35 end

71

NEW ALGORITHMIC PROPOSALS FOR DOPS

Algorithm 3.4: exploreNeighbourhood(x, acceptNoImp, δ)

1 xnew = optimisticMovement(x, lastMovement, δ) ;

2 if f(xnew) < f(x) then
3 return xnew;
4 end

5 xnew = ADD(x, δ) ;

6 if f(xnew) < f(x) then
7 return xnew;
8 end

9 xnew = tabuExploration(x, δ) ;

10 if acceptNoImp == 0 AND f(xnew) > f(x) then
/* If no more non-improving movements are allowed, stay in

the same point hoping that reducing the step size will

allow to reach a better solution */

11 return x ;

12 end
13 else
14 return xnew ;
15 end

72

NEW ALGORITHMIC PROPOSALS FOR DOPS

negative. Then, the best non-tabu move (or the best tabu move, if it fulfills
the aspiration level), is taken as the new current solution of the method. The
tabu list is composed of the reverse of the movements previously accepted,
and a movement becomes non-tabu after a given number of iterations defined
by the parameter tenure.

The pseudocode of the neighbourhood exploration procedure is given in Algo-
rithm 3.4.

As it has been previously said, the solvers periodically send reports to the
coordinator. These reports contain the following data:

Solver identification.

A time stamp t.

The current solution of the solver.

The best solution found by the solver sbest.

A list with the local optima found by the solver since the last report.

The list of local optima sent by the solver is processed by the coordinator, which
keeps the history of all local optima found by the solvers in a memory denominated
Visited Region List (VRL). These local optima are grouped within regions defined
by a hypersphere with radius ρ and centre in the points stored in the VRL. Each
entry of the VRL also maintains a register ϕ with the frequency of visiting that
region by any search thread. These regions are used by some of the rules that will
be explained in Sect. 3.4.2.1. For a graphical explanation of local optima as they
are used by solvers, and the visited regions kept by the coordinator, please refer
to Fig. 3.19.

To deal with DOPs, the CS algorithm must check if the fitness function has
changed, and in such case, restart the memories that do not contain relevant infor-
mation for the new search space. These issues are handled in both the coordinator
and solver sides through a local count of the number of fitness changes detected
on each thread. If the count of detected fitness changes differs between a solver
and the coordinator, the higher count is communicated and the search process is
adapted accordingly.

The CS is composed by 12 solvers that differ in terms of the length of the initial
step size, δinit, (three different values for this parameter are considered) as well
as the initial solution. The parameter setting for the tabu search are displayed in
Table 3.13, where σ is the diameter of the variable range, that is, the maximum
of the difference between the lower and the upper limit of each variable.

Regarding the parameters of the coordinator, the radius for the visited regions
ρ was set to 0.15σ and the antecedent threshold λreaction to 1.

73

NEW ALGORITHMIC PROPOSALS FOR DOPS

Figure 3.19 – CS for DOPs. A trajectory solver may arrive to different solutions close
to each other after two search stages (upper-left and upper-right images). If these two
solutions are within a distance of LRR units, the solver considers that it has arrived to
the same local optimum (upper-center image). Two local optima are considered to be
in the same region if they are within a distance of ρ units (lower image).

Parameter Description Value
δinit initial length of the operator step σ/2, σ/3, σ/5
res minimal step value 0.001
LRR radius for the local minimum regions 0.01σ
maxNoImp max. number of non-improving movements 3
tenure length of the tabu list of movements 1

Table 3.13 – CS for DOPs. Parameter settings for the tabu search solvers. The different
values set for the parameter δinit of each solver are also displayed. The parameter σ is
the diameter of the variable range, that is, the maximum of the difference between the
lower and the upper limit of each variable.

74

NEW ALGORITHMIC PROPOSALS FOR DOPS

3.4.2.1. Cooperation modes

The behaviour of the solvers is controlled by the coordinator by means of a set
of cooperation rules, with the form if condition then action. These rules allow
the coordinator to determine if a solver is behaving correctly as well as the action
that should be performed to adjust such behaviour. All the rules used in this
work share a common antecedent (condition) based on Reactive Search ideas [10].
These rules have therefore the form:

IF ϕ of the last local optimum visited by solveri

is bigger than λreaction

THEN action (3.1)

where ϕ is the frequency with which solveri visited its last local optimum, and
λreaction is a threshold that regulates the activation of the rule. The action will be
used to adapt the behaviour of solveri, leading to different types of cooperation
depending on the specific action taken.

All the rules used by the coordinator follow the general definition given on
Expression 3.1, and only differ on the consequent, which uses different actions
for producing different modes of cooperation. In this case, we will consider four
different actions. The first two lead to cooperation rules that induce a higher inten-
sification of the search, although with different degrees. The remaining two actions
have a higher exploration balance, also with different degrees. Their descriptions
are given below:

Best solution (BS): We can consider this action as the simplest one. It
consists on sending a neighbor of the best solution ever seen by the coordina-
tor to the solver. In this way, we concentrate the threads around promising
regions of the search space.

Approaching (AP): This action tries to bring solvers with bad performance
near to the best thread, placing it in a intermediate point between the best
solution of both solvers. This point is generated applying a crossover operator
to these solutions.

Reactive (R): This consequent for the coordinator’s rule was previously
presented in [103]. When it is executed, the coordinator sends to the specific
solver the best global solution perturbed by a degree φ. φ is given by the
next formula:

75

NEW ALGORITHMIC PROPOSALS FOR DOPS

φ =


0, if ϕ− λreaction ≤ 0
ϕ− λreaction, if ϕ− λreaction > 0 and

ϕ− λreaction < φmax
φmax, if ϕ− λreaction ≥ φmax

where ϕ is the frequency of visiting the region of the last minimum found by
the solver, λreaction is the threshold that establishes when a higher mutation
than the basic one (φ = 0) is applied, and φmax is the maximum perturbation
degree. The higher the value of φ is, the bigger is the generated distance
between the optimum and the sent solution.

Visited Region List (VRL): This action makes use of the VRL to reallo-
cate the solver in a point outside of the previously visited regions. The pro-
cedure followed to generate these points has been taken from the work [77].
To avoid generating solutions near to the more frequently visited regions,
the next function is used:

Ψ(ϕ) = γ(1− eγ(ϕ−1))

where γ ∈ (0, 1] is a given constant and ϕ the frequency of visiting the
corresponding region.

The procedure that generates solutions outside the visited regions is the
following:

1. Generate a new solution randomly in the search domain of f .

2. Compute the quantities di = ‖x−mi‖
1+Ψ(ϕi)

, i = 1, . . . ,M . If min1≤i≤M
di
ρi
≥ 1,

then accept x. Otherwise, return to Step 1.

being mi the i-th centre of the VRL, M the size of the VRL and ρ the radius
of the regions. We should note that a point close to more frequently visited
regions is hardly accepted due to its higher value of Ψ. Therefore, the higher
the value of γ is, the lower the possibility of accepting a point close to more
frequently visited regions. To avoid infinitely cycling in process, we may also
terminate it after a predetermined number of iterations.

The mutation operator used to modify the best global solution in the bestSol
and the reactive actions consists on randomly selecting a direction according to
a uniform distribution, and then take the point at a distance r from the best
global solution. In the reactive action, different values for the r parameter are
used depending on the φ degree (defined before), while for the bestSol action, a
fixed value of r = 0.1σ is used.

76

NEW ALGORITHMIC PROPOSALS FOR DOPS

No. of Severity Agents mQSO CS
functions (%)

100

2 4.610(2.683) 6.702(4.889) 3.576(2.462)*
4 4.789(2.701) 7.011(4.882) 4.042(2.469)*
6 5.040(2.819) 6.843(4.465) 4.477(2.515)*
8 5.270(2.821) 6.541(4.015) 4.811(2.582)*

10 5.445(2.911) 6.582(4.039) 5.035(2.580)*

Table 3.14 – CS for DOPs, first study. MFE results for the MPB problem.

3.4.3. Validation

In order to validate the proposal of the CS algorithm applied to DOPs, we
performed two studies to analyze its behaviour.

3.4.3.1. First study: introducing CS

The first study introduced a first implementation of CS for DOPs using only
one action, Best Sol, and compared it against a standard implementation of the
mQSO [15] and the Agents algorithm for continuous DOPs that we introduced in
Sect. 3.3). In this study, we executed the 3 algorithms in 4 standard problems of the
DOP literature: the MPB and the dynamic versions of the Ackley, Griewank and
Rastrigin functions. Moreover, for the Ackley, Griewank and Rastrigin problems,
several functions of the same type were combined to produce a more difficult
scenario (1, 3, 5 and 10 functions were combined). Finally, we also tested variations
of the severity of the change in the environment, in terms of % of σ (2%, 4%, 6%,
8% and 10%).

For the experiments conducted, we used the Mean Fitness Error (MFE) [134]
for measuring the performance (see Sect. 2.2.2). In our case, since the algorithms
proposed do not use a clear concept of generation, we considered that a generation
corresponds to the period between two consecutive changes in the fitness function.

For both cases (MPB and real functions), changes to the function’s optimum
were performed every 5000 function evaluations, with a run grouping 100 consec-
utive changes. Each experiment consisted in 30 independent runs, each of them
with its own random seed.

The results are presented in Tables 3.14, 3.15, 3.16 and 3.17. These tables
show the final MFE of the 30 independent runs, with the standard deviation in
parenthesis. Here, values with an asterisk ([*]) indicate that the corresponding al-
gorithm obtained the best (lowest) MFE. For every configuration of the problem,
the Kruskal-Wallis non-parametric test for multiple comparisons has been used

77

NEW ALGORITHMIC PROPOSALS FOR DOPS

0 5000 10000 15000 20000

30
40

50
60

70
80

90
10

0

NumEvaluations

F
itn

es
s

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●● ● ● ●●● ● ● ●●● ● ●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●●●

●

● ●●●

●

●

●●●

● ● ●●● ● ● ●●● ●

● ●●● ● ● ●●● ● ● ●

●

●

●

●

●

●
●

●

●

●●●

● ● ●●● ●

●

●●● ● ● ●●● ● ● ●●● ● ● ●●● ●

● ●●● ● ● ●●● ● ●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●●●

● ●

●●●

●

●

●●● ●

●

●●● ● ● ●●● ● ●

●●● ●

● ●●● ●

●●

●

Algorithm

Optimum
Agents
PSO
CooperativeStrategy

Figure 3.20 – CS for DOPs, first study. Single-run sample of best algorithm results
vs. optimum for the MPB with a 10% severity.

78

NEW ALGORITHMIC PROPOSALS FOR DOPS

0 5000 10000 15000 20000

0
5

10
15

NumEvaluations

F
itn

es
s

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●●

●

● ●●● ●

●

●

●● ●

●

●●● ●

●

●●● ●

● ●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●●

●

●

●

●●

●

● ●●●

●

● ●

●● ●

●

●●● ●

● ●●●

● ● ●●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●●

●

● ●●●

● ●

●

●● ● ● ●●● ● ●

●●● ●

● ●●● ● ●

●●●

●

● ●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●●

●

●

●

●●

●

●

●●● ●

● ●

●● ● ●

●●●

●

● ●●● ●

● ●●● ●

●●

●

Algorithm

Optimum
Agents
PSO
CooperativeStrategy

Figure 3.21 – CS for DOPs, first study. Single-run sample of best algorithm results
vs. optimum for the Ackley problem with a 10% severity.

79

NEW ALGORITHMIC PROPOSALS FOR DOPS

No. of Severity Agents mQSO CS
functions (%)

1

2 2.227(0.891) 2.219(1.084) 0.598(0.529)*
4 2.340(0.868) 2.778(1.303) 0.886(0.511)*
6 2.462(0.962) 2.933(1.382) 1.118(0.547)*
8 2.552(0.857) 3.017(1.463) 1.349(0.573)*

10 2.659(0.775) 3.074(1.462) 1.512(0.570)*

3

2 2.246(0.664) 1.711(0.755) 0.563(0.431)*
4 2.343(0.528) 2.108(0.835) 0.889(0.459)*
6 2.460(0.488) 2.202(0.837) 1.137(0.471)*
8 2.573(0.509) 2.248(0.786) 1.347(0.481)*

10 2.677(0.487) 2.312(0.756) 1.524(0.508)*

5

2 2.270(0.476) 1.488(0.633) 0.536(0.394)*
4 2.395(0.501) 1.818(0.699) 0.854(0.408)*
6 2.488(0.441) 1.886(0.661) 1.095(0.423)*
8 2.572(0.454) 1.916(0.600) 1.289(0.434)*

10 2.696(0.489) 1.977(0.576) 1.490(0.439)*

10

2 2.249(0.412) 1.299(0.623) 0.402(0.326)*
4 2.385(0.398) 1.491(0.646) 0.694(0.335)*
6 2.456(0.392) 1.598(0.595) 0.931(0.340)*
8 2.553(0.372) 1.685(0.545) 1.131(0.347)*

10 2.667(0.378) 1.693(0.487) 1.332(0.366)*

Table 3.15 – CS for DOPs, first study. MFE results for the Ackley function.

80

NEW ALGORITHMIC PROPOSALS FOR DOPS

0 5000 10000 15000 20000

0.
0

0.
5

1.
0

1.
5

2.
0

NumEvaluations

F
itn

es
s

●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●●

●

● ●

●●

●

● ●●●

● ● ●●●

●

● ●●● ● ● ●●● ●

●

●●● ● ● ●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●
●

●

●

●●●

● ● ●●●

● ●

●●●

● ●

●●● ●

● ●●● ● ●

●●●

● ● ●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●●

●

●

●●●

●

●

●●● ●

●

●●● ● ●

●●● ● ●

●●● ● ● ●●●

● ● ●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●

●●●

● ● ●●● ●

● ●●●

● ●

●●●

●

● ●●● ● ● ●●● ● ●●

●

Algorithm

Optimum
Agents
PSO
CooperativeStrategy

Figure 3.22 – CS for DOPs, first study. Single-run sample of best algorithm results
vs. optimum for the Griewank problem with a 10% severity.

81

NEW ALGORITHMIC PROPOSALS FOR DOPS

No. of Severity Agents mQSO CS
functions (%)

1

2 0.132(0.074) 0.099(0.042) 0.089(0.039)*
4 0.180(0.067) 0.156(0.057) 0.107(0.038)*
6 0.220(0.077) 0.202(0.087) 0.107(0.039)*
8 0.251(0.084) 0.235(0.103) 0.114(0.040)*

10 0.260(0.088) 0.268(0.127) 0.116(0.042)*

3

2 0.178(0.063) 0.094(0.036)* 0.101(0.0439)
4 0.226(0.064) 0.158(0.055) 0.119(0.046)*
6 0.252(0.070) 0.204(0.082) 0.124(0.049)*
8 0.265(0.074) 0.249(0.132) 0.127(0.046)*

10 0.278(0.079) 0.282(0.144) 0.131(0.048)*

5

2 0.161(0.069) 0.125(0.063) 0.119(0.049)*
4 0.220(0.064) 0.166(0.062) 0.134(0.048)*
6 0.254(0.071) 0.229(0.091) 0.135(0.051)*
8 0.270(0.076) 0.255(0.121) 0.142(0.052)*

10 0.282(0.079) 0.295(0.123) 0.147(0.053)*

10

2 0.182(0.061) 0.125(0.062) 0.122(0.043)*
4 0.241(0.061) 0.192(0.061) 0.141(0.043)*
6 0.252(0.063) 0.239(0.078) 0.143(0.044)*
8 0.264(0.064) 0.263(0.084) 0.148(0.047)*

10 0.275(0.065) 0.293(0.096) 0.153(0.046)*

Table 3.16 – CS for DOPs, first study. MFE results for the Griewank function.

82

NEW ALGORITHMIC PROPOSALS FOR DOPS

0 5000 10000 15000 20000

0
10

20
30

40

NumEvaluations

F
itn

es
s

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●
● ●

●

●●●

●

●

●

●●

●

● ●●●

●

●

●

●● ●

●

●●●

●

● ●

●● ● ● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●●

● ●

●

●● ●

● ●●●

● ●

●●● ●

● ●●● ●

●

●

●●

● ● ●

●● ●

● ●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●● ●

●

●●
●

● ●

●●
●

●

●

●●●

●

●

●

●● ●

●

●●●

● ● ●●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●●

● ●

●●● ●

● ●●●

●

●

●

●●

● ●

●

●● ● ●

●●●

●

● ●

●● ● ●●

●

Algorithm

Optimum
Agents
PSO
CooperativeStrategy

Figure 3.23 – CS for DOPs, first study. Single-run sample of best algorithm results
vs. optimum for the Rastrigin problem with a 10% severity.

83

NEW ALGORITHMIC PROPOSALS FOR DOPS

No. of Severity Agents mQSO CS
functions (%)

1

2 10.503(3.019) 2.288(1.300) 0.882(0.861)*
4 13.189(3.091) 4.754(1.673) 1.224(0.962)*
6 13.895(3.160) 6.880(2.323) 1.745(1.046)*
8 14.245(3.226) 7.686(2.615) 2.228(1.188)*

10 14.473(3.212) 8.229(2.789) 2.496(1.273)*

3

2 10.814(2.883) 1.849(0.695) 1.094(0.802)*
4 13.121(2.849) 4.568(1.411) 1.397(0.866)*
6 14.058(2.915) 6.903(2.089) 1.925(0.950)*
8 14.327(2.943) 7.693(2.363) 2.353(1.032)*

10 14.358(2.965) 8.000(2.435) 2.536(1.086)*

5

2 10.525(2.759) 1.786(0.791) 1.041(0.722)*
4 13.076(2.763) 4.562(1.420) 1.334(0.761)*
6 13.969(2.764) 6.840(2.108) 1.854(0.828)*
8 14.078(2.807) 7.678(2.298) 2.294(0.971)*

10 14.161(2.817) 7.865(2.354) 2.473(1.003)*

10

2 10.189(2.585) 1.939(0.722) 0.826(0.601)*
4 12.473(2.597) 4.465(1.393) 1.133(0.672)*
6 13.175(2.626) 6.511(2.002) 1.667(0.802)*
8 13.310(2.615) 7.132(2.156) 2.054(0.872)*

10 13.379(2.640) 7.355(2.251) 2.194(0.913)*

Table 3.17 – CS for DOPs, first study. MFE results for the Rastrigin function.

84

NEW ALGORITHMIC PROPOSALS FOR DOPS

to assess differences between the performances of the three methods. The null
hypothesis could not be rejected at significance level 0.01 for all problem configu-
rations. Apart from this, the Wilcoxon’s unpaired rank sum test at a significance
level 0.05 was performed between the best algorithm and each of the others, to
assess if there were statistical differences. Values shown in bold-face indicate that
there were no statistically significant differences between that value and the best
value of the row.

Additionally, a graph of the best results of all the methods against the optimum
for a sample run of each test function was generated. In order to compare the
methods in the worst scenario, the instances selected were the most difficult ones
where the number of functions is maximum and the biggest severity (10%) of
change is used. For each selected run, the first 20000 evaluations were plotted
taking values every 100 evaluations. Since the fitness function changes every 5000
evaluations, this 20000 evaluations correspond to the evolution of the fitness for
the first four fitness function changes. These graphs are presented in Figures 3.20,
3.21, 3.22 and 3.23.

3.4.3.2. Second study: extending cooperation rules

In the second study, considering the results obtained in the first one, we intro-
duced the rest of the actions for the CS algorithm, and we evaluated again their
performance over several test scenarios. The different versions of CS used were:

independent: uses no cooperation at all. Each thread works independently.

approach: uses the Approaching (AP) action.

bestSol: uses the Best Sol (BS) action.

VRL: uses the VRL action.

reactive: uses the Reactive (R) action.

In this case, the CS-bestSol corresponds to the CS used in the previous study,
included here as a reference to compare the results. Additionally, with the objec-
tive of having a non-CS reference, we executed again the mQSO of the previous
study, since this algorithm obtained better results than the Agents in most of the
problems. In this study, we performed the experiments over the Ackley, Griewank
and Rastrigin functions, since they were the ones in which the CS-bestSol obtained
the best results, in order to verify if the new variants are able of outperforming it.

85

NEW ALGORITHMIC PROPOSALS FOR DOPS

0 5000 10000 15000 20000

0
5

10
15

NumEvaluations

F
itn

es
s ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●

●

●●

●

●

●●●

● ●

●●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●●● ●

● ●●●

● ● ●●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●●●

●

●

●●●

●

●

●●● ● ● ●●● ● ● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●●●

●

●

●●●

●

●

●●● ● ●

●●● ● ●●

●

Algorithm

Optimum

PSO

CSDOP_approach

Figure 3.24 – CS for DOPs, second study. Single-run sample of best fitness vs. evalu-
ations for the composition of 10 Ackley functions. Severity = 10%.

86

NEW ALGORITHMIC PROPOSALS FOR DOPS

N
o
.

o
f

S
e
v
e
ri

ty
m

Q
S

O
C

S
C

S
C

S
C

S
C

S
fu

n
c
ti

o
n

s
in

d
e
p

e
n

d
e
n
t

a
p

p
ro

a
ch

b
e
st

S
o
l

V
R

L
re

a
c
ti

v
e

1

2
2.

21
9(

1.
08

4)
0
.2

5
4
(0

.4
2
5
)*

0
.2

5
7
(0

.4
2
6
)

0
.5

9
8
(0

.5
2
9
)

0
.5

4
9
(0

.5
0
4
)

0
.3

2
5
(0

.4
2
9
)

4
2.

77
8(

1.
30

3)
0
.5

2
7
(0

.4
0
1
)*

0.
55

1(
0.

40
6)

0
.8

8
6
(0

.5
1
1
)

0
.8

2
3
(0

.4
8
3
)

0
.6

0
3
(0

.4
0
4
)

6
2.

93
3(

1.
38

2)
0
.7

6
0
(0

.4
0
7
)*

0.
78

4(
0.

41
9)

1
.1

1
8
(0

.5
4
7
)

1
.0

4
2
(0

.4
9
2
)

0
.8

2
8
(0

.4
1
1
)

8
3.

01
7(

1.
46

3)
0
.9

5
7
(0

.4
2
5
)*

1.
00

0(
0.

43
5)

1
.3

4
9
(0

.5
7
3
)

1
.2

5
7
(0

.5
2
9
)

1
.0

3
9
(0

.4
3
6
)

10
3.

07
4(

1.
46

2)
1
.1

4
0
(0

.4
3
5
)*

1.
20

3(
0.

44
1)

1
.5

1
2
(0

.5
7
0
)

1
.4

3
1
(0

.5
2
8
)

1
.2

2
3
(0

.4
4
7
)

3

2
1.

71
1(

0.
75

5)
0.

30
4(

0.
37

4)
0
.2

6
2
(0

.3
7
6
)*

0
.5

6
3
(0

.4
3
1
)

0
.5

4
0
(0

.4
1
8
)

0
.3

2
0
(0

.3
7
7
)

4
2.

10
8(

0.
83

5)
0.

60
4(

0.
38

5)
0
.5

6
5
(0

.3
8
8
)*

0
.8

8
9
(0

.4
5
9
)

0
.8

3
5
(0

.4
3
6
)

0
.6

1
5
(0

.3
8
6
)

6
2.

20
2(

0.
83

7)
0.

85
5(

0.
39

4)
0
.7

9
7
(0

.4
0
4
)*

1
.1

3
7
(0

.4
7
1
)

1
.0

9
0
(0

.4
5
1
)

0
.8

5
0
(0

.4
0
4
)

8
2.

24
8(

0.
78

6)
1.

05
5(

0.
39

6)
1
.0

1
2
(0

.4
0
3
)*

1
.3

4
7
(0

.4
8
1
)

1
.2

9
3
(0

.4
6
2
)

1
.0

4
5
(0

.4
0
8
)

10
2.

31
2(

0.
75

6)
1.

23
7(

0.
42

1)
1
.2

1
5
(0

.4
2
5
)*

1
.5

2
4
(0

.5
0
8
)

1
.4

9
3
(0

.4
8
3
)

1
.2

4
3
(0

.4
3
3
)

5

2
1.

48
8(

0.
63

3)
0.

33
2(

0.
35

1)
0
.2

7
0
(0

.3
5
4
)*

0
.5

3
6
(0

.3
9
4
)

0
.4

8
7
(0

.3
7
6
)

0
.3

3
5
(0

.3
5
9
)

4
1.

81
8(

0.
69

9)
0.

64
8(

0.
35

6)
0
.5

7
0
(0

.3
6
5
)*

0
.8

5
4
(0

.4
0
8
)

0
.8

0
7
(0

.3
8
0
)

0
.6

2
6
(0

.3
6
2
)

6
1.

88
6(

0.
66

1)
0.

89
7(

0.
37

1)
0
.8

2
0
(0

.3
7
2
)*

1
.0

9
5
(0

.4
2
3
)

1
.0

5
4
(0

.4
0
0
)

0
.8

5
8
(0

.3
7
6
)

8
1.

91
6(

0.
60

0)
1.

09
1(

0.
37

2)
1
.0

2
7
(0

.3
7
8
)*

1
.2

8
9
(0

.4
3
4
)

1
.2

6
0
(0

.4
0
9
)

1
.0

6
1
(0

.3
7
7
)

10
1.

97
7(

0.
57

6)
1.

27
8(

0.
38

6)
1
.2

2
8
(0

.3
9
1
)*

1
.4

9
0
(0

.4
3
9
)

1
.4

6
8
(0

.4
2
6
)

1
.2

6
4
(0

.3
9
7
)

10

2
1.

29
9(

0.
62

3)
0.

32
4(

0.
31

6)
0
.2

7
7
(0

.3
1
9
)*

0
.4

0
2
(0

.3
2
6
)

0
.3

9
3
(0

.3
2
1
)

0
.3

2
0
(0

.3
2
2
)

4
1.

49
1(

0.
64

6)
0.

60
8(

0.
31

7)
0
.5

7
1
(0

.3
2
8
)*

0
.6

9
4
(0

.3
3
5
)

0
.6

7
6
(0

.3
2
8
)

0
.6

0
6
(0

.3
2
9
)

6
1.

59
8(

0.
59

5)
0.

82
7(

0.
32

0)
0
.7

9
9
(0

.3
3
4
)*

0
.9

3
1
(0

.3
4
0
)

0
.9

1
9
(0

.3
3
3
)

0
.8

3
8
(0

.3
3
5
)

8
1.

68
5(

0.
54

5)
1.

04
2(

0.
33

1)
1
.0

2
0
(0

.3
4
4
)*

1
.1

3
1
(0

.3
4
7
)

1
.1

1
4
(0

.3
5
1
)

1
.0

3
1
(0

.3
4
5
)

10
1.

69
3(

0.
48

7)
1.

21
6(

0.
35

0)
1
.1

9
9
(0

.3
6
8
)*

1
.3

3
2
(0

.3
6
6
)

1
.3

1
2
(0

.3
6
1
)

1
.2

2
0
(0

.3
6
9
)

T
a
b

le
3
.1

8
–

C
S

fo
r

D
O

P
s,

se
co

n
d

st
u

d
y.

M
F

E
re

su
lt

s
fo

r
th

e
A

ck
le

y
fu

n
ct

io
n

.

87

NEW ALGORITHMIC PROPOSALS FOR DOPS

0 5000 10000 15000 20000

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

NumEvaluations

F
itn

es
s

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●●●

●

●

●●● ● ●

●●● ● ● ●●● ● ● ●●● ● ● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●●●

●

●

●●●

●

●

●●●

●

● ●●●

●

●

●●● ●

●

●●● ● ● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●●●

● ● ●●● ●

● ●●●

●

●

●●● ● ● ●●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●●●

●

●

●●● ● ● ●●● ● ● ●●● ● ●●

●

Algorithm

Optimum

PSO

CSDOP_approach

Figure 3.25 – CS for DOPs, second study. Single-run sample of best fitness vs. evalu-
ations for the composition of 10 Griewank functions. Severity = 10%.

88

NEW ALGORITHMIC PROPOSALS FOR DOPS

N
o
.

o
f

S
e
v
e
ri

ty
m

Q
S

O
C

S
C

S
C

S
C

S
C

S
fu

n
c
ti

o
n

s
in

d
e
p

e
n

d
e
n
t

a
p

p
ro

a
ch

b
e
st

S
o
l

V
R

L
re

a
c
ti

v
e

1

2
0.

09
9(

0.
04

2)
0.

06
6(

0.
03

0)
0
.0

3
7
(0

.0
2
6
)*

0
.0

8
9
(0

.0
3
9
)

0
.0

9
3
(0

.0
3
9
)

0
.0

6
5
(0

.0
2
8
)

4
0.

15
6(

0.
05

7)
0.

08
8(

0.
03

1)
0
.0

6
6
(0

.0
3
0
)*

0
.1

0
7
(0

.0
3
8
)

0
.1

0
9
(0

.0
3
9
)

0
.0

8
4
(0

.0
3
0
)

6
0.

20
2(

0.
08

7)
0.

09
1(

0.
03

4)
0
.0

7
4
(0

.0
3
3
)*

0
.1

0
7
(0

.0
4
0
)

0
.1

0
9
(0

.0
4
0
)

0
.0

8
9
(0

.0
3
3
)

8
0.

23
5(

0.
10

3)
0.

10
1(

0.
03

6)
0
.0

8
3
(0

.0
3
4
)*

0
.1

1
4
(0

.0
4
0
)

0
.1

1
5
(0

.0
4
1
)

0
.0

9
5
(0

.0
3
4
)

10
0.

26
8(

0.
12

7)
0.

10
4(

0.
03

7)
0
.0

9
0
(0

.0
3
6
)*

0
.1

1
6
(0

.0
4
2
)

0
.1

1
6
(0

.0
4
1
)

0
.1

0
0
(0

.0
3
8
)

3

2
0.

09
4(

0.
03

6)
0.

06
8(

0.
03

0)
0
.0

3
8
(0

.0
2
7
)*

0
.1

0
1
(0

.0
4
4
)

0
.1

0
4
(0

.0
4
6
)

0
.0

6
5
(0

.0
2
9
)

4
0.

15
8(

0.
05

5)
0.

09
1(

0.
03

4)
0
.0

6
7
(0

.0
3
2
)*

0
.1

1
9
(0

.0
4
6
)

0
.1

2
3
(0

.0
4
7
)

0
.0

8
6
(0

.0
3
3
)

6
0.

20
4(

0.
08

3)
0.

09
4(

0.
03

6)
0
.0

7
6
(0

.0
3
5
)*

0
.1

2
4
(0

.0
4
9
)

0
.1

2
3
(0

.0
4
7
)

0
.0

9
0
(0

.0
3
4
)

8
0.

24
9(

0.
13

2)
0.

09
9(

0.
03

6)
0
.0

8
4
(0

.0
3
5
)*

0
.1

2
7
(0

.0
4
7
)

0
.1

2
9
(0

.0
4
8
)

0
.0

9
4
(0

.0
3
5
)

10
0.

28
2(

0.
14

4)
0.

10
7(

0.
03

9)
0
.0

9
3
(0

.0
3
8
)*

0
.1

3
1
(0

.0
4
8
)

0
.1

3
3
(0

.0
5
0
)

0
.1

0
0
(0

.0
3
7
)

5

2
0.

12
5(

0.
06

3)
0.

08
4(

0.
03

6)
0
.0

4
3
(0

.0
3
0
)*

0
.1

1
9
(0

.0
4
9
)

0
.1

2
0
(0

.0
5
0
)

0
.0

7
1
(0

.0
3
1
)

4
0.

16
6(

0.
06

2)
0.

10
5(

0.
03

9)
0
.0

7
1
(0

.0
3
4
)*

0
.1

3
4
(0

.0
4
8
)

0
.1

3
8
(0

.0
5
1
)

0
.0

8
9
(0

.0
3
3
)

6
0.

22
9(

0.
09

2)
0.

10
6(

0.
03

9)
0
.0

8
1
(0

.0
3
7
)*

0
.1

3
5
(0

.0
5
1
)

0
.1

3
7
(0

.0
0
5
)

0
.0

9
4
(0

.0
3
5
)

8
0.

25
5(

0.
12

1)
0.

11
3(

0.
04

2)
0
.0

9
0
(0

.0
3
8
)*

0
.1

4
2
(0

.0
5
2
)

0
.1

4
4
(0

.0
5
1
)

0
.1

0
0
(0

.0
3
7
)

10
0.

29
5(

0.
12

3)
0.

11
9(

0.
04

3)
0
.0

9
8
(0

.0
4
1
)*

0
.1

4
7
(0

.0
5
3
)

0
.1

4
8
(0

.0
5
4
)

0
.1

0
6
(0

.0
4
1
)

10

2
0.

12
5(

0.
06

2)
0.

10
2(

0.
03

8)
0
.0

5
4
(0

.0
3
4
)*

0
.1

2
2
(0

.0
4
3
)

0
.1

2
6
(0

.0
4
4
)

0
.0

7
7
(0

.0
3
2
)

4
0.

19
2(

0.
06

1)
0.

12
3(

0.
04

1)
0
.0

8
8
(0

.0
4
0
)*

0
.1

4
1
(0

.0
4
3
)

0
.1

4
4
(0

.0
4
4
)

0
.1

0
0
(0

.0
3
7
)

6
0.

23
9(

0.
07

8)
0.

12
5(

0.
04

1)
0
.0

9
8
(0

.0
4
1
)*

0
.1

4
3
(0

.0
4
4
)

0
.1

4
4
(0

.0
4
5
)

0
.1

0
3
(0

.0
3
8
)

8
0.

26
3(

0.
08

4)
0.

13
1(

0.
04

1)
0
.1

0
7
(0

.0
4
2
)*

0
.1

4
8
(0

.0
4
7
)

0
.1

4
8
(0

.0
4
6
)

0
.1

1
1
(0

.0
4
0
)

10
0.

29
3(

0.
09

6)
0.

13
7(

0.
04

2)
0
.1

1
9
(0

.0
4
2
)

0
.1

5
3
(0

.0
4
6
)

0
.1

5
3
(0

.0
4
6
)

0
.1

1
8
(0

.0
4
2
)*

T
a
b

le
3
.1

9
–

C
S

fo
r

D
O

P
s,

se
co

n
d

st
u

d
y.

M
F

E
re

su
lt

s
fo

r
th

e
G

ri
e
w

a
n

k
fu

n
ct

io
n

.

89

NEW ALGORITHMIC PROPOSALS FOR DOPS

0 5000 10000 15000 20000

0
5

10
15

20
25

30

NumEvaluations

F
itn

es
s

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●●●

●

●

●●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●●●

●

● ●●●

●

● ●●● ●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●●● ●

● ●●●

●

●

●●●

● ● ●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●●●

●

●

●●●

●

● ●●● ●

● ●●●

●

● ●●●

●

●●

●

Algorithm

Optimum

PSO

CSDOP_approach

Figure 3.26 – CS for DOPs, second study. Single-run sample of best fitness vs. evalu-
ations for the composition of 10 Rastrigin functions. Severity = 10%.

90

NEW ALGORITHMIC PROPOSALS FOR DOPS

N
o
.

o
f

S
e
v
e
ri

ty
m

Q
S

O
C

S
C

S
C

S
C

S
C

S
fu

n
c
ti

o
n

s
in

d
e
p

e
n

d
e
n
t

a
p

p
ro

a
ch

b
e
st

S
o
l

V
R

L
re

a
c
ti

v
e

1

2
2.

28
8(

1.
30

0)
0.

32
2(

0.
57

8)
0
.2

3
6
(0

.5
7
6
)*

0
.8

8
2
(0

.8
6
1
)

0
.7

8
8
(0

.7
5
9
)

0
.5

7
9
(0

.6
4
3
)

4
4.

75
4(

1.
67

3)
0.

56
1(

0.
61

2)
0
.5

2
0
(0

.6
2
5
)*

1
.2

2
4
(0

.9
6
2
)

1
.1

0
1
(0

.8
3
5
)

0
.8

3
8
(0

.6
9
7
)

6
6.

88
0(

2.
32

3)
1.

01
9(

0.
63

5)
0
.9

2
6
(0

.6
3
3
)*

1
.7

4
5
(1

.0
4
6
)

1
.6

1
7
(0

.9
2
7
)

1
.2

5
9
(0

.7
1
7
)

8
7.

68
6(

2.
61

5)
1.

47
8(

0.
84

1)
1
.3

9
3
(0

.8
3
2
)*

2
.2

2
8
(1

.1
8
8
)

2
.0

8
6
(1

.0
9
0
)

1
.6

4
9
(0

.8
6
1
)

10
8.

22
9(

2.
78

9)
1
.6

9
5
(0

.9
4
2
)

1
.6

8
0
(0

.9
5
7
)*

2
.4

9
6
(1

.2
7
3
)

2
.2

5
2
(1

.1
3
2
)

1
.8

1
3
(0

.9
1
6
)

3

2
1.

84
9(

0.
69

5)
0.

59
7(

0.
58

8)
0
.2

9
7
(0

.5
6
1
)*

1
.0

9
4
(0

.8
0
2
)

1
.0

4
8
(0

.7
2
2
)

0
.6

0
9
(0

.6
1
2
)

4
4.

56
8(

1.
41

1)
0.

79
9(

0.
59

4)
0
.5

6
3
(0

.5
8
3
)*

1
.3

9
7
(0

.8
6
6
)

1
.3

0
5
(0

.7
7
5
)

0
.9

1
6
(0

.6
6
3
)

6
6.

90
3(

2.
08

9)
1.

39
4(

0.
66

4)
1
.0

5
6
(0

.6
9
0
)*

1
.9

2
5
(0

.9
5
0
)

1
.8

2
7
(0

.8
4
3
)

1
.3

4
0
(0

.7
2
4
)

8
7.

69
3(

2.
36

3)
1.

77
2(

0.
80

4)
1
.5

8
4
(0

.8
6
1
)*

2
.3

5
3
(1

.0
3
2
)

2
.2

3
3
(0

.9
4
5
)

1
.7

4
2
(0

.8
5
9
)

10
8.

00
0(

2.
43

5)
2.

01
4(

0.
86

5)
1
.8

6
0
(0

.9
8
6
)*

2
.5

3
6
(1

.0
8
6
)

2
.3

8
8
(0

.9
7
4
)

1
.9

0
9
(0

.9
0
7
)

5

2
1.

78
6(

0.
79

1)
0.

68
4(

0.
56

0)
0
.3

1
1
(0

.5
1
2
)*

1
.0

4
1
(0

.7
2
2
)

0
.9

5
6
(0

.6
4
3
)

0
.6

8
6
(0

.6
0
2
)

4
4.

56
2(

1.
42

0)
0.

90
1(

0.
56

4)
0
.6

2
1
(0

.5
2
0
)*

1
.3

3
4
(0

.7
6
1
)

1
.2

6
2
(0

.6
8
4
)

0
.9

2
9
(0

.5
9
4
)

6
6.

84
0(

2.
10

8)
1.

40
3(

0.
62

2)
1
.1

2
1
(0

.6
3
5
)*

1
.8

5
4
(0

.8
2
8
)

1
.7

7
9
(0

.7
7
7
)

1
.3

7
7
(0

.6
7
4
)

8
7.

67
8(

2.
29

8)
1.

85
4(

0.
76

7)
1
.6

4
7
(0

.8
4
8
)*

2
.2

9
4
(0

.9
7
1
)

2
.1

9
0
(0

.8
8
3
)

1
.7

4
6
(0

.8
2
7
)

10
7.

86
5(

2.
35

4)
1.

99
4(

0.
80

7)
1
.9

0
9
(0

.9
1
6
)*

2
.4

7
3
(1

.0
0
3
)

2
.3

5
4
(0

.9
2
0
)

1
.9

2
4
(0

.8
7
6
)

10

2
1.

93
9(

0.
72

2)
0.

53
4(

0.
47

4)
0
.3

2
1
(0

.4
5
1
)*

0
.8

2
6
(0

.6
0
1
)

0
.7

8
6
(0

.5
5
9
)

0
.6

2
5
(0

.5
2
0
)

4
4.

46
5(

1.
39

3)
0.

75
3(

0.
47

3)
0
.6

2
7
(0

.4
9
3
)*

1
.1

3
3
(0

.6
7
2
)

1
.0

6
6
(0

.5
9
4
)

0
.8

7
0
(0

.5
4
1
)

6
6.

51
1(

2.
00

2)
1.

27
8(

0.
60

2)
1
.1

8
2
(0

.6
4
7
)*

1
.6

6
7
(0

.8
0
2
)

1
.5

7
5
(0

.7
3
3
)

1
.3

4
3
(0

.6
7
3
)

8
7.

13
2(

2.
15

6)
1.

71
4(

0.
71

3)
1
.6

8
8
(0

.7
8
8
)*

2
.0

5
4
(0

.8
7
2
)

1
.9

6
4
(0

.8
2
9
)

1
.7

2
0
(0

.7
6
0
)

10
7.

35
5(

2.
25

1)
1
.8

0
4
(0

.7
5
7
)*

1.
86

8(
0.

83
6)

2
.1

9
4
(0

.9
1
3
)

2
.0

6
8
(0

.8
4
5
)

1
.8

7
2
(0

.7
9
9
)

T
a
b

le
3
.2

0
–

C
S

fo
r

D
O

P
s,

se
co

n
d

st
u

d
y.

M
F

E
re

su
lt

s
fo

r
th

e
R

a
st

ri
g
in

fu
n

ct
io

n
.

91

NEW ALGORITHMIC PROPOSALS FOR DOPS

The performance measures and the experiments’ settings were the same as the
ones used in the previous study. The results obtained can be seen in Tables 3.18,
3.19 and 3.20. Additionally, as in the previous study, we have included a graphical
representation of the first 20000 evaluations of a run for the most difficult con-
figuration of all the test problems. However, due to the available space in each
graphs, we did not show all the algorithms, and have only shown the optimum,
the mQSO, and the best CS version — in this case, CS-approach. These graphs
can be seen in Figures 3.24, 3.25 and 3.26.

3.4.4. Conclusions

We have presented an algorithm, CS, based on a set of solvers, implemented
as trajectory-based heuristics (tabu search), that cooperate among them in an
explicit fashion thanks to a central coordinator.

We have performed two studies in order to validate the proposal and identify
the best cooperation scheme for the algorithm.

In the fist study, we compared an initial version of CS that only used a sim-
ple cooperation rule, bestSol, against a mQSO and a DOP version of the Agents
algorithm. The results showed that the proposed cooperative strategies algorithm
consistently outperformed the others in all the problems and scenarios tested.

In the second study, we extended the experimentation introducing more co-
operation rules. Again, the CS widely overcame mQSO in all problems, and the
rules that obtained the best results were the Approaching and Reactive ones. It is
worth noting that the Approaching rule, designed to enhance intensification, pro-
duces the best results most of the time, while the Reactive rule, which increases
diversification, starts to obtain better results as the problems get more and more
difficult.

As far as our knowledge is concerned, little attention has been put on using
trajectory solvers and explicit cooperation schemes for solving DOPs before these
works. But CS has shown very good performance results that are also very con-
sistent across all the configurations of the problems and all the cooperation modes
tested. The success of CS suggest that trajectory methods combined with other
techniques (a centralised cooperation in the scope of these works) may play an
important role in the dynamic optimization field and further research should be
put into this area.

The first study was published in reference [69]:

92

NEW ALGORITHMIC PROPOSALS FOR DOPS

“A cooperative strategy for solving dynamic optimization problems”, J. R.

González, A. D. Masegosa, and I. G. del Amo, Memetic Computing, vol. 3, no. 1,

pp. 3–14, 2010. http://dx.doi.org/10.1007/s12293-010-0031-x.

and the second study was published in reference [70]:

“Cooperation rules in a trajectory-based centralised cooperative strategy

for Dynamic Optimisation Problems”, J. R. González, A. D. Masegosa, I. G. del

Amo, and D. A. Pelta, in Proceedings of the 2010 IEEE Congress on Evolutionary

Computation (CEC-2010), pp. 1–8, 2010. http://dx.doi.org/10.1109/CEC.2010.

5586063.

3.5. Overall conclusions

In this chapter we have reviewed a set of proposals for improving several algo-
rithms for DOPs. The new / improved algorithms are:

An improvement for a multi-swarm PSO based on a new operator for con-
trolling particle trajectories (CPT) [120] for continuous DOPs.

An enhanced version of the mQSO algorithm that uses heuristic rules to
produce more efficient behaviours [39, 41]; the use of 3 rules has led to 3
variants of the algorithm: mQSO-ChangeRule, mQSO-RandRule and mQSO-
BothRule, all of them for continuous DOPs.

An algorithm based on the implicit cooperation of a set of agents, both for
continuous DOPs [69] and discrete DOPs [68]; this last version for discrete
DOPs also incorporated a learning mechanism that allows it to auto-adapt
the values of its parameters (Agents-Adaptive).

An algorithm based on the centralized cooperation of trajectory heuristics,
by means of a coordinator, for continuous DOPs, named CS [69], as well
as several cooperation schemes that have produced the variants CS-BestSol,
CS-VRL, CS-Reactive, CS-Approach and CS-Independent [70].

93

http://dx.doi.org/10.1007/s12293-010-0031-x
http://dx.doi.org/10.1109/CEC.2010.5586063
http://dx.doi.org/10.1109/CEC.2010.5586063

NEW ALGORITHMIC PROPOSALS FOR DOPS

These algorithms cover a wide variety of families, but all of them share some
common characteristics:

1. The use of populations of solutions. All these methods keep a set or
sets of solutions that “coexist” during the search process. These populations
of solutions allow to diversify the search, something important by its own in
static optimization, and absolutely essential in DOPs.

2. The existence of some type of cooperation among its constituent el-
ements. In the case of CS, this is obvious, since such cooperation is explicit,
and is carried out by the central coordinator while exchanging information
between the different metaheuristics. In the case of the implemented vari-
ants of PSO, the particles of a swarm are connected among them through
the best of that swarm, since it is used as a reference in the movement of
the particles. Furthermore, in the case of the mQSO, which uses multiple
swarms, there is an exclusion mechanism that prevents the swarms from get-
ting too close to each other, in order to avoid focusing on the same optimum.
This competition between swarms at a local level helps the algorithm to not
waste too many resources in the same area, and thus, it is a form of global
cooperation in a sense. Agents also implicitly cooperate, since they explore
the search space indirectly through the matrix, allowing them to improve
solutions that quite probably have already been modified by other agents in
previous iterations.

The first characteristic is in accordance with what we said in the state of the
art chapter, Sect. 2.3, regarding population-based algorithms being a general trend
in DOPs. The second characteristic is quite significant in the context of this thesis
because it somehow indicates a possible pathway for improving existent algorithms:
all the modifications that we have performed during the research are based on
promoting cooperation and increasing the exchange of information between the
elements of an algorithm.

Additionally, we introduced a generic mechanism that has been incorporated
into several algorithms. This mechanism consists in (1) actively monitor the per-
formance of the different elements of an algorithm; (2) evaluate them according
to the average performance of the rest; and (3) correct, or even stop, those ele-
ments that are doing it worse. This mechanism was implemented in the CS by the
coordinator, in the PSO-CPT, and in the mQSO-RandRule, and the experiments
confirm that these algorithms obtained very good results, always improving their
performance respect to the base algorithm without this mechanism.

94

Chapter 4

SRCS: Statistical Ranking Color
Scheme

In this chapter we will present a technique for comparing several algorithms
over multiple problem configurations, named SRCS (Statistical Ranking Color
Scheme). The main drawback of performing experiments over multiple combined
factors is that the amount of generated data is usually so big that it becomes very
difficult to fully comprehend the results. The SRCS technique compacts such data
in two steps: first, it creates a ranking of the algorithms results over each scenario
of the experiments using statistical tests, and then, it generates a visualization of
those rankings using color schemes. Instead of focusing on small specific results,
the technique allows to identify behaviours and general trends at a large scale, and
it has already proven its utility in several publications.

4.1. Motivation

Let’s suppose that we want to compare the performance of a set of metaheuris-
tic algorithms over a DOP, for example, the MPB (see Sect. 2.1.1.1 for a description
of this problem).

The first thing we need to do is to decide the performance measure to use
for evaluating and comparing the algorithms. Since for the MPB the optimum
is known, a good candidate would be the offline accuracy (see Sect. 2.2.4), be-
cause it is bounded in the interval [0, 1] and is not affected by the variations in
the optimum’s value over the changes in the environment. If we average the of-
fline accuracy over all the changes of a run, we obtain the overall or avg. offline
accuracy.

Now that we have already defined the performance measure, let’s suppose that
we want to compare 4 hypothetical algorithms for a given configuration of the

95

SRCS: STATISTICAL RANKING COLOR SCHEME

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

Avg. Offline
Accuracy

0.78 ±0.05 0.84 ±0.02 0.95 ±0.01 0.89 ±0.03

Table 4.1 – Performance results of several algorithms on a single problem configuration
(mean and std. deviation values of the avg. offline accuracy)

Figure 4.1 – Graphical representation of the results on Table 4.1. The distributions
are displayed using a boxplot (dark lines) in combination with a kernel estimation of the
distribution density (light lines)

MPB (for example, the widely used Scenario 2). As it has been mentioned in
Sect. 2.2, when dealing with stochastic algorithms it is necessary to perform a series
of independent repetitions of the experiments in order to obtain a representative
sample of its performance. Therefore, we will execute Nr runs of the algorithm,
thus obtaining Nr measurements of the avg. offline accuracy. In Sect. 4.3 we will
analyze in more detail the influence of Nr in the results of the statistical tests, but
for the moment, let’s just assume that we perform a fixed amount of independent
repetitions, say Nr = 30, for each algorithm. An example of the results that could
be obtained is presented in Table 4.1 and Fig. 4.1.

In order to determine the existence of statistically significant differences in the
results, we need to perform a series of hypothesis tests. Several authors have
already pointed out that the results of these metaheuristic algorithms, in general,
do not follow a normal distribution [63], therefore recommending the use of non-
parametric tests for their analysis [79, 132]. We will use a significance level α =
0.05, meaning that we are willing to assume a probability of mistakenly rejecting
the null hypothesis of, at most, 0.05. The first issue that needs to be addressed is
the fact that we are comparing multiple algorithms at the same time. Therefore,

96

SRCS: STATISTICAL RANKING COLOR SCHEME

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

Algorithm 1 no - - -
Algorithm 2 + no - -
Algorithm 3 + + no +
Algorithm 4 + + - no

Table 4.2 – Pairwise statistical differences among the avg. offline accuracy distribution
of the algorithms. A ’+’ sign indicates that there are statistically significant differences
between the algorithm in the row and the algorithm in the column, and that the sign
of the comparison favors the algorithm in the row (i.e., is “better”). A ’-’ sign indicates
the opposite, that the algorithm in the row is “worse”. Finally, the word ’no’ indicates
no statistically significant differences

we need to use a test that allows to compare more than 2 groups simultaneously.
For this example, we will perform a Kruskal-Wallis (KW) test [89], among all the
samples of the 4 algorithms to check if there are global differences at the 0.05
significance level. If the KW test concludes that there are statistically significant
differences, we will then perform a series of pair-wise tests between each pair of
algorithms, to see if we can determine which are the ones that are causing those
differences. In this case, we will use the Mann-Whitney-Wilcoxon (MWW) [102,
168] test to compare each pair of algorithms. The combination of these tests is
suitable, since the KW test can be considered as the natural extension of the
MWW test to multiple groups. It is important to note that in order to guarantee
the α-level achieved by the KW test (global), we need to adjust the α-level of each
MWW test (pair-wise) to a certain value, usually much smaller than the first one.
For this purpose, we will use Holm’s correction [80], although other techniques are
also available (for example, Hochberg’s, Hommel’s, etc; for a in-depth comparison
on the use of these techniques, the interested reader is referred to [43,62,63]). The
results of the tests are shown in Table 4.2, where individual comparisons between
each pair of algorithms can be seen, along with the sign of the comparison.

Until now, the way of presenting the results (numerical data tables, boxplot
graphs and statistical tests tables) has been appropriated, and the data is com-
prehensible. Let’s assume that we now would like to extend the experimental
framework. We want to know if the conclusions obtained for the algorithms follow
any kind of pattern related to some characteristic of the problem (e.g., whether
algorithm 3 is good only for the Scenario 2 of the MPB, or if this is a general
behaviour linked to, for example, low change frequencies). In order to answer
this question, we perform more experiments, keeping all problem’s parameters
constant, except for the change frequency, which we vary progressively.

We can see now that the number of results increases, and its presentation be-

97

SRCS: STATISTICAL RANKING COLOR SCHEME

Change
Frequency

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

200 0.630 ±0.03 0.632 ±0.03 0.631 ±0.03 0.630 ±0.03
500 0.750 ±0.02 0.751 ±0.02 0.783 ±0.02 0.781 ±0.02
1000 0.811 ±0.02 0.798 ±0.02 0.886 ±0.02 0.886 ±0.02
1500 0.825 ±0.02 0.854 ±0.02 0.922 ±0.02 0.871 ±0.02
2000 0.840 ±0.02 0.859 ±0.01 0.939 ±0.01 0.862 ±0.02
2500 0.843 ±0.01 0.871 ±0.01 0.943 ±0.01 0.889 ±0.01
3000 0.852 ±0.01 0.880 ±0.01 0.950 ±0.01 0.913 ±0.01
3500 0.871 ±0.01 0.901 ±0.01 0.959 ±0.01 0.921 ±0.01
4000 0.860 ±0.01 0.906 ±0.01 0.964 ±0.01 0.932 ±0.01
4500 0.863 ±0.01 0.910 ±0.01 0.968 ±0.01 0.939 ±0.01
5000 0.869 ±0.01 0.911 ±0.01 0.970 ±0.01 0.941 ±0.01

Table 4.3 – Performance results of several algorithms on multiple problem configu-
rations (mean and std. deviation values of the avg. offline accuracy). The different
configurations are based on systematic variations of one factor, the problem’s change
frequency, expressed in number of evaluations. Boldface values indicate the best algo-
rithm for the given configuration

Figure 4.2 – Graphical representation of the results on Table 4.3, where each point
corresponds to the results of an algorithm on a configuration of the problem. The
results for each configuration are shown using a boxplot of the distribution

98

SRCS: STATISTICAL RANKING COLOR SCHEME

gins to be a problem, both at a table level, because of its extension and difficulty
to comprehend the data (Table 4.3), and at a graphical level, because of its com-
plexity (Fig. 4.2). However, it is still feasible to show the results this way, since,
although data is now more difficult to grasp and manage, it is nevertheless still
understandable (in Fig. 4.2 it is reasonably easy to see which algorithm is the best,
and this can also be accomplished in Table 4.3 by enhancing the best algorithm’s
result using a boldface type). Anyway, it is worth noting that individual differ-
ences between each pair of algorithms in the statistical tests are now too lengthy
to be shown, since they imply a comparison of the type all against all for each
problem configuration, which, in general, is not practical for a publication (e.g., in
this case, we are talking about 11 tables like Table 4.2).

Finally, when we consider to simultaneously analyze several factors (for exam-
ple, the frequency and the severity of a change), data grows exponentially, and the
presentation in the form of tables and figures becomes intractable and meaningless
(see Fig. 4.3). We need alternative ways of presenting the results in order to be
able of comprehending and analyzing them.

Figure 4.3 – Representation of a matrix of results for multiple algorithms, with com-
binations of the parameters of the problem. The huge amount of numerical data makes
its comprehension almost impossible.

This situation that we have described is based in our own experience on DOPs,
as it can be observed in the contributions presented in Chapter 3.

99

SRCS: STATISTICAL RANKING COLOR SCHEME

The works about the PSO-CPT (Sect. 3.1) and the mQSO with heuristic rules
(Sect. 3.2) included simple variations of one parameter of the problem in the
experiments, very similarly to the example data in Table 4.3 and Fig. 4.2.

Subsequent research lead to the works of the CS algorithm (Sect. 3.4), which
included variations of 2 parameters. The results of these works now are more
difficult to present, due to the extension of the data, as it can be seen in Tables 3.18,
3.19 and 3.20.

Finally, for the case of the work with the Agents algorithm for discrete DOPs
(Sect. 3.3), the number of combinations was too high, and it made it impossible
to present the results in a numerical way (there were variations of the severity,
change frequency, over 4 different problems, with 5 versions of each algorithm). In
that work, we applied the SRCS technique that we will explain next.

4.2. Description of the SRCS technique

With the objective of solving the previously explained problems that we may
face in an experimentation with variations of multiple factors, we developed a
technique named SRCS (Statistical Ranking Color Scheme). The SRCS technique
compacts the data of the experiments to be presented in two steps: first, it creates
a ranking of the algorithms results over each scenario of the experiments using
statistical tests, and then, it generates a visualization of those rankings using
color schemes.

Given a set of N algorithms, we will denote the observed performance of the
said algorithms on a certain problem configuration as P = {p1, p2, . . . , pN}. With-
out loss of generality, we will assume that we are trying to maximize the perfor-
mance, such that we consider that pi is better than pj if pi > pj.

As it has already been explained, when we work with an algorithm that con-
tains an stochastic component, it is necessary to sample a number k of times the
performance, so that for a given algorithm i, we will have that pi = {p1

i , p
2
i , . . . , p

k
i }.

We will denote p∗i as the representative of pi (usually, the mean, p̄i, or the median,
p̃i). Finally, let MCST (P) be a Multiple Comparison Statistical Test, and let
PWST (pi, pj) be a Pair-Wise Statistical Test. For both functions we will assume
that the tests return “YES” in case of finding statistically significant differences,
and “NO” otherwise.

The ranking of an algorithm will be defined as

100

SRCS: STATISTICAL RANKING COLOR SCHEME

ri =


0 if MCST (P) = NO

N∑
j=1
j 6=i

δpw(pi, pj) if MCST (P) = Y ES
(4.1)

where

δpw(pi, pj) =


0 if PWST (pi, pj) = NO
+1 if PWST (pi, pj) = Y ES and p∗i > p∗j
−1 if PWST (pi, pj) = Y ES and p∗i < p∗j

(4.2)

Basically, what this procedure is doing is the following: for a given DOP con-
figuration, all the algorithms begin with an initial ranking of 0. We first compare
the results of all the algorithms using a multiple comparison test (e.g., the KW
test) in order to determine if there are global differences. In case there are no dif-
ferences among all, that would be the end of the process, and the algorithms would
finish with their initial 0 rank. If, however, significant differences were found, an
adjusted pair-wise test (e.g., MWW + Holm) would be performed between each
pair of algorithms, in order to assess individual differences. If the pair-wise test
says there are significant differences for a given pair of algorithms, the one with the
best performance value adds +1 to its ranking, and the one with the worst value,
−1. If there were no differences according to the pair-wise test (a tie), neither
algorithm adds anything, but maintain their previous ranking.

At the end, every algorithm will have an associated ranking value, ranging in
the interval [−(N−1),+(N−1)], where N is the number of algorithms being com-
pared. A ranking value of +r for a given algorithm indicates that its performance
is significantly better than r algorithms, and a value of −r, that it is significantly
worse than r algorithms.

However, until now, we have only shifted the problem, since we have a ranking,
but it is still numerical, and therefore, difficult to fully understand when presented
in the form of tables, if there are too many data. The solution to this comes
from humans’ ability to better manage images and colors than numbers. Starting
off from this ranking, we associate a color (for example white) to the maximum
ranking value that can be obtained, +(N − 1), and another very different color (a
dark one preferably) to the minimum ranking value that can be obtained, −(N−1).
All the intermediate ranking values are associated to an interpolated color between
the two previous ones. Figure 4.4 explains the calculation of the ranking and the
color association of the 4 algorithms we have been using previously in the examples
of Sect. 4.1, for a given problem configuration.

101

SRCS: STATISTICAL RANKING COLOR SCHEME

Figure 4.4 – Rank explanation. The boxplot shows the distribution of the perfor-
mance measures of every algorithm, ordered by its median value. Dotted rectangles
indicate those algorithms for which no statistical differences were found at the specified
significance level (algorithms 2-3 and 3-4). The table on the right displays, for every
algorithm, how many times it shows a significantly better performance (“better than”),
no significant differences (“equal to”) or significantly worse performance (“worse than”)
when it is compared with respect to the other 3 algorithms, and its final rank with the
correspondent color key.

Color codes obtained from the ranking can now be used to represent the relative
performance of each algorithm with respect to the others in a graphical way. This
representation allows to visualize the results of many configurations at once, giving
the researcher the possibility to identify behavioural patterns of the algorithms
more easily.

For example, let’s suppose that we have these 4 algorithms of the examples of
the previous section, and we want to extend the study of their performance in the
MPB with different variations of two factors: severity, and change frequency. As
it has already been justified, presenting the results of this experiments in the form
of tables may not be feasible. However, using the SRCS technique, we can now
arrange the rank colors of each configuration to create the images shown in Fig. 4.5.
In this figure, the same color scheme as the one appearing in the explanation on
Fig. 4.4 has been used, where a darker color indicates a worse performance, and
a lighter one a better. Taking a quick glance at Fig. 4.5, and without having to
exam any type of numerical data, we can obtain valuable overall information, like:

In general, algorithm 1 is the worst algorithm for almost all configurations.

Algorithm 3 has, for almost all configurations, a good or very good perfor-
mance.

102

SRCS: STATISTICAL RANKING COLOR SCHEME

Figure 4.5 – An example of a graphical visualization of the rank-based color scheme
for 4 hypothetical algorithms. The visualization shows a comparison of the results of 4
algorithms for different configurations of the factors severity and change frequency for a
problem

103

SRCS: STATISTICAL RANKING COLOR SCHEME

For high change frequencies (higher number of evaluations between changes),
algorithm 3 is the best.

For low change frequencies, algorithm 4 is the best

Variations of the severity have, in general, less influence in the performance
of the algorithms than variations of the change frequency.

Also, figures created using SRCS can be arranged to visualize variations of
more than 2 factors, depending on the practitioner’s creativity. These figures
can help to further detect behavioral patterns of the algorithms, and increase our
understanding of them.

Finally, although the examples in this section used the avg. offline accuracy
as performance measure, and the KW + MWW combination as statistical tests,
the SRCS technique is not restricted to these methods. Other performance mea-
sures (avg. offline error, reactivity, etc.) and statistical tests (Friedman, Iman-
Davenport, etc) are also valid, as long as their usage is appropriated. In-depth
examples of the use of non-parametric statistical tests for comparing optimization
algorithms can be found in [43,62,63].

4.3. Comments on statistical issues for the SRCS

technique

In this section we will comment on the number of independent repetitions for
each experiment (Nr) and other issues relating statistical tests. It is generally
accepted by the research community in the DOP area that the higher the number
of these repetitions, the smaller the differences that a statistical test detects, which
may lead to considering some differences as significant, when, in fact, they are not.
This is an incomplete interpretation that may lead to erroneous statements.

When a MWW test is performed between two samples (i.e., the Nr results
of two algorithms for a given configuration, in our context), the test attempts to
determine if the two samples are statistically unequal, rejecting the null hypothesis
H0 of statistical equality. This is generally reported by the test in the form of a
p-value, i.e., the probability of obtaining the actually observed differences in the
two samples if the null hypothesis H0 were true. Generally, one rejects H0 if the
p-value is smaller than a pre-fixed significance level α (e.g., 0.05). Moreover, if the
two samples are concluded to be statistically unequal, the MWW test is able to
estimate the magnitude of the difference, in absolute units (this is called the effect
size).

When comparing results of two algorithms, it is very unlikely that the obtained
samples are statistically equal, even if the two algorithms are very similar. There

104

SRCS: STATISTICAL RANKING COLOR SCHEME

will always be differences, even if these differences are small. However, detecting
those differences may require higher sample sizes at a given significance level.
Quoting Vargha and Delaney [159]:

[. . .] if population 1 and 2 are stochastically unequal, then at any
fixed α level of significance the probability of the MWW test being
significant at the α level tends to 1 as the m,n sample size values tend
to infinity. By contrast, if populations 1 and 2 are stochastically equal,
then the probability of the MWW test being significant at the α level
will not tend to 1, however large the two samples be.

For example, suppose that the true difference between two algorithms’ results
is 1.5 performance units. Using 10 repetitions (sample size = 10) for each sample
may not allow a MWW test to detect such differences at a significance level of
α = 0.05. In this case, the test will conclude that the null hypothesis cannot be
rejected. However, using 50 repetitions (sample size = 50), the MWW may now
be able to detect the differences at the same α = 0.05 level, concluding that there
are statistically significant differences.

Therefore, it is true that increasing the number of repetitions of an experiment
may lead to a statistical test concluding that there are differences. However, this
is not a flaw in the design of the experiment, but a sign of higher precision of the
test. Think of it as if looking for differences between two physical objects using
your naked eye (e.g., sample size = 10), or using a microscope (e.g., sample size
= 50). It seems reasonable to think that with a microscope you are more likely to
find differences between two objects than using only your naked eye.

This leads to the distinction between statistically significant differences and
practical significant differences. Two lock keys (the original and a copy) may very
well differ at a microscopic level, but this has little consequences, as long as both of
them open their corresponding lock (which will likely require millimetric precision
at most). On the other hand, if we need to copy a circuit board at a nanometric
scale, we cannot use our naked eye for that purpose.

The first example (the key and the copy) illustrates a case where we have statis-
tical significance, but no practical significance. The circuit board example, on the
other hand, illustrates a case where we cannot conclude if we have practical sig-
nificance because we do not have statistical significance. It should be an objective
of an experiment design to gather as much data as possible to make any difference
statistically significant. On top of it, it should be the researcher’s responsibility to
decide if these differences are of practical interest.

The concept of practical significance is closely linked to real-world problems.
However, when we work with synthetic problems which value is purely academical
— like, e.g., MPB, Ackley, Royal Road, etc. —, it is rather meaningless to use this

105

SRCS: STATISTICAL RANKING COLOR SCHEME

concept. In these cases, our recommendation, as a rule of thumb, is that any exper-
iment should gather as much data as possible in order to guarantee safe practical
conclusions, and only be limited by practical issues like computational effort, time
requirements, etc. In other words, without further information that could limit a
priori the sample size (i.e., a minimum effect size for practical significance), use
a sample size big enough to ensure that at least the differences in the
results are statistically significant.

For more in-depth information about the use of non-parametric tests and
questions on the factors that determine them, the interested reader is referred
to [79,91,132].

4.4. Applying SRCS: algorithm comparison for

continuous DOPs

The SRCS technique has been used in some published research works. The
first one is [68], in which the Agents algorithm was adapted to discrete DOPs.
However, since we have already discussed this work in detail in Sect. 3.3, we will
not give further details here.

Instead, we are going to introduce a work that was not included in Chapter 3
because it does not contain any improvement nor new proposal of an algorithm.
This work presents an extensive comparison of the performance of 8 algorithms over
a wide range of continuous DOPs scenarios, using the SRCS technique for analyzing
the results. This work was the proof of concept for SRCS, demonstrating that it
can greatly help to obtain useful conclusions from vast amounts of experimental
data.

4.4.1. Motivation

A high number of methods that deal with DOPs has already been proposed, but
there are not yet clear criteria about which one is better to apply in each situation
or how to face a new problem instance. Moreover, an algorithm may be well-suited
for some problem configurations, but behave worse in others. Instead of developing
an always best-performing method (remember the no-free-lunch theorem [171]),
it may be more interesting to know which are the favorable conditions for each
algorithm in order to choose the best available option. In this work, we introduce
a first approach to this question, where we have selected a set of algorithms to
compare their performance in different test benchmarks. We have attempted to
select methods that are representative of diverse algorithmic families, in order to
favor a wider scope of the comparison. We will now overview some of the families
and algorithms that we have chosen.

106

SRCS: STATISTICAL RANKING COLOR SCHEME

Traditionally, the most commonly used algorithms in DOPs have been Genetic
Algorithms (GA) and Evolutionary Algorithms (EA) [22, 23, 28, 134, 151]. An
special remark is deserved to the Random Immigrants Genetic Algorithm (RIGA)
[71], a GA algorithm aimed at maintaining a high level of diversity, which is a key
aspect in DOPs. Some variants of RIGA are among the best-performing on this
family, like SORIGA [151], which is the one that we have used in this work.

However, other approaches have been applied to DOPs, outperforming GAs
and EAs in some cases. One of these approaches is Particle Swarm Optimization,
PSO, [87] which is a quite competitive one, with several DOP-oriented proposals
[14,31,83,124]. Particularly, a PSO variant with multi-swarms, and quantum and
trajectory particles, the mQSO, [15] has obtained good results and is frequently
mentioned in the literature [13, 92, 180]. Some of our recent proposals include
adding heuristic rules to this mQSO [39], improving its performance.

Finally, another group of algorithms that has obtained very good performance
is that of Cooperative Strategies. We have conducted some experiments studying
how cooperation between multiple optimization sub-components behave when ap-
plied to DOPs, with very promising results. These proposals include cooperative
multi-agent systems [125, 126], or more recently, centralized schemes where a co-
ordinator manages the information exchanged among a group of trajectory-based
metaheuristic solvers (i.e., Tabu-Search solvers) [69,70].

The objective of this paper is to compare a variety of algorithms for DOP’s
among the previously mentioned proposals, in order to gain knowledge on their
generic properties, behavior and performance, as well as setting the bases for future
comparison studies. The finally chosen algorithms are:

an Evolutionary Algorithm, SORIGA [151], based in the RIGA approach,

the standard mQSO [15] as well as 3 of its variations based on heuristic
rules [39], that are named after the rule they use (Change Rule, Rand Rule,
and Both Rule),

the cooperative multi-agent algorithm proposed in [125],

and finally, two trajectory-based Cooperative Strategies with different coop-
eration schemes, independent and reactive [69].

The test-case scenarios were chosen to include different representative benchmarks,
namely the MPB and the dynamic versions of the Ackley, Griewank and Rastrigin
functions. For each problem, a wide range of configurations which emphasize the
influence of dynamism have been tested (variations of change period, severity and
dimensionality), with a full-factorial experimental design combining all of them.

107

SRCS: STATISTICAL RANKING COLOR SCHEME

4.4.2. Algorithms used

Most of the algorithms used in this work have already been described in Chap-
ter 3: the mQSO with heuristic rules (Sect. 3.2), the Agents algorithm (Sect. 3.3)
and the CS algorithm variants (Sect. 3.4). We will only provide here a detailed
description of the SORIGA algorithm, which has not been discussed before.

SORIGA (Self Organized Random Immigrants Genetic Algorithm) was pro-
posed by Tinós and Yang in [151]. It is a variation of RIGA (Random Immigrants
Genetic Algorithm) [71], a genetic algorithm where the flux of immigrants increases
the diversity of the population.

The main modification introduced by SORIGA is the use of two different pop-
ulations: the main population and a sub-population. Assignment of individuals to
each population is performed dynamically during the execution of the algorithm,
and crossover is only allowed between individuals within the same population. The
pseudocode of SORIGA is given in Algorithms 4.1 and 4.2.

At the beginning, all the individuals belong to the main population, but as
evolution goes on, individuals are extracted from it and assigned to the sub-
population. This is done by means of the replaceFractionPopulation() function
(Algorithm 4.1, line 8, and Algorithm 4.2). This function selects the individual
with the lowest fitness and other rr − 1 more around it (rr is a user-defined pa-
rameter, the replacement rate), assign them to the sub-population, and replace
them with random individuals. In case the less-fitted individual already belongs
to the sub-population, all individuals are extracted from the sub-population and
put back to the main population. Then, traditional mutation and crossover oper-
ators are applied, with the previously mentioned modification, i.e., that crossover
is only allowed among individuals within the same population. Tinós and Yang
show in their paper that the process of individuals joining the sub-population when
the main population is close to a local optimum is similar to a “chain reaction”,
thus increasing the diversity (this feature being called self-organized criticality,
SOC [7]).

Originally, SORIGA was designed for discrete DOPs. In order to adapt it
to continuous DOPs, we have re-implemented it using continuous crossover and
mutation operators. There are no previous studies on the use of SORIGA for the
continuous domain that could give hints on the most appropriate operators to use.
Since the objective of these work is not to search for the best design alternatives,
but to gain knowledge on the generic properties, behavior and performance of the
given algorithms, we decided to simply choose “reasonable” operators to adapt
SORIGA. For the crossover, the well-known BLX-α operator [53] was selected.
Regarding the mutation operator, we implemented a simple one that chooses one
component of an individual and randomizes it uniformly over all its domain. This
operator was chosen because it allows SORIGA to potentially explore the whole

108

SRCS: STATISTICAL RANKING COLOR SCHEME

Algorithm 4.1: SORIGA

1 P ← population ;
2 rc ← crossover rate ;
3 rm ← mutation rate ;
4 rr ← replacement rate ;

5 initializePopulation(P);
6 evaluatePopulation(P);

7 while stopping condition is not met do
8 Pnew ← replaceFractionPopulation(P, rr);
9 Pnew ← Pnew + crossover(P, rc);

10 Pnew ← mutation(Pnew, rm);
11 evaluatePopulation(Pnew);
12 P ← Pnew;

13 end

Algorithm 4.2: SORIGA, replaceFractionPopulation(P ,rr)

1 Pnew ← empty population;
2 i← index of the individual of P with the lowest fitness;

3 if P [i].replaced = false then
// reset subpopulation to contain no individual

4 for each individual j in P do
5 P [j].replaced← false;
6 end

7 end

8 for each individual j in P do
// if individual j is one of the rr individuals around

individual i, randomize it and add it to the

subpopulation; otherwise, just copy it

9 if i− d(rr − 1)/2e ≤ j ≤ i+ b(rr − 1)/2c then
10 Pnew[j]← randomly generated individual;
11 Pnew[j].replaced← true;

12 else
13 Pnew[j]← P [j] ;
14 end

15 end

16 return Pnew ;

109

SRCS: STATISTICAL RANKING COLOR SCHEME

search space.

Parameter Value
Population size 50
Elite size 2
Replacement rate (rr) 0.02
Mutation rate (rm) 0.01
Crossover rate (rc) 0.7
α (for the BLX-α operator) 1.0

Table 4.4 – Parameter settings for the SORIGA algorithm

The parameter settings used in the experimentation for the SORIGA algorithm
are summarized in Table 4.4. In general, the parameter values were chosen to be
the ones used in Tinós and Yang paper, with the exception of the BLX-α settings
(not available in the original proposal since it was tested on a discrete problem)
and the population size (in the original paper it was set to 120, a value that showed
poor performance in some preliminary test in these problems).

4.4.3. Validation

Based on our experience, some of the parameters of a DOP that mostly affect
the performance of algorithms are dimensionality, change period, and severity of
the change.

In the experiments conducted in this work, a set of different values for each
of the three previous parameters were selected, and a full factorial experimental
design was used, meaning that all possible combinations of the parameter values
were tested, for every problem, and every algorithm.

As we have previously mentioned, 4 problems were used to compare the per-
formance of the algorithms: the MPB, and the dynamic versions of the Ackley,
Griewank and Rastrigin functions.

The introduction of dynamism into the Ackley, Griewank and Rastrigin prob-
lems has been performed with the idea of keeping it as similar as possible to the
MPB’s. Therefore, we started from the MPB’s dynamic base-settings, and we
attempted to extend them to the rest of the functions. However, there are big
differences between the MPB and the rest of the problems, and extending MPB’s
dynamism is not always easy to achieve, nor even possible in some cases.

The main difference among these problems is multimodality: while Ackley,
Griewank and Rastrigin are inherently multimodal functions, the MPB is only
multimodal by means of a composition of unimodal functions (peaks). This means

110

SRCS: STATISTICAL RANKING COLOR SCHEME

that the MPB has a small number of local optima, around 100 in our experiments,
while Ackley, Griewank and Rastrigin may have up to thousands. On the other
hand, each local optimum of the MPB can be controlled individually (each peak
has a position, height, and width), while the local optima of the other functions are
pre-determined, meaning that their location depend only on the function’s origin
of coordinates and their height and area of influence is fixed.

Dynamism in the MPB is obtained by periodically modifying the properties of
each peak: position, height and width. Of these 3 properties, width is exclusive of
the MPB’s peak function, and cannot be translated to any property of the Ackley,
Griewank or Rastrigin functions. Height can be translated, but it is only meaning-
ful in the MPB, because each peak has its own height (some peaks increase their
height, while others decrease it). Varying the height in the other problems will
not affect the algorithm’s performance, since it is equivalent to add or subtract
a constant value to the whole function’s fitness, producing the same landscape
with shifted values, but without changing the structure of the function nor the
height of individual local optima. Therefore, the only property that can be rea-
sonably translated is position. We achieve this by explicitly introducing the origin
of coordinates of the function as a parameter, p, through the following expression:

f ′(x) = f(x− p)

f ∈ {Ackley,Griewank,Rastrigin}

Dynamism is added by periodically changing the origin of coordinates p using
the MPB movement equations 2.4 and 2.5. In consequence, parameters change
period and severity can also be defined for these problems.

The final result, however, is not exactly the same, since peaks in the MPB move
independently of each other, while local optima of Ackley, Griewank and Rastrigin
functions move all as a block. Although this dynamism may not be as elaborated
as in the MPB’s, this does not necessarily mean that these problems are easier
to solve (it is still harder to optimize a function with thousands of local optima
than one with only a hundred). However, it is possible, and even expected, that
this situation may benefit some algorithms in detriment of others, for some cases.
This is actually the case in the experiments, and we will discuss it in Sect. 4.4.4.
Far from seeing this as a flaw, we believe this is yet another feature that increases
our knowledge on what are the environmental conditions that mostly affect the
performance of algorithms, which is one of the main objectives of this work.

As we have mentioned, the Scenario 2 of the MPB has been used as a baseline
configuration for the experiments, in order to keep the results related with the
existing literature. Therefore, the set of values for the parameters were explic-
itly chosen to contain a value within the range of those defined by Scenario 2.

111

SRCS: STATISTICAL RANKING COLOR SCHEME

The complete set of parameter values is listed below, where the bold-faced value
indicates the one that corresponds to the Scenario 2 settings:

dimensionality: {5, 10, 15, 20, 25}

change period factors {40, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}

severity {2%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 20%}

The change period parameter indicates how many function evaluations is the
algorithm allowed to consume before a change in the environment occurs. However,
it is well-known that dimensionality affects the ability of an algorithm to optimize a
function: the higher the dimensionality of the problem, the lower the performance.
Therefore, instead of fixing the number of function evaluations allowed for a certain
configuration independently of the dimensionality, we consider the change period
as a factor: the final change period value is obtained multiplying the change period
factor by the dimensionality. For example, using a change period factor of 1000
and 5 dimensions, the number of function evaluations between changes in the
environment is 5000 (which are actually the values for the Scenario 2). However,
the same change period factor used in 20 dimensions means that the number of
function evaluations between changes is 20000.

Also, severity depends on the range of the input variable x (all xi dimensions
have the same range in the benchmarks), but this range is different for each prob-
lem. In order to unify test configurations, instead of using absolute severity values,
a percentage of x’s range is used.

Parameter MPB Ackley Griewank Rastrigin

Num. dimensions (n) {5, 10, 15, 20, 25}
Change period (ω) {40, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000} · n
x range [0, 100]n [−32, 32]n [−50, 50]n [−5, 5]n

Severity (s) {2%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 20%} · x range
Corr. coefficient (λ) 0.5
Num. peaks (m) 100 - - -
Peak heights (hj) rand [30, 70] - - -
Peak widths (wj) rand [1, 12] - - -
Height severity (hs) 7.0 - - -
Width severity (ws) 1.0 - - -

Table 4.5 – Experiment settings for the MPB, Ackley, Griewank and Rastrigin functions

The final test configurations for all problems are summarized in Table 4.5.
From this table we can calculate the number of configurations to test for every

112

SRCS: STATISTICAL RANKING COLOR SCHEME

problem. If we also consider all the problems and algorithms, we obtain the total
amount of experiments to perform:

5 dimensions× 11 change freq.× 10 severities = 550 configurations

550 configurations× 8 algorithms× 4 problems = 17600 experiments

Due to the high number of experiments, it is almost impossible to show all the
numerical results of the algorithms in a comprehensive way using tables. In order
to overcome this, we need to compact the information to be displayed, and present
it in a more manageable format. Recall that we want to provide an overview of
the behaviour and we are not searching for the “best” algorithm. For this purpose,
we have used the SRCS technique introduced in this chapter to display the data.

Finally, regarding the performance measure used, there are several ones avail-
able in the DOP literature (see, for example, [28, 114, 165]). In order to make
our results comparable with other closely related works (like, e.g., [39, 41, 68, 69],
presented in Chapter 3), the performance measure selected for our experiments
was the offline error (eoff) [28] (see Sect. 2.2.1).

The execution of an algorithm for Nc changes is defined as a run. In order to
obtain statistically meaningful results, each experiment consisted of Nr indepen-
dent runs, each one with a different random seed. In this work, we have chosen
Nr = 50, and the comparison of the algorithms has been performed using those 50
eoff measures for each algorithm.

The results of the experiments are presented in the form of 4 figures arranged
as tables (Figs. 4.6, 4.7, 4.8, and 4.9). Each one corresponds to a problem,
and shows the ranking results of the algorithms for all the configurations of that
problem. Each row corresponds to the results of a given algorithm, and each
column to the results of a given dimensionality of the problem. Cells show the
results of all change period vs. severity configurations, for that algorithm (row)
and dimensionality (column).

Results for the MPB problem are shown in Fig. 4.6, for the Ackley problem
in Fig. 4.7, for the Griewank problem in Fig. 4.8, and finally, for the Rastrigin
problem in Fig. 4.9.

4.4.4. Conclusions

Eight algorithms have been chosen for the study: SORIGA, the Agents algo-
rithm, the standard mQSO and 3 of its variations based on heuristic rules (mQSO
+ Change Rule, mQSO + Rand Rule, mQSO + Both), and 2 Cooperative Strate-
gies based on trajectory metaheuristics, one with no cooperation between them
(independent), and the other one with a cooperation scheme based on the ideas of
Reactive Search.

113

SRCS: STATISTICAL RANKING COLOR SCHEME

No. of dimensions
5 10 15 20 25

so
ri

g
a

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

7

5

3

0

-3

-5

-7

a
g
en

ts

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

7

5

3

0

-3

-5

-7

m
q
so

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

7

5

3

0

-3

-5

-7

m
q
so

-c
h

a
n

g
e

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

7

5

3

0

-3

-5

-7

m
q
so

-r
a
n

d

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

7

5

3

0

-3

-5

-7

m
q
so

-b
o
th

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

7

5

3

0

-3

-5

-7

in
d

ep
en

d
en

t-
cs

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

7

5

3

0

-3

-5

-7

re
a
ct

iv
e-

cs

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

7

5

3

0

-3

-5

-7

severity (%)

5 10 15 20

severity (%)

5 10 15 20

severity (%)

5 10 15 20

severity (%)

5 10 15 20

severity (%)

5 10 15 20

Figure 4.6 – Rank results of all the algorithms for the MPB.

114

SRCS: STATISTICAL RANKING COLOR SCHEME

No. of dimensions
5 10 15 20 25

so
ri

g
a

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

7

5

3

0

-3

-5

-7

a
g
en

ts

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

7

5

3

0

-3

-5

-7

m
q
so

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

7

5

3

0

-3

-5

-7

m
q
so

-c
h

a
n

g
e

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

7

5

3

0

-3

-5

-7

m
q
so

-r
a
n

d

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

7

5

3

0

-3

-5

-7

m
q
so

-b
o
th

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

7

5

3

0

-3

-5

-7

in
d

ep
en

d
en

t-
cs

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

7

5

3

0

-3

-5

-7

re
a
ct

iv
e-

cs

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

200

400

600

800

1000

2 4 6 8 10 12

7

5

3

0

-3

-5

-7

severity (%)

5 10 15 20

severity (%)

5 10 15 20

severity (%)

5 10 15 20

severity (%)

5 10 15 20

severity (%)

5 10 15 20

Figure 4.7 – Rank results of all the algorithms for the Ackley function.

115

SRCS: STATISTICAL RANKING COLOR SCHEME

No. of dimensions
5 10 15 20 25

so
ri

g
a

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

7

5

3

0

-3

-5

-7

a
g
en

ts

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

7

5

3

0

-3

-5

-7

m
q
so

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

7

5

3

0

-3

-5

-7

m
q
so

-c
h

a
n

g
e

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

7

5

3

0

-3

-5

-7

m
q
so

-r
a
n

d

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

7

5

3

0

-3

-5

-7

m
q
so

-b
o
th

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

7

5

3

0

-3

-5

-7

in
d

ep
en

d
en

t-
cs

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

7

5

3

0

-3

-5

-7

re
a
ct

iv
e-

cs

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

200

400

600

800

1000

5 10 15 20

7

5

3

0

-3

-5

-7

severity (%)

5 10 15 20

severity (%)

5 10 15 20

severity (%)

5 10 15 20

severity (%)

5 10 15 20

severity (%)

5 10 15 20

Figure 4.8 – Rank results of all the algorithms for the Griewank function.

116

SRCS: STATISTICAL RANKING COLOR SCHEME

No. of dimensions
5 10 15 20 25

so
ri

g
a

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

7

5

3

0

-3

-5

-7

a
g
en

ts

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

7

5

3

0

-3

-5

-7

m
q
so

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

7

5

3

0

-3

-5

-7

m
q
so

-c
h

a
n

g
e

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

7

5

3

0

-3

-5

-7

m
q
so

-r
a
n

d

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

7

5

3

0

-3

-5

-7

m
q
so

-b
o
th

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

7

5

3

0

-3

-5

-7

in
d

ep
en

d
en

t-
cs

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

7

5

3

0

-3

-5

-7

re
a
ct

iv
e-

cs

c
h
a
n
g
e

fr
e
q
u
e
n
c
y

1000

800

600

200

400

40
200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

200

400

600

800

1000

0.5 1.0 1.5 2.0

7

5

3

0

-3

-5

-7

severity (%)

5 10 15 20

severity (%)

5 10 15 20

severity (%)

5 10 15 20

severity (%)

5 10 15 20

severity (%)

5 10 15 20

Figure 4.9 – Rank results of all the algorithms for the Rastrigin function.

117

SRCS: STATISTICAL RANKING COLOR SCHEME

The algorithms have been tested on the Moving Peaks Benchmark (MPB) and
on dynamic versions of the well-known Ackley, Griewank and Rastrigin functions.
For each problem, a wide variety of configurations have been used, including vari-
ations of the dimensionality of the problem, the frequency of the changes on the
environment, and the severity of those changes.

A recent technique, SRCS, has also been used for presenting the results of a
high number of experiments when comparing several algorithms. The methodology
focuses on ranking the algorithms using statistical tests, and assigning color keys
to each rank, in order to create a graphical matrix. These matrices are more
expressive and comprehensible than their numerical counterparts.

From the results, the following conclusions can be obtained:

For the MPB: there are 3 algorithms which are better than the other 5 for
some configurations. These algorithms are the agents, the mqso-rand, and
the reactive-cs.

• the agents algorithm seems to be more effective than the others for
higher dimensions (15-25), and is more influenced by the severity (better
with higher severity) than by the change period.

• the mqso-rand, on the contrary, is better suited for lower dimensions
(5-10), and is more dependent on the change period (better with higher
number of function evaluations), than on the severity.

• the reactive-cs seems to be better for low severity, high number of func-
tion evaluations, higher dimensionality.

For the Ackley function: there are, again, 3 algorithms which are clearly
better than the others: soriga, and the two variants of the Cooperative
Strategies, independent-cs and reactive-cs.

• both independent-cs and reactive-cs have a very similar behaviour, and
clearly outperform the rest of the algorithms for most of the configura-
tions.

• soriga is the only algorithm that performs better than the Coopera-
tive Strategies for some configurations, which are mainly those with
dimensionality between 10 and 20, and for very rapidly changing envi-
ronments.

For the Griewank and Rastrigin functions, the results are almost identical,
with the Cooperative Strategies clearly dominating the rest of the algorithms,
and soriga being the only one performing better for a reduced set of configu-
rations, mainly very low dimensionality (5), very low change period (40-100),

118

SRCS: STATISTICAL RANKING COLOR SCHEME

and for any severity. Between the Cooperative Strategies, reactive-cs seems
to be slightly better than independent-cs.

This shows that the Cooperative Strategies are the best choice for problems
with some kind of regular structure on their local optima distribution (e.g., Ackley,
Griewank, Rastrigin). SORIGA is the best option for very rapidly changing envi-
ronments. When the problem’s local optima distribution is more random, like in
the MPB, the mQSO + Rand Rule obtains the best results for low dimensionality,
while the Agents behaves better for higher dimensionality and growing severity of
the changes.

This comparison of algorithms has been published in [40]:

“An Algorithm Comparison for Dynamic Optimization Problems”, I. G. del

Amo, D. A. Pelta, J. R. González, and A. D. Masegosa, Applied Soft Computing,

12(10):3176–3192, 2012. http://dx.doi.org/10.1016/j.asoc.2012.05.021.

4.5. Conclusions

In this chapter we have presented a new technique, SRCS (Statistical Ranking
Color Scheme), specifically designed to analyze the performance of multiple algo-
rithms in DOPs over variations of several factors (e.g., change frequency, severity,
dimensionality, etc). This technique is especially well-suited when we want to com-
pare algorithms in a all-vs-all manner, for example, when we want to determine
which are the best performing ones in a wide range of scenarios.

SRCS uses statistical tests to compare the performance of the algorithms for
a given problem configuration, producing a ranking. Since the results of meta-
heuristics and non-exact algorithms do not generally follow a normal distribution,
non-parametric tests are usually preferred. As a practical guideline, a multiple-
comparison test must be performed first, like the Kruskal-Wallis test, in order
to determine if there are global differences in the performance of the algorithms.
Then, a pair-wise test is used, in order to assess individual differences between
algorithm pairs, like the Mann-Whitney-Wilcoxon test. This pair-wise test must
be adjusted in order to compensate for the family-wise error derived from the per-
formance of multiple comparisons, using for example Holm’s method. However,
these tests are only suggestions that do not affect the way in which SRCS works,
and other options can be used (Friedman’s test, Iman-Davenport, etc).

119

http://dx.doi.org/10.1016/j.asoc.2012.05.021

SRCS: STATISTICAL RANKING COLOR SCHEME

The ranking produced is later used to associate color codes to each algorithm
result, such that the relative performance of each algorithm with respect to the
others can be represented in a graphical way. This representation allows to visual-
ize the results of many algorithms on many configurations in a much more compact
way by enhancing differences between the results, and giving thus the researcher
the possibility of identifying behavioural patterns more easily.

Like any information compressing technique, SRCS lefts out part of the infor-
mation, so its use, either isolated or as a complement to other traditional ways
for displaying results (tables and plots), should be evaluated in each case. With
SRCS, using rankings for stressing out the differences among algorithms implies
not displaying absolute performance values.

Additionally, we have shown 2 works [40, 68] where we have used the SRCS
technique. Of those, [68] was already commented on Sect. 3.3, and it has not
been discussed again here. On the other hand, we have analyzed in depth the
comparison of algorithms presented in [40], where we have been able of extracting
valuable conclusions about what are the general behaviours of the algorithms used,
their trends, and in which cases it is better to use one or another.

The SRCS technique was published in [38]:

“SRCS: a technique for comparing multiple algorithms under several fac-

tors in Dynamic Optimization Problems”, I. G. del Amo and D. A. Pelta, in

Metaheuristics for Dynamic Optimization (E. Alba, A. Nakib, and P. Siarry, eds.), vol-

ume 433 of Studies in Computational Intelligence, Springer Berlin/ Heidelberg, 2012.

http://dx.doi.org/10.1007/978-3-642-30665-5_4

120

http://dx.doi.org/10.1007/978-3-642-30665-5_4

Chapter 5

Software design and
implementation

In this chapter we present the most significant software contributions that
we have performed through all the thesis. These contributions are grouped into
two main ones: DACOS, a framework for the design and analysis of cooperative
optimization systems, and the MODO Optimization Package, a set of libraries
containing most of the software developed during the experiments. We will explain
the circumstances that motivated these contributions, their architecture, and the
conclusions extracted from their development.

5.1. DACOS

DACOS (Design and Analysis of Cooperative Optimization Systems) is a per-
sonalized framework for the configuration and analysis at design-time of rule-based
centralized cooperative optimization systems. Software modeling tools (and more
precisely, the Eclipse Modeling Framework [50, 148]) were used to build DACOS.
Software modeling tools are focused on the use of models, which, among other
advantages, allow for the automatic generation of code. The use of these tools
speeds up the system’s build up time, and what is more important, reduces the
programming errors. Also, the generated code usually follows widely accepted
software design patterns, which increases its robustness and flexibility.

5.1.1. Motivation

In Sect. 3.4 we talked about the CS algorithm, in which a set of metaheuristics
cooperated among them by means of a central coordinator. This working mecha-
nism is not exclusive of the CS algorithm, so we will denote any algorithm based

121

SOFTWARE DESIGN AND IMPLEMENTATION

on this architecture as Cooperative Optimization Systems (COS).
The performance of a COS is measured in terms of the quality of the solutions

it can provide using certain amount of resources (e.g. time), and this is directly
related with the system’s definition and configuration. Configuring and analyzing
a COS is somehow a generic task: it is about setting parameters, deciding which
modules are going to be used and which are not, and specifying what output
should be plotted. Intuitively, this task can be thought of independently of the
particular problem or algorithms being used. However, when it comes to the
practice, each problem and metaheuristic has its own API and parameters, and
produces its output in its own format. As a consequence, the configuration and
analysis processes must be personalized for each implementation, making it very
difficult, and even undesirable, to develop a generic system for every problem and
COS. Instead, we can help and assist the researcher as much as possible in building
a specific system for his particular needs.

Figure 5.1 – .

The main components of a COS are depicted in Fig. 5.1. The system is com-
posed by a set of basic optimization modules (metaheuristics) whose work is con-
trolled in a centralized way through a coordinator module. The symbol � denotes
a system’s component that needs to be configured prior to the execution of the
COS.

Configuring an optimization module implies choosing a metaheuristic and set-

122

SOFTWARE DESIGN AND IMPLEMENTATION

ting up all of its parameters. Different metaheuristics have different sets of pa-
rameters, and they may range from values indicating a path for a file, single
real/integer/character values, or more complex parameters like operator’s defini-
tions, etc. In the context of a COS, this task must be repeated for each module.

Configuring the coordinator also implies setting its own parameters. Moreover,
if the coordinator uses a rule base to control the optimization modules, as in [35,
69,70,127], it is also necessary to define the antecedent (set of conditions) and the
consequent (the actions to be taken) for each of the rules.

Finally, parameters related with the communication channels between the op-
timization modules and the coordinator also need to be set. For example, the type
of information exchanged (best solution, number of local optima, distance between
them...), the communication frequency, etc.

On the other hand, usually this parameter-setting process is performed by re-
peating many times the cycle configure-execute-analyze. For example, we may
start with three optimization modules, then perform a test, and adjust the con-
figuration according to the results. These adjustments could mean setting some
parameter values, but also duplicating some modules and having two copies of
each one with different parameter’s settings, or replacing one of the modules with
another metaheuristic, or using a different communication frequency, etc. Besides,
it is usually necessary to wait for the COS to completely finish its execution before
studying its output. This way of proceeding is inefficient, since it is often possi-
ble to identify if the behaviour of the system is acceptable by simply observing
partial results. Nevertheless, this visualization is not trivial, since every problem,
even each metaheuristic, may require different techniques (linear plots, pie charts,
boxplots, user-defined visualizations, etc).

It seems clear that defining/configuring and analyzing/visualizing a COS can
be quite complex, and therefore, an integrated system for helping in these tasks
would be highly desirable. In order to develop a software tool that helps us and
other researchers to efficiently handle these processes, our experience suggests that
the following requirements should be addressed:

1. Ease of use: the configuration of the system’s modules must be simple and
intuitive, supporting the user whenever it’s possible in repetitive or automat-
able tasks.

2. Flexibility : it must be possible to adapt it to different types of modules,
problems, and visualization charts in a fast and simple way.

3. “Real-time” visualization: it must be able to show results as they are being
generated, in order to give a feedback to the researcher as soon as possible.

123

SOFTWARE DESIGN AND IMPLEMENTATION

4. Features integration: it should be desirable to configure and analyze the
system within the same environment, in order to facilitate an iterative ap-
plication of the tasks design → analysis.

5. Easiness of integration with other tools : it must have a low coupling degree
between components, as well as using standard data interchange formats.
The tool should be preferable open source, which, along with the use of
standards, would facilitate its distribution and integration.

In order to meet these requirements, we resort to software modeling techniques.
A software model is an abstract and formal representation of a system, indepen-
dently of its associated implementation particularities. The use of software mod-
els allows the developer to focus on the general aspects of the system, avoiding
technology-related details, such as the programming language or the communica-
tion protocol between components. Since a model is also a formal representation,
subject to rules, it is possible to create software tools that assist in the develop-
ment of the model and automatically produce code from it. Software modeling is
a mature technique nowadays, with consolidated tools that allow for a useful and
productive application of its principles.

The tool presented here, DACOS, is intensively based on one of the most well-
known applications in this area: the Eclipse development environment [48, 106]
and its software modeling project EMF [50, 148]. These, along with the BIRT
charting library [11], account for the core of DACOS.

5.1.2. DACOS Architecture

DACOS is composed by two modules, one for the design or configuration of
the cooperative optimization system, and the second one for the analysis and
visualization of their results.

An important feature to take into account is the level of coupling between
DACOS and the particular COS we are dealing with. Both systems could be
integrated within the same monolithic program, but an alternative approach is
more advisable due to the differences in their requirements. The objective of a
COS is to solve a hard optimization problem, which is a computationally intensive
task. Its code implementation must be efficient, and once its execution has begun,
it usually does not need any input from the user, so it does not require any graphical
interface. On the other hand, DACOS does not participate in the optimization
process, nor requires high-end hardware for its execution, but it does need to
interact with the user, preferably using a GUI.

As a consequence, DACOS is implemented as an independent program. This
approach not only permits to design each system in the most appropriated way,

124

SOFTWARE DESIGN AND IMPLEMENTATION

according to their requirements, but it would also allow them to be executed
in different machines (e.g., DACOS in a desktop computer, and the COS in a
dedicated server).

This situation makes it necessary to define a communication interface between
them, in order to diminish the coupling as much as possible. This guarantees that
both DACOS and COS could evolve (at a version level) without affecting each
other, as long as they honour that communication interface. Also, the use of this
established interface implies that a certain COS’s implementation can be substi-
tuted by another one, and viceversa, the very same strategy can be configured by
different implementations of DACOS, or even by external applications. Also, COS
and DACOS may be run on different machines, so in order to avoid time depen-
dencies, it is advisable that the use of an asynchronous communication interface.
This can be achieved by using structured data files. Fig. 5.2 shows an example of
the workflow sequence between DACOS and COS, as well as the use of data files
for the communication.

Figure 5.2 – Workflow sequence between DACOS and COS.

125

SOFTWARE DESIGN AND IMPLEMENTATION

As will be explained later on, software models have been used for the creation
of both the design and the analysis modules. For the case of the design module,
it has been necessary to model the data structures that are used for specifying
initial parameters for the COS. The analysis module, however, is slightly more
complex, and both data structures and the objects that use them were needed to be
modeled, in order to go from the raw data representation of the results to its proper
visualization as an integrated chart. Eclipse and its modeling project EMF, have
been used for these tasks. Eclipse is structured as a set of core functionalities with
a plugin mechanism. This allows the addition of new features to the environment
without interfering with the previous ones. For the case of DACOS, this meant that
the configuration and analysis modules could be packed as a plugin for Eclipse,
avoiding the complexity of dealing with windows or event managing, buttons,
scrollbars, etc. Moreover, with the help of plotting libraries, the development of
visualization tools to help understanding the behavior of the COS at hand can be
effectively implemented.

5.1.2.1. Design Module

The aim of the design module is to allow the user the management of the
design alternatives for a COS in an intuitive and friendly way. As was previously
explained, this is not a trivial task, as it must be able to deal with a great variety of
elements that depend on the problem, the metaheuristics used, the coordinator’s
rules, etc. In Fig. 5.3 it can be seen a screenshot of this module at work.

At the beginning of this section, it has already been justified the use of data
files as a communication interface between DACOS and COS. Focusing on the
configuration module, one of the most popular file formats for data interchange
has been used: XML (http://www.w3.org/TR/REC-xml/). The use of XML as
a format for the definition of input data for optimisation programs is supported
by other authors which have successfully used it [119]. The main problem now
consists on defining the structure of this XML file, i.e., it is necessary to specify
a model for the configuration data it contains. In this work, we consider a COS
where the coordinator module uses IF-THEN rules, so the following aspects have
been considered:

Regardless of the type of the optimization module, it is always necessary to
specify certain parameters related to the problem at hand, like number of
variables, constraints, files location, etc. Thus, in the configuration, there
will always be an element labeled Problem. However, there are many poten-
tial different problems to fix the structure of this element. Therefore, the
element Problem is defined to contain a list of subelements named Property,
holding pairs (name,value). In this way, each problem will contain the at-
tributes that the researcher requires. This type of structure will repeat in

126

http://www.w3.org/TR/REC-xml/

SOFTWARE DESIGN AND IMPLEMENTATION

Figure 5.3 – Screenshot of the design module.

almost every element of the configuration, since it represents a compromise
between a predetermined structure that can be validated, and a flexible one
that can be easily adapted to the peculiarities of the problem.

Like in the previous case, it will always be necessary to specify which meta-
heuristics are going to be part of the COS, including their parameters. There-
fore, a list of Optimizer elements are used as a fixed structure. However, as
it happens with the Problem element, the great variety of metaheuristics
and configuration parameters makes it almost impossible to determine an a
priori fixed structure for this element that would be functional. Thus, each
Optimizer element contains again a list of Property elements that indicate
its attributes.

Central coordinator’s properties are set via the Coordinator element, and its
set of Property subelements.

Finally, the rules are specified by a list of Rule elements, each of them con-
taining an Antecedent element and a Consequent element, with their corre-
sponding Property elements to indicate its values.

Fixed elements (such as Problem, Optimizer, etc) allow for an automated valida-
tion of configuration values when using software models, but force other researchers

127

SOFTWARE DESIGN AND IMPLEMENTATION

to use that elements in their configuration files; on the other hand, wildcard ele-
ments (such as Property) provide the researchers with greater flexibility, but does
not allow to automatically check their values.

In order to provide a reasonable balance between automated validation and
flexibility, we have defined fixed elements for top-level concepts, such as Problem,
Metaheuristic, Rule, etc. These elements are generic enough to ensure that they
can be used in most situations. On the other hand, we have not forced to use
any fixed element for low-level concepts (say for example, some parameter α of a
certain metaheuristic), and instead, we have used wildcard Properties, that cannot
be validated by the software in run-time, but allow the researchers to used them
freely according to their needs.

5.1.2.2. Analysis and Visualization Module

The analysis and visualization module is the responsible for showing the results
of the COS in a meaningful way. Although there are programs that are able to
perform this task, the objective here is to have a high degree of control over the
visualization process, so the use of libraries is preferable to external applications.

The first problem that needs to be solved is deciding what would be the for-
mat of the COS’s output data in order to be processed and visualized by this
module. The first choice could be using an XML format, as it happened with the
configuration module, e.g.:

<results>

<data>data 1</data>

<data>data 2</data>

<data>data 3</data>

...

<data>data N</data>

</results>

where each element <data> corresponds to a partial result generated as the coop-
erative strategy explores the solution space.

However, this format has a drawback. The element <results> is not closed
until all the <data> elements are written, and thus, the XML file will not be well-
formed in the meanwhile. This implies that it can not be parsed correctly, and it
can not be used to visualize the results in real time while they are being generated.

The alternative chosen here is to use a different format, a variant of the CSV
(comma-separated values) that uses the character “;” as separator. This format
has the advantage that it does not need to be well-formed, since it doesn’t contain
tags that must be opened and closed, all the data is arranged in columns. Thus, it

128

SOFTWARE DESIGN AND IMPLEMENTATION

is enough to guarantee that all the data of a partial result is written in columns,
and that each partial result is dumped to a different line. Another consideration is
that the analysis module must not read a line before COS has finished writing it,
but this is usually a problem that can be addressed and resolved at the operating
system level. Additionally, many external visualization programs accept input
data in CSV format, so they can be used as an additional verification method of
the results or even as alternative tools.

The next question that needs to be addressed is how to move from the data
in the CSV file to the chart in the analysis module. It has to be noted that a
chart usually shows one or more variables against another (e.g., global error vs.
time, cost of the best solution found by each metaheuristic vs. iteration, etc).
However, the file contains in each line all the data generated in a partial result
(time, iteration, error, fitness of each solution, etc.). Therefore, at some point in
the process, it is necessary to select the variables to present. This can be better
understood with the diagram presented in Fig. 5.4.

O u t p u t

Raw Da ta

Reader

Char t Data

Provider
Chart Bui lder

Cooperat ive

St ra tegy

Outpu t Da ta

X-Axis Data

Y-Axis Data

Canvas

Chart

Graphical

Visual izat ion

Cooperat ive

St ra tegy

Output Raw Data

Objects

Data

interchanged

Figure 5.4 – Visualization model description.

The sequence would be the following:

1. COS writes a new line to the data file with a new partial result.

2. The OutputRawDataReader object is continuously monitoring the data file
for any change on it. When this does occurred, it reads the raw data
and parses it, exposing the read data to the rest of objects in the form

129

SOFTWARE DESIGN AND IMPLEMENTATION

of a CooperativeStrategyOutputData object. This object is simply an in-
memory representation of the raw data.

3. The ChartDataProvider object observes those data, and when it is notified
that a change in the data has occur, it selects the new data to provide to
a chart (x-axis data, in the form of the XAxisData object, and y-axis data,
with a YAxisData object).

4. The ChartBuilder object is notified that a changed has happened in the
XAxisData and YAxisData objects, so it regenerates the correspondent chart
(Chart data) with the new values.

5. Finally, the Canvas object is repainted with the new chart and results are
presented to the user.

It should be noted that this scheme is very similar to the well-known software
pattern Model-View-Controller [61]. This structure of observable data and objects
that watch for changes on them is elegant, and what is more important, useful.
This pattern allows, e.g., that a single CooperativeStrategyOutputData object
may be observed by multiple ChartDataProvider objects, which implies that a
single representation of the results in the CSV file may be used to provide the
necessary data to produce several charts or views.

Regarding the charts creation, because DACOS was going to be integrated in
the Eclipse environment, a charting library with no graphical conflicts with that
application was needed to dynamically create the plots. The way in which this
was solved was to use an existent charting plugin for Eclipse, named BIRT (http:
//www.eclipse.org/birt/). BIRT calls for Business Intelligence and Reporting
Tools, and is a reporting system integrated with the Eclipse platform, which,
among other things, is capable of producing compelling charts and reports. Fig. 5.5
shows a screenshot of the analysis and visualization module using BIRT for creating
several chart views of real data from a specific COS.

5.1.3. Conclusions

In this work, DACOS, an integrated tool for the configuration and analysis of
centralized cooperative optimization systems was presented. The problems that
appear when configuring and visualising these systems have been discussed, and a
guideline for solving them has been proposed.

DACOS has been designed using software models, from which most of the
code has been automatically generated. This methodology guarantees that the
generated code follows well-known software patterns, as well as reduces the number
of programming errors. In order to do this, the Eclipse platform and its software

130

http://www.eclipse.org/birt/
http://www.eclipse.org/birt/

SOFTWARE DESIGN AND IMPLEMENTATION

Figure 5.5 – Screenshot of DACOS’s analysis and visualization module.

modeling project EMF have been used. This has allowed to avoid certain tasks
unrelated with the scope of this work, such as management of events and windows,
integration with the desktop system of the machine, etc.

DACOS is divided in two separated components: the configuration module and
the analysis and visualization module. The system has been tested in a real use
case with the USApHMP problem [104].

DACOS was published in [42]:

“A software modeling approach for the design and analysis of cooperative

optimization systems”, I. G. del Amo, D. A. Pelta, A. D. Masegosa, and J. L.

Verdegay, Software: Practice and Experience, vol. 40, pp. 811–823, Aug. 2010. http:

//dx.doi.org/10.1002/spe.984.

5.2. MODO Optimization Package

The MODO Optimization Package is a software framework developed as a re-
sult of all the experiments on DOPs performed in this thesis. This framework

131

http://dx.doi.org/10.1002/spe.984
http://dx.doi.org/10.1002/spe.984

SOFTWARE DESIGN AND IMPLEMENTATION

brings together the developed software, which has also evolved in time as it was
being adapted to the new experiments. In this section we show the main compo-
nents of the framework and the acquired experience that motivated them.

5.2.1. Motivation

Through all this thesis, the experiments that we have performed have given
us not only the opportunity of increasing our knowledge on DOPs, but they have
also allowed us to gather experience for better designing and performing those very
same experiments in the future.

At the beginning of the research, the experiments that we performed were
focused on proving the validity of some algorithmic proposals on certain, very
specific scenarios. This is the case, for example, of the PSO+CPT [120] that we
talked about in Sect. 3.1, where the experimentation was performed exclusively
over the Scenario 2 of the MPB. Even though, in those early researches, some small
variations of parameters were already tested in order to observe their influence
in the algorithm. In the case of the PSO+CPT, several values for the change
frequency were used.

However, as the investigation advanced, it soon became evident that in order
to acquire a deeper knowledge about the algorithms it was necessary to test them
over a wider range of scenarios. In the work about the properties of the particles
of a mQSO [41] (Sect. 3.2), we only used the MPB, but we analyzed a high number
of configurations, in which we varied the number of peaks, the ratio of the different
types of particles, and the change frequency of the environment.

Finally, subsequent works began to also include different problems in their
experiments (Ackley, Griewank or Rastrigin for continuous problems, and One-
Max, Plateau, RoyalRoad or Deceptive for discrete), each of them with their own
multiple variations of scenarios. This is the case for example of the works of
the mQSO with heuristic rules [39] (Sect. 3.2), the works about the CS algo-
rithm [69,70] (Sect. 3.4), the Agents algorithm [68] (Sect. 3.3), or the comparison
of algorithms [40] (Sect. 4.4).

One of the consequences of this increase in the complexity of the test scenar-
ios was the necessity of developing new techniques for comparing the results and
evaluating the performance of the algorithms, in order to better exploit the infor-
mation provided by the experiments. As a result of this, we created the SRCS
technique [38], introduced in Chapter 4.

However, another consequence that has not been addressed yet was the ne-
cessity of developing a whole software framework that would allow us to perform
this kind of experimentation. Considering the characteristics of the experiments,
it was needed that this software framework could:

132

SOFTWARE DESIGN AND IMPLEMENTATION

Separate algorithms from problems as much as possible. This implies
being able of executing multiple algorithms over the same problem scenario,
and viceversa, executing the same algorithm over multiple instances of sce-
narios and problems. This should be done without changing the code, or at
least, changing it the minimum possible.

Separate performance measures from problems and algorithms as
much as possible. The objective of this requirement is to be able of using
the same performance measure in multiple problems and scenarios, and with
multiple algorithms, and even being able of combining several performance
measures at the same time without interfering with each other.

Separate mechanisms to introduce dynamism from the problems
and scenarios they are applied to. The most common mechanisms to
introduce dynamism can be decomposed in two parts: (1) a condition that
must be met in order for the change to take place, and (2) the change itself.
This causes the change mechanism to be quite similar to the antecedent →
consequent structure of a rule. The idea is, as usual, to be able of reusing
these components in different problems without needing to change the code.
For example, when the condition for a change is that a certain number of
evaluations of the fitness function is reached, it is obvious that this does not
depend on the problem at hand being, e.g., the MPB. Therefore, it should
be possible to use this max-evaluations condition in other problems, and the
framework should make it as easier as possible. The same happens to the
change mechanism (the “consequent” of the rule). For example, when the
condition for a change is met in the MPB, one of the changes that take place
is a translation of the position of the peaks following a trajectory. This very
same kind of movement can be applied to translate the origin of coordinates
of other functions, such as Ackley, Griewank, Rastrigin, etc.

Ensure the reproducibility of the experiments. Since we are mainly
dealing with synthetic problems for performing the test, we must try to guar-
antee as much as possible that the experiments can be replicated. The main
inconvenient for this objective is the use of pseudo-random number genera-
tors, which can be overcame using random seeds. By initializing a random
number generator with the same seed we can be sure that the generated num-
ber sequence is always the same. Moreover, the problem and the algorithm
must both have independent random number generators. This way, a whole
experiment can be reproduced (by providing the same previously used seeds
to the problem and to the algorithm), but also, the evolution of a problem
can be reproduced independently of the algorithm (by providing the seed for
the problem), thus fairly testing algorithms in the same scenario.

133

SOFTWARE DESIGN AND IMPLEMENTATION

As it can be seen in the previous requirements, there is an underlying mo-
tivation in all of them: performing the maximum number of experiments with
the highest effectiveness and efficiency possible. Effectiveness refers to the fact of
obtaining rigorous results that can be independently verified and reproduced. Ef-
ficiency, on the other hand, focuses on optimizing the workload needed to perform
experiments, mainly by recycling previously existent code. This not only reduces
the probability of obtaining wrong results by reusing already tested software, but
also decreases the total amount of time needed to perform an experiment, since it
is not necessary to implement the whole code for it again.

When a single experiment is performed, it is generally more useful to imple-
ment the code as the requirements arise. This agile development approach prevents
loosing time implementing complex functionality and features that eventually may
even be unneeded. This approach is most beneficial when few, unrelated experi-
ments need to be performed. However, when the number and correlation of exper-
iments is high, this previous approach is not optimal, since the code that is usually
produced this way tends to be quite entangled and highly dependent, making it
harder to reuse in other experiments. In our particular case, it was needed to
perform a lot of experiments with high similarity between them, so it was conve-
nient to invest some time in separating these components in order to improve their
portability.

In a previous work [191] we had already introduced, using Object Oriented
Programming (OOP), a class hierarchy to deal with static optimization problems
using metaheuristics. Figures 5.6 and 5.7 show, as a reference, the main class
diagrams of that work. Based on that knowledge, we started to create the MODO
Optimization Package. It must be said that not all the experience from the previ-
ous work could be reused: this new framework included dynamism in the problem,
and our experience and new knowledge made us rethink some of the approaches
used in [191] (just to cite an example, in the previous work solutions were merely
data containers and the responsibility of everything related with them laid on the
problem; in the MODO Optimization Package, part of this responsibility has been
translated to the solution itself, for example when comparing a solution with an-
other to decide which one is better). However, many of the main ideas introduced
in [191] were still valid, and they were incorporated into the new framework, like
the separation between problem and algorithm, independent classes for stop cri-
teria, or an experiment architecture where the algorithm is in charge of executing
the main optimization process.

Considering this, the main components that we initially identified for the
MODO Optimization Package were: algorithms, problems, dynamic features and
performance measures. It should be noted that dynamic features and performance
measures are actually subcomponents of a problem. However, given their impor-

134

SOFTWARE DESIGN AND IMPLEMENTATION

Problem
- isMaxProblem : bool
+ isMaxProblem() : bool
+ setIsMaxProblem(isMaxProblem : bool) : void
+ areEqual(solution1 : Solution, solution2 : Solution) : bool
+ firstSolutionIsBetter(solution1 : Solution, solution2 : Solution) : bool
+ evaluate(solution : Solution) : double

Solution
- score : double
+ getScore() : double
+ setScore(score : doble (double)) : void

StopCriterion

+ stop(mh : Metaheuristic) : bool

GeneralStopCriterion
- maxIterations : int
- maxTime : double
+ getMaxIterations() : int
+ getMaxTime() : double
+ setMaxIterations(maxIterations : int) : void
+ setMaxTime(maxTime : doble (double)) : void
+ stop(mh : Metaheuristic) : bool

Figure 5.6 – MODO Optimization Package. Main problem-related classes introduced
in [191]. These classes are shown here as reference, since most of them are also part of
the MODO Optimization Package, although their methods have evolved significantly.

tance and the amount of design and development effort put on them, we will
analyze them separately. Therefore, the objective of the framework was to gen-
erate an architecture that could mostly favor a high modularity and separation
among these components (see Fig. 5.8).

The process by which the algorithm performs the main optimization is ex-
plained in Fig. 5.9. The algorithm is continuously performing optimization tasks
within a loop, and it calls the problem whenever it needs to evaluate a solution.
When the problem begins its execution, before evaluating the solution it must
check if the conditions for a change in the environment are met. If this is the case,
the problem performs the changes and continues with the normal evaluation of
the solution. In this sense, the functionality associated with each of the previously
identified components algorithm, problem and dynamic features is clearly separated
and well-defined.

The fourth component initially identified was the performance measures. This
component is special because it needs to access information both from the prob-
lem and from the algorithm during its execution. We decided to integrate the

135

SOFTWARE DESIGN AND IMPLEMENTATION

Metaheuristic
- bestSolution : Solution
- problem : Problem
- iteration : int
- iterationOfBestSolution : int
- elapsedTime : double
- elapsedTimeOfBestSolution : double
- stopCriterion : StopCriterion
+ getBestSolution() : Solution
+ getProblem() : Problem
+ getIteration() : int
+ getIterationOfBestSolution() : int
+ getElapsedTime() : double
+ getElapsedTimeOfBestSolution() : double
+ getStopCriterion() : StopCriterion
+ setStopCriterion(stopCriterion : StopCriterion) : void
+ setBestSolution(solution : Solution) : void
+ setProblem(problem : Problem) : void
+ resetIteration() : void
+ resetElapsedTime() : void
+ runSearch() : void
setIteration(iteration : int) : void
increaseIteration() : void
setIterationOfBestSolution(iteration : int) : void
setElapsedTimeOfBestSolution(elapsedTime : doble (double)) : void

PointBased
- currentSolution : Solution
- newSolution : Solution
+ getCurrentSolution() : Solution
+ getNewSolution() : Solution
+ runSearch() : void
setCurrentSolution(solution : Solution) : void
setNewSolution(solution : Solution) : void
initializeParameters() : void
generateInitialSolution() : void
generateNewSolution() : void
acceptNewSolution() : bool
acceptanceUpdateParameters() : void
rejectionUpdateParameters() : void

PopulationBased
- initialPopulationSize : int
- maxPopulationSize : int
- currentPopulation : Population
- newPopulation : Population
+ getInitialPopulationSize() : int
+ getMaxPopulationSize() : int
+ getCurrentPopulation() : Population
+ getNewPopulation() : Population
+ getBestSolutionInPopulation(population : Population) : Solution
+ setInitialPopulationSize(size : int) : void
+ setMaxPopulationSize(size : int) : void
+ runSearch() : void
setCurrentPopulation(population : Population) : void
setNewPopulation(population : Population) : void
initializeParameters() : void
generateInitialPopulation() : void
generateNewPopulation() : void
acceptNewPopulation() : bool
acceptanceUpdateParameters() : void
rejectionUpdateParameters() : void

Figure 5.7 – MODO Optimization Package. Main metaheuristic-related classes intro-
duced in [191]. In the MODO Optimization Package, these classes have been replaced
by “Algorithm”, a more generic one, but with similar features. Some of the ideas intro-
duced in [191] regarding metaheuristics have been adapted to subclasses of Algorithm,
like, e.g., a specific class for population-based algorithms, with methods inspired in the
PopulationBased class shown here.

136

SOFTWARE DESIGN AND IMPLEMENTATION

Figure 5.8 – MODO Optimization Package. Usually, experiments are coded on-demand,
and problems, dynamic features, algorithms and performance measures tend to blend
with each other. This produces software components with fuzzy boundaries and in-
terdependencies that can hardly be translated to other experiments. When multiple
experiments need to be performed, this situation is highly inefficient. In order to in-
crease productivity, it is necessary to make these modules more portable, separating
them into clearly defined components that interact between them.

performance measures within the problem component, since this approach allowed
a much finer control of when they were executed (e.g., just before a change in
the environment, right at the end of the evaluation of a solution, etc.). However,
as we performed more experiments, we realized that performance measures could
have quite diverse functionalities and requirements. This hindered the creation
of a unified component with a precise and closed interface. Eventually, we con-
cluded that these performance measures were actually a particular case of a more
generic “extra functionality” component of a problem. Therefore, we created a
specific component for this extra functionality, named plugin, instead of the more
restricting one performance measures.

Plugins are modules that can be inserted at some pre-defined points in the

137

SOFTWARE DESIGN AND IMPLEMENTATION

Figure 5.9 – MODO Optimization Package. Typical execution flow in an experiment.
The module in charge of the execution is the algorithm, which continuously optimizes
within a loop until a stop criterion is met. In each iteration, the algorithm asks the
problem to evaluate a solution. During this call, the problem checks if the conditions
for a change in the environment are met, and in such case, performs the corresponding
changes.

138

SOFTWARE DESIGN AND IMPLEMENTATION

middle of the evaluation of a solution, that extend the normal capabilities of the
problem in order to perform a specific task. Plugins can be used to perform almost
any action ranging from measuring the performance of an algorithm, to reporting
that data to the user (maybe using standard output, files, GUIs, etc.). Or even
for adding dynamism to the problem. This last conclusion meant a very
important event in the development of the framework, because we realized that
dynamic features could also be implemented using plugins. Therefore, we merged
the dynamic features component into the plugin component, reducing the main
modules of the framework to 3: algorithms, problems and plugins.

As we have previously said, in an experiment, the main optimization process
is carried out by the algorithm. However, there are other tasks that need to be
performed at the beginning of the execution, before running the algorithm. First,
it is necessary to load the configuration of the experiment, possibly from files. This
includes reading and parsing the parameters for the problem, the algorithm, the
plugins (including those related with dynamism, performance measures, graphical
user interfaces, etc.), as well as other additional settings, such as the number of
runs to execute, or the master seed for the random number generators. Once
the configuration has been loaded, it is necessary to instantiate the appropriate
modules for the problem, the algorithm, and the plugins. The order in which all
of this is done is important in this case: the first one is the problem, since it does
not have any dependencies on the others for being created; next is the algorithm,
because it may have components that could need the problem beforehand (e.g.,
problem-dependent heuristics); and finally, plugins are instantiated in the last
place, since they may depend both on the problem and the algorithm. With the
components created, the algorithm is executed, entering the optimization loop
until the stop condition is fulfilled. However, it is worth reminding that in order
to obtain statistically meaningful results, it may be necessary to independently
execute the algorithm a certain number Nr of times. Strictly speaking, this would
imply to repeat the previous load-configure-execute process Nr times. However,
with a proper handling of the configuration settings and the use of reset() methods,
the loading and configuration phases can be performed only once, at the beginning.
This initialization sequence of an experiment is summarized in Fig. 5.10.

In the following sections we will explain in more detail the algorithms, problems
and plugins components.

5.2.2. Algorithms

The algorithm component groups the strategies that we have implemented
for optimizing a DOP. In general terms, an algorithm must take care of guiding
the whole process of searching for the best solution, adapting to the changes in
the environment when these occur, possibly using one or more of the techniques

139

SOFTWARE DESIGN AND IMPLEMENTATION

Figure 5.10 – MODO Optimization Package. Experiment initialization sequence.

140

SOFTWARE DESIGN AND IMPLEMENTATION

explained in Sect. 2.3.

Even though we counted with previous experience on implementing metaheuris-
tics from [191], the diversity of methods and algorithmic families that we have used
in this research made the hierarchy shown in Fig. 5.7 too specific. In our particular
case, an algorithm is implemented as a class that just contains:

A reference to the problem to solve, usually provided at creation time.

A StopCondition object, that indicates the algorithm if it must stop or if
it can continue optimizing (see Fig. 5.9). This object does not need to be
provided at creation time, it only needs to be available during the execution
of the algorithm. It can be even altered or replaced while the algorithm is
running (this is actually used by, e.g., the framework’s GUIs to pause/resume
the execution at the user’s request).

A random seed, provided at creation time. This seed is used by the algorithm
to initialize the random number generators that it may use (in case of any).
As we have discussed in Sect. 5.2.1, the algorithms and the problems use
independent random number generators.

A method for executing the algorithm (this method is the one called by the
experiment).

These are the only constraints imposed on an algorithm, with the objective of
creating a common interface that can be called from the main procedure of the
experiment without limiting the possibilities or the resources that an algorithm
can use.

All the algorithms used in the works presented in this thesis have been imple-
mented as subclasses of this Algorithm class. However, the great variety of methods
used (mQSO and its heuristic-rules-based variants, evolutionary algorithms, coop-
erative strategies, agents, etc.) make it a too extensive task to describe here the
implementation details and the class hierarchies associated to them. Nevertheless,
we can mention, e.g., that there are classes for population-based algorithms as
well as for trajectory-based algorithms, as it was proposed in [191], generic base
classes for evolutionary algorithms, etc. On the other hand, following the princi-
ples of modularity and component reuse, in the framework there are also classes
for operators and commonly used techniques, such as, e.g., learning mechanisms,
diversification methods, procedures for randomizing solutions within an area of
the search space, intensification, etc.

141

SOFTWARE DESIGN AND IMPLEMENTATION

5.2.3. Problems

The problem component is the one in charge of managing everything related
with the environment being optimized. The main functionality of this component
is evaluating solutions, returning the fitness value associated to them for the cur-
rent environment. Additionally, dynamic changes in the environment take place
during the execution of this component (if the conditions are met), as well as
other extended functionality such as the calculation of performance measures, vi-
sualization of the results, etc. We will talk about this extended functionality in
Sect. 5.2.4.

The evaluation of a solution is a complex task, but contrary to what happened
with the algorithms, it can be decomposed in a sequence of clearly defined steps
that are always performed in the same order. Thanks to this modularity, it is
possible to design a single class for evaluating a solution. This class would con-
tain subcomponents that perform the previously referred steps, and since these
subcomponents are simpler, they are also easier to implement and are more likely
to be reused. Moreover, by simply substituting one of these subcomponents for
another compatible one, a new different problem is obtained, so this class is effec-
tively acting as a problem generator. In our case, this problem generator, that we
named UDOPEngine, is capable of simulating dynamic and uncertain optimization
problems. We will now discuss in detail the solution evaluation process.

The evaluation of a solution can be divided into intermediate phases in our
implementation, mainly conditioned by the presence of constraints. As it is shown
in Fig. 5.11, the process begins with the fitness evaluation itself, at the same time
that it checks if the solution satisfies all the constraints. If they are satisfied,
the fitness remains unchanged, but if not, there are multiple ways of handling
this situation [108, 187]. The most common one usually consists in modifying the
fitness according to some type of penalty. Among the most frequent penalty types
we can highlight the following:

death penalty, consists in applying the maximum penalty possible to every
solution that does not satisfy the constraints, independently of the degree of
violation. The way of accomplishing this is usually by assigning the fitness a
value of ±∞, depending on whether it is a maximization or a minimization
problem. This is the most simple penalty, although it prevents the algorithm
from extracting any kind of information from unfeasible solutions that could
guide the search to feasible zones.

static penalty, that consists in a static penalty factor that is added to the
fitness, usually dependent on the degree of violation of the constraints.

dynamic penalty, that consists in a penalty factor that grows with time (num-

142

SOFTWARE DESIGN AND IMPLEMENTATION

ber of evaluations), usually being also dependent on the degree of violation
of the constraints.

adaptive penalty, where information gathered from the search process is used
to control the amount of penalty added to infeasible individuals.

Once the fitness has been adjusted according to the unsatisfied constraints, the
process returns both the fitness and the constraints violation degree.

Figure 5.11 – MODO Optimization Package. Basic scheme of the solution evaluation
process.

In the experiments performed in our research we frequently found out that
the fitness functions used in the problems consisted in a composition of simpler
functions. For example, in the MPB, the final resulting scenario is obtained by
merging multiple cone-like functions using the maximum. It is not unusual to find
other benchmarks that use function composition to generate more complex envi-
ronments (e.g., the ones used in the CEC-2009 competition on Dynamic Optimiza-
tion [95]). This led us to include a functionality for composing simple functions in
the UDOPEngine, in such a way that they could be combined using the maximum,
the minimum, the average, etc.

The context of the research project that encompasses this thesis contemplates
the investigation of dynamic environments with uncertainty, although such uncer-
tainty has not been used in the works presented here. Nevertheless, we decided

143

SOFTWARE DESIGN AND IMPLEMENTATION

to include a mechanism for generating a first approach to these uncertain envi-
ronments in the MODO Optimization Package, foreseeing its application in future
research works.

In our preliminary studies we concluded that the types of uncertainty that were
easier to deal with using the UDOPEngine architecture were those that concerned
the communication channels between the algorithm and the problem during the
evaluation of a solution. This uncertainty in the communication channels repre-
sents possible mismatches that can happen between:

1. The information sent by the algorithm to the problem (the solution) and
what the problem really receives.

2. The information returned by the problem to the algorithm (the fitness and
the constraint violation degrees) and what really arrives to the algorithm.

We have called the first one input uncertainty, and the second one output
uncertainty (see Fig. 5.12).

Figure 5.12 – MODO Optimization Package. Including uncertainty in the commu-
nication channels between the algorithm and the problem. First, the algorithm sends
a solution x for its evaluation. The input uncertainty module may alter this solution,
producing a modified version, x∗, which is the one that the problem receives. The prob-
lem evaluates x∗, returning its fitness value, f(x∗) and the set of constraint violation
degrees, r(x∗). The output uncertainty module may alter these values, producing f∗(x∗)
and r∗(x∗), which are the ones that finally arrive to the algorithm.

144

SOFTWARE DESIGN AND IMPLEMENTATION

This uncertainty in the communication channels can represent real aspects
associated to the physical implementation of a solution for a given problem or to
the measurement of variables. With this scheme it is possible to simulate, among
others:

Precision or rounding problems when “manufacturing” a solution or per-
forming a measurement.

Presence of noise.

Errors due to deviations caused by a miscalibration or a faulty sensor.

This uncertainty modules can alter the value of the data they receive by, e.g.,
adding a fixed deviation (simulating a faulty sensor or bias errors), adding a ran-
dom quantity (simulating gaussian noise), removing decimals or rounding digits
(simulating imprecision), flipping a bit (simulating transmission errors), etc. It is
also important to note that these modules do not need to be both present: it is
possible to have only input uncertainty, only output uncertainty, or no uncertainty
at all — which is the base case that we part from.

Considering these new factor, i.e., the input and output uncertainty, and the
combination of multiple fitness functions, we obtain the extended version of the
solution evaluation process. This process is shown in Fig. 5.13, and it constitutes
a quite close representation to the actual implementation of the UDOPEngine.

Finally, one last consideration: the whole solution evaluation process has been
performed considering only mono-objective optimization problems; however, the
UDOPEngine allows to simulate multi-objective problems, where the process de-
scribed in Fig. 5.13 is repeated for each of the objectives of the problem. In the
end, the solution evaluation that is returned to the algorithm consists in a struc-
ture containing all the fitness values and constraint violation degrees for each of
the objectives of the problems.

5.2.4. Plugins

A plugin is a widely extended concept in computation, generally referring
to software components that are inserted in certain predefined points (extension
points) of an application to extend its functionality. Some examples of this archi-
tecture can be seen in current web browsers, integrated development environments,
etc.

In our UDOPEngine, plugins emerged from the necessity of adding certain
extra functionality that was not related with the evaluation of a solution. This
functionality mainly consisted in:

145

SOFTWARE DESIGN AND IMPLEMENTATION

Figure 5.13 – MODO Optimization Package. Extended scheme of the solution evalua-
tion process.

146

SOFTWARE DESIGN AND IMPLEMENTATION

Performing some kind of measurement, for example, the performance of an
algorithm. For this we can simply register the fitness value of the current
solution being evaluated, or we can compare the fitness with that of another
solution, generally the optimum of the problem. We can also measure time,
data for statistical usage, etc.

Reporting some type of information, for example, performance measures or
statistics. These reports can be generated in all the evaluations, or ev-
ery certain number of them, or just before a change in the environment,
etc. Furthermore, the report of this information can be performed using the
application’s standard output, or writing to files, or even visualizing it in
specific graphical interfaces.

Although the objectives of this extended functionality could be classified in the
two big previous groups, it is clear that the functionality itself was quite diverse and
extensive (performance measures, graphical interfaces, statistics, etc.). Therefore,
there was no point on imposing any kind of software hierarchy nor predefined
method signature. Plugins should be simply modules that are called at certain
moments within the evaluation of a solution, with enough freedom to perform the
actions they consider appropriate.

However, one of the most important aspects of these plugins is the moment
in the evaluation of a solution in which they are called. A plugin that displays a
solution in a Graphical User Interface (GUI) only needs that said solution, and
thus can be executed at any time, for example, at the beginning of the evaluation.
On the other hand, a plugin that calculates the performance needs the solution’s
fitness to be available, so it can only be executed once the penalized fitness has
been calculated, at the end of the process.

Therefore, we defined certain fixed points within the solution evaluation pro-
cess, named Extension Points (EP), where the plugins can be inserted. Multiple
plugins can be inserted at the same EP; the UDOPEngine handles this automati-
cally, so when the execution of the evaluation process reaches that EP, it sequen-
tially calls all the plugins registered on it, according to the order in which they
were inserted. Additionally, the plugin call sequence can be altered using some
special plugins called Conditions. These plugins, included by default in the frame-
work, contain a boolean condition and two separated output flows where plugins
can be attached. Depending on whether the condition is met or not, the plugin
executes the true output flow or the false output flow, effectively bifurcating the
execution sequence of the EP.

Since the plugins are executed during the evaluation process, they can access
very specific and volatile information that is not available outside of this process.
Depending on the EP where the plugins are inserted, they can access the data

147

SOFTWARE DESIGN AND IMPLEMENTATION

produced by the immediately previous module in the execution flow. This data
is passed to the plugin as a parameter when they are called, in a read-only mode.
The existent EPs and the associated data that the plugins can access on each of
them are listed bellow:

EP PRE INPUT UNCERTAINTY: located just before executing the Input
Uncertainty module. Plugins inserted at this EP receive as a parameter the
solution as it was sent by the algorithm.

EP POST INPUT UNCERTAINTY: located just after executing the Input
Uncertainty module. Plugins inserted at this EP receive as a parameter the
modified solution outputted by the Input Uncertainty module.

EP INDIVIDUAL FITNESS: located just after executing one of the Fitness
Function modules. In order to insert a plugin in this EP it is necessary to
also specify the corresponding Fitness Function. Plugins inserted at this EP
receive as a parameter the fitness of the solution calculated by this Fitness
Function.

EP COMBINED FITNESS: located just after combining all the fitness val-
ues obtained for the solution. Plugins inserted at this EP receive as a pa-
rameter the combined fitness of the solution.

EP CONSTRAINT: located just after executing a Constraint module. In
order to insert a plugin in this EP it is necessary to also specify the corre-
sponding Constraint. Plugins inserted at this EP receive as a parameter the
CVD (Constraint Violation Degree) of the solution for this Constraint.

EP PENALIZED FITNESS: located just after penalizing the fitness accord-
ing to the constraints. Plugins inserted at this EP receive as a parameter
the penalized fitness of the solution.

EP PRE OUTPUT UNCERTAINTY: located just before executing the Out-
put Uncertainty module. Plugins inserted at this EP receive as a parameter
the solution evaluation (penalized fitness + CVDs).

EP POST OUTPUT UNCERTAINTY: located just after executing the Out-
put Uncertainty module. Plugins inserted at this EP receive as a parameter
the solution evaluation outputted by the Output Uncertainty module.

In the first experiments that we performed using the MODO Optimization
Package, the problem’s dynamic features wer considered as an independent mech-
anism (not a plugin). The point where these dynamic features were executed was

148

SOFTWARE DESIGN AND IMPLEMENTATION

fixed, just before performing any kind of evaluation to the solution (i.e., in the
plugins terminology, at the EP PRE INPUT UNCERTAINTY point). However,
as the experimentation advanced, we realized that this design was too restrictive.
Why should changes in the environment needed to be executed before the evalu-
ation of a solution? Why not after? Why not letting the user decide when they
should be executed? Eventually, we realized that by adding this type of flexibility
we were actually getting very close to the execution mechanism of the plugins. This
led us to think that dynamic feature could be considered as a type of extended
functionality, and could therefore be implemented as a set of plugins, allowing the
user to decide when to execute them using the previously defined EPs.

However, in this case there was an additional problem: dynamic features could
modify internal values of the UDOPEngine, like, e.g., the origin of coordinates
of the environment, the perturbation degree of an uncertainty module, etc. The
amount and type of data that could be modified were too big to be passed as a
parameter to the plugins during their execution while maintaining their generic
interface. The way in which we solved this was by allowing the components of
the UDOPEngine to “expose” internal variables so that they could be modified
externally (e.g., the origin of coordinates for a Fitness Function, the amount of
perturbation of an Input Uncertainty module, etc.). These variables are registered
in a central storage structure of the UDOPEngine that plugins can access. This
way, there is no necessity of passing any extra parameter to the plugins: if a plugin
wants to modify a variable, it simply accesses it at the catalog and requests the
variable for a writing operation.

Figure 5.14 shows the design diagram of an Objective of the UDOPEngine (it
should be reminded that the UDOPEngine is capable of handling multi-objective
problems), based on the solution evaluation process (Fig. 5.13). The diagram also
shows the different data types expected and produced by each module, as well as
the EPs and an example of the sequence of plugins that can be created in one of
those EPs.

With this plugin-based architecture we provide a great flexibility to the users
for adapting the UDOPEngine problem generator to their particular necessities.
Not only there is a wide variety of components for the standard modules of the
UDOPEngine, but also, extra functionality that was not initially thought of can
be added in a transparent way.

5.2.5. Outstanding features

Up until now, we have analyzed the different components of the MODO Opti-
mization Package at separate. However, when all these components act together in
a coordinated way, they are capable of performing highly specialized and complex
tasks. We will now illustrate some of the most relevant features of the framework:

149

SOFTWARE DESIGN AND IMPLEMENTATION

S
o
lu

tio
n

In
p
u
t

U
n
c
e
rta

in
ty

F
itn

e
s
s
F

u
n
c
tio

n
 1

F
itn

e
s
s
F

u
n
c
tio

n
 N

C
o
n
s
tra

in
t 1

C
o
n
s
tra

in
t N

...

...

S
o
lu

tio
n

F
itn

e
s
s

F
itn

e
s
s
C

o
m

b
in

e
r

F
itn

e
s
s

F
itn

e
s
s
P

e
n
a
liz

e
r

F
itn

e
s
s

C
V

D

C
V

D

*

* C
V

D
 =

 C
o
n
s
tra

in
t V

io
la

tio
n
 D

e
g
re

e

E
x
te

n
s
io

n
P

o
in

t 1
 =

 E
P

_
P

R
E

_
IN

P
U

T
_
U

N
C

E
R

T
A

IN
T

Y

E
x
te

n
s
io

n
P

o
in

t 2
 =

 E
P

_
P

O
S

T
_
IN

P
U

T
_
U

N
C

E
R

T
A

IN
T

Y

E
x
te

n
s
io

n
P

o
in

t 3
 =

 E
P

_
IN

D
IV

ID
U

A
L
_
F

IT
N

E
S

S

E
x
te

n
s
io

n
P

o
in

t 4
 =

 E
P

_
C

O
M

B
IN

E
D

_
F

IT
N

E
S

S

E
x
te

n
s
io

n
P

o
in

t 5
 =

 E
P

_
C

O
N

S
T

R
A

IN
T

E
x
te

n
s
io

n
P

o
in

t 6
 =

 E
P

_
P

E
N

A
L
IZ

E
D

_
F

IT
N

E
S

S

E
x
te

n
s
io

n
P

o
in

t 7
 =

 E
P

_
P

R
E

_
O

U
T

P
U

T
_
U

N
C

E
R

T
A

IN
T

Y

E
x
te

n
s
io

n
P

o
in

t 8
 =

 E
P

_
P

O
S

T
_
O

U
T

P
U

T
_
U

N
C

E
R

T
A

IN
T

Y

F
itn

e
s
s

C
V

D

C
V

D

O
b

je
c
tiv

e

E
x
te

n
s
io

n

P
o
in

t 7

E
x
te

n
s
io

n

P
o
in

t 1

E
x
te

n
s
io

n

P
o
in

t 2

E
x
te

n
s
io

n

P
o
in

t 3

E
x
te

n
s
io

n

P
o
in

t 5

E
x
te

n
s
io

n

P
o
in

t 4
E

x
te

n
s
io

n

P
o
in

t 6

O
u
tp

u
t

U
n
c
e
rta

in
ty

S
o
lu

tio
n

E
v
a
lu

a
tio

n

E
x
te

n
s
io

n

P
o
in

t 8

S
o
lu

tio
n

E
v
a
lu

a
tio

n

D
a
ta

P
ro

c
e
s
s
in

g
 b

lo
c
k
s

E
x
te

n
s
io

n
 p

o
in

ts
 fo

r p
lu

g
in

s

E
x
te

n
s
io

n
 P

o
in

t

P
lu

g
in

 N
+

1

C
o
n
d
itio

n

1

P
a
ra

m
e
te

r

P
lu

g
in

 1

P
lu

g
in

 2
P

lu
g
in

 N

C
o
n
d
itio

n

R

...

P
lu

g
in

 M
+

1

P
lu

g
in

 N
+

2

...

P
lu

g
in

 M

tru
e

fa
ls

e

tru
e

fa
ls

e

V
a
ria

b
le

 1
V

a
ria

b
le

 2
V

a
ria

b
le

 N
...

R
e
g

is
te

re
d

 V
a
ria

b
le

s

re
a
d
 / w

rite

re
a
d
 / w

rite
re

a
d
 / w

rite

re
a
d
 / w

rite

re
a
d
 o

n
ly

Figure 5.14 – MODO Optimization Package. Design-diagram of an Objective in the
UDOPEngine.

150

SOFTWARE DESIGN AND IMPLEMENTATION

Ability to work both with continuous and discrete problems. The
UDOPEngine has been designed from the beginning to handle abstract data
types, such as Solution, Fitness or Constraint Violation Degree (CVD). By
encapsulating the main data types we make the framework independent of
particular implementations of such data. Thus, the UDOPEngine can man-
age: a) continuous problems where the components of the solutions are of
type double, float, etc; b) discrete problems where the components of the so-
lutions are of type integer, long, etc; c) mixed problems where solutions have
both continuous and discrete components; d) problems where the fitness is
expressed as a real number, an integer number, or even a fuzzy number.
However, most of the experiments of this thesis have been performed on con-
tinuous problems with fitness values in R, so many of the main features that
we will talk about next have been designed for this type of problems.

Graphical User Interfaces (GUIs) for visualizing the problem at
hand in real time. Due to the experience obtained during the develop-
ment of the DACOS tool (Sect. 5.1), one of the priorities in the design of
the framework was that it could graphically visualize both the problem that
was being optimized and the evolution of the algorithm solving it. As we
already saw in Sect. 5.1, this is specially useful in the initial stages of the
experimentation in order to obtain a first idea of the behavior of the algo-
rithm, verifying that there are no programming errors, and even exploring
in a rough way the different values for the configuration parameters. Thus,
we have designed several plugins that create a GUI, such that when they
are executed, they use that GUI to display the problems using several tech-
niques. The most interesting of these plugins, and the one used for all the
figures shown here, performs an exhaustive sampling of the environment,
thus allowing to display the fitness landscape in a very precise way. This
obviously introduces a delay in the execution, although it has the advan-
tage that it can be executed only right after a change in the environment.
GUI plugins add very useful functionality when evaluating the problem or
the performance of the algorithms. Some of this functionality includes the
possibility of pausing/resuming the execution, alternating between a visual-
ization for a maximization problem or for a minimization one (see Fig. 5.15),
changing the luminosity of the image in order to enhance solutions closer
to the optimum, using the mouse to inspect the value and the fitness of a
point in the image (see Fig. 5.19), etc. It is worth noting that these GUI
plugins only allow to display 2 dimensions, so they have a limited utility for
higher dimensionality problems. Moreover, as we have previously mentioned,
the graphical visualization usually introduces a significant delay in the ex-
ecution of the experiment, specially in the case of the exhaustive sampling

151

SOFTWARE DESIGN AND IMPLEMENTATION

GUI plugin. Therefore, the use of these components is only recommended
for the initial stages of the tests, and it is convenient to disable them in the
final ones, when the execution is more intensive and the main objective is to
gather data for a later analysis.

Figure 5.15 – MODO Optimization Package. In the exhaustive sampling GUI plugin,
yellowish colours are used for displaying near-to-optimum points, while blueish colours
are used for the most far-appart-from-optimum points. However, this plugin allows
the user to display the environment as a maximization problem (left image) or as a
minimization problem (right image).

Compatibility with a high number of problems and benchmarks
from the literature. The framework includes by default a set of problems
and benchmarks widely used in Dynamic Optimization. Among them, we
can highlight, in continuous optimization, the MPB or the functions used
in the CEC 2009 Competition on Dynamic Optimization [95], such as Ack-
ley, Griewank, Rastrigin, Sphere, Schwefel, High Conditioned Elliptic, etc.
(Fig. 5.16 shows visualizations of some of these functions). For discrete op-
timization, we can mention the OneMax, Plateau, RoyalRoad or Deceptive
problems (see Fig. 2.3).

Constraints. The architecture of the UDOPEngine allows not only to in-
corporate constraints to the evaluation of a solution, but also to penalize
the fitness according to the violation degree of the said constraints. Among
other benefits, this penalizing mechanism allows to directly visualize the con-
straints in the GUI plugins. An example of this is shown in Fig. 5.17, rep-
resenting a scenario of the MPB with some unfeasible regions added. These

152

SOFTWARE DESIGN AND IMPLEMENTATION

(a) MPB (b) Ackley (c) Griewank

(d) Rastrigin (e) Sphere (f) Schwefel

(g) High-Cond. Elliptic (h) Rosenbrock (i) Weierstrass

Figure 5.16 – MODO Optimization Package. Some of the continuous fitness functions
available in the framework. All of the functions shown here were also used in the CEC-
2009 competition on Dynamic Optimization [95].

153

SOFTWARE DESIGN AND IMPLEMENTATION

regions are displayed in dark blue, indicating values very far away from the
optimum (the “frame” around the solution space and the vertical fringe on
the left). In this case, we have used a death penalty, where any violation
of a constraint is penalized with the worst possible fitness for the current
environment (in this case, although the fitness in the unfeasible regions is
−∞, in the image is shown with a value of −50, in order to prevent the col-
ors from saturating too much). However, as it has already been addressed,
other penalty functions can be used that would give more information to
the algorithm. For example, a fixed penalty that worsens the fitness in a
constant way (e.g., by subtracting 100 to the fitness value) would keep the
gradient information, helping the algorithm to escape those areas.

Figure 5.17 – MODO Optimization Package. The GUI plugin also allows to visualize
constraints. These images show an environment, the MPB, where linear constraints were
added, represented in dark blue (the “frame” around the environment boundaries and
the vertical line on the left). In these unallowed regions, solutions are assigned a fitness
value of −∞, since the MPB is a maximization problem. However, in the GUI these
values are visualized using a value of -50, in order to prevent image colors from saturating
too much. Also notice another feature of the GUI plugin that allows to “inspect” the
solution’s value and fitness under the mouse pointer.

Composable affine transformations in continuous fitness functions.
The UDOPEngine contains by default a class for implementing continuous
fitness functions with an origin of coordinates, where affine transformations
can be applied to the solution space defined by such fitness functions. These
type of transformations include translating, rotating and scaling, all of which

154

SOFTWARE DESIGN AND IMPLEMENTATION

conveniently coded using matrices that can be combined within them to
create complex transformations. These transformations can be applied to
each fitness function individually, and furthermore, they can also be used
to produce changes in the environment. Figure 5.18 shows a sequence of
consecutive changes in the environment. The images depict a scenario of
the MPB where some of these transformations have been applied to modify
the shape of the cone functions. Thus, some of these peaks have a squashed
shape, some of them are rotated, and some of them are shifted. Furthermore,
since these transformations can be applied in every change, we can see in the
images how some of these peaks move through the solution space and even
rotate (each peak with its own linear and angular velocity). All these trans-
formations are available to all the continuous fitness functions implemented,
so this can also be applied to problems such as Ackley, Griewank, Rastrigin,
etc.

Uncertainty. The UDOPEngine allows to include uncertainty in the experi-
ments, although this feature has not been used in any of the papers presented
in this thesis. Figure 5.19 shows some visualizations of a MPB scenario with
different types of uncertainty. In this case, we have used gaussian noise to
introduce both input and output uncertainty, changing the solution values
or the fitness values respectively. It is worth noting that although the image
is a static snapshot of the environment, each corresponding uncertainty is
applied on each evaluation of a solution. A visualization closer to what really
happens during the optimization process would depict an environment where
the image would be continuously changing, quite similarly to an analog TV
with a badly tuned channel.

5.2.6. Conclusions

We have presented the MODO Optimization Package, a software framework
that contains all the code developed through the experimentation performed in
this thesis. This framework reflects not only the code produced to fulfill the
necessities of the experiments, but also the experience that we have acquired as
we were performing them. This experience has significantly influenced the design
and architecture of the components of the framework.

The framework contains 3 main components:

Algorithms. This component groups all the different optimization meth-
ods that we have implemented for the experiments, including mQSO and
variants, Agents, CS and variants, evolutionary algorithms, etc., as well as
learning mechanisms and other techniques of general utility. The algorithms

155

SOFTWARE DESIGN AND IMPLEMENTATION

Figure 5.18 – MODO Optimization Package. From left to right, and from top to
bottom, a sequence of different consecutive changes in a dynamic environment (the
MPB). Each peak has its own set of properties (position, height, width, scale factor
for each dimension, rotation angle for each pair of dimensions, etc). This sequence
shows different dynamic changes applied to some of these properties, such as changes to
rotation angles and peak positions.

156

SOFTWARE DESIGN AND IMPLEMENTATION

(a) No uncertainty (b) Input uncertainty

(c) Output uncertainty (d) Both

Figure 5.19 – MODO Optimization Package. Different uncertainty configurations for
the same MPB scenario. Uncertainty is added in the form of a 10% gaussian noise.
For the input uncertainty this means that for each solution x, the real value x′ that is
evaluated is x′ = x± rand(0.1 ∗ range(x)). For the output uncertainty, this means that
for each fitness f(x), the real value f ′(x) that is returned is f ′(x) = f(x) ± rand(0.1 ∗
range(f(x)))

157

SOFTWARE DESIGN AND IMPLEMENTATION

developed are based in a class hierarchy presented in [191] that has been
adapted to reflect the requirements of the project.

Problems. This component is in charge of everything related with the envi-
ronment to be optimized. Although the fitness functions used in DOPs are
quite diverse, the process of evaluating a solution is very uniform. Therefore,
we have designed a metaclass, a problem generator called UDOPEngine, that
allows to simulate a huge amount of environments. This UDOPEngine is ex-
tremely modular, with specific components for dealing with fitness functions,
constraints, ways of combining results, and even uncertainty. Moreover, its
architecture is designed to allow the addition of extra functionality by means
of plugins.

Plugins. Plugins are components that allow to extend the capabilities of the
UDOPEngine. Plugins can be inserted at special locations in the middle
of the evaluation process, named Extension Points, which allow for a fine-
grained control of their execution. Plugins, among other things, allow to
provide dynamic features to a problem, measuring performance, or reporting
results to the user with, e.g., graphical user interfaces.

This framework has been used for the development of all the experiments per-
formed, and has evolved with them. The framework has been released as open
source under the Modified BSD License, and is available in the RedIRIS public
forge, at the following url:

https://forja.rediris.es/projects/modooptim/.

158

https://forja.rediris.es/projects/modooptim/

Chapter 6

Conclusions

Considering the investigations carried out in this thesis and the publications
that have derived from them, we will organize the conclusions according to the
research questions posed in the Objectives.

6.1. Is it possible to improve the existent algo-

rithms, and, if possible, what techniques can

be used for that purpose?

The research work has produced, among other results, the following new algo-
rithms or improvements of existent ones:

A new algorithm for DOPs based on Cooperative Strategies (CS) [69], as
well as an improvement for that method with more effective rules [70].

An Agents-based algorithm for DOPs, with interesting results in continuous
problems [40], and very promising ones in combinatorial problems [68].

A number of improvements and studies on the properties of a PSO variant
for DOPs based on the use of heuristic rules [39,41,120].

The algorithms that we have developed cover a wide variety of methods: PSO
with heuristic rules, cooperative trajectory metaheuristics or agents. However, all
these algorithms share some common characteristics:

1. Use of solution populations. All these methods keep a set or sets of
solutions that “coexist” during the search process. These populations of
solutions allow to diversify the search, something important by its own in
static optimization, and absolutely essential in DOPs.

159

CONCLUSIONS

2. Existence of some type of cooperation among its constituent ele-
ments. In the case of CS, this is obvious, since such cooperation is explicit,
and is carried out by the central coordinator while exchanging information
between the different metaheuristics. In the case of the implemented vari-
ants of PSO, the particles of a swarm are connected among them through
the best of that swarm, since it is used as a reference in the movement of
the particles. Furthermore, in the case of the mQSO, which uses multiple
swarms, there is an exclusion mechanism that prevents the swarms from get-
ting too close to each other, in order to avoid focusing on the same optimum.
This competition between swarms at a local level helps the algorithm to not
waste too many resources in the same area, and thus, it is a form of global
cooperation in a sense. Agents also implicitly cooperate, since they explore
the search space indirectly through the matrix, allowing them to improve
solutions that quite probably have already been modified by other agents in
previous iterations.

These characteristics confirm what was proposed in Sect. 2.3 about the general
trend of the most used algorithms for DOPs. The second characteristic is quite
significant in the context of this thesis because it somehow indicates a possible
way of improving existing algorithms. All the modifications that we have intro-
duce through the research are based on promoting cooperation and increasing the
exchange of information between the elements of an algorithm.

Specially interesting is the case of the Rand rule of the mQSO with heuristic
rules [39]. The philosophy behind this rule is very similar to that of the PSO with
the CPT operator [120] and to the internal working of the CS [69,70,104]: observe
the behaviour of the elements, and correct those that are doing worse, either by
trying to make them imitate the best ones, or by temporarily stopping them to
prevent them from wasting resources in critical moments. When this cooperation
scheme has been applied to an algorithm, it has improved its results in all cases.

Additionally, from the results obtained in [40], it is noticeable the overwhelm-
ing supremacy of the Cooperative Strategies (CS) in the Ackley, Griewank and
Rastrigin problems. As it was explained in that work, it seems that the CS are
specially indicated when the DOP to be solved has some kind of structure in the
relative positions of the local optima. Instead, in the problems where such struc-
ture does not exist, such as the MPB, the results are much more tied, and the
behaviours and tendencies of each algorithm are better appreciated. SORIGA is
the best option for very rapidly changing environments, the mQSO + Rand Rule
obtains the best results for low dimensionality, and the Agents algorithm behaves
better for higher dimensionality and growing severity of the changes.

One interpretation that we can make about this is that the type of environment
information used by CS to decide how to cooperate allows them to get the most

160

CONCLUSIONS

out of the problem’s structure. This information, however, is not as useful in the
case of the MPB, because there is no such structure that can be profited, so CS
loose their advantage. In the case of the mQSO, the cooperation induced by the
Rand rule improves its performance, but not that much that it can overcome the
intrinsic limitations of the mQSO itself: particles tend to explore the environment
following a trajectory and swarms have an effective action radius that, in practice,
limits the area in which they perform the search. This is not a big inconvenient in
low dimensionality scenarios, but penalizes the algorithm when dimensionality in-
creases, favoring Agents. Finally, SORIGA has an implicit and generic cooperation
mechanism that does not use problem-specific knowledge. This is a disadvantage
when the conditions of the problem are favorable to other algorithms. However, it
gives SORIGA a high robustness, and allows it to obtain good results in scenarios
with very fast changes, a situation in which other methods usually do not have
enough time to converge.

In the case of discrete problems, the use of the Agents algorithm combined
with a learning scheme allows it to outperform one of the state-of-the-art methods
in this area, AHMA. The use of explicit cooperation in this case was complicated
to perform, because the structure of the problem was unclear and rather random.
However, the implicit cooperation of the Agents was appropriate for handling
these scenarios, and the learning scheme was combined flawlessly with the Agents,
allowing them to outperform AHMA.

A summary of the algorithmic contributions of this thesis is shown in Fig. 6.1,
using as a reference the diagram already introduced in Fig. 2.5.

Additionally, from the experience that we have acquired during the develop-
ment of the experiments, we have elaborated a classification of the algorithms used
in this thesis according to two criteria: optimization power and flexibility. When
we talk about optimization power, we refer to the ability of an algorithm of obtain-
ing high-quality solutions, close to the optimum. When we talk about flexibility,
we mean a double concept: the easiness with which an algorithm reacts to changes
in the environment at run-time, and the easiness with which an algorithm can be
adapted to other problems at design time (how good is the algorithm in a new
problem with some standard parameter settings, how much code it is needed to
modify or create in order to make it work in other problems, etc). This classifica-
tion is shown in Fig. 6.2. The chart is a compendium of the results obtained in
different works (specially [40], presented in Sect. 4.4) and our personal experience
during their development.

In our opinion, the mQSO family is worse-fitted for DOPs than the other
families we have analyzed. Only the mQSO-Rand heuristic variant obtains good
results in terms of optimization power in some scenarios, thanks to the cooper-
ation scheme that it uses. However, these algorithms contain a high number of

161

CONCLUSIONS

Figure 6.1 – A classification of several population-based metaheuristics depending on
the type of cooperation among their constituent components. The contributed methods
of this thesis are also represented.

162

CONCLUSIONS

Figure 6.2 – Conclusions. Chart showing a classification of all algorithms reviewed in
this thesis, according to two variables: optimization power and flexibility. Optimization
power refers to the capacity of an algorithm of obtaining high-quality solutions, while
flexibility refers to the easiness with which an algorithm can either react to changes in
the environment at run time, or be ported to other conditions, environments, problems,
etc. at design time.

163

CONCLUSIONS

problem-dependent parameters, such as the quantum particles radius, the mini-
mum distance between swarms, the configuration settings of the rules, etc. As
we saw in [39, 40], this can lead to settings that only work well in certain sce-
narios. Moreover, the mQSO is specifically designed for continuous optimization,
and the formulation itself of the algorithm is based on some assumptions that can
hardly be translated to discrete problems (the movement equations, the concept
of “distance”, etc). Therefore, our overall impression is that this family has low
flexibility.

Regarding the CS family, it is obvious that these methods are the ones with
the highest optimization power, based on the results obtained in [40, 69, 70]. Fur-
thermore, they are reasonably flexible, since the CS algorithm has been successfully
applied in a wide variety of problems, including continuous and discrete ones. How-
ever, the CS algorithm is quite complex, with several abstraction layers including
solver implementation, coordinator implementation, configuration settings, com-
munication messages, blackboards, synchronization, etc. Thus, it may be necessary
to modify quite a lot of code in order adapt the CS from one problem to another.
Therefore, we believe these methods have a moderate flexibility.

Finally, the Agents family and the Evolutionary Algorithms family are, by far,
the most flexible of all. They use very few parameters, or have parameters with very
good default values, which allows them to obtain acceptable performance values
in most of the problems in the very first executions. For example, SORIGA has
no problem-dependent parameters, and the 3x3 grid default setting for the Agents
algorithm obtains very good results in all the experiments performed. Moreover,
these algorithms perform well even under extreme circumstances, such as DOPs
with a very high change frequency or severity (see [40]). On the other hand,
they do not have an optimization power as high as the CS, but they are able of
competing quite well with the mQSO. And in the case of the Agents-Adaptive,
the learning scheme applied to the operator selection obtains the best results of
this family in the experiments performed.

In conclusion, the results of all these works allow to assert that not only
is possible to improve existent algorithms, but we have also found
cooperation-based techniques and learning schemes to do so in a generic
way, with great effectiveness and flexibility. Additionally, we have also
obtained results that allow us to know what are the most favorable
scenarios for using each algorithm.

164

CONCLUSIONS

6.2. What methodology should be applied in or-

der to compare the performance of different

algorithms on a DOP?

The results obtained in the different stages of the research show that an al-
gorithm may be effective for a certain DOP scenario, and perform quite poorly
in another one. We saw an example of this in [39] with the Change rule in sce-
narios other than Scenario 2 of the MPB, or with the Agents algorithm compared
against the AHMA in some configurations of the Royal Road function, in [68]. This
result is widely known in the literature, usually referred to as the no-free-lunch
theorem [171], i.e., no algorithm can be the best in every possible situation.

With the objective of obtaining a more complete vision of the behaviour,
strengths and weaknesses of an algorithm, it is necessary to evaluate its perfor-
mance in multiple scenarios. On the other hand, as it was previously justified, this
multiple evaluation may produce too many results to be fully understood by the
reader if only pure numerical data are used.

For all these reasons, we have developed the SRCS technique [38]. SRCS allows
to compress the information to be shown in 2 stages:

1. Transform the absolute performance data of the algorithms into relative data
among the compared methods, in order to establish a ranking that deter-
mines if an algorithm is better than another in a given scenario.

2. Assign colors to each ranking, so that the relative performance of every
scenario can be represented in a colored image.

This technique allows to visualize the results of a high number of experiments in
a comprehensive manner, helping to identify tendencies and behavioural patterns
of the analyzed algorithms. For all these reasons, thanks to SRCS we can
obtain very practical conclusions, not only about which algorithm is
better, but — and this is the most important — about in which scenario
is better to use one or another. SRCS has been used in [68] and [40], where
it has helped to extract very valuable conclusions.

165

CONCLUSIONS

6.3. What difficulties can we find when imple-

menting these DOPs, algorithms and per-

formance measures, and how can we face

them?

The research performed in this thesis contained a strong experimental compo-
nent. Implementing the software we needed to carry it out was not always an easy
task nor it was exempt of difficulties, and the following lessons were extracted:

In order to obtain useful results in DOPs it is necessary to perform a poten-
tially high number of algorithm executions, possibly over a wide number of
scenarios and variations.

In most cases the algorithms are based in metaheuristics and contain a ran-
dom factor. Therefore, it is necessary to repeat each execution a certain
number of times with different random seeds, in order to obtain a statisti-
cally representative sample of the results.

Due to the random nature of the algorithms, in the analysis of the results
is necessary to use statistical tools. Software packages with such capabilities
are therefore almost mandatory.

Test scenarios usually also have a random component related to dynamism.
However, contrary to what happens to algorithms, this component must be
reproducible, in order to guarantee that the experimental conditions are ex-
actly the same for all the algorithms tested, thus ensuring a fair comparison.

Most of the algorithms have a set of parameters that must be set before the
execution, with a wide range of possible values. This is particularly complex
in Cooperative Optimization Strategies (COS), where each component may
have its own set of parameters. Configuration mechanisms that ease this
process are therefore quite recommended.

A visualization of an algorithm’s performance is extremely helpful, specially
in the first stages of an experiment. Visualizations help to decide if the prob-
lem is correct and if the algorithm is evolving reasonably. If visualizations
can be performed at real time, the better.

Although there is a great variety of algorithms for DOPs, most of them are
based in populations of elements, with some kind of cooperation among them,
either explicit or implicit. This opens the door for creating class hierarchies
and modules that allow the reutilization of components.

166

CONCLUSIONS

Similarly, although there is also a great variety of DOP problems, each of
them with its own objective function, search space, etc., the process by
which a solution is evaluated and assigned a fitness is usually common to
all of them. Moreover, dynamic features (such as change frequency, severity,
the type of change, etc.), as well as other extended functionality (including
performance measures, GUIs, statistics, etc.) can usually be interchanged
between problems. As with the algorithms, this again hints that a framework
with these components is possible.

Considering this experience, we can obtain several conclusions. The first of all
is that the initial configuration and adjustment of algorithms for DOPs is
not an easy task. With the objective of alleviate this situation, we have created
a tool based in software models, DACOS [42], that allows to configure COS — and
actually, other algorithms as well — and visualize their performance in the initial
stages of the experimentation. DACOS was designed to cover a wide variety of
algorithms and problems, but for those cases where specific necessities require to
adapt it, the use of software models allows to do so in a semi-automatic way.

Besides, the characteristics of the algorithms used in DOPs imply that most of
their constituent components, and even their inner structure itself, can be reused
from one algorithm to another when implementing them. The same situation is
present in the problems, where the mechanisms for creating and controlling the
dynamism are usually the same, and they only differ in the objective function used.
This also happens in the performance measures, where in many cases they only
need some standardized information of the algorithms or the problems — e.g., the
number of solutions in an algorithm’s population, when are they evaluated, the
value of the optimum, or the time in which the last change in the environment
occurred —, no matter what particular algorithm or problem are we testing at the
moment.

These circumstances have favoured the creation of a framework for DOPs
with different algorithms, problems, dynamic features and measures,
that we have been developing and improving through all the research. This frame-
work has taken some ideas from a previous publication of the author [191], where
a class hierarchy for metaheuristics in static optimization problems was designed.
The framework allows to exchange different problems, use multiple algorithms,
utilize several performance measures, and even visualize results during run-time.
Furthermore, it also allows to introduce stochastic uncertainty in different points
of the evaluation process of a solution, which, although is not the main topic of
this thesis, it is relevant for the objectives of the research project in which it is
enclosed, and it has already contributed to other on-going works. The framework
has been released as open source in the RedIRIS public forge, and is accessible
through the following url: https://forja.rediris.es/projects/modooptim/.

167

https://forja.rediris.es/projects/modooptim/

CONCLUSIONS

6.4. Summary of publications

This doctoral thesis has produced the following directly related works:

“An Algorithm Comparison for Dynamic Optimization Problems”, I. G. del

Amo, D. A. Pelta, J. R. González, and A. D. Masegosa, Applied Soft Computing,

12(10):3176–3192, 2012. http://dx.doi.org/10.1016/j.asoc.2012.05.021.

“A software modeling approach for the design and analysis of cooperative

optimization systems”, I. G. del Amo, D. A. Pelta, A. D. Masegosa, and J. L.

Verdegay, Software: Practice and Experience, vol. 40, pp. 811–823, Aug. 2010. http:

//dx.doi.org/10.1002/spe.984.

“SRCS: a technique for comparing multiple algorithms under several fac-

tors in Dynamic Optimization Problems”, I. G. del Amo and D. A. Pelta, in

Metaheuristics for Dynamic Optimization (E. Alba, A. Nakib, and P. Siarry, eds.), vol-

ume 433 of Studies in Computational Intelligence, Springer Berlin/ Heidelberg, 2012.

http://dx.doi.org/10.1007/978-3-642-30665-5_4

“A cooperative strategy for solving dynamic optimization problems”, J. R.

González, A. D. Masegosa, and I. G. del Amo, Memetic Computing, vol. 3, no. 1,

pp. 3–14, 2010. http://dx.doi.org/10.1007/s12293-010-0031-x.

168

http://dx.doi.org/10.1016/j.asoc.2012.05.021
http://dx.doi.org/10.1002/spe.984
http://dx.doi.org/10.1002/spe.984
http://dx.doi.org/10.1007/978-3-642-30665-5_4
http://dx.doi.org/10.1007/s12293-010-0031-x

CONCLUSIONS

“Cooperation rules in a trajectory-based centralised cooperative strategy

for Dynamic Optimisation Problems”, J. R. González, A. D. Masegosa, I. G. del

Amo, and D. A. Pelta, in Proceedings of the 2010 IEEE Congress on Evolutionary

Computation (CEC-2010), pp. 1–8, 2010. http://dx.doi.org/10.1109/CEC.2010.

5586063.

“Using heuristic rules to enhance a multiswarm PSO for dynamic envi-

ronments”, I. G. del Amo, D. A. Pelta, and J. R. González, in Proceedings of

the 2010 IEEE Congress on Evolutionary Computation (CEC-2010), pp. 1–8, 2010.

http://dx.doi.org/10.1109/CEC.2010.5586051.

“An Analysis of Particle Properties on a Multi-swarm PSO for Dynamic

Optimization Problems”, I. G. del Amo, D. A. Pelta, J. R. González, and P. Novoa,

in Current Topics in Artificial Intelligence (P. Meseguer, L. Mandow, and R. Gasca,

eds.), vol. 5988 of Lecture Notes in Computer Science, pp. 32–41, Springer Berlin /

Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14264-2_4.

“An Adaptive Multiagent Strategy for Solving Combinatorial Dynamic

Optimization Problems”, J. González, C. Cruz, I. G. del Amo, and D. Pelta,

in Nature Inspired Cooperative Strategies for Optimization (NICSO 2011) (D. Pelta,

N. Krasnogor, D. Dumitrescu, C. Chira, and R. Lung, eds.), vol. 387 of Stud-

ies in Computational Intelligence, pp. 41–55, Springer Berlin / Heidelberg, 2012.

http://dx.doi.org/10.1007/978-3-642-24094-2_3.

169

http://dx.doi.org/10.1109/CEC.2010.5586063
http://dx.doi.org/10.1109/CEC.2010.5586063
http://dx.doi.org/10.1109/CEC.2010.5586051
http://dx.doi.org/10.1007/978-3-642-14264-2_4
http://dx.doi.org/10.1007/978-3-642-24094-2_3

CONCLUSIONS

“Controlling Particle Trajectories in a Multi-swarm Approach for Dynamic

Optimization Problems”, P. Novoa, D. A. Pelta, C. Cruz, and I. G. del Amo, in

Methods and Models in Artificial and Natural Computation. A Homage to Professor

Mira’s Scientific Legacy (J. Mira, J. Ferrández, J. Álvarez, F. de la Paz, and F. Toledo,

eds.), vol. 5601 of Lecture Notes in Computer Science, pp. 285–294, Springer Berlin /

Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02264-7_30.

Additionally, other works in which Ignacio G. del Amo is author or co-author
are also indirectly related to this thesis. The indirect relationship is caused by
the fact that these works are not explicitly devoted to DOPs, but have a clear
influence in some of the results presented here:

“From Theory to Implementation: Applying Metaheuristics.”, A. Zaslavski,

I. G. del Amo, F. G. López, M. G. Torres, B. M. Batista, J. A. M. Pérez, and

J. M. Moreno-Vega. From Theory to Implementation: Applying Metaheuristics.

In P. Pardalos, L. Liberti, and N. Maculan, editors, Global Optimization, volume 84

of Nonconvex Optimization and Its Applications, pages 311–351. Springer US, 2006.

http://dx.doi.org/10.1007/0-387-30528-9_11.

“On the Performance of Homogeneous and Heterogeneous Cooperative

Search Strategies”, A. Masegosa, D. Pelta, I. G. del Amo, and J. Verdegay. In

N. Krasnogor, M. Melián-Batista, J. Pérez, J. Moreno-Vega, and D. Pelta, editors,

Nature Inspired Cooperative Strategies for Optimization (NICSO 2008), volume 236 of

Studies in Computational Intelligence, pages 287–300. Springer Berlin / Heidelberg,

2009. http://dx.doi.org/10.1007/978-3-642-03211-0_24.

Finally, most of the software produced in the thesis has been released as open
source under the MODO Optimization Package, in the RedIRIS public forge, and
is accessible through the following url:

170

http://dx.doi.org/10.1007/978-3-642-02264-7_30
http://dx.doi.org/10.1007/0-387-30528-9_11
http://dx.doi.org/10.1007/978-3-642-03211-0_24

CONCLUSIONS

https://forja.rediris.es/projects/modooptim/.

171

https://forja.rediris.es/projects/modooptim/

CONCLUSIONS

172

Bibliography

[1] H. A. Abbass, K. Sastry, and D. E. Goldberg. Oiling the Wheels of Change:
The Role of Adaptive Automatic Problem Decomposition in Non-Stationary
Environments (IlliGAL Report No. 2004029). Technical report, University
of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory
(IlliGAL), 2004.

[2] A. Ajith, G. Crina, R. Vitorino, M. De, N. Slawomir, and B. Mark. Stochas-
tic Diffusion Search: Partial Function Evaluation In Swarm Intelligence Dy-
namic Optimisation. In Stigmergic Optimization, volume 31 of Studies in
Computational Intelligence, pages 185–207. Springer Berlin / Heidelberg,
2006. http://dx.doi.org/10.1007/978-3-540-34690-6_8.

[3] D. V. Arnold and H.-G. Beyer. Random Dynamics Optimum Tracking with
Evolution Strategies. In Proceedings of the VII Int. Conference on Parallel
Problem Solving from Nature (PPSN-2002), pages 3–12. Springer, 2002.

[4] D. V. Arnold and H.-G. Beyer. Optimum Tracking with Evolution Strategies.
Evolutionary Computation, 14(3):291–308, Aug 2006. http://dx.doi.org/
10.1162/evco.2006.14.3.291.

[5] M. E. Aydin and E. Öztemel. Dynamic job-shop scheduling using reinforce-
ment learning agents. Robotics and Autonomous Systems, 33(2-3):169–178,
2000.

[6] D. Ayvaz, H. Topcuoglu, and F. Gurgen. A comparative study of evo-
lutionary optimization techniques in dynamic environments. In Proceed-
ings of the 2006 Annual Conference on Genetic and Evolutionary Compu-
tation (GECCO-2006), pages 1397–1398, New York, NY, USA, 2006. ACM.
http://dx.doi.org/10.1145/1143997.1144213.

[7] P. Bak. How Nature Works: The Science of Self-Organised Criticality.
Copernicus Press, New York, USA, 1996.

173

http://dx.doi.org/10.1007/978-3-540-34690-6_8
http://dx.doi.org/10.1162/evco.2006.14.3.291
http://dx.doi.org/10.1162/evco.2006.14.3.291
http://dx.doi.org/10.1145/1143997.1144213

BIBLIOGRAPHY

[8] C. Barrico and C. Antunes. An Evolutionary Approach for Assessing
the Degree of Robustness of Solutions to Multi-Objective Models. In
S. Yang, Y.-S. Ong, and Y. Jin, editors, Evolutionary Computation in
Dynamic and Uncertain Environments, volume 51 of Studies in Compu-
tational Intelligence, pages 565–582. Springer Berlin / Heidelberg, 2007.
http://dx.doi.org/10.1007/978-3-540-49774-5_25.

[9] T. Bartz-Beielstein. Experimental Research in Evolutionary Computation:
The New Experimentalism. Natural Computing Series. Springer Berlin / Hei-
delberg, Germany, 2006. http://dx.doi.org/10.1007/3-540-32027-X.

[10] R. Battiti, M. Brunato, and F. Mascia. Reactive Search and Intelligent
Optimization, volume 45 of Operations Research/Computer Science Inter-
faces. Springer Verlag, New York, USA, 2008. http://dx.doi.org/10.

1007/978-0-387-09624-7.

[11] BIRT. Business Intelligence and Reporting Tools (BIRT). http://www.

eclipse.org/birt/, 2008.

[12] T. Blackwell. Swarms in Dynamic Environments. In E. Cantú-Paz, J. Fos-
ter, K. Deb, L. Davis, R. Roy, U.-M. O’Reilly, H.-G. Beyer, R. Standish,
G. Kendall, S. Wilson, M. Harman, J. Wegener, D. Dasgupta, M. Potter,
A. Schultz, K. Dowsland, N. Jonoska, and J. Miller, editors, Proceedings
of the 2003 Annual Conference on Genetic and Evolutionary Computation
(GECCO-2003), volume 2723 of Lecture Notes in Computer Science, pages
1–12. Springer Berlin / Heidelberg, 2003. http://dx.doi.org/10.1007/

3-540-45105-6_1.

[13] T. Blackwell. Particle Swarm Optimization in Dynamic Environments.
In S. Yang, Y.-S. Ong, and Y. Jin, editors, Evolutionary Computation
in Dynamic and Uncertain Environments, volume 51 of Studies in Com-
putational Intelligence, pages 29–49. Springer Berlin / Heidelberg, 2007.
http://dx.doi.org/10.1007/978-3-540-49774-5_2.

[14] T. Blackwell and J. Branke. Multi-swarm optimization in dynamic en-
vironments. In Applications of Evolutionary Computing, volume 3005 of
Lecture Notes in Computer Science, pages 489–500. Springer, 2004. http:

//dx.doi.org/10.1007/978-3-540-24653-4_50.

[15] T. Blackwell and J. Branke. Multiswarms, exclusion, and anti-convergence in
dynamic environments. IEEE Transactions on Evolutionary Computation,
10(4):459–472, 2006. http://dx.doi.org/10.1109/TEVC.2005.857074.

174

http://dx.doi.org/10.1007/978-3-540-49774-5_25
http://dx.doi.org/10.1007/3-540-32027-X
http://dx.doi.org/10.1007/978-0-387-09624-7
http://dx.doi.org/10.1007/978-0-387-09624-7
http://www.eclipse.org/birt/
http://www.eclipse.org/birt/
http://dx.doi.org/10.1007/3-540-45105-6_1
http://dx.doi.org/10.1007/3-540-45105-6_1
http://dx.doi.org/10.1007/978-3-540-49774-5_2
http://dx.doi.org/10.1007/978-3-540-24653-4_50
http://dx.doi.org/10.1007/978-3-540-24653-4_50
http://dx.doi.org/10.1109/TEVC.2005.857074

BIBLIOGRAPHY

[16] T. M. Blackwell. Particle swarms and population diversity. Soft Computing,
9(11):793–802, 2005. http://dx.doi.org/10.1007/s00500-004-0420-5.

[17] P. Bonissone, Y.-T. Chen, K. Goebel, and P. Khedkar. Hybrid soft com-
puting systems: industrial and commercial applications. Proceedings of the
IEEE, 87(9):1641–1667, 1999. http://dx.doi.org/10.1109/5.784245.

[18] P. P. Bonissone. Soft computing: the convergence of emerging reasoning
technologies. Soft Computing - A Fusion of Foundations, Methodologies and
Applications, 1:6–18, 1997. http://dx.doi.org/10.1007/s005000050002.

[19] P. Bosman. Learning and Anticipation in Online Dynamic Optimization.
In S. Yang, Y.-S. Ong, and Y. Jin, editors, Evolutionary Computation in
Dynamic and Uncertain Environments, volume 51 of Studies in Compu-
tational Intelligence, pages 129–152. Springer Berlin / Heidelberg, 2007.
http://dx.doi.org/10.1007/978-3-540-49774-5_6.

[20] P. A. N. Bosman. Learning, anticipation and time-deception in evolution-
ary online dynamic optimization. In Proceedings of the 2005 Annual Con-
ference on Genetic and Evolutionary Computation (GECCO-2005), pages
39–47, New York, NY, USA, 2005. ACM. http://doi.acm.org/10.1145/

1102256.1102264.

[21] A. Boumaza. Learning environment dynamics from self-adaptation: a
preliminary investigation. In Proceedings of the 2005 Annual Conference
on Genetic and Evolutionary Computation (GECCO-2005), pages 48–54,
New York, NY, USA, 2005. ACM. http://dx.doi.org/10.1145/1102256.
1102265.

[22] J. Branke. Memory enhanced evolutionary algorithms for changing opti-
mization problems. In Proceedings of the 1999 IEEE Congress on Evolu-
tionary Computation (CEC-1999), volume 3, pages 1875–1882. IEEE, 1999.
http://dx.doi.org/10.1109/CEC.1999.785502.

[23] J. Branke. Evolutionary Optimization in Dynamic Environments, volume 3
of Genetic algorithms and evolutionary computation. Kluwer Academic Pub-
lishers, Massachusetts, USA, 2001.

[24] J. Branke. Editorial: special issue on dynamic optimization problems.
Soft Computing - A Fusion of Foundations, Methodologies and Applications,
9:777–777, 2005. http://dx.doi.org/10.1007/s00500-004-0418-z.

175

http://dx.doi.org/10.1007/s00500-004-0420-5
http://dx.doi.org/10.1109/5.784245
http://dx.doi.org/10.1007/s005000050002
http://dx.doi.org/10.1007/978-3-540-49774-5_6
http://doi.acm.org/10.1145/1102256.1102264
http://doi.acm.org/10.1145/1102256.1102264
http://dx.doi.org/10.1145/1102256.1102265
http://dx.doi.org/10.1145/1102256.1102265
http://dx.doi.org/10.1109/CEC.1999.785502
http://dx.doi.org/10.1007/s00500-004-0418-z

BIBLIOGRAPHY

[25] J. Branke and Y. Jin. Guest Editorial Special Issue on Evolutionary Com-
putation in the Presence of Uncertainty. IEEE Transactions on Evolution-
ary Computation, 10(4):377–379, aug. 2006. http://dx.doi.org/10.1109/
TEVC.2005.859466.

[26] J. Branke, T. Kaubler, C. Schmidt, and H. Schmeck. A Multi-Population
Approach to Dynamic Optimization Problems. Adaptive Computing in De-
sign and Manufacture, pages 299–308, 2000.

[27] J. Branke, M. Orbayı, and c. Uyar. The Role of Representations in Dy-
namic Knapsack Problems. In F. Rothlauf, J. Branke, S. Cagnoni, E. Costa,
C. Cotta, R. Drechsler, E. Lutton, P. Machado, J. Moore, J. Romero,
G. Smith, G. Squillero, and H. Takagi, editors, Applications of Evolution-
ary Computing, volume 3907 of Lecture Notes in Computer Science, pages
764–775. Springer Berlin / Heidelberg, 2006. http://dx.doi.org/10.1007/
11732242_74.

[28] J. Branke and H. Schmeck. Designing Evolutionary Algorithms for Dy-
namic Optimization Problems. In A. Ghosh and S. Tsutsui, editors,
Advances in Evolutionary Computing, Natural Computing Series, pages
239–262. Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/

978-3-642-18965-4_9.

[29] L. Bui, H. Abbass, and J. Branke. Multiobjective optimization for dynamic
environments. In Proceedings of the 2005 IEEE Congress on Evolutionary
Computation (CEC-2005), volume 3, pages 2349–2356 Vol. 3, sept. 2005.
http://dx.doi.org/10.1109/CEC.2005.1554987.

[30] L. T. Bui, J. Branke, and H. A. Abbass. Diversity as a selection pressure
in dynamic environments. In Proceedings of the 2005 Annual Conference on
Genetic and Evolutionary Computation (GECCO-2005), pages 1557–1558,
New York, NY, USA, 2005. ACM. http://dx.doi.org/10.1145/1068009.
1068257.

[31] A. Carlisle and G. Dozier. Adapting Particle Swarm Optimization to Dy-
namic Environments. In Proceedings of the 2000 International Conference
on Artificial Intelligence (ICAI-2000), pages 429–434, 2000.

[32] M. Clerc and J. Kennedy. The particle swarm - explosion, stability, and con-
vergence in a multidimensional complex space. IEEE Transactions on Evo-
lutionary Computation, 6(1):58–73, 2002. http://dx.doi.org/10.1109/

4235.985692.

176

http://dx.doi.org/10.1109/TEVC.2005.859466
http://dx.doi.org/10.1109/TEVC.2005.859466
http://dx.doi.org/10.1007/11732242_74
http://dx.doi.org/10.1007/11732242_74
http://dx.doi.org/10.1007/978-3-642-18965-4_9
http://dx.doi.org/10.1007/978-3-642-18965-4_9
http://dx.doi.org/10.1109/CEC.2005.1554987
http://dx.doi.org/10.1145/1068009.1068257
http://dx.doi.org/10.1145/1068009.1068257
http://dx.doi.org/10.1109/4235.985692
http://dx.doi.org/10.1109/4235.985692

BIBLIOGRAPHY

[33] H. G. Cobb. An Investigation into the Use of Hypermutation as an Adap-
tive Operator in Genetic Algorithms Having Continuouis, Time-Dependent
Nonstationary Environments. Technical Report AIC-90-001, Naval Research
Laboratory, 1990.

[34] C. Cruz, J. González, and D. Pelta. Optimization in dynamic environments:
a survey on problems, methods and measures. Soft Computing - A Fusion
of Foundations, Methodologies and Applications, 15:1427–1448, 2011. http:
//dx.doi.org/10.1007/s00500-010-0681-0.

[35] C. Cruz and D. Pelta. Soft Computing and Cooperative Strategies for Opti-
mization. Applied Soft Computing, 9(1):30–38, 2009. http://dx.doi.org/

10.1016/j.asoc.2007.12.007.

[36] H. Dam, C. Lokan, and H. Abbass. Evolutionary Online Data Mining:
An Investigation in a Dynamic Environment. In S. Yang, Y.-S. Ong, and
Y. Jin, editors, Evolutionary Computation in Dynamic and Uncertain En-
vironments, volume 51 of Studies in Computational Intelligence, pages 153–
178. Springer Berlin / Heidelberg, 2007. http://dx.doi.org/10.1007/

978-3-540-49774-5_7.

[37] K. Deb and P. Nain. An Evolutionary Multi-objective Adaptive Meta-
modeling Procedure Using Artificial Neural Networks. In S. Yang, Y.-S.
Ong, and Y. Jin, editors, Evolutionary Computation in Dynamic and Un-
certain Environments, volume 51 of Studies in Computational Intelligence,
pages 297–322. Springer Berlin / Heidelberg, 2007. http://dx.doi.org/

10.1007/978-3-540-49774-5_13.

[38] I. G. del Amo and D. Pelta. SRCS: A Technique for Comparing Multi-
ple Algorithms under Several Factors in Dynamic Optimization Problems.
In E. Alba, A. Nakib, and P. Siarry, editors, Metaheuristics for Dynamic
Optimization, volume 433 of Studies in Computational Intelligence, pages
61–77. Springer Berlin / Heidelberg, 2012. http://dx.doi.org/10.1007/

978-3-642-30665-5_4.

[39] I. G. del Amo, D. A. Pelta, and J. R. González. Using heuristic rules to
enhance a multiswarm PSO for dynamic environments. In Proceedings of the
2010 IEEE Congress on Evolutionary Computation (CEC-2010), pages 1–8,
2010. http://dx.doi.org/10.1109/CEC.2010.5586051.

[40] I. G. del Amo, D. A. Pelta, J. R. González, and A. D. Masegosa. An Algo-
rithm Comparison for Dynamic Optimization Problems. Applied Soft Com-
puting, 12(10):3176–3192, 2012. http://dx.doi.org/10.1016/j.asoc.

2012.05.021.

177

http://dx.doi.org/10.1007/s00500-010-0681-0
http://dx.doi.org/10.1007/s00500-010-0681-0
http://dx.doi.org/10.1016/j.asoc.2007.12.007
http://dx.doi.org/10.1016/j.asoc.2007.12.007
http://dx.doi.org/10.1007/978-3-540-49774-5_7
http://dx.doi.org/10.1007/978-3-540-49774-5_7
http://dx.doi.org/10.1007/978-3-540-49774-5_13
http://dx.doi.org/10.1007/978-3-540-49774-5_13
http://dx.doi.org/10.1007/978-3-642-30665-5_4
http://dx.doi.org/10.1007/978-3-642-30665-5_4
http://dx.doi.org/10.1109/CEC.2010.5586051
http://dx.doi.org/10.1016/j.asoc.2012.05.021
http://dx.doi.org/10.1016/j.asoc.2012.05.021

BIBLIOGRAPHY

[41] I. G. del Amo, D. A. Pelta, J. R. González, and P. Novoa. An Analysis
of Particle Properties on a Multi-swarm PSO for Dynamic Optimization
Problems. In P. Meseguer, L. Mandow, and R. Gasca, editors, Current
Topics in Artificial Intelligence, volume 5988 of Lecture Notes in Computer
Science, pages 32–41. Springer Berlin / Heidelberg, 2010. http://dx.doi.

org/10.1007/978-3-642-14264-2_4.

[42] I. G. del Amo, D. A. Pelta, A. D. Masegosa, and J. L. Verdegay. A soft-
ware modeling approach for the design and analysis of cooperative optimiza-
tion systems. Software: Practice and Experience, 40(9):811–823, Aug. 2010.
http://dx.doi.org/10.1002/spe.984.

[43] J. Demšar. Statistical Comparisons of Classifiers over Multiple Data Sets.
Journal of Machine Learning Research, 7(1), 2006.

[44] S. Droste. Analysis of the (1+1) EA for a Dynamically Bitwise Changing
OneMax. In E. Cantú-Paz, J. Foster, K. Deb, L. Davis, R. Roy, U.-M.
O’Reilly, H.-G. Beyer, R. Standish, G. Kendall, S. Wilson, M. Harman,
J. Wegener, D. Dasgupta, M. Potter, A. Schultz, K. Dowsland, N. Jonoska,
and J. Miller, editors, Proceedings of the 2003 Annual Conference on Ge-
netic and Evolutionary Computation (GECCO-2003), volume 2723 of Lec-
ture Notes in Computer Science, pages 202–202. Springer Berlin / Heidel-
berg, 2003. http://dx.doi.org/10.1007/3-540-45105-6_103.

[45] W. Du and B. Li. Multi-strategy ensemble particle swarm optimization for
dynamic optimization. Information Sciences, 178(15):3096 – 3109, 2008.
http://dx.doi.org/10.1016/j.ins.2008.01.020.

[46] R. Eberhart and Y. Shi. Tracking and optimizing dynamic systems with
particle swarms. In Proceedings of the 2001 IEEE Congress on Evolutionary
Computation (CEC-2001), volume 1, pages 94–100 vol. 1, 2001. http://dx.
doi.org/10.1109/CEC.2001.934376.

[47] R. C. Eberhart and Y. Shi. Comparing inertia weights and constriction
factors in particle swarm optimization. In Proceedings of the 2000 IEEE
Congress on Evolutionary Computation (CEC-2000), volume 1, pages 84–
88. IEEE, 2000. http://dx.doi.org/10.1109/CEC.2000.870279.

[48] Eclipse. Eclipse. http://www.eclipse.org/, 2008.

[49] A. Elshamli, H. Abdullah, and S. Areibi. Genetic Algorithm for Dynamic
Path Planning. In Canadian Conference on Electrical and Computer Engi-
neering, 2004.

178

http://dx.doi.org/10.1007/978-3-642-14264-2_4
http://dx.doi.org/10.1007/978-3-642-14264-2_4
http://dx.doi.org/10.1002/spe.984
http://dx.doi.org/10.1007/3-540-45105-6_103
http://dx.doi.org/10.1016/j.ins.2008.01.020
http://dx.doi.org/10.1109/CEC.2001.934376
http://dx.doi.org/10.1109/CEC.2001.934376
http://dx.doi.org/10.1109/CEC.2000.870279
http://www.eclipse.org/

BIBLIOGRAPHY

[50] EMF. Eclipse Modeling Framework. http://www.eclipse.org/emf, 2008.

[51] R. Eriksson and B. Olsson. On the Behavior of Evolutionary Global-Local
Hybrids with Dynamic Fitness Functions. In J. J. M. Guervós, P. Adamidis,
H.-G. Beyer, H.-P. Schwefel, and J.-L. Fernández-Villacañas, editors, Pro-
ceedings of the VII Int. Conference on Parallel Problem Solving from Nature
(PPSN-2002), volume 2439 of Lecture Notes in Computer Science, pages
13–22. Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/

3-540-45712-7_2.

[52] R. Eriksson and B. Olsson. On the performance of evolutionary algorithms
with life-time adaptation in dynamic fitness landscapes. In Proceedings of
the 2004 IEEE Congress on Evolutionary Computation (CEC-2004), 2004.
http://dx.doi.org/10.1109/CEC.2004.1331046.

[53] L. J. Eshelman and J. D. Schaffer. Real-coded genetic algorithms and
interval-schemata. In L. D. Whitley, editor, Proceedings of the II Work-
shop on Foundation of Genetic Algorithms (FOGA-1992), pages 187–202,
San Mateo, CA, USA, 1993. Morgan Kaufmann.

[54] S. Esquivel and C. Coello. Particle Swarm Optimization in Non-stationary
Environments. In C. Lemâıtre, C. Reyes, and J. González, editors, Advances
in Artificial Intelligence – IBERAMIA 2004, volume 3315 of Lecture Notes
in Computer Science, pages 757–766. Springer Berlin / Heidelberg, 2004.
http://dx.doi.org/10.1007/978-3-540-30498-2_76.

[55] S. C. Esquivel and C. A. Coello Coello. Hybrid particle swarm optimizer for
a class of dynamic fitness landscape. Engineering Optimization, 38(8):873–
888, 2006. http://dx.doi.org/10.1080/03052150600772226.

[56] Z. Fan, J. Wang, M. Wen, E. Goodman, and R. Rosenberg. An Evo-
lutionary Approach For Robust Layout Synthesis of MEMS. In Evolu-
tionary Computation in Dynamic and Uncertain Environments, volume 51
of Studies in Computational Intelligence, pages 519–542. Springer, 2007.
http://dx.doi.org/10.1007/978-3-540-49774-5_23.

[57] J. Ferber. Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1999.

[58] C. M. Fernandes, C. Lima, and A. C. Rosa. UMDAs for dynamic optimiza-
tion problems. In Proceedings of the 2008 Annual Conference on Genetic
and Evolutionary Computation (GECCO-2008), pages 399–406, New York,
NY, USA, 2008. ACM. http://dx.doi.org/10.1145/1389095.1389170.

179

http://www.eclipse.org/emf
http://dx.doi.org/10.1007/3-540-45712-7_2
http://dx.doi.org/10.1007/3-540-45712-7_2
http://dx.doi.org/10.1109/CEC.2004.1331046
http://dx.doi.org/10.1007/978-3-540-30498-2_76
http://dx.doi.org/10.1080/03052150600772226
http://dx.doi.org/10.1007/978-3-540-49774-5_23
http://dx.doi.org/10.1145/1389095.1389170

BIBLIOGRAPHY

[59] C. M. Fernandes, A. C. Rosa, and V. Ramos. Binary ant algorithm. In Pro-
ceedings of the 2007 Annual Conference on Genetic and Evolutionary Com-
putation (GECCO-2007), pages 41–48, New York, NY, USA, 2007. ACM.
http://dx.doi.org/10.1145/1276958.1276965.

[60] L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through
Simulated Evolution. John Wiley, 1966.

[61] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns.
Addison-Wesley Professional, January 1995.

[62] S. Garćıa and F. Herrera. An Extension on ”Statistical Comparisons of
Classifiers over Multiple Data Sets” for all Pairwise Comparisons. Journal
of Machine Learning Research, 9:2677–2694, Dec. 2008.

[63] S. Garćıa, D. Molina, M. Lozano, and F. Herrera. A study on the use of non-
parametric tests for analyzing the evolutionary algorithms’ behaviour: a case
study on the CEC’2005 Special Session on Real Parameter Optimization.
Journal of Heuristics, 15(6):617–644, 2009. http://dx.doi.org/10.1007/

s10732-008-9080-4.

[64] A. Ghosh and H. Mühlenbein. Univariate marginal distribution algo-
rithms for non-stationary optimization problems. International Journal of
Knowledge-based and Intelligent Engineering Systems, 8(3):129–138, 2004.

[65] F. Glover. Future paths for integer programming and links to artificial in-
telligence. Computers and Operations Research, 13(5):533–549, May 1986.
http://dx.doi.org/10.1016/0305-0548(86)90048-1.

[66] C. Goh and K. Tan. Evolving the Tradeoffs between Pareto-Optimality and
Robustness in Multi-Objective Evolutionary Algorithms. In S. Yang, Y.-S.
Ong, and Y. Jin, editors, Evolutionary Computation in Dynamic and Un-
certain Environments, volume 51 of Studies in Computational Intelligence,
pages 457–478. Springer Berlin / Heidelberg, 2007. http://dx.doi.org/

10.1007/978-3-540-49774-5_20.

[67] D. E. Goldberg and R. E. Smith. Nonstationary function optimization using
genetic algorithm with dominance and diploidy. In Proceedings of the Second
International Conference on Genetic Algorithms and their Application, pages
59–68, Hillsdale, NJ, USA, 1987. L. Erlbaum Associates Inc.

[68] J. González, C. Cruz, I. G. del Amo, and D. Pelta. An Adaptive Multiagent
Strategy for Solving Combinatorial Dynamic Optimization Problems. In

180

http://dx.doi.org/10.1145/1276958.1276965
http://dx.doi.org/10.1007/s10732-008-9080-4
http://dx.doi.org/10.1007/s10732-008-9080-4
http://dx.doi.org/10.1016/0305-0548(86)90048-1
http://dx.doi.org/10.1007/978-3-540-49774-5_20
http://dx.doi.org/10.1007/978-3-540-49774-5_20

BIBLIOGRAPHY

D. Pelta, N. Krasnogor, D. Dumitrescu, C. Chira, and R. Lung, editors, Na-
ture Inspired Cooperative Strategies for Optimization (NICSO 2011), volume
387 of Studies in Computational Intelligence, pages 41–55. Springer Berlin /
Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24094-2_3.

[69] J. R. González, A. D. Masegosa, and I. G. del Amo. A cooperative strategy
for solving dynamic optimization problems. Memetic Computing, 3(1):3–14,
2010. http://dx.doi.org/10.1007/s12293-010-0031-x.

[70] J. R. González, A. D. Masegosa, I. G. del Amo, and D. A. Pelta. Coopera-
tion rules in a trajectory-based centralised cooperative strategy for Dynamic
Optimisation Problems. In Proceedings of the 2010 IEEE Congress on Evo-
lutionary Computation (CEC-2010), pages 1–8, 2010. http://dx.doi.org/
10.1109/CEC.2010.5586063.

[71] J. Grefenstette. Genetic Algorithms for Changing Environments. In
R. Maenner and B. Manderick, editors, Proceedings of the II Int. Confer-
ence on Parallel Problem Solving from Nature (PPSN-1992), pages 137–144.
Elsevier Science Inc., 1992.

[72] M. Guntsch, M. Middendorf, and H. Schmeck. An Ant Colony Optimization
Approach to Dynamic TSP. In L. Spector and et al., editors, Proceedings
of the 2001 Annual Conference on Genetic and Evolutionary Computation
(GECCO-2001), pages 860–867. Morgan Kaufmann, 2001.

[73] H. Handa, L. Chapman, and X. Yao. Robust Salting Route Optimization
Using Evolutionary Algorithms. In Evolutionary Computation in Dynamic
and Uncertain Environments, volume 51 of Studies in Computational In-
telligence, pages 497–517. Springer, 2007. http://dx.doi.org/10.1007/

978-3-540-49774-5_22.

[74] F. Hanshar and B. Ombuki-Berman. Dynamic vehicle routing using genetic
algorithms. Applied Intelligence, 27:89–99, 2007. http://dx.doi.org/10.

1007/s10489-006-0033-z.

[75] E. Hart and P. Ross. An immune system approach to scheduling in changing
environments. In Proceedings of the 1999 Annual Conference on Genetic
and Evolutionary Computation (GECCO-1999), pages 1559–1565. Morgan
Kaufmann, 1999.

[76] A. Hedar and M. Fukushima. Heuristic pattern search and its hybridiza-
tion with simulated annealing for nonlinear global optimization. Optimiza-
tion Methods and Software, 19(3–4):291–308, 2004. http://dx.doi.org/

10.1080/10556780310001645189.

181

http://dx.doi.org/10.1007/978-3-642-24094-2_3
http://dx.doi.org/10.1007/s12293-010-0031-x
http://dx.doi.org/10.1109/CEC.2010.5586063
http://dx.doi.org/10.1109/CEC.2010.5586063
http://dx.doi.org/10.1007/978-3-540-49774-5_22
http://dx.doi.org/10.1007/978-3-540-49774-5_22
http://dx.doi.org/10.1007/s10489-006-0033-z
http://dx.doi.org/10.1007/s10489-006-0033-z
http://dx.doi.org/10.1080/10556780310001645189
http://dx.doi.org/10.1080/10556780310001645189

BIBLIOGRAPHY

[77] A.-R. Hedar and M. Fukushima. Tabu Search directed by direct search
methods for nonlinear global optimization. European Journal of Operational
Research, 170:329–349, 2006. http://dx.doi.org/10.1016/j.ejor.2004.

05.033.

[78] J. H. Holland. Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence.
University of Michigan Press, 1975.

[79] M. Hollander and D. Wolfe. Nonparametric Statistical Methods. John Wiley
& Sons, Inc., second edition, 1999.

[80] S. Holm. A Simple Sequentially Rejective Multiple Test Procedure. Scandi-
navian Journal of Statistics, 6(2):65–70, 1979.

[81] J. Hu, S. Li, and E. Goodman. Evolutionary Robust Design of Analog Filters
Using Genetic Programming. In S. Yang, Y.-S. Ong, and Y. Jin, editors, Evo-
lutionary Computation in Dynamic and Uncertain Environments, volume 51
of Studies in Computational Intelligence, pages 479–496. Springer Berlin /
Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-49774-5_21.

[82] X. Hu and R. Eberhart. Adaptive particle swarm optimization: detec-
tion and response to dynamic systems. In Proceedings of the 2002 IEEE
Congress on Evolutionary Computation (CEC-2002), volume 2, pages 1666–
1670, 2002. http://dx.doi.org/10.1109/CEC.2002.1004492.

[83] S. Janson and M. Middendorf. A Hierarchical Particle Swarm Optimizer
for Dynamic Optimization Problems. In Applications of Evolutionary Com-
puting, volume 3005 of Lecture Notes in Computer Science, pages 513–524.
Springer, 2004. http://dx.doi.org/10.1007/978-3-540-24653-4_52.

[84] Y. Jin and J. Branke. Evolutionary optimization in uncertain environments-
a survey. IEEE Transactions on Evolutionary Computation, 9(3):303–317,
june 2005. http://dx.doi.org/10.1109/TEVC.2005.846356.

[85] Y. Jin and B. Sendhoff. Constructing Dynamic Optimization Test Problems
Using the Multi-objective Optimization Concept. In G. Raidl, S. Cagnoni,
J. Branke, D. Corne, R. Drechsler, Y. Jin, C. Johnson, P. Machado, E. Mar-
chiori, F. Rothlauf, G. Smith, and G. Squillero, editors, Applications of Evo-
lutionary Computing, volume 3005 of Lecture Notes in Computer Science,
pages 525–536. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.

1007/978-3-540-24653-4_53.

182

http://dx.doi.org/10.1016/j.ejor.2004.05.033
http://dx.doi.org/10.1016/j.ejor.2004.05.033
http://dx.doi.org/10.1007/978-3-540-49774-5_21
http://dx.doi.org/10.1109/CEC.2002.1004492
http://dx.doi.org/10.1007/978-3-540-24653-4_52
http://dx.doi.org/10.1109/TEVC.2005.846356
http://dx.doi.org/10.1007/978-3-540-24653-4_53
http://dx.doi.org/10.1007/978-3-540-24653-4_53

BIBLIOGRAPHY

[86] A. Karaman, c. Uyar, and G. Eryiğit. The Memory Indexing Evolution-
ary Algorithm for Dynamic Environments. In F. Rothlauf, J. Branke,
S. Cagnoni, D. Corne, R. Drechsler, Y. Jin, P. Machado, E. Marchiori,
J. Romero, G. Smith, and G. Squillero, editors, Applications of Evolution-
ary Computing, volume 3449 of Lecture Notes in Computer Science, pages
563–573. Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/

978-3-540-32003-6_59.

[87] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings
of 1995 IEEE International Conference on Neural Networks (ICNN-1995),
volume 4, pages 1942–1948. IEEE, 1995. http://dx.doi.org/10.1109/

ICNN.1995.488968.

[88] G. Kramer and J. Gallagher. Improvements to the *CGA Enabling Online In-
trinsic Evolution in Compact EH Devices. In Proceedings of the NASA/DoD
Conference on Evolvable Hardware, pages 225–231, 2003.

[89] W. H. Kruskal and W. A. Wallis. Use of Ranks in One-Criterion Variance
Analysis. Journal of the American Statistical Association, 47(260):pp. 583–
621, 1952.

[90] J. Laredo, P. Castillo, A. Mora, J. Merelo, A. Rosa, and C. Fernan-
des. Evolvable Agents in Static and Dynamic Optimization Problems. In
G. Rudolph, T. Jansen, S. Lucas, C. Poloni, and N. Beume, editors, Paral-
lel Problem Solving from Nature – PPSN X, volume 5199 of Lecture Notes
in Computer Science, pages 488–497. Springer Berlin / Heidelberg, 2008.
http://dx.doi.org/10.1007/978-3-540-87700-4_49.

[91] R. V. Lenth. Some Practical Guidelines for Effective Sample Size De-
termination. The American Statistician, 55(3):187–193, August 1 2001.
http://dx.doi.org/10.1198/000313001317098149.

[92] W.-F. Leong and G. Yen. Dynamic swarms in PSO-based multiobjective
optimization. In Proceedings of the 2007 IEEE Congress on Evolutionary
Computation (CEC-2007), pages 3172–3179. IEEE, sept. 2007. http://dx.
doi.org/10.1109/CEC.2007.4424877.

[93] C. Li and S. Yang. A Generalized Approach to Construct Benchmark
Problems for Dynamic Optimization. In Simulated Evolution and Learn-
ing, volume 5361 of Lecture Notes in Computer Science, pages 391–
400. Springer Berlin / Heidelberg, 2008. http://dx.doi.org/10.1007/

978-3-540-89694-4_40.

183

http://dx.doi.org/10.1007/978-3-540-32003-6_59
http://dx.doi.org/10.1007/978-3-540-32003-6_59
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1007/978-3-540-87700-4_49
http://dx.doi.org/10.1198/000313001317098149
http://dx.doi.org/10.1109/CEC.2007.4424877
http://dx.doi.org/10.1109/CEC.2007.4424877
http://dx.doi.org/10.1007/978-3-540-89694-4_40
http://dx.doi.org/10.1007/978-3-540-89694-4_40

BIBLIOGRAPHY

[94] C. Li and S. Yang. Fast Multi-Swarm Optimization for Dynamic Opti-
mization Problems. In Natural Computation, 2008. ICNC ’08. Fourth In-
ternational Conference on, volume 7, pages 624–628, oct. 2008. http:

//dx.doi.org/10.1109/ICNC.2008.313.

[95] C. Li, S. Yang, T. T. Nguyen, E. L. Yu, X. Yao, Y. Jin, H.-G. Beyer, and
P. N. Suganthan. Benchmark Generator for CEC’2009 Competition on Dy-
namic Optimization. Technical report, University of Leicester, University of
Birmingham, Nanyang Technological University, Sept. 2008.

[96] X. Li, J. Branke, and T. Blackwell. Particle swarm with speciation and adap-
tation in a dynamic environment. In Proceedings of the 2006 Annual Con-
ference on Genetic and Evolutionary Computation (GECCO-2006), pages
51–58, New York, NY, USA, 2006. ACM. http://dx.doi.org/10.1145/

1143997.1144005.

[97] D. Lim, Y.-S. Ong, M.-H. Lim, and Y. Jin. Single/Multi-objective Inverse
Robust Evolutionary Design Methodology in the Presence of Uncertainty.
In S. Yang, Y.-S. Ong, and Y. Jin, editors, Evolutionary Computation in
Dynamic and Uncertain Environments, volume 51 of Studies in Compu-
tational Intelligence, pages 437–456. Springer Berlin / Heidelberg, 2007.
http://dx.doi.org/10.1007/978-3-540-49774-5_19.

[98] Q. Ling, G. Wu, and Q. Wang. Deterministic Robust Optimal Design
Based on Standard Crowding Genetic Algorithm. In S. Yang, Y.-S. Ong,
and Y. Jin, editors, Evolutionary Computation in Dynamic and Uncertain
Environments, volume 51 of Studies in Computational Intelligence, pages
583–598. Springer Berlin / Heidelberg, 2007. http://dx.doi.org/10.1007/
978-3-540-49774-5_26.

[99] R. Lung and D. Dumitrescu. Evolutionary swarm cooperative optimization
in dynamic environments. Natural Computing, 9:83–94, 2010. http://dx.

doi.org/10.1007/s11047-009-9129-9.

[100] R. I. Lung and D. Dumitrescu. A new collaborative evolutionary-swarm
optimization technique. In Proceedings of the 2007 Annual Conference on
Genetic and Evolutionary Computation (GECCO-2007), pages 2817–2820,
New York, NY, USA, 2007. ACM. http://dx.doi.org/10.1145/1274000.
1274043.

[101] Y. Mack, T. Goel, W. Shyy, and R. Haftka. Surrogate Model-Based Opti-
mization Framework: A Case Study in Aerospace Design. In S. Yang, Y.-S.

184

http://dx.doi.org/10.1109/ICNC.2008.313
http://dx.doi.org/10.1109/ICNC.2008.313
http://dx.doi.org/10.1145/1143997.1144005
http://dx.doi.org/10.1145/1143997.1144005
http://dx.doi.org/10.1007/978-3-540-49774-5_19
http://dx.doi.org/10.1007/978-3-540-49774-5_26
http://dx.doi.org/10.1007/978-3-540-49774-5_26
http://dx.doi.org/10.1007/s11047-009-9129-9
http://dx.doi.org/10.1007/s11047-009-9129-9
http://dx.doi.org/10.1145/1274000.1274043
http://dx.doi.org/10.1145/1274000.1274043

BIBLIOGRAPHY

Ong, and Y. Jin, editors, Evolutionary Computation in Dynamic and Un-
certain Environments, volume 51 of Studies in Computational Intelligence,
pages 323–342. Springer Berlin / Heidelberg, 2007. http://dx.doi.org/

10.1007/978-3-540-49774-5_14.

[102] H. B. Mann and D. R. Whitney. On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other. The Annals of Mathemat-
ical Statistics, 18(1):pp. 50–60, 1947. http://dx.doi.org/10.1214/aoms/

1177730491.

[103] A. Masegosa, F. Mascia, D. Pelta, and M. Brunato. Cooperative Strate-
gies and Reactive Search: A Hybrid Model Proposal. In T. Stützle, ed-
itor, Learning and Intelligent Optimization, volume 5851 of Lecture Notes
in Computer Science, pages 206–220. Springer Berlin / Heidelberg, 2009.
http://dx.doi.org/10.1007/978-3-642-11169-3_15.

[104] A. Masegosa, D. Pelta, I. G. del Amo, and J. Verdegay. On the Per-
formance of Homogeneous and Heterogeneous Cooperative Search Strate-
gies. In N. Krasnogor, M. Melián-Batista, J. Pérez, J. Moreno-Vega, and
D. Pelta, editors, Nature Inspired Cooperative Strategies for Optimization
(NICSO 2008), volume 236 of Studies in Computational Intelligence, pages
287–300. Springer Berlin / Heidelberg, 2009. http://dx.doi.org/10.1007/
978-3-642-03211-0_24.

[105] D. C. Mattfeld and C. Bierwirth. An efficient genetic algorithm for job
shop scheduling with tardiness objectives. European Journal of Oper-
ational Research, 155(3):616–630, 2004. http://dx.doi.org/10.1016/

S0377-2217(03)00016-X.

[106] J. McAffer and J.-M. Lemieux. Eclipse Rich Client Platform : designing,
coding, and packaging Java applications. Addison-Wesley, 2006.

[107] R. Mendes and A. Mohais. DynDE: a differential evolution for dynamic
optimization problems. In Proceedings of the 2005 IEEE Congress on Evo-
lutionary Computation (CEC-2005), volume 3, pages 2808–2815, sept. 2005.
http://dx.doi.org/10.1109/CEC.2005.1555047.

[108] E. Mezura-Montes. Constraint-Handling in Evolutionary Optimization, vol-
ume 198 of Studies in Computational Intelligence. Springer Berlin / Heidel-
berg, 2009. http://dx.doi.org/10.1007/978-3-642-00619-7.

[109] Z. Michalewicz, M. Schmidt, M. Michalewicz, and C. Chiriac. Adaptive
Business Intelligence: Three Case Studies. In S. Yang, Y.-S. Ong, and

185

http://dx.doi.org/10.1007/978-3-540-49774-5_14
http://dx.doi.org/10.1007/978-3-540-49774-5_14
http://dx.doi.org/10.1214/aoms/1177730491
http://dx.doi.org/10.1214/aoms/1177730491
http://dx.doi.org/10.1007/978-3-642-11169-3_15
http://dx.doi.org/10.1007/978-3-642-03211-0_24
http://dx.doi.org/10.1007/978-3-642-03211-0_24
http://dx.doi.org/10.1016/S0377-2217(03)00016-X
http://dx.doi.org/10.1016/S0377-2217(03)00016-X
http://dx.doi.org/10.1109/CEC.2005.1555047
http://dx.doi.org/10.1007/978-3-642-00619-7

BIBLIOGRAPHY

Y. Jin, editors, Evolutionary Computation in Dynamic and Uncertain En-
vironments, volume 51 of Studies in Computational Intelligence, pages 179–
196. Springer Berlin / Heidelberg, 2007. http://dx.doi.org/10.1007/

978-3-540-49774-5_8.

[110] R. Montemanni, L. Gambardella, A. Rizzoli, and A. Donati. A new algo-
rithm for a Dynamic Vehicle Routing Problem based on Ant Colony System.
In Second International Workshop on Freight Transportation and Logistics,
pages 27–30, 2003.

[111] N. Mori and H. Kita. Genetic algorithms for adaptation to dynamic environ-
ments - a survey. In 26th Annual Conference of the IEEE (IECON 2000),
volume 4, pages 2947–2952, 2000. http://dx.doi.org/10.1109/IECON.

2000.972466.

[112] N. Mori, T. Kude, and K. Matsumoto. Adaptation to a dynamic environment
by means of the environment identifying genetic algorithm. In 26th Annual
Confjerence of the IEEE (IECON 2000), volume 4, pages 2953–2958, 2000.
http://dx.doi.org/10.1109/IECON.2000.972467.

[113] R. Morrison and K. De Jong. A test problem generator for non-stationary
environments. In Proceedings of the 1999 IEEE Congress on Evolutionary
Computation, volume 3, pages 2047–2053, 1999. http://dx.doi.org/10.

1109/CEC.1999.785526.

[114] R. W. Morrison. Performance Measurement in Dynamic Environments. In
A. Barry, editor, Proceedings of the 2003 Annual Conference on Genetic and
Evolutionary Computation (GECCO-2003), pages 99–102, 2003.

[115] R. W. Morrison. Designing Evolutionary Algorithms for Dynamic Environ-
ments. Springer-Verlag, Berlin, Heidelberg, 2004.

[116] I. Moser and T. Hendtlass. A Simple and Efficient Multi-Component Algo-
rithm for Solving Dynamic Function Optimisation Problems. In Proceedings
of the 2007 IEEE Congress on Evolutionary Computation (CEC-2007), pages
252–259, 2007. http://dx.doi.org/10.1109/CEC.2007.4424479.

[117] F. Neri and R. Mäkinen. Hierarchical Evolutionary Algorithms and Noise
Compensation via Adaptation. In S. Yang, Y.-S. Ong, and Y. Jin,
editors, Evolutionary Computation in Dynamic and Uncertain Environ-
ments, volume 51 of Studies in Computational Intelligence, pages 345–
369. Springer Berlin / Heidelberg, 2007. http://dx.doi.org/10.1007/

978-3-540-49774-5_15.

186

http://dx.doi.org/10.1007/978-3-540-49774-5_8
http://dx.doi.org/10.1007/978-3-540-49774-5_8
http://dx.doi.org/10.1109/IECON.2000.972466
http://dx.doi.org/10.1109/IECON.2000.972466
http://dx.doi.org/10.1109/IECON.2000.972467
http://dx.doi.org/10.1109/CEC.1999.785526
http://dx.doi.org/10.1109/CEC.1999.785526
http://dx.doi.org/10.1109/CEC.2007.4424479
http://dx.doi.org/10.1007/978-3-540-49774-5_15
http://dx.doi.org/10.1007/978-3-540-49774-5_15

BIBLIOGRAPHY

[118] T. T. Nguyen. Continuous dynamic optimisation using evolutionary algo-
rithms. PhD thesis, University of Birmingham, 2011. http://etheses.

bham.ac.uk/1296/.

[119] J. Nieto, E. Alba, and F. Chicano. Using Metaheuristic Algorithms Remotely
via ROS. In Proceedings of the 2007 Annual Conference on Genetic and
Evolutionary Computation (GECCO-2007), 2007. http://dx.doi.org/10.
1145/1276958.1277239.

[120] P. Novoa, D. A. Pelta, C. Cruz, and I. G. del Amo. Controlling Particle
Trajectories in a Multi-swarm Approach for Dynamic Optimization Prob-
lems. In J. Mira, J. Ferrández, J. Álvarez, F. de la Paz, and F. Toledo,
editors, Methods and Models in Artificial and Natural Computation. A
Homage to Professor Mira’s Scientific Legacy, volume 5601 of Lecture Notes
in Computer Science, pages 285–294. Springer Berlin / Heidelberg, 2009.
http://dx.doi.org/10.1007/978-3-642-02264-7_30.

[121] F. Olivetti de França, F. J. Von Zuben, and L. Nunes de Castro. An Arti-
ficial Immune Network for Multimodal Function Optimization on Dynamic
Environments. In Proceedings of the 2005 conference on Genetic and evolu-
tionary computation, pages 289–296. ACM, 2005. http://dx.doi.org/10.

1145/1068009.1068057.

[122] I. Osman and G. Laporte. Metaheuristics: A bibliography. Annals of
Operations Research, 63:511–623, 1996. http://dx.doi.org/10.1007/

BF02125421.

[123] G. Pankratz. Dynamic vehicle routing by means of a genetic algorithm.
International Journal of Physical Distribution & Logistics Management,
35(5):362–383, 2005. http://dx.doi.org/10.1108/09600030510607346.

[124] D. Parrott and X. Li. A particle swarm model for tracking multiple peaks in
a dynamic environment using speciation. In Proceedings of the 2004 IEEE
Congress on Evolutionary Computation (CEC-2004), volume 1, pages 98–
103. IEEE, 2004. http://dx.doi.org/10.1109/CEC.2004.1330843.

[125] D. Pelta, C. Cruz, and J. R. González. A study on diversity and cooperation
in a multiagent strategy for dynamic optimization problems. International
Journal of Intelligent Systems, 24(7):844–861, 2009. http://dx.doi.org/

10.1002/int.20363.

[126] D. Pelta, C. Cruz, and J. L. Verdegay. Simple control rules in a cooperative
system for dynamic optimisation problems. International Journal of Gen-

187

http://etheses.bham.ac.uk/1296/
http://etheses.bham.ac.uk/1296/
http://dx.doi.org/10.1145/1276958.1277239
http://dx.doi.org/10.1145/1276958.1277239
http://dx.doi.org/10.1007/978-3-642-02264-7_30
http://dx.doi.org/10.1145/1068009.1068057
http://dx.doi.org/10.1145/1068009.1068057
http://dx.doi.org/10.1007/BF02125421
http://dx.doi.org/10.1007/BF02125421
http://dx.doi.org/10.1108/09600030510607346
http://dx.doi.org/10.1109/CEC.2004.1330843
http://dx.doi.org/10.1002/int.20363
http://dx.doi.org/10.1002/int.20363

BIBLIOGRAPHY

eral Systems, 38(7):701–717, 10/2009 2009. http://dx.doi.org/10.1080/

03081070802367366.

[127] D. Pelta, A. Sancho-Royo, C. Cruz, and J. L. Verdegay. Using memory
and fuzzy rules in a co-operative multi-thread strategy for optimization.
Information Sciences, 176(13):1849–1868, 2006. http://dx.doi.org/10.

1016/j.ins.2005.06.007.

[128] B. Peng and R. Reynolds. Cultural algorithms: Knowledge learning in
dynamic environments. In Proceedings of the 2004 IEEE Congress on
Evolutionary Computation (CEC-2004), pages 1751–1758, 2004. http:

//dx.doi.org/10.1109/CEC.2004.1331107.

[129] F. Quintão, F. Nakamura, and G. Mateus. Evolutionary Algorithms for
Combinatorial Problems in the Uncertain Environment of the Wireless Sen-
sor Networks. In S. Yang, Y.-S. Ong, and Y. Jin, editors, Evolutionary
Computation in Dynamic and Uncertain Environments, volume 51 of Studies
in Computational Intelligence, pages 197–222. Springer Berlin / Heidelberg,
2007. http://dx.doi.org/10.1007/978-3-540-49774-5_9.

[130] W. Rand and R. Riolo. Shaky Ladders, Hyperplane-Defined Functions and
Genetic Algorithms: Systematic Controlled Observation in Dynamic En-
vironments. In Applications on Evolutionary Computing, volume 3449 of
Lecture Notes in Computer Science, pages 600–609. Springer Berlin / Hei-
delberg, 2005. http://dx.doi.org/10.1007/978-3-540-32003-6_63.

[131] W. Rand and R. Riolo. The Effect of Building Block Construction on the
Behavior of the GA in Dynamic Environments: A Case Study Using the
Shaky Ladder Hyperplane-Defined Functions. In F. Rothlauf, J. Branke,
S. Cagnoni, E. Costa, C. Cotta, R. Drechsler, E. Lutton, P. Machado,
J. Moore, J. Romero, G. Smith, G. Squillero, and H. Takagi, editors,
Applications of Evolutionary Computing, volume 3907 of Lecture Notes
in Computer Science, pages 776–787. Springer Berlin / Heidelberg, 2006.
http://dx.doi.org/10.1007/11732242_75.

[132] R. Randles and D. Wolfe. Introduction to the Theory of Nonparametric
Statistics. John Wiley & Sons, Inc., 1979.

[133] H. Richter. A study of dynamic severity in chaotic fitness landscapes. In
Proceedings of the 2005 IEEE Congress on Evolutionary Computation (CEC-
2005), volume 3, pages 2824–2831, 2005. http://dx.doi.org/10.1109/

CEC.2005.1555049.

188

http://dx.doi.org/10.1080/03081070802367366
http://dx.doi.org/10.1080/03081070802367366
http://dx.doi.org/10.1016/j.ins.2005.06.007
http://dx.doi.org/10.1016/j.ins.2005.06.007
http://dx.doi.org/10.1109/CEC.2004.1331107
http://dx.doi.org/10.1109/CEC.2004.1331107
http://dx.doi.org/10.1007/978-3-540-49774-5_9
http://dx.doi.org/10.1007/978-3-540-32003-6_63
http://dx.doi.org/10.1007/11732242_75
http://dx.doi.org/10.1109/CEC.2005.1555049
http://dx.doi.org/10.1109/CEC.2005.1555049

BIBLIOGRAPHY

[134] H. Richter and S. Yang. Learning behavior in abstract memory schemes for
dynamic optimization problems. Soft Computing - A Fusion of Foundations,
Methodologies and Applications, 13(12):1163–1173, 2009. http://dx.doi.

org/10.1007/s00500-009-0420-6.

[135] C. Rocco and D. Salazar. A Hybrid Approach Based on Evolutionary
Strategies and Interval Arithmetic to Perform Robust Designs. In Evolu-
tionary Computation in Dynamic and Uncertain Environments, volume 51
of Studies in Computational Intelligence, pages 543–564. Springer, 2007.
http://dx.doi.org/10.1007/978-3-540-49774-5_24.

[136] P. Rohlfshagen, P. K. Lehre, and X. Yao. Dynamic evolutionary optimi-
sation: an analysis of frequency and magnitude of change. In Proceed-
ings of the 2009 Annual Conference on Genetic and Evolutionary Compu-
tation (GECCO-2009), pages 1713–1720, New York, NY, USA, 2009. ACM.
http://dx.doi.org/10.1145/1569901.1570131.

[137] P. Rohlfshagen and X. Yao. The Dynamic Knapsack Problem Revis-
ited: A New Benchmark Problem for Dynamic Combinatorial Optimisa-
tion. In M. Giacobini, A. Brabazon, S. Cagnoni, G. Di Caro, A. Ekárt,
A. Esparcia-Alcázar, M. Farooq, A. Fink, and P. Machado, editors, Appli-
cations of Evolutionary Computing, volume 5484 of Lecture Notes in Com-
puter Science, pages 745–754. Springer Berlin / Heidelberg, 2009. http:

//dx.doi.org/10.1007/978-3-642-01129-0_84.

[138] C. Ronnewinkel and T. Martinetz. Explicit Speciation with few a priori
Parameters for Dynamic Optimization Problems. In Proceedings of the 2001
Annual Conference on Genetic and Evolutionary Computation (GECCO-
2001), pages 31–34. Morgan Kaufmann, 2001.

[139] C. Rossi, M. Abderrahim, and J. César Dı́az. Tracking Moving Optima
Using Kalman-Based Predictions. Evolutionary Computation, 16(1):1–30,
2008. http://dx.doi.org/10.1162/evco.2008.16.1.1.

[140] S. Saleem and R. Reynolds. Cultural Algorithms in Dynamic Environments.
In Proceedings of the 2000 Congress on Evolutionary Computation (CEC-
2000), volume 2, pages 1513–1520, 2000. http://dx.doi.org/10.1109/

CEC.2000.870833.

[141] L. Schönemann. The impact of population sizes and diversity on the adapt-
ability of evolution strategies in dynamic environments. In Proceedings of the
2004 Congress on Evolutionary Computation (CEC-2004), volume 2, pages
1270–1277, 2004. http://dx.doi.org/10.1109/CEC.2004.1331043.

189

http://dx.doi.org/10.1007/s00500-009-0420-6
http://dx.doi.org/10.1007/s00500-009-0420-6
http://dx.doi.org/10.1007/978-3-540-49774-5_24
http://dx.doi.org/10.1145/1569901.1570131
http://dx.doi.org/10.1007/978-3-642-01129-0_84
http://dx.doi.org/10.1007/978-3-642-01129-0_84
http://dx.doi.org/10.1162/evco.2008.16.1.1
http://dx.doi.org/10.1109/CEC.2000.870833
http://dx.doi.org/10.1109/CEC.2000.870833
http://dx.doi.org/10.1109/CEC.2004.1331043

BIBLIOGRAPHY

[142] L. Schönemann. Evolution Strategies in Dynamic Environments. In Evolu-
tionary Computation in Dynamic and Uncertain Environments, volume 51
of Studies in Computational Intelligence, pages 51–77. Springer, 2007. http:
//dx.doi.org/10.1007/978-3-540-49774-5_3.

[143] Y. Shi and R. Eberhart. Fuzzy adaptive particle swarm optimization. In Pro-
ceedings of the 2001 IEEE Conference on Evolutionary Computation (CEC-
2001), volume 1, pages 101–106, 2001. http://dx.doi.org/10.1109/CEC.

2001.934377.

[144] A. Simões and E. Costa. An immune system-based genetic algorithm to
deal with dynamic environments: Diversity and memory. In D. W. Pearson,
N. C. Steele, and R. Albrecht, editors, Proceedings of the Sixth international
conference on neural networks and genetic algorithms (ICANNGA03), pages
168–174. Springer, 2003.

[145] R. Smierzchalski and Z. Michalewicz. Modeling of Ship Trajectory in Colli-
sion Situations by an Evolutionary Algorithms. IEEE Transactions on Evo-
lutionary Computation, 4(3):227–241, 2000. http://dx.doi.org/10.1109/
4235.873234.

[146] J. Smith. Self-Adaptation in Evolutionary Algorithms for Combinato-
rial Optimisation. In C. Cotta, M. Sevaux, and K. Sörensen, editors,
Adaptive and Multilevel Metaheuristics, volume 136 of Studies in Com-
putational Intelligence, pages 31–57. Springer Berlin / Heidelberg, 2008.
http://dx.doi.org/10.1007/978-3-540-79438-7_2.

[147] S. Stanhope and J. Daida. (1+1) Genetic Algorithm Fitness Dynamics in a
Changing Environment. In Proceedings of the 1999 Congress on Evolutionary
Computation (CEC-1999) , volume 3, pages 1851–1858, 1999. http://dx.

doi.org/10.1109/CEC.1999.785499.

[148] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse
Modeling Framework. Addison-Wesley Professional, 2008.

[149] Y. Tenne and S. Armfield. A Memetic Algorithm Using a Trust-Region
Derivative-Free Optimization with Quadratic Modelling for Optimization of
Expensive and Noisy Black-box Functions. In Evolutionary Computation in
Dynamic and Uncertain Environments, volume 51 of Studies in Computa-
tional Intelligence, pages 389–415. Springer, 2007. http://dx.doi.org/10.
1007/978-3-540-49774-5_17.

190

http://dx.doi.org/10.1007/978-3-540-49774-5_3
http://dx.doi.org/10.1007/978-3-540-49774-5_3
http://dx.doi.org/10.1109/CEC.2001.934377
http://dx.doi.org/10.1109/CEC.2001.934377
http://dx.doi.org/10.1109/4235.873234
http://dx.doi.org/10.1109/4235.873234
http://dx.doi.org/10.1007/978-3-540-79438-7_2
http://dx.doi.org/10.1109/CEC.1999.785499
http://dx.doi.org/10.1109/CEC.1999.785499
http://dx.doi.org/10.1007/978-3-540-49774-5_17
http://dx.doi.org/10.1007/978-3-540-49774-5_17

BIBLIOGRAPHY

[150] M. Tezuka, M. Munetomo, and K. Akama. Genetic Algorithm to Optimize
Fitness Function with Sampling Error and its Application to Financial Opti-
mization Problem. In S. Yang, Y.-S. Ong, and Y. Jin, editors, Evolutionary
Computation in Dynamic and Uncertain Environments, volume 51 of Studies
in Computational Intelligence, pages 417–434. Springer Berlin / Heidelberg,
2007. http://dx.doi.org/10.1007/978-3-540-49774-5_18.

[151] R. Tinós and S. Yang. A self-organizing random immigrants genetic al-
gorithm for dynamic optimization problems. Genetic Programming and
Evolvable Machines, 8(3):255–286, 2007. http://dx.doi.org/10.1007/

s10710-007-9024-z.

[152] R. Tinos and S. Yang. Continuous dynamic problem generators for evolution-
ary algorithms. In Proceedings of the 2007 IEEE Congress on Evolutionary
Computation (CEC-2007), pages 236–243, 2007. http://dx.doi.org/10.

1109/CEC.2007.4424477.

[153] R. Tinós and S. Yang. Genetic Algorithms with Self-Organizing Behaviour
in Dynamic Environments. In S. Yang, Y.-S. Ong, and Y. Jin, editors, Evo-
lutionary Computation in Dynamic and Uncertain Environments, volume 51
of Studies in Computational Intelligence, pages 105–127. Springer Berlin /
Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-49774-5_5.

[154] R. Tinos and S. Yang. Evolutionary programming with q-Gaussian muta-
tion for dynamic optimization problems. In Proceedings of the 2008 IEEE
Congress on Evolutionary Computation (CEC-2008), pages 1823–1830, 2008.
http://dx.doi.org/10.1109/CEC.2008.4631036.

[155] K. Trojanowski and S. T. Wierzchon. Immune-based algorithms for dynamic
optimization. Information Sciences, 179(10):1495–1515, 2009. http://dx.

doi.org/10.1016/j.ins.2008.11.014.

[156] K. Tumer and A. Agogino. Evolving Multi Rover Systems in Dynamic and
Noisy Environments. In S. Yang, Y.-S. Ong, and Y. Jin, editors, Evolutionary
Computation in Dynamic and Uncertain Environments, volume 51 of Studies
in Computational Intelligence, pages 371–387. Springer Berlin / Heidelberg,
2007. http://dx.doi.org/10.1007/978-3-540-49774-5_16.

[157] R. K. Ursem. Multinational GAs: Multimodal Optimization Techniques
in Dynamic Environments. In Proceedings of the 2000 Annual Conference
on Genetic and Evolutionary Computation (GECCO-2000), pages 19–26.
Morgan Kaufmann, 2000.

191

http://dx.doi.org/10.1007/978-3-540-49774-5_18
http://dx.doi.org/10.1007/s10710-007-9024-z
http://dx.doi.org/10.1007/s10710-007-9024-z
http://dx.doi.org/10.1109/CEC.2007.4424477
http://dx.doi.org/10.1109/CEC.2007.4424477
http://dx.doi.org/10.1007/978-3-540-49774-5_5
http://dx.doi.org/10.1109/CEC.2008.4631036
http://dx.doi.org/10.1016/j.ins.2008.11.014
http://dx.doi.org/10.1016/j.ins.2008.11.014
http://dx.doi.org/10.1007/978-3-540-49774-5_16

BIBLIOGRAPHY

[158] R. K. Ursem, T. Krink, M. Jensen, and Z. Michalewicz. Analysis and mod-
eling of control tasks in dynamic systems. IEEE Transactions on Evolution-
ary Computation, 6(4):378–389, 2002. http://dx.doi.org/10.1109/TEVC.
2002.802871.

[159] A. Vargha and H. D. Delaney. A Critique and Improvement of the ”CL”
Common Language Effect Size Statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics, 25(2):101–132, 2000.

[160] G. Venayagamoorthy. Adaptive critics for dynamic particle swarm optimiza-
tion. In Proceedings of the 2004 IEEE International Symposium on Intelli-
gent Control, 2004. http://dx.doi.org/10.1109/ISIC.2004.1387713.

[161] J. L. Verdegay, R. R. Yager, and P. P. Bonissone. On heuristics as a funda-
mental constituent of soft computing. Fuzzy Sets and Systems, 159(7):846–
855, 2008. http://dx.doi.org/10.1016/j.fss.2007.08.014.

[162] S. Voß. Meta-Heuristics: Advances and Trends in Local Search Paradigms
for Optimization. Kluwer Academic Publishers, 1999.

[163] H. Wang, D. Wang, and S. Yang. A memetic algorithm with adaptive hill
climbing strategy for dynamic optimization problems. Soft Computing, 13(8-
9):763–780, 2009. http://dx.doi.org/10.1007/s00500-008-0347-3.

[164] H. Wang, S. Yang, W. Ip, and D. Wang. Adaptive Primal-Dual Genetic
Algorithms in Dynamic Environments. IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics, 39(6):1348–1361, 2009. http://dx.

doi.org/10.1109/TSMCB.2009.2015281.

[165] K. Weicker. Performance Measures for Dynamic Environments. In
J. Guervós, P. Adamidis, H.-G. Beyer, H.-P. Schwefel, and J.-L. Fernández-
Villacañas, editors, Proceedings of the VII International Conference on Par-
allel Problem Solving from Nature (PPSN-2002), volume 2439 of Lecture
Notes in Computer Science, pages 64–73. Springer Berlin / Heidelberg, 2002.
http://dx.doi.org/10.1007/3-540-45712-7_7.

[166] K. Weicker. Evolutionary Algorithms and Dynamic Optimization Problems.
Der Andere Verlag, 2003.

[167] K. Weicker and N. Weicker. On evolution strategy optimization in dynamic
environments. In Proceedings of the 1999 IEEE Congress on Evolutionary
Computation (CEC-1999), pages 2039–2046, 1999. http://dx.doi.org/10.
1109/CEC.1999.785525.

192

http://dx.doi.org/10.1109/TEVC.2002.802871
http://dx.doi.org/10.1109/TEVC.2002.802871
http://dx.doi.org/10.1109/ISIC.2004.1387713
http://dx.doi.org/10.1016/j.fss.2007.08.014
http://dx.doi.org/10.1007/s00500-008-0347-3
http://dx.doi.org/10.1109/TSMCB.2009.2015281
http://dx.doi.org/10.1109/TSMCB.2009.2015281
http://dx.doi.org/10.1007/3-540-45712-7_7
http://dx.doi.org/10.1109/CEC.1999.785525
http://dx.doi.org/10.1109/CEC.1999.785525

BIBLIOGRAPHY

[168] F. Wilcoxon. Individual Comparisons by Ranking Methods. Biometrics
Bulletin, 1(6):pp. 80–83, 1945. http://dx.doi.org/10.2307/3001968.

[169] M. Wineberg and F. Oppacher. Enhancing the GA’s Ability to Cope with
Dynamic Environments. In Proceedings of the 2000 Annual Conference on
Genetic and Evolutionary Computation (GECCO-2000), pages 3–10. Morgan
Kaufmann, 2000.

[170] Y. G. Woldesenbet and G. G. Yen. Dynamic Evolutionary Algorithm With
Variable Relocation. IEEE Transactions on Evolutionary Computation,
13(3):500–513, 2009. http://dx.doi.org/10.1109/TEVC.2008.2009031.

[171] D. Wolpert and W. Macready. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67–82, apr. 1997. http:

//dx.doi.org/10.1109/4235.585893.

[172] X.-S. Yan, L.-S. Kang, Z.-H. Cai, and H. Li. An approach to dynamic trav-
eling salesman problem. In International Conference on Machine Learning
and Cybernetics, 2004.

[173] S. Yang. Non-stationary problem optimization using the primal-dual ge-
netic algorithm. In Proceedings of the 2003 IEEE Congress on Evolutionary
Computation (CEC-2003), volume 3, pages 2246–2253. IEEE Press, 2003.
http://dx.doi.org/10.1109/CEC.2003.1299951.

[174] S. Yang. Memory-based immigrants for genetic algorithms in dynamic en-
vironments. In Proceedings of the 2005 Annual Conference on Genetic and
Evolutionary Computation (GECCO-2005), pages 1115–1122. ACM, 2005.
http://dx.doi.org/10.1145/1068009.1068196.

[175] S. Yang. A comparative study of immune system based genetic algorithms
in dynamic environments. In Proceedings of the 2006 Annual Conference on
Genetic and Evolutionary Computation (GECCO-2006), pages 1377–1384.
ACM, 2006. http://dx.doi.org/10.1145/1143997.1144209.

[176] S. Yang. Associative Memory Scheme for Genetic Algorithms in Dynamic
Environments. In Applications of Evolutionary Computing, volume 3907
of Lecture Notes in Computer Science, pages 788–799. Springer Berlin /
Heidelberg, Springer Berlin / Heidelberg, 2006. http://dx.doi.org/10.

1007/11732242_76.

[177] S. Yang. Explicit Memory Schemes for Evolutionary Algorithms in Dynamic
Environments. In S. Yang, Y.-S. Ong, and Y. Jin, editors, Evolutionary Com-
putation in Dynamic and Uncertain Environments, volume 51 of Studies in

193

http://dx.doi.org/10.2307/3001968
http://dx.doi.org/10.1109/TEVC.2008.2009031
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1109/CEC.2003.1299951
http://dx.doi.org/10.1145/1068009.1068196
http://dx.doi.org/10.1145/1143997.1144209
http://dx.doi.org/10.1007/11732242_76
http://dx.doi.org/10.1007/11732242_76

BIBLIOGRAPHY

Computational Intelligence, pages 3–28. Springer Berlin / Heidelberg, 2007.
http://dx.doi.org/10.1007/978-3-540-49774-5_1.

[178] S. Yang. Genetic Algorithms with Memory- and Elitism-Based Immigrants
in Dynamic Environments. Evolutionary Computation, 16(3):385–416, 2008.
http://dx.doi.org/10.1162/evco.2008.16.3.385.

[179] S. Yang, H. Cheng, and F. Wang. Genetic Algorithms With Immigrants and
Memory Schemes for Dynamic Shortest Path Routing Problems in Mobile
Ad Hoc Networks. IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, 40(99):52–63, 2010. http://dx.doi.org/
10.1109/TSMCC.2009.2023676.

[180] S. Yang and C. Li. A Clustering Particle Swarm Optimizer for Locating and
Tracking Multiple Optima in Dynamic Environments. IEEE Transactions
on Evolutionary Computation, 14(6):959–974, dec. 2010. http://dx.doi.

org/10.1109/TEVC.2010.2046667.

[181] S. Yang, Y.-S. Ong, and Y. Jin. Editorial to special issue on evolutionary
computation in dynamic and uncertain environments. Genetic Program-
ming and Evolvable Machines, 7(4):293–294, 2006. http://dx.doi.org/

10.1007/s10710-006-9016-4.

[182] S. Yang, Y.-S. Ong, and Y. Jin, editors. Evolutionary Computation in Dy-
namic and Uncertain Environments, volume 51 of Studies in Computational
Intelligence. Springer Berlin / Heidelberg, 2007. http://dx.doi.org/10.

1007/978-3-540-49774-5.

[183] S. Yang and R. Tinós. A Hybrid Immigrants Scheme for Genetic Al-
gorithms in Dynamic Environments. International Journal of Automa-
tion and Computing, 4(3):243–254, 2007. http://dx.doi.org/10.1007/

s11633-007-0243-9.

[184] S. Yang and X. Yao. Experimental study on population-based incremental
learning algorithms for dynamic optimization problems. Soft Computing,
9(11):815–834, 2005. http://dx.doi.org/10.1007/s00500-004-0422-3.

[185] S. Yang and X. Yao. Population-Based Incremental Learning With Asso-
ciative Memory for Dynamic Environments. IEEE Transactions on Evolu-
tionary Computation, 12(5):542–561, 2008. http://dx.doi.org/10.1109/

TEVC.2007.913070.

[186] G. Yen, F. Yang, T. Hickey, and M. Goldstein. Coordination of explo-
ration and exploitation in a dynamic environment. In Proceedings of the

194

http://dx.doi.org/10.1007/978-3-540-49774-5_1
http://dx.doi.org/10.1162/evco.2008.16.3.385
http://dx.doi.org/10.1109/TSMCC.2009.2023676
http://dx.doi.org/10.1109/TSMCC.2009.2023676
http://dx.doi.org/10.1109/TEVC.2010.2046667
http://dx.doi.org/10.1109/TEVC.2010.2046667
http://dx.doi.org/10.1007/s10710-006-9016-4
http://dx.doi.org/10.1007/s10710-006-9016-4
http://dx.doi.org/10.1007/978-3-540-49774-5
http://dx.doi.org/10.1007/978-3-540-49774-5
http://dx.doi.org/10.1007/s11633-007-0243-9
http://dx.doi.org/10.1007/s11633-007-0243-9
http://dx.doi.org/10.1007/s00500-004-0422-3
http://dx.doi.org/10.1109/TEVC.2007.913070
http://dx.doi.org/10.1109/TEVC.2007.913070

BIBLIOGRAPHY

2001 International Joint Conference on Neural Networks (IJCNN-2001), vol-
ume 2, pages 1014–1018, 2001. http://dx.doi.org/10.1109/IJCNN.2001.
939499.

[187] Ö. Yeniay. Penalty function methods for constrained optimization with ge-
netic algorithms. Mathematical and Computational Applications, 10:45–56,
2005.

[188] L. Zadeh. Soft computing and fuzzy logic. Software, IEEE, 11(6):48–56,
nov. 1994. http://dx.doi.org/10.1109/52.329401.

[189] L. A. Zadeh. Fuzzy Sets. Information and Control, 8:338–353, 1965. http:

//dx.doi.org/10.1016/S0019-9958(65)90241-X.

[190] L. A. Zadeh. Applied Soft Computing – Foreword. Applied Soft Computing,
1(1):1–2, 2001. http://dx.doi.org/10.1016/S1568-4946(01)00003-5.

[191] A. Zaslavski, I. G. del Amo, F. G. López, M. G. Torres, B. M. Batista,
J. A. M. Pérez, and J. M. Moreno-Vega. From Theory to Implementation:
Applying Metaheuristics. In P. Pardalos, L. Liberti, and N. Maculan, ed-
itors, Global Optimization, volume 84 of Nonconvex Optimization and Its
Applications, pages 311–351. Springer US, 2006. http://dx.doi.org/10.

1007/0-387-30528-9_11.

[192] S. Zeng, H. Shi, L. Kang, and L. Ding. Orthogonal Dynamic Hill Climbing
Algorithm: ODHC. In S. Yang, Y.-S. Ong, and Y. Jin, editors, Evolutionary
Computation in Dynamic and Uncertain Environments, volume 51 of Studies
in Computational Intelligence, pages 79–104. Springer Berlin / Heidelberg,
2007. http://dx.doi.org/10.1007/978-3-540-49774-5_4.

[193] X. Zou, M. Wang, A. Zhou, and B. Mckay. Evolutionary optimization based
on chaotic sequence in dynamic environments. In Proceedings of the 2004
IEEE International Conference on Networking, Sensing and Control, pages
1364 – 1369, 2004. http://dx.doi.org/10.1109/ICNSC.2004.1297146.

195

http://dx.doi.org/10.1109/IJCNN.2001.939499
http://dx.doi.org/10.1109/IJCNN.2001.939499
http://dx.doi.org/10.1109/52.329401
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/S1568-4946(01)00003-5
http://dx.doi.org/10.1007/0-387-30528-9_11
http://dx.doi.org/10.1007/0-387-30528-9_11
http://dx.doi.org/10.1007/978-3-540-49774-5_4
http://dx.doi.org/10.1109/ICNSC.2004.1297146

	Agradecimientos
	Abstract
	Resumen y conclusiones
	Introduction
	Context of the thesis
	Objectives

	Background
	Problems
	Continuous DOPs
	Moving Peaks Benchmark (MPB)
	The Ackley Function
	The Griewank Function
	The Rastrigin Function
	The Rosenbrock Function
	The Sphere Function

	Discrete DOPs
	The Dynamic Knapsack Problem
	The Dynamic Vehicle Routing Problem (DVRP)
	XOR-based Dynamic Problems

	Problems chosen in the experiments of the thesis

	Performance measures
	Offline Error
	Mean Fitness Error (MFE)
	Offline Performance
	Weicker measures
	Performance measures chosen in the experiments of the thesis

	Algorithms
	Evolutionary Algorithms
	Particle Swarm Optimization
	Other Algorithms
	Algorithms chosen in the experiments of the thesis

	New algorithmic proposals for DOPs
	Control particle trajectories of a PSO
	Motivation
	Proposal
	Validation
	Conclusions

	Using heuristic rules in a mQSO
	Motivation
	Proposal
	Change Rule
	Rand Rule
	Both Rule

	Validation
	Conclusions

	Agents for DOPs
	Motivation
	Proposal
	Agents for continuous DOPs
	Agents for discrete DOPs

	Validation
	Conclusions
	Agents for continuous DOPs
	Agents for discrete DOPs

	Cooperative Strategies for DOPs
	Motivation
	Proposal
	Cooperation modes

	Validation
	First study: introducing CS
	Second study: extending cooperation rules

	Conclusions

	Overall conclusions

	SRCS: Statistical Ranking Color Scheme
	Motivation
	Description of the SRCS technique
	Comments on statistical issues for the SRCS technique
	Applying SRCS: algorithm comparison for continuous DOPs
	Motivation
	Algorithms used
	Validation
	Conclusions

	Conclusions

	Software design and implementation
	DACOS
	Motivation
	DACOS Architecture
	Design Module
	Analysis and Visualization Module

	Conclusions

	MODO Optimization Package
	Motivation
	Algorithms
	Problems
	Plugins
	Outstanding features
	Conclusions

	Conclusions
	Is it possible to improve the existent algorithms, and, if possible, what techniques can be used for that purpose?
	What methodology should be applied in order to compare the performance of different algorithms on a DOP?
	What difficulties can we find when implementing these DOPs, algorithms and performance measures, and how can we face them?
	Summary of publications

	Bibliography

