

SIMULACIÓN EFICIENTE DE
ESTRUCTURAS NEURONALES

BASADAS EN EL SISTEMA
NERVIOSO

Richard R. Carrillo Sánchez

Tesis doctoral
PhD Dissertation

Universidad de Granada
Departamento de arquitectura
y tecnología de computadores
Granada, 2009

SIMULACIÓN EFICIENTE DE
ESTRUCTURAS NEURONALES BASADAS

EN EL SISTEMA NERVIOSO

Richard R. Carrillo Sánchez

TESIS DOCTORAL

Directores: Eduardo Ros Vidal
 Eva Martínez Ortigosa
 Francisco J. Pelayo Valle

Granada 2009

Departamento de arquitectura y tecnología de
computadores

.

Editor: Editorial de la Universidad de Granada
Autor: Richard R. Carrillo Sánchez
D.L.: GR. 3048-2009
ISBN: 978-84-692-5088-4

D. Eduardo Ros Vidal, profesor titular de la Universidad de
Granada, Dª. Eva Martínez Ortigosa, profesor contratado doctor de
la Universidad de Granada y D. Francisco J. Pelayo Valle,
Catedrático de la Universidad de Granada

CERTIFICAN

que la memoria titulada

SIMULACIÓN EFICIENTE DE
ESTRUCTURAS NEURONALES BASADAS

EN EL SISTEMA NERVIOSO

ha sido realizada por D. Richard R. Carrillo Sánchez bajo nuestra
dirección en el Departamento de arquitectura y tecnología de
computadores de la Universidad de Granada para optar al grado de
doctor y a la mención especial de doctor europeo.

Granada, a de junio de 2009

Fdo. Eduardo Ros Vidal Fdo. Eva Martínez Ortigosa

Fdo. Francisco J. Pelayo Valle

SIMULACIÓN EFICIENTE DE
ESTRUCTURAS NEURONALES BASADAS

EN EL SISTEMA NERVIOSO

Memoria presentada por

Richard R. Carrillo Sánchez

para optar al grado de

doctor en informática con mención especial de
doctor europeo por la Universidad de Granada

Fdo. Richard R. Carrillo Sánchez

Acknowledgement

This work has been supported by the EU projects SpikeFORCE
(IST-2001-35271), SENSOPAC (IST-028056) and the Spanish
National Grant (DPI-2004-07032).

Resumen

El estudio realizado se centra en el ámbito de la simulación de redes
neuronales de impulsos (spiking neural networks). Este tipo de redes
neuronales, calificadas por algunos como la tercera generación de redes
neuronales, utilizan modelos de neurona que definen su
comportamiento de forma más similar a las neuronas presentes en la
biología, es decir, son más realistas desde el punto de vista fisiológico
que las redes neuronales clásicas.

Relacionados con este tipo de simulaciones, existen distintos campos
de trabajo, por una parte se encuentran los neurofisiólogos que aplican
la simulación de estas redes a la investigación sobre neuronas y
circuitos nerviosos presentes en la biología. Para éstos, aquello
fundamental en una simulación es que los resultados de ésta sean
relativamente precisos numéricamente y que los modelos de neurona y
red empleados aborden el grado de detalle suficiente. De esta forma, los
resultados de las simulaciones pueden ser comparados con los datos
obtenidos de la biología, a través normalmente de electrofisiología. Por
otra parte, se encuentra el campo de la ciencia de la computación. En
este campo, los ingenieros utilizan estas redes como elementos de
computación para aplicarlos a la resolución de problemas. Para estas
aplicaciones lo deseable es que las simulaciones sean eficientes y en
algunos casos incluso que se ejecuten en tiempo real. Considerando
estas aplicaciones, sería conveniente el desarrollo de una herramienta
de simulación que por una parte soporte modelos neuronales con el
grado necesario para que pueda ser utilizado en el campo de la
fisiología y por otra parte sea lo suficientemente eficiente en términos
de carga computacional de forma que pueda ser aplicada a problemas
de ingeniería, como es el control de robots.

El principal medio de transmisión de información en los circuitos
nerviosos son los impulsos eléctricos (spikes) producidos por las
neuronas como potenciales de acción. Estos impulsos, disparan
cambios en la dinámica de las neuronas a las que llegan, pudiendo
hacer que estas neuronas generen a su vez nuevos impulsos los cuales
son propagados a otras neuronas. Una de las características de estos
impulsos es que no se suelen producir de forma muy continua o
frecuente. Esta dispersión en el tiempo puede ser aprovechada en el
esquema de simulación empleado en la red neuronal, dando origen a los

esquemas de simulación dirigidos por eventos (event-driven

simulation).

Tradicionalmente, cuando se requería simular redes neuronales de
impulsos definidas por modelos relativamente complejos, se empleaban
los llamados esquemas de simulación dirigidos por tiempo (time-driven

simulation). En estos esquemas de simulación, se aplica un método
genérico de resolución numérica de ecuaciones diferenciales (por
ejemplo el método de Runge-Kutta o el método de Euler), el cual
divide el tiempo en pequeños pasos de tiempo y en cada paso de tiempo
se evalúan las ecuaciones que definen el modelo de neurona y se
actualizan las variables de estado de cada neurona. Dado que estos
métodos están basados en integración numérica, cuanto más cortos son
los pasos de tiempo en los que se divide la simulación, tanto más
precisos son los resultados obtenido por ésta, pero también más tiempo
requiere la simulación para ejecutarse.

En un esquema de simulación dirigido por eventos, las variables de
estado de las neuronas son actualizadas sólo cuando reciben un evento
que modifique su evolución normal. Estos eventos recibidos suelen ser
los impulsos eléctricos que llegan de otras neuronas. Dado que estos
impulsos no suelen ser muy abundantes, especialmente cuando se usa
codificación dispersa (sparse coding), el número de actualizaciones
neuronales realizadas es bajo y por tanto el número de operaciones
requeridas para simular la red es bajo también. Con los cual, las
simulaciones neuronales que usan este esquema suelen ser muy
eficientes en tiempo. El inconveniente que presenta este esquema, es
que los impulsos pueden llegar en cualquier momento a la neurona,
luego se necesita una expresión matemática que permita calcular el
valor de las variables de estado neuronales desde la última vez que
fueron actualizadas hasta el momento en el que se ha recibido el nuevo
impulso. Dado que los modelos de neurona complejos suelen estar
definidos por sistema de ecuaciones diferenciales que no suelen ser
susceptibles de ser integradas analíticamente, esta expresión
matemática que permita actualizar las variables directamente, no existe.

Por tanto, se necesita un método de resolución numérica de
ecuaciones diferenciales para obtener los valores de las variables de
estado neuronales. Sin embargo, no queremos ejecutar este tipo de
métodos durante la simulación debido a su carga computacional. La
solución propuesta es, en una fase previa a las simulaciones de las redes
neuronales y utilizando un método resolución numérica, ejecutar un

conjunto de simulaciones de una sola neurona para cada tipo neuronal y
cada uno de sus posibles estados iniciales (dentro de un dominio
razonable de valores para cada variable) y con una duración suficiente
para que el estado neuronal se estabilice. Esto nos provee de todos los
valores de las variables de estado neuronales que podemos necesitar
durante la simulación de una red. Para agilizar el acceso a estos valores
se almacenan en un conjunto de tablas de consulta (lookup tables), que
junto con los metadatos necesarios para acceder a ellas, constituye para
la fase real de simulación toda la información necesaria para
caracterizar un tipo de neurona. De esta forma, se permite la ejecución
de redes neuronales definidas por modelos relativamente complejos y
de forma eficiente.

El principal objetivo que se ha planteado para esta tesis ha sido
demostrar que modelos neuronales plausibles biológicamente,
tradicionalmente usados en el campo de la neurofisiología para estudiar
el comportamiento de distintas neuronas, pueden ser usados de forma
efectiva en la resolución de problemas computacionales (por ejemplo el
control de un brazo robot). De esta forma, características del
comportamiento de las neuronas presentes en la biología pueden ser
estudiadas y aprovechadas funcionalmente. Con esta finalidad se han
planteado los siguientes objetivos parciales:

- Diseño e implementación de un esquema de simulación el cual
permita la simulación eficientemente de redes neuronales de
impulsos de tamaño medio definidas mediante modelos
biológicos.

- Incorporación de modelos biológicos de neurona en el simulador
desarrollado y validación de los mismos. Algunos modelos a
considerar, ampliamente utilizados por la comunidad científica
son: “integración y disparo” (integrate-and-fire neuron) o el
clásico modelo Hodgkin-Huxley.

- Evaluación de la efectividad del esquema de simulación
propuesto en tiempo de computación y en precisión con respecto
a otros métodos de simulación.

- Demostración de la capacidad del esquema propuesto para
simular un modelo de cerebelo realista capaz de aprender
(usando plasticidad sináptica dependiente de la temporización de
los impulsos -spike-timing-dependent plasticity-) y corregir la
trayectoria de un brazo robot en tiempo real.

La justificación de este trabajo se enmarca en el estudio del
funcionamiento de los circuitos nerviosos y su aplicación en la
ingeniería y la inteligencia artificial. La arquitectura de las distintas
áreas del cerebro ha sido estudiada desde hace más de cien años, sin
embargo su función exacta está en discusión. Se conoce la topología
aproximada de diversas áreas del cerebro y muchas de las neuronas que
las integran están siendo modeladas en detalle, no obstante es difícil
explicar el modo en que funcionan los circuitos nerviosos en su
conjunto. La simulación de estos circuitos es una de las herramientas
que pueden ser explotadas para aclarar cómo la información es
procesada en las distintas áreas del cerebro y para probar las hipótesis
propuestas. El software de simulación que es usado actualmente con
estos fines (Genesis y Neuron) está diseñado para la simulación de
neuronas individuales o pequeñas redes. Tratar de simular grandes
redes o lanzar grandes baterías de simulaciones para determinar o
ajustar muchos parámetros puede consumir mucho tiempo de
ejecución. Con este propósito el esquema de simulación propuesto
implementa estas simulaciones de forma eficiente.

Por otra parte, las redes neuronales de impulsos están
progresivamente siendo usadas para resolver problemas en diversos
campos no relacionados con la neurofisiología. Por ejemplo están
siendo usadas para el reconocimiento de caras (SpikeNET), la
detección de movimiento, el reconocimiento del habla (STANNs) y el
control de robot (SpikeFORCE). Sin embargo, los modelos neuronales
que se usan aun son muy simples y las capacidades funcionales del
complejo comportamiento de las neuronas biológicas no están siendo
explotadas. Con esta finalidad, el esquema de simulación propuesto
puede ser aplicado al estudio y la utilización de las características
funcionales de las neuronas biológicas.

Abstract

Nearly all neuronal information processing and inter-neuronal
communication in the brain involves action potentials (spikes), which
drive the short-term synaptic dynamics of neurons, but also their long-
term dynamics, via synaptic plasticity. In many brain structures, action
potential activity is considered to be sparse. This sparseness of activity
has been exploited to reduce the computational cost of large-scale
network simulations, through the development of event-driven
simulation schemes. However, existing event-driven simulations
schemes use extremely simplified neuronal models. Here, we design,
implement and evaluate an event-driven algorithm (EDLUT) that uses
pre-calculated lookup tables to characterize synaptic and neuronal
dynamics. This approach enables the use of more complex (and
realistic) neuronal models or data in representing the neurons, while
retaining the advantage of high-speed simulation. We demonstrate the
method's application for neurons containing exponential synaptic
conductances, thereby implementing shunting inhibition (a
phenomenon that is important to cellular computation) also for neurons
containing electrical synapses and Hodgkin-Huxley model. We also
introduce an improved two-stage event processing algorithm, which
allows the simulations to scale efficiently to highly-connected networks
with arbitrary propagation delays. Synaptic plasticity mechanisms
depend upon spike timing have been accommodated in the
implementation. Finally, EDLUT has been used to simulate a cerebellar
network for robot control, proving its ability to improve the trajectories
and learn in real time.

Contents

Figure Index...I
Table Index ... III
1 Introduction .. 1

1.1 Background information... 1
1.1.1 Neural network classification ... 1
1.1.2 Simulation methods .. 2

1.2 Related work... 3
1.3 Objectives ... 6
1.4 Motivation .. 7
1.5 Chapter organization... 8

2 Event-driven simulation based on lookup tables (EDLUT) 9
2.1 Introduction .. 9
2.2 Simulator architecture... 11
2.3 Event data structure .. 13
2.4 Two-stage spike handling... 14
2.5 Simulation algorithm .. 16
2.6 Synaptic plasticity .. 18

3 Neuron models.. 21
3.1 Integrate-and-fire model with synaptic conductances 21

3.1.1 Lookup-table calculation and optimization 24
3.2 Integrate-and-fire model with electrical coupling 30

3.2.1 Introduction .. 30
3.2.2 Event-driven implementation 31

3.3 Cerebellar granule cell model... 32
3.3.1 Introduction .. 32
3.3.2 Model description ... 33
3.3.3 Definition of model tables .. 35
3.3.4 Experimental results ... 36

3.3.4.1 Subthreshold Rhythmic Oscillations 38
3.3.4.2 Bursting behaviour ... 40
3.3.4.3 Resonance behaviour.. 41

3.3.5 Accuracy validation.. 44
3.3.6 Motivation of the model ... 46

3.4 Hodgkin and Huxley model.. 46
3.4.1 Accuracy... 51

4 Simulation accuracy and speed .. 54
4.1 Simulation accuracy ... 54
4.2 Simulation speed .. 59
4.3 Discussion and conclusions.. 63

5 Neural population synchronization... 65
5.1 Introduction .. 65
5.2 Results .. 66
5.3 Discussion and Conclusions ... 67

6 Cerebellum model simulation... 68
6.1 Introduction .. 68
6.2 Cerebellar model... 70
6.3 Neuron models.. 72
6.4 Cerebellum model topology ... 72
6.5 Cerebellar Learning Rules .. 73
6.6 Robot Platform ... 77
6.7 Experimental Results.. 80
6.8 Discussion... 90

7 Discussion and conclusions.. 92
7.1 Discussion... 92
7.2 Main contributions.. 94
7.3 Future Work.. 95

8 Publication of results .. 96
8.1 Journals... 96
8.2 Congresses .. 96

Bibliography ... 99

Figure Index - I -

Figure Index
Figure 2.1: Main structures of the EDLUT simulator. 12
Figure 2.2: The ouput connection list... 15
Figure 2.3: Two-stage spike processing ... 16
Figure 2.4: Simulation algorithm. .. 17
Figure 3.1: Equivalent electrical circuit of a neuron. 22
Figure 3.2: Membrane-potential evolution (synaptic model). 23
Figure 3.3: Synaptic-conductance updating table. 25
Figure 3.4: Firing-time prediction table. .. 26
Figure 3.5: Membrane-potential updating table. 27
Figure 3.6: Membrane potential depending on ginh coordinates........... 29
Figure 3.7: Effect produced by activity through electrical coupling.... 31
Figure 3.8: Simplified-model obtaining process. 34
Figure 3.9: Synaptic activation of the modeled granule cell. 37
Figure 3.10: Subthreshold oscillations of the membrane potential. 38
Figure 3.11: Simulation of subthreshold oscillations with EDLUT..... 39
Figure 3.12: Simulation of bursting behaviour with EDLUT. 40
Figure 3.13: Spike suppression... 41
Figure 3.14: Resonance behaviour. .. 43
Figure 3.15: Accuracy comparison... 45
Figure 3.16: Output-spike duplication due to discretization errors. 48
Figure 3.17: Output-spike omission due to discretization errors. 49
Figure 3.18: Prevention of erroneous spike omission and duplication.50
Figure 3.19: Event-driven simulation of an H&H model neuron......... 52
Figure 4.1: Single-neuron simulation. .. 55
Figure 4.2: Simulation error depending on synaptic weights............... 57
Figure 4.3: Simulation error depending on table size........................... 58
Figure 4.4: Output spike trains for different table sizes. 58
Figure 4.5: Computation time... 59
Figure 5.1: Neural-population synchronization histograms. 67
Figure 6.1: Encoding of mossy fibers... 71
Figure 6.2: Cerebellum model diagram.. 73
Figure 6.3: Inferior-olive probabilistic encoding of the error. 74
Figure 6.4: Spike-timing-dependent plasticity. 75
Figure 6.5: Input current to inferior olivary cells. 77
Figure 6.6: Experimental robot platform.. 78
Figure 6.7: Complete hardware system. ... 79
Figure 6.8: Software architecture. .. 80
Figure 6.9: Diagram of the arm-movement control system. 82
Figure 6.10: Target reaching experiments. ... 85

Figure Index - II -

Figure 6.11: Target reaching example. ... 86
Figure 6.12: Corrective torques applied by the cerebellum.................. 86
Figure 6.13: Arm in the sand-pool context... 87
Figure 6.14: Arm trayectory when learning in different contexts. 88
Figure 6.15: Temporal adaptation. ... 89

Table Index - III -

Table Index
Table 3.1: Synaptic characteristics (cerebellar granule cell). 24
Table 3.2: Hodgkin and Huxley (1952) model equations. 47
Table 4.1: Performance evaluation of different methods. 62
Table 6.1: Connectivity table of the cerebellar cells. 73

Introduction - 1 -

1 Introduction

In this chapter we introduce the spiking neural network simulations,
describe the current state of the art in this filed and present the
objectives and motivation of the presented thesis.

1.1 Background information

An artificial neural network (ANN) is a computational model
inspired in natural neurons which simulate the structure, functional
aspects or response of biological neural networks. It is composed of a
group of interconnected artificial neurons which processes information
using a connectionist model.

1.1.1 Neural network classification

The models of neural networks can be divided into two groups:

- Classical artificial neural networks: In this group the
complexity of real neurons is highly abstracted so the resulting
neural model is quite different from that of biological neurons
for the sake of a more practical approach. These networks are
arranged in layers and usually consist of input which are
multiplied by weights and then computed by a mathematical
function which determines the activation of the neuron. In this
way, the output for a given input is obtained immediately and
independently of previous inputs. Therefore the simulation time
does not inherently participate in the computation. These
networks are used in artificial intelligence to process information
and solve problems.

- Spiking neural networks: This thesis is focused on this group.
This kind of networks uses neural models which try to imitate
the way natural neurons process information, that is, they are
more realistic according to biology. The neuron inputs and
output are nerve electrical impulses (spikes) and the information
is encoded through their arrangement in time. Basically, neurons
act as capacitors; each time an input spike is received, the
capacitor voltage (membrane potential) is increases and when
particular value is reached (firing threshold) the neuron emits an

Introduction - 2 -

output spike. Therefore time is usually an important variable in
these models.

The simulations of spiking neural networks can be classified into
two types depending on their application:

- Neural simulations in the field of neurophysiology: In this
field neurophysiologists try to define the behaviour of particular
types of neurons using relatively-complex mathematical
expressions. These simulations allow them to predict the
response of the biological neurons under concrete conditions
without having to experiment on real cells. These simulations are
also employed to reproduce the response corresponding to
experiments which are not possible to conduct nowadays on real
nervous tissue due to practical limitations. Moreover, they are
useful to prove hypothesis about the operation of nervous
circuits by obtaining the expected network behaviour in
simulation. To achieve these objectives, the simulations must be
numerically accurate and the neural model definition should be
relatively easy to introduce in the computer. Software such as
Genesis (Bower & Beeman, 1998) or Neuron (Hines &
Carnevale, 1997) is normally used for this purpose.

- Network simulation in the field of artificial intelligence: In
this field, the spiking neural networks are applied to solve
computer science problems. For this purpose large-scale
networks are frequently employed, thus the simulations must be
efficient to obtain the results in the required time. Software such
as SpikeNET (Delorme et al., 1999, Delorme & Thorpe, 2003) is
used for this purpose.

1.1.2 Simulation methods

The algorithms used to simulate spiking neural networks are usually
based on one of the following approaches:

- Time-driven simulation scheme: In this scheme the simulation
time is divided into little steps (which usually have a fixed length
although some method for variable length have been proposed;
Lytton and Hines, 2005) and in each step all the state variables
of the neurons (e.g. the neuron membrane potential) and network
are updated according to their previous value and input activity.
If these neural state variables are defined by coupled differential

Introduction - 3 -

equations (which is common when simulating realistic neural
networks), their value can be easily approximated using a
numerical integration method (such as Euler or Runge-Kutta).
The main disadvantage of this method is the computational cost
of the iterative recalculation and update of the state variables.
The higher the required accuracy, the shorter the time step and
therefore the higher consumed computation time.

- Event-driven simulation scheme: In this scheme the state
variables are calculated and updated only when an event that
modifies their normal evolution occurs (Watts, 1994), that is, the
simulation time jumps from the time of an event to the time of
the next event. Therefore the number of updates and calculations
is minimal and the simulation efficiency is very high. The
drawback of this method is that we need a fast procedure to
obtain the value of the state variables after different time jumps.
However the neuron model and thus the neuronal state variables
are defined by differential equations which do not have an
analytical solution to directly calculate their value.

Most communication of natural neurons is carried out by means of
spikes. Information is encoded and transmitted in these spikes, and
nearly all the computation is driven by these events. This includes both
short-term computation (synaptic integration) and long-term adaptation
(synaptic plasticity). In many brain regions, spiking activity is
considered to be sparse. This, coupled with the computational cost of
large-scale network simulations, has promoted the event-driven
simulation schemes.

1.2 Related work

 Various procedures have been proposed to simulate spiking neural
networks and update the neuronal state using an event-driven scheme
(Watts, 1994; Delorme et al., 1999; Delorme & Thorpe, 2003; Mattia
and Del Giudice, 2000; Reutimann, et al., 2003). In the most
widespread family of methods, the neuron's state variable (membrane
potential) is updated according to a simple recurrence relation that can
be described in closed form. The relation is applied upon reception of
each spike and depends only upon the membrane potential following
the previous spike, the time elapsed, and the nature of the input
(strength, sign) as illustrated in Eq. (1.1).

Introduction - 4 -

),,(,, JtVfV ttmtm ∆= ∆− Eq. (1.1)

where Vm is the membrane potential, ∆t is elapsed time (since the last
spike) and J represents the effect of the input (excitatory or inhibitory
weight).

This method can describe integrate-and-fire neurons and is used, for
instance, in SpikeNET (Delorme et al., 1999, Delorme & Thorpe,
2003). Such algorithms can include both additive and multiplicative
synapses (i.e. synaptic conductances), as well as short-term and long-
term synaptic plasticity. However, the algorithms are usually restricted
to synaptic mechanisms whose effects are instantaneous and to
neuronal models which can only spike immediately upon receiving
input. These conditions obviously restrict the complexity (realism) of
the neuronal and synaptic models that can be used.

Implementing more complex neuronal dynamics in event-driven
schemes is not straightforward. As discussed by Mattia and Del
Giudice (2000), incorporating more complex models requires extending
the event-driven framework to handle predicted spikes that can be
modified if intervening inputs are received; the authors propose one
approach to this issue. However, in order to preserve the benefits of
computational speed, it must, in addition, be possible to update the
neuron state variable(s) discontinuously and also predict when future
spikes would occur (in the absence of further input). Except for the
simplest neuron models, these are non-trivial calculations, and only
partial solutions to these problems exist. Makino (2003) proposed an
efficient Newton-Raphson approach to predict threshold crossings in
spike-response model neurons. However, the method does not help in
calculating the neuron's state variables discontinuously, and has only
been applied to spike-response models involving sums of exponentials
or trigonometric functions. As we shall show below, it is sometimes
difficult to represent neuronal models effectively in this form. A
standard optimisation in high-performance code is to replace costly
function evaluations with lookup tables of pre-calculated function
values. This is the approach that was adopted by Reutimann et al
(2003) in order to calculate the state variables in the inter-event
intervals for variables with stochastic dynamics. This approach captures
both the situation in which the simulated neurons are inherently noisy
and the case in which they are embedded in a very large network and
receive large numbers of random synaptic inputs. They replaced the

Introduction - 5 -

online solution of a partial differential equation with a simple
consultation of a pre-calculated table.

We decided to adopt the lookup table approach, i.e. to pre-compute
the neuron dynamics off-line (before the actual network simulation).
But instead of using the pre-calculated lookup tables only to obtain
intermediate values to easy the calculation of state variables or to
obtain the value of only some input-independent state variables, we
generate pre-calculated lookup tables to directly obtain the value of all
neural state variables, even for those state variables which its value
depends on other state variables and inputs. This enables the event-
driven simulation to proceed using only table lookups, avoiding all
complex function evaluations. We call this method EDLUT (that stands
for Event-Driven LookUp Table). As mentioned by Reutimann et al
(2003), the lookup tables required for this approach can become
unmanageably large when the model complexity requires more than a
handful of state variables. Although we have found no way to avoid
this scaling issue, we have been able to optimise the calculation and
storage of the table data such that quite rich and complex neuronal
models can nevertheless be effectively simulated with EDLUT.

One of the motivations of the event-driven schemes is the simulation
of large-scale real-time model of neural circuits, e.g. the cerebellum.
This structure contains very large numbers of granule cells, which are
thought to be only sparsely active. An event-driven scheme would
therefore offer a significant performance benefit. However, an
important feature of the cellular computations of cerebellar granule
cells is reported to be shunting inhibition (Mitchell & Silver, 2003),
which requires non-instantaneous synaptic conductances. These cannot
be readily represented in any of the event-driven schemes based upon
simple recurrence relations. For this reason we chose to implement the
EDLUT method. Note that non-instantaneous conductances may be
important generally, not just in the cerebellum (Eckhorn et al., 1988;
Eckhorn et al., 1990).

The axons of granule cell, the parallel fibres, cross large numbers of
Purkinje cells sequentially, giving rise to a continuum of propagation
delays. This spread of propagation delays has long been hypothesised
to underlie the precise timing abilities attributed to the cerebellum
(Braitenberg & Atwood, 1958). Large divergences and arbitrary delays
are features of many other brain regions, and it has been shown that
propagation/synaptic delays are critical parameters in network

Introduction - 6 -

oscillations (Brunel & Hakim, 1999). Previous implementations of
event queues were not optimised for handling large synaptic
divergences with arbitrary delays. Mattia & Del Giudice (2000)
implemented distinct fixed-time event queues (i.e., one per delay),
which, though optimally quick, would become quite cumbersome to
manage when large numbers of different delays are required by the
network topology. Reutimann et al (2003) and Makino (2003) used a
single ordered event structure in which all spikes are considered
independent. However, for neurons with large synaptic divergences,
unnecessary operations are performed on this structure, since the arrival
order of spikes emitted by a given neuron is known. We introduce a
two-stage event queue that exploits this knowledge to handle efficiently
large synaptic divergences with arbitrary delays.

1.3 Objectives

The main objective of this thesis is to show that biologically-
plausible neural network models (e.g. the cerebellum) can be
effectively applied to solve practical problems (e.g. robot control) and
hence the behavioural characteristics of the real cells can be studied
from a functional point of view and exploited. To meet this objective
the thesis addresses the following separate goals:

- Design and implementation of a simulation scheme which allows
the efficient simulation of medium-scale networks of spiking
neurons defined by models obtained from biology. The resulting
application software must be configurable so that new neural
models can be included and user-defined networks can be
simulated.

- Performance evaluation of the implemented simulation scheme
and determination of its limitations in terms of network size,
neural activity and complexity of the neural models.

- Inclusion of realistic models of the main cerebellar neuron types
in the proposed simulation software and validation of these
models in terms of numerical accuracy or observed neural
behaviour properties.

- Design and implementation of a software interface which allows
the transmission of neural activity between processes and outside

Introduction - 7 -

the computer in real time to interact with the real world (e.g.
with a robotic arm).

- Illustrate the effectiveness of the proposed simulation scheme in
real-time learning and robot movement control by configuring
the simulator to model a realistic cerebellar circuit and
evaluating its capacity to improve the robot trajectory.

1.4 Motivation

Although the architecture of many brain areas has been studied for
more than one hundred years (Ramón y Cajal et al., 1995; Golgi, 1967),
their functional role and operation are still an open topic. We roughly
know the topology of diverse brain areas (Kandel et al., 2000) and
many of their neurons are being modelled in detail (D'Angelo et al.,
1995b; Bezzi et al., 2004b; Steuber et al., 2004). However it is difficult
to elucidate the specific computations that take place at each part of the
brain. Nervous circuit simulators are tools that can be exploited to
clarify how computation is carried out in these brain areas and to prove
hypotheses about their operation. The simulation software currently
used for this purpose (such as Genesis and Neuron) is intended to
simulate single neurons or small networks. So trying to simulate large-
scale networks or running many series of simulation to determine
multi-dimensional parameters using this software is very time
consuming. We propose an efficient simulation scheme to address these
cases.

Spiking neural networks are increasingly being used to process
information and solve problems in many fields: In image processing for
face recognition (SpikNET, Van Rullen et al., 1998) and motion
detection (Ros et al., 1999), in speech recognition (STANNs, Mercier
and Séguier, 2002), in robot control (SpikeFORCE, Boucheny et al.,
2005), etc. Most of the neural models used for these tasks are very
simple and the features of detailed models are not exploited. We
propose the presented simulation scheme to study how simulations can
benefit from the behavioural characteristics of real cells.

Introduction - 8 -

1.5 Chapter organization

We demonstrate our implementation of the EDLUT method for
models of single-compartment neurons receiving exponential synaptic
conductances (with different time constants for excitation and
inhibition). In particular, we describe how to calculate and optimize the
lookup tables, and the implementation of the two-stage event queue.

In order to facilitate the reading and utilization of this document we
provide a brief summary of the information presented in each chapter:

- In chapter 1 (the present chapter), we describe the current state
of the art in event-driven spiking neural network simulator and
motivation and summarize the work carried out.

- In chapter 2, we present the proposed simulation scheme for
spiking neural networks (EDLUT), addressing its motivation,
operation and structure.

- In chapter 3, we describe several spiking neural models which
have been simulated and how each model has been introduced
into EDLUT.

- In chapter 4, we evaluate the performance of the implementation,
in terms of accuracy and speed, and compare with other
simulation methods.

- In chapter 5, we prove the synchronization capabilities of the
implemented electrical coupling model by reproducing the
behaviour observed in electrically-coupled neural networks.

- In chapter 6, we describe a cerebellar architecture to control a
real robotic arm in real time using EDLUT and the
corresponding robot movement accuracy results.

- In chapter 7, we summarize the main characteristics, advantages
and limitations of the presented simulation scheme. We also
discuss the application context of EDLUT, briefly enumerate the
main contributions and propose a future work.

Event-driven simulation based on lookup tables (EDLUT) - 9 -

2 Event-driven simulation based on
lookup tables (EDLUT)

This chapter addresses the motivation, operation and structure of the
proposed event-driven simulation engine for spiking neural networks
(EDLUT) which is discussed and referenced in other chapters.
Particularly it describes how the simulation process is driven by events
and the required architecture to compute and handle them efficiently.

2.1 Introduction

Recent research projects are modelling neural networks based on
specific brain areas. Realistic neural simulators are required in order to
evaluate the proposed network models. Some of these models (e.g.
related with robot control or image processing (Van Rullen et al., 1998;
Philipona et al., 2004) are intended to interface with the real world,
requiring real-time neural simulations. This kind of experiments
demands efficient software able to simulate large neural populations
with moderated computational power consumption.

 Traditionally, neural simulations have been based on discrete time
step (synchronous) methods (Bower et al., 1998; Delorme et al., 2003).
In these simulations, the state variables of each neuron are updated
every time step, according to the current inputs and the previous values
of these variables. The differential expressions describing the neural
model dynamics are usually computed with numerical integration
methods such as Euler or Runge-Kutta. The precision of the numerical
integration of these variables depends on the time step discretization.
Short time steps are required in order to achieve acceptable precision,
which means considerable computational power consumption by each
neuron. Thus, simulating large neural population with adequate
precision and detailed models using these methods is not feasible in
real-time.

 One alternative to avoid this problem is the use of event-driven
simulators (also known as discrete-event simulators). Most natural
network communication is done by means of spikes (action potentials)
which are short and considerably sparse in time (not very frequent)
events. If the state evolution of a neuron between these spikes is
deterministic or the probability of all the target states is known, the

Event-driven simulation based on lookup tables (EDLUT) - 10 -

number of neural state updates could be reduced, accumulating the
entire computational load in the instants in which the spikes are
produced or received by a neuron (Watts, 1994; Mattia et al., 2000).

 Mattia and Guidice (Mattia et al., 2000) proposed an event-driven
scheme that included dynamical synapses. Reutimann et al (Reutimann
et al., 2003) extended this approach to include neuron models with
stochastic dynamics.

 Makino (Makino, 2003) developed an event-driven simulator which
uses efficient numerical methods to calculate the neural states evolution
from one discrete computed step to the next one. More concretely, the
main contribution of this work is the development of an efficient
method to calculate the delayed firing times that uses the linear
envelopes of the state variable of the neuron to partition the simulated
time. Contrary to this approach, we avoid this complex calculation by
off-line characterization of the firing behaviour of the cell.

 Recently, Reutimann et al (2003) proposed the use of pre-calculated
lookup tables to speed up simulations to avoid on-line numerical
calculations. We also adopt this tactic in our event-driven simulator. In
this previous approach the precalculated tables are used to store
probability density distributions. In our approach, the entire cell model
is computed off-line, and its behaviour is compiled into
characterization tables. Since the cell model is computed off-line, we
are able to simulate models of different complexities (with a constraint
on the number of parameters defining cell dynamics).

 The main innovation with respect to previous approaches (Watts,
1994; Mattia et al., 2000) is the use of characterization tables to
describe the cell dynamics between input spikes. A priori, this fact
removes the need for many of the simplifying assumptions necessary
when the neural models are computed following simple expressions to
achieve high computational efficiency.

 Another important aspect, which has been included, is the synaptic
temporal dynamics (i.e. the gradual injection/extraction of charge). The
synaptic conductance evolution due to an input spike is not computed
as an instantaneous jump, but as a gradual function. This is important in
the study of neural population synchronization processes (Eckhorn et
al., 1988; Eckhorn et al., 1990). The inclusion of temporal dynamics
forces the implementation of a prediction and validation strategy, since
the output spikes will not be coincident with the input events (variable

Event-driven simulation based on lookup tables (EDLUT) - 11 -

firing delay). This introduces more complexity in the simulation
engine.

2.2 Simulator architecture

The EDLUT simulation scheme is based on the structures shown in
Figure 2.1. Simulation is initialised by defining the network and its
interconnections (including latency information), giving rise to the
neuron list and interconnection list structures. In addition, several
lookup tables which completely characterise the neuronal and synaptic
dynamics are calculated: i) the exponential decay of the synaptic
conductances; ii) a table that can be used to predict “whether” and
“when” the next spike of a cell would be emitted in the absence of
further input; and iii) a table defining the membrane potential (Vm) as a
function of the combination of state variables at a given point in the
past (in our simulations, this table gives Vm as a function of the
synaptic conductances and the membrane potential, all at the time of
the last event, and the time elapsed since that last event). If different
neuron types are included in the network, they will require their own
characterization lookup tables with different parameters defining their
specific dynamics. Each neuron in the network stores its state variables
at the time of the last event, as well as the time of that event. If short or
long-term synaptic dynamics are to be modelled, additional state
variables are stored per neuron or per synapse.

Event-driven simulation based on lookup tables (EDLUT) - 12 -

Figure 2.1: Main structures of the EDLUT simulator.

Input spikes are stored in an input queue and are sequentially inserted into the
spike heap. The network definition process produces a Neuron List and an
Interconnection List, which are consulted by the simulation engine. Event
processing is done by accessing the neuron characterization tables to retrieve
updated neuronal states and forecast spike firing times.

When the simulation runs, events (spikes) are ordered using the
event heap (and the interconnection list - see section 2.3) in order to
process them in chronological order. The response of each cell to
spikes it receives is determined with reference to the lookup tables and
any new spikes generated are inserted into the event heap. External
input to the network can be fed directly into the event heap. Two types
of events are distinguished: firing events, the times when a neuron
emits a spike, and propagated events, the times when these spikes
reach their target neurons. In general, each firing event leads to many
propagated events through the synaptic connection tree. Because our
synaptic and neuronal dynamics allow the neurons to fire after inputs
have been received, the firing events are only predictions. The arrival
of new events can modify these predictions. For this reason the event

handler must check the validity of each firing event in the heap before
it is processed.

Event-driven simulation based on lookup tables (EDLUT) - 13 -

2.3 Event data structure

Events (spikes) must be treated in chronological order in order to
preserve the causality of the simulation. The event handling algorithm
must therefore be capable of maintaining the temporal order of spikes.
To fulfil this, a spike data structure which works as an interface
between the source neuron events and target neurons can be used.

 If we need to deal with only a fixed number of neuron-connection
delays, there is the possibility that a fixed structure (called a synaptic

matrix) is used for storing synaptic delays (Mattia & Del Guidice,
2000).

 In contrast, our simulations needed to support arbitrary synaptic
delays. Complex data structures, such as balanced trees, can be used
for this purpose, offering good performance for both sorted and
random-order input streams. To prevent performance degradation, their
structure is optimized after each insertion and deletion. However, this
rebalancing process adds more complexity and additional
computational overhead (Karlton et al., 1976). Insertion and deletion of
elements in these structures have a computational cost of O(log(N)),
where N is the number of events in the structure.

Another candidate data structure is the skip list (Pugh, 1990), but in
this instance the cost of the worst case may not be O(log(N)) because
the insertion of an input stream can produce an unbalanced structure.
Consequently, the search time for a new insertion may be longer than in
the balanced trees. This structure offers optimal performance in
searching specific elements. However, this is not needed in our
computation scheme as we only need to extract the first element, i.e.
the next spike.

Finally, the heap data structure (priority queue) (Aho et al., 1974;
Chowdhury & Kaykobad, 2001; Cormen et al., 1990) offers a stable
computational cost of O(log(N)) in inserting and deleting elements.
This is the best option as it does not require more memory resources
than the stored data. This is because it can be implemented as an array,
while the balanced trees and skip lists need further pointers or
additional memory resources.

For all of these methods, the basic operation of inserting an event
costs roughly O(log(N)), where N is the number of events in the event

Event-driven simulation based on lookup tables (EDLUT) - 14 -

data structure. Clearly, the smaller the data structure is, the less time
such insertions will take. We explain in the next subsection the two-
stage event handling process we have implemented in order to
minimize event heap size while allowing arbitrary divergences and
latencies. Compared to a method using a single event data structure, we
would expect the event insertions to be O(log(c)) quicker, where c is
the average divergence (connectivity).

2.4 Two-stage spike handling

The algorithm efficiency of event-driven schemes depends on the
size of the event data structure, so performance will be optimal under
conditions that limit load (low connectivity, low activity). However,
large synaptic divergences (with many different propagation delays) are
an important feature of most brain regions. Previous implementations
of event-driven schemes have used a single event generation per neuron
firing, (Reutimann et al., 2003; Makino, 2003). However, treating each
neuron firing as a single event leads the event data structure to become
larger than necessary. Since the order of spike arrival to target neurons
is always known (it depends on the connection delay defined in
interconnection list), we know which event has to be processed first.

We have designed an algorithm that exploits this knowledge, by
using a multi-stage spike handling process:

Each spike transmitted between two cells is represented internally by
two events. The first one (the firing event) is marked with the time
instant in which the source neuron fires the spike. The second one (the
propagated event) is marked with the time instant in which the spike
reaches the target neuron. Most neurons have large synaptic
divergences. In these cases, when a neuron fires, the simulation scheme
inserts into the event heap only one event in each stage, instead of one
per output connection.

 The output connection list of each neuron (which indicates its target
cells) is sorted by propagation delay, see Figure 2.2. When a source
neuron fires, only the event corresponding to the lowest-latency
connection is inserted into the spike heap. This event is linked to the
other output spikes of this source neuron. When the first spike is
processed and removed from the heap, the next event in the output

connection list is inserted into the spike heap, taking into account the

Event-driven simulation based on lookup tables (EDLUT) - 15 -

connection delay. Since the output connection list of each neuron is
sorted by latency, the next connection carrying a spike can easily be
found. This process is repeated until the last event in the list is
processed. In this way, the system can handle large connection
divergences efficiently.

Figure 2.2: The ouput connection list.

The output connection list of each neuron is sorted by the connection delay, so
the next connection carrying a spike can easily be found.

In Figure 2.3 we compare the use of one and two-stage event
handling within our simulation scheme. Even though event heap
operations only represent part of the total computation time, there is a
clear benefit to using the two-stage process. For divergences of up to
10000 (typical for recurrent cortical networks) a better than 2-fold
improvement of total computation time is observed.

Event-driven simulation based on lookup tables (EDLUT) - 16 -

Figure 2.3: Two-stage spike processing

Total computation time for processing an event (top) and size of the event heap
(bottom) for one-stage (dashed plot) and two-stage (continuous plot) as functions
of synaptic divergence.

2.5 Simulation algorithm

The basic computation scheme consists of a processing loop, in each
iteration of which the next event (i.e., with the shortest latency) is taken
from the spike heap. This event is extracted from the spike heap
structure, the target neuron variables are updated (in the neuron list
structure), and, if the affected neurons generate them, new events are
inserted into the spike heap. Also, if the processed event is a
propagated event, the next spike from the output connection list of the
neuron is inserted into the heap. This computation scheme is
summarized in Figure 2.4. It should be noted that events are inserted
into the heap in correct temporal sequence, but only the spike with the
shortest latency is ever extracted.

As our neuronal model allows delayed firing (after inputs), the
algorithm must cope with the fact that predicted firing times may be
modified –or even deleted– by intervening posterior inputs.

Each neuron stores two time variables. One indicates the time the
neuron was last updated. This happens upon reception of each input. As
described in Figure 2.4, when a neuron is affected by an event, the time
label of this neuron is updated to tsim if it is an input spike (propagated

Event-driven simulation based on lookup tables (EDLUT) - 17 -

event) or to tsim+trefrac if it is an output spike (firing event), to prevent it
from firing again during the refractory period. This is important
because when the characterization tables are consulted the time label
indicates the time that has elapsed since the last update. The other time
label maintains the up-to-date firing time prediction. This is used to
check the validity of events extracted from the central event heap.

 Events that are superseded by intervening inputs in the neuron
concerned are left in the event heap; they are discarded upon extraction.
Since if they are invalid, their firing-time-prediction variable stored in
the neuron does not match the current simulation time (this is checked
when the event is being processed).

Figure 2.4: Simulation algorithm.

While tsim<tend
{

Extract the event with a shortest latency in the
spike heap
If it is a firing event

If it is still a valid event and the neuron is
not under a refractory period

Update the neuron state (e.g. Vm, gexc, ginh) to
the post-firing state
Prevent this neuron from firing during the
refractory period by updating the neuron time

label to tsim+trefrac)
Predict if the source neuron will fire again
with the current neuron state
If the neuron will fire:

Insert a new firing event into the spike heap
Insert the propagated event with the shortest
latency (looking at the output connection list)

If it is a propagated event

Update the target neuron state (e.g. Vm, gexc,

ginh), before the event is computed

Modify the conductances (gexc, ginh) using the

connection weight (Gexc,i, Ginh,i) for the new spike

Update the neuron time label to tsim
Predict if the target neuron will fire
If it fires

Insert the firing event into the spike heap
with the predicted time

Insert only the next propagated event with the
next shortest latency (looking at the output
connection delay table)

}

Event-driven simulation based on lookup tables (EDLUT) - 18 -

This pseudo-code describes the simulation engine. It processes all the events of
the spike heap in chronological order.

2.6 Synaptic plasticity

We have implemented Hebbian-like (Hebb, 1949) spike-driven
learning mechanisms (spike-timing-dependent plasticity, STDP). The
implementation of such leaning rules is suitable because the simulation
scheme is based on the time labels of the different events. Spike-time-
dependent learning rules require comparison of the times of pre-
synaptic spikes (propagated events) with post-synaptic spikes (firing
event). In principle, this requires the trace of the processed pre-synaptic
spikes during a time interval to be kept in order for them to be
accessible if post-synaptic spikes occur. Different definite expressions
can be used for the learning rule (Gerstner & Kistler, 2002). The weight
change function has been approximated with exponential expressions;
Eq. (2.1) to accommodate the experimental results of Bi and Poo
(1998). The computation of this learning rule, by means of exponential
terms, facilitates its implementation in a recursive way, avoiding the
need to keep track of previous spikes.







>

<
=

−

0

0
)(

sifea

sifea
sf

sb

post

sb

pre

post

pre

 Eq. (2.1)

Where s represents the temporal delay between the post-synaptic spike
and the pre-synaptic one (s=tpost-tpre). The aim function (Bi & Poo,
1998) can be calculated with Eq. (2.1) using the following parameters
(apre=0.935, bpre= -0.075, apost= -0.326, bpost= -0.036). They have been
approximated using the Trust-region method (Conn et al 2000).

The learning rules are applied each time a cell both receives and
fires a spike. Each time a spike from cell i reaches a neuron j, the
connection weight (wij) is changed according to Eq. (2.2), taking into
account the time since the last action potential (AP) in the post-
synaptic neuron. This time is represented by s in Eq. (2.1).

)(sfww

where

www

ijij

ijijij

=∆

∆+←

 Eq. (2.2)

Event-driven simulation based on lookup tables (EDLUT) - 19 -

Other post-synaptic spikes are not taken into account for the sake of
simplicity, but they can be included if necessary.

Each time cell j fires a spike, the learning rule of Eq. (2.3) is
applied, taking into account all the pre-synaptic spikes received in a
certain interval.

∑=∆

∆+←

k

kijij

ijijij

sfww

where

www

)(

Eq. (2.3)

In order to avoid keeping track of all the pre-synaptic spikes during
the learning window, we can rearrange the sum of Eq. (2.3), since the
learning rule can be expressed in terms of exponentials; Eq. (2.1).

Each time the neuron fires a spike, the learning rule is applied in
each input connection, taking into account the previous spikes received
through these inputs. Therefore, each weight changes according to Eq. (
2.4).

 ()













+=+← ∑∑

==

N

k

sb

preij

N

k

kijijij
kpreeawsfwww

11

1 Eq. (2.4)

Where k is iterated over all N pre-synaptic spikes from cell i received
by the neuron j in a time window. This expression can be rearranged as
follows:

()()()()()

()()Npreprepreprepre

Npreprepre

sbsbsbsbsb

preijijij

sbsbsb

preijijij

eeeawww

eeeawww

+++ +++++←

++++←
...1211

21

...1

1...11
 Eq. (2.5)

This expression; Eq. (2.5) can be calculated recursively
accumulating all the multiplicative terms in an intermediate variable Aij,
as indicated in Eq. (2.6). s is the time difference between the action
potential of cell j and the last pre-synaptic spike received from cell i.

 sb

ijij
preeAA +← 1 Eq. (2.6)

The learning rule is applied recursively as indicated in Eq. (2.7),
incorporating the last pre-synaptic spike. Note that the term Aij
accumulates the effect of all previous pre-synaptic spikes.

Event-driven simulation based on lookup tables (EDLUT) - 20 -

()ij

sb

preijij

ijijij

Aeaww

where

www

pre=∆

∆+←

 Eq. (2.7)

Neuron models - 21 -

3 Neuron models

This chapter discusses several spiking neural models which have
been simulated with EDLUT. They are: a version of the integrate-and-
fire model with chemical and electrical synapses, a cerebellum granule
cell model and the Hodgkin-Huxley model. This chapter also describes
how each model is adapted to EDLUT’s simulation scheme and the
validation of the model in terms of observed cell behaviour properties
or accuracy.

3.1 Integrate-and-fire model with synaptic
conductances

In this model, neurons are conceived as single compartments
including exponential excitatory and inhibitory synaptic conductances
with different time constants. The basic electrical components of the
neuron model are shown in Figure 2.1. The neuron is described by the
following parameters: (1) membrane capacitance, Cm, (2) the reversal
potentials of the synaptic conductances, Eexc and Einh, (3) the time
constants of the synaptic conductances, τexc and τinh, and (4) the resting
conductance and its reversal potential, grest and Erest, respectively. The
membrane time constant is defined as τm = Cm/grest. The neuron state
variables are the membrane potential (Vm), the excitatory conductance
(gexc) and the inhibitory conductance (ginh). The synaptic conductances
gexc and ginh depend on the inputs received from the excitatory and
inhibitory synapses, respectively.

Neuron models - 22 -

Figure 3.1: Equivalent electrical circuit of a neuron.

gexc and ginh are the excitatory and inhibitory synaptic conductances, while grest is
the resting conductance, which returns the membrane potential to its resting
state (Erest) in the absence of input stimuli.

The decision was made to model synaptic conductances as
exponentials, as shown in Eq. (3.1):

 () ()




≥⋅
<

= −−
0

0

,

,0
0 tteG

tt
tg

exctt
exc

exc τ

 () ()




≥⋅
<

= −−
0

0

,

,0
0 tteG

tt
tg

inhtt
inh

inh τ
Eq. (3.1)

where Gexc and Ginh represent the peak individual synaptic
conductances and gexc and ginh represent the total synaptic conductance
of the neuron. This exponential representation has numerous
advantages. First, it is an effective representation of realistic synaptic
conductances. Thus, the improvement in accuracy from the next most
complex representation, a double-exponential function, is hardly
worthwhile when considering the membrane potential waveform (See
Figure 3.2).

Neuron models - 23 -

Figure 3.2: Membrane-potential evolution (synaptic model).

A post-synaptic neuron receives two consecutive input spikes (top). The evolution
of the synaptic conductance is the middle plot. The two EPSPs caused by the two
input spikes are shown in the bottom plot. In the solid line plots, the synaptic
conductance transient is represented by a double-exponential expression (one
exponential for the rising phase, one for the decay phase). In the dashed line plot,
the synaptic conductance is approximated by a single-exponential expression.
The EPSPs produced with the different conductance waveforms are almost
identical.

Second, the exponential conductance requires only a single state
variable, because different synaptic inputs can simply be summed
recursively when updating the total conductance, as illustrated in Eq. (
3.2):

)()(_
)(

, tgeGtg previousexc

tt

jexcexc
ikepreviousspkecurrentspi −−+= Eq. (3.2)

(Gexc,j is the weight of synapse j; a similar relation holds for inhibitory
synapses). Most other representations would require additional state
variables and/or storage of spike time lists, so the exponential
representation is particularly efficient in terms of memory usage.

In our simulations, the synaptic parameters have been chosen to
represent excitatory AMPA-receptor-mediated conductances and
inhibitory GABAergic conductances of cerebellar granule cells (Silver
et al., 1996; Nusser et al., 1997; Tia et al., 1996; Rossi & Hamann,
1998). These are summarized in Table 3.1. Note that different synaptic

Neuron models - 24 -

connections in different cells might have quite different parameters:
extreme examples in the cerebellum include the climbing fibre input to
Purkinje cells and the mossy fibre input to unipolar brush cell synapses.

Max.
Conductance
(Gexc_max) nS

Time
Constant (τexc)

ms

Reversal
potential
(Eexc) mV

Excitatory
Synapse

0-7.5 0.5 0
Max.

Conductance
(Ginh_max) nS

Time Constant
(τinh) ms

Reversal
potential (Einh)

mV
Inhibitory
Synapse

0-29.8 10 -80
Table 3.1: Synaptic characteristics (cerebellar granule cell).

The first column is an estimation of the maximum cell conductance (summed
over all synapses on the cell). The conductances of individual synapses (Gexc and
Ginh) are not included in this table as they depend on the connection strengths
and are therefore provided through the network definition process and synaptic
plasticity.

The differential equation; Eq. (3.3) describes the membrane
potential evolution (for t≥t0) in terms of the excitatory and inhibitory
conductances at t0, combined with the resting conductance.

() () () () () () ()mrestrestminh
tt

inhmexc
tt

exc
m

m VEGVEetgVEetg
dt

dV
C inhexc −+−+−= −−−− ττ 00

00
 Eq. (3.3)

where the conductances gexc(t0) and ginh(t0) integrate all the
contributions received through individual synapses. Each time a new
spike is received, the total excitatory and inhibitory conductances are
updated using Eq. (3.2). Eq. (3.3) is amenable to numerical
integration. In this way, we can calculate Vm, gexc, ginh and firing time tf
for given time intervals after the previous input spike. tf is the time
when the membrane potential would reach the firing threshold (Vth) in
the absence of further stimuli (if indeed the neuron would fire).

3.1.1 Lookup-table calculation and optimization

The expressions given in the previous subsection are used to
generate the lookup tables that characterize each cell type, with each
cell model requiring four tables:

- Conductances: gexc(∆t) and ginh(∆t) are one-dimensional tables
that contain the fractional conductance values as functions of the
time ∆t elapsed since the previous spike.

Neuron models - 25 -

- Firing time: Tf(Vm(t0),gexc(t0),ginh(t0)) is a three-dimensional
table representing the firing time prediction in the absence of
further stimuli.

- Membrane potential: Vm(Vm(t0),gexc(t0),ginh(t0),∆t) is a four-
dimensional table that stores the membrane potential as a
function of the variables at the last time that the neuron state was
updated and the elapsed time ∆t.

Figure 3.3, Figure 3.4 and Figure 3.5 show some examples of the
contents of these tables for a model of the cerebellar granule cell with
the following parameters: Cm=2pF, τexc=0.5ms, τinh=10ms, grest=0.2nS,
Eexc=0V, Einh=-80mV, Erest=-70mV and Vth=-70mV.

Figure 3.3: Synaptic-conductance updating table.

fg(∆t); the percentage conductance remaining after a time ∆t has elapsed since
the last spike was received. This is a lookup table for the normalised exponential
function. The time constant of the excitatory synaptic conductance gexc (shown
here) was 0.5 ms and for ginh(t), 10 ms. Since the curve exhibits no abrupt
changes in the time interval [0, 0.0375] seconds, only 64 values were used.

Neuron models - 26 -

Figure 3.4: Firing-time prediction table.

Firing time (tf) plotted against gexc and initial Vm. tf decreases as the excitatory
conductance increases and as Vm,t0 approaches threshold. ginh = 0.

Neuron models - 27 -

Figure 3.5: Membrane-potential updating table.

Membrane potential Vm(Vm,t0, gexc,t0, ginh,t0, ∆t) plotted as a function of (A) Vm,t0
and ∆t (gexc = ginh = 0); (B) Gexc,t0 and ∆t (ginh = 0, Vm,t0 = Erest = -70mV). The zoom
in the ∆t axis of plot (b) highlights the fact that the membrane potential change
after receiving a spike is not instantaneous.

The sizes of the lookup tables do not significantly affect the
processing speed, assuming they reside in main memory (i.e., they are
too large for processor cache but small enough not be swapped to disk).
However, their size and structure obviously influence the accuracy with
which the neural characteristic functions are represented. The
achievable table sizes (in particular the membrane potential table) are
limited by memory resources. However, it is possible to optimize
storage requirements by adapting the way in which their various
dimensions are sampled. Such optimization can be quite effective,
because some of the table functions only change rapidly over small
domains. We evaluate two tactics: multi-resolution sampling and
logarithmic compression along certain axes. Different approaches for
the membrane potential function Vm(Vm,t0, gexc,t0, ginh,t0, ∆t), the largest
table, with respect to the inhibitory conductance (ginh,t0) are illustrated
in Figure 3.6. It can be seen that a logarithmic sampling method in the
conductance dimensions is an effective choice for improving the
accuracy of the representation of neural dynamics. For the following
simulations we have used logarithmic sampling in the ginh and gexc
dimensions of the Vm table (as illustrated in Figure 3.6 C).

Neuron models - 28 -

Neuron models - 29 -

Figure 3.6: Membrane potential depending on ginh coordinates.

Each panel shows 16 Vm relaxations with different values of ginh,t0. The sampled
conductance interval is ginh,t0 ∈∈∈∈ [0,20]nS. A) Linear approach: [0,20]nS was
sampled with a constant inter-sample distance. B) Multi-resolution approach:
two intervals [0,0.35]nS and [0.4,20]nS with eight traces each were used. C)
Logarithmic approach: ginh,t0 was sampled logarithmically.

Storage requirements and calculation time are dominated by the
largest table, that for Vm. We shall show in the next chapter that a table
containing about a million data points (dimension sizes: ∆t = 64, gexc =
16, ginh = 16, Vm,to = 64) gives reasonable accuracy. In order to populate
this table we solve numerically Eq. (3.3). This was done using a
Runge-Kutta method with Richardson extrapolation and adaptive step
size control. On a 1.8GHz Pentium computer, calculation of this table
takes about 12s. The firing time table had the same dimensions for gexc,
ginh, and Vm,to. As stated previously, the individual conductance lookup
tables had 64 elements each.

In principle these tables could also be based upon
electrophysiological recordings. Since one of the dimensions of the
tables is the time, the experimenter would only need to set up the initial
values of gexc, ginh and Vm and then record the membrane potential
evolution following this initial condition. With our “standard” table
size, the experimenter would need to measure neuronal behaviour for
16 x 16 x 64 (Gexc, Ginh, Vm) triplets. If neural behaviour is recorded in
sweeps of 0.5 seconds (at least 10 membrane time constants), only 136
minutes of recording would be required, which is feasible (see below
for ways to optimize these recordings). Characterization tables of

Neuron models - 30 -

higher resolution would require longer recording times, but such tables
could be built up by pooling/averaging recordings from several cells.
Moreover, since the membrane potential functions are quite smooth,
interpolation techniques would allow the use of smaller, easier to
compile, tables.

In order to control the synaptic conductances (gexc and ginh), it would
be necessary to use the dynamic clamp method (Prinz, Abbott, Marder,
2004). With this technique it is possible to replay accurately the
required excitatory and inhibitory conductances. It would not be
feasible to control real synaptic conductances, though prior
determination of their properties would be used to design the dynamic
clamp protocols. Dynamic clamp would most accurately represent
synaptic conductances in small, electrically-compact neurons (such as
the cerebellar granule cells modelled here). Synaptic noise might distort
the recordings, in which case it could be blocked pharmacologically.
Any deleterious effects of dialyasing the cell via the patch pipette could
be prevented by using the perforated patch technique (Horn and Marty,
1988), which increases the lifetime of the recording and ensures that
the neuron maintains its physiological characteristics.

3.2 Integrate-and-fire model with electrical
coupling

3.2.1 Introduction

The electrical synapse is a connection between certain cell types
(gap junction) that let different molecules and ions, pass between cells
(electrical coupling). Since it allows a direct current flow between
neurons, it is usually represented as a resistor which connects them.

It is believed that electrical coupling facilitate synchronous firing of
interconnected cells (Chez, 1991; Kopell and Ermentrout, 2004; Kepler
et al., 1990; Traub et al., 2000; Draghun et al., 1998). These synapses
characterize some extremely rapid response (through direct current
flow by means of intercell ion exchange, Hormuzdi et al., 2004).

The gap junctions are usually of very low conductance
(approximately 100 pS according to Neyton and Trautmann, 1985).
Because of that we neglect subthreshold electrical coupling. This
assumption directly allows the efficient simulation of electrical

Neuron models - 31 -

synapses on an event-driven scheme. In this way, a neuron only affects
other cells connected by electrical synapses when an action potential is
fired. During the action potential (1.5 ms approximately) we increase
the membrane potentials of the connected cells by an amount that
depends on the coupling ratio (electrical connection weight).
Unidirectional electrical synapses have been documented (Furshpan,
1959) therefore we implement only unidirectional coupling as
primitive. Bidirectional coupling can be simulated defining two
unidirectional connections.

Figure 3.7: Effect produced by activity through electrical coupling.

The upper plot show the input spikes. The middle plot illustrates the membrane
potential evolution in the absence of electrical coupling. The bottom plot
illustrates the spikelets produced by the electrical coupling. In fact, since the
membrane potential of the cell is closed to the firing threshold when it receives
the first spike through the electrical connection, it makes the neuron fire
synchronously.

3.2.2 Event-driven implementation

In one possible implementation, when a neuron with electrical
synapses fires a spike, two events are inserted into the heap:

- Starting event. Indicating the initial time of electrical coupling
effect. In fact, normally no delay is introduced (although it is
allowed by the simulation scheme) since this kind of synapses is
characterized by their rapid response. When this event is

Neuron models - 32 -

processed the simulation kernel increments the membrane
potential of the target cell by an amount that depends on the
connection weight.

- Ending event. Indicating the termination of the electrical
coupling on the target neurons. When this event is processed the
simulation kernel decrements the membrane potential of the
target neuron in the amount indicated by the connection weight.

Usually an interval of 1.5ms is leaved between the starting and
ending events. In this way, the effect of electrical coupling is a very fast
increment of the membrane potential of the target neurons during a
short time interval. As commented before, the electrical coupling is
driven by action potentials since we are neglecting subthreshold
electrical coupling. This implementation has been discarded because
the large amount of generated ending events need to be stored on the
event reordering structure since the starting event is processed,
producing a computational bottleneck.

Another choice that has been tested is the inclusion of a single event
that initiates a triangular spikelet on the target neuron membrane
potential. In order to implement this, the neuron includes a variable that
stores the instant at which the effect finishes and the current amplitude
of the spikelet (defined by the strength of the coupling). When the
membrane potential is updated due to other events, these variables are
consulted to know if there is any spikelet still present in the neuron
membrane potential and to calculate its current amplitude (the
amplitude of the simulated spikelet decrements linearly. See Figure
3.7). The final membrane potential is calculated adding its current
value and the current spikelet amplitude. See chapter 5 for a use of this
model.

3.3 Cerebellar granule cell model

3.3.1 Introduction

The cerebellum is a well structured neural system conformed by
three layers: granular, molecular and Purkinje layer. The granular layer
contains approximately 1011 granule cells (Kandel et al., 2000) that
represent in number of neurons about half of the cells of the whole
human brain. The granule cells receive their inputs through the mossy
fibers. The axons of the granule cells are called parallel fibers that

Neuron models - 33 -

connect with different Purkinje cells. The granular layer represents a
highly divergent structure (there are approximately 103 granule cells
per mossy fiber). Therefore they seem to be responsible of building a
sparse representation of the mossy fibers inputs, Marr (1969), Albus
(1971), Coenen et al. (2001), and D’Angelo et al. (2005). But the
dynamical properties of the cell are still under study, Magistretti et al.
(2006), Armano et al. (2000), D'Angelo et al. (2005), Nieus et al.
(2006), Mapelli & D'Angelo (2007), Rossi et al. (2006) and detailed
cell models are being built to evaluate the functional role, D'Angelo et
al. (2001) of these dynamics. The neuron models can be simulated with
different simulators (NEURON, Hines & Carnevale (1997), Genesis,
Bower & Beeman (1998), EDLUT, Ros et al. (2006)) at different levels
of detail. However these simulations are not efficient enough to deal
with large neural networks in real time. In this subsection we describe
how a granule-cell model which presents major features that are
considered functionally relevant (bursting, subthreshold oscillations
and resonance) can be implemented using the event-driven lookup-
table-based simulator (EDLUT).

 After building up cell models based on characterizing lookup tables
we validate the model in two ways:

- Accuracy validation. The number of samples in each dimension
of the table can be critical to the accuracy of the table-based cell
approach. Therefore we simulate the cell model with a classical
numerical calculation method (Euler method with a very short
time step) and we compare the output spike train obtained in
response to different input spike trains with the results obtained
using the EDLUT simulator. The comparison of the output spike
trains obtained by the two methods is done using the Van
Rossum distance, van Rossum (2001).

- Functional validation. Key cell features are kept. If we want to
abstract a cell model that includes certain cell features that are
considered relevant we also need to validate that the table-based
model is able to reproduce the cell features under study.

3.3.2 Model description

A detailed Hodgkin-Huxley model, Hodgkin & Huxley (1952), of a
granule cell defined in NEURON (with more than 15 differential

Neuron models - 34 -

equations describing its dynamics) was presented by D'Angelo et al.
(2001) to reproduce in detail the cell dynamics and evaluate the
significant variables of the model. Based on that model, Bezzi et al.
(2004b) presented a simple integrate and fire cell model that included
dynamical properties of the granule cell. The model is based on two
main variables: the membrane potential (Vx) and a gating variable that
models a slow K+ current. A simple integrate and fire neuron with a
threshold mechanism to generate spikes (with post-spike membrane
potential repolarization) was extended to include interesting neural
features such as subthreshold oscillations, Richardson et al. (2003),
resonance, Izhikevich (2001) and bursting, Smith et al. (2000).

Figure 3.8: Simplified-model obtaining process.

Figure 3.8 illustrates the process from cell behaviour
characterization based on electrophysiological recordings to network
simulations based on simplified compiled models. The simplified
model described in Bezzi et al. (2004b) is defined with the following
equations:

 synLeakActiveKslowK IIItVnVVg
dt

dV
C −++−= −),()(Eq. (3.4)

n

nn

dt

dn

τ
∞−

= Eq. (3.5)

Where V and C are the neuron membrane potential and capacitance
respectively while IActive and ILeak are dynamic currents of the model
defined by the following expressions:

)()()()(VaVVgVmVVgI NapNaKirKActive ∞−∞− −+−= Eq. (3.6)

)()(AGABAAGABALeakALeakALeak VVgVVgI −− −+−= Eq. (3.7)

Neuron models - 35 -

Finally we have complemented the model to include the cell
synapses as input-driven conductances. ISyn represents the synaptic
mediated current through the excitatory and inhibitory input driven
conductances (gexc and ginh).

)()()()(tgVVtgVVI inhinhexcexcsyn −+−= Eq. (3.8)

exc

excexc g

dt

dg

τ
−= ;

inh

inhinh g

dt

dg

τ
−= Eq. (3.9)

Excitatory and inhibitory conductances (gexc and ginh) depend on the
value of the conductances when they were updated the last time and the
time passed since then. Each time a new input spike is received the
conductances are set to a specific value that depends on the synaptic
weight (Ginh or Gexc). Synaptic conductance dynamics are modelled as
exponential functions:

 () ()




≥⋅
<

= −−
0

0

,

,0
0 tteG

tt
tg

exctt
exc

exc τ

 () ()




≥⋅
<

= −−
0

0

,

,0
0 tteG

tt
tg

inhtt
inh

inh τ

Eq. (3.10)

Where t0 is the input spike arrival time and τexc and τinh are the temporal
constants of the synaptic conductances.

3.3.3 Definition of model tables

The neuron behaviour has been compiled into six tables. In order to
use the event-driven simulator (EDLUT) the neuron state (membrane
potential, synaptic conductances and other variables such as the gating
variable n) need to be defined as functions of the neuron state at the
instant in which it was updated the last time. Since it is an event-driven
scheme the neuron state is updated each time that an event is produced
(output spikes) or an input event is received (input spikes).

 The model has been compiled into the following tables:

- One table of five dimensions for the membrane potential,
Vm=f(∆t, gexc_0, ginh_0, n0, V0).

- One table of five dimensions for the gating variable, n=f(∆t,
gexc_0, ginh_0, n0, V0).

Neuron models - 36 -

- Two tables of two dimensions for the conductances, gexc=f(∆t,
gexc_0), ginh=f(∆t, ginh_0).

- Two tables of 4 dimensions for the firing prediction, tf=f(gexc,
ginh, n0, V0) and tf_end=f(gexc, ginh, n0, V0).

For each dimension we used a different number of samples
(indicated into parentheses): ∆t(44), gexc0(10), ginh0(10), n0(18) and
V0(30). Therefore the larger tables require 237106 samples
(approximately 9.04MB). The whole cell model requires 487106
samples (19.04MB). Once the characterizing tables are compiled using
Runge-Kutta method (Cartwright & Piro, 1992), numerical calculation
is not required during network simulations. Then we evaluate the
accuracy of the model and also validate its key features (bursting,
rhythmic subthreshold oscillations and resonance).

3.3.4 Experimental results

Here we show some illustrative simulations in which the cell
behaviour of the model described in NEURON is compared with the
behaviour of the model compiled into tables and simulated with
EDLUT, Ros et al. (2006). The model can reproduce synaptic
activation of a granule cell. Activation of 1 and 2 synapses makes
subthreshold EPSPs which, in the immediately subthreshold region,
become slower due to activation of persistent Na+ current. Activation of
3 synapses elicits a spike, which occurs with shorter delay by activating
4 synapses (Figure 3.9 A). Inhibitory synapses can reduce the EPSP
and prevent firing (Figure 3.9 B). All these properties are typical of
granule cells (e.g. D'Angelo et al. (2005)). If we focus on evaluating the
dynamics of the cell model, we must consider: oscillatory, resonance
and bursting behaviours.

Neuron models - 37 -

Figure 3.9: Synaptic activation of the modeled granule cell.

A) Membrane potential evolution when receiving a spike through 1, 2, 3 or 4
excitatory synapses (conductance of each synapse 0.5nS). B) Membrane potential
evolution when receiving a spike through an excitatory synapse or through an
excitatory synapse and an inhibitory synapse (conductance of the excitatory
synapse 1.5nS, conductance of inhibitory synapse 0.5nS and 1.0nS).

Since the simulation results generated with EDLUT require updating
the neuron state variables (retrieving their values from the LUTs) only
in certain simulation instants (that is, the simulation on EDLUT jumps

Neuron models - 38 -

in time from one instant to the next one driven by input and output
neural events), these instants are marked with "X" on the plots.

3.3.4.1 Subthreshold Rhythmic Oscillations

The membrane potential evolution in the absence of high input
activity from other cells shows a rhythmic oscillatory behaviour (Figure
3.10). This oscillatory state makes the neuron more sensitive to input
activity depending on the phase of this activity with regard to the phase
of the oscillation. Moreover, the coupling of those oscillations with the
spiking mechanisms constitutes the base of the resonance behaviour.
As shown in Figure 3.10 this feature has been captured into the
characterizing tables in which the EDLUT simulator is based and
therefore both implementations (on NEURON and on EDLUT)
produce equivalent subthreshold oscillatory behaviours.

Figure 3.10: Subthreshold oscillations of the membrane potential.

A current of 4pA current is injected during 500ms. A) Simulation with
NEURON of the simplified model Bezzi et al. (2004b). B) Equivalent simulation
with EDLUT represented into a behavioural lookup table.

In Figure 3.11 it is shown how with specific synaptic weights only
excitatory spikes received in certain periods produce output spikes.
This depends on the exact timing of these spikes with respect to the
subthreshold oscillations of the membrane potential (therefore stimulus
selection depending on the stimulus phase).

Neuron models - 39 -

Figure 3.11: Simulation of subthreshold oscillations with EDLUT.

Subthreshold oscillations occur in response to input spike trains (neuron state
variables are updated only at times marked with a cross). A) Subthreshold
oscillations of the membrane potential produced by input spike trains. B)
Selection depending on the stimulus phase: The first three doublets are received
in the same phase of the membrane-potential oscillation (when the neuron is
more resistant to fire), the last three doublets are received in a phase in which
the neuron is more susceptible to fire.

Neuron models - 40 -

3.3.4.2 Bursting behaviour

The bursting behaviour of the granule cells seems to play an
important role in reliably transmitting significant stimuli. The effect of
short spike bursts (two or three spikes) into the target Purkinje cells is
significantly higher than single spikes, Coenen et al. (2007). In Figure
3.12 it is shown how the cell model is able to produce short bursts in
response to intense input activity. If a delay is introduced between
excitation and inhibition spike trains, the second spike in the output
doublets is specifically prevented (Figure 3.13).

Figure 3.12: Simulation of bursting behaviour with EDLUT.

Triplets in response to input spike trains of 95 Hz.

Neuron models - 41 -

Figure 3.13: Spike suppression.

A) Simulation with EDLUT of doublets in response to 100Hz spike trains
through 3 excitatory synapses of 0.5nS. B) The second spike of each output
doublet is suppressed due to the activation of the inhibitory synapse
(conductance 5.0nS) with a spike train of 100Hz delayed 1ms.

3.3.4.3 Resonance behaviour

In Figure 3.14 A it is shown how injecting oscillatory currents (4-

6cos(ω)pA) that match the resonance cell frequency (10Hz) produces
output spikes while injecting oscillatory input currents at other
frequency (1Hz) does not produce any output spike.

Neuron models - 42 -

 Figure 3.14 B shows the maximum membrane-potential (Vm)
depolarization when injecting the same oscillatory currents as before.
Figure 3.14 shows the output-spike bursting frequency (fspk) in response
to the same input current. In Figure 3.14 D it is shown that this effect
can be also observed when input spike trains of a certain frequency
(resonance) produce significantly higher responses. Therefore when the
input spike train tunes the inherent temporal dynamics of the cell it
generates more active responses.

Neuron models - 43 -

Figure 3.14: Resonance behaviour.

A) Time-driven simulation of non-resonant frequency filtering. B) Time-driven
simulation showing the maximum depolarization of the membrane potential
depending on the input-current frequency (action-potential generation
mechanism disabled). C) Time-driven simulation showing the output bursting
frequency depending on the input-current frequency. D) Simulation with
EDLUT of input-burst selectivity depending on quiescent period.

Neuron models - 44 -

3.3.5 Accuracy validation

In this subsection we evaluate the accuracy of the model captured on
lookup tables that are used in the EDLUT approach. For this purpose
we run some reference simulations using intensive numerical
calculation (Euler method with a very short integration time constant;
0.5µs) with the original differential equations of the simplified model
Bezzi et al. (2004b). After this, we perform the same simulations in
EDLUT. Finally we compare the output spike trains obtained by the
two approaches calculating the van Rossum distance (van Rossum,
2001) normalized by the number of spikes (as a measure of the distance
between two spike trains). In this way we measure the difference
between the EDLUT output spike train and the one obtained with the
original model (using intensive calculation method).

 To make the accuracy evaluation more informative we use three
100Hz input spike trains (Poisson distribution with 0.8 standard
deviation). The results are shown in Figure 3.15. The curve shown in
Figure 3.15 A represents the Van Rossum distance (with a time
constant of 10ms), between the reference output spike trains obtained
using Euler integration method with a very short time step (0.5µs) and
other spikes trains generated by simulations done with longer time
steps. The EDLUT simulator, using the lookup tables described in
previous subsection, achieves 0.184 of accuracy (normalized Van
Rossum distance). Figure 3.15 B illustrates how the output spike train
calculated with Euler integration method highly depends on the time
step. EDLUT tables emulate the cell behaviour obtained with the Euler
calculation with a short time constant (0.5µs).

Neuron models - 45 -

Figure 3.15: Accuracy comparison.

A) Normalized van Rossum distance for the EDLUT output train and a
simulation using Euler integration with different time steps. B) Output trains
produced by EDLUT and Euler simulations of 0.5µs and 0.6µs.

Neuron models - 46 -

3.3.6 Motivation of the model

Since EDLUT simulator performance (computation speed) does not
depend on the network size but on the network activity, this simulator
is specifically appropriate for neural structures with sparse coding. This
is the case of the granular layer, Smith et al. (2000). This computing
performance can be exploited to address massive studies about how
different input patterns or connecting weights affect the network
behaviour. For instance to study different levels of inhibition provided
by the Golgi cells Forti et al. (2006), Philipona & Coenen (2004) or
which input codes (through the mossy fibers optimize the information
transmission in this layer D'Angelo et al. (2005), Coenen et al. (2007),
Bezzi et al. (2006), Bezzi et al. (2004a).

Cell dynamics are usually neglected in large-scale simulations.
However specific network simulations can be addressed to evaluate the
impact of the cell temporal dynamics (oscillatory, bursting and
resonance) in the network behaviour, as these biological properties may
represent also a computational key factor to take into account. At the
input stage of the cerebellum these properties could be involved in
learning as in network oscillations at theta frequency.

3.4 Hodgkin and Huxley model

In order to further validate the simulation scheme, we have also
compiled into tables the Hodgkin & Huxley model (1952) and
evaluated the accuracy obtained with the proposed table-based
methodology. Table 3.2 shows the differential expressions that define
the neural model. We have also included expressions for synaptic
conductances.

() () ()() mlmlNamNsKmK
m CVVgVVhmgVVngI

dt

dV
−−−⋅⋅⋅−−⋅⋅−= 34

()()nn
dt

dn
nn ⋅−−⋅⋅= βαφ 1 ; ()()mm

dt

dm
mm ⋅−−⋅⋅= βαφ 1 ;

()()hh
dt

dh
hh ⋅−−⋅⋅= βαφ 1

() 111.0exp

1.001.0

−+⋅
+⋅

=
m

m
n

V

Vα ; () 15.21.0exp

5.21.0

−+⋅
+⋅

=
m

m
m

V

V
α ; ()mh V⋅⋅= 05.0exp07.0α

()80exp125.0 mn V⋅=β ; ()18exp4 mm V=β ; () 131.0exp

1

++⋅
=

m
h

V
β

Neuron models - 47 -

() 103.63 −= Tφ
() ()inhminhexcmexc EVgEVgI −⋅−−⋅−=

exc

excexc g

dt

dg

τ
−= ;

inh

inhinh g

dt

dg

τ
−=

Table 3.2: Hodgkin and Huxley (1952) model equations.
The first expression describes the membrane potential evolution. The differential
equations of n, m and h govern the ionic currents. The last two expressions of the
table describe the input driven currents and synaptic conductances. The
parameters are the following: Cm=1µF/cm2, gK=1 mS/cm2, gNa=120 mS/cm2,
gl=0.3 mS/cm2, VNa=-115 mV, VK=12 mV, Vl=-10.613 mV and T=6.3ºC. The
parameters of the synaptic conductances are the following: Eexc=-65 mV, Einh=15
mV, τexc=0.5 ms and τinh=10 ms.

Interfacing the explicit representation of the action potential to the
event-handling architecture, which is based upon idealized
instantaneous action potentials, raises a couple of technical issues. The
first is the choice of the precise time point during the action potential
that should correspond to the idealized (propagated) event. This choice
is arbitrary; we chose the peak of the action potential. The second issue
arises from the interaction of this precise time point with discretization
errors during updates close to the peak of the action potential. As
illustrated in Figure 3.16, a simple implementation can cause the
duplication (or by an analogous mechanism, omission; Figure 3.17) of
action potentials; a significant error. This can happen when an update is
triggered by an input arriving just after the peak of the action potential
(and thus after the propagated event). Discretization errors can cause
the prediction of the peak in the immediate future, equivalent to a very
slight shift to the right of the action potential waveform. Since we have
identified the propagated event with the peak, a duplicate action
potential would be emitted. The frequency of such errors depends upon
the discretization errors and thus the accuracy (size) of the lookup
tables and upon the frequency of inputs near the action potential peaks.
These errors are likely to occur very seldom, but as we now explain,
they can be prevented.

Neuron models - 48 -

Figure 3.16: Output-spike duplication due to discretization errors.
Discretization errors could allow an update shortly following an action potential
peak to predict the peak of the action potential in the immediate future, leading
to the emission of an erroneous duplicate spike. (The errors have been magnified
for illustrative purposes.)

Neuron models - 49 -

Figure 3.17: Output-spike omission due to discretization errors.
Discretization errors could allow an update shortly before an action potential
peak to set the membrane potential to a value slightly after the peak of the action
potential, leading to the omission of a correct output spike.

We now describe one possible solution (which we have
implemented) to this problem (see Figure 3.18). We define a firing

threshold (θf; in practice -10mV). This is quite different from the
physiological threshold, which is more negative. If the membrane
potential exceeds θf, we consider that an action potential will be
propagated under all conditions. We exploit this assumption by always
predicting a propagated event if the membrane potential is greater than
θf after the update, even if the present simulation instant is after the
action potential peak (in this case emission is immediate). This
procedure ensures that no action potentials are omitted, avoiding the
duplication problem.

Neuron models - 50 -

We also define a post-emission time window. This extends from the
time of emission (usually the action potential peak) to the time the
membrane potential crosses another threshold voltage, θf_end. This time,
tf_end, is stored in the source neuron when the action potential is emitted.
Whenever new inputs are processed, any predicted output event times
are compared with tf_end and only those predicted after tf_end are
accepted. This procedure eliminates the problem of duplicate action
potentials.

Figure 3.18: Prevention of erroneous spike omission and duplication.

Once the neuron exceeds θf, a propagated event is ensured. In this range, updates
that cause the action potential peak to be skipped cause immediate emission.
This prevents action potential omission. Once the action potential is emitted
(usually at tf), the time tf_end is stored and no predicted action potential
emissions before this time are accepted. This ensures that no spikes are
propagated more than once.

Neuron models - 51 -

In order to preserve the generality of this implementation, we chose
to define these windows around the action potential peak by voltage
level crossings. In this way the implementation will adapt automatically
to changes of action potential waveform (possibly resulting from
parameter changes). This choice entailed the construction of an
additional large lookup table. Simpler implementations based upon
fixed time windows could avoid this requirement. However, the cost of
the extra table was easily borne.

We have compiled the model into the following tables:

- One table of seven dimensions for the membrane potential,
Vm=f(∆t, gexc_0, ginh_0, n0, m0, h0, V0).

- Three tables of seven dimensions for the variables driving ionic
currents, n=f(∆t, gexc_0, ginh_0, n0, m0, h0, V0), m=f(∆t, gexc_0,
ginh_0, n0, m0, h0, V0), h=f(∆t, gexc_0, ginh_0, n0, m0, h0, V0).

- Two tables of two dimensions for the conductances, gexc=f(∆t,
gexc_0), ginh=f(∆t, ginh_0).

- Two tables of 6 dimensions for the firing prediction, tf=f(gexc,
ginh, n0, m0, h0, V0) and tf_end=f(gexc, ginh, n0, m0, h0, V0) . With
θf=-0.01V and θf_end=-0.04V.

An accurate simulation of this model (as shown in Figure 3.19)
requires approximately 6.15 Msamples (24.6 MB using 4-byte floating
point data representation) for each seven-dimension table. We use a
different number of samples for each dimension: ∆t(25), gexc_0(6),
ginh_0(6), n0(8), m0(8), h0(8) and V0(14). The table calculation and
compilation stage of this model requires approximately 4 minutes on a
Pentium IV 1.8 Ghz.

3.4.1 Accuracy

Figure 3.19 shows an illustrative simulation of the Hodgkin-Huxley
model using the table-based event-driven scheme. Note that the
simulation engine is able to accurately jump from one marked instant
(bottom plot) to the next one (according to either input or generated
events). The membrane potential evolution shown in the bottom plot
has been calculated using numerical method (continuous plot) and the

Neuron models - 52 -

marks (placed onto the continuous trace) have been calculated using the
event-driven approach. We have also included the generated events
using numerical calculation (vertical continuous lines) and those
generated by the table-based event-driven approach (vertical dashed
lines).

Figure 3.19: Event-driven simulation of an H&H model neuron.

Note that in order to facilitate the comparison of the plots with the ones of other
models, the variable (V) has been calculated using the following expression V=(-
Vm-Vrest)/1000 with Vrest=65 mV.

In order to evaluate the model accuracy we have adopted the same
methodology described in the accuracy-and-speed section; we have
simulated a single cell receiving an input spike train using numerical
calculation to obtain a reference output spike train. Then, we have used
the proposed table-based event-driven approach to generate another
output spike train. The accuracy measurement is obtained calculating
the van Rossum (2001) distance between the reference and the event-
driven output spike trains. We have used a randomly generated test
input spike train of average rate 300 Hz with a standard deviation of 0.7
and a uniform synaptic weight distribution in the interval [0.1,1]
mS/cm2. Using the table sizes mentioned above, the van Rossum
distance (with a time constant of 10 ms and the normalization
mentioned in the accuracy-and-speed section) between the reference
spike train and that obtained with the proposed method is 0.057 (in the
same range as the Rossum distances obtained when comparing other
simpler neural models, see Table 4.1). In fact, in order to obtain a

Neuron models - 53 -

similar accuracy using Euler numerical calculation a time step shorter
than 65 µs is required.

Simulation accuracy and speed - 54 -

4 Simulation accuracy and speed

To evaluate the performance of the implementation, in terms of
accuracy and speed, and compare with other simulation methods, in
this chapter we have used an integrate-and-fire neuron model to make
the corresponding measurements. We have also studied several factors
that have an effect on the resultant simulation accuracy and its
optimization.

4.1 Simulation accuracy

An illustrative simulation is shown in Figure 4.1. A single cell with
the characteristics of a cerebellar granule cell receives excitatory and
inhibitory spikes (upper plots). We can see how the membrane
conductances change abruptly due to the presynaptic spikes. The
conductance tables emulate the excitatory AMPA-receptor-mediated
and the inhibitory GABAergic synaptic inputs (the inhibitory inputs
have a longer time constant). The conductance transients (excitatory
and inhibitory) are also shown. The bottom plot shows a comparison
between the event-driven simulation scheme, which updates the
membrane potential at each input spike (these updates are marked with
an x) and the results of an iterative numerical calculation (Euler method
with a time step of 0.5 µs). This plot also includes the output spikes
produced when the membrane potential reaches the firing threshold.
The output spikes are not coincident with input events, although this is
obscured by the time scale of the figure. It is important to note that the
output spikes produced by the event-driven scheme are coincident with
those of the Euler simulation (they superimpose in the bottom plot).
Each time a neuron receives an input spike, both its membrane
potential and the predicted firing time of the cell are updated. These
events occur rarely, as the spacing between the events illustrates in the
event-driven simulation.

Simulation accuracy and speed - 55 -

Figure 4.1: Single-neuron simulation.

Excitatory and inhibitory spikes are indicated on the upper plots. Excitatory and
inhibitory conductance transients are plotted in the middle plots. The bottom
plot is a comparison between the neural model simulated with iterative
numerical calculation (continuous trace) and the event-driven scheme, in which
the membrane potential is only updated when an input spike is received (marked
with an "X").

It is difficult to estimate the appropriate size of the tables for a given
accuracy. One of the goals of this simulation scheme is to be able to
simulate accurately large populations of neurons, reproducing faithfully
phenomena such as temporal coding and synchronization processes.
Therefore, we are interested in reproducing the exact timing of the
spikes emitted. In order to evaluate this, we need a way to quantify the
difference between two spike trains. We used the van Rossum (2001)
distance between two spike trains. This is related to the distance
introduced by Victor and Purpura (1996; 1997), but is easier to
calculate, with Eq. (4.1), and has a more natural physiological
interpretation (van Rossum, 2001).

 []∫
∞

−=
0

22)()(
1

),(dttgtf
t

gfD
c

tc
 Eq. (4.1)

 () () ()∑ −−−=
M

i

ttt

i
ciettHtf

/
 Eq. (4.2)

In Eq. (4.2), H is the Heaviside step function (H(x)=0 if x<0 and
H(x)=1 if x≥0) and M is the number of events in the spike train. In Eq. (
4.1), the distance D is calculated as the integration of the difference

Simulation accuracy and speed - 56 -

between f and g, which are spike-driven functions with exponential
terms, as indicated in Eq. (4.2). Note that the resulting distance and,
indeed, its interpretation, depends upon the exponential decay constant,
tc in Eq. (4.2), whose choice is arbitrary (van Rossum, 2001). We used
tc = 10ms. The distance also depends upon the number of spikes in the
trains. For this reason, we have chosen to report a crudely-normalised
version D

2
(f,g)tc/M. Two trains differing only by the addition or

removal of a single spike have a normalized distance of (1/2 M). Two
trains differing only by the relative displacement of one spike by δt
have a normalized distance of (1-exp(-|δt|/tc))/M.

In order to evaluate the accuracy of the EDLUT method and
evaluate the influence of table size, we computed the neural model
using iterative calculations and the EDLUT method and then calculated
the distance between the output spike trains produced by the two
methods.

Figure 4.2 illustrates how the accuracy of the event-driven approach
depends on the synaptic weights of each spike, in an example using a
Poisson input spike train. We plot as a function of synaptic weight the
normalized van Rossum distance between the output spike trains
calculated with the Euler method and obtained with EDLUT. Spikes
with very low weights do not generate output events (either in the
event-driven scheme or in the numerical computation one). Conversely,
spikes with very large weights will always generate output events.
Therefore, the deviation between the event-driven and the numerical
approach will be low in both these cases. However, there is an interval
of weights in which the errors are appreciable, because the membrane
potential spends more time near threshold and small errors can cause
the neuron to fire or not to fire erroneously. In general, however, a
neuron will have a spread of synaptic weights and is unlikely to show
such a pronounced error peak. Action potential variability in
subthreshold states is also seen in biological recordings (Stern et al.,
1997), therefore a certain level of error may be affordable at a network
scale.

Simulation accuracy and speed - 57 -

Figure 4.2: Simulation error depending on synaptic weights.

The accuracy of the event-driven simulation depends on the weights of the
synapses, with maximal error (normalized van Rossum distance) occurring over
a small interval of critical conductances. All synaptic weights were equal.

The accuracy of the event-driven scheme depends on the sampling
resolution of the different axes in the tables. We varied the resolution of
various parameters and quantified the normalized van Rossum distance
of the spike trains produced, with respect to the “correct” output train
obtained from an iterative solution. The axes of the Vm and tf table were
varied together, but the conductance lookup tables were not modified.
Effective synaptic weights were drawn at random from an interval of
[0.5, 2] nS, thus covering the critical interval illustrated in Figure 4.2.
From Figure 4.3 we see that using a proposed initial table dimensions,
the accuracy of ∆t and gexc are critical, but the accuracy of the event-
driven scheme becomes more stable when table dimensions are above
1000 K samples. Therefore, we consider appropriate resolution values
are the following: 16 values for gexc,t0 and ginh,t0, 64 values for ∆t and 64
values for Vm,t0. These dimensions will be used henceforth for this
neuron model.

Simulation accuracy and speed - 58 -

Figure 4.3: Simulation error depending on table size.

The accuracy of the event-driven approach depends on the resolution of the
different dimensions, and therefore on the table sizes. To evaluate the influence
of table size on accuracy, we ran the simulations with different table sizes. For
this purpose, we chose an initial Vm table of 1000 K samples (64 values for ∆t, 16
values for gexc,t0, 16 values for ginh,t0 and 64 values for Vm,t0). We then halved the
size of individual dimensions, obtaining tables of size 500 K samples and
250 K samples from the original table of 1000 K samples. Finally, we doubled the
sampling density of individual dimensions to obtain the largest tables of
2000 K samples. For each accuracy estimation, we used an input train of 100
excitatory and 33 inhibitory spikes (which generates 26 output spikes when
simulated with iterative methods and high temporal resolution).

Figure 4.4: Output spike trains for different table sizes.

Simulation accuracy and speed - 59 -

The first two plots represent the excitatory and inhibitory spikes. The E plots are
the output events obtained with numerical iterative methods with different time
step resolutions (Euler method with 0.5 µs and with 2 µs). The other plots
represent the outputs generated with the event-driven scheme using different
table sizes: small (S) of 500 K elements, medium (M) of 1000 K elements and
large (L) of 2000 K elements. The subscripts indicate which dimension resolution
has been doubled (or halved) from the Medium (M) size table.

Illustrative output spike trains for different table sizes, as well as the
reference train, are shown in Figure 4.4. The spike trains obtained with
the iterative method and the event-driven scheme are very similar for
the large table with increased resolution in ∆t. A spurious spike
difference is observed in the other simulations. Doubling the resolution
in dimensions other than ∆t does not increase the accuracy significantly
in this particular simulation. We can also see how the spike train
obtained with the small tables is significantly different.

4.2 Simulation speed

With EDLUT, as described, the simulation time is essentially
independent of the network size, depending mainly on the rate of
events that need to be processed. In other words, the simulation time
depends on the network activity, as illustrated in Figure 4.5.

Figure 4.5: Computation time.

This figure represents the time taken to simulate 1 second of network activity on
a Pentium IV (1.8 GHz) computer. Global activity represents the total number of
spikes per second in the network. The network size did not have a significant

Simulation accuracy and speed - 60 -

impact on the time required. The time was almost linear with respect to network
activity. The horizontal grid represents the real-time simulation limit, i.e. one
second of simulation requiring one second of computation time.

The present implementation allows, for instance, the simulation of
8·104 neurons in real time with an average firing rate of 10 Hz on a
1.8 GHz Pentium IV platform. This implies the computation at a rate of
8·105 spikes/second as illustrated in Figure 4.5. Large numbers of
synaptic connections of single neurons are efficiently managed by the
two-stage processing described in Figure 2.4. The size of the event
queue is affordable, even in simulations with neurons with several
thousands of synapses each.

The number of synapses that the simulation engine is able to handle
is limited by memory resources. Each neuron requires 60 Bytes and
each synapse 52 Bytes. Therefore, a simulation of 8·105 neurons
consumes about 46 Mbytes and a total of 62·106 connections consumes
about 3 Gbytes.

In order to illustrate the potential of the EDLUT method we have
compared the performance of this computation scheme with other
methods (see Table 4.1). We have implemented three alternative
schemes:

- Time-driven iterative algorithm with a fixed time step (TD-FTS).
We have used the Runge-Kutta method with a fixed time step.

- Time-driven iterative algorithm with variable time step (TD-
VTS). We use the Runge-Kutta method with step doubling and
the Richardson extrapolation technique (Cartwright and Piro,
1992). In this case, the computational accuracy is controlled by
defining the error tolerance. In this scheme, the iterative
computations are done with time step sizes that depend on the
smoothness of the function. If a calculation leads to an error
estimation above the error tolerance the time step is reduced. On
the other hand, if the error estimation is below this threshold the
time step is doubled. This scheme is expected to be fast when
only smooth changes occur in the neuronal states (between input
spikes). Even though this method is time driven, its computation

Simulation accuracy and speed - 61 -

speed depends on the cell input in the sense that the simulation
passes quickly through time intervals without input activity and
when an input spike is received the computation approach
reduces the time step to simulate accurately the transient
behaviour of the cell. A similar simulation scheme with either
global or independent variable time-step integration has been
adopted in NEURON (Hines & Carnevale, 2001; Lytton and
Hines, 2005).

- Pseudo-analytical approximation (PAA) method. In this case we
have approximated the solution of the differential equations that
govern the cell. In this way we can adopt an event-driven
scheme similar to that proposed in Makino (2003) and Mattia &
Del Giudice (2000), in which the neuron behaviour is described
with analytical expressions. As in Makino (2003), the membrane
potential is calculated with the analytical expression and the
firing time is calculated using an iterative method based on
Newton-Raphson. Since the differential equations defining the
cell behaviour of our model have no analytical solution, we need
to approximate a four-dimensional function. Even using
advanced mathematical tools this represents a hard task. The
accuracy of this approach depends significantly on how good
this approximation is. In order to illustrate the complexity of the
complete cell behaviour it is worth mentioning that the
expression used was composed of 15 exponential functions. As
shown in Table 4.1, even this complex approximation does not
provide great accuracy, but we have nevertheless used it in order
to estimate the computation time of this event-driven scheme.

- Event-driven based on Lookup tables (EDLUT). This is our
approach, in which the transient response of the cell and the
firing time of the predicted events are computed off-line and
stored in lookup tables. During the simulations each neuronal
state update is performed by taking the appropriate value from
these supporting tables.

Normalized
 van Rossum

distance

Comput.
time (s)

Time step
(s)

Time driven with

fixed time step
(TD-FTS) 56·10-5 0.061 0.286

Simulation accuracy and speed - 62 -

43·10-5 0.033 0.363
34·10-5 0.017 0.462
Error

tolerance

68·10-5 0.061 0.209
18·10-5 0.032 0.275

Time driven with
variable time step

(TD-VTS)
2·10-5 0.017 0.440

Pseudo analytical
approximation
method (PAA)

 0.131 0.142

Table size
(x106 samples)

1.05 0.061 0.0066
6.29 0.032 0.0074

Lookup-table-
based event-driven
scheme (EDLUT)

39.32 0.017 0.0085
Table 4.1: Performance evaluation of different methods.

Accuracy vs. computing time trade-off. We have focused on the computation of a
single neuron with an input spike train composed of 100 seconds of excitatory
and inhibitory input spikes (average input rate 200 Hz) and 100 seconds of only
excitatory input spikes (average input rate 10 Hz). Both spike trains had a
standard deviation of 0.2 in the input rate and random weights (uniform
distribution) in the interval [0,0.8] nS for the excitatory inputs and [0,1] nS for
the inhibitory inputs.

In order to determine the accuracy of the results, we obtained the
“correct” output spike train using a time driven scheme with a very
short time step. The accuracy of each method was then estimated by
calculating the van Rossum distance (van Rossum, 2001) between the
obtained result and “correct” spike train.

In all methods except the pseudo-analytical approach, the accuracy
vs. computation time trade-off is managed with a single parameter
(time step in TD-FTS, error tolerance in TD-VTS, and table size in
EDLUT). We have chosen three values for these parameters that
facilitate the comparison between different methods, i.e., values that
lead to similar accuracy values. It is worth mentioning that all methods
except the time-driven with fixed time step require a computation time
that depends on the activity of the network.

Table 4.1 illustrates several points:

Simulation accuracy and speed - 63 -

- The computing time using tables (EDLUT) of very different
sizes is only slightly affected by the memory resource
management units.

- The event-driven method based on analytical expressions is
more than one order of magnitude slower than EDLUT (and has
greater error). This is caused by the complexity of the analytical
expression and the calculation of the firing time using the
membrane potential expression and applying the Newton-
Raphson method.

- The EDLUT method is about 50 times faster than the time-
driven schemes (with an input-cell average activity of 105 Hz).

4.3 Discussion and conclusions

A method for efficiently simulating large scale realistic neural
networks has been implemented. Since most information transmission
in these networks is accomplished by the so called action potentials,
events which are considerably sparse and well-localized in time, it has
been possible to dramatically reduce the computational load through
the application of the event-driven simulation schemes.

Some complex neuronal models require the neural simulators to
calculate large expressions, in order to update the neuronal state
variables between these events. This requirement slows down these
neural state updates, impeding the simulation of very active large
neural populations in real-time. Moreover, neurons of some of these
complex models produce firings (action potentials) some time after the
arrival of the presynaptic potentials. The calculation of this delay
involves the computation of expressions that sometimes are difficult to
solve analytically. To deal with these problems, our simulation method
makes use of precalculated lookup tables for both, fast update of the
neural variables and the prediction of the firing delays, allowing
efficient simulation of large populations with detailed neural models.

The proposed method efficiently splits the computational load into
two different stages:

- Off-line neuronal model characterization. This preliminary stage
requires a systematic numerical calculation of the cell model in
different conditions, to scan its dynamics. The goal of this stage

Simulation accuracy and speed - 64 -

is to build up the neural characterization tables. This can be done
by means of a large numerical calculation and the use of detailed
neural simulators such as NEURON (Hines and Carnevale,
1997) or GENESIS (Bower and Beeman, 1998). In principle,
this could be also done by compiling electrophysiological
recordings (as described).

- On-line event-driven simulation. The computation of the
simulation process jumps from one event to the next, updating
the neuron states according to pre-calculated neuron
characterization tables and efficiently managing newly produced
events.

Mattia & Del Giudice (2000) used a cell model whose dynamics are
defined by simple analytical expressions and Reutimann et al (2003)
extended this approach by including stochastic dynamic. They avoided
numerical methods by using a pre-calculated lookup tables. In this case,
provided that the reordering event structure is kept of reasonable size
(in those approaches large divergent connection trees may overload the
spike reordering structure), the computation speed of these schemes is
likely to be comparable to our approach, since the evaluation of a
simple analytical expression and a lookup table consultation consume
very little time.

Neural population synchronization - 65 -

5 Neural population
synchronization

In this chapter we prove the validity of the implemented electrical
coupling model by reproducing key network behaviour. We compare
the synchronization phenomena observed in neural networks simulated
using very detailed neural models to the result obtained using our
event-driven electrical synapse implementation.

5.1 Introduction

There are many examples of electrical coupling between inhibitory
neurons in the nervous system (Gibson et al., 1999; Long et al., 2004;
Mann-Metzer and Yarom, 1999). Furthermore, electrical coupling has
been proven to be an effective synchronization mechanism (Kopell et
al., 2004; Kepler et al., 1990; Traub et al., 2000; Draghun et al., 1998).

 Here we want to evaluate the simulation of electrical coupling
within an event-driven scheme. For this purpose, we simulate a neural
network of 100 cells receiving spikes at an average rate of 200 Hz with
a standard deviation of 0.1 through excitatory synapses. These input
spikes encode a constant bias and a random component. The cells are
interconnected with inhibitory synapses and electrical coupling with an
all-to-all topology. The network consists of 100 neurons with 100 input
excitatory synapses (one per cell), 10000 inhibitory synapses and
10000 electrical synapses. We have used neurons that intend to emulate
cerebellar interneurons (Ros et al., 2005), using the following
characterization parameters: membrane capacitance Cm=30 pF; time
constants of the excitatory and inhibitory synapses τexc=0.5ms and
τinh=2ms; resting conductance Grest=0.2 nS; excitatory and inhibitory
reversal potentials Eexc=0 V and Einh=-80 mV; resting potential Erest= -
70 mV; firing threshold Vth=-60 mV. This cell profile has been used to
extract the characterization tables through intense numerical calculation
using a version of the SRM model (Gerstner et al., 2002) before the
event-driven simulation. The simulation runs in real-time using
EDLUT (i.e. the computation time is shorter than the simulated time; 1
second of simulation takes about 0.4 seconds). Since no numerical
calculation is required during the event-driven simulation.

Neural population synchronization - 66 -

5.2 Results

In Figure 5.1 we show the obtained synchronization histograms
using inhibition and electrical coupling. These results show the key
phenomena obtained in detailed simulation (Kopell and Ermentrout,
2004) using a network of quadratic integrate-and-fire neurons (Latham
et al., 2000); when using electrical coupling and inhibitory synapses,
the synchronization was created quickly and multiple clusters of cells
were not been observed (see Figure 5.1 C).

Neural population synchronization - 67 -

Figure 5.1: Neural-population synchronization histograms.

A) Only electrical coupling of coefficient 0.02. B) Only inhibitory synapses
Ginh=1.65nS. C) Inhibitory synapses (Ginh=1.65 nS) and electrical coupling
(coefficient of 0.02), there is no neuron firing asynchronously almost since the
beginning. (The frequency is higher in A because there is no inhibition).

5.3 Discussion and Conclusions

We have presented simulation results which validate our electrical
coupling approach for this kind of experiments and proves event-driven
simulation scheme to be an efficient tool to study this kind of processes
or to apply them in neural networks running in real time.

Cerebellum model simulation - 68 -

6 Cerebellum model simulation

This chapter illustrates how EDLUT can be used in robot control. A
cerebellar architecture to control a real robotic arm in real time is
described and the corresponding robot movement accuracy results are
shown. The work reported in this chapter has been developed in the
framework of an intense collaboration with Sony Computer Science
Laboratory Paris, in particular with Olivier J.-M. D. Coenen and
Christian Boucheny who have designed the spiking network topology
and learning rules and implemented physics part of the robot controller.
The robotic arm and hardware interface have been built by Rodrigo
Agis in the context of the SpikeForce project.

6.1 Introduction

Although the cerebellum architecture has been studied for more than
one hundred years (Ramón y Cajal et al., 1995; Golgi, 1967), its
functional role is still an open topic. The cerebellum plays a major role
in coordinated and accurate movements (Schweighofer et al., 1998a,b;
Ito, 2001; Spoelstra et al., 2000; Arbib et al., 1995; Eskiizmirliler et al.,
2002). It is thought to be an essential computing tissue for our daily
manipulation tasks. Its regular topology has inspired many artificial
neural network models in the past decades (Kettner et al., 1997;
Schweighofer et al., 1998a; Medina et al., 1999) Furthermore, there are
many research groups modelling in detail its cells (D'Angelo et al.,
1995b; Bezzi et al., 2004b; Steuber et al., 2004) in order to elucidate
the specific computations that take place at each part of the cerebellum
architecture.

 In the robotic field there have been great advances (mainly in
industrial applications). But most of the industrial robots use relatively
stiff joints and high-gain close-loop control. They are able to perform
accurate trajectory-following adopting online close-loop error
correction schemes. This design becomes feasible due to the
outstanding processing speed of electronic circuits that are able to
calculate errors and deliver feedback correction signals on a
millisecond time scale. On the other hand, biological systems suffer
from delays in sensorimotor pathways up to several hundreds of
milliseconds. This makes it impossible to apply online close-loop error
correction methods without having predictor modules able to abstract

Cerebellum model simulation - 69 -

the kinematics and dynamic models of the platform. This becomes even
more difficult because biological systems are based on joints with
variable stiffness (agonist and antagonist muscle actuation) and low-
gain control schemes. This is important because the dynamic model of
the platform (for instance an arm-hand system) is likely to be
significantly modified when manipulating objects of different weights.
There are plenty of challenges in robotics such as the development of
accurate low-gain control schemes for robotic platforms of several
degrees of freedom (DOF) and non-stiff joints. The movement of stiff
joints highly facilitates control since it reduces (or even avoids) the
necessity of dynamic models of the whole system. On the other hand,
accurate control of stiff joints does not take advantage of the robot
dynamics, wasting energy and therefore reducing the autonomy of the
robot platform. Furthermore, robots controlled by these low-gain
control schemes can be safer for human interaction since lower forces
are applied to the robot and blocking the robot trajectory can result in a
less aggressive behaviour.

In this section, we try to emulate the learning technique followed by
biological systems to control low-gain, non-stiff robot platforms in the
presence of sensorimotor pathways with delays of hundreds of
milliseconds. More concretely, we study how a cerebellum model can
abstract dynamics models of the robot platform in order to facilitate
control by predicting and correcting errors in the motor space.

Fot this, we use a neural network modelling the cerebellum based on
integrate-and-fire spiking neurons with conductance-based synapses.
The neuron characteristics are derived from detailed models of the
different cerebellar neurons.

The main plasticity in the cerebellar model is at the parallel fiber to
Purkinje cell connections whose spike-time-dependent plasticity
(STDP) is driven by the inferior olive (IO) activity, which encodes an
error signal (using a novel probabilistic low-frequency model. See
section 6.5). We demonstrate the model for robot control in a target
position reaching task. We evaluate the model performance relative to
the dynamic model of the robot platform. Furthermore, we test how the
system learns in a non-destructive way to reach different target
positions (therefore abstracting a global dynamic model). To test the
system's ability to self-adapt to different dynamical models, we present
results in which the dynamics of the robotic platform changes
significantly (friction and load carrying).

Cerebellum model simulation - 70 -

6.2 Cerebellar model

We simulated the cerebellum spiking neural model with EDLUT
simulator (the event-driven simulator based on lookup tables described
before; (Ros et al., 2006)) This software is particularly suited for a
cerebellar model in which sparse activity is expected (Coenen et al.,
2001; Schweighofer et al., 2001) in the numerous neurons of the
granular layer (approximately 1011 granule cells (Kandel et al., 2000))
allowing real-time simulation of large-scale spiking neural networks.
The EDLUT environment facilitates a direct interface to real robot
platforms.

Lasting functional changes at a synaptic level can be driven by the
coincidence of multiple signals at a single synaptic site (Brown et al.,
1990). Long-term depression of the parallel fiber input to cerebellar
Purkinje cells is a form of synaptic plasticity that can last from hours to
days (Ito et al., 1982) and is thought to underlie several forms of
associative motor learning (Mauk et al., 1998).

In the cerebellar model that we present, long-term depression (LTD)
is induced by coincident activation of parallel fiber (PF) and climbing
fiber (CF) synaptic inputs (see section 6.5).

 Previous modelling of cerebellar involvement in learning movement
includes smooth pursuit eye movement learning of Kettner et al.
(Kettner et al., 1997). In that work, the cerebellar nuclei cells were not
implemented in the model, and analog units, not spiking neurons were
used. Schweighofer et al. (Schweighofer et al., 1998a) proposed a
model of the cerebellum focusing on the learning of the inverse
dynamics of a two-link six-muscle arm model. Parallel fiber-Purkinje
cell (PF-PC) LTD was biologically inspired, but long-term potentiation
(LTP) was not and implemented as a weights normalisation process.
Moreover, learning was performed over short trials only (less than 500
ms) and not continuously as in our contribution.

 A few cerebellar models for eyelid conditioning have used spiking
neurons (e.g. (Medina et al., 1999; HofstÄotter et al., 2002). Learning
was based on spikes coincidences between neurons, but none used the
same probabilistic low-frequency firing of the inferior olive in their
learning rules.

Cerebellum model simulation - 71 -

 We simulated the cerebellum spiking neural model (Boucheny et
al., 2005; Arnold., 2001; Ros et al., 2006; Huang et al., 1998) with
approximately 2100 units: 112 mossy fibers (MF), 2000 granule cells
(GR) with their axons as parallel fibers (PF), 5 Golgi cells (GC), 32
inferior olive (IO) climbing fibers (CB), 32 Purkinje cells (PC) and 16
deep cerebellar nuclei (DCN) cells.

 Mossy fibers are implemented as leaky integrate-and-fire neurons.
Their input current was determined by a radial basis function (RBF) of
one of the sensory variables (target position or velocity) (Figure 6.1).
The RBF centers were evenly distributed across the sensory
dimensions, and their variance were chosen to ensure small responses
overlap from consecutive mossy fibers.

Figure 6.1: Encoding of mossy fibers.

The translation from analog variable into spikes for driving the mossy fibers
uses overlapping radial basis functions (RBF). The example here makes
reference to encoded joint variables (see Figure 6.9).

The inferior olive (IO) neurons synapse onto the Purkinje cells and
contribute to drive the plasticity of PF-PC synapses. These neurons,
however, fire at very low rates (less than 10 Hz), which appears
problematic to capture the high-frequency information of the error
signal of the task being learned. This apparent difficulty may be solved
by their irregular firing (Kuroda et al., 2001; Schweighofer et al.,
2004), which we exploit by statistically sampling the entire range of the
error signal over multiple trials. This irregular firing was implemented
using a Poisson model for spike generation.

Cerebellum model simulation - 72 -

 Error correction is accomplished by changes in the activity of
Purkinje cells that in turn influence the activity of the deep cerebellar
nuclei cells (Purves et al., 2001), which afterwards is translated into
analog torque correction signals for the robot.

6.3 Neuron models

To simulate the spiking neurons of this cerebellar model, we use the
integrate-and-fire model with synaptic conductances described in the
corresponding previous section. Modifying the neuron model parameter
(Cm, τexc, τinh, grest, Eexc, Einh, Erest and Vth), different neuron types
(granule cell, Purkinje cell and Golgi cell) have been characterized
according to neurophysiological characterization studies (D'Angelo et
al., 1995a,b; Maex et al., 1998; Barbour, 1993; Solinas et al., 2003).
This neuron model is a modified version of the Spike-Response-Model
(SRM) (Gerstner et al., 2002) widely used in the literature (Eckhorn et
al., 1990; Schoenauer et al., 2002; Shaefer et al., 2002) to study, for
example, temporal coding issues (Eckhorn et al., 2004).

 In our model, the inferior olive cells transmit the error signal using
probabilistic low-rate spikes. Mossy fibers carry sensorimotor signals
encoded into rate coded spike trains (activity 0-100 Hz). And deep
cerebellar nuclei cells provide spike trains which encode corrective
motor torque signals.

6.4 Cerebellum model topology

The model reproduced the cerebellum's different functional and
topological features (Andersen et al., 1992; Kandel et al., 2000): sparse
coding at the parallel fibers (Coenen et al., 2001; Schweighofer et al.,
2001), converging topology into Purkinje cells, Purkinje cell receiving
a dedicated "teaching climbing fiber" from the inferior olive, inhibition
to the granule cells from collector Golgi cells, etc. (see Table 6.1 and
Figure 6.2)

Cell type Number Afferents from Efferents to

Granule 2000 4 mossy fibers
5 Golgi

32 Purkinje
Golgi 5 1000 granule 2000 granule

Cerebellum model simulation - 73 -

Purkinje 32
1500 granule

1 climbing fiber
4 DCN neurons

Table 6.1: Connectivity table of the cerebellar cells.

Figure 6.2: Cerebellum model diagram.

Inputs about the movement (desired arm state and target information) are sent
(upward arrow) to the two layers of mossy fibers (MF): distance to the target
and its absolute position in the experimental field (θtarg) and cartesian (dtarg) and
coordinates and desired positions (θ) and speeds (‘θ) of the shoulder (s) and
elbow (e) joints along the trajectory. This information is conveyed to the two
layers of granule cells (GR, 1000 neurons per layer), and to the deep cerebellar
nuclei cells (DCN). Purkinje cells (PC), DCN and inferior olive neurons (IO) are
divided into 4 functional arrays, guided from the cerebellar microzones
organisation, corresponding to the two commanded joints, in an agonist-
antagonist scheme. The 32 PC receive excitatory inputs from all the joints-
related GR (ascending axons that maintain the cells in a state of excitability) and
from all parallel fibers PF with a probability pPC-PF = 0.8, and a learning
connection from IO in a one-to-one scheme. In turn, the DCN receive two
inhibitory connections from PC of the same microzone. The teaching signal is
processed by the IO cells (downward arrow top). The DCN firing rates are
interpreted as predictive positive (+) and negative (-) torque corrections (τ) for
the shoulder (s) and (e) at the output of the cerebellum (downward arrow
bottom). The numbers in brackets indicate the number of cells per layer.

6.5 Cerebellar Learning Rules

We have implemented learning at the parallel fibers to the Purkinje
Cells connections (indicated by a ellipse in Figure 6.2) (Ito, 2001). The
parallel fibers bring in the sensorimotor information and the Purkinje
cells drive the cerebellum output through the deep-cerebellar-nuclei

Cerebellum model simulation - 74 -

cells. The weight adaptation is driven by the activity generated by the
inferior olive (IO), which encodes an error signal into a low frequency
probabilistic spike train (from 0 to 10 Hz, average 1 Hz) (Kuroda et al.,
2001; Schweighofer et al., 1998b).

 We have modelled the inferior olive cell responses with a
probabilistic Poisson process: given the error signal e(t) and a random
number η(t) between 0 and 1, the cell fired a spike if e(t) > η(t),
otherwise it remained silent (Boucheny et al., 2005). In this way, on
one hand, a single spike reported accurately timed information
regarding the instantaneous error; and on the other hand, the
probabilistic spike sampling of the error ensured that the whole error
region was accurately represented over trials with the cell firing at most
10 spikes per second. Hence, the error evolution is accurately sampled
even at low frequency. The histogram of the inferior olive output spikes
reproduces the error signal temporal trace; see Figure 6.3 for an
example. This firing behavior is similar to the ones obtained in
electrophysiological recordings (Kuroda et al., 2001).

Figure 6.3: Inferior-olive probabilistic encoding of the error.

A) example of the error to be encoded. B) probabilistic firing of an inferior olive
cell to the error in “A" (see text). C) mean firing rate of the cell averaged over 40
trials. Notice that the maximum firing rate is close to 10 Hz. The smooth curve
shows the normalized input current to the cell related to the error amplitude.
Notice how the cell never fires quite at the same moment relative to the error,
but encodes it nevertheless.

The long term potentiation (LTP) implemented at the parallel fiber
to Purkinje cell synapses was a non-associative weight increase
triggered by each granule cell spike (Eq. (6.1)). The long term

Cerebellum model simulation - 75 -

depression (LTD) was an associative weight decrease triggered by
spikes from the inferior olive (Eq. (6.2)). This model of LTD uses a
temporal kernel (Figure 6.4), which correlates each spike from the
inferior olive with the past activity of a granule cell (Lev-Ram et al.,
2003) and shows a peak at 100 milliseconds (Kettner et al., 1997;
Spoelstra et al., 2000; Raymond and Lisberger, 1998).

Figure 6.4: Spike-timing-dependent plasticity.

Kernel used for granule cell (GR) and Purkinje cell (PC) synaptic long-term
depression, corresponding to the solution of a second order differential system.
The kernel is convolved with the spike train of the afferent PF (all spikes emitted
for t < 0). This provides a measure of past PF activity setting the eligibility of the
synapse to depression when the inferior olive (IO) neuron afferent to the PC
emits a spike (t = 0).

LTP:)()(00 tt GRαδω =∆ Eq. (6.1)

LTD: () ()∫ ∞−
−−=∆∀ IOt

GRIOii dttttKtw δ)(, 0 Eq. (6.2)

The network maximizes learning (LTD) at synaptic sites in which
the input parallel fiber delayed activity is highly correlated with the
error signal from the inferior olive. Hence, this kernel produces a
predictive corrective output in the network that helps the control task in
the presence of significance transmission delays.

The teaching signal relies on the motor error, namely the
discrepancy between the desired state of the joints at time t and the

Cerebellum model simulation - 76 -

actual one. The error for each joint, respectively εs and εe, is computed
as the sum of the position and velocity errors, weighted by coefficients
Kp = 10 and Kd = 23 (same for each joint). The signals are delayed in
order to align them in time, as the desired command at time t is applied
at time t + δ1 and the joint state at time t + δ1 is sensed by the system at
time t + δ1 + δ2. Hence, the error signal for joint i at time t is given by:
ei(t) = Kp(θi,des(t- δ1- δ2)-θi(t- δ2)) + Kv(‘θi,des(t- δ1-δ2)-‘θi(t-δ2)).

 Physiologically, the time-matching of the desired and actual joint
states can be understood by the fact that the trajectory error would be
detected at the level of the spinal cord, through a direct drive from the
gamma motor neurons to the spinal cord (Contreras-Vidal et al., 1997;
Spoelstra et al., 2000).

 The error signal ε is used to compute the value of the input current
to each IO cell. Smoothing is performed using a sigmoid, and inhibition
of IO cells by DCN neurons is taken into account within a formal
scheme. The positive part of the error signal for joint i, [εi]

+ is related to
an error in the corresponding agonist muscle, and the negative part [εi]

-
to an error in the antagonist muscle. If we denote τ

+
i,c the corrective

torque command computed by the cerebellum for agonist muscle i at
time t-δ1-δ2, then the input current I+

i to IO cells within the microzone
i
+ is given by Eq. (6.3):

If [ei]
+ > 0 then)4

][
10exp(1

8.0
15.0

max,

+−+
+=

+

+
+

ci

i

i
e

I

τ

If ([ei]
- > 0 AND τ+

i,c > 0.2 τi,cmax) then 0=+
iI

else 15.0=+
iI

Eq. (6.3)

The three parts of the equations above correspond to the case when
the corresponding cerebellar output undershoots, overshoots or equals
the output required for adapted motor correction, respectively. The
second part of the equation is the one taking into account formally
DCN-IO inhibition and can interpreted as follows: if a non-negligible
correction was output to agonist muscle i (DCN neurons output)
whereas the movement required a positive correction for the antagonist
muscle (error signal), then the unwilled correction should be reduced
(inhibition of IO by DCN neurons depending on the opposite error
signal) as illustrated in Figure 6.5. The error currents are normalized by
εs,max = 1000 and εe,max = 600 for the shoulder and the elbow,
respectively.

Cerebellum model simulation - 77 -

Figure 6.5: Input current to inferior olivary cells.

Each olivary cell is related to the agonist muscle i and its firing is dependent on
the error signal for this muscle (see text). This reflects the influence of the deep
cerebellar nuclei feedback on the inferior olive together with an effector arm
system made of agonist and antagonist muscle pairs. The left side of the vertical
line is for an error on the antagonist muscle, whereas the right side is for the
agonist muscle. A) IO current for torque τ+

i,c < 0.2 τi,cmax. The IO current I+
i =

0.15 when εi < 0. B) IO current for torque τ+
i,c > 0.2 τi,cmax. The IO current I+

i = 0
when εi < 0.

6.6 Robot Platform

The robotic platform is a two-DOF arm (Figure 6.6 B). The two
joints were not stiff (compliant) and the motors applied low forces. The
platform allowed continuous measurements of the position of each
joint. A pen or a weight could be attached to the arm's ending to change
its dynamics.

Cerebellum model simulation - 78 -

Figure 6.6: Experimental robot platform.

A) Representation of the arm in simulation. Each white point represents a target
position (0-7) along a circle. B) Two degrees of freedom (DOF) robotic arm used
in the experiments. The motors have no gears and therefore are non-stiff low
torque motors with nonlinearities difficult to control.

Cerebellum model simulation - 79 -

The control system was simulated on computer. To relieve the
computer from interface computation and allow real-time
communication with the robot, an FPGA-based board contained
position acquisition modules and motor-driver controller circuits. The
controller modules translated the motor-torque commands from the
computer into continuous signals using pulse-width modulation
(PWM). The PWM signal was supplied to the motors by a current-
driver circuit (see Figure 6.7).

Figure 6.7: Complete hardware system.

EDLUT simulates the cerebellum on a PC which communicates through a
TCP/IP connection with the robot-interface software module which does the rest
of the processing (see Figure 6.9). In turn, the PC where the robot-interface
module is run is connected with an FPGA board which generates the signals
applied to the motors and transforms the position-sensor signals into coordinate
values. The FPGA board is connected to a custom-made interface board which
drives the motors and adapts signal voltage levels.

The software architecture is divided into two modules; EDLUT and
the robot-interface module (see Figure 6.8). These modules can be run
on the same computer or each one on one computer. This allows us to
share the computation load. In this experiment they were run on the
same computer.

Cerebellum model simulation - 80 -

Figure 6.8: Software architecture.

Both modules interchange spike packets each millisecond through a TCP/IP
socket.

6.7 Experimental Results

The spiking neurons of the cerebellar network are simulated using
the table-based event-driven simulation scheme (EDLUT) and the
plasticity for this model has also been developed (adopting an event-
driven scheme) to allow an efficient calculation which permits online
real-time simulation with learning.

The control system was first tested in simulations, then run on the
experimental robotic setup (Figure 6.6). Starting from a central
position, the robotic arm performs straight movements to reach one of
the different targets equally set on a circle (radius of 20 cm). The
movements were performed at high speed (T = 0.5 seconds for each
complete movement) to check the ability of the cerebellum to abstract
the robot platforms dynamics.

To interact in real-time, the robot platform communicated with the
EDLUT simulator every millisecond. At every time step the sensory
data (robot joints position) was translated into spike trains transmitted
through the mossy fibers. The cerebellar output spike trains were
translated into torque correction signals (outputs of the deep-cerebellar-
nuclei cells) and the error signal was transformed into a probabilistic
low frequency spike train (inferior olive cell probabilistic model).

Cerebellum model simulation - 81 -

 The simulations were run on a Pentium IV 2.8 GHz. There were
2100 neurons in the network for approximately 52 000 synaptic
connections. During one second of simulation, the cerebellar network
received an average of 395 spikes, delivered 405 output spikes, and
processed 935 801 events. Under these conditions the simulator ran in
real-time the full network and the input-output transformations.

 Considering the duration of motor execution (T = 0.5 s) relative to
the time delays in corticospinal loops (up to 300 ms), we made the
assumption that each reaching movement was performed in open-loop
(no high-level motor correction were applied while reaching the target).
Corrective commands to compensate for dynamic perturbations were
computed only by the cerebellar model.

 A movement was separated in two phases:

- Open-loop movement phase: A movement lasted Tmove = 500 ms.
The torque command applied to each articulation i was the sum
of the cerebellar correction (τi,c) and the ith torque (τi), computed
by a basic inverse dynamics model according to the desired
kinematic trajectory (Figure 6.9). These two commands were
sent to the limbs with a delay of δ1 = 50 ms.

- Post-movement phase: It was set to a duration of Tpost = 0.2 s. Its
goal was to stop the movement of the arm, independently of its
position relative to the target. The torque applied to each joint
corresponds to the non delayed output of a derivative controller
with a null-desired velocity: τi = Kvstopθi with Kvstop=10. The lack
of delay in such a command in a human arm control model can
be explained by using a different stopping method, consisting for
example in a high level co-contraction command of the
antagonist muscles controlling an articulation.

The architecture of the model for the generation of accurate fast arm
reaching movements is illustrated in Figure 6.9. A minimum jerk model
(Flash et al., 1985) was used to compute the desired smooth trajectory
of the arm end-point towards the target at (OX, OY). The desired
trajectory was expressed in Cartesian coordinates and transformed into
joint coordinates by the inverse kinematics module. To solve the
redundancy problem in the coordinates transformation, the robotic arm
position was set to always be in a biological plausible posture, e.g. that
the angle between the two links of the limb were to remain positive.

Cerebellum model simulation - 82 -

Figure 6.9: Diagram of the arm-movement control system.

The cerebellum acts as a predictive corrective module in the control loop. A
desired smooth trajectory toward the target was computed in Cartesian
coordinates and transformed into joint coordinates. These desired arm states
were used at each time step to compute a crude torque command and to update
the predictive corrective command of cerebellum. The cerebellum command
included information about the context of the movement. The two torques, crude
and corrective torques, were summed to control the arm movement with a delay
of δ1 = 50 ms. In turn, the error of the resulting trajectory was sensed at the level
of the limb and sent back to the system with a delay of δ2 = 50 ms. This error was
transformed to compute the cerebellum training signal by inferior olive neurons.

During the open-loop period of the movement, the torque commands
sent to the joints were the sum of the output of a crude inverse dynamic
controller and of the anticipative corrective cerebellar output. These
torques were sent to the limb with a time delay δ1 = 50 ms.

The error in the execution of movement was computed at the level
of the arm, and sent back to the system with a delay of δ2 = 50 ms. It
was mainly used to determine the teaching signal conveyed by the
inferior olive to the cerebellum to produce anticipative motor
corrections. The error signal was composed of an angular position error
and an angular velocity error for each articulation.

Finally, the cerebellar neural network received non delayed desired
trajectory and movement context, and its output participated to the
construction of the teaching signal with a delay of δ3 = 100 ms.

The inverse dynamics module was based on simplistic assumptions,
such as mass homogeneity along the limbs and friction factor to

Cerebellum model simulation - 83 -

compensate roughly for friction torques that reached 17 Ncm for the
shoulder motor and 3 Ncm for the elbow. Other sources of dynamical
perturbations, such as the forces exerted by the wires on the arm, were
negligible compared to friction.

 After defining an acceptable crude controller, we verified the
repeatability of the movements and therefore of the errors of the crude
controller. Indeed, the role of the cerebellum was to learn the
anticipative corrections required across repeated trials of the same task.
If the dynamics perturbations moving the arm to the desired paths
changed too much across different trials under the same context
(manipulating the same object), then no improvements could have been
expected for the proposed control/correction scheme.

 The model learned effectively and concurrently different target
trajectories (Figure 6.10). An example shows the movement in x-y
coordinates before and after learning (Figure 6.11). The cerebellum
corrections build up over trials to compensate for the movement errors
(Figure 6.12).

Cerebellum model simulation - 84 -

Cerebellum model simulation - 85 -

Figure 6.10: Target reaching experiments.

A) Trajectory followed by the arm's ending. B) Average distance error computed
over all trajectories when learning 1, 2, 3 or 4 different trajectories. C) Distance
error of the target No. 6 trajectory when learnt conjointly with 1,2, 3 or 4
different trajectories.

Cerebellum model simulation - 86 -

Figure 6.11: Target reaching example.

Desired and actual arm ending position along the x and y axes A) before learning
and B) after learning. Three trials (3 seconds) are shown. The curve part of the
trajectory shows the open-loop movement. The movements to reset the trials are
not shown; this explains the abrupt vertical lines.

Figure 6.12: Corrective torques applied by the cerebellum.

Cerebellar torque contributions to target reaching experiments over the first 300
trials. Cerebellar torque increases as the system learns A) at the elbow and B) at
the shoulder. Each trial lasted one second.

We also performed experiments where the dynamics of the arm was
change either by a load of 500 g added to the end of the two-joint arm
or by modifying the friction of the arm by inserting the end of the arm
into a sand pool (see Figure 6.13). The results of the cerebellum-driven
improved trajectories are show in Figure 6.14.

Cerebellum model simulation - 87 -

Figure 6.13: Arm in the sand-pool context.

The arm’s end is introduced into a sand pool to increase the friction during the
movements. Note that since the arm’s end displaces the sand on the pool in each
movement trial, the friction is modified between trials. This makes the learning
task more difficult.

Cerebellum model simulation - 88 -

Figure 6.14: Arm trayectory when learning in different contexts.

The cerebellum learns to compensate for the dynamics changes of the arm. A) A
0,5 Kg was added at the end of the robotic arm. B) Friction was increased by

Cerebellum model simulation - 89 -

inserting the end of the robotic arm into a sand pool. Notice how the robot
movements meant to be along the x-axis are actually along the y-axis before
learning.

The evolution of the error as the object/context was changed is
shown in Figure 6.15. The cerebellum network learned the new context
every time it was changed. It also appeared to adapt more rapidly to the
no-load condition over time, although a more detailed analysis is
needed to confirm this. Note that the load, no-load condition was not
explicitly encoded here, hence the system could not switch immediately
to the right conditions without an adaptation period first.

Figure 6.15: Temporal adaptation.

Error evolution as the task was changed from manipulating a 0.5 kg load to
manipulating no load.

These experimental results show that the control system with the
cerebellum model can learn to compensate for dynamics perturbations
caused by different contexts: friction or load changes that significantly
alter the robot arm inertial moments. We have shown how the spike-
time dependent plasticity (STDP) rule works as a temporal kernel filter
relating the activity from the inferior olive (error dependent) with the
sensorimotor inputs received through the granule cells. This scheme is
able to construct predictive dynamic corrections for fast reaching
movements. A residual average distance error can be noticed even after

Cerebellum model simulation - 90 -

the learning has stabilised. This error could be attributed to some
system limitations but also to the fact that we are dealing with a real
robot which responds differently over time. For instance, over trials, the
robot's motors increase considerably their temperature. This prevents
the cerebellar model from adapting completely to the robot response,
unless a richer and more complete sensorimotor context were made
available. However the goal of this work was not to focus on designing
a high performance control scheme but rather to evaluate an adaptive
and robust working hypothesis based on a specific physiologically-
relevant cerebellar network that runs and learns in real time. The
obtained performance fulfils this requirement although deeper studies
on complementary mechanisms will be studied in the future to evaluate
how the control strategy can take full advantage of further biologically
plausible features of the system.

6.8 Discussion

We have simulated a complete physiologically-relevant spiking
cerebellar model in real time, and evaluated its potential role in
generating predictive corrective actions towards accurate control in fast
robotic reaching movements.

Whereas with previous simulators many computing hours would
have been required to simulate a spiking cerebellar model learning to
correct trajectories, with the current simulator, learning takes place in
less than a real hour to achieve acceptable performance levels allowing
the real-time control of a robot.

 This performance is achieved even with the physiologically realistic
firing of the inferior olive restricted to less than 10 Hz. To the best of
our knowledge, this is the first time that such performance is obtained
in a complete action-perception loop using a real robot. This indeed
suggests that one of the tasks of the inferior olive is to sample non-
deterministically the input signals it receives to provide over time a
complete representation of that signal to plasticity mechanisms at the
Purkinje cells. Moreover, the results show that little destructive
interference occurred in learning the same task in different
sensorimotor contexts, namely different overall target trajectories.

 The robot arm we have used for the experiments has two non-stiff
joints controlled with low torque motors. In order to accurately control

Cerebellum model simulation - 91 -

this platform it is necessary to build a predictive dynamics model of the
arm. The cerebellum network essentially fulfils this purpose.

 Moreover, we implemented the delays in the sensorimotor pathways
to evaluate the predictive scheme tested in this work. We implemented
a STDP kernel filter that correlates the activity from the inferior olive
(encoding the error using a probabilistic model) with the sensorimotor
activity received through the parallel fibers. The correlation is done at
the parallel fibers to Purkinje cells synaptic connections.

 The experimental results show how the cerebellum-based system is
able to adapt dynamically to different contexts. Future work will test
sensorimotor encoding schemes to learn multiple models and context
switching mechanisms to choose optimal control action with minimal
delay and relearning.

Discussion and conclusions - 92 -

7 Discussion and conclusions

This chapter summarizes the main characteristics, advantages and
limitations of the presented simulation scheme. It also defines the
application context of EDLUT, briefly enumerates the main
contributions and proposes a future work.

7.1 Discussion

We have presented an event-driven network simulation scheme
based on pre-calculated neural characterization tables. The use of such
tables offers flexibility in the design of cell models while enabling
rapid simulations of large-scale networks. The main limitation of the
technique arises from the size of the tables for more complex neuronal
models.

The aim of our method is to enable simulation of neural structures of
reasonable size, based on cells whose characteristics cannot be
described by simple analytical expressions. This is achieved by
defining the neural dynamics using pre-calculated traces of their
internal variables.

The proposed scheme represents a simulation tool that is
intermediate between the very detailed simulators, such as NEURON
(Hines and Carnevale, 1997) or GENESIS (Bower and Beeman, 1998),
and the event-driven simulation schemes based on simple analytically-
described cell dynamics (Delorme et al 1999, Delorme and Thorpe
2003). The proposed scheme is able to capture cell dynamics from
detailed simulators and accelerate the simulation of large-scale neural
structures. The approach as implemented here allows the simulation of
8•104 neurons with up to 6•107 connections in real time with an average
firing rate of 10 Hz on a 1.8 GHz Pentium IV platform.

It is difficult to make a precise performance comparison between our
method and previous event-driven methods, since they are based on
different neuron models. Nevertheless, in chapter 4 we have evaluated
different computational schemes to illustrate the potential of our
approach.

The method has been applied to simulations containing one-
compartment cell models with exponential synaptic conductances (with

Discussion and conclusions - 93 -

different time constants) approximating excitatory AMPA receptor-
mediated and GABAergic inhibitory synaptic inputs. The inclusion of
new mechanisms, such as voltage-dependent channels is possible.
However it would require the inclusion of new neural variables and
thus new table dimensions. Although very complex models may
eventually require lookup tables that exceed current memory capacities,
we have shown how even a modest number of table dimensions can
suffice to represent quite realistic neuronal models. We have also
evaluated several tactics for compressing the tables in order to
accommodate more complex models. Furthermore the proposed table-
based methodology has been evaluated using the Hodgkin & Huxley
model (1952).

We have embedded spike-driven synaptic plasticity mechanisms in
the event-driven simulation scheme. For this purpose, we have
implemented learning rules approximated by exponential terms that can
be computed recursively using intermediate variables. Short-term
dynamics (Mattia & Del Guidice, 2000) are also easy to include in the
simulations. They are considered important in the support of internal
stimulus representation (Amit, 1995; Amit & Brunel, 1997a; Amit &
Brunel, 1997b) and learning.

Finally, we have used our method to simulate biologically-relevant
neural networks. When simulating population synchronization, we have
observed how the obtained results are equivalent to those used with
more complex neural models and slower simulation methods. We have
also simulated a complete spiking cerebellar model which effectively
learns to improve the trajectory of a robotic arm in real time and
different contexts.

In summary, we have implemented, optimized, and evaluated an
event-driven network simulation scheme based upon prior
characterization of all neuronal dynamics, allowing simulation of large
networks to proceed extremely rapidly by replacing all function
evaluations with table lookups. Although very complex neuronal
models would require unreasonably large lookup tables, we have
shown that careful optimization nevertheless permits quite rich cellular
models to be used.

Discussion and conclusions - 94 -

7.2 Main contributions

The presented work has required development of different tools,
evaluation platforms and methodologies. The main contributions can be
summarized as follows:

1. We have designed and implemented a novel even-driven
simulation scheme for spiking neural networks based on precalculated
lookup tables. This simulation scheme comprises stages of definition
and simulation: a) custom-designed neural models (whose dynamics
are modelled by differential equations) and translation of these neural
models into lookup tables (LUT) through numerical methods, sampling
the cell behaviour in response to different stimuli and initial conditions
and b) network simulation (the cell state is updated only when a event
occurs using the precalculated LUTs to avoid numerical integration
during this stage. This method allows an outstanding performance.

2. We have validated the accuracy of the simulation processing
scheme comparing simulation results of EDLUT with other ones using
computationally-intensive numerical procedures.

3. We have evaluated EDLUT performance and compared it with
previous event-driven and time-driven simulation schemes for spiking
neural networks. EDLUT achieves outstanding performance, dealing
with neural models comprising up to 7 independent state variables.

4. We have implemented specific detailed neural models in EDLUT:
a) Hodgkin-Huxley model (which required about 17MB for the cell
characterization tables) and b) a detailed granule cell model which
captured the main features of the granule cell model found in
electrophysiological recordings (which required about 19MB).

5. We have included an electrical coupling model in the simulation
engine by reproducing spikelets driven by events. We have also
validated this model by showing that the key phenomena obtained in
detailed simulation models are also obtained using our model.

6. We have built a cerebellum model to evaluate its potential role in
robot movement control. We have simulated learning driven by the
inferior olive response to the error signals. The cerebellum model with
more than 2000 cells was simulated in real time interacting with a real
robotic platform. The robot was handcrafted and interfaced with the

Discussion and conclusions - 95 -

cerebellum model to validate its role in accurate movements (as an
accurate correction engine). We have proven that it is possible to
conceive simulation software which is efficient enough for real control
applications and at the same time is able to deal with relatively
complex neural model to be used for studies of biological network
operation.

7.3 Future Work

The presented event-driven scheme can be used for multi-
compartment neuron models, although each compartment imposes a
requirement for additional (around one to three) dimensions in the
largest lookup table. There are two ways in which multi-compartment
neurons may be partially or approximately represented in this scheme.
After preliminary studies, using suitable sampling schemes in order to
achieve reasonable accuracy with a restricted table size, we can manage
lookup tables of reasonable accuracy with more than seven dimensions.
Therefore we can add two extra dimensions to enable two-compartment
simulations. Quite rich cellular behaviour can be supplied by this
extension. More concretely, we plan the addition of a second electrical
compartment containing an inhibitory conductance. This new
compartment will represent the soma of a neuron, while the original
compartment (containing both excitatory and inhibitory conductances)
will represent the dendrites. The somatic voltage and inhibitory
conductance require two additional dimensions in the lookup table.
With this model, it would be possible to separate somatic and dendritic
processing, as occurs in hippocampal and cortical pyramidal cells, and
implement the differential functions of somatic and dendritic inhibition
(Pouille and Scanziani, 2001; Pouille and Scanziani, 2004) (note that
most neurons do not receive excitation to the soma).

If individual dendrites can be active and have independent
computational functions (this is currently an open question), it may be
possible to approximate the dendrites and soma of a neuron as a kind of
two-layer network (Poirazi et al., 2003), in which dendrites are actually
represented in a manner similar to individual cells, with spikes that are
routed to the soma (another cell) in the standard manner.

Publication of results - 96 -

8 Publication of results

8.1 Journals

E. Ros, E. M. Ortigosa, R. Agís, R. Carrillo, M. Arnold. Real-time
computing platform for spiking neurons (RT-Spike). IEEE

Transactions on Neural Networks. Vol 17. p 1050-1063. July/2006

E. Ros, R. Carrillo, E. M. Ortigosa, B. Barbour, R. Agís, Event-Driven
Simulation Scheme for Spiking Neural Networks Using Lookup
Tables to Characterize Neuronal Dynamics, Neural Computation
2006 18: 2959-2993.

R. R. Carrillo, Eduardo Ros, B. Barbourb, C. Bouchenyc, O. Coenen,
Event-driven simulation of neural population synchronization
facilitated by electrical coupling, Biosystems Vol 87, Issues 2-3 Pag
275-280 (2007) Febrero 2007

R. Agís, J. Díaz, E. Ros, R. Carrillo, E. M. Ortigosa, Hardware Event-
driven Simulation Engine for Spiking Neural Networks,
International Journal of Electronics (2007) Vol 94, no 5 pag 469-
480. (ISSN (Print): 0020-7217, ISSN (Online): 1362-3060) S.C.I.
(2005): 0.213

J. Díaz, E. Ros, R. Carrillo y A. Prieto, Real-Time System for High-
Image Resolution Disparity Estimation, IEEE Trans. on Image

Processing, 2006, (ISSN: 1057-7149), (S.C.I. (2005): 2.428)

R.R. Carrillo, E. Ros, S. Tolu, T. Nieus, E. D'Angelo, Event-driven
simulation of cerebellar granule cells, Biosystems Vol: 94 Issue: 1-2
pp: 10-17 (2008).

R.R. Carrillo, E. Ros, C. Boucheny, O. J-M D Coenen, A real-time
spiking cerebellum model for learning robot control, Biosystems
Vol: 94 Issue: 1-2 pp: 18-27 (2008).

8.2 Congresses

Agís R., Carrillo R., Cañas A., del Pino B., Pelayo F.J., Entorno
hardware/software para experimentación basado en micro robots,
JCRA'2002: II Jornadas de computación reconfigurable y
aplicaciones,Almuñecar (Granada) 18-20 Septiembre del 2002, 261-
266 (ISBN: 84-699-9448-4)

Publication of results - 97 -

Agis R., Ros E., Carrillo R., Ortigosa E.M., Pelayo F.J., Prieto A.,
Implementación en FPGAs de una Plataforma de Simulación de
Neuronas de Pulsos, JCRA '2003: III Jornadas sobre Computación
Reconfigurable y Aplicaciones, Configuración Reconfigurable
FPGAs, pp.: 293-300, Madrid, 10-12 de septiembre de 2003 (ISBN:
84-600-9928-8)

Ortigosa E.M., Ortigosa P.M., Cañas A., Ros E., Carrillo R.R., Agis R.,
Implementación de Redes Neuronales con FPGAs para el
Reconocimiento del Habla, JCRA '2003: III Jornadas sobre
Computación Reconfigurable y Aplicaciones, Configuración
Reconfigurable FPGAs, pp.: 301-308. Madrid, 10-12 de septiembre
de 2003. (ISBN: 84-600-9928-8)

Eduardo Ros, Rodrigo Agís, Richard R. Carrillo, Eva M. Ortigosa,
Francisco J. Pelayo, Alberto Prieto, Post-synaptic Time-dependent
Conductances in Spiking Neurons: FPGA Implementation of a
Flexible Cell Model, 7th International Work-Conference on
Artificial and Natural Neural Networks, IWANN’2003: Lecture
Notes in Computer Science, vol.: 2686, pp.: 145 – 152, Springer
2003. Maó, Menorca, Spain, June 3-6, 2003. (ISBN: 3-540-40211-
X)

Eva M. Ortigosa, Antonio Cañas, Eduardo Ros, Richard R. Carrillo,
FPGA implementation of a Perceptron-Like Neural Network for
Embedded Applications, 7th International Work-Conference on
Artificial and Natural Neural Networks, IWAN'2003, Lecture Notes
in Computer Science, vol.: 2687, pp.: 1 – 8, Springer. Maó,
Menorca, Spain, June 3-6, 2003. (ISBN: 3-540-40211-X)

O.J.M. Coenen, C. Boucheny, M. Bezzi, D. Marchal, M.P. Arnold, E.
Ros, R. Carillo, E.M. Ortigosa, R. Agis, B. Barbour, A. Arleo, T.
Nieus, E. D'Angelo, Adaptive spiking cerebellar models and real-
time simulations, In: Society for Neuroscience Abstracts, No. 827.4,
San Diego, USA. 2004

Agís R, Ros E, Díaz J, Mota S, Carrillo R, Ortigosa E, Pelayo F, Prieto
A. Sistema de control basado en visión y propiacepción de robots
con FPGA, JCRA'2004: IV Jornadas sobre Computación
Reconfigurable y Aplicaciones, Configuración Reconfigurable
FPGAs, pp. 667-674. Barcelona 13-15 de Septiembre, 2004 (ISBN:
84-688-7667-4)

Antonio Martinez, Francisco Pelayo, Christian A. Morillas, Samuel
Romero, Richard R. Carrillo, Begoña del Pino, Generador

Publication of results - 98 -

automático de sistemas bioinspirados de visión en hardware
reconfigurable, JCRA '2004: IV Jornadas sobre Computación
Reconfigurable y Aplicaciones, Configuración Reconfigurable
FPGAs. pp 597-603. Barcelona 13-15 de Septiembre, 2004. (ISBN:
84-688-7667-4).

R. Agis, R. Carrillo, V. Moran, A.Gonzalez, C. Morillas, F. Pelayo and
J.L.Bernier, Monitoring a mobile robot using a web interface, III
International conference on Multimedia and ICTs in Education
(mICTE2005), pp. 1288-1293, Vol III. Caceres June 7-10th 2005.
(ISBN: 84-609-5994-5)

R. Carrillo, Eduardo Ros, Eva M Ortigosa, Boris Barbour and Rodrigo
Agis. Lookup Table Powered Neural Event-Driven Simulator, 8th
Internacional Work Conference on Artificial Neural Networks,
IWANN 2005, pp 168-175, Vilanova I la Geltrú, Barcelona, Spain,
June 8-10, 2005. (ISBN-13: 978-3-540-26208-4)

Eduardo Ros, Eva M. Ortigosa, Rodrigo Agis, Richard Carrillo,
Alberto Prieto and Mike Arnold. Spiking Neurons Computing
Platform. 8th Internacional Work Conference on Artificial Neural
Networks, IWANN 2005, pp 471-478. Vilanova I la Geltrú,
Barcelona, Spain, June 8-10, 2005. (ISBN-13: 978-3-540-26208-4)

C. Boucheny, R. Carrillo, E. Ros, O. J.-M. Coenen, Real-Time Spiking
Neural Network: An Adaptive Cerebellar Model. 8th Internacional
Work Conference on Artificial Neural Networks, IWANN 2005, pp
136-144. Vilanova I la Geltrú, Barcelona, Spain, June 8-10, 2005.
(ISBN-13: 978-3-540-26208-4)

Rodrigo Agís, Javier Díaz, Eduardo Ros, Richard Carrillo, Eva. M.
Ortigosa, Event-driven simulation engine for spiking neural
networks on a chip, International workshop on applied
reconfigurable computing (ARC2006) delft, the Netherlands, march
1-3, 2006. (Lecture Notes in Computer Science) Vol 3985. 36-45.

Bibliography - 99 -

Bibliography
Aho, A. V. Hopcroft, J. E. and Ullman, J. D. (1974). The design and

analysis of computer algorithms. Reading, MA, Addison-Wesley.

Albus, J.S., 1971. A theory of cerebellar function, Math. Biosci 10, 25-
61.

Amit, D. J. (1995). The Hebbian paradigm reintegrated: Local
reverberations as internal representations. Behavioural and Brain

Sciences, 18, 617-657.

Amit, D.J. and Brunel, N. (1997a). Model of global spontaneous
activity and local structured (learned) delay activity during delay
periods in cerebral cortex. Cerebral Cortex, 7, 237-252.

Amit, D.J. and Brunel, N. (1997b). Dynamics of a recurrent network of
spiking neurons before and following learning. Network, 8, 373-404.

Andersen, B. B., Korbo, L., Pakkenberg, B., A quantitative study of the
human cerebellum with unbiased stereological techniques. The

Journal of comparative Neurology, Vol 326 (4), 1992, pp: 549-560.

Arbib, M.A. Schweighofer, N.,, Thach, W.T., Modeling the
cerebellum: from adaptation to coordination. Motor Control and
Sensory-Motor Integration: Issue and Directions, D.J. Glencross and
J.P. Piek. Eds. Amsterdam, Elsevier, (1995) 1136.

Armano, S., Rossi, P., Taglietti, V., D'Angelo, E., 2000. Long-term
potentiation of intrinsic excitability at the mossy fiber granule cell
synapse of rat cerebellum. J Neurosci 15, 5208-5216.

Arnold, M., Feedback learning in the olivarycerebellar system, PhD
Thesis, The University of Sydney, 2001.

Barbour, B. Synaptic currents evoked in Purkinje cells by stimulating
individual granule cells. Neuron 11: 759-769, 1993

Bezzi, M., Nieus, T., Arleo, A., D'Angelo, E., Coenen O. J.-M. D.
(2004a) Information transfer at the mossy fiber granule cell synapse
of the cerebellum. 34th Annual Meeting, Society for Neuroscience,
San Diego, CA, USA.

Bezzi, M., Nieus, T., Arleo, A., D'Errico, A., D'Angelo E., Coenen, O.
J. -M. D. (2006) Quantitative characterization of information
transmission in a single neuron. The EPFL-Latsis Symposium
Dynamical principles for neuroscience and intelligent biomimetic
devices, Lausanne.

Bibliography - 100 -

Bezzi, M., Nieus, T., Coenen, O. J-M, D'Angelo, E. (2004b) An
integrate-and-fire model of a cerebellar granule cell.
Neurocomputing 58-60, 593-598.

Bi, G., and Poo, M. (1998). Synaptic modifications in cultured
hippocampal neurons: dependence on spike timing, synaptic
strength, and postsynaptic cell type. J. Neurosci. 18, 10464-10472.

Boucheny, C., Carrillo, R., Ros, E., Coenen, O. J-M D. (2005). Real-
Time spiking neural network : an adaptive cerebellar model, Lecture

Notes in Computer Science. 3512, 136-144.

Bower, J.M. and Beeman, B. (1998). The book of GENESIS. New
York. Springer Verlag.

Braitenberg, V. & Atwood R.P. (1958). Morphological observations on
the cerebellar cortex. J. Comp. Neurol. 109.1-33.

Brown, T. H., Kairiss, E. W., Keenan, C. L. Hebbian synapses:
biophysical mechanisms and algorithms. Annu. Rev. Neurosci. 13,
1990, 475-511.

Brunel, N. and Hakim, V. (1999). Fast global oscillations in networks
of integrate-and-fire neurons with low firing rates. Neural

Computation, 11. 1621-1671

Cartwright, J.H.E. and Piro, O. (1992). The dynamics of Runge-Kutta
methods, Int. J. Bifurcation and Chaos 2, 427-449.

Chez, C., 1991. The Cerebellum. In Principles of Neural Science (Third
Edition), Edited by Kandel, E., Schwartz, J.H. and Jessel. 626-645.

Chowdhury R.A. and Kaykobad M. (2001). Sorting using heap
structure. Proceedings of Int. Conf. on Comp. and Inf. Tech. Dhaka,
Bangladesh, 26-30.

Coenen, O. J.-M. D., Arnold, M. P., Sejnowski, T.J., Jabri, M.A., 2001.
Parallel fiber coding in the cerebellum for life-long learning.
Autonomous Robots 11(3), 291-297.

Coenen, O., Bezzi, M., Arleo, A., Nieus, T., D'Errico, A., D'Angelo, E.,
2007. Information theoretic quantification of neural transmission
following changes in release probability. Computational and

Systems Neuroscience (COSYNE 07), Salk Lake City, UTAH.

Conn, A.R., Gould, N.I.M. and Toint, P.L. (2000). Trust-Region
Methods. SIAM.

Bibliography - 101 -

Contreras-Vidal, J. L., Grossberg, S., Bullock, D., 1997. A neural
model of cerebellar learning for arm movement control: cortico-
spino-cerebellar dynamics. Learning and memory 3(6), 475-502.

Cormen, T. H., Lierson, C. E. and Rivest, R. L. (1990). Introduction to
algorithms. MIT Cambridge press, 140-152.

D’Angelo, E., Nieus, T., Maffei, A., Armano, S., Rossi, P., Taglietti,
V., Fontana, A., Naldi, G., 2001. Theta-frequency bursting and
resonance in cerebellar granule cells: Experimental Evidence and
Modelling of a slow K+-dependent mechanism. The Journal of

Neuroscience, 21(3), 759-770.

D'Angelo, E., De Filippi, G., Rossi, P., Taglietti, V., Synaptic
excitation of individual rat cerebellar granule cells in situ: evidence
for the role of NMDA receptors. J. Physiol. (Lond.) 482: 397413,
1995.

D'Angelo, E., Nieus, T., Bezzi, M., Arleo, A., Coenen, O. J.M.D.,
2005. Modeling Synaptic Transmission and Quantifying Information
Transfer in the Granular Layer of the Cerebellum. Lecture Notes in

Computer Science 3512, 107-114.

Delorme, A., Gautrais, J. van Rullen, R., Thorpe, S. (1999). SpikeNET:
A simulator for modelling large networks of integrate and fire
neurons. In J. M. Bower (Ed.), Computational Neuroscience: Trends

in research 1999, Neurocomputing, Vols. 26-27, 989-996.

Delorme, A., Thorpe, S. (2003). SpikeNET: An event-driven
simulation package for modelling large networks of spiking neurons.
Network: Computation in Neural Systems,14, 613-627.

Eckhorn, R., Gail, A. M., Bruns, A., Gabriel, A., Al-Shaikhli, B., Saam,
M., Different types of signal coupling in the visual cortex related to
neural mechanisms of associative processing and perception, IEEE

Transactions on Neural Networks, vol. 15(5), 2004, 1039-1052.

Eckhorn, R.; Bauer, R.; Jordan, W.; Brosh, M.; Kruse, W.; Munk, M.;
Reitböck, (1988). Coherent oscillations: A mechanism of feature
linking in the visual cortex? Biol. Cyber. 60, 121-130.

Eckhorn, R.; Reitböck, H.J.; Arndt, M.; Dicke, D. (1990). Feature
Linking via Synchronization among Distributed Assemblies:
Simulations of Results from Cat Visual Cortex. Neural

Computation, 2, 293-307.

Eskiizmirliler, S., Forestier, N., Tondu, B., Darlot, C., A model of the
cerebellar pathways applied to the control of a single-joint robot arm

Bibliography - 102 -

actuated by McKibben artificial muscles. Biological Cybernetics,
86, 2002 379-394.

Flash, T., Hogans, N., The Coordination of Arm Movements: An
Experimentally Confirmed Mathematical Model. The Journal of

Neuroscience Vol. 5, No 7. July, 1985, pp. 1688-1703.

Forti, L., Cesana, E., Mapelli, J., D'Angelo, E., 2006. Ionic echanisms
of autorhythmic firing in rat cerebellar Golgi cells. Journal of

Physiology 574(3), 711-729.

Gerstner, W., & Kistler, W. (2002). Spiking neuron models: Single
neurons, populations, plasticity. Cambridge: Cambridge University.

Gibson, J. R., Beierlein, M., Connors, B. W., 1999. Two electrically
coupled inhibitory networks. Nature 402(4), 75-79.

Golgi C., The neuron doctrine: theory and facts. In: Nobel Lectures:

Physiology or Medicine, [1906], 1967, 1901-1921, 189-217.
Amsterdam: Elsevier.

Graβmann, C., Anlauf, J. K.: Fast digital simulation of spiking neural
networks and neuromorphic integration with SPIKELAB.
International Journal of Neural Systems, 9(5). (1999) 473-478

Hebb, D.O. (1949). The organization of behaviour. Wiley, New York.

Hines, M.L. and Carnevale, N.T. (1997). The NEURON simulation
environment. Neural Computation, 9, 1179-1209.

Hodgkin, A.L. & Huxley, A.F. (1952). A quantitative description of
membrane current and its application to conduction and excitation in
nerve. Journal of Physiology, 117, 500-544.

Hofstötter, C., Mintz, M., Verschure, P. F. M. J., Oct. 2002. The
cerebellum in action: a simulation and robotics study. European

Journal of Neuroscience 16 (7), 1361-1376.

Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R.
Electrical synapses: a dynamic signaling system that shapes the
activity of neuronal networks. Biochim Biophys Acta. 2004 Mar
23;1662(1-2):113-37.

Horn, R. and Marty, A. (1988). Muscarinic activation of ionic currents
measured by a new whole-cell recording method. Journal of

General. Physiology. 92, 145-159.

Huang, J., Jabri, M. A., Coenen, O. J.-M. D., October 1998. Models of
basal ganglia and cerebellum for sensorimotor integration and

Bibliography - 103 -

predictive control in real-time robot navigation, Laboratory Report,
Sydney University.

Ito, M., Cerebellar long-term depression: characterization, signal
transduction, and functional roles. Physiological Reviews 81(3),
2001, 1143-1195.

Ito, M., Kano, M. Long-lasting depression of parallel fiber-Purkinje
cell transmission induced by conjunctive stimulation of parallel
fibers and climbing fibers in the cerebellar cortex. Neurosci. Lett.
33, 1982, 253-258.

Izhikevich, E. M., 2001. Resonate-and-fire neurons. Neural Networks
14, 883-894.

Kandel, E. R., Schwartz, J. H., Jessell, T. M., 2000. Principles of
Neural Science. McGraw-Hill Professional Publishing, New York.

Karlton, P.L., Fuller, S.H., Scroggs, R.E., Kaehler, E.B. (1976).
Performance of height-balanced trees. In Information retrieval and

language processing. Communications of ACM. 19 (1), 23-28.

Kepler, T.B., Marder, E., and Abbott, L.F., 1990. The effect of
electrical coupling on the frequency of model neuronal oscillators.
Science, 248, 83-85.

Kettner, R.E., Mahamud, S., Leung, H., Sittkoff, N., Houk, J.C.,
Peterson, B.W., Barto, A.G.,Prediction of complex two-dimensional
trajectories by a cerebellar model of smooth pursuit eye movement.
Journal of Neurophysiology 77(4), 1997, 2115-2130.

Koch, C., 1999. Biophysics of computation: information processing in
single neurons. New York, NY: Oxford University Press.

Kopell, N. and Ermentrout, B., 2004. Chemical and electrical synapses
perform complementary roles in the synchronization of
interneuronal networks. Proceedings of the National Academy of

Sciences of the United States of America. 101(43), 15482-15487.

Kuroda, S., Yamamoto, K., Miyamoto, H., Doya, K., Kawato, M.,
Statistical characteristics of climbing fiber spikes necessary for
efficient cerebellar learning. Biol. Cybern., 84, (3), 2001, 183-192.

Latham, P. E., Richmond , B.J., Nelson, P. G., Nirenberg, S. ,2000.
Intrinsic dynamics in neuronal networks. I. Theory. J. Neurophysiol.
83(2), 808-827.

Bibliography - 104 -

Lev-Ram, V., Mehta, S.B., Kleinfeld, D., Tsien, R.Y., Reversing
cerebellar long-term depression., Proceedings of the National

Academy of Sciences 100(26), 2003, 15989-15993.

Long M.A., Landisman C.E., Connors B.W., 2004. Small clusters of
electrically coupled neurons generate rhythmic in the thalamic
reticular nucleus. Journal of Neuroscience. 24(2),341-349.

Lytton, W.W. and Hines, M.L. (2005). Independent Variable Time-
Step Integration of Individual Neurons for Network Simulations.
Neural Computation, 17, 903-921.

Maex, R., De Schutter, E., Synchronization of Golgi and Granule Cell
Firing in a Detailed Network Model of the Cerebellar Granule Cell
Layer. The Journal of Neurophysiology Vol. 80 No. 5 November,
1998, 2521-2537.

Magistretti, J., Castelli, L., D'Angelo, E., 2006. Kinetic and functional
analysis of transient, persistent, and resurgent sodium currents in rat
cerebellar granule cells in situ. Journal of Physiology 573, 83-106.

Makino, T. (2003). A Discrete-Event Neural Network Simulator for
General Neuron Models. Neural Computing and Applications, 11,
210-223.

Mann-Metzer, P. and Yarom, Y., 1999. Electrotonic Coupling Interacts
with intrinsic properties to generate synchronized activity in
cerebellar networks of inhibitory interneurons. The Journal of

Neuroscience. 19(9), 3298-3306.

Mapelli, J., D'Angelo E., 2007. Synaptic inhibition determines the
spatial organization of long-term synaptic plasticity at the input
stage of the cerebellum. Journal of Neuroscience 27(6), 1285-1296.

Marr, D., 1969. A theory of the cerebellar cortex. Journal of

Physiology 202, 437-470.

Mattia, M., & Del Giudice, P. (2000). Efficient event-driven simulation
of large networks of spiking neurons and dynamical synapses.
Neural Computation, 12(10), 2305-2329.

Mauk, M. D., Garcia, K. S., Medina, J. F., Steele, P. M., Does
cerebellar LTD mediate motor learning? Toward a resolution
without a smoking gun. Neuron 20, 1998, 359-362.

Medina, J.F., Mauk, M.D., Simulations of cerebellar motor learning:
computational analysis of plasticity at the mossy fiber to deep

Bibliography - 105 -

nucleus synapse. The Journal of Neuroscience 19(16), 1999),
71407151.

Mercier, D., Séguier, R. (2002) Spiking neurons (stanns) in speech
recognition. In 3rd WSEAS Int. Conf. on Neural Networks and

Applications, February.

Mitchell, S.J., Silver, R.A. (2003). Shunting inhibition modulates
neuronal gain during synaptic excitation. Neuron, 38, 433–445.

Neyton, J., and Trautmann, A.. 1985. Single-channel currents of an
intercellular junction. Nature, 317, 331-335.

Nieus, T., Sola, E., Mapelli, J., Saftenku, E., Rossi, P., D'Angelo, E.,
2006. Regulation of repetitive neurotransmission and firing by
release probability at the input stage of cerebellum: experimental
observations and theoretical predictions on the role of LTP. Journal

of Neurophysiology 95, 686-699.

Nusser, Z., Cull-Candy, S., Farrant, M. (1997). Differences in synaptic
GABA(A) receptor number underlie variation in GABA mini
amplitude. Neuron, 19(3):697-709.

Philipona, D., Coenen, O. J.-M. D., 2004. Model of granular layer
encoding of the cerebellum. Neurocomputing 58-60, 575-580

Poirazi, P., Brannon, T., Mel, B.W. (2003). Pyramidal neuron as two-
layer neural network. Neuron. 37(6), 989-999.

Pouille, F., Scanziani, M. (2001). Enforcement of temporal fidelity in
pyramidal cells by somatic feed-forward inhibition. Science,
293(5532), 1159-1163.

Pouille, F., Scanziani, M. (2004). Routing of spike series by dynamic
circuits in the hippocampus. Nature, 429(6993), 717-723.

Prinz, A.A., Abbott, L.F., Marder, E. (2004). The dynamic clamp
comes of age. Trends Neurosci. 27, 218-24.

Pugh, W. (1990). Skip lists: A probabilistic alternative to balanced
trees. Communications of the ACM, 33(6), 668–676.

Purves, D., Augustine, G. J., Fitzpatrick, D., Katz, L. C., Lamantia, A.,
McNamara, J. O., Williams, S. M., Neuroscience (Second Edition),
Sinauer Associates, Inc., 2001.

Ramón y Cajal, S., Histology of the Nervous System of Man and
Vertebrates. N Swanson, LWSwanson (transl). Vols. 1, 2. New
York: Oxford Univ. Press. [1909], 1995.

Bibliography - 106 -

Raymond, J. L., Lisberger, S. G., Nov 1 1998. Neural learning rules for
the vestibulo-ocular reflex. Journal of Neuroscience 18 (21), 9112-
9129.

Reutimann, J., Giugliano, M., Fusi, S. (2003). Event-driven simulation
of spiking neurons with stochastic dynamics. Neural Computation,

15, 811-830.

Richardson, M., Brunel, N., Hakim, V., From subthreshold to firing-
rate resonance. Journal of Neurophysiology 89, 2538-2554.

Ros, E., Carrillo, R. R., Ortigosa, E. M., Barbour, B., Ags. R., 2006.
Event-Driven Simulation Scheme for Spiking Neural Networks
Using Lookup Tables to Characterize Neuronal Dynamics. Neural

Computation 18(12), 2959-2993.

Ros, E., Pelayo, F. J., Palomar, D., Rojas, I., Bernier, J. L. and Prieto,
A. (1999). Stimulus correlation and adaptive local motion detection
using spiking neurons, International Journal of Neural Systems 9(5),
485–490.

Rossi, D.J., Hamann, M. (1998). Spillover-mediated transmission at
inhibitory synapses promoted by high affinity alpha6 subunit
GABA(A) receptors and glomerular geometry. Neuron. 20(4), 783-
795.

Rossi, P., Mapelli, L., Roggeri, L., Gall, D., Kerchove d'Exaerde, A.,
Schiffmann, S. N., Taglietti, V., D'Angelo E., 2006. Long-lasting
inhibition of constitutive inward rectifier currents in cerebellar
granule cells by synaptic activation of GABAB receptors. European
Journal of Neuroscience 24(2), 419-432.

Schoenauer, T., Atasoy, S., Mehrtash, N.,, Klar, H., NeuroPipe-Chip: A
Digital Neuro-Processor for Spiking Neural Networks, IEEE Trans.

Neural Networks, vol. 13(1), 2002, 205-213.

Schweighofer, N., Arbib, A.A., Kawato, M., Role of the cerebellum in
reaching movements in humans. II. A neural model of the
intermediate cerebellum. European Journal Of Neuroscience 10,
1998, 95105.

Schweighofer, N., Doya, K., Fukai, H., Chiron, J.V., Furukawa, T.,
Kawato, M., Chaos may enhance information transmission in the
inferior olive. Proceedings of the National Academy of Sciences 101,
2004, 4655-4660.

Bibliography - 107 -

Schweighofer, N., Doya, K., Lay, F., 2001. Unsupervised learning of
granule cell sparse codes enhances cerebellar adaptive control.
Neuroscience 103 (1), 35-50.

Schweighofer, N., Spoelstra, J., Arbib, M. A., Kawato, M., Role of the
cerebellum in reaching movements in humans. II. A neural model of
the intermediate cerebellum. European Journal of Neuroscience 10
(1), 1998, 95-105.

Shaefer, M., Schoenauer, T., Wolff, C., Hartmann, G., Klar, H.,
Rueckert, U., Simulation of Spiking Neural Networks architectures
and implementations, Neurocomputing, vol. 48, 2002, 647-679.

Silver, R.A., Colquhoun D., Cull-Candy S.G., Edmonds B. (1996).
Deactivation and desensitization of non-NMDA receptors in patches
and the time course of EPSCs in rat cerebellar granule cells. J.

Physiol. 493(1), 167-173.

Smith, G. D., Cox, C.L., Sherman, S.M., Rinzel, J., 2000. Fourier
analysis of sinusoidally-driven thalamocortical relay neurons and a
minimal integrate-and-fire-or-burst model. Journal of

Neurophysiology 83(1), 588-610.

Solinas, S., Maex, R., De Schutter, E., Synchronization of Purkinje cell
pairs along the parallel fiber axis: a model, Neurocomputing 52-54,
2003, 97102.

Spoelstra, J., Schweighofer, N., Arbib, M.A., Cerebellar learning of
accurate predictive control for fast-reaching movements. Biological

Cybernetics 82, 2000, 321-333.

Stern, E.A., Kincaid, A.E., and Wilson, C.J. (1997). Spontaneous
subthreshold membrane potential fluctuations and action potential
variability of rat corticostriatal and striatal neurons in vivo. J.

Neurophysiol. 77, 1697-1715.

Steuber V., De Schutter, E., Jaeger, D. Passive models of neurons in the
deep cerebellar nuclei: the effect of reconstruction errors,
Neurocomputing 58-60, 2004, 563-568.

Tia S, Wang JF, Kotchabhakdi N, Vicini S. (1996). Developmental
changes of inhibitory synaptic currents in cerebellar granule
neurons: role of GABA(A) receptor alpha 6 subunit. J Neurosci.
16(11), 3630-3640.

Traub, R. D. and Bibbig, A., 2000. A model of high-frequency ripples
in the hippocampus based on synaptic coupling plus axon-axon gap

Bibliography - 108 -

junctions between pyramidal neurons. Journal of Neuroscience. 20,
2086-2093.

Van Rossum, M.C.W. (2001). A novel spike distance, Neural

Computation, 13, 751-763.

Van Rullen, R., Gautrais, J., Delorme, A., Thorpe, S.: Face processing
using one spike per neuron. BioSystems, 48. (1998) 229-239

Victor, J. D. and Purpura, K. P. (1996). Nature and precision of
temporal coding in visual cortex: a metric-space analysis, J.

Neurophysiol. 76, 1310–1326.

Victor, J. D. and Purpura, K. P. (1997). Metric-space analysis of spike
trains: theory, algorithms and application, Network: Computation in

Neural Systems, 8,127–164.

Watts, L. (1994). Event-driven simulation of networks of spiking
neurons. In J.D. Cowan, G. Tesauro, & J. Alspector (Eds.),
Advances in neural information processing systems, 6, 967-934. San
Mateo, CA: Morgan Kaufmann.

