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Introduccién, resumen y conclusiones

A lo largo de la historia del célculo de variaciones, se le ha dedicado un interés
especial a los problemas variacionales relacionados con el area. Entre estos, destacan
por su importancia el problema isoperimétrico y el problema de Plateau. El pro-
blema isoperimétrico consiste en encontrar las regiones con un volumen dado v con
el menor perimetro posible. En el problema de Plateau, buscamos las superficies (o
hipersuperficies) que minimizan el drea con borde prefijado. Estas cuestiones estén
muy relacionadas con el estudio de las superficies minimales y con curvatura media
constante. Para una introduccién a la geometria de superficies recomendamos las
monograffas de do Carmo [35] y de Montiel y Ros [66].

Estos problemas, en el espacio euclideo y, posteriormente, en variedades rieman-
nianas, han sido estudiados con técnicas de teoria geométrica de la medida, ecuaciones
en derivadas parciales, geometria diferencial y transporte 6ptimo, entre muchas otras.

En las 1dltimas decadas, los problemas variacionales relacionados con el funcional
area en variedades sub-riemannianas han sido objeto de un estudio intensivo desde
distintos puntos de vista. Se han estudiado desigualdades isoperimétricas, existencia
de regiones isoperimétricas, teoria geométrica de la medida, la estructura del conjunto
singular de hipersuperficies de clase C!, regularidad de los minimos, grafos minimales,
el problema de Bernstein, estabilidad de superficies con curvatura media constante,
y muchas otros.

En [71], la siguiente desigualdad isoperimétrica:

(0.1) 10| > C|Q|*/3

fue demostrada en el grupo de Heisenberg H! por Pansu. Aunque el exponente
es Optimo, la constante C' > 0 no lo es. En [71I] se conjeturé que las regiones
isoperimétricas en H' forman una familia de bolas topoldgicas que no son bolas
métricas. El borde de estas regiones, que llamaremos esferas de Pansu y denota-
remos por Sy, A > 0, estd caracterizado por la propiedad que cada S esta foliada por
geodésicas sub-riemannianas de curvatura constante A, [20, § 2.3]. Recientemente,
Chanillo y Yang [21] han generalizado la desigualdad a variedades pseudo-
hermiticas de dimensién tres, con torsién pseudo-hermitica nula. Para un resumen
bastante detallado de los ultimos avances sobre la desigualdad isoperimétrica éptima
en H', el lector interesado puede consultar la monografia de Capogna, Danielli, Pauls
y Tyson [20].

En geometria sub-riemanniana, fuera del caso compacto, el tinico resultado cono-
cido de existencia de regiones isoperimétricas fue dado por Leodardi y Rigot en grupos
de Carnot [58]. En su trabajo utilizaron de manera intensiva las propiedades del perfil
isoperimétrico en un grupo de Carnot G. Como las regiones isoperimétricas en un
grupo de Carnot G son invariantes por una familia uniparamétrica de dilataciones
intrinsecas, el perfil isoperimétrico I de G estd dado por Ig(v) = Cv?, donde C es
una constante positiva y ¢ € (0,1). En particular, la funcién Ig es estrictamente
céncava, una propiedad que desempena un papel fundamental en su demostracion.

1
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FIGURE 1. Una esfera de Pansu Sy en H!.
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Leonardi y Rigot ademéas han probado que los conjunto isoperimétricos son dominios

de isoperimetria en el caso particular del grupo de Heisenberg. Sin embargo, su resul-
tado no se puede aplicar a algunos grupos sub-riemannianos que no son de Carnot.

Un ejemplo es el grupo roto-traslacional, descrito en [20]. Algunos puntos cruciales

de la prueba de Leonardi y Rigot son analizados en [20] § 8.2].
Observamos que en variedades no compactas, la existencia de regiones isoperimétri
cas no es trivial. Ritoré [74, Thm. 2.16] observé la existencia de variedades riemannia-

nas completas no compactas en las cuales no existen regiones isoperimétricas para

ningin valor del volumen, como los planos de revoluciéon con curvatura de Gauss

estrictamente creciente.

La conjetura de Pansu no ha presentado avances hasta los anos '00, cuando fueron
probados dos casos particulares. En [81] Ritoré y Rosales demuestran que las regiones
encerradas por las esferas de Pansu son conjuntos isoperimétricos en H', entre todas
las regiones encerradas por superficies C2. En su articulo han obtenido una carac-
terizacion de las superficies estacionarias para el drea (con o sin restricciones sobre el
volumen). Concretamente, las lineas caracteristicas deben cortar a las lineas singu-
lares de forma ortogonal. Esta propiedad fue observada también por Cheng, Hwang
y Yang [26] en su trabajo sobre grafos estacionarios para el drea, y probada por
medio de la primera férmula de variacion del area sub-riemanniana y utilizando la es-
tructura local del conjunto singular, estudiada por Cheng, Hwang, Malchiodi y Yang
[25]. Esta condicién, junto con el andlisis de los campos de Jacobi sobre la superficie,
fue utilizada en [81] para clasificar las superficies orientadas, inmersas, compactas,
conexas y completas de clase C? estacionarias para el drea, que encierran un volumen

prefijado.
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En [64], Monti y Rickly han demostrado que el borde de una regién isoperimétrica
convexa, en H!, estd foliado por geodésicas sub-riemannianas. Esto implica que el
borde es una esfera de Pansu. Su prueba se basa en un resultado de regularidad de
tipo Sobolev para una clase de campos vectoriales con variacién acotada.

Otra linea de investigacion emergente en espacios sub-riemannianos estd rela-
cionada con problemas de teoria geométrica de la medida, como el estudio de con-
juntos de perimetro finito y superficies regulares desde un punto de vista intrinseco.
Estas teméticas han sido investigadas de modo particular en los grupos de Heisen-
berg H" y de Carnot G. En [41l Theorem 7.1], Franchi, Serapioni y Serra Cassano
han probado un teorema de estructura para conjuntos de perimetro localmente finito,
analogo al resultado euclideo:

THEOREM 0.1 (Estructura de conjuntos de Caccioppoli intrinsecos). Si E C H"
es un conjunto con H-perimetro localmente finito, entonces el borde reducido O E es
H-rectificable, es decir:

oo
OE=NU U N;,
i=1
donde ’H%ﬂ”H(N) = 0 y N; es un subconjunto compacto de una hipersuperficie H-
reqular S;.

En [413] Definition 6.1] los autores definen S una superficie H-regular si, para todo
p € S, existen una bola métrica B(p,r) y una funcién f € C{(B)(p,r), tales que:

SN B(p,r)={qeH": f(q) =0,Vuf(q) #0}.

Posteriormente, esta definicién ha sido generalizada a estructuras mas generales por
Franchi, Serapioni y Serra Cassano [42, 43] y Citti y Manfredini [29]. Observamos
que una superficie H-regular puede ser muy irregular desde el punto de vista euclideo.
Kirchheim y Serra Cassano han construido ejemplos de superficies H-regulares que
son fractales, [67].

Franchi, Serapioni y Serra Cassano han mostrado que una superficie H-regular
puede ser descrita de forma equivalente como un grafo intrinseco, [43] Theorem 3.27],
véase también [44]. Una regién S en H™ es un grafo intrinseco, sobre un dominio 2
dentro de un plano vertical, si las geodésicas sub-riemannianas de curvatura cero, que
salen desde Q de forma ortogonal, cortan a S en sélo un punto, [43, Definition 3.6].

Una caracterizacion alternativa de grafos intrinsecos es estudiada por Ambrosio,
Serra Cassano y Vittone [], Bigolin y Serra Cassano [12, 13] y Bigolin, Caravenna
y Serra Cassano [11]. Una funcién continua ¢ es una soluciéon de V?¢ = w, donde
w € C(,R?>"1) y Q es un dominio de un plano vertical, si y solo si ¢ induce un
grafo H-regular. V¢ denota al gradiente intrinseco en S y V¢ = w es una EDP no
lineal de primer orden, relacionada con el operador de Burgers. Monti y Vittone han
mostrado que un conjunto de perimetro finito, con el normal horizontal continuo, es
una superficie C;, [65].

Considerando a una superficie regular euclidea en H", definimos el conjunto sin-
gular como el conjunto de los puntos en los cuales el plano tangente coincide con la
distribucién horizontal, es decir:

Yo={peX:T,X=H,}

En un entorno de un punto singular, una superficie puede ser vista como un grafo
euclideo sobre el plano zy. Observamos que una superficie de clase C*! con conjunto
singular no vacio, no es H-regular. Por otra parte, esto puede no ser verdad para
superficies de clase C1®. Se puede comprobar que el grafo intrinseco de f(y,t) := [t|*
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es H-regular por «a €]1/2, 1[, [4, Corollary 5.11], aunque el plano tangente euclideo en
el origen coincide con la distribucién horizontal. Esta superficie es de clase C1:22~1,

Las dimensiénes de Hausdorf euclidea e intrinseca de % fueron estudiadas por
Balogh [5], y también por Derridj [34] y Cheng, Hwang y Yang [26]. Resumimos el
siguiente resultado de Balogh:

THEOREM 0.2.

(i) Si ¥ es una hipersuperficie reqular de clase C' en R*"*1 entonces Hﬁ”“(Eo) =
0;
(ii) 993 es una hipersuperficie reqular de clase C*ten R®*" 1 entonces dimp(Xo) <
2n y dimg(So) < 2n;
(ili) Si ¥ es una hipersuperficie reqular de clase C?, entonces dimg(Xo) < n y
dimp (o) < n;
(iv) Para todos a > 0 ewiste X, hipersuperficie regqular de clase C%', tal que
dimp((Za)o) = 2n — «;
(v) Eziste ¥ de clase [ CY® tal que HE(X) < 00 y HE(Zg) > 0.
0<a<1
Cheng, Hwang, Malchiodi e Yang han encontrado una caracterizacién mas geomé-
trica de la estructura del conjunto singular de superficies de clase C? en H*, [25]:

PROPOSITION 0.3. Sea ¥ una superficie de clase C? y sea p un punto singular.
Entonces

(i) o p es un punto singular aislado;

(ii) o p estd contenido en una curva singular de clase C*. En este caso las curvas
caracteristicas encuentran las singulares con el mismo dngulo de incidencia
y reflexion, cuando X tenga curvatura media acotada.

Recientemente, en |24}, 27], han probado ademés:

PROPOSITION 0.4. Sea ¥ una superficie de clase C' en H'. Asumimos que ¥
es una solucion débil de la ecuacion de las superficies minimales. Entonces, tenemos
que
(i) para todosp € ¥—X, existe una Unica curva caracteristica y una unica curva
“transversa”. Ademds sus proyecciones sobre el plano xy son curvas de clase
02 ;

(ii) el conjunto singular estd formado por curvas y el conjunto de los puntos
singulares no degenerado por curvas de clase C;

(iii) dos curvas caracteristicas que se encuentran en un punto singular no degene-
rado p forman el mismo dngulo con la tangente de la curva singular en p.

Observamos que han generalizado la Proposition[0.4]a 3-variedades pseudo-hermi-
tianas, [24] § 8].

Bigolin y Vittone han mostrado que, en general, no existe unicidad de las curvas
caracteristicas que pasan por un punto de una superficie H-regular, [14].

Los resultados sobre la estructura de una superficie cerca de ¥y implican conse-
cuencias muy fuertes en la clasificacién de las superficies estacionarias para el area,
puesto que el comportamiento de ¥ en un entorno de ¥y es bastante rigido. Por
ejemplo, este tipo de resultados fueron utilizados de manera muy fuerte por Ritoré
y Rosales en [81], y se utilizardn en la Seccién de esta tesis, donde clasificamos
las superficies estacionarias con conjunto singular vacio en el grupo roto-traslacional

RT, Lema[2.54 y Lema [2.55
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Sea ¥ una superficie completa y estacionaria de clase C2, con con-
junto singular no wvacio. FEntonces X es el helicoide que gira a la
derecha o un plano de la forma {(z,y,0) € RT : ax + by + ¢ =
0,a,b € R,c €S}

Sobre la regularidad de los minimizantes, la situacién es diferente con respecto
al caso riemanniano. M4ds en detalle, Cheng, Hwang e Yang [26] y Ritoré [76] han
construido ejemplos de grafos Lipschitz sobre el plano xy, que son minimizantes para
el drea. Por otra parte, estos ejemplos no son grafos H-regulares. El tinico resultado de
regularidad para grafos intrinsecos es debido a Capogna, Citti y Manfredini, [17], 18]:

THEOREM 0.5. Sea ¥ un grafo intrinseco Lipschitz sobre un plano vertical en H'.
Sea ademds X limite de grafos minimales riemannianos. Entonces ¥ es de clase C1,
0 < a<1, ylas curvas caracteristicas son de clase C'°.

THEOREM 0.6. Sea X un grafo intrinseco Lipschitz sobre un plano vertical en H™.
Sea ademds X limite de grafos minimales riemannianos. Entonces % es de clase C*°.

Observamos que el Teorema [0.5| es éptimo y ha sido recientemente generalizado
a grupos de Lie tridimensionales por Barbieri y Citti, [8].

Por lo que respecta a la existencia de grafos minimizantes sobre un dominio €2,
con borde prefijado, Serra Cassano y Vittone han probado existencia para grafos sobre
el plano xy, con datos en el borde en L'(9) y 92 Lipschitz, [85]. Ademas probaron
que estos minimizantes son localmente acotados y que un grafo sobre el plano xy es
siempre HZ'-rectificable en H". Resultados andlogos pueden encontrarse en Cheng,
Hwang e Yang [26] y Cheng y Hwang [23]. En [85] se demuestra ademds la existencia
de grafos intrinsecos sobre un dominio €2 de un plano vertical en H", con dato al borde
fijado. En este caso, si suponemos que la funcién que define el grafo estd en LZQO”C+1 (),
demuestran que es también localmente acotada.

Otro problema muy conocido en analisis geométrico es el problema de Bernstein.
En R”, consiste en clasificar los grafos minimales enteros. En R"™ las soluciones son
minimizantes para el area, por un argumento estandar de calibracién. Por otra parte,
en H", Danielli, Garofalo, Nhieu y Pauls han probado que existen grafos enteros,
horizontales y minimales que no son estables, [30, B1l, B2]. De cualquier modo, las
nicas superficies orientadas, inmersas, completas y estables en H' son los planos
verticales. Casos particulares han sido demostrados por Barone-Adesi, Serra Cassano
y Vittone [9] y Danielli, Garofalo, Nhieu and Pauls [33].El caso general ha sido
probado en [55], por Hurtado, Ritoré y Rosales. En H", para n > 5, Barone Adesi,
Serra Cassano y Vittone [9] han dado ejemplos de grafos H-regulares minimizantes,
que no son planos horizontales. El problema general en la clase de las superficies
H-regulares esta todavia abierto.

Notamos que en [55] Hurtado, Ritoré y Rosales clasifican también las superficies
inmersas, orientadas, completas y estables de clase C? en H!, con conjunto singular
no vacio: la tnica es el paraboloide hiperbdlico.

La herramienta fundamental es la segunda férmula de variacion del area sub-
riemanniana para superficies de clase C? con conjunto singular no vacio. Mientras
que es sencillo mover el conjunto singular en la primera férmula de variacion del
area, mover Y en la segunda variacién es mucho mas complicado. Esencialmente, no
podemos derivar bajo el signo de integral, puesto que la segunda derivada de |Ng| es
no acotada cerca de ¥g. La tinica posibilidad es que nuestra variacién esta constituida
por superficies minimales en un entorno de ¥, por variaciones generales en ¥ — X,



6 INTRODUCCION, RESUMEN Y CONCLUSIONES

y, por medio de una particién de la unidad sobre las curvas caracteristicas, unir las
dos variaciones.

El problema de tipo Bernstein ha sido generalizado por Rosales en [82], para
superficies C? completas, orientadas, horizontales, estal)/les con curvatura media cons-
tante inmersas en los espacios forma sasakianos S' y SL(2,R).

En esta tesis estudiamos problemas relacionados con superficies estacionarias para
el area en variedades sub-riemannianas de contacto. Siguiendo la monografia de Blair
[15], una variedad de contacto es una variedad M?"*1 de clase C* y dimensién impar,
tal que existe una 1-forma w con dw no degenerada restringida a H := ker(w). Como:

dw(X,Y) = X (w(Y)) = Y(w(X)) - w([X,Y]),

la distribucidn horizontal H := ker(w) es completamente no integrable. Un ejemplo
muy conocido de variedad de contacto es el espacio euclideo R?"*! con la forma de
contacto estandar:

n
(0.2) wo = dt + Z(xzdyl — yidxz;).
i=1

Una variedad sub-riemanniana de contacto es una variedad de contacto con una
métrica definida positiva g3 sobre H.

Una clase muy estudiada en geometria de contacto es la de las variedades rie-
mannianas de contacto, véanse la monografia de Blair [I5] y Tanno [90]. Dada una
variedad de contacto, se puede demostrar la existencia de una métrica riemanniana g
y de un tensor J de tipo (1,1) tales que

0.3)  g(T,X)=w(X), 29(X,J(Y))=dw(X,Y), J*(X)=-X+w(X)T.

La estructura compuesta por (M,w, g, J) se llama variedad riemanniana de contacto.
La clase de las variedades sub-riemannianas de contacto es diferente de esta iltima.
Recordamos que, en nuestra definicién, la métrica gy estd dada, y puede ser extendida
a una métrica riemanniana g en T M. por otra parte, en general no existe un tensor J
de tipo (1,1) que satisfaga todas las condiciones en . Obsérvese que la segunda
condicién en define J en H de manera univoca, pero este J no satisface en
general la tercera condicién en , como se puede facilmente ver tomando (R?,wy)
con una adecuada métrica definida positiva sobre ker(wy).

En el Capitulo [I] probamos un resultado de existencia de regiones isoperimétricas
en ciertas variedades sub-riemaniannas de contacto, donde el cociente por el grupo de
las isométrias de contacto, los difeomorfismos que preservan la estructura de contacto
y la métrica sub-riemanniana, es compacto, Teorema [1.26] FEste es el andlogo al
resultado en el caso riemanniano probado por Morgan [67, [68].

En la demostracién del Teorema seguimos la idea de Morgan: consideramos
una succesién minimizante de conjuntos de volumen v cuyos perimetros aproximan
el infimo de los perimetros de todos los conjuntos de volumen v. Si esta succesion
sub-converge, sin perder una parte del volumen inicial, la semicontinuidad inferior del
perimetro implica que el conjunto limite es una regién isoperimétrica con volumen v.
Si una porcién del volumen se ha perdido, la Proposicién [1.24]implica que la succesién
minimizante puede ser dividida en una parte convergente y otra divergente, esta
ultima compuesta por conjuntos de volumen uniformemente positivo, véanse Ritoré
[74, [75] y Ritoré y Rosales [79], para el caso riemanniano. La parte convergente tiene
como limite una regién isoperimétrica para su volumen, y es acotada por el Lema|[I.23]
Ahora podemos trasladar de forma conveniente la parte divergente para recobrar una
porcién del volumen perdido. Un punto importante es que siempre podemos recobrar
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una fraccién fija del volumen, debido al Lema [I.27] véase también Leonardi y Rigot
[68, Lemma 4.1].

A lo largo de la demostracién del Teoremal[L.26)surgen dos problemas importantes.
Hemos mostrado en el Lema[I.23|1a acotacién de las regiones isoperimétricas, y un re-
sultado de estructura para succesiones minimizantes en la Proposicién[1.24, Un punto
clave para demostrar la acotacion es el Lema de Deformacién [:22] donde agrandamos
un conjunto dado de perimetro finito proporcionando una variaciéon de perimetro con-
trolada por un multiplo del volumen anadido. Esta es una observaciéon muy 1til de
Almgren [, V1.2(3)], [67, Lemma 13.5]. El Lema de Deformacién es el tinico punto
donde utilizamos de manera determinante que nuestra variedad sub-riemanniana es
de contacto, para construir una foliacién por medio de hiperfuperficies con curvatura
media uniformemente acotada. Nuestra prueba del Lema de Deformacién no parece
generalizarse de forma sencilla a variedades sub-riemannianas mas generales. El re-
sultado de estructura de sucesiones minimizantes aparece por primera vez, aunque
era conocido por expertos en teoria geométrica de la medida, en Ritoré [74] para
superficies riemannianas, y en Ritoré y Rosales [79] para variedades riemannianas de
dimensién arbitraria. En ciertos casos, la Proposicién [[.24] asegura una demostracion
directa de la existencia de regiones isoperimétricas.

En el Capitulo[2] probamos una condicién necesaria para que una superficie mini-
mal C?, con conjunto singular vacio, sea estable, en una clase muy amplia de varie-
dades pseudo-hermitianas, que incluyen los grupos de Lie unimodulares, Proposicion

2.8

Sea ¥ una superficie C? completa y orientable, con conjunto singu-
lar vacio, inmersa en una variedad pseudo-hermitiana (M, H, gx, J).
Supongamos que g(R(T, Z) vy, Z) — Z(g(7(Z),vn)) = 0 en & y que
la cantidad W — c19(7(Z),vh) es constante a lo largo de las curvas
caracteristicas. Asumamos ademds que las curvas caracteristicas en
3 son todas cerradas o no cerradas. Si X es una superficie min-
imal estable, entonces W — ¢c19(7(Z),vp,) < 0 sobre X.. Ademds, si
W —c19(7(Z2),vn) = 0 entonces ¥ es una superficie estable y vertical.

Esta clase es importante, porque Perrone [73] ha demostrado que las variedades
riemannianas de contacto simplemente conexas, de dimensién tres, homogéneas segin
Bootby y Wang, [16] (existe un grupo de Lie simplemente conexo que actia de manera
transitiva como grupo de los difeomorfismos de contacto), son grupos de Lie. La
condiciéon que encontramos involucra la curvatura escalar de Webster W y la torsién
pseudo-hermitica 7 de la variedad, que son invariantes pseudo-hermiticos.

Esta caracterizacién ha sido obtenida por medio del estudio de un operador de
estabilidad, que ha sido construido a partir de la segunda férmula de variacién del
area sub-riemanniana. En la Seccién [2.7] construimos otro operador de estabilidad
que tiene en cuenta la parte singular de la superficie. Con estas dos herramientas,
podemos clasificar las superficies completas y estables en el grupo de los movimientos
rigidos del plano euclideo RT, Teorema [2.61}

Sea ¥ una superficie C? orientada, completa y estable inmersa en
RT. Entonces
1. si X es una superficie no singular, entonces es un plano vertical;
2. si X es una superficie con conjunto singular no vacio, entonces
es el helicoide que gira a la derecha.
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El grupo RT es interesante por dos razones. Desde el punto de vista geométrico es
una de las variedades pseudo-hermiticas con torsién no nula més simples. Ademas es
un modelo para la corteza visual del ojo humano que desempena un papel importante
en la teoria de la reconstrucciéon de imagenes, como ha sido observado por Citti y
Sarti [28] y Citti, Sarti y Petitot [84]. Fijando una curva I', podemos reconstruir
una imagen resolviendo un problema de Plateau. Esto es equivalente a encontrar una
superficie minimal estable ¥ cuyo borde sea T, es decir ¥ tal que A'(2)(0) = 0y
A"(%2)(0) > 0, para todas las variaciones que fijan 9% = T.

El objetivo principal del Capitulo [3| es generalizar las féormulas de variacién del
area sub-riemanniana a variedades sub-riemannianas de contacto de dimensién arbi-
traria.

Decimos que una hipersuperficie C'! es de clase C? si X es el conjunto de nivel de
una funcién que admite dos derivadas horizontales continuas. Notamos que C3 C CEL,
porque no pedimos que Xy sea vacio. Probamos que, en una hipersuperficie C’,%, la
medida de Hausdorff euclidea (n + 3)-dimensional de ¥ es nula, Teorema Esta
estimacion es bastante sorprendente, si se compara con el Teoremal[0.2] Ademds, como
nuestra estimacién no es muy sofisticada, creemos que se verifica H'5' (Xo) = 0 bajo
las hipotesis del Teorema En nuestra prueba simplemente observamos que g
estd contenido en una superficie H-regular de codimensién n y estimamos 7—[%+3(S ).

Utilizando el Teorema |3.3] para n > 4, obtenemos una primera variacién general
del area, que mueve el conjunto singular. Como X estd contenida en una unién finita
de bolas euclideas (2n — 1)-dimensionales, podemos construir una familia oportuna de
funciones “cut-off” ¢, € > 0. Como |V¢.| esté controlado por € y las funciones ¢, se
anulan en el conjunto singular, tomando limite cuando ¢ — 0 obtenemos la férmula
general.

Concluimos probando la segunda férmula de variacién para hipersuperficies C?
con conjunto singular vacio. Movemos la hipersuperficie por medio de un grupo
uniparamétrico de difeomorfismos inducido por un campo vectorial arbitrario U.
Mostramos que, despejando U = Uy, + U}, donde Uy, € TENH y Ui, € (TS NH) L,
sélo la parte ortogonal intrinseca aparece en la férmula. El resultado andlogo rie-
manniano es muy conocido, aunque, una demostracién rigurosa se conoce sélo para
hipersuperficies de clase C3.

Por dltimo, observamos que, para una mayor comodidad del lector, los tres
capitulos son autocontenidos e independientes. Notamos ademas que corresponden a
las referencias bibliogréficas [47), 45, [46].



Introduction, abstract and conclusions

In the history of the Calculus of Variations, a special interest has been devoted
to variational problems related to the area functional. Among these ones, the Isoperi-
metric problem and Plateau’s problem stand out and have received a special atten-
tion. The isoperimetric problem consists on finding the regions of volume v with
the smallest perimeter. In Plateau’s problem, we try to understand which surfaces
(or hypersurfaces) with a given fixed boundary minimize area. These two questions
are strongly related to the study of minimal surfaces and constant mean curvature
surfaces. For a beginners’ introduction to the geometry of surfaces we suggest the
monographs by do Carmo [35] and Montiel and Ros [66].

These topics, in the Euclidean space, and consequently in Riemannian manifolds,
have been studied with techniques of Geometric Measure Theory, Partial Differential
Equations, Differential Geometry, Optimal Transport, etc...

In the last decades, an intensive work has been done on variational problems
related to the area functional in sub-Riemannian manifolds, covering many aspects
such as isoperimetric inequalities, existence of isoperimetric regions, geometric mea-
sure theory, structure of the singular set of C' hypersurfaces, regularity of minimizers,
minimizing graphs, the Bernstein problem, stability of constant mean curvature sur-
faces, and many others.

In [71], the following isoperimetric inequality

(0.4) 10| > C|Q|*/3

was proven in the Heisenberg group H' by Pansu, while the exponent is sharp, the
constant C' > 0 is not. Also in [T1], it was conjectured the the isoperimetric regions in
H! were a family of topological balls that are not metric balls. The boundary of these
regions, that will be called Pansu’s spheres and denoted by Sy, A > 0, is character-
ized by the property that each Sy is ruled by sub-Riemannian geodesics of constant
curvature A, [20, § 2.3]. Recently, Chanillo and Yang, [21], have generalized the in-
equality to pseudo-hermitian three-manifolds with vanishing pseudo-hermitian
torsion. For a quite complete account of recent development concerning the optimal
isoperimetric inequality in H', the interest reader should consult the monograph by
Capogna, Danielli, Pauls and Tyson [20].

In sub-Riemannian Geometry, apart from the compact case, the only known exis-
tence result of isoperimetric regions, has been given by Leonardi and Rigot for Carnot
groups [58]. In their paper they made an extensive use of the properties of the isoperi-
metric profile in a Carnot group G. Since isoperimetric regions in G are invariant by
intrinsic dilations, the isoperimetric profile Ig of G is given by Ig(v) = Cv?, where
C' is a positive constant and ¢ € (0,1). In particular, the function Ig is strictly con-
cave, a property that plays a fundamental role in their proof. Leonardi and Rigot
also proved that isoperimetric sets are domains of isoperimetry in the particular case
of the Heisenberg group. However, their result cannot be applied to some inter-
esting sub-Riemannian groups which are not of Carnot type. An example is the

9
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FIGURE 2. A Pansu’s sphere Sy in H'.

roto-translational group, described in [20]. Some of the crucial points of the proof of
Leonardi and Rigot are discussed in [20] § 8.2].

We remark that in non-compact manifolds, the existence of isoperimetric regions
is not trivial. Ritoré [74, Thm. 2.16] observed the existence of complete non-compact
Riemannian manifolds for which isoperimetric regions do not exist for any value of
the volume, such as planes of revolution with strictly increasing Gauss curvature.

Pansu’s conjecture has presented no advances up to the late ’00, when two spe-
cial case were proven. In [8T], Ritoré and Rosales showed that the regions enclosed
by Pansu’s spheres are isoperimetric sets in H', among all regions bounded by a C?
surface. In their paper a characterization of an area-stationary surface (with or with-
out volume constraint), is obtained, namely, that the characteristic lines must meet
the singular ones in an orthogonal way. This property was also observed by Cheng,
Hwang and Yang [26] in their study of area-stationary graphs, and proven by comput-
ing a first variation formula of the sub-Riemannin area and using the local structure
of the singular set, studied by Cheng, Hwang, Malchiodi and Yang [25]. Finally, this
condition, together with an analysis of the Jacobi fields on the surface, was used to
classify the oriented, immersed, complete and connected C? area-stationary surfaces
enclosing a fixed volume.

In [64], Monti and Rickly showed that the boundary of an Euclidean convex
isoperimetric region, in H', has to be ruled by sub-Riemannian geodesics. This im-
plies that the boundary is a Pansu’s sphere. Their proof is based on a Sobolev-type
regularity result for a class of vector fields of bounded variation.

Another growing research line in sub-Riemannian spaces, is related to geometric
measure theory problems, such as the study of finite perimeter sets and regular sur-
faces from an intrinsic viewpoint. These topics have been investigated in particular
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in the Heisenberg groups H" and in Carnot groups G. In [41], Theorem 7.1], Franchi,
Serapioni and Serra Cassano proved a structure theorem for a locally finite perimeter
set, analogous to the Euclidean one,

THEOREM 0.7 (Structure of H-Caccioppoli sets). If E C H" is a locally finite
H-perimeter set, then the reduced boundary OjE is H-rectifiable, i.e.

O5LE=NU G N;,
=1

where HHQ_H”H(N) =0 e N; is a compact subset of an H-regular hypersurface S;.

In [41), Definition 6.1] the authors define an H-regular surface S, if for any p € S
exists a metric ball B(p,r) and a function f € C}(B)(p,r), such that

SNB(p,r)={qeH": f(q) =0,Vuf(q) #0}.

Later, this definition was generalized to more general ambients by Franchi, Serapioni
and Serra Cassano [42], [43] and Citti and Manfredini [29]. We remark that H-regular
surfaces can be very irregular, from the Euclidean point of view. Kirchheim and Serra
Cassano have constructed examples of H-regular surfaces that are fractal sets, [57].

Franchi, Serapioni and Serra Cassano have also pointed out that an H-regular
surface can be equivalently described as an intrinsic graph, [43] Theorem 3.27], see
also [44]. A region S in H" is an intrinsic graph, over a domain €2 inside a vertical
hyperplane, if the sub-Riemannian geodesics of curvature zero, leaving 2 orthogonally,
meet S in just one point, [43] Definition 3.6].

An alternative characterization of intrinsic graphs is studied by Ambrosio, Serra
Cassano and Vittone [4], Bigolin and Serra Cassano [12}, 13] and Bigolin, Caravenna
and Serra Cassano [11]. A continuous function ¢ is a distributional solution of V¥¢ =
w, where w € C(Q,R?"~1) and  is a domain in a vertical hyperplane, if and only if ¢
induces a H-regular graph. Here V? denotes the intrinsic gradient in S and V¢¢ = w
is a first-order non-linear PDE, related to Burgers’ operator. Monti and Vittone [65]
have shown that a finite perimeter set with a continuous horizontal normal is a Cf
surface.

Considering a Euclidean regular surface in H", we define the singular set as the
set of points in which the tangent plane coincides with the horizontal distribution,
ie.,

Yo={peX:T,X=H,}

In a neighborhood of a singular point, a surface can be viewed as an Euclidean graph
over the zy-plane. We observe that C! Euclidean regular surfaces with non-empty
singular set are not H-regular surfaces. On the other hand, this may be false for
Euclidean O surfaces. Indeed, one may check that the intrinsic graph of f(y,t) :=
[t|* is H-regular for o €]1/2,1[, [4, Corollary 5.11], even though the Euclidean tangent
plane at the origin coincides with the horizontal one. This surface is of class C1:2¢~1,

The Euclidean and intrinsic Hausdorff dimension of ¥y, are discussed by Balogh
[5], but also by Derridj [34] and Cheng, Hwang and Yang [26]. We summarize the
following result by Balogh

THEOREM 0.8. (i) If S is a C* smooth, reqular hypersurface in R*"*1  then
H]%InJrl(EO) =0;

(ii) if X is a C%' smooth, regular hypersurface in R*"F1 then dimg(Xy) < 2n
and dimyg(Xo) < 2n;

(iii) if X is C? smooth, then dimg(Xo) < n and dimg(Xo) < n;
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(iv) for any o > 0 there exists a CY1 smooth, regular hypersurface ¥, such that
dimg((Za)o) = 2n — «;

(v) there ewists a regular hypersurface ¥ of smoothness (| CY® such that
O<a<l

H2(S) < +oo and HZ (o) > 0.

Cheng, Hwang, Malchiodi and Yang have found a more geometric characterization
of the structure of the singular set, [25], for C? surfaces in H'. They showed

PROPOSITION 0.9. Let X be a surface of class C? and let p a singular point. Then

(i) orp is an isolated singular point;

(ii) orp is contained in a C* smooth singular curve. In this case the characteristic
curves meet the singular one with the same incident and reflected angle, when
Y has bounded mean curvature.

Recently, in [24], 27], they also proved

PROPOSITION 0.10. Let ¥ be a C smooth surface ¥ in H'. Assume that ¥ is a
weak solution of the minimal surface equation. Then, we have

(i) for each p € ¥ — Xy, there exists a unique characteristic and a unique “seed”
curve. Furthermore the projections of the characteristic and seed curves, on
the zy-plane, are C? smooth;

(ii) the singular set is path-connected and the set of non-degenerate singular points
consists of C* smooth curves;

(iii) two characteristic curves issuing from a non-degenerate singular point p have
the same angle with the tangent line of the singular curve through p.

We remark that they have generalized Proposition to 3-dimensional pseudo-
hermitian manifolds, [24], § §].

Bigolin and Vittone have remarked that, in general, we have no uniqueness for
the characteristic curves passing through a point in a H-regular surface, [14].

Results about the structure of a surface near ¥y imply strong consequences related
to the classification of area-stationary surfaces, since in general the behavior of ¥ in
a neighborhood of ¥ is very rigid. For example, these type of results were heavily
used by Ritoré and Rosales in [81] and in Section [2.9|of this thesis, where we classify
area-stationary surfaces with non-empty singular set in the roto-translation group
RT, Lemma [2.54] and Lemma [2.55

Let ¥ be a complete area-stationary surface of class C? with non-
empty singular set. Then X is a right-handed helicoid or a plane
{(z,y,0) € RT :ax +by+c=0,a,b € R,c € St}.

About regularity of the minimizers, the situation is different with respect to
the Riemannian case. In fact Cheng, Hwang and Yang [26] and Ritoré [76] have
constructed examples of graphs over the zy-plane, the so called t-graphs, which are
area-minimizing and merely Euclidean Lipschitz. On the other hand, these examples
are not H-regular graphs. The only regularity result for intrinsic graphs, at our
knowledge, is due to Capogna, Citti and Manfredini, [17), 18]

THEOREM 0.11. Let ¥ be an Lipschitz intrinsic graph over a vertical plane in
H'. Let also X be the limit of Riemannian minimal graphs. Then X is of class C*¢,
0 < a < 1, and the characteristic curves are C°.
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THEOREM 0.12. Let ¥ be an Lipschitz intrinsic graph over a vertical plane in H™.
Let also X be the limit of Riemannian minimal graphs. Then ¥ is C°° smooth.

We remark that Theorem [0.11] is sharp and has been recently generalized to
tridimensional Lie groups by Barbieri and Citti, [8].

Concerning the existence of minimizing graphs over a domain 2, with a fixed
boundary value, Serra Cassano and Vittone have proved existence for ¢-graphs, with
boundary value in L!(99Q) and 99 Lipschitz, [85]. They proved also that such mini-
mizers are locally bounded and that a t-graph is always H%'-rectifiable in H". Anal-
ogous results are present also in Cheng, Hwang and Yang [26], Cheng and Hwang
[23] and Pauls [72]. Furthermore, in [85], it is also shown the existence of minimizing
intrinsic graphs over a domain €2 of a vertical hyperplane in H", with fixed bound-
ary data. Moreover, if we suppose that the function which defines the graph is in
L"FH(Q), it is also locally bounded.

Another well-known problem in Geometric Analysis is the Bernstein problem. In
R™ it consists of classifying the entire minimal graphs. In R™ the solutions are area-
minimizing, by a standard calibration argument. In H"”, however, Danielli, Garofalo,
Nhieu and Pauls have shown that there exist entire, horizontal, minimal graphs that
are not stable, [30, [31], 32]. On the other hand the only complete, oriented, immersed
and stable C? surfaces in H' are vertical planes. Particular cases are provided by
Barone-Adesi, Serra Cassano and Vittone [9] and Danielli, Garofalo, Nhieu and Pauls
[33]. The general case is proved in [55], by Hurtado, Ritoré and Rosales. In H", for
n > 5, Barone Adesi, Serra Cassano and Vittone [9] have shown the existence of
minimizing, intrinsic H-regular graphs, that are not horizontal planes. The general
problem in the class of H-regular surfaces is still open.

We remark that in [55] Hurtado, Ritoré and Rosales also classify the C? immersed,
oriented, complete, stable surfaces in H!, with non-empty singular set: the only one
is the hyperbolic paraboloid.

Their key tool is a second variation formula of the sub-Riemannian area for C2
surfaces with non-empty singular set. While in the first variation of the area is easy
to move the singular set, moving >y in the second variation is much more involved.
Essentially we cannot differentiate under the integral sign, since the second derivative
of | Ny | is not bounded near ¥g. The only possibility is to perform variations consisting
on minimal surfaces near X, to perform a general variation in ¥ — X, and, by means
of a partition of unity on characteristic curves, to fit together both variations.

The Bernstein-type problem is generalized by Rosales in [82], for C? complete,
oriented, horizontal, stable, constant mean curvature surfaces without singular points
immersed in the Sasakian space forms S and SL(2,R).

In this thesis we study topics related to area-stationary surfaces in contact sub-
Riemannian manifolds. Following the monograph by Blair [15], a contact manifold is
a O manifold M?"*! of odd dimension so that there is a one-form w such that dw
is non-degenerate when restricted to H := ker(w). Since

dw(X,Y) = X(w(Y)) = Y(w(X)) - w([X,Y]),

the horizontal distribution H := ker(w) is completely non-integrable. A well-known
example of a contact manifold is the Euclidean space R?"+! with the standard contact
one-form

(0.5) wo = dt + Z(Sﬂzd% — y;dx;).
i=1
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A contact sub-Riemannian manifold is a contact manifold equipped with a posi-
tive defined metric gy on H.

A usual class defined in contact geometry is the one of contact Riemannian man-
ifolds, see the Blair’s monograph [15] and Tanno [90]. Given a contact manifold, one
can ensure the existence of a Riemannian metric g and an (1, 1)-tensor field J so that

(0.6) g(T,X) =w(X), 29(X,J(Y)) =dw(X,Y), J*X)=-X+4+wX)T.

The structure given by (M,w,g,J) is called a contact Riemannian manifold. The
class of contact sub-Riemannian manifolds is different from this one. Recall that,
in our definition, the metric g3 is given, and it can be extended to a Riemannian
metric g in TM. However, there is not in general an (1, 1)-tensor field J satisfying
all conditions in . Observe that the second condition in uniquely defines J
on H, but this J does not satisfy in general the third condition in 7 as it is easily
seen in (R3,wg) choosing an appropriate positive definite metric in ker(wp).

In Chapter [I] we prove an existence result for isoperimetric regions in contact sub-
Riemannian manifolds such that the quotient by the group of contact isometries, the
diffeomorphisms that preserve the contact structure and the sub-Riemannian metric,
is compact, Theorem [[.26] This is the analogous result to of Morgan’s Riemannian
one, [67, [68].

In the proof of Theorem [I.26] we follow closely Morgan’s scheme: we pick a
minimizing sequence of sets of volume v whose perimeters approach the infimum of
the perimeter of sets of volume v. If the sequence subconverges without losing any
fraction of the original volume, the lower semicontinuity of the perimeter implies that
the limit set is an isoperimetric region of volume v. If some fraction of the volume is
missing then Proposition[T.24]implies that the minimizing sequence can be broken into
a converging part and a diverging one, the latter being composed of sets of uniformly
positive volume, see Ritoré [74, [T5] and Ritoré and Rosales [79], for the Riemannian
case. The converging part has a limit, which is an isoperimetric region for its volume,
and is bounded by Lemma [1.23] Hence we can suitably translate the diverging part
to recover some of the lost volume. An important point here is that we always recover
a fixed fraction of the volume because of Lemma see Leonardi and Rigot [58]
Lemma 4.1].

Along the proof of Theorem[I.26]two important technical points have to be solved,
as mentioned in the previous paragraph. We prove in Lemma boundedness of
the isoperimetric regions, and a structure result for minimizing sequences in Propo-
sition . The key point to prove boundedness is the Deformation Lemma
where we slightly enlarge a given finite perimeter set producing a variation of perime-
ter which can be controlled by a multiple of the increase of volume. This is a ex-
tremely useful observation of Almgren [I V1.2(3)], [67, Lemma 13.5]. The Defor-
mation Lemma is the only point where we strongly use the fact that our underlying
sub-Riemannian manifold is of contact type, to construct a foliation by hypersurfaces
with controlled mean curvature. Our proof of the Deformation Lemma [T:22] does not
seem to generalize easily to more general sub-Riemannian manifolds. The structure
result for minimizing sequences appeared for the first time, although it was known to
experts in Geometric Measure Theory, in Ritoré [75] for Riemannian surfaces, and in
Ritoré and Rosales [79] for Riemannian manifolds of any dimension. In some cases,
Proposition [1.24] provides direct proofs of existence of isoperimetric regions.

In Chap we prove a necessary condition for C? stable minimal surfaces with
empty singular set in a large class of pseudo-hermitian manifolds, that includes the
uni-modular Lie groups, Proposition |2.48
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Let ¥ be a C? complete orientable surface with empty singular set
immersed in a pseudo-hermitian 3-manifold (M, gy, w,J) . We sup-
pose that g(R(T, Z)vy, Z)—Z(g(7(Z),vy)) = 0 on ¥ and the quantity
W — c19(7(Z),vp) is constant along characteristic curves. We also
assume that all characteristic curves in % are either closed or non-
closed. If ¥ is a stable minimal surface, then W — c19(7(Z),vp) <0
on X. Moreover, if W — ¢19(7(Z),v) = 0 then X is a stable vertical
surface.

This is an important class since Perrone [73] has shown that simply connected
contact Riemannian 3-manifolds, homogeneous in the sense of Bootby and Wang,
[16] (there exists a connected Lie group acting transitively as a group of contact
diffeomorphisms), are Lie groups. The condition we found involves the Webster scalar
curvature W and the pseudo-hermitian torsion 7 of the manifold, that are pseudo-
hermitian invariants.

This characterization is obtained by the study of a stability operator, which is
constructed from the second variation formula of the sub-Riemannian area. In Section
[27] we construct another stability operator that takes account the singular set. With
these two tools, we give a classification of complete stable surfaces in the group of the
rigid motions of the Euclidean plane R7, Theorem [2.61

Let ¥ be a C? stable, immersed, oriented and complete surface in
RT. Then
1. if ¥ is a non-singular surface, then it is a vertical plane;
2. if ¥ is a surface with singular set, then it is a right-handed he-
licoid.

The RT group is interesting for two reasons. From the geometric point of view
it is one of the simplest pseudo-hermitian manifolds which has non-vanishing torsion.
Moreover it is a model of the visual cortex of the human eye which plays an important
role in the theory of image reconstruction, as observed by Citti and Sarti [28] and
Citti, Sarti and Petitot [84]. Given a boundary curve I', we can reconstruct an image
by solving a Plateau’s problem. This is equivalent to find a stable minimal surface
Y with boundary T, i.e. to find ¥ such that A’(¥)(0) = 0 and A”(X)(0) > 0, for
variations that fix 0¥ =T.

The main purpose of Chapter [3]is to generalize variation formulas for the sub-
Riemannian area in contact sub-Riemannian manifolds of arbitrary dimensions.

We call a C! hypersurface ¥ of class C? if ¥ is a level set of a function with
two continuous horizontal derivatives. We remark that Cf C C7, since we do not
require that X is empty. We prove that, in a C? hypersurface, the (n + 3)-Euclidean
Hausdorff measure of ¥, vanishes, Theorem [3.:3] This estimate is quite surprising,
compared with Theorem [0.8] In particular, since our estimation is unsophisticated
and we believe that H:t*(2) = 0 holds under the hypothesis of Theorem In the
proof we simply observe that X is contained in a H-regular surface S of codimension
n and we estimate H5>(9).

By Theorem for n > 4, we can produce a general first variation formula for
C? hypersurfaces moving the singular set. Since ¥y is contained in a finite union
of (2n — 1)-dimensional Euclidean balls, we construct a suitable family of cut-off
functions ¢., € > 0. As |V¢.| is controlled by £ and ¢. vanishes on the singular set,
we can take limits when € — 0 to get a general formula.
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Finally we prove a second variation formula for C? hypersurfaces with empty
singular set. We move the surface by a diffeomorphism induced by an arbitrary
vector field U. We show that, splitting U = Up; + U,j-w where Uy, € TY N'H and
U}f; € (TY N H)*, only the intrinsic orthogonal part U,f-t appears in the formula.
The analoguos Riemannian’s results are well-known. However, at our knowledge, a
rigorous proof was known only for C* surfaces.

Finally we remark that, for the reader convenience, the three chapters are self-
contained and independent. We also point out that they correspond to the following
references [47, [45], [46].



CHAPTER 1

Existence of isoperimetric regions in contact
sub-Riemannian manifolds

1.1. Preliminaries

A contact manifold [15] is a C*° manifold M?"*! of odd dimension so that there
is a one-form w such that dw is non-degenerate when restricted to H := ker(w). Since

dw(X,Y) = X(w(Y)) = Y(w(X)) - w([X,Y]),

the horizontal distribution H := ker(w) is completely non-integrable. One can easily
prove the existence of a unique vector field 7" in M so that

(1.1) w(T)=1, (Lrw)(X)=0,

where L is the Lie derivative and X is any smooth vector field on M. The vector
field T is usually called the Reeb vector field of the contact manifold M. It is a direct
consequence that w A (dw)™ is an orientation form in M.

A well-known example of a contact manifold is the Euclidean space R?"*! with
the standard contact one-form

n

(1.2) wo = dt + Z(xldyl — y;dx;).

i=1
A contact transformation between contact manifolds is a diffeomorphism preserving
the horizontal distributions. A strict contact transformation is a diffeomorphism
preserving the contact one-forms. A strict contact transformation preserves the Reeb
vector fields. Darboux’s Theorem [15] Thm. 3.1] shows that, given a contact manifold
and some point p € M, there is an open neighborhood U of p and a strict contact
transformation f from U into an open set of R2"*! with its standard contact structure
induced by wg. Such a local chart will be called a Darbouzx chart.

The length of a piecewise horizontal curve v : I — M is defined by

L(y) = / (1)) dt.

where the modulus is computed with respect to the metric g;. The Carnot-Carathéo-
dory distance d(p,q) between p, ¢ € M is defined as the infimum of the lengths of
piecewise smooth horizontal curves joining p and ¢q. A minimizing geodesic is any
curve 7 : I — M such that d(v(t),v(t')) = |t — ¢'| for each ¢, ¢’ € I. We shall say that
the sub-Riemannian manifold (M, gy,w) is complete if (M,d) is a complete metric
space. By Hopf-Rinow’s Theorem [51, p. 9] bounded closed sets are compact and
each pair of points can be joined by a minimizing geodesic. From [62] Chap. 5] a
minimizing geodesic in a contact sub-Riemannian manifold is a smooth curve that
satisfies the geodesic equations, i.e., it is normal.

The metric gy can be extended to a Riemannian metric ¢ on M by requiring
that T be a unit vector orthogonal to H. The scalar product of two vector fields X
and Y with respect to the metric g will be often denoted by <X , Y>. The Levi-Civita
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connection induced by g will be denoted by D. An important property of the metric g
is that the integral curves of the Reeb vector field T" defined in are geodesics, see
[15, Thm. 4.5]. To check this property we observe that condition (Lrw)(X) in
applied to a horizontal vector field X yields w([T, X]) = 0 so that [T, X] is horizontal.
Hence, for any horizontal vector field X, we have

(X,DrT) = —(DrX,T) = —(DxT,T) = 0,

where in the last equality we have used |T'| = 1. Since we trivially have <T, DTT> =0,
we get DT = 0, as we claimed.

A usual class defined in contact geometry is the one of contact Riemannian man-
ifolds, see [15], [90]. Given a contact manifold, one can ensure the existence of a
Riemannian metric g and a (1,1)-tensor field J so that

13)  g(T,X) =w(X), 29(X,J(Y))=dw(X,Y), J*X)=—-X+w(X)T.

The structure given by (M,w,g,J) is called a contact Riemannian manifold. The
class of contact sub-Riemannian manifolds is different from this one. Recall that, in
our definition, the metric g is given, and it is extended to a Riemannian metric g in
T M. However, there is not in general an (1, 1)-tensor field J satisfying all conditions
in (3.3). Observe that the second condition in uniquely defines J on #, but this
J does not satisfy in general the third condition in , as it is easily seen in (R?,wp)
choosing an appropriate positive definite metric in ker(wy).

The Riemannian volume form dv, in (M, g) coincides with Popp’s measure [62]
§ 10.6]. The volume of a set E C M with respect to the Riemannian metric g will be
denoted by |E|.

A contact isometry in (M, gy, w) is a strict contact transformation that preserves
gu- Contact isometries preserve the Reeb vector fields and they are isometries of the
Riemannian manifold (M,g). The group of contact isometries of (M, gy,w) will be
denoted by Isom,, (M, g).

It follows from [70, Thm. 1] that, given a compact set K C M there are positive
constants £, L, rqg, such that M is Ahlfors-regular

(1.4) r@ < |B(x,7)| < Lr@,
forall x € K, 0 <r < rg. Here @Q is the homogeneous dimension of M, defined as
(1.5) Q:=2n+2.

Related to the homogeneous dimension we shall also consider the isoperimetric expo-
nent

(1.6) 7:=(Q-1)/Q.

In the case of contact sub-Riemannian manifolds this result also follows taking Dar-
boux charts. Inequalities (1.4) immediately imply the doubling property: given a
compact set K C M, there are positive constants C, rg such that

(1.7) |B(z,2r)| < C|B(x,r)|,

for all x € K, 0 < r < ry. Moreover, (L.4)) also implies that, given a compact subset
K C M, there are positive constants C, 7y, such that

|B(x0,7)| r\¢
(18) B(z.5) >C(s> ’

for any g € K, x € B(xg,7), 0 <r < s < ro.
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Given a Borel set E C M and an open set 2 C M, the perimeter of E in ) can
be defined, following the Euclidean definition by De Giorgi, by

P(E,Q) := sup {/ div X dv, : X € X3(2), X horizontal, | X| < 1},
FE

where X}(Q2) is the space of vector fields of class C! and compact support in Q and
div is the divergence in the Riemannian manifold (M,g). When Q = M we define
P(E):=P(E,M). A set E is called of finite perimeter if P(E) < +o00, and of locally
finite perimeter if P(E, Q) < 400 for any bounded open subset Q C M. See [41] and
[48] for similar definitions.

A function u € L*(M) is of bounded variation in an open set € if

| Du|(£2) := sup { / udiv X dv, : X € Cg(M), X horizontal, | X| < 1, supp X C Q}
Q

is finite. We shall say that |Du|(f2) is the total variation of w in Q. The space of
functions with bounded variation in M will be denoted by BV (M). If u is a smooth
function then

Du|(©) = / IV ul dog,
Q

where Vj,u is the orthogonal projection to H of the gradient Vu of u in (M, g).

It follows easily that P(F,Q) is the total variation of the characteristic function
1r of E. A sequence of finite perimeter sets {E;};cn converges to a finite perimeter
set E if 1, converges to 1p in L, (M).

Finite perimeter sets are defined up to a set of measure zero. We can always choose
a representative so that all density one points are included in the set and all density
zero points are excluded [49], Chap. 3]. We shall always take such a representative
without an explicit mention.

There is a more general definition of functions of bounded variation and of sets
of finite perimeter in metric measure spaces, using a relaxation procedure, using as
energy functional the L' norm of the minimal upper gradient, [59], [3]. If (M, g3;,w)
is a contact sub-Riemannian manifold then the definition of perimeter given above
coincides with the one in [59], [3]. See [59] § 5.3], [3] Ex. 3.2].

In case E has C! boundary %, it follows from the Divergence Theorem in the Rie-
mannian manifold (M, g) that the perimeter P(FE) coincides with the sub-Riemannian
area of X defined by

(1.9) A(R) = /E Ny | d,

where N is a unit vector field normal to X, Nj the orthogonal projection of N to the
horizontal distribution, and d¥ is the Riemannian measure of X.
The following usual properties for finite perimeter sets F, F C M in an open set

Q C M are proven in [59]

1. P(E,Q) = P(F,Q) when the symmetric difference EAF satisfies |(EAF) N

Q)| =0.

2. PIEUF, Q)+ P(ENF,Q) < P(E,Q)+ P(F,Q).

3. P(E,Q)=P(M\ EQ).
The set function Q — P(E, ) is the restriction to the open subsets of the finite Borel
measure P(FE,-) defined by
(1.10) P(E,B) :=inf{P(E,A): B C A, A open},

where B is a any Borel set.
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We fix a point p € M and we consider the open balls B,. := B(p,r), r > 0. Then
the following property holds from the definitions

(1.11) P(ENB,) < P(E,B,) + P(E\ B,,0B,),

where P(E \ By, 0B,) is defined from (1.10).
The following results are proved in general metric measure spaces

PRrOPOSITION 1.1 (Lower semicontinuity [3],[59]). The function E — P(E, Q) is
lower semicontinuous with respect to the L*(§) topology.

PROPOSITION 1.2 (Compactness [59]). Let {E; }ien be a sequence of finite perime-
ter sets such that {1g, }ien is bounded in L}, (M) norm and satisfying sup; P(E;, Q) <
+o00 for any relatively compact open set Q0 C M. Then there exists a finite perimeter

set E in M and a subsequence {1g, }ien converging to 1g in Ly, (M).

THEOREM 1.3 (Gauss-Green for finite perimeter sets). Let E C M be a set of
finite perimeter. Then there exists a P(E)-measurable vector field vy € TM such that

—/ didevg:/ gu(ve, X)dP(E),
E M
for all X € H and |vg| =1 for P(E)-a.e. x € M.

The proof consists essentially in taking local coordinates and applying Riesz Rep-
resentation Theorem [38] § 1.8] to the linear functional f — — f f divy Xdvg, where
f is any function with compact support in M. This result was proven in the Heisen-
berg group H" in [41].

DEFINITION . Let E be a finite perimeter set. The reduced boundary O*E is
composed of the points z € F which satisfy

(i) P(E,Br(z)) > 0, for all r > 0;

(ii) exists lim f wvgdP(E) and its modulus is one.

T B,«(CE)

The following approximation result, whose proof is a straightforward adaptation
of the Euclidean one, [49 Chap. 1], holds.

PROPOSITION 1.4. Let (M, gy,w) be a contact sub-Riemannian manifold, and
let w € BV (). Then there exists a sequence {u;}ien of smooth functions such that
u; = u in LY(Q) and lim;_s o V4 [(Q) = |Vau|(Q).

The localization lemma [3, Lemma 3.5], see also [59], allows us to prove

PROPOSITION 1.5. Let (M, g3, w) be a contact sub-Riemannian manifold, E C M
a finite perimeter set, p € M, and B, := B(p,r). Then, for almost all r > 0, the set
E\ B, has finite perimeter, and

P(E\ B,,0B,) < di |[EN B,|.
T

The isoperimetric profile of M is the function Iy : (0,|M]) — RT U {0} given by
Ins(v) :=inf{P(E) : E C M, |E| = v}.

A set E C M is an isoperimetric region if P(E) = Ip(|E|). The isoperimetric profile

must be seen as an optimal isoperimetric inequality in the manifold M, since for any

set £ C M we have
P(E) = Iu(|E]),

with equality if and only if E' is an isoperimetric region.
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1.2. A relative isoperimetric inequality and an isoperimetric inequality
for small volumes

In this section we consider a contact sub-Riemannian manifold (M, gy, w). We
shall say that M supports a 1-Poincaré inequality if there are constants Cp, rg > 0

such that
/ U — up | dvg < Cpr/ |Viu| dog
B(p,r) B(p,r)

holds for every p € M, 0 < r < rg, and u € C>°(M). Here u, , is the average value
of the function w in the ball B(p,r) with respect to the measure dv,

1
Up,p = 75— udvg,
\B(p,r)| B(p,r)

][ udvg.
B(z,r)

We shall prove that a 1-Poincaré inequality holds in M provided M/ Isom,, (M, g) is
compact, using the following result by Jerison

that will also be denoted by

THEOREM 1.6 ([56, Thm. 2.1]). Let X1, ..., X, be C™ vector fields satisfying
Hérmander’s condition defined on a neighborhood Q of the closure E1 of the Fuclidean
unit ball B, C R%.

Then there exists constants C > 0, ro > 0 such that, for any x € E1 and every
0 <r <rg such that B(x,2r) C £,

_ m 1/2
(1.12) / |f = forldL < Cr/ ( Xi(f)z) dc,
B(z,r) B(x,r) i=1

for any f € C(B(z,r)), where the integration is taken with respect to the Lebesque
measure L, the balls are computed with respect to the Carnot-Carathéodory distance
associated to X1, ..., Xy, and fy, is the mean value with respect to the Lebesgue
measure.

REMARK 1.7. Jerison really proved the 2-Poincaré inequality

m

‘f_fz,r|2d£<0r2/ (
A(w,r) B(z,r) Z

i=1

Xi(f )2) L.
However, as stated by Hajtasz and Koskela [62], Thm. 11.20], his proof also works for
the L' norm in both sides of the inequality.
REMARK 1.8. The dependence of the constants C, 7 is described in [56] p. 505].
Using Jerison’s result we can easily prove

LEMMA 1.9 (Poincaré’s inequality). Let (M, g3, w) be a contact sub-Riemannian
manifold, and K C M a compact subset. Then there exist constants Ck, ro > 0, only
depending on K, such that

(1.13) / lu — up | dvg < CKT/ |Viu| dog,
B(p,r) B(p,r)

forallpe K,0<r <rg, ue C®(M).
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PRrROOF. For every p € K we consider a Darboux chart centered at p, i.e., an
open neighborhood U, of p together with a diffeomorphism ¢, : U, — R2"+1 with
¢p(p) =0 and ¢, wo = w, where wy is the standard contact form in Euclidean space.

We denote by hy : R2*"T1 — R2*+1 for X\ > 0, the intrinsic dilation of ratio A,
defined by hy(z,t) := (\z,\%t), for (2,t) € C" x R = R?*"*L. For every p € K we
choose A(p) > 0 so that the image of U, by ¢, := hy() © ¢, contains the closure E,
of the unit ball E; C R2"*!. From the open covering {w;l(El)}peK of K we extract
a finite subcovering ¢, '(E1), ..., ¢, (E1). From now on we fix some p;, i =1,...7,
and we take p = p;, ¢ = @;, U = Up,.

We consider the scalar product h := (¢~1)* g3 in the contact distribution Hg :=
ker(wp). Let Xi,..., X5, be an orthonormal basis of Hy with respect to h in Q.
Observe that ¢ is a contact transformation from (U, w) to (€, wp) that preserves the
sub-Riemannian metrics. Hence ¢ is an isometry between metric spaces when we
consider on (U,w) its associated Carnot-Carathéodory distance d and on (€2, wp) the
distance induced by the family of vector fields X7, ..., Xa,. Moreover, if u € C*°(M)
then, for every p € U, we have

2n

1/2
(1.14) (sl = (Z(an«oou)) |

i=1
Let p:= ¢~ !(dv,). Since ¢ is a diffeomorphism, p and dL satisfy
(1.15) (L(E) < u(E)< LL(E),

for some constants ¢, L > 0, and F contained in a compact neighborhood of Fj in
o).
By Jerison’s result, there are C, ¢y > 0 so that

2n 1/2
- ~zr d£ X C Xz 2 d£
[ =iedacs /B()(Z( 1?)

for all f € C*°(Q), z € E;. Since

7 1
o e =g [ - sz iz,

we can use inequalities ((1.15)) to prove that there is C’ > 0 such that
[ w-daczc [ - gl
B(z,r) B(z,r)

where f; , is the mean of f in the ball B(x,r). So we obtain from (1.12) and again
from (1.15) that there are C, 1o > 0 so that

2n 1/2
[ eddwser [ (Sx0?)
B(z,r) B(z,r) \ ;4

From the definition of p, the fact that ¢ is an isometry, and we obtain
for p € o= 1(E;). We repeat this process for every open set <p;i1 (E1),i=1,...,7.
Taking the maximum of the constants C' so obtained and the minimum of the radii
ro it follows that holds for all p € K. a

Using this result we get
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LEMMA 1.10. Let (M, gy,w) be a contact sub-Riemannian manifold such that
the quotient M/ Isom,, (M, g) is compact. Then there exist constants Cp, 1o > 0, only
depending on M, such that

(1.16) / [u — up | dvg < Cpr/ |Viu| dog,
B(p,r) B(p,r)

forallpe M, 0 <r <rg, ue C>®(M).

REMARK 1.11. Poincaré’s inequality also holds for functions of bounded variation
by an approximation argument, see [49].

From the 1-Poincaré inequality and inequality we can prove, using
Theorem 5.1 and Corollary 9.8 in [52] (see also Remark 3 after the statement of
Theorem 5.1 in [52]), that, given a compact set K C M, there are positive constants
C, rg so that

@-1)/Q
D) (e wle) <or(f )
B(z,r) B(z,r)

for all u € C*(M), z € K, 0 < r < rg. Furthermore, it is well-known that the
g-Poincaré’s inequality (1.17) implies the following relative isoperimetric inequality,
[38] and [49]

LEMMA 1.12 (Relative isoperimetric inequality). Let (M, gy, w) be a contact sub-
Riemannian manifold, and K C M a compact subset. There ezists constants C > 0,
ro > 0, only depending on K, so that, for any set E C M with locally finite perimeter,
we have

(1.18) Crwin {| EN B(z,r)|,| E°0 B(x,r) }°? < P(E, B(x, 7)),
for any x € K.

REMARK 1.13. A relative isoperimetric inequality in compact subsets of R™ for
sets £ with C! boundary was proven in [19] for the sub-Riemannian structure given
by a family of Héormander vector fields. As the authors remark their result holds for
any family of vector fields on a connected manifold.

REMARK 1.14. As for Poincaré’s inequality, the relative isoperimetric inequality
(1.18) holds in the whole of M provided M/ Isom, (M, g) is compact.

LEMMA 1.15 (Isoperimetric inequality for small volumes). Let (M, gy ,w) be a
contact sub-Riemannian manifold so that the quotient M/Isom,, (M) is compact.
Then there exists vg > 0 and C7 > 0 such that

(1.19) P(E) > C;|E|@-D/Q,
for any finite perimeter set E C M with |E| < vy.

PrROOF. This is a classical argument [58, Lemma 4.1]. We fix § > 0 small enough
so that Poincaré’s inequality holds for balls of radius smaller than or equal to §. Since
M/ Isom,, (M) is compact, there exists vg > 0 so that |B(x,d)| > 2vo holds for all

x € M. Let E C M be a set of finite perimeter with |E| < vy. We fix a maximal
family of points {z;};en with the properties

(1.20) d(xs, ) > g fori#j,  EC|JB(@:,0).
1€EN
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Letting ¢ := (Q — 1)/Q we have

q

(1.21) |El7 < (Z |B(z;,6) N E) < |B(z:,6)NE|" < Cy Y P(E, B(x;,6))
ieN ieN ieN

from , the concavity of the function z — 29, and the relative isoperimetric

inequality in Lemma [[.12] For z € M, we define A(z) := {z; : z € B(x;,0)}, so

that B(z,0/4) C B(z,20) and B(z,0/4) C B(x,2d) for x € A(z). Since the balls

B(x;,6/4) are disjoint by (L.20), we get

(122)  #A() min [Bo/)<| U B(x,6/4>\ < |B(=,29)].
Tr€A(z)
r€A(z)
On the other hand, since B(z,d/4) C B(x,2) we have
(1.23) |B(x,6/4)] > Cp* |B(2,8/4),

where Cp > 0 is the doubling constant. We conclude from (1.22)) and (1.23]) that
#A(2) < Cp,
and so
> P(E,B(x;,6)) < C P(E).
€N

This inequality and (1.21)) yields (|1.19). O

REMARK 1.16. Another approach to isoperimetric inequalities in Carnot-Carathéodory
spaces is provided by Gromov [50] § 2.3].

REMARK 1.17. An isoperimetric inequality for small volumes in compact Rie-
mannian manifolds was proven by Berard and Meyer [10].

1.3. The Deformation Lemma. Boundedness of isoperimetric regions

In order to prove Theorem we need to construct a foliation of a punc-
tured neighborhood of any point in M by smooth hypersurfaces with bounded mean
curvature. We briefly recall this definition. Let ¥ C M be a C? hypersurface in M.
The singular set g of 3 is the set of points in ¥ where the tangent hyperplane to
3 coincides with the horizontal distribution. If X is orientable then there exists a
globally defined unit normal vector field N to ¥ in (M, g), from which a horizontal
unit normal v, can be defined on X\ 3¢ by

Np
1.24 Vh = 775 7s
(1.24) [N
where N}, is the orthogonal projection of N to the horizontal distribution. The sub-
Riemannian mean curvature of ¥ is the function, defined in ¥\ ¢, by

2n—1
(1.25) H:=— Z (De,vp,e;),
i=1
where D is the Levi-Civita connection in (M, g), and {e1, ..., ea,—_1} is an orthonormal

basis of T3 NH. We recall that, given a vector field X defined on ¥, the divergence
of X in ¥, divy X, is defined by

2n
(1.26) dive X =) " (De,vn, €;),

i=1

where {ey, ..., 2, } is an orthonormal basis of T'X.
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We define the tensor
(1.27) S(X,Y) :=(DxT,Y),
where X and Y are vector fields on M. In the case of the Heisenberg group we have
DxT = J(X), so that £(X,Y) = (J(X),Y).

At every point of ¥\ ¥y, we may choose an orthonormal basis of TY. consisting
on an orthonormal basis {e1,...,ea,—1} of TY NH together with the vector

(1.28) S:=(N,T)vy, — |Nu|T,
which is orthogonal to N and of modulus 1. Hence we obtain in 3\ £
(1.29) divs v, = —H + (Dswh, S).
From and equality |v,| = 1 we immediately get <D51/h, S> = —|Ny| <D5uh,T>7
which is equal to |Np| X(vp, S). Since the vector field S can be rewritten in the form
S =[Ny 7' ({N,T) N —T), and DyT = 0, we finally get
<Dsuh,S> = <N, T> Y(vp, N),
and so
(1.30) divs v, = —H + (N, T) S(vy, N).

The mean curvature (1.25)) appears in the expression of the first derivative of the
sub-Riemannian area functional (1.9).

LEMMA 1.18. Let ¥ C M be an orientable hypersurface of class C? in a contact
sub-Riemannian manifold (M, g3, w), and let U be a vector field with compact support
in M\ o and associated one-parameter family of diffeomorphisms {¢s}ser. Then

d A(%(E)):—/EH<U,N>dE.

(1.31) .

s=0
PrROOF. Let u := <U, N>. Following the proof of [80, Lemma 3.2] we obtain
d
ds|,_
For the first summand in the integrand we obtain
U(|Nu|) = U ((N,v,)) = (DyoN,vi) + (N, Dyyevy)
= —(Vsu,v,) — (N,T) S(vp, U*)
= —(vn) " (u) = (N, T) (v, U),
since Dy N = —Vyu. So we get from the previous formula
UL(INy|) + |Np| divg U+ =
=—(n) " (w) = (N, T) Z(vp, U) + udivs (| Ny|N)
= —divs(u(vn) ") +udivs(vp) " — (N, T) S(vp, UL) + udivs (| Ny|N)
= —divs(u(vn) ") +udivs(vy) —u (N,T)%(vp, N),

Alps(%)) = /E{Ui(|Nh|> +|Np| dive UL} d5.

where we have used vy, = (v3,) " +|Ny|N in the final step. Since U has compact support
out of ¥y, where v}, is well defined, we conclude from the Riemannian Divergence

Theorem and
d Alps(X)) = / u{divs(vp) — <N, T> (v, N)}dE = —/ H <U, N> dy,
s=0 % b))

which completes the proof of the Lemma. (|

ds
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The local model of a sub-Riemannian manifold is the contact manifold (R?*+1, wy),
where wg 1= dt+ > (z;dy; — y;dx;) is the standard contact form in R?" !, together
with an arbitrary positive definite metric gy, in Ho. A basis of the horizontal distri-
bution is given by

0 0 0 0
X’izzi YR Y;:7 [ YR .:17-~~7 )
o Vi oy o ! "
and the Reeb vector field is
o0
=

The metric gz, will be extended to a Riemannian metric on R*"*! so that the Reeb
vector field is unitary and orthogonal to Hg. We shall usually denote the set of
vector fields {X1,Y1,..., X, Y.} by {Z1,..., Zon}. The coordinates of R2"1 will be
denoted by (z1,y1,...,%n, Yn,t), and the first 2n coordinates will be abbreviated by
z or (x,7). We shall consider the map F : R?" — R?" defined by

F(xhyh e 7xn7yn) = (—917331, sy _yn7x’ﬂ)

Given a C? function v :  C R?® — R defined on an open subset Q, we define
the graph G, := {(z,t) : z € Q,t = u(z)}. By (1.9), the sub-Riemannian area of the
graph is given by

A(G) = / N G,
G

u

where dG,, is the Riemannian metric of the graph and |Np| is the modulus of the hor-
izontal projection of a unit normal to G,,. We consider on €2 the basis of vector fields

{i 0 o 0
Ox1’ 0y1’ " "7 Oxp? Oyn J°
By the Riemannian area formula
(1.32) dG, = JacdL*",

where d£?" is Lebesgue measure in R?" and Jac is the Jacobian of the canonical map
Q — G, given by
1/2

(1.33) Jac = det(gi; + (Vu+ F)i(Vu + F)j)i,j:l ..... 2n)

where g;; := g(Z;, Z;), V is the Euclidean gradient of R*" and (Vu + F); is the i-th
Euclidean coordinate of the vector field Vu + F in Q2. We have

(Vu+F); = {uﬂﬂ(iﬂ)m —Y(t1)/2, ©odd,

Uy, /o + T2, 7 even.

Let us compute the composition of |Np| with the map @ — G,. The tangent space
TG, is spanned by

(1.34) Zi+ (Vu+F); T, i=1,...,2n.

So the projection to Q of the singular set (Gy)o is the set Q¢ C Q defined by Qq :=

{z € Q: (Vu+ F)(z) = 0}. Let us compute a downward pointing normal vector N
to G, writing
2n

(1.35) N=> (a:Z;)-T.

i=1

The horizontal component of N is Nh = 221 a;Z;. We have

2n
> aigi; = (N, Z;) = g(N, Zj) = =(Vu+ F);(N,T) = (Vu+ F);,
=1
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since Z; is horizontal, N is orthogonal to Z; defined by , and . Hence
(a1,...,a2,) =b(Vu+ F),

where b is the inverse of the matrix {g;;}i j=1,...2n. S0 we get

(1.36) IN| = 1+ (Vu+ F,b(Vu+ F)))"/?,

and )
INW| = (Vu+ F,b(Vu+ F))'/%,

where <,> is the Euclidean Riemannian metric in R?", and so
N (Vut Bb(Vu+ P))
NI (14 (Vu+ B b(Vu+ F)))?

Observe that, from (1.35) and (1.36]) we also get that the scalar product of the unit
normal N with the Reeb vector field T is given by

1
1/2°
(14 (Vu+ F,b(Vu+ F)))
Hence we obtain from (L.9), (1.32)), (1.33) and (1.37)
iy , N1/2
(1.39) A(Gy) = / (Vut F,b(Vut F))2 det(gij + (Vu + F)i(Vu + F){g2 qr
0 (14 (Vu+ F,b(Vu+ F)))
Now we use formula (1.39) to compute the mean curvature of a graph.

(1.37) N

(1.38) g(N,T) = —

LEMMA 1.19. Let us consider the contact sub-Riemannian manifold (R®"*1, g3, , wo),
where wq is the standard contact form in R*" " and gy, is a positive definite metric
in the horizontal distribution Hgy. Let u: Q C R?™ — R be a C? function. We denote
by g = (9ij)i,j=1,...2n the metric matriz and by b = gl = (gij)iyjzl ,,,,, on the inverse
metric matriz. Then the mean curvature of the graph G,, computed with respect to
the downward pointing normal, is given by

. b(Vu—+ F)
) —div )
(1.40) <<Vu—|—F,b(Vu+F)>1/2> +p

where p is a bounded function in Q\ Qo, and div is the usual Fuclidean divergence in

Q.

PROOF. Given a smooth function v with compact support in 2, we shall compute
the first derivative of the function s — A(Gyyis,) and we shall compare it with the
general first variation of the sub-Riemannian area (|1.31). Let us fix some compact
set K C Q.

We use the usual notation in Calculus of Variations. Let us denote by
1/2
detl(giy + (0 + F)ilp + F))il% 0 o
1+ (p+Fbp+ F)"?

where p € R?". Observe that G is a C°° function well defined in Q. From (1.33)) and
(1.38]) we obtain

(1.42) G(z,u,Vu) :== —Jacg(T, N).

Recall that g;; = gij(2,u), F' = F(z). Let us denote also

(1.43) F(z,u,p) = <p—l—F,b(p—i—F)>1/2 G(z,u,p).

(1.41) G(z,u,p) =
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Then we can write
A(G,) = / F(z,u, Vu) dL*™.
Q
So we have
a
ds s=0
where <F,,,X>(z,u,p) = %L:O(z,u,p + sX) is the gradient of p — F(z,u,p). Ap-
plying the Divergence Theorem
a
ds|,_,
Observe that, from ((1.43)
+F % p+F
Fu = 2 i )1>/2 G+<p+F,b(p+F)>1/2 Gu,
2(p+ F,b(p+ F))
which is bounded from above since b is a symmetric positive definite matrix, and so
there is C' > 0 depending on K so that (Vu+ F,b(Vu+ F)) > C|Vu+ F|?, and the
numerator satisfies (Vu + F, %(Vu + F)) < C'|Vu + F|?. On the other hand
b(p + F)

(p+ F,b(p+ F))'"*

A(Gugso) = /(Fuv + (F,, Vv)dL*™,
Q

(1.44)

A(Guisv) = / v (F, — div F,) dC*".
Q

F,=G +{p+ Fbp+F)?G,

so that

div F, = G div ( b+ F) 1/2) +(vG, — et E)
(p+ F,b(p+F)) (p+ F,b(p+ F))
1/2

1/2

+div({(p+ F,b(p+ F)) "~ Gyp).

Observe that the last two terms are bounded and that G}, is bounded, so that we get
from (1.44) and the previous discussion

4 A(Gu+sv):/v{G div( b(Vu+ F) 1/2) +u’}d£2",
ds 9 (Vu+ F,b(Vu + F))

where G and p’ are bounded functions in K.

Taking into account that the variation s +— wu + sv is the one obtained by
moving the graph G, by the one-parameter group of diffeomorphisms associated to
the vector field U := vT, which has normal component g(U, N) = vg(T,N), that
dG, = JacdL?", and equation , we conclude

% AlGursw) = /Qg(U’ N){ - <<Vu+l;£,vb?v2?m>”2> +M} G

where p = p/(g(N,T)Jac)™! is a bounded function. Comparing this formula with
the general first variation one ([1.31]), and taking into account that g(U, N) is arbitrary

we get ((1.40)). O

REMARK 1.20. If g = go is the standard Riemannian metric in the Heisenberg
group so that {X1,Y3,...,X,,Y,, T} is orthonormal then (g;;); j=1, .. 2n is the identity
matrix, b = Id, 4 = 0, and we have the usual mean curvature equation, see [26].

s=0

s=0

LEMMA 1.21. Let (M, g3, w) be a contact sub-Riemannian manifold. Given p €
M, there exists a neighborhood U of p so that U\ {p} is foliated by surfaces with mean
curvature uniformly bounded outside any neighborhood V-C U of p.
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PROOF. Since the result is local, we may assume, using a Darboux’s chart, that
our contact sub-Riemannian manifold is (R?"*!, g, wy), where wy is the standard con-
tact form in and ¢ is an arbitrary positive definite metric in the horizontal
distribution Hy. We also assume p = 0.

For each \ > 0, we consider the hypersurface Sy given by the graph of the function
1 1
(1.45) ux(z) = 2—/\2{)\|z|(1 — N22/HY2 4 arccos(Mz])}, 2] < T

and its reflection with respect to the hyperplane ¢ = 0, see [78]. Each S, is a
topological sphere of class C? with constant mean curvature A in the Heisenberg group
H2"*1 and two singular points (0, 7/(4A?)). The family {S)}aso is a foliation of
R?7+1\ {0}. From now on we fix some A > 0 and let u := u,.

From Lemma [[.19]it is sufficient show that

. b(Vu + F)
1.46 div
(140) ((Vu+F,b(Vu+F)>1/2>

is bounded near the singular points, In fact the mean curvature is continuous away
from the singular set by the regularity of Sy.

Let ¢° := (¢9'%,...,¢"®")) be the vector in R?" corresponding to the i-th row of
the matrix b. We have

div( b(Vu + F) ) _ i”:a_ < (g",Vu+F) )
<Vu+F,b(Vu+F)>1/2 im1 ' <Vu+F,b(Vu+F)>1/2 ’

where 0; is the partial derivative with respect the i-th variable, i.e., (;11)/2 when i
is odd and y;/ when i is even. Taking derivatives we get

o (¢",Vu+ F) ) 2 {8ig", Vu + F) + {g',0;(Vu + F))
0; -
2 <<Vu+F,b(Vu+F)>1/2 ; (Vu+ F,b(Vu+ F))"/?
$(Vu+F,(9;b)(Vu+ F)) + (8;(Vu+ F),b(Vu + F))
(Vu+ F,b(Vu+ F))*?

It is clear that the first and the third summands are bounded. So we only have to
prove that

i=1

— (¢, Vu+F)

2n
(1.47) > (", 0:(Vu+ F))}(Vu+ F,b(Vu+ F))
i=1
2n
- > ¢ Vu+ F){0:(Vu+ F),b(Vu+ F)) < C[Vu+ F[*?
i,k =1

for some positive constant C. We easily see that the left side of (|1.47) is equal to

2n
(148) Y g9gM0;(Vu+ F);(Vu+ F)i(Vu+ F),
i,k 0=1
2n
- Z g7 g*0;(Vu + F)(Vu + F);(Vu + F),.
i,k =1

Taking into account that

8iFj+8jFi:O, foralli,j=1,...,2n,
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and the symmetries of (1.48)), we get that (1.48)) is equal to

Z 97 g" ui;(Vu+ F)(Vu + F), Z 97 " i (Vu + F);(Vu + F),,
i,j,k,€=1 4,7,k 0=1

so we only need to show that each term

(Vu+ F)(Vu+ F), Ujj
(Vu+ F,b(Vu + F))3/2

is bounded to complete the proof. Since

(Vu+ F)i| < |Vu+ F|, and (Vu+ F,b(Vu+ F)'/? > C|Vu + F),

for some positive constant C' > 0, it is enough to show that

Wis
1.49 1
(149) |Vu+ F|
is bounded.
A direct computation yields
ou A zlx; ou A zlyi

dr; (1= N[22 3y, (1— N[22
and so
" ([ Ou > [ ou ? 22|22
Vu+ F?> = — — i — ) =21+ ).
Vet ;<6x y) +<ayi”) & < +1—A2|z|2>
Hence
(1.50) Cilz| < |Vu+ F| < Colz|,

for some constants C7, Co > 0 near z = 0.
On the other hand

0%u . Alz] B AT T
(A P (S U PR
0%u e Al z] _ AYiY;
0y, TR I
82u _ )\xiyj
dziy; — |2[(1— A2|z[2)3/2
and so
luij| < Clz|,

for some constant C' > 0. This inequality, together with (1.50)), shows that (1.49)) is
bounded.
O

LEMMA 1.22 (Deformation Lemma). Let (M, gy, w) be a contact sub-Riemannian man-
ifold and Q) C M a finite perimeter set. Then there exists a small deformation €1, D €,
0 <r < rg, such that

PO(Q, — Q) <CIQ, — 9,

where C is a positive constant.
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PRrOOF. For p € int(Q) sufficiently close to €, there exists by LemmalL.21]a local
foliation by hypersurfaces F;., 0 < r < rg, with mean curvature uniformly bounded
outside a small neighborhood of p. Let U, be the regions bounded by F,. and let v (q)
the horizontal unit normal at g € F,. of the surface F,, for r € [d(p, 90), ro]. Letting
Q. :=Q°NnU,, (NZ = . U, we have that there exists C > 0 so that divy, < C by
and the boundedness of the mean curvature. So we have

C|19| = /div(yh)dvg = /gH(Vh,l/)dP(Fr NQ°%) + /gy(yh,y)dp(a*Qr NnU,)
Q. M M
P(OF,. NQ%) — P(O*Q, NU,),

where v is defined in the Gauss-Green formula. We have used g (vh,v) =1 in the

first integral and g# (v, V) = —1 in the second one. But also that from the definition
of dP(.) it follows

[ i) = pe.0),
Q
see [40] p. 879-880] and [41], p. 491-494]. O

LEMMA 1.23. Let (M, gy, w) be a contact sub-Riemannian manifold, and E C M
be a set minimizing perimeter under a volume constraint. Then E is bounded.

PrOOF. We fix p € M and denote the ball B(p,r) by B,. We let V(r) :=
|EN(M\ B,)|, so that V(r) — 0 when r — oo since E has finite volume. Let us
assume that V(r) > 0 for all » > 0. Applying the isoperimetric inequality for small
volumes when r is large enough to the set EN (M \ B,) we get, taking ¢ as in ,

(1.51) CrV(r)? < P(EN(M\ B,))

P(E,M\B,) + P(EN B,,0B,)
P(E,M\B,) + [V'(r)|

< P(E) - P(E,By) + |V'(r)].

We now fix some rq > 0. For r > rq, the Deformation Lemma shows the existence
of a set E, so that FE, is a small deformation of EN B,, E,. \ (E N B,) is properly
contained in B,,, |E,;| = |E| (which implies |E \ E,.| = V(r)), and P(E,,B,) <
P(E,B,)+ CV(r). So we have
(1.52) P(E,) < P(E.,B,)+ P(E.N B,,0B,)

= P(E,,B,) + P(EN B,,dB,)
< P(Ey, By) + [V'(r)]

N

N

By the isoperimetric property of E we also have

(1.53) P(E) < P(E.) < P(E., B,) +|V'(r)],
for all r >
From and (| we finally get
(1.54) C[V(?“) SCV(r)+2|V'(r)].
Since V(r) = V(r)1=9V (r)? < (C;/2) V(r)? for r large enough, we get
Cr

_7‘/( ) 2V/(7‘)7
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or, equivalently,

(Vl/Q)/ < _% <0,
which forces V(r) to be negative for r large enough. This contradiction proves the
result. O

1.4. Structure of minimizing sequences

In this section we will prove an structure result for minimizing sequences in a
non-compact contact sub-Riemannian manifold. Partial versions of this result were
obtained for Riemannian surfaces, [74], [75], and for Riemannian manifolds [79].

PROPOSITION 1.24. Let (M, gy, w) be a non-compact contact sub-Riemannian
manifold. Consider a minimizing sequence {Ey}ren of sets of volume v converging
in Li,.(M) to a finite perimeter set E C M, eventually empty. Then there exist
sequences of finite perimeter sets {E¢ }ren, {El}ren such that

1. {E¢}ken converges to E in LY(M), {Ed}ren diverges, and |E{| + |E¢| = v.
limy o0 P(ES) + P(ES) = I (v).
limy_,o0 P(ES) = P(E).
If |E| # 0, then E is an isoperimetric region of volume |E|.
Moreover, if M/ Isom, (M, g) is compact then limg_,oo P(E{) = Ins(v — | E|).
In particular, Ips(v) = Inf(|E]) 4+ Iy (v — | E)).

Crds o b

PrOOF. We fix a point p € M and we consider the balls B(r) := B(p,r). Let
m(r) := |E N B(p,r)|, mp(r) := |E, N B(r)|.

We can choose a sequence of diverging radii 7, > 0 so that, considering a subse-
quence of {E}}ren, we would had

(1.55) / 1p —1g,| < %
B(ry)
(1.56) P(Ey,\ B(ry),dB(ry)) < %

In order to prove (1.55) and ([1.56]) we consider a sequence of radii {sj}ren so that

Sk+1 — Sk = k for all k € N. Taking a subsequence of { Fj }ren, we may assume that
1
g —1g,| < E
B(sk+1)

so that (1.55)) holds for all r € (0, sg41). To prove (1.56]) we observe that my(r) is an
increasing function. By Lebesgue’s Theorem

Sk41
m/(r)dr < m(sg+1) — m(sk) < v,
Sk

which implies that there is a set of positive measure in [sg, sg11] so that m/(r) < 7.
By Ambrosio’s localization Lemma [2] Lemma 3.5] we have, for almost everywhere r,

P(Ex\ B(r)), 0B(r)) < mi(r).

This implies that there is ry € [sg, Sk+1] so that (1.56]) holds.
Now we define

Ei:=ENDB(ry), E:=FE\B(ri).
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Now we prove [l Since E has finite volume and holds we conclude that
{E¢}ren converges in L'(M) to E. The divergence of the sequence {E{}ren and
equality |E¢| 4+ |E{| = v follow from the definitions of E{ and E{.

In order to prove [2| we take into account that

P(E,%) < P(Ek, B(Tk)) + P(Ek; N aB(’l‘k), (“)B(rk)),
P(EY) < P(Ey, M\ B(r)) + P(Ex N 0B(ry), 0B(r1)).
By we have
P(EW) < PES) + P(E) < P(Ex) + 2.

Taking limits when k — oo we get
To prove [3] we shall first show that

(1.57) P(E) = likm inf P(EY)
— 00
reasoning by contradiction. Since Ef converges in L'(M) to E, we may assume that

the strict inequality P(F) < liminfy_,. P(E})) holds. Reasoning as above we obtain
an non-decreasing and diverging sequence of radii {px }ren so that pp < 7 and

v
P(EN3B(pr),0B(pr)) < 7,
for all k € N. Let Ej, := EN B(pg). The perimeter of Ej satisfies
v
P(Ey) < P(E, Bpr)) + P(EN9B(pr), 0B(pr)) < P(E) +
and for the volume |Ej | we have
lim |E}| = |E| =v — lim |EY.
k—o0 k—oc0
We fix two points p; € int(E), ps € int(M \ E), close enough to the boundary of E,
so that we can apply the Deformation Lemma in a neighborhood of each point. This

allows us to make small corrections of the volume and obtain, for £ € N large enough,
a set E} of finite perimeter so that

B | + | Ef| = v,

and

v
P(E}) < P(Ey) +C ||E| - |E{|| < P(E) + zt¢ ||| — EF),
so that

liminf P(E}) < P(E).
k—o00
Then Fy, := E}/ U E{ is sequence of sets of volume v with
liminf P(Fy) < P(E) + liminf P(E{) < liminf(P(Ef) + P(EY)) = In(v),
k—»00 k— o0 k— o0

which clearly gives us a contradiction and proves (1.57). To complete the proof of
we observe that we can replace the inferior limit in (1.57) by the true limit of the
sequence since every subsequence of a minimizing sequence is also minimizing.

To prove 4| we consider a finite perimeter set F' with |F'| = |E| and P(F') < P(E)
and we reason as in the proof of [3| with F' instead of E.

Let us finally see that [5| holds. From |2 and [3| we see that limy_, . P(E,‘f) exists
and it is equal to Ip(v) — P(E). If this limit were smaller than Ip;(v — |E|) then
we could slightly modify the sequence {E¢} ey to produce another one {Fj }xen with
|F| = v — |E| and limg_ 0o P(Fy) = limg_ 0o P(EY) < Ins(v — |E|), which gives a
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contradiction. If limg o, P(E{) were larger than Ip;(v — |E|) then we could find a
set F' with |F'| = v — |E| so that

MAW—WD<PUU<JMLHE@.
—00
Modifying again slightly the volume of F' we produce a sequence {F}}ren so that

|E| + |Fx| = v and limy_, P(F}) = P(F). Since E is bounded, we can translate the
sets F} so that they are at positive distance from E. Hence

klim P(EUFy) = klim P(E)+ P(Fy) = P(E)+ P(F) < Inp(v),
—00 —00
a contradiction that proves O

REMARK 1.25. The proof of the first three items in the statement of Proposi-
tion [I.24] works in quite general metric measure spaces. The proof of the last two
ones needs the compactness of the isoperimetric regions.

1.5. Proof of the main result
We shall prove in this section our main result

THEOREM 1.26. Let (M, gy, w) be a contact sub-Riemannian manifold such that
the quotient M /Isom,, (M, g) is compact. Then, for any 0 < v < |M|, there exists on
M an isoperimetric region of volume v.

First we need the following result [58 Lemma 4.1]

LEMMA 1.27. Let E C M be a set with positive and finite perimeter and measure.
Assume that m € (0,infzerr |B(x,r0)|/2), where ro > 0 is the radius for which the
relative isoperimetric inequality holds, is such that |E N B(x,ro)| < m for all x € M.
Then we have

(1.58) C|E|?® <mP(E)?,
for some constant C > 0 that only depends on Q.

ProOOF. We closely follow the proof of [68], Lemma 4.1]. We consider a maximal
family of points A in M so that d(z,2’) > r¢/2 for all z, 2’ € A, = # 2/, and
|E N B(x,ro/2)] > 0 for all z € A. Then (J, 4 B(x,70) cover almost all of E. We
have

Bl < 31BN B, o) < m/ S B A Bla, o)l
€A z€A
<m'/?Cr " P(E, B(x,m)),
z€A

since (1/Q) + ¢ = 1 and |E N B(x,r9)] < m. The last inequality follows from
the relative isoperimetric inequality since |E N B(z,r)| < m < |B(x,ro)|/2 and
so min{|E N B(x,ro)|, |E°NB(x,ro)|} = |ENB(x,79)|. The overlapping is controlled
in the same way as in [58] to conclude the proof. O

Using the following result we can prove Proposition [1.29
LeMMA 1.28 ([3l Thm. 4.3]). The measure P(E,-) satisfies

. . . P(E,B(z,9)) _ . P(E,B(x,0))
—— ' ' 77 - ' ' 77
T< hgnlglf 501 < 111;1551 501

for P(E,-)-a.e. x € M, with 7 > 0.

< +o00,



1.5. PROOF OF THE MAIN RESULT 35

PROPOSITION 1.29. Given vy > 0, there exists a constant C'(vg) > 0 so that
(1.59) In(v) < Clwg) 0@~ D/Q,
for all v € (0, v].

PROOF. For any x € M we have

Lu(|B(a,r)]) < P(B(e,r) < er®' < @-/@,

c
Ca—n/g 1 B:7)l
where we have used |B(z,7)| > Cr® to get r® < C~YQ|B(z,7)|"/? and Lemmam
with £ = B(x,r) and § = 2r.

]

PROOF OF THEOREM [L.26l We fix a volume 0 < v < |M|, and we consider a
minimizing sequence {Fj }ren of sets of volume v whose perimeters approach Ips(v).
In case M is compact, we can extract a convergent subsequence to a finite perimeter
set E with |E| =v and P(E) = Iy (v).

We assume from now on that M is not compact. By Lemma [[.27] for any m > 0
such that mv < inf,epr |B(x,70)|/2, there is a a constant C' > 0, only depending on
@, so that, for any finite perimeter set F C M satisfying |E N B(x,ro)| < m|E| for
all z € M, we have

CIE|? < (m|E|) P(E)?,
and so
c\/e
(1.60) P(E) > (m> |B|(@-1/Q,

From Proposition we deduce that, given v > 0, there is a constant C'(v) > 0 so
that Ip(w) < C(v) w@ D/Q for all w € (0,v]. Taking mg > 0 small enough so that

c\e
(1.61) (mo> |E|(Q—1)/Q > 20(v) |E|(Q—1)/Q

we conclude, using (1.60)), (1.61) and (1.59)
(1.62) P(E) = 21y(E]).

We conclude from ((1.62)) that, for k large enough, the sets in the minimizing sequence
{E% }ren cannot satisfy the property |E N B(x,rq)| < m|E| for all z € M. So we can
take points x; € M such that

|Ex N B(xg,ro)| = mo|Ex| = mov,

for k large enough. Since M /Isom,, (M, g) is compact, we translate the whole mini-
mizing sequence (and still denote it in the same way), so that {xj}ren is bounded.
By passing to a subsequence, denoted in the same way, we assume that {z}ren con-
verges to some point zyp € M. By the compactness Lemma there is a convergent
subsequence, still denoted by {Ej}ren that converges to some finite perimeter set E,
and
mov < liminf |Ey, N B(xo,r0)| = |[E N B(xg,70)],
k—oc0

and
|E| < liminf |Ey| = v.
k—o0

So we have proven the following fact: from every minimizing sequence of sets of
volume v > 0, one can produce, suitably applying isometries of M to each member
of the sequence, a new minimizing sequence {Ej}ren that converges to some finite
perimeter set F with mgv < |E| < v, where mg > 0 is a universal constant that only
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depends on v. Hence a fraction of the total volume is captured by the minimizing
sequence.

Now take a minimizing sequence { F} }ren that converges to some finite perimeter
set E of volume mov < |E| < v. The set E is isoperimetric for volume |E| and hence
bounded by Lemma By Proposition the sequence {Ej }ren can be replaced
by another minimizing sequence {E¢ U Ef}yen so that Ef — E and Ef diverges.
Moreover, { E¢}en is minimizing for volume v — |E|. Hence one obtains

In(|E]) + I (v — |E]) = Ins(v).

If |E| = v we are done since P(E) < liminfy o P(Fx) = Ip(|E|) and hence E
is an isoperimetric region. So assume that |E| < v and observe that |E| > mov. It is
clear that FE is an isoperimetric region of volume |E|. The minimizing sequence can
be broken into two pieces: one of them converging to E and the other one diverging.
The diverging part is a minimizing sequence for volume v — |E|. We let Fy := F.

Now we apply again the previous arguments to the diverging part of the sequence,
which is minimizing for volume v — |E|. We translate the sets to capture part of the
volume and we get a new isoperimetric region F; with volume

v —[Fo| = [F1| = mo(v — |Fol),

and a new diverging minimizing sequence for volume v — |Fy| — |F;|. By induction we
get a sequence of isoperimetric regions {F }ren so that the volume of Fj, satisfies

Fil > mo(vZ|F|)

Hence we have

k k—1 k
Z ‘le > (k‘ + 1)m0v — kmyg Z |Fz| > (k + l)mov — kmy Z |F‘l|7
1=0 =0 =0

and so
(k +1)mov
Z B[ > :
1+ km()

Taking limits when k — co we get

k
k—00 4
1=0
Moreover,

> P(F;) = Iy ().
=0

Each region F; is bounded, so that we can place them in M using the isometry group
so that they are at positive distance (each one contained in an annulus centered at
some given point). Hence F := |J;o, F; is an isoperimetric region of volume v. In
fact, F must be bounded by Lemma [T.23] so we only need a finite number of steps to
recover all the volume.

O



CHAPTER 2

First and second variation formulae in
three-dimensional pseudo-hermitian manifolds

2.1. Preliminaries

A three-dimensional contact manifold [15] is a three-dimensional smooth manifold
M so that there exists a one-form w such that dw is non-degenerate when restricted
to H := ker(w). Since

dw(X,Y) = X (w(Y)) = Y(w(X)) —w([X,Y])

the horizontal distribution H is completely non-integrable. It is well known the exis-
tence of a unique Reeb vector field T in M so that

(2.1) w(T) =1, (Lrw)(X) =0,

where L is the Lie derivative and X any smooth vector field on M. It is a direct
consequence that w A dw is an orientation form on M. A well-known example of
contact manifold is the Euclidean space R? with the contact one-form

(2.2) wo = dt + zdy — ydz.

A contact transformation between contact manifolds is a diffeomorphism preserv-
ing the horizontal distribution. A strict contact transformation is a diffeomorphism
preserving the contact one-form. A strict contact transformation preserves the Reeb
vector field. Darboux’s Theorem [I5] Theorem 3.1] shows that, given a contact man-
ifold M and some point p € M, there exists an open neighborhood U of p and a strict
contact transformation f from U into a open set of R® with its standard contact
structure induced by wp. Such a local chart will be called a Darboux chart.

A positive definite metric gy on H defines a contact sub-Riemannian manifold
(M, g3,w) on M [63]. The first Heisenberg group is the contact sub-Riemannian
manifold H! = (R3, go,wp), where gq is the Riemannian metric on H defined requiring

that

0 0 0 0

form an orthonormal basis at each point.
The length of a piecewise horizontal curve v : I — M is defined by

Ly) = / (1) dt,

where the modulus is computed with respect to the metric g;. The Carnot-Carathéo-
dory distance d(p,q) between p, ¢ € M is defined as the infimum of the lengths of
piecewise smooth horizontal curves joining p and ¢. A minimizing geodesic is any
curve v : I — M such that d(y(¢),v(t")) = |t — t/| for each ¢, ¥ € I. From [63]
Chap. 5] a minimizing geodesic in a contact sub-Riemannian manifold is a smooth
curve that satisfies the geodesic equations, i.e., it is normal.

37



38 2. FIRST AND SECOND VARIATION FORMULAE

The metric gy can be extended to a Riemannian metric g on M by requiring that
T be a unit vector orthogonal to . The scalar product of two vector fields X and Y
with respect to the metric g will be often denoted by <X, Y> instead of g(X,Y’). The
Levi-Civita connection induced by ¢ will be denoted by D. An important property of
the metric g is that the integral curves of the Reeb vector field T are geodesics [15]
Theorem 4.5].

A usual class defined in contact geometry is the one of contact Riemannian man-
ifolds, see [15], [90]. Given a contact manifold, one can assure the existence of a
Riemannian metric g and an (1, 1)-tensor field J so that

(2.3) 9(T,X) =w(X), 29(X,J(Y)) =dw(X,Y), J*X)=-X+wX)T.

The structure given by (M,w,g,J) is called a contact Riemannian manifold. The
class of contact sub-Riemannian manifolds is different from this one. Recall that, in
our definition, the metric g is given, and it is extended to a Riemannian metric g in
T M. However, there is not in general an (1, 1)-tensor field J satisfying all conditions
in . Observe that the second condition in uniquely defines J on H, but
this J does not satisfy in general the third condition in , as it is easily seen
in (R3,wg) choosing an appropriate positive definite metric in ker(wp). When M is
three-dimensional the structure (M, w, g, J) is equivalent to a strongly pseudo-convex
pseudo-hermitian structure [I5, Corollary 6.4] and we will call briefly (M, gx,w, J)
a pseudo-hermitian manifold.

The Riemannian volume form dv, in (M, g) is Popp’s measure [63] § 10.6]. The
volume of a set £ C M with respect to the Riemannian metric g will be denoted by

A contact isometry in (M, gy, w) is a strict contact transformation that preserves
gy - Contact isometries preserve the Reeb vector fields and they are isometries of the
Riemannian manifold (M, g).

In a contact sub-Riemannian 3-manifold (M, g3,w) , we define a linear operator
J :H — H on an orthonormal basis {X,Y} of H with respect to the metric g by

24)  g(J(X),Y) = —g(J(Y), X) = sgn(c1), ¢(J(X),X)=g(J(Y),Y) =0,

where we have denoted ¢;1(p) = —¢([X,Y](p),T,). We remark that ¢1(p) never vanish
since span{X,Y} = TM and sgn(c;) equals 1 or —1 in the whole manifold. Further-
more J can be extended to the whole tangent space by requiring J(T') = 0. Now we
define a connection V, that we will call the (contact) sub-Riemannian connection, as
the unique connection having non-vanishing torsion defined by

(2.5) Tor(X,Y) = g(X,T)7(Y) — g(Y, T)7(X) + c19(J (X), Y)T,
where 7 : T'M — H is defined by

(V) = =3I (Er (V)

for all Ve TM. Clearly 7 vanishes outside H. Alternatively if we consider the
endomorphism
o(V):=DyT:TM — H.
we have that
C1

(2.6) 9(o(V), 2) = 9(r(V), Z) + 5 9(J(V), Z).

Equation (2.6) can be viewed as an alternative definition of J and 7, where J and
T are antisymmetric and symmetric respectively. We shall call 7 the (contact) sub-
Riemannian torsion. We remark that V and 7 are generalizations of the well-known
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pseudo-hermitian connection and pseudo-hermitian torsion in a pseudo-hermitian 3-
manifold (M, gy, w, J) ,[25 Appendix] and [37]. From the above definitions it follows
easily

(2.7) VvT =0,
(2.8) (Vv JJ)Z =0
and

(2.9) 9(J(V),V) =0,

for all V, Z € TM. Here J? = —Id on H but satisfies the second equation in if
and only if (M, g, J) is a pseudo-hermitian manifold. It implies the normalization ¢; =
2 and at our knowledge all definitions of pseudo-hermitian manifolds and Riemannian
contact manifolds require it implicitly. But there exist interesting examples that
do not satisfy ¢; = 2 as the roto-translation group RT that we will study in the last
section. The difference between the Levi-Civita and the pseudo-hermitian connections
can be computed using Koszul’s formulas as in [37 p.38]

(2.10) 29(DxY —VxY,Z) =g(Tor(X,2),Y)+g(Tor(Y,Z),X)—g(Tor(X,Y), Z).
In a contact sub-Riemannian 3-manifold (M, g3;,w) we can generalize the defini-

tion of the Webster scalar curvature given in pseudo-hermitian 3-manifold (M, g3, w, J)

by

(2.11) W= —g(R(X,Y)Y, X),

where {X,Y} is an orthonormal basis of 7 and R is the pseudo-hermitian curvature
tensor defined by

(2.12) R(ZW)V =VwVzV =VzVwV + VizwV,

for all Z, W,V € TM.

In the following we restrict ourselves to the case in which ¢; is a constant. We
briefly call such a manifold a pseudo-hermitian 3-manifold (M, gx,w, J), since it has
analogous properties respect to a pseudo-hermitian manifold defined in [25] Appendix]
and [37].

2.2. The first variation formula for C? surfaces.

We define the area of a C! surface ¥ immersed in M by

(2.13) AR) = [ |Ny|dD,
/

where N is the unit normal vector with respect to the metric g, Ny, is the orthogonal
projection of N to H and dX is the Riemannian area element of 3. The singular set
Yo consists of those points p where H,, coincides with the tangent plane 7,3 of M.
We define the horizontal unit normal vector vy (p) and the characteristic vector field

Z(p) by
Ni(p)
(2.14) vR(p) i= ———%, Z(p) = J(wn)(p)
[Nu(p)|
for all p € ¥ — ¥y. Since Z, is orthogonal to v, and horizontal, we get that Z, is

tangent to X and generates 1,2 NH,. We call characteristic curves of ¥ the integral
curves of Z in ¥ — ¥y. Now setting

(2.15) S := g(N,T)vj, — |Ny,|T
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we get that {Z,,S,} is an orthonormal basis of T,X for p € ¥ — Xy.

Now we consider a C! vector field U with compact support on ¥ and denote
by ¥; the variation of ¥ induced by U, ie., ¥; = {exp,(tU,)|p € L}, where exp
is the exponential map of M with respect to g. Furthermore we denote by B the
Riemannian shape operator and by 6 the 1-form associated to the connection V and
Vh
(2.16) O(v) == g(Vorpn, Z),
for all v € T, M.

LEMMA 2.1. Let ¥ be an oriented immersed C? surface in a contact sub-Riemannian
three-dimensional manifold (M, gy, w). Consider a point p € ¥ — Xq, the horizontal

Gauss map vy, and the basis {Z,S} of T,M already defined. For any v € T,M we
have

(i) |Nn|Z(|Nn|) = —g(N,T)Z(g(N,T));
(ii) [Nn| "' Z(g(N,T)) = |Nn|Z(g(N,T)) — g(N,T)Z(|Nnl);
(iii) g(B(Z),S) = % — g(1(Z),vn) +|Np|" Z(9(N,T))
= —g(O‘(Z)7Vh) + ‘Nhl_lz(g(N’ T)>’
(iv) 9(B(S),Z) = —g(N,T)*g(1(vn), Z) + F(INp[> = (N, T)?) — |N4|0(S);
(v) [Nu|71Z(g(N,T)) = —c19(N, T)* + |Np[*9(7(Z), i) — [Nw|0(S).

PROOF. From Z(|Np|?) = Z(1 — g(N,T)?) we immediately obtain (i). Using (i)
and |N| =1 we get

INu|Z(g(N,T)) = g(N,T)Z(|Nn|) = (INn| + [Nu| "' g(N, 1)) Z(g(N, T))
= [N~ Z(9(N, T))
which proves (ii). From N = g(N,T)T + |Np|vp, and we have
9(DzN, S) = Z(g(N,T)g(T.,S) + (N, T)g(0(Z), S) + Z(INn|)g(vn, S) + [Nulg(Dzvn, S)
=9((c1/2)J(Z) + 7(Z),vn) + |Nu|Z(g(N,T)) — g(N,T) Z(|Npl),
where we have used
9(Dzvy, S) = =|Nulg(Dzvn,T) = [Nnlg(o(Z),vn).
Now from (ii) we get (iii). On the other hand
9(DsN, Z) = g(N,T)g(o(5), Z) + [Nnlg(Dsvn, Z),
by (2.10) and (2.15]) we obtain (iv). Finally we get (v) subtracting (iii) and (iv) since

The next lemma is proved in [77] for the Heisenberg group H", but it holds in a
general contact sub-Riemannian 3-manifold (M, g3, w) with the same proof.

LEMMA 2.2. Let ¥ be a C* surface in M, p € ¥ and {E1, E2} any basis of T,X.
Then we have

|vp|
N -7l
| h|(p) G(El’E2)1/27

where vy, 1= g(Tp, E1)Es — g(Tp, E2)E1 and G(E1, E2) is the Gram determinant of
{E1, E5}.

PROOF. We consider

(2.17) Ny = AEy + pEs + [Ny >N
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so that |N,|2g(N,T) = —(A\g(E1, T) + pg(E2,T)). From Ny, = N —g(N,T)T we have
(2.18) g(Nn, E;) = —g(N,T)9(T, E;),i =1, 2.

Now compute A and p taking scalar product in (2.17)) with E; and Es in (2.17) and
using ([2.18)) we have

(1)) =gl (bt ol Y (400,

Hence we have obtained
g(N7 T) |’U|2
G(E1, Es)
which prove the statement in the case g(N,T) # 0. If g(N,T) = 0 we simply check

that |v|?> = G(Ey, E2)?, writing F; and E in term of an orthonormal basis {w, T} of
T,%. O

[N |*g(N, T) =

Now we introduce the notion of intrinsic regularity, [41], [42] and [43]. Let Q be
an open subset of M, we say f : Q — R of class C}, in Q when X f exists and it is
continuous for any X € H. We define f € C},(€2) when X f € C;f[_l(Q) for all X € H.
Since ¢; is a real constant immediately we obtain that f € C3F(Q) implies f € C*(12).
We define a surface ¥ a H-regular surface of class C;fl if for any p € ¥ exist B, (p), a
metric ball of radius r centered in p, and a function f € 07’“{ such that

LN Br(p) ={p € B.(p) : f(p) =0,V f(p) # 0},
see [41] for the definition in the Heisenberg group.

LEMMA 2.3. Let X be an oriented immersed C? surface in a contact sub-Riemannian
three-dimensional manifold (M, gy, w) and let f € C1(M). Then we have

divs(fS) = S(f) + fg(N,T)0(Z) — f|Nulg((Z), Z),
and
divs(fZ2) =Z(f) — fg(N,T)0(S) + fg(N,T)|Nnlg(7(vn), Z)
+leg(NaT)|Nh|g(J(Vh)vz)a

where divy; is the Riemannian divergence with respect to an orthonormal basis of TX.

ProoOF. We have
divs(fZ) = Z(f) + f9(DsZ, S)

and by
9(DsZ,S) = g(N,T)g(DsZ,v) — g(N,T)|Np|g(Dy, Z,T)
and using we prove the second equation. For the first one we note that
divs(fS) = S(f) + f9(DzS, Z)
and we can conclude using
9(DzS,Z) = g(N,T)g(Dzvh, Z) — [Np|g(DzT, Z)
together with . (|

Now we can present the key Lemma to obtain the first variation.
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LEMMA 2.4. Let ¥ be an oriented immersed C* surface in a contact sub-Riemannian
three-dimensional manifold (M, g3, w). Then the first variation of the sub-Riemannian
area induced by the vector field U, that is C}(X) along the variation, is given by

d

- 2| Ay = /{fS(g(U,T))+C19(NaT)9(J(Vh),Uh)

DIEDIN
+ [Nulg(VzUn, Z) + |Nn|g(U,T)g(7(Z), Z) }d5.

PRrROOF. For every p € ¥ and the orthonormal basis {Z, S} of T,X, we consider
extensions Fi(s), Ea(s) of Z, S along the curve s — ¢4(p) so that [E;,U] = 0, i.e.,
the vector fields E; are invariant under the flow generated by U. By Lemma [2.2] the
Jacobian of the map ¢, at p is given by G(FE;(s), Ea(s))/2. We get

A(pa(®) = / IV (s))ds,
>

where V(s) := g(T, E1(s))E2(s)—g(T, E2(s))E1(s). We can express the first derivative
of the area as

d

ds ls=0

g(VyV,V(0))

v >

Alps(X— o)) =
/

Now ¢(T, E1(0)) = 0 and g(T, E2(s)) = —|Np| imply V(0) = |Ny|Z. Since [E;,U] =0

and we have

ADUELO) (g, D)MoV B, 2) = ~(o(VuEa 7)) +HNnlg(Vir s, 2)

and substituting we obtain

S AC@) = [ {-o(VoET) +1Nilg(VuEr, 2)}s.
£
Finally since
Q(VUE27 T)) = g(vSUa T) - Clg(Na T)g('](’/h)7 U)
=S(g(U,T)) — c1g(N, T)g(J (vp),U)
and from
9(VuEr, Er) = g(VzUn, Z) + g(U,T)g(1(Z), Z)
we get .

Now we are able to get variation formulas in generic directions.

COROLLARY 2.5. Let ¥ be an oriented immersed C? surface in a contact sub-
Riemannian three-dimensional manifold (M, gy, w). Then the first variation of the
area induced by the tangent vector field U = 1Z + hS, with I,h € C} (X — 39), is

d

ds SZOA((PS(E)) = /le2(|Nh|U))dZ

P

Furthermore when 0¥ = 0 the above term vanishes.
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PRrOOF. By (2.19) we get
d

Il Aes (X)) = /{cllg(NaT)g(J(Vh),Z)—i—|Nh|Z(l)}d§]

-%o

+ / (S(Nal) + hg(N, TN lg(V zvn, Z) — hINAPg(r(Z), Z)}dS
X—30

:/divz(l|Nh|Z)dE+/divz(h|Nh|5)d2,
b P

where we have used |Ny,|Z(l) = Z(|Ny|l) — IZ(|Ny|), Lemma [2.1] formula (2.19) and
Lemma When 93 = () we can use the Riemannian divergence theorem to prove
that the variation vanishes. ]

COROLLARY 2.6. Let ¥ be an oriented immersed C? surface in a contact sub-
Riemannian 3-manifold (M, gy, w) . Then the first variation of the area induced by
a normal vector field U = ulN, with u € C}(%), is

d

e G / ug(Vzvn, Z)dS — / divs; (ug(N, T)S)ds.
P

b

Furthermore if u € C3(X — Xo) we get

d
L Alps(D)) = Y yvn, Z)d.
&l A=) = [ug(vam,2)
b
ProoF. By (2.19) and Lemmawe get

%L:OA(QOS(E)) = /{—S(g(N7T)u) +uNp?g(V zvn, Z)
5

+ug(N,T)|Nilg(7(Z), Z) }d%
:/ug(VZVh,Z)dE—/divz(ug(N,T)S)dZ.
5

b

When u € C3(Z — Xp), we can use the Riemannian divergence theorem to conclude

/dng(ug(N7 T7)S)d¥ = 0.
5
O

REMARK 2.7. When (M, gy, w) is the Heisenberg group H! we have that Corollary
coincides with [81] Lemma 4.3]. Furthermore Corollary coincides with [25]
eq. (2.8”)] where the authors considered non-singular variations in a pseudo-hermitian
3-manifolds (M, g3, w, J). Different versions of Corollarycan be found also in [60],
[61] and [53], [54], for Carnot groups and vertically rigid manifolds, respectively.

DEFINITION. Let ¥ be a surface of class C3,. Corollary allows us to define the
mean curvature of ¥ in a point p € ¥ — ¥ as

(220) H = —g(VZV;“Z).

A minimal surface is a surface of class C3, whose mean curvature H vanishes.
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We observe that extends the definition of mean curvature from C? surfaces
to C7 surfaces. We note that our definition of mean curvature coincides with [4], [25],
[53] and [81] among others, for surfaces of class C? and it is motivated by Proposition
in Section In [77] the author also defined the mean curvature for surfaces of
class C3,.

2.3. Characteristic Curves and Jacobi-like vector fields.

In this section we give a characterization of characteristic curves in a constant
mean curvature surface and we define special vector fields along characteristic curves
that are the natural generalization of Jacobi vector fields along geodesics in Sasakian
sub-Riemannian manifolds.

PROPOSITION 2.8. Let ¥ be an oriented immersed C3, surface of constant mean
curvature H = c1 A in a contact sub-Riemannian three-dimensional manifold (M, g3, w).
Then, outside the singular set, the equation of characteristic curves is

(2.21) ViZ+aMJ(Z) =0,

where V denote the pseudo-hermitian connection. We will call A the curvature of the
characteristic curve.

PROOF. It is an immediate consequence of (2.7)), (2.20) and |Z] = 1. O

REMARK 2.9. Let v be a Carnot-Caratheodory geodesic in a pseudo-hermitian
3-manifold (M, gy, w,J) . Then the unit tangent vector field % to ~ satisfies [83]
Proposition 15]

(2.22) { Vi +an(3) =0

YA = —29(7(9),9);

where V is the pseudo-hermitian connection. This implies that characteristic curves
in a constant mean curvature surface are sub-Riemannian geodesics if and only if
g(7(%),%) = 0. For instance, this is satisfied in manifolds with vanishing torsion.

PROPOSITION 2.10. We consider a pseudo-hermitian 3-manifold (M, g, w,J) ,
a curve o : I — M of class C' defined on some interval I C M and a C' unit
horizontal vector field U along a. For fized A € R, suppose we have a well-defined
map F : I xI' = M given by F(e,s) = v-(s), where I' is a open interval containing
the origin, and v:(s) is a characteristic curve of curvature X\ with initial conditions
7:(0) = a(e) and 7:(0) = U(e). Then the vector field V.(s) := (0F/0¢e)(e, s) satisfies
the following properties:

(i) Vz is a C™ wvector field along v. and satisfies [Ye, Vz] = 0;

(ii) along v. we have

Ye(Ag(Ve, T) + 9(Ve, ¥e)) = —g(Ve, T)g(7(e), Ye )

in particular A\g(Vz, T)+g(Ve, 4e) is constant along sub-Riemannian geodesics;
(iii) V; satisfies the equation

(2.23) V' + R(Ye, Ve)¥e + aa M (VL) + g(Ve, T)J(7(%e))} + Vi Tor(Ve, %) = 0,
V’VETOT(‘/Ea ’YE) = _g(‘/&a T)”T + g(‘/&a T)/T(;YE) + g(‘/Ea T)V’YET(’YE)

where V' denotes the covariant derivative along ve and R the curvature tensor
with respect to the pseudo-hermitian connection.



2.3. CHARACTERISTIC CURVES AND JACOBI-LIKE VECTOR FIELDS. 45

(iv) the vertical component of Vi, g(Vi, T), satisfies the differential equation
g(Ve, )" + B1(8)g(Ve, T) + c1B2(s)g(Ve, T) = 0,
with
Bi(s) =W = c19(1(%), J(3e)) + i,
Ba(s) = c1Ag(7(Fe), Je) + 9(R(Fe, T) Ve, I (Fe)) — e (9(T(Fe), T (),

where W is the pseudo-hermitian scalar curvature and ' is the derivative
respect to s.

ProOOF. For simplicity we avoid the subscript € in the computation. The proof
of (i) is analogous to the one of [82] Lemma 3.3 (i)]. From [¥,V] = 0 and (2.5 we
have

g(V.T) =5(g(V.T)) = g(V V.T) = g(Vvi + Tor(4,V),T)
=g(Tor(y,V),T) = c1g(J (), V).
Now (2.24)) together with
g(V.4) = g(Tor(7,V), %) — cidg(V, J (%)) = —g(V, T)g(7(7), %) — c1Ag(V, T (4))
proves (ii). Now using we get
Vv J(§) = J(Vvy) = J(V') + g(V,T)J(7(7)),
that permits us to compute Vi (V5% + c1AJ(¥)) to obtain the first equation in (iii).

The second one is simply obtained using (2.5)) and ([2.24)).
©.24)

To prove (iv) we have, differentiating

(2.24)

(2.25) %g(% T)" =c1Xg(,V) + g(J(9), V')

and consequently

égm TY" = (e hg(3, V) + et Ag(3, V') + (V" J(3))

=210 g(V, %) + 1 N2 g(V, T) + g(V", ().

Taking into account (ii) we get

(226)  —g(ViT)" = ~eg(V.T) ~ 2e0g(V, T)g(r(3).4) + (V" T(5).

The only term we have to deal with is g(R(¥, V)¥ + c1 AJ(V'), J(V')). Now by point
(iii) we have
gV, J(9)) = = g(R(%, V)7, J(9)) = aaMg(V, T)g(7(9),%) + 9(V', )}
V.T) g(r(4), J(4)) = g(V, T)g(V57(), J(9)).
From V = g(V,T)T + g(V,¥)% + g(V, J(%))J(§) we obtain
—9(R(%, V)%, J (7)) = =g(V, J())W = g(V, T)g(R(Y, T), J())-

Furthermore since

—9(V57(3), J (7)) = =(7(7), J (7)) + e1rg(7(7), 7)

—9( )
—9( (

and
gV, 4) = g(V,4) = 9(V59,V) = —g(V, T)g(7(%),7)
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we finally get

g(V", J(3)) = — ég(% TY'W + e Ag(V, T)g(7(3),4) — 9(r(3), J(3))g (V. TY
—9(V,T){g(R(¥, T)y, J (7)) = 4(9(r()), J (7)) }-

We conclude summing and and simplifying. O

DEFINITION. Let v : I — X be a characteristic curve, where I is a real interval
and X is a surface. A vector field V along ~ is called a Jacobi-like field if it satisfies

(2.23)) for all s € I.

REMARK 2.11. Special cases of Proposition can be found in [21], [81] and
[82].

(2.27)

2.4. The structure of the singular set.

The local model of a three-dimensional contact sub-Riemannian manifold is the
contact manifold (R3, wy), where wy defined in is the standard contact form in
R3, together with an arbitrary positive definite metric g3, in Ho. A basis of the
horizontal distribution is given by

0 0 0 0
Xi=—ty—, Yi=—tz—
oz Yor oy T
and the Reeb vector field is
D
=

The metric g3, will be extended to a Riemannian metric on R3 so that the Reeb
vector field is unitary and orthogonal to Hy. We shall usually denote the set of vector
fields {X,Y} by {Z1, Zo}. The coordinates of R? will be denoted by (x,y,t), and the
first 2 coordinates will be abbreviated by z. We shall consider the map F : R? — R?
defined by

F(Ivy) = (*’]j,l’)

Given a C? function v : Q C R? — R defined on an open subset 2, we define the
graph G, = {(z,t) : z € Q,t = u(z)}. By (2.13)), the sub-Riemannian area of the
graph is given by

A(Gy) = / INu| G,
G

where dG,, is the Riemannian metric of the graph and |Np| is the modulus of the hor-

izontal projection of a unit normal to G,. We consider on € the basis of vector fields
o 9

oz’ oy J*
By the Riemannian area formula
(2.28) dG.,, = JacdL?,

where d£? is Lebesgue measure in R? and Jac is the Jacobian of the canonical map
Q — G, given by
(2.29)  Jac = {det(g) + g1 (uy + 2)* + ga2(ua — ¥)* — 2012(ue — y)(uy + x)}'/?

where g¢ is the matrix of the metric, with elements g;; := g(Z;, Z;).
Let us compute the composition of |Ny| with the map Q@ — G,. The tangent
space T'G,, is spanned by

(2.30) X+ (uz—y) T, Y+ (uy+a)T.
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So the projection to Q of the singular set (G, ) is the set Q¢ C Q defined by Qg :=
{2 €Q:(Vu+ F) =0}, where V is the Euclidean gradient in R?. Let us compute a
downward pointing normal vector N to G, writing

2
(2.31) N=> (a:Z;)-T.
i=1
The horizontal component of Nis N, = Z?:I a;Z;. We have
2 ~ ~ ~

> aigi; = 9(Nu, Z;) = g(N, Z;) = —(Vu+ F);(N,T) = (Vu+ F);,

i=1
since Z; is horizontal, N is orthogonal to Z; defined by (2.30), and (2.31). Hence

(a1,a2) =b(Vu+ F),

where b is the inverse of the matrix {g;;}i j=1,2. So we get

(2.32) IN| = 1+ (Vu+ F,b(Vu+ F)))"/2,
and

INu| = (Vu+ F,b(Vu+ F))'/2,
where <,> is the Euclidean Riemannian metric in R?, and so

N (Vut Eb(Vu+ F)Y?

Nl (14 (Vu+ F b(Vu+ F)))
Observe that, from (2.31]) and (2.32) we also get
1
12"
(14 (Vu+ F,b(Vu+ F)))
Hence we obtain from ([2.13)), (2.28), (2.29)) and (2.33])

(2.33) | Nl

/2"

(2.34) g(N,T) = —

1/2 det(gi; + (Vu + F);(Vu + F);)Y/? 4
) 1/2 :

(2.35) A(Gu)=/Q<V“+F’b<V“+F) (1+ (Vu+ F,b(Vu+ F)))

We can compute the mean curvature of a graph G, [47, Lemma 4.2]

LEMMA 2.12. Let us consider the contact sub-Riemannian manifold (R3, gy, ,wo),
where wy is the standard contact form in R® and gy, is a positive definite metric in
the horizontal distribution Ho. Let u : @ C R? — R be a C? function. We denote
by g = (gij)ij=1,2 the metric matriz and by b= g~ = (¢); j—12 the inverse metric
matriz. Then the mean curvature of the graph G., computed with respect to the
downward pointing normal, is given by

. b(Vu+ F)
) —div ;
(2.36) <<Vu—|—F,b(Vu+F)>1/2>+M

where (1 is a bounded function in Q\ Qo, and div is the usual Euclidean divergence in
Q.

Furthermore in dimension three we get
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LEMMA 2.13. Let us consider the contact sub-Riemannian manifold (R3, gy, ,wo),
where wy is the standard contact form in R and g3, is a positive definite metric in
the horizontal distribution Ho. Let u: Q C RZ = R be a C? function. Then

div( bVu + F) 1/2>=det(g)div< Vet 1/2>+p,
(Vu+ F,b(Vu+ F)) (Vu+ F,Vu+ F)

where p is a bounded function in Q\ Q.

PrOOF. The proof is a standard computation. We only note that p is of the form

p1(b) (uz — y)® + p2(b)(uy + 2)® + p3(b) (ua — y)* (uy + x) + pa(b)(ua — y) (uy + 2)°
(9™ (uz — ¥)? + 2912 (uz — y) (uy + ) + 2% (uy + 2)?)3/2

)

where p;(b) are sums and products of the coefficients g*/. ]

Let ¥ C M a C? be a surface and let p € ¥y. Then there exists a neighborhood
U of p that is a Darboux chart and X can be viewed as a graph G, in (R3, g3,,wo)
above defined. The projection Qg of the singular set in (G, ) does not depend on the
metric gy,. The characteristic curves in G, with respect to gy, and the standard
Heisenberg metric gy coincide, as they are determined by TG, N H. This implies

THEOREM 2.14. Let X be a C? oriented immersed surface with constant mean
curvature H in (M, gy, w). Then the singular set Xo consists of isolated points and
C' curves with non-vanishing tangent vector. Moreover, we have

(1) if p € Xy is isolated then there is r > 0 and X € R with |2\| = |H| such that
the set described as

Dy (p) = {1p.0(s)lv € %, |v] = 1,5 € [0,7)},

is an open neighborhood of p in X, where 7{7\’0 denote the characteristic curve
starting from p in the direction v with curvature X ;

(ii) if p is not isolated, it is contained in a C' curve I C Xy. Furthermore
there is a neighborhood B of p in X such that B — T' is the union of two
disjoint connected open sets By and B_ contained in ¥ — g, and vy, extends
continuously to I' from both sides of B — T, i.e., the limits

= lm w@),  vil)= lim )
exist for any q € TN B. These extensions satisfy I/}T(q) = —v;, (q). Moreover,
there are exactly two characteristic curves v; C By and v5 C B_ starting
from q and meeting transversally T at q with initial velocities (v3)'(0) =
—(73)(0). The curvature A does not depend on q and satisfies |\| = |H|.

PRrROOF. By [25, Theorem B], Lemma and Lemma Yo consists of iso-
lated points and C! curves with non-vanishing tangent vector. Also (i) follows easily.
Writing

B b(Vu+ F)
Vh = 12
(Vu+ F,b(Vu+ F))
because of [25, Theorem 3.10, Corollary 3.6], we get (ii). O

COROLLARY 2.15. Let ¥ be a C? minimal surface with singular set ¥o. Then
Y is area stationary if and only if the characteristic curves meet the singular curves
orthogonally with respect the metric g.
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The proof is a straightforward adaptation of the Heisenberg one, [81] Theo-
rem 4.16]. Another version of the last corollary is presented in [26] Proposition 6.2]
and [23] p. 20].

REMARK 2.16. [81] Proposition 4.19] implies that, for ¥ a C? oriented immersed
area-stationary surface (with or without a volume constraint), any singular curve of
¥ is a C? smooth curve.

REMARK 2.17. Another approach to characterize the local behavior of the singular
set is provided in [86], where the author constructs a circle bundle over the surface
and studies the projection of the singular set.

Now we are able to generalize [25l Theorem E|] to general three-dimensional
contact sub-Riemannian manifolds.

THEOREM 2.18. Let ¥ be a C? closed, connected surface immersed in a three-
dimensional contact sub-Riemannian manifold M, with bounded mean curvature. Then
9(%) < 1, where g(X) denote the genus of X.

Proor. By Theorem the singular set ¥ consists of singular curves and
isolated singular points. The line field associated to the characteristic foliation, ex-
tended to the singular curves, has a contribution to the index only due to the isolated
singular points, Theorem Now consider a partition of unity {#; };c; subordinate
to a covering of ¥ with Darboux’s charts {U;}ie;r. By [25, Lemma 3.8] the index
associated to the characteristic line field with respect to the Heisenberg metric in the
Darboux coordinates is 1 and follows that the index of the vector field

Z mi(e; (%))

iel
is 1 in each singular point of 3, since the Darboux’s diffeomorphism preserve the index,
[88l, Lemma 27, p. 446]. Here ¢; denotes the Darboux’s diffeomorphism in each chart
U; and Z; denote the characteristic vector field associate to the Heisenberg metric in
vi(U;). We get x(2£) > 0, by the Hopf index Theorem, [88].

On the other hand for a closed surface x(X) = 2 — 2¢g(X), which implies g(X) <

1. |

REMARK 2.19. When ¥ is a compact C? surface without boundary in a three-
dimensional pseudo-hermitian sub-Riemannian manifold, Theorem I in [24] implies
immediately x(X) > 0. Then g(2) < 1.

2.5. The first variation formula for C% surfaces

Now we present a first variation formula for surfaces of class qu_[ using variations
supported in the non-singular set. Given a surface ¥ of class C3,, we can express %
as the zero level set of a function f € C%, with non-vanishing horizontal gradient.

REMARK 2.20. In H!, by [39, Proposition 1.20], see also [9, Lemma 2.4] and
the proof of Theorem 6.5, step 1, in [41], the family of smooth surfaces {¥;}jen =
{p € M : fi(p) = 0}, where f; := p; * f and p; are the standard Friedrichs’ mol-
lifiers, converge to ¥ on compact subsets of ¥ — 3. Furthermore also the second
order derivatives of f; with respect to horizontal vectors fields converge to the sec-
ond derivatives of f. We denote by Z;, (v,); and Nj;, respectively, the characteristic
vector field, the horizontal unit normal and the unit normal of ;. Furthermore let



50 2. FIRST AND SECOND VARIATION FORMULAE

(Z;(p),S;(p)) be an orthonormal basis of T,X;. We have that
(XHX+ (VY ~(VHX+ (XY
X+ (X + (5

and

_ X)X+ VY _ —(YH)X+ (XY

VX2 + (Y ]) VX2 + (Y ])
so Z; ( resp. (vj)) converges to Z (resp. v,) with their horizontal derivatives. On
the other hand

XNX+ VY +(THT
VX2 + )2+ (Tf)?

and
X)X+ Y)Y +(TH)T

J ’
VX )2+ (Y )2+ (Tf)?
which implies that N; (resp. S;) converges to N (resp. S) but there are not conver-
gence of their derivatives.

LEMMA 2.21. Let ¥ be a C! surface immersed in M, such that the derivative in
the Z-direction of vy, exists and is continuous. Assume X = (. Then ezists a family
of smooth surfaces {3;}icn such that

dim g(Vz,(vn)j, Z5) = 9(Vzvn, Z)
J—+oo

uniformly on compact subsets of X.

PrOOF. It is sufficient to prove the result locally in a Darboux’s chart. So we
consider ¥ in (R?, Ho, g3, ), where g;, is an arbitrary positive definite smooth metric
in Ho. We denote by (v,,)o the horizontal unit normal with respect to the Heisenberg
metric go. By Remark the statement holds in the Heisenberg metric. As in

and we have
(¢" X (f) + g2V (£i)X + (¢ X (f) + 9V ()Y
VI Y U)X, Y ()

(vn); =

and
X(fHX+Y(f;)Y

((¥n)j)o = .
VA Y )X () Y (£)

Similar expressions hold for vj, and (v4)9. The Z-direction does not depend on the
metric, since it is determined by T¥ N H. Furthermore, since the coefficients g% are
smooth, the convergence also holds in the arbitrary metric.

O

Now we are able to prove

PROPOSITION 2.22. Let ¥ be an oriented immersed C% surface in a contact sub-
Riemannian three-dimensional manifold (M, gy, w). Then the first variation of the
area induced by the vector field U = fv, +1Z + hT, with f,1,h € C}(X — o), is

d

Tel_ Ales(3) = —/g(U, N) HdS.

=
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PROOF. Due to the linearity of (2.19)) respect to U we can compute separately
the variations in the direction of Z, v, and T'. By (2.19) the variation in the direction
of v, becomes

/f|Nh\g(VZVh,Z)dE-
>

The variation produced by T is (2.19))

/ {=5(h) + hg(N. T)|Nulg((Z), 2)}d = / hg(N. T)g(¥ 71, Z)dS,

because of

/{—S(h) + hg(N,T)|Nplg(1(2), Z)}dS =

~ lim / {(=S;(h) + hg(N;, T)|(Nw);1g(m(Z;), Z;)}dS;

J—+oo

= lim /hg 5T szyh, ) d; —/dlvzJ (hg(N;, )QSj)dEj}

Jj—+oo
- / hg(N.T) g(¥ zvn, Z)dS,

where we have used the Riemannian divergence theorem in the last equality. In an
analogous way

[ (g D190, 2) + 1N Z20))a5 =

= lim [{e1g(N;, T)g(J((vn))j, Zj) + |(Nw);1Z;(1) }dE5.

j*} oo
2

Now since |Nj,|Z(1) = Z(|Ny|l) — IZ(|Ny|), by Lemma 2.1] and Lemma [2.3| we get

JHe1s V. T)g(300).2) + 1N Z0}aS = tim [ divs, (11(N);12,)d5; = o

Z;

so we have proved that the variation produced by Z vanishes. Since g(U,N) =
fINL| + hg(N,T) we finally get

a
ds

Alps(%)) = —/g(U, N) Hdx.

P

s=0
|
REMARK 2.23. Proposition holds also for a C! surface ¥ in which v, (or

equivalently Z) is C! in the Z-direction. It does not imply 6’72_[ regularity when TXNH
has dimension one. We thank F. Serra Cassano for pointing out this fact.
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2.6. Second variation formulas

In this section we will compute a second variation formula for a minimal surface
considering variations in the direction of N and 7" in the regular part and variation
induced by the Reeb vector field supported near the singular set of the surface. We
restrict ourselves to the case of pseudo-hermitian manifolds. Consider the orthonormal
basis {Z, vy, T}. We can compute

[Z,vn] = a1 T+ 60(2)Z + 0(vi)vn
(231) 2,11 = 9(r(2). 2)Z +{9(r(Z), ) + O(T )}

i, T] = {9(7(Z),vn) = O(T)} Z + g(7(vn), vi)vn
where 0 is defined in (2.16)) and we have computed 0(T") = —1 + g(Dyvy, Z) using
@.10).

LEMMA 2.24. Let ¥ be a C? immersed oriented surface with constant mean cur-
vature H in a pseudo-hermitian 3-manifold (M, gy,w,J) . We consider a point
p € X — 3y and we denote by o : I — X — g the integral curve of S,. Then
the results in Pmposition hold with Uy(ey = Zu(e). Furthermore in ¥ — Xq, the
normal vector N is C* in the direction of the characteristic field Z.

PRrROOF. From (i) in Proposition and from ([2.21)) follows that V. and ~. are
C along characteristic curves and we express the unit normal to X along 7. by

N=zX Ve
[Ve x Vel

where x denotes the cross product in (M, g). We conclude that N is C*° along v.. O

2.6.1. Second variation in the regular set. Now we present a variation for-
mula in the regular part of the surface induced by a vector field of the form v N +wT.

LEMMA 2.25. Let ¥ be a C? surface of constant mean curvature H in a pseudo-
hermitian 3-manifold (M, g3 ,w,J) . Then we have
(2.38)
9(R(T, Z)vn, Z) = —vi(g(7(2), Z))+Z(g(7(Z), vn))—2w(vn)g(7(Z),vi)+2Hg(7(Z), Z).

ProoF. By (2.10)) it is not difficult to show (see [37, Theorem 1.6] for the case
in which ¢; = 2)
(2.39) g(R(T, Z)vw, Z) = g(R*C (vy, Z)T, Z),

where RC is the curvature tensor with respect to the Levi-Civita connection, that
can be easily computed as

g(R"C(vn, )T, Z) = — vi(9(7(2), Z)) + Z(9(7(Z),vn))
—2w(vn)g(7(Z),vn) + 2Hg(7(Z), Z),
take in account and . O

THEOREM 2.26. Let X be a C2 minimal surface in a pseudo-hermitian 8-manifold
(M, g3, w, J), with singular set ¥o. We consider a C' vector field U = vN + wT,
where N is the unit normal vector to ¥ and w,v € C}(X — ¢). Then the second
derivative of the area for the variation induced by U is given by

(2.40) A"(0) = /{|Nh|_1Z(u)2 +ulq}dY + /divg(ﬁZ +(Z +nS)dx,
= =
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with
&= g(N, T){INw|0(S) + c1g(N, T)* + (1 + g(N, T)*)g(7(Z), vn) }u?,
= [Nu*{g(N, T)(|N4|0(S) + c1g(N,T)?
+ (14 g(N,T)*)g(r(Z 7vh))w —29(B(Z), S)vw},
n = (INn*v* = (9(N, T)v +w)*)g(7(Z2), Z)
and

g = [Ny [{=W + ¢ + c19(r(2), vn)} = [Nu|(INwl(c1 + g(7(2), vn)) — 0(S))*
+9(N,T)g(R(Z, T)vn, Z) = g(N, T)Z(9(7(Z), vn));
where w = g(U,N), R is the pseudo-hermitian curvature tensor and B is the Rie-

mannian shape operator.

REMARK 2.27. The second variation formula involves many geometrical
quantities, depending on the ambient manifold and the surface. We stress that the
divergence terms vanish when the surface has empty singular set. The only term that
is not adapted to the sub-Riemannian setting is g(B(Z),S), which we have kept for
simplicity. Its expression is given in Lemma We also remark that will be
useful to obtain the stability operators in Section

REMARK 2.28. If ¥ is area stationary without boundary, then

/ divs (fS) =0,
>

for every f € C4(X), by Corollary

PROOF. (of Theorem [2.26)) We can reason as in the proof of the first variation
formula. We have

1
u(vi) = mg(VUV, V)

and 1

UU(VD) = ~pe(VoV.V)* + |V| (9(VoVuV, V) + VoV ).
We fix

= g(VUV, V)v
so we get
1 A
(2.41) uu(vy)) = W g(VuVuV,V)+g(VyV,VyV — |V|2V)
|

11
I

AsV = g(E1,T)Ey — g(E2, T)E; we compute
(2.42) VuV(0) =U(g(Er, T))S = U(g(T, E2))Z + |Nu|Vu Er.
Observing ¢g(F1,T) = 0 and

)\V( )
=—9(VyV,2)Z
"o ~ V2
we have
/\V( )
(2.43) VyV — =U(g9(E1,T))S + |Nulg(VuEr, S)S + |Nu|g(Vu Er, N)N.

V()P
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By |Np|S = g(N,T)N — T and |N,|N + g(N,T)S = v;, we obtain
I=g(VuE1,N)>

Using (i) in Lemma[2.1] T = g(N,T)N — |N4|S and v, = g(N,T)S + |Nj,|N we have
(2.44)
I={Z(g(U,N)+ g(N,T)|Nplg(U, N)(c1 + g((Z),vn)) = g(U, S)|INu|0(S)}?

and
|Nu| ™' = |NW| 7' Z(u)? + 29(N, T)uZ (u)(c1 + g(7(Z), vn))
(1) + g(N, T)?|Np|u*(c1 + g(7(Z),v1))? + 2Z (u)| Ny |wb(S)
+29(N, T)|Np[Puw(S)(c1 + g(7(Z),vn)) + w?|Nu[6(S)?,

where u = g(U, N).
Now we consider

|Ny|7H T = g(R(V,U)U, Z) + (Vv VU, Z) +9(Viw U, Z) + g(VulU, V], Z)
A B c
+g(VyTory (U, V), Z),

D

as
g(VuVvU, V) = g(R(V,U)U,V) + g(VvVuU, V) + g(VigyU, V).

By equation we obtain
(2.45) VoU = —g(U,w)?9(7(Z), Z)T — g(U, T)g(U, vp)(c1Z + 7(vn)),
furthermore by (i) in Lemma [2.1and DU = 0 we have
B =~ Z(v(g(N,T)v + w)|Ny|*(crg(1(Z), 1))
—g(N,T)Z(g(N, T))v(g9(N, T)v + w)(cr9(7(Z), vn))
and for the linearity of R we get
= |Nu|Po(R(Z,U)wy, Z).

On the other hand as [U,V] = U(g(E1,T))E; — U(g(FE2,T))E, and ¥ stationary we

have
C=(Z(g(U,T))+ crg(U,vn))(29(U,vn)0(S)

(
= (9(N,T)g(U.T) — [Ni|g(U,v1))g(1(Z), vn))
— S(g(U, T))g(U, T)g(x(2), Z) — UU(9(T, E»)))
and writing —U(U(g(T, Es)) as
=S(g(VuU,T)) + c1g(N,T)g(VuU, Z) — c19(VsU, J(U)) — crg(Torv (U, S), J(U))
that is
— 8(g9(U,w)?9(7(2), 2)) — e1xg(N, T)g(U, T)g(U, 1) (29(7(Z), vi))
+e1g(U, ) (9(N, T)g(U, T) = |Nilg(U, v)g(7(Z), v1) — c19(U, vn)?60(S),
we get that C' equals
Z(g(N,T)v +w)ug(r(Z),v) + c1|Np,[*v*6(5)
—a1g(N, T)[Np|(g(N, T)v + w)v(29(7(Z), va))
+2Z(g(N, T)v +w)|Np [v0(S) + S(9(U,vn)?9(7(2), Z))
= SgU. 1)U, T)yg(7(2), Z).
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Now V € H implies D = —|Ny|g(U,v)*(g9(7(Z), 2))? + g(U, T)g(Vu1(V), Z).
On the other hand
g(Vur(V),Z) = g(Vur(V) = VvU, Z) + g(Vv7(U), Z),
where g(Vy7(U), Z) = Z(INnlg(U,vn)g(7(Z),vn)) — Z(INp|)g(U, vin)g(7(Z), vp) and
g(Vur(V) = Vyr(U), Z) = g(Vur)V = (Vv1)U, Z) + g(7(Z), [U, V] + Tor(U,V)).
We have that g((Vym)V — (Vv 1)U, Z) is equal to
INwlg(U,vn)g((Vu,,7)Z = (Vz7)vn, Z) + g(U, T)|Np|g(VrT7)Z, Z)
and by Theorem 1.6 in [37] and the fact that (Vx7)Y is a tensor we obtain
g(Vur)V = (Vy1)U, Z) = —=|Nu|g(U, vi)g(R(T, Z)vn, Z)
+ [Nulg(U, T)T (9(7(2), Z)) + 29(7(Z), v )w(T)).
Finally since g(Tor(U,V),7(Z)) = g(U,T)|Nn|(g(7(Z),vn)? + (9(7(Z),Z))?) and
writing g(7(2), [U,V]) as
=S, T)g(U,T)g(7(2),Z) + g(N,T)g(7(Z),vn)(Z(g(U,T)) + c1g(U, v1))
together with (i) in Lemma - 2.1{ we obtain that D equals
— [Nulg(U,vn)?(9(7(2), 2))? + INu|(9(N, T)v + w)*(T(g(7(Z), Z)) + g(7(Z),vn)”
+(9(7(2),2))*) = INn[*(9(N, T)v +w)vg(R(T, Z)vp, Z) + 2w(T)g(7(Z), v3)
+ [Nul(g(N, T)v + w) Z(|Np|vg(T(Z), vn)) 4+ c1g(N, T)[Nu|v(g(N, T)v 4+ w)g(7(Z), va)
= 5U,T))g(U,T)g(r(2),Z) + g(N,T)Z(g(N, T)v + w)(g(N, T)v + w)g(7(Z), vn)-
The sum of all terms that contain g(7(Z), Z), after have used lemma [2.3]is
divs ((|Na|*v? = (g(N, T)v+w)*)g(7(Z), 2)S)+9(N,T)(g(N, T)v+w)*vi(9(1(2), 2)).

By the definition of # we have
(2.46)
Z(6(5)) = g(R(S, Z)vn, Z) + 0([Z, 5])

= g(R(S, Z)vw, Z) + g(N,T)0(S)* = g(N, T)|Np|0(S)(c1 + g(7(Z), vn)),

where we used that [Z, S] is tangent to 3. We note that since Vzvp =0 (2.46) make
sense when ¥ is of class C2. Furthermore by Lemma [2.3|and equation (2.46)) we have

that 27 (u)|Np|w0(S) + 2Z(g(N, T)v + w)|Np|v0(S) is equal to

Z(g(N,T)) 02 4 w2
e ARG

+2divs (| Np|owd(S)Z) — 20w Z (| Ny |)0(S) — 2vw|Np|g(R(S, Z)vh, Z)
79(N7T)‘Nh|(02 +wz)g(}%(S? Z)Vh7Z)

divs(g(N, T)|Ny|(v* + w?)0(S)Z) +

and similary B equals
Clg(N7 T)|Nh|v(g(N7 T)’U + w)(clg(T(Z)v Vh))
—divs;(INp[*o(g(N, T)v +w)(c19(7(Z), 1)) Z).

In the same way g(N,T)Z(u?)(g(T(Z),vn)) + g(N, T)?|Np|u?(c1 + g(7(Z),v))? can
be expressed as

divs(9(N, T)u?(9(r(2),v))Z) — g(N, T)u* Z(g(7(Z), vn))+u®|Nyler (e1 + 9(7(Z), vn))
+u*(g(7(Z),vn)0(S)—u?[NW [P (9(7(Z), vn))*.
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Pb‘urthermore —Z(g(N, T)v+w)(u+g(N,T)*v—g(N, T)w)+|Np|(g(N, T)v+w) Z(|Npvg(T(Z), vn))

divs(9(1(Z),vn)(g(N, T)v + w)(v + g(N, T)w)Z)
+ g(N, T)(=0(S) — [Nul(29(7(2), v1)))g(7(Z), 1) (g(N, T)v + w) (v + g(N, T)w)
—g(N, T)(g(N, T)v +w)*Z(g(7(Z),vn)) = Z(g(N,T))g(7(Z), vn)w(g(N,T)v + w)
and all the other terms not considered are
INW| ™' Z(uw)? + |NW|*v*g(R(Z, vi)vi, Z) = 2| Np|*v(9(N, T)v + w)g(R(T, Z)vh, Z)
and
29(N, T) [ Na2uwd(S)(29(r(Z), ) + INa[P0(S)2u? + 2| Ny [2026(S)
— 4g(N, T)[ Ny |v(g(N,T)v + w) — |Np|(g(N, T)v + w)*(g(7(Z), vn)?
—2w(T)g((Z), vn)).

Since g(R(Z,vp)vpn, Z) = —W we have that the terms in which the curvature tensor
appears are equal to

(2.47) —|Np|Wu? 4 g(N, T)| Ny, |>(w? — v} g(R(T, Z)vy, Z)

and by equation we have sums with g(N, T)(g(N, T)v+w)*(vi(g(7(2), Z))+
20(vn)g(T(Z),vn) — Z(g(T(Z),vn))) is

—| Ny |[Wu? — g(N, T)u?g(R(T, Z)vy, Z).
Finally a long but standard computation shows that the remaining terms add up to

c1u?|Np|(er + 9(7(Z),vn)) = INal(INk|(e1 + 9(7(Z), vn))
—0(9))*u® — g(N, T)u*Z(g(7(Z),vn))
+ 9(N, T)(g(N, T)v +w)*(vn(9(7(2), Z)) + 2w(wn)g(T(Z),vn) — Z(9(7(Z), vn)))-

Since that u? = v2 + 2g(N, T)vw + g(N, T)?>w?, we get the statement.
O

REMARK 2.29. If we suppose that our variation is not produced from Riemannian
geodesics, i.e., we remove the hypothesis DyU = 0, we get the additional term

(2.48) - / divs(|N|g( DU, 2)Z)dS. + / divs(g(DuU, T)S)dS.
) >

It is worth pointing out that (2.48) vanishes when the variation functions w,v have
support in the regular set.

PROOF. From the term —U(U(g(FE2,T))) we have S(g(DyU,T))—c19(N,T)g(DyU, Z).
Furthermore

[Nulg(VzDuU, Z) = =Z(|Nplg(DuU, 2)) + g(DuU, Z) Z(|Na)
and |Ny,|~tg(DyU, T)g(7(V),V) = g(DyU,T)|Nulg(7(Z), Z). By Lemmavve have
Z(INu|) = g(N, T)(INul0(S) + c1 — [N [*(29(7(Z), v1)))

and, as no others terms are involved, we conclude applying Lemma |2.3 ]
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2.6.2. Second variation moving the singular set. By Theorem [2:.14 the
singular set of a C? surface is composed of singular curves and isolated singular points
without accumulation points. First we present a second variation formula induced by
a vertical variation near a singular curve, i.e., in a tubular neighborhood of radius
€ > 0 of the singular curve that is the union of all the characteristic curves centered
at (Xo). defined in the interval [—e,€].

LEMMA 2.30. Let ¥ be a complete C? area-stationary surface immersed in M,
with a singular curve T of class C3. Let w € C3(X). We consider the variation of
¥ given by p — exp,(rw(p)Ty). Let U be a tubular neighborhood of supp(w) N T,
and assume that w is constant along the characteristic curves in U. Then there is a
tubular neighborhood U’ C U of supp(w) NT so that

2

A" (o0 = 2

Al (U) = / (202 | Nal(g(r(Z), )* + 9(r(Z), Z)?)}d5
(2.49) >

+ [ divs(w?g(1(Z), Z2)S)dE + [ S(w)?dr.
/ /

PROOF. We consider the singular curve I' parametrized by arc-length with vari-
able e. By Theorem we can parametrize ¥ in a neighborhood of supp(w) N T
by (s,e), so that the curves with ¢ constant are the characteristic curves of .
As E; are Jacobi-like vector fields it is easy to prove that g(FE;, T)” = 0, so that
9(E;,T) = g(E;, T)(0)r + g(E;,T)(0) and, in particular, we have g(Fy,T) = 0. This
means that [V (r)| = |g(E2,T)||E1| = |F(p,s,r)||E1| which vanishes if and only if
F(p,s,r) =0. As

JF(p,0,0)
0s

N,T)

= —z(mi = 25D 294, 1) = e,

we can apply the implicit function theorem i.e., there exists s(e, r) such that the curve
F(p,s(e,r),7) =0 is a graph on I'(¢). We have obtained

S0

A, (U")) = / / (F(p, 5,1)| | Fu|dsde

—S80 —€o0
€0 s(e,r) S0 €0
= [{ ] pwsniglas- [ Fesniglaspde= [
—€o —so s(e,r) —€o
and
OF(p.s(e.r)r)  ds(er) T OF(p.s.r) 0| B
" _ b, s\E,T),T S(E, T b,s, T 1 1
e(r) =2 or 12l or + /(2 or or + F(p.s,7) or? )ds
F o 0F(p,s,r) 0| 2|
/ (2 o o TFsT55 )dS

— (o) + / 25(w)U(|E]) + [Na|U(U(|E]))ds

—50
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we have that the second variation formula becomes

A, (U)) = / S(w)? + / (25()U(|E]) + |NuUU (1B ])) S

(Zo0)e b

= /{QWS(W)Q(T(Z)> Z) + w?|Nu|(29(7(2),v)* + 9(7(Z), Z)?)}d%.
>

+ S(w)2
J

)e
- / (20N (g(r(2),0)? + 9(r(2), Z))}d5
>

+ /divg(ng(T(Z), 7Z)S)d%

+ S(w)?,
(Zo)e
where we have used lemma 2.3 and
U(U(IE1]) = g(VuVuEr, B1) + g(VuEr, VuEr — (9(VuEr, Br) /| B Er)
= wg(VuT(E1), B1) + 9(VuEy, N)? + g(VuEr, Es)?
= Z(w)? +w*{29(7(Z),vn)* + 9(7(2), 2)*}
as
9(Vut(Er), Er) = w(g(r(Z), 2)* + g(7(Z), m)?)

because of [37, equation 1.77].
(|

REMARK 2.31. Formula looks different from . For example 7 is in-
volved, but not W. This depends on the fact that the surface is moved only in the di-
rection of the Reeb vector field. The curvature tensor that appears is g(R(T, e1)T, e1),
which vanishes.

REMARK 2.32. The hypothesis I' € C? is purely technical. We only need it when
we apply the implicit function theorem and it can be weakened. On the other hand
in all examples in our knowledge singular curves in area-stationary surfaces are C'*°.

Finally we consider variations which are constant in a neighborhood of the sin-
gular set. This hypothesis is reasonable when we move the surface close to isolated
singular points, otherwise the second variation blows-up. By a tubular neighborhood
of a singular point ¢ we mean the union of all the characteristic segments of length e
going into ¢ or coming out from gq.

LEMMA 2.33. Let X be a complete C? area-stationary surface immersed in M with
an isolated singular point py. Let w € C2(X). We consider the variation of ¥ given
by p — exp,(rw(p)1y). Let U be a tubular neighborhood of po and assume that w is
constant near py. Then there is a tubular neighborhood U’ C U of py so that

A (er(U")) = /{2102|J\7h|(g(7(2),Vh)2 +9(1(2), 2)*)}d3.
P



2.7. TWO STABILITY OPERATORS. 59

The proof is analogous to the previous one using variations moving singular
curves. We note that in this case F(p,s,r) = 0 if and only if p is equal to the
original singular point pg and the statement follows.

REMARK 2.34. We note that Theorem coincides with [55, Theorem 3.7] in
the spacial case of the Heisenberg group H' and with [82, Theorem 5.2] for three-
dimensional Sasakian sub-Riemannian manifolds. It can be easily seen by (iv) in
Lemma Furthermore we will see in the next section that generalizes the
second variation formula in [25].

2.7. Two stability operators.

The first stability operator which we present gives a criterion for instability in
the regular set of a surface. It is the counterpart of the Riemannian one.

PROPOSITION 2.35. Let ¥ be a C? immersed surface with unit normal vector
N and singular set g in a pseudo-hermitian manifold (M, gy, w,J). Consider two
functions u € Co(X — Xo) and v € Co(X — o) which are Ct and C? in the Z-direction
respectively. If 3 is stable then the index form

Z(u,v) := [{|Nn]" ' Z(u)Z(v) + quoydE = — | ul(v)dS > 0
/ /

where L is the following second order differential operator

L) =N “HZ(ZW)) + [N g(N, T)(~2|Nu[(S) — e
+2\N3 2 (er + 9(7(2), ) Z(0) — | Nulo},

with q defined in Theorem |2.20,

PROOF. Following [55] Proposition 3.14] we prove that £(v) = divs(|Nu|~*Z(v) Z)+
[N 1g. In fact

divs(|Ny| " Z(0)Z) = Z(INu| "2 Z(v)) + |Nu| "t Z(v)divs Z.
So by Lemma [2.1] we have
Z(I|Nu| 7' Z(v)) =INu| "' Z(Z(v))
+ [NR|72g (N, T) (= [Nwl0(S) — ex + [Nu[*(e1 + 9(7(2), v0))) Z (v)

and divs (%) = —g(N, T)(S) + g(N, T)| Nl (e1 + g(7(2), vn)-
Finally it is sufficient to observe

(2.50)

0= [ divs(INy| " Z(v)uZ)dE = [ udivs(|Ny| ' Z(0)2)dE + | |Np| "' Z(v)Z(u)dS
/ / /

:/uﬁ(v)dZJrI(u,v).

Really we need u,v € C}(X — Xp), but this condition can be weakened with an

approximation argument, as in [55] Proposition 3.2].
]

Now we present the analogues of [55, Lemma 3.17] and [55] Lemma 4.1], which are
a sort of integration by parts and a useful stability operator for non-singular surfaces
respectively. The proofs of the following Lemmas are straightforward generalizations
of the Heisenberg case.
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LEMMA 2.36. Let X be a C? immersed surface in a pseudo-hermitian 3-manifolds
(M, g, w, J), with unit normal vector N and singular set Xy. Consider two functions
u € Co(X—X0) and v € C(X—X0) which are C* and C? in the Z-direction respectively.
Then we have

/ INW{Z (W) Z(v) +uZ(Z(v)) + 1| Nu| " g(N, T)uZ (v)}dS = 0.
b

LEMMA 2.37. Let ¥ be a C? immersed minimal surface in a pseudo-hermitian
3-manifold (M, gy, w,J) , with unit normal vector N and singular set ¥g. For any
function u € Co(X — Xo) which is also C* in the Z-direction we have

Z(u|Nn|,ulNp|) = / INW{Z (u)* = L] Nn|)u®}d2.
)
Now it is interesting to compute L(|Np|).

LEMMA 2.38. Let X be a C? immersed minimal surface in a pseudo-hermitian

3-manifold (M, gy ,w,J) . Then
L(INw|) = W + c1g(7(Z), vp) — 2c1| Nu| > (IN3[0(S)
— [NW[2g(7(Z),vn)) — ¢|Np|29(N, T).
PROOF. (of Lemma [2.38) By (v) in Lemma [2.1] we have that
Z(INwl) = g(N, T)(IN|0(S) + c1 — |Ni|*(c1 + 9(7(Z),vn)))
and so
Z(Z(INwl)) = — I Nu|(IN&|8(S) + e1 = [ Nu[*(e1 + g(7(Z),vn)))?
+ Z(INw])(g(N, T)0(S) — 29(N, T)|Nn|(c1 4 g(7(Z),v1)))
+g(N,T)|Nw|Z(0(S)) — g(N, T)INu[*Z(g(7(Z), vn))-
Now we observe that
—g(N,T)(c1|Nu| ™t +0(S)) Z(IN]) = Z(INn|)(9(N, T)6(S)
—g(N,T)|Ni|(cr + g(7(Z), vn)))
g(N,T)
[ Nn|
+ | Nul*(e1 + 9(1(Z),vn))) Z(INw])

+

(=2|NR[8(S) — &1

e ~|Nal(IN&l0(S) + e1 = [Nul?(cr + g(7(Z),v0)))* =
= —|NuP(0(S) = [Nn|(e1 + g(7(Z),m)))?
— ci|Ni| = 21 |NL*(0(S) — [Nul (1 + g(7(Z), v))).-
Now it is sufficient to substitute, use Lemma (v), and to obtain the required

formula.

O

REMARK 2.39. By Lemma|2.38|it is easy to prove that our formula coincides with
the one in [25] in the special case of C? surfaces, as the authors obtained that formula
by deriving the mean curvature. By

g(N,T)
Z(Nu

)ﬂM$%MNﬂ)



2.7. TWO STABILITY OPERATORS. 61

and (v) in Lemma [2.1] we have

g(N7T)> N 29(N,T)?

(2.51) L(NA) = W = exg(r(Z),v) + 201 2 AR Ry

Equation (2.51]) gives an easy criterion for the stability of vertical surfaces, which are
the surfaces for which g(N,T) = 0 holds. In the Heisenberg group these surfaces are
vertical planes and their stability was first proved in [32].

We conclude this section by pasting the variations in the regular and in the
singular set, to obtain a stability operator in the spirit of [65] Proposition 4.11].
By a tubular neighborhood of (). N supp(u) we mean the union of the tubular
neighborhood of each singular curve and each singular point intersected with supp(u).
We are interested in a finite number of singular curves and singular points, since u is
compactly supported, Theorem [2.14

THEOREM 2.40. Let ¥ be a C? oriented minimal surface immersed in a pseudo-
hermitian 3-manifold (M, gy, w,J) , with singular set Yo and 0% = (). If X is stable
then, for any function u € CA(2) such that Z(u) = 0 in a tubular neighborhood of a
singular curve and constant in a tubular neighborhood of an isolated singular point,
we have Q(u) > 0, where

Q)= [ (I 2P +au)as+2 [ (€+Qg(Zvpld(Sohet [ SPd(So).
by (Zo)e (Zo)e

Here d(Xo). is the Riemannian length measure on (Xo)c, v is the external unit normal
to (X0)c and q,&,( are defined in Theorem .

PRrROOF. First we observe that Q(u) is well defined for any v € Cy(X), which is
piecewise C! in the Z-direction and C' when restricted to Xy. First we prove

Q(v) = 0, for any v € Cj(X) such that Z(v/g(N,T)) = 0 in a small tubular

(2.52) .
neighborhood F of (Xg)e.

Here we denote SoNsupp(u) by (Zo).. Clearly the last hypothesis implies | N, |71 Z(u)? €
L1(X). Denoting by oq the radius of £ and by K the support of v, respectively, we
let E, be the tubular neighborhood of (Xy). of radius ¢ € (0,0¢/2) and let h,, g, be
Cs°(¥) functions such that g, = 1 on K N E,, supp(gs) C Far and hy + g, = 1 on
K. Finally we define

v
2.53 U, = (hov)N 4+ go ———T.
(2.53) (hoV)N + 90—z

Observe that supp(U,) € K and g(U,,N) = v on K. Now we define a variation
©7(p) = expp(r(Us),) and the area functional A, (r) = A(¢Z(X)). As this variation
is vertical when restricted to E, we have that A”(p%(E,)) is given by

A5 (Ey)) = / (202N (9((2), v0)? + 9(r(2), 2)2)}d5 + / S(v)%ds,
E, (Z0)e

and by Theorem we have

A" (p5(2 — B,)) = / {INL| 71 Z(u)? + uPq}dS + / divs(£Z + (Z +nS)dX.
>—E, YX—FE,
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If ¥ is stable then A”(0) > 0, so using the Riemannian divergence theorem we have

/ (202Nl (9(r(2), )% + (9(r(2). 2))?)}dS + / S(v)?dS,
E, (Zo)e

b [ N2 s v [ €2+ 29z o
S E, dE,
where v is the unit normal pointing into E, and dl denote the Riemannian length
element. Letting ¢ — 0, by the dominated convergence theorem we have proved
condition (2.52)).

Now we suppose u € C$(¥) with Z(u) = 0 in a tubular neighborhood E of
(30)c. Then for any o € (0,1) let D, be the open neighborhood of (£¢), such that
|g(N,T)| =1—0 on 0D,. Exists oy > 0 such that D, C E for o € (0,0¢). Now we
define the function ¢, : ¥ — [0, 1] given by

b = lg(N,T)|, in Dy,
7 l1-o, in¥—D,.

We note that ¢, is continuous, piecewise C! in the Z-direction and the sequence
{05 }oc(0,00) POINtwise converge to 1 when o — 0. Using Lemma we have that
INLI7YZ(g(N,T))? extends to a continuous function on X, so

lim /\Nh|_1Z(¢U)2d2 —0.
o— 00
2

Now slightly modifying ¢, around 0D, we can consider a sequence of C! functions
{%o}oe(0,09) With the same properties. Defining v, = 1),u we have Q(v,) > 0 for
any o € (0,00) by condition Now is enough to use the dominated convergence
theorem and the Cauchy-Schwartz inequality in L?(X) to show Q(v,) — Q(u) for
o — 0 and prove the statement.

|

2.8. Stable minimal surfaces inside a three-dimensional pseudo-hermitian
sub-Riemannian manifolds.

We present a generalization of [82, Proposition 6.2] in the case of a minimal
vertical surface of class C? inside a three dimensional pseudo-hermitian manifold. A
surface 3 with unit normal vector N is a vertical surface if g(N,T) = 0. Obviously a
vertical surface has empty singular set.

PROPOSITION 2.41. Let ¥ be a C? vertical minimal surface inside a pseudo-
hermitian 3-manifold (M, g3, w, J) .

(i) If W —c19(7(Z),vp) > 0 on X, then X is unstable.

(il) IfW —c1g(7(Z),vn) <0 on X, then ¥ is stable.

PrOOF. For vertical surfaces (2.51]) becomes

T(u| Nal, u| Na]) = / INal{ Z(w)? = (W = exg(r(2),v))u? b
>

When W — ¢19(7(Z),vy) > 0 and ¥ is compact we can use the function v =1 to get
the instability. In the non-compact case we can prove (i) with a suitable cut off of
the constant function 1. Point (ii) is immediate. O
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It is remarkable that the sign of the quantities W — ¢19(7(Z), vi,) can be studied
at least for three-dimensional Lie groups carrying out a pseudo-hermitian structure.
We have the following classification result [73, Theorem 3.1]

PROPOSITION 2.42. Let M be a simply connected contact 3-manifolds, homoge-
neous in the sense of Boothby and Wang, [16]. Then M is one of the following Lie
group:

(1) if M is unimodular

— the first Heisenberg group H' when W = |7| = 0;
— the three-sphere group SU(2) when W > 2|7|;
— the group SL(2,R) when —2|7| # W < 2|7|;

— the group E(2), universal cover of the group of rigid motions of the
Euclidean plane, when W = 2|1| > 0;
— the group E(1,1) of rigid motion of Minkowski 2-space, when W =
—2|7| < 0;
(2) if M is non-unimodular, the Lie algebra is given by

[X,Y]=aY +2T, [X,T]=1Y, [V,T]=0, a0,

where {X,Y'} is an orthonormal basis of H, J(X) =Y and T is the Reeb
vector field. In this case W < 2|7| and when v = 0 the structure is Sasakian
and W = —a?.
Here |7| denote the norm of the matriz of the pseudo-hermitian torsion with respect
to an orthonormal basis.

A Lie Group is unimodular when his left invariant Haar measure is also right
invariant [73] p. 248].

We remark that in [73] the author gave the classification in terms of the equivalent
invariant W, = W/4 and |7;| = 2v/2|7|. It is easy to show that if M is unimodular
then

_ci(ez3 —co)
(2.54) W= 3#

where the Lie algebra of M is defined by

|ca + c3]

d = ———

and |r| = ==,
(X,Y]=caT, [X,T]=cY, [Y,T]=cX,

with {X,Y} orthonormal basis of H, J(X) = Y, T the Reeb vector field and the
normalization ¢; = —2. In the non-unimodular case we have

(2.55) W=-a*>-v and |7|=|y|

Furthermore in a unimodular sub-Riemannian Lie group G the matrix of 7 in the
X,Y, T basis is

0 CQ;CS 0
62363 0 0
0 0 0

and by [37) p. 38] we can compute the following derivatives

C3 _CQK
2
Co — C3
X.
2

VxX =0, VyX=0, VyX=
(2.56)

VxY =0, VyY =0, VY =
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If we consider another orthonormal basis {X1,Y7,T} where J(X;) = Y1, X, =
a1 X +a2Y, Y] = —as X + a1Y the new torsion matrix becomes

(ca + c3)aras %(a% —a3) 0
(2.57) 2t (gf —a3)  (c2+cz)araz O
0 0 0

LEMMA 2.43. Let ¥ a surface of constant mean curvature H immersed in a uni-
modular Lie group G . Then

9(R(T. Z)vy, Z) — Z(9(7(Z),v1)) = 2Hg(7(Z), Z),
which vanishes when ¥ is minimal.

PROOF. By we can express g(7(2),vy) = (c2 + ¢3)(1 — 29(Z, X)?)/2 and
Z(9(T(Z),vn)) = =2(c2 + ¢3)9(Z, X)(9(Vz 2, X) + 9(Vz X, Z)).

Taking into account and we obtain

(2.58) Z(9(r(Z),vn)) = 2Hg(7(vp), vn)-

On the other hand vy, (9(7(2), Z)) = (ca + ¢3)vn(g(vn, X)g(vh, Y)), calculating

vi(9(7(2), Z)) =(c2 + c3)g(vn, Y )(9(Vo,vn, X) + 9(Vo, X, )
(2.59) + (2 + ¢3)g(vn, X)(9(Vu,vn, Y) + g(V., Y, v1))
= —=20(vn)g(7(Z),vn),

where we have used (2.56)). Finally taking into account ([2.39), (2.38]), (2.58) and
(12.59) we get the claim. O

LEMMA 2.44. Let ¥ be a C? immersed minimal surface in M. Consider two
functions u € C(X — Xo) and v € C(X — Xo) which are Ct and C? in the Z-direction,
respectively. If v never vanishes, then
(2.60)

T(uv™ | Ny|, uv_1|Ny)) :/|Nh|v72Z(u)2d2
b

C1 g<N7T)

+ [ INalt 271 - 3 2(207) - S LD 20 as

2 [Ny
—/|Nh|lj(|Nh|)(uv‘1)2d2.
>

The proof is the same as of [55, Lemma 4.3] except that Lemma is used
instead of [55] Lemma 3.17].

PROPOSITION 2.45. Let X be a complete orientable C2 minimal surface with empty

singular set immersed in a pseudo-hermitian 3-manifold (M, g, w,J) . We suppose
that g(R(T, Z)vp, Z) — Z(g(7(Z),vp)) =0 on X . If

(W —c19(7(Z),vn))(po) = 0

for some pg € X, then the operator L satisfies L(|Np]) = 0 on the characteristic curve
Yo passing through py. Moreover, L(|Ny|) = 0 over ¥ if and only if g(N,T) =0 and
W —ci1g(1(Z),vn) = 0 on Y.
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PROOF. We consider a point p € 3. Let I be an open interval containing the
origin and « : I — ¥ a piece of the integral curve of S passing through p. Consider the
characteristic curve 7.(s) of ¥ with 7.(0) = a(e). We define the map F': I xR — X
given by F(e,s) = 7.(s) and denote V(s) := (0F/0¢)(0,s) which is a Jacobi-like
vector field along g, Proposition Clearly V(0) = (S),. We denote by  the
derivatives of functions depending on s, and the covariant derivative along g respect

to V and 49 by Z. By (2.24) and (2.25)

(2.61) g(V.TY = —crg(Vim),
(2.62) éMWTV=cmeZ%—HMme

g(V'svn) = Z(g(V,wn)) + 9(V. (V2 Z)) = Z(g(V,v)).
Now we show that {V,Z} is a basis of TS along ~p. It is sufficient to show that
g(V,T) and g(V,v},) do not vanish simultaneously. Suppose there exists sg such that
g(V,T)(s0) = g(V,vh)(so) = 0. This means that V(sg) is co-linear with (Z),, and
g(V, T)I(SO) =g(V, T)”(SO) =0

by and . As g(V,T) satisfies the differential equation in Proposition m
(iv) we deduce ¢g(V,T) = 0 along 7o which is impossible as g(V,T)(0) = —|Ny| < 0.
We have proved that g(V,T) never vanishes along o as ¥¢ is empty.

By we have W — c19(7(Z),vy,) = k2, with k > 0. If k = 0 then solving the
ordinary differential equation in Proposition m (iv) we have

g(V,T)(s) = as® + bs +c,

[¢]

where a, b, ¢ are given by

a=g(V.T)"(0)/2 = —c1Z(g(N,T))/2,

b=g(V,T)'(0) = —c19(N, T),

c=g(V,T)(0) = —|Na|.
Now ¢(V,T) # 0 implies v*> — 4ac < 0 or a = b = 0. In the first case we get
B2 — dac = {Gg(N,T)? — 2 |Nu| Z(g(N, T))} > —{c3g(N, T)? + 21| Ni | Z(g(N, T))}
and the right term is equal to

N, T N,T)?
_|Nh\2 {2012 <9(|Nh| )) + C%Q(|Nh2) }7

which implies £(|Ny|) = 0. On the other hand a = b = 0 implies that ¥ is a vertical
surface and L£(|Np,|) = 0. We note that in any vertical surface b*> — 4ac = 0 so that
L) = 0.

Now we suppose k # 0. Then by Proposition [2.10] (iv) we get

g(V,T)(s) = %(a sin(ks) — bcos(ks)) + ¢,

with a, b, ¢ given by
a=g(V,T)(0)=—ci1g(N,T),

b= 1o(V,T)'(0) = L 2(g(N, T)),

S

e = oV TY'(0) + g(V.T)(0) = | — Nil.
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As in [82], Proof of Proposition 6.6] we have g(V,T)(s) # 0 for all s if and only if
0 < k?|Np|? — 2k|Np|b — a? = | N, |2L(|Ny|),

which implies £(|Ny|) > 0.
O

LEMMA 2.46. Let ¥ be a C? complete, oriented, immersed, CMC surface with
empty singular set in a pseudo-hermitian 3-manifold (M, gy, w,J) . Then any char-
acteristic curve of ¥ is an injective curve or a closed curve.

PROOF. Since characteristic curves are the trajectories of the vector field Z, they
are injective or closed curves.
O

REMARK 2.47. It is remarkable that Lemma together with [82] Remark 6.8],
implies that [82 Theorem 6.7] holds for all homogeneous Sasakian sub-Riemannian
3-manifolds. We only have to reason as in the last part of the proof of Proposition

248 below.

PROPOSITION 2.48. Let ¥ be a C? complete orientable surface with empty singu-
lar set immersed in a pseudo-hermitian 3-manifold (M, gy, w,J) . We suppose that
9(R(T, 2w, Z) — Z(g(7(Z),vr)) = 0 on X and the quantity W — c19(7(Z),vy) is
constant along characteristic curves. We also assume that all characteristic curves
in ¥ are either closed or non-closed. If 3 is a stable minimal surface, then W —
ag(7(Z),vn) < 0 on . Moreover, if W — c19(1(Z),vn) = 0 then X is a stable
vertical surface.

PRrROOF. We need to prove that when exists p € ¥ such that W—c19(7(Z),vp,) > 0
in p and L(|Ny|) # 0 over the characteristic curve passing through p in X, then ¥ is
unstable, in virtue of Proposition We consider p € ¥ such that £(|Ng|)(p) > 0.
We denote by 7o(s) the characteristic curve passing through p and we denote by
a(e) the integral curve of S passing through p, parametrized by arc-length. As the
surface is not singular ¥ is foliated by characteristic curves, we denote by 7.(s) the
characteristic curve passing through a(e) parametrized by arc-length. We obtain a
C'map F:IxI'— ¥ given by F(e,s) = 7.(s) which parametrizes a neighborhood
of the characteristic curve v on X, where I’ is an interval, compact or not, where live
the parameter s and I = [—&g, 9] with g9 € R eventually small. By Proposition
Ve(s) := (0F/0¢)(e, s) is a Jacobi-like vector field along v, and the function g(V.,T')
never vanishes since ¥¢ = (). Furthermore V;(0) = (S)q(c) implies that g(V.,T) < 0.
We define the function f. := g(V,S) and it is immediate that g(Vz,T) = — f-|Ny|
and g(Vz,vp) = f.g(N,T) where |Np| and g(N,T) are evaluated along .. The
Riemannian area element of ¥ with respect to the coordinates (e, s) is given by

d% = (|Ve|? = g(Ve,7:))? = f. ds de.
We define the function
(2.63) (e, s) = [g(Ve, T)(s)|? = (f=| Nu])'/2,

which is positive, continuous on I x I’ and C*° along characteristic curves, by Propo-
sition Denoting v.(s) = v(e, s) and denoting by ' the derivatives with respect to

s, by (2.61) and (2.62) we get

(02 = g(Ve, T) 2g(Va, TY = —y S 1)

feINR 2
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g(N,T)

—4\r -3 [
(Us ) - 29(‘/57T) g(‘/’c‘7T) 261f52‘Nh|3,

(vz)" = 6g(Ve, T) *(g(V-,T))? — 29(V=, T) g(V2, T)"
29(N,T)? Z(|Np|~tg(N,T))
A J2|Nw|? ’

=4c —2c

where we have used g(Vz,vy) = —g(Ve, T)|Ni|~tg(N,T), and consequently

—owve Lo gy gL T) ., Z(|INa|T'g(N,T))
(2 64) ((UE ) ) 2(’05 ) 9 |Nh‘ ( € ) - .f52|Nh‘2
' _ L(NW) W —cg(r(vh), Z) + cf|Na| 2g(N,T)?
2f2|Ny|? 22| Nn|? '

Now we consider a function ¢ : R — R such that ¢ € C§°(I) and ¢(0) > 0. Let
p a positive constant such that |¢'(¢)| < p for any e € R. We distinguish two cases.
First we suppose that the family of curves . is defined in the whole real line for €
small enough. For any n € N we consider the function u,, : I x I’ — R defined by
un (g, s) == ¢(e)p(s/n), with I' = R. At this point we can conclude as in [82] proof
of Theorem 6.7].

In the second case we consider a family of closed curves ~. with eventually different
length I.. We can parametrize all the curves as v.(t) : I' — X, with ¢t = slg/l. and
I' = [0,1p]. In this case we get

ove Lo g agWNT) 4 o Z(|Nh|719(N7T))

((UE )) _5(’05 ) _5 |Nh| (ve ) _Ecl f?‘NhP
_lo L(Nk|) Lo W = c1g(r(vn), Z) + cF|Nu| 2g(N, T)?

T L2f2INL2 L 2f2|Ny |2

Now it is sufficient reasoning as above changing the definition of the function ¢y (t) :=
¢(0) to conclude as in [82] proof of Theorem 6.7].

We observe that, chosen a point p € X, the curve 7 passing through p can
be closed (resp. non-closed) but the other characteristic curves 7. can be non-closed
(reps. closed) even for g small. In this case we can choose our initial point in another
non-closed (reps. closed) curves.

O

REMARK 2.49. The proof of Proposition [2:48 works under weaker assumptions,
i.e., when the closed and non-closed characteristic curves of ¥ are not dense ones into
others.

COROLLARY 2.50. There are not complete stable minimal surfaces with empty
singular set in the three-sphere group SU(2).

PRrROOF. By Proposition in SU(2) we have W —2¢(7(Z),v,) > 0 and we get
the statement using Theorem [2.48 O

REMARK 2.51. In [82] Corollary 6.9(ii)] the author shows that complete stable
minimal surfaces with empty singular set do not exist in the pseudo-hermitian 3-
sphere, which is the only Sasakian structure of SU(2).
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2.9. Classification of complete, stable, minimal surfaces in the
roto-translation group R7T.

We consider the group of rigid motions of the Euclidean plane. The underlying
manifold is R? x S' where the horizontal distribution H is generated by the vector
fields

0 0 _ 0
X = 30 and Y = cos(a) 32 + sin(a) 3y

the Reeb vector field is

T = sin(a) 9 cos(ar) =—

Ox oy
and the contact form is w = sin(a)dx — cos(a) dy, [20]. Furthermore we have the
following expressions Lie brackets

(X,Y]=-T, [X,T] =Y, [Y,T] =0

which imply W = 1/2 and that the matrix of the pseudo-hermitian torsion with
respect to the basis {X,Y, T} is

0 2 0
100
0 0 0

By [54, Theorem 1.2] a characteristic curve y(t) = (x(¢), y(¢), a(t)) of curvature

A = 0 with initial conditions v(0) = (zg, yo, @) and v(0) = (o, yo, ) in RT is of
the form
(2.65) ¥(t) = (xo + Ro cos(ao)t, yo + Ro sin(ag)t, ap)
when 6y = 0 or
(2.66)
V() = (wo+(Ro/cw)(sin(a(t)) —sin(ao)), yo+(Ro/cw)(cos(ao) —cos(a(t))), ao+dot)
otherwise, where Ry = \/#o® 4+ 4jo°>. We underline that the first family of curves is
composed by sub-Riemannian geodesic but the second one only when Ry = 0.

We investigate the equation of a minimal surface ¥ defined as the zero level set of
a function u(a, z,y). We consider the horizontal unit normal and the characteristic
field
(uaX + (cos(a)uy + sin(a)u,)Y) P (cos(a)uy + sin(a)uy) X — uaY

(u2 + cos?(a)u2 + sin®()u2)/2" 7 (u2 + cos(a)u2 + sin®(a)u2)1/2

Vg =

respectively. By a direct computation we get the minimal surface equation

(2.67)

u? (cos? () ugy + 2 cos(a) sin(@)ug, + sin®(@)uy,) + (cos(a)u, + sin(a)u, ) uqq

— uqa(cos(@)uy + sin(a)uy ) (2 cos(a)uas + 2sin(a)ua, — sin(a)uy, + cos(a)uy) = 0.
REMARK 2.52. In RT we can express
9(r(2), 2) = 9(2,X)9(Z,Y) = —g(vn, X)g(vn,Y)
and
9(1(Z),vn) = 1/2 = g(vp, Y )?
which imply W — g(r(Z),vn) = g(vn,Y)? = g(Z, X)*.

COROLLARY 2.53. Let ¥ be a C? stable, oriented, complete, immersed minimal

surface in RT with empty singular set. Then 3 is a vertical plane of the form ¥, =
{(z,y,0) e RT :a=a €S} .
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We note that there exists another family of vertical surfaces composed of the
left-handed helicoids X, = {(z,y,a) € RT : cos(ba)x + sin(ba)y = 0,b € S'}, that
are unstable minimal surfaces. In fact the horizontal normal of ¥ is

(—sin(a)z + cos(a)y) X +Y
(1 + (—sin(a)x + cos(a)y)2)1/2
which implies W — g(7(Z), v1,) > 0 outside the line {x =y = 0}.

Vp =

LEMMA 2.54. In RT there do not exist minimal surfaces with isolated singular
points.

PROOF. We can suppose that the singular point is the origin. Then TpX =
span{0y, 0, }. The unique way to construct a minimal surface is to to put together
all characteristic curves starting from 0, in the directions of 7% with curvature A = 0,
Theorem[2.14] But in this way we construct a right-handed helicoid denoted X, below,
which contains a singular line. ]

LEMMA 2.55. Let ¥ be a complete area-stationary surface of class C? in RT
which contains a singular curve I'. Then X is a right-handed helicoid . or a plane

Yab,c defined below.

PrROOF. We consider a singular curve I'(¢) in ¥. Then as ¥ is foliated by char-
acteristic curves we can parametrize it by the map F'(e, s) = ¥-(s), where 7. (s) is the
characteristic curves with initial data ~.(0) = I'(¢) and 4.(0) = J(I'(¢)). We define
the function V.(s) := (0F/0¢)(s,¢) that is a smooth Jacobi-like vector field along
~e(s). The vertical component of V. satisfies the ordinary differential equation

g(‘/saT)/” + ke g(‘/EaT)/ = 07

with k. = g(9-(s), X)? that is constant along 7.(s). We suppose that a character-
istic curve vz(s) is not a sub-Riemannian geodesic, it means that 0 < ks < 1. As

9(Ve, T)'(0) = 0 and g(Ve,T)"(0) = 0 by (2.24)), (2.25) and the fact that I is a singular

curve, we get

1

(2.68) 9(Ve, T)(s) = = —7=sin(Vke )

and we find another singular point at distance 7/v/k.. The singular point is contained
in a singular curve I'y composed of points of the type v.(s.), with s. = 7/vk.. ¥
area-stationary implies g(I'1 (), J(:(s.))) = 0. Now we prove that g(V.,4.)(s) is
constant along ~.. It is zero in the initial point and we suppose it is increasing or
decreasing. By point (ii) in Proposition we get that it has a maximum or a
minimum in s. and so V(s:) and 4.(sc) are co-linear. This is impossible and we
have proved V.(s.) = I';(¢). Finally integrating g(Vz,%.)(s) along ~. by point (ii) in
Proposition 2.10] we get

0= O/g(Ve,%)’(S)dS = —O/Q(VmT)(S)Q(T(%)%)(S)ds,

that is impossible since g(Vz,T') > 0 on (0, s.) and g(7(32),¥e) = 9(Fe, X) /1 — g(Fe, X)?
is a constant different from zero. We have proved that each 7. is a sub-Riemannian
geodesic and k = k. is equal to 0 or 1. When k£ = 0 we get the surface a right-hand
helicoid and when k£ = 1 we get a plane.

O
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REMARK 2.56. In [86] Example 2.1] the author gives examples of minimal surfaces
of equations ax + bsin(«a) + ¢ = 0 and x — y + ¢(sin(a + cos(a))) + d = 0. Also the
surfaces ay — beos(a) + ¢ = 0 and  + y + c(sin(a + cos(«))) + d = 0 are minimal
surfaces with a similar property, in fact they satisfy g(7(Z),v,) = 0. We remark that
all these examples are not area-stationary.

For example in the surface described by z+sin(a) = 0 we have Z = (— cos(a) X +
cos(a)Y/(2| cos(a)|) that is not orthogonal to the singular curves I'y = {(—1,y,7/2) €
RT :yeR}and I's = {(1,y,37/2) € RT : y € R}.

LEMMA 2.57. Let ¥ be a surface defined by a function u(z,y) = 0, with u : R? —
R of class C* and (ugz, uy) # (0,0). Then ¥ is a minimal surface that is area-stationary
if and only if it is a plane Lo p. = {(z,y,) € RT : ax+by+c =0, a,b € R, c € S}.

PRrROOF. It is sufficient observe that u, or u,, multiply each term of equation
(2.67). Furthermore it is clear that a surface X of the type u = u(z,y) contains two
singular curves whose union is ¥¢ = {(z,y,®)RT : cos(a)u, + sin(a)u, = 0}; by
Lemma the surface is a plane X, . = {(z,y,0) € RT tax +by+¢=0, a,b €
R,ceS}. O

In the sequel we investigate the stability of the two families of area-stationary
surfaces that contains singular curves.

PROPOSITION 2.58. All planes X4 = {(z,y,a@) € RT :ax +by+c=0, a,b €
R, ce Sl} are unstable area-stationary surfaces.

PRrOOF. We take for simplicity a plane of equation y = 0. Then we have
_ sin(a) _ sin(a)
| sin(a)] | sin(c)]
Then we get g(7(Z),vn) = —1/2 and W — g(7(Z),v;,) = 1 by Remark 2.52] Further-

more using ([2.56) we can compute 6(S) = —|Np| and putting a function u = u(x),
with v € C§°([—xo, o)) and xg > 0, in the stability operator in Theorem we get

Vh

Q(u) = / u(z)?dx | | — / %| sin(a)|?| cos(a)| da | + 2 / u'(z)? da

—20,%0) [0,27] [—20,%0]

—1

inf /u’(a:)dx /u(:c)ZdJc ueCRm) S =0,
R R

there exists a function u € C§°([—xo, zo]) such that Q(u) < 0.
g

REMARK 2.59. A plane characterized by equation az +by+ca = d is not minimal
if a,b,c # 0.

PRrROOF. That plane is minimal if and only if the following equation holds:
c{ab(cos? a — sin? @) 4 cos asin a(b* — a?)} = 0,
that implies c=0or a = b = 0. O

PROPOSITION 2.60. Let ¥, = {(z,y,a) € RT : zsin(ca) — ycos(ca) = 0,c €
S'}. Then X, is a stable, area-stationary surface.
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PROOF. By a direct substitution in (2.67)) X. is minimal. Now we suppose ¢ = 1
for simplicity and we have

. x cos(ar) + ysin(a) X 7-
b |z cos(a) + ysin(a)| N

z cos(a) + ysin(«)
|z cos(ar) + ysin(a)|

outside the only singular curve I'y = {(x,y,a) € S' : z = y = 0}, so the characteristic
curves meet orthogonally the singular one.

Now by we have 0(S) = |Nj,| and by Remark[2.52|we get —W+g(7(Z), 1)) =
0 and ¢g(7(Z),vn) = 1/2. Then the stability operator for non-singular surfaces in The-
orem become

o) = / {22 + ol (1= G182 o2 i

(2.69)
+4/(u|F )2dr0+/5(uyF )2dly,
T'o o
which is non-negative for all functions u € C§(Z.). O

THEOREM 2.61. Let ¥ be a stable, area-stationary, immersed, oriented and com-
plete surface of class C? in RT. Then we distinguish two cases:

(1) if X is a non-singular surface, then it is a vertical plane X,;
(ii) if X is a surface with non-empty singular set, then it is the right-handed
helicoid ..

Finally we would remark that the family of planes 3, are area-minimizing by a
standard calibration argument, in fact they form a family of area-stationary surfaces
who foliate RT'.






CHAPTER 3

Variational formulas in contact sub-Riemannian
manifolds

3.1. Preliminaries

3.1.1. Contact sub-Riemannian manifolds. A contact manifold is a C*>
manifold M of odd dimension 2n + 1 together with a one-form w such that dw is
non-degenerate when restricted to the horizontal distribution H := ker(w), [15]. The
(2n + 1)-form w A (dw)™ is an orientation form in M. Since

dw(X,Y) = X(w(Y)) = Y(w(X)) - w([X,Y]),

‘H is completely non-integrable. The Reeb vector field T in M is the unique one that
satisfies

(3.1) w(T) =1, Lrw =0,

where L is the Lie derivative in M.

A well-known example of a contact manifold is the Euclidean space R?"*! with the
contact one-form wq := dt + Z?Zl(x,;dyi —y;dx;). A contact transformation between
contact manifolds is a diffeomorphism preserving the horizontal distributions. An
strict contact transformation is a diffeomorphism preserving the contact one-forms.
An strict contact transformation preserves the Reeb vector fields. Darboux’s Theorem
[15] Thm. 3.1] implies that, given a contact manifold and some point p € M, exists an
open neighborhood U of p and a strict contact transformation f from U into an open
set of R?"*! with its standard contact structure. Such a local chart will be called a
Darboux chart.

A contact sub-Riemannian structure (M, gy, w) is given by a positive definite
metric gy on H, [62]. The metric g; can be extended to a Riemannian metric g on
M by requiring that 7" be a unit vector orthogonal to H. The scalar product of two
vector fields X and Y with respect to the metric g will be often denoted by <X , Y>.
The Levi-Civita connection associated to g will be denoted by D. The integral curves
of the Reeb vector field T' are geodesics of the metric g. To check this property we
observe that condition Lrw = 0 in implies

(3.2) w([T,X]) =0 for any X € H.
Hence, for any horizontal vector field X, we have
<X7 DTT> = —<DTX,T> = —<DXT,T> =0.

We trivially have <T, DTT> =0, and so we get DT = 0, as claimed.

A usual class defined in contact geometry is the one of contact Riemannian man-
ifolds, see [15], [90]. Given a contact manifold, one can ensure the existence of a
Riemannian metric g and an (1, 1)-tensor field J, so that
(33)  g(I,X)=w(X), 29(X.J(Y)) = dw(X.Y), JX(X)=—X+w(X)T.

73
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The structure given by (M,w,g,J) is called a contact Riemannian manifold. The
class of contact sub-Riemannian manifolds is different from this one. Recall that, in
our definition, the metric gy is given, and it is extended to a Riemannian metric g
in TM. For such extended metric g, there is not in general an (1, 1)-tensor field J
satisfying all conditions in . Observe that the second condition in uniquely
defines J on H, but this J does not satisfy in general the third condition in (3.3), as it
is easily seen in (R3,wy) choosing an appropriate positive definite metric in ker(wp).

We shall denote by Q the volume form in (M, g) inducing the same orientation
as w A (dw)™. A wedge product is defined in M for vectors and vector fields by

(3.4) <61/\.../\€2n,’0> =Q(e1,...,eom,,v).

The Riemannian volume element in (M, g) will be denoted by dv,. It coincides with
Popp’s measure [62] § 10.6]. The volume of a set E C M with respect to the Rie-
mannian metric g will be denoted by V (FE).

The length of a piecewise horizontal curve v : I — M is defined by

- [wwa
I

where the modulus is computed with respect to the metric g3;. The Carnot-Carathéo-
dory distance d(p,q) between p, ¢ € M is defined as the infimum of the lengths of
piecewise smooth horizontal curves joining p and ¢q. A minimizing geodesic is any
curve 7 : I — M such that d(v(t),v(t')) = |t — | for each ¢, ¢’ € I. We shall say that
the sub-Riemannian manifold (M, Gy, w) is complete if (M, d) is a complete metric
space. By Hopf-Rinow’s Theorem [51, p. 9] bounded closed sets are compact and
each pair of points can be joined by a minimizing geodesic. From [62] Chap. 5] a
minimizing geodesic in a contact sub-Riemannian manifold is a smooth curve that
satisfies the geodesic equations, i.e., it is normal.

3.1.2. The sub-Riemannian connection. In a contact sub-Riemannian man-
ifold, we can decompose the endomorphism X € TM — DxT into its antisymmetric
and symmetric parts, which we will denoted by J and 7, respectively. Explicitly we
have

2(J(X),Y) = (DxT,Y) — (DyT, X),
27(X),Y) = (DxT,Y)+(DyT, X).

Observe that J(X),7(X) € H when X € H, and that J(T) = 7(T) = 0. Also, note
that

(3.6) 2(J(X),Y) = ~([X,Y],T), X,YcH.

(3.5)

We will call 7 the (contact) sub-Riemannian torsion.

Now we define the (contact) sub-Riemannian connection V as the unique metric
connection, [22] eq. (I.5.3)], with torsion tensor Tor(X,Y) = VxY — Vy X — [X,Y]
given by

(3.7) Tor(X,Y) := (X, T)7(Y) — (Y, T)7(X) + 2(J(X),Y) T.

We arrive at definition (3.7)) by requiring VT = 0. We recall Koszul’s formula (com-
pare with [22] p. 17])

AVxT,Y)=X({(T,Y))+T(X,Y)) = Y( <X T>
(3.8) +([X,T,Y) = ([X,Y],T) +([v,T]. X)
+ (Tor(X,T),Y) — (Tor(X,Y), T) + ( Tor(Y,T), X).
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VT = 0 implies (VxT,Y) — (VyT,X) =0 for all X,Y € TM, and so we get from
(3.8)
XU, YY)~ V(XY (X, Y] T) — (Tor(X,¥).7) =0,

which implies
(3.9) (Tor(X,Y),T) =2(J(X),Y), for all X,Y € X(M).
Again by Koszul’s formulas for D and V we obtain
(3.10) 2(DxT = VxT,Y) = —(Tor(X,T),Y)+ (Tor(X,Y),T) — ( Tor(Y,T), X).
Using and (3.10)), still assuming V7' = 0, we have
27(X),Y) = (DxT,Y) + (DyT,X) — (VxT,Y) — (VyT,X)
= (Tor(T,Y), X) + ( Tor(T, X),Y).
Hence, assuming (X,Y) — <Tor(T, Y), X> is symmetric, we have
(3.11) Tor(T, X) = 7(X), for all X € X(M).
Finally, we make the assumption
(3.12) (Tor(X,Y),Z) =0, for all X,Y,Z € H.

Definition (3.7)) is then equivalent to (3.9)), (3.11) and (3.12).
Let us check now that VT = 0 if (3.7) holds. From (3.8)), (3.7) and (3.5 we get

(3.13) (VxT,Y)=0, forall X,Y € H.

On the other hand,
(3.14)
(VeT,X)=—(T,VxT)— (T, Tor(T, X)) — (T, [T, X]) =0,  for any X € H,

since |T'| = 1, and Tor(T, X), [T, X] are horizontal by (3.11)) and (8.2). As (VxT,T) =
0 for any X € TM, we get from (3.13]) and (3.14) that VT = 0.

The difference DxY — VxY can be computed for any pair of vector fields X,
Y € X(M) using Koszul’s formulas for D and V to get

(3.15) DxY —VxY = (Y, T) (1(X)+ J(X)) + (X, T) J(Y) = (7(X) + J(X),Y) T.

The sub-Riemannian curvature operator R associated to the sub-Riemannian con-
nection is defined by

(3.16) R(X,Y)ZZZ VvaZ—VyVXZ—V[X’y]Z, X,Y,ZE:{(M).

The sub-Riemannian curvature tensor is defined by

(3.17) R(X,Y,Z, W) := <R(X, Y)Z, W>, XY, Z,W e X(M).
Since VT = 0 we have
(3.18) R(X,Y)T =0, for any X, Y € TM.

Moreover, the curvature tensor has the symmetries
310 R(X,Y,ZW)=-R(Y,X,Z, W),

forall X, Y, Z W € TM.



76 3. VARIATIONAL FORMULAS IN CONTACT SUB-RIEMANNIAN MANIFOLDS

We shall denote the Riemannian curvature operator and the Riemannian curva-
ture tensor by RY(X,Y)Z and RI(X,Y, Z, W), respectively. In the sequel, we shall
need the following relation

RI(T,X)Y = R(T,X)Y + (VxJ)(Y)

(3.20) + ((J(r(X)),Y) + (r(r(X)), >) T
= ({(Vr)(X),Y) + ((Vo7)(X),Y)) T,
for X,Y € H. To obtain we have used - that [X,T], VxY and V1Y are

horizontal, and DyT = 0. Observe that, if £ € X(M) then <J E), > = 0. Then, for
any vector field W € X(M), we have

(3.21) (VwI)(E) E) =0,

and so one of the terms in vanishes when X =Y.

Our definition of V coincides with previous ones in pseudo-hermitian manifolds
[83] and special cases of contact sub-Riemannian manifolds which can be obtained as
limits of contact Riemannian manifolds, where V is the generalized pseudo-hermitian
connection and 7 the generalized pseudo-hermitian torsion, [90].

From the definition of the volume form Q in it follows that Vi = 0 for
any vector field U in M and so

(322) VU(El /\.../\Ezn) =VvEIAN...NEy,+---+EN...ANVyEs,,
for any family Ej,..., Fa, € X(M).

3.1.3. Hypersurfaces of class C?. Let ¥ C M a hypersurface of class C': we
define the sub-Riemannian area of X by

(3.23) A(D) = /E N, | d,

where N is a unit vector field normal to 3, V; the orthogonal projection of N to the
horizontal distribution, and d¥ is the Riemannian measure of ¥. The singular set ¥
is

(3.24) Yo:={peS:T,X=H,},

of points where the tangent space to X is the horizontal distribution H,. We will
always assume the existence of a unit vector field N normal to ¥ globally defined.

We define, in the regular set X\ ¥g, the horizontal unit normal given by
Ny,
3.25 vy = —,
(3.25) ey

and we will take on 3 \ 3¢ the vector field
(3.26) S:=(N,T)vy — [Nu|T,

which is tangent to ¥ and orthogonal to T N H. We will say that a local ba-
sis E1,...,Fo,_1 of TYX N H is positively oriented if FEi,..., Fo, 1,5, N is posi-
tively oriented, which is equivalent to the positive orientation of the local basis
El, ey Egnfl, Vh,T.

In this paper we will consider hypersurfaces defined locally as the level set of
a function having two continuous horizontal derivatives, i.e., such that locally ¥ =
{f=0}and Xf, X(Yf) exist and are continuous for any X,Y € H. We will further
assume that either there is X € H such that X f £ 0, or there is a pair of horizontal
vector fields X, Y € (f) such that [X,Y]f # 0. These conditions are equivalent to X
being of class C' with two continuous horizontal derivatives. Under these conditions,
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we shall say that f € C? and that ¥ is of class C?. We remark that the class of
C@-regular hypersurfaces defined by Franchi, Serapioni and Serra-Cassano, [41], is
contained C7, and that C7 C C.

Hypersurfaces of class C,?b can be approximated, in the regular set, by hypersur-
faces of class C*°. This is a local argument that can be described in the Heisenberg
group H™. We consider on H" a smooth function p such that 0 < p < 1, an p=1
and p(p) = p(p~1) = p(—p) for any p € H", where ~! denotes the inverse with respect
to the group multiplication. We define the intrinsic mollifiers

(3.27) pe(a) = P(f;iggp))

where J; is the one-parameter family of intrinsic dilations. For any f € L}, .(H"), we

define the intrinsic convolution, [9, Lemma 2.4] and [39, Proposition 1.20], as

(3.28) (pe * [)(p) - = /pa(p’)f((p’)_1 p)dp = /pa(p- @)@ dp'.

H”" Hn

LEMMA 3.1. We denote by B:(p) the intrinsic ball of radius € centered in p in
H™ and by - the group multiplication in H™. Then in H" the following properties hold

(i) supp (pe * f) C Be(0)- supp (f);
(i) of f € L=(Q)NC(Q), then (p: * f) — [ uniformly in compact subsets of
Q C H™ when e — 07";

(iii) X (pe * f)) = pe * (X [)), for any X such that X f exists and is continuous.

PROOF. Property (i) is straightforward. Property (ii) follows by applying the
dominate convergence theorem to

(e F)(0) — F(0)] < / pe )@ D) — £ ()] dp

< / p(@)F((6:(0)) - p) — £(p)] dg,

R2n+1

where we have used the change of variables 61, (p') = g, since | f((6-(¢)) ™ -p)—f(p)] <
2| flr=(Q) and f((6-(q))~*-p) = f(p), assuming that p € &’ C Q.

Property (iii) follows from definition and from the fact that the Jacobian
determinant of an intrinsic left translation is equal to 1. O

REMARK 3.2. We consider a point p € 3 and a neighborhood V' of p in M. Then
Darboux’s diffeomorphism, [15, Thm. 3.1], maps (V, g3, w) onto (U C R*" L 53/ wo),
where wy is the Heisenberg contact form and gy an arbitrary positive definite metric
in the horizontal distribution.

Given a surface ¥ C U, expressed as the level set of a function f € C’%, we can
approximate ¥ with a family of smooth surfaces {Xj}ren, defined as the zero level
set of the functions fy := f * py/;. From Lemma fr converges to f in compact
subsets of ¥ and also the horizontal derivatives up to the second order in compact
subsets of 3 converge.

This implies C'! convergence, so Ny, converge to N, (v, ), converge to vy, and (e;)
converge to e;, for all e; € TY, in any compact subset. Here the subscript k£ denotes
the vectors in the surface ¥j;. Furthermore we can express

(l/} )k — Xl(fk)Xl + 1q(.f/f)yi +--+ Xn(fk)Xn + Yn(fk:)Yn
' VXL )2+ V()2 + -+ Xn ()2 + Y (fr)?
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where {X;,Y;}i=1,. , is an orthonormal basis of Hy = ker wp, and we have also the
convergence of V(ei)k(l/h)k to Ve, v, for any e; € TX N H on compact subsets of X.

All the convergences still hold when we come back to (V, gy, w) as the Darboux’s
diffeomorphism preserve the directions in 7% N H.

3.2. Size of the singular set of a C} hypersurface
We prove the following estimate on the size of the singular set of a C? hypersurface

THEOREM 3.3. Let ¥ C M?"* be a hypersurface of class C} in a contact sub-
Riemannian manifold. Then H%(Z0) = 0.

PROOF. Since Darboux’s Theorem preserves T3 and H, we prove the result in
H™.

We can suppose that ¥ is locally the zero level set of a C? function. In %
we have Vg f = 0 and (X;(Yif),Yi(Xif)) # (0,0), for all ¢ € {1,...,n} (otherwise
T(f) = 0 should be 0). We conclude that 3y C (XN S), where S is the H-regular
n-codimensional submanifold defined as the intersection of the zero level sets of the
Cg-function Z;(f), where Z; = X; or Y;. Then, from [7, Theorem 2.4], we get

My (Do) < HE(S) < HE(S) =0.
O

REMARK 3.4. We conjecture that, under the hypothesis of Theorem ’H%H (Xo)
should be 0. Our estimation is probably not sharp. although the estimate H:3(S) <
Hﬁ+3(5) is optimal for arbitrary sets in H", n > 1, [6], [7], but at our knowledge it is
not known if it is optimal for regular graphs. Moreover, in the proof of Theorem [3.3
we only estimate Hg(S) and not Hg(SNX).

3.3. The first variation formula

We consider a hypersurface ¥ C M of class C7. At a given point p € ¥\ X, the
mean curvature of ¥ at p is defined by

2n—1

(3.29) H(p) = — Z (Ve,vn e:),

where e, ..., es,—1 is any orthonormal basis of T),% N H,,.

Let U be a vector field with compact support in M, and {ps}scr its associated
one-parameter group of diffeomorphisms. Since ¥ is of class C!, the sub-Riemannian
area of 3, := 4(X) is defined for all s € R. By the Riemannian area formula we have

(3.30) AS,) = / ((N)a] 0 0s) Jac(py) d,

where Ny is a unit normal to ¢4(X) chosen so that N is continuous in s, and Jac(ps)
is the Riemannian Jacobian of the map ¢, defined as the squared root of the deter-
minant of the symmetric matrix ({(de¢),(es), (d‘PS)P(ej»)i,j:1,...,2n’ where e; is any
orthonormal basis of T},%.

Fix p e ¥\ Xp and let eyq, ..., ea,—1 be a positively oriented orthonormal basis of
T, NH,. We consider extensions F1, ..., Ey, of e, ..., ez, along the integral curve
a(s) of U passing through p, such that each F; is invariant under the flow of U. We

can always extend F; in a neigborhood of the curve so that [E;, U] = 0. Observe that
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Vu,E; is really the covariant derivative DE;/ds of E; along the integral curve of U
through p, [36l p. 50]. Let

(3.31) V(s,p) :== (Zn (E;,T)Ey \-+- N\ (%) Ao A E2n> (a(s)).

=1

As shown in [77] in the Heisenberg group H", we have

(3.32) (([(N)nl o ws) Jac(es)) (p) = [V (s,p)l,
and we call the expression in (3.32)) the horizontal Jacobian. From ([3.30) and (3.32)
we get
(333) A = [ 1Vspld=e)
b

We can take one derivative under the integral sign in (3.30]) since the singular set
in a C! surface has H2'~'-measure 0, and

d

| VRl =Up(V]) = (Vu,V,Vp)

s=0 ‘VP‘ ,

which is a uniformly bounded function of s and p near s = 0. We have used the
notation V, := V(0,p) in (3.34). For future reference, we calculate

(3.34)

LEMMA 3.5. Let X be a hypersurface of class C? in a contact sub-Riemannian
manifold M?*"*1. Let U be a vector field in M, p € X\ Xo, {e1,...,€2,_1} an or-
thonormal basis of T,XNHy,, eapn := Sy = <Np,Tp> (Vh)p—|(Np)p| Tp, and Ex, ..., Esp,
extensions of ey, ..., e, along the integral curve of U through p invariant under the
flow of U. Then we have

2n—1

Vi, V==> (Vu,Ei,N,)e
(3.35) =t -

+{ = (Vu, B0, T) + [(Nn)y| Y (Vu,Eisei)} (vh)y
i=1

where V' is defined by (3.31), and N is the unit normal to X.
PRroOOF. From (3.31)) we get

2n—1 .
(i
(3.36) Vu, V=Y (Vo,E,T)er A...ANT, A...Neap

i=1

2 0)
+ Z <ei,Tp>VUp(E1 VANIRAN Tp A Egn)
i=1

Since we have

) (N, T e i=1,....2n—1,
(3.37) LA ATy A A gy = (Np, Tp) e ’ "
—(Vn)p, i =2n,
and
0 =1,...,2n— 1,
(3.38) (e Tp) =4 ’ "
_|(Nh);l7|7 i =2n,
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we obtain
2n—1

(3.39) Vy V=-— Z( ST (Vo Ei, Ty e — (Vu, Ban, Tp) (a)p

—|(Nw)p| Vo, (Br A ... A Eayy AT).
Writing Vi, E; = (Vu, E;, ei) e + (Vu, Ei, (v)p) (vn)p + -+, We get

2n—1 2n—1
(3.40) Vu, (EiA. . .AEoq aAT) ==Y (Vu,Eiei) n)pt Y, (Vu, Ei, (vn)p) €,
i=1 i=1
and so we finally obtain
2n—1

(341) Vy,V = Z { — (N, T ) (Vo Ei Ty — |(No)pl{Vu, By (vh)p) } €

2n—1

{ <VU Es,, T Z I Nh Vu Ei;ei>} (Vh)zn

from which the result follows. O

PROPOSITION 3.6. Let ¥ C M be a hypersurface of class C? in a contact sub-
Riemannian manifold. Let N be a unit normal to . Consider a C*° wvector field U
with compact support in M, and let {@s}ser be the associated one-parameter group
of diffeomorphisms. Then we have

d 2n—1
(3.42) o Alps(X)) = /2 { = e, ((U,T)) + (U,T)|Ny| Z (1(ei), €
s=0 i=1
2n—1
—2(J(U), ean) + |Np| Z (Ve,Uni, i) — (U, Nyp)H } dS(p)
i=1
where the function between brackets is evaluated at p € ¥, and {e1,...,ea,—1} is a

positively oriented orthonormal basis of Tp,X NH,.

PRrOOF. Equation (3.34]) implies that the integrand in the first variation formula
is given by <VUPV, (vh)p). From , using equality Vi, E; = Ve, U 4 Tor(Uy, e;),
the expression of the torsion 7 the decomposition U = Uy + <U, l/h> vp+ <U7 T> T
and the definition of H given in , we get .

We wish to simplify formula when the support of U is contained in the
regular set of ¥. For C? hypersurfaces, this is a consequence of the Divergence
Theorem applied to certain tangent vector fields. For CZ hypersurfaces, we will
approximate 3 by C* surfaces out of the singular set, and pass to the limit to obtain
the same result.

LEMMA 3.7. Let X C M be a hypersurface of class C? in a contact sub-Riemannian
manifold, and let N be a unit normal to ¥. Then we have
(i) divs:(£S) = ean(f) = FINA| 2 (7 (es), e3) — F(N,TYH, for any f € C(2\
o).
(ii) divs(INa|U) = =2(J(U), e2n) + | Ny| 22" ! (Ve,U,€;), for any tangent and
horizontal C1 vector field U with support in ¥\ Xq.
The functions in these formulas are evaluated at a point p € ¥\ Yo, and eq, ..., €2,1
is any orthonormal basis of T3 NH,. Recall that ean, = Sp.
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PRrROOF. We note that
2n—1

divs (fS)(p) = ean(f) + f(p) Z <Dez‘S’ ei>’

i=1

since |S| = 1. Using (3.15]) we express <DeiS, ei> in terms of <VeiS7 ei>, which is
computed from the expression of S given by (3.26)), and the definition of H in equation
(3-29). In this way we get (i).

In order to prove (ii) we write, for given p € X,

(3.43) div(INa| U)(p) = Up(INn|) + |(Nn)p| z_: (VeU,ei) + [(Nn)p|(Des, U, €2n),

i=1

since <DeiU, ei> = <VeiU, ei> for=1,...,2n—1 by (3.15)), and U is orthogonal to e;
when i =1,...,2n — 1. We have

UP(|Nh|) = <DUpNh’ (Vh)}?> = <DUp(N - <N7 T>T)a (Vh)P>
= (N B (D, Vo) (Do, To)

as vy = (N, T)S+|Np| N (which follows from (3.26)), and (3.26). On the other hand

(3.44)

(3.45) |(Nh)p|<Deana e2n> = <Npan><Deana Np> + <D62”T, Up>7

since |[Ny| S = (N, T)N — T by and U is horizontal. Adding and
we get

(3.46) Up(|Nw|) + |(Nh)p|<Dean7 €2n> = -2 <J<Up)7 627’L>a

using the symmetries of 7 and the second fundamental form of ¥. This equation,
together with (3.43]), implies (ii). O

LEMMA 3.8. Let ¥ C M be a hypersurface of class C3 in a contact sub-Riemannian
manifold and let N be a unit normal to X. Then we have

2n—1

(3.47) / { —eanl) 4 FINU S <T<ei>,ei>}dz - [#v1yHas,
o) =1 )

for any f € CL(X\ %), and

2n—1

(3.48) Z/ { = 2(J(U), e2n) + INu| Y (Ve,U, ei>} dx =0,

i=1
for any horizontal C* vector field U, tangent to X, and with compact support in ¥\ Xy.

PROOF. We prove (3.48)). In the same way (3.47)) can be proved. We approximate
¥ with a family of C* hypersurfaces {3 }ren, as in Remark On each 3 there
holds

2n—1
(3.49) / { = 2(J(U), (e2n)k) + |(Nn)kl Y (Ve U, (ei)k>} ds =0,
o i=1
by Lemma Finally the right side of (3.49)) converges to the right-hand side of
(3-48) by Remark O
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THEOREM 3.9 (First variation of the sub-Riemannian area). Let ¥ C M?"+!
be a hypersurface of class C,% in a contact sub-Riemannian manifold. Consider a
C* wvector field U with compact support in M, and let {ps}scr be the associated
one-parameter group of diffeomorphisms. Then, for n > 4, we have

S| A= [ How)

o
s=0

where H is the sub-Riemannian mean curvature of ¥ and d¥ is the Riemannian

measure of X. On the other hand, (3.50) holds for variations supported in X\ Xg in

any dimension.

PROOF. The proof follows from Proposition [3.6, Lemma [3.8 and Lemma [3.10]
O

(3.50)

Following [89] Lemma 2.4], see also [69], Lemma 3.1] for details, we can prove

LEMMA 3.10. Let ¥ C M be a (compact) C' hypersurface. Let g C X be
such that Ha' 1 (o) = 0, where Ha'~" denotes the (2n — 1)-dimensional Hausdorff
measure associated to the Riemannian metric. Given € > 0, there exist a smooth
function . : X — [0, 1] with compact support and such that

(i) H"({pe #1}) <&
(i) [y |VepeldH?™ <e;
(iii) @ =0 in a neighborhood of ¥y .
PROOF. Since H*"~1(3y) = 0 we may cover ¥ with Riemannian balls B(zy, %)
where z;, € ¥ and

(3.51) Zr,%"_l <e.
k

Furthermore we require 7, < /2. We may also assume that the collection of balls
is finite since ¥ is compact. Now for each k let ¢ be a smooth function such that
0 < ¢ <1 with

0, for z € B(zg, k)

1, for x € B(zg,2r)

(3.52) or(x) = {

and
2
(3.53) IVor| < .

for all x. We now define (x) = ¢1(x) - - - ¢r(z), so we have 0 < ¢ < 1 and ¢ =0 on
U’ = |J B(z, 1) which contain ¥y and v = 1 on R\ U, where U = | B(zy, 2r1)-
k k

Furthermore v is smooth and we have

/ Vs 2dH>" < / VylRdH
> >
< [ S Ivarparen
P2u

4 n
<> %HQ (B(2k, 2r) N'Y)
k
< 22720, Zrinfl < Ceg,
k
where we have used H2"(B(zg, 2r,) N ) < Co(2ry)*". O

(3.54)
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In case ¥ = 09, where Q is a bounded open subset of M, the first derivative of
the volume of €2 can be computed in the usual way and we get

L v = [y
s=0 >

ds
assuming that IV is the outer unit normal to X. As usual a hypersurface ¥ is a critical
point of the area if and only if H = 0 and it is a critical point of the area under a
volume constraint if and only if H is constant. Analogous results are no longer valid
in a contact sub-Riemannian manifold of dimension 3, see [81].

3.4. The second variation formula
First of all, we present two Lemmas.

LEMMA 3.11. Let ¥ be an oriented C? surface immersed inside a contact sub-
Riemannian manifold (M, g3, w), {e1,...,ean—1} an orthogonal basis of TSNH, and
B the Riemannian shape operator. Then we have

(i) [Nulei(INw]) = (N, T)e:((N, T));

(i) [Ny~ les((N, T) = [Nalea( (N, 7)) — (N, T)ea(| Vi)

(1) (V.,N, 8) = I Na | Les((N,T);

(iv) (VsN,e;) = |Nh\<VSVh,el>

(v) <B(ez) > | N |~ tei( <N T> < > <T(€i),l/h>,'

(vi) (B(S).e > |Nh|<Vth7 >+|Nh|< Vh),e€i)
SN DY (T, e) + (ol )

(vii) |Nh|_1ei(<N,T>) \Nh|< 5t% h,ei>—2<N,T>2<J(1/h),ei>—|—\Nh|2<7'(ei),Vh>;
(viii) |Ng|3e;((N,T)) = <<|NH|>)'

The proof is the analogous of [45 Lemma 3.1].

LEMMA 3.12. We get
2n—1 2n—1

Z <(V6i7')l/h - (Vyhr)ei,e,-> = Z {<Vei7'(1/h),€z‘> — vp (i) + 2<Vyhei,7(ei)>

i=1 -
—(Ve,vn, 7€)}
and
<(V€i7')uh - (Vl,hT)ei,eZ-> =R(e;, T, vy, €;).
Proor. By we get
(R(e;, T)vn, e) = (R"C(vn, e)ei, T) — (De,J (v), ;) — (J (&), Ve,vn)

where RYC denote the curvature tensor respect to the Levi-Civita connection. Using
DxT = J(X) + 7(X), we have

<D€iDVhT ei> = <D ; Vh €i> + <DeiJ(Vh) ei>
(Dy, D, T, e;) = vp(ti;) — (J(e;) + 7(e:), Dy, i),

<V[Vh’ei]T’ ei> = <J([Vh7 el]) + T([th el])’ 61>
and from (3.10) we can easily obtain the second equation, while the first one is a
standard computation.
O

Now we compute the second variation of the volume
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LEMMA 3.13 (Second variation of the volume). Let ¥ C M?"*! be a hypersurface
of class C? in a contact sub-Riemannian manifold. Consider a C™ vector field U
with compact support in M \ Xg, and let {ps}ser be the associated one-parameter
group of diffeomorphisms. Then we have

(%:2 SZOV(SOs(Q)) = - / {<VULUL,N>) + <U, T>€2n(<U, Vh>)

- <U, I/h>€2n(<U, T>) + <U, N><U, T><7'(Vh), I/h>
+(U,N) nz_: (Ve U™ +Tor(UL,ei),ei>}dz.

i=1
PrOOF. From Lemma we have
V") = — /{UL(<Ul, N)) +(U,N)divs U+ }dE
S

and since <N, E2n> =0, it is equal to

V"(0) = — /{(vULU%M) — (U, e2,)(Vyr Eon, U)
by

2n
+ <U, N> Z <Vel.UJ‘ +Tor(Ut, e), ei>}dE7

i=1
as divy U+ = ‘2X731<V81.UL + Tor(U™*,¢e;),e;), by (3.10). On the other hand
<VC%UL +Tor(U*t, ean), 62n> :<N, T>€2n(<U, 1/h>) — |NH|€2n(<U, T>)
+ <N, T><U,N><’T(Vh)7l/h>
and
(Vi Ean, N) =2, ((U, vn)|Nu| + (N, T)eq,((U, T))
+ |NH\<U,N><T(Vh),yh>,
which, together with —|Ng|ea, + <N, T>N =T, implies

V(0) = — / (Vs U, NY) + (U, T)ean (U, 11)) — (U, v Yean (U, T))

+{(U,NYU,T){r(v1),vn) + (U,N) nz_: (Ve, UL +Tor(U*,e;), e;)}dS.

|

THEOREM 3.14 (Second variation of A— HV'). Let ¥ C M?"* be a CMC hyper-
surface of class C? in a contact sub-Riemannian manifold. Consider a C™ vector field
U with compact support in M \ X, and let {ps}ser be the associated one-parameter
group of diffeomorphisms. Then we have

(3.55)
| ) - avieon - [{jv <<U’ N>> NN (Vi)

AR
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where q is defined by

q =W —2(J(v,),7(vn)) + |o]* + 4(VE <<|]X;5|>> T ()
(3.56) (.7 o .2y
AN W7+ 2 Yo divi (J (vp)) — o Z T (e)mel2,

and o denotes the intrinsic second fundamental form, as defined in Lemma[B.1]

PRrOOF. From (3.33)), in order to compute the second variation of the sub-Riemannian
area, it is enough to calculate

2
Sl Wl =000 =

{(vU VoV, V) + |(VUPV)M|2},
s=0 |V|

where W}, denotes the orthogonal projection of the vector field W over TS N H.
Given a vector field W in M, we shall denote by W}ﬁ the only vector field so that
W =Wy + Wht, and Why, Wht are orthogonal. We trivially have Wht <W I/h> vy +
(w.T)T

We define the horizontal gradient on ¥ by

2n—1

VEF =Y elf) e
=1

the horizontal divergence on ¥ by

2n—1

divi U = Y (Ve,Ues),

i=1
and the horizontal Laplacian on ¥ by
ALf = divs (Vhf).
We get

<VUPVUV, (l/h)p> = Z <VUPVUE1’7 Tp> <61 VANRAN Tp N...€2p, (I/h)p>
=1

2n .
(i)
+Y 2(Vu, B T)(Vu, (B A oA T A A Eay), (vn)p)
i=1
(@)
+Z<€z, VU VU(El NT /\.../\Egn),(uh)p>.

From and ( we have

(4)
<VUp( 1A NT A ~-~/\E2n>7(Vh)p>:<VUPE2n>€i>7 1=1,...,2n—1.

Also we get

<VUp (E1 Ao NFEop_1 A T), (I/h)p> = — Z <VUPE¢, ei>.
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Hence from (3.37)) and (3.38) we obtain

(Vu, VoV, (vh)p) = —(Vu,VuEm, Ty,)

2n—1 2n—1
+2> (Vu,EBi, T,){Vu,Ean, i) — 2 Z Vo, Ean, Tp)(Vu, Eis e:)
=1

— [(N)pl{Vu, VU (Br A ... A Eap_y A T),( n)p)-
For the first summand in the above formula we get

(Vu,VuFEan, T,) = (Vu,(VE,, U + Tor(U, Ez,)), Tp)
= R(Upa €2n, Up, Tp) + <Ve2n (VUU)v T> + <VU,, TOI“(U, E2Tl)7 Tp>
= €2n<VUU, T> + <VUP Tor (U, Egn),Tp>,

since R(Uy, ean, Up, Tp) = —R(Up, €2n, T, Up) = 0. For the last one we get

2n—1

<VU,,VU (E1 Ao ANEgp_1 A T), (I/h)p> = — Z <VUPVUE1-, ei>
1=1
2n—1
+ Z VU El’el <vUpEj’ej>+<VUPEi7ej><vUpEj7ei>’
i,7=1,1#]

and

<VUPVUE1', 6¢> = <VU,, (VEqU + TOI‘(U, El)), ei>
= R(Up, €4, Up, 61‘) + <Ve7(VUU) + VU,, TOI‘(U, Ei), €i>.

So we finally have

(3.57)
(Vu,VuVi(n)p) = —e2a(VuU,T) — (Vu, Tor(U, E2n), Tp)
2n—1 2n—1
+2 Z (Vu,Ei,Tp)(Vu, Eon, €;) — 2 Z (Vu,Eom,Tp)(Vu,Ei e;)
i=1 i=1

2n—1

[(NB)pl Z { R(e;, Up, Uy, €;) + <Vei(VUU)+VUp Tor(U, ei),ei>}

2n—1
+ |[(Nn) | Z {<VUpEiaei><VUpEj7€j> - <VUpEiaej><VUpEjaei>}7

i,j=1,i#]
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from which it follows
(3.58)
<VUPVUV;(Vh)p> = —62n<vUU, T> - <VUP TOI‘(U, E27L)7 Tp>
2n—1
+2 Z (Ve,U + Tor(Uy, €;), Tp)(Ve,, U + Tor(Uy, e2,), €; )
i=1
2n—1
—9 Z (Ver, U + Tor(Uy, e2,,), T ){Ve, U + Tor(Up, €;), €; )
i=1
2n—1
(Nl > { — R(e;,Up, Up, ;) + (Ve,(VuU) + Vi, Tor(U, ei)7ei>}
i=1

2n—1
HINl Y {<V61U + Tor(Up, €;), € ){Ve,U + Tor(Uy, e;), €;)
i,j=1,i#j

— <V6iU + Tor(U,, e;), ej><Vej U + Tor(Uy, e;), ei>}.

On the other hand, Lemma [3.5| implies

2n—1

1 2

|(Vu, V)ne|® = AN g (Ve,U + Tor(Uy, €;), Ny)"~.
Pl =1

We have obtained that the second variation of the area equals the integral over
% of ([3.58)+(B.59), which coincides with the bilinear form B(U,U) defined in (A-1]).
Splitting B(U,U) = B(U,Up) + B(Uns, Uis) + B(Uj5, UjL), from Lemma d
Lemma we get that A”(0) = B(Uj5,U%).

Since

(3.59) A

2n—1
-2 Z <V6%U,f‘t + Tor (U, egn),Tp><VeiU,f;5 + Tor(Uj;, e;), ;) =
i=1
2n—1

— 2(U, 13, )ean (U, YV H — e3,((U, T)?) Z (7€), ),

using Lemma [3.7] and Lemma [3.13] we obtain
(3.60)
2n—1
—HV"(0) -2 > /{(va,}t + Tor(Uny, €20), Tp){ Ve, Upy + Tor(Upy, €;), €;) }dE =
i=1 %
5 2n—1 2
= / {H<VU;}Uth5 N> + H<U7 N><U7 T><T(Vh)a Vh> - <Ua T> |NH‘( Z <T(ei)7 ei>>
% i=1
) 2n—1 )
+ divs(H(U, T)(U, vp)ean) — divs((U, T)" > (7(e:), ei)ean) — [Nu (U, vi) H?
i=1
2n—1 ) 2n—1
+2H|Ng|(UTYU, ) Y (r(en) es) + (U T Y egn(<r(ei),e¢>)}d2.
i=1 i=1
On the other hand

<V61.U}#5 + Tor(U}ﬁ, ei),ei> = <U, uh><Veiuh, ei> + <U, T><T(€i), ei>,
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and, by Lemma [3.7]

(3.61)
2n—1

—eon (Vs Ui, T)) = = dive (Voo Ung, T)ean) = INg (Vi Un, T) Y (7€), e)
i=1

—(Vy Ui, TY(N,T)H.
Furthermore <VUP Tor(U, ei),e¢> equals
(3.62)
<V%U§,T><r(ei),ei> — (e;((U,TY) + 2{(U, v ){J (i), e ) (U, v ){T (1), &)

+ <U, T><(VUthT)(ei), ei> + <U7 T><U7 Vh><Veiuh,T(ei)>
+ (U, T)e:i (U, vn))(7(vn), €5) + (U, T)?|(ed)

and consequently also

(3.63)
<VUL UL, T)(1(ei), ei) — (e;((U,T)) + 2(U, v, ){J (v1), € )){U,vi )(T(v1), €i)
+ <U T><U z/h>( (e, T, vp, ;) +d1v2( (vn)nt) + <V l/h,ei><7' Vh), h>)
+ <U7 T> (< (61)7 z>) - 2<VTei7 ( 1)>) <U T>'ez <U Vh> < e’>
+ (U, T)|r(es)]%,

where we have use Lemma [3.12] Finally we get that

(3.64)
2n—1
—HV"(0) -2 Z /{<Ve2nUht —&—Tor(Uht ean), 1 ><V6iUth —&-Tor(Uth,ei),e»}dZ
i=1 >
2n—1
+/|(Nh)p| Z ((Ve,U + Tor(Up, €;),€;)(Ve,U + Tor(Uy, €5), €5 )) dS
s i j=1,i%j
2n—1
_/egn(<VU}¢tU,f; dE+/|NH\ Z Vu, Tor(U, e;), €;) d%
> ' i=1
equals
/{H(V%U;, Np) = divs((Vy Ui, T)ean)
5
22n71
+divs(H(U, T)(U,vp)ean) — divs((U, T)" > (7(e:), ei)ean)
i=1
22n—1 )
365) T NINUT) Zyh(<r(ei),ei>)+<N,T><U,T> H<T(uh),yh>}d2

2n—1

/|NH|Z (U, TY) + 20U, 1) (), e YU, o) () )

+ (U, TV |r(e) 2 + (U TYU, vi ) (~Res, Ty vy &) + div (r(vn)ne))
~2(Vreir(e))) + (U.L)ei((U.))(r(). 1) } a5
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Now, by Lemma [3.7] we have

(3.66)
2n—1
|NH| Z <v€7(thitU}JL;‘)7 61'> = - H<thitU}JL;"Nh> - 2<Na T><thitU}JL—t? J(Vh)>
i=1
+divs (|Nu| (Vg Ungne)
and
(3.67)

—(Vu Tor(Upg, Ban)) = 2{ = (Vi J)(Upp), e2n) + (N, T) (Vi Uiy, T (vi))
— (U, vn){V e, Upy + Tor(Upg, €2n), J (i) ) }-

We also note

2n—1
—/\NH| S Riei Uph, Upbve) S =
(3.68) > =t
:/|NH|{_<U, )W — (U, YU, T)s(T, vp)} d5,
2n—1

where s(T,vy,) = Z R(e;, T, vp,e;) and W = Z R(ei, vp, v, e;). So adding the

right side of (3. 66) 13 67), (3.68)) and (3.65)), we obtaln
/ { — divz(<VUh¢tUth,T>egn)

®
2n—1
+ din(H<U, T><U7 l/h>€2n) — divE(<U,T>2 Z <T(€i),6i>€2n)
+(U.T) (N, T) Z vi((r(ex). ) + divs(Nul (Vs Ui ae) 45
(3.69) /|NH| (U, T)VE{U, vi)) — (U, vn)VE{U,TY), m(v1))

- 2<U7 l/h> <J(1/h),r(uh)>) - <U, V}L>2W
2n—1

+ 3 (U r(en) | + (U TYWU, ) (Ve m(vn), €5) — 25(vn, T))
=1

=2V (Tres @) }E = 2 [ {((Vis DU can)
P

+ (U, ) (Ve vm, J(un)) + (U, v ) (U, N7 (vn), T (i) )} A5
On the other hand, since

2n—1
2> (Ve Uil + Tor(Ups, ), T)(Ve,, Uy + Tor(Upy, €2n), €3) =
1=1

=2(VL((U,T)) + 2(U,vn)J (), (U, v )V ey, vn + (U, N)T(3))

(3.70)
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and

(Vur NUii), ean) = (N, T)((Vys J)(vn), vi)
= <N, T>(<thLtJ(Vh)7 I/h> + <thLtI/h, J(Vh)>) = 0,

we obtain that (3.69) added with the left term in (3.70) is equal to

/ { divs: (IN# (Vi Ui ne) — dive (V1 Ui, Thean)

b
2n—1

+ dive(H(U, T){(U, v )ezn) — divs (U, T)* Y (7(e:), ei)ean)
i=1

2n—1

+ <U, T>2<N’ T> Z Vh(<7'(€i)7€i>)} dx

+ / |NH\{<V}EL(<U, Vh><U, T>),T(Vh)>
(3.71) 5
+2(U,vn)INa |~ (VE(U, T)), Veg,vn)

+ (N, T)|Ng | HVE(U.T)*),7(v4))) — (U, v} W

+(U,T)’ > (el = 2(Vres i)

+ (U, T)(U, Vh>d1v2< (Vh)ht)—ZS(T,Vh))}dZ
i 2/ (U2 (Vegns T0n) + (U0 ) (U TYNT) (r(01), T (1)} dS.

Furthermore, the term

2n—1

—|Ng| Z <VeiU+Tor(Up,ei),ej><Ve].U+T0r(Up,ej),ei>
i,j=1
equals
2n—1 9
(3.72) —INu| D {UT) [r(en)? + 2(U.T)(U, vn)(Ve,vn, 7(ei)
. 1=1

+ (U )2 ([Vevn? + 2(N, T) N |~ (T (es), Ve,vn )},

where we can express

<N7 T> 2n—1 2n—1 <N, T>2
(3.73)  |Vhu,|? +2 Vo ; (J(e:),Ve,vn) = |o]? — ; R | (ei)ne|?.

Finally we need to compute (V.,Uz; +Tor(Uzs, €;), v, + (N, T)|Ny|7'T). In fact
(3.74)

_ 2 _ 2
INg |[(Ve,Upg+Tor (Ui, €;), vp +H{N, T)|Ng| ' T)" = |Ng| (Ve Uiz +Tor (Uss, ), N )"
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From Lemma [3.11] we simply have that

(Ve,Uily + Tor(Ups, €;),vn + (N, T)|Ny|'T) =

(3.75) . <<U,N>> " <U7T><|NH|_1vegthvei> +2<N,T> <<U,N>> <J(Vh),€i>~

|Ng| |Ng| |Ng|

and consequently the right and left sides in (3.75|), summed for ¢ =1,...,2n — 1, can
be expressed as

(3.76)
w ((ON v (O .
INH|{|VE< R )\ TN ( ol ) [T () * + (U, T)[|Ne| 7 Vg, vl
VT o (O (N
+2 A (V§ (( Nl ) )7J(Vh)>+2<U,T><VE< N >7|NH| VesnVh)

+4<f]]\}§><U’T> (%?) (Nt~ Ves,vn T(01)) }.

Then we have obtained that A”(0)+ HV"(0) = (3.71) + (3.73]) + (3.76)). Now we want
to compute the terms involving horizontal and tangent derivatives of U in (3.71)) and
(3.76)). These have the following expressions

N |(VEQU, TYU,v1)), 2| Nu| " Ve, vn + 7(1h)) =
diVE(<U, T><U, Vh>(2vegnl/h + |NH|T(Vh)ht))

(3.77) Nul(U. T, uh>{ divA(2IN [ Ve v + 7))
+2 <fj\;§> <J(Vh)a 2|NH|_1Ve2”Vh + T(Uh>>},
(3.78)
(N, TYVE(UTY), INul 7 Ve + 7))

N, T _
+ 2Ny (U, TY(V <<|N |>> JNE TV ey, vn) =

= divy (<N T><U |NH| 'y vn + T(Vh)ht)>

—~ |Nul(U,T)? <

< >

) = INu| "' Vey, v+ 7(vh))

divE((N, TYWU, TV (INu | Vey, v + 7(vh)ne))

2
+2 <<J|>7\}j>> <J(l/h)7 INg| ™'V, vn + T(l/h)>, }
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2(N, T) (VL (<<|ZJIV5>>2) J(vn)) = 2divy, ((N, T) <<|l]]\}5|>>2J(uh))

— 2|Ny]| <<U7N>> {2<N’T> (U, | ()2 + divy <<N’T> J(Vh)> }

and

(3.79)

N | [N |?
On the other hand,
divy: (| Nu| ™' Vey,vn) =

N,T 2n—1
= (N,T){V% <<|NH|>> Vesutn) + INal ™Y R(ei, ean, vn, €)

=
(3.80) + |Ng| ™ 2§1{<ve2n6“ Ven) + (VieseanVs€i)}

_ <]|jv75> {W —2(7n), N | V) + o

- (%?)g e} = 5(T,m) ~ g (Vewnr(en).
and
(3.81)  divk (%HTRJ(%)) =(Vh <<|]]VVHT|>> I (vn)) + <|]jV’HT|> div (T (),

where we express
(leise2n,€j) = (N, T)(Ve,vn.€5) + (Veyn€j,€:) — [N |((ei), ej)

and

([eirean), 20) = (N, TNV ey v, ) =2( N, T)|Ne|{ (), €)= (N, T) [Nt | (7 (v3), €5)

to obtain that

2n—1
|NH|71 Z {_<v€2neia vei’/h> + <v[ei,ezn]7/h, ez>}
equals

(N,T)
|Nu|

{(Vewnts Veu,vn = 2ANul T (1) = [Niglr(vn)) + |o?

(382) N T>2 2n—1 2n—1

|N |2 Z ‘J €; ht‘ } Z <veth,T(€i)>-

=1
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Now we can decompose the second variation formula in few parts. In particular
we can compute easily the tangential divergence part,

(3.83)

2 2n—1
D :=2divs, | (N,T) <<|[jv5|>> J(wy) | — divs <<U, T)? > <T(ei),6¢>62n>

+ divs, ((N, TWU, T (|Ng| Vg vm + T(l/h)ht)) — divs (Vg1 Uih, T)ezn)
+ divs (H(U, TY(U, vy )ezn) + divs ((U, T)(U, v, ) (2V ey, vh + [N |T(Va)nt))
+ divs (INm (Vs Ung)ne)-

Finally, by Lemma and Lemma simplifying, we get that —|V, H|<U, Vh>2,
—2(N,T)|Ng |7 (U, v, ){U,T), and —(N, T)|Ng| (U, T>2, multiply the same quan-
tity ¢, defined in . O

REMARK 3.15. Theorem [3.14] coincides, in 3-dimensional pseudo-hermitian man-
ifolds, with the second variation formula for C® minimal surfaces in [25, Proposi-
tion 6.1] and the stability operator for C? minimal surfaces in [45, Lemma 8.3].

REMARK 3.16. In Appendix [B] we prove a second variation formula of the func-
tional A — HV, , for a C3 smooth surfaces ¥ in a contact sub-Riemannian
manifold. The proof of is easy, since we can differentiate the mean curvature
of 3. Furthermore we remark that coincides with the expression in Theorem
B.I14

DEFINITION. An area-stationary hypersurface X is stable if A”(0) > 0 for any
variation induced by a vector field U € C§°(M \ Xy). A volume-preserving area-
stationary hypersurface is stable under a volume constrain if (A — HV)"(0) > 0 for
any variation induced by a vector field U € C§°(M ~ %), with [, divU dvg = 0.






APPENDIX A

Tangential variations

We collect in this Appendix some lemmas concerning the second variation formu-
las of area and volume with respect to variations induced by horizontal and tangent
vector fields. We define the bilinear operator

(A1) B(U,W) := /C’(U, W)Hdx,
b
where
(A.2)
cUWwW):=— 62n<VUT/V, T> — <VUp Tor (W, Egn),Tp>
2n—1

Z V., U+ Tor(Up,e;), T, ><Ve%W—|—Tor(Wp,egn),ei>

2n—1

+ Z (Ve,W + Tor(Wp, €;), T ){Ve,, U + Tor(Uy, €2,), €; )
i=1
2n—1

_ Z (Vep, U + Tor(Up, e25), Ty )(Ve, W + Tor(Wy, €;), €;)
i=1
2n—1

_ Z (Vep, W + Tor(Wy, €2,), T )(Ve,U + Tor(Uy, €;), €; )
i=1

2n—1

+ |(Nh)p| Z { — R(ei, Up, Wp, 61‘) + <V€i(VUW), €i>

+ <VU,) Tor(W, e;), ei>}

2n—1
+ [(Ng)y] Z {(VciU+Tor(Up,ei),ei><VejW+Tor(Wp,ej),ej>

i,j=1,i#]
_ <V6iU + Tor(U,, e;), ej><VejW + Tor(Wp, €;), ei>}

;U + Tor(Uy, €;), Ny (Ve,W + Tor(Wp, €;), Np),

where we have to understand
—(Vy, Tor(W, Es,,), Tp) = —2{{(VuJ)(W), e2n) + {J(VuW), €2, )
+ <J(W), Ve,, U + Tor(U, 62n)>}

95
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and
(A.3)
<VUP Tor(W, e;), ei> = <VUW, T><7’(ei), ei> — <VeiU + Tor(U, e;), T> <T(W), ei>
+ (W, T)((Vur)(e), ;) + (W, T)(Ve,U + Tor(U, €;), 7(€;)).

Then we have

LEMMA A.l. Let ¥ be a C? hypersurface in M, then B(U,Up;) = 0, for all
U e C§(%).

PRrOOF. We will prove that B(U, Up:) equals

d .
/leZS(‘Nh|Uht)dZs

(A.4) -
s

s=0

which vanishes since
(A.5) [ dive. (ViU
3

vanishes for all s. We stress that (A.5]) is the first variation of the area of ¥, with
respect to the horizontal tangent vector Up;. From the area formula it follows that
(A.4) can be rewritten as

(A.6)

2n—1
/{ —U({V g, Unt + Tor(Upy, Eay)), T') + | Ny | Z (VE,Uni + Tor(Uny, E;), E; )
) i=1
+ ((VE,, Unt + Tor(Uns, E2n)), T)
2n—1
+Nu| Y (VEUnt + Tor(Uns, Ey), E;)) divs U}dS,
i=1
where E1, ..., Fy,_1 is an orthonormal basis of TX, N H and Es, is the unit vector

generating T, N span{T}. We remark that this is different from the one used in
Chapter [3]

Now, by , we have
~U({VEUnt,T)) = —e2n((VuUnt, T)).
On the other hand
—<VU Tor(Up,, Ezn)7T> =— <(VU Tor)(Upt, e2n) — Tor(VyUpe, ean)
— Tor(Upy, VUEQn),T>,
that equals the term —<VU,, Tor(Upe, Eon), Tp> in plus the factor
—(Tor(Unt,[U, Ean)), T) =
2n—1

(A.7) — Z <T0r(Uht, ), T><VUE2n — Ve, , U —Tor(U, ea,), ei>
i=1

+ <Tor(Uht, €2n)s T><V€2TLU + Tor(U, e2y, ), 62n>.
To expand (A.7) we observe that [U, es,] is tangent to X. This follows since
([U,e2n], N) = —(e2n, AUT)) + (A(e2,), U ") = 0,

where we have used
DyN = -V ((UN))—AU").
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Here Vyx and A denote the tangential gradient and the Riemannian Weingarten op-
erator of X, respectively.
Now remarking that U(|Ny|) + |Ng|divs U is the first variation formula, we get

2n—1
(U(INwl) + [Nl dive U) Y (Ve,Un + Tor(Uns, €:), €:) =
i=1
2n—1
(A.8) E_— Z <Ve2nU + Tor (U, egn),T><VeiUht + Tor(Up, €;), ei>
i=1
2n—1
+INu| Y (Ve,U+ Tor(U,e;), ;){Ve,Uns + Tor(Uns, €;), €5 ).
i,j=1
Then
—(VE,, Unt + Tor(Upy, Esy)), T) divy U =
—< TOI’(Uht7 Egn)), T><VE2TLU + TOI'((]7 Ezn)), €2n>
(A.9) on1
_ Z <VE2nUht + Tor(Upt, E2n)), ><V U + Tor(U, e;), ez>
=1
where we have computed divy U using (3.10). The last term to be treated is
(A.10)
2n—1

| Ny | Z{ VoV Unt + Vo Tor(Uns, E;), Bi) + (Ve,Upt + Tor(Upe, €i), Vo E; ) }.

By -
(VuVE,Unt,ei) = —R(ei, U, U, €i) + (Ve,VuUnt, €i) + (V.5 Unt, €3 ),
with

2n—1
(Viv,51Unt, €:) = Z (U, Ei),e;)(Ve,Uns, €i)
j=1
+([U, Ei], 62n><veanhtaei>a
since is tangent to X. The second summand in 0) equals the analogous
one in - plus
(A.11) (Tor(Unt, [U, Ei)), e;) = {[U, E;], T){ Tor(Unt, T), €;).
Finally, since E1,..., Fo,_1,v, T is an orthonormal basis,
2n—1
(Ve,Uni+ Tor(Upe, €;), Vo E; ) Z (Ve,Unt + Tor(Une, €;), €5 ){ei, Vu Ey)
Jj=1
+ (Ve,Unt + Tor(Ung, €;), vh ) (v, Vu E;i)
2n—1
== > (Ve,Unt + Tor(Unt, €), €;){ei, Ve, U + Tor(U, e;))
Jj=1

2n—

Z eLUhtze] e,,[U, ej]>

|NH‘ 2<V61Uht+T0r(Uht,€i) ><NV U+T0r(U,ei)>
— (N, T)|Ng|"*( Tor(Unt, €;), T)(N, Vv E;),
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where we have used ([U, E;], N) =0 and N = [Ny [N}, + (N, T)T. Since |Nglez, =
T+ <N, T>N we get

2n—1 2n—1
INu| Y (U, Eil,e3n)(Ver, Unts i) + [Nu| Y ([U, Ei], T){ Tor(Upt, T), €:) =
=1 1=1

2n—1
- Z <VeiU + Tor(U, ei)7T><V62nUht + Tor(Uht,egn),ei>
i=1

and
2n—1 2n—1

—(N,T)|Ny|™ Z { Tor(Upe, €:), TY{N,VyE;) = Z ( Tor(Unt, €;), T){Vu Ean, €;).
=1 =1

After simplifying we get that (A.4) equals B(U, Upy).
|

LEMMA A.2. Let ¥ a C? hyperfurface in M. Then B(Un,U;) = 0, for all
U e C5e(Y).

ProOOF. We will prove that B(Up, Uj;) equals

/ divs (divs (| N4 |Uis ) Upe ) dE
by

which vanishes, where (divs(|N,|Uj;) is the first variation of the area of ¥ induced
by U ,j-t We have

divs (divs (N |UL)Une) = divs (| Ny |UiL) divs Ung + Upi(divs (I[N |US))-
Now we compute

divs (| N, |U) divs Upe =
- 2§1 Ve, Ung + Tor(Ung, e20), T)(Ve, Ui + Tor(Upe, €), €7)
i=1
— (Vs Upy + Tor(Upy, €2,), TY{(V e, Ut + Tor(Uns, €21, €2n)
+ |Ng| divs Upy QHX_:I (Ve, Uiy + Tor(Upy, €;), €i)-
i—1
On the other hand
Un(divs(INa|Upg)) =

— V.V, Uni + Vu,, Tor(Up;, Ea,), T)
2n—1
+ Une(|Nu|) Z (Ve,Uili + Tor(Upy, €:), €)
i=1
2n—1
+ |NH‘ Z {<thtin Uii_t =+ tht Tor(Uli_tv Ei)v ei>
i=1

+ <V€1U}ﬁ + TOI‘(U}JL% ei)a VUmEi>}'
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Since Upt(|Ng|) + | Ng| divs Upy is the first variation of the area of ¥ respect to Upg,
we get

2n—1
(Unt(INg|) + [Ng| dive Un) Y (Ve,Upy + Tor(Usy, €3), ;) =
=1
2n—1
==Y (Vey, Unt + Tor(Uns, e2n), T)(Ve,Up; + Tor(Ups, €:), €;)
1=1
2n—1
+INu| > (Ve,Uni + Tor(Unt, €), €3){Ve,Up; + Tor(Uys, €5), €.
i,j=1
By (16) and
7<thtvE2nUii2’T> = 762"(<VUMU¢E7T>) - <V[UhtaEzn]UfJL_t’T>’
where
2n—1
(VB2 Uns T) = = > (V1 Ban = Vo, Unt — Tor(Une, e2n), €){Ve, U, T)
=1

+ (Vs Unt + Tor(Unt, €2n), €20 ){Ve,, Ung + Tor(Upy, €2,), T).
since [Upt, Fay] is tangent to 3 and <Tor(Uth, €an), T> = 0. Now —<VUM Tor(Uth7 Es,), T>
differs from the analogous term in B(Uy,, U;}) only for

—( Tor(Upg. [Unt, Bay)), T) =
- <VUM E2n - VEQn Uht - TOI"(Uht, 6271); ez>< TOI'(U#}, ei)v T>7
where we have used <[Uht, Esy), N> =0 and <T0r(Uhlt, €2n),T> = 0. Analogously in
(Vu,, Tor(Ups, E;), e;) we only need to consider

2n—1 2n—1

|Ng| Z ( Tor(Upg, [Unt, Ei)), ei) = |Nu| Z ([Unt, Ei]), €;){ Tor( (U5, e5), ei)
=1 ,j=1
2n—1
+ |Nu| Z {[Unt, E3]), €20 ){ Tor(Upy, €2n), €; ).
i=1
By (3.16)

<VUMVEiUfJL_ta ei> = _R(eia Uhta U}JLL ei) + <veivU}LtU}JL;ta ei> + <V[Uht7Ei]U}#7ei>7

where
2n—1
(Vv BqUnis€i) = Z {[Unts Ei], €5)(Ve,Unz, i) + {[Unt, Ei], €20 ){Ve,, Upg, €;).
j=1

The last term to be treated is
<v€iUfJL_t + TOI"(U;f‘t, ei)v tht Ei> =
2n—1
S Z <VeiUhlt + Tor(Uth,ei), ej><ei, Ve;Unt + Tor(Unt, e5) + [Uht,EjD
j=1
+|Ng|"*(Ve, Uiy + Tor(Upg, €;), N)Y{N, Ve, Upt + Tor(Upe, €;))
— (N, T)|Ny|"*(V¢,Up; + Tor(Upy, €3), T){N, Vu,, E;).
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Finally since |[Nglezn = =T 4+ (N,T)N and ([Up, E;], N) = 0, we have
INu|{[Unt, Ei], e2n) = (Ve,Unt + Tor(Unt, €;), T)

and 7<N, T>|NH|’2<VUMEZ-, N> = *<VUME1, €2n>. Now, simplifying, the statement
follows.
O

LEMMA A.3. Let ¥ C M be a C? surface. Then Upi(V'(s)) vanishes.
PRrROOF. From
V'(s) = f/<Uhlt,N> ds, = —/<U$,N>|Jacgp(s)|d2,
Py

b
we get

Unt(V'(s)) = — /{Uht(<Uhlt7N>) + (Upg, N) divs;(Upe) } dS
)

:f/divE(<Uth,N>Uht)d2,
)
where we used Upt(] Jac ¢(s)|) = divs(Upe), [87, § 9]. Now the statement follows by

the Riemannian divergence theorem.
O



APPENDIX B

A second variation formula for hypersurfaces with
higher regularity

We consider a hypersurface ¥ C M of enough regularity to ensure the validity of
the following computations, C? will suffice. Let 2 = 9% be the region enclosed by
>, and assume that ¥ has constant mean curvature H. We consider a smooth vector
field U with compact support and associated one-parameter group of diffeomorphisms
{¢s}ser. According to formula , the first variation of the sub-Riemannian area
along the deformation is given by

_/ H, (U.N,)dS.,.

s

So the second derivative of the sub-Riemannian area is given by

ol LG

ds?
Hence, to calculate A”(0) — HV"(0), we only need to compute the derivative of the
mean curvature H along the deformation. Since H is constant, it is enough to compute
U(H) assuming that U is normal to ¥, i.e., U = <U, I/h> vp + <U, T> T. So we have

2

d
s—oHs) (UN)dS + H V@),

(B.1)
d 2n—1
7 SZOHS = 7U(H) = ; <VUVEth,Ei> + <VEth,VUEi>
2n—1
= Z {R(U7 Ei, v, E)) + (VE,Vuvh, Ei) + (Vv ggvn, Ei)
=1

+ <inl/h, Vg U+ [U, Ei] + TOI‘(U7 El)>}

We compute the terms appearing in the last summand. We first observe
LEMMA B.1. Consider the endomorphism of TS N'H given by

(N.T)
A J(e))ht.

(B.2) — Ale) = (Vern +

Then A is self-adjoint,
(A(e),v) = (e, A(v)), e, v € TYNH,
and the trace of A is equal to the mean curvature of X.

A will be called the intrinsic Weingarten operator in X.. We also define the
intrinsic second fundamental form o as o(v) = (A(v),v), for any v € TS NH. Finally

101
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by |o|? we mean
2n—1
o = Y (Ale), Ales)),
i=1
where {e1,...,ea,_1} is an orthonormal basis of T3 N H.
LEMMA B.2. In the above conditions,

N, T
(B.3) Vyvn = Vu,,vh — <|Nh> VLU, T) — VE(U, vp)

(N.T)
|Nn|

- <U,T> (T(I/h))ht—z <U,l/h> J(I/h).

Alternatively, we can write (B.3)) as

_ _ h <U’N> h <N7T>
(B4 Vora = Vo V2< | V] >+<U7T>VE( | V4| )
O G2 T (0 T

PROOF. We denote by E; the vector fields invariant by the flow generated by U.
Then, from ([Un, €], N) = 0, we deduce ([Uj;, e;], N) = 0. Consequently

<thLch7€i> = <VU$(‘NH|_1N)761'>
= —(Vys Ei,[Nu|7'N)
= —(Ve, Ui, INg| "' N) — ( Tor(Up;, €;), |[Nu| "' N),
for i € {1,...,2n —1}. Now from [3.7] and
(Ve,Uilis INu|TIN) = e;(INg| (U, N)) + (U, T)e;(|Nu| (N, T))
we get . On the other hand we can express

(N.T)
| N |

to obtain (B.3). O

We have

(Ve,Upy, INH|T'N)Y = e;((U, 1)) + e:((U,T))

LEMMA B.3. Under the above conditions on X, if U is horizontal and tangent we
have

(N, T)

| V|

(B.5) /E{W’gf, U)+ fdiviU +2 f<U,J(yh)>} |Np|dX = 0.

In case U = V%g, we get

(N, T)

| Nn|

(B.6) / {(V%f,V§g>+fA%g+2 f<v;g,J<uh>>}Nh|dz—o.

PRrROOF. We simply compute divs (|Ng|fU). O
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Coming back to (B.1) we have

i (Ve VEU) = 2 (U, ) |V g,
(B.7) =t =1 - ,
— ) (loP + Y (%Tf) EE),
and
(B.8)

<inl/h7 TOI‘(U, E2)> = <Ua T> <VE7:VhaT(Ei)>

= (U,T) ( —(A(E),T(Ey)) — <Nh| <J(Ei)th7T(Ei)>>~

It remains to compute
(Vw,eqvn, Ei) + (Ve U, E).
We decompose [U, E;] = [U, E;]i+ + [U, E;]n: and so the above expression is equal to

(N.T)

| V|

(Vg ve Ei) +2{(Vevn + J(Ei)) o U, Eilne)-

We observe

(U, B, T) = —E{U,T) — 2(U, ) (vn), E).

(U, B, = %TR (EAUT) + 20, ) (T (n), E2)).
Since [U, E;] is tangent to X we get that [U, E;];, is also and so

Vi v = (B(UT) + 2000 (I (), B2)
({52 o (Y ).
and so
2n—1

Z <V[U,Ei]f-hl/ha E;)
=1

is equal to

(B.9) <V§<U,T>+2<U,yh>J(yh),+V§<<J|>f\};>> —T(Vh)ht+2(<]|>[\;j>) J(vh)).

On the other hand, the expression

2<(inuh+<J\;\}j> J(Ei)), U, Eilne) = —2(A(E;), [U, Eiln)

is equal to
2 <A(Ez), —VuE; + VElU + TOI‘(U, E1)>

If we take the basis F; composed of eigenvectors, then the product of the left side
with Vi E; vanishes, and so we get that the above expression is equal to

2<U, l/h><A(Ei), inVh> + 2<Uv7 T><A(EZ)7T(E1)>
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Summing up we get
2n—1 2n—1
(B.10) = > 2(A(E), [U, Eiln) = —2(U,vn)|o* +2(U,T) Y (A(E:), 7(Ey)).
i=1 i=1
Now we collect all the previous computations to obtain the following expression
for the second derivative of the functional A — HV. We remark that, from

N, T N, TH\?

(B.11) — [Ny | ' Ve, vn :vg(< >) —T(I/h)ht-l—2<< >) J(vn),
| N [N

the variation of the mean curvature is given by

(B.12)

d (U,N) (N,T)

- Hs :d h h ’ T h ’

dS o < IVE (VE ( |NH‘ > <U > ( Vh ht — VE |Nh‘

(N, T)
+2 U,vp)J (v
o T 0)

2n—1
+<U7Vh>(|‘7|2_( |Nn| ) Z | (ea)nel® = 2( (Vh)7|NH|_1v62"Vh>>

- <V}ZLD<U7 T>7 |NH| 1veznyh>

2n—1 2n—1

- <U,T>( S (Vewnr(e)) +2 3 (A(

i=1 i=1

ei>,r<ei>>)
2n—1
+ Z ezaU Vhyez

And so the becond variation (A” — HV'')(0) is given by

o (59
+<caT><To%)m Vgl<<i;?>>> +2<ﬁ;i>alyh%“Vw>
n)

—(VE(U,T),INu| "' Ve,, v

B.13 Rl
(B.13) + () (loP - (N ) > leonl* ~2(7 (IO Nl Vo))

_<MT§<§:<VQ%Jﬁm>+2§:<A@m7@ng

=1

2n—1

+ Z R(ei,U, I/h,ei)} [jVN> (|NH|dZ)
Since .
<U,T> (T(Vh)ht —V% <<A|]\]/v\}’:r>>> +2<]\va |><U l/h> ( h) =

(N,T)(U,N)
il INA] (Vn),

= <U, T>|NH|_1V6%V}L +2
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we can apply Lemma [B.3]to obtain the following expression for the second derivative
of the functional A — HV,

(B.14) 2
L (50)

([ {U.N) 2 oy oh (ST (N
2( Nl > ((J( h)>vz( N )-i— N dive (J( h))>}(|NH|dE)

L , (N T)\ PR :
+/E{<V}XLJ<U7T>7|NH| Veznyh>+<U7Vh><W+O'| _< |Nh| > ; |J(€i)ht|

—2(J (), |NH|1V€2th>)

2n—1 2n—1 < 7 >

(v, T>< > (Vewn,m(e)) +2 > (Ales),m(e:)) — s(T, uh)>}|(]]\[5| (INg|dz)
i=1 1=1

U, N
—/diV}zl(<U7T>|NH|_1Vezth)< >(|NH|dE)'
D |Nx|

Finally, from (3.80), we get that the second derivative of (A” — HV")(0) equals

w5 o

where

q= W+ |U|2 + 2(<J(Vh)7v% <<|ZX/1T>> > - 2<J(Vh)v |NH‘71vegth>
H]

(B.16)

+2<N’T> dive (J(vp)) — <<N7T>> ”Z I eidnal™

[N | Nh|

We remark that, because of (B.11]), (B.15]) coincides with the formula in Theorem
B.I14

REMARK B.4. In the Heisenberg group H", denoting Z = J(v,), we have
2
2 <N’T>) (<N7T>)
= |o|” + 4Z< + (2n + 2 .
7= el |Np| ( ) |Nn|

In fact, computing the divergence with respect to a basis {e1,...,e2,_1} of eigenvec-
tors of A, we get

%’}? S el

i=1

divih(J (1)) =
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