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Abstract

Many phenomena in the real world can be understood as behaviors, because they follow
some underlying rules and behave in characteristic ways. The computational represen-
tation and classification of them is a task of great interest for researchers in behavioral
sciences as they are in continuous need of new tools and methods to represent and
understand behaviors of growing complexity.

With mobile devices becoming ubiquitous, data series are gaining in importance as a
suitable representation for the information coming from their sensors. Data series are
defined as an ordered sequence of data at given intervals of an indexing variable (e.g.
time). Behaviors can be defined as imprecise and uncertain multivariate data series.

Although the problem of representing imperfect data has been addressed many times in
the past, the lack of a general and universal solution obligates to build ad-hoc systems
for different problems. For that reason, there is still a need to develop new models to
represent such information.

Our proposal, which assumes that some kind of commonality exists among instances of
the same behavior in a given domain, represents those imperfect data series as a set of
probability distributions. To do so, it first transforms the imperfect observations into
qualitative values. Then, it selects a dimension of the behavior and uses it to look for
correlations with the rest of dimensions. These correlations are expressed as discrete
probability distributions.

The model aims to be general enough to be employed in any domain that contains
imprecise and uncertain behaviors, but we concentrated in the particular domain of music
in order to validate it. Experiments showed that our representation allows to identify
violinists in a dataset of monophonic violin recordings from 23 well-known performers,
outperforming comparable alternatives.

Departing from that application, we also studied several aspects of the computational
representation of music performances, identified the chorus of songs by means of mining
frequent patterns, and proposed a framework for automatic music composition.
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Resumen

En cualquier campo se pueden encontrar fenómenos que, aún compartiendo objetivos
comunes, se comportan de forma distinta para alcanzarlos. Dependiendo del punto de
vista del observador, dichos fenómenos pueden ser entendidos como similares o completa-
mente divergentes. Estos aspectos hacen posible dividir a dichos fenómenos en distintos
subconjuntos de acuerdo a criterios estructurales, lógicos o estéticos.

Debido al incremento en el número de dispositivos móviles y de sus capacidades sensoras,
inmensas cantidades de datos están disponibles, haciendo posible la extracción de valioso
conocimiento y permitiendo su potencial entendimiento y representación efectiva.

Esta tesis doctoral presenta una nueva propuesta para modelar y representar computacio-
nalmente este concepto de comportamientos, utilizando herramientas tanto de Minería
de Datos como de Soft Computing. La investigación se basa en trabajos anteriores de
nuestro grupo de investigación de la Universidad de Granada sobre representación de
patrones repetitivos e identificación de comportamientos.

Comportamientos

¿Cómo podemos definir un comportamiento? Intuitivamente, podemos decir que indica
la manera en que algo se realiza; es decir, es un conjunto de acciones o características
que son particulares de un individuo o fenómeno. Diferentes comportamientos surgen
del hecho de que prácticamente cada fenómeno puede ser realizado de varias mane-
ras manteniendo su propósito original. En otras palabras, cualquier función puede ser
implementada de diversas formas, no siendo la configuración de sus partes de especial
relevancia para lograr su objetivo, pero sí para determinar su comportamiento.

La representación ajustada y la gestión de dichos comportamientos es una tarea de
indudable interés en las Ciencias de la Computación debido a que los nuevos dispositivos
están cada vez más extendidos, y su empleo para tareas de monitorización es muy común.
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No en vano, cuando se monitoriza, el objetivo final consiste en identificar el fenómeno
subyacente que da forma al comportamiento visible. En ese sentido, podemos entender
un comportamiento como la huella dactilar de un determinado fenómeno.

No obstante, los comportamientos en la vida real rara vez son exactos. Aunque general-
mente están compuestos por patrones repetitivos, las repeticiones no son ni idénticas ni
predecibles. Es decir, no podemos estar completamente seguros de qué va a pasar a con-
tinuación aunque tengamos una buena estimación. Para complicar las cosas, los valores
concretos obtenidos mediante sensorización no suelen ser representativos en la mayoría
de los casos, donde lo importante es la tendencia general. Por todo ello, podemos decir
que los comportamientos reales son imprecisos e inciertos.

Representar comportamientos de una manera adecuada puede ser útil para crear nuevos
ejemplos artificiales que reflejen la esencia de uno previo. Aunque esto podría conside-
rarse plagio o imitación, no deja de ser un mecanismo muy útil para obtener ejemplos
en tareas en las que resulta muy costoso hacerlo. En realidad, podría darse la vuelta al
proceso y servir también para comprobar si un fenómeno desconocido se deriva de otro
o no.

En cualquier caso, la representación y el resumen de comportamientos puede resultar de
especial relevancia para entender mejor cómo se comporta un fenómeno, dándole a los
expertos nueva información sobre las reglas que lo gobiernan.

Los comportamientos, tal y como los hemos definido, pueden encontrarse en numerosos
campos. Los siguientes son sólo unos cuantos ejemplos:

Clima El clima en un área determinada es uno de los ejemplos más claros de comporta-
mientos, puesto que es cíclico pero nunca exactamente igual. Y sin embargo, todo
el mundo tiene una idea de cómo es el clima en su ciudad (aunque sólo pueda
definirlo de forma vaga); de igual manera, todos hemos oído el comentario de “el
clima aquí es como el de mi ciudad”. Ser capaces de representar con exactitud y
predecir el clima en un área es, sin duda, un problema de gran impacto económico.

Lesiones Los movimientos de una articulación (lesionada o no) cuando se hacen de-
terminados ejercicios de rehabilitación comparten determinadas particularidades
que los médicos buscan con especial interés. La representación precisa y el enten-
dimiento de las diferencias entre una articulación lesionada y otra sana son de
gran importancia para hacer un diagnóstico correcto e incluso descubrir informes
fraudulentos.
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Resumen

Finanzas Las interacciones entre los cambios de divisas es otro problema que puede ser
representado con el formalismo de los comportamientos en mente. Es bien conocido
que el comportamiento de una divisa depende en gran medida de las fluctuaciones
de otras divisas. Entender dicha relación y con otros fenómenos puede dar lugar a
importantes ventajas económicas.

Energía El perfil de consumo energético de un hogar o una empresa puede ser conside-
rado también como un comportamiento. Si se le representa correctamente, puede
permitir la optimización de los procesos de generación y transporte de energía para
ajustarse mejor a la demanda, reduciendo los costes asociados, tanto económicos
como medioambientales.

Tal y como se ha dicho anteriormente, la representación y gestión de comportamientos
es una de las líneas de investigación que el grupo ARAI (Razonamiento Aproximado e
Inteligencia Artificial) de la Universidad de Granada persigue con mayor interés. Entre
otros, se han realizado trabajos en los campos de Ancient Ambient Living (Delgado
et al., 2009b), e interpretación musical (Molina-Solana et al., 2010).

Estilo

Un caso particular de comportamiento es el estilo, en el que existe un autor (generalmente
humano) con intenciones. La complejidad de entender y representar el estilo es aún mayor
que la de sus equivalentes en comportamientos, debido a los aspectos estéticos y emotivos
implicados.

De manera informal, cuando hablamos del estilo de un artista, nos referimos al conjunto
de características únicas de su trabajo, incluso cuando comparte algunas de ellas con
otros artistas. Monet y Picasso pueden ser clasificados conjuntamente como ‘pintores’,
pero si los observamos en detalle, la mayoría de la gente podría decir que existen dife-
rencias relevantes entre los trabajos de uno y otro. Cuáles son esas diferencias y cómo
explicarlas es otra cuestión que probablemente sólo los expertos pueden responder con
precisión, ya que no está claro qué criterios debemos seguir y cuál es su importancia.
Para complicar aún más las cosas, el estilo implica a menudo emociones en el observador
del fenómeno.

Comúnmente, la primera aproximación para tratar con estilo consiste en describir cada
fenómeno con todo lujo de detalles. Pero incluso si tratamos de conseguir la descripción
más detallada, medir el estilo no es una tarea fácil ni directa, ya que no están claros
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ni los criterios ni la importancia relativa que éstos tienen. Es en este punto, cuando las
herramientas para tratar con incertidumbre e imprecisión son requeridas y bienvenidas
para describir con éxito el estilo/comportamiento mediante ordenadores.

A pesar de todas estas dificultades, la investigación en Estilo Computacional está en
pleno auge pues los investigadores se han dado cuenta de la importancia y posibilida-
des de tratar el estilo mediante herramientas informáticas. Aunque inicialmente sólo se
centraron en Lingüística, estas herramientas pueden ser aplicadas en la actualidad a nu-
merosos problemas de los que se desee estudiar los patrones subyacentes en los procesos
de codificación de información de cualquier tipo. Los siguientes son algunos ejemplos de
problemas que pueden ser estudiados y resueltos usando este paradigma:

Autoría de textos: El análisis estilístico de un texto es de especial relevancia para de-
tectar usos idiosincrásicos del lenguaje que permitan distinguir unos autores de
otros. No en vano, el estilo de un autor es a menudo su huella de identidad. La
cantidad de vocabulario empleado, la longitud y complejidad de las oraciones, o
el tono (descriptivo, irónico o informal) son sólo algunos aspectos con los que el
autor puede modelar a voluntad su mensaje. De hecho, no es extraño escuchar
comentarios como “este libro es muy del estilo de Pérez.Reverte”.

Traducción automática: Además de la posibilidad obvia de identificar al autor de un
texto, el estilo es un aspecto crucial para realizar traducciones automáticas de un
idioma a otro. El tiempo de los verbos, y el uso de la voz activa o pasiva (en
la lengua inglesa) son sólo dos ejemplos de cómo el estilo puede usarse en este
contexto. Más aún, entender la razón por la cual el lenguaje fue usado de una
determinada manera puede ser la clave para traducir de forma efectiva un mensaje
a otro idioma.

Interpretación musical: Este problema es muy similar al de la autoría de texto. En este
caso en lugar de un mensaje textual se utiliza música y el objetivo es identificar
las características personales de cada intérprete. Tras representar e identificar,
podemos utilizar dicho conocimiento para predecir el intérprete de una nueva pieza
o para replicar el estilo de una interpretación particular.

Presentación de resultados: Cuando existen datos disponibles, un buen resumen, pre-
sentación y explicación son cruciales para transmitir la información de manera
efectiva al destinatario. El estilo en esta área puede determinar si los gráficos son
preferibles a varias líneas de texto; o qué colores emplear, la verbosidad o el ta-
maño. Aunque todas las presentaciones persiguen el mismo objetivo (transmitir
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Resumen

información), algunas son más adecuadas que otras en función del contexto. En-
tender y codificar estos aspectos son tareas de gran interés e importancia.

Justificación

Más y más, los smartphones y los nuevos dispositivos recolectan y envían multitud de da-
tos de forma automática a través de sus sensores embebidos. Esta creciente cantidad de
información requiere de continuas mejoras en las capacidades de procesamiento, almace-
namiento y resumen, siendo el adecuado entendimiento y representación de dichos datos
de gran valor científico y económico. Sin embargo, su naturaleza imprecisa e imperfecta
hace que sea muy difícil representarlos con las herramientas computacionales clásicas,
ya que dichos comportamientos (definidos como secuencias de datos) no se repiten de
manera idéntica sino similar.

Por lo tanto, se necesitan nuevas formas de modelar y entender los comportamientos espe-
cialmente si éstos son inciertos e imprecisos. El objetivo principal de este trabajo doctoral
es precisamente proponer un nuevo modelo de representación para comportamientos que
resuma sus aspectos más representativos y que tenga en cuenta la imperfección de las
observaciones.

Para ello, nos centraremos en comportamiento descritos como series de observaciones
con las siguientes tres características:

• Las series de datos contienen uno o más patrones recurrentes. Dichos patrones
serán los que trataremos de identificar.

• Si un determinado patrón fue observado en el pasado, volverá eventualmente a
suceder de nuevo en el futuro.

• Las series de datos son lo suficientemente largas como para que la información
extraída de ellas sea representativa. Cuanto mayor se la longitud de la serie, más
ajustada será la representación conseguida.

Debe indicarse, no obstante, que en el presente trabajo sólo nos centraremos en descrip-
ción. No se abordará la explicación de ninguna manera, ya que esa es un área mucho más
relacionada con Psicología que con Ciencias de la Computación. Es decir, no trataremos
las razones por las que un fenómeno se comporta de determinada manera; con respecto
al estilo, no estamos interesados en las intenciones ni en los objetivos de los creadores.
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En cualquier problema de ingeniería, la existencia de un dominio que pueda ser estudiado
y generalizado, y en el que las soluciones puedan ser aplicadas y probadas, es de capital
importancia. Históricamente se ha demostrado que las soluciones genéricas en Ingenie-
ría son difícilmente alcanzables de una manera abstracta. En esta tesis, nos centramos
en música, que es un medio muy interesante para investigar procesos de aprendizaje
implícitos por diversos motivos. El principal de ellos es que la música es una estructu-
ra de nuestro entorno demasiado compleja para ser aprehendida mediante pensamiento
explícito y razonamiento deductivo. Los eventos musicales son por sí mismos de poca im-
portancia, pero sin embargo, una pieza musical es más que una sucesión de sonidos más
o menos agradables. El efecto psicológico del sonido viene de las complejas relaciones
entre eventos musicales de una pieza dada.

En realidad, las estructuras musicales son generalmente concebidas para no ser explíci-
tamente procesadas. Los compositores ponen todo su empeño en hacer que los oyentes
sean sensible a las estructuras que existen dentro de una pieza, pero sin que estos últimos
sean conscientes de ello. Por lo tanto, no es raro que la impresión general entre la audien-
cia sea la incapacidad para describir verbalmente lo que perciben. En muchos casos, las
personas están incluso convencidas de que no perciben ninguna estructura subyacente.

Por otro lado, desde que los primeros ordenadores fueron desarrollados, muchas personas
han tratado de utilizarlos en tareas musicales. Los proyectos que aplican ordenadores a
tareas musicales pueden clasificarse en dos grupos principales: análisis y composición. El
primero consiste en extraer información de la propia música (o los datos asociados) con el
objetivo de aprender un modelo que describa los ejemplos concretos. La composición, por
otro lado, trata de generar nueva música desde reglas. En realidad, se trata de realizar
el proceso en la otra dirección: ‘de las reglas a la música’ en lugar de ‘de la música a las
reglas’.

Por estas razones y por mi interés personal como pianista, hemos decidido que sea en
Música donde aplicar nuestra investigación en aprendizaje y representación de comporta-
mientos. Este hecho no significa que nos limitemos únicamente a los aspectos particulares
de este dominio. Todo lo contrario, pues en todos los desarrollos realizados la abstracción
ha estado siempre presente, con el objetivo de obtener una propuesta lo suficientemente
general como para ser aplicada en otros campos en etapas posteriores.
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Resumen

Contenidos

El presente trabajo doctoral está organizado en torno a cinco bloques que cubren diversos
objetivos y problemas abiertos. Cada uno de estos bloques se encuentra respaldado por
sus correspondientes publicaciones en revistas de impacto.

Interpretación musical con técnicas computacionales

Los estudios en interpretación musical tienen una especial relevancia en nuestros días
ya que ésta es una tarea compleja y aún no muy bien entendida. No en vano, el arte de
interpretar música es el resultado de varios años de entrenamiento. Al mismo tiempo,
las actuales tecnologías de la información ofrecen la posibilidad de reproducir música
especialmente compuesta para ordenadores o almacenada en bases de datos. En esos
casos, la música suele sonar tal y como está escrita en la partitura, ignorando el valor
de la interpretación en vivo, así como su dificultad y diversidad.

En este bloque se muestran diversas investigaciones en interpretación musical, que va-
rían desde los estudios que persiguen entender la expresividad, hasta los que intentan
modelar las interpretaciones desde un punto de vista formal, cuantitativo y predictivo.
La investigación en este campo busca poner de manifiesto las herramientas expresivas
que tradicionalmente han estado ocultas en la habilidad de los músicos y en su intui-
ción musical. Si estos recursos son formulados de forma explícita, pueden posibilitar la
reproducción de archivos musicales con diferentes expresividades.

A través de una revisión de distintos trabajos, hemos identificado los problemas más
notables a los que los investigadores deben enfrentarse cuando trabajan en esta área.
El principal de ellos es la representación de datos, ya que la obtención de éstos es una
tarea muy compleja y a menudo poco fiable. Además, las reglas que gobiernan una
interpretación no son exactas ni están bien definidas. Por todo ello, los esfuerzos (los
nuestros incluidos) van en la dirección de entender y representar adecuadamente cómo
tocar una pieza musical.

A pesar de que somos escépticos en cuanto a que un ordenador pueda reemplazar com-
pletamente a un intérprete humano, estamos seguros de que esta tecnología estará dis-
ponible para ciertas tareas en un futuro no muy lejano. La existencias de máquinas que
puedan modelar la música imitando el estilo de un cierto intérprete dejará pronto de ser
un producto de ciencia ficción.
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Personalmente, estamos plenamente convencidos de que este es un momento ideal para
que las Ciencias de la Computación trabajen en el dominio de la música. Los resultados
de tales investigaciones tendrán, sin lugar a dudas, un gran impacto tanto en las Artes
como en las Ciencias. No en vano, la música es mucho más que un dominio interesante
y de alguna manera exótico; es parte de nuestra esencia humana.

Arquitectura para composición e interpretación musical

Dentro del campo de la música, proponemos una arquitectura para componer e inter-
pretar música de forma automática mediante ordenador. Dado que éste es un reto muy
complejo y que implica numerosas tareas, se utiliza una aproximación bottom-up para
abordarlas de una forma modular, de modo que un problema muy grande pueda ser
descompuesto en tareas más pequeñas.

En concreto se propone una arquitectura multiagente de dos niveles que permite, ade-
más, que los usuarios puedan usar una interfaz muy sencilla que oculte la complejidad
inherente a la composición musical. Dicha interfaz recibe entradas emocionales de los
usuarios, por lo que nuestro sistema aborda aspectos de la expresividad y emotividad
musical.

Se ha descrito cómo ha sido desarrollado el sistema y de qué manera se representa el
conocimiento. Asimismo, hemos construido diversos agentes con distintos roles y objeti-
vos.

Aunque InMaMuSys está aún en desarrollo, la experimentación llevada a cabo muestra
resultados prometedores que nos animan a continuar desarrollando dentro de esta ar-
quitectura. Llegados a este punto, creemos que la Teoría de Agentes es un formalismo
adecuado para modelar la complejidad de los procesos de composición e interpretación
musicales.

Minería de motivos musicales

En este trabajo doctoral presentamos también una aplicación de la minería de patrones
frecuentes para el descubrimiento de motivos en una pieza musical. Para ello se han
transformado ficheros MusicXML, que pueden ser obtenidos con facilidad, en secuen-
cias de notas definidas a bajo nivel. Nuestro algoritmo, llamado SSMiner, es capaz de
identificar de forma eficiente las subsecuencias frecuentes dentro de una secuencia mayor.
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Resumen

En música es bien conocido que los patrones repetidos no tienen por qué ser idénticos.
Por ello, nuestro algoritmo es capaz de descubrir los patrones transportados, incluidas
las repeticiones exactas (que no son más que transportes nulos). La experimentación rea-
lizada indica que nuestro enfoque tiene buenos resultados con un conjunto de canciones
seleccionadas aleatoriamente.

Frequent Correlated Trends para representar comportamientos

Como hemos comentado, numerosos fenómenos del mundo real pueden ser entendidos
como comportamientos, ya que siguen diversas reglas subyacentes y se realizan de for-
mas particulares. Su representación computacional y su clasificación son tareas de gran
interés para los investigadores en ciencias del comportamiento, que continuamente nece-
sitan nuevas herramientas y métodos para representar y entender comportamientos de
creciente complejidad.

Las series de datos son una de las representaciones con más importancia en los últimos
tiempos. Se las puede definir como una secuencia ordenada de datos a intervalos fijos de
una variable. Un comportamiento puede definirse a menudo como una serie multivaluada
de datos imprecisos e inciertos.

Aunque el problema de la representación de información imprecisa se ha abordado nu-
merosas veces en el pasado, la falta de una solución general obliga a construir sistemas
ad-hoc para las diferentes aplicaciones que se presentan. Por esta razón, sigue siendo
necesario encontrar nuevas soluciones y modelos para representar este tipo de conoci-
miento.

Nuestra propuesta, que asume la existencia de aspectos comunes entre varias instan-
cias de un mismo comportamiento, representa dichas series de datos imperfectas como
un conjunto de distribuciones de probabilidad. Para ello, primero se transforman las
observaciones imperfectas en una secuencia de valores cualitativos. A continuación, se
selecciona una dimensión del comportamiento y se buscan las correlaciones de ésta con
el resto de dimensiones, que se expresarán como distribuciones de probabilidad.

La principal ventaja de nuestro modelo, es que emplea una representación para com-
portamientos finita y constante en tamaño, sin importar el número de observaciones
disponibles, aunque consigue sus mejores resultados conforme aumenta el número de
observaciones. Permite asimismo una representación incremental hasta un instante de-
terminado.
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Frequent Correlated Trends en interpretaciones musicales

La viabilidad del modelo anteriormente descrito se ha probado mediante su aplicación
al dominio de las interpretaciones musicales. En particular, nos hemos centrado en la
tarea de identificar al intérprete de una pieza musical por su forma de tocar, haciendo
uso de las frequent correlated trends (tendencias frecuentes correladas) para capturar
sus tendencias expresivas. La forma de tocar un instrumento puede considerarse un
comportamiento, tal y como lo hemos previamente definido.

El proceso de aprendizaje parte de herramientas de extracción de audio y de una seg-
mentación automática de las melodías. A los intérpretes se los representa mediante un
conjunto de distribuciones de probabilidad que capturan su estilo personal con respec-
to a una colección de patrones melódicos. En nuestra investigación mostramos que, sin
una gran precisión en la obtención de datos, nuestra propuesta es bastante robusta para
representar las pequeñas desviaciones de los distintos intérpretes.

La experimentación realizada se ha concentrado en identificar al violinista que toca una
pieza, haciendo uso de las duraciones y del volumen de las notas en sus interpretaciones.
Se han utilizado grabaciones de 23 violinistas profesionales diferentes. Los resultados
indican que nuestro modelo de tendencias frecuentes correladas es capaz de identificar
patrones interpretativos que son útiles para distinguir a unos intérpretes de otros. Los
resultados, por otro lado, claramente mejoran a los de un clasificador aleatorio, y son,
con seguridad, bastante difíciles de conseguir por un oyente humano.

Contribuciones

Las contribuciones más relevantes de la presente tesis doctoral con respecto a los conte-
nidos anteriormente descritos son las siguientes:

Entender la interpretación musical. Debido a que la interpretación musical es el pro-
blema particular en el que vamos a aplicar y probar nuestra propuesta de repre-
sentación de comportamientos, pretendemos estudiar las características propias de
este dominio, así como las tareas más relevantes y los trabajos realizados. Por
ello, se ha llevado a cabo una revisión de las diferentes alternativas propuestas en
la literatura en cuanto a técnicas computacionales aplicadas a la interpretación
musical.
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Resumen

Aplicación del DataMining al dominio musical. Como parte de nuestro estudio en he-
rramientas computacionales aplicadas al dominio de la música, hemos desarrollado
un algoritmo para descubrir patrones frecuentes dentro de una canción. En concre-
to, nos hemos centrado en la tarea de identificar el estribillo de diferentes canciones
como una manera de estudiar cómo los patrones son repetidos en este contexto.

Desarrollo de una arquitectura de trabajo. Con el objetivo de integrar todas las he-
rramientas de aprendizaje, se ha propuesto un marco de trabajo y una arquitectura
para la composición e interpretación musical automática utilizando ordenadores.

Representación de comportamientos imprecisos e inciertos. Tal y como se ha indi-
cado con anterioridad, nuestra meta principal es la de representar comportamientos
imprecisos e inciertos, ya que éste es un tema de relevancia en la actualidad. Tras
un estudio de las distintas alternativas y enfoques existentes, hemos estudiado y
descrito una representación abstracta para acomodar fácilmente diferentes com-
portamientos solucionando algunas de las dificultades actuales.

Aplicación a la representación de interpretaciones musicales. Finalmente, se ha apli-
cado el modelo abstracto desarrollado en el objetivo anterior a un dominio concreto
con la intención de probar su validez y rendimiento. Este dominio es el de las in-
terpretaciones musicales, que es un tema que suscita varios problemas de interés.
En particular, nos hemos centrado en la tarea de identificar el intérprete de una
grabación musical haciendo uso de sus similitudes con interpretaciones anteriores.
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1. Introduction

“What is it that distinguishes a Monet from a Picasso? A Mozart concerto
from a Bach fugue? Ballet from hip-hop? Melville from Dickens? Jazz from
bluegrass? Valley-speak from the Queen’s English?

Style”

1.1. Motivation

In any field, we can find phenomena that despite sharing common objectives, behave
in dissimilar ways in order to achieve them. Depending on the observer’s point of view,
those phenomena can be understood as similar or completely divergent. Those differing
aspects make it possible to divide similar phenomena in different subsets according to
structural, logical or aesthetic criteria.

With the increase of mobile devices and their sensing capabilities, huge amounts of data
are becoming available, making it possible to extract valuable knowledge from them,
and potentially allowing their understanding and effective representation.

This dissertation presents a novel proposal for computationally modeling and represen-
ting this concept of behaviors, using tools from both the Data Mining and Soft Com-
puting fields. This research builds upon former works in the representation of repeating
patterns and the identification of behaviors from our research group at the University
of Granada.

Behaviors

But how can we define behaviors? Intuitively, it can be simply said that behaviors is
about the manner in which something is done or made, regardless of its function; that
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1.1 Motivation

is, a set of actions or features that are characteristic of one particular individual or
phenomenon. Different behaviors arise from the fact that almost every phenomenon can
be performed in different ways while still serving its original purpose. In other words,
any given function can be implemented in several ways, and the actual configuration
of its component parts is of no importance to its function, but dramatically shapes the
behavior.

The accurate representation and management of these behaviors is hence a task of un-
questionable interest in Computer Sciences as new computing devices are becoming
ubiquitous, and monitoring is becoming a widespread task. Not in vain, when monito-
ring, the final aim usually consists in identifying the underlying phenomenon that rules
the actions: the behavior. In that sense, we can understand behaviors as the signature of
a given phenomena.

However, behaviors in real life are everything but exact. They are composed of repeating
patterns, but those repetitions are not identical nor fully predictable. In other words, we
can never be completely sure of what is going to happen next despite we might have an
educated guess. Furthermore, the exact measures are not representative in most cases,
being the overall trend much more valuable. Because of that, real behaviors are said to
be imprecise and uncertain.

Successful representation of behaviors can be used for creating new artifacts that reflect
the essence of a previous one. Although this action might be considered as plagiarism
or imitation, it is helpful for tasks in which obtaining new examples is costly. What is
more, we can invert that process to check whether an unknown phenomenon is derived
from any other or not.

In any case, representation and summarization of behaviors can provide a valuable un-
derstanding of how a phenomenon behaves, giving experts new pieces of information
about the rules that govern the behavior of that particular phenomenon.

Behaviors, as previously defined, can be found in many fields. The following are a few
examples of them:

Weather The weather in a given area is one of the clearest examples of behaviors. It
is cyclical but never exactly the same. However, everyone has an idea of how the
weather in his city is (even though we can only define it in vague terms), and we
all hear comments like “the weather here is like in my city”. Being able to accurate
represent and predict the weather in an area is a problem of great economic impact.
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Chapter 1. Introduction

Injuries The movements of a (injured) knee when doing some rehabilitation exercises
share common nuances that doctors look for with special interest. Accurately re-
presenting and understanding the differences between an injured articulation and
a healthy one is of great help to correctly diagnose the injury and to discover fake
reports.

Finances The interactions between currency exchanges is also a problem that can be
represented with the formalism of behaviors in mind. It is well known by experts
that a currency’s behavior is in great degree dependent of other currencies’ fluc-
tuations. Understand the relationship between them and with other phenomena
might lead to important economic advantages.

Energy The energy consumption profile of a family or a business is also a behavior.
If accurately represented, it would allow potential optimization in the generation
and transport processes to better match the demand, reducing the associated costs,
both economic and environmental.

As said before, the management and representation of behaviors is one of the lines of
research the ARAI (Approximate Reasoning and Artificial Intelligence) group at the
University of Granada is pursuing with greatest efforts. Among others, research have
been done in the fields of Ancient Ambient Living (Delgado et al., 2009b), and music
performance (Molina-Solana et al., 2010).

Style

One particular case of behaviors is style, in which an author (generally a human) with
intentions exists. The complexity of understanding and representing style is even big-
ger than their counterparts with behaviors, due to the aesthetics aspects and emotions
involved.

Informally, when talking about an artist’s style, we are referring to a set of characteristics
unique to the work of that individual artist, even when sharing some of them with other
artists1. Monet and Picasso might be classify together as ‘painters’, but if we see them
in-depth, most people can intuitively tell that there are some differences between the
drawings they produced. Which differences those are and how to explain them is another
question that probably only experts can accurately answer, as it is not clear which criteria

1The cite at the beginning of this Chapter, extracted from The Structure of Style (Argamon et al.,
2010), summarizes this idea.
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1.1 Motivation

we must attend to and how important they are. To complicate things more, style often
implies emotions that are recalled on the observer of the phenomenon.

Typically, the very first approach to tackle style consists in describing each phenomenon
in every detail. But even if we try our best to achieve the most detailed of the descrip-
tions, measuring style is not an easy or straightforward task, as it is not clear which
criteria we must attend to and how important they are. It is at this point when tools
for dealing with uncertainty and imprecision are required should we want to successfully
describe and manage style/behaviors with computers.

Despite those difficulties, Computational Stylistics is a growing research field as more
people realize the importance of addressing style by means of computational tools. While
initially only focused on Linguistic, those tools can now be applied to any other problem
in which we want to study the patterns underlying in the process of encoding information
of any type. The following are some examples of problems that can be studied and solved
using this paradigm:

Text authoring: Stylistic analysis of a text is key to the detection of idiosyncratic uses
of language that distinguish one author from another. Not in vain, an author’s
style is often his signature. The range of vocabulary, the length and complexity
of sentences, or the tone (descriptive, ironical, informal) are just a few aspects
which the author can shape their message with. In fact, it is not strange to hear
comments like “this book is much in the style of Dan Brown”.

Machine Translation: Besides that obvious possibility of identify the author of a text,
style is a crucial aspect when automatic translating from a language to another.
The tense of verbs, or the use of active/passive voice are only two examples or how
style might be used in this context. Even more, understanding why a language was
used in a certain way might be key to translate the message effectively to another
language.

Music performing: This problem is very similar to the one of text authoring. In this
case, instead of a textual message it is music what we have, and the aim is to
identify each performer’s own signature. After that, we can apply such knowledge
to the task of predicting the performer of a new piece, and to the task of replicating
the style of a particular performance.

Results presentation: When some data are available, a good presentation, summariza-
tion and explanation are key if we want to effectively transmit the information to
users. Style in this area might determine if graphs are preferred to a few lines of
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text. It also may determine the colors, verbosity or size. Even though all presen-
tations pursue the same goal, some are more appropriate and effective regarding
the context. Understanding and encoding those aspects is of great importance and
interest.

1.2. Justification

More and more, smartphones and new devices automatically collect and send many kinds
of data from multiple domains through their embedded sensors. This growing amount of
data is continuously demanding new processing, storage and summarization capabilities,
and their understanding and representation is of great scientific and economic value.
However, their imprecise and imperfect nature make them very difficult to be represented
with classical computational tools, as those behaviors (defined as sequences of data) do
not recur in an identical but similar way.

Therefore, new ways of modeling and understanding behaviors are needed specially if
they are uncertain and imprecise. The main aim of this dissertation is precisely proposing
a new representation model for behaviors summarizing their most representative aspects
taking into account the aforementioned imperfection of observations.

In this thesis, we will concentrate on behaviors described as series of observations with
the following three characteristics:

• The series of data contain one or several recurrent patterns. Those patterns will
be the ones we will try to identify.

• If a certain pattern was observed in the past, it will eventually happen again in
the future.

• The data series are long enough for the information obtained from them to be
representative. The longer the data series is, the more accurate the representation.

It should be noted, however, that this dissertation only deals with description. We will
not treat explanation in any way, as that is a huge area much more related with Psycho-
logy than with Computer Science. In other words, we will not go into the reasons why
a particular phenomenon is behaving in a particular way. Referring to style, we are not
interested here in creators’ intentions and aims.

In any engineering problem, the existence of a domain that can be studied, abstracted,
and in which solutions can be applied and tested, is of capital importance. Historically, it
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has been demonstrated that general solutions in Engineering are difficult to be devised in
abstract. In this dissertation, we concentrate on music, which is an interesting medium to
investigate implicit learning processes for several reasons. The main one is that music is
a structure of our environment that is too complex to be apprehended through explicit
thoughts and deductive reasoning. Musical events per se are of no importance, but
musical pieces are more than a pleasing succession of sounds. The psychological effects
of musical sounds come from the complex relationships between musical events in a given
piece.

In fact, musical structures are generally not conceived for being explicitly processed.
Composers do their best to make listeners sensitive to the structures that underlie a
musical piece but unaware of them. Therefore, it is not rare that the most common
impression among a general audience is that of being unable to verbally describe what
they perceive. In many cases, people are even convinced that they do not perceive any
underlying structure.

Since first computers were developed many people have tried to apply them to musical
tasks. There are two main classes in which computer music projects could be classified:
analysis and composition. The first one consists in extracting information from the music
itself (or the associated data) in order to learn a model that describes the concrete
examples. Composition, on the other hand, is about generating new music from the
rules. In fact, is doing the process in the other way: ‘from rules to music’ instead of
‘from music to rules’.

Because of those reasons and my personal interest as a pianist, Music was chosen as
the domain to which apply our research on learning and representing behaviors. This
fact does not mean that we limited ourselves to only consider particular aspects of this
domain. More on the contrary, abstraction has always been present in our research, with
the aim of our results being general enough to be applied to as many areas as possible
in later stages.

1.3. Objectives

The present dissertation is organized around the following five objectives that cover
several issues and open problems:

Understanding music performances. Because music performance is the particular do-
main in which we will be applying our behavior representation model, we aim to
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study the particularities of this domain, and the relevant tasks and former research
in it. One of the goals of this dissertation is therefore to provide a survey of the
state of the art in computational techniques applied to music performances.

Application of DataMining to the music domain. As part of our study on compu-
tational tools applied to the music domain, we aim to develop an algorithm for
discovering frequent patterns in compositions. In particular, we focused on the
task of identifying the chorus of different songs, as a way to study how patterns
are repeated in this context.

Development of a framework. With the aim of integrating all the learning tools, one
of the objectives of the present dissertation is the proposal of a framework for
automatically composing and performing music by means of computers. This fra-
mework should enable the inclusion of the learning algorithms devised in other
objectives.

Representation of imprecise and uncertain behaviors. As said before, our primary goal
is to represent imprecise and uncertain behaviors, as it is an issue of current in-
terest. After an study of existing alternatives and approaches, we aim to develop
an abstract representation that can easily accommodate different behaviors over-
coming current difficulties.

Application to represent music performances. Finally, we aim to apply the abstract
model in the previous objective to a concrete domain in order to test its validity
and performance. This domain is the one of music performances, as it is an issue
that poses several interesting problems. We will focus on the task of identifying the
performer of several music recordings by its similarity to previous performances.

1.4. Thesis outline

This thesis is divided in two main parts:

PhD Dissertation is devoted to describe the problems we have addressed and discuss
the research we have performed. In particular, Section 2 presents the research and
the main results, and Section 3 summarizes them and also points to further work.

Publications collects the journal papers related with the research shown in this thesis.
They are devoted to the five objectives previously mentioned.
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2. Discussion of Results

This chapter is devoted to present the research that has been carried out in several
areas and to highlight its most relevant points. We have organized this chapter in several
sections corresponding to the different objectives we aimed to cover in this dissertation.
We first introduce the particular domain of computational music performance and con-
centrate on one to-be-solved problem: representing and describing music performances.
Later, we abstract this problem to the one of representing imprecise and uncertain be-
haviors by means of repetitive patterns, and propose a suitable representation model
and a learning algorithm. Finally, we test our proposal in the studied domain in order
to check its validity and performance.

2.1. Understanding music performances

Most people would judge the literal execution of a musical score to be significantly less
interesting than a performance of that piece by even a moderately skilled musician. Why
is that so? Because what we hear is not a literal rendition of the score. Of course, the
principal and traditional vehicle of communicating musical compositions is the music
score, in which the composer codifies his intentions; but the information written in the
score does not represent an exhaustive description of the composer’s aims. Although it
carries information such as the rhythmical and melodic structure of the piece, it is not
a notation capable of accurately describing the timing and timbre characteristics of the
sound.

In the same way that there is no explicit notation in a written poem for pronunciation,
in musical scores there is also such a lack of information. When speaking, we use several
voice resources such as changing velocity, tone or loudness. All this effects are not
explicitly in the text we are reading. In fact, when several people read a text, resulting
sounds are not the same, even though words in the paper remain unchanged. So does
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in music. This comparison is actually quite appropriate because former research on
music performance has revealed interesting analogies in the communication of emotions
in singing and speech (Bresin and Friberg, 2000; Sundberg, 2000).

Due to that freedom and lack of precision, the role of the performer is crucial in music,
acting as a kind of mediator between composer and listener, between written score and
musical sound. It is the performer who renders each note in the score in terms of
intensity, duration and timbre by movements of fingers, arms or mouth. This results in
different performances of the same piece reflecting each performer’s culture, mood, skill
and intention. These variances also contribute to determining the performing styles of
different musicians. So that, the music we hear has two main sources: the score and the
performance, and they both need from each other.

Widmer and Goebl (2004) defined expressive music performance as “the deliberate
shaping of the music by the performer, in the moment of playing, by means of con-
tinuous variations of parameters such as timing, loudness or articulation”. But besides
performers’ intentions, there are other uncontrolled factors affecting the rendition of a
musical piece.

One of the most obvious is the physical condition of the performer. Not in vain, per-
former’s mood, health and fatigue play a crucial role in the process of playing an instru-
ment. Some studies (Gabrielsson, 1995; Rigg, 1964) have shown major variations in
renditions by the same performer when he is in different moods.

Manual abilities are also an important point that is especially visible when comparing a
beginner with an expert. With practice, musicians can improve their velocity and preci-
sion, reducing the amount of unintended deviations with respect to the score (commonly
known as errors). Other factors that affect the rendition are the location where it takes
place and the instrument being used: the acoustics of the place are important because
they establish the sounds that can be made; and so does the instrument, which has an
evident influence on the character of the work.

Computational research on music performance

As seen, many aspects can affect musical renditions and they are very difficult to be
explicitly described. Even more, the concept of a creative activity being predictable and
the notion of a direct ‘quasi-causal’ relation between the musical score and a performance
are both problematic.
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Despite those difficulties, several authors have attempted to capture common perfor-
mance principles by means of focusing on commonalities between performances and
performers, to later represent them in computers (see reviews from Poli (2004); Widmer
and Goebl (2004)).

Two goals are mainly aimed in those systems: automatic style replication, and learning
about the artistic activity of expressive music performance. In either case, it is not
enough with just extracting information from performance measurements and use it
to compare and classify; in order to get real insight, learning algorithms that produce
interpretable models are needed.

We reflected on those questions and reviewed several of those attempts and computa-
tional models in:
Delgado, M., Fajardo, W. & Molina-Solana, M. (2011), "A state of the art on computa-
tional music performance", Expert Systems with Applications. Vol. 38(1), pp. 155–160,
DOI: 10.1016/j.eswa.2010.06.033

For instance, Juslin et al. (2002) described the main sources of expressivity in musical
renditions and expressed the necessity of integrating some of this aspects in a common
model they started to sketch.

López de Mántaras and Arcos (2002) studied the expressivity of several AI-based systems
for music composition. They compared this expressivity with the one that exists in
human recordings. Moreover, they introduced SaxEx, a system capable of generating
expressive performances of jazz ballads by using examples from human performers and
a case-based reasoner.

Hong (2003), on the other hand, studied how musical expressivity is affected by tempo
and dynamics variations. He employed cello recordings for the experiments. He extended
previous work by Todd (1992), by applying new musical ideas to Todd’s model.

Dovey (1995) proposed an attempt to use inductive logic in order to determine the rules
that pianist Sergei Rachmaninoff may have used in their performances with an augmen-
ted piano. The aim was to extract general rules (in the form of universal predicates)
about each note’s duration, tempo and pressure. All that information was obtained from
the way of playing the piano.

The group led by Gerhard Widmer has worked in the automatic identification of pianists.
In (Widmer et al., 2003) they studied how to measure several aspects of performances
by applying machine learning techniques; whereas in another work (Stamatatos and
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Widmer, 2005), they proposed a set of simple features that could serve to represent
performer’s expressivity from a rendered musical piece.

Moreover, in a later paper, Saunders et al. (2008) represent musical performances as
string of symbols from an alphabet. Those symbols contain information about changes
in timing and energy within the song. After that, they use Support Vector Machines to
identify the performer in new recordings.

Sapp (2007) is also an interesting proposal, as it represents musical renditions by means
of sketches which are based on the correlation between time and energy.

Automatic music performance

As said, one of the ultimate goals —and probably the most appealing— of researching
in computational music performance is applying the gathered knowledge to the task of
automatic performing musical pieces. Because the conventional score is quite inadequate
to describe the complexity of a musical performance, and since the literal synthesis of
notes from a score is flat and unappealing, there is an opportunity for learning systems
that can automatically produce compelling expressive variations. Hence, methods for
automatically “bringing life” to musical scores become useful and interesting.

The principal characteristic of an automatic performance system is that it converts a
music score into an expressive musical performance typically including time, sound and
timbre deviations from a deadpan realization of the score. Mostly, two strategies have
been used for the design of performance systems, the analysis-by-synthesis method and
the analysis-by-measurement method.

The first method implies that the intuitive, nonverbal knowledge and the experience of
an expert musician are translated into performance rules. These rules explicitly describe
musically relevant factors. This method is potentially limited because of rules mainly
reflecting the musical ideas of specific expert musicians. On the other hand, professional
musicians’ expertise possess a certain generality, and rules produced with the analysis-
by-synthesis method have often been found to have a general character. Those rules
failed to apprise the small nuances that performers are unaware of.

Rules based on an analysis-by-measurement method are derived from measurements of
real performances usually recorded on audio CDs or played with MIDI-enabled instru-
ments connected to a computer. Data are processed statistically so that the rules reflect
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typical, rather than individual, deviations from a deadpan performance, even though
individual deviations may be musically highly relevant.

Besides most works already cited in the former paragraphs, other authors have proposed
models of automatic music performance. Todd (1992) presented a model of musical
expression based on an analysis-by-measurement method. Rule-based systems have been
proposed by Zanon and Poli (2003) and by Friberg (1991); Friberg et al. (2000).

Performance systems that learn by means of machine learning techniques have been
developed too. Widmer (2003) proposed a machine learning based system extracting
rules from performances. Ishikawa et al. (2000) developed a system for the performance
of classical tonal music; a number of performance rules were extracted from recorded
performances by using a multiple regression analysis algorithm. Arcos et al. (1998)
developed a case-based reasoning system for the synthesis of expressive musical perfor-
mances of sampled instruments.

Although it may sound odd, there are concrete attempts at elaborating computational
models of expressive performance to a level of complexity where they are able to compete
with human performers. The Rendering Contest (Rencon) 1 (Hashida et al., 2011) is
an annual event first launched in 2002. It tries to bring together scientist from all over
the world for a competition of artificially created performances. It uses an human judge
to evaluate music performances automatically generated by computers. Participants are
asked to generate a rendition of a musical work by using a predictive level. In a wider
sense, we can somehow see this paradigm as an expressive performance Turing test. In
other words, the best systems are those than manage to generate performances which
sounds indistinguishable from human ones.

All things considered, music performance is an interesting research topic which enables
the study of human’s emotions, intelligence and creativity. These are precisely the issues
Minsky (1992) referred to when he wrote about music as a human activity.

2.2. A framework for computer music composition

On the context of our research on computational tools applied to music, we developed
a framework, named InMaMuSys, for automatically composing and performing mu-
sic. This framework was based on the analysis-by-synthesis approach we have already

1http://www.renconmusic.org
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mentioned. In particular, we proposed a multiagent system to organize the different
tasks involved in the generation and performance of music by a computer. It has been
published in:

Delgado, M., Fajardo, W. & Molina-Solana, M. (2009), "INMAMUSYS: Intelligent Mul-
tiagent Music System", Expert Systems with Applications. Vol. 36(3), pp. 4574–4580,
DOI: 10.1016/j.eswa.2008.05.028

Many attempts have been made on applying computer to music composition, most of
them based on some kind of rule-based system (Friberg, 1991; Lerdahl and Jackendoff,
1983). Genetics has also been applied to composing music, as this is a problem with
difficulty in defining the solution process within a huge solution space (Marques et al.,
2000; Miranda, 2004).

However, stylistics considerations have been often neglected because of their complexity.
It has not been until recently (with the help of advances in computational music perfor-
mance) that prototypes are aiming expressivity in their compositions (López de Mántaras
and Arcos, 2002; Zhang and Miranda, 2006).

Our attempt, InMaMuSys has a two-layer multiagent architecture. As a one-for-all agent
makes little sense in this complex context, a collection of simple agents specialized in
particular tasks is proposed. In the first level —the competitive one—, agents (called
composers) compete among themselves to be the one chosen for composing. This layer
allows an initial separation between compositional styles. Each composer announces its
abilities, and the system, according with user inputs, selects the composer that better
fits.

Composers choose, between other parameters, rhythm, number of voices, and instru-
ments to be used in the compositions. However, they only act as directors, asking others
agents from the second level for their collaboration in order to get a composition. This
second level contains auxiliary agents that collaborate between them, so this layer should
be understood as a collaborative level. We call these agents voice generators.

InMaMuSys’ initial prototype was developed with several agents in order to generate
music in different ways: from just a random composer to more elaborate ones where
aesthetic principles were mainly searched.

One of the goals of InMaMusys was to hide the underlying complexity and expose only
a simple interface that anyone could use by means of indicating which kind of music
they want, in terms of emotions. In other words, we aimed to integrate into the system
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itself the knowledge about how to use tonality, rhythm and instruments in order to get,
for instance, sad music.

Taking into account that the evaluation of any musical work is a complex task and often
comes down to individual subjective opinion, it is hard to empirically evaluate music
compositions, and therefore it is difficult to evaluate the effectiveness of a computer
music composition system (Pearce et al., 2002). Because of that, we carried out some
preliminary experiments over InMaMuSys with the aim of checking whether the system
was able to compose music that successfully matches user emotional requests. Results
showed that different emotions were successfully identified by listeners, and therefore
suggested that the approach was valid.

A well-balanced system was developed because there was a great variety between different
executions, and InMaMuSys managed to make compositions sound as a whole, and not
like several pieces stuck together. Even though the whole music space for a emotion (e.g.
sadness) is not completely covered, almost all the system compositions are classified (by
humans) under the right emotion.

The development of this framework allowed us to reflect on the difficulties of modeling
a complex task such as music composition. It also pointed out the question of which
alternative is better and more scalable when trying to obtain the necessary knowledge.
On the one hand, we can rely on human expertise and represent their knowledge; on
the other, we can employ machine learning techniques and leave the computer find out
what is relevant and what is not. So far, InMaMuSys heavily counts on the first one,
but its improvement necessarily should go on the machine learning direction.

2.3. Mining musical patterns

As said in the Introduction, several structures underlie musical pieces even though they
are mostly ignored by listeners. In the context of musicology, the discovery of frequent
(musical) patterns is a relevant problem, as several repeating entities such as notes,
intervals, rhythms, and harmonic progressions can be found. In other words, music
might be seen as a string of musical entities on which pattern recognition techniques can
be applied. We studied in particular the automatic extraction of relevant patterns from
music pieces in order to identify their chorus. This research has been published in:
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Jiménez, A., Molina-Solana, M., Berzal, F. & Fajardo, W. (2011), "Mining transposed
motifs in music", Journal of Intelligent Information Systems. Vol. 36(1), pp. 99–115,
DOI: 10.1007/s10844-010-0122-7

A music motif is the smallest meaningful melody element; as a rule, it is a group of
notes no longer than one measure. In terms of human speech, a motif would be like a
word. In the same way that sentences consist of words, motifs form musical phrases.
A melody is formed by several motifs, which are repeated, developed, and opposed one
against another within the melody evolution.

Pattern processing techniques have been applied to musical strings and, despite it is
almost impossible to be exhaustive in analyzing the state of the art in musical pattern
identification, the work by Cambouropoulos et al. (2001) is a good departing point.
Those algorithms can be divided into those that deal with audio signals (using signal
processing methods) (Aucouturier and Sandler, 2002; Paulus and Klapuri, 2009; Levy
and Sandler, 2008), and those that use symbolic representations (using text mining
methods) (Meredith et al., 2002; Rolland, 1999; Pienimäki, 2002).

According to the above considerations, we developed a TreeMiner-based (Zaki, 2005)
algorithm to discover frequent melodic and rhythmical patterns in music files, using
a symbolic representation approach. The algorithm works with a sequence of notes
obtained from a MusicXML representation of the song. These notes are defined at their
lowest level (i.e., pitch and duration) and in an absolute, not relative, way. In those
circumstances, our algorithm is able to identify sequences even when they are transposed.
It can be used to find common motifs in several songs and also find repetitions within a
song. In particular, we applied this algorithm to the task of finding the longest motifs
that are repeated within a single song. Our hypothesis is that those patterns probably
correspond to the chorus or the most significant part of the song.

Our proposal: SSMiner

Our algorithm, called SSMiner (Similar Sequence Miner), is based on the POTMiner
(Jiménez et al., 2010) frequent tree pattern mining algorithm, a TreeMiner-like algorithm
for discovering frequent patterns in trees (Zaki, 2005). POTMiner and its antecessor
follow the Apriori (Agrawal and Srikant, 1994) iterative pattern mining strategy, where
each iteration is broken up into two distinct phases:
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• Candidate Generation: A candidate is a potentially frequent subsequence. In
Apriori-like algorithms, candidates are generated from the frequent patterns dis-
covered in the previous iteration. Most Apriori-like algorithms, including ours,
generate candidates of size k + 1 by merging two patterns of size k having k − 1
elements in common.

• Support Counting: Given the set of potentially frequent candidates, this phase
consists of determining their actual support (number of occurrences) and keeping
only those candidates whose support is above the predefined minimum support
threshold (i.e., those candidates that are actually frequent).

The sequence of a song is scanned twice by our algorithm, in the process of obtaining
the frequent elements of size 1. The first scan is needed to save the occurrences of each
note and the second one is employed to detect the transposed occurrences of each note.
Then, the infrequent notes are pruned and we are ready to apply the two phases of the
SSMiner algorithm without checking the original sequence any more.

The execution time of our algorithm is proportional to the number of patterns than can
be identified, and quadratic with respect to the size of the sequences.

Our algorithm returns all the frequent patterns of the maximum size indicated by the
user (or smaller ones if there are no patterns of such size). As musical motifs are generally
no longer than a measure, a value of ten is typically used by default. Nevertheless, this
limit can be easily modified since our algorithm can return all the frequent patterns
that exist in the song regardless of their size. The resulting output will be the set of
frequent patterns that represent the song. The algorithm also returns the positions of the
different occurrences of the patterns within the song (including transposed occurrences
if needed).

In order to evaluate the goodness of our proposal, we used a corpus of 44 songs from a
wide variety of authors, testing whether or not the discovered frequent patterns belong
to the chorus of the song —in our experiments, 6.82% of the songs do not have a clear
chorus. Table 2.1 shows the percentage of songs which have at least one identified pattern
within their chorus. As can be seen, above 60% of the songs fulfill this requirement. Also,
it is remarkable that not considering the rhythm results in more patterns belonging to
the chorus of the songs. This fact indicates that patterns are not always exactly repeated
as themselves, but slightly modified. Although the chorus-belonging criterion appears
to be a valid and obvious one, it should be noted that some songs are better identified
by patterns which do not belong to the chorus.
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pitch-duration pitch transposition-duration transposition
%Yes 63.64 68.18 63.64 72.73
%No 29.55 25.00 29.55 20.45
%without chorus 6.82 6.82 6.82 6.82

Table 2.1.: Percentage of songs that include at least one identified pattern within their
chorus. Each column indicates the different setups we have tested: 1) repe-
titions with exact pitch and duration, 2) repetitions with exact pitch, 3)
transposed repetitions with exact figuration, and 4) transposed repetitions
with varying durations.

Apart from its obvious use in musicology, one of the most relevant application in the
music domain related to motif extraction is Audio-thumbnailing (i.e., summarizing or
abstracting) (Zhang and Samadani, 2007). It provides the user with a brief excerpt of a
song that, ideally, contains the main features of the work. Before hearing or purchasing
a whole song, it is useful to hear a representative thumbnail of the whole work. This
technique is also important for indexing large datasets of songs, which can be browsed
more quickly and searched more efficiently if indexed by those small patterns instead of
being indexed by the whole song.

2.4. Understanding Behaviors

In recent years, behavioral sciences have received a lot of attention from the informa-
tics perspective. This fact is mainly due to current demands for behavior analysis and
understanding outstripping the capability of traditional methods and techniques in be-
havioral sciences. New computational tools for representing and working with behaviors
are very welcomed, and a growing field of research, namely Behavior Informatics (Cao,
2010), is receiving increasing recognition.

Intuitively, we can define a behavior as a set of actions that are characteristic of one
individual or phenomenon. These actions are ordered (or partially ordered) in some way,
and indexed by a variable, which is generally time. By representing behaviors, two goals
are aimed: identification and tagging of the behaviors, and forecasting future actions
within them.
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Examples of behaviors

Behaviors, as we have just defined them, can be found in many different domains. The
following are some illustrative examples of such phenomena that can be represented and
individually identified:

• The weather in a given area, represented as a series of observations at different
time instants, including information such as temperature, precipitations or wind
speed (Kriegler and Held, 2005).

• The movements of a (injured) knee when doing some rehabilitation exercises, by
monitoring the position of several reference points at different time instants (Alonso
et al., 2002).

• The way of playing an instrument. A particular performance of a piece of music
can be represented as a series of notes with its respective length and energy, among
others attributes (Molina-Solana et al., 2010).

• Modeling and inferring human behaviors in Ambient Assisted Living, with the aim
of identifying strange actions and situations of potential danger (Delgado et al.,
2009b).

• The personalization of mobile services. As mobile devices increase their capacity,
new services and applications are developed which need modeling the user behavior
and context (Bao et al., 2012).

• The interactions between currency exchanges. Several works have studied how
several currencies behave against each other at different financial situations (Zhang
and Wan, 2007).

Data series for representing Behaviors

As seen, most of these real-world phenomena can be naturally represented by data series.
As databases from most of industrial and biological areas often contain timestamped or
ordered records, data series are gaining weight as a suitable source of information, and
working with them has become an important machine learning task. Those records are
generally obtained in an automatic manner from different sensors.

Two main goals of data series analysis are historically found in literature (Brockwell and
Davis, 1991): forecasting and modeling. The aim of forecasting is to accurately predict

21



2.4 Understanding Behaviors

the next values of the series, whereas modeling aims to describe the whole series. Even
though they can be sometimes related, they usually differ as finding a proper model for
the long-term evolution might not be the best approach to predicting the short-term
evolution and viceversa. Forecasting and modeling are also the main tasks concerning
behaviors. Therefore, data series are a suitable representation for behaviors, being also
the most common one.

Imperfect data series

In either case, and whatever the goal of a particular data series analysis is, data repre-
sentation is a crucial task anyway. It is hence required a formal representation capable
of modeling the complexity of the particular data. This representation must be more
reduced than representing all the observations of the phenomenon, but still describe it
accurately enough. An additional problem is that information is hardly certain, complete
and precise; more on the contrary, it is usually incomplete, imprecise, vague, fragmen-
tary, not fully reliable, contradictory, or imperfect in some other ways.

Historically, two ways of addressing imperfection have been employed for representing
information in a computer (Motro, 1996):

• The first solution consists in restricting the model to only that part of the available
information of the real world that is accurate and reliable. Such a constrained
approach avoids further complications of representation, but lacks the capacity of
capturing the whole rich notion of information in human cognition and is generally
very limited.

• The second solution implies developing models capable of representing imperfect
information. As this approach allows a greater number of applications, it is the one
that developers usually implement in their systems. However, those models cannot
successfully cope with the whole range of imperfections that generally appear in
real life, and in many occasions data are simplified to a point that makes them
easily treatable with current computational tools, but losing part of their meaning.

Due to this lack of general systems capable of dealing with any kind of imperfect data,
developers have been forced to handle this information in an ad-hoc manner; that is, by
devising specific algorithms and systems for each new application, domain and repre-
sentation. Therefore, in order to model the real world as accurately as possible, several
approaches for dealing with imperfect information have been introduced and studied.
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Managing Imperfect data

When Weaver (1948) suggested that several scientific problems were not solvable by a
simple formula or probability theory, he was implying a more fundamental statement:
‘almost all real-life problems cannot be solved by conventional (precise) mathematics’.

Not in vain, we experience that information in most domains is usually incomplete,
imprecise, vague, fragmentary, not fully reliable, contradictory, or imperfect in some
other way. Imperfect information might result from using unreliable information sources,
it can be the unavoidable result of information gathering methods that require estimation
or judgment, or be produced by a restricted representation model. According to Motro
(1996), these various information deficiencies may result in different types of imperfection
such as inconsistency, imprecision, vagueness, uncertainty, and ambiguity.

We say that we have inconsistency when one aspect of the real world is irreconcilably
represented more than once in a data set. For example, having both ‘27’ and ‘28’ as
values for John’s age. Information inconsistency is a kind of semantic conflict that
usually arises when integrating information.

Imprecision and vagueness are both related with the impossibility to give a concrete
value to an element. The correct value is within a range of values, but there is no way of
knowing which one to choose. For example, ‘between 100 and 120 kilograms’ and ‘very
heavy’ for John’s weight are imprecise and vague values respectively. Vague information
is usually represented by linguistic terms.

Uncertainty indicates the degree of truth of a value. It expresses how sure one can
be about a statement. ‘It is almost sure that John is his brother’ is an example of
information uncertainty.

When an element of the model can have several possible interpretations, we say it is
ambiguous. In general, if values are not accompanied by their units, it is impossible to
say if a figure is high or low. A length of 1000 is meaningless unless it is stated if those
are millimeters or kilometers.

Generally, several different kinds of imperfect information can coexist with respect to
the same piece of information. In many real-world problems we have (or could have)
statements like the following: ‘it is α-certain that X is A’, being X a variable, α a
certainty degree, and A an imprecise value. In a statement like ‘it is almost sure that
John is a nice person’ two sources of imperfection are present: uncertainty (for ‘almost
sure’) and imprecision (for ‘nice person’).
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Those two are the most common kinds of imperfection found in data. That is especially
true when dealing with problems related with biological systems. Several data models
have been proposed to handle uncertainty and imprecision, and most of them are based
on the same paradigms. Imprecision is generally modeled with fuzzy sets Zadeh (1965),
and uncertainty with fuzzy measures (evidence theory, possibility theory and probability
theory).

The approach we will describe later lies within this general framework —dealing with
imprecision by means of fuzzy sets, and with uncertainty by employing probability.
This representation is general enough to allow its application to several problems and
domains, and can be easily understood and implemented.

2.5. Representing Behaviors

Frequent Correlated Trends is our approach to tackle the problem of representing imper-
fect behaviors —concretely uncertain and imprecise— that came as a series of observa-
tions. This proposal is intended as a general framework that can be applied to several
domains with minimum adaptation.

The present dissertation presents both a representation method and a learning algorithm
suitable to be applied to data series:

• The model aims to summarize a particular behavior, simplifying its original re-
presentation but saving the specific attributes that differentiates that behavior
from any other. Underlying local trends in the data are represented in an easy and
effective way, without a complicated formalism.

• The learning algorithm identifies given behaviors through capturing their gen-
eral footprint by means of discovering repetitive patterns in one dimension and
their interdependences with patterns in other dimensions.

The model

When behaviors are defined by observations along different dimensions, Frequent Corre-
lated Trends model the relationships between structural patterns in a reference dimen-
sion, and patterns in other dimensions.
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As the exact values of patterns are not fully reliable because of imperfection, we employ
a reduced alphabet in order to abstract those patterns and appraise their fundamental
shape.

Finally, the relationships between those patterns in different dimensions are represented
as sets of probability distributions.

Three characteristics of our model are of special relevance:

• It is general enough to be applied to any field in which series of observations
can be found, thus not requiring complicated adaptation to particular domains or
problems.

• The representation of the behavior is finite and constant in size for a given pro-
blem, regardless of the number of observations. In other words, the size of the
representation does not depend on the amount of data available.

• An incremental representation is allowed and can be calculated on-line very easily.
When a new value is observed, this information can be included in the representa-
tion, which is immediately updated. There is no need of recalculating the whole
representation when new observations are available.

These features enable the model to automatically offer a representation of the behavior
until any given observation, and allow it to deal with data series of infinite length. Be-
cause of that, Frequent Correlated Trends is specially aimed to represent those behaviors
with a large number of observations.

The learning algorithm

In order to transform real data to the Frequent Correlated Trends representation, a
learning algorithm is necessary. As previously said, we concentrate on behaviors that
are described as multivariate data series. Therefore, the learning algorithm we propose
is designed to expect that kind of input.

The first step of the algorithm consists in transforming the series of observations into
series of qualitative abstract values (no more than a few) by means of a parser. This
step reduces the number of different values we originally had and introduces imprecision
in the data. However, that imperfection was already in the data as measures were not
fully reliable. At this step, we are only making explicit that imperfection.
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Once the observations have been transformed to the new reduced domain, we segment
the series in small patterns. The aim is to have a reduced alphabet of possible patterns
that repeat very often.

After that, we create probability distributions of patterns occurring at the same time on
different dimensions. Those probability distributions provides statistical information of
how patterns in different dimensions relates.

In many occasions, the final goal of representing behaviors is their posterior identification
and classification. If that is the case, behaviors —represented as a collection of frequent
correlated trends— are used as the patterns to compare with when a new instance is
presented to the system. This comparison is done by means of a distance function that
should be appropriately defined.

2.6. The application to representing music performances

Apart from describing Frequent Correlated Trends and its learning algorithm, we have
applied that model to one particular problem: Music Performance.

In particular, we aimed to extract relevant knowledge of how a performer plays and
shapes the music. Since commercial recordings are so heterogeneous, it is really difficult
to exactly translate the audio to an accurate score representation; and therefore, it
is impossible to map specific patterns to performers. At this point, we have already
reviewed the state of the art on Computational Music Performance.

In this part of the research, we show a suitable representation method and a learn-
ing algorithm for how music is performed by different performers in terms of duration
and energy. We apply such knowledge to the task of identifying the performer of new
recordings.

The advantages and disadvantages that Frequent Correlated Trends present with respect
to other methods in the literature are discussed in:

Molina-Solana, M., Arcos, J.L. & Gómez, E. (2010), "Identifying Violin Performers by
their Expressive Trends", Intelligent Data Analysis. Vol. 14(5), pp. 555-571, DOI:
10.3233/IDA-2010-0439

26



Chapter 2. Discussion of Results

The model

In this context, Frequent Correlated Trends propose a more abstract representation that
the real notes, but still close to the melody (i.e. instead of focusing on the absolute notes,
we focus on the melodic surface).

Frequent Correlated Trends characterizes, for a specific audio descriptor, the relationships
a given music performer is establishing among groups of neighbor musical events. For
instance, the model can qualitatively describe how changes in energy relates to a given
set of consecutive ascending notes.

We represent a performance as a set of discrete probability distributions for various
audio descriptors (dimensions) because the combination of trends from different audio
descriptors improve the characterization.

Thus, Frequent Correlated Trends in this context capture statistical information about
several aspects of how a certain performer tends to play.

The learning algorithm

To transform the original audio data to the Frequent Correlated Trends model, the first
step consists in extracting audio features from the recordings. Once the notes have been
estimated, along with values in several dimensions (included their duration and energy),
those data series are abstracted and transformed to qualitative values.

We then segment the series in groups of three notes. In the current approach, since we
segment the melodies in groups of three notes and we use two qualitative values, eight
(23) different patterns are possible.

Finally, probability distributions are constructed for each pattern in one dimension by
calculating the percentage of co-occurrence of each of those patterns with patterns in
other dimensions.

Results

We worked with Sonatas and Partitas for solo violin from J.S. Bach. We tested our sys-
tem by performing experiments with commercial recordings from 23 different violinists
and different movements of the pieces. Each experiment consisted in learning correlated
trends from one movement and then testing them with another movement.
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A nearest neighbor classifier was used to generate a ranked list of possible performers
for a new input recording. When a new recording is presented to the system, its frequent
correlated trends representation is calculated and compared (by means of a distance
function) to those previously learned.

In experiments using movements from the same piece , the correct performer was ma-
jority identified in the first half of the list, while in movements from different pieces, the
most difficult scenario, the 90% of identification accuracy was overcame at position 15.
We can also observe that a 50% of success is achieved using the five first candidates in
any case (doubling the 22% of a random classifier).

These results show that our proposal is capable of learning performance patterns that
are useful for distinguishing performers. The results are promising, especially comparing
with a random classification where the success rate is clearly outperformed.
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This chapter summarizes the contributions of this thesis to the field of Behavior
Modeling and Representation, analyzing the results in accordance with the initial objec-
tives. We also highlight the contribution that this thesis has in the field of Computational
Music Performance.

3.1. Summary

Computational music performance

Studies in music performance have a particular value in our time, as it is a complex and
not yet well-understood task; not in vain, the art of performing music is the result of
several years of training. At the same time, contemporary information technology offers
the possibility of automatic playing music specially composed for computers or stored
in large databases. In such cases, the music is often played as nominally written in the
score, thus implicitly ignoring the value of a living performance and its underlying art
and diversity.

We have shown a wide range of research on music performance, from studies aimed at
understanding expressive performance to attempts at modeling aspects of performance
in a formal, quantitative and predictive way. Research on this field aims to provide
expressive tools that traditionally have been hiding in musicians’ skill and musical in-
tuition. When explicitly formulated, these tools will give the user the possibility to play
music files in a computer with different expressive coloring.

Throughout a review of different works, we have identified the most crucial problems
that researchers must face when dealing with computational music performance. The
main one is data representation, as data gathering is a complex and often unreliable
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task. Even more, the rules governing a performance are not exact neither well-delimited.
Therefore, most efforts (ours included) are done in the direction of understanding and
accurately representing how to play.

Even though we are skeptical about a machine completely replacing a human performer,
we are sure that this technology will be available in a not very far future for certain
tasks. Machines that could shape the music to imitate certain performers or styles will
not be science-fiction products anymore. We believe that it is only a matter of time that
they become commonplace. In fact, we have also shown that there are currently some
attempts in this direction, like the Rencon contest.

We are strongly convinced that it is time for Computer Science to work in the music
domain. Results from such research will make a great impact in both the Arts and the
Sciences. Not in vain, Music is more than an interesting and, somehow, odd domain; it
is part of our human essence.

Framework for music composition and performance

Focusing on the music domain, we proposed a framework for automatic music composi-
tion and performance using computers. As this is a quite challenging problem involving
many tasks, a bottom-up approximation is required for solving all of them in a modular
way, so that a huge problem can be broken into smaller tasks.

In order to achieve this general goal, we proposed a two-level multiagent architecture to
address this issue. Our proposal also permits that users were provided by an easy-to-use
interface that hides all the complexity of music composition. Even more, inputs for this
interface are emotional inputs from the users, so that we are able to address the problem
of music expressiveness.

We described how the system was developed and how the knowledge was represented.
We also showed several agents that are already implemented, as well as their aims and
roles.

Even though, InMaMusys is still in development, some experiments have been carried
out in order to validate the approach. Results are promising enough to encourage us to
continue working with this framework. We believe that Agent Theory is an adequate
formalism to model the complexity of the processes of composing and performing music,
and preliminary results support that claim.
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Mining music motives

We presented the application of frequent pattern mining to the discovery of musical
motifs in a piece of music. MusicXML files, which can be easily collected, are transformed
into sequences of notes, defined at their lower level. Our algorithm, SSMiner, is able to
efficiently identify the frequent subsequences within a sequence.

It is well-known that, in music, repeating patterns does not need to be exact. Our
algorithm is able to identify transposed patterns, including exact matchings (i.e., null
transpositions). Our experiments suggest that our approach performs well in a set of
randomly-selected songs.

Frequent Correlated Trends for representing behaviors

Many phenomena in the real world can be understood as behaviors, because they follow
some rules and behave in characteristic ways. The computational representation and
classification of them is a task of great interest for researchers in behavioral sciences
as they are in continuous need of new tools and methods to accurately represent and
understand behaviors of growing complexity.

Data series are one of the representations with increasing importance lately. They are
defined as an ordered sequence of data at given intervals of an indexing variable (e.g.
time). Because of that, behaviors in many domains can be defined as imprecise and
uncertain multivariate data series.

Although the problem of representing imperfect data has been addressed many times in
the past, the lack of a general and universal solution obligates to build ad-hoc solutions
for different problems. For that reason, there is still a need to find new solutions and
models to represent such information.

Our proposal, which assumes that some kind of commonality exists among instances of
the same behavior in a given phenomenon, represents those imperfect data series as a
set of probability distributions. To do so, it first transforms the imperfect observations
into qualitative values. Then, it selects a dimension of the behavior and uses it to look
for correlations with the rest of dimensions. These correlations are expressed as discrete
probability distributions.

The main advantage of our method is that it employs a finite and constant representation
in size for behaviors, regardless of their length. It allows for an incremental representa-
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tion of the observations until a particular point. Its best performance is achieved when
a large number of observations is available.

Frequent Correlated Trends in music performance

The feasibility of the model was shown in the domain of music performances. We focused
on the task of identifying violinists from their playing style by means of using frequent
correlated trends to capture expressive tendencies. The way of play can be understood
as a behavior as we have previously defined it.

The learning process departs from state-of-the-art audio feature extraction tools, and an
automatic segmentation of the melodies using IR patterns (Narmour, 1990). Performers
are characterized by a set of frequency distributions, capturing their personal style with
respect to a collection of melodic patterns. We have shown that, without a great analysis
accuracy, our proposal is quite robust for representing the particular nuances of different
performers.

Experiments concentrated on identifying violinists by using note durations and energies
as descriptors. We tested the system with 23 different professional performers and
different recordings. Obtained results showed that the Frequent Correlated Trend model
is capable of learning performance patterns that are useful for distinguishing performers.
The results clearly outperform a random classifier and, probably, it would be quite hard
for human listeners to achieve such recognition rates.

Contributions

The initial objectives has been completely fulfilled in the following ways:

Understanding music performances. We made a review of different approaches for un-
derstanding and representing music performances, mainly from a computational
point of view. The result can be found in page 45.

Application of DataMining to the music domain. As part of our study on computa-
tional tools applied to the music domain, we developed an algorithm for discovering
frequent patterns in compositions, focusing on identifying the chorus of different
songs. We fulfilled this objective in page 61.
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Development of a framework. The framework for integrating all the learning tools in
a music context, is described in the paper at page 53.

Representation of imprecise and uncertain behaviors. This objective is pursued in
page 79. We described what behaviors are and we proposed an abstract repre-
sentation model for imprecise and uncertain behaviors.

Application to represent music performances. Finally, we tested that model in a par-
ticular field: the representation of music performances. This application, along
with its results is presented in the paper at page 107.

3.2. Further research

Departing from the work done so far, further research can be performed in several
directions. We described them organized by the topics covered in this dissertation.

Multiagent framework for music composition and performance

Our current InMaMuSys prototype is quite rigid in the way it deals with user inputs.
It does not take advantage of fuzzy techniques to address emotions and musical terms.
So that, including fuzzy logic in the inference system and the interface is one of the
changes to be done. Despite the major modifications, this change will allow InMaMuSys
to better deal with the complexity of the domain, providing more flexible responses to
user inputs.

Secondly, we are interested in developing a greater number of agents in order to get a
bigger collection and cover a wider range of compositional styles. Our aim is to obtain as
much diversity as possible not only to compare different algorithms and compositional
mechanisms, but to implement and test new ideas. These ideas could be related with
new theories of musical styles or cognitive processes. Even more, as the set of composers
growths, we will be able to reproduce a wider range of human emotions.

Another interesting enhancement is that of developing a module to automatically ob-
tain composition rules. In the current prototype, this knowledge is given by humans,
and coded into the agents. The system would dramatically improve its capacities and
autonomy if it could analyze a music sheet, extract some rules, and finally compose
according to them. Doing so, the system would be quite complete, in the sense that it
would include both composition and analysis tasks.
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Mining music motives

Regarding this issue, we intend to employ interval strings to represent melodies rather
than the absolute pitches we have used in the experiments. As melodic structures are
mainly intervalic, this change will greatly enhance the performance of the algorithm.

We will also consider more abstract representations of melodies, based on contours, such
as the one proposed by Narmour (1990). Again, we would like to take advantage of a
particular characteristic of music to improve the search: repetitions are hardly exactly
equal. Employing an appropriate abstract representation will result in small differences
encoded as equal, and thus improving the performance of the searching process.

Finally, we plan to study the parallelization of our algorithm implementation in order
to improve its execution time, which is already asymptotically optimal.

Frequent Correlated Trends

Regarding our model for representing behaviors, the first line of further work consists in
applying the Frequent Correlated Trend model to different domains in order to test their
feasibility. Some of them has been described in this dissertation as illustrative examples,
but many others can be candidates.

Besides that, we plan to employ other fuzzy measures apart from probability theory
(specifically possibility theory). Not in vain, both probability and possibility theories
are suitable for modeling uncertainty, but each one excels in different types. As our
framework aims to be a general one, addressing uncertainty in all their varieties is hence
a requisite. Obviously, for each problem it has to be decided which theory is more
appropriate to represent the semantic of the observations.

A different issue would be the study of a distance measure appropriate for each domain.
We have initially defined a simple one that performs well, but many others can be
proposed to better account for the particular semantics of different applications.

Frequent Correlated Trends in music performance

Regarding the application of frequent correlated trends to the task of representing music
performances, we would like to analyze the validity of the representation when using
several qualitative values and not only the current two (greater and lesser).
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We foresee a stronger use of fuzzy values to represent measures and those values. This
formalism could also be employed to represent the underlying histograms. This improve-
ment will allow a better assessment in the similarity measure.

Combining information from different music features has been demonstrated to improve
results. We are currently working on increasing the number of descriptors. Since the
predictability of a given descriptor varies depending on the performers, we are also
interested in discovering relations among the descriptors that could allow us to reduce
the dimensionality of the representation.

We also acknowledge that the use of hierarchical classifiers and ensemble methods is a
possible way to improve the identification accuracy, as they will be able to selectively
choose the best alternative to distinguish between one class and the rest.

Computational music performance

Finally, we would like to reflect on the future goals that the computational music perfor-
mance field is to achieve. They were adequately summarized by the S2S2 Consortium in
its document (2007) from the 6th Framework Programme in the Future and Emergent
Technologies. Those goals are challenging enough to attract researching efforts, being
the field a very active one, with plenty of room for new research in the area.

Since the literal synthesis of notes from a score is bland and unappealing, there is an
opportunity for learning systems that can automatically produce compelling expressive
variations. The problem of synthesizing expressive performance is both exciting and
challenging. Musical performance is one of the many activities that trained people do
very well without knowing exactly how they do it. This is, precisely, one of the main
problems to be faced because there is no model that accurately tells us how to perform.

When referring to artistic domains, it is hardly possible to find a ‘correct’ model whose
predictions always correspond with what humans do and what they think is acceptable.
We cannot forget that evaluation in these domains is often subjective and heavily-
dependent on who is speaking.

Many aspects are involved within expressive performance and it is almost impossible to
use them all. Moreover, there are some parameters and dimensions which are commonly
considered as non-relevant but that, in fact, might be. Only a portion of the whole
problem is tackled by current techniques. One future challenge is to address the problem
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by using as much dimensions as possible, as it could be possible that some important
patterns are hidden and we haven’t still discovered them.

Moreover, to obtain very precise data about all those parameters is a challenging problem
that cannot still be done in a automatic way. Annotating all this information is an
extremely time-consuming task and requires a lot of effort from several humans. Early
systematic investigations in the field have dealt with this problem either by reducing the
length of the music (to just some seconds) or by controlling the size of the collections.

Recent approaches try to avoid this task by the use of some statistical learning techniques
and by focusing in a more abstract representation of the real notes and their values.
Statistical musicology has not historically received much attention, but it is increasing
its popularity as the amount of available data grows, even though collecting large amount
of quantitative data is still a hard task.

Despite some successes in computational performance modeling, current models are ex-
tremely limited and simplistic regarding the complex phenomenon of musical expression.
It remains an intellectual and scientific challenge to probe the limits of formal modeling
and rational characterization. Clearly, it is strictly impossible to arrive at complete
predictive models of such complex human phenomena. Nevertheless, work towards this
goal can advance our understanding and appreciation of the complexity of artistic be-
haviors. Understanding music performance will require a combination of approaches and
disciplines, such as musicology, AI, machine learning, psychology and cognitive science.

For cognitive neuroscience, discovering the mechanisms which govern the understanding
of music performance is a first-class problem. Different brain areas are involved in the
recognition of different performance features. Knowledge of these can be an important
aid to formal modeling and rational characterization of higher order processing, such as
the perceptual differentiation between human-like and mechanical performances. Since
music making and appreciation is found in all cultures, the results could be extended to
the formalization of more general cognitive principles.

Finally but not least, it is the problem of the individuality of each work. Even though
there is a huge amount of available data, every song is different from the rest. Hence, it
would not be adequate just to apply the way of playing Beethoven’s Ninth Symphony
to Brahms’ Symphonies. A deep study of the work is needed in order to understand
the author, the context and the music. One should always keep in mind that artistic
performance is far from being predictable.

36



Bibliography

Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining Association
Rules in Large Databases. In 20th International Conference on Very Large Data
Bases (VLDB’94), pages 487–499, San Francisco, CA, USA, 1994. Morgan Kaufmann
Publishers Inc. ISBN 1-55860-153-8. 18

Fernando Alonso, África López-Illescas, Loïc Martínez, César Montes, and Juan P. Va-
lente. Knowledge discovery using medical data mining. In Alfredo Colosimo, Paolo
Sirabella, and Alessandro Giuliani, editors, Medical Data Analysis, volume 2526 of
Lecture Notes in Computer Science, pages 1–12. Springer Berlin / Heidelberg, 2002.
21

Josep Lluis Arcos, Ramón López de Mántaras, and Xavier Serra. SaxEx: a case-based
reasoning system for generating expressive musical performances. Journal of New
Music Research, 27(3):194–210, 1998. doi: 10.1080/09298219808570746. 15

Shlomo Argamon, Kevin Burns, and Shlomo Dubnov, editors. The Structure of Style.
Springer-Verlag, 1st edition, 2010. doi: 10.1007/978-3-642-12337-5. 5

Jean-Julien Aucouturier and Mark Sandler. Finding repeating patterns in acoustic mu-
sical signals: Applications for audio thumbnailing. In Audio Engineering 22nd Inter-
national Conference on Virtual, Synthetic and Entertainment Audio (AES22), pages
412–421, 2002. 18

Tengfei Bao, Huanhuan Cao, Enhong Chen, Jilei Tian, and Hui Xiong. An unsupervised
approach to modeling personalized contexts of mobile users. Knowledge and Informa-
tion Systems, 31(2):345–370, 2012. ISSN 0219-1377. doi: 10.1007/s10115-011-0417-1.
21

Roberto Bresin and Anders Friberg. Emotional coloring of computer-controlled music
performances. Computer Music Journal, 24(4):44–63, December 2000. doi: 10.1162/
014892600559515. 12

37



Bibliography

Peter J. Brockwell and Richard A. Davis. Time Series: Theory and Methods. Springer,
1991. 21

Emilio Cambouropoulos, Tim Crawford, and Costas S. Iliopoulos. Pattern processing in
melodic sequences: Challenges, caveats and prospects. Computers and the Humanities,
35(1):9–21, 2001. 18

Longbing Cao. In-depth behavior understanding and use: The behavior informatics
approach. Information Sciences, 180(17):3067–3085, 2010. ISSN 0020-0255. doi:
10.1016/j.ins.2010.03.025. 20

Miguel Delgado, Waldo Fajardo, and Miguel Molina-Solana. INMAMUSYS: Intelligent
multiagent music system. Expert Systems with Applications, 36(3):4574–4580, 2009a.
doi: 10.1016/j.eswa.2008.05.028.

Miguel Delgado, María Ros, and M. Amparo Vila. Correct behavior identification system
in a tagged world. Expert Systems with Applications, 36:9899–9906, 2009b. doi: 10.
1016/j.eswa.2009.01.077. vii, 5, 21

Miguel Delgado, Waldo Fajardo, and Miguel Molina-Solana. A state of the art on
computational music performance. Expert Systems with Applications, 38(1):155–160,
2011. doi: 10.1016/j.eswa.2010.06.033.

Matthew J. Dovey. Analysis of Rachmaninoff’s piano performances using inductive logic
programming. In Proceedings of the Eighth European Conference on Machine Learning
(ECML95), pages 279–282, London, UK, 1995. Springer-Verlag. ISBN 3-540-59286-5.
13

Anders Friberg. Generative rules for music performance: A formal description of a rule
system. Computer Music Journal, 15(2):56–71, 1991. 15, 16

Anders Friberg, Vittorio Colombo, Lars Frydén, and Johan Sundberg. Generating musi-
cal performances with director musices. Computer Music Journal, 24(3):23–29, 2000.
15

Alf Gabrielsson. Music and the Mind Machine, chapter Expressive intention and per-
formance, pages 35–47. Springer-Verlag, Berlin, Germany, 1995. 12

Mitsuyo Hashida, Keiji Hirata, and Haruhiro Katayose. Rencon Workshop 2011 (SMC-
Rencon): Performance Rendering Contest for Computer Systems. In Eighth Sound
and Music Computing Conference (SMC 2011), Padova, Italy, July 2011. 15

Ju-Lee Hong. Investigating expressive timing and dynamics in recorded cello. Psychology
of Music, 31(3):340–352, 2003. 13

38



Bibliography

Osamu Ishikawa, Yushi Aono, Haruhiro Katayose, and Seiji Inokuchi. Extraction of
musical performance rules using a modified algorithm of multiple regression analysis.
In Proceedings of the 2000 International Computer Music Conference, pages 348–351,
San Francisco, USA, 2000. 15

Aida Jiménez, Fernando Berzal, and Juan Carlos Cubero. POTMiner: Mining Ordered,
Unordered, and Partially-Ordered Trees. Knowledge and Information Systems, 23(2):
199–224, 2010. doi: 10.1007/s10115-009-0213-3. 18

Aida Jiménez, Miguel Molina-Solana, Fernando Berzal, and Waldo Fajardo. Mining
transposed motifs in music. Journal of Intelligent Information Systems, 36(1):99–115,
2011. doi: 10.1007/s10844-010-0122-7.

Patrik N. Juslin, Anders Friberg, and Roberto Bresin. Toward a Computational Model
of Expression in Performance: the GERM Model. Musicae Scientiae, special issue:
63–122, 2002. 13

Elmar Kriegler and Hermann Held. Utilizing belief functions for the estimation of future
climate change. International Journal of Approximate Reasoning, 39:185–209, 2005.
doi: 10.1016/j.ijar.2004.10.005. 21

Fred Lerdahl and Ray Jackendoff. A generative theory of tonal music. Cambridge, Mass:
MIT Press, 1983. 16

Mark Levy and Mark Sandler. Structural segmentation of musical audio by constrained
clustering. IEEE Transactions on Audio, Speech, and Language Processing, 16(2):
318–326, 2008. doi: 10.1109/TASL.2007.910781. 18

Ramón López de Mántaras and Josep Lluis Arcos. AI and Music: from Composition to
Expressive Performance. AI Magazine, 23(3):43–57, 2002. 13, 16

M. Marques, V. Oliveira, and A.C. Rosa. Music composition using genetic evolutionary.
In 2000 Congress on Evolutionary Computation, pages 714–719, 2000. 16

David Meredith, Kjell Lemström, and Geraint A. Wiggins. Algorithms for discovering
repeated patterns in multidimensional representations of polyphonic music. Journal
of New Music Research, 31(4):321–345, 2002. 18

Marvin Minsky. Machine models of music, chapter Music, Mind, and Meaning, pages
327–354. MIT Press, Cambridge, MA, USA, 1992. ISBN 0-262-19319-1. 15

Eduardo R. Miranda. At the crossroads of evolutionary computation and music: Self-
programming synthesizers, swarm orchestras and the origins of melody. Evolutionary
Computation, 12(2):137–158, 2004. 16

39



Bibliography

Miguel Molina-Solana, Josep Lluis Arcos, and Emilia Gómez. Identifying violin per-
formers by their expressive trends. Intelligent Data Analysis, 14(5):555–571, 2010.
vii, 5, 21

Amihai Motro. Sources of Uncertainty, Imprecision, and Inconsistency in Information
Systems. In Amihai Motro and Philippe Smets, editors, Uncertainty Management in
Information Systems: From Needs to Solutions, pages 9–34. Kluwer Academic Pub-
lishers, 1996. 22, 23

Eugene Narmour. The Analysis and Cognition of Basic Melodic Structures: The Impli-
cation Realization Model. Chicago, IL: Univ. Chicago Press, 1990. 32, 34

Jouni Paulus and Anssi Klapuri. Music structure analysis using a probabilistic fitness
measure and a greedy search algorithm. IEEE Trans. on Audio, Speech, and Language
Processing, 17(6):1159–1170, 2009. 18

Marcus T. Pearce, David Meredith, and Geraint A. Wiggins. Motivations and method-
ologies for automation of the compositions process. Musicae Scientiae, 6(2):119–147,
2002. 17

Anna Pienimäki. Indexing music databases using automatic extraction of frequent
phrases. In 3rd International Conference on Music Information Retrieval (ISMIR
2002), pages 25–30, 2002. 18

Giovanni De Poli. Methodologies for expressiveness modelling of and for music perfor-
mance. Journal of New Music Research, 33(3):189–202, 2004. 13

Melvin G. Rigg. The mood effects of music: a comparison of data from former investi-
gators. Journal of Psychology, 58:427–438, 1964. 12

Pierre-Yves Rolland. Discovering patterns in musical sequences. Journal of New Music
Research, 28(4):334–350, 1999. 18

Craig Sapp. Comparative analysis of multiple musical performances. In 8th International
Conference on Music Information Retrieval (ISMIR 2007), pages 497–500, Vienna,
Austria, 2007. 14

Craig Saunders, David Hardoon, John Shawe-Taylor, and Gerhard Widmer. Using string
kernels to identify famous performers from their playing style. Intelligent Data Anal-
ysis, 12(4):425–440, 2008. 14

Efstathios Stamatatos and Gerhard Widmer. Automatic identification of music per-
formers with learning ensembles. Artificial Intelligence, 165(1):37–56, 2005. 13

40



Bibliography

Johan Sundberg. Emotive transforms. Phonetica, 57:95–112, 2000. 12

The S2S2 Consortium. A Roadmap for Sound and Music Computing. The S2S2 Con-
sortium, 2007. ISBN 9789081189613. URL http://smcnetwork.org/roadmap. 35

Neil P. Todd. The dynamics of dynamics: A model of musical expression. Journal of
the Acoustical Society of America, 91(6):3540–3550, 1992. 13, 15

Warren Weaver. Science and Complexity. American Scientist, 36:536–544, 1948. 23

Gerhard Widmer. Discovering simple rules in complex data: A meta-learning algorithm
and some surprising musical discoveries. Artificial Intelligence, 146(2):129–148, 2003.
15

Gerhard Widmer and Werner Goebl. Computational models of expressive music perfor-
mance: The state of the art. Journal of New Music Research, 33(3):203–216, 2004.
12, 13

Gerhard Widmer, Simon Dixon, Werner Goebl, Elias Pampalk, and Asmir Tobudic. In
search of the Horowitz factor. AI Magazine, 24(3):111–130, 2003. 13

Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965. 24

Mohammed J. Zaki. Efficiently mining frequent trees in a forest: Algorithms and ap-
plications. IEEE Trans. on Knowledge and Data Engineering, 17(8):1021–1035, 2005.
doi: 10.1109/TKDE.2005.125. 18

Patrick Zanon and Giovanni De Poli. Estimation of parameters in rule systems for
expressive rendering in musical performance. Computer Music Journal, 27(1):29–46,
2003. 15

Qijun Zhang and Eduardo R. Miranda. Towards and evolution model of expressive
music performance. In Sixth International Conference on Intelligent Systems Design
and Applications (ISDA’06), pages 1189–1194, 2006. 16

Tong Zhang and Ramin Samadani. Automatic generation of music thumbnails. In Pro-
ceedings of the 2007 IEEE International Conference on Multimedia and Expo, pages
228–231, 2007. doi: 10.1109/ICME.2007.4284628. 20

Yan-Qing Zhang and Xuhui Wan. Statistical fuzzy interval neural networks for currency
exchange rate time series prediction. Applied Soft Computing, 7(4):1149–1156, 2007.
doi: 10.1016/j.asoc.2006.01.002. 21

41

http://smcnetwork.org/roadmap




Part II.

Publications





A state of the art on computational
music performance

Delgado, M., Fajardo, W. & Molina-Solana, M. (2011), "A state of the art on computa-
tional music performance", Expert Systems with Applications. Vol. 38(1), pp. 155-160,
DOI: 10.1016/j.eswa.2010.06.033

• Status: Published

• Impact Factor (JCR 2010): 1.926

• Subject category:

– COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE (34/108 Q2)

– ENGINEERING, ELECTRICAL & ELECTRONIC (50/247 Q1)

– OPERATIONS RESEARCH & MANAGEMENT SCIENCE (15/75 Q1)

45



Author's personal copy

A state of the art on computational music performance

Miguel Delgado, Waldo Fajardo, Miguel Molina-Solana *

Department of Computer Science and Artificial Intelligence, Universidad de Granada, Daniel Saucedo Aranda s/n, 18071 Granada, Spain

a r t i c l e i n f o

Keywords:
Computational music
Expressive performance
Machine learning

a b s t r a c t

Musical expressivity can be defined as the deviation from a musical standard when a score is per-
formed by a musician. This deviation is made in terms of intrinsic note attributes like pitch, timbre,
timing and dynamics. The advances in computational power capabilities and digital sound synthesis
have allowed real-time control of synthesized sounds. Expressive control becomes then an area of
great interest in the sound and music computing field. Musical expressivity can be approached from
different perspectives. One approach is the musicological analysis of music and the study of the dif-
ferent stylistic schools. This approach provides a valuable understanding about musical expressivity.
Another perspective is the computational modelling of music performance by means of automatic
analysis of recordings. It is known that music performance is a complex activity that involves com-
plementary aspects from other disciplines such as psychology and acoustics. It requires creativity
and eventually, some manual abilities, being a hard task even for humans. Therefore, using machines
appears as a very interesting and fascinating issue. In this paper, we present an overall view of the
works many researchers have done so far in the field of expressive music performance, with special
attention to the computational approach.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Imagine the scene. You switch on your hi-fi system, select Clair
de Lune by Claude Debussy and Sergei Rachmaninoff as performer.
After that, you hit the ‘Play’ button, sit on your favourite armchair
and enjoy the music. The situation sounds perfectly normal . . . but
for a small detail: Rachmaninoff never recorded Debussy’s Clair de
Lune!

To listen to a performance we need a performer. So far, this role
has always been assumed by humans but, why can’t the hi-fi sys-
tem (more generally, a computer) be the performer and play the
music as it was Rachmaninoff himself? All it needs is enough
knowledge of how to play.

As Widmer, Dixon, Goebl, Pampalk, and Tobudic (2003) stated,
when skilled musicians play a piece of music, they do not do it
mechanically, with constant tempo or loudness, exactly as written
in the printed music score. Rather, they speed up at some places,
slow down at others and stress certain notes. The most important
parameters available to a performer are timing (tempo variations)
and dynamics (loudness variations). The way these parameters
‘should be’ varied during the performance is not precisely specified

in the printed score. So that, it is performer’s duty to use them
properly.

It is a fact that student musicians spend more time practicing
than almost any other activity. Weekly music lessons, endless
scales, nightly rehearsals and recitals for friends and family are
commonplace in their lives. Hours of practicing will help them
learn to interpret a piece of music as the composer envisioned it,
as well as to develop their own signature sound – one that is un-
ique to each of them. In other words, what makes a piece of music
come alive is also what distinguishes great artists from each other.

Other questions arise at this point: how should those expressive
resources be employed? What is that which makes Rachmaninoff
an outstanding pianist? And those simple questions, which many
people have asked for many years, do not have still a clear answer
from musicologists. Even when those questions will eventually
find an acceptable answer, another will be posed: can a computer
take advantage of that knowledge, being able to substitute a fa-
mous performer? As we will see in this paper, many attempts have
been made and several computational models have been proposed
during the last century to do so.

This work is organized as follows: first of all, Section 2 describes
what is musical performance and its parameters, and how they can
be used to distinguish between performers; Section 3 presents
some works where computers were used for extracting informa-
tion about those parameters from the music itself, for representing
that knowledge in a computer, and for applying it to generate new
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performances; Section 4 introduces some difficulties to be faced in
the future when using computers in this domain; and Section 5
summarizes the work.

2. Music performance

Most people would judge the literal execution of a musical
score to be significantly less interesting than a performance of that
piece by even a moderately skilled musician. Why is that so? Be-
cause what we hear is not a literal rendition of the score. Of course,
the principal vehicle for the communication of musical composi-
tions is the music score in which the composer codifies his inten-
tions. However, the information written in the score does not
represent an exhaustive description of the composer’s intentions.
It carries information such as the rhythmical and melodic structure
of a certain piece, but there is not yet a notation able to describe
precisely the timing and timbre characteristics of the sound.

When speaking, we use several voice resources such as chang-
ing velocity, tone or loudness. All this effects are not explicitly in
the text we are reading. In fact, when several people read a text,
resulting sounds are not the same, even though words in the sheet
remain unchanged. So does in music. In the same way that in a
written poem there is no explicit notation for how to pronounce,
in musical scores there is also such a lack of information. This com-
parison is actually quite appropriate because former research on
music performance has revealed interesting analogies in the com-
munication of emotions in singing and speech (Bresin & Friberg,
2000; Sundberg, 2000).

Performing is a crucial activity in music. In many kinds of music
the performer acts as a kind of mediator: a mediator between com-
poser and listener, between written score and musical sound. It is
the performer who renders each note in the score in terms of inten-
sity, duration and timbre by movements of fingers, arms or mouth.
This results in different performances of the same piece reflecting
each performer’s culture, mood, skill and intention. These vari-
ances also contribute to determining the performing styles of dif-
ferent musicians. So that, the music we hear has two main
sources: the score and the performance, and they both need from
the other.

Briefly, Widmer and Goebl (2004) define expressive music perfor-
mance as ‘‘the deliberate shaping of the music by the performer, in
the moment of playing, by means of continuous variations of
parameters such as timing, loudness or articulation”. Changes in
tempo (timing) are non-linear warping of the regular grid of beats
that defines time in a score. It is also possible to change only the
duration of certain notes. Changes in loudness (or dynamics) are
modifications of the intensity of notes with respect to the others
and to the general energy of the fragment in consideration. Articu-
lation consists in varying the gap between contiguous notes by, for
instance, making the first one shorter or overlapping it with the
next.

Music performance is a deep human activity which requires
emotional, cognitive and artistic aptitudes. At the same time, it is
also a complex task involving physical, acoustic, physiological, psy-
chological, social and artistic aspects. Several factors determine the
rendition of a musical piece. One of the most obvious is the phys-
ical condition of the performer. Not in vain, performer’s mood,
health and fatigue play a crucial role in the process of playing an
instrument. Some studies (see those from Gabrielsson (1995) and
from Rigg (1964)) have shown major variations in renditions by
the same performer when he is in different moods.

Manual abilities are also an important point that is especially
visible when comparing a beginner with an expert. With practice,
musicians can improve their velocity and precision, reducing the
amount of unintended deviations with respect to the score (com-

monly known as errors). Other factors that affect the rendition
are the location where it takes place and the instrument being
used. The acoustics of the place are important because they estab-
lish the sounds that can be made. So does the instrument, which
has an evident influence on the character of the work.

Because the conventional score is quite inadequate to describe
the complexity of a musical performance, and since the literal syn-
thesis of notes from a score is flat and unappealing, there is an
opportunity for learning systems that can automatically produce
compelling expressive variations. Hence, methods for automati-
cally ‘‘bringing life” to musical scores become useful and interest-
ing. Research in this field ranges from studies aimed at
understanding expressive performance to attempts at modelling
aspects of performance in a formal, quantitative and predictive
way, so that a computer might be able to perform them.

2.1. Functions of expressivity

Since the very first moment that some deviations exist in the
way of playing a score, we can ask for the motives of their exis-
tence. Two main aims can be identified in a first sight.

In first place, expressivity is used as an instrument for commu-
nicating emotions. Meyer (1956) stated that meaning (be it emo-
tional or aesthetic) arises in music when expectations raised by
the music are not realized. It was Rigg’s paper (Rigg, 1964) one
of the pioneer works which tackled the relation between emotions
and musical structure. Some interesting and typical regularities
found throughout the years were described there: solemn music
tend to be slow, low pitched, and without irregularities; happy mu-
sic is fast, major mode and high pitched.

Gabrielsson (1995) and Lindström (2006) studied the relation
between motional intentions and musical microstructure (for in-
stance, tempo deviations, changes in intensity or articulations).
Canazza, Poli, Drioli, Rodà, and Vidolin (2000) studied how physical
parameters in musical recordings (tone, articulations or global
tempo) were affected by the modification of performer’s expressive
intentions. In their experiments, the performer was asked to ex-
press, by her rendition of the musical score, sensorial concepts
such as ‘bright’, ‘light’ or ‘dark’. The sonological analysis of the
recordings made it possible to relate certain values to given con-
cepts (e.g., a ‘light rendition’ was found to be in fast tempo, with
shortened note durations and soft attacks).

The significance of various performance parameters in the iden-
tification of emotional qualities of a performance has been tested
in synthesis experiments. Automatic performances were obtained
by setting certain expressive cues to greater or lesser values and,
in formal listening tests, listeners were able to recognize and iden-
tify the intended emotions. In the computer program developed by
Canazza et al. expressiveness was applied both to a ‘neutral’ per-
formance played by a musician with no intended emotion, and to
a computer-generated ‘deadpan’ performance. Juslin (1997), on
the other hand, manually adjusted the values of some previously
identified cues by means of ‘‘appropriate settings on a Roland JX1
synthesizer that was MIDI-controlled” by a Synclavier III.

For more information regarding research in musical perfor-
mance, including the role expressivity plays in the communication
of emotions, Gabrielsson’s work (Gabrielsson, 2003) might be
consulted.

In second place, expressivity clarifies the musical structure,
understanding within this term the metrical structure, phrasing
and harmonic structure. In the work by Sloboda (1983), one could
observe that performers tend to play louder and more legato the
notes at the beginning of measures. It was also reported that the
more expert the pianist was, the more frequent those resources
were employed and the easier to transcribe the music for the
audience.
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Musical structure has its influence on the expressivity of perfor-
mances too. It has been discovered that the beginning and the end
of phrases tend be slower than the rest. For instance, Todd (1989)
proposed a model to predict the final rubato in musical works.

Harmonic progressions in a work also have an influence on the
expressivity of its renditions. In particular, Palmer (1996) demon-
strated that melodic expectation —the degree in which an expected
note is finally realized— was related to the energy with which
notes are played.

3. Computational music performance achievements

Advances in digital sound synthesis and in computational
power have enabled real-time control of synthesized sounds.
Expressive control of these becomes then a relevant area of re-
search in the Sound and Music Computing1 field. Empirical research
on expressive music performance has its origin in the 1930s, with
the pioneering work by Seashore (1938). After a 40-years gap, the to-
pic experienced a real renaissance in the 1970s, and music perfor-
mance research is now highly productive. A comprehensive
overview of this research can be found in Gabrielsson (2003).

As said before, research in musical performance has a multidis-
ciplinar character, with studies that veer from understanding
expressive behaviour to modelling aspects of renditions in a formal
quantitative and predictive way. Historically, research in expres-
sive music performance has focused on finding general principles
underlying the types of expressive ‘deviations’ from the musical
score (e.g., in terms of timing, dynamics and phrasing) that are a
sign of expressive interpretation. Works by Poli (2004) and
Widmer and Goebl (2004) contains recent overviews on expressive
performance modelling.

Three different research strategies can be distinguished: (1)
acoustic and statistical analysis of performances by real musicians
–the so-called analysis-by-measurement method; (2) making use
of interviews with expert musicians to help translate their exper-
tise into performance rules –the so-called analysis-by-synthesis
method; and (3) inductive machine learning techniques applied
to large databases of performances.

Studies by several research teams around the world have shown
that there are significant regularities that can be uncovered in
these ways, and computational models of expressive performance
(of mostly classical music) have proved to be capable of producing
truly musical results. These achievements are currently inspiring
new research into more comprehensive computational models of
music performance and also ambitious application scenarios.

One of the issues in this area is the representation of the way
certain performers play by just analyzing some of their renditions
(i.e., study the individual style of famous musicians). That informa-
tion would enable us to identify a performer by only listening to
their rendition. These studies are difficult because the same profes-
sional musician can perform the same score in very different ways
(compare several commercial recordings by Sergei Rachmaninoff
or Vladimir Horowitz). Recently, new methods have been devel-
oped for the recognition of music performers and their style.
Among them, the most relevant are the fitting of performance
parameters in rule-based performance models, and the application
of machine learning methods for the identification of performing
style of musicians. Recent results of specialized experiments show
surprising artist recognition rates (for instance, see those from
Saunders, Hardoon, Shawe-Taylor, & Widmer, 2008; or Molina-
Solana, Arcos, & Gomez, 2008).

So far, music performance research has been mainly concerned
with describing detailed performance variations in relation to mu-

sical structure. However, there has recently been a shift towards
high-level musical descriptors for characterizing and controlling
music performance, especially with respect to emotional charac-
teristics. For example, it has been shown that it is possible to gen-
erate different emotional expressions of the same score by
manipulating rule parameters in systems for automatic music per-
formance (Bresin & Friberg, 2000).

Interactive control of musical expressivity is traditionally a con-
ductor’s task. Several attempts have been made to control the tem-
po and dynamics of a computer-played score with some kind of
gesture input device. For example, Friberg (2006) describes a
method for interactively controlling, in real-time, a system of per-
formance rules which contains models for phrasing, micro-level
timing, articulation and intonation. With such systems, high-level
expressive control can be achieved. Dynamically controlled music
in computer games is another important future application.

Recently, some efforts have been made in the direction of visu-
alizing expressive aspects of music performance. Langner and
Goebl (2003) have developed a method for visualizing expressive
performances in a tempo-loudness space: expressive deviations
leave a trace on the computer screen in the same way as a worm
does when it moves, producing a sort of ‘fingerprint’ of the perfor-
mance. This method has been recently extended by Grachten,
Goebl, Flossmann, and Widmer (2009). This and other recent
methods of visualization can be used for the development of new
multi-modal interfaces for expressive communication, in which
expressivity embedded in audio is converted into visual represen-
tation, facilitating new applications in music research, music edu-
cation and Human–Computer Interaction, as well as in artistic
contexts. A visual display of expressive audio may also be desirable
in environments where audio display is difficult or must be
avoided, or in applications for hearing-impaired people.

For many years, research in Human–Computer Interaction in
general and in sound and music computing in particular was ded-
icated to the investigation of mainly ‘rational’ abstract aspects. In
the last ten years, however, a great number of studies have
emerged which focus on emotional processes and social interac-
tion in situated or ecological environments. The broad concept of
‘expressive gesture’, including music, human movement and visual
(e.g., computer animated) gesture, is the object of much contempo-
rary research.

3.1. Data acquisition

In this interdisciplinary research field, the obtention of informa-
tion on musical expressivity can be approached from different per-
spectives. One approach is the musicological analysis of music and
the study of the different stylistic schools. This approach provides a
valuable understanding about musical expressivity.

Another perspective is the computational modelling of music
performance by means of automatic analysis of recordings. This
sound analysis perspective can be raised by the (studio specific)
recording of several performers where several expressive resources
are emphasized. That information can be gathered by using aug-
mented instruments (i.e., instruments provided with sensors of
pressure or movement). Proceeding this way, the data on obtains
is very precise, but it is necessary a complex setup and those spe-
cial instrument are anything but cheap. Furthermore, getting the
performers is a difficult task and many times even impossible
(e.g. dead performers).

An alternative approach is to directly use commercial record-
ings for the analysis of expressivity, extracting all the relevant data
from the audio signals themselves. This approach has several
advantages: there are tons of recordings available (and often some
performers have several ones); and the performances are ‘real’ and
gather the decisions taken by the performers without any external1 http://smcnetwork.org.
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influence. Nevertheless, working with commercial recordings has
some important drawbacks too: some information (consider, for
instance, the bow speed in a violin) cannot be easily gained from
the audio; these recordings do not come from a controlled scenario
and the sound analysis may become more difficult.

Computers are important in both approaches, because they al-
low us to store and to process all the gathered data. This informa-
tion is huge in size and it is impossible to deal with it in a manual
way.

3.2. Computational models for artistic music performance

The use of computational music performance models in artistic
contexts (e.g., interactive performances) raises a number of issues
that have so far only partially been faced. The concept of a creative
activity being predictable and the notion of a direct ‘quasi-causal’
relation between the musical score and a performance are both
problematic. The unpredictable intentionality of the artist and
the expectations and reactions of listeners are neglected in current
music performance models. Surprise and unpredictability are cru-
cial aspects in an active experience such as a live performance.
Models considering such aspects should take account of variables
such as performance context, artistic intentions, personal experi-
ences and listeners’ expectations.

In the past, this problem has been tackled by using machine
learning techniques. For instance, Juslin, Friberg, and Bresin
(2002) described the main sources of expressivity in musical rendi-
tions and expressed the necessity of integrating some of this as-
pects in a common model they started to sketch.

Ramírez, Maestre, Pertusa, Gómez, and Serra (2007) proposed a
model for identifying saxophonists from the way of playing by
using very precise information about deviations in parameters
such as pitch, duration and loudness. They measure those devia-
tions both in inter and intra note level.

De Mántaras and Arcos (2002) studied the expressivity of sev-
eral AI-based systems for music composition. They compared this
expressivity with the one that exists in human recordings. More-
over, they introduced SAXEX, a system capable of generating
expressive performances of jazz ballads by using examples from
human performers and a case-based reasoner.

Hong, on the other hand, studied how musical expressivity is af-
fected by tempo and dynamics variations (Hong, 2003). He em-
ployed cello recordings for the experiments. He extended
previous work by Todd (1992), by applying new musical ideas from
the 20th century to Todd’s model.

Dovey (1995) proposed an attempt to use inductive logic in or-
der to determine the rules that pianist Sergei Rachmaninoff may
have used in their performances with an augmented piano. The
aim was to extract general rules (in the form of universal predi-
cates) about each note’s duration, tempo and pressure. All that
information was obtained from the way of playing the piano.

The group led by Gerhard Widmer has worked in the automatic
identification of pianists. In Widmer et al. (2003), they studied how
to measure several aspects of performances by applying machine
learning techniques; whereas in another work (Stamatatos & Wid-
mer, 2005), they proposed a set of simple features that could serve
to represent performer’s expressivity from a rendered musical
work.

Moreover, in a recent paper, Saunders et al. (2008) represent
musical performances as string of symbols from an alphabet. Those
symbols contain information about changes in timing and energy
within the song. After that, they use Support Vector Machines to
identify the performer in new recordings.

Sapp’s work is also an interesting proposal, as it represents mu-
sical renditions by means of sketches which are based on the cor-
relation between time and energy (Sapp, 2007).

Most of the modelling attempts in performance research, try to
capture common performance principles, that is, they focus on
commonalities between performances and performers. However,
the ultimate goal of this kind of research and of many of the works
is not the automatic style replication or the creation of artificial
performers, but to use computers to teach us more about the elu-
sive artistic activity of expressive music performance. While it is
satisfying to see that the computer is indeed capable of extracting
information from performance measurements that seems to cap-
ture aspects of individual style, this can only be a first step. In order
to get real insight, we will need learning algorithms that, unlike
nearest-neighbour methods, produce interpretable models.

Although it may sound odd, there are concrete attempts at elab-
orating computational models of expressive performance to a level
of complexity where they are able to compete with human per-
formers. The Rendering Contest (Rencon)2 (Hiraga, Bresin, Hirata,
& Katayose, 2004) is an annual event first launched in 2002. It tries
to bring together scientist from all over the world for a competition
of artificially created performances. It uses an human judge to eval-
uate music performances automatically generated by computers.
Participants are asked to generate a rendition of a musical work by
using a predictive level. In a wider sense, we can somehow see this
paradigm as an expressive performance Turing test.3 In other words,
the best systems are those than manage to generate performances
which sounds indistinguishable from human ones.

As can be seen, music performance is an interesting research to-
pic which enables the study of human’s emotions, intelligence and
creativity. These are precisely the issues Marvin Minsky referred to
when he wrote about music as a human activity (Minsky, 1992).

3.3. Automatic music performance

The principal characteristic of an automatic performance sys-
tem is that it converts a music score into an expressive musical
performance typically including time, sound and timbre deviations
from a deadpan realization of the score. Mostly, two strategies
have been used for the design of performance systems, the analy-
sis-by-synthesis method and the analysis-by-measurement
method.

The first method implies that the intuitive, nonverbal knowl-
edge and the experience of an expert musician are translated into
performance rules. These rules explicitly describe musically rele-
vant factors. A limitation of this method can be that the rules
mainly reflect the musical ideas of specific expert musicians. On
the other hand, professional musicians’ expertise should possess
a certain generality, and in some cases rules produced with the
analysis-by-synthesis method have been found to have a general
character.

Rules based on an analysis-by-measurement method are de-
rived from measurements of real performances usually recorded
on audio CDs or played with MIDI-enabled instruments connected
to a computer. Often the data are processed statistically, such that
the rules reflect typical rather than individual deviations from a
deadpan performance, even though individual deviations may be
musically highly relevant.

Many authors have proposed models of automatic music per-
formance. Todd (1992) presented a model of musical expression
based on an analysis-by-measurement method. Rule-based

2 http://www.renconmusic.org.
3 The Turing test is a proposal for a test of a machine’s ability to demonstrate

intelligence. Described by Alan Turing in the 1950 paper ‘‘Computing Machinery and
Intelligence”, it proceeds as follows: a human judge engages in a natural language
conversation with one human and one machine, each of which try to appear human.
All participants are placed in isolated locations. If the judge cannot reliably tell who
the machine and the human are, the machine is said to have passed the test.
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systems have been proposed by Zanon and Poli (2003), Friberg
(1991) and Friberg, Colombo, Frydén, and Sundberg (2000).

Performance systems based on artificial intelligence techniques
have been developed too. Widmer (2003) proposed a machine
learning based system extracting rules from performances.
Ishikawa, Aono, Katayose, and Inokuchi (2000) developed a system
for the performance of classical tonal music; a number of perfor-
mance rules were extracted from recorded performances by using
a multiple regression analysis algorithm. Arcos, de Mántaras, and
Serra (1998) developed a case-based reasoning system for the syn-
thesis of expressive musical performances of sampled instruments.
Delgado, Fajardo, and Molina-Solana (2009) developed a multi-
agent approach to music composition and generation.

4. Future challenges

Since the literal synthesis of notes from a score is bland and
unappealing, there is an opportunity for learning systems that
can automatically produce compelling expressive variations. The
problem of synthesizing expressive performance is as exciting as
challenging. Music performance is one of the many activities that
trained people do very well without knowing exactly how they
do it. This is, precisely, one of the main problems to be faced be-
cause there is no model that accurately tells us how to perform.

When referring to artistic domains, it is hardly possible to find a
‘correct’ model whose predictions always correspond with what
humans do and what they think is acceptable. We cannot forget
that evaluation in these domains is often subjective and heavily-
dependent on who is speaking.

Many aspects are involved within expressive performance and
it is almost impossible to use them all. Moreover, there are some
parameters and dimensions which are commonly considered as
non-relevant but that, in fact, might be. Only a portion of the whole
problem is tackled by current techniques. One future challenge is
to address the problem by using as much dimensions as possible.
It could also be possible that some important patterns are hidden
and we haven’t still discovered them.

Moreover, to obtain very precise data about all those parame-
ters is a challenging problem that cannot still be done in a auto-
matic way. Annotating all this information is a very time-
consuming task and requires a lot of effort from several humans.
Early systematic investigations in the field have dealt with this
problem either by reducing the length of the music (to just some
seconds) or by controlling the size of the collections.

Recent approaches try to avoid this task by the use of some sta-
tistical learning techniques and by focusing in a more abstract rep-
resentation of the real notes and their values. Statistical
musicology has not historically received much attention, but it is
increasing its popularity as problems are getting more and more
complex, and the amount of available data grows, even though
collect large amount of quantitative data is a really hard task.
Temperley (2007) tackles musical perception from a probabilistic
perspective in his recent book Music and Probability. Apart of pro-
posing a Bayesian network model, the author carries out an inter-
esting survey of works that use statistical tools to solve problems
in the Sound and Music Computing area.

Despite some successes in computational performance model-
ling, current models are extremely limited and simplistic regarding
the complex phenomenon of musical expression. It remains an
intellectual and scientific challenge to probe the limits of formal
modelling and rational characterization. Clearly, it is strictly
impossible to arrive at complete predictive models of such com-
plex human phenomena. Nevertheless, work towards this goal
can advance our understanding and appreciation of the complexity
of artistic behaviours. Understanding music performance will re-

quire a combination of approaches and disciplines, such as musi-
cology, AI and machine learning, psychology and cognitive science.

For cognitive neuroscience, discovering the mechanisms which
govern the understanding of music performance is a first-class
problem. Different brain areas are involved in the recognition of
different performance features. Knowledge of these can be an
important aid to formal modelling and rational characterization
of higher order processing, such as the perceptual differentiation
between human-like and mechanical performances. Since music
making and appreciation is found in all cultures, the results could
be extended to the formalization of more general cognitive
principles.

Finally but not least, it is the problem of the individuality of
each work. Even though there is a huge amount of available data,
every song is different from the rest. Hence, it would not be ade-
quate just to apply the way of playing Beethoven’s Ninth Sym-
phony to Brahms’ Symphonies. A deep study of the work is
needed in order to understand the author, the context and the mu-
sic. One should always keep in mind that artistic performance is far
from being predictable.

5. Conclusions

At this point, the question in the beginning of the paper strikes
again: can the computer play like a human? This work has tried to
offer a comprehensive overview of the current research that is
going on in the field of computational expressive music perfor-
mance. As shown, there is still plenty of room for new research
in the area, and the field is currently very active. We have shown
the problems been faced as well as the most promising directions
for further work.

Studies in music performance have a particular value in our
time. The art of performing music is the result of several years of
training. At the same time, contemporary information technology
offers the possibility of automatic playing of music specially com-
posed for computers or stored in large databases. In such case, the
music is typically played exactly as nominally written in the score,
thus implicitly ignoring the value of a living performance and its
underlying art and diversity.

As seen, research on music performance ranges from studies
aimed at understanding expressive performance to attempts at
modelling aspects of performance in a formal, quantitative and
predictive way. This research can provide expressive tools that tra-
ditionally have been hiding in musicians’ skill and musical intui-
tion. When explicitly formulated, these tools will give the user
the possibility to play music files with different expressive
colouring.

Even though we are sceptical about a machine completely
replacing a human performer, we are sure that this technology will
be available in a not very far future for certain tasks. Scenes like the
one in the beginning of this paper will not be science-fiction any-
more and it is only a matter of time that they will become com-
monplace. We have also shown that there are currently some
attempts in this direction, like the Rencon contest.

We strongly believe that it is time for computer science to work
in the music domain. This research will make a great impact in
both the arts and sciences. Not in vain, music is more than an inter-
esting and, somehow, odd domain; it is part of our human essence.
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a b s t r a c t

Music generation is a complex task even for human beings. This paper describes a two level competitive/
collaborative multiagent approach for autonomous, non-deterministic, computer music composition. Our
aim is to build a high modular system that composes music on its own by using Experts Systems tech-
nology and rule-based systems principles. To do that, rules issued from musical knowledge are used
and emotional inputs from the users are introduced. In fact, users are not allowed to directly control
the composition process. Two main goals are sought after: investigating relationships between comput-
ers and emotions and how the latter can be represented into the former, and developing a framework for
music composition that can be useful for future experiments. The system has been successfully tested by
asking several people to match compositions with suggested emotions.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Surely music is one of the most difficult human disciplines. It
requires creativity, specific knowledge and eventually, some man-
ual abilities. It is commonly said that music is something humans
do, but something we do not understand. There are several mech-
anisms involved in music and unfortunately, many of them are still
unknown. Others are so complex that we cannot manage them
with actual computer tools.

On the other hand, Computer Science has suffered a huge evo-
lution in just a small period of time. However, despite all the great
applications and problems solved during the last decades, there are
many problems that computers are unable to deal with nowadays.

Among others, we can point fuzzy representation of abstract
concepts and, in general, dealing with feelings and emotions. In
fact, cognitive processes involving reasoning, knowledge and expe-
rience are hardly represented in a computer and are actual hot-
spots for Artificial Intelligence.

Music is a good example of applied AI related with those topics.
It has been demonstrated that music composition is a hard task
even for humans, so using machines appears as a very interesting
and fascinating area of research. AI techniques are going to be ap-
plied to the musical domain with the aim of understanding human
musical abilities. Because there are so many challenges to deal
with, a bottom-up approximation is required for solving all of them
in a modular way.

The paper is organized as follows. In Section 2, we examine
some previous works done in the field. Section 3 deals with the

architecture of the proposed system. In Section 4, we discuss de-
sign and implementation of system components. Section 5 pre-
sents an evaluation method and summarizes some users’
impressions about the output; and in the last section, future work
to be done is presented and discussed.

2. Background

Since first computers were developed many people have tried
to apply them to musical tasks.

There are two main classes in which computer music projects
could be classified: analysis and composition. The first one consists
on extracting information from the music itself (or the associated
data) in order to learn some rules, or go to a model that describes
the concrete examples. Because this is not the main field of this pa-
per, so we are not going to go further. However, Anagnostopoulou
and Westermann (1997), and Balaban (1996) could be reviewed for
more information.

Composition is about generating new music from the rules. In
fact, is doing the process in the other way: ‘from rules to music’ in-
stead of ‘from music to rules’. According to Pearce, Meredith, and
Wiggins (2002), the final objective of most of the compositional
prototypes is to demonstrate that standard musical techniques
could be handled by computer programming, and also to validate
generative music theories.

Initial approaches in algorithmic composition consist on ran-
domly selecting notes (mainly pitch and rhythm) with some con-
straints in order to generate compositions. This vision produced
limited results but was a great point of departure for later works.

Experts system has been widely used to compose music. Rules
concerning pitch, duration and volume have tried to apprise the
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knowledge involved in human composition. Friberg (1991) intro-
duced an early example of rule system. Many works on computer
music generation are based on the approach that the composition
rules are specified by the composer. So that, an expert is needed in
order to give all the knowledge. The problem here is that Music
Theory is not as formal as it should be to be easily represented in
a computer. However, Lerdahl and Jackendoff (1983) proposed an
interesting model to generate music using grammars.

Another approach to compose music with computers is to use
genetic algorithms. Genetics have been successfully applied to sev-
eral problems with difficulty in defining the solution process, or
where searching a huge solution space is needed. Composition falls
into this class of tasks, and some works in this direction can be
found in Marques, Oliveira, Vieira, and Rosa (2000) and Miranda
(2004).

Although many advances have been done during last decades in
Computer Music in general and in algorithmic composition in par-
ticular, it is true that the greatest moment was when Cope (1996)
presented EMI Project.

Many prototypes, throughout the years, have demonstrated
that computers algorithms cannot be compared with human
minds. Machines just produce very simple compositions in a quite
mechanical manner.

Computer programs that perform music with proper stylistic
considerations (like a human expert would) are very scarce and
only work for a few examples and in very specific domains may
be found. The main problem is that algorithms rarely deal with
feelings. And music without emotions is unworthy and not natural.

Minsky (1991) expressed his conviction that the unique way for
creating a machine whose creations transmit something to listen-
ers, should start by simulating emotions in computers. Meyer
(1956) addressed this topic (expression in computers) from a
musicological point of view, while Narmour (1990) proposed a
cognitive model for understanding melodies.

This topic is a current hotspot in computer music, and many
groups are working on it right now. Kiendl, Kiseliova, and Ram-
binintsoa (2006), López de Mántaras and Arcos (2002), Qijun Zhang
and Miranda (2006), Widmer (2001) and Wieczorkowska (2004)
can be mentioned as some relevant examples. For further informa-
tion about composing music with computers, Cope (2005) and Mir-
anda (2001) works should be reviewed.

In recent years, agent paradigm has become quite common. Al-
most everybody is using it for everything. The reason is that agents
are a very powerful way of implementing distributed AI. Indeed,
they can be combined with others tools, such as rule-based sys-
tems, case-based systems or searching algorithms. Actually, Agent
Theory just defines interactions between agents, not how they are
internally built. Because of that, we can have a multiagent system
where agents can be implemented with just an algorithm, using
CBR techniques, rules, genetics... Interesting work related with
multiagent systems can be found in Todd and Werner (1999),
Wulfhorst, Nakayama, and Vicari (2003).

3. Architecture

The architecture we propose in this paper is a two-layer multi-
agent system. The current application of multiagent systems in
real-time environments is an area of increasing interest. In general,
multiagent systems are an appropriate approach for solving inher-
ently distributed problems, whereby clearly different and indepen-
dent processes can be distinguished.

The first level is the competitive one, where agents (called com-
posers) compete among themselves to be the one chosen for com-
posing. This layer allows us to make an initial separation between
composition styles. We think it does not make any sense to have a

one-for-all agent, so a collection of simple agents specialized in
some task is proposed. Each composer announces its abilities,
and the system, according with user inputs, selects the composer
that better fits. See Fig. 1.

This agent chooses, between other parameters, rhythm, number
of voices, and instruments to be used in the compositions. How-
ever, the selected composer only acts as a director, being useless
on its own. Going further with the modularization principle, the
composer agent finally asks some others agents from the second
level for their collaboration in order to get a solution.1

This second level contains auxiliary agents that collaborate be-
tween them, so this layer should be understood as a collaborative
level. We call these agents voice generators, because mainly that is
their job. See Fig. 2.

In general, there are just three voices in normal compositions:
melody, accompaniment and harmony. However, the system pre-
sents no limitations in relationships between agents. A composer
agent can employ as many voices as desired, and in the other hand,
several composers could use the same voice generator.

When some intelligence is needed, agents are to be designed as
intelligent rule-base systems. Otherwise, they just implement a
simple algorithm. At the end, we have a big set of simple agents
that together, manage to find a whole solution for the problem.

4. Design

INMAMUSIC current prototype has several composers that gen-
erate music in different ways: from just a random composer to
more elaborate ones where aesthetic principles are mainly
searched.

An important design principle that is going to guide our system
is creating a tool that can be used by everyone. Most prototypes
present a very complex interface that only experts can understand,
and even for them, it is very annoying to fill a huge amount of data
in order to get a composition. In fact, when people speak about mu-
sic, they do not usually use technical terms such as granularity,
rhythm, or tonality; they use emotions, feelings and abstract con-
cepts. Actually, they are not speaking in low level, but in a high le-
vel, where technical parameters do not exist. Keeping that in mind,
our aim is the users ought to be faced with a friendly interface with
only a few questions; and not really difficult ones, just questions
about the wished music style. In other words, a high level music
interface is to be introduced.

Fig. 1. First level architecture.

1 Solution in this context means just a composition that the system offers as
output, without evaluating its quality.
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In fact, we are integrating into the system itself the knowledge
about how to use tonality, rhythm and instruments in order to get,
for instance, a sad music.

Until now, this task has been left in the hands of humans. We
propose to go further providing the machine with the suitable re-
sources it should use to compose in a certain way. The human does
not have to worry about dozens of parameters and how they
should be combined to get a certain result.

Java has been chosen as programming language due to its object
oriented style and ease of use. jMusic library is used for music rep-
resentation and processing. This library is described by Brown and
Sorensen (2000).

4.1. Knowledge representation

We have made use of several ways to represent information.
Firstly, because most agents are designed as rule-base systems,
we need to represent some information through IF-THEN rules.
They are implemented in XML in order to achieve a universal
way of representation. Fig. 3 shows the XML schema for rules in
the DTD language. Basically, a knowledge base is a set of several
rules. A rule has two parts: IF and THEN. IF part consists of some
attribute-value pairs; and THEN has a list of consequents, that
can be viewed as actions to be done. We have decided to employ
several rules subsets in order to respect the modularity, and to
make the inference engine’s job easier. Higher performance is also
reached with this approach.

To write the code, we use the representation that jMusic API of-
fers us. This is an object oriented one, very close to normal Western
classical music representation. There are manuals and several
examples in jMusic website (http://jmusic.ci.qut.edu.au). As agents
are developed for a concrete musical style or concrete task, there is
obviously a lot of heuristic information about how to compose
coded in each agent. Agents are implemented with certain param-

eters (that only an expert knows) in order to accomplish its goals.
This kind of knowledge should be minimized and moved to a un-
ique and standard repository, in order to obtain an independent
knowledge database. However, many times it is not easy to code
procedural information in a data format, so we should be aware
that much knowledge about the topic is into the composition pro-
cess itself.

System output is a sound file in MIDI format. This representa-
tion is preferred rather than others audio formats such as wav or
mp3, because it is easier for symbolic manipulation. Even more,
MIDI could be easily converted into the others two (if needed),
but the opposite is not true. Eventually, a music sheet could be
generated if needed.

4.2. Composition agents

Composer agents, as we have previously said, are located in the
first layer of the architecture. They compete with others in order to
be elected for composing. Basically, all composers are in charge of
defining the number of voices the composition will have, instru-
ments to be used, the measure and tonality. They also indicate
which second level agents should be used for generating voices.
In other words, composers act as directors. In current system there
are four implemented composers: Muzak, Dark, Scales and
Random.

Muzak Composer generates music in a Muzak2 way. This kind of
music, also called ambient or elevator music, could be described as a
soft and quiet one. Brian Eno wrote ‘‘Ambient Music must be able to
accommodate many levels of listening attention without enforcing
one in particular; it must be as ignorable as it is interesting”. From
this point of view, ambient music does not need to be very elaborate
or complex. Its only requisite is to be pleasant and agreeable to the
human ear.

Dark Composer aim is to compose music that provokes fear in
listeners. To do that a set of suitable resources is used. Dissonances
and diminished fifth interval (known as tritone) are heavily em-
ployed by this agent. This interval is called diabolus in musica
(the Devil in music) and has been historically avoided. Great dis-
tances between voices and deep bass chords are also useful re-
sources that are employed.

Scales Composer is quite simple. It just produces some ascen-
dant and descendent scales in random tonalities and modes. The
mixing of several voices doing the same in different moments,
velocities and tones produces interesting effects.

Finally, we introduce the Random Composer with its two vari-
ants: the ‘‘differential”, and the ‘‘independent”. In the first one,
intervals are randomly generated, so a note pitch depends on pre-
vious note. The other option is to randomly generate pitches, so a
note is independent of the rest. Durations are also generated with a
random generator. As the reader can imagine, a composer acting
this way produces chaotic compositions without any internal
coherence. So that, chaos is the tag that better defines the music
this composer generates.

4.3. Voice generators

Voice Generators are in charge of producing sounds with differ-
ent volumes, durations and intonations for every melodic line.

Many kinds of voice generators could be implemented, but the
main ones fall into any of the following classes: Melody, harmony,
accompaniment and drums. However, the system architecture is
flexible enough to allow any other desired voice. In fact, the

Fig. 2. Second level architecture.

<!ELEMENT knowledgebase (rule)+> 
<!ELEMENT rule (if, then)> 
<!ELEMENT if (atrib,value)+> 
<!ELEMENT atrib ANY> 
<!ELEMENT value ANY> 
<!ELEMENT then (consec+)> 
<!ELEMENT consec ANY> 

Fig. 3. XML schema in DTD language for representing rules in the system.

2 MUZAK is the name of a company specialized in this kind of music. People often
refer to ambient music in this way.
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architecture does not care about the semantic meaning of a certain
melodic line.

4.3.1. Harmony generator
Harmony generator makes use of a set of rules that indicates

which tonal movements are allowed. In this way, chord progres-
sions can be generated. With this, we have the skeleton of compo-
sitions. We can understand this as a Markov chain model. In Fig. 4
we can see the set of rules in the current implementation, that cor-
respond with Fux’s counterpoint rules (Piston, 1947).

4.3.2. Melody generator
Melody generators produce the melody of compositions. Cur-

rent design uses a big set of motives which are one measure long.
A motive is randomly selected in each measure and put into the
melody voice. However, preliminary tests reveal that acting this
way, compositions will not be coherent, in the sense that they will
not seem as a unique entity, but rather, like little pieces stuck
together.

The trick here consists in to randomly select (from the whole
set) a subset of motives to be used in each execution. To have a
small number of motives for each execution makes the composi-
tion appear as a whole, giving the impression of melodic phrases.
In fact, there is no structure at all to be followed, but the repetition
over and over again of similar motives induces the listener to think
so. Employing this simple trick the output seems to be organized in
phrases (but as seen there is no more than random selection) and
the impression is quite realistic.

Moreover, due to the fact that the subset is randomly selected, it
is different for each execution. This is an important point because it

produces a great variety between two compositions, even thought
when they are generated with same inputs.

4.3.3. Drums generator
Drums generators are in charge of generating a continuous

rhythm. There are several composers that can be classified within
this class. They implemented different rhythms: some offers more
density, others are lighter; ones use various sounds (drum, snare,
cymbal, hat. . .), others just use a simple drum. At the end, it is
the first level agent (the composer) the one in charge of selecting
the appropriate Drum Generator (or even none of them) for each
occasion.

4.4. User interface

Our main aim was to develop an easy and simple interface that
anyone could use without problems.

Before, we talked about the purpose of implementing an easy-
to-use system. The objective here is presenting to the users an
interface that anyone can use, even if they are not experts. To do
that, we need to include within the system all the information re-
lated to technical parameters. This is a great deal because the
matching between emotions and music parameters is not direct,
and to define parameters themselves is definitively not a trivial
task.

The interface (see Fig. 5) is very dynamic and not fixed because
its contents depend on the composers implemented in the system
and the capabilities they announced. The form only contains terms
that agents have declared in some rule. With this, we avoid unex-
pected inputs and assure the system will always be able to give us
a valid output. Also, it lets us add, replace, or modify agents when
any problems appear, making changes easier.

In addition, we have added the possibility of selecting which
instruments should be use in each voice. However, if we do not
specify an instrument, the system selects one from those it thinks
is a better fit. Not all instrument combinations sound good, and
even if they do, it is possible that they are not compatible with
the style of the melody. These options exist in order to demon-
strate the complexity of the knowledge involved. Choosing rhythm,
instruments, tonality or granularity are not trivial tasks, because
they should be considered all together, and related with some
other concepts. By allowing selection of instruments, users can test
if they are able to find combinations that really make great compo-
sitions, beating system choices.

4.5. The composition process

In this subsection, the composition process of Muzak Composer
is described to illustrate how a composer runs because the process
is quite similar for the rest of composers.

When Muzak Composer is selected by the Manager Agent, it
firstly decides the tempo of the composition attending to user in-
puts. The mapping between linguistics tags and exact bpm (beats
per minute) is done by using a normal random number generator
with given mean and variance. The means values for each tag have
been statistically obtained from both a set of classical sheet music
and experts’ feedback.

As said before, composer agents are also in charge of selecting
the number of voices to be used, and the second level agents are
responsible for their generation.

To begin with, the harmony generator is executed, producing a
chord progression which is the skeleton of the composition.

After that, it is the melody generator’s turn. For this agent and in
the current implementation, a motive database is decided to be
used (as commented before), as well as employing one of its ele-
ments in each measure. Even thought there is no kind of structure

 

IF  actual_degree = I   THEN  next_degree = I 
IF  actual_degree = I   THEN  next_degree = II 
IF  actual_degree = I   THEN  next_degree = III 
IF  actual_degree = I   THEN  next_degree = IV 
IF  actual_degree = I   THEN  next_degree = V 
IF  actual_degree = I   THEN  next_degree = VI 
IF  actual_degree = I   THEN  next_degree = VII 
IF  actual_degree = II  THEN  next_degree = II 
IF  actual_degree = II  THEN  next_degree = IV 
IF  actual_degree = II  THEN  next_degree = V 
IF  actual_degree = II  THEN  next_degree = VI 
IF  actual_degree = II  THEN  next_degree = VII 
IF  actual_degree = III THEN  next_degree = II 
IF  actual_degree = III THEN  next_degree = IV 
IF  actual_degree = III THEN  next_degree = V 
IF  actual_degree = III THEN  next_degree = VI 
IF  actual_degree = IV  THEN  next_degree = I 
IF  actual_degree = IV  THEN  next_degree = II 
IF  actual_degree = IV  THEN  next_degree = III 
IF  actual_degree = IV  THEN  next_degree = V 
IF  actual_degree = IV  THEN  next_degree = VI 
IF  actual_degree = IV  THEN  next_degree = VII 
IF  actual_degree = V   THEN  next_degree = I 
IF  actual_degree = V   THEN  next_degree = III 
IF  actual_degree = V   THEN  next_degree = IV 
IF  actual_degree = V   THEN  next_degree = VI 
IF  actual_degree = VI  THEN  next_degree = II 
IF  actual_degree = VI  THEN  next_degree = III 
IF  actual_degree = VI  THEN  next_degree = IV 
IF  actual_degree = VI  THEN  next_degree = V 
IF  actual_degree = VII THEN  next_degree = I 
IF  actual_degree = VII THEN  next_degree = III 
IF  actual_degree = VII THEN  next_degree = V 
IF  actual_degree = VII THEN  next_degree = VI

Fig. 4. Rules used by harmony generator to generate chord progressions.

M. Delgado et al. / Expert Systems with Applications 36 (2009) 4574–4580 4577

ESWA 09

57



Author's personal copy

of phrases, or a grammar to be followed, the global composition
seems to have an internal structure. This effect is suggested by fre-
quent motive repetitions.

Next step is to execute the accompaniment generator. Goal here
is to complete the harmonization of the composition. Accompani-
ment generator introduces some new notes and completes chords.
It could just be a note every measure, an arpeggio or perhaps some-
thing more elaborate.

It is important to indicate that melody and accompaniment are
generated always in C major. This is not a handicap and greatly
facilitates the task. However, it is necessary to transpose them to
the correct position in each measure, according to the tonality
and the current grade. Also, the note in the first time of each mea-
sure must be accentuated. It is up to voice generators to assure
that.

5. Experiments and evaluation

The evaluation of any musical work is a complex task and often
comes down to individual subjective opinion. It depends not only
on formal aspects but also on some stylistics ones. Because of that,

it is hard to empirically evaluate music compositions, and there-
fore it is difficult to evaluate the effectiveness of a computer music
composition system.

Many metrics could be developed, but all of them will fail as at
the end, music (understanding the term as much more than just a
chain of sounds) cannot be reduced to a number.

Due to this difficulty, many authors will typically conclude their
papers with a vague comment such as ‘‘compositions generated by
the system are quite impressive and very promising” or ‘‘some-
times, melody seems to be a bit simple and unelaborated; but
many, results are very human like”. However, this is unsatisfactory
for two reasons: first, evaluating the music produced by the system
reveals little about its utility as a compositional tool; and second,
qualitative and subjective evaluation by the designers of the sys-
tem reveals little about the value of the tool to other composers
(Pearce et al., 2002).

This author affirms that there is an historical malaise in adopt-
ing suitable evaluation procedures for judging the degree to which
the aims have been satisfied. As we agree with this assertion, we
have also proposed an evaluation method to assess compositions
in the same way that they are usually appraised: through audience

Fig. 5. INMAMUSYS’ user interface.

Fig. 6. Results from the test: Feelings that the four tested songs provoked in listeners.
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reactions and critical reviews. So that, a short test has been design
to carry out that task.

5.1. Experiments

To begin with, we asked some people for listening and evaluat-
ing some examples generated by INMAMUSYS. Most of them could
not believe that a machine was the real author. For us, this is an
important point because capturing the essence of a human’s com-
position method is a great deal. This fact makes us also think that
our system could have passed, in some sense, the Turing test.

The second part of the proposed evaluation method was more
formal and consists in testing what emotions were induced on lis-
teners when listening to some compositions. The objective was to
probe whether compositions generated by the system provokes in
listeners emotions such as those that guided the composition pro-
cess and were given as inputs to the system. This test will give us a
measure of how the system is able to compose music that success-
fully matches user emotional requests.

Four compositions were generated with different input values.
Songs A, B, C and D are respectively generated by using the inputs
worry, happiness, chaos and worry again (this input is used twice).
System mapped these emotions into the use of Dark, Muzak, Ran-
dom and Dark composers. The four examples were presented to
the listeners without giving them information about the origin of
the songs, and the listeners were asked to select emotions that bet-
ter fit what they listen. Users could tick as much tags as they want
from the list: sadness, happiness, fear, worry, chaos and indiffer-
ence. Twenty people, involving a huge range in musical expertise,
participate in our experiment by answering the questions.

Results can be found in Fig. 6. We were really surprised by them
because we did not expect such a clear confirmation, even more
when the emotion-composer matching mechanism is quite primi-
tive. In all the four cases, the most repeated option is the right one
(the one that was given as input to the system). It is true that the
list of potential options is small, (we would like to make it bigger
the next time), but it is also clear that differences between some
tags are very small, so that it would have been easy to get some
wrong answer.

It is also noticeable, that many people (12 out of 20) point out
that the first song and the last one were very similar. They are
definitively different but these answers makes us think that Dark
composer outputs do not cover the whole area at the solution space
that we supposed, but just a little zone. We think this should be
corrected in the future, because is important to accomplish the
objective that all the compositions from the same inputs fall in
the same area, but it is also crucial to maximize this area, not just
focusing in a point.

To conclude, we would like to comment that an equilibrated
system has been developed: on the one hand, there is a great vari-
ety between different executions; on the other, we have managed
that each composition sounds as a whole not like several pieces
stuck together. As said, the whole solution space for a tag (e.g. fear)
is not completely cover, but at least we can say that almost all the
system outputs are classified (by humans) under the right tag.

6. Conclusions and future work

Composing music is a very complex process that involves many
disciplines and tasks. In this paper we have presented a new ap-
proach for composing music using computers. Because there are
so many challenges to deal with, a bottom-up approximation is re-
quired for solving all of them in a modular way. We are interested
in building a framework for successfully composing music that
provokes some feelings in listeners.

In order to achieve this goal, we have proposed here a two-level
architecture that successfully deals with the complex problem of
music composition, so that, a huge problem can be broken into
smaller tasks. This approach makes use of several agents and
rule-based systems. It also permits that users were provided by
an easy-to-use interface that hides all the complexity of music
composition. Even more, inputs for this interface are emotional in-
puts from the users, so that we are able to address the problem of
music expressiveness.

Several design decisions that affect the system were taken and
we have explained them. We have focused in knowledge represen-
tation because it is a main topic. In that section we also describe
different agents, as well as the role they play in the whole system.
At the moment, just four kinds of composers have been developed:
Dark, Muzak, Scales and Random.

Finally, results obtained after evaluating the actual system are
showed. This evaluation has been carried out with an experiment
and in a formal way. Even though the system is in a quite early
stage of development, results are promising enough to encourage
us to continue working with this framework.

6.1. Future work

The current prototype is quite rigid in the way it deals with user
inputs. By now, we are just using classic rule matching for selecting
agents, and that is a poor approach for dealing with fuzzy concepts,
such as emotions and musical terms. So that, including fuzzy logic
in the inference system is probably the first modification to be
done. This change would require major modifications in the infer-
ence engine, as well as the definition of fuzzy domains and linguis-
tic tags. However, we think it would be worth the effort.

Secondly, we would like to develop more composers in order to
get a bigger collection of these kinds of agents. Our aim is to obtain
as much diversity as possible not only to compare different algo-
rithms and compositional mechanisms, but for implementing and
testing new ideas. These ideas could be related with new theories
of musical styles or cognitive processes. Even more, as the set of
composers growths, we will be able to reproduce a wider range
of human emotions.

Another interesting project would be to develop a module to
automatically obtain composition rules. In the current prototype,
this knowledge is given by humans, and coded into the agents. It
would be very powerful if the system could analyze a music sheet,
then to extract some rules, and thus to compose according to them.
The system will win a great flexibility with this ability. Not in vain,
this one is the key idea in Cope’s system, and an interesting hotspot
in actual data mining. Doing this, the system would be quite com-
plete, in the sense that it would include both composition and
analysis tasks.

As seen, there is plenty of room for researching in the computer
music area in general and in composition in particular. At our
department, we feel computer music is a great opportunity for
modern Artificial Intelligence. We have developed this project with
the aim of it being used as a framework for future experiments and
works.

We also believe that Expert Systems and Agent Theory have
many things to say in this field. Composing music is a huge prob-
lem that should be divided into several tasks, and it definitively
needs intelligence to be done.
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Abstract The discovery of frequent musical patterns (motifs) is a relevant problem
in musicology. This paper introduces an unsupervised algorithm to address this
problem in symbolically-represented musical melodies. Our algorithm is able to
identify transposed patterns including exact matchings, i.e., null transpositions. We
have tested our algorithm on a corpus of songs and the results suggest that our
approach is promising, specially when dealing with songs that include non-exact
repetitions.

Keywords Musical mining · Motifs · Frequent pattern mining

1 Introduction

The discovery of frequent musical patterns (motifs) is a relevant problem in musi-
cology. In music, we can find several entities that can be repeated such as notes,
intervals, rhythms, and harmonic progressions. In other words, music can be seen
as a string of musical entities such as notes or chords on which pattern recognition
techniques can be applied.

We can define a music motif as the smallest meaningful melody element. As a rule,
motifs are groups of notes no longer than one measure. In human speech, a motif
is a word. In the same way that sentences consist of words, motifs form musical
phrases. A melody is formed by several main motifs, which are repeated, developed,
and opposed one against another within the melody evolution.
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When analyzing a music work, musicians carry out a deep analysis of the musical
material. This analysis includes motif extraction as a basic task. Musician studies
include contextual information (such as the author, the aim, or the period) but also
morphological data from the music itself. Looking for the motifs that build the whole
work is the first step that a musician takes when faced with a music sheet.

Audio-thumbnailing (i.e., summarizing or abstracting) is another interesting ap-
plication in the musical domain that is related to motif extraction. It provides the
user with a brief excerpt of a song that (ideally) contains the main features of the
work. Before hearing or purchasing a whole song, it would be useful to hear a
representative thumbnail of the whole work. This technique is also important for
indexing large datasets of songs, which can be browsed more quickly and searched
more efficiently if indexed by those small patterns instead of being indexed by the
whole song.

One of the most fundamental ways to classify MIR methods is to divide them
into those that process audio signals using signal processing methods and those
that process symbolic representations. We have decided to work with a symbolic
representation instead of an audio one because it is closer to the original sheet
of music. In other words, the main difficulty with audio representation is that the
transformation from audio signals to symbolic data is far from being accurate. This
fact makes the pattern recognition problem much more difficult and it requires
completely new techniques to deal with signals.

Using the algorithm we present in this paper, we are able to find frequent melodic
and rhythmical patterns in music starting from the MusicXML representation of
the song (www.wikifonia.org). We first transform this symbolic representation into
a sequence of notes. These notes are defined at their lowest level (i.e., pitch and
duration) and in an absolute, not relative, way.

According to the above considerations, we have developed a TreeMiner-based
(Zaki 2005b) algorithm to discover frequent subsequences in music files. Our algo-
rithm is able to identify sequences even when they are transposed. It can be used to
find common motifs in several songs and also find repetitions within a song. In this
paper, we present its application to the discovery of long motifs that are repeated
within a single song. Our hypothesis is that those patterns probably correspond to
the chorus or the more significant part of the song.

Our paper is an extended version of a paper presented at the ISMIS’09 conference
(Berzal et al. 2009) and is organized as follows. In Section 2, we provide some
background on musical data mining and introduce some relevant terms. Section 3
formally defines our sequence pattern mining problem and describes the algorithm
we have devised to solve it. In Section 4, we explain the way our algorithm works by
means of a particular example. Some experimental results are presented in Section 5,
whereas in Section 6 we draw some conclusions.

2 Background

Although it is almost impossible to be exhaustive in analyzing the state of the art
in musical pattern identification, we survey the most relevant works in this field in
Section 2.1. As our approach is based on sequences, we introduce some standard
terms and review some sequence mining algorithms proposed in the literature in
Section 2.2.
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2.1 Data mining in music

Pattern processing techniques have been applied to musical strings. A complete
overview can be found, for instance, in the paper by Cambouropoulos et al. (2001).
Those algorithms can be divided into those that deal with audio signals (using signal
processing methods) and those that use symbolic representations.

2.1.1 Dealing with audio signals

There are several researchers that have addressed the problem of pattern induction
in an acoustic signal. For instance, Aucouturier and Sandler (2002) proposed an
algorithm to find repeated patterns in an acoustic signal by focusing on timbre;
whereas Chu and Logan (2002) proposed a method to find the most representative
pattern in a song using Mel-spectral features.

Recently, some works have gone further in this direction by trying to identify the
sectional form of a musical piece from an acoustic signal. For example, Paulus and
Klapuri (2009) address this task using a probabilistic fitness measure based on three
acoustic features; whereas Levy and Sandler (2008) use clustering methods to extract
this sectional structure.

Solving the problem of identifying the structure of a musical piece is key for audio-
thumbnailing (i.e., finding a short and representative sample of a song). Zhang and
Samadani (2007) addressed this problem by detecting paragraphs in the song with
repeated melody in a first step and then identifying vocal portions in the song. With
such information, the structure of the song is derived. Another approach, by Bartsch
and Wakefield (2005), developed a chroma-based system that searches for structural
redundancy within a given song with the aim of identifying something like a chorus
or refrain.

2.1.2 Using symbolic representations

There are certain similarities in the use of text and musical data which also allow the
application of text mining methods to process musical data. Both have a hierarchical
structure and the relative order among the elements is of importance. For that
reason, researchers have proposed many different meaningful ways of representing
a piece of music as a string, but all of them use either event strings (where each
symbol represents an event) or interval strings (where each symbol represents the
transformation between events).

Most of the proposed techniques start from a symbolic transcription of music.
For example, Hsu et al. (1998) used a dynamic programming technique to find
repeating factors in strings representing monophonic melodies; whereas Rolland
(1998) recursively computed the distances between large patterns from the distances
between smaller patterns. Meredith et al. (2002) proposed a geometric approach to
repetition discovery in which the music is represented as a multidimensional dataset.
Pienimäki (2002) introduced a text mining based indexing method for symbolic
representation of musical data that extracts maximal frequent phrases from musical
data and sorts them by their length, frequency and personality.

Finally, the paper by Grachten et al. (2004) is of particular relevance because it
represents melodies at a higher level than notes but lower enough to capture the
essence of the melody. This level is the ‘Narmour patterns’ level, based on Narmour’s
I/R model (1992), which is well-known in musicology.
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Our algorithm is also based in a symbolic representation of the song: MusicXML.

2.2 Sequence mining

In our approach for musical motif extraction, we first transform a song into a
sequence of notes. There is a rich variety of sequence types, ranging from simple
sequences of letters to complex sequences of relations.

A sequence over an element type τ is an ordered list S = s1...sm, where:

– each si (which can also be written as S[i]) is a member of τ , and is called an
element of S;

– m is referred to as the length of S and is denoted by |S|;
– each number between 1 and |S| is a position in S.

T = t1....tn is called a subsequence of the sequence S = s1...sm if there exist integers
1 < j1 < j2 < ... < jn < m such that t1 = s j1 , t2 = s j2 , and in general, tn = s jn .

Sequences have been used to solve different problems in the literature (Dong and
Pei 2007; Han and Kamber 2005):

– String matching problems: Several sequence mining techniques have been used,
for instance, in Bioinformatics to find some structures in a DNA sequence
(Böckenhauer and Bongartz 2007):

– Exact string matching: Given two strings, finding the occurrence of one as a
substring of the other one.

– Substring search: Finding all the sequences in a sequence database that
contain a particular string as a subsequence.

– Longest common substring: Finding the substring with maximum length that
is common to all the sequences in a given set.

– String repetition: Finding substrings that appear at least twice in a sequence.

– Periodic pattern discovery: A traditional periodic pattern consists of a tuple of
k components, each of which is either a literal or ‘*’, where k is the period of
the pattern and ‘*’ can be substituted for any literal and is used to enable the
representation of partial periodicity (Wang et al. 2001; Yang et al. 2001).

– Sequence motifs: A motif is essentially a short distinctive sequential pattern
shared by a number of related sequences. There are four main problems in
this area (Dong and Pei 2007): motif representation (i.e., designing the proper
motif representation for the different applications), motif finding (i.e., finding
the motifs shared by several sequences), sequence scoring (i.e., computing the
probability of a sequence to be generated by a motif—using Markov models,
for example), and sequence explanation (i.e., given a sequence and a motif with
hidden states, providing the most likely state path that produced that sequence).

– Sequential pattern mining in transactional databases: Sequential patterns have
been used for predicting the behavior of individual customers. Each customer
is typically modeled by a sequence of transactions containing the set of items he
has bought. Several algorithms address this kind of problems, the most common
being AprioriAll (Agrawal and Srikant 1994), SPADE (Zaki 2001) GSP (Srikant
and Agrawal 1996), and PrefixSpan (Pei et al 2001).
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– Sequential pattern mining in sequence databases: Some algorithms, such as the
one developed by Jiang and Hamilton (2003), look for subsequences that have
a larger frequency (or number of repetitions) than an user-defined threshold,
which is established beforehand. Jiang’s algorithm, for example, uses a tree-
based structure called trie, that preserves the number of times a subsequence is
present in the sequence. Three different versions of his algorithm can be devised:

– A breadth-first search algorithm passes K times through the data sequence,
counting the sequences of size i in its i-th iteration. At the end of each
iteration, infrequent subsequences are pruned.

– A depth-first search algorithm passes just one time through the data using a
window of size K which is moved one position at a time. The sequence in the
window is preserved in the trie structure as well as its prefix. The way this trie
structure is completely built is very memory consuming without pruning.

– A heuristic-first search algorithm is a variation of the depth-first algorithm.
The number of occurrences of the prefixes of a subsequence is compared to
the threshold before inserting the subsequence in the trie. If any prefix of the
subsequence has not yet been shown to be frequent, then occurrences of the
subsequence itself are not counted. This algorithm is more efficient in time
and space but it is not able to find all the frequent subsequences.

Our problem of motif extraction in a piece of music could be seen as a particular
case of the ‘sequential pattern mining in sequence databases’ problem. However,
the algorithms proposed by Jiang et al. have the drawback that they are limited by
the size of the alphabet (i.e., the element type τ according to our notation). This
value can be very high in our particular domain, provided that we take different note
pitches and durations into account.

Furthermore, we consider the presence of similar sequences (transposed motifs in
our problem) that should be counted as if they were exact repetitions. In our case, it
is also interesting to know where these repetitions appear in the sequence, specially
when considering these similar repetitions. This information would not be given by
Jiang’s algorithms, as they only count the number of repetitions.

In the following section, we propose a novel TreeMiner-based algorithm to find
motifs in a sequence in order to solve the problem of motif extraction in a piece
of music. It should be noted, however, that our algorithm can be applied to several
sequences at a time, as well as to different kinds of sequence databases (not just
musical ones).

3 Our sequence pattern mining algorithm

The goal of frequent sequence pattern mining is the discovery of all the frequent
subsequences in a large database of sequences D or in an unique large sequence.

Let δT(S) be the occurrence count of a subsequence S in a sequence T and dT a
variable such that dT(S) = 0 if δT(S) = 0 and dT(S) = 1 if δT(S) > 0. We define the
support of a subsequence as σ(S) = ∑

T∈D dT(S), i.e., the number of sequences in D
that include at least one occurrence of the subsequence S. Analogously, the weighted
support of a subsequence is defined as σw(S) = ∑

T∈D δT(S), i.e., the total number of
occurrences of S within all the sequences in D.
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We also consider the occurrences of a pattern that approximately match (i.e., those
occurrences that are very similar but are not exactly the same). We define the exact
support of a subsequence as the number of occurrences that are exactly equal to the
pattern, whereas the transposed support includes both exact and similar occurrences.

We say that a subsequence S is frequent if its support is greater than or equal to
a predefined minimum support threshold. We define Lk as the set of all frequent
k-subsequences (i.e., subsequences of size k).

3.1 SSMiner

Our algorithm, called SSMiner (Similar Sequence Miner), is based on the POTMiner
(Jimenez et al. 2009) frequent tree pattern mining algorithm, a TreeMiner-like
algorithm for discovering frequent patterns in trees (Zaki 2005b). POTMiner and its
antecessor follow the Apriori (Agrawal and Srikant 1994) iterative pattern mining
strategy, where each iteration is broken up into two distinct phases:

– Candidate Generation: A candidate is a potentially frequent subsequence. In
Apriori-like algorithms, candidates are generated from the frequent patterns
discovered in the previous iteration. Most Apriori-like algorithms, including
ours, generate candidates of size k + 1 by merging two patterns of size k having
k − 1 elements in common.

– Support Counting: Given the set of potentially frequent candidates, this phase
consists of determining their actual support and keeping only those candidates
whose support is above the predefined minimum support threshold (i.e., those
candidates that are actually frequent).

The pseudo-code of our algorithm is shown in Fig. 1 and its implementation details
will be discussed in Sections 3.2 through 3.4.

The sequence of a song is scanned twice by our algorithm, in the process of
obtaining the frequent elements of size 1. The first scan is needed to save the
occurrences of each note and the second one is employed to detect the transposed
occurrences of each note. Then, the infrequent notes are pruned and we are ready
to apply the two phases of the SSMiner algorithm without checking the original
sequence any more.

Fig. 1 SSMiner: our sequence
mining algorithm

algorithm
Obtain frequent elements (frequent patterns of size 1)
Build candidate classes C1 from the frequent elements
for k=2 to MaxSize

for each class P ∈ Ck −1

for each element p ∈ P.
Compute the frequency of p
if p is frequent
then

Create a new class P′ 

′
from p.

Add P to Ck
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3.2 Candidate generation

We use an equivalence class-based extension method to generate candidates (Zaki
2005a). This method generates (k + 1)-subsequence candidates by joining two fre-
quent k-subsequences with k − 1 elements in common.

Two k-subsequences are in the same equivalence class [P] if they share the same
prefix string until their (k − 1)th element. Each element of the class can then be
represented as x, where x is the k-th element label.

Elements in the same equivalence class are joined to generate new candidates.
This join procedure, called extension in the literature, works as follows. Let (x) and
(y) denote two elements in the same class [P], and [Px] be the set of candidate
sequences derived from the sequence that is obtained by adding the element (x) to
P. The join procedure results in attaching the element (y) to the sequence generated
by adding the element (x) to P, i.e, (y) ∈ [Px]. Likewise, (x) ∈ [Py]

3.3 Occurrence lists

Once we have generated the potentially frequent candidates, it is necessary to
determine which ones are actually frequent.

The support counting phase in our algorithm follows the strategy of AprioriTID
(Agrawal and Srikant 1994). Instead of checking the presence of each candidate
in the sequence (which would entail O(|S|) operations), special lists are used to
preserve the occurrences of each pattern in the database, thus facilitating the support
counting phase.

Each occurrence list contains tuples (t, m, p, d, �) where t is the sequence
identifier, m stores the elements of the sequence which match those of the (k − 1)

prefix of the pattern X, p is the position of the last element in the pattern X, d
is a position-based parameter used for guaranteeing that elements in the pattern
are contiguous within the sequence and � indicates the similarity between the
occurrence and the original pattern.

When building the scope lists for patterns of size 1, m is empty and the element
d is initialized with the position of the pattern only element in the original database
sequence. In the first pass through the sequence, exact patterns of size 1 are collected,
being its � parameter initialized as “=”. When similar pattern occurrences are
collected in the second pass through the sequence, the parameter � is initialized
with a value that indicates the similarity between the original pattern and the actual
occurrence.

We obtain the occurrence list for a new candidate of size k by joining the lists
of the two subsequences of size k − 1 that were involved in the generation of the
candidate. Let (tx, mx, px, dx, �x) and (ty, my, py, dy, �y) be two tuples to be joined.
The join operation proceeds as follows:

if

1. tx = ty = t and
2. mx = my = m and
3. dx = 1 (only if k �= 2) and
4. px < py and
5. �x=�y
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then add [t, m
⋃

{px}, py, dy − dx, �y] to the occurrence list of the generated
candidate.

3.4 Support counting

Checking if a pattern is frequent consists of counting the elements in its occurrence
list. The counting procedure is different depending on whether the weighted support
σw is considered or not.

– If we count occurrences using the weighted support, all the tuples in the lists must
be taken into account.

– If we are not using the weighted support, the support of a pattern is the number
of different sequence identifiers within the tuples in the occurrence list of the
pattern.

It should be noted that d represents the distance between the last node in the
pattern and its prefix m. Therefore, we only have to consider the elements in the
scope lists whose d parameter equals 1 for guaranteeing that elements in the pattern
are contiguous within the sequence. It is important to remark that the remaining
elements in the lists cannot be eliminated because they are needed to build the
occurrence lists of larger patterns.

3.5 Representative patterns

Our algorithm returns all the frequent patterns of the maximum size indicated by
the user (or smaller ones if there are no patterns of such size). As musical motifs
are generally no longer than a measure, a value of ten is typically used by default.
Nevertheless, this limit can be easily modified since our algorithm can return all the
frequent patterns that exist in the song regardless of their size. The resulting output
will be the set of frequent patterns that represent the song. The algorithm also returns
the positions of the different occurrences of the patterns within the song (including
transposed occurrences if needed).

3.6 SSMiner complexity

SSMiner starts by computing the frequent patterns of size 1. This step is performed
by obtaining the vertical representation of the sequence database, i.e., the individual
notes that appear in the sequences with their occurrences represented as scope
lists. This representation is obtained in linear time with respect to the number of
sequences in the database just by scanning it and building the scope lists for patterns
of size 1. We then discard the patterns of size 1 that are not frequent. This results
in L scope lists corresponding to the L frequent notes in the sequence database and
each frequent label leads to a candidate class of size 1.

Let c(k) be the number of classes of size k, which equals the number of frequent
patterns of size k, and e(k) the number of elements that might belong to a particular
class of size k (i.e., the number of patterns of size k + 1 that might be included in the
class corresponding to a given pattern of size k).
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In SSMiner, each sequence pattern grows only by adding an element at the end
of the sequence pattern. The number of different sequences of size k + 1 that can
be obtained by the extension of a sequence of size k is L · k. Hence, the number of
elements in a particular class, e(k), is O(L).

The number of classes of size 1 equals L, the number of frequent labels, so that
c(1) = L. The classes of size k + 1 are derived from the frequent elements in classes
of size k. In the worst case, when all the e(k) elements are frequent, c(k + 1) = c(k) · e(k).
Solving the recurrence, we obtain c(k + 1) = c(k) · L = O(Lk).

For each considered pattern of size k + 1, SSMiner must perform a join operation
to obtain its scope list from the scope lists of the two patterns of size k that led to it.

The size of the scope list for a pattern of size k is O(t · e) while the computational
cost of a scope-list join operation is O(t · e2), where t is the number of sequences
in the database and e is the average number of embeddings of the pattern in each
sequence (Zaki 2005a).

In the worst case, the number of embeddings s(k − 1) of a pattern of size k − 1
in a sequence of size S equals the number of subsequences of size k − 1 within the
sequence of size S. This number is bounded by S − k + 1.

Hence, the cost of the join operation needed for obtaining the scope list of a
pattern of size k, is j(k) = O(t · s(k − 1)2) = O(t · (S − k + 1)2).

The cost of obtaining all the frequent patterns of size k will be, therefore,
O(c(k) · j(k)) = O(Lk · t · (S − k + 1)2)

The total cost of executing the SSMiner algorithm to obtain all the frequent
patterns up to k = MaxSize is

∑
k=1...MaxSize(Lk · t · (S − k + 1)2). Since the running

time of our algorithm is dominated by the time needed to discover the largest
patterns (i.e., k = MaxSize), SSMiner is O(LMaxSize · t · (S − MaxSize + 1)2).

Therefore, our algorithm execution time is proportional to the number of se-
quences in the sequence database (t = 1 in our motifs identification problem), and
to the number of patterns than can be identified (Lk). Finally, its execution time is
quadratic with respect to the size of the sequences (S).

4 An example

In this section, we present an example to help the reader understand the way our
algorithm identifies frequent subsequences in a sequence. In order to facilitate
the understanding of the procedure, we are not considering the duration of notes.
Furthermore, we only take into account those transpositions of fifth.

We will use in this paper the scientific pitch notation which combines a letter-
name, accidentals (if any) and a number identifying the pitch’s octave. This notation
is the most common in English written texts.

Let’s suppose we have the following piece of a song: G4 A4 G4 E4 D5 E5 D5 B4
G4 A4 G4 E4 A4 G4 B4 G4 A4 G4 E4 (see Fig. 2), and we want to extract those
subsequences that appear at least four times in it.

The first step of our algorithm is scanning the sequence to obtain all the occur-
rences of each note. Then, the occurrence lists of each note are built as indicated in
Section 3.3. Results are shown in Fig. 3.
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Fig. 2 Sample piece: G4 A4 G4 E4 D5 E5 D5 B4 G4 A4 G4 E4 A4 G4 B4 G4 A4 G4 E4

The first element is 1 in all the tuples because we only have one sequence (i.e.,
only one song) in our example. The second one is the prefix of the substring (empty
in patterns of size 1). The third element indicates the position of the last element
of the pattern in the sequence. The fourth element is the distance between the last
element of the pattern and its prefix (or the position of the element when there is
no prefix, as this is the case). Finally, the last element indicates if the occurrence is
exactly equal to the pattern (‘=’) or if it is transposed.

In this example, only those transpositions of up one fifth are being taken into
account, so that ‘+5’ is the only alternative for this element in our example. It should
be noted, however, that all possible transpositions—distances between two notes—
could be taken into account. In any case, we need only to compare notes in one
direction, as we will always find at least a version of the pattern that summarizes all
its transpositions.

Going back to our example, the note G4 is transposed up one fifth as D5.
Therefore, there are 9 tuples in the occurrence list of G4: 7 as itself, 2 as D5.

The next step is checking if all the notes are frequent. In this case, only G4, A4,
and E4 have at least four occurrences. Therefore, only these patterns will be kept.

Figure 4 shows the extension of the element G4. This element is extended with
all the frequent patterns of size 1 including itself, and the occurrence lists of each
candidate pattern of size 2 are obtained by joining the lists of the elements that
generated it, as explained in Section 3.3.

Figure 4 shows, with bold letters, the tuples where d = 1. That means that these
are contiguous occurrences of the pattern. In our example, only the patterns G4
A4 and G4 E4 appear as contiguous subsequences in our song. Furthermore, they
have at least four occurrences—our minimum support threshold—and they will be
extended to generate candidates of size 3. It should be noted that the pattern G4 G4

G4

{1,_,1,1,=}
{1,_,3,3,=}
{1,_,9,9,=}
{1,_,11,11,=}
{1,_,14,14,=}
{1,_,16,16,=}
{1,_,18,18,=}
{1,_,5,5,+5}
{1,_,7,7,+5}

A4

{1,_,2,2,=}
{1,_,10,10,=}
{1,_,13,13,=}
{1,_,17,17,=}
{1,_,6,6,+5}

E4

{1,_,4,4,=}
{1,_,12,12,=}
{1,_,19,19,=}
{1,_,8,8,+5}
{1,_,15,15,+5}

D5

{1,_,5,5,=}
{1,_,7,7,=}

E5

{1,_,6,6,=}

B4

{1,_,8,8,=}
{1,_,15,15,=}

Fig. 3 Occurrence lists of the elements of the following sequence: G4 A4 G4 E4 D5 E5 D5 B4 G4
A4 G4 E4 A4 G4 B4 G4 A4 G4 E4
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G4 G4 G4 A4

{1,1,2,1,=} {1,1,10,9,=}
{1,1,13,12,=}  {1,1,17,16,=}
{1,3,10,7,=}    {1,3,13,10,=}
{1,3,17,14,=} {1,9,10,1,=}
{1,9,13,4,=}   {1,9,17,8,=}
{1,11,13,2,=}  {1,11,17,6,=}
{1,14,17,3,=} {1,16,17,1,=}
{1,5,6,1,+5}

G4 E4

{1,1,4,3,=}      {1,1,12,11,=}
{1,1,19,18,=} {1,3,4,1,=}
{1,3,12,9,=}    {1,3,19,16,=}
{1,9,12,3,=}    {1,9,19,10,=}
{1,11,12,1,=} {1,11,19,8,=}
{1,14,19,5,=}  {1,16,19,3,=}
{1,18,19,1,=} {1,5,8,3,+5}
{1,5,15,10,+5} {1,7,8,1,+5}
{1,7,15,8,+5}

{1,1,3,2,=}          {1,1,9,8,=}
{1,1,11,10,=}      {1,1,14,13,=}
{1,1,16,15,=}      {1,1,18,17,=}
{1,3,9,6,=}          {1,3,11,8,=}
{1,3,14,11,=}      {1,3,16,13,=}
{1,3,18,15,=}      {1,9,11,2,=}
{1,9,14,5,=}    {1,9,16,7,=}
{1,9,18,9,=}    {1,11,14,3,=}
{1,11,16,5,=}    {1,11,18,7=}
{1,14,16,2,=}   {1,14,18,4,=}
{1,16,18,2,=}    {1,5,7,2,+5}

Prefix: G4

Fig. 4 Extension of the element G4 in Fig. 3

is not contiguous and will not be extended. However, it is preserved to perform the
extension of G4 A4 with G4 E4.

After two more extensions, which are done in the same way, we obtain the pattern
G4 A4 G4 E4 with a support of 4 and an exact support of 3. This is be the pattern we
would use to characterize our example song.

5 Experiments

We have tested our algorithm using a corpus of 44 songs. This set includes songs from
a wide variety of authors. The first column in Table 1 shows the songs used in our
experiments.

We have performed 4 experiments with different constraints:

– Exact pitch and duration (pitch-duration)
– Exact pitch and any rhythm (pitch)
– Transpositions but exact duration (transposition-duration)
– Transpositions and any duration (transposition)

Pitch-duration is the most restrictive one, whereas transposition is the experiment
with a lower number of constraints. All these configurations are representative when
looking for musical motifs, as they can be modified in tempo or in pitch. Unlike the
example in the former section, all the possible transpositions are taken into account
in these experiments.

Table 1 summarizes the results of our experiments. Each row corresponds to one
of the songs in the corpus. The second column (‘notes’) indicates the number of notes
in each song.

The ‘Max Size’ column indicates the size of the longest pattern(s) found in each
song. Patterns of this size are the only ones that are finally returned to the user.
As our aim in this paper is searching for repeating motifs, and not whole repeating
sections, we have to introduce an upper limit to the size of the patterns. Preliminary
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tests with our song corpus have shown that a value of ten is adequate for this
parameter providing that musical motifs are generally no longer than a measure.

The ‘Patterns’ column indicates the number of patterns our algorithm finds. The
first number is the amount of patterns of maximum size (i.e. the size indicated on
the previous column); whereas the second number is the total amount of patterns,
regardless of their size. As the reader can see, the total amount of patterns is pretty
high. However, many of these patterns are not musically relevant since they are part
of bigger ones. Even more, patterns of size 1 and 2, which can hardly be considered
as motifs, are also included in this set.

The ‘exact support’ column is the exact support of the returned patterns. Intervals
appear in some cases due to the fact that not all the returned patterns necessarily
appear the same number of times.

Finally, ‘transposed support’ indicates the support of patterns including transpo-
sitions. This column is only relevant for the experiments transposition-duration and
transposition, when transpositions are taken into account. As expected, values in this
column are always equal or greater than those in the corresponding ‘exact support’
column.

For us, the minimum support required for a pattern to be considered frequent is
four. Any pattern with a lower number of repetitions will be deleted. This value has
been manually set regarding the size of the evaluating songs and some preliminary
tests. However, it can be easily adjusted when new datasets require it.

The reader can also notice that, in some cases (namely, when transpositions are
taken into account), patterns with exact support lower than four can be found. Those
patterns do not have enough exact repetitions as themselves, but they are frequent
when transpositions are taken into account. Hence, transpositions are important
because, without considering them, some patterns would have not been discovered,
as they do not reach the minimum support threshold just by exact repetitions. That
happens, for instance, with the ‘Crazy’ and ‘Hero’ songs.

Regarding the length of the excerpts that have been tested, three notes can hardly
represent any meaningful motif. However, almost anyone could identify Beethoven’s
Fifth Symphony by just four notes. Hence, a minimum length of four seems adequate.

It should be noted that, in some situations, there is another transposition of the
pattern that has greater exact support than the one returned by our algorithm as
described in Section 3. As we mentioned earlier, our algorithm looks for transposed
motives only in one direction and this suffices to guarantee that it will find all the
relevant occurrences; however, the returned patterns are not necessarily the most
frequent exact ones. Given that our algorithm keeps track of the occurrences of a
given pattern and all of its transpositions, it is trivial to obtain the most frequent exact
pattern just by looking at the corresponding scope list. This pattern will correspond
to the most common � in the scope list.

Table 2 Percentage of songs that include at least one identified pattern within their chorus

Pitch-duration Pitch Transposition-duration Transposition

%Yes 63.64 68.18 63.64 72.73
%No 29.55 25.00 29.55 20.45
%Without chorus 6.82 6.82 6.82 6.82
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Fig. 5 SSMiner execution time
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It should also be observed that, in some songs, the number of patterns of MaxSize
elements is pretty high (e.g. ‘Ballade pour Adeline’ or Beethoven’s ‘Für Elise’). This
is due to the fact that many of those are still subpatterns of bigger ones. For instance,
a pattern of size 15 includes six sequential subpatterns of size 10 (starting from the
1st, 2nd, 3rd, 4th, 5th and 6th note, respectively).

In order to evaluate the goodness of our method, we have checked whether
or not the discovered frequent patterns belong to the chorus of the song—in our
experiments, 6.82% of the songs do not have a clear chorus. Table 2 shows the
percentage of songs which have at least one identified pattern within their chorus. As
can be seen, above 60% of the songs fulfill this requirement. Also, it is remarkable
that not considering the rhythm results in more patterns belonging to the chorus
of the songs. This fact indicates that patterns are not always exactly repeated as
themselves, but slightly modified. Although the chorus-belonging criterion appears
to be a valid and obvious one, it should be noted that some songs are better identified
by patterns which do not belong to the chorus.

Regarding SSMiner computation time, Fig. 5 shows the time consumed in each
experiment with respect to the number of notes in the melody. The chart groups the
songs into five groups according to their lengths and displays the average execution
time for each subset of melodies. These execution times are quadratic with respect
to the number of notes in the melodies, as explained in Section 3.6.

6 Conclusions

We have presented the application of frequent pattern mining to the discovery of
musical motifs in a piece of music. MusicXML files, which can be easily collected,
are transformed into sequences of notes, defined at their lower level. Our algorithm,
SSMiner, is able to efficiently identify frequent subsequences in a sequence.

The matching between the patterns does not need to be exact. Our algorithm is
able to identify transposed patterns including exact matchings, i.e., null transposi-
tions. Our experiments suggest that our approach performs well in a set of randomly-
selected songs.
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In the future, we intend to employ interval strings to represent notes rather than
the absolute pitches we have used in the experiments reported in this paper. We will
also consider more abstract representations of melodies, such as the one proposed by
Narmour. Finally, we plan to study the parallelization of our algorithm implementa-
tion in order to improve its execution time, which is already asymptotically optimal.
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uncertain and imprecise multivariate behaviors, based

on correlated trends
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Abstract

The computational representation and classification of behaviors is a task of
growing interest in the field of Behavior Informatics, being series of data a
common way of describing them. However, as these data are often imperfect,
new representation models are required in order to handle that imperfection.
This work presents a new approach, Frequent Correlated Trends, for repre-
senting uncertain and imprecise multivariate data series. Such a model can
be applied to any domain where behaviors recur in similar —not identical—
shape, and we have already used them to the task of identifying the perform-
ers of violin recordings with good results.

Keywords: behaviour modelling, dataseries, Frequent Correlated Trends

1. Introduction

In recent years, behavioral sciences have received a lot of attention from
the informatics perspective. This fact is mainly due to current demands
for behavior analysis and understanding outstripping the capability of tra-
ditional methods and techniques in behavioral sciences. New computational
tools for representing and working with behaviors are very welcomed and
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a growing field of research, namely Behavior Informatics [5], is receiving
increasing recognition.

Intuitively, we can define a behavior as a set of actions that are char-
acteristic of one individual or phenomenon. These actions are ordered (or
partially ordered) in some way, and indexed by a variable, which is generally
time. By representing behaviors, two goals are aimed: identification and
tagging of the behaviors, and forecasting future actions within them.

Behaviors, as we have just defined them, can be found in many different
domains. The following are some illustrative examples of such phenomena
that can be represented and individually identified (some of them will be
later described in Section 5):

• The weather in a given area, represented as a series of observations
at different time instants, including information such as temperature,
precipitations or wind speed [12].

• The movements of a (injured) knee when doing some rehabilitation
exercises, by monitoring the position of several reference points at dif-
ferent time instants [2].

• The way of playing an instrument. A particular performance of a piece
of music can be represented as a series of notes with its respective
duration and volume, among others attributes [15].

• The way a human being behaves within Ambient Assisted Living, with
the aim of identifying strange actions and situations of potential danger
[6].

• The personalization of mobile services. As mobile devices increase their
capacity, new services and applications are developed which need mod-
eling the user behavior and context [3].

• The interactions between currency exchanges. Several works have stud-
ied how several currencies behave against each other at different finan-
cial situations [25].

These real-world phenomena can be naturally represented by data series.
As databases from most of industrial and biological areas often contain times-
tamped or ordered records, data series are gaining weight as a suitable source
of information, and working with them has become an important machine
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learning task. Those records are generally obtained in an automatic manner
from different sensors.

Two main goals of data series analysis are found in literature [4]: fore-
casting and modeling. The aim of forecasting is to accurately predict the
next values of the series, whereas modeling aims to describe the whole series.
Even though they can be sometimes related, they usually differ as finding a
proper model for the long-term evolution might not be the best approach to
predicting the short-term evolution and viceversa.

Forecasting and modeling are also the main tasks concerning behaviors,
as we previously said. Therefore, data series are a suitable representation for
behaviors, being also the most common one.

In either case, and whatever the goal of a particular data series analy-
sis is, data representation is a crucial task anyway. It is hence required a
formal representation capable of modeling the complexity of the particular
data. This representation must be more reduced than representing all the
observations of the phenomenon, but still describe it accurately enough.

An additional problem is that information is hardly certain, complete
and precise; more on the contrary, it is usually incomplete, imprecise, vague,
fragmentary, not fully reliable, contradictory, or imperfect in some other
way. Historically, two ways of addressing imperfection have been employed
for representing information in a computer [16]:

• The first solution consists in restricting the model to only that part of
the available information of the real world that is accurate and reliable.
Such a constrained approach avoids further complications of represen-
tation, but lacks the capacity of capturing the whole rich notion of
information in human cognition and is generally very limited.

• The second solution implies developing models capable of representing
imperfect information. As this approach allows a greater number of
applications, it is the one that developers usually implement in their
systems. However, those models cannot successfully cope with the
whole range of imperfections that generally appear in real life, and in
many occasions data are simplified to a point that makes them easily
treatable with current computational tools, but losing part of their
meaning.

Due to this lack of general systems capable of dealing with any kind of
imperfect data, developers have been forced to handle this information in an
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ad-hoc manner; that is, by devising specific algorithms and systems for each
new application, domain and representation. Therefore, in order to model
the real world as accurately as possible, several approaches for dealing with
imperfect information have been introduced and studied.

Although some schemes have been proposed for directly handling im-
perfect information coming as data series [13, 18], most of the research has
focused on similarity measures to deal with imperfection. Hence there is still
a need for further research and new practical systems capable of accurately
modeling imperfect data series, and the field of Behavior Informatics will be
greatly benefit by such advances.

This paper addresses this necessity by proposing a novel approach for rep-
resenting imperfect behaviors —concretely uncertain and imprecise— that
come in the form of multivariate data series. Our work shows how we can
represent underlying local trends in the data in an easy and effective way,
without a complicated formalism. Some other works have identified the ne-
cessity of focusing in frequent local cues for behavior modeling [8, 17]. The
further aim of the work is addressing the issue of soft data series2 recognition
and comparison.

Specifically, our proposal identifies given behaviors through capturing
their general footprint by means of discovering repetitive patterns in one di-
mension and their interdependences with patterns in other dimensions. This
process can be divided in the following three stages:

1. a high-level abstraction of the observations within each dimension;

2. a tagging according to the patterns identified in one of the dimensions;

3. characterization of behaviors as sets of frequency distributions.

Most proposals for representing behaviors are domain-specific, being de-
signed for the particular problem they are applied to [12, 21]. Even though
they perform well when evaluated, these models cannot be easily applied to
different domains without effort and fundamental modifications. Our pro-
posal, like [9], is intended as a general framework that can be applied to
several domains.

Two additional advantages of our method are of special relevance. In first
place, the representation of the behavior is finite and constant in size for a
given problem, regardless of the number of observations. This fact contrasts

2The term soft data series is used for series whose values are not accurate or verifiable.
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with other works [17, 21] in which the size of the representation completely
depends on the amount of data available.

The second advantage is an incremental representation which can be cal-
culated on-line very easily: when a new value is observed, this information
is included in the representation, which is immediately updated. That is not
the case in other proposals [25, 21, 7] which need to recalculate the whole
representation when new observations are available.

These two features capacitate the method to automatically offer a repre-
sentation of the data series until any given observation, and allow it to deal
with data series of infinite length. Our proposal is specially aimed to those
behaviors with a large number of observations.

The rest of the paper is organized as follows. Section 2 offers an intro-
duction to data series. Section 3 is intended as a general introduction to
imperfect data, describing the main forms of imperfection and the problems
to address. In Section 4, we describe the proposed model, Frequent Correlated
Trends, and the developed system, including data gathering, representation
and distance measurement. This section also introduces the formal notation
used and an illustrative example. In Section 5, some potential domains of
application are proposed, and the use of the model on them is described.
The paper concludes with final considerations and pointing out future work
in Section 6.

2. Data series

As data series3 have an increasing popularity and they are the formalism
we will use in this paper, we devote this section to briefly introduce them. The
interested reader should refer to any basic reference on time series analysis
(for instance, [4]) for further information about ordered series.

Databases in areas such as Engineering, Medicine or Finances often con-
tain timestamped or ordered records. The analysis of data series (and time
series in particular) is then of great interest in these areas, and searching for
similarities between data series is fundamental for several data mining tasks

3The reader will notice that in the following we mainly focus our descriptions on time
series. That is due to the fact that time is by far the most common indexing variable in
data series. However, we will keep using the term data series to make explicit that our
model is not limited to any particular kind of series.
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(e.g. classification, rule gathering, clustering or finding patterns) within these
domains.

A data series A can be intuitively defined as an ordered sequence (finite or
not) of values obtained at successive intervals of an indexing variable —often
time. Each one of these observations Ai takes values from a domain Un.

According to the value of n, we have several kinds of series. If n = 1,
each element is a single (scalar) value and we have an univariable series.
On the other hand, if n > 1, each element is a vector with n components
and the data series is a multivariable one. We can distinguish two kinds
of multivariable series. A multidimensional series is a series in which the
majority of variables are independent. A multivariate series is a series that
has many dependent variables that are correlated to each other to varying
degrees.

In many data series, data follow recurring seasonal patterns. We say
that a data series has serial dependence if the value at some point Ai is
statistically dependent on the value at another point Aj . However, in many
situations, those recurring patterns can occur at arbitrary points, because
they are indexed by events happening in other series. In other words, values
in series Ar (the series with the r -th component of each value of A) could
be dependent of those of series As. That is the case in multivariate series.
Our hypothesis is that the correlation among patterns of different dimensions
of the same series is an interesting source of information should we want to
summarize the series.

Whilst data series can be infinite in length, computers can only deal with
a finite number of pieces of information. Therefore, in order to represent
an arbitrary data series in a computer, it is mandatory to employ a suitable
representation of those data, reducing their size. This representation is then
approximate and implies a trade-off between accurately capturing the data
and representing it in the finite memory of a computer.

Such series of data which are composed of a huge amount of values are
called data streams and they open a new area of research in which the tasks
of classification, clustering, indexing and mining of series of data become
more challenging. In this context, observations have to be processed in real-
time and cannot be permanently stored for further query. Even more, the
observations might evolve over time.

Due to the characteristics of our learning algorithm (see Section 4.2),
Frequent Correlated Trends could be applied to data streams with the only
addition of a proper module to deal with that evolution. In fact, some
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algorithms with the same fundamental idea of ours (i.e. using a reduced
representation that can be calculated in real-time) has already been proposed
for data streams [1].

3. The problem of Imperfect data

Weaver suggested in [20] that several scientific problems are not solvable
by a simple formula or probability theory. In fact, what really underlies on
his claim is a more fundamental statement: ‘almost all real-life problems
cannot be solved by conventional (precise) mathematics’.

Not in vain, we experience that information in most domains is usually in-
complete, imprecise, vague, fragmentary, not fully reliable, contradictory, or
imperfect in some other way. Imperfect information might result from using
unreliable information sources, it can be the unavoidable result of informa-
tion gathering methods that require estimation or judgment, or be produced
by a restricted representation model.

In general, these various information deficiencies may result in different
types of imperfection. According to [16], inconsistency, imprecision, vague-
ness, uncertainty, and ambiguity are the five basic kinds of imperfect infor-
mation.

We say that we have inconsistency when one aspect of the real world is
irreconcilably represented more than once in a data set. For example, having
both ‘27’ and ‘28’ as values for John’s age. Information inconsistency is a
kind of semantic conflict that usually arises when integrating information
from several sources.

Imprecision and vagueness are both related with the impossibility to give
a concrete value to an element. The correct value is within a range of values,
but there is no way of knowing which one to choose. For example, ‘between
100 and 120 kilograms’ and ‘very heavy’ for John’s weight are imprecise
and vague values respectively. Vague information is usually represented by
linguistic terms.

Uncertainty indicates the degree of truth of a value. It expresses how sure
one can be about a statement. ‘It is almost sure that John is his brother’ is
an example of information uncertainty.

When an element of the model can have several possible interpretations,
we say it is ambiguous. In general, if values are not accompanied by their
units, it is impossible to say if a figure is high or low. A length of 1000 is
meaningless unless it is stated if those are millimeters or kilometers.
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Generally, several different kinds of imperfect information can coexist
with respect to the same piece of information. In many real-world problems
we have (or could have) statements like the following: ‘it is α-certain that
X is A’, being X a variable, α a certainty degree, and A an imprecise value.
In a statement like ‘it is almost sure that John is a nice person’ two sources
of imperfection are present: uncertainty (for ’almost sure’) and imprecision
(for ’nice person’).

During the last century, there has been a great shift in the way of dealing
with imperfection. For many years, it was considered undesirable in science
and it was avoided at all means. However, at one point, scientists assumed
that imperfection is not only an unavoidable reality, but it is, in fact, a useful
source of information.

We are now within this second school of thought, which sees imperfection
as relevant. Because of that, current solutions to problems use, in one way
or another, suitable tools for dealing with and representing imperfection.

3.1. Imprecision and uncertainty

Imprecision and uncertainty are the most common kinds of imperfection
found in data. That is especially true when dealing with problems related
with biological systems. Because of this fact, we will devote a few extra lines
to these two specific kinds of information imperfection.

As indicated before, imprecision and uncertainty state for different things.
To further illustrate the differences between them, we reproduce here the
example from Klir and Yuan’s book [11, page 177].

“Consider the jury members for a criminal trial who are uncertain
about the guilt of innocence of the defendant. The uncertainty
seems to be of a different type; the set of people who are guilty
of the crime and the set of innocent people are assumed to have
very distinct boundaries. The concern, therefore, is not with the
degree to which the defendant is guilty, but with the degree to
which the evidence proves this membership in either the crisp set
of guilty people or the crisp set of innocent people. We assume
that perfect evidence would point to full membership in one and
only one of these sets. However, our evidence, is rarely, if ever,
perfect, and some uncertainty usually prevails.”

Uncertainty is the imperfection described here, and it arises from not
knowing if an element belongs in a set or to another. On the contrary,
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imprecision comes from not knowing the degree of an element belonging in a
set (i.e. the lack of sharp boundaries).

Several data models have been proposed to handle uncertainty and im-
precision, and most of them are based on the same paradigms. Imprecision
is generally modeled with fuzzy sets, and uncertainty with fuzzy measures.

The theory of fuzzy sets, introduced by Lotfi A. Zadeh in 1965 [23], is an
extension of the notion of classical sets, allowing elements to have degrees of
membership, not just the binary terms of belonging and not-belonging. As
said, it has been widely used to represent imprecision.

Uncertainty, on the other hand, is generally addressed by the theory of
fuzzy measure, which indicates the degree of evidence or certainty that a
particular element belongs in the set. Three special cases of fuzzy mea-
sure theory have been widely studied: evidence theory, possibility theory
and probability theory. Historically, the last one has been by far the most
employed in literature.

The approach we will describe in the next section lies within this gen-
eral framework —dealing with imprecision by means of fuzzy sets, and with
uncertainty by employing probability. This representation is general enough
to allow its application to several problems and domains, and can be easily
understood and implemented.

The work by Kriegler and Held [12], while solely focused on dealing with
global warming, presents another alternative to deal with both uncertainty
and probability by means of p-boxes and belief functions. However, that
models lack the generalization to any domain and the simplicity that our
work aims to.

We can also find in the literature the concept of the probability of a fuzzy
event. It was Zadeh [24] who proposed it. Yager has also addressed the issue
in [22] proposing a new definition of this probability. However, the problem
of establishing a theory of probability for fuzzy events still remains an open
one [19].

Because of this lack of well-definition we do not follow this approach in
the present paper. We aim for a well-defined framework of representation
that fuzzy probabilities cannot yet offer. However, we hope this formalism
to become a solid one in the near future, providing a new tool for representing
both imprecision and uncertainty simultaneously.
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4. Our proposal: Frequent Correlated Trends

So far in this paper we have explained the kind of problem we want to
address, and have introduced the concepts of data series and imperfect infor-
mation. In this section, we propose and describe a new model for representing
imperfect behaviors —concretely uncertain and imprecise— that come in the
form of multivariate data series. That kind of behaviors are widely found in
real-life problems. The model represents underlying local trends in the data
in an easy and effective way, without a complicated formalism. We also
describe the corresponding learning algorithm.

The representation presented in this paper, Frequent Correlated Trends,
is related with Concept learning [14, chapter 2] in the sense that both aims
to achieve a minimum representation for a concept, in our case, a behavior.
Both formalisms try to summarize a particular behavior, simplifying its orig-
inal representation but saving the specific attributes that differentiates that
behavior from any other.

In order to apply our model and algorithm, the following three hypothesis
with respect to the data are assumed:

• The series of data contain one or several recurrent patterns. Those
patterns will be the ones we will try to identify.

• If a certain pattern was observed in the past, it will eventually happen
again in the future.

• The data series are long enough for the information obtained from them
to be representative. The longer the data series is, the more accurate
the representation.

4.1. Representation model

The mathematical model of our proposal is as follows. First, let T be
an ordered set. We define a behavior X as a multivariate data series with
observations at points of T . Each observation xi ∈ X (at a point i ∈ T ) is
a vector of n scalars that takes values from a domain Un. Each component
d ∈ D, with |D| = n, is considered a dimension or point of view of the
behavior X ; Xd is the univariate series4 of component d, and its domain is
defined by the d -th component of Un.

4Note that a multivariate data series can be seen as a set of several univariate data
series with values at the same points of an indexing variable.
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In an ideal situation, we would have very precise measurements for each
xi, and any repetition X ′ of a behavior X would be identical. In practice,
it is hardly the case. We cannot fully rely on the observations as their
accuracy is not guaranteed. In fact, what we usually have are approximated
series of values derived from imprecise measurements. Nevertheless, there
are some commonalities between several instances of behaviors, as we are
able to identify repetitions of them.

Because most behaviors are inherently imprecise and changing, it is manda-
tory to employ a representation model capable of handling these imperfec-
tions, as we have seen in former sections. This fact does not imply any
constraints. More on the contrary, it appraises the general case which is
actually the most common one.

Therefore, as several repetitions of the same pattern are not identical,
it is not feasible to learn a deep model about a behavior, i.e. to learn rules
mapping specific patterns to each behavior. The alternative we propose is to
take a more global perspective of a behavior by trying to capture its essential
(and recurrent) patterns. To deal with the imprecision in the observations,
we propose to use a contour segmentation as a way to capture the structure
of a behavior. This is also the alternative that other researchers take [8, 10].

Our approach for dealing with the identification of behaviors is based on
the acquisition of frequent correlated trends that characterize each particular
behavior to be identified. Specifically, these trends model the relationships
between structural patterns in a reference dimension, and patterns in other
dimensions. Notice that correlated trends are not trying to characterize the
behavior with respect to an expected global value.

It is important to note here that we focus on the computational represen-
tation of the observations that came from several sensors, regardless of which
ones they are. Therefore, our approach is independent of the technologies
used to collect the information.

For illustrative purposes we will present a concrete example about weather
(see Section5.2), along with the formal description, in order to clarify con-
cepts and procedures regarding the method and model. In particular, we will
focus on the weather in a given area, which can be understood as a behavior.
One of the most common ways of representing these data is by means of a
series of observations at different time instants (T = time). The model we
propose in this paper is indeed appropriate for modeling this phenomenon
because the exact values are not really important and the repetitions are not
exactly the same.
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Therefore, the behavior X will be the weather in a given area, and it is
described as a set of observations xi, i ∈ {1 · · ·15}. Each observation xi has
three components corresponding to three (n = 3) aspects of the weather at
that point i. The set of those aspects is D = {temperature, precipitations,
wind speed}, and the concrete values of the observations xd

i for each dimension
d ∈ D are the following5:

X temperature = {19, 21, 21, 25, 23, 22, 19, 17, 21, 22, 22, 18, 19, 22, 24}
Xprecipitations = {98, 102, 110, 93, 95, 71, 67, 52, 63, 75, 80, 95, 72, 104, 98}

Xwindspeed = {7, 6, 1, 3, 4, 7, 11, 15, 14, 7, 9, 11, 9, 9, 7}

4.2. Learning algorithm

In order to transform real data to the frequent correlated trends formal-
ism, a learning algorithm is necessary. In the rest of this section, we describe
the process and discuss how we do such transformation. Algorithm 1 sum-
marizes the process.

As previously said, our representation aims to describe a behavior X in
terms of the relationships between patterns from a reference dimension I ∈ D
and patterns from the rest of dimensions of X . Patterns in XI will be used
to index repeating patterns in other dimensions. In other words, patterns in
series Xd, d 6= I will be related with those in XI .

In most behaviors, the selection of I is clear by the semantics of the
domain and does not represent a problem. In the case of not knowing which
series is appropriate to use as reference, the correlations between dimensions
should be studied and the dimension with a greater number of correlations
with the rest should be selected. This way, we tend to maximize the amount
of correlated patterns. In fact, this might very well be the way to proceed
in all cases; however, using the semantics can clarify the representation in
many domains.

It should be noted here that, although we have defined X as being indexed
by T , this dimension is not a choice for I, because T is an ordered set and thus
no patterns can arise from its consecutive values, apart from the monotone
growth. Also, T /∈ D.

5As our method is aimed for behaviors with a large number of observations, it will not
be able to get any meaningful information from these data. However, as an illustrative
example of the process, we will employ this reduced number.
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Algorithm 1 General Learning algorithm for Frequent Correlated Trends

Definitions:
T ⊂ R is an ordered set
X is a behavior described as a multivariate series indexed by T
D is the set of dimensions of X
n is the cardinality of D
Xd is the univariate series with only observations from dimension d
s is the number of observations for each segment
Ps is the set of indexing patterns of size s
Qs is the set of qualitative shapes size s

Algorithm:
Select a reference dimension I ∈ D
Tag each interval in XI with a value from {a, d, e}, obtaining X ′I

Segment X ′I in groups of size s
Tag each of those segments with an element from Ps, obtaining X I

for all dimensions d ∈ D, d 6= I do
Calculate X̄d as the average value of observations of Xd

Transform each observation xd
i ∈ Xd as follows:

if xd
i ≥ X̄d then

x′d
i ← +

else
x′d
i ← −

end if
Segment X ′d in groups of size s
Tag each of those segments with an element from Qs, obtaining X d

for all p ∈ Ps do
Count the number of simultaneous occurrences of p in X I and q ∈ Qs

in X d

Build a probability distribution for Qs given p from those values
end for

end for
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The next step consists of transforming the reference series XI using a
simple contour criteria. Two consecutive (imperfect) observations form an
interval. If we consider just the directions of the intervals, three options
are available: (a)scending, (d)escending and (e)qual. Each interval in the
reference series XI is then tagged with one of these three options.

At this point, we have to decide the size s of patterns. Small pat-
terns are preferred because they are more easily found in the series. The
longer the pattern is, the more difficult it is to find occurrences. We de-
fine the set of indexing patterns of size s, Ps, as the set of all permuta-
tions with repetitions of size s − 1 of elements from {a, d, e}. If groups of
three values (i.e. two intervals) are considered, nine different patterns arise,
P3 = {aa, ad, ae, da, dd, de, ea, ed, ee}.

We then segment the indexing series XI in groups of size s and tag each
group with the corresponding indexing pattern from Ps. We will obtain a
new series X I . To do so, we propose to use a sliding window of s consecutive
observations that moves in steps of one.

Following with our example, we will select temperature as the indexing
dimension I, because we would like to relate patterns in dimensions precipi-
tations and wind speed with those in temperature. We aim to obtain relations
such as: ”65% of the times, when the temperature rises in two consecutive
days, the second day it rains more than the first”. Once selected, the seg-
mentation of that series will take place as formerly described, obtaining X I .
In summary, X temperature is transformed into X ′I and after into X I :

X temperature = {19, 21, 21, 25, 23, 22, 19, 17, 21, 22, 22, 18, 19, 22, 24}
X ′I = {a, e, a, d, d, d, d, a, a, e, d, a, a, a}
X I = {ae, ea, ad, dd, dd, dd, da, aa, ae, ed, da, aa, aa}

Similarly, the rest of data series Xd(d ∈ D, d 6= I) conforming the be-
havior X are transformed by employing a qualitative binary transformation
in the following way: each value xd

i is compared to the average value X̄d in
the behavior, and it is transformed into a qualitative value where + means
‘the value is higher than or equal6 to the average’, and − means ‘the value
is lower than the average’.

6In our current model, we have arbitrarily decided to include equal values in the + set.
However, another qualitative value, namely =, could be used to distinguish between those
values that are greater than the average and those which are equal (or almost equal).
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Note here that if the behavior can be described by a finite series, the
average value (a vector with the average values for each component) can be
easily computed with the usual formula:

X̄ = 1/N ·
∑

1≤i≤N

xi

Otherwise, the average can be calculated incrementally. However, an
initial estimation of it (by any means) would be required. In this situation
the average value is different depending on the position of the observation
been calculated, but tends to become stable as more values are computed.

In our example, we will proceed to transform series precipitations and
wind speed. To do so, we first calculate the average value for those series
using all available observations. Those average values are 85 mm and 8 mph,
for precipitations and wind speed respectively. We will then compare all
values in xprecipitations with 85 and transform them to + if the value is greater
than or equal to 85, and to − if lower. We do the same process with xwindspeed,
obtaining the following series:

Xprecipitations = {98, 102, 110, 93, 95, 71, 67, 52, 63, 75, 80, 95, 72, 104, 98}
X ′precipitations = {+,+,+,+,+,−,−,−,−,−,−,+,−,+,+}

Xwindspeed = {7, 6, 1, 3, 4, 7, 11, 15, 14, 7, 9, 11, 9, 9, 7}
X ′windspeed = {−,−,−,−,−,−,+,+,+,−,+,+,+,+,−}

Being s the size of the segment and r the number of different qualitative
values, there are rs possible resulting shapes. In the current example, since
we are segmenting the series in groups of three observations and using two
qualitative values, eight (23) different patterns may arise. We note these
possibilities as Q3 = {−−−,−−+,−+−,−++,+−−,+−+,++−,+++}.
We then segment the precipitations and wind speed series in groups of three
observations and tag these groups with patterns inQ3, obtaining X precipitations

and Xwindspeed respectively:

X precipitations = {+++,+++,+++,++−,+−−,−−−,−−−,
−−−,−−−,−−+,−+−,+−+,−++}

Xwindspeed = {− −−,−−−,−−−,−−−,−−+,−++,+++,

++−,+−+,−++,+++,+++,++−}
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Once we have transformed and tagged all the series, we can represent
them with the frequent correlated trend formalism. A frequent correlated
trend for a given point of view d ∈ D of a behavior X is represented by
a set of discrete frequency distributions for that given dimension d. Each
of these frequency distributions represents the way patterns in X d behaves
with respect to indexing patterns in Ps. In other words, we have a frequency
distribution for each element in Ps.

To populate the representation of a particular behavior X and dimension
d, we take advantage of the tagging already performed over the observations.
We construct a histogram for each indexing pattern p ∈ Ps. Histograms
have a bin for each element q ∈ Qs, and are constructed by calculating the
percentage of points i ∈ T where X I

i = p and X d
i = q. These histograms

can be understood as discrete probability distributions of Qs given p. Thus,
frequent correlated trends capture statistical information of how a certain
phenomenon behaves. Combining frequent correlated trends from different
dimensions of a behavior, we improve its representation.

Figure 1 shows, for a given dimension d and indexing pattern p, the
discrete probability distribution obtained from four behaviors. We can see
that there are eight bins, corresponding to the elements in Q3. The figure
indicates how different behaviors tend to behave against the pattern p.

We can observe that samples are not equally distributed. For instance,
Behavior 1 has a higher propensity to extend the values (see + + +) while
an opposite behavior can be observed for Behavior 2 (see its values for the
two left qualitative shapes).

If Figure 1 were from our weather example, it could show how the weather
in four different locations behaves. In particular, it could show for a pattern
p in temperature (let’s say consecutive increments in temperature: p =
aa, d = temperature), how a certain aspect of the weather (for instance,
precipitations) statistically behaves. Therefore, at location 1, consecutive
increases in temperature would imply increasing precipitations; whereas at
location 2, an opposite behavior would be the norm.

4.3. Computing distance among behaviors

In many occasions, the final goal of representing behaviors is their pos-
terior identification and classification. If that is the case, behaviors —which
we describe as a collection of frequent correlated trends— are used as the
patterns to compare with when a new instance is presented to the system.
Each behavior can then be viewed as a point in a space of dimensionality
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Figure 1: Example of the representation of four different behaviors for a given dimension
d and indexing pattern p. Each bar shows the % of occurrence of the corresponding
shape in dimension d, within all occurrences of p in the whole behavior. In terms of our
weather example, this figure could show how precipitations behave against a given pattern
of temperatures (let’s say two consecutive days of rising temperatures). We could see
then that in Behavior 1 there is a higher probability of more rain than usual, whereas in
Behavior 2 we have the opposite behavior.
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n · |Ps| · |Qs|, where n is the number of dimensions in the behavior; |Ps| is
the cardinality of the set of indexing patterns; and |Qs| is the cardinality
of the set of qualitative shapes for representing the rest of series. In that
case, the usual hypothesis is that similar patterns tend to be close in the
representation space.

As the reader can observe, this representation tends to have a high di-
mensionality. This fact can be a source of problems if the number of samples
is not large enough. Due to the so-called curse dimensionality (that is, the
exponential growth of the space as a function of dimensionality), multivari-
ate spaces of increasing dimensionality tend to be sparse. For that reason,
if frequent correlated trends are to be used for learning and classification, it
is mandatory to study the dimensionality of each concrete problem and the
number of available samples. If these samples are not enough, it might be
necessary to reduce the dimensionality of the model by means of any feature
extraction mechanism.

In any case, to compare different behaviors, a distance measure is re-
quired. As an illustrative example, we propose in this paper a simple one
based on Manhattan distance. It is described in the following lines.

The distance dXY between two behaviors X and Y (represented with
the frequent correlated trend formalism), is defined as the weighted sum of
distances between the frequency distributions of each structural pattern:

dXY =
∑

p∈P
wp

XY · dist(pX , pY ) (1)

where P is the set of the different structural patterns considered; dist(pX , pY )
measures the distance between two frequency distributions (see (3) below);
and wp

XY are the weights assigned to each pattern. Weights have been intro-
duced for balancing the importance of patterns with respect to the number
of times they appear. Frequent patterns in the indexing series are considered
more informative due to the fact that they come from more representative
samples. Weights are defined as the mean of cardinalities of respective his-
tograms for a given pattern p:

wp
XY = (Np

X +Np
Y )/2 (2)

Mean value is used instead of just one of the cardinalities to assure a
symmetric distance measure in which wp

XY is equal to wp
Y X . Cardinalities
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could be different because the data series of different instances of a behavior
could have different cardinality.

Finally, distance between two frequency distributions is calculated by
measuring the absolute distances between respective patterns:

dist(u, v) =
∑

q∈Q
|uq − vq| (3)

where u and v are two frequency distributions for the same pattern; and Q
is the set of all possible values they can take.

When several dimensions (i.e. points of view of a behavior) are considered,
we propose to simply aggregate the individual corresponding distances.

4.4. Computational complexity

As previously indicated, our formalism requires a finite amount of memory
to represent a behavior described by any multivariate data series. This is an
important fact because data series tend to be very long and often infinite.

In particular, the complexity in memory of our representation is propor-
tional to n · |Ps| · |Qs|, where n is the number of dimensions in the behavior;
|Ps| is the cardinality of the set of indexing patterns; and |Qs| is the cardi-
nality of the set of qualitative shapes for representing the rest of series. This
size is fixed for each problem and it is totally independent of the length of
the series.

Following with our example, n = 2, s = 3, |P3| = 9 and |Q3| = 8.
Therefore, a behavior in our weather example would be a point in a space of
dimensionality 144, the result of 2 · 9 · 8.

As indicated in the introduction, building the representation has linear
complexity in time. Not in vain, we can tag and transform values as they
appear —or with a minimum delay due to the size of the sliding window. As
the formalism of frequent correlated trends corresponds to sets of discrete
probability distributions, they can be populated incrementally without any
problem.

5. Potential domains of application

The model (Frequent Correlated Trends) that we have described so far in
this paper, for representing behaviors that come as imprecise and uncertain
data series, can be used in several domains. We will describe three of them
to exemplify the possibilities, but many others may be suggested (see the
Introduction).
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5.1. Music Performance

It is a fact that, in music performances, musicians do not play exactly
what is written in the score. They deviate from it and enrich the perfor-
mances with tempo, dynamics and tuning deviations. These small deviations
are not always identical, neither exact, and they are not explicitly encoded
in the score. Even when a performer try to play several times the same way,
they cannot exactly achieve it.

Research on expressive music performance has traditionally focused on
the analysis of score representation. Nevertheless, the advances on audio
content analysis and description have enabled the study of music performance
by directly analyzing audio recordings of professional musicians. But due to
the fact that the transformation from audio signal to symbolic representation
is not accurate (current feature extraction tools are far from being perfect),
some unavoidable imperfection is added to the information. In other words,
the measurements are no longer reliable and we need a representation capable
of dealing with this fact.

From a computational point of view, a music performance can be de-
scribed as a series of notes (events). Each one of these notes can be defined
by several parameters such as length and volume. Therefore, a music per-
formance can be expressed as series of (imprecise) observations in several
dimensions, which is the kind of representation that our model requires as
input.

The way of playing a musical piece is then a problem in which Frequent
Correlated Trends can be applied. In fact, that was already done in [15]
showing that good results can be achieved despite very limited information.

In that study, we departed from audio recordings of music performances.
These recordings were transformed into sequences of notes with pitch, dura-
tion and energy attributes. Therefore, three data series (pitch, duration and
energy) were used to represent each performance. The pitch series was used
as an index for the other two. A melodic contour criterion was used as a way
to identify the basic shapes of 3 notes within those series. In other words, we
located within the pitch series the nine possible shapes that can be produced
with combinations of ascending, descending and null intervals.

Most works in performer identification rely on annotated information or a
score. However, our approach only requires an audio signal, because frequent
correlated trends are able to deal with all the imprecision and uncertainty
inherent to those data.
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The feasibility of this representation was shown for a dataset of mono-
phonic violin recordings from 23 well-known performers. Given an audio
recording of a musical piece as input, the system was able to recognize the
violinist playing that piece better than chance level and, probably, human
experts. In particular, the system achieved a success rate of 20% in the worst
case (outperforming the 4.3% of a random classifier), and higher than 50% if
7 trials were allowed (random classifier out of 23 possible answers would only
get 30%). The interested reader should refer to [15] for more information on
those experiments and results.

5.2. Weather

Modeling and forecasting the weather in an area is far from being a new
problem. For many years scientists have tried to build better representa-
tion models for the weather with the aim of providing new tools to predict
the weather in the following days, weeks or years [12]. The importance of
accurate predictions is based on the great socio-economic impact they have.

We can understand the weather in a given area as a behavior that has a
particular set of characteristics. These allow us to distinguish among weath-
ers at different locations. One straightforward way of representing such in-
formation is by means of data series. In that case, the weather in an area
can be described as a set of measurements from several variables such as
temperature, air pressure, relative humidity, precipitations, wind speed, and
so on.

We propose to use our Frequent Correlated Trend model to represent
the weather in an area during a long period. The current representation of
weather as multiple series of data can be used to populate our model, and
we have already shown how by means of the example in this paper.

Frequent Correlated Trends would aim to find relations between variables
such as the followings: ”65% of the times, when the temperature rises in two
consecutive days, the second day it rains more than the first”, or ”when the
temperature is stable for two days and the first day is sunny, the second day
will be sunny 80% of the times”.

5.3. Rehabilitation

Medicine has historically benefited from new technologies and advances
on the field of Computer Science. Not in vain, many researchers have found
in Medicine a great area of application for their new developments, being
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the outcomes of this synergy generally huge and of great importance for the
people.

In particular, one area in which computers can be applied with great
success is rehabilitation. As monitoring is an essential task, a great deal
of observations is available. A better comprehension of medical data is a
must for improving medical effectiveness, and good data models to represent
certain injuries are also welcome. Databases and data-mining allow to handle
all that information in easy ways and can provide additional tools to interpret
those data.

Doctors collect many data from patients in order to assess whether an
injured joint (e.g. a knee) is currently fine, or need further rehabilitation. If
repeated patterns between graphs belonging to different patients with the
same complaint are discovered, a proper representation model can then be
used as an aid for early detecting such complaints. Therefore, detecting those
patterns is a very useful task for monitoring injuries, discovering fraudulent
sicknesses, and early detection of potential injuries [2].

We aim at using Frequent Correlated Trends to represent the evolution
of an injured joint. We aim to be able to describe the movements the joint
is doing, and classify them in different categories according to the degree of
injury and the rehabilitation needed.

A joint can be monitored by means of different sensors, and several data
series from its behavior can be obtained. Again, these series can be trans-
formed into the representation we have described in this paper, providing a
new approach for modeling the performance of an injured joint.

6. Conclusions

Many phenomena in the real world can be understood as behaviors, be-
cause they follow some rules and behave in characteristic ways. The compu-
tational representation and classification of them is a task of great interest for
researchers in behavioral sciences as they are in continuous need of new tools
and methods to represent, summarize and understand behaviors of growing
complexity.

Data series are one of the representations with increasing importance
lately. They are defined as an ordered sequence of data at given intervals of
an indexing variable (e.g. time). Because of that, behaviors in many domains
can be defined as imprecise and uncertain multivariate data series.
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Although the problem of representing imperfect data has been addressed
many times in the past, the lack of a general and universal solution obligates
to build ad-hoc solutions for different problems. For that reason, there is still
a need to find new solutions and models to represent such information.

Our proposal, which assumes that some kind of commonality exists among
several instances of the same behavior in a given phenomenon, represents
those imperfect data series as a set of probability distributions. To do so,
it first transforms the imperfect observations into qualitative values. Then,
it selects a dimension of the behavior and uses it to look for correlations
with the rest of dimensions. These correlations are expressed as discrete
probability distributions.

The main advantage of our method is that it employs a finite and constant
representation in size for behaviors, regardless of their length. It allows for
an incremental representation of the observations until a particular moment.

On the other hand, the main limitation of our model is that it is incapable
of explaining the predictions it makes. Additionally, as the method is aimed
for long series, its best performance is achieved when a large number of
observations is available.

The feasibility of the model was shown in the domain of music perfor-
mances. Experiments showed that this representation allows to identify vi-
olinists in a dataset of monophonic violin recordings from 23 well-known
performers.

6.1. Further work

The first line of further work consists of applying the Frequent Correlated
Trend model to different domains to test their feasibility. Some of them
has been described here as illustrative examples, but many others can be
candidates.

Besides that, we plan to try other fuzzy measures apart from probability
theory (specifically possibility theory). Not in vain, both probability and
possibility theories are suitable for modeling uncertainty, but each one excels
in different types. As our framework aims to be a general one, it should
address uncertainty in all their varieties. Obviously, for each problem it has
to be decided which theory is more appropriate to represent the semantics
of the observations.

A different issue would be to study the distance measure appropriate
for each domain. We have defined in this paper a very simple one, but
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many others distance measures could be proposed to better account for the
particular semantics of different applications.
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Abstract. Understanding the way performers use expressive resources of a given instrument to communicate with the audience
is a challenging problem in the sound and music computing field. Working directly with commercial recordings is a good
opportunity for tackling this implicit knowledge and studying well-known performers. The huge amount of information to be
analyzed suggests the use of automatic techniques, which have to deal with imprecise analysis and manage the information
in a broader perspective. This work presents a new approach, Trend-based modeling, for identifying professional performers
in commercial recordings. Concretely, starting from automatically extracted descriptors provided by state-of-the-art tools, our
approach performs a qualitative analysis of the detected trends for a given set of melodic patterns. The feasibility of our
approach is shown for a dataset of monophonic violin recordings from 23 well-known performers.

1. Introduction

The advances in digital sound synthesis and computational power capabilities have allowed to provide
real-time control of synthesized sounds. Expressive control becomes then a relevant area of research and
a key challenge in the sound and music computing field [26].

According to Serra et al. [23], music performance is a complex activity that involves complementary
facets from different areas such as acoustics, psychology and creativity. In this sense, the research in this
field has a multidisciplinary character, ranging from studies that try to understand expressive performance
to attempts at modeling performance aspects in a formal, quantitative and predictive way. One of the
relevant research questions in this area is the modeling and identification of a given player or a playing
style by analyzing a set of performances.

In this interdisciplinary research field, musical expressivity can be approached from different perspec-
tives. One of them is the musicological analysis of music and the study of the different stylistic schools.
This approach provides a valuable understanding about musical expressivity.

Another perspective related to the present article is the computational modeling of music performance
analyzing music recordings. This analysis can be performed on a set of pieces specifically recorded for
the intended study and related to the performance aspect we want to analyze, where specific expressive
resources are emphasized. An alternative approach is to directly use commercial recordings for the
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analysis of expressivity. This approach has several advantages: there are many recordings available (and
some performers may have several ones); the performances are ‘real’ and gather the decisions taken by
the performers without any external influence.

Nevertheless, working with commercial recordings has a drawback: these recordings do not come
from a controlled scenario and the sound analysis may become more difficult. Our claim is that the
advantages of working with commercial recordings overcome the drawbacks. Specifically, if a sufficient
amount of data is available, we can take advantage of data-intensive techniques that both soft computing
and machine learning fields provide.

In this paper, we focus on the task of identifying violinists from their playing style using descriptors
that are automatically extracted from commercial audio recordings by means of state-of-the-art tools.
First, since we consider audio excerpts from quite different sources, we assume a high heterogeneity in
the recording conditions. Second, as state-of-the-art audio transcription and feature extraction tools are
not 100% precise, we assume a partial accuracy in both the melodic transcription and feature extraction.
In this research we are only dealing with monophonic violin recordings.

Taking into account these constraints, our proposal identifies violin performers through capturing their
general expressive footprint with the following three stage process: (1) a higher-level abstraction of the
automatic transcription that focuses on the melodic contour; (2) melodic segments tagged according
to the E. Narmour’s Implication/Realization (IR) model [15]; and (3) the characterization of the way
melodic patterns are played as a set of frequency distributions.

The rest of the paper is organized as follows: Section 2 describes related work on the field of expressive
music performance and performer’s identification. In Section 3 we present the data collection being
used. In Section 4, we describe the proposedTrend-Based modeland the developed system, including
data gathering, representation of recordings and distance measurement. In Section 5, some experiments
to validate our approach are proposed and their results are described. The paper concludes with final
considerations and pointing out future work in Section 6.

2. Related work

It is a clear fact that, in music performances, musicians do not play exactly what is written in the score.
They deviate from the score and enrich the performance with tempo, dynamics and tuning deviations.
There is an extensive literature on the analysis and modeling of music performances, focusing on different
instruments and using different methodologies. Juslin et al. [11] propose a model that characterizes this
variability in terms of four different sources: generative rules related to the musical structure; the
emotional expression decided by the performer; random variations; and movement principles. In our
research we are interested in capturing the variations due to the emotional expression and the performer’s
analysis of a piece.

Lopez de Mantaras et al. [3] studied the expressiveness of some computer music systems based on
artificial intelligence techniques and related it with the expressiveness of human-performed music. Re-
search on expressive music performance has traditionally focused on the analysis of score representation.
Nevertheless, the advances on audio content analysis and description (see [6] for a recent overview) allow
the study of music performance by directly analyzing audio recordings of professional musicians. These
performer’s variations have been modeled by applying machine learning techniques.

Related to the piano, Dovey [4] outlined an attempt to use inductive logic programming to determine
various interpretative rules that pianist Sergei Rachmaninoff may have used during his pianoforte per-
formances in an augmented piano. The goal was to determine general rules (in the form of universal
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predicates), concerning duration, tempo and key pressure, that underlie the way Rachmaninoff played
the songs.

Relevant work on automatic piano performer identification has been carried out by the group led by
Gerhard Widmer. Their research is based on acquiring a performance model via inductive learning and
data mining techniques applied on a huge corpus of precisely manually measured performances. To cite
some results, in [27] they applied an inductive rule learning algorithm to find general rules of music
performance, while in [24] they propose a set of simple features for representing stylistic characteristics
of piano music performers. In our approach, we do not require the availability of an annotated corpus. An
interesting contribution is the paper by Goebl [5], where he focused on finding a ‘standard performance’
by exploring the consensus among different performers.

In a recent work, Saunders et al. [22] represent pianists’ performances as strings with information
related to changes in tempo and loudness. Finally, they useSupport Vector Machinesto identify the
performer of new recordings.

Hong [10] investigated expressive timing and dynamics in recorded cello following an empirically
perspective. He took the work by Todd [25] as a departure point, extending and testing it with some
commercial recordings by famous cellists. Sapp’s work [21] should also be cited as an interesting
proposal for representing musical performances by means of scape plots based on tempo and loudness
correlation.

Ramirez et al. [19] focused on saxophone recordings and studied deviations of parameters such as pitch,
timing, amplitude and timbre, both at an inter-note level and at an intra-note level. They further extended
the system to identify performers in Celtic violin recordings [20] and to the analysis of ornaments in
bassoon recordings [18].

An alternative approach to inductive learning is the use of case-based reasoning (CBR) techniques.
CBR is a lazy learning technique that, instead of building a general model from the existing examples,
uses directly the examples to construct a solution for new problems. Examples of systems that deal with
music performance using a CBR approach are SaxEx and TempoExpress systems. SaxEx [1] is a system
capable of generating high-quality expressive solo performances of jazz saxophone ballads based on
examples of human performers. TempoExpress [9] performs expressivity-aware tempo transformations
of saxophone jazz recordings.

3. Musical data

We have chosen to work with Sonatas and Partitas for solo violin from J.S. Bach [13]. Sonatas and
Partitas for solo Violin by J.S. Bach is a six work collection (three Sonatas and three Partitas) composed
by the German musician. It is a well-known collection that almost every violinist plays during their
artistic life. All of them have been recorded many times by several players. The reason of using this
work collection is twofold: 1) we have the opportunity of testing our model with existing commercial
recordings of the best known violin performers, and 2) we can constrain our research on monophonic
music.

In our experiments, we have extended the musical collection presented in [17]. We analyzed music
recordings from 23 different professional performers. Because these audio files were not recorded for
our study, we have not interfered at all with players’ style at the performance [12]. For the experimental
results presented in this paper, we used three different movements: the Second and the Sixth movements
of Partita No. 1 (both aDouble) and the Fifth movement of Partita No. 3 (Bourrée). These three
movements are quite interesting for initial experiments because most of the notes are eighth notes,
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Table 1
Performers analyzed in the experiments

Ara Malikian Jacqueline Ross Rachel Podger
Arthur Grumiaux James Ehnes Sergiu Luca
Brian Brooks Jascha Heifetz Shlomo Mintz
Christian Tetzlaff Josef Suk Sigiswald Kuijken
Garrett Fischbach Julia Fischer Susanna Yoko Henkel
George Enescu Lucy van Dael Tanya Anisimova
Itzhak Perlman Mela Tenenbaum Yehudi Menuhin
Jaap Schroder Nathan Milstein

leading us to acquire a model based on many homogeneous segments. The scores of the analyzed pieces
are not provided to the system.

Table 1 shows the list of the 23 professional violinists used in our study. From the list, it can be stated
that there is a variety of performing styles. Moreover, some of them are from the beginning of the last
century while others are modern performers currently active. Violinists like B. Brooks, R. Podger, and
C. Tetzlaff play in a Modern Baroque style; whereas violinists like S. Luca, S. Mintz, and J. Ross are
well-known for their use of d́etach́e.

We also included two recordings that are clearly different from the others: G. Fischbach and T.
Anisimova. G. Fischbach plays with a sustained articulation. T. Anisimova is a cellist and, then, the
performance is clearly very different from the others.

4. Trend-based modeling

Because we are using state-of-the-art feature extraction tools and we do not manually process the
information we collect, it is not feasible to learn a deep model about each violin performer, i.e. to learn
rules mapping specific musical concepts to expressive resources. From one side, we cannot perform
a confident musical analysis from the (approximate) score provided by the extraction tools. On the
other side, without a high precision in identifying note attacks, we know that the accuracy of expressive
features is not guaranteed.

The alternative is to take a more global perspective of a performer by trying to capture their essential
(and recurrent) expressive decisions. For instance, playing in a romantic articulation will affect note
durations and will produce characteristic energy envelopes. Additionally, the use ofritardandoproduces
local changes in note durations and energy strengths.

These expressive decisions are somehow related to the musical analysis each violinist performs of
the written score. Nevertheless, we do not have the real score (that one on the music sheet), but only
an approximated score derived from the audio. We propose to use a melodic contour segmentation
as a way to capture the musical structure of the piece. As most of automatic melody segmentation
approaches, we will perform note grouping according to a human perception model. Different levels of
abstraction have been proposed for melodic contour analysis. In [7], the advantages and drawbacks of
using different abstraction levels have been presented and the Implication/Realization (IR) model [16]
has demonstrated the best performance because its capacity of summarizing melodic and rhythmic
information. Specifically, the IR model proposes some basic melodic patterns that will be used as an
approximation of the local structure of a piece. Moreover, IR model allows a melodic analysis in terms
of melodic intervals and relative durations, i.e. precision on score extraction is not critical. Furthermore,
in Section 5.3 we show how Narmour’s model outperforms the results of a simple contour-based model.
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Then, our approach for dealing with the identification of violin performers is based on the acquisition
of trend modelsthat characterize each particular performer to be identified. Specifically, a trend model
characterizes, for a certain audio descriptor, the relationships a given performer is establishing among
groups of neighbor musical events. We perform a qualitative analysis of the variations of the audio
descriptors. Moreover, as we will describe in the next subsection, we analyze these qualitative variations
with a local perspective.

We use two trend models in this paper: energy and duration. The trend model for the energy descriptor
relates, qualitatively, the energy variation for a given set of consecutivenotes, and it is related to dynamics.
On the other hand, the trend model for duration indicates, also qualitatively, how note durations change
for note sequences. Duration is related to articulation and timing. Notice that trend models are not trying
to characterize the audio descriptors with respect to an expected global behavior.

Given a musical recording of a piece as input, the trend analysis is performed by aggregating the
qualitative variations on their small melody segments. Thus, previously to build trend models, input
streams are broken down into segments.

Our system has been designed in a modular way with the intention of creating an easy extendable
framework. We have three different types of modules in the system: 1) the audio feature extraction and
segmentation modules; 2) the trend analysis modules; and 3) the identification modules. Moreover, the
system may work in two different modes: training and testing. Modules from (1) and (2) are used in both
modes. Modules from (3) are only used in the testing mode. Figure 1 shows a diagram of the system
modules. On top, audio files in.wavformat as input.

At the training stage, the goal of the system is to characterize performers by extracting expressive
features and constructing trend models. Next, at the identification stage, the system analyzes the input
performance and looks for the most similar previously learned model. The training process is composed
of three main steps: 1) the extraction of audio descriptors and the division of a performance in segments;
2) the tagging of segments according to IR patterns; and 3) the computation of probabilistic distributions
for each IR pattern and descriptor (trend generation).

4.1. Feature extraction and segmentation

The first step consists on extracting audio features. Our research is not focused on developing new
methods for extracting audio features, so that we employ existing techniques. At the moment, we
consider fundamental frequency and energy, as these are the main low-level audio features related to
melody. These features are then used to identify note boundaries and to generate melodic segments. The
current version of our system uses the fundamental frequency estimation algorithm proposed in [2]. This
module provides a vector with instantaneous fundamental frequency and energy values computed every
0.01 seconds.

We have developed a post-processing module for determining the possible notes played by the per-
formers. This module first converts fundamental frequencies into quantized pitch values, and then a pitch
correction procedure is applied in order to eliminate noise and sudden changes. This correction is made
by assigning to each sample the value given by the mode of their neighbors around a certain window of
sizeσ. When some notes are played together we only take into accountthe one with more energy.

With this process, a smooth vector of pitches is obtained. By knowing on which frames pitches are
changing (i.e. consecutive values are different), a note-by-note segmentation of the whole recording is
performed. For each note we collect its pitch, duration and energy.

We assume that there might be some errors in this automatic segmentation, given the heterogeneity
of recording conditions. Our approach for dealing with this problem consists of using a more abstract
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Fig. 1. Architecture of the system.

representation that the real notes, but still close to the melody. That is, instead of focusing on the absolute
notes, we are interested in modeling the melodic surface. We use the Implication/Realization model to
perform melodic segmentation.

4.1.1. The implication/realization model
The Implication/Realization (IR) Model proposed by Eugene Narmour [15,16] is based on a perceptual

and cognitive approach for analyzing the structure of a musical piece. Gratchen et al. [8] showed in
MIREX’05 that the IR model is suitable for assessing melodic similarity. Since our goal is to characterize
expressive trends, we analyze the way different audio descriptors change in the different IR patterns.

IR model tries to explicitly describe the patterns of expectations generated in the listener with respect
to the continuation of the melody. It follows the approach introduced by Meyer [14] that applies the
principles ofGestalt Theoryto melody perception. The model describes both the continuation implied
by particular melodic intervals, and the degree to which this expected continuation is actually realized
by the following interval.

Gestalt theory states that perceptual elements are grouped together to form a single perceived whole
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Table 2
Characterization of the ten IR structures we are able to identify; in the second
column, ‘S’ denotes small, ‘L’ large, and ‘0’ a unison interval

Structure Interval sizes Same direction? PID satisfied? PRD satisfied?
P S S yes yes yes
D 0 0 yes yes yes
ID S S (eq) no yes no
IP S S no yes no
VP S L yes no yes
R L S no yes yes
IR L S yes yes no
VR L L no no yes
RP L L yes no no
RR S L no no no

Fig. 2. Ten basic structures of the IR model.

(called ‘gestalt’). This grouping follows some principles:proximity (two elements are perceived as a
whole when they are perceptually close),similarity (two elements are perceived as a whole when they
have similar perceptual features, e.g. color in visual perception), andgood continuation(two elements
are perceived as a whole if one is a ‘natural’ continuation of the other).

Narmour claims that similar principles hold for the perception of melodic sequences. In IR, these
principles take the form ofimplicationsand involve two main principles:registral direction(PRD) and
intervallic difference(PID). The PRD principle states that small intervals create the expectation of a
following interval in the same registral direction (for instance, a small upward interval generates an
expectation of another upward interval), and large intervals create the expectation of a change in the
registral direction (for instance, a large upward interval generates an expectation of a downward interval).
The PID principle states that a small (five semitones or less) interval creates an expectation of a following
similarly-sized interval (plus or minus two semitones), and a large interval (seven semitones or more)
creates an expectation of a following smaller interval.

Based on these two principles, melodic patterns can be identified that either satisfy or violate the
implication as predicted by the principles. Such patterns are calledstructuresand labeled to denote
characteristics in terms of registral direction and intervallic difference. The ten basic structures are
shown in Fig. 2. For example, the P structure (‘Process’) is defined as two or more consecutive small
intervals (of similar size) satisfying both the registral direction principle and the intervallic difference
principle. Similarly, the IP (‘Intervallic Process’) structure satisfies intervallic difference, but violates
registral direction.

Some additional structures are retrospective counterparts of the basic structures. In general, the
retrospective variant of a structure has the same registral form and intervallic proportions, but the
intervals are smaller or larger. For example, an initial large interval does not give rise to a P structure
(rather to an R, IR, or VR, see Fig. 2), but when is followed by another large interval in the same
registral direction, the pattern is a pair of similarly sized intervals with the same registral direction and
it is identified as a retrospective P structure (denoted as RP). An analogous analysis can be performed
with the R structure resulting in a new retrospective pattern (denoted as RR). Table 2 summarizes the
characteristics of all these IR structures.
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Fig. 3. IR analysis of the beginning of the Sixth Movement (Double) of Partita No. 1.

We have developed an algorithm to automate the annotation of melodies with their corresponding IR
analyses. The algorithm implements most of the ‘innate’ processes mentioned before and is able to
detect the ten different 3-note patterns described in Table 2: P, D, ID, IP, VP, R, IR, VR, RP and RR. The
algorithm uses a sliding window of three notes that moves in steps of one note. For each window, we
calculate the size and direction of the two intervals within it, and the IR structure which matches with
this 3-note group is selected. In Fig. 3 the IR analysis of the beginning of the Sixth Movement of Partita
No. 1 can be found as an example of how we tag each 3-note group.

4.2. Modeling trends

A trend model is represented by a set of discrete frequency distributions for a given audio descriptor
(e.g. energy). Each of these frequency distributions represents the way a given IR pattern is played
against that certain audio descriptor. Since we are tagging the audio segments with ten different IR
patterns, each trend model is represented by ten different frequency distributions.

To generate trend models for a particular performer and audio descriptor,we use the sequences of values
extracted from the notes identified in each segment. From these sequences, a qualitative transformation
is first performed to the sequences in the following way: each value is compared to the mean value of the
fragment and is transformed into a qualitative value where+ means ‘the descriptor value is higher than
the mean’, and− means ‘the descriptor value is lower than the mean’. Beings the size of the segment
and n the number of different qualitative values, there arens possible resulting shapes. In the current
approach, since we are segmenting the melodies in groups of three notes and using two qualitative values,
eight (23) different shapes may arise. We note these possibilities as:− − −, − − +, − + −, − + +,
+−−, +−+, ++− and+++.

Next, a histogram per IR pattern with these eight qualitative shapes is constructed by calculating the
percentage of occurrence of each shape. These histograms can be understood as discrete probability
distributions. Thus, trend models capture statistical information of how a certain performer tends to play.
Combining trend models from different audio descriptors, we improve each performer characterization.

Since our goal is the identification of violin performers, the collection of trend models acquired for
each performer is used as the patterns to compare with when a new audio recording is presented to the
system.

4.2.1. Current trends
We have generated trend models for both duration and energy descriptors as they are the low-level

descriptors more closely related with the melody. Note durations are computed as the number of samples
between pitch changes. The mean duration of each note (in samples) is obtained by dividing the total
number of samples for the whole fragment by the number of recognized notes in it (obviously taking into
account different figures). Because we have computed both the real and the expected (mean) duration
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Fig. 4. Frequency distribution of duration deviations for the P pattern in the Sixth movement of Partita No. 1. Only four
performers are shown.

for each note we can say whether a note is longer than it should be, or opposite, if it is shorter. So that,
the binary vector with qualitative deviations is built and the trend model for the duration descriptor is
obtained by matching with the identified IR structures.

Figure 4 shows, for the duration descriptor, the frequency distributions of the eight shapes in P patterns
(ascending or descending sequences of small intervals) and for four violin performers (Ara Malikian,
Arthur Grumiaux, Brian Brooks, and Christian Tetzlaff).

We observe that the way different professional performers are playing is not equally distributed. For
instance, A. Malikian has a higher propensity to extend the durations while an opposite behavior can
be observed for A. Grumiaux (see his values for the two left qualitative shapes). It should be noticed
that more exact ways of obtaining this measure could be used, as well as taking into account the attack
and release times, as other researchers do [19]. This would lead us to a more complex process that
we definitively want to avoid by now. Hopefully, we guess that our approach does not need so precise
information to identify a given performer.

We have also acquired trend models for the energy descriptor in an analogous way. The energy average
for each fragment is calculated and, given the energy of each note, qualitative deviations are computed.
Next, from these qualitative values, the trend models are constructed by calculating the frequencies of
the eight shapes for each IR pattern.

4.3. Classifying new performances

A nearest neighbor classifier is used to predict the performer of new recordings. Trend models acquired
in the training stage, as described in the previous section, are used as class patterns, i.e. each trained
performance is considered a different solution class. When a new recording is presented to the system,
the feature extraction process is performed and its trend model is created. This trend model is compared
with the previously acquired models. The classifier outputs a ranked list of performer candidates where
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distances determine the order, with 1 being the most likely performer relative to the results of the training
phase.

4.3.1. Distance measure
The distancedij between two trend modelsi andj (i.e. the distance between two performances), is

defined as the weighted sum of distances between the frequency distributions of IR patterns:

dij =
∑

n∈N
wn
ijdist(ni, nj) (1)

whereN is the set of the different IR patterns considered;dist(ni, nj) measures the distance between
two frequency distributions (see (3) below); andwn

ij are the weights assigned to each IR pattern. Weights
have been introduced for balancing the importance of the IR patterns with respect to the number of times
they appear. Frequent patterns are considered more informative due to the fact that they come from more
representative samples. Weights are defined as the mean of cardinalities of respective histograms for a
given patternn:

wn
ij = (Nn

i +Nn
j )/2 (2)

Mean value is used instead of just one of the cardinalities to assure a symmetric distance measure in
whichwn

ij is equal town
ji. Cardinalities could be different because recognized notes can vary from one

performance to another one, even though the score is supposed to be the same.
Finally, distance between two frequency distributions is calculated by measuring the absolute distances

between the respective patterns:

dist(s, r) =
∑

k∈K
|sk − rk| (3)

wheres andr are two frequency distributions for the same IR pattern; andK is the set of all possible
values they can take (in our case|K| = 8).

When both audio descriptors are considered, we simply aggregate the individual corresponding dis-
tances.

5. Experiments

The goal of the experiments was to assess the feasibility of our approach. We are aware that additional
features could be extracted from the recordings. But combining two basic features such as energy and
duration we were interested in measuring the robustness of an identification model that only captures
some basic expressive trends.

Experiments consisted in training the system with one movement and, then, testing the acquired trend
models with a different movement. We used three different movements in the experiments: the Second
and Sixth movements of Partita No. 1 (both aDouble) and the Fifth movement of Partita No. 3 (Bourrée).

Each experiment was performed using three different configurations of trend models. Specifically,
the performance of experiments was compared with only using duration-based trend models, only using
energy-based trend models, and using both trend models. Finally, we compared the results with only
using a contour-based model.
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Table 3
Number of different IR structures identified in each of the three movements
studied. The values are the mean of the 23 recordings

P D ID IP VP R IR VR RP RR
P.1 No.2 287 0 187 222 42 89 56 0 113 100
P.1 No.6 257 0 156 157 26 56 28 0 66 64
P.3 No.5 256 0 125 145 18 44 23 0 52 55

Table 4
Success rate (%) in all experiments taking into account three different ranking posi-
tions proposed for the correct performer: 1st, 3rd, and 10th

set-1 set-2 set-3
1st 3rd 10th 1st 3rd 10th 1st 3rd 10th

duration 34.8 60.9 95.7 21.7 43.5 91.3 10.5 26.3 68.4
energy 21.7 69.6 91.3 30.4 47.8 91.3 15.8 31.6 73.7
both 52.2 65.2 91.3 34.8 47.8 95.7 15.8 26.3 68.4

5.1. Acquiring trend models

The generation of trend models starts with the segmentation of the recordings at two levels: note events
and IR patterns. At the low level, the pitch estimation algorithm segments a recording with a sequence
of possible notes. Comparing the number of notes automatically detected with the real scores, the pitch
estimator is generating more segments than the notes in the score (sometimes doubling the number of
notes). This result is not surprising because we are not explicitly dealing with expressive resources like
vibratos or portamentos. Thus, some IR patterns will contain these expressive resources. Nevertheless,
because we are not explicitly working with notes, these expressive patterns will also contribute to the
characterization of performing styles. For instance, a portamento is usually captured as a sequence of
notes where one (or some) have a short duration.

Table 3 details the number (in mean) of IR segments detected for each movement. Observe that there
are two IR structures (D and VR) that are not present in the recordings. The most recurrent IR structure
is the P pattern followed by the ID pattern. This result is coherent with the fact that the three movements
contain a lot of arpeggios.

Finally, trend models of performers are built from the way these 710 to 1.000 IR structures are
performed in terms of energy and duration.

In order to better understand what the different trend models are capturing, we obtained the distances
dij between all of them (see Eq. (1)) and applied a hierarchical clustering algorithm (using a complete
linkage method). Figure 5 shows the dendrogram representation of the hierarchical clustering for the
Sixth movement of Partita No. 1. It is interesting to remark that some performing styles are captured
by these trend models. For instance, the most dissimilar recordings (G. Fischbach and T. Anisimova)
are clearly far from the rest; violinists playing in a Modern Baroque style (B. Brooks, R. Podger, and
C. Tetzlaff) are clustered together; violinists using détach́e (S. Luca, S. Mintz, and J. Ross) also appear
close to each other; and the usage of expressive resources such as portamento, vibrato, or ritardando
presents a relationship with the clustering result.

5.2. Results

We performed two different types of experiments. The first experiment was focused on assessing the
performance of the system by using two movements from the same piece. Specifically, we used the

118



566 M. Molina-Solana et al. / Identifying violin performers by their expressive trends

Fig. 5. Hierarchical clustering for the Sixth movement of Partita No. 1.

Second and the Sixth movements of Partita No. 1. In the following, we will callset-1 the experiment
where 23 instances of the second movement were used for training and 23 from the sixth for testing.
Analogously, we will callset-2the experiment where the sixth movement was used for training and the
second for testing.

The second type of experiments was focused on assessing the performance of the system by using
two movements from different pieces. Specifically, we used the second movement of Partita No. 1 for
training and the fifth movement of Partita No. 3 for testing. We will refer to this test asset-3.

For each input recording, the system result is a ranked list of performers sorted from the most similar
to the furthest one to the input. The highest accuracy is achieved when the correct performed is the first
of the list. Otherwise, a last position for the correct performer represents the worst accuracy.

A complete view of the results is shown in Fig. 6 and summarized in Table 4. Figure 6 shows the
percentage of input recordings identified at each position. It provides a picture of the system accuracy
using the length of the proposed ranking as a threshold. Table 4 summarizes the performance of the
system for the three experimental sets and the three trend models. The three columns of each experiment
show, respectively, the percentage of performers identified in the first position, at least in the third
position, and at least in the tenth position.

Regarding the experiments with movements from the same Partita (experimentsset-1andset-2), the
correct performer was mostly identified in the first half of the list, i.e. at most in the 12th position.
The correct performer is predicted, in the worst case, 20% of times as the first candidate, clearly
outperforming the random classifier (whose success rate is 4.3%). Additionally, using the four top
candidates the accuracy reaches the 50% of success.

Regarding experimentset-3, the most difficult scenario, the 90% of identification accuracy was
overcame at position 15. The 50% of success for the trend models based on only one feature (duration
or energy) is achieved by selecting seven performers. Combining both features the accuracy overcomes
60%. The results are promising, especially comparing with a random classification where the success
rate is clearly outperformed.
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Fig. 6. Accumulated success rate by position of the correct performer in all the performed experiments.
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Fig. 7. Classifier output in matrix form forset-1where both (duration and energy) trend models were used.

Figure 7 presents a matrix that summarizes the classifier output forset-1 using both duration and
energy trend models. The figure details the information given by the ‘duration+energy’ curve in Fig. 6a.
Specifically, it shows, for each input recording (row), the sorted list of predicted performers as squares.
Ranking values are mapped onto a gray scale. The black color indicates the first performer proposed
and the gray degradation is used to draw all the performers predicted until the correct one. Notice that
the success in the first position means a black square in the diagonal. The matrix is not supposed to
be symmetric and each column can have the same color several times because a predicted performer
can occur in the same position for several inputs. For instance, we can see that Garret Fischbach’s
performance (gar) for Sixth Movement is very different from the rest of performers’ Second Movement
performances: all values correspond to distance positions. On the other hand, Christian Tetzlaff’s (chr)
and Rachel Podger’s (rac) performances are quite similar to most of Second Movement performances
since there are many squares in their columns.

Finally, Fig. 8 shows in which position the correct performer is ranked for each performer in the test
set. This Figure complements the former two ones. The results came fromset-1using both trend models
(‘duration+energy’ curve in Fig. 6a). Twelve right identifications were achieved at first position (52%
of success rate). The rest was correctly identified in positions 2 to 4 except three performers. Nathan
Milstein was identified at position 6. Finally, Sergiu Luca and Shlomo Mintz were not clearly identified.
After a detailed analysis of the distances among all performers, we observed that these two musicians
are not clearly distinguished when using a nearest neighbor classifier. Their performances, with respect
to duration and energy, are close to multiple other performers.

5.3. Analyzing a contour-based approach

In order to validate the IR approach, we performed experiments for assessing the performance of a
contour-based segmentation. The contour segmentation provides nine classes regarding the direction of
the two existing intervals within each 3-note group: two ascending intervals, two descending, one up
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Fig. 8. Correct performer position for each performance inset-1. Both trend models are used.

Fig. 9. Comparison of results by using Narmour segmentation and simple contour segmentation forset-1, set-2andset-3. Both
trend models (duration and energy) were used.

and one down, two unisons, and so on. Figure 9 provides a comparison between the classification results
using IR trends versus contour trends. The contour-based segmentation also outperforms the random
classifier. Nevertheless, the IR-based models present better performance than the contour-based models.
The results are not surprising because IR models are constructed with a finer interval analysis. Moreover,
we have to stress that the contour-based results profit from the rhythmic regularity (most of the notes are
eights), i.e. in the general case results will be worse.
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6. Conclusions

This work focuses on the task of identifying violinists from their playing style by building trend-
based models that capture expressive tendencies. Trend models are acquired by using state-of-the-art
audio feature extraction tools and automatically segmenting the obtained melodies using IR patterns.
Performers were characterized by a set of frequency distributions, capturing their personal style with
respect to a collection of melodic patterns (IR patterns). We have shown that, without a great analysis
accuracy, our proposal is quite robust.

The experiments were concentrated on identifying violinists and using note durations and energies as
descriptors. We tested the system with 23 different professional performers and different recordings.
Results obtained show that the proposed model is capable of learning performance patterns that are useful
for distinguishing performers. The results clearly outperform a random classifier and, probably, it would
be quite hard for human listeners to achieve such recognition rates. In order to assure the robustness of
the system, other sets of works should be used for learning and testing.

Our current experiments have been constrained to monophonic audio. We would like to extend the
method in order to deal with polyphonic recordings in an appropriate way.

We have presented a qualitative analysis using only two qualitative values. We want to keep our model
at this qualitative level but we plan to extend the model with the use of fuzzy sets. This improvement
will allow us to use the capabilities of fuzzy theory for a better assessment in the similarity measure.

Combining information from different music features has been demonstrated to improve results. We
are currently working on increasing the number of descriptors. Since the predictability of a given
descriptor varies depending on the performers, we are also interested in discovering relations among the
descriptors. Finally, the use of hierarchical classifiers or ensemble methods is a possible way to improve
the identification accuracy.
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