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Abstract

In order to design a steel member subjected todibg moment and an axial load, there are an
infinite number of possible solutions |- or H- dtewoss-sections, the doubly-symmetric

solution being just one of them. This paper presenprocedure to obtain the optimal steel
cross-section from the infinite number of possibtdutions. The process is based on the
Reinforcement Sizing Diagrams employed in reinfdrceoncrete strength design. The

procedure looks for any type of solution regardiognpact or non-compact steel sections. All
aspects related to local instabilities will be talketo account, as well as special considerations
in order to address the global instabilities asged with the slenderness of the steel element.

Notation

A Cross-section area employed to compig,

A Cross-section area

At Effective cross-section area for cross-sectiarSlass 4
A Top flange area

A Bottom flange area

E Steel elastic modulus

M, External in-plane bending moment

Mo rd Design buckling resistance moment of a latenatisestrained beam
My ed External in-plane bending moment applied to #xtisn

My re Critical cross-section characteristic momentstasice about-y axis
N External axial load

Nb rd Design buckling resistance of a compression membe

Neg External axial load applied to the section
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Nri Critical cross-section characteristic resistaioceormal force
Wty Effective section modulus aboyty axis, for Class 4 sections
Wy Elastic section modulus aboyty axis

Wiy Plastic section modulus abguy axis

W, Appropriate section modulus employed in the cataan ofMy, gy

Brcomp Compressed flange width

by Bottom flange width

by, Top flange width

dw Web height

h Centroid height

fy Specified steel yield strength

k Factor employed in the computation of the criterio prevent the compression flange
buckling in the plane of the web

Iy Unbraced length of the beam-column member

tio Bottom flange thickness

tq Top flange thickness

tw Web thickness

X Reduction factor for the relevant buckling modedmpression

Xt Reduction factor for lateral-torsional buckling

Va1 Partial safety factor for the buildigginteraction factor

1. Introduction
Typical sections for beam-column members in steifications are usually I- or H- rolled
sections. However, in other fields of steel corettams such as civil bridges, the selected cross-
sections may be welded, since the higher demante tsupported by the structure calls for
larger dimensions not possible for tabulated roltemttions. Whether edification or civil
construction, designers tend to proportion theircttires using symmetric sections, these being
just one of the multiple solutions. Nevertheleks, optimal solution may not coincide with the
symmetric one and important savings in the amofirgteel used could be achieved. In this
respect, environmental concerns constitute an itapbrrole because savings in steel
consumption may be translated into significant otidas in greenhouse gas emissions.
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Figure 1. Conditions of the problem to be analyzed
The present work studies the optimal design of bealmmn members subject to an external in-
plane bending momenMy, and to an axial load\ , initially considered to be applied at the

centroid of the web of the section (Figure 1). FegR shows the employed nomenclature for the



cross-section of the element and the sign critesrathe applied external loads. Bending
momentM,, acting on the strong axis of the cross-sectiolh lvei considered positive when

compressing the top flange of the section. The iagphxial load, N, will be considered
positive in tension. For the sake of simplicitye tlillets in rolled sections and throat thickness
in welded sections have been ignored in the prodédss different elements of the section are
proportioned to provide sufficient strength andfrstiss to resist the external actions and avoid
premature buckling of the member. For non-compactians, the plastic capacity will not be
reached, so elastic capacity will be employed.
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Figure 2. Nomenclature and sign criteria

The problem studied in this work has already beswesl by Gil-Martin et al. [1] for Class 1
sections. Optimization was completed by using tieDRdesign approaches [2-3]. This
methodology, originally conceived for reinforced ncoete, represents the required
reinforcement area for supporting a determinedreatdoading as a function of depth of neutral
axis in the concrete section (Figure 3). When dpglRSD design approaches to optimization
in steel sections, minor changes need to be maudeeby, the graphics represent the cross-
section area, as a function of the web heigtlf,, and the optimal solution corresponds to the

one with the lowest value f@; (Figure 4).
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Figure 3. Example of RSD in areinforced concrete section, from [4]



The present paper explains the well-developed peotieat was followed to obtain the optimal
solution for any pair of f1,, N ). The process makes it possible for the designehoose the

Class of the adopted cross-section; this is eitherpact or non-compact. Selecting the Class of
the section is very important, for example, whesigl@ng a building for earthquake resistance
according to Eurocode 8 (EC8) [5]. ECS8 states tfmt,any given building subjected to an
earthquake, the relation between its resistancecapdcity for dissipating energy is related to
the section classification (see Table 6.3 in EG®nerally speaking, the more ductility needed
the more compactness is required for the crosgesect
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Figure 4. Example of RSD in a steel section: optimization of | PES00 under My gq = 288 KN m and Ngy = - 483
kN with =16 mm and t,=10,2 mm. Point A represents the optimal solution and point B corresponds to
IPE5S00. Taken from [1]

In contrast to the previous case is a compositewag or highway bridge. These kinds of
bridges, which also called “twin-girder bridgesfe a&omposed of two longitudinal steel girders
connected to the concrete slab of the deck by stmarectors. Twin-girder bridges are the most
economical solution when covering span lengthdienringe of 30 and 100 m [6], with special
suitability between 60 and 80 m [7]. Consideringsia span lengths, self-weight becomes an
important action to be withstood. Under this loadd beyond the complexity involving a
composite section, cross-sections under positivenemb at mid-span regions of composite
bridges are usually in Class 1 or 2, since comjmeds carried mainly by the concrete deck.
However, on internal supports, under negative nmapgections tend to be designed in Class 3
or 4 in order to avoid the excessive amount ofl 4ted would be needed if those compressed
sections were to be in Class 1 or 2 [8].

The typical section for these kinds of bridgeshsven in Figure 5. The most usual range for
H/L, beingH the height of the I-section ardthe covered span, is between 1/25 and 1/20 for
highway or roadway bridges and 1/15 for railwaydgés [6-7][9]. For a highway bridge with a
span of 600 mH would be between 2.5 and 3.0 m. This is due tof#élae that the high
dimensions of the sections do not allow the desigmehoose them from the standard rolled
sections and a welded design is needed. For tgpss of girders, the algorithm developed
within this work lets the designer impose any canst related to the dimensions of a particular
element of the section, in this case, web heigleiven related to the Class of the cross-section.



The algorithm used to optimize the sections has limplemented in a computer program and
some examples are presented here. The resultie@dtaiill be analyzed in order to test the
validity of the process.
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Figure5. Typical section for atwin-girder composite bridge

2. The optimization procedure
As above explained, the optimization procedured@itesented in the current work is based on
RSD methodology. This approach consists on theideraion of all the possible solutions for
a design problem through a graphical representadtianallows to choose the optimal one. In
reinforced concrete members, usually the reinfomrgnarea is represented in function of the
neutral axis depth [2-3].

In steel construction, as was observed with regg@drconcrete, an infinite number of solutions
exist for the design of a steel cross-section siéjeto combined loads N and M. These
solutions can be presented using graphics sinoléindse used in the reinforced concrete RSD
representation. In this case, the area of strucsteal has been represented in function of the
height of the web [1]. The main advantage of tmpdure is that the engineering know all the
possible cross-sections that resist a given cortibmaf axial load and moment (N, M) making
possible the choice, among all them, of the optimaé considering minimum weight,
availability of steel shapes, simplicity on the gite, Class of the cross-section and so on.

The process followed during the optimization pragedis represented in the flow chart in
Figure 6.

Section initial proportioning

The first step in the process is to select a fixaldie for the web thicknesg,, and a range of
values for the height of the weth,. The range ofl, is obtained accounting both shear strength
and shear buckling requirements. The flanges piding proportions are provided by
equilibrium of forces acting on the cross-sectiapplying the axial load at the centroid of the
web. The equilibrium is established by ignoring theb contribution and assuming that the
forces carried by the top and bottom flanges atheends of the web and drive the flanges to
the yield stress. Therefore, the sum of momentsithier ends of the web results in Eq. 1:
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Figure 6. Flow chart explaining the entire process

OnceA; and A, are known for each value df, the next step is to choose another range of
values for the flange thicknessgsandty,. Therefore, for each value tfandty, the values of
the flange widths can be obtained from Eq. 2:



(2)

In the following, without lost of generality, thearme thickness of both flanges has been
considered, beind,, =t, =t;.

Section classification

As described in Eurocode 3(EC3)[10] , the role rafss-section classification is to identify the
extent to which the resistance and rotation capaxdithe cross-section is limited by its local
buckling resistance. The classification of a deteetl cross-section will depend on the
slenderness, i.e. the width to thickness ratidghefparts subject to compression.

According to EC3, there are four classes for steetions: Class 1, which can form a plastic
hinge with the rotation capacity required from filasanalysis without reduction of the
resistance; Class 2, similar to class 1 but wittitéd rotation capacity due to local buckling;
Class 3, those sections in which local bucklingegpp before forming a plastic hinge and are
assumed to work with an elastic distribution oésses reaching the yield strength; and Class 4,
in which local buckling is reached before elastmoitl [11]. This classification may also be
found in other codes as AISC Steel Construction hahrl2] with other terminology and
slenderness limit values. Thereby, according toQAISlass 1 and 2 sections are called compact
sections; Class 3 sections are equivalent to nampact sections; and Class 4 sections are
similar to slender sections.

The limit values for the slenderness of each corapbof the section are given by Tables 5.2-1
and 5.2-2, presented in section 5 of Part 1-1 i13.E&:cording to these standard codes, the
cross-section is classified according to the higlilesst favorable) class of its compression
parts.

Widths of the elements of the cross-section in £lashave to be reduced in order to their
effective dimensions according to Part 1-5 of EC3.

Global instabilities at member level

Once the class of the cross-section is determihexinecessary to calculate the resistance of the
beam-column member to lateral buckling and lateredional buckling due to axial load and
bending moment, respectively. Following the formsugaven in EC3 [9], the design buckling
resistance of a compression member should be tken

:)(DAEfy

Ny, ra
' Y1

®3)

where A=A, for cross-sections in Classes 1, 2, or 3, Ard\ for cross-sections in Class 4
when subjected to uniform compression. The paramgteis the reduction factor for the

relevant buckling mode, computed as indicated dtice 6.3.1. in Part 1-1 of EC3.

On the other hand, Section 6.3.2 of EC3 [9] pravitlee formula to calculate the parameter
X.7, 1.e. the reduction factor for lateral-torsionalckling. According to this, the design

buckling resistance moment of a laterally unresedibeam should be taken as:
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Here,Wy is the appropriate section modulus, takerwbﬁy for Class 1 or 2 cross-sections,

W, , for Class 3 cross-sections, awg; , for Class 4 cross-sections when only moment about

the relevant axis is applied.

When the buckling resistances of the member arriledbd, the General Method for lateral and
lateral torsional buckling of structural componeistapplied. This method, explained in Section
6.3.4 of EC3 [9], allows the verification of thesigance to the former global instabilities of
single members subject to compression and mond4aewraling in the plane. The member must
fulfill Eq. 5 in order to achieve stability.

NEd + Ivly,Ed <1
XMNg/ Yz Xir Mo/ Vi

(5)

where N and M ., are the critical cross-section characteristicstasice to normal force and

moment resistance abogy axis. In this work, applied loaddsy y My gq are:
Myeq =M, +(g +&, N (6)
Ng, =N (7)

Beinge,, the shift of the relevant centroidal axis of thess-section due to the widths reduction
in class 4 when the member is subjected to unifmympression ane, the distance between the
mid-height of the web —where the axial load is .g®gl initially applied at the gravity center of
the gross-section (Figure 7), calculated as:

e =h-(d,/2+t,) ®)

In the above expressidnis the height of the gravity centre of the crosst®n.

In this work, the value for the sum presented in%has been called “interaction factor” and is

—_N My Ed
represented b{ - %[NRk/yMl-'- ’ )(LT[My,Rk/VMl )

Design adjustments

It is clear from the flow chart presented in Fig@réhat the proposed procedure is iterative. The
dimensions of the cross-section are preliminaryppriioned and classified. Afterwards, the
General Method is applied to evaluate the stabilftthe member; because in most of the cases
the preliminary cross-section will not be able tansl the applied loads without buckling,
dimensions need to be modified. In this work, facte pair of valuesl,-t;, the width of the
flanges by andby, are adjusted until the member does not buclde{i<1. However, in order

to gain optimal results, a lower limit has been ased to{ , so that the adjustments will be
completed wher0.95< ¢ < 1. The adopted process for providing a cross-seafaninimum



cross-sectional area, fulfilling all the stabilitpnsiderations, is similar to the one followed by
[1], and is explained below:

1. If {<0,95 the section provides excess capacity. To redugecttbss-sectional area,
the widths of both flanges are reduced until:

0,95s¢ <1 9

2. If ¢ >1 the section behavior is governed by instability. provide sufficient strength,

the flange areas must be increased. The approasictrease one flange or another
depends on axial force and bending moment:

a. If M, =0 or N =0, the section is symmetric from the initial proponing

given by Eq. 1. The area of both flanges are irsgéahe same amount until
the condition given by Eq. 9 is fulfilled.

b. If M,#0 and N #0, the section from Eq. 1, the section will initjalbe

asymmetric. In this case, one of the flange are@screased in order to reduce
the eccentricity given by Eq. 8 until the formulaemn by Eq. 9 is fulfilled:

i. If M, and N have an equal sign, the top flange width will irase.

i. fM, and Nhave a different sign, the bottom flange width will

increase.

Class 1, 2, and 3 sections Class 4 sections

‘ bft,eff ‘
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Figure 7. Valuesfor the eccentricities g; and eyy

Once Eq. 9 is fulfilled for certain values df - t; - t;. (in this exampld; = t; = t;;), the cross-
section will be stored if the dimensions of thenflas in compression are sufficient to prevent
local buckling in the plane of the web. Accordirmgdection 8 in Part 1-5 of EC3 [13], the
following criterion should be met:



2 23
tﬂskE Ao, _, KEL

fcomp = 2 1 (10)
£\ A ™=F2, M,

The value ok should be taken as follows:
- Plastic rotation utilized k=0,3
- Plastic moment resistance utilized 0,4
- Elastic moment resistance utilizked 0,55

All the cross-sections with their correspondingrpaif d,-t; are stored. These solutions are
sorted by cross-sectional area and the minimundesitified as the optimal solution. It is
important to notice that the process may providaesgolutions with the same optimal cross-
sectional area. In this case, the final selectddatiea will be that with the minimum value of

interaction factot .

Furthermore, the procedure provides an infinite lbemof solutions (depending on the
established constraints). The optimum (i.e. minimenmss-sectional area) or the symmetric
solution is just one of the possible cross-sectibasmay be chosen [1-3].

3. Examples
The validity and effectiveness of the process Hman tested and can be seen in the following
three examples; in order to obtain minimum crossigeal solutions for three combinations of

M, and N with the conditions represented in Figure 1: a #nspipported beam with end-fork

conditions (i.e. pin supported end and free warpifige applied load combinations correspond
to three points in the interaction equation (Fig8yeorresponding to a specimen made of steel

Grade 235 (fy = 235N/mnT) with a cross-section HEB60@( =540 mm;t, =15,50mm,
t, =30 mm; b, =b, =300 mm A =27000 mni) and an unbraced length, equals to
6,00 m. The load combinations are presented inrEi§u
1600,
1400,
12000

1000+

M (KNLm)
8

B

0 L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500
N (compression) (kN)

Figure 8. Interaction equation corresponding to HEBG0O, for f, = 235 N/mm? l,=6mand =0



3.1. Combination A: My=1391.60 kN.m -bending moment applied
on the right support of the beam-

The first combination of loads corresponds to pdirih Figure 8, simple strong axis bending
with a value of M, =1391,60 kKN . Figure 9 shows the obtained design solutions for

different web depthsg,, with a range from 50 mm to 2000 mm with a stegbahm. The
adopted range of values for flange thicknesggegaries from 4 mm to 40 mm, with a step of 2

mm. The HEB 600 web thicknesk, (=15,50mm) is adopted for every solution. According to

Eq. 1, ifti = tx = tr all the obtained solutions are doubly-symmetrie. @, = b, ). The results

from Eqg. 1 are presented as a continuous line. Dofsigure 9 correspond to the solutions
obtained after the adjustment process for the tbierent Classes of the cross-section. To
distinguish between each clasifferent have been used, respectively. In Figure 9 thetisalu
corresponding to the HEB section and the optimadsonbtained for each class using the
optimization procedure have been identified. Ag/ rba observed from Figure 9, the initially
proportioned dimensions for the elements of thesss®ection given by Eq. 1 are subsequently
modified by the adjustment process. In some cakese dimensions have been overestimated
since the contribution of the web was ignored in EqHowever, many solutions have cross-
sectional areas greater than initially estimateel @uthe fact that members turned out unstable
and buckled and therefore dimensions need to béfigebih order to get sufficient strength to
withstand the applied loads.

HEB 600 OPTIMAL SOLUTION (C2)

Class 1
4 bf:335mm Class 2
X1 b, =300 mm IS : - t;=16 mm Class3 .
(— Class4 .
657 — ‘Z ri:SOmm
d, =540 mm d =925 mm Min Max Step
T tt(mm) 4 40 2
P r— v dy(mm) 50 2000 5
55 [\ From Eq. 1 ’ A, =25058 mm’
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4
350 AN == (e o
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HEB 600ﬂg Optimal solution CAQ\
25~ " = /A___ Optimal solution C3
| | | | o | | ! ! L
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dw (mm)

Optimal solution C2

Figure 9. Cross-sectional area A, of the solutionsin terms of web depth d,, for strong axis bending moment

The solution with the lowest cross-sectional a@assponds to:

d, =925 mm;t, =15,50mm; t, =16 mm;b, =b, =335 mm A =25058 mm



The web and top flange Classes are 1 and 2 résglgcieading to cross-section Class 2. The
interaction factor i’ =0,998¢.

Figure 10 shows the optimal solution for each Chagording to EC3 and compares their cross-
sectional area with the one of HEB 600. The tabléigure 10 provides the dimensions for
these optimal solutions. Class 1, 2, and 3 sectiedsce the flange widthy, when increasing
web depthd,, while in Class 4 increases since web is reduced for local bucklimghis case,
only compact solutions (Classes 1 and 2) provids lzoss-sectional area than the standard
HEB®600. Figure 9 shows that a saving of 7,2 % wébpect to the area of HEB600 can be
obtained.
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20000
150007 | —4—
10000] I
5000 E—
(o} . . . .
Optimal Solution| Classl Class2| Class3 Class4 HEB
600
A (mrr12) 25850 25058 27507 32587 27000
by (mm) 375 335 313 363 300
t; (mm) 20 16 12 4 30
dy, (Mmm) 700 925 1290 1915 540

Figure 10. Comparison between the dimensions of different optimal solutions for each Class and HEB 600, for
strong axis bending moment. Scale of dimensions sketches: 1/400

In Figure 11 the obtained results from the optimiiraprocess imposing, =30 mm(flange

thickness of HEB600) have been represented for Wwelded and rolled sections. This figure
shows that if welded sections are considered idstéaolled sections, areas slightly larger are
obtained. These differences are due to the differsiues of the imperfection factors

corresponding to the buckling curves that are gfie for both welded and rolled sections. For
this example no welded solution exits with a cresstional area under 27000 mMAHEB600

cross-section area- while if a rolled section ipkyed an aread = 26098 mm is obtained
(for d,, =805 mmandb, =227 mr).



Figure 11 shows that the curve corresponding tledatections almost matches the solution
corresponding to the HEB 600. These small diffeesrare due to the fact that, as was explained
earlier, in this work the fillets in rolled sect®are not taken into account.

x10
551 Class 1
/\ From Eq. 1 Class 2
5 Class 3 .
Class 4 .
45+
Welded
47
Rolled
«’E‘ 35 Optimum for welded sections (C1)
‘g al HEB 60!
250 T\
2 Optimum for rolled sections (C1)
150 i
1 | | | H | | | 1 | 1

200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 11. Cross-sectional area A, of the solutions with t; = 30 mm in terms of web depth d,, for strong axis
bending moment employing welded and rolled sectionsimperfection factors



3.2. Combination B: N=-4180.80 kN (compression)

In this case, the steel section member is subjech tpure compression with a value of
N =-4180,80kN . This load combination corresponds to point BigukFe 8, i.e. the buckling

capacity of the considered HEB 600 member. Theltefar the different values d,, with a
range from 50 mm to 800 mm with a step of 5 mm,pesented in Figure 12. Again, the HEB

600 web thicknesst( =15,50mm) is adopted for every solution. The adopted rasfgelues

for flange thicknesseg;, starts at 4 mm and finishes at 40 mm, with a ste@ mm. The
obtained optimal solution corresponds th, =215 mm; t, =1550mm t, =18 mm;

b, =b, =492 mm; A =21045 mm. This solution saves a 22,05 % of steel with respe

the HEB600. The cross-section Class is 3 due tosthBederness ratio for the flanges in

compressionl0¢ <? 13.2% 14. The interaction factor for this solutiondis= 0,999z.
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. b, =300 mm Class3 .
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Figure 12. Cross-sectional area A, of the solutionsin terms of web depth d,, for pure compression

As in the former example, Figure 13 shows the ogitisolution for each Class. In this particular
case, all the optimal solutions have cross-sedtiaremas smaller that the one corresponding to
the standard HEB600. As in the previous example,lEgrovides symmetric solutions since,
the only applied load there is now is the compxesakial load. Because the areas of the flanges
are not affected by web depth, , the flange widthdy, will be the same for every fixed value
of the flange thickness$;, Figure 14 shows the evolution of the flange widthas function of

the depth of the weld,, for a fixed value of the flange thickneds,= 30 mm. The obtained
optimal  solution corresponds to a web depthl, =145 mmand a flange

widthb, =b,, =357 mm. The corresponding cross-sectional are is 23668 mm.



250001 T
A(mnf) 200001 | | 1 L
150001
100001
50001
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Figure 13. Comparison between dimensions of different optimal solutions for each Class and HEB 600, for
pure compression.
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Figure 14. Flange width, by, for the solutions of flange thickness t; = 30 mm in terms of web depth d,, for pure
compression

In Figure 14 two regions appear. Region 1 corredpdn solutions where the relevant mode for
lateral buckling under compression is flexural Bungk(solutions are symmetric) about axis.

In this Region, solutions need to increase theslipiary proportioned flange width by an
important amount before reaching stability, becathse relevant mode is governdxy the



moment of inertia abouy-y, which is proportional tobs: |, Ob, (L) meaning being

proportional). However| , [J dws, resulting in much less wider solutionsdgdbecomes deeper.
On the other hand, Region 2 corresponds to flexanakling underz-z axis and solutions get
quick stability sincé, b ®, and solutions need to increase lightly their iprielary

proportioned flanges. In this Region, the slop&hefcurve becomes much flatterdasncreases
since nowl, O d,,.

3.3. Combination C: My= 695.82 kNnm & N= -2090.41 kN
(compression)

This case corresponds to a combination of simuttasiecompression and bending moment
about the strong axis. Point C in Figure 8 coingidéth half compression and bending moment
capacity of the standard HEB 600 adopted as a lbesmdhproblem. Solutions have been
obtained again for the same range of values for degith,d,, and flange thickness, as in the

previous example. The value of the web thickngsis 15,5 mm. Figure 15 shows the results

obtained and the optimal section, for which the mefsions are: dW=585 mm;

t,=1550mm t, =22 mm; b, =433 mm;b, = 334 mm A =25942 mm. For this

section, both top flange and web are Class 2, laackmtire cross-section results in that Class.
The solution saves a 4 % of steel with regardedécstandard HEB 600.

“ HEB 600 OPTIMAL SOLUTION (C2)
X 10
b, =300 mm by =433 mm Class 1
=
e D Class 2
3 _ — t; =30 mm . =t =22mm
! Class3 .
7
4, =540 mm] 4. 585 mm Class4 .
.. = -
6~ * A, =27000 mm’ le— sl

by, =335 mm

oo
‘e A, =25942 mm’

., HEB 600\

Optimal solution (C2)

10ptimal solution (C4)
Optimal solution (C3)

dw (mrm)

Figure 15. Cross-sectional area A, of the solutions in terms of web depth d,, for simultaneous compression and
bending moment about strong y-y

Figure 16 shows the obtained optimal results fahe@lass of sections. In this case, as in the
former example, once again, all of them have a tess-sectional area than the standard
HEBG600. There are two of them, solutions for Clasdend 3, which are almost the same area
(slight differences in dimensions of flanges andwesult in just 1 mfless in cross-sectional
area for solution in Class 2).
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A (mrr12) 26721 25942 25943 26029 27000
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Figure 16. Comparison between the dimensions of different optimal solutions for each Class and HEB 600, for
simultaneous compression and bending moment about strong y-y.

No solutions with the
restriction g = by

“

Class 3
Class 4 .

Figure 17. Cross-sectional and flange area in terms of d,, for solutions of t; = 20 mm and forcing both flanges
to be equal (i.e. doubly-symmetrical cross-section) for simultaneous compression and bending moment about

strong y-y.



As the procedure is completely general, the doskipmetrical cross-section may be
extrapolated without loss of generality. If thedthi of both flanges are forced to be equal, the

optimal solution corresponds to a flange thicknesst, =20 mm and d, =625 mm:;
t, =15,50mm b, =396 mm;b, = 396 mm A =26303 mm. Figure 17 represents both

the cross-sectional and flange areas for doublyasgtmical cross-section with, =20 mm in

function of the height of the web. For this figitrés evident that solutions only exist for values
of d,, from 420 mm, being the sections in Class 3 orhe Jtandard HEBG60O is included in the
list of possible solutions in Class 2.

3.4. Global optimization

In order to extend the former optimization procediar other values of web'’s thicknesg, the
above process has been applied to several valugsbefween 6 mm and 19 mm for the axial
compression and bending moment about the strorsgd®rioted as combination C (see Figure
8). The optimal cross-section (i.e., with minimuraa obtained for each class of cross-section
[9] for each thickness of the web can be identifyFigure 18. This figure shows that the
smallest area that fulfil all the EC3 [9] requirertgecorresponds to cross-section in class 4 with
tw = 8 mm. This optimal section needs to be stiffebedause the slenderness of the web is too
high. The optimum cross-section in class 3 anGlass 1 and 2 appears fgr+ 13,5 mm and

tw = 14,5 mm, respectively. In such cases the slaemderof the web is low enough that
transverse stiffeners are not needed. In Figuréh&8pptimal solutions obtained for the value of
the thickness of the web adopted in the formeri@est(t, of the standard HEB 600) have also
been indicated.
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36 - —eo—Class 4

32
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.\ g S
J\ \ ///:. .
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24 + \ ’.’.

\ e
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Figure 18. Optimal (i.e. minimum) cross-sectional area in terms of t,, obtained for each class of cross-section
and for simultaneous compression and bending moment about strong y-y.



4. Conclusions
As has been explained and demonstrated in this,weonployed symmetrical cross-sections are
usually not, in most of the cases, the optimal tsmhg. This work presents an iterative
procedure in order to get the optimal solution thee I-shaped cross-section of a steel beam-
column member subject to an external axial loadl@mling about strong axis. The process is
based on RSD diagrams for optimizing the longitateinforcing steel in reinforced concrete
sections and completes the procedure proposed bWdsiin et al. [1] for obtaining these
optimal solutions with steel sections in Class toading to Eurocode 3. This method allows
engineers to choose among all the possible sokiticompact, non-compact and slender
sections, obtaining important savings in steel la@aoce leading to reductions in greenhouse gas
emissions.
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