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Abstract

We propose two bio-inspired architectures for representing the role of the

adaptive cerebellar microcircuit in correcting the motor behavior based on

current errors: the feedforward and the recurrent schemes. While in the

first architecture, the cerebellum adds adaptive torque corrections and its

weights are adjusted depending on the motor-error signal, in the second one

it adds sensory correction terms to the controller and its weights depend on

the sensory error.

Biological systems perform adaptation of dynamics and kinematics models

for accurate control with low power actuators, while in robotics, robots nor-

mally achieve very high precision and high speed motion with high forces and

high energy consumption. This industrial approach cannot be used in the

framework of human interaction applications because it is potentially dan-

gerous in case of malfunctioning. Thus, adoption of compliant strategies of

dynamics and kinematics models abstraction and adaptive control schemes

in real time in the field of robotics are required. Furthermore, the cerebellum

is able to acquire intrinsic models through experience by a perceptual feed-

back that allows the motor learning to proceed. These models are called

internal models. Motivated by this, we implemented a cerebellum model

able to adapt its corrections and store the sensory consequences or feedfor-

ward motor commands for predicting appropriate actions when needed. We

addressed this study with a machine learning approach (LWPR algorithm)

embedded in the control loops in which the LWPR module abstracts the

functionality of the input layer to the cerebellar cortex. LWPR provides op-

timal input representation to the granular layer in terms of neural resources,

that is, it adapts its neural resources incrementally and according to the in-

put data structure. Moreover, we built compliant control systems combining

the feedback error learning approach and adaptive predictive control.



This dissertation first introduces a description of the cerebellar microcir-

cuitry and of the role of internal models in motor control. Then, we present

the control systems based on inverse and forward internal model for con-

trolling a robot arm in which a feedback error controller leads to a pre-

cise, compliant and stable control during manipulation of objects and the

cerebellar-machine learning synergy makes the robot adaptable to changing

conditions. Finally, we show the principal results obtained of the perfor-

mance evaluation of both systems. We demonstrate the validity and effi-

ciency of the models with experiments on a 3-DOF and 7-DOF light-weight

robot arm.



Resumen

Proponemos dos arquitecturas bio-inspiradas para representar el papel del

microcircuito adaptativo del cerebelo en la corrección del comportamiento

motor basada en errores actuales: el esquema feedforward y recurrente.

Mientras que en la primera arquitectura, el cerebelo añade correcciones

adaptativas y sus pesos se ajustan en función de la señal de error motora, en

la segunda añade términos sensoriales correctivos al controlador y sus pesos

dependen del error sensorial.

Los sistemas biológicos realizan la adaptación de los modelos dinámicos y

cinemáticos para un control preciso con actuadores de baja potencia, mien-

tras que en robótica, los robots normalmente logran una precisión muy alta y

un movimiento de alta velocidad con fuerzas muy grandes y un alto consumo

de energía. Este enfoque industrial no puede ser utilizado en el marco de

las aplicaciones de interacción humana, ya que es potencialmente peligroso

en caso de mal funcionamiento. Así, se necesita adoptar estrategias dóciles1

de modelos de abstracción cinemáticos y dinámicos y esquemas de control

adaptativos en tiempo real en el campo de la robótica. Además, el cere-

belo es capaz de adquirir los modelos intrínsecos a través de la experiencia

dada por la retroalimentación perceptiva que permite al aprendizaje motor

poder avanzar. Estos modelos se denominan modelos internos. Motivados

por esto, hemos implementado un modelo de cerebelo capaz de adaptar sus

correcciones y almacenar las consecuencias sensoriales o los comandos mo-

tores para predecir las acciones apropiadas cuando sea necesario. Hemos

abordado este estudio con un enfoque de aprendizaje automático (algoritmo

LWPR) incrustado en el lazo de control en el que el módulo LWPR abstrae

la funcionalidad de la capa de entrada de la corteza cerebelar. LWPR pro-

porciona una representación de entrada óptima para la capa granular en
1Traducción de la palabra inglesa compliant.



términos de recursos neuronales, es decir, adapta sus recursos neuronales

progresivamente y de acuerdo con la estructura de entrada de los datos.

Además, hemos construido los sistemas de control dócil combinando el en-

foque de aprendizaje del error de retroalimentación y el control adaptativo

predictivo.

Esta disertación primero presenta una descripción del microcircuito del cere-

belo y del papel que desempeñan los modelos internos en el control motor. A

seguir, se presentan los sistemas de control basados en los modelos inverso y

directo para el control de un brazo robótico en el que un controlador de error

de retroalimentación conduce a un control preciso, compatible y estable du-

rante la manipulación de objetos y la sinergia de aprendizaje entre cerebelo

y control automático hace que el robot sea adaptable a las condiciones cam-

biantes. Finalmente, se muestran los principales resultados obtenidos con

la evaluación del rendimiento de ambos sistemas. Se demuestra la validez

y eficacia de los modelos con los experimentos en un brazo robot de tres y

siete grados de libertad.
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tem based on inverse internal model learning, on a feedback error learn-

ing mechanism, on a machine learning algorithm and on a bio-inspired

module for controlling a robot arm.

CF Climbing fiber. It is a type of nerve fiber that carries impulses to the

Purkinje cells of the cerebellar cortex cells from the Inferior Olive cells.

CNS Central nervous system. It is the part of the nervous system that inte-

grates the information and coordinates the activity of all parts of the

body.

Compliance The ability of a robot to tolerate and compensate for misaligned parts.

It is also the ability of distending in response to applied pressure.

DOF Degree of freedom. It is a defined mode in which a mechanical device

or system can move. The number of degrees of freedom is given by the

total number of independent displacements of motion.

GC Granule cell. It is one of the small neurons of the cortex of the cerebel-

lum.

LF Learning feedback controller. It is a controller that generates adaptive

feedback commands from the sensory errors avoiding high gains and

complex reference structures.

MF Mossy fiber. It is one of the major inputs to cerebellum.

PC Purkinje cell. It is a class of neuron located in the cerebellar cortex.
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GLOSSARY

PF Parallel fiber. It is a type of nerve fiber that arises from granule cells

in the cerebellar cortex. It is the axon of a Granular cell.

RAFEL Recurrent Adaptive Feedback Error Learning architecture. This is a

control system based on forward internal model learning, on a feedback

error learning mechanism, on a machine learning algorithm and on a

bio-inspired module for controlling a robot arm.

RF Receptive field. It is a region of space in which the presence of a stimulus

will alter its output.

ULM Unit Learning Machine. A modular unit contained in the cerebellum

that consists of a uniform set of neuronal circuits that is capable of

learning.
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Introduction

The main issues in the field of biomorphic and biomimetic motor control are how human
movements are controlled by the motor system and how stability is maintained. A prac-
tical way to understand the human motor control is simulating a system endowed with
the high level knowledge acquired until the moment and specific working hypothesis
about biologically plausible control schemes. In biological systems motor learning takes
many forms, such as learning new skills or adapting those already known to maintain
performance, learning what movements to make and when to make them. The cerebel-
lum seems to play a key role in modulating accurate and coordinated movements. For
this reason, understanding the cerebellar mechanisms of learning and emulating them
through bio-inspired architectures are two reciprocal processes of fundamental impor-
tance to develop sophisticated robotic systems able to carry out complex and accurate
operations and movements in unstructured scenarios.
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1. INTRODUCTION

1.1 Motor Control and Motor Learning

Primary aim of robotics research is to build machines that could operate autonomously.

First fully autonomous robots appeared in the second half of the 20th century and they

are usually employed in dirty, heavy or dangerous jobs that people normally do in their

absence. However, robots can not plan and control physical actions as flexibly as hu-

man beings do. Nowadays, researchers study how people control their bodies, how they

make coordinated movements under changing conditions of the environment, how they

hold an object or they do multiple tasks in order to endow robots with these human

like features. For this, robotics and neuroscience play a conjoint role in developing bio-

inspired approaches or models for high nonlinear systems. The goal is to understand the

mechanisms of motor control and motor learning of the central nervous system (CNS)

at the cell and neuronal network level to create coordinated and precise movements and

to store the information processed.

Automatic control, particularly the application of feedback, has been fundamen-

tal in this sense and a great deal in this field is related to stability in order to design

safer workplaces for interactions between humans and robots, to implement more effec-

tive methods or better robotics tools. Human motor control regards many activities,

such as walking, looking (eye movements), reaching for objects, drawing and writing,

speech production and posture; In this dissertation, we will focus on robot arm move-

ments and we address both the problems of achieving compliant nonlinear control and

simulating the neural processes in a high dimensional input space in real-time.

1.1.1 Perception and Motor Control

Our goal is to build a system architecture to move a robot arm and correct the error due

to interactions between multiple links or changing dynamic or kinematic conditions.

One of the main functions of the brain is to extract information from sensory input, to

organize and to use it to respond to a particular situation. In this process, sensory-motor

complexes (experienced during a movement or any interaction with the environment)

are organized in intrinsic models. These intrinsic models acquired through experience

allow efficient and accurate movements. Models are acquired with a perceptual feedback

that allows the motor learning to proceed as we argue in section 1.1.2. This is achieved
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1.2 The Cerebellum as an Adaptive Controller

through repetitive training by means of which the motor skills are improved in terms of

accuracy and smoothness of movements. The feedback indicates how much the move-

ment is effective and subsequent movements are performed to reduce the error between

the desired and the actual output. The control strategy employed in the cerebellum

that takes advantage of the sensorial experience is called closed-loop or feedback control

(e.g. the optokinetic nystagmus [2]). One open issue is how to use feedback effectively

for motor control. The choice of gains is of particular concern in a system due to the

very important question of stability and robustness of the system itself.

In this dissertation, a feedback error learning approach based on repetitive itera-

tions of the same task is devised with very low gains for compliant control.

1.1.2 Prediction and Motor Learning

The motor learning is the "acquisition of information about movements (and other mo-

tor outputs), including what output to produce as well as how and when to produce

it. Motor learning results in the formation of motor memories" (Shadmehr and Wise

[2]). The problem to solve in controlling a dynamical system is to find out the input

to the system that will achieve the desired behavior as output even under disturbances

or changing environments. The cerebellum acts in this sense, in fact is able to adapt

its output in every condition by capturing internal models which are mechanisms that

can mimic the input-output characteristics, or their inverses, of the motor apparatus [3].

Given our goal of making compliant control, one important challenge is to com-

bine feedback error learning approach and adaptive predictive control by implementing

a cerebellum model able to adapt its corrections and store the sensory consequences or

feedforward motor commands for predicting appropriate actions when needed.

1.2 The Cerebellum as an Adaptive Controller

Since the late 1960s, Marr [4] (1969), Albus [5] (1971), Sejnowski [6] (1977), Fujita [7]

(1982), and other authors published their papers talking about the cerebellum as an

adaptive filter controller and many of recent works used artificial neural networks as

models for the cerebellum [8]. In computing an internal model, the CNS operates a
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1. INTRODUCTION

transformation from an input variable to an output variable encoding a map. Doing

that, the CNS adjusts or optimizes its own parameters automatically. On the basis of

samples encoded in the map, the cerebellum as adaptive controller predicts the future

signal and generates a signal for controlling an object (a robot arm) along a desired tra-

jectory. The main advantage of this approach is to allow the design of control systems

that can operate in an unknown or changing environment, when the dynamical robot

model is unknown. In other words, adaptive control allows monitoring and adapting

the behavior of the controller, achieving better performance and compensating changes

in the environment. When the CNS experiences novel dynamics and the internal model

cannot predict the necessary forces or the sensory consequences, then it needs to be

trained again. After that, it adapts and predicts correct outputs in this new scenario.

Internal models of dynamics are instantiated based on context [9] as they are what

has been learned about a specific motor control for a specific machine. Apart from

adaptation, another issue is the retention of internal models which is the CNS capabil-

ity of recalling the appropriate internal model and using it to make predictions to make

the movement. Therefore, after training and adaptation the internal model becomes

encoded into a long-term memory. The progress of memorization is called consolida-

tion. An important aspect to remark about the anatomy of the cerebellum is that its

structure appears to be very regular and modular (see Chapter 3 for further details).

So, the functions of the different parts of the cerebellum just depend on their input and

output connections rather than on their local anatomy.

In this dissertation, we take into consideration all these concepts to develop a mech-

anism of adaptation and retention of internal models of dynamics by a machine learning

algorithm (LWPR) [10, 11] for online function approximation. This is specially suitable

in case of noise or partial data, to optimize the input space reducing the number of

active neurons, and to generalize unseen contexts. The main disadvantages are given

by the fact that it implements supervised learning, that means that we need a very good

teacher, and a high number of parameters to tune. Nevertheless, LWPR allows online

incremental learning in a robotic platform since it spatially exploits localized linear

models to approximate nonlinear functions at a low computational cost. Therefore, the

evaluation of the prediction value is quite fast allowing real-time learning. Besides, the
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incremental training permits the acquisition and retention of different models without

any restriction of contexts and without interferences among them. Furthermore, we

exploit the LWPR capability of transforming the inputs in an optimal basis of clean

and accurate signals to the Purkinje layer of a cerebellar like architecture (see section

3.2 of the Chapter 3) for improving the learning of the internal model.

1.2.1 Bio-Inspired Motor Learning Models

As we have previously commented, the adaptive cerebellar microcircuit is repeated

throughout the cerebellar cortex and can be used to correct future motor behavior

based on current errors. Two alternative models have been proposed for representing

the role of the above mentioned circuit in motor plant compensation [12, 13, 14]. These

are the feedforward and the recurrent architectures (Figs. 3.2a and 3.2b in Chapter 3).

While in the first architecture, the cerebellum adds adaptive torque corrections and its

weights are adjusted depending on the motor-error signal, in the second one the cere-

bellum output is used as a sensory correction to the controller and it depends on the

sensory error. Thus, the forward architecture needs the right motor error which is given

by the difference between desired and actual motor commands and it is not an easy

value to compute specially in real motor task of complex biological systems [8]. This

problem does not exist in the recurrent architecture which seems to be more biologically

plausible according to neurophysiological evidence [8, 15].

In this dissertation, we present both bio-inspired architectures in which we imple-

ment the feedback error learning approach referred in subsection 1.1.1 and the neural

processes mentioned in section 1.2; we also demonstrate how to solve the motor-error

problem stated by Porrill and Dean [8] (2007) for compensation of plants of high degrees

of freedom (DOF) in the forward architecture.

1.3 Thesis Motivation. Working Hypothesis

The nervous system has developed model-abstraction mechanisms that allow an accu-

rate control based on previously experimented movements (dynamics and kinematics

abstraction processes). The cerebellum is one of the most important nervous centre

involved in tasks of precise and coordinated control. It seems a nervous centre able to
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abstract models of objects that are being manipulated. It is important to note that

biological systems achieve accurate control with low power actuators, while in robotics,

robots normally achieve very high precision and high speed motion with high forces

and high energy consumption. This allows controlling strategies that are rather inde-

pendent of the dynamics models of the plant and object being manipulated. These

robots are potentially dangerous in the field of human interaction because they lack

real-time sensory feedback and the force of their engines is dangerous if the system

becomes unstable. Thus, the field of robotics and assistance aimed at human interac-

tion needs the development of new technologies and control schemes with low power

actuators. Adoption of strategies of dynamics and kinematics models abstraction and

adaptive control schemes in real time are required. For this, we study biological systems

that perform adaptation of dynamics and kinematics models for accurate control and

machine learning approaches for model abstraction. There are two principal issues to

consider for the further development of this study: internal models and feedback control.

Ito [16] (2008) examined how a movement of a body part is controlled in the brain.

He stated that a feedback controller in the motor cortex generates a command that

drives the body part (robot arm) accordingly to the desired instruction. Then, the

body part model is captured into an internal model in the cerebellum in order to pre-

cisely perform the control of the robot arm by referring to it. How the internal model

is learnt in the cerebellum? Again, Ito [16] (2008) stated that the cerebellum is com-

posed of many modules called microcomplexes, each of which is a Unit Learning Machine

(ULM) made up of a structured neuronal circuits and it encodes an internal model. The

input-output relationship of a ULM is adaptively modified by the climbing fibers (CFs)

that convey the error signal. The output neuron of the cerebellar cortex is the Purkinje

cell (PC), which integrates information carried by one CF. Motivated by these concerns,

in our approach, we took advantage of the LWPR algorithm for nonlinear function ap-

proximation to incrementally learn and store the internal models of the robot arm and

to solve the lack of a perfect analytical robot model. Furthermore, Schweighofer et al.

[17] (2001) hypothesized that the cerebellar learning is facilitated by a GC sparse code,

i.e. a neural code in which the ratio of active neurons is low at any time. Besides,

Porrill and Dean [8] (2007) stated that both accuracy and learning speed could greatly
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improved by optimizing the choice of the centers and transforming the internal sensory-

motor representation to an optimal basis of receptive fields (RFs). Motivated by that,

we exploited the LWPR features to implement a kind of plastic process in the granular

layer, in order to efficiently minimize the required resources for the input-space mapping

placing and adapting kernels to better represent the input-space with a limited number

of them. In our models, LWPR RFs are used as a representation of the granular and

molecular layers delivering clean and accurate signals to the Purkinje cell layer.

With regard to the feedback control, Kawato [18] (2009) stated that a feedback

error learning mechanism is needed to compute the necessary commands from a desired

movement. In fact, a feedback controller that generates good commands drives the

supervised learning in the cerebellum for acquisition of the internal model through the

CF in conjunction with the PF-PC synapses. The major drawback of feedback error

learning according to Porrill and Dean [8] (2007) is that it requires complex reference

structures for generic redundant and nonlinear systems. Some authors attempted to

avoid this problem using high gains in the feedback loop [19]. Moreover, an analytical

computation of the dynamics is complex and in the case of a high number of DOFs,

precise dynamics parameters may be unknown. In this case, adaptive models are re-

quired for an accurate and stable control during manipulation. Traditional methods are

no longer suitable for controlling the complex dynamics of the new generation of robots

since the movement is influenced by the state variables of all the joints and the control

becomes very complex and highly non-linear [20]. Nonlinearities can dominate the robot

dynamics and the feedback gains have to be increased to compensate the resulting track-

ing error [21] for accurately following a predefined desired trajectory. This is dangerous

regarding the system stability and implies non-compliant movements. Furthermore,

high gains are unacceptable in autonomous and biological systems because they in-

troduce destabilizing components provided the inherent feedback sensorimotor delays

[8]. Furthermore, high gains generate large forces or in other words potentially dan-

gerous non-compliant movements [22], making the robot less safe for the environment,

mainly in the framework of human-robot interaction applications, and compromising

the closed-loop stability [23]. In this work, we implement a Learning Feedback (LF)

controller that generates adaptive feedback commands from the sensory errors avoiding
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classic PID with high gains and complex reference structures [8], thus solving the "distal

teacher problem" [24].

1.4 Objectives

This thesis is focused on studying the cerebellar internal models role in motor control

and motor learning of robot arm movements. The main aim is to develop bio-inspired

control schemes for complex robot systems with low power actuators that require adap-

tive models for accurate movements during the manipulation of objects or interaction

with the world. Therefore, in this thesis specifically addresses the following objectives:

• Study and development of low-gains control schemes.

• Implementation of model abstraction schemes during object manipulation. Ex-

traction of knowledge through experimentation.

• Study of the organization of models from sensorimotor representations.

• Schemes of bio-inspired control: integration of machine learning methodologies

with biologically plausible control schemes.

1.5 Project Framework

The work described in this document has been developed within the European project

"SENSOrimotor structuring of Perception and Action for emergent Cognition" (SEN-

SOPAC) [25].

SENSOPAC project (funded under the EU Framework 6 IST Cognitive Systems Initia-

tive) extended from January, 2006 to July, 2010 in collaboration with 12 institutions

from 9 different countries. SENSOPAC project combined machine learning techniques

and modeling of biological systems to develop a machine capable of abstracting cogni-

tive notions from sensorimotor relationships during interactions with its environment,

and of generalizing this knowledge to novel situations. Through active sensing and ex-

ploratory actions the machine discovers the sensorimotor relationships and consequently

learns the intrinsic structure of its interactions with the world and unravel predictive and

causal relationships. The project demonstrated how a robotic system can bootstrap its

development by constructing generalization and discovering sensor-based abstractions,
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based on neuroscience findings on tactile sensory data representation and processing.

The project relies on the synergy between multiple scientific institutions who are leaders

in their fields, building on interaction between neuroscience experimentalists, theoreti-

cians, and roboticists, leading to a complete artificial cognitive system using biomimetic

actuation, and bio-inspired sensing. The research group at the University of Granada

was mainly involved in the development of the spiking neuron computation environment

(EDLUT) [26, 27] and in the development of real-time biologically and computing con-

trol systems capable of carrying out manipulation tasks under various contexts. Figure

1.1 shows the module organization of the SENSOPAC project. University of Granada

(and this work as a part) focused in the fourth module dealing between neurophysiolo-

gist (module 5) and more abstract and robotic systems (modules 1, 2, and 3).

Figure 1.1: Module structure of the SENSOPAC European Project - Module diagram
showing the main tasks developed in the framework of the project. The research group at
the University of Granada was mainly involved in Module 4.

This work is highly interdisciplinary as it combines biological models with machine

learning schemes. There are many efforts that are based on bio-inspired models, but in

this project we adopt strategies from other fields such as machine learning and study its

feasibility and benefits in the context of biologically plausible models. This project pro-

poses the development of control schemes and acquisition of models based on an engine

of abstraction of models and their validation with biomorphic robots. This represents a

significant advance in the field of biomorphic control agents with low power actuators.

The algorithm of machine learning used within the partners of the Sensopac project

is the LWPR algorithm developed by Stefan Klanke, Sethu Vijayakumar and Stefan
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Schaal. The doctorate spent 3 months at the University of Edinburgh through a re-

search program exchange in order to get started with the LWPR algorithm and the

robot configuration of the 7-DOF Light Weight Robot (LWR) arm designed by the

Institute of Robotics and Mechatronics at the German Aerospace Centre (DLR).

1.6 Dissertation Outline

Chapters 4 and 5 describe the two approaches developed in this work. They both

include a brief introduction and a material and methods section. Though they are very

similar, we have kept them in both chapters to provide self-contained chapters (similar

to papers describing these two developments).

The remainder of this dissertation is organized as follows:

• Chapter 2. This is the Spanish translation of the Introduction.

• Chapter 3. Adaptive control. Description of the cerebellar microcircuitry and

of the role of internal models in motor control; presentation of the adaptive archi-

tectures that emulate the role of the cerebellum in motor adaptation.

• Chapter 4. Feedforward corrective actions. Adaptive Feedback Error Learning

Architecture for Motor Control. This is a control system based on inverse internal

model learning, on a feedback error learning mechanism, on a machine learning

algorithm and on a bio-inspired module for controlling a robot arm. Finally, we

present the experiments performed and its corresponding outcome evaluation.

• Chapter 5. Feedback corrective contributions. Presentation of a recurrent adap-

tive architecture based on forward internal model learning in which a feedback

error controller leads a precise, compliant and stable control during manipulation

of objects. The cerebellar-machine learning synergy makes the robot adaptable

to changing conditions. Finally, we present the experiments performed and its

corresponding outcome evaluation.

• Chapter 6. Concludes with a summary of contributions presented in this thesis

and a discussion of future work.

• Chapter 7. This is the Spanish translation of the Conclusion.

10



2

Introducción en español

Los movimientos humanos y la estabilidad de los mismos son el motivo de estudio del
control motor biomórfico y biomimético. Una manera práctica de entender el con-
trol motor humano es la simulación de esquemas de control biológicamente plausibles
definidos a partir de los conocimientos de alto nivel adquiridos hasta el momento y su
aplicación en hipótesis de trabajo específicas. En los sistemas biológicos, el aprendizaje
motor se presenta como el aprendizaje de nuevas habilidades o la adaptación de las que
ya son conocidas, con el fin de mantener el rendimiento y aprender qué movimientos
hacer y cuándo hacerlos. El cerebelo parece jugar un papel clave en la modulación de
movimientos precisos y coordinados. Por esta razón, la comprensión de los mecanis-
mos de aprendizaje del cerebelo y su emulación a través de arquitecturas bio-inspiradas
son dos procesos recíprocos de fundamental importancia para desarrollar sofisticados
sistemas robóticos capaces de realizar operaciones complejas de forma precisa en esce-
narios no estructurados o previamente conocidos.
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2. INTRODUCCIÓN EN ESPAÑOL

2.1 Control motor y aprendizaje motor

El objetivo principal de la investigación en robótica es crear máquinas que puedan fun-

cionar de forma autónoma. Los primeros robots totalmente autónomos aparecieron en

la segunda mitad del siglo XX y son generalmente empleados en trabajos sucios, pesados

o peligrosos, que la gente normalmente hace en su ausencia. Sin embargo, los robots

no pueden planificar y controlar las acciones físicas tan flexiblemente como lo hacen

los seres humanos. Hoy en día, los investigadores estudian cómo las personas controlan

sus cuerpos, cómo hacen los movimientos coordinados bajo condiciones variables del

entorno, cómo sostienen un objeto o hacen varias tareas con el fin de dotar a los robots

con dichas características humanas. Para ello, la robótica y la neurociencia aportan

conocimiento de manera conjunta para el desarrollo de enfoques bio-inspirados o mod-

elos de sistemas altamente no lineales. El objetivo es comprender los mecanismos de

control motor y de aprendizaje motor del sistema nervioso central (CNS) a diferentes

niveles, que van desde la célula hasta redes neuronales con el fin de crear movimientos

coordinados y precisos y, al mismo tiempo, almacenar la información procesada.

El control automático, en particular la aplicación de la retroalimentación, ha sido

fundamental en este sentido; el diseño de lugares de trabajo seguros con robots interac-

tuando con humanos, depende de la estabilidad de los mismos y para ello es necesario

implementar métodos más eficaces o mejores herramientas de robótica. El control motor

humano se refiere a muchas actividades, como caminar, mirar (movimientos oculares),

alcanzar objetos, dibujar y escribir, la producción del habla y la postura. En esta tesis,

nos centraremos en los movimientos de un brazo robótico y abordaremos tanto los pro-

blemas de lograr un control dócil no lineal como la simulación de los procesos neuronales

en un espacio de entrada multidimensional en tiempo real.

2.1.1 Percepción y control motor

Nuestro objetivo es desarrollar un sistema para mover un brazo robótico y corregir el

error debido a las interacciones entre sus varios enlaces o a condiciones dinámicas o

cinemáticas variables.

Una de las principales funciones del cerebro es extraer información a partir de

la entrada sensorial, organizarla y utilizarla para responder a una situación particu-
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2.1 Control motor y aprendizaje motor

lar. En este proceso, las complejas señales sensoriales motoras (registradas durante

un movimiento o cualquier interacción con el medio ambiente) se organizan en mode-

los intrínsecos. Estos modelos intrínsecos adquiridos mediante la experiencia permiten

movimientos eficientes y precisos. Los modelos se adquieren con una retroalimentación

perceptiva que permite el aprendizaje motor para proceder tal y como se argumenta

en la sección 1.1.2. Esto se logra a través de un entrenamiento repetitivo gracias al

cual las habilidades motoras se mejoran en términos de precisión y suavidad de los

movimientos. La retroalimentación indica hasta qué punto el movimiento es efectivo

y los movimientos sucesivos son realizados para reducir el error entre lo deseado y la

salida real. La estrategia de control empleada en el cerebelo que se aprovecha de la

experiencia sensorial se denomina circuito cerrado o control de retroalimentación (por

ejemplo, el nistagmo optocinético [2]). Un problema aún en investigación es cómo usar

la retroalimentación de modo eficaz para el control motor. La elección de las ganancias

es de particular interés en un sistema debido a su importante papel en la estabilidad y

solidez del mismo.

En esta disertación un enfoque de aprendizaje del error de retroalimentación basado

en iteraciones repetitivas de la misma tarea con ganancias muy bajas para obtener un

control dócil.

2.1.2 Predicción y aprendizaje motor

El aprendizaje motor es la “adquisición de la información sobre los movimientos (y otras

salidas motoras), incluyendo qué salida producir, así como cuándo y cómo producirla.

El aprendizaje motor genera la formación de memorias motoras”1 (Shadmehr and Wise

[2]). El problema a resolver en el control de un sistema dinámico es encontrar la entrada

al sistema que logre la conducta deseada como respuesta, incluso bajo perturbaciones o

cambios en el entorno. El cerebelo actúa en este sentido, de hecho es capaz de adaptar

su respuesta bajo cualquier condición capturando los modelos internos; es precisamente

este mecanismo el que permite imitar las características de entrada-salida, o sus inver-

sas, del aparato locomotor [3].

1Traducción de la cita literal en inglés: “acquisition of information about movements (and other
motor outputs), including what output to produce as well as how and when to produce it. Motor
learning results in the formation of motor memories” (Shadmehr and Wise [2]).

13



2. INTRODUCCIÓN EN ESPAÑOL

Teniendo en cuenta nuestro objetivo de hacer un control dócil, un desafío impor-

tante es la combinación del enfoque de aprendizaje del error de retroalimentación y del

control adaptativo predictivo mediante la aplicación de un modelo de cerebelo capaz

de adaptar sus correcciones, y asimismo almacenar las consecuencias sensoriales o las

órdenes motoras hacia adelante para predecir acciones apropiadas cuando sea necesario.

2.2 El cerebelo como controlador adaptativo

Desde finales de los 60, Marr [4] (1969), Albus [5] (1971), Sejnowski [6] (1977), Fu-

jita [7] (1982), y otros autores publicaron artículos hablando sobre el cerebelo como

un controlador de filtro adaptativo. Muchos de los trabajos más recientes utilizan las

redes neuronales artificiales como modelos para el cerebelo [8]. En el cómputo de un

modelo interno, el CNS transforma una variable de entrada en una variable de salida

codificando de este modo un mapa. En este proceso, el CNS ajusta u optimiza sus

propios parámetros de forma automática. Sobre la base de las muestras codificadas en

el mapa, el cerebelo, como controlador adaptativo, predice una señal futura y genera

una señal para el control de un objeto (un brazo robótico) a lo largo de una trayectoria

deseada. La principal ventaja de este enfoque es que permite el diseño de sistemas de

control que pueden funcionar en un entorno desconocido o variable, cuando el modelo

dinámico del robot es desconocido. En otras palabras, el control adaptativo permite

la monitorización y la adaptación del comportamiento del controlador, obteniendo un

mejor rendimiento y compensando los cambios en el entorno. Cuando el CNS experi-

menta nuevas dinámicas y el modelo interno no puede predecir las fuerzas necesarias o

las consecuencias sensoriales, entonces éste tiene que ser entrenado de nuevo. Después

de eso, se adapta y predice valores correctos en este nuevo escenario.

Los modelos internos dinámicos se crean dependiendo del contexto [9], ya que estos

son lo que se han aprendido acerca de un control motor específico para una máquina

específica. Además de la adaptación, otra cuestión es la retención de los modelos inter-

nos, es decir, la capacidad del CNS de recordar el modelo interno apropiado y usarlo

para hacer predicciones para el movimiento. Por lo tanto, después del entrenamiento y

adaptación, el modelo interno se codifica en una memoria a largo plazo. La evolución
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de la memorización se llama consolidación. Un aspecto importante a resaltar acerca de

la anatomía del cerebelo es que su estructura parece ser muy regular y modular (véase

el capítulo 3 para más detalles). Por lo tanto, las funciones de las diferentes partes del

cerebelo dependen de sus conexiones de entrada y de salida más que de su anatomía

local.

En esta tesis, se tienen en cuenta todos estos conceptos para desarrollar un me-

canismo de adaptación y de retención de los modelos internos dinámicos mediante un

algoritmo de aprendizaje automático (LWPR) [10, 11] para la aproximación de funciones

en tiempo de ejecución. Esto es especialmente adecuado en caso de ruido o datos par-

ciales, para optimizar el espacio de entrada reduciendo el número de neuronas activas y

generalizar los nuevos contextos. Las principales desventajas vienen dadas por el hecho

de que se implementa el aprendizaje supervisado, lo que significa que necesitamos un

muy buen entrenador y un gran número de parámetros a ajustar. Sin embargo, el LWPR

permite un aprendizaje incremental en una plataforma robótica, ya que explota espa-

cialmente modelos lineales localizados para aproximar funciones no lineales con un bajo

coste computacional. Por lo tanto, la evaluación de la predicción es bastante rápida,

lo que permite un aprendizaje en tiempo real. Además, el entrenamiento incremental

permite la adquisición y retención de los diferentes modelos sin ninguna restricción de

contextos y sin interferencias entre ellos. Asimismo, aprovechamos la capacidad del

LWPR de transformar las entradas en una base óptima de señales claras y precisas para

la capa de Purkinje de la pseudo arquitectura del cerebelo (véase capítulo 3 sección 3.2)

para mejorar el aprendizaje del modelo interno.

2.2.1 Modelos de aprendizaje motor bio-inspirados

Como hemos comentado anteriormente, el microcircuito adaptativo del cerebelo se repite

a lo largo de la corteza cerebelosa y se puede utilizar para corregir el comportamiento

motor futuro a partir de los errores actuales. Para la compensación motora de la

planta se han propuesto dos modelos alternativos para representar el papel del circuito

mencionado anteriormente [12, 13, 14]. Estas son las arquitecturas hacia adelante y

recurrente (figuras 3.2a y 3.2b en el capítulo 3). Mientras que en la primera arquitec-

tura, el cerebelo añade pares de torsión correctivos adaptativos y sus pesos se ajustan

en función de la señal de error motora, en la segunda la salida del cerebelo se utiliza
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como una corrección sensorial al controlador y depende del error sensorial. Por lo tanto,

la arquitectura hacia adelante necesita el error motor correcto que viene dado por la

diferencia entre las órdenes motoras deseadas y las reales. Este no es un valor fácil de

calcular, especialmente en una tarea motora real de sistemas biológicos complejos [8].

Este problema no existe en la arquitectura recurrente que parece ser biológicamente

más plausible de acuerdo a las pruebas neurofisiológicas [8, 15].

En esta tesis, se presentan las dos arquitecturas bio-inspiradas en las que implemen-

tamos el enfoque de aprendizaje del error de retroalimentación al que se hace referencia

en la sección 2.1.1 y los procesos neuronales mencionados en la sección 2.2; También se

muestra cómo resolver el problema del error motor declarado por Porrill and Dean [8]

(2007) para la compensación de las plantas de muchos grados de libertad (DOF) en la

arquitectura del control hacia adelante.

2.3 Motivación de la tesis. Hipótesis de trabajo

El sistema nervioso ha desarrollado mecanismos de abstracción de modelos que per-

miten un control preciso sobre la base de los movimientos previamente experimentados

(procesos de abstracción dinámicos y cinemáticos). El cerebelo es uno de los centros

nerviosos más importantes que intervienen en las tareas de control preciso y coordi-

nado. Parece un centro nervioso capaz de abstraer modelos de los objetos que están

siendo manipulados. Es importante tener en cuenta que los sistemas biológicos logran

un control preciso con actuadores de baja potencia, mientras que en la robótica, los

robots normalmente logran una precisión muy alta y un movimiento de alta velocidad

con fuerzas grandes y un alto consumo de energía. Esto permite el control de estrategias

que son bastante independientes de los modelos dinámicos de la planta y el objeto que

está siendo manipulado. Estos robots son potencialmente peligrosos en el campo de la

interacción humana porque carecen de reacción sensorial en tiempo real y la fuerza de

sus motores es peligrosa si el sistema se vuelve inestable. Por lo tanto, el campo de

la robótica y la asistencia destinada a la interacción humana necesita el desarrollo de

nuevas tecnologías y esquemas de control con actuadores de baja potencia. Se necesita

adoptar estrategias de abstracción de modelos dinámicos y cinemáticos y esquemas de

control adaptativos en tiempo real. Para ello, estudiamos los sistemas biológicos que

16
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llevan a cabo la adaptación de los modelos dinámicos y cinemáticos para un control

preciso y los enfoques de control automático para la abstracción de modelos. Hay dos

cuestiones principales a considerar para el desarrollo de este estudio: los modelos inter-

nos y el control de retroalimentación.

Ito [16] (2008) examinó cómo el movimiento de una parte del cuerpo está con-

trolado por el cerebro. Él dijo que un controlador de retroalimentación en la corteza

motora genera un comando que mueve la parte del cuerpo (brazo robótico) de acuerdo

a la instrucción deseada. Entonces, el modelo de la parte del cuerpo se almacena como

un modelo interno en el cerebelo con el fin de realizar con precisión el control del brazo

del robot al referirse a este. Cómo se aprende el modelo interno en el cerebelo? Una

vez más, Ito [16] (2008) declaró que el cerebelo se compone de varios módulos llamados

microcomplexes, siendo cada uno de ellos una máquina de aprendizaje unitaria (ULM),

formada por una estructura de circuitos neuronales, que codifica un modelo interno. La

relación entrada-salida de una ULM es modificada de modo adaptativo por las fibras

trepadoras (CFs) que transmiten la señal de error. La neurona de salida de la corteza

cerebelosa es la célula de Purkinje (PC), que integra la información transportada por

una CF. Motivados por estos conceptos, en nuestro enfoque, nos aprovechamos del algo-

ritmo de aproximación de función no lineal LWPR, para aprender de forma incremental,

almacenar los modelos internos del brazo del robot y resolver la falta de un modelo de

robot analítico perfecto. Además, Schweighofer et al. [17] (2001) trabajaron sobre una

hipótesis en la que el aprendizaje del cerebelo se ve facilitado por un código disperso

en las señales de las neuronas GC, es decir, un código neuronal en el que la propor-

ción de neuronas activas es baja en cualquier momento. Por otra parte, Porrill and

Dean [8] (2007) declararon que tanto la precisión como la velocidad de aprendizaje se

pueden mejorar en gran medida mediante la optimización de la representación interna

sensorial-motora a partir de una base óptima de los campos receptivos (RFs). Moti-

vados por esto, hemos explotado las características del LWPR para implementar una

especie de proceso adaptativo en la capa granular, con el fin de minimizar de manera

eficiente los recursos necesarios para la asignación del mapeo del espacio de entrada de

colocación y adaptar los núcleos para representar mejor el espacio de entrada con un

número limitado de ellos. En nuestros modelos, los RF del LWPR se utilizan como una

representación de las capas granular y molecular que entregan señales claras y precisas
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a la capa de células de Purkinje.

En lo que respecta al control de retroalimentación, Kawato [18] (2009) afirmó que

un mecanismo de aprendizaje del error de retroalimentación es necesario para calcular

las órdenes necesarias a partir de un movimiento deseado. De hecho, un controlador

de retroalimentación que genera buenas órdenes guía el aprendizaje supervisado en

el cerebelo para la adquisición del modelo interno a través de las CF conjuntamente

con las sinapsis PC-PF. El principal inconveniente del aprendizaje del error de retroali-

mentación Porrill and Dean [8] (2007) es que requiere estructuras complejas de referencia

para sistemas genéricos redundantes y no lineales. Algunos autores trataron de evitar

este problema utilizando altas ganancias en el lazo de retroalimentación [19]. Por otra

parte, un cálculo analítico de las dinámicas es complejo y en el caso de un alto número

de DOF, pueden desconocerse los parámetros precisos de la dinámica. En este caso, los

modelos adaptativos son necesarios para un control preciso y estable durante la mani-

pulación. Los métodos tradicionales ya no son adecuados para controlar las dinámicas

complejas de la nueva generación de robots, ya que el movimiento se ve influido por

las variables de estado de todas las articulaciones y el control se vuelve muy complejo

y altamente no lineal [20]. Las no linealidades pueden dominar la dinámica del robot

y las ganancias de realimentación tienen que ser aumentadas para compensar el error

de seguimiento resultante [21] para seguir una trayectoria predefinida deseada. Esto es

peligroso en relación con la estabilidad del sistema e implica movimientos no dóciles.

Además, son inaceptables altas ganancias en los sistemas autónomos y biológicos ya

que introducen elementos de desestabilización dados los retrasos sensorimotores de real-

imentación inherentes [8]. Adicionalmente, las altas ganancias generan grandes fuerzas,

o en otras palabras, movimientos no dóciles potencialmente peligrosos [22], haciendo

al robot menos seguro para el entorno, principalmente en el marco de las aplicaciones

de interacción entre humanos y robot, y asimismo compromete la estabilidad en lazo

cerrado [23]. En este trabajo, implementamos un controlador de aprendizaje de real-

imentación (LF) que genera comandos adaptativos a partir de los errores sensoriales,

evitando de este modo un PID clásico con ganancias altas y complejas estructuras de

referencia [8], solucionando por lo tanto el problema distal 1 [24].

1Traducción de "distal teacher problem" mencionado por Jordan and Rumelhart [24] (1992).
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2.4 Objetivos científicos

Esta tesis se centra en el estudio del papel de los modelos internos del cerebelo en

el control motor y el aprendizaje motor de los movimientos del brazo robótico. El

objetivo principal es desarrollar esquemas bio-inspirados de control para sistemas com-

plejos robóticos con actuadores de baja potencia que requieren modelos adaptativos

para movimientos precisos durante la manipulación de objetos o la interacción con el

mundo. Por lo tanto, esta tesis se centra específicamente en los siguientes objetivos:

• Estudio y desarrollo de sistemas de control de bajas ganancias.

• Implementación de esquemas de abstracción de modelos durante la manipulación

de objetos. Extracción del conocimiento a través de la experimentación.

• Estudio de la organización de los modelos a partir de representaciones sensorimo-

toras.

• Esquemas bio-inspirados de control: integración de las metodologías de apren-

dizaje automático con sistemas de control biológicamente plausibles.

2.5 Marco del proyecto

El trabajo descrito en este documento ha sido desarrollado en el marco del proyecto

europeo "SENSOrimotor structuring of Perception and Action for emergent Cognition"

(SENSOPAC) [25].

El proyecto SENSOPAC (financiado por el 6 Programa Marco de la UE en su inicia-

tiva de sistemas cognitivos) se extendió desde enero de 2006 a julio de 2010, en colabo-

ración con 12 instituciones de 9 países diferentes. Dicho proyecto combinaba conceptos

de inteligencia artificial y técnicas de modelado de sistemas biológicos para desarrol-

lar un sistema capaz de abstraer nociones cognitivas de las relaciones sensorimotoras

durante las interacciones con su entorno, y generalizar este conocimiento a situaciones

nuevas. A través de sensores activos y acciones de exploración, el sistema descubre

las relaciones sensorimotoras y, por consiguiente, aprende la estructura intrínseca de

sus interacciones con el mundo y desentraña las relaciones causales y predictivas. El

proyecto ha demostrado que un sistema robótico puede arrancar su desarrollo mediante

procesos de generalización y el descubrimiento de abstracciones basadas en sensores,
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mediante los resultados obtenidos de estudios de neurociencia sobre la representación

y el procesamiento de datos sensoriales táctiles. El proyecto se basa en la sinergia

entre varias instituciones científicas que son líderes en sus campos, agregando la inte-

racción entre experimentadores de neurociencia, teóricos y expertos en robótica, dando

lugar a un completo sistema cognitivo artificial que utiliza la actuación biomimética,

y la detección bio-inspirada. El grupo de investigación de la Universidad de Granada

ha participado activamente en el desarrollo del entorno de computación de neuronas

de spikes (EDLUT) [26, 27] y en el desarrollo de sistemas de control informáticos y

biológicos en tiempo real capaces de llevar a cabo tareas de manipulación. La figura

2.1 muestra la organización en módulos del proyecto SENSOPAC. La Universidad de

Granada (y este trabajo como una parte) se centró en el cuarto módulo, a medio camino

entre la neurofisiología (módulo 5) y los sistemas más abstractos y la robótica (módulos

1, 2, y 3).

Figure 2.1: Estructura de módulos del proyecto europeo SENSOPAC - diagrama que
muestra las principales tareas desarrolladas en el marco del proyecto. El grupo de investi-
gación de la Universidad de Granada ha participado principalmente en el módulo 4.

Este trabajo es muy interdisciplinario, ya que combina los modelos biológicos con

los sistemas de aprendizaje automático. Hay muchos esfuerzos que se basan en modelos

bio-inspirados, pero en este proyecto adoptamos estrategias de otros campos como el

aprendizaje automático y estudiamos su viabilidad y los beneficios en el contexto de

los modelos biológicamente plausibles. Este proyecto propone el desarrollo de sistemas

de control y la adquisición de los modelos basados en un motor de abstracción de los

modelos y su validación a través de los robots biomórficos. Esto representa un avance
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significativo en el campo de los agentes de control biomórficos con actuadores de baja

potencia.

El algoritmo de aprendizaje automático utilizado entre los socios del proyecto Sen-

sopac es el algoritmo LWPR desarrollado por Stefan Klanke, Sethu Vijayakumar y

Stefan Schaal. Parte del trabajo desarrollado en esta tesis se hizo en la Universidad

de Edimburgo, a través de un programa de intercambio de investigación que duró tres

meses, con el fin de empezar a trabajar con el algoritmo LWPR y con la configuración del

robot LWR de 7 grados de libertad diseñado por el Instituto de Robótica y Mecatrónica

en el Centro Aeroespacial Alemán (DLR).

2.6 Organización de los capítulos

Los capítulos 4 y 5 describen los dos métodos desarrollados en este trabajo. Ambos

incluyen una breve introducción y una sección de métodos y herramientas. A pesar de

que son muy similares, los hemos mantenido en los dos capítulos separados para que

sean autosuficientes (similares a los artículos científicos que describen estos dos hechos)

El resto de esta tesis se organiza de la siguiente manera:

• Capítulo 3. Control adaptativo. Descripción del microcircuito del cerebelo y del

papel de los modelos internos en el control motor; presentación de las arquitecturas

de adaptación que emulan el papel del cerebelo en la adaptación motora.

• Capítulo 4. Acciones correctivas hacia adelante. Arquitectura adaptativa de

aprendizaje del error de retroalimentación para el control motor. Este es un

sistema de control basado en el aprendizaje del modelo interno inverso, en un

mecanismo de aprendizaje del error de retroalimentación, en un algoritmo de

aprendizaje automático y en un módulo bio-inspirado para controlar un brazo

robótico. Finalmente se presentan los experimentos realizados y su correspondi-

ente evaluación de resultados.

• Capítulo 5. Contribuciones correctivas retroalimentadas. Presentación de una

arquitectura recurrente adaptativa basada en el aprendizaje del modelo interno

directo en el que un controlador de error de retroalimentación lleva un control

preciso, dócil y estable durante la manipulación de objetos. La sinergia de apren-

dizaje del cerebelo y el control automático hace que el robot sea adaptable a
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entornos cambiantes. Finalmente se presentan los experimentos realizados y su

correspondiente evaluación de resultados.

• Capítulo 6. Concluye con un resumen de los trabajos presentados en esta tesis

y una descripción de los trabajos futuros.

• Capítulo 7. Esta es la traducción al español del capítulo conclusiones.
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3

Adaptive Control

The cerebellum has cognitive functions, as well as motor and autonomic functions. It
is a set of adaptive modules that contribute in the control of actions over time. Each
microzone in which the cerebellar cortex is divided performs an algorithm based on an
adaptive microcircuit. Adaptive means that the synaptic weights are adjusted by error
signals. Furthermore, the cerebellar learning capability is allowed by internal models
which are neural processes that mimic a behavior of input-output characteristics or
their inverse of the motor apparatus. Internal models help the brain to perform a task
precisely and increase the system’s compliance. Inverse and forward models are used in
different manners in the context of motor control as they have different input/output
characteristics. From that, there are two main neuronal mechanisms in the brain based
on feedforward and recurrent (or feedback) corrective actions respectively. In the first
one, the cerebellum supplies corrections terms to the motor commands, while in the
second it supplies corrections terms to the desired trajectory. After a brief description
of the cerebellar microcircuitry and of the role of internal models in motor control, we
present the adaptive architectures that emulate the role of the cerebellum in motor
adaptation.
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3. ADAPTIVE CONTROL

3.1 Introduction

Originally, feedback error learning was proposed to establish a computational model of

the cerebellum for learning motor control with internal models in the CNS [28]. From

a control viewpoint, the feedback error learning can be seen as an adaptive control

technique [19]. In fact, “The goal of adaptive control is to achieve asymptotic tracking

to the desired trajectory under the presence of unknown parameters in the plant dy-

namics by adjusting them during operation from input-output data while guaranteeing

stability of the closed-loop system” (Nakanishi and Schaal [29]). In the brain, some

of the neural connections have plasticity, which is thought to be the neural basis for

adaptive behavior [28]. It is of interest to this work to study how the CNS is able to

control the movements by making use of local synaptic plasticity. Marr [4] and Albus

[5] proposed learning network models of the cerebellum, and Fujita [7] expanded the

Marr-Albus model and proposed an adaptive filter model of the cerebellar cortex. The

uniform structure of the neuronal circuitry that is repeated over the entire cerebellar

cortex is presented in the following paragraph 3.2.

This work is focused on the investigation of the control of voluntary arm move-

ments of many DOFs, which are characterized to have nonlinear dynamics. In the

cerebellum, the controller is the motor cortex that is driven from higher motor centers

through an instruction signal. In turn, the controlled object is the motor apparatus

that is connected to lower motor centers driven by the motor cortex. In considering

the control system structure for voluntary movements, Ito [30] depicted two different

block diagrams of the connections between the cerebral cortex and the cerebellum which

have both anatomical and physiological basis: the forward-model-based and the inverse-

model-based control system schemes. A remarkable feature of these diagrams is that

they make use of internal models, i.e. forward and inverse models. Internal models

represent the cerebellar learning capability through which the cerebellum accurately

performs a movement even in the absence of the visual feedback [30]. With the aim of

acquiring internal models of the robot arm, the control system architectures we present

in this thesis contain an internal feedback, which acts to apply feedforward adaptive

corrections with the inverse model and feedback adaptive contributions with the forward

model. In fact, the former plays the role of a feedforward controller that replaces the
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motor cortex serving as a feedback controller [28, 30], while the latter fits the recurrent

decorrelation control algorithm presented by Porrill et al. [14].

In this chapter, we focus on the description of the cerebellar neuronal microcircuitry

and on its function on motor control and learning through internal models. Then, we

present two models of the role of the cerebellum in motor adaptation: the feedforward

and the recurrent architectures.

3.2 The Cerebellar Microcircuit

Since the 1960s, analysis on neuronal circuit structures of the cerebellum has revealed

its involvement in the control of actions and in the acquisition of specific motor skills

[4, 5, 31, 32]. In other words, the cerebellum plays an important role in accurate motor

learning, motor adaptation, and cognition [31], e.g., computing the inverse dynamics

of a body component [13, 33], delivering feedforward [12, 21] and feedback terms to

the crude control commands from the motor cortex. Moreover, evidence has uncovered

that the cerebellum also contributes to higher cognitive functions, but there is not a

consensus about how it processes that activity [34].

Recent research works [15] describe the cerebellum as a set of adaptive modules,

also called cerebellar microcomplexes, embedded in the motor control system to im-

prove coordinated movements over time. There are even works that specifically study

how spiking cerebellar-like neural structures can efficiently contribute in control tasks

within biologically plausible control schemes [35, 36, 37].

The cerebellar cortex is divided into a large number of distinct microzones that corre-

spond to the minimal functional unit. Throughout the cerebellum the internal micro-

circuitry of microzones is similar, there are three cortical layers in which the processing

capability of the neural structure is distributed to perform an algorithm for a general

signal-transforming activity as a complex adaptive filter [15]. This cerebellum micro-

circuit based on Marr and Albus’ model [4, 5] consists of five main cell types localized

between the granular, PC and molecular layers (see Fig. 3.1).

The output neuron of the cerebellar cortex is the PC, which integrates information

carried by one climbing fiber (CF), that is the axon of the inferior olive neuron, and

25



3. ADAPTIVE CONTROL

� ������������

��	�


�
��


��	

�


�

�

�
�
��

�
�	

����

�	���
����



�
�
��
�
��

�
�	

�
�
	�


�
��
��
�




�
�

������������

��
��

�
��

�
��

�
��

 
!

��
�
�"

!

Figure 3.1: Basic structure of the cerebellar microcircuit.

receives inputs from many parallel fibers (PFs). Each single CF synapses a large number

of dendrites of the target PC, thus affecting it significantly. The PC produces a complex

spike [38] each time it receives input from a CF. PFs are the forks of the axons of the

granule cells (GCs) situated in the granular layer, below the Purkinje layer. Besides

CFs, the other main afferent of the cerebellar cortex is the mossy fiber (MF) that makes

excitatory synaptic contacts mainly with GCs. The PCs in a microzone receive CFs

driven by the same input and have a specific output effect [15], i.e. they control one

specific movement component. Unlike the MF, CF is a rather unique afferent system

of the cerebellum in the CNS. In fact, there is not a generally accepted view regarding

its functions yet [39]. In the context of movement control, several studies [3, 16, 39, 40]

revealed that the CF may signal the presence of an unexpected sensory stimulus during

an action, so it may represent an error signal that helps to adjust the synaptic weights

using the covariance learning rule proposed by Sejnowski [6].

3.3 Internal Models

Different research groups support that in the cerebellar cortex are allocated two different

types of internal models [3, 13, 16, 30], the inverse and forward internal models, which

are formed and adjusted through a supervised learning process as the movement is re-

peated [16] to mimic the behaviour of a natural process [41], to facilitate more precise
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coordinated movements [15] and increase the system’s control compliance [42]. Once

the internal model is learned, it helps the brain to perform the task precisely without

referring to feedback. The outcome is that the desired motions are predicted and only

small correction forces are required, thus increasing the system’s control compliance.

The evidence for internal models of controlled objects in the brain is not yet confirmed,

however it has successfully been applied to produce a robot that acquires a motor skill

by learning [37, 43, 44, 45]. As a matter of fact, an increasing number of psychophysical

experiments support the fact that humans make use of forward models [46, 47].

The inverse internal model reproduces the inverse dynamics model of a body part [16],

in other words it produces the motor command in terms of torques to be applied. On

the contrary, the second one reproduces the forward dynamics [16] and it plays an im-

portant role in controlling reaching movements especially in arm control [24, 48].

Learning an inverse dynamics model presents the following problems: the motor

command error is not directly available to the CNS, and the movement errors need to

be converted into motor errors in order to be used for the training [13, 15]. Previously,

some authors such as Kawato [12], Gomi and Kawato [21] and Nakanishi and Schaal [29]

proposed a cerebellar feedback error learning for adaptive control to solve this problem

by a conventional feedback controller. In fact, the feedback controller transforms the

trajectory error into motor command errors. This is then used as training signal and

the feedback motor commands are summed with the feedforward commands given by

the inverse model to act on the controlled arm.

Conventional feedback controllers are based on the principle of negative feedback, in

other words they perform corrections on the basis of the error computed in the previous

movement. The general feedback control law depends on the proportional, derivative

and integral gain factors. In fact, they concern the stability of the system, and the

compensation for errors. If the gains are high, the command torques will be strong

making the robot stiff and dangerous, i.e., not compliant (not valid for human-robot

interactions). However, small gains will reduce the stiffness and increase the robot’s

flexibility with respect to disturbances, but the movement may result imprecise. Then,

the gains have to be tuned in order to achieve a balance between accuracy and stability.

These are the main concerns to face up in order to obtain compliant and accurate mo-

tions through a combination of a reliable internal model that predicts correct command
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torques and a feedback controller that leads both the motor control and the motor

learning of the inverse internal model.

Since the actions based on sensory feedback are slow (due to sensory-motor path-

ways delays) and risky, the brain has developed mechanisms to estimate predictions

[49]. This is achieved by forward models, which are employed by the sensorimotor sys-

tem to provide predicted estimates of the state of the controlled object, and thus they

overcome the significant delays of real sensory feedback [41, 49]. “In other words, by

including the forward model within an internal negative feedback loop, it provides an

internal feedback signal that is available much more rapidly than the actual feedback

signals resulting from the movement” (Miall and Wolpert [41] (1996)). Other uses of the

forward models have been proposed, such as anticipating and canceling sensory reaffer-

ence of self initiated actions, providing an internal feedback to overcome time delays,

and estimating the state of the controlled object some time into the future. Finally,

during learning itself, forward models may be used to generate sensory error signals

obtained by the difference between predicted feedback minus real feedback to guide the

learning of inverse models. This can help to solve the "distal error" problem [24]. In

fact, Jordan and Rumelhart [24] proposed the forward and inverse modeling approach

to solve the problem of converting the error from task-oriented coordinates to the motor

command space.

3.4 Adaptive Control Architectures

To form an adaptive control system, that is a system that can learn, internal models are

essential. According to the control theory, in the brain, the motor cortex assumes the

role of the controller for voluntary movements. It generates command signals to drive a

controlled object represented by neurons in the temporoparietal cortex [16]. Lastly, the

cerebellar hemispheres provide the internal models. The controller can be fed with the

output of the controlled object (external feedback). The forward model can replace the

external feedback, as it mimics the controlled object, while the inverse model replaces

the controller as it provides the inverse dynamics of the robot arm without receiving

feedback. Internal models are formed and updated by error signals carried by CFs. The

forward model receives motor commands in MFs and sensory signals in CFs. In contrast,
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the inverse model receives instruction signals in MFs and motor signals in CFs [14, 30].

Thus, the output of the inverse model represents motor commands, while in the forward

model, represents sensory signals. Motor errors can be derived from the controller, and

the sensory errors from the output of the controlled object and the desired output. So,

there are two main neuronal mechanisms in controlling and manipulating an object in

the brain based on feedforward and recurrent corrective actions respectively. In the

first the cerebellum supplies corrections to the motor commands, while in the second it

supplies corrections to the desired trajectory.

Porrill et al. [14], [8] described and presented the main advantages and disadvantages

of the forward loop and the recurrent architectures shown in figure 3.2. The cerebellar

filter C is adaptive as it has adjustable weights. In the feedforward loop, the training

signals are the errors obtained from the difference between the actual and the desired

motor commands (motor error). Due to the fact that the desired motor commands are

not directly observable, the motor error is not a desirable training signal since complex

reference structures are required to compute it [14]. However, the recurrent architecture

presents a solution to the motor error problem as it uses sensory errors instead of motor

errors. Furthermore, this architecture seems to be more biologically plausible than the

first architecture in the context of plant compensation [8].

In feedback error learning, Gomi and Kawato [21] presented a scheme in order to rescue

the feedforward control system, in which they used the estimated motor error as both

a training signal and a feedback error term. Anyway, as we have mentioned above,

specially in autonomous and high nonlinear systems, the main difficulty is to balance

the choice of the gains to avoid destabilizing effects. Despite this, feedback error learn-

ing still remains a useful approach under some circumstances. For example, Haith and

Vijayakumar [50] highlighted the fact that the feedforward scheme is not affected by

changes in the kinematics, but is impaired under changes in the dynamics in contrast

with the recurrent architecture.

In the following chapters, we present the adaptive architectures we have imple-

mented based on the internal-model control and on feedback error learning in order to

avoid the difficulties related to the control of high nonlinear robotic system with many

DOFs.
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(a) The feedforward loop architecture.

(b) The recurrent architecture.

Figure 3.2: Schematic of the feedforward and recurrent architectures. In both archi-
tectures, the adaptive cerebellar weights are adjusted by an error-driven signal, the motor
error in the feedforward scheme and the sensory error in the recurrent scheme. In Fig. 3.2a
the correction term is provided by means of a corrective torque that is added to the torque
computed by module B. While, in Fig. 3.2b the correction term is delivered in terms of
spatial coordinates correcting the actual trajectory that is received by module B.
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Feedforward Corrective Actions.
Adaptive Feedback Error Learning
Architecture for Motor Control.

Internal models form an adaptive control system since they are are formed by neural
networks inside the brain that learn the input-output characteristics of some dynamic
processes. Among them, in this chapter we study the inverse model and its role as a
feedforward controller that replaces the feedback controller represented by the motor
cortex in the brain. Then, we propose a control system based on inverse internal model
for controlling a robot arm based on a feedback error learning mechanism (Learning
feedback controller (LF)), a machine learning algorithm (LWPR) and a bio-inspired
module (cerebellar-like engine (C)). The LF controller is driven by feedback errors and
it generates motor commands to drive the supervised learning for acquisition of the
inverse model through the CFs in conjunction with the PF - PC synapses. The LWPR
engine incrementally acquires the inverse internal model of the robot arm, while the
C module allows a faster control and a more precise movement thus compensating
for interaction torques. We examine the contribution of the different components of
the proposed scheme comparing the obtained performance with alternative approaches.
Then, we show that the presented architecture can be used for accurate manipulation of
different objects when their physical properties are not directly known by the controller.
We evaluate how the scheme scales for plants of high DOFs (7-DOF robot arm).
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4.1 Introduction

The problem of controlling a robot of many DOFs is that of determining the forces

or torques to be developed by the joint actuators to obtain the right execution of the

commanded task [51]. Traditional methods are no longer suitable for controlling the

complex dynamics of the new generation of light-weight robots [52, 53] since the move-

ment is influenced by the state variables of all the joints and the control becomes very

complex and highly non-linear [20]. Nonlinearities can dominate the robot dynamics

and the feedback gains have to be increased to compensate the resulting tracking error

[21] for accurately following a predefined desired trajectory. This is dangerous regarding

the system stability and implies non-compliant movements. Furthermore, high gains are

unacceptable in autonomous and biological systems because they introduce destabilizing

components provided the inherent feedback sensorimotor delays [8]. Therefore, classic

feedback control seems to be inappropriate because high gains result in large forces

generating potentially dangerous non-compliant movements [22], making the robot less

safe for the environment, mainly in the framework of human-interaction applications,

and compromising the closed-loop stability [23]. The major drawback of feedback error

learning according to Porrill and Dean [8] (2007) is that it requires complex reference

structures for generic redundant and nonlinear systems in order to compute an accurate

motor error. Some authors attempted to avoid this problem using high gains in the

feedback loop [19]. Otherwise, Gomi and Kawato [21] (1992) described a conventional

feedback controller, Proportional Derivative and Acceleration (PDA), for a simple linear

case, as an inverse reference model to convert the trajectory error into motor error.

Moreover, an analytical computation of the dynamics is complex and in the case of a

large number of DOFs, precise dynamics parameters may be unknown. In this case,

adaptive models are required for an accurate and stable control during manipulation.

Here, we address these problems setting an appropriate inverse reference model in the

feedback controller proposing a Learning Feedback (LF) controller, which improves the

system behavior and self-adapts by a learning rule through consecutive iterations of the

same trajectory.

Wolpert et al. [13] (1998) proposed a modular organized structure of internal mod-

els (forward and inverse models). The first type predicts the consequences of actions
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under different contexts while the second one provides commands to achieve desired

trajectories (see paragraph 3.3 in the Chapter 3). This chapter relates to the func-

tion of inverse internal models of memorizing a map of the motor apparatus in terms

of an inverse dynamics model with a state-space representation. Accordingly, this in-

verse dynamics model will provide precise command torques over the input state-space

and new trajectories are efficiently controlled based on previously learned primitives [3].

Recent approaches treat the solution of inverse dynamics (also referred to as inverse

internal model) as a function approximation problem [22, 45]. A robot arm produces

a vast amount of data (joint angles, velocities, accelerations, and torques) during its

movements, which can be used as training data for the LWPR algorithm [10, 11]. In this

sense, machine learning algorithms and the robot systems may help us to develop an

understanding of how motor learning takes place in biological systems. Human motor

skills are adaptive to changes in the body’s physical morphology and the nature of the

task being performed, the biological system is able to accomplish compliant and pre-

cise motion. Function approximation can solve the lack of a perfect analytical model;

however, the learned dynamics function represents only a part of the dynamic robot

model. In fact, there are some difficulties to know the exact model in the case of mis-

calibrations of the joints, changes of context, objects under manipulation, etc; thus, the

learned function will not be able to prevent all the uncertainties. For this reason, the

task of the cerebellar microcircuit is to compensate for these changes while the LWPR

incrementally learns the adapted dynamic models. The learned function which emulates

the inverse dynamics model of the arm together with the feedback learning module make

the robot arm capable of performing movements that are both precise and compliant at

the same time and also adaptable to changing situations. In fact, it is well-known that

the human motor system is able to generate accurate control commands under different

environment changing conditions.

Ito [16] (2008) stated that a feedback controller generates a command in the motor

cortex that drives the controlled body part accordingly to the desired instruction. Then,

the body inherent characteristics are captured in an internal model in the cerebellum

in order to precisely perform the control of the robot arm by referring to it. That

means that the feedback control is replaced by the forward control that reproduces the
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dynamics of the robot arm.

In this chapter, we present an architecture in which the cerebellar cortex is embedded

in a feedforward loop and the basic cerebellar microcircuit is based on the Marr and

Albus’ model [4, 5]. The LF controller generates adaptive feedback commands from the

sensory errors avoiding classic PID with high gains and complex reference structures

[8] thus solving the motor error problem [24], and the LWPR incrementally learns the

internal inverse model of the robot arm.

We have done a generalization experiment in order to evaluate the functional struc-

ture of our LWPR internal model. After sufficient learning of trajectories defined in

Equations (4.16) and (4.17), LWPR predicts accurate torques when the robot arm has

to follow a trajectory given by the summation of previous learned trajectories keep-

ing the desired performance. In fact, the motor commands are predicted by a map

from the state-space input composed of positions, velocities and accelerations of desired

trajectory, and positions and velocities of the computed trajectory. So, the more the

new trajectory belongs to the known state-space the generalization of previous learning

will work better. In practice, LWPR generalization performance (that supports our

approach’s generalization capability) has already been evaluated in Schaal et al. [54]

(2002).

Among the global nonlinear function approximators, such as Gaussian Process Re-

gression (GPR) [55], or Support Vector Regression (SVR) [56], LWPR has been suc-

cessfully used for online incremental learning in robotic platforms [11, 22, 54, 57] since

it spatially exploits localized linear models to approximate nonlinear functions at a low

computational cost. Therefore, the evaluation of the prediction value is quite fast al-

lowing real-time learning. Besides, the incremental training permits the acquisition and

retention of different tasks without restriction in the number of tasks and without inter-

ferences among them [45]. Figure 4.1a summarizes the basic process of LWPR learning.

Bearing in mind Fig. 4.1, we exploit the similarity between the LWPR learning mecha-

nism and the cerebellar circuitry to fuse their functionalities and take advantage both

of the potentiality of the machine learning algorithm and of the cerebellum’s role to

make fine adjustments to the way an action is performed.
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(a) The LWPR processing unit
(Reproduced from Vijayakumar et al. [11] (2005)).

(b) The microcircuit of the cerebellum
(Reproduced from Porrill et al. [14] (2004)).

Figure 4.1: Parallelism between the LWPR processing unit and the cerebellum microcir-
cuit.
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In the LWPR, the RF weighting kernels encode the input space like the cerebellar

GCs expansively encode the information coming from the MFs. Previous simulation

studies have widely developed the theory of the cerebellar granular layer as a liquid

state machine, where the PFs generate a finite but very long sequence of active neuron

populations without recurrence [58]. In a similar way, RF weighting kernels could adapt

their weights to select different outputs depending on the current state of the robot arm.

Schweighofer et al. [17] (2001) hypothesized that the cerebellar learning is facilitated

by a GC sparse code, i.e. a neural code in which the ratio of active neurons is low at

any time. Porrill and Dean [8] (2007) stated that both accuracy and learning speed

could greatly improve by optimizing the choice of the centers and transforming to an

optimal basis of RFs. According to these hypotheses, we exploited the LWPR capabil-

ities to emulate the granular layer with a limited number of resources; LWPR places

and adapts efficiently its internal kernels to better represent the input-space with a

limited number of them. In fact, unlike the cerebellum, LWPR automatically evaluates

the required number of local correlation modules to optimize the network size by incre-

mental learning. In this sense, each LWPR module and its associated RF weights can

be seen as providing the firing rate of a PF, while the set of active RF weights can be

seen as the current state of the granular layer processing module [58]. This state would

be propagated through PFs and interneurons to produce more accurate signals at the

PCs [59]. The major strength of the LWPR is the use of incremental calculation meth-

ods during the training and therefore, it does not require the input data to be stored.

Furthermore, the algorithm can cope with highly redundant and irrelevant data input

dimensions without any prior knowledge of the data, because it uses an incremental

version of the Partial Least Squares regression (PLS).

It is important to remark that recent studies highlight the importance of other

elements such as interneurons for learning consolidation [59]. As input to the Purkinje

layer we use machine learning modules (LWPR kernels) whose adaptive input RFs can

be seen as an abstraction of the granular and molecular layer modules (including also

interneurons [59]) that efficiently and accurately deliver clean signals to the Purkinje

layer. In our approach the cerebellar module (C) includes only short term adaptation

while consolidation of learned primitives takes place at the machine learning module

(LWPR) as also indicated in the results and conclusions sections. There have been
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some applications of cerebellar models to the control of robot manipulators, all in sim-

ple systems such as Gomi and Kawato [21] (1992), Porrill and Dean [8] (2007), Haith

and Vijayakumar [50] (2009) and in real robot systems such as Shibata and Schaal [60]

(2001).

The major contribution of the presented model is that it manages to learn dif-

ferent non-linear dynamics with a hybrid approach that uses a machine learning engine

(LWPR) and a bio-inspired module (cerebellar-like network). In other words, we ex-

ploit the RF weighting of each local model in the LWPR as granular and molecular layer

microzones (complexes) in the cerebellum approach. Therefore, the cerebellum module

instead of receiving inputs by means of MFs, receives pre-processed signals from the

LWPR RFs. This takes advantage of the optimized engine for a compact sensorimotor

representation provided by the LWPR. The LWPR incrementally learns and stores the

inverse internal model of the robot arm, while the C module allows a faster control and

a more precise movement [17]. As Ito [16] (2008) stated, the cerebellum is composed of

many modules called microcomplexes, each of which is a ULM made up of a structured

neuronal circuits and it encodes an internal model. The input-output relationship of

each ULM is adaptively modified by the CFs that convey the error signal. So, the dy-

namics of the robot are encoded in the ULM which carries out the role of an internal

model, as illustrated in Fig. 4.3. Each microcomplex adapts the corrections for any

possible miscalibration, e.g. on account of interaction torques, by a teaching inverse

reference signal or appropriate motor command. The latter is learned by the LF con-

troller on consecutive iterations of the task and also assures the stability of the system

without using high gains. Once the internal model is learned, the ULM performs the

movement precisely with a low contribution from the feedback.

In the following paragraphs, we will present the advantages of the control archi-

tecture system according to the next structure. Firstly, each block of the proposed

architecture is presented with high regard to the learning rule of the LF controller and

the connection between the cerebellum and the LWPR algorithm. Secondly, we will

demonstrate the validity and efficiency of the model with experiments on a 3-DOF and

7-DOF Light Weight Robot (LWR) arm (see Fig. 4.2). This is the third generation

of a 7-DOF robot arm designed by the Institute of Robotics and Mechatronics at the
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Q2

Q3

Q1

Figure 4.2: Light Weight Robot (LWR) arm and hand consisting of seven revolute joints.
The three joints used in our 3DOF experiments are explicitly indicated. Figure adapted
from Albu-Schaffer et al. [1] (2007).

German Aerospace Centre (DLR) [52, 53].

4.2 Control Architecture

In this section, the Adaptive Feedback Error Learning (AFEL) architecture, shown in

Fig. 4.3, is presented. It consists of the LF controller which generates the ufb feedback

joint torques and the ULM which provides the uff feed-forward joint torques. This uff
term is a combination of an ul prediction from the LWPR and an uc prediction from

the cerebellum model. The trajectory planner block computes the desired joint angles,

velocities, and accelerations (Qd, Q̇d, Q̈d) by inverse kinematics.

The field of nonlinear control theory is very large, therefore, we will focus our atten-

tion on a particular method called feedforward nonlinear control [61]. Considering the

analytical robot model, we calculate the joint torques required for a particular trajectory

using the following dynamic Equation (4.1) of the robot:

τ = M(Q)Q̈+ V (Q, Q̇) +G(Q) + F (Q, Q̇), (4.1)

where M(Q) is the inertia matrix of the manipulator, V (Q, Q̇) represents the centrifugal

and Coriolis terms, G(Q) is the gravity term, F (Q, Q̇) is the model of friction, and Q,

Q̇, Q̈ are the joint angles, velocities, and accelerations of the robot arm.
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Figure 4.3: Block diagram for the AFEL scheme.

In the architecture, the ut global torque (4.2) is the summation of the uff pre-

dicted motor command which comes out of the ULM and allows the robot to follow a

desired trajectory (Qd, Q̇d, Q̈d), and the ufb motor feedback command, generated by

the LF controller, which ensures the stability of the trajectory.

ut = uff + ufb. (4.2)

If the adaptive model is accurate, the resulting uff feed-forward term will cancel the

robot nonlinearities. However, if the inverse dynamic model is not exact, there will

be an error between the desired signal and the output of the controlled robot arm (Q,

Q̇, Q̈). This is also called feedback error and the LF controller output will reflect it.

Then, the cerebellum receives the signal which will activate the process of learning [16].

Inside the ULM block, the LWPR algorithm plays the important role of internal model,

or in other words, it learns the inverse model of the robot arm while corrections are

applied following the trajectory. In addition to this, the ULM also consists of a set of

uniform cerebellar circuits which are capable of learning the input-output relationship

of dynamic processes by means of the long-term depression induced in the synapses

between PFs and PCs. The error signal conveyed by the CF adaptively modifies this

relationship. Analogously, this plastic site is represented by the C module - in function
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rather than form - in our system, and it is quite sensitive to the representation of the

input space [8, 17]. The error signal computed by the LF and sent to the C module is

the effect of the system action that is minimized through the Hebbian rule (4.13) by

analogy with the distal error problem formulated by Jordan and Rumelhart [24] (1992).

Further details about the ULM are given in Section 4.2.2.

Summarizing, the cerebellum leads the model abstraction engine (LWPR), captures

through optimized representation the sensorimotor complexes and produces uc corre-

sponding torques to reduce the ufb teaching signal to the least possible amount (error

related estimate). The LWPR engine incrementally learns from the ut global torques

incrementally by abstracting the whole model.

4.2.1 Learning Feedback Controller

The LF controller overcomes the lack of a precise robot arm dynamic model, ensures the

stability of the system, and enables the control architecture to get a better performance.

This is achieved by adding a feedback control torque to the one which is provided by the

known part of the model. The ûfbr feedback torque, shown in the following Equation

(4.3), is adjusted through a learning rule after consecutive repetitions of the same task,

r = 0, 1, ... The dynamics of the robot can be written as:

τ = M̂(Qd)Q̈d + V̂ (Qd, Q̇d) + Ĝ(Qd) + ûfbr . (4.3)

Keeping in mind the dynamic model described in Equation (4.1), considering a non-

modeled ûfbr friction term to be added to the estimated terms, and substituting Equa-

tion (4.3), we obtain error Equations (4.4) and (4.5) of the closed loop of the control

system in Fig. 4.3:

ë = M−1(F − ûfbr) (4.4)

or in a more compact form:

ë = (B −Br), (4.5)

where ë = Q̈d − Q̈, B = M−1F , Br = M−1ûfbr . For every joint, the Equation (4.5)

becomes:

ëi = (Bi −Bir). (4.6)
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In the last Expression (4.6), term Bi is constant during iterations over time, while term

Bir changes on consecutive iterations of the task. We propose the following learning

rule for each i joint, as indicated in Expression (4.7):

B̂i(r+1) = B̂ir + P ∗ eir, (4.7)

where P ∗ eir is the convolution between the impulse response filter P and the error in

iteration r. Among filters, we chose the one given by Equation (4.8):

P (s) = s2 + (Kvi − µ)s+ (Kpi − µ), (4.8)

where µ is a constant.

P is a non-causal filter, so it uses the errors of the previous iterations and its convergence

depends on µ. Further specifics on the LF controller analysis are provided in Appendix

A.

4.2.2 Unit Learning Machine

LWPR algorithm creates N linear local models and feeds the inputs into them. Here,

a weighting kernel computes a weight p(k, i) for each xi data point according to the

distance from the ck center of the kernel in each k local unit. The weight is a measure

of how often an item of xi data falls into the region of validity of each linear model.

The kernel function is defined as a Gaussian kernel:

pk = exp

(
−1

2
(xi − ck)

TDk(xi − ck)

)
, (4.9)

where Dk is a positive definite matrix which is called distance matrix.

This measure is updated iteratively (on-line) by using an incremental gradient descent

based on stochastic leave-one-out cross validation criterion. This is very important in

the performance of our system since the remaining sites of plasticity strongly depend

on a good lower-dimensional manifold of the input space. A good representation of the

input space as the one that could be achieved by means of Equation (4.9) leads to sparse

code in the GC layer in analogy with the Marr and Albus theory.

Here, we assume that there are N local linear models combining their individual
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prediction yk to make the global output ŷ (4.10). In other words, the total output of

the network is the weighted mean of all linear models:

ŷ =

∑N
k=1 pkyk∑N
k=1 pk

. (4.10)

Regarding the learning process, the number of local models increases with the complex-

ity of the input space. If a data sample falls into the validity region of a model, its own

distance matrix and regression parameters will be updated; furthermore, the update of

each local model is independent from all the other models. As mentioned before, the

inverse model is trained using a feedback error learning strategy. The LF controller

converts trajectory errors into motor commands to be used as a training signal for the

cerebellar network.

Comparing the LWPR processing unit and the cerebellar microcircuit shown in

Fig. 4.1, we take advantage of the LWPR kernels as granular and molecular layer mi-

crozones (complexes) in the cerebellum approach. Therefore, the cerebellum module,

instead of receiving inputs by means of MFs, receives preprocessed signals from the

LWPR RF filters. This benefits from the optimized engine for a compact sensorimotor

representation provided by the LWPR. The LWPR sends the inputs (x1, x2, ..., xi) to

each local model to produce the yk signals. Likewise, in the cerebellum, the inputs

enter through every MF which sends them to a bank of filters Gk (GCs) to produce the

pk(t) signals, defined in (4.11), which are driven by the kth PFs and the interneuron

contributions. Then, the specific PF and interneuron pathway to the Purkinje layer

carry the pk(t) signal to the PC synapse:

pk = Gk(x1, x2, ..., xi), k = 1..N, i = 1..M. (4.11)

PC output z(t), defined in (4.12), is modeled as a weighted linear combination of the

pk(t)

z(t) =
∑
k

wkpk(t). (4.12)

The synaptic weights wk of the kth PF-PC synapse (see Fig. 4.1b) are updated using

the heterosynaptic covariance learning rule (4.13) [6] in the continuous form [8], and

adjusted by an et teaching or error signal (the CF input). Because of the adaptation
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of the synaptic weights, Fujita [7] (1982) introduced the concept of adaptive filter to

cerebellar modeling.

δwk = −βe(t)pk(t), (4.13)

where β is a small positive learning rate and e(t) is the error signal carried out by the

CF. In this approach, e(t) is the feedback error torque ûfbr . β is 0.05 in all the experi-

ments carried out.

In order to perform an optimal function approximation, the LWPR incrementally

divides the input space into a set of RFs defined by the center ck and a Gaussian area

characterized by the particular kernel width Dk, as shown in Equation (4.9). During

each iteration, all RFs calculate their weight activation in order to assign the new input,

xi, to the closest RF and consequently, the center and the kernel width are incremen-

tally updated. The optimized choice of centers and widths gives the optimal basis of

RFs, so that the accuracy and the learning speed of the ULM are improved. In other

words, Equation (4.11) represents the bank of Gk filters for the GCs in the cerebellum

and their response is both used to compute the cerebellar output z(t) = uc , as defined

in Equation (4.12) and to update the synaptic weights (4.13).

From Fig. 4.3, we see that the internal model within the cerebellar cortex will retain

the global control torque as target signal ut. Given that, Equation (4.3) can now be

completed:

ut = M(Qd)Q̈d + V (Qd, Q̇d) +G(Qd) + ûfb + ûc. (4.14)

The function defined in Equation (4.15) represents the nonlinear function to be approx-

imated by means of linear regressions and it depends on the desired angular position,

velocity and acceleration, and on the real angular position and velocity of the joints of

the arm.

ul = Φ(Qd, Q̇d, Q̈d, Q, Q̇), (4.15)

where function Φ can be learned online and offline. Further details about the method

of learning are given in Subsection 4.3.1.
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4.3 Simulation Results

We have verified the performance of the AFEL architecture in adapting to dynamic

and kinematic changes of the controlled object on two physically realistic models of

robotic arms. In the first setup, the LWR arm was simulated considering a reduced

configuration to 3 DOFs in order to get fewer input dimensions to the machine learning

engine. Specifically, the first (we will refer to it as Q1), second (Q2), and fifth joint

(Q3) have been used and the others have been kept fixed. The three non-fixed joints

used in our experiments are indicated in Fig. 4.2. This reduces the amount of training

data required, and expedites the initial learning process. Afterwards, all 7 DOFs of the

LWR III shown in Fig. 4.2 were involved in the simulation, as described in 4.3.3. To

simulate dynamic changes, we considered that the manipulated object was the last link

of the arm, so we changed the physical properties of the tip of the arm when emulating

manipulation of different objects. Furthermore, to simulate a kinematic modification,

we changed and fixed a certain orientation shift of the end-effector. Simulations were

setup in the Matlab robotics toolbox [62]. The task for the experiments with the LWR

arm was to follow a planned trajectory in a 3-dimensional task space.

4.3.1 Control Performance Evaluation

The robot end-effector traced out a target trajectory shown in Fig. 4.4b, defined by

(4.16):

Q1 = Dsin(2πt),

Q2 = Dsin
(
2πt+

π

4

)
, (4.16)

Q3 = Dsin
(
2πt+

π

2

)
,

where D is a constant, and Q1, Q2, and Q3 are the joint coordinates, respectively.

To approximate the nonlinear function described in Equation (4.14), a sequence of

16 eight-like shape movements was simulated to collect enough target points (8000)

for training. Next, 15 iterations of the trajectory were repeated using the learned in-

verse dynamic model. An analytical model of the 3-DOF LWR arm (4.1) generated

the feed-forward joint data torques given the desired joint angles, velocities, and ac-

celerations. In the training stage, the LWPR algorithm approximated Equation (4.14)
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which contains the terms of the ufb feedback joint torques and the uc cerebellar joint

torques besides the feedforward joint torques supplied by the analytical model. Then,

the learned inverse dynamic model defined in Equation (4.14) is tested: the analytical

model is no longer used, the LWPR module predicted the joint torques to be applied

to the robot plant, the cerebellum still optimized the execution of the trajectory and

the LF supervised the system, meanwhile learning of the ut global torques was pro-

ceeding. The LWPR training took place for each DOF separately (a LWPR module

for each i joint) with a training and a test set of [5 x number of joints] inputs (desired

joint angles, velocities, and accelerations (Qd, Q̇d, Q̈d) and the current joint angles,

velocities (Q, Q̇)), and 1 target (joint torque uti of joint i) (according to Equation

(4.15)). As the LWPR has learned the inverse dynamics model, the movement is per-

formed more precisely with a lower contribution command from the feedback and from

the cerebellar circuitry. Therefore LWPR works also as a memory consolidation module.

To evaluate the AFEL architecture performance, we examined how the tracking er-

rors became compensated following the desired trajectory (4.16). In order to highlight

the advantages of this novel adaptive control system, we set up six different architec-

tures by substituting one block of the AFEL scheme for other alternatives, as shown in

Fig. 4.4a. The thicker solid line in Fig. 4.4a is referred to the novel AFEL architecture

performance (case 1). The LF controller was replaced with a high-gain PD (case 2) and

with a low-gain PD (case 3) while the ULM module was substituted for an analytical

dynamics method called Feed-Forward (FF) module (case 4). Lastly, both the LF con-

troller and the adaptive ULM module were substituted for a high-gain PD (case 5) and

for a low-gain PD (case 6).
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Figure 4.4: Control architecture tracking performances manipulating a 6 kg load at
the last joint. Figure 4.4a displays the nMSE averaged over 3 joints for six different
architectures described in Subsection 4.3.1. Error bars represent the standard deviation of
the mean of the nMSE of the three joints. As a result of the simulation, Fig. 4.4b shows the
eight-like figure-shape (i.e. the desired and actual trajectories before and after learning,
indicated as first iteration and last iteration relative to the left panel learning process)
obtained after 15 trials for the six case-studies (linked with the numbers on the top-right
of the panels, referred to the control architectures indicated in Fig. 4.4a) in the task space.
The low-gain PD controller (cases 3 and 6) yields a very large tracking error (therefore,
the actual initial and final trajectories lay out of the plot).
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The used system accuracy measure is the normalized mean squared error (nMSE)

between the desired joint angle (Rad) and the actual joint angle (Rad) obtained from

the robot plant. The nMSE is defined as the MSE divided by the variance of the target

data values. From Fig. 4.4a, we can see that the proposed AFEL architecture (case 1)

achieves a very good performance with a low standard deviation. In order to guarantee

a low tracking error in the system with a PD controller instead of the LF controller

(cases 2, and 5), the PD gains have to be set to high values, which results in a poten-

tially dangerous non-compliant movement because the manipulator could damage the

environment if it comes into contact with it. As a result of this, the maximum torque

(Nm) applied by joint actuators is too high. Table 4.1 reflects this effect in terms of

maximum torque ut applied at each joint during a single trajectory.

Maximum absolute Minimum absolute RMS
Torques (Nm) Torques (Nm) (Nm)

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3
AFEL 88 206 106 0 0 0 52 112 56
ULM with high-gain PD 620 1037 908 0 0 0 56 119 60
ULM with low-gain PD 501 812 689 0 0 0 56 117 60
FF with LF 116 213 130 0 0 0 52 112 56
FF with high-gain PD 477 755 642 0 0 0 56 115 59
FF with low-gain PD 74 177 59 0 0 0 42 92 31

Table 4.1: The values in the first two columns are the maximum and minimum absolute
torques applied at joints in adapting to the different dynamics models for the six different
architectures. The third column contains the quadratic mean or root mean square (RMS)
of torques applied during all the iterations of the executed eight-like trajectory.

As a matter of fact, for ULM with high-gain PD architecture (case 2), the maximum

torque gets up to 1000 Nm among the 3 joints, while for the AFEL architecture, the

maximum torque was limited to around 200 Nm. To achieve the same rate of perfor-

mance as the AFEL system (see Fig. 4.4), gains were multiplied by a factor of 250.

Finally, by substituting the ULM module with an analytical model (case 4), the system

still achieves good performance, but the standard deviation is higher, which means that

the error is not equally diminished for all the joints at the same time. In other words,

the cerebellum does optimize the miscalibration and gets adapted to novel dynamics.

During the experiment, we set the LF controller gains to very low values for a compliant

control observing the sufficient condition provided by Nakanishi and Schaal [29] (2004)

in order to ensure stability of the FEL scheme into account.
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Removing the cerebellar circuitry from the ULM module (LWPR alone), we ob-

tain the result shown in Fig. 4.5, which is compared with the performance (dashed line)

of the AFEL architecture. In both cases, the arm manipulates a 6 kg load at the last

joint. This is the demonstration of how the cerebellum makes the LWPR learn an opti-

mized inverse dynamics model of the robot arm and makes fine adjustments to the way

the trajectory is performed. In fact, the nMSE is similar for each joint, as indicated by

the error bars.
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Figure 4.5: The dashed line represents the nMSE averaged over 3 joints related to the
proposed AFEL architecture. The solid line shows the tracking error performance obtained
by removing the cerebellar structure from the ULM module in the AFEL scheme. Compar-
ing them, we make clear that the cerebellum drives the model abstraction engine (LWPR).
In this way, the LWPR incrementally abstracts the whole model. Error bars represent the
standard deviation above and below the mean of the nMSE of the three joints.

4.3.2 Dynamics and Kinematics Changes

The dynamics of the robot arm changes as the robot manipulates different objects or

different contexts. In this section, four contexts are simulated by attaching objects

with different masses at the last link of the arm. The masses are 2, 6, 8, and 10 kg,

respectively. 15 iterations of the trajectory were executed using the inverse dynamics

model of the four arm+object instantiation previously learned by the LWPR. We ran

the experiment ten times with different initial positions around the trajectory, defined

in Equation (4.16), on each trial. We computed the robot arm tip position error in the

different trials and averaged it over ten times.

With the LWR 3-DOF arm the gains of the LF controller have been set to Kp = 12.5;

48



4.3 Simulation Results

Kv = 5; mu = 1.5 for the four objects and for all the robot joints. However, with the

LWR 7-DOF arm the gains of the LF controller have been set to Kp = 6; Kv = 3; mu

= 0.75. Nakanishi and Schaal [29] (2004) provided a strictly positive real (SPR) con-

dition, that is K2
v > Kp, for choosing feedback gains in order to ensure stability of the

feedback error learning mechanism. The choice of feedback gains we have made satisfies

the mentioned condition, which implies that the stability of the AFEL architecture is

guaranteed.
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(a) Outcome of the AFEL architecture.
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(b) Outcome of the Feed-Forward architecture.

Figure 4.6: Adaptation for the 3-DOF LWR arm using the AFEL architecture (a) and
the Feed-Forward architecture (b) that contains an analytical model instead of the ULM
module. Both figures show the average of the nMSE for three joints and over ten trials.
Different traces indicate the response to different contexts. For the sake of clarity, error
bars are plotted only for the 6 kg context and indicate the standard deviation between the
trials.
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Comparing Fig. 4.6a, related to the AFEL architecture, with Fig. 4.6b, related

to the Feed-Forward architecture with the LF controller, the importance of the ULM

module (LWPR + Cerebellum) becomes clear. In fact, in the second case, error bars are

larger and the nMSE becomes higher as the load increases. However, results in Fig. 4.6a

indicate the high quality of the estimate of the ULM output. In table 4.2 we present

the maximum torque applied at joints for adaptation to different contexts. As the load

at the last joint is increased, compliance is gradually achieved by gradually increasing

corrective joint torques. As mentioned before, we also tested the performance of the

AFEL
Maximum absolute Minimum absolute RMS

Torques (Nm) Torques (Nm) (Nm)
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

2 kg 80 189 76 0 0 0 45 97 35
6 kg 91 206 107 0 0 0 52 112 56
8 kg 99 231 122 0 0 0 56 128 65
10 kg 109 252 133 0 0 0 60 142 71

Table 4.2: The first two columns contain the maximum and minimum absolute torques
applied at joints in adapting to the different dynamics models for the AFEL control system.
The third column is the quadratic mean (RMS) of torques applied during all the iterations
of the executed eight-like trajectory.

AFEL architecture in adapting to kinematics changes as well. The outcome is plotted in

Fig. 4.7, which shows that performance is not affected either by changes in kinematics

or by changes in dynamics. In this experiment, kinematics transformations applied at

the robot plant consisted of different angles of fixed rotation of the end-effector (λ =

[30,90]).

4.3.3 Self-adaptive Learning

Using an analytical method is not always possible in order to obtain a sufficiently

accurate dynamics model which is needed for compliant robot control. In this case, it

is necessary to adopt a new strategy. The ufb feedback joint torques are given by the

LF controller to control the arm. The LWPR modules receive their feedback command

combined with its own prediction and the cerebellar output to form the feedforward

motor command as a training signal. Then, in this experiment, there is no preliminary

learning from an analytical model as in the previous approach. We repeat the trajectory

16 times for each context specified in Section 4.3.2. So, the LWPR still learns the ufb

global torque for the whole simulation while the LF adaptively controls the trajectory
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Figure 4.7: Robustness of the AFEL architecture under kinematics and dynamics trans-
formations. For the sake of clarity, only λ = 45◦, which is representative of all values of
λ tested, as kinematics transformation is plotted. The average nMSE for three joints is
averaged over ten trials. Error bars indicate the standard deviation between ten trials.

execution and the cerebellum optimizes the corrections. The task of this experiment is

to follow the trajectory specified in Equations (4.17)

Q1 = Asin(2πt),

Q2 = Asin
(
2πt+

π

4

)
, (4.17)

Q3 = Acos
(
2πt+

π

2

)
.

In order to evaluate the relative relevance of the feedback contribution along the

learning process, the used performance measure is the ratio of torque components to

the total joint torque applied to the robot plant. Therefore, we defined the ratios in

Equations (4.18) and (4.19):

Rfb =
ufb

ufb + uff
, (4.18)

Rc =
uc

ufb + uff
. (4.19)

Equation (4.18) represents the ratio of ufb feedback torque to the ut global torque and

Equation (4.19) is the ratio of ut cerebellar torque to the ut global torque.

Figures 4.8a and 4.8b show how the average values (within each iteration) of these

ratios evolve along the learning process. If the learned inverse model is accurate, the
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ratios will be small as the error-correcting torque decreases over consecutive iterations.

At the beginning of the simulation, the amount of ratio Rfb is higher than Rc, which

means that the LF controller output contributes more to the global torque than the

cerebellar torque and decreases significantly according to the reduction of errors. How-

ever, the second ratio, Rc, depends on the LWPR learning performance because they

are connected by the RF weights of the LWPR local models which are the cerebellar

granular weighting kernels. As a matter of fact, Rc decreases (see Fig. 4.8b) as the

LWPR incorporates ufb and uc to its global output torque during the learning process.

Figure 4.8c shows the ratio of the LWPR torque ul to the global torque ut, as

defined in Equation (4.20):

Rl =
ul

ufb + uff
. (4.20)

We can see that the LWPR algorithm progressively learns the ut global torque which

means that it really acts as internal model for the robot arm inverse dynamics.
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(a) Contribution of correcting feedback commands
Rfb computed as defined in Equation (4.18).
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(b) Contribution of correcting cerebellar com-
mands Rc computed as defined in Equation
(4.19).
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(c) Indirect measurement of how well the inverse
dynamic model learned by the LWPR approx-
imates the actual dynamics. Values are com-
puted as defined in Equation (4.20).

Figure 4.8: Ratios of individual joint torque contributions to the global torque. Results
are averaged over 4 trials (four contexts) and the error bars indicate the standard deviation
between the trials.
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In short, the more accurate the learned model is the finer will be the contribution

of the cerebellum, because the LWPR optimally allocates the RFs for an efficient input

mapping. In any case, both torque correction quantities, ufb and uc, vary depending on

the nature of the system and on the error due to miscalibrations, contexts, noise, etc. In

all cases, the ufb feedback component and the uc cerebellar torque will decrease as the

LWPR incorporates their contributions in its internal model as a memory consolidation

process. Furthermore, as displayed in Fig. 4.9, the tracking absolute error is very low and

with low variance between trials (contexts). Again, the fact that the error slopes down

is a result of the control stability provided by the LF controller and of the cerebellar

optimization that improved the dynamic inverse model to be learned.
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Figure 4.9: nMSE averaged over four trials (four contexts, i.e. movements manipulating
2,4,6 and 10 kgs).

Previous experiments are characterized by the fact that the LWPR learned the contexts

separately. Anyway, the LWPR is capable of learning different forward dynamics models

and retaining them in the same regression model. The figure 4.10 shows that after

training forward dynamics models corresponding to the dynamics of the robot arm

manipulating three different loads (2, 6, and 10 kg) at the last robot segment, the

LWPR was tested with three unseen loads of 1, 4, and 8 kg to study its generalization

capability to predict the plant behavior under new contexts. The robot was expected

to follow the trajectory defined in Equations 4.17 in all cases.

We also tested other trajectories obtained from Equations (4.17) by changing the

phase or the amplitude or summing two of them. In more details, we composed four

trajectories with the following coefficients indicated in table 4.3. The performance
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Figure 4.10: The AFEL architecture still has a good performance under testing unseen
dynamics contexts. This is expressed by the nMSE value plotted in the figure. Error bars
represent the standard deviation between three joints.

A ϕ
Traj. 1 0.1 π/4
Traj. 2 0.1 π/2
Traj. 3 0.05 π/4
Traj. 4 Traj. 1 + Traj. 3

Table 4.3: Coefficients of the trajectories tested.

results of tracking four precomputed trajectories under manipulation of 6 kg load in the

last robot segment are shown in Fig. 5.7a and their eight-like figure-shape are plotted

in Fig. 4.11b which correspond to the final iteration number 15.

Evaluating the AFEL performance plotted in Figs. 4.9 and 4.10, we notice that the

self-adaptive learning works and it is of high interest in case of unavailability of an

analytical dynamics model. In addition, we can say that the cerebellum not only drives

the LWPR learning engine to learn an optimized internal model, but it also contributes

to deliver finer and more effective corrections for all contexts. For this purpose, we

examine performances between the proposed AFEL system and an identical one in which

the ULM module does not contain the cerebellar microcircuit. Results are plotted in

Fig. 4.12.

55



4. FEEDFORWARD CORRECTIVE ACTIONS. ADAPTIVE
FEEDBACK ERROR LEARNING ARCHITECTURE FOR MOTOR
CONTROL.

0 5 10 15
10

−4

10
−3

10
−2

10
−1

10
0

10
1

# Iteration

A
ve

ra
ge

d 
nM

S
E

 (
R

ad
)

(L
og

 s
ca

le
)

 

 

(a)

0.76
0.765

0.77
0.775

0.78
0.785

0.79

−0.2

−0.1

0

0.1

0.2
0

0.5

1

X
Y

Z

(b)

Figure 4.11: 4.11a. The AFEL architecture still has a good performance when performing
the test stage with trajectories whose coefficients are defined in table 4.3. The robot arm
manipulated 6 kg load at the end-effector-segment. The line indicates average nMSE value,
averaged over the three joints first for each trajectory and then over the four trajectories.
Error bars represent the standard deviation above and below the mean of the nMSE of the
four trajectories. 4.11b. The eight-like figure-shapes obtained after 25 trials for the four
precomputed trajectories (they are accurately approximating the desired trajectories).
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Figure 4.12: Averaged nMSE over three joints. Error bars represent the standard de-
viation above and below the mean of the nMSE of the three joints. The thicker solid
line is related to the proposed AFEL architecture, while the other is related to the AFEL
architecture without the cerebellar structure in the ULM module. Comparing them, we
notice that the cerebellum optimizes the tracking error performance and drives the joints
to a better convergence.
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Finally, we have verified that the self-adaptive learning works efficiently on a more

complex robotic platform too. Then, we have repeated the same experiment for the

7-DOF LWR arm, measuring the outcome performance in terms of nMSE and comput-

ing the ratios described in Equations (4.18), (4.19), and (4.20). The eight-like target

trajectory to be followed by the arm tip is defined in Equations (4.21):

y = 0.15 · sin(2t), (4.21)

z = 0.6 + 0.2 · cos(t),

and the variable x is a constant.
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Figure 4.13: nMSE averaged over four trials (four contexts). The thicker and darker line
is the average over the 7 joints.

Results in Fig. 4.13 indicate that the AFEL architecture also works for high DOFs. The

nMSE is low and after 5 iterations, the system’s behavior becomes stable. The LWPR

has approximated the dynamics model of the LWR arm well and this model achieves a

high performance.

Figure 4.14 shows the ratios of each individual component torque, ufb and uc, with

respect to the global joint torque, ut, while Fig. 4.14c reveals that the LWPR output

increases according to its gradual learning of the global torque, ut.

To conclude, even though the improvement in the case of inclusion of the C module

is not so significant, the AFEL (LWPR + C module) architecture presents a better er-

ror performance since the cerebellar module effectively contributes to drive the learning

57



4. FEEDFORWARD CORRECTIVE ACTIONS. ADAPTIVE
FEEDBACK ERROR LEARNING ARCHITECTURE FOR MOTOR
CONTROL.

process at LWPR faster (conjoint convergence among the different joints to a smaller

error value) (see Fig. 4.15). Anyway, in this case, we attribute the negligible improve-

ment in terms of performance to the fact that the representation of the input space was

not dissimilar enough to be sparse. More importantly, this result also indicates that

the AFEL scheme (including a cerebellar module in the ULM) is scalable in terms of

number of joints. For the 7-DOF LWR arm, we obtained good results in terms of error,

just as for the 3DOF case. However, it should be noted that the dynamics of a real

system will significantly be more complicated than the simulated dynamics, as there

are important nonlinear effects that are not simulated, such as actuator dynamics or

elasticity. Furthermore, as already indicated by other authors, it has been shown that

learning of dynamics using LWPR on real world high DOF robotic platforms works very

efficiently [11].
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Figure 4.14: Ratios of individual torque contributions to the ut global torque. Results
are averaged over the four trials (four contexts) and the error bars indicate the standard
deviation between the trials.

59



4. FEEDFORWARD CORRECTIVE ACTIONS. ADAPTIVE
FEEDBACK ERROR LEARNING ARCHITECTURE FOR MOTOR
CONTROL.

0 2 4 6 8 10 12 14 16 18 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

# Iteration

A
ve

ra
ge

d 
nM

S
E

 (
R

ad
)

(L
og

 S
ca

le
)

 

 
AFEL
AFEL without C

(a)

5 10 15 20

10
−4.76

10
−4.74

10
−4.72

10
−4.7

10
−4.68

Zoom

# Iteration

A
ve

ra
ge

d 
nM

S
E

 (
R

ad
)

(L
og

 S
ca

le
)

 

 

AFEL
AFEL without C

(b)

Figure 4.15: Normalized mean square error (nMSE) averaged over seven joints. Error
bars represent the standard deviation above and below the mean of the nMSE of the seven
joints. The thicker line represents the nMSE of the proposed AFEL architecture. The other
line shows the tracking error performance obtained by removing the cerebellar circuit from
the ULM module in the AFEL scheme.
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4.4 Discussion

We implemented a model for the motor control of robotic arm movements in which

machine learning and biologically inspired approaches co-exist and complement each

other. The presented AFEL scheme, which takes advantage of the connection between

the accurate regression method LWPR and a basic cerebellar structure, works properly.

Furthermore, the cerebellar module takes full advantage of the LWPR for efficiently

abstracting the high dimensional input space.

A potential role of the granular and molecular layers in biologically plausible cere-

bellar models is to provide accurate signals to the PCs for improving the learning of the

current model. These signals seem to influence the DCN synapses capability in order

to consolidate the learning [59, 63, 64]. In our model, the input LWPR RFs are used

as a representation of the granular and molecular layers delivering clean and accurate

signals to the Purkinje layer. Therefore, LWPR provides optimal input representation

to the Purkinje layer in terms of neural resources (it adapts its neural resources incre-

mentally and according to the input data structure). The importance of this efficient

and clean contribution has been evaluated recently [59, 65] and other authors, such as

Schweighofer et al. [17] (2001) and Porrill and Dean [8] (2007) hypothesized that the

cerebellar learning is facilitated by optimizing the choice of the centers and the basis of

RFs at the granular layer. As a matter of fact, LWPR creates around 16 locally linear

models for the 3-DOF robot arm, 60 locally linear models for the 7-DOF robot arm,

and it allows the selection of only predictions from those who elicit great activation for

a query point.

It is also important to note that the LWPR also works as a memory consolida-

tion module. Therefore the cerebellar module with its learning rule is focused on

short term adaptation while long term memory consolidation takes place at the LWPR

module. Thus, in terms of short/long term learning by analogy with biological sys-

tems, our cerebellar module, receiving inputs from the LWPR RFs, represents the

MF-GrC/interneurons-PC pathway for short time learning while the LWPR adapta-

tion kernels represent the MF-DCN adaptive pathway which is responsible of long term

learning (memory consolidation) [59, 66].
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We exploited the LWPR characteristics to acquire the dynamics of a robot arm

through the learning process as the movement is repeated. Once the inverse model

is learned, the system can perform the task precisely and small correction forces are

required, thus increasing the compliance. In order to achieve compliant movements and

ensure the system stability, high feedback gains must be avoided, specially in biologi-

cal systems (or robotic platforms targeting at human machine interaction tasks). To

avoid this, we propose the LF controller, which adapts the error-correcting feedback

over consecutive iterations of the same task. The LF controller supplies the error to

the cerebellar network. Furthermore, the LF controller will accurately guide the LWPR

during the learning process using very low gains. Results show that the global archi-

tecture has a compliant performance which is suitable for robotic systems in human

environments. Haddadin et al. [67] (2007) evaluated the influence of the mass and ve-

locity of DLR-LWRIII in resulting injuries on human bodies. Their impact tests were

carried out by using the Head Injury Criterion (HIC) since it is the most prominent

indicator of head injury in automobile crash-testing; the results of this tests suggest

that a robot, even with arbitrary mass moving not much faster than 2 m/s is not able

to become dangerous to a non-clamped human head with respect to typical severity

indices. In addition to this, their investigation revealed that the inertia properties of

the LWRIII allow an impact velocity of up to 1 m/s without leading to soft-tissue in-

juries. With regard to our system, due to the fact that the linear velocity is the cross

product between the angular velocity and the position of the end-effector with respect

to origin, we have considered the worst case, i.e. the longest link and the maximum

angular velocity in order to simplify the computation. The maximum linear velocity ob-

tained during the self-adaptive experiment for the 3-DOF LWR arm manipulating 10 kg

load at the last joint is 0.62 m/s, therefore the system performs in a compliance manner.

The performance obtained by the AFEL scheme in terms of error after learning

is remarkable compared to other approaches [22, 45]. This is of high interest taking

also into account that in this architecture, the LWPR does not require an analytical

preliminary dynamic model to learn from it, as it learns directly from the feedback

torques and the cerebellar compensatory torques. As a matter of fact, LWPR works as

an internal model abstraction kernel whose learning process is guided by the LF instead
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of having a reference analytical model.

Porrill and Dean [8] (2007) mentioned the motor error problem due to the complex-

ity on the reference structures used to compute the error for the forward connectivity.

This problem particularly affects biological nonlinear motor systems since the number

of the reference structures is multiplicative in the dimension of the control and sen-

sor space. In our feedback error learning approach we solved the motor error problem

thanks to the LF controller, we proved its performance in the task of a simulated 3 and

7-DOF robot arm. We demonstrated that the combination of feedback and feedforward

estimates does offer considerable advantages for robust online control. Furthermore, we

ensured accuracy and enhanced the speed of learning by optimizing the choice of the

centers and transforming to an optimal basis of rfs through the LWPR algorithm.

Schweighofer et al. [17] (2001) hypothesized that cerebellar learning is facilitated by a

granule cell sparse code, i.e. a neural code in which the ratio of active neurons is low

at any time. They proposed a diagram of the model of cerebellar control two-joint arm

movements in which the cerebellum learns how to compensate for interaction torques

that occur during reaching movements. In analogy with their approach, in our con-

trol system, there are three motor commands: feedforward motor commands (by the

forward internal model), feedback torques (by the LF controller), and the cerebellar

compensatory torques (by the C module) which are summed and sent to the robot arm

plant. The cerebellar torque values are necessary for precise control and the cerebellar

network is embedded in the control model. Due to the large number of DOFs and the

pervasive nonlinearities of the seven degrees of freedom human arm, an internal model of

the arm’s dynamics is an extremely complex mapping between kinematic and dynamic

variables and thus requires a large number of encoding states [17]. Despite this, we

demonstrated that we achieved very good performances with a small number of states

(or GCs) for a 7-DOf robot arm.
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5

Feedback Corrective Contributions.
Recurrent Adaptive Architecture.

The adaptive structure of the cerebellar microcircuit receives a teaching or error-driven
signal, and sensory-motor signals as inputs for motor control in the process of acquiring
internal models related with the input-output correlations. In brief, motor commands
or sensory signals arrive to the GC layer and corrective motor commands or sensorial
terms are also produced as output of the PC, while the CF adapts the synaptic weights
and conveys motor or sensory errors. In this chapter, in the case of sensory signals, the
cerebellum circuitry is represented in a recurrent loop which solves the motor error or
distal error problem contrary to the scheme described in the previous chapter. Here, we
focus on how to decompose the input into different components in order to facilitate the
learning process using the LWPR algorithm. The LWPR automatically optimizes the
network size by incremental learning of the forward model of the robot arm and provides
the GC layer with optimal pre-processed signals. We present a recurrent adaptive
architecture in which a LF controller leads a precise, compliant and stable control during
manipulation of objects and the cerebellar-LWPR synergy makes the robot adaptable
to changing conditions. Then, we evaluate how the scheme scales for plants of high
number of DOFs using a model of a robot arm of the new generation of light-weight
robots.
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5.1 Introduction

Cerebellum’s behavior has commonly been emulated in a feedforward control architec-

ture based on feedback error learning (FEL), where it delivers feedforward corrective

terms to the crude control commands from the motor cortex [12, 13, 21, 35, 36, 37, 68]

and the teaching signal is computed by the difference between actual and correct/desired

motor commands, that is the motor error. For example, Kawato [12] (1990) and Wolpert

et al. [13] (1998) proposed an architecture based on feedback error learning emulating

the role of the cerebellar microcircuit. The motor error is the difference between the

desired and the actual motor commands. However, the correct motor command is typ-

ically unknown; only sensory errors are available, and how to use this information for

motor learning represents the so-called distal error problem [24]. Porrill and Dean [8]

(2007) stated that this kind of approach requires complex neural structures to estimate

the motor error, thus they advocated the recurrent architecture being more biologically

plausible. In fact, unlike in the feedforward architecture, in the recurrent control sys-

tem, sensory or teaching error signals, which are needed for the learning process as they

adaptively adjust the cerebellar weights [7], are physically available signals [8, 15]. They

represent the mismatch between the desired and actual movement, as shown in Fig. 5.2.

The role of the recurrent system solves the so-called motor error problem or distal er-

ror problem [24], that is the motor commands might not be known in advance and so

cannot be used to generate error signals. In this scheme, in contrast with the forward

connectivity, the cerebellum receives copies of the motor commands as input and it de-

livers correction terms to be added to the desired signal trajectory. Furthermore, both

forward and recurrent pathways are complementary in adaptations problems [37, 50];

the former allow compensation for changes in upstream structures of the cerebellum

and the latter in downstream structures [15].

In adaptive filters, a central feature is the decomposition of input into different

components, which in the cerebellum has been assumed to take place at the granular

layer. GCs receive direct input from multiple MFs and their output has to be pro-

cessed in order to produce the signals carried by the PFs. Porrill and Dean [8] (2007)

argued that the choice of appropriate basis seems to influence both speed of learning

and accuracy. In our approach based on the recurrent adaptive control architecture, we
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Figure 5.1: Comparison of the LWPR processing unit with the cerebellum microcircuit.

address the problem using the machine learning algorithm LWPR [10, 11], which learns

and emulates the forward dynamic model of the arm during the simulation. Fig. 5.1.a

shows the LWPR processing unit and working mechanism. Although we have indicated

it already in the previous chapter, we repeat the similarities here to make the chapter

self-contained. The LWPR creates k local models that have a region of validity (RF)

parameterized as a distance metric Dk in a Gaussian kernel. Comparing it with the sim-

plified cerebellar circuitry in Fig. 5.1.b, we notice that the RF weighting kernels encode

the input space like the cerebellar GCs expansively encode the information coming from

the MFs. Yamazaki and Tanaka [58] (2007) stated that the granular layer generates a

finite but very long sequence of active neuron populations without recurrence. In a

similar way, RF weighting kernels could adapt their weights pk for each xi data point

in each k local unit to select different outputs depending on the efference motor com-

mand and the current state of the robot arm. Along with this analogy of the cerebellar

circuit, each LWPR module and its associated RF weights can be seen as providing the

firing rate of a PF, while the set of active RF weights can be seen as the current state
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of the granular layer processing module [58]. This state would be propagated through

PFs and interneurons to produce more accurate signals to the PCs [59]. With regard

to our model, the LWPR learned function will be able to provide the cerebellum mod-

ule with optimal pre-processed signals pk and the LWPR automatically evaluates the

required number of local correlation modules to optimise the network size by incremen-

tal learning. In this sense, machine learning algorithms and robot systems may help

us improve our understanding of how learning processes take place in biological systems.

As also indicated in the previous chapter, with regard to the control experimen-

tal set-up, we use a model of a robot arm of the new generation of light-weight robots

[52, 53] (see Fig. 4.2) whose major drawback is that its complex dynamics are no longer

controllable by traditional methods since the movement is influenced by the state va-

riables of all the joints and the control becomes very complex and highly non-linear

[20]. Therefore, feedback control gains have to be increased to compensate nonlineari-

ties and avoid the resulting tracking error, but they are dangerous regarding the system

stability and unacceptable in autonomous and biological systems [8] as they introduce

large forces generating potentially dangerous non-compliant movements [22]. Thus, we

propose the LF controller which transforms the trajectory error in sensory coordinates,

into a motor command, it improves the system behaviour and self-adapts by a learning

rule through consecutive iterations of the same trajectory. It works as an adaptive con-

trol model and it leads to a precise and stable control during manipulation. In fact, the

learned adapted dynamic arm model together with the LF controller make the robot

arm capable of performing movements that are both precise and compliant at the same

time and also adaptable to changing situations similar to what occurs in a biological

system.

In this chapter, we will present a recurrent adaptive architecture for robust arm con-

trol and will focus on the role of forward models which consists of predicting the next

state (positions, velocities, and accelerations) given the current state (positions, veloci-

ties and accelerations) and the motor command or efferent copy [23, 69]. In practice, the

cerebellum provides appropriate sensory corrections in response to changes in the plant,

while the LWPR incrementally learns the dynamic models of the arm+object receiving

the torques or motor commands (efferent copy) as input data. The RFs weighting kernels

encode this input space and send preprocessed signals to the synapses PFs-PCs in order
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to update the synaptic weights and compute the PC output. The cerebellum-LWPR

connection makes the robot also adaptable to changing situations; we have fused their

functionalities to take advantage of the efficiency of the machine learning algorithm and

of the cerebellum’s role to make fine adjustments to the way an action is performed.

In other words, the approach we present exploits both the efficiency of the machine learn-

ing engine (LWPR kernels) and the bio-inspired module (cerebellum circuitry) to learn

different non-linear forward dynamics as an optimization of dynamic nonlinear-control

scheme in a robot for robust control. Dynamics are encoded in the Forward Model Unit

showed in Fig. 5.2. This unit predicts the next state from the current state of the robot

arm and the efference copy or motor command u. The cerebellum module (block C in

Fig. 5.2), instead of receiving inputs by means of MFs, receives pre-processed signals

from the LWPR RFs (Gk) and it computes corrections (Sc, Ṡc, S̈c) to be added to desired

positions, velocities, and accelerations (Qd, Q̇d, Q̈d) as shown in Fig. 5.2. Then, sensory

feedback (Q, Q̇, Q̈) (i.e. actual position, velocity and acceleration) is subtracted to it

and sent to the LF controller that generates the motor torque u assuring the stability

of the system without using high gains (this is done making use of a learning error rule).

LWPR has already been used for online incremental learning in robotic platforms

[11, 22, 54, 57] since it exploits spatially localized linear models to approximate non-

linear functions at low computational cost. The evaluation of the prediction value is

rather fast allowing real-time learning. On the other hand, Gaussian Process Regression

(GPR) [55], or Support Vector Regression (SVR) [56] have the advantage that they do

not depend on a large number of parameters as in LWPR, and they are therefore easier

to tune [70]. Anyway, the incremental training permits the acquisition and retention

of different tasks without restriction in the number of tasks and without interferences

among them [45]. The major strength of the LWPR is that the algorithm can cope with

highly redundant and irrelevant data input dimensions, without any prior knowledge

of the data, this is so because it uses an incremental version of Partial Least Squares

regression (PLS). Sigaud et al. [70] (2011) provided a survey that focus on differences

among the main regression methods. LWPR has been convincingly applied to the iden-

tification of diverse models (kinematics, velocity kinematics and dynamics, forward and

inverse) of large mechanical systems [70]. In particular, considering the forward dy-

namic model learning case, LWPR has been used to learn the forward dynamic model
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of a two DOFs planar robot [44].

In the following paragraphs, we will present the advantages of our system accord-

ing to the next structure. In the first section, we will explain the Recurrent Adaptive

Feedback Error Learning (RAFEL) control scheme showing its connections and system

equations. Then, we will discuss the properties or characteristics of the forward model

learning algorithm (LWPR), the cerebellar microcircuit and their relationship. Finally,

we will demonstrate the performance of the presented model with experiments on a

3-DOF and a 7-DOF LWR arm (see Fig. 4.2).

5.2 Control System Architecture

The RAFEL block diagram is shown in Fig. 5.2. The architecture proposed here uses

a feedback controller called LF which adapts the joint feedback torques u, also called

efference copy, over consecutive iterations of the same task. Signal u represents the input

for the learning and prediction of the forward model (LWPR). Command torques u are

computed by the LF controller from the global errors (epg, evg, eag) (5.1) (where p, v

and a stand for position, velocity and acceleration respectively, and g stands for global)

obtained by the sum of the feedback errors (ep, ev, ea) and the sensorial corrective terms

(Sc, Ṡc, S̈c) produced by the simplified cerebellar microcircuit (5.2, 5.3).

u = LF (epg, evg, eag). (5.1)

(epg, evg, eag) = (Qd, Q̇d, Q̈d)− (Q, Q̇, Q̈) + C(pk, ep, ev, ea), (5.2)

or in a more compact form:

(epg, evg, eag) = (ep, ev, ea) + (Sc, Ṡc, S̈c). (5.3)

As a matter of fact, the cerebellar circuitry applies corrections for miscalibration of the

system adjusting its weights by the (ep, ev, ea) feedback errors. These represent the

difference between the desired state (Qd, Q̇d, Q̈d) and the output of the controlled robot

arm (Q, Q̇, Q̈) at time t (see expressions 5.2, 5.3). From a biological point of view, the

block C in Fig. 5.2 consists of a set of uniform cerebellar circuits capable of learning,

and the error signal conveyed by the CF adaptively modifies its input-output system’s

70



5.2 Control System Architecture

characteristic function. Further details about C are given in subsection 5.2.2. In our ap-

proach, the LWPR algorithm is implemented to play the important role of the forward

model, which means that it learns the forward dynamic model of the robot arm. The

machine learning engine and the cerebellar cortical circuitry complement each other;

the former takes advantage of the adaptive cerebellar corrections through the efference

copy and the latter of the efficient reduction of the high dimensional input dimensions,

of the incremental learning and of a compact sensory-motor representation by a bank

of pk filters.
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Figure 5.2: Block diagram for the RAFEL architecture.

The field of nonlinear control theory is very large, we will focus our attention on a

particular method called feedforward nonlinear control [61]. Considering the analytical

robot model, we calculate the joint torques required for a particular trajectory using

the following dynamic expression (5.4) of the robot:

u = M(Q)Q̈+ V (Q, Q̇) +G(Q) + F (Q, Q̇), (5.4)

where M(Q) is the inertia matrix of the manipulator, V (Q, Q̇) represents the centrifu-

gal and Coriolis terms, G(Q) is the gravity term, F (Q, Q̇) is the model of friction, and

Q, Q̇, Q̈ are the joint angles, velocities, and accelerations of the robot arm. In the
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architecture, the u joint torques generated by the LF controller allow the robot follow-

ing a desired trajectory (Q̇d, Q̇d, Q̈d) and ensures the stability of the trajectory at the

same time. The specifics and equations of the LF controller are presented in the next

subsection 5.2.1.

If the cerebellar output is accurate and the forward dynamic model is exact, the LF

controller will cancel the nonlinearities transforming the resulting global errors (epg,

evg, eag) in the correct torque u. However, there will be a difference between the de-

sired signal and the actual output of the controlled arm that will activate the cerebellar

process of learning [16].

Summarizing, the cerebellum elaborates the sensorimotor complexes coming from

the optimized representation done by the LWPR and produces the sensorial corrective

terms (Sc, Ṡc, S̈c), which added to feedback errors enable the LF controller to adapt the

u motor commands. The LWPR engine incrementally learns from the u torques and

the current state of the robot arm (Q, Q̇)(t−1) (see Fig. 5.2) and abstracts the whole

forward dynamic model.

5.2.1 Learning Feedback Controller

In this subsection we address the problem of controlling a robot arm of many DOFs.

Taking into account the fact that an analytical computation of the robot dynamics is

complex and a large number of parameters may be unknown, we implement an adaptive

model for an accurate and stable control during object manipulation: the LF controller.

The LF controller ensures the stability of the system producing the appropriate joint

torques to obtain the right execution of the desired task in a compliant way. From Equa-

tion (5.5), that represents the estimated robot arm dynamic model, we notice that the

ur feedback joint torque varies after consecutive repetitions of the same task, r = 0, 1, ...

τ = M̂(Qdc)Q̈dc + V̂ (Qdc, Q̇dc) + Ĝ(Qdc) + ûr, (5.5)

Where Qdc, Q̇dc, and Q̈dc are the sum of the desired motions and the cerebellar joint

corrections (see Fig. 5.2).

In the previous Equation (5.5), ûr joint torque is a non-modeled friction term added

to the other estimated terms, this accounts for the dynamic model which is not well
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known or not precise. Substituting Equation (5.5) in Equation (5.4), we obtain the

error Equations (5.6) and (5.7) of the closed loop of the control system in Fig. 5.2:

ë = M−1(F − ûr), (5.6)

or in a more compact form:

ë = (B −Br), (5.7)

where ë = (Q̈dc − Q̈), B = M−1F , Br = M−1ûr. For every joint, the Equation (5.7)

becomes:

ëi = (Bi −Bir). (5.8)

In the last expression (5.8), term Bi is constant during iterations over time, while

the term Bir changes on consecutive iterations of the task. We propose the following

learning rule (5.9) for each joint i:

B̂i(r+1) = B̂ir + P ∗ eir, (5.9)

where P ∗ eir is the convolution between the impulse response filter P and the error in

iteration r. We choose the specific filter defined by equation (5.10):

P (s) = s2 + (Kvi − µ)s+ (Kpi − µ), (5.10)

where µ is a constant.

P is a non-causal filter, so it uses the errors of the previous iterations and its convergence

depends on µ. Further specifics on the LF controller analysis are provided in Appendix

A.

5.2.2 The Role of the Forward Model in the Cerebellum

As we mentioned in section 5.2, LWPR works, in the presented architecture, as a model

abstraction engine capable of learning the forward dynamic model of the controlled

robot arm+object (the object being manipulated).

LWPR is an algorithm for nonlinear function approximation in high dimensional spaces

with redundant and irrelevant input dimensions. In order to perform optimal function

approximation, LWPR incrementally divides the input space into a set of k RFs defined

by the center ck and a Gaussian area characterized by the particular kernel width Dk as

shown in Equation (5.11). Fig. 5.1.a represents its processing unit where M inputs enter
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into K linear local models automatically created and located. For each data point, a

weight p(k, i) is computed inside each local unit to measure the input locality according

to the distance from the center ck of the kernel. In other words, the weight measures

how often an item of data xi falls into the region of validity of each linear model. The

kernel function is defined as a Gaussian kernel:

pk = exp

(
−1

2
(xi − ck)

TDk(xi − ck)

)
, (5.11)

where Dk is called distance matrix and defines the size and shape of the region of validity

of the k linear local model.

Every time a data sample falls into the validity region of the local model, its distance

matrix and regression parameters are updated. This happens independently for each

model. In fact, every model makes its own prediction and the combination of all the

individual predictions yk is the total output ŷ (see Equation (5.12)) of the LWPR

network. In other words, the LWPR prediction is the weighted mean of all linear

models:

ŷ =

∑K
k=1 pkyk∑K
k=1 pk

. (5.12)

Forward models predict the next state of each joint (e.g. position, velocity and acceler-

ation) given the current state and the efference copy [13, 33, 69]. So, LWPR input data

consist of torques, current positions and velocities of all the joints, while the output

data are the predictions of the outgoing positions, velocities and accelerations. More in

detail, the LWPR training takes place for each DOF separately, we set up [3 x number

of joints] modules, with a test set of [3 x number of joints] inputs (torques, current

positions, current velocities) and 1 target. Each LWPR module retains either the next

joint position, or the next joint velocity or the next joint acceleration as target signal

(see Fig. 5.2). The goal of learning is to make prediction errors converge to zero, thus

providing an optimized representation of the sensorimotor complexes to the cerebellum

module.

Comparing the LWPR processing unit and the cerebellar microcircuit shown in

Fig. 5.1, it is remarkable their similarity in the way they encode the input space. In

the cerebellum, information coming from the MFs is expansively distributed over many
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GCs to produce other signals carried on the PFs. The GCs can be considered as a

bank of linear filters that must be sufficiently rich to provide correct adaptive synaptic

weights. As mentioned before, LWPR optimizes the network size by encoding the input

space through the RF kernels. In Fig. 5.1.a are shown inputs (x1, x2, ..., xi) that enter

through every local model and each of them produces the ŷk signal seen in Equation

(5.12). Then, RF kernel functions can be thought as a bank of filters Gk defined in

the following Equation (5.13), and the output signals pk are driven by the PFs and

interneurons by analogy with the cerebellum.

pk = Gk(x1, x2, ..., xi), k = 1..K, i = 1..M. (5.13)

Then, we take advantage of the LWPR local kernels as granular and molecular layer

microzones in the cerebellum model. This does benefit from the optimized engine for a

compact sensory-motor representation provided by the LWPR.

PC output zk(t), defined in (5.14), is modeled as a weighted linear combination of the

pk(t) computed by equation (5.13):

zk(t) =
∑
k

wkpk(t). (5.14)

The adaptive synaptic weights wk of the kth PF-PC synapse (see Fig. 5.1.b) are updated

using the heterosynaptic covariance learning rule (5.14) [6] in the continuous form [8],

and adjusted by an e(t) teaching or error signal (the CF input).

δwk = −βe(t)pk(t), (5.15)

where β is a small positive learning rate and e(t) is the error signal carried out by the

CF. In this approach, e(t) is the feedback error, which has three components ep, ev, and

ea (positions, velocities and accelerations) for each joint. β is 0.005 in all the experi-

ments carried out. The cerebellum produces [3 x number of joints] position, velocity and

acceleration corrections for every joint arm, which are updated by the corresponding

weight wk.

Summarizing, all RFs calculate their weight activation in order to assign the new

input, xi, to the closest RF and consequently the center and the kernel width are in-

crementally updated during the learning process. The optimized choice of centers and
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widths gives the optimal basis of RFs, so that the accuracy and the learning speed of the

cerebellar model are improved. In other words, Equation (5.13) represents the bank of

filters for the GCs in the cerebellum and they are both used to compute the cerebellar

outputs (Sc, Ṡc, S̈c) as a linear weighted combination as defined in Equation (5.14) and

to update the synaptic weights wk (5.15).

Finally, the function to be approximated online, during simulation, by the regression

algorithm LWPR is shown in the following Equation (5.16):

Φ(u, (Q, Q̇)t−1) = (Q, Q̇, Q̈)t (5.16)

Where (Q, Q̇)t−1 are the current state and (Q, Q̇, Q̈)t are the next state of the robot that

corresponds to the efference copy of the motor command u. Further implementation

details on the approximation process are given in the section 5.3.

5.3 Materials and Methods

In order to change the dynamics of the robot arm and to allow the forward model

(LWPR) learning different context’s dynamics, we considered four case-studies when

emulating manipulation of different objects, in which the manipulated object was the

last link of the arm with a changed tip in terms of mass. The masses are 2, 6, 8, and

10 kg, respectively. So, we have studied how the tracking errors are compensated by

the cerebellum and the LF contributions following the desired trajectory under differ-

ent contexts. Moreover, we have tested the stability of the RAFEL architecture under

kinematic modifications obtained changing and fixing a certain orientation shift of the

end-effector. In other words, we have evaluated the performance of the RAFEL ar-

chitecture in adapting to dynamics and kinematics changes of the controlled object on

two physically realistic models of robotic arms. In the first setup, the LWR arm was

simulated considering a reduced configuration to 3 DOFs (fixing the rest of the joints)

in order to get fewer input dimensions to the machine learning engine. The three non-

fixed joints (Q1, Q2, Q3) used in our experiments are indicated in Fig. 4.2 in Chapter

4. This reduces the amount of training data required, and expedites the initial learning

process. Afterwards, all 7 DOFs of the DLR LWR III shown in Fig. 4.2 were involved

in the simulation.

LWPR learning was carried out online and the learned forward models were adapted
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to changes in dynamics in real-time at every time step. The initial LWPR’s forgetting

factor was set to λ = 0.995, the final λ was set to 0.99995, and the annealing constant

of 0.999; in this way we created a trade-off between preserving what has been learned

and quickly adapting to the non-stationarity.

However, for both configurations, the gains of the LF controller have been set to the

same value for the four objects and for all the robot joints (Kp = 6; Kv = 3; mu = 0.75).

Nakanishi and Schaal [29] (2004) provided a strictly positive real (SPR) condition, that

is K2
v > Kp, for choosing feedback gains in order to ensure stability of the feedback error

learning mechanism. The choice of feedback gains we have made satisfies the mentioned

condition, which implies that the stability of the AFEL architecture is guaranteed.

The task for the experiments with the LWR 3-DOF arm was to follow a planned tra-

jectory in a 3-dimensional task space defined by (5.17).

Q1 = Asin(πt),

Q2 = Asin(πt+ ϕ), (5.17)

Q3 = Asin(πt+ 2ϕ),

where A is a constant (0.1), ϕ is π/4 and Q1, Q2, and Q3 are the joint coordinates,

respectively. However, in the second setup, in order to scale the movement to a 7-DoF

scenario, the arm had to follow the trajectory defined in Equation (5.18):

y = 0.15sin(2t), (5.18)

z = 0.6 + 0.2cos(t).

We ran 25 iterations of the previous desired trajectories, and trained the LWPR with

12500 samples in the first setup and 50000 for the second setup. With the purpose of

highlighting the importance of the cerebellum in the system and the role of the forward

model in making more effective cerebellar corrections, we have also compared the per-

formance between the RAFEL architecture with another system configuration in which

the cerebellum module has been removed and another architecture with a high-gains

PD instead of the LF controller.

In order to evaluate the functional structure of the LWPR forward model and its ca-

pability to generalize among contexts, we have done a generalization experiment. We
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tested the LWPR capability to provide an optimal basis of RFs to compute the cerebel-

lar corrections under unseen dynamic contexts. First, the LWPR training is done with

some dynamic contexts (2,6, and 10 kg), second the testing is done with 1, 4, and 8 kg

contexts. Furthermore, we tested the performance of the RAFEL architecture planning

different desired trajectory obtained from Equation (5.17) by modifying its coefficients.

We have demonstrated that the system is able to keep the desired performance thanks

to the appropriate cerebellar and LF contributions together.

We have evaluated the system accuracy with a performance measure over a whole iter-

ation of the planned trajectory: the nMSE in radians (Rad) between the desired joint

angle Qd and the actual joint angle Q obtained from the robot plant. The nMSE is

defined as the MSE divided by the variance of the target data values.

All simulations were setup in the Matlab (v.R2008a) environment and we used the

robotics toolbox [62] for Matlab. All experiments carried out for this work and the

results obtained are described in the subsection 5.4.

5.4 Experiments and Results

With the 3-DOF robot arm, the LWPR creates 22 locally linear models (RFs) for

2-6-8-10 kg contexts. Figure 5.3a shows the average of the nMSE over three joints;

different traces indicate the response to different contexts during twenty-five iterations

of the trajectory (5.17). Figure 5.3b shows the average of the nMSE over four contexts

for the three robot joints. In this case, both panels in Fig. 5.3 prove that the RAFEL

architecture is adaptable to dynamic transformations in the context of tracing a planned

trajectory.

In the same way, Figs. 5.4a and 5.4b show that there are not remarkable variations of

the averaged nMSE under kinematics transformations of the tip arm. These have been

obtained shifting the orientation of the end-robot-segment by a factor λ = [π/4, π/2] in

radians. Then, the architecture robustness is not affected either by changes in dynamics

or by changes in kinematics. Previous experiments are characterized by the fact that

the LWPR learned the contexts separately. Anyway, the LWPR is capable of learning

different forward dynamics models and retaining them in the same regression model.

The figure 5.5 shows that after training forward dynamics models corresponding to the

dynamics of the robot arm manipulating three different loads (2, 6, and 10 kg) at the
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last robot segment, the LWPR was tested with three unseen loads of 1, 4, and 8 kg

to study its generalization capability to predict the plant behavior under new contexts.

The robot was expected to follow the trajectory (5.17) in all cases.

In order to highlight the advantages of the RAFEL architecture, we examined and

compared how the tracking errors became compensated following the desired trajectory

(5.17) using the three architectures. Apart from the RAFEL architecture, we considered

a second one with the feedback loop (LF), but without cerebellar corrections (thicker

solid line in Fig. 5.6) and a third one with the block C and a high-gain PD instead

of the LF controller. In order to guarantee a low tracking error in the system with a

PD controller, the gains used in the RAFEL architecture had to be multiplied by a

factor of 500. Anyway, the solid line in Fig. 5.6 shows that the final behavior is not

stable and the maximum torque applied at joints is 758 Nm which is dangerous in case

of contact of the robot arm with the environment. Instead, from Fig. 5.6 we notice

that the RAFEL scheme achieved a better performance and the maximum torque was

limited to around 200 Nm.
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Figure 5.3: Control architecture tracking performance manipulating four objects (simu-
lated as mass points) at the end of the last robot segment. Fig. 5.3a displays the nMSE
averaged over three joints for four contexts. For the sake of clarity, error bars are plotted
only for the 6 kg context and indicate the standard deviation between the joints. Fig. 5.3b
shows the error in each joint averaged among the context experiments. Here, error bars
indicate the standard deviation between the contexts.
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Figure 5.4: Robustness of the RAFEL architecture under kinematics changes and with
a different load added at the last robot segment. The lines in Fig. 5.4a represent the
averaged nMSE performance among the joints during twenty-five iterations of the desired
trajectory. For the sake of clarity, error bars, indicating the standard deviation between
the joints, are plotted only for the 6 kg and π/4 radians context, that is representative of
all the other contexts tested. Fig. 5.4b shows the averaged nMSE of the three joints over
the contexts. Here, error bars indicate the standard deviation between the contexts.
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Figure 5.5: The RAFEL architecture still has a good performance under testing unseen
dynamics contexts. This is expressed by the nMSE value plotted in the figure. Error bars
represent the standard deviation between three joints.
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Figure 5.6: Comparison of three control architecture tracking performances manipulating
6 kg object in the last segment. Lines display the nMSE averaged over three joints, error
bars indicate the standard deviation between the joints. The case of a PD with low gains
is not plotted because it leads to a very bad performance (which lays out of range in this
plot).
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We also tested other trajectories obtained from Eq. (5.17) by changing the phase or

the amplitude or summing two of them. In more details, we composed four trajectories

with the following coefficients indicated in table 4.3. The performance results of tracking

four precomputed trajectories under manipulation of 6 kg load in the last robot segment

are shown in Fig. 5.7a and their eight-like figure-shape are plotted in Fig. 5.7b which

correspond to the final iteration number 25.

The RAFEL architecture has also been tested with a higher number of DOFs and results

in Fig. 5.8a indicates that the system’s behavior becomes stable after few iterations

of the desired trajectory (5.18). The LWPR creates 25 locally linear models (RFs)

for each learned context. In order to highlight the important role of the cerebellum

in driving all the joints to converge at a similar error value of nMSE we compared

the RAFEL architecture performance with a similar one without the block C applying

sensory corrections to the desired trajectory. Results are shown in the Fig. 5.9.
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Figure 5.7: 5.7a. The RAFEL architecture still has a good performance when performing
the test stage with trajectories whose coefficients are defined in table 4.3 in Chapter 4. The
robot arm manipulated 6 kg load at the end-effector-segment. The line indicates average
nMSE value, averaged over the three joints first for each trajectory and then over the four
trajectories. Error bars represent the standard deviation above and below the mean of
the nMSE of the four trajectories. 5.7b. The eight-like figure-shapes obtained after 25
trials for the four precomputed trajectories (they are accurately approximating the desired
trajectories).
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Figure 5.8: The RAFEL architecture still has a good performance with a robot arm
of 7 DOFs when its dynamics are modified by manipulating different loads at the last
end-effector as shown in Fig. 5.8a and under kinematics transformations as shown in Fig.
5.8b.
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Figure 5.9: Lines represent the nMSE averaged over 7 joints after having being averaged
over the four dynamic contexts (2, 6, 8, and 10 kg). The solid line shows the tracking error
performance obtained by removing the cerebellar block in the RAFEL scheme. Comparing
them, it becomes clear that the cerebellum drives the system to achieve a better perfor-
mance in terms of nMSE with a small deviation among joints. Error bars represent the
standard deviation above and below the mean of the nMSE of the seven joints.
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5.5 Discussion

We implemented an architecture for predictive adaptive control of robotic arm move-

ments which takes advantage of the connection between a machine learning algorithm

(LWPR) and the adaptive cerebellar microcircuit. The cerebellum embedded in the

recurrent control loop provides sensory corrections to the desired trajectory to com-

pensate for deviations in the dynamics or kinematics of a robotic arm. We exploited

the LWPR characteristics, as an efficient functional approximation at a low compu-

tational cost, to acquire and simulate the outcomes of robotic plant as a movement

is repeated. In other words, the LWPR works as an internal forward dynamic model

abstraction according to the process of formation of internal models in the cerebellum.

Furthermore, the LWPR provides optimal input representation to the Purkinje layer as

its RF kernels correspond to the input stage to the cerebellar structure (granular and

molecular layers). The importance of an efficient and clean contribution to the Purkinje

layer has been evaluated recently [59, 65] and other authors, such as Schweighofer et al.

[17] (2001) and Porrill and Dean [8] (2007) hypothesized that the cerebellar learning is

facilitated by optimizing the choice of the centers and the basis of RFs at the granular

layer. Further work may be done in this sense to get a better optimization of the input

stage and obtain more accurate signals to the PCs for improving the accuracy of the

cerebellum corrective output. This is highly important for robot plants of high number

of DOFs because of the high dimensions of the input space.

Due to the fact that using an analytical method is not always possible in order

to obtain a sufficiently accurate dynamics model which is needed for compliant robot

control, we proposed the LF controller. This controller adapts the error-correcting feed-

back over consecutive iterations of the same task using very low gains. The LF controller

supplies the motor commands to the LWPR during the learning process.

The obtained results demonstrate that the RAFEL architecture leads the joint to

converge fast to a small tracking error taking advantages of the LWPR’s capability to

retain and generalize dynamics contexts. The system is robust against both dynamics

and kinematics transformations even in non-linear plants with high number of DOFs.
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6

Conclusion

This chapter summarizes the contributions presented in this thesis, presents a discussion
of future work, lists the publications arising from the work performed, and describes
the synergies that had come out from the group-collaborations in the context of the
SENSOPAC project.
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In this dissertation, we presented two models (AFEL and RAFEL schemes) for the

motor control and motor learning of robotic arm movements in which machine learning

and biologically inspired approaches co-exist and complement each other. These hybrid

schemes based on a machine learning engine (LWPR) and a bio-inspired component

(cerebellar module) efficiently uses the LWPR component to optimize the input space

representation abstraction and also efficiently uses the cerebellar-like structure to inte-

grate different input-driven contributions for obtaining accurate corrective commands.

Both architectures use an adaptive learning module to feed the LWPR component, mak-

ing this approach useful even for robotic plants for which the analytical dynamics or

kinematics are only roughly known.

The presented AFEL model is based on inverse model learning control and it uses

constrained torques, which make the approach appropriate for compliant movements.

However, the RAFEL model is based on forward model learning control and on recur-

rent sensory corrections to the desired trajectory. They both provide highly accurate

movement capabilities (even in the presence of disturbances of the initial dynamics and

kinematics of the "robot+object" plant), i.e., low errors for all joints with the same

range of other approaches using control strategies based on high gains. Finally, they

both achieve even better results in plants of high DOFs and all the joints converge faster

to the minimum error.

6.1 Future Research

The next step towards implementing bio-inspired autonomous control systems is to

provide the architectures developed in Chapter 4 and Chapter 5 with more real human

like features. Firstly, we can modify the version of feedforward and recurrent schemes

presented in this thesis including the transmission delays present in sensorimotor path-

ways in a biological system. Then, we will address the problem of compensating these

time delays in order to stabilize the feedback controller which is sensitive to intrinsic

delays. One of the potential uses of forward models is to act as an internal feedback to

overcome the time delay [41]. Forward models provide an estimate of the outcome of

a motor command which can be used for the feedback control. Miall et al. [71] (1993)

proposed a particular form of control strategy to isolate the feedback delays from the
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control loop, known as a Smith predictor that combines the advantages of feedforward

control with those of feedback control [41, 43]. In other words, future work will address

the exploitation of the learned forward models to provide an estimate of the outcome of

a motor command avoiding biological time delays in the motor plants. Then, we could

combine the recurrent control loop for compensating deviations in the trajectory and

forward model predictions towards a more biological plausible system. Furthermore, we

aim to exploit the forward model prediction, other future extensions include the com-

bination of both internal models towards building an hybrid scheme. In fact, it seems

that inverse and forward models might operate in combination [16].

Another potential extension to this work is to embed a spike-based cerebellar model

in the feedforward and recurrent control loop and to exploit the connection between

it and the machine learning engine (LWPR). With relation to this, we can take the

advantage of the adaptive cerebellar spiking model built by Luque et al. [37] (2011).

Furthermore, as we commented in Chapter 4, a potential role of the granular and molec-

ular layers in biologically plausible cerebellar models is to provide accurate signals to

the PCs for improving the learning of the current model. These signals seem to influence

the DCN synapses capability in order to consolidate the learning [59, 63, 64]. So, next

goal will be to study implications of a detailed computational model of the granular and

molecular layers in order to facilitate the cerebellar learning and to improve the system

performance.

Finally, future work will address the evaluation of the bio-inspired architectures

mentioned above by dynamic and kinematic context switching experiments, in order to

figure out and understand the mechanisms behind the motor learning and control of

the CNS in manipulating different objects.

6.2 General Scientific Framework

This scientific work has been done and partially funded by the European Project SEN-

SOPAC (IST-028056). This has represented an excellent collaborative framework with

diverse research groups at other European Universities and research institutions. The
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presented work represents a contribution of the University of Granada within this SEN-

SOPAC consortium. The collaboration with the University of Edinburgh had been

essential for the development of the idea of joining machine learning and biological pro-

cesses and for the full understanding of the LWPR algorithm in terms of optimization

of parameters and input-output function of regression. Then, this project had required

a multidisciplinary approach and knowledge, from the biological point of view to the

automatic learning control for a robotic arm. In fact, we implemented two biologically

plausible control loop architectures in which cerebellar internal models are learned in

order to manipulate tools with a robotic arm. The main effort had been accomplishing

the hybrid connection between a machine learning engine and a bio-inspired module to

learn different non-linear dynamics and control high nonlinear systems under various

contexts.

6.3 Publication of Results

In the framework of the Sensopac project (IST-028056), the research group at the

University of Granada has been involved in two main tasks: the development of the

spiking neuron computation model (implemented within EDLUT) and the application

of neuroscientist findings in order to design biologically inspired control systems capable

of carrying out manipulating tasks. The work has been evaluated in the framework of

international conferences and scientific journals (with impact factor on the JCR). In

short, the scientific production can be summarized as: two journal papers published, two

journal papers accepted for publication, and three international conferences (IWANN

2007, IPCAT 2007, and CogSys 2008).

Journals

1. R. R. Carrillo, E. Ros, S. Tolu, T. Nieus, E. D’Angelo, Event-driven simulation of

cerebellar granule cells, Biosystems 94 (1-2) (2008) 10–17

2. N. R. Luque, J. A. Garrido, R. R. Carrillo, S. Tolu, E. Ros, Adaptive Cerebel-

lar Spiking Model embedded in the control loop: Context switching and robustness

against noise, International Journal of Neural Systems 21 (5) (2011) 385–401
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3. S. Tolu, M. Vanegas, N. R. Luque, J. A. Garrido, E. Ros, Bio-inspired Adaptive

Feedback Error Learning Architecture For Motor Control, under final revision at

Biological Cybernetics.

4. S. Tolu, M. Vanegas, R. Agís, R. R. Carrillo, A. Cañas, Dynamics model abstraction

scheme using radial basis functions, accepted for publication in Journal of Control

Science and Engineering.

International Conferences

1. S. Tolu, E. Ros, R. Agís, Bio-inspired control model for object manipulation by

humanoid robots, in: International Work Conference on Artificial Neural Networks

(IWANN 2007), San Sebastian, Spain, LNCS, vol. 4507, 813–820, 2007

2. R. R. Carrillo, E. Ros, S. Tolu, T. Nieus, D. E., Event-driven simulation of cerebellar

granule cells, in: Seventh International Workshop on Information Processing in Cells

and Tissues (IPCAT 2007), Oxford, 2007

3. R. R. Carrillo, J. Garrido, E. Ros, S. Tolu, C. Boucheny, O. J. M. Coenen, A real-

time spiking cerebellum model for learning robot control, in: International Conference

On Cognitive Systems (COGSYS 2008), Karlsruhe, Germany, 2008

6.4 Main Contributions

We now summarize the main contributions of the presented work:

• Implementation of the bio-inspired AFEL architecture for motor control of robotic

movements. A machine learning approach (LWPR) works as an internal inverse

model abstraction kernel. The cerebellum embedded in the feedforward control

loop drives the LWPR learning engine to learn an optimized internal model, and

it contributes to deliver finer and more effective corrections. The performance

obtained by the AFEL scheme in terms of error after learning is remarkable

compared to other approaches.

• Implementation of the bio-inspired Recurrent AFEL (RAFEL) architecture, in

which the forward internal model learns the dynamic model of the robot arm

and provides optimal pre-processed signals to the cerebellum. The cerebellum
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embedded in the recurrent control loop provides sensory corrections to the desired

trajectory to compensate for deviations in the dynamics or kinematics of a robotic

arm. The LWPR works as an internal forward dynamic model abstraction engine

according to the process of formation of internal models in the cerebellum.

• The presented models take advantage of the connection between the accurate re-

gression method LWPR and a basic cerebellar structure. Therefore, this approach

integrates a machine learning approach (LWPR) with a bio-inspired scheme (cere-

bellar like structure) in a complementary manner. In fact, the cerebellar module

takes full advantage of the LWPR for efficiently abstracting the high dimensional

input space. LWPR provides optimal input representation to the Purkinje layer

in terms of neural resources (it adapts its neural resources incrementally and ac-

cording to the input data structure).

• In both architectures, LWPR works as a memory consolidation module. However,

the cerebellar module with its learning rule is focused on short term adaptation.

Thus, in terms of short/long term learning by analogy with biological systems,

our cerebellar module, receiving inputs from the LWPR receptive fields, represents

the MF-GrC/interneurons-PC pathway for short time learning while the LWPR

adaptation kernels represent the MF-DCN adaptive pathway which is responsible

of long term learning (memory consolidation).

• Study and development of low-gains control schemes through the LF controller,

which adapts the error-correcting feedback over consecutive iterations of the same

task. Furthermore, the LF controller accurately guides the LWPR during the

learning process using very low gains. Results show that the global architecture

has a compliant performance which is suitable for robotic systems in human en-

vironments.

• An evaluation of the combination of feedback and feedforward estimates indicates

that we obtain considerable advantages for robust online control. Furthermore,

we ensured accuracy and enhanced the speed of learning by optimizing the choice

of the centers and transforming to an optimal basis of receptive fields by means

of using LWPR.
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• Due to the large number of DOFs and the nonlinearities of the 7-DOFs human

arm, an internal model of the arm’s dynamics is an extremely complex mapping,

thus it requires a large number of encoding states. Despite this, we demonstrated

that we achieved very good performances with a small number of states (or GCs)

for a 7-DOf robot arm.

• Implementation of model abstraction schemes during object manipulation. The

systems AFEL and RAFEL are robust against both dynamics and kinematics

transformations.
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7

Conclusiones en español

Este capítulo resume las contribuciones presentadas en esta tesis, presenta una discusión
sobre el trabajo futuro, enumera las publicaciones que se obtienen del trabajo realizado
y describe las sinergias resultantes de las colaboraciones entre grupos en el contexto del
proyecto SENSOPAC.

95



7. CONCLUSIONES EN ESPAÑOL

En esta tesis hemos presentado dos modelos (los esquemas AFEL y RAFEL) para el

control motor y el aprendizaje motor de los movimientos del brazo robótico en los que

el control automático y los enfoques bio-inspirados coexisten y se complementan entre

sí. Estos esquemas híbridos basados en un motor de aprendizaje automático (LWPR)

y un componente bio-inspirado (módulo del cerebelo) utilizan eficientemente el compo-

nente LWPR para optimizar la abstracción de la representación del espacio de entrada

y también utilizan eficientemente la pseudo estructura del cerebelo para integrar las

distintas contribuciones de entradas para obtener órdenes correctivas precisas. Ambas

arquitecturas utilizan un módulo de aprendizaje adaptativo para alimentar al compo-

nente LWPR, de modo que este enfoque es útil incluso para aquellas plantas robóticas

cuyas dinámicas o cinemáticas analíticas son sólo parcialmente conocidas.

El modelo AFEL presentado se basa en el control del aprendizaje del modelo inverso

y utiliza pares limitados que hacen que el enfoque sea adecuado para movimientos

dóciles. Sin embargo, el modelo RAFEL se basa en el control del aprendizaje del

modelo directo y en las correcciones sensoriales recurrentes a la trayectoria deseada.

Ambos modelos proporcionan capacidades de movimiento de alta precisión (incluso

en la presencia de alteraciones de las dinámicas y cinemáticas iniciales del conjunto

"robot + objeto"), es decir, errores bajos para todas las articulaciones con el mismo

rango de otros enfoques que utilizan estrategias de control basadas en altas ganancias.

Finalmente, ambos logran resultados aún mejores en las plantas de muchos DOF y todas

las articulaciones convergen más rápidamente al error mínimo.

7.1 Trabajo futuro

El siguiente paso hacia la implementación de sistemas de control autónomo bio-inspirados

es proporcionar a las arquitecturas desarrolladas en los capítulos 4 y 5 más característi-

cas reales humanas. En primer lugar, podemos modificar la versión de los sistemas hacia

adelante y recurrente presentados en esta tesis incluyendo los retrasos de transmisión

presentes en las vías sensorimotoras en un sistema biológico. Sucesivamente, vamos a

abordar el problema de compensar estos retrasos de tiempo con el fin de estabilizar

el controlador de retroalimentación que es sensible a los retrasos intrínsecos. Uno de
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los usos potenciales de los modelos directos es actuar como una retroalimentación in-

terna para superar el retardo de tiempo [41]. Los modelos directos proporcionan una

estimación de la consecuencia debida a una orden motora que puede ser utilizada por

el control de realimentación. Miall et al. [71] (1993) proponen una forma particular

de estrategia de control para aislar los retrasos de retroalimentación desde el circuito

de control, conocida como predictor de Smith, que combina las ventajas del control

hacia adelante con las del control de retroalimentación [41, 43]. En otras palabras, el

trabajo futuro abordará la explotación de los modelos directos para proporcionar una

estimación de las consecuencias de una orden motora evitando los retrasos de tiempo

biológicos de las entidades motoras. Sucesivamente, podemos combinar el lazo de con-

trol recurrente para compensar las desviaciones en la trayectoria y las predicciones de

los modelos directos hacia un sistema biológico más plausible. Además de nuestro obje-

tivo de explotación del modelo directo de predicción, otros trabajos futuros incluyen la

combinación de ambos modelos internos en la construcción de un esquema híbrido. De

hecho, parece que los modelos inversos y directos pueden trabajar en combinación [16].

Otro posible trabajo futuro sería integrar un modelo de cerebelo basado en im-

pulsos (spikes) en el lazo de control hacia adelante y recurrente y explotar la conexión

entre éste y el motor de aprendizaje de control automático (LWPR). En relación con

esto, podemos aprovecharnos del modelo adaptativo cerebelar a impulsos desarrollado

por Luque et al. [37] (2011).

Además, como hemos comentado en el capítulo 4, un papel potencial de las capas

granular y molecular del cerebelo en los modelos biológicamente plausibles es propor-

cionar señales precisas a las PCs para mejorar el aprendizaje del modelo actual. Estas

señales parecen influir en la capacidad de las sinapsis del DCN con el fin de consolidar

el aprendizaje [59, 63, 64]. Por lo tanto, el siguiente objetivo será estudiar las implica-

ciones de un modelo detallado de cálculo de las capas granular y molecular con el fin

de facilitar el aprendizaje del cerebelo y mejorar el rendimiento del sistema.

Finalmente, el trabajo futuro abordará la evaluación de las arquitecturas bio-inspiradas

mencionadas anteriormente a través de experimentos de cambio de contextos dinámi-

cos y cinemáticos, con el fin de descubrir y entender los mecanismos que subyacen al

aprendizaje motor y al control del CNS en la manipulación de diferentes objetos.
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7.2 Marco científico general

Este trabajo científico ha sido realizado y parcialmente financiado por el proyecto eu-

ropeo SENSOPAC (IST-028056). Esto ha representado un excelente marco de colab-

oración con diversos grupos de investigación de otras universidades e instituciones de

investigación europeas. El trabajo presentado constituye un aporte de la Universidad

de Granada dentro de este consorcio SENSOPAC. La colaboración con la Universidad

de Edimburgo ha sido fundamental para el desarrollo de la idea de unir el control au-

tomático con los procesos biológicos y para comprender plenamente el algoritmo LWPR

en términos de optimización de los parámetros y de las entradas y salidas de la función

de regresión. Este proyecto ha requerido un enfoque multidisciplinario y el conocimiento

desde el punto de vista biológico hasta el control de aprendizaje automático de un brazo

robótico. De hecho, hemos implementado dos arquitecturas de control biológicamente

plausibles en las que los modelos internos del cerebelo se aprenden con el fin de manip-

ular herramientas con un brazo robótico. El esfuerzo principal ha sido llevar a cabo la

conexión híbrida entre un motor de aprendizaje automático y un módulo bio-inspirado

para aprender diferentes dinámicas no lineales y controlar sistemas altamente no lineales

bajo varios contextos.

7.3 Publicación de resultados

En el marco del proyecto SENSOPAC (IST-028056), el grupo de investigación de la

Universidad de Granada ha participado en dos tareas principales: el desarrollo del en-

torno de computación de neuronas de spikes (implementado en EDLUT) y la aplicación

de los resultados neurocientíficos con el fin de diseñar sistemas de control bio-inspirados

capaces de llevar a cabo tareas de manipulación. El trabajo se ha evaluado en el marco

de conferencias internacionales y revistas científicas (con factor de impacto en el JCR).

En resumidas cuentas, la producción científica se puede enumerar como: dos artículos

publicados en revistas, dos artículos aceptados para su publicación en revistas, y tres

conferencias internacionales (IWANN 2007, IPCAT 2007, y CogSys 2008).

Revistas internacionales

1. R. R. Carrillo, E. Ros, S. Tolu, T. Nieus, E. D’Angelo, Event-driven simulation of

cerebellar granule cells, Biosystems 94 (1-2) (2008) 10–17
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2. N. R. Luque, J. A. Garrido, R. R. Carrillo, S. Tolu, E. Ros, Adaptive Cerebel-

lar Spiking Model embedded in the control loop: Context switching and robustness

against noise, International Journal of Neural Systems 21 (5) (2011) 385–401

3. S. Tolu, M. Vanegas, N. R. Luque, J. A. Garrido, E. Ros, Bio-inspired Adaptive

Feedback Error Learning Architecture For Motor Control, revisión final en la revista

Biological Cybernetics.

4. S. Tolu, M. Vanegas, R. Agís, R. R. Carrillo, A. Cañas, Dynamics model abstraction

scheme using radial basis functions, aceptado para la publicación en la revista Control

Science and Engineering.

Conferencias internacionales

1. S. Tolu, E. Ros, R. Agís, Bio-inspired control model for object manipulation by

humanoid robots, in: International Work Conference on Artificial Neural Networks

(IWANN 2007), San Sebastian, Spain, LNCS, vol. 4507, 813–820, 2007

2. R. R. Carrillo, E. Ros, S. Tolu, T. Nieus, D. E., Event-driven simulation of cerebellar

granule cells, in: Seventh International Workshop on Information Processing in Cells

and Tissues (IPCAT 2007), Oxford, 2007

3. R. R. Carrillo, J. Garrido, E. Ros, S. Tolu, C. Boucheny, O. J. M. Coenen, A real-

time spiking cerebellum model for learning robot control, in: International Conference

On Cognitive Systems (COGSYS 2008), Karlsruhe, Germany, 2008

7.4 Principales contribuciones

Ahora presentamos un resumen de las principales contribuciones del trabajo presentado:

• Implementación de la arquitectura bio-inspirada AFEL para el control motor

de los movimientos robóticos. Un enfoque de aprendizaje automático (LWPR)

funciona como un núcleo de abstracción del modelo interno inverso. El cere-

belo incrustado en el lazo de control hacia adelante guía el motor de aprendizaje

LWPR para aprender un modelo interno optimizado, que contribuye a ofrecer cor-

recciones mejores y más efectivas. El rendimiento obtenido por el esquema AFEL

en términos de error al final del aprendizaje es notable en comparación con otros

enfoques.
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• Aplicación de la arquitectura bio-inspirada AFEL recurrente (RAFEL), en la

que el modelo interno directo aprende el modelo dinámico del brazo robótico y

proporciona señales pre-procesadas óptimas en el cerebelo. El cerebelo incrustado

en el lazo de control recurrente proporciona correcciones sensoriales a la trayectoria

deseada para compensar las desviaciones en la dinámica o cinemática del brazo

robótico. El LWPR funciona como un motor de abstracción del modelo dinámico

interno de acuerdo con el proceso de formación de modelos internos en el cerebelo.

• Los modelos presentados se aprovechan de la conexión entre el método preciso

de regresión LWPR y una estructura básica del cerebelo. Por lo tanto, este

enfoque integra un enfoque de aprendizaje automático (LWPR) con un sistema

bio-inspirado (la pseudo estructura del cerebelo) de manera complementaria. De

hecho, el módulo del cerebelo aprovecha al máximo el LWPR de modo eficaz

para abstraer el espacio de entrada de muchas dimensiones. El LWPR ofrece una

representación óptima de entradas a la capa de Purkinje en términos de recursos

neuronales (adapta sus recursos neuronales de manera incremental de acuerdo con

la estructura de los datos de entrada).

• En ambas arquitecturas, el LWPR funciona como un módulo de consolidación de

la memoria. Sin embargo, el módulo del cerebelo con su regla de aprendizaje se

centra en la adaptación a corto plazo. Por lo tanto, en términos de aprendizaje

a corto plazo / largo plazo, por analogía con los sistemas biológicos, nuestro

módulo del cerebelo, que recibe aportaciones de los campos receptivos del LWPR,

representa el camino MF-GrC/interneurons-PC para el aprendizaje a corto plazo,

mientras que los núcleos adaptativos del LWPR representan el camino adaptativo

MF-DCN, que es responsable del aprendizaje a largo plazo (consolidación de la

memoria).

• Estudio y desarrollo de esquemas de control de baja ganancia a través del contro-

lador LF, que adapta la realimentación correctiva de errores durante iteraciones

consecutivas de la misma tarea. Además, el controlador LF guía de forma precisa

el LWPR durante el proceso de aprendizaje utilizando ganancias muy bajas. Los

resultados muestran que la arquitectura global tiene un rendimiento dócil, que es

apropiado para sistemas robóticos en ambientes humanos.
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• Una evaluación de la combinación de la realimentación y las estimaciones hacia

adelante indica que obtenemos importantes ventajas para el control robusto en

línea. Además, aseguramos precisión y aumentamos la velocidad de aprendizaje

mediante la optimización de la elección de los centros y la transformación de una

base óptima de los campos receptivos mediante el uso del LWPR.

• Debido al número elevado de DOFs y a las no linealidades de los 7-DOFs del

brazo humano, un modelo interno de las dinámicas de la mano es un mapa muy

complejo, por lo que requiere un gran número de estados de codificación. A pesar

de ello, hemos demostrado que hemos conseguido muy buenos resultados con un

pequeño número de estados (o GC) por un brazo robótico de 7 DOF.

• Implementación de esquemas de abstracción de modelos durante la manipulación

de objetos. Los sistemas AFEL y RAFEL son robustos ante transformaciones

tanto en la dinámica como en la cinemática.
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Appendix A

LF Controller Details

Substituting the Laplace transform of Equation (4.6) in the Laplace transform of Equa-

tion (4.7), we obtain Equation (A.1):

D̂i(k+1)(s) = D̂ik(s) + P (s)H(s)[Di(s)− D̂ik(s)], (A.1)

where

H(s) =
1

s2 +Kvi(s) +Kpi
. (A.2)

Substituting the following Expression (A.3) in Equation (A.1)

G(s) = 1− P (s)H(s), (A.3)

we obtain Equation (A.4)

D̂i(k+1)(s) = G(s)D̂ik(s) + D̂(s)[1−G(s)]. (A.4)

Starting with Di0, after k iterations we will get Equation (A.5):

D̂i(k)(s) = Di(s) +AGk(s), (A.5)

where A is a constant. The convergence of the learning algorithm depends on the factor

Gk(s) in Equation (A.5); The convergence will occur if Gk(s) approaches zero. In this

case, D̂i(k)(s) → Di(s), and Expression (4.5) will be true with its right side equal to

zero. The inverse Laplace transform of Gk(s) is defined by Equation (A.6)

gk(t) = L−1[Gk(s)]. (A.6)

If we choose an appropriate filter P (s), (4.8), we would obtain

limk→∞ |hk(t)| = 0, (A.7)

with which the convergence is possible to guarantee.
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Appendix B

Architectures Performance
Comparison

The next four figures, Figures B.1 to B.4, show a comparison between the feedforward

and the recurrent architectures about how they respond under dynamics or kinematics

transformations at the last joint robot for the 3-DOF and the 7-DOF arm configuration

(see Chapters 4 and 5, results section, for further details about experiments). We can

notice that they have a similar behaviour, although the feedforward system is faster

than the other one reaching the minimum nMSE value. Anyway, both architectures

achieve a very good performance with a low standard deviation.
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Figure B.1: Comparison between feedforward and recurrent architectures for the 3-DOF
robot arm configuration. The nMSE is averaged among four dynamic contexts (2, 6, 8,
and 10 kg) and the error bars represent the standard deviation among these contexts.
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Figure B.2: Comparison between feedforward and recurrent architectures for the 3-DOF
robot arm configuration. The nMSE is averaged among four kinematic contexts obtained
shifting the orientation of the end-robot-segment by a factor λ = [π/4, π/2] in radians (10
kg π/4, 6 kg π/4, 6 kg π/3, 6 kg π/2) and the error bars represent the standard deviation
among these contexts.
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Figure B.3: Comparison between feedforward and recurrent architectures for the 7-DOF
robot arm configuration. The nMSE is averaged among four dynamic contexts (2, 6, 8,
and 10 kg) and the error bars represent the standard deviation among these contexts.
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Figure B.4: Comparison between feedforward and recurrent architectures for the 7-DOF
robot arm configuration. The nMSE is averaged among four kinematic contexts obtained
shifting the orientation of the end-robot-segment by a factor λ = [π/4, π/2] in radians (10
kg π/4, 6 kg π/4, 6 kg π/3, 6 kg π/2) and the error bars represent the standard deviation
among these contexts.
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