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Dr. Eduardo Ros Vidal, Catedrático de Universidad del Departamento de
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Abstract

In this work, an extensive simulation study of the cerebellum is presented.

Our study required the further development of the EDLUT spiking neural

network simulator. Thus we have addressed the development of a detailed

cerebellar model from different levels of abstraction. Firstly, in a detailed

model, the granular-layer network generated rebounds and oscillations in

the β/γ-frequency band and filtered unsynchronized trains with millisec-

ond precision. We found that weights at multiple synapses could play a

crucial role to enhance coincidence detection (which allows the reduction of

non-synchronous signals) and sensitivity rebound (which determines specific

time windows for signal transmission). These results predict that the gran-

ular layer operates as a complex adaptable filter which can be controlled

by weight changes at multiple synaptic sites. In a higher level of abstrac-

tion, a model of the whole cerebellum which can infer corrective models in

the framework of a control task is presented. This work studies how a ba-

sic temporal-correlation kernel, including long-term depression (LTD) and

long-term potentiation (LTP) at parallel fibers-Purkinje cell synapses, can

effectively infer corrective models. Finally, we study how cerebellar input

representations (context labels and sensorimotor signals) can efficiently sup-

port model abstraction towards delivering accurate corrective torque values

for increasing precision during different-object manipulation.

This work was partly supported by the Spanish National project DINAM-

VISION (DPI2007-61683), the Spanish Subprogram FPU 2009 (MICINN),

and the EU projects SENSOPAC (IST-028056), and REALNET (IST-270434).



Resumen

En este trabajo se presenta un extenso estudio de simulación del cerebelo.

Dicho estudio requiere del desarrollo del simulador de redes neuronales de

impulsos EDLUT, herramienta para la que se implementó un modelo rea-

lista del cerebelo desde distintos niveles de abstracción. Usando un modelo

detallado, la capa granular fue capaz de generar rebotes de sensibilidad y

oscilaciones en las bandas de frecuencia β/γ, aśı como de filtrar trenes de

actividad desincronizados con precisión de milisegundos. Según este modelo,

los pesos en múltiples sinapsis podŕıan desempeñar un papel crucial para

mejorar la detección de coincidencias (que permite la reducción de señales

no sincronizadas) y el rebote de sensibilidad (que determina las ventanas de

tiempo preferidas para la transmisión de señales). Estos resultados predicen

que la capa granular actúa como un filtro complejo adaptable, que puede

ser controlado por los cambios de pesos sinápticos. Desde un nivel más alto

de abstracción, se presenta un modelo completo de cerebelo capaz de inferir

modelos de corrección en el marco de una tarea de control. Usando dicho

modelo se muestra cómo un núcleo operacional básico de correlación tempo-

ral (incluyendo depresión —LTD— y potenciación a largo plazo —LTP— en

la sinapsis fibras paralelas-células de Purkinje) puede inferir eficientemen-

te modelos correctivos. Finalmente, se estudia cómo las representaciones

de las entradas cerebelares (etiquetas de contexto y señales sensoriomoto-

ras) pueden apoyar la abstracción de modelos con el fin de producir valores

correctores de fuerza fiables para incrementar la precisión durante la mani-

pulación de objetos.

Este trabajo fue parcialmente financiado por el proyecto nacional español

DINAM-VISION (DPI2007-61683), el Subprograma nacional FPU 2009 (MI-

CINN), y los proyectos de la UE SENSOPAC (IST-028056), y REALNET

(IST-270.434).
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1

Introduction

The third edition of the book Principles of Neural Science (which could be considered

a general reference of modern neuroscience) comments “Perhaps the last frontier of

science —its ultimate challenge— is to understand the biological basis of consciousness

and the mental processes by which we perceive, act, learn, and remember”. But this

challenge remains still active, and we could consider it one of the main challenges for

the current twenty-first century. A deep knowledge of the biological bases of neural

systems can lead us to several benefits. Firstly, a further understanding of the brain

could make possible the development of innovative treatments for pathologies related

with the Central Nervous System. Secondly, the human brain could be considered the

best information processing system due to its reliability, accuracy, performance and

storage capacity. Being able to emulate the way of processing information in biological

systems could allow the design of a new generation of processing architectures capable

of exceeding the bounds of current systems.

1.1 Computational neuroscience

From that perspective, and largely due to the increasing capabilities of computational

resources, computational neuroscience has emerged in the last years as a promising

branch in neuroscience. Computational neuroscience refers to the use of mathematical

and computational models in the study of neural systems. The design of mathematical

and quantitative models has been a key component of research in neuroscience for many

decades. Indeed, one of the most celebrated achievements in the field — the Hodgkin-
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Huxley model for the generation of action potentials [126] in 1952 — was a triumph of

the quantitative approach and meant a major boost for the development of new tools.

Also, much of what is understood about the functionality of the visual, auditory and

olfactory systems, as well as the neural basis of learning and memory, has been informed

by mathematical and computational modeling. Nevertheless, it is fair to say that, until

recently, computational modeling represented only a small part of the total research

effort in neuroscience, which has traditionally been dominated by experimental studies

(in fact, neuroscience research positions used to be taken by researchers with a strong

background in biological systems). The recent move towards computational modeling

has opened up new directions of research, and allowed investigation of issues beyond

those that are accessible to direct experimental study. More importantly, it has brought

new ideas from fields such as statistical physics, information theory, nonlinear systems

theory and engineering into neuroscience, providing a richer conceptual framework for

answering the most difficult fundamental questions in the field.

The primary motivation for using computational modeling is, of course, to under-

stand the behavior of the system under study using mathematical analysis and com-

puter simulation. This is certainly the case in neuroscience. Computational modeling

has been traditionally used for many other physical systems (such as astronomical sys-

tems, fluid flows, mechanical devices, structures, etc.). However, and differently with

this kind of systems, the application of computational modeling to living systems —

and especially to the nervous system — is specially suitable because biological systems

can be seen explicitly as processors of information. Thus, computational models in

these systems are not just tools for calculation or prediction, but often elucidate essen-

tial functionality. In the case of neuroscience, this can be seen in terms of two related

roles served by computational modeling. These are: 1) Determining WHAT the various

parts of the nervous system do; and 2) Determining HOW they do it.

Experimental studies of the nervous system at all levels (sub-cellular, cellular and

systemic) are critical for understanding the anatomical structures and physiological

processes of the system, but these observations must then be organized into a coher-

ent model of system functionality. This is only possible if the appropriate conceptual

elements for such a functional description are available. Psychologists and neurolo-

gists have traditionally used performance (or its deficits) as the basis for assigning
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functionality to components of the nervous system, which has produced useful quali-

tative and phenomenological models. This is the case of the eye-blink conditioning or

vestibulo-ocular reflex which have traditionally been closely related to the study of the

cerebellum. These are often sufficient for clinical purposes, but provide only limited

understanding of the system per se. An alternative (or complementary) approach is

provided by viewing the nervous system as acquiring, transforming, storing and using

information to control an extremely complex system — the body — embedded in a

complex dynamic environment. In this view, the functionality of the system emerges

from lower level phenomena such as membrane potential dynamics, dendritic current

flows, channel kinetics, synaptic plasticity, etc., much as the functionality of a computer

emerges from the currents and voltages in its components.

As with the computer, the emergent functionality of the nervous system depends

on the underlying phenomena but cannot be described entirely in their terms. To truly

understand this functionality, it is necessary to relate the concrete phenomena mea-

sured by experiments to the abstractions of information processing — and ultimately

to the phenomena of cognition and behavior —. Computational modeling does this

by providing a well-developed formalism relating signals and information. Through

such modeling, mathematical and computational models can be applied directly to the

nervous system, leading to a coherent quantitative and testable functional description

of the brain rather than a qualitative model or a compendium of observations. This

conclusion was already foreseen by Andrew Huxley (one of the authors of the Hodgkin

& Huxley action potential model) when he commented in his Nobel award lecture in

1963: “an important lesson I learnt from these manual computations was the complete

inadequacy of one’s intuition in trying to deal with a system of this degree of complex-

ity”. This sentence gathers one of the principles of every model. Since any system can

aspire to model absolutely all the levels of abstraction of the analogous real system,

the first decision in developing a model will be the analysis of the factors which might

influence the behavior, and choose the level of detail from which our model will work.

The same philosophy must be applied in order to model the central nervous sys-

tem. It processes information at many scales, ranging from molecules to large networks

comprising millions of neurons. For the information-based model of nervous system

functionality to work, it is essential explaining how phenomena at each level arise from

those at lower levels, e.g., how the recognition of objects in the visual field relates
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to signals generated by visual system neurons, or how the activity of individual mo-

tor neurons produces smooth limb trajectories. Unfortunately, experimental methods

often do not provide the data necessary for this. In particular, the data needed to

understand how networks of neurons process information collectively is very difficult to

obtain. Current technology allows in vivo access to the nervous system mainly at the

extremes: high resolution intracellular and extracellular data through single electrode

recordings, and low resolution regional activity data through functional magnetic reso-

nance imaging (fMRI) and magnetoencephalography (MEG). Though electrode arrays

are now fairly widely used, they still provide extracellular access only to a few hundred

neurons at best. However, most functional networks in areas such as the hippocampus

and cerebellum (two of the better studied regions) comprise anywhere from a few hun-

dred thousand to several million cells. Information processing in these networks occurs

through self-organized dynamic patterns of activity spanning large parts of the system

[12, 99, 107, 158, 174]. These emergent patterns can no more be understood by looking

at the activity of individual cells (or even a few hundred cells) than the meaning of a

book discerned by reading individual letters. Nor can large-scale data from fMRI stud-

ies supply the resolution necessary to see these patterns and relate them to interactions

between cells.

Computational modeling provides a way out of this dilemma by allowing the study

of network models — as large as desired — constructed using neuron models that are

themselves based on cell-level data obtained from experiments [69, 100, 172, 226, 240].

These model networks can be simulated computationally under a variety of situations

to give insight into how the corresponding networks in the brain might work. Specific

issues such as the effect of synaptic modification, modulation by external signals, or

the significance of particular connectivity patterns, can be studied, and hypotheses that

cannot be tested directly, can be provisionally validated or rejected in simulation. In

many cases, models are becoming an indispensable tool in the hypothesize-and-test loop

of neuroscience. Computational models allow investigators to try out their “what-if”

intuitions in simulation, leading to better hypotheses and better designed experiments

with greater likelihood of success. Of course, the quality of the results depends on the

quality of the models, but the models have become increasingly good with advances in

numerical techniques, computational power and experimental methods [25, 37].
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As the focus of interest in neuroscience moves from phenomena to functionality,

computational modeling is also being used to address previously inaccessible problems

such as the neural basis of cognition and even consciousness [93, 139, 163]. Issues

related with representation, intention and executive control are being explored at the

edge between neuroscience and artificial intelligence, and the understanding of the brain

as an extremely sophisticated information processing system continues advancing in a

multidisciplinary way.

1.2 The importance of studying the cerebellum

The cerebellum (whose name translates as little brain in Latin) is a region of the brain

that plays a main role in motor control. However, it is also involved in some cognitive

functions such as attention and language, and probably in some emotional functions

such as regulating fear and pleasure responses [282]. Although the cerebellum does

not plan movements, it contributes to coordination, precision, and accurate timing.

It receives input from somatosensory systems and from other parts of the brain and

spinal cord, and integrates these inputs to fine tune motor activity. Because of this

fine-tuning function, illnesses in the cerebellum does not cause paralysis, but instead

produces disorders in fine movement, equilibrium, posture, and motor learning.

The number of cells stimated in the cerebellum also make it one of the main parts

of the brain. The granule cells are by far the most numerous neurons in the brain: in

humans, estimates of their total number average around 50 billion, which means that

about three-quarters of the total number of neurons in the brain are cerebellar granule

cells. The cerebellum has the appearance of a separate structure attached to the bottom

of the brain, tucked underneath the cerebral hemispheres. The surface of the cerebellum

is covered with finely spaced parallel grooves, in striking contrast to the broad irregular

convolutions of the cerebral cortex. These parallel grooves conceal the fact that the

cerebellum is actually a continuous thin layer of neural tissue (the cerebellar cortex),

tightly folded in the style of an accordion as shown in Figure 1.1. Within this thin

layer there are several types of neurons with a highly regular arrangement, the most

important being Purkinje cells and granule cells. This complex neural network gives

rise to a massive signal-processing capability, but almost all of its output is directed to

a set of small deep cerebellar nuclei lying in the interior of the cerebellum.
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Figure 1.1: The structure of the cerebellum - Diagram showing the main cell types

in the cerebellum. Extracted from [67].

In addition to its direct role in motor control, the cerebellum is also necessary for

several types of motor learning, the most notable one being learning to adjust to changes

in sensorimotor primitives. Several theoretical models have been developed to explain

sensorimotor calibration in terms of synaptic plasticity within the cerebellum. Most of

them derive from early models formulated by David Marr [192] and James Albus [9],

which were motivated by the observation that each cerebellar Purkinje cell receives two

dramatically different types of input: on one hand, thousands of inputs from parallel

fibers, each individually very weak; on the other hand, input from one single climbing

fiber, which is, however, so strong that a single climbing fiber action potential will

reliably cause a target Purkinje cell to fire a complex action potential [11]. The basic

concept of the Marr-Albus theory is that the climbing fiber serves as a “teaching signal”,
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which induces a long-lasting change in the strength of synchronously activated parallel

fiber inputs. Observations of long-term depression in parallel fiber inputs have provided

support for theories of this type, but their validity remains controversial (see section

4.2.1 for an extensive review about functional models proposed in the literature).

1.3 General work motivation

The main aim of this work is the study and implementation of a cerebellar model. It

is well-known that the cerebellum plays an important role specially in motor control

but is also involved in other cognitive functions such as attention and language. The

cerebellum does not initiate the movement, but it contributes to coordination, precision,

and accurate timing. It receives inputs from sensory systems and from other parts of

the brain and spinal cord, and integrates these inputs with motor commands to fine

tune motor activity. However, the design of a medium-scale cerebellar model requires

several stages before achieving the whole system working.

Firstly, an ultra-fast simulator of biologically realistic neural networks is needed.

Indeed, if we expect to control a real robotic system (as opposed to a simulator), the

performance requirements lead to a real-time simulator. EDLUT [98] can be considered

the only simulator of biological neural networks able to fulfill these requirements as

shown in previous literature [40, 227]. Thus, the usage of this biological architectures

in order to control robotic systems means a challenge and a novelty itself. However, the

efficient table-based simulation strategy (that EDLUT implements) needs an extremely

careful validation to avoid potential errors derived from the behavior precompilation in

look-up tables. Therefore, as a first stage, in chapter 2 we further develop the EDLUT

simulator to accomplish with all the requirements that subsequent models might imply.

Secondly, we can take advantage of this simulation software to carry out an ex-

haustive study of the influence of different model parameters (and its interpretation in

biological systems) at the granular layer. The granular layer can be considered the first

processing layer in the cerebellum, and it carries the input signals to the parallel fibers.

The importance of the granular layer is out of any doubt since the granular cells (the

main component of the granular layer) are the most numerous neurons in the brain (in

humans, estimates of their total number average around 50 billion, which means that

about three-quarters of the brain’s neurons are cerebellar granule cells). But further
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of this quantitative approach, experimental data have shown the existence of complex

signal processing at this layer [58, 59, 64]. Thus, in chapter 3 we address the temporal

filtering capabilities at the granular layer.

Finally, the simulation of a whole cerebellum model within a control loop in order

to accurately control a robotic arm involves a demanding test bank for our biological

system [40]. From an engineering point of view, the best system is that which achieves

the best performance (in terms of accuracy, speed...). This point of view could also

fit in neuroscience (or neurophysiology), where the biologically inspired system with

the best performance might be a clue in order to achieve a deeper knowledge of the

real biological system. Following this approach, in chapter 4 we implement a whole

cerebelar model capable of accurately control a robotic arm as a learning system.

1.4 Our Contribution

In this work we developped and upgraded a spiking neural network simulation frame-

work capable of simulating networks with a high level of detail in real-time environ-

ments: EDLUT [98]. This tool was specially suitable for interacting with external

applications, robotic or visual processing systems based on realistic neural networks.

A previous work in the literature [227] laid the foundations of the efficient event-driven

simulation algorithm based on look-up tables. During this work, this algorithm evolved

to a whole simulation environment due to its Graphical User Interface (GUI) and the

implemented systems of communication with several tools (by means of files, TCP/IP

sockets, application programming interface or the implementation as a Simulink R© mod-

ule). We also implemented in EDLUT the capability of running simulations by using

hybrid schemes with time-driven and event-driven cell models and showed the advan-

tages that this simulation strategy can provide in realistic networks such as the granular

layer in the cerebellum. Finally, we implemented realistic cell models of most the cells in

the cerebellum (such as granule, Golgi, stellate, and Purkinje cells) and Spike-response

models of the cuneate nucleus.

In addition to this, we made extensive usage of these implemented tools in order to

study the temporal filtering at the granular layer in the cerebellum. Previous studies

showed the capability of this layer to produce oscillations in several frequency bands

(specially β and γ between 12 and 80 Hz) and transmit these rhythms to other regions
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of the brain [58]. In this study we showed the influence of each synaptic connection on

enhancing these filtering capabilities.

Finally, we developed a biologically plausible model of the scaled-down cerebellum

and took full advantage of this in order to control a non-stiff-joint robotic arm while

solving a manipulation task. We showed how this control loop including a cerebellum-

like module achieves an accurate inference of the modified dynamical model when ma-

nipulating heavy tools which substantially affect the base model. Furthermore, we

studied the influence of the learning parameters (LTD and LTP) and the way in which

feedback information such as the current state can highly improve the learning capa-

bilities (in terms of accuracy and performance).

1.5 Objectives

The main aim of this work is to contribute to the understanding of the central nervous

system (and specifically of the cerebellum) from the point of view that simulation

studies can provide. Therefore, a biollogically-plausible neural network model can be

functionally studied and posteriorly exploited in order to solve practical problems (e.g.

robot control). To achieve this objective, this thesis addresses the following separate

goals:

• Development and upgrading of an efficient simulation scheme for medium scale

spiking neural systems emphasizing the usability of the resulting tools for re-

searching porpuses of neurophisiology groups.

• Implementation of realistic models of the main cerebellar neuron types in the pro-

posed simulation software and analysis of the advantages of using each alternative

implementation depending on the properties of the concrete network model.

• Study of temporal processing capabilities of the granular layer (coincidence detec-

tion and time slicing), the oscillatory behaviour and the functional role of these

emerging properties in the framework of the whole cerebellar models.

• Study of how sensorimotor primitives can be efficiently infered through adaptation

of weights (LTD and LTP) at the parallel fibers.
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• Evaluation of kinematics and dynamics model inference capabilities at the cerebel-

lum through long term adaptation at parallel fibers to purkinje cell connections.

• Evaluation of how contextual signals can be efficiently used for context switching

in the framework of an accurate control task.

1.6 Project Framework

The work described in this document has been developed within two European projects

“SENSOrimotor structuring of Perception and Action for emergent Cognition” (SEN-

SOPAC) [2] and “Realistic Real-time Networks: computation dynamics in the cerebel-

lum” (REALNET).

The SENSOPAC project (funded under the EU Framework 6 IST Cognitive Sys-

tems Initiative) extended from January, 2006 to July, 2010 in collaboration with 12

institutions from 9 different countries. The SENSOPAC project combined machine

learning techniques and modelling of biological systems to develop a machine capa-

ble of abstracting cognitive notions from sensorimotor relationships during interactions

with its environment, and of generalising this knowledge to novel situations. Through

active sensing and exploratory actions the machine discovers the sensorimotor relation-

ships and consequently learn the intrinsic structure of its interactions with the world

and unravel predictive and causal relationships. The project has demonstrated how a

robotic system can bootstrap its development by constructing generalisation and dis-

covering sensor-based abstractions, based on neuroscience findings on tactile sensory

data representation and processing. The research group at the University of Granada

was mainly involved in the development of the spiking neuron computation environ-

ment (EDLUT) (see chapter 2 in this document) and the application of neuroscientist

findings in order to design biologically inspired control systems capable of carrying

out manipulating tasks. Figure 1.2 shows the module organization of the SENSOPAC

project. University of Granada (and this work as a part) focused in the fourth module

dealing between neurophisiologist (module 5) and more abstract and robotic systems

(modules 1, 2, and 3).

As a continuation of this project, the REALNET project (funded under the EU

Framework 7 Information and Communication Technologies work programme) started

in Febrery, 2011 and will extend until Febrery, 2014.This project aims to understand
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Figure 1.2: Module structure of the SENSOPAC European Project - Module

diagram showing the main tasks developed in the framework of the project. The research

group at the University of Granada was mainly involved in Module 4.

circuit computations by using a different approach: to elaborate realistic spiking net-

works and use them, together with experimental recordings of network activity, to

investigate the theoretical basis of central network computation. As a benchmark this

project will use the cerebellar circuit. Based on experimental data, this project will

develop the first realistic real-time model of the cerebellum and connect it to robotic

systems to evaluate circuit functioning under closed-loop conditions. The data deriv-

ing from recordings, large-scale simulations and robots will be used to explain circuit

functioning through the adaptable filter theory [94]. Within this project, the research

group at the University of Granada will be focused on evolving the EDLUT simulator

environment in order to simulate more realistic biological structures and increasing the

performance of the simulations (see chapter 2).

Since these kind of projects require a multidisciplinary approach, this work mainly

presents the results from the biological systems point of view. This is specially relevant

in the last part of this work (see chapter 4), where we use a cerebellum-like simulated

architecture in order to manipulate tools with a robotic arm. In addition to this, this

work implies dealing with robotic system (developing a robotic arm simulator, studying

the biologically plausible control loops, or the conversion from/to spiking signals). All

these other tasks have been mainly accomplished by Niceto Luque at the University of

Granada.
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1.7 Chapter Organization

This document has been organized in three main chapters according to the three main

issues which have been addressed in this work. First, on chapter 2, we develop and

upgrade an extremely efficient spiking neural network simulator (EDLUT). We have

included a subsection as the state of the art, where the best known simulation tools are

presented and compared (see section 2.2.2). The development in EDLUT has been fo-

cused in two main issues: facilitating the usage of EDLUT for neuroscientist researchers

(such as the development of a graphical user interface, the new communicating methods

or the releasing as a open-source tool), and the implementation of biologically detailed

and efficient structures (such as time-driven cell models, stochastic cell models based

on look-up tables or hybrid scheme network models). Thus, chapter 2 represents the

base tool which will be used in the following works.

In chapter 3, we carry out a simulation study of the temporal filtering properties

at the granular layer and the influence of the connections at the different synaptic

weights. In this study, we take advantage of the efficient simulation by using EDLUT

in order to iteratively simulate the granular layer response to the same stimulation, but

using different parameters. The temporal processing at the granular layer is thought

to strongly influence not only the cerebellum activity, but the whole brain rhythms too

(see the state of the art at section 3.2.1).

Finally, in chapter 4, we study the influence of the synaptic plasticity at the cere-

bellar parallel fibers and the information convergence at the granular layer in a real

problem (manipulation task). In order to achieve this learning system, we make use of

one of the main functional model of the cerebellum (see section 4.2.1 where we discuss

the main functional theories), implement this model by means of a reallistic network

model over EDLUT and control fast non-stiff-joint robotic arms accurately.

To summarize, this work represents an evolution from the development of the sim-

ulation tool, to the implementation of an accurate robotic system. Each chapter deals

with different levels of abstraction (cell models, network models, and system models

respectively), and encloses an state of the art of the concrete problem.
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Simulating the cerebellum: the

EDLUT simulation environment

2.1 Abstract

Emerging research areas in neuroscience are requiring simulation of large and detailed

spiking neural networks. In this chapter, a previously presented event-driven simulator

based on look-up tables (EDLUT) to precompile the behavior of the neuronal models

has been further upgraded in order to facilitate the user interaction by means of a Java-

based graphical user interface (GUI) and connected with external research systems by

several communication methods. In addition to this, to obtain the advantages of an

event-driven simulation method and a traditional time-driven method, a hybrid simu-

lation method has been integrated in EDLUT. This method efficiently simulates neural

networks composed of several neuron models: highly active neurons or neurons defined

by very-complex models are simulated using a time-driven method whereas other neu-

rons are simulated using an event-driven method based on lookup tables. To perform a

comparative study of this hybrid method in terms of speed and accuracy, a model of the

cerebellar granular layer has been simulated. The performance results showed that a

hybrid simulation can provide considerable advantages when the network is composed

of neurons with different characteristics. Finally, both alternatives (time-driven and

event-driven) of Leaky Integrate and Fire (LIF) and stochastic Spike Response Models

(SRM) have been implemented and conveniently validated. All these developments and

advances have been made available under GPLv3 license on the EDLUT official website
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2. SIMULATING THE CEREBELLUM: THE EDLUT SIMULATION
ENVIRONMENT

http://edlut.googlecode.com.

2.2 Introduction

In the last years, the spiking neural network simulation tools have strongly evolved,

from the very first researchers who implemented their own simulators to reproduce a

concrete feature of the central nervous system, to the current simulation environments,

capable of modelling the morphology and the topology of thousands of cells in great

detail using the processing facilities of the most powerful supercomputers.

However, the issue of simulating the central nervous system is far from being re-

solved. It must not be forgotten that only the human brain is composed of more than

100 billions of neurons [149]. This number is still unreachable for the last simulation

systems. Thus, a very hard and imaginative work will have to be carried out during

upcoming decades in order to achieve one of the major challenges in the twenty-first

century.

In this chapter, we will start presenting the main simulation strategies and tools,

paying special attention to the implementation details which make these tools efficient,

and afterwards we will focus on the development of the EDLUT simulation environment

[227], a simulation tool capable of running networks including thousands of detailed cells

in real-time in an single processor.

In this work, the EDLUT event-driven simulation scheme has been successfully

evolved from the basic simulation algorithm to a whole simulation environment. First,

the original source code (presented in [38] was reimplemented in order to make it more

readable and modularly scalable (in terms of functionality), documented, and freely

released on its current website [98]. Posteriorly, and following the same line, a Java-

based graphical user interface (GUI) was developed. In addition to this, several other

functionalities have emerged from the daily usage of EDLUT: simulation of time-based

cell models and hybrid (both time-based and event-driven) neural networks, design

and implementation of new realistic cell models, such as stochastic SRM and Leaky

Integrate-and-Fire (used in chapters 3 and 4), connectivity with many other tools by

means of TCP/IP sockets, Matlab/Simulink R© interface and its own C++ API. All

these developments have been addressed, tested, and used during this thesis.
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2.2.1 Simulation strategies: event-driven vs time-driven

Many research projects are studying and modeling nervous circuits of specific brain

areas. To accomplish these tasks, well-known simulators such as GENESIS [25] and

NEURON [124] have been traditionally used since they provide a good accuracy when

simulating detailed biophysical models of neurons. Their main drawback is the low

simulation speed, which is caused by the simulation method that they mainly employ:

time-driven simulation with intensive numerical calculation. This simulation method

divides the simulated time into short time steps and in each step the neural state vari-

ables are approximated and updated through a numerical analysis method [211]. This

iterative processing involves an intensive computation which hinders the simulation of

large scale neural networks.

The demand for fast simulations of neural networks has given rise to the application

of another simulation method: event-driven simulation. This simulation method only

computes and updates the neural state variables when a new event modifies the normal

evolution of a neuron, that is, when an input is received or an output is produced.

At the same time, it is known that most information transmission in biological neural

circuits is carried out by the so-called spikes. These events are relatively infrequent

and localized in time: less than 1% of neurons are simultaneously active [149] and the

activity is extremely sparse in many nervous areas such as the granular layer in the

cerebellum [49]. This makes event-driven simulation schemes particularly efficient.

Most common event-driven simulators [80, 278] use relatively-simple neural models

described by equations which can be evaluated repeatedly at arbitrary times (e.g. the

Spike-Response model). However, even the limited complexity of these models makes

it difficult to predict the future behavior of a neuron, especially to detect the nearest

threshold-crossing point that corresponds to the next firing time [81, 188]. To miti-

gate these two limitations (i.e. model-complexity restriction and firing-time prediction

which allows a straightforward event-driven simulation) EDLUT (Event-Driven neural

simulator based on LookUp tables) was implemented [227]. This application software

is an open source project (http://edlut.googlecode.com) for efficient simulation of

biological neural networks. It is of particular interest in the field of neurobotics and

embedded neural computing in which real-time processing is required, for example, for

experiments which include perception-action loops.
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ENVIRONMENT

2.2.1.1 Time-driven simulation models

The time-driven simulation paradigm consists in creating an iterative process which

divides the simulated time into short time steps and in each step the system updates

all the state variables. However, the update of the state variables may imply a huge

computational load (the number of equations to calculate is determined by the level of

detail of the model, but a single compartment Hodgkin & Huxley cell model can include

about 5 equations per cell). Algorithm 1 shows a generic time-driven pseudocode.

Note that the UpdateSimulationState(...) function encapsulates the update of each

cell state.

Algorithm 1 Generic time-driven simulation engine. A generic simulation algorithm

is quite simple. Each simulation step (determined by the dt parameter), the simulation

state is updated to the current time. The parameter dt determines the simulation

accuracy.

program TimeDrivenModel ()

InitializeSimulation(...);

While t < FinalTime then

NewState = UpdateSimulationState(dt);

t = t + dt;

EndWhile;

GetSimulationStatistics();

end.

This kind of simulation model is specifically designed for biological models which

include differential equations in their state definition, and can not be calculated by

event-driven strategies. The accuracy of this kind of methods is determined by the dt

parameter as shown in figure 2.1: a tiny value of this parameter will lead us to a high

level of detail in the simulations, but also produce a dramatic fall in the simulation

speed.

This is why NEURON developers introduced the concept of variable time step [125].

In this case, the simulation loop includes the estimation of the dt parameter depending

on the current cell state and the previous received activity [37], as shown in algorithm 2.

The usage of a variable time step benefits not only the simulation efficiency (when the
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Figure 2.1: Time-Driven Simulation Scheme - This figure shows the time-driven

engine steps. Note that the clock moves forward by previously defined time steps dt.

state variables keep stable for a long time, the time-step will be progressively extended

and in the opposite, when the state variables fast vary along the time, the time-step

will be shorted to fulfil the accuracy condition) but also the accuracy, as far as using

these techniques the error always keeps within an admissible range.

Therefore, this kind of simulation strategies are specially suitable for modelling

systems where the state equations follows a continuous evolution (they generally are

defined by means of differential equations) and can not be reformulated as event-driven

equations (equations which can be calculated at arbitrary times). On the other hand,

the efficiency of this model is strongly related to the number of equations to be inte-

grated. As far as the number of equations might be proportional to the number of cells

in the whole network, these algorithms are not recommended for large scale simulations.

2.2.1.2 Event-driven simulation models

Contrary to time-driven simulation models, the event-driven simulation schemes are

characterized by calculating only at arbitrary times, when a new event occurs. This

kind of scheme perfectly fits with the concept of spiking neural network, where the

information transmission only takes place at discrete times when a spike is elicited.
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Algorithm 2 Generic time-driven simulation engine with variable time-step. This sim-

ulation algorithm includes an additional step in which the next time step is calculated

based on the estimated error and the minimum accuracy required.

program TimeDrivenModel ()

InitializeSimulation(...);

While t < FinalTime then

NewState = UpdateSimulationState(dt);

dt = StimateTimeStep(Accuracy);

t = t + dt;

EndWhile;

GetSimulationStatistics();

end.

However, in order to implement an event-driven cell model, we have to overcome the

problem of reformulating the state equations to be calculated only when event happens.

Even though this issue usually is not so trivial, there are specific approximations to

complex models which mimic the original time-driven models.

Algorithm 3 shows the pseudocode of a simple event-driven algorithm. In an event-

driven algorithm, the time advance to the next time when some kind of event has

occurred as shown in figure 2.2. In this way, these systems avoid the calculation of the

neural state when the network is inactive, resulting in the increasing of the efficiency

Therefore, these algorithms are suitable for neural networks where the network activity

is sparse, such as the granular layer in the cerebellum [49].

However, event-driven methods sometimes have to use approximation methods such

as precalculated look-up tables which allows precompiling the behaviour of the differen-

tial equations as a function of the input stimuli (excitatory and inhibitory conductance)

and the current state (membrane potential) [227]. The usage of those approximation

methods shall be very accurate in order to avoid possible appearance of simulation

errors by accumulation.

In short, we can conclude that while time-driven schemes will be preferred to sim-

ulate small-sized networks with great detail or extremely complex models. On the

other hand, event-driven methods will be suitable for problems where the performance

is an important requirement (such as spiking neural networks integrated in control or
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Algorithm 3 Generic event-driven simulation engine. In this algorithm, the state will

be updated when a new event is received by the cell. After processing the spike, the

next fired spikes (and the refractory period) will be predicted and inserted in the heap

(sorted by the occurrence time).

program TimeDrivenModel ()

InitializeSimulation(...);

While heap.IsNotEmpty() or t < SimulationTime then

CurrentEvent = heap.TopEvent();

t = CurrentEvent.time();

NewState = UpdateSimulationState(t-t0);

NewEvents = PredictNextEvents(NewState);

heap.insert(NewEvents);

t0 = t;

EndWhile;

GetSimulationStatistics();

end.

real-time systems) or simulating medium-large neural networks. However, other factors

should also be evaluated before choosing the appropriated simulator, such as the pos-

sibility of parallelization, the existence of the model previously tested, or the available

simulation environment.

2.2.2 The state of the art: Actual simulation tools

Currently, a large quantity of spiking neural network simulation tools are available on

the web and are continuously evolving to be more efficient and capable of simulating as

much cells and as in much detail as possible. However, these two aspects traditionally

have been considered as opposite: a system which implements very detailed cellular

and synaptic models will require a considerable computational effort to simulate the

whole system. In the same way, a system which is expected to simulate large networks

and fast will have to reduce the level of detail in its cells and synapses.

In this section, we will review the best-known free available simulation tools and we

will discuss the main advantages and drawbacks, or the kind of problems these tools are

specially suitable. A deeper review about this topic can be found in [28], which is the
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Figure 2.2: Event-Driven Simulation Scheme - This figure shows the event-driven

engine steps. Note that the clock moves forward only to arbitrary times when events occur.

main information source of this subsection as well as our own experience in developping

models for some of these environments.

2.2.2.1 NEURON

Neuron is a simulation environment for empirically-based simulations of neurons and

networks of neurons. This software is specially designed for researchers with a strong

neurophysiological background, although knowledge of computational basis of simula-

tion can help to accelerate the model simulation. Neuron can be considered by far the

most popular simulation tool between neurophisiology laboratories. Since it started its

development in the early 1990s, and up to 2007, more than 600 scientific papers and

books have described neuron models from a membrane patch to large scale networks

with tens of thousands of artificial spiking cells (Neuron distinguishes between the cells

which are defined based on their morphological properties and those implemented by

means of behavioral equations such as the next-firing time or the current state, the

artificial spiking cells) [36].

Neuron has several features that facilitate conceptual control of the experiments

[28]. These features lean on the native syntax specification of model properties: that is,
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most key attributes of biological neurons and networks have direct counterparts in Neu-

ron. For instance, the gating properties of voltage- and ligand-gated ion channels are

specified with kinetic schemes or families of Hodgkin & Huxley style differential equa-

tions. Thus, Neuron users never have to deal directly with compartments. Instead,

cells are represented by unbranched neurites, called sections, which can be assembled

into branched architectures (the topology of a model cell). Each section has its own

anatomical and biophysical properties (which have a real anatomical equivalent), plus a

discretization parameter that specifies the local resolution of the spatial grid. The prop-

erties of a section can vary continuously along its length, and spatially inhomogeneous

variables are accessed in terms of normalized distance along each section [37, 124].

Once the user has specified the cell topology, and the geometry, biophysical proper-

ties, and discretization parameter for each section, Neuron automatically sets up the

internal data structures that correspond to a family of ODEs (Ordinary Differential

Equations) for the model’s discretized cable equation. This high level of detail allows

the development of new models based on experimental measures of cell morphology.

In addition to this, several mechanisms have been developed in order to achieve

accurate and efficient models. Firstly, Neuron’s spatial discretization of conductance-

based model neurons uses a central difference approximation that is second order correct

in space. The discretization parameter for each section can be specified by the user, or

assigned automatically according to the d lambda rule [37, 124]. Moreover, Neuron’s

computational engine uses algorithms that are tailored to the model system equations

[122, 123, 124]. In order to advance the simulation time, Neuron implements natively a

time-driven simulation scheme for traditional cell/synapsys models (see section 2.2.1.1)

by using fixed step backward Euler and Crank-Nicholson, but allowing the development

of event-driven cell models (see section 2.2.1.2), such as simple integrate-and-fire mod-

els. Following this strategy, networks of artificial spiking cells are solved analytically

by a discrete event method that is several orders of magnitude faster than continu-

ous system simulation [36, 124]. However, the implementation of event-driven models

(artificial spiking cells) only allows those models which can be analytically solved (the

current state and the next firing time). This restriction limits the number of mod-

els which can be simulated by means of this extremely efficient strategy (for example,

Hodgkin & Huxley models or leaky integrate-and-fire models with reversal potential

are not suitable to be implemented in this way).
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Regarding the interaction between users and simulator, models can be created by

writing programs in an interpreted language based on hoc [124], which has been en-

hanced to simplify the task of representing the properties of biological neurons and

networks. Users can extend Neuron by writing new function and biophysical mech-

anism specifications in the NMODL (Neuron MODeling Language) language, which

is then compiled and dynamically linked. Even though there is also a GUI for con-

veniently building and using models and running simulations; the use of scripts and

NMODL files is frequently preferred for the experiment reproducibility. However, this

language has partially been replaced by a Python API (application programming in-

terface) which easily integrate the simulation of biological models with Neuron and the

power of scientific data analysis and representation tools implemented in Python.

Another feature which we should not obviate (specially due to the spread of us-

ing clusters and supercomputers in research) is the parallelization capability of the

simulation. Several kinds of parallel processing are supported in Neuron.

• Multiple simulations distributed over multiple processors, each processor execut-

ing its own simulation.

• Distributed network models with gap junctions. This feature has allowed the

simulation of thousands of cells as the realistic model of the granular layer at the

cerebellum [251].

• Distributed models of individual cells (each processor handles part of the cell).

This kind of parallelization is still in an early development stage, and therefore,

setting up distributed models of individual cells requires considerable effort.

Currently, the Neuron project is directed by Michael Hines, who develops almost

all the code. However, one of the strongest advantage of Neuron is the existence of

a large community of users who have worked on specific algorithms, written or tested

new code, implemented new synaptic, cell and network models and made all this code

available. More information about this project, documentation, tutorials, courses and

even the source code can be found in the official website at http://www.neuron.yale.

edu/neuron/.
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2.2.2.2 GENESIS

Genesis (the General Neural Simulation System) was given its name because it was

designed, at the outset, to be an extensible general simulation system for the realistic

modelling of neural and biological systems [25]. Typical simulations that have been

performed with Genesis range from subcellular components and biochemical reactions

to complex models of single neurons [70], simulations of large networks [207], and

systems-level models [256]. However, the concept of realistic models are defined as

those models that are based on the known anatomical and physiological organization

of neurons, circuits and networks [25]. For example, realistic cell models typically

include dendritic morphology and a large variety of ionic conductances, whereas realistic

network models attempt to duplicate known axonal projection patterns. However,

Genesis comes mainly equipped with mechanisms to easily create large scale network

models made from single neuron models that have been previously implemented.

Typical Genesis neurons are multicompartmental models with a variety of Hodgkin

& Huxley type voltage- and/or calcium-dependent conductances. However, users have

added, for example, the Izhikevich [140] simplified spiking neuron model, and they

could also add IF (Integrate-and-Fire) or other forms of abstract neuron models.

In Genesis, a simulation is constructed of basic building blocks (elements). These

elements communicate by passing messages to each other, and each contains the knowl-

edge of its own state variables (fields) and the methods (actions) used to perform its

calculations or other duties during a simulation (in a similar way to the development

with object-oriented programming languages). Genesis elements are created as instan-

tiations of a particular precompiled object type that acts as a template. Model neurons

are constructed from these basic components, such as neural compartments and vari-

able conductance ion channels, linked with messages. Neurons may be linked together

with synaptic connections to form neural circuits and networks. This object-oriented

approach is central to the generality and flexibility of the system, as it allows modelers

to easily exchange and reuse models or model components.

The simulation implementation is quite similar to the Neuron model. Genesis uses

an interpreter and a high-level simulation language to construct neurons and networks.

This use of an interpreter with pre-compiled object types, rather than a separate step

to compile scripts into binary machine code, gives the advantage of allowing the user to
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interact with and modify a simulation while it is running, with no sacrifice in simulation

speed. Commands may be issued either interactively to a command prompt, by use of

simulation scripts, or through the graphical interface. In addition to this, there are also

a number of device objects that may be interfaced to a simulation to provide various

types of input to the simulation (pulse and spike generators, voltage clamp circuitry,

etc.) or measurements (peristimulus and interspike interval histograms, spike frequency

measurements, auto- and cross-correlation histograms, etc.). It is also remarkable that

there is a parallel version for Genesis (called Parallel Genesis) implemented on the

basis of MPI (Message Passing Interface) and/or PVM (Parallel Virtual Machine).

Finally, the Genesis development team is participating in the NeuroML [55, 106]

project, along with the developers of Neuron. This will enable Genesis 3 to ex-

port and import model descriptions in a common simulator-independent XML for-

mat. More information about new developments and future plans in Genesis, as

well as documentation and further tutorials can be found on the official website at

http://genesis-sim.org/.

2.2.2.3 NEST

The Nest simulator can be considered the third contender in the battle of the most-used

neural network simulators. The Nest initiative was founded as a long term collaborative

project to support the development of technology for neural systems simulations [82].

The Nest simulation tool is the reference implementation of this initiative.

The domain of Nest is large neuronal networks with biologically realistic connectiv-

ity. Using this software, network models have been developed including more than 105

neurons [202]. Typical neuron models in Nest have one or a small number of compart-

ments. This simulator is specially though emphasicing the efficient representation and

update of synapses. Furthermore, in many applications, network construction has the

same computational costs as the integration of the dynamics. Nest is designed for large

scale simulations where performance is a critical issue. Thus, Nest developers argued

that when comparing different integration strategies, one should evaluate the efficiency,

i.e. the simulation time required to achieve a given integration error, rather than the

plain simulation time [203].

The primary user interface of Nest is a simulation language interpreter which pro-

cesses a rather high level expressive language with an extremely simple syntax which
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incorporates heterogeneous arrays, dictionaries, and functions . There is no built-in

graphical user interface as it would not be particularly helpful in Nest’s domain: net-

work specification is procedural, and data analysis is generally performed off-line for

reasons of convenience and efficiency. The simulation language is used for data pre-

and post-processing, specification of parameters, and for the compact description of

the network structure and the protocol of the virtual experiment. The neuron models

and synapse types are implemented as derived classes on the C++ level such that all

models provide the same minimal functionality. In addition to this, in the framework

of the Facets project [1] a Python interface has been created.

The simulation kernel of Nest supports parallelization by multi-threading and mes-

sage passing, which allows distribution of a simulation over multiple processors of an

SMP (Symmetric MultiProcessing) machine or over multiple machines in a cluster.

Communication bulk is minimized by storing synapses on the machine where the post-

synaptic neuron is located [202]. The user only needs to provide a serial script, as the

distribution is performed automatically.

The Nest simulator is provided to the scientific community under an open source

license through the NEST initiative’s website http://www.nest-initiative.org. At

present NEST is used in teaching at international summer schools and in regular courses

at the University of Freiburg.

2.2.2.4 Other simulation tools

Although there are many other simulation tools, we will only capture the essence of

some of them to avoid the unnecessary extension of this document.

XPPAUT is a general numerical tool for simulating, animating, and analyzing

dynamical systems. These can range from discrete finite state models (McCulloch-

Pitts) to stochastic Markov models, to discretization of partial differential and integro-

differential equations. XPPAUT was not specifically developed for neural simulations

but due to its ability to provide a complete numerical analysis of the dependence of

solutions on parameters (bifurcation diagrams) it is widely used by the community of

computational and theoretical neuroscientists. While it can be used for modest sized

networks, it is not specifically designed for this purpose and due to its history, there are

limits on the size of problems which can be solved (about 2000 differential equations

is the current limit). However, XPPAUT has become an useful tool for bifurcation
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analysis in order to describe the behavior of cell models under stimulation. More

information about this simulation tool can be found on [89] and the official website

http://www.math.pitt.edu/~bard/xpp/xpp.html.

The circuit simulator (CSIM) is a tool for simulating heterogeneous networks com-

posed of (spike emitting) point neurons. CSIM is intended to simulate networks con-

taining a few neurons, up to networks with a few thousand neurons and on the order

of 100000 synapses. It was written to do modeling at the network level in order to an-

alyze the computational effects which can not be observed at the single cell level. The

core of CSIM is written in C++ which is controlled by means of Matlab (there is no

standalone version of CSIM). CSIM adopts an object oriented design for CSIM which is

similar to the approaches taken in Genesis and Neuron. That is there are objects (e.g.

a LifNeuron object implements the standard LIF model) which are interconnected by

means of well defined signal channels. From the site http://www.lsm.tugraz.at/csm

precompiled versions for Linux and Windows are available.

SPLIT is a tool specialized for efficiently simulating large-scale multicompartmen-

tal models based on HH formalism. It should be regarded as experimental software

for demonstrating the possibility and usefulness of very large scale biophysically de-

tailed neuronal network simulations. Recently, this tool was used for one of the largest

cortex simulations ever performed [85]. It supports massive parallelism on cluster com-

puters using MPI. The model is specified by a C++ program written by the SPLIT

user. This program is then linked with the SPLIT library to obtain the simulator exe-

cutable. Currently, there is no supported graphical interface, although an experimental

Java/QT-based graphical interface has been developed. SPLIT should be regarded

as a pure, generic, neural simulation kernel with the user program adapting it into a

simulator specific to a certain model.

In the last years, the Brian simulator [108] has been released under the CeCILL

license. Brian is a simulator for spiking neural networks available on almost all plat-

forms. The motivation for this project is that a simulator should not only save the

time of processors, but also the time of scientists. Brian is easy to learn and use, highly

flexible and easily extensible. The Brian package itself and simulations using it are

all written in the Python programming language. In Brian, cell models are defined

directly by their equations and some parameters such as the threshold and reset value

(for integrate-and-fire models) can be customized. Brian uses vector-based operations
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(using NumPy and SciPy) to simulate neural populations very efficiently. For large net-

works, the cost of interpretation is small and the speed is comparable to C code. Brian

can also be used with the Parallel Python package to run independent simulations on

a cluster or on different processors (e.g. running a simulation with different parameter

values). However, due to the easy and fast design of new models, Brian simulator is

mainly used with didactic purposes.

2.2.2.5 Discussion

Even though we are sure that further simulation environments exist, the above com-

mented tools provide an wide view of the state of the art in this discipline and allow

us analyzing the advantages and weaknesses of each one of them.

First, there is not a single tool which can be considered the best choice. Even

whether Neuron could be considered the worthiest choice when simulating small/medium

sized systems where the cell model is expected to influence the whole system result, the

same simulator should not be chosen when large sized systems are required to study the

influence of the connectivity parameters (such as the convergence/divergence rates). In

the same way, Genesis is specially valuable for providing a generic environment capable

of simulating systems with very different levels of detail, but this feature has the great

disadvantage of being less efficient than more specific simulators. Thus, a detailed anal-

yses of the suitable tool and a wide knowledge of the features of each simulator will be

fully recommended in order to achieve works both efficient and accurate.

Second, the existence of so many different simulators makes the reusability of the

experiments becomes an important issue. As we have previously commented, using

several simulators generally implies learning different definition or scripting languages,

different ways of stimulating the cells, distinct levels of abstraction (and defining differ-

ent characteristics in the cell/network/simulation)... Thus, some years ago, the thought

of reusing Neuron models for reproducing the simulations in Genesis could be consid-

ered Utopian. However, in the last years, several initiatives have emerged related to

this issue. In this sense, PyNN [68] is a simulator-independent language for building

neuronal network models. This implies that a user can write the code for a model once,

using the PyNN API and the Python programming language, and then run it without

modification on any simulator that PyNN supports (currently Neuron, Nest, PCSIM

and Brian). The PyNN API aims to support modelling at a high-level of abstraction
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(populations of neurons, layers, columns and the connections between them) while still

allowing access to the details of individual neurons and synapses when required. PyNN

provides a library of standard neuron, synapse and synaptic plasticity models, which

have been verified to work the same on the different supported simulators. PyNN

also provides a set of commonly-used connectivity algorithms (e.g. all-to-all, random,

distance-dependent, small-world) but makes it easy to provide your own connectivity

in a simulator-independent way.

However, the use of non-standard cell models is still an open issue in this frame-

work. PyNN translates standard cell-model names and parameter names into simulator-

specific names, e.g. standard model IF curr alpha is iaf neuron in NEST and Stan-

dardIF in NEURON, while SpikeSourcePoisson is a poisson generator in Nest and a

NetStim in Neuron. Only a few cell models have been implemented so far. Thus,

PyNN will have to provide any alternative to use platform-dependant code in order to

use non-standard cell models.

The second trend in this issue is NeuroML [105]. NeuroML is an international,

collaborative initiative to develop a language for describing detailed models of neural

systems. The aims of the NeuroML initiative are:

• To create specifications for a language in XML to describe the biophysics, anatomy

and network architecture of neuronal systems at multiple scales.

• To facilitate the exchange of complex neuronal models between researchers, al-

lowing for greater transparency and accessibility of models.

• To promote software tools which support NeuroML and support the development

of new software and databases.

• To encourage researchers with models within the scope of NeuroML to exchange

and publish their models in this format.

The NeuroML project focuses on the development of an XML (eXtensible Markup

Language) based description language that provides a common data format for defining

and exchanging descriptions of neuronal cell and network models. The current approach

in the project uses XML schemas to define the model specifications. In order to achieve

a complete compatibility with simulators which define different levels of abstraction,
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the NeuroML model description language is being developed in Levels, where each Level

concentrates on a particular biophysical scale:

• Level 1 focuses on the anatomical aspects of cells and consists of a schema for

Metadata and the main MorphML schema. This Level is most suitable for tools

(such as NeuronLand) which focus solely on detailed neuronal morphologies. Note

that the Metadata elements are used at this and higher Levels.

• Level 2 adds the ability to include information about the biophysical properties

of cells using the Biophysics schema and also includes the properties of channel

and synaptic mechanisms using ChannelML. This Level of model description is

useful for applications (such as Neuron) which can be used to simulate neuronal

spiking behaviour.

• Level 3 adds the ability to specify cell placement and network connectivity using

NetworkML. Files containing positions and synaptic connections in NetworkML

can be used by applications to exchange details on (generated) network structure.

Full Level 3 files containing cell structure and 3D connectivity can be used by

applications such as neuroConstruct [104] for building and analyzing complex

network of biophysically detailed neurons.

Therefore, there is no doubt that the current trend is the integration of the existing

tools by means of common definition languages and generic levels of abstraction. Even

when these commented projects are in a very early stage of development, the integration

of the most widely used simulation tools (mainly Neuron and Genesis) foretell the

generalization in a short/medium term.

Finally, but also related with the second point, the last weakness of these sim-

ulation tools is the lack of integration with different systems. Even though spiking

neural networks have been used for different simulation experiments, such as visual

systems (vestibulo occular reflex and eye-blink conditioning experiments) or robotic

arm controlling, this kind of experiments seems to be forgotten by the studied general

simulators. The integration of these tools with general propose languages (such as

C/C++ or Python) by means of APIs would be a first stage, but the adaptation to

run within more industrial environments (such as Simulink) could help to the general

use of this kind of systems for many different purposes.
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2.3 The EDLUT simulation environment

Due to the lack of a spiking neural network simulator which accomplish with the near

real-time requirements using detailed cell models, the development of a new simulation

tool was needed. Thus, based on the previous works by Ros et al. [38, 227], a further

development has been carried out. In this work, an event-driven simulation strategy was

proposed, but an innovative concept was introduced: the cell behavior precalculation in

look-up tables. In this way, the complexity of the cell models do not represent a problem

for the efficiency of the simulation: every simulation state value can be retrieved just by

querying the cell model table. In this way, this simulator can make efficient use of large

memory resources as ”computing resources” since their use in terms of look-up-tables of

precompiled estimations allow fast simulations without intensive numerical calculation

(but rather memory accesses). Thus, EDLUT allows splitting spiking neural network

simulations in two stages:

1. Cell behaviour characterization. In this first stage each cell model is simulated

reiteratively with different input stimuli and from different cell states. This allows

scanning the cell behaviour (for example the state variable values, the next firing

time,...) which is compiled into lookup-tables. Usually the cell model dynam-

ics are defined with several differential equations that define the cell behaviour.

Therefore at this stage the tool uses conventional numerical methods (such as

Runge-Kutta method) to approximate the cell states after receiving a specific

stimulus. This represents a massive simulation load for each cell type but, but it

needs to be done only once. The results are stored in well structured tables and in

this way, numerical calculation during network simulations can be avoided. Fur-

thermore, simulations can be done adopting an event-driven simulation scheme

which accelerates significantly the simulation speed.

2. Network simulation towards system behaviour characterization. At this stage,

multiple network simulations are run with different weight configuration or even

including Spike-Time Dependent (STD) learning rules. This stage does not re-

quire intense numerical calculation; the cell states at different times are retrieved

from the lookup-tables, allowing massive simulations with little computational

expenditure.
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This two-stage simulation process (see figure 2.3 for further detail) entails a further

advantage. When the generic event-driven strategy was above commented, an special

mention was remarked to the cell models which could be simulated using this scheme. In

general, event-driven tools only allow the simulation of neuron models whose modelling

equations could be calculated at arbitrary times. However, the EDLUT simulation

strategy allows the characterization of the differential equations in the first stage by

means of classical integration methods, and the subsequently usage of these values in

the network simulation stage. Thus, the cell model equations does not mean a limitation

for this simulator.

Figure 2.3: EDLUT simulation kernel architecture - This figure shows the original

simulation scheme and the files which are needed to simulate an spiking neural network.

The EDLUT simulation kernel was originally implemented in C to obtain higher

performances in very complex simulations. In order to keep these high performances,

but gain code legibility and make EDLUT kernel easier to extend with new features,

it has been fully reimplemented. Therefore, the event treatment in EDLUT has been

done as homogeneously as possible. All the events which can be processed inherit from

a base class event. In this way, adding new functionality will be as simple as define

another inherited class and its functions which specify the treatment of this kind of

event. The original types of events that EDLUT considered were the following:
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• The input spike type. Following the same methodology proposed in EDLUT,

external inputs reach the network through stub neurons. Thus, an incoming spike

does not modify the stub neuron state, it only generates the corresponding input

spikes (propagated spike events [227]) for every neuron which is connected to the

output of this neuron. In this way, input spike processing is really simple, it only

inserts the first (the earliest) output spikes produced by the input neuron.

• The internal spike. These are directly fired by the dynamics inherent to the

neurons (as a response to input conductance or as a consequence of the self-

generated activity of the neurons). In these events, a different processing is carried

out depending on whether the neuron model is time-driven or event-driven. The

last one updates the neural state and after that, checks if other spike is scheduled

for later, and in that case it inserts it in the simulation heap. However, this state-

update stage is not necessary when simulating event-driven neural models due to

the periodical evolution of the state variables. Finally, the first propagated spike

is inserted in the simulation heap.

• The last implemented stage of the spike processing is the propagated-spike event

which corresponds to one spike being transmitted between neurons. Thus, the

input spike will be processed and only if the neural model is event-driven the

state will be updated. After that, the next propagated spike (generated by the

same source neuron) will be inserted in the simulation heap.

In addition to this, some other different types of events have been implemented in

order to handle different situations which could happen during the simulation (such as

communication with external systems following an simulation loop, saving the synaptic

weights periodically to explore learning processes,etc.).

In conclusion, a extensive work has been accomplish with the aim of making EDLUT

easier to utilize for potential users and adding the necessary functionality to address

the experiments which are detailed in subsequent sections.

2.3.1 EDLUT graphical user interface

In order to facilitate the simulation of small-size networks and help beginners to un-

derstand the working methodology with EDLUT, a Java-based graphical user interface
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(GUI) has been developed. The choice of Java is based on the idea of making EDLUT

portable to different platforms and easy to run by non-expert users. This GUI pursues

automatize the needed tasks before extracting simulation results. Figure 2.4 shows the

view of the EDLUT interface design.

Figure 2.4: EDLUT Interface main view - Main view of the EDLUT java-based

graphical interface. Note the presence of the different sections: the file editor, the project

explorer (top-right corner), the file explorer (down-right corner), and the event log (down-

centered).

In the EDLUT Simulation Environment, we can see the next components:

• Project Explorer: It shows the different configuration and result files existing in

the current simulation project.

• File Explorer: It shows all the files and directories existing in the current project

directory.

• Event Log: It shows the events happening in the environment (such as neuron

model building or simulation finished).
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• Editor: In the text editor we can see and edit the project files, and see the

graphical components (such as result file plots).

The EDLUT Simulation Environment allows working manually with the different

files to define the simulation characteristics:

• The neuronal models: The *.nmf file defines the behavior of the cell models, the

state variables, the initial values, the equations which determine the evolution

and the tables which are precalculated. On the other side, the *.ndf files define

the way in which the cell model tables will be loaded, the number of dimensions,

the usage of several interpolation methods,etc.

• The network topology: The *.ncf files define the network topology: the cell layers,

the synaptic connections between them, and the plasticity mechanisms.

• The initial connection weights: The *.wcf files define the initial weights which

will be applied at the beginning of the simulation.

• The input activity: The *.idf files allow the definition of input stimuli. Although,

there are many other ways of providing input activity to the network, which will

be commented in the next section.

• The output activity: the *.srf files register the output activity of the simulated

network. In the same way as input activity, other connectivity mechanisms have

been defined in the next section.

We are developing different ways to easily generate these files and to plot them. But

now, in this version, we generate the files manually with the text editor. Although, a

first approach to the process of plotting the results is shown in figure 2.5.

In the next paragraphs, the format of the files used in EDLUT is in great detail

explained.

Neuron model files define the internal behaviour of each cell. The file extension is

*.nmf, and the format of this file is the specified in the listing 2.1:

Listing 2.1: Description of a neuron model file (*.nmf). As shown in the code, the

first half of the file represents standard C code which will be compiled to precalculate the

description tables. The second half includes the values describing the tables and dimensions

to be created.
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Figure 2.5: EDLUT Interface raster plot - The figure shows the representation of

the output spikes after simulating a network. The spike time is shown in the x-axis, while

the number of the cell spiking is shown in the y-axis.

// Dec lara t ion o f equa t i ons and neura l v a r i a b l e s

#define NUM EQS Number of Equations

struct cons t s {
f loat Constants o f Equat ions ;

} ;

union vars {
f loat l i s t [NUM EQS+1] ;

struct {
f loat t ;

f loat Neura l Var i ab l e s ;

} named ;

} ;

// De f i n i t i on o f f unc t i on s and s e l e c t o r s

i n l i n e f loat Name of the Function (union vars ∗v , struct cons t s ∗c , f loat

h) {
// Ca l cu l a t e and re turn the neura l v a r i a b l e

return ( va lue ) ;
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}

struct t e q s y s {
f loat (∗ eq ) (union vars ∗ , struct cons t s ∗ , f loat ) ;

int d i f f ;

}

Eq sys [ ] [ NUM EQS]={
{{Name of Function Asociated To Var1 , F u n c t i o n d i f e r e n t i a l } , . . . }

} ;

i n l i n e int Name o f the Se l e c t i on Funct i on (union vars ∗v , struct cons t s

∗c ) {
return (0 ) ;

}

int (∗ ( Eq se l [ ] ) ) (union vars ∗ , struct cons t s ∗)=

{Name of the Se l ec t ion Funct ion1 , . . . } ;

// De f i n i t i on o f f i l e s and t a b l e s to genera te

Nr o f F i l e s To Genera t e

// De f i n i t i on o f each F i l e

Name of Fi le

N r o f T a b l e s i n t h e F i l e

// For each t a b l e

Value s o f the Dec l a r ed Cons tant s

I n i t i a l i z a t i o n o f t h e S t a t e V a r i a b l e s

Nr o f Equat ions To Simulate

L i s t o f E q u a t i o n s

Nr of Table Dimens ions

// For each t a b l e dimension

N r o f t h e d i m e n s i o n v a r i a b l e

N r o f i n t e r v a l s

I n i t V a l F ina l Va l Nr o f Coord inate s Lin | Log S e l e c t o r
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In the same way, the neuron description file describes the precompiled tables and

defines how to retrieve the data. The file extension is *.ndf, and the format of this file

is shown in listing 2.2:

Listing 2.2: Description of a neuron description file (*.ndf). This file includes a descrip-

tion of the tables stored in the precompiled file.

N r o f s t a t e v a r i a b l e s

L i s t o f t h e a s o c i a t e d e q u a t i o n s

S t a t e V a r i a b l e s I n i t i a l i z a t i o n

N r o f s p i k e p r e d i c t i o n t a b l e

N r o f e n d s p i k e p r e d i c t i o n t a b l e

N r o f s y n a p t i c s t a t e v a r i a b l e s

N r o f u s e d t a b l e s

N r o f d i m e n s i o n s o f t h e t a b l e N r o f v a r i a b l e I n t e r p o l a t i o n . . .

Input description files define the external spikes introduced to the network in the

simulation. The file extension is *.idf, and the format of this file is as shown in listing

2.3. In this file, we can add as many spike lines as we need to stimulate the input cells.

Listing 2.3: Description of an input description file (*.idf). This file describes the input

spikes which stimulate the neural network. In this way, we can define periodic input

patterns starting at the firstspiketime an repeating each Period

Tota l Nr Of Sp ikes

{Fir s t Sp ike Time Nr Spikes Period F i r s t C e l l Nr Of Ce l l s }

Network configuration files define the network topology in the simulation. The file

extension is *.ncf, and the format of this file is as shown in listing 2.4:

Listing 2.4: Description of a network configuration file (*.ncf). This file describes the

network topology, including the number and the type of the cells, the synaptic connec-

tions and their type (excitatory, inhibitory, electrical coupling,...) and finally, the synaptic

plasticity.

37



2. SIMULATING THE CEREBELLUM: THE EDLUT SIMULATION
ENVIRONMENT

N r o f D i f f e r e n t C e l l M o d e l s

// Define the c e l l s o f the network

T o t a l N r o f C e l l s

{N r o f C e l l s Name of Cel l Model Monitored}

// Define the we igh t change r u l e s

Nr of Weight Change Rules

{Trigger Peak ( i n s e c s ) Independent Change Coef Dependent Change Coef}

// Define the connec t ions o f the network

Tota l Nr o f Connect ions

{1 s t S r c C e l l N r Sr c Ce l l Nr 1 s t T a r g e t C e l l Target Ce l l Nr Nr of Repeat

Delay ( Sec ) Delay Increment Synapses Type Max Conductance (nS)

Weight Change Rule}

The next file format is the weight configuration file, which defines the initial weights

in the network. The file extension is *.wcf, and it is composed of lines with pairs of

number of connections and the initial synaptic weights. Using this format, all the

synapses which have been declared in the *.ncf must be specified.

Finally, the simulation results (the spikes which have been fired during the simu-

lation) are stored in files with the extension *.srf. These files are composed of pairs

containing the time and the number of cell which fired each spike. This type of file can

be visualized with the plot editor and with a text editor.

More information and details about the EDLUT kernel, the source code, the above

commented graphical interface and some simple examples which can be used as be-

ginning tutorials can be found and freely downloaded on the official website http:

//edlut.googlecode.com.

2.3.2 Integrating EDLUT with the environment

One of the most important features that encouraged us to create the EDLUT simulator

was the lack of tools which allowed the integration of spiking neural networks with more

complex external system. Therefore, this is one of the main feature which make EDLUT

a suitable tool for control tasks such as the robotic arm control.
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Currently, EDLUT can be integrated with the environment using one (or several)

of four strategies: running the stand-alone application and communication by means

of plain-text files, running the stand-alone application and communication by means

of TCP/IP sockets, using the C/C++ API to access the EDLUT kernel, and finally,

running EDLUT as a Simulink s-function module.

2.3.2.1 Using plain-text files

The communication by means of input/output plain-text files was the original commu-

nication method implemented in EDLUT, and it means the simplest way to use the

simulator. After compiling the simulation kernel the user only has to indicate the input

and the output file names as two of the command-line arguments, and the simulator

loads the input file, processes these input spikes, and finally, stores the output spikes in

the selected file. In order to get the easiest usage of EDLUT, this is the communication

method implemented in the above commented EDLUT graphical user interface.

The main advantage of this integration method is the simplicity. An external tool

which integrates the EDLUT functionality in this way only should write the neural

network input activity following the above commented *.idf format, run the EDLUT

simulator as a single process and finally retrieve the EDLUT output activity by means of

reading the *.srf file format. Thus, this method specially fits with simulation problems

where there is no feedback between systems and the input activity is known in advance

or debugging tasks. On the other hand, this model is not recommended for online

simulations where the performance is a requirement due to the lag produced by the

reading/writing in the files.

2.3.2.2 Using TCP-IP sockets

The communication by means of TCP-IP sockets emerged with the idea of solving the

necessity of interconnecting the EDLUT simulator (running a cerebellar model for ex-

ample) with an external system with real-time restriction (for example a robotic arm).

Within this system architecture, the communication using plain-text files is not suit-

able, and a connection through sockets matches much better. Thus, the main computer

shall run the cerebellum model and send/receive the outputs/inputs by TCP-IP sock-

ets to other computers or systems which convert the signals to robot understandable

signals/commands.
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Figure 2.6: EDLUT interfacing with a robotic arm - The TCP-IP socket interface

is specially suitable for communication with external feedback systems, such as a robotic

arm. Note the EDLUT kernel could run in a computer, and the robot interface could be

placed in a different one due to the fast LAN communication.

An example of EDLUT integrating with external robotic systems can be observed

in figure 2.6. This home-made robotic arm was completely built in the Department of

Computer Architecture and Technology at the University of Granada and was used in

target-reaching experiments [41].

An important advantage of this system is the possibility of parallelism by using

different processors/computers/cores to simulate parts of a large network model. How-

ever, this model should minimize the communication between several processes by

distributing correctly the network along the processing unities.

2.3.2.3 Using the C/C++ API

The most efficient way to integrate two C++ systems is by linking their source-code

libraries. Following this simple idea, we decided to release the source code of EDLUT

and build an extensive documentation of the source code. In this way, the C++ users

of EDLUT can obtain full access to the whole set of classes which implement EDLUT.

Even though EDLUT implements 69 classes, most of them can be abstracted by using
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the high-level abstracted types, as shown in listing 2.5.

Listing 2.5: Example of the C++ API usage. This example shows the usage of the

C++ API to simulate a small-sized network stored in the file ’NetUPMC.dat’ and the

synaptic weights stored in ’weightsInit.dat’. Using this API, the program generates the

input activity to the network in each simulation step and gets the output activity after

simulating.

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ StepByStep . cpp ∗
∗ −−−−−−−−−−−−−−−−−− ∗
∗ copy r i g h t : (C) 2010 by Jesus Garrido ∗
∗ emai l : j gar r ido@atc . ugr . es ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

#include <c s t d l i b>

#include <c s td io>

#include <c s t r i n g>

#include <time . h>

#include <math . h>

#include <iostream>

#include ” . . / i n c lude / s imu la t i on / Simulat ion . h”

#include ” . . / i n c lude /communication/ ArrayInputSpikeDriver . h”

#include ” . . / i n c lude /communication/ ArrayOutputSpikeDriver . h”

#include ” . . / i n c lude / sp ike /EDLUTFileException . h”

#include ” . . / i n c lude / sp ike /EDLUTException . h”

using namespace std ;

/∗ !
∗
∗
∗ \note This so f tware i s on ly an example o f how to run step−by−s t ep

s imu la t i on s .

∗
∗ This s imu la t i on runs wi th a 10−ms s t ep and genera t e s 10 random sp i k e s

each s t ep

∗ in input c e l l s .

∗/
int main ( int ac , char ∗av [ ] ) {

int r e s u l t = 0 ;

c l o c k t s t a r t t , endt ;
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const char ∗ NetworkFile = ”NetUPMC. dat” ;

const char ∗ WeightsFi le = ” w e i g h t s I n i t . dat ” ;

double SimulationTime = 1 ;

double StepTime = 0 . 1 0 ;

const int NumberInputCells = 42 ;

// Create the new s imu la t i on o b j e c t ( and load the network and

weigh t d e f i n i t i o n f i l e )

Simulat ion ∗ Simul = new Simulat ion ( NetworkFile , WeightsFi le ,

SimulationTime ) ;

// Create a new input o b j e c t to add input s p i k e s

ArrayInputSpikeDriver ∗ InputDriver = new ArrayInputSpikeDriver ( ) ;

Simul−>AddInputSpikeDriver ( InputDriver ) ;

// Create a new output o b j e c t to g e t output s p i k e s

ArrayOutputSpikeDriver ∗ OutputDriver = new

ArrayOutputSpikeDriver ( ) ;

Simul−>AddOutputSpikeDriver ( OutputDriver ) ;

// Get the e x t e r na l i n i t i a l i npu t s ( none in t h i s s imu la t i on )

Simul−>I n i t S i m u l a t i o n ( ) ;

s t a r t t = c lo ck ( ) ; // Simulate network and catch e r ro r s

double InputSpikeTimes [ NumberInputCells ] ;

long int InputSp ikeCe l l s [ NumberInputCells ] ;

double ∗ OutputSpikeTimes ;

long int ∗ OutputSpikeCel l s ;

// Simulate s t ep by s t ep .

for (double CurrentTime = 0 ; CurrentTime<SimulationTime ;

CurrentTime+=StepTime ) {

cout << ” Simulat ion at time ” << CurrentTime << endl ;

// Generate input s p i k e s (we genera te one sp i k e at random

time f o r each input c e l l )

for ( int i =0; i<NumberInputCells ; ++i ) {
InputSpikeTimes [ i ] = rand ( ) ∗ StepTime /
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RAND MAX+CurrentTime ;

InputSp ikeCe l l s [ i ] = i ;

}

// Load inpu t s

InputDriver−>LoadInputs ( Simul−>GetQueue ( ) ,

Simul−>GetNetwork ( ) , 10 , InputSpikeTimes ,

InputSp ikeCe l l s ) ;

// Simulate u n t i l CurrentTime+StepTime

Simul−>RunSimulat ionSlot ( CurrentTime + StepTime ) ;

// Get ou tpu t s and p r i n t them

int OutputNumber =

OutputDriver−>GetBuf feredSpikes ( OutputSpikeTimes ,

OutputSpikeCel l s ) ;

i f (OutputNumber>0){
for ( int i =0; i< OutputNumber ; ++i ) {

cout << ”Output sp ike at time ” <<

OutputSpikeTimes [ i ] << ” from c e l l ”

<< OutputSpikeCel l s [ i ] << endl ;

}

delete [ ] OutputSpikeTimes ;

delete [ ] OutputSpikeCel l s ;

}
}

endt = c lock ( ) ;

cout << ”Oky doky” << endl ;

cout << ” Elapsed time : ” << ( endt−s t a r t t ) / ( f loat )CLOCKS PER SEC

<< ” sec ” << endl ;

cout << ”Number o f updates : ” << Simul−>GetSimulationUpdates ( ) <<

endl ;

cout << ”Mean number o f s p i k e s in heap : ” <<

Simul−>GetHeapAcumSize ( ) /

( f loat ) Simul−>GetSimulationUpdates ( ) << endl ;

cout << ”Updates per second : ” << Simul−>GetSimulationUpdates ( ) /

( ( endt−s t a r t t ) / ( f loat )CLOCKS PER SEC) << endl ;

cout << ” Total s p i k e s handled : ” << Simul−>GetTotalSpikeCounter ( )

<< endl ;
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delete Simul ;

delete InputDriver ;

delete OutputDriver ;

return r e s u l t ;

}

As this work has been carried out in the framework of two European Projects

(SENSOPAC and REALNET), we had the opportunity of integrating EDLUT with

the following models:

• Large-scale analog model (LSAM) is a bottom-up executable mathematical model

of the cerebellum, developed at the Swedish Institute of Computer Science in

Stockholm. LSAM is primarily a biomimetic model, based on detailed cerebel-

lar measurements and neuronal connectivity data collected at Lund University,

Sweden, and the University of Pavia, Italy. However, as we uncover algorithms

evolved by nature, we find that they may also be useful in human-designed, artifi-

cial systems. In order to provide LSAM with the ability of spike processing, it has

been integrated by means of a restricted set of only 4 standard-C functions, which

are enough to simulate spiking neural networks and supply the input/output data.

• EDLUT has been used to simulate a Cuneate Nucleus developed at the Pierre and

Marie Curie University in Paris (France) [26]. This model has been integrated

with a biologically inspired robotic arm in the framework of a Braille reading

experiment in real-time as the final demo in the European Project SENSOPAC.

All these examples show that EDLUT can be easily and efficiently integrated using

the C++ API, and this integration is suitable to the development of high performance

systems.

2.3.2.4 Using the Simulink S-function module

Simulink R© is an environment for multidomain simulation and Model-Based Design for

dynamic and embedded systems. It provides an interactive graphical environment and a

customizable set of block libraries that allows designing, simulating, implementing and

testing a variety of time-varying systems, including communications, controls, signal

processing, video processing, and image processing. Even though is not freely available,
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Simulink represents one of the most common frameworks for commercial control sys-

tems. This is the reason that motivated the implementation of this interface towards

linking EDLUT simulator with traditional control research groups.

Figure 2.7 shows the usage of the EDLUT for Simulink version in a further control

system where a planner and a crude inverse model has been included in the simulation

loop. It has been compiled as an C++ S-function after implementing all the needed

modules to interface both systems. The static parameters that the final module receives

are the following (in this order):

1. The name of the network configuration file (*.ncf).

2. The name of the weight configuration file (*.wcf).

3. The name of the output log file. This file stores all the events which are processed

during the simulation and mainly has a debugging function.

4. The time-driven model step time. This is the time-step of the time-driven cell

models which may be included in the network (if any).

5. This parameter is an input map. This array matches each module input line with

an input cell. Thus, the number of elements in this array will match with the

number of input lines in the signal.

6. This parameter is the output map. In the same way with the previous item, this

array matches each module output line with an output cell. Thus, the number of

elements in this array will match the number of output lines in the signal.

7. The name of the file where the synaptic weights will be stored after the learning

process. This file will be useful specially when studying neural networks which

include synaptic plasticity.

8. This parameter is the time step (in seconds) between successive weight storages.

In the module initialization, the system checks all the parameters and sets the

number of input and output lines. Both, the input and the output array, are boolean

values representing the spikes which stimulate the input cells of the networks or the

output cells which fire spikes. The communication step time will be determined by the

inherited time-step (in this example it was fixed to 2ms). Thus, a true value in an
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Figure 2.7: EDLUT interfacing with a robotic arm simulator using Simulink

- This model simulates the whole loop including a red surrounded cerebellar model (this

box includes EDLUT modelling an artificial simplified cerebellum defined as explained in

chapter 4) and a robot arm simulator. EDLUT receives input spikes by means of boolean

input signals and sends output spikes in the same way.

input line in a time-step will represent an input spike reaching the target cell at the

beginning of the interval.

This EDLUT interface is specially useful because it avoids the necessity of using

other communication mechanisms such as the TCP-IP sockets and therefore, the per-

formance will be highly increased.

2.4 Building more neuronal models

The availability of preimplemented and validated cell models is an important feature

in every neural simulator and allows a faster design of network models for beginner

users. EDLUT is distributed with event-driven versions of Leaky Integrate and Fire

and Hodgkin & Huxley models (see [227]). However, the development of new event-

driven models is not always a trivial task and the model should be widely validated.

This has motivated EDLUT to be able to integrate time-driven models in network
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simulations. These models are easier and faster to implement using inherited C++

classes from the TimeDrivenNeuronModel base class.

Therefore, Leaky Integrate and Fire (LIF) models and stochastic Spike Response

Models (SRM) have been implemented using both alternatives (time-driven and event-

driven schemes) and have been tested in order to validate their behavior and perfor-

mance (in terms of computing speed).

2.4.1 Time-driven models

In order to achieve a simulation including both event-driven and time-driven methods,

the previously-developed Event-Driven LookUp-Table simulator (EDLUT [227]) has

been upgraded. The previous architecture was mainly composed of a simulation engine

capable of processing spikes. Now, it handles a spike as a concrete type of event, so

that, different classes of events can be processed homogeneously. Thus, the simulation

loop could be seen as a simple event handler as shown in algorithm 4.

Algorithm 4 EDLUT Simulation Engine. The simulation algorithm mainly follows an

event-driven method. However, the homogeneous event treatment allows the implemen-

tation of a time-driven method without modifying this loop. Many new features can

be added by means of adding a new class of events which implements the ProcessEvent

method.

program NeuralSimulator ()

InitializeSimulation(...);

repeat

Event := GetTheNextSimulationEvent();

SimulationTime := Event.Time;

Event.ProcessEvent();

Event.RemoveFromHeap();

until Heap.IsEmpty();

end.

The time-driven events interface with the time-driven simulation loop. Each time

that one of this kind of event is caught, all the time-driven neurons are processed and

their state is updated. The processing algorithm is mainly composed of 3 different

parts:
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1. The neural state of each time-driven neuron is updated. This evolution is com-

puted according to the neural model associated to that neuron and the elapsed

time from the last state update.

2. If one of those updated neurons fires an spike, this is inserted on the top of the

event heap as an internal spike and it will be processed according to its time

stamp.

3. Finally, a new time-driven update event is inserted in the event heap. This

upcoming event will be handled after the shortest time step of all neurons has

been processed (in case of simulating with several time steps).

Figure 2.8 shows the two different processing pathways. Note the difference with

figures 2.1 and 2.2. Based on the event-driven engine, we have implemented a new kind

of event which on being caught, the simulator will update the state variables of each

time-driven cell.

Figure 2.8: Hybrid time-driven and event-driven simulation scheme - This figure

shows the implemented algorithm capable of simultaneously processing event-driven and

time-driven cell models.
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Also the input spike type has been added to the original EDLUT data structures.

Following the same methodology proposed in EDLUT, external inputs reach the net-

work through stub neurons. Thus, an incomming spike does not modify the stub neuron

state, it only generates the corresponding input spikes (propagated spike events [227])

for every neuron which is connected to the output of this neuron. In this way, input

spike processing is really simple, it only inserts the first (the earliest) output spikes

produced by the input neuron.

Another kind of implemented event is the internal spike. These are directly fired

by the dynamics inherent to the neurons (as a response to input conductance or as a

consequence of the autonomous activity of the neurons). In these events, a different

processing is carried out depending on whether the neuron model is time-driven or

event-driven. The last one updates the neural state and after that, checks if other spike

is scheduled for later, and in that case it inserts it in the simulation heap. However, this

state-update stage is not necessary when simulating event-driven neural models due to

the periodical evolution of the state variables. Finally, the first propagated spike is

inserted in the simulation heap.

The last implemented stage of the spike processing is the propagated-spike event

which corresponds to one spike being transmitted between neurons. Thus, the input

spike will be processed and only if the neural model is event-driven the state will be

updated. After that, the next propagated spike (generated by the same source neuron)

will be inserted in the simulation heap.

Finally, some other different types of events have been implemented in order to

handle different situations which could happen during the simulation (such as commu-

nication with external systems following a simulation loop, saving the synaptic weights

periodically to explore learning processes, etc.).

In order to test the utility of hybrid simulation systems, two different alternatives

of several neuron models (Leaky Integrate and Fire -LIF- and Spike Response Model

-SRM-) have been implemented and subsequently tested: time-driven and event-driven

based in look-up tables.

2.4.1.1 Leaky Integrate and Fire time-driven model

Using the LIF models, an abstraction of the granular layer of the cerebellum has been

built. This network is composed of partially overlapped neurons including as a whole
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4877 neurons of two different types (see Figure 2.9).

Mossy Fibers [350]
O 1-51, O 1-50GrC GoC

Granule Cells [4500]
I 4-1, I 4-1, O 1-1MF GO GoC

........

w =2nSmfs-GrC-AMPA

Golgi Cells [27]

O 1-667GrC

I 100-1, I 50-1,GrC MF

w =1nSGrC-GoC

w =0.5nSGoC-GrC

Parallel Fibers

w =0.05nSmfs-GoC

Figure 2.9: Simulated architecture of the granular layer - The whole network is

composed of 350 mossy fibers (MFs), 4500 granule cells (GrCs) and 27 Golgi cells (GoCs).

The convergence/divergence ratios are represented into each layer (e.g. each GrC receives

activity from 4 MFs and 4 GoCs, and each GoC receives activity from 100 GrCs and 50

MFs).

Both neuronal types (Granule Cells -GrCs- and Golgi Cells -GoCs-) have been im-

plemented using a Leaky Integrate-and-Fire model [100]. However, different constants

have been defined in order to get realistic dynamics according to each cell type. Firstly,

this model was strictly implemented following a time-driven scheme. Afterwards, an

adaptation process was carried out in order to develop a more efficient event-driven

model based in look-up tables.

The state of the neuron is characterised by membrane potential (Vm−c) which is

expressed by equation (2.1).

Cm
dVm−c
dt

= gAMPA(t)(EAMPA − Vm−c) + gGABA(t)(EGABA − Vm−c) +

Grest(Erest − Vm−c) (2.1)

where Cm denotes the membrane capacitance, EAMPA and EGABA represent the re-
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versal potential of each synaptic conductance and Erest is the resting potential. gAMPA

and gGABA input driven conductances that integrate all the contributions received

through individual synapses and are defined as decaying exponential functions. The

parameters of the neuronal model and a more detailed description can be found in [100]

and in the third chapter of this document (see granular layer cell models).

These neuron models account for synaptic conductance changes rather than simply

for fixed current flows, providing an improved description over common I&F models.

The version of these neural models implemented for EDLUT simulator can be found and

downloaded at the EDLUT project official site (see http://edlut.googlecode.com).

LIF models can be directly implemented following event-driven schemes based on

lookup tables with only regarding the correctly adjusting the table dimensions. How-

ever, once both time-driven and event-driven schemes were implemented, we used the

first of them to validate and test the performance of the second one.

2.4.1.2 Spike Response time-driven model

The Spike Response Model (SRM) is well known in the field of neuroscience [100]. The

SRM formalism provides a linear probabilistic neuronal model, as opposed to the more

classical integrate-and-fire model which is non-linear and deterministic. Compared to

the Hodgkin-Huxley formalism, the SRM permits a higher transparency and control-

lability of all free parameters (e.g. synaptic integration time constant, amplitude and

shape of excitatory post-synaptic potentials, and so on). This cell model has been used

in [26] in order to implement a cuneate nucleus model.

Let V denotes the membrane potential of a SRM unit. If an input spike arrives at

time t, the membrane potential undergoes a depolarization ∆V (t) whose time-course

is stereotyped and taken as:

∆V (t) ∝
√
t · e

−t
τ (2.2)

where the free parameter τ determines the decay time constant of the EPSP (exci-

tatory post-synaptic potential) of the neuron. We took τ = 7ms in our simulations.

If several afferent spikes excite the neuron within a short time window, then the

EPSPs add linearly:
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V (t) = Vr +
∑
i,j

wi∆V (t− t̂ji ) (2.3)

where i denotes the pre-synaptic neurons, j indexes the spikes emitted by a pre-

synaptic neuron i at times tji , Vr = −65mV is the resting potential, and wi indicates

the synaptic weight of the projection from the pre-synaptic unit i, and it is defined as:

wi = W · w0,1
i (2.4)

where the factor W is the upper bound of the synaptic efficacy, and w0,1
i is constraint

within the range [0, 1]. W was set to 20mV in our simulations.

At each time step, a function g(t) that can be thought of as the instantaneous firing

rate of the cell and is defined according to:

g(t) = r0 · log

(
1 + e

(
V (t)−V0

Vf

))
(2.5)

where the constants r0 = 1Hz, V0 = −60mV , Vf = 0.5mV are the spontaneous

firing rate, the probabilistic threshold potential, and a gain factor, respectively.

The refractoriness property of the cell is modelled as a function A(t):

A(t) =
(t− t̂− τabs)2

τ2
rel + (t− t̂− τabs)2

· θ(t− t̂− τabs) (2.6)

where τabs and τrel are the absolute and relative refractory periods, respectively,

t̂ is the time of the last spike emitted, and θ(t) is the Heaviside function. We used

τabs = 6ms and τrel = 1ms. The functions g(t) and A(t) permit the probability of

firing p(t) to be calculated:

p(t) = 1− e−g(t)·A(t) (2.7)

The time-driven implementation of this cell model was quite simple. A new C++

class redefined the neuron model characteristics methods, such as UpdateState(...)
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(where the state variables are recalculated) and ProcessInputSpike(...) (where the

input conductances are incremented after a spike reaches the cell). For more informa-

tion about the C++ implementation, the doxygen documentation of the NeuronModel

and TimeDrivenNeuronModel classes (available at http://edlut.googlecode.com

is recommended.

2.4.2 Stochastic SRM table-based models

The accuracy of the time-driven implementation of the stochastic SRM table-based

model can be increased by shorting the simulation time-step. However, the shorter the

simulation step is, the more time the simulation will take. Therefore, an alternative

version based on look-up tables could accelerate the simulation in order to run models

with thousands of cells.

However, the traditional cell models implemented in EDLUT with the table-based

model generator did not had the ability to stochasticity in the precompiled tables.

Thus, the EDLUT simulation kernel had to be redesigned to include this feature. In

addition to this, the function in equation 2.2 could not be included in table calculation

without having to keep a register of the previous activity in the cell. Thus, this function

was approximated by the equation 2.8:

∆V (t) ∝ a · t · e
−t·b
τ (2.8)

where a and b are both constants to fit the function to the originally proposed in

equation 2.2. Figure 2.10 shows the difference between the original function (black line),

the implemented alternative (blue line) and another proposed function (red line). Even

though the last function was suitable as well, the linear function was finally selected

due to the simpler implementation and calculation.

Using the equation 2.8, the membrane potential can be calculated in an arbitrary

time by only expanding the next equation:

V (t+ ∆t) =
∑
i,j

((
t+ ∆t− tji

)
· e−(t+∆t−tji )

)
=

= e−∆t ·
∑
i,j

((
t− tji

)
· e−(t−tji ) + ∆t · e−(t−tji )

)
(2.9)
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Figure 2.10: Several alternatives for the SRM potential function - The originally

proposed function (black line) could not be implemented following an event-driven scheme

without activity buffers. The linearly proportional function (blue line) was finally imple-

mented, and the sinusoidal function (red line) was also considered. Both functions are

quite similar to the original one.

This function can be rewritten as following:

V (t+ ∆t) = e−∆t · (V (t) + ∆t ·A(t)) = f(V (t),∆t, A(t)) (2.10)

where A(t) is an auxiliary function which can be calculated from the previous value

an the time-step ∆t, i.e.:

A(t) =
∑
i,j

e−(t−tji )A(t+ ∆t) =
∑
i,j

e−(t+∆t−tji ) = e−∆t ·A(t) = f(A(t),∆t) (2.11)

Therefore, the membrane potential can be calculated in any arbitrary time without

saving the pre-synaptic activity just by means of two state variables A(t) and V (t). In

the next stage, the look-up tables have to be designed as following:

1. Membrane potential table: This table precalculates the state variable V (t) as a

function depending on the variables V (t), ∆t, and A(t).

2. Auxiliary variable table: This table implements the behavior of the A(t) state

variable as a function of A(t), and t.
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3. The next firing firing spike time table: This table calculates the time when the

next spike will be fired by means of calculating the membrane potential (eq. 2.9),

the refractoriness (eq. 2.6), the firing rate (eq. 2.5) and the firing probability (eq.

2.7) for each time-step (∆t). Using this firing probability and an additional seed

dimension which initializes the rand number generator, the table calculation loop

will check the next spike time.

This table design requires the update of the random generator (the seed state vari-

able) previously to each estimation of the next fired spike. This update can be done by

using the current system clock. Thus, each time the system need to calculate the next

firing time the seed table dimension will be accessed with a different value, including

in this time the random component of the behavior.

Figure 2.11: Event-driven table-based simulation of a set of stochastic cells -

Spike raster of 30 SRM stochastic cells. Input spikes (vertical lines) stimulated all the

target cells using the same synaptic weigth (w0,1
i = 0.1 in eq. 2.4. However, the post-

synaptic spikes (blue dots in the plot) happened at different times due to the stochasticity

introduced in the tables.

Figure 2.11 shows the result of simulating 30 stochastic SRM cells connected to

the same input cell. Even though all of them are input responsive, and the output
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spike rate is related to the input firing rate, the output activity presents delays in their

responsiveness depending on the randomness in the simulation. However, other model

features, such as the 6-ms absolute refractory period and the 1-ms relative refractory

period are kept intact.

In addition to this, the stochastic cell model has been used in order to implement a

reading-Braille robotic hand which implements the cuneate nucleus layer to separate the

input patterns in real time. This system was shown in the final demo of the European

Project SENSOPAC and is currently under publication.

2.5 Results

This section briefly comments the results (in terms of accuracy and efficiency) of the

advanced features which have been implemented in EDLUT. However, the following

chapters of this work can be considered EDLUT results as well, because this tool has

been used to implement all the showed models.

Finally, we will conclude evaluating the consequences of the releasing of EDLUT

as an open source tool and its availability on the source code google repository http:

//edlut.googlecode.com.

2.5.1 Hybrid simulation of time-driven and event-driven models

A hybrid network including a time-driven model (the GoC model) and an event-driven

model (the GrC model) has been built. This hybrid simulation method includes the

advantages of the well-controlled accuracy of a time-driven model in GoCs and a fast

simulation of GrCs with the event-driven model. Moreover, these advantages are more

acute if we take into account the number of GrCs (4500 in our model and more than

50 billions in the human cerebellum) and the small number of GoCs (only 27 in our

experiment and also a much smaller number than GrCs in the human brain) which

diverge into a wider area in GrCs. These characteristics make the cerebellum more

suitable to be simulated using this method.

In order to test the accuracy of the whole system, a complete-time-driven granular

layer has been also simulated using different time steps and has been compared with a

hybrid simulation scheme (event-driven model in GrCs and time-driven model in GoCs).

The mean-absolute error (MAE) of the GrC activity histogram (taking 1-ms bins) has
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been used as accuracy measure, following a population code strategy. The reference

model was a complete time-driven model implementing 4th order Runge-Kutta methods

with 0.1 ms time step. The network was stimulated using random inputs at different

frequencies, and the MAE has been calculated after simulating the network with each

input frequency.

Figure 2.12 shows the accuracy of the tested schemes. As expected, the error in

relation to the 0.1ms-step time-driven model increased as we simulated higher input

frequencies. However, this enhancement seems to be more marked in a hybrid scheme

(simple line), due to the progressive accumulation of inputs arriving at very near times.

However, a hybrid system presented similar precision to a time-driven scheme with 1

ms time step (triangle line). Thus, the time-driven methods with the shortest time

steps obtained the better accuracy, while the hybrid model presented reasonably good

results (similar to 1ms-step time-driven method, and better than 10ms-step time-driven

method -cross line-).
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Figure 2.12: Obtained error (MAE) after simulating 0.5 s of real activity -

Different simulation methods are compared with the reference model (a whole time-driven

network using 4th-order Runge-Kutta methods with 0.1 ms step).

However, an event-driven simulation method based on look-up tables supposed an

improvement on the simulation speed specially when processing sparse activity, as it is
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believed to occur in some layers of the cerebellum (e.g. the parallel fibers) [49]. The

performance of the system was measured as the rate of processed spikes per seconds.

Using this estimator, we obtained a fair comparison between methods with different

levels of activity (due to the accumulation of the error along the simulation).

Figure 2.13 shows the performance of all the studied systems. The hybrid scheme

(simple line), using both time-driven (0.1ms time step) and event-driven models, kept

a nearly constant rate of processed spikes per second due to the intrinsic character-

istics of the simulation method. On the contrary, full time-driven networks (square,

circle and triangle line) improved their performances as the input frequency increased

(more activity). However, this improvement was not completely lineal (as expected in

a time-driven model) due to the implementation of the method (using an event-driven

method as the base of time-driven models). This aspect became more evident when

we simulated the time-driven network with 10ms time step (cross line). In this case,

the performance is extremely close to the hybrid network because the computational

load of the simulation is mainly caused by the event processing (using long time steps

remarkably reduces the number of evaluations of the neural-model differential equa-

tions).

The enhancement of the performance when using hybrid networks can be noticed

if we compare the rate of processed spikes between the hybrid system (simple line)

and the 0.1ms-time-step time-driven model (square line). In both models, GoCs are

implemented using a 0.1ms time-driven model. However, the difference lies in the

model of GrCs. In this case, using an event-driven model (hybrid system) the number

of spikes per second approximately doubled the pure time-driven model (this rate of

processed spikes is specially higher with low input activity rates -between 0 and 20Hz-,

as expected in event-driven simulation schemes). Thus, using event-driven models in

layers with a huge quantity of neurons markedly accelerates the network simulation.

2.5.2 EDLUT released as open-source

EDLUT simulator was released under GPLv3 license on April 2009. This license es-

tablishes several freedoms to the potential users, such as using the software for any

purpose, changing the software to suit their needs, and freely sharing the software and

the changes the developers may make.
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Figure 2.13: Simulation speed measured as the rate of processed spikes per sec-

ond - While hybrid scheme achieves a nearly-constant processing rate due to the intrinsic

characteristics of event-driven schemes, time-driven schemes increased their performances

as the input frequency increased.

The simulator is compatible with the best known operating systems. Concretely,

EDLUT for windows can be compiled using Visual Studio 2008 or using the Cygwin

tools just by typing make in the root directory. Linux and MacOS versions can be

compiled from the source code with the makefile tool as well. In addition to this,

other alternatives can be built using different parameters in the makefile tool, such as

building the doxygen documentation in several formats (html, latex, pdf,...), building

the EDLUT kernel as a library, or the Simulink version. More information about the

EDLUT compiling process can be found on the README file supplied with the EDLUT

download.

Since EDLUT was released, the website has received more than 11000 visits, and

more than 25000 pages have been generated, from all over the world (specially from

Spain, Brazil, and United States). The visiting statistics reveals that EDLUT has been

favourably received, and specially within the open-source community.

At the EDLUT website, users can find the last versions of the EDLUT kernel, the

table generator, and some examples of usage (including the above commented neuronal
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models, and network models). In addition to this, some other documents, presentations,

and all the modifications on the source code are available at the source code repository

of the website.

2.6 Discussion

In this work, the base of an event-driven simulator based on look-up tables has been

widely upgraded to accomplish the main requirements of a real-time neural network

simulator capable of interfacing with a huge quantity of external systems using different

ways of communication: the software API, the Simulink module, the plain-text files or

the TCP/IP socket interface. A Java-based graphical user interface has been developed

as well, which facilitates the usage of this simulation tools for beginner researchers. All

these developments have been widely documented and are available on the project

repository.

In addition to this, the event-driven simulation environment has been widely im-

proved to make it capable of natively simulating time-driven methods (alone or in

conjunction with event-driven methods). This allowed the simulation of hybrid net-

works where some layers were using time-driven-based models while others were running

event-driven-based models.

A correct decision on what simulation method should implement each neuron model

could lead to an impressive enhancement of the simulation performance. This decision

should take into account some of above commented factors such as the activity rates in

which the neural model will be working, the number of neurons to simulate, the influ-

ence of each neuron on the rest of the network activity, the possibility of implementing

an event-driven alternative, the complexity of the neuronal dynamics, etc...

Event-driven methods (or more generally hybrid networks) showed good perfor-

mance and accuracy when working with low rates of activity. In the opposite, time-

driven model would be preferred when the characteristics of the experiment produce

high neural activity. However, as long as different layers in a biological system could

present different levels of activity, a hybrid system including both time-driven and

event-driven methods can be convenient.

The availability of a hybrid simulation environment also allows the validation of

new developed neural models for the event-driven method including this model in the
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network and comparing its behaviour with the previously implemented time-driven

model. In this way, faster and more precise table-based neural models could be designed

and subsequently tested in a realistic simulation.

As future work, the time-driven implementation will include a variable and inde-

pendent time step for each neuron, speeding up and enhancing the precision of this

method. Moreover, different approaches will be evaluated in order to parallelize the

simulation of large scale neural networks on clusters and supercomputers. Finally, the

integration with generic tools to describe the model in different abstraction levels (cell,

neural network, system,...) such as PyNN or NeuroML propose could make easier the

learning curve to potential EDLUT users and would allow the simulation models being

reusable from well-known tools such as NEURON or GENESIS.
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3

The impact of synaptic weights

on spike timing in the cerebellar

input layer

3.1 Abstract

Regulation of spike timing is particularly relevant for the cerebellum, which plays a cen-

tral role in processing temporal sequences. In order to understand the potential impact

of plasticity at different sites in the network, we have used a real-time event-driven

simulator (EDLUT) to carry out massive simulations on the whole synaptic weight

parameter space. In response to repeated burst inputs, the granular-layer network gen-

erated rebounds and oscillations in the β/γ-frequency band and filtered unsynchronized

trains with millisecond precision. We found that synaptic weights at multiple synapses

could play a crucial role to enhance coincidence detection (which allows the reduction

of non-synchronous signals) and time slicing (which determines specific time windows

for signal transmission). Interestingly, coincidence detection was especially sensitive to

weights in the feed-forward inhibitory pathway (mossy fiber→Golgi cell→granule cell),

whereas time slicing was especially sensitive to weights in the feed-back dis-inhibitory

loop (granule cell→stellate cell→Golgi cell→granule cell). These results predict that

the granular layer operates as a complex adaptable filter which can be controlled by

weight changes at multiple synaptic sites.
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3.2 Introduction

The computations elaborated by central neuronal networks depend on multiple inter-

acting factors [12, 205]. These mainly comprise: (i) the properties of different neuronal

types, (ii) how neurons are connected, (iii) and how their synaptic weights are orga-

nized. Although invaluable knowledge can be gained from experimental results, what

usually remains elusive are the dynamics emerging from multiple interactions between

network elements and even more, the impact of distributed synaptic plasticity in the

network [12]. Computational modeling can be used to explore this complex parameter

space.

The granular layer processes incoming signals that have to be relayed to Purkinje

cells for further pattern recognition [79, 192]. Recently, investigations into granular

layer processing have been promoted by several relevant discoveries. First, the proper-

ties of granule cells (GrC) and Golgi cells (GoC) have been clarified to a considerable

extent [61, 64, 83, 92, 208, 249, 250]. These neurons are able to generate very fast

and robust burst discharges in response to inputs. Secondly, circuit connectivity has

been extensively investigated, showing the functional importance of two main loops

implementing feed-forward inhibition (mossy fiber→GoC→GrC) [150] and feed-back

inhibition (GrC→GoC→GrC). Moreover, recent works suggest that the stellate cell

(SC) axons arborize within the molecular layer, and their varicosities make GABAergic

synaptic contacts with Purkinje cells and seem to contact also other GABAergic neu-

rons, such as Golgi cells [87, 101, 260]. These findings may prove the plausibility of a

feed-back dis-inhibition loop (GrCs→SC→GoC→GrC) [19]. Thirdly, synaptic plastic-

ity has emerged as an important property of the network and is probably distributed

over numerous synaptic contacts [114, 218].

The granular layer has recently been proposed to perform two operations, threshold

detection [148] and spatio-temporal transformations of incoming signals [190, 191, 251].

Threshold detection, under double control of mossy fibers (MF) and Golgi cells, can

filter uncorrelated signals (noise) allowing only transmission of well-correlated spikes in

groups of neurons (i.e. synchronized spike trains). At the same time, the feed-forward

inhibitory loop can generate time windows through which spikes may or may not pass,

thereby filtering out-of-time signals [58, 59]. This filter is under the control of circuit
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inhibition [162, 251] and also probably of multiple forms of long-term synaptic plasticity

[237], which can optimize its performance.

By exploiting a real-time spiking network simulator (EDLUT) to perform massive

explorations of the parameter space [227], we have investigated the function of the mul-

tiple granular layer loops and the impact of synaptic weights. The cerebellar granular

layer filtered unsynchronized (temporally scattered) trains, comprising both threshold

detection and time slicing, with millisecond precision. This operation could be op-

timally achieved by adjusting synaptic weights at the various synapses of the three

loops of the granular layer. Interestingly, given the specific time-constants of neurons

and synapses, the network generated rebounds and oscillations in the β/γ-frequency

band. By these means, the granular layer privileged coherent burst transmission over

a specific operative band while filtering out weak uncorrelated input activity. These

observations suggest that the granular layer operates as a complex adaptable filter [79],

which can be controlled by weight changes at multiple synaptic sites.

3.2.1 The state of the art: temporal processing in the cerebellum

The cerebellum is organized in modules including cortical microcomplexes [30, 73, 217,

272]. This structured organization has always helped in the study of the cerebellum,

and has made this one of the best known systems in the brain. The understanding of

circuit mechanisms can be conceived by addressing the connectivities within an indi-

vidual module and the relation between the various modules. Each module receives

two major kinds of inputs, one from the mossy fibers and another from the climbing

fibers. This inputs ultimately converge onto Purkinje cells, which eventually inhibit

the deep cerebellar nuclei (the main output of the circuit). Although connectivities

among neurons and interneurons in the cerebellar cortex occur within individual mod-

ules, the intracortical connections between modules occur prominently via the parallel

fibers, apart from the Lugaro cell axons running along the parallel fibers and contact-

ing different inhibitory neurons (including Purkinje cells, Golgi cells and stellate cells

[76, 84, 169]). Moreover, at the cerebellar input, common mossy fibers can activate

more lobules and a single olivary neuron also usually reaches different modules even at

a considerable distance (for review see [74, 272]). In this review we disectionate the

cerebelar organization by studying each stage separately.
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Figure 3.1: The organization of a cerebellar module - This schematic drawing

shows the most relevant connections within a cerebellar module. The cerebellar module is

made of a series of connections, in which different circuit elements communicate in closed

loops and are contacted by the same afferent fiber set. The mossy fibers reach granule

cells (GrC) and DCN cells which, in turn, receive inhibition from the same common set

of Purkinje cells (PC). Moreover, the IO cells emit climbing fibers that contact DCN and

PC, which also project to the same DCN cells. For convenience, the circuit can be divided

in three sections illustrated schematically in the insets. The top-right inset also shows a

Lugaro cell (LC) and a Unipolar Brush cell (UBC) (typical of the vestibulocerebellum).

3.2.1.1 The input stage: the granular layer

The mossy fibers provide one of the major inputs to the cerebellum and mediate senso-

rimotor and higher cognitive inputs via dedicated pathways running through the spinal

cord, brainstem and cerebral cortex [135]. The properties of the mossy fiber firing

pattern appear to depend on the specific characteristics of the particular input source

and the actual stimulus status. For example, during slow head rotations, the vestibular

input is represented through a linear encoding of mossy fiber spike rates, typically in

the 0–40 Hz range [13, 18]; the trigeminal input tends to generate spike bursts in re-

sponse to transient stimuli causing corresponding bursts in granule cells [46, 223]; and

the oculomotor eyeball input as well as joint input appears to produce both bursts and

tonic discharges related to changes in position [152, 270]. Since many of the sensory
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systems nuclei, pontine nuclei and cortical efferents also include neurons capable of

both phasic and tonic discharge (e.g. see [149, 200, 235]), the combined capacity is

probably rather common in mossy fiber signaling, even though some spiking patterns

may only become apparent during a particular status of the stimulus.

Figure 3.2: The cellular basis for low-frequency oscillations and resonance in

the cerebellar granular layer - The granule cell (GrC) and the Golgi cell (GoC) are

endowed with ionic currents that allow the emergence of theta-frequency resonance. Gran-

ule cell intrinsic excitability is enhanced in the 4–10 Hz frequency range, and Golgi cells

show enhanced responses and precision at the same frequencies. Moreover, Golgi cells show

pacemaker activity and phase reset with the corresponding characteristic period. This cir-

cuit is therefore appropiately designed to generate enhanced responses when, for example,

the mossy fiber input would occure in theta-burst patterns. Experimental traces have been

redrawn from [64, 92, 250].

Signals coming into the cerebellum through the mossy fibers are processed in the

granular layer network, which includes a feed-forward inhibitory loop (mossy fiber→Golgi

cell→granule cell), a feedback inhibitory loop (mossy fiber→granule cell→Golgi cell→granule
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cell), and a feed-forward dishinibitory loop (mossy fiber→granule cell→stellate cell→Golgi

cell→granule cell). Here, with the intervention of the inhibitory circuits and synaptic

plasticity, mossy fiber spikes are recoded into new spatiotemporally organized sequences

by granule cells and Golgi cells exploiting their specific electroresponsive properties,

which are specialized for sustaining bursting and repetitive activity on specific fre-

quency bands ([58, 64, 190, 249, 250]) (see Figure 3.2). Four relevant aspects of this

processing are:

1. Granular layer processing is fast and precise since this earl response need to be as

fast as possible (even though it might lead to inaccurate signals); output spikes

are emitted within milliseconds exploiting fast synaptic and excitable mechanisms

[45, 61, 242].

2. Specific input patterns, under the guidance of inhibitory circuits, can induce bidi-

rectional NMDA receptor-dependent long-term synaptic plasticity at the mossy

fiber-granule cell synapse [14, 63, 96, 186, 190, 230, 247]. Long-term potentiation

(LTP) and probably also long-term depression (LTD) are expressed presynapti-

cally [247] and (D’Errico, Prestori and D’Angelo, unpublished observations), and

as such they may have a prominent impact on timing through their control of

repetitive neurotransmitter dynamics, i.e. short-term facilitation and depression

[208]. However, the functional explanation of this synaptic plasticity is still an

open issue which will have to be address in order to achieve a fully functional

cerebelar model.

3. By controlling first spike delay, LTP would allow spikes to fall inside the window

set by Golgi cells feed-forward inhibition, while LTD would drive the granule

cells response beyond the window limit (“window-matching” effect; [58, 67]). By

doing so, the granular layer operates a spatiotemporal filtering of signals and a

spatiotemporal redistribution of activity, which can eventually lead to computa-

tional operations involving coincidence detection and pattern separation (Mapelli

J, Gandolfi D and D’Angelo E, unpublished observations). How this complex

response can be achieved by adjusting the synaptic weights in the granular layer

circuit is the main aim of this chapter.
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4. The granule cells are resonant and the Golgi cells are pacemaking and resonant at

low frequency (< 10 Hz in vitro, but probably higher in vivo [64, 249, 250, 274]).

The granular layer can be entrained in repetitive synchronous discharges in the

7–25 Hz range [52, 53, 115, 215]. Thus together, these four elementary aspects

of granular layer processing show that this layer is in principle well equipped to

control the absolute timing and phase of oscillations and resonance (Fig. 3.2).

This control is of fundamental importance since every subsequent computation

in the cerebellum will depend on it.

3.2.1.2 The Purkinje cells and the molecular layer

A second major input to the cerebellar cortex comes from the inferior olive through the

climbing fiber system. The inferior olive itself receives inputs from many brain regions

that form, in fact, directly or indirectly a source for one of the mossy fiber inputs (for

review see [74]). Although the inferior olive has traditionally be proposed as an error

signal generator, recent experimental studies have shown the olivary neurons have a

propensity to oscillate [48, 161, 176, 268], and their climbing fiber activities can produce

theta-frequency patterns in the cerebellar cortex by directly innervating the dendritic

arbors of Purkinje cells and inhibitory interneurons, including stellate cells [19] and

possibly Golgi cells [286]. In fact, in Purkinje cells, climbing fiber activities are able to

exert a very powerful phasic excitation through the complex spike [198]. The complex

spike signal may carry an error in motor performance and as such it might be used as

an instruction for generating synaptic plasticity at the parallel fiber to Purkinje cell

synapse [50, 138].

The Purkinje cells have their own processing mechanisms, which also rely on intrin-

sic electroresponsive properties and synaptic plasticity. Their most relevant computa-

tional aspects are:

1. Purkinje cells are spontaneously active (30–50 Hz) and their discharge is mod-

ulated by inputs from the olivary neurons, granule cells, and molecular layer

interneurons. Following the original observations by [3], it was recently shown

that the molecular layer can sustain synchronous high-frequency (100–200 Hz)

oscillations entraining the Purkinje cells [71, 199]. Thus, the granular layer pat-

terns need to be precisely synchronized in order to efficiently affect Purkinje cells

activity.
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2. Purkinje cell synapses are sites of plasticity, including for example LTD and LTP

at the parallel fiber to Purkinje cell synapse [50] (this plasticity has been proposed

in traditional theories as the main site of motor learning at the cerebellum), LTD

at the climbing fiber to Purkinje cell synapse [114], and LTP at the interneuron

to Purkinje cell synapse [151]. For alternative interpretations see [177].

3. Purkinje cells may act as perceptrons exploiting their plasticity capabilities for

pattern recognition [31].

4. Purkinje cells may communicate through spike pauses modulating the interspike

intervals over milliseconds [127, 241, 255]. In this respect, it is relevant to note

that under particular forms of anesthesia, but less so in the awake state, Purkinje

cells show extensive bistable up-and down states lasting over much longer time

periods of hundreds of milliseconds to seconds [141, 179, 233].

Thus, apart from a direct inhibitory feed-forward control imposed by the molecular

layer interneurons (stellate and basket cells), the dynamic firing properties of the Purk-

inje cells are presumably tightly controlled by both the climbing fiber and the parallel

fiber system, which have probably impact on all four aspects described above.

3.2.1.3 The cerebellar output stage

The Purkinje cells form the only output of the cerebellar cortex and they inhibit the

cells of the vestibular nuclei (VN) and deep-cerebellar nuclei (DCN), which ultimately

convert the activities of the microzones and those of the mossy fiber and climbing fiber

collaterals into the final cerebellar output (Fig. 3.1) (and therefore, they produce the

final corrective signals in motor control tasks). The VN and DCN are thus at a key

location within the cerebellar network. Their projection neurons can be divided into

at least two main groups: those that inhibit the inferior olivary (IO) cells presumably

regulating their coupling and oscillations [72, 141] and those that exert a more direct

control on the ultimate motor output (Fig. 3.3). In fact, while the role of inhibitory

interneurons has not been demonstrated convincingly in freely behaving animals yet,

principal neurons can be divided into types A and B, which modulate their firing in

relation to activation of agonist or antagonist muscles [111, 269] (see chapter 4 for a

further explanation on the agonist/antagonist cerebelar theory).

The most relevant properties of the DCN neurons are the following:

70



3.2 Introduction

Figure 3.3: Multiple loops involved in controlling cerebellar low-frequency ac-

tivity - Due to the intrinsic resonance of neurons in the granular layer loop (GrC-GoC),

to signal reentry from the DCN, and to oscillatory activity in the IO complex, the olivo-

cerebellar circuit demonstrates a design suitable to operate within a dominant frequency

band of <10 Hz. GrC, GoC, PC, mf and cf. indicate granule cells, Golgi cells, Purkinje

cells, mossy fibers and climbing fibers, respectively. While the backbone of the circuit sum-

marizes classic knowledge on the cerebellum (e.g. see [88]), some less known connections

like those from climbing fibers to the SC and GoC [19] and from the DCN to GrC [32, 265]

may also play an important role for the overall network synchronization and phase-locking.
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1. DCN neurons are intrinsically active at frequencies ranging from a few Hz to tens

of Hz [267]. In general, the intrinsic dynamics of the cells generate silent pauses

and often rebound excitation, producing alternating phases of activity depending

on the strength and length of the inhibition induced by the Purkinje cells [267].

The projecting GABAergic and non-GABAergic DCN cells can be distinguished

based on their synaptic currents; the synaptic currents in the GABAergic cells

have lower amplitude, lower frequency and slower kinetics than those of the non-

GABAergic cells [266]. Therefore, the GABAergic cells appear better designed

for conveying phasic spike rate information, whereas the larger non-GABAergic

cells relay more faithfully tonic spike rate.

2. The DCN and VN neurons may act as one of the main substrates of downstream

motor memory storage [137, 175, 275]. This hypothesis is supported by the fact

that the synaptic strength of their inputs as well as their active membrane prop-

erties can be readily modified [6, 7, 261]. Interestingly, as predicted by a recent

model of the cerebellar nuclei neurons and their Purkinje cell and mossy fiber

collateral inputs [75], Pugh and Raman [220] showed that the extent of plasticity

varies with the relative timing of synaptic excitation evoked by the mossy fiber

collaterals and the hyperpolarization induced by the Purkinje cells activity.

Thus, one can hypothesize that the synchronous oscillations in the Purkinje cell

activities together with plasticity at the mossy fiber-DCN and the Purkinje cell-DCN

synapses form the main mechanistic tools to control the activity in the DCN output

neurons, and that different sets of neurons in the DCN are sensitive for oscillations

at different frequency ranges (for details about hypothesis see [75]). But in addition

to this, there are several connections between these three main subcircuits. Activity

of the inferior olive can be conveyed through the climbing fiber→stellate cell→Golgi

cell circuit [19, 87, 259]. Moreover, Golgi cells may also be inhibited directly through

metabotropic receptor activation by the climbing fibers, as proposed by [286]. Finally,

some mossy fibers can originate from the DCN [265]. Thus, activity of the IO and DCN

can be reverberated in the granular layer.

As a whole, one can conclude that all circuit subsections make their own contribu-

tion to oscillatory activity in the cerebellum and eventually interact through several
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internal connection loops. Importantly, the granular layer is the starting point for the

activities generated in several of the other circuit sections.

3.2.1.4 The importance of the oscillations in the granular layer

From the above commented, it emerges that granular layer oscillations may play a

critical role in cerebellar activity. Low-frequency oscillations are fundamental for several

neurophysiological processes, including motor control, the formation of memories and

sleep (for review see [35]). Low-frequency activity was shown to correlate with that

in the cerebral cortex, and may therefore represent a suitable band for communication

between cerebellum and the thalamo-cortical system [210]. Moreover, it may provide

a binding element between the two main functional sections of the cerebellar cortex,

i.e. mossy fiber and the climbing fiber input systems. The disruption of appropriate

control mechanisms in the olive and DCN allows low-frequency oscillations to prevail at

the DCN output stage causing muscle tremor, as it occurs with harmaline application

and in essential tremor in humans [178]. Muscle tremor occurs at ¡10 Hz for larger

muscles, and is also species-specific ranging from about 7 Hz to 25–30 Hz [111, 164].

Therefore, low-frequency patterns may have important yet incompletely understood

roles in cerebellar control, opening new fields for future research.

Low-frequency oscillations are essential for signal processing at high rate (for review

see [35]). Since the afferent inputs are largely encoded with 5-ms precision in the 1st

spike delay [147], the same accuracy in the time-window matching process seems needed

for efficient elaboration of incoming information. The repetition of these time-windows

during protracted stimulation is predicted to generate high-frequency oscillations in the

granular layer, providing a coherent framework for data processing over large granular

layer fields. This periodic output may then be sampled by Purkinje cells, which also

have a high-frequency regimen of activity and provide precise timing of Purkinje cells

simple spike activity over the same scale [127, 241]. The high-frequency sampling based

on oscillating background could be important if the Purkinje cell works as a percep-

tron, allowing signal sampling over very short time windows and improving pattern

recognition [31].

The repetition of spikes emitted by granule cells in the gamma frequency band may

also be important to implement other physiological processes. First, parallel fiber-

Purkinje cell release probability is usually low (except for ascending axon synapses,
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[134, 245]), so that short high-frequency bursts can ensure efficient transmission through

short-term parallel fiber-Purkinje cell facilitation. Secondly, there are forms of parallel

fiber-Purkinje cell LTD which require doublets [43, 44], so that persistent changes could

be induced only at those synapse that receive high-frequency inputs. The demonstration

of high-frequency oscillations in the granular layer remains an interesting challenge for

future cerebellar investigations.

In conclusion, available evidence suggests that both slow and fast granular layer os-

cillations could have specific roles in cerebellar signal processing. While high-frequency

oscillations may support millisecond-scale timing in granular layer activities preparing

signals for Purkinje cells and allowing fast and precise elaboration of single motor acts,

low-frequency oscillations may support repetition of complex motor sequences. Indeed,

the granular layer demonstrates a theta-frequency preference that is indicative of the

existence of such higher-order dynamics, and anatomical and functional evidence sug-

gests that these could involve entire cerebellar modules. This low frequency activity

may be important for coordinating cerebellar communication with the sensorimotor

cortex correlating with processes like learning, arousal and attention. Thus, experi-

mental works have shown the existence of oscillations at several frequency bands and

different sites at the cerebellum, but an functional explanation and the way in which

these oscillations can efficiently support the execution of motor control tasks. Compu-

tational neuroscientist studies probably play an important role in the understanding of

these new theories.

3.3 Materials and methods

Brain computations employ spikes and information is transmitted between neurons

at the synapses, which are modifiable thereby storing memory of past activity. It is

therefore desirable to investigate brain circuit functions by means of realistic spiking

networks [100, 184, 218]. The main objective of the work described in this chapter is to

study the impact of synaptic weights on temporal spike train detection in the granular

layer of the cerebellum. Thus, we have widely tested the influence of different synaptic

weights using a very common methodology in neuroscience. We have firstly defined

a control configuration, with default synaptic weights. After that, we have explored

the synaptic weight space in perpendicular axes (one synapse type is changed in each
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experiment). Moreover, we have carried out some other experiments modifying two

different axes (e.g. changing the synaptic weights in GrC-GoC and GrC-SC simulta-

neously), obtaining very similar results to the ones shown in the following section, but

3-dimensional graphs have not been included for the sake of clarity.

3.3.1 The EDLUT Simulator

For extensive spiking network simulations, we have developed and used an advanced

Event-Driven simulator based on LookUp Tables (EDLUT) [40, 227]. EDLUT (released

as free software under GPLv3 license ) allows the behavior of a pre-defined cell model

(whose dynamics are defined by differential equations) to be compiled into lookup

tables. Then, complex-network simulations can be performed without requiring an

intense numerical analysis. With EDLUT, it has been possible to split spiking neural

network [100] simulations in the two following stages.

• Cell behavior characterization. In this first stage each cell model is simulated

reiteratively with different input stimuli and from different cell states. This allows

to scan the cell behavior which is compiled into lookup tables. Therefore, at

this stage, the tool uses conventional numerical methods (such as the Runge-

Kutta method) to approximate the cell state variables after receiving a specific

stimulus. This represents a massive simulation load for each cell type but, once

this is carried out, the results are stored in well structured tables. In this way,

numerical calculation during network simulations can be avoided, significantly

accelerating the simulation.

• Network simulation towards system behavior characterization. At this second

stage, multiple network simulations are run with different weight configurations.

This stage does not require an intense numerical calculation; the cell state at

different times is retrieved from the lookup tables, allowing massive simulations

with little computational expenditure. In order to explore the large dimensional

space of connection weights of the two experiments addressed in this work, we

have performed more than 1 million simulations (of 1 second each) (consuming

roughly a total of about 11 days of a CPU at 2.4 GHz) with a network composed

by 5177 cells.
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Further information about this advanced software for spiking neural networks simula-

tion can be found in section 2.3 of this document.

3.3.2 Neural Models

The simulated network consists of three different cell types. These cell types are mod-

eled by a modified version of the Leaky Integrate-and-Fire model (LIF) [100] whose

dynamics are defined by Expressions 3.1, 3.2 and 3.3. These neuron models account for

synaptic conductance changes rather than simply for fixed current flows, providing an

improved description over common I&F models. The version of these cell models im-

plemented for EDLUT simulator can be found and downloaded at the EDLUT project

official site (see http://edlut.googlecode.com).

Each network neuron is simulated using a specific model parameterization and in-

cludes a subset of the following synaptic receptors:

gAMPA(t) =

{
0 when t < t0

gAMPA(t0) · e−
t−t0

τAMPA when t ≥ t0
(3.1a)

gNMDA(t) =

{
0 when t < t0

gNMDA(t0) · e−
t−t0

τNMDA when t ≥ t0
(3.1b)

gGABA(t) =

{
0 when t < t0

gGABA(t0) · e−
t−t0

τGABA when t ≥ t0
(3.1c)

νEC(t) =

{
0 when t < t0

νEC(t0) · e−
t−t0
τEC when t ≥ t0

(3.1d)

where t denotes the current simulation time and t0 denotes the time when an input

spike is received. gAMPA and gNMDA represent AMPA and NMDA receptor-mediated

conductance respectively, which provide excitation and gGABA represents the GABA

receptor-mediated conductance, which provides inhibition. τAMPA, τNMDA and τGABA

are the decaying time constants of each receptor type. νEC does not represent a con-

ductance but is computed in the same way and accounts for the effect of the electrical

coupling. τEC denotes the time constant of the spikelets. These synaptic conduc-

tance responses were modeled as simple decaying exponential functions which provide

several advantages. Firstly, it is an effective representation of realistic synaptic con-

ductance. Thus, the improvement in accuracy as compared to the next most complex
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representation, a double-exponential function, is hardly worthwhile when considering

the membrane potential waveform [227]. Secondly, each exponential conductance type

requires only a single state variable, since synaptic inputs through several synapses can

simply be recursively summed when updating the total conductance if they have the

same time constants:

gAMPApostspike(t) = GAMPA,j + gAMPAprespike(t) (3.2)

GAMPA,j is the AMPA receptor synaptic weight of synapse j; a similar relation holds

for the other synaptic receptors. Most other representations would require additional

state variables and/or storage of spike time lists, so the exponential representation is

particularly efficient in terms of memory usage and computation time.

The parameters (time constants) of each synaptic receptor (Equations 3.1a, 3.1b,

3.1c and 3.1d have been chosen to model three cerebellar cell types: granule, stellate,

and Golgi cell (see Table 3.1) [209, 229, 243, 262]. Note that different synapses of a cell

might include different synaptic receptors.

Parameter GrC SC GoC

Membrane capacitance (Cm) 2pF 4pF 50pF

Total AMPA-receptor peak conductance (gAMPA) 3.9nS 12nS 136nS

Total NMDA-receptor peak conductance (gNMDA) 4.5nS - -

Total GABA-receptor peak conductance (gGABA) 30nS 14nS 100nS

Firing threshold (θVm) -40mV -40mV -50mV

Resting potential (Erest) -65mV -56mV -65mV

Excitatory reversal potential (EAMPA,ENMDA) 0mV 0mV 0mV

Inhibitory reversal potential (EGABA) -65mV -58mV -65mV

Resting conductance (Grest) 0.2nS 0.2nS 3nS

Resting time constant (τm) 10ms 20ms 16.7ms

AMPA receptor time constant (τAMPA) 0.5ms 0.64ms 0.5

NMDA receptor time constant (τNMDA) 40ms - -

GABA receptor time constant (τGABA) 10ms 2ms 10ms

Table 3.1: Parameters of the different used cell types - These parameters have been

obtained from the following papers: Granule Cell (GrC) [60, 61, 62, 64, 95, 208], Stellate

Cell (SC) [42, 47, 120, 167, 257], and Golgi Cell (GoC) [92, 249, 250]

.
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The membrane potential is partially computed (Vm−c) by differential Equation (3A),

which accounts for the effect of chemical synapses (including AMPA, NMDA, and

GABA receptors) and resting conductance (Grest),

Cm
dVm−c
dt

= gAMPA(t) · 1.273 · (EAMPA − Vm−c) +

+gNMDA(t) · 1.358 · g∞,NMDA(Vm−c)(ENMDA − Vm−c) +

+gGABA(t) · (EGABA − Vm−c) +Grest(Erest − Vm−c) (3.3a)

g∞,NMDA(Vm−c) =
1

1 + e−αVm−c [Mg2+]/β
(3.3b)

where Cm denotes the membrane capacitance, EAMPA, ENMDA, and EGABA repre-

sent the reversal potential of each synaptic conductance and Erest is the resting poten-

tial. gAMPA, gNMDA, and gGABA conductances integrate all the contributions received

through individual synapses. g∞,NMDA(Vm−c) is a gating function which accounts for

the voltage-dependent magnesium block [145], with α = 62V −1, [Mg2+] = 1.2mM and

β = 3.57mM (adapted from [95]).

To include the electrical coupling effect, the total membrane potential (Vm) is de-

fined by Equation 3.4.

Vm = Vm−c + fECνEC(t) (3.4)

where the potential νEC(t) integrates the contribution of the current spikelets and

fEC is a factor (0.044) to adapt the amplitude of the spikelet for the current coupling

coefficient [39].

Since we are using an event-driven simulation scheme, each time a neuron receives

a spike, all the neural state variables (Vm, gAMPA, gNMDA, gGABA, and vEC) are

updated (Equations 3.1 and 3.3) and then, the corresponding synapse state variables

are increased following Expression 3.2. Equation 3.2 is amenable to numerical analysis.

In this way, we can calculate Vm, and therefore, the time when it will reach the firing

threshold (θVm) can be predicted. An example of membrane potential computed for

neurons of this network is shown in Figure 3.4.
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Figure 3.4: Event-driven simulation of the included cell types - The response

(membrane potential and output spikes) of the cell types (GrC, GoC, and SC) to an MF

input train is shown. Spikes are indicated by vertical gray lines. Since we have used an

event-driven simulation, the membrane potential is only computed when a spike is received

or emitted, that is, at the points indicated by a cross. Therefore, the lines which join these

points do not represent actual intermediate values.

3.3.3 Network topology

The model shown in Figure 3.5a represents an abstraction of the granular layer including

as a whole 5177 cells of different types. The generation of the network topology was

developed in two different steps: in the first one, the number of constitutive elements

was calculated following anatomical studies of cell densities in the granular layer [165].

In a second stage, we have connected the constitutive elements respecting convergence-

divergence ratios and connectivity rules found in biology [88, 117, 118]. Overlapping of

multiple innervation fields allowed the mixing of contributions of single neurons within

the network 3.5b. The selection of source and target cells in every synapse has been

randomly developed avoiding the temporal characteristics being influenced by a certain

connection pattern.

However, neither cerebellar glomeruli nor lateral inhibition [35, 88, 190] of GrCs

have been explicitly implemented in order to focus on temporal rather than spatial

dynamics. Previous works demonstrated that the evoked granular layer response to

local stimuli appeared fragmented and partially surrounded by regions of lateral inhi-

bition [190]. When local spike trains reach the glomeruli, connected GrCs and GoCs
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(a) Network Topology

Mossy Fibers [350]
O  1-51, O  1-50GrC GoC

Granule Cells [4500]
I  4-1, I  4-1, O  1-7, O  1-1MF GO SC GoC

........

w =0.69nSmfs-GrC-AMPA

Stellate Cells [300]
I  100-1, O  1-4GrC GoC

Golgi Cells [27]
I  50-1, SC

O  1-667GrC

I  100-1, I  50-1,GrC MF

w =0.3nSGrC-SC

w =3nSGrC-GoC

w =5nSGoC-GrC

Parallel Fibers

w =1.5nSmfs-GoC

w =0.5nSSC-GoC

w =0.065nSmfs-GrC-NMDA

(b) Conv./Div. rates

GoC GoC GoC

SC SC SC

GrC GrC GrC GrC GrC GrCGrCGrCGrCGrC

PFs

MFs

Figure 3.5: Structural organization of the simulated granular layer network -

(a) Network topology of the cerebellar granular-layer model. Excitatory connections are

represented by arrows and inhibitory connections, by circles. Input spike trains are received

through MFs which excite GrCs and GoCs. Each GrC receives approximately 4 MFs and

each MF targets divergently a wide set of GrCs. Each GoC gathers input activity from

a set of 50 MFs and from 100 GrCs. The output activity of the GoC inhibits a set of

667 randomly-chosen GrCs. Finally, 100 GrCs excite a SC and 50 SCs inhibit each GoC.

Note that I represents the convergence rate and O, the divergence rate of the input/output

connections. (b) Partial overlapping scheme of connection fields allows redistribution of

activity in the network. The keys for this are (i) random connections of every cell (GrC,

GoC, and SC), (ii) 75% overlapping of MF to GoC connections, (iii) redistribution of

activity through parallel fibers.

are excited. Due to the long axons observed in GoCs, they are able to inhibit a larger

area of GrCs than those previously excited and a center-surround organization (with

excitation-inhibition respectively) will be caused at GrCs. However, this property (not

explicitly implemented in our model) is not expected to influence the temporal filtering

properties which are discussed in this chapter. The granular layer model which has

been simulated in this work is composed of the following cell layers:

1. Mossy Fibers (MF) (350): They convey the input spikes and activate GrCs and

GoCs.

2. Granule cells (GrC) (4500): The population of GrCs has a number of connections
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per cell (from MF) that follows a Gaussian distribution with a mean of 4 con-

nections and a standard deviation σ = 1 connection (each source MF has been

randomly selected but avoiding a same MF to excite the same GrC more than

once). Each GrC is inhibited by four different GoC.

3. Golgi cells (GoC) (27): Each GoC receives excitatory connections from 100 GrCs

and 50 MFs, and inhibition from 50 SCs. The output of each GoC inhibits 667

GrCs (on average) which contributed to its excitation.

4. Stellate cells (SC) (300): Each SC receives excitation from 100 GrCs and inhibits

the activity of 4.5 GoCs (on average). MF-GoC, GrC-GoC, and GrC-SC connec-

tions are converging and overlapping, whereas GoC-GrC connections are mainly

diverging and overlapping.

Synapse Receptor Default Weight Value

MF → GrC AMPA 0.69nS

MF → GrC NMDA 0.065nS

MF → GoC AMPA 1.5nS

GrC → GoC AMPA 3nS

GoC → GrC GABA 5nS

GrC → SC AMPA 0.3nS

SC → GoC GABA 0.5nS

Table 3.2: Default configuration of synaptic weights - MF → GrC weights have

been obtained from [95], MF → GoC, GrC → GoC, and GoC → GrC have been adapted

from [185] and GrC → SC and SC → GoC have been calculated in order to preserve the

activity frequencies proposed in [185].

Table 3.2 shows the different kinds of receptors which have been included in each

synaptic connection. While both AMPA and NMDA receptors have been included in

MF → GrC synapses, only AMPA transmitters have been implemented at the remain-

ing excitatory synapses (MF → GoC, GrC → GoC, and GrC → SC). The available

evidence suggests, through in situ hybridization studies (ISH), that GoCs of the de-

veloping rat possess mRNA for NR1 and NR2D NMDA-receptor subunit [8]. Stellate

and basket cells also transcribe these genes [277]. However, patch-clamp recording

experiments suggest that both diheteromeric and triheteromeric NR2D-containing re-

ceptors are expressed only extrasynaptically on these cells, and neither receptor type
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participates in parallel fiber (PF) to GoC synaptic transmission [29, 56]. Although

these experiments also indicate the presence and effect of NR2B-containing receptors

on synaptic transmission in developing GoCs, ISH experiments suggest that adult GoCs

do not express NR2B [212]. Therefore, in the absence of direct evidence for the presence

of functional synaptic NMDA receptors in adult cerebellar GoCs, they have not been

included in the presented study.

Firstly, all the synaptic weights within a certain connection category were set to

the same value (as indicated in Table 3.2). The synaptic values were tuned following

previous neuro-physiological studies based on the global peak conductance values (the

maximum conductance resulting from the simultaneous activation of all the synapses

reaching a single cell) [185]. The global peak conductance of the AMPA receptor

channel in a GrC was 2.76nS [95], so every synaptic weight was fixed to 2.76/4 =

0.69nS (depending on the number of MFs -between 3 and 5- reaching the cell). The

same methodology allowed to fix the synaptic weight of NMDA receptor channel to

0.26nS/4 = 0.065nS on average [95]. This apparently low weight in relation to AMPA

channel can be explained taking into account the longer time constant associated to

NMDA channels which produces a sustained activity.

Once the input channels of the network were established, the inhibitory loops were

adjusted in order to get stability and synchronism. In this way, the global peak con-

ductance of the AMPA channel reaching GoC was set to 375nS and the parallel fiber

global peak conductance was 4 times the MF global peak conductance [185], so the

final synaptic weight was 1.5nS in every MF → GoC and 3nS in every GrC → GoC

connection. Following the same reference, the GoC → GrC synaptic weight was set to

5nS. Finally, the dis-inhibitory loop was experimentally configured in order to adjust

the SC frequency and not completely inhibiting the GoCs. The GrC → SC synaptic

weight was set to 0.3nS and SC → GoC to 0.5nS.

After simulating the network with the initial synaptic weights (Table 3.2), these were

then modified to different values in order to explore the weight space. Moreover, we have

studied the electrical coupling among GoCs and also among SCs, by multiplying the

default coupling coefficient by a value between 0 (no coupling) and 0.1 (high coupling).

An extensive study of the electrical coupling impact would require the evaluation of

different topologies with different convergence ratios of multiple GoCs onto the same

GrC. Nevertheless, this is somewhat equivalent to different weights between GoCs and
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GrCs already covered by previous experiments. We have evaluated separately the

potential impact of coupling among GoCs and SCs.

This network incorporated the essential structural and functional requirements

needed to investigate the basic working hypotheses of coincidence detection and time

slicing in cortical microzones. A further refinement of connectivity and dynamic set-

ting of circuit weights through an appropriate learning rule are outside the scope of

this work, but will be considered in the future.

3.3.4 Coincidence Detection Methods

Coincidence detection is predicted to play an important function in the granular layer

[192] and GrCs are indeed capable of sustaining such operation [61, 148]. Thus, we have

considered how the granular layer can reduce temporally scattered inputs allowing only

the transmission of synchronized groups of spikes. With a specific network configuration

(dominant weights: MF → GoC and GoC → GrC), the system is mainly maintained

at a low output (inhibited) and most parallel fibers are silent. Only synchronous input

spike trains overcome this bias inhibition and reach the parallel fibers. The strength of

inhibition through the GoC will determine the level of synchronism that a train requires

to reach the parallel fibers.

In order to test this hypothesis, we have used input spike trains coming through

the MFs with different dispersion levels. Then, the number of GrCs that fired (called

response rate) was taken as an estimation of how input transmission efficacy depended

upon input spike synchronization.

One spike per MF was located, inside a given time window, at a time drawn from

a uniform random distribution. Collectively, spikes across the various fibers formed

a distributed train whose synchrony level was determined by the window duration

(shorter windows generate more synchrony than longer windows). This implied that

each distributed train or stimulus pattern was composed by a fixed number of 350

spikes randomly distributed in time windows with different lengths. We have assessed

the impact of different trains using time windows from 0 (completely synchronized

activity) to 100ms according to Equation 3.5:

ti(∆j) = u(T, T + ∆j) (3.5)
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Figure 3.6: Network activity in response to an input train - (a) Exemplar sim-

ulation executed with a spike train arriving at 10 ms and a duration of 0.5ms. Spikes

generated by the GrCs have a delay of at least 1ms with respect to the MF input. Most

GrCs fired before they were affected by the inhibition coming from the GoC, which takes

about 3 ms to arise. Some GoCs show a second spike and SCs fire due to excitation gener-

ated by GrCs and transmitted through parallel fibers. The activity in each layer is plotted

with a dot per spike. (b) Granular layer coincidence detection plot: GrC response rate vs.

input synchronism level (time elapsed between the first and last spike of the input train).

It also includes the standard deviation of the measurements (15 simulations per point).

The synaptic weights are set to default values (see Table 3.2 for details).

where ti(∆j) is the time of the spike fired by the cell i in the time window ∆j and

u is a realization of the uniform random distribution between T (initial time of the

spikes) and T + ∆j .

This approach allowed the determination of the amount of synchronization that is

required to allow transmission through the granular layer. In fact, we measured the

activity of GrCs (percentage of firing cells) versus the input spike dispersion (seconds)

as shown in Figs. 3.6a and 3.6b. In order to perform a quantitative analysis of this

property, we have calculated the T20 value. This value is defined as the minimum time-

window length (i.e. input train dispersion) which generates an output rate under 20%

with respect to the output activity when a completely synchronous train stimulates the

MFs. Low values of T20 indicate a high required input synchrony to be transmitted,

thus a highly restrictive coincidence detection filtering.

For each network configuration and time window length (from 0ms to 100ms), we

have simulated the network 3 times with different input trains chosen from the expres-

sion shown in Equation 3.5. In this way, we have shown the average of 3 measures per
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estimate in the next sections. We have measured the response rate of GrCs (number

of GrCs firing divided by the total number of GrCs) generated after the input stimuli

and finally, we have measured the T20 value.

3.3.5 Time-Slicing Methods

Feed-forward inhibition (MF → GoC → GrC loop) [150] confines the maximal re-

sponse of GrCs within a short (about 5ms) permissive time window [58, 190]. Then,

once a spike train has been transmitted through the parallel fibers, the GoC is excited

and therefore, the activity of the GrCs is even more strongly decreased (GrC → GoC →

GrC loop). The action of the GoC is terminated by the SC, which are excited by the

parallel fiber activity (GrC → SC → GoC → GrC loop) [19]. In this way, transmitted

trains would occur through a permissive time window followed by a post-transmission

silence and a post-inhibitory rebound (see Figure 3.7b).

Thus, after a first conditioning train was delivered, the response to a test spike

train was evaluated with different inter-spike distances (between 2 and 200ms after

the first spike train). In this way, we could follow the evolution of network response

sensitivity after a first spike train has been received and transmitted. The network

(Figure 3.7a) was activated with well structured (synchronous) trains arriving on top

of a 20Hz background base activity.

The strength and the length of these different excitability phases will depend on

the time constants of the cells and synapses and on the synaptic weights at the various

synapses in the circuit. As well as on the temporal noise filtering, time slicing is

expected to depend on the strength of the involved synapses. Therefore, we have

investigated the influence of synaptic weights that can modify the behavior of the

network as a temporal filter (Figure 3.7b).

Each MF was stimulated with two spike trains (only one spike per train stimulated

each MF) to investigate the sensitivity rebound. The two spike trains were separated

by different time intervals (from 2 to 200ms) and were individually placed within a

narrow time window of 1ms (corresponding to well-synchronized activity across trials).

ti,j(θk) = T + j · θk + u(0, 1) (3.6)
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Figure 3.7: Network activity in response to a repeated input train - The 20Hz

random activity distributed among the 350 MFs was generated as a background activity

during the simulation time (500 ms). The network received two trains with inter-train

intervals between 2ms and 200ms and an intra-train dispersion of 1ms. Default synaptic

weights were used as indicated in Table 2. (a) Exemplar simulation with two input trains

separated by 60 ms. Trains are superimposed over a background noisy activity. GrCs

have their spikes concentrated just after the stimuli, and do not show remarkable activity

in between them due to GoC inhibition. GoCs show pacemaking, are phase reset by the

stimulus, fire around 2 spikes, and then are silenced by SC feed-back. Note that the

activity in the GrC, GoC, and SC populations is highly synchronous. (b) Response plot

for different inter-train time intervals. In this plot (and the following similar ones), we

measured the activity (number of spikes) fired by GrCs after the second spike train reaches

the GrCs (from 121ms to 123ms in this particular GrC raster plot in (a)). After the first

train has been transferred by the granular layer, during the next 25ms, the sensitivity of

the network to a new input is below the reference level. However, after another 30ms,

the network shows a sensitivity enhancement. This is caused by the action of SCs, which

inhibit the GoC and therefore reduce background inhibition. After 55ms more, smaller

sensitivity rebound happens until achieving a stable state.
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where ti,j(θk) is the time (in ms) of the j − th spike fired by the cell i with an

inter-spike interval θk, u is a realization of the uniform random distribution between 0

and 1ms, and T is the time at which the first spike train starts (60ms). Moreover, low

basal noise has been added to the main signal as 20Hz activity among the 350 MFs

during the simulation time (300 ms). A single simulation is illustrated in Figure 3.7a.

For each synaptic weight configuration and inter-spike interval, we have simulated

the network 5 times with different input trains chosen from Expression 3.6. In this way,

all the results shown in the next sections correspond to the average of 5 measures per

estimate. We have measured the GrC response rate (number of GrC spikes divided by

the total number of GrCs) generated by the second synchronous spike train.

Finally, we have extracted two measures in order to quantitatively describe the

efficiency of this sensitivity rebound. We have defined the rebound period as the inter-

spike interval maximizing the response rate in GrCs. This value has been calculated

by means of the response rate gradient, which allows to obtain the local maximum of

the GrC activity rate.

The second measure was the Sensitivity Rebound Index (SRI), which is defined in

the following equation 3.7:

SRI =
ActMax −ActMin

ActAv
(3.7)

where ActMax denotes the maximum rate of activity of the sensitivity rebound

(and which corresponds to the second spike train reaching the GrCs when the SCs are

inhibiting the GoCs), ActMin denotes the minimum rate of activity obtained before the

rebound (and which matches with the second spike train reaching GrCs when the GoCs

are inhibiting them), and ActAv represents the average response rate of activity when

there is no influence between spike trains (that is, inter-spike time is large enough and

the network is in a stationary state).

These measures allowed to obtain a quantitative analysis of the sensitivity rebound

(time and strength) and regardless of the variation on the average frequencies at dif-

ferent network layers.
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3.4 Results

3.4.1 Coincidence Detection

An exemplar simulation is illustrated in Figure 3.6a. When most of the MF spikes are

synchronous, the response rate in the granular layer is high (see Figure 3.6b). However,

when the input is time-dispersed, the response rate decreases considerably, with values

around 50% using a window of 1ms and around 10% using a window longer than 10ms.

This observation suggests that only trains with millisecond precision, and therefore,

well structured in time, will be transmitted through the granular layer.

Figure 3.8 shows the response rates simulating different dispersed input trains (from

0 to 100ms) with a reasonable range of synaptic conductance values. The most influ-

ential weights were those in the feed-forward inhibitory loop (MF → GoC → GrC)

(Figures 3.8b and 3.8e) and in the MF → GrC synapse (see Figure 3.8a). A reduced

coincidence detection capability was apparent as an increase in granular layer activity

(as a consequence of high MF → GrC, low MF → GoC, or low GoC → GrC synaptic

weights), thus input spikes are transferred to GrCs even in spike trains with large time

dispersions, whereas an increased GrC response rate is observed when the granular

layer activity becomes restricted within a narrow time window (in response to a highly

synchronous input spike train).

This feature is a consequence of the time-window process observed in this circuit

[67](See below). MF → GrC weights markedly influenced the general amount of activ-

ity and, when becoming dominant over the MF → GoC and GrC → GoC pathways,

reduced the filtering action of the feed-forward inhibitory loop (Figure 3.8a). An un-

expected high activity plateau is shown in Figure 3.8A when using high global peak

conductance at MF → GrC synapses. This effect can be explained taking into account

the following factors:

• When the input activity is reaching the MFs in a scattered way, the GoCs rarely

get active, so the GrCs do not receive inhibition and will be very sensitive to the

input activity.

• If the MF → GrC conductance is strong enough to make GrCs fire with only

one or two near-simultaneous MF inputs, then the GrC activity is increased as

the total input from all MFs is spread over a longer time window.
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Figure 3.8: Coincidence-detection experiments - The effect of several weights of

different synapses on the GrC activity is evaluated. For each synapse site in this network

diagram, the obtained GrC activity is represented versus the input spike train dispersion.

(a) GrC activity obtained with different MF → GrC global peak conductance values

(including both AMPA and NMDA receptors). Note the activity enhancement when the

input activity in comprised in a time windows of approximately 200ms and the influence of

using different conductance values. A detailed simulation including only input activity in

time-window lengths from 0 to 100ms has been presented in order to show the coincidence

detection capabilities. (b) GrC activity obtained with different MF → GoC synaptic

weights. Activity is also very sensitive to the weight of this connection. (c) GrC activ-

ity obtained with different GrC → GoC synaptic weights. No appreciable impact of this

synapse conductance on the coincidence detection feature has been observed. (d) GrC

activity obtained with different MF → GoC and GrC → GoC weights. The global peak

conductance of both GoC input connections is kept fixed, but the global peak conductance

ratio between them (all parallel fibers/all MFs) has been modified. (e) GrC activity ob-

tained with different GoC → GrC synaptic weights. Activity is also very sensitive to the

weight of these connections.
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• When the total input from MFs is spread over long time windows, each GrC can

fire more than once after their refractory period.

When the feed-forward inhibitory loop was acting, the feed-back loops did not have

a significant effect, regardless of their different weight configurations (Figure 3.8c),

probably because the activity through MF → GoC synapses had inhibited the GrC

activity before GrCs excited GoCs. However, when the MF → GoC synapse was

disabled (0nS), the GrC → GoC synapse weight could regulate coincidence detection,

suggesting that the relative balance between MF and parallel-fiber inputs to GoCs is

important to control this function. In figure 3.8d, we have plotted the activity of GrCs

with respect to different global peak conductance values of the parallel-fiber-activated

AMPA receptor in relation to the global peak conductance of the MF-activated AMPA

receptor of GoCs. A network with a strong feed-forward loop (lower values in the

defined conductance ratio) requires more synchronized MF inputs in order to produce

GrC activity.

These characteristics are summarized in Figure 3.9 by means of the T20 term defined

in Section 3.3.4. Whereas MF → GrC synapses get saturated when the global peak

conductance goes beyond 3.6nS (Figure 3.9a) (this is, 0.82nS for the AMPA receptor

and 0.08nS for the NMDA receptor in each synapse), an increment in the MF →
GoC weight (Figure 3.9b) leads to lower T20 values indicating high input synchrony

restrictions for spike trains in order to be transmitted through the granular layer.

The GoC → GrC connection shows a different behavior where the influence is only

evident with extremely low synaptic weights (under 0.8nS). While lower weights nearly

disabled coincidence-detection capability, higher ones did not influence this feature

(Figure 3.9c). Figure 3.9d represents the influence of the GrC → GoC (PFs) connection

weight in relation to the MF → GoC connection (MFs) with a fixed global peak input

conductance in each GoC synapse. Coincidence detection becomes more restrictive

(higher input synchrony required for the input to be transmitted) for lower PF vs. MF

weight ratios.

3.4.2 Time Slicing through the Permissive Window and Post-Transmission

Sensitivity Rebound

The network showed the typical GrC, GoC, SC activation sequence already commented

in Figure 3.5a but here, the effect of noise was more evident. The plot in Figure 3.7b
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Figure 3.9: Influential connections for coincidence detection - The effect of the

weight values on the GrC activity is systematically quantified. For this purpose, the T20

value (minimum time-window length which contains the input activity that reduces a GrC

output activity under 20% of a reference GrC activity) has been used (the reference activity

is defined as the GrC activity obtained when using a completely synchronous input train.

See section 3.3.4). (a) T20 value using different MF → GrC global peak conductance values

(including both AMPA and NMDA receptors). (b) T20 value using different MF → GoC

synaptic weights. (c) T20 value using different GoC → GrC synaptic weights. (d) T20 value

using different MF → GoC and GrC → GoC weights. The global peak conductance of all

GoC input connections is kept constant and the ratio between the global peak conductance

of all parallel fibers and all MFs has been modified.
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shows that, in different time intervals, the activity of GrCs in response to the second

test train is affected by different factors:

1. If the test spike train is received shortly after (less than 4ms) the conditioning

spike train, the GoC and the SC are not yet active, but due to the refractory

period, GrCs do not fire more than once. Thus, GrCs are almost inactive.

2. If the interval between the conditioning and the test spike trains is between 4ms

and 25ms, the second train arrives during the period that we have called the ac-

tivity pause. During this period, the activity of GoCs leads to a high reduction in

the activity of the GrCs (close to 0%). This helps to have clean trains transmitted

to the parallel fibers avoiding non-desired activity during this interval.

3. If the interval between the conditioning and test spike trains is between 25ms

and 55ms, the network sensitivity to the test train is enhanced. In this period,

the SCs inhibit the GoCs reducing their background activity. This facilitates the

train transmission in the granular layer, leading the response activity to the test

train to reach around 35%. This is what we call sensitivity rebound period (after

the activity pause). It should be noted that, in real life, this mechanism would

also depend on intrinsic pacemaking and pause/rebound properties of the GoC

[249, 250] as well as from climbing fiber and Purkinje cell activity [19]. Although

if input spike trains are strong enough, they will dominate the network behavior.

4. If the interval between the conditioning and the test spike train is between 55ms

and 200ms, weaker sensitivity rebounds happen due to the influence of the MF →
GrC → GoC loop.

5. From 200ms on, the conditioning spike train arrival time does not significantly

affect the sensitivity of the network to new incoming activity. Two trains with

separation intervals above 200ms can thus be considered independent in terms of

transmission rates in GrCs.

The MF → GrC (Figure 3.10a) and MF → GoC (Figure 3.10b) synaptic weights

were the most influential ones. A high MF → GrC weight produced a higher basal

activity, a deeper activity pause, and a larger sensitivity rebound. This clearly reflected

the increased activation state of all network components, in particular, of the feed-back
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Figure 3.10: Sensitivity rebound curve obtained with different weights - The

network diagram shows the effect of different synaptic weights at different sites in the

circuit. For each synapse site in this diagram, the obtained GrC activity is represented

versus the inter-input-train time. Note that input-activity sensitivity curve is particularly

sensitive to weight changes of synapses in the feed-back dis-inhibitory loop (MF → GrC →
SC → GoC) as well as at theMF → GoC synapse. (a) GrC activity obtained with different

MF → GrC global peak conductance (including both AMPA and NMDA receptors).

Note that sensitivity curve is particularly sensitive to weight changes at this synapse. (b)

GrC activity obtained with different MF → GoC synaptic weights. Activity is also very

sensitive to the weight values of this connection. (c) GrC activity obtained with different

GrC → GoC synaptic weights. No detectable sensitivity to this synaptic weights is evident

(unless the connection is completely disabled, i.e. 0 nS). (d) GrC activity obtained with

different GrC → SC synaptic weights. Activity is very sensitive to weight values of this

connection and the network activity could become unstable using too high weights (0.6nS).

(e) GrC activity obtained with different SC → GoC synaptic weights. Activity is especially

sensitive to the lack of this connection. (f) GrC activity obtained with different MF →
GoC and GrC → GoC weights. The global peak conductance of all GoC input connections

is kept constant and the ratio between the global peak conductance of all parallel fibers

and all MFs is modified. (g) GrC activity obtained with different GoC → GrC synaptic

weights. Activity is also very sensitive to weight values of this connection.
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loops passing through the GoC (affecting the activity pause) and the SC (affecting

rebound excitation). Figure 3.11a clearly shows the effect of MF → GrC synaptic

weights in the sensitivity rebound parameters presented above. The rebound period

decreases as the global peak conductance rises (from near 60ms when the global peak

conductance is 1nS to 20ms when the global peak conductance is higher than 8nS).

However, the Sensitivity Rebound Index (SRI) shows that the sensitivity rebound re-

garding amplitude is higher when the global peak conductance is around 4nS. Higher

synaptic weights saturate the GrCs and increase the average activity of this layer. On

the other hand, lower synaptic weights cause very low activity in the GrCs, which

implies low activity at both feed-back inhibitory and dis-inhibitory loops.

A low MF → GoC weight increased the sensitivity rebound (the maximum activity

rate) and delayed the rebound peak time (Figures 6B and 7B). In these conditions,

the only remaining (though less significant) inhibition is that produced by GrC →

GoC activity. It should also be noted that low weights in these connections produced

instability in granular layer activity, because the SCs inhibit the GoCs and noise reaches

the parallel fibers (cf. Figure 3.8b) preventing an efficient noise filtering. On the other

hand, an extremely high MF → GoC weight caused an inhibition in GrCs which

prevented these cells from firing (and obviously, the sensitivity rebound). Medium

values (around 1.2nS) obtained higher sensitivity rebound indexes (Figure 3.11b).

As well as with MF → GoC weights, small GrC → GoC weights enhanced rebound

activity (Figure 3.10c), but also in this case, the response became unstable because

of the propagation of basal noise in the network. However, different values of this

weight did not considerably modify the sensitivity rebound index or the rebound period

(Figure 3.11c). Finally, if we maintain a constant global peak conductance of GoC

input (parallel-fiber plus MF conductance), the ratio between parallel fiber global peak

conductance and MF global peak conductance played an important role in terms of

sensitivity rebound (Figures 3.10f and 3.11d). When the parallel fiber peak conductance

was 4 times higher than MF peak conductance, the best performance in terms of

sensitivity rebound index was observed.

The influence of GoC → GrC and MF → GrC connections is similar, since both

of them adjust the average level of activity (Figures 3.10g and 3.11e). However, they

affect the GrC activity in an opposite manner: obviously, low weights in GoC → GrC
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(e) GoC-GrC Influence

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

GoC-GrC Synaptic Weight (nS)

0

20

40

60

80

100

S
e
n
si

tiv
ity

 R
e
b
o
u
n
d
 I
n
d
e
x

Sensitivity Rebound Index

Rebound Period

R
e
b
o
u
n
d
 P

e
ri
o
d
 (

m
s)

(f) GrC-SC Influence

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

GrC-SC Synaptic Weight (nS)

0

20

40

60

80

100

R
e
b
o
u
n
d
 P

e
ri
o
d
 (

m
s)

Sensitivity Rebound Index

Rebound Period

S
e
n
s
iti

vi
ty

 R
e
b
o
u
n
d
 I
n
d
e
x

(g) SC-GoC Influence

0 0.5 1 1.5
0

1

2

3

4

5

SC-GoC Synaptic Weight (nS)

0

20

40

60

80

100

S
e
n
si

tiv
ity

 R
e
b
o
u
n
d
 I
n
d
e
x

Sensitivity Rebound Index

Rebound Period

R
e
b
o
u
n
d
 P

e
ri
o
d
 (

m
s)

Figure 3.11: Quantitative analysis of sensitivity rebound - The effect of the weight

values on the input-activity sensitivity rebound is systematically quantified. For this pur-

pose, the sensitivity rebound index (left axis) and the rebound period (right axis) (see Meth-

ods section) are evaluated for each of the following weight modifications: (a) MF → GrC

global peak conductance (including both AMPA and NMDA receptor). (b) MF → GoC

synaptic weights. (c) GrC → GoC weights. Note the lack of dependence of both measures

on the weight values. Only the lack of this connection markedly reduces the sensitivity

rebound index. (d) MF → GoC and GrC → GoC weights. The global peak conductance

of all GoC input connections is kept constant and the global peak conductance ratio (be-

tween all parallel fibers and MFs) is modified. (e) GoC → GrC weights. (f) GrC → SC

weights. (g) SC → GoC weights.
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generate high activity levels in GrC, whereas low weights in MF → GrC generate low

activity levels in GrCs.

The GrC → SC synapses are important for the sensitivity rebound (Figure 3.10d),

in the sense that when synaptic weights were set to 0nS (no connection), the activity

pause ended smoothly in around 60ms (without sensitivity enhancement). However,

too high weights in this connection led to an unstable state when the GoC remained

constantly inhibited due to the strong excitation of the SCs. This is corroborated in

Figure 3.11f, which shows that medium weights enhanced the sensitivity rebound and

lightly increased the rebound period. Similar conclusions can be extracted from the

study of the SC → GoC connection (Figure 3.10e and 3.11g), which is also impor-

tant for the sensitivity rebound. Medium synaptic weights produced large sensitivity

rebounds but extremely high weights led to instability in the granular layer.

The synchronization of the network activity was facilitated by the partial overlap-

ping of MF and parallel fiber innervation areas (see Figure 3.5b). A further mechanism

that would enhance synchronization is electrical coupling. This was reported among

SCs in the guinea pig’s cerebellum [189] and among GoCs in the rat’s cerebellum [86].

In the presented experiments, the whole network achieved a nearly perfect input-driven

synchronism, so the electrical coupling (EC) among GoCs and among SCs does not seem

to influence the sensitivity rebound (Figures 3.12a and 3.12b). In our experiments, the

activity of the GoCs and SCs was already highly synchronous due to GrC outputs and

the GoCs feed-back to GrCs, corroborating in this way previous works about granular

layer synchronism [185].

3.4.3 Coincidence Detection and Time-Slicing Co-Optimization

Figure 3.13 summarizes the general architecture and main weights involved in co-

incidence detection and time-slicing. The inhibitory loop (MF → GoC → GrC)

plays a crucial role for coincidence detection. At the same time, the excitatory loop

(MF → GrC → SC) plays an important role for amplitude and temporal aspects of

time slicing (Figures 3.10 and 3.11). In summary:

1. The main MF input pathway. A range of values (global peak conductance between

2 and 3.5nS) at the MF → GrC synapse is compatible with both coincidence

detection and time slicing provided that saturation of GrC activity and too low
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Figure 3.12: Sensitivity rebound curve obtained with different electrical cou-

pling coefficients - The effect of several electrical-coupling coefficients among SCs and

GoCs is evaluated. For each coupling site in this network diagram, the obtained GrC ac-

tivity is represented versus the inter-input-train time. (a) Electrical coupling between SCs.

(b) Electrical coupling between GoCs.
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activity of GrCs is avoided (see Figures 3.9a and 3.11a). This may be actu-

ally achieved through long-term synaptic plasticity in the form of LTP and LTD

revealed experimentally at the MF → GrC relay [14, 96, 247].

2. The feed-forward inhibitory loop. High weights in the MF → GoC (2-5nS) and

GoC → GrC (0.5 to 5nS) connection facilitate coincidence detection (Figures

3.9b and 3.9c). On the other hand, lower synaptic weights in MF → GoC (0.75

to 1.75nS) and GoC → GrC (2 to 10nS) are essential for generating effective

sensitivity rebound (Figures 7B and 7E). Although there is a trade-off between

coincidence detection and time slicing, moderately-low weights allow both prop-

erties to co-exist.

3. The feed-back inhibitory loop. The GrC → GoC connection, or parallel fiber

input to GoCs, allows a large range of weights (1 to 10nS) without substantially

affecting coincidence detection and time slicing (Figures 3.8c and 3.11c). Appar-

ently, the feed-back inhibitory loop is poorly effective in this configuration; due to

its delay, it operates when the feed-forward pathway has already caused intense

inhibition.

4. The feed-back dis-inhibitory loop. The GrC → SC and SC → GoC connections

control the sensitivity rebound and are only important for time slicing (Figures

3.11f and 3.11g). Over a range of weight values (GrC → SC 0.2 to 0.6nS and

SC → GoC 0.2 to 1.5nS), the feed-back dis-inhibitory loop allows effective coin-

cidence detection. This loop, as well as the MF → GrC synapse, may therefore

undergo long-term synaptic plasticity without compromising other temporal as-

pects of network activity.

3.4.4 Oscillations during Protracted Stimulation

In previous works, such as [185], the granular layer was proposed as a completely syn-

chronous system where both GrCs and GoCs showed periodic and correlated activity.

This behavior has been reproduced using our network model. In that previous work, dif-

ferent factors were proven to be very influential in order to achieve activity oscillations:
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Figure 3.13: Network connection diagram and main weights involved in coin-

cidence detection and sensitivity rebound - The most influential connection weights

in coincidence detection (MF → GoC → GrC) and the connections which are significant

to support the time-slicing capability (GrC → SC → GoC → GrC) are indicated.

(i) high weights in GoC → GrC connections, (ii) medium weights in GrC → GoC con-

nections, (iii) strong parallel fiber connections to GoC in relation to MF connections,

and (iv) high MF firing rates.

If the input is repeated or maintained, the activity pauses (caused by the feed-

back inhibitory loop MF → GrC → GoC → GrC) may lead to oscillations at a

certain preferred resonant frequency whose period corresponds approximately to the

sum of the permissive time window and the post-transmission silent-pause: this is

what we call resonance working hypothesis (Figures 3.7b). The resonant period should

be compatible with the reaction time of the circuit, which is determined by the cell time

constants (Table 3.1: GrC 10ms, GoC 20ms, SC 16ms) and by the inhibitory synaptic

time constant (Table 3.1: GoC-GrC 10ms). Rebound excitation peaks occur at 40ms

and are up to 55ms approximately, accounting for frequencies in the β/γ range (Figure

3.11).

In order to prove the resonance working hypothesis, we have carried out a set

of simulations in which the network was driven by random MF activity at different

frequencies from 1Hz to 120Hz per cell. Following this stimulation through the MFs,

the network activity showed coherent oscillations. These oscillations have never been

easily measured in single GrCs because of their sparse activity, but clearly emerged as

a population activity by means of histograms (Figure 3.14a). These oscillations were

sustained by the GrC → GoC → GrC feed-back loop. However, some synaptic weights
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Figure 3.14: Synchronous activity oscillation during continuous stimulation -

(a) Activity histogram of MF, GrC, GoC, and SC during a maintained random stimulus

with an average frequency of 40 Hz. (b) Autocorrelograms of GrC, GoC, and SC activity

showing coherent oscillations in population activity. (c) Cross-correlograms between GrC,

GoC, and SC responses revealing the driving influence of the GrC activity on the other

cortical neurons.

have been adjusted in order to accomplish those factors indicated in previous works as

good candidates to enhance activity oscillations:

1. The MF → GrC global peak conductance was increased to 6.04nS, and the rela-

tion between NMDA and AMPA transmitter conductance was set to 1.61 [185].

Whereas in sensitivity rebound experiments synchronized trains prevailed over

20Hz input activity (which was considered basal activity), in resonance working

hypothesis experiments, 20Hz activity (or higher-frequency activities) was the

predominant activity (due to the lack of more synchronous trains). Because of

that, a sensitivity enhancement was needed to produce activity oscillations.
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2. The relation between the GrC → GoC and the MF → GoC global peak con-

ductance was increased to 100. In this way, the feed-back loop (MF → GrC →
GoC → GrC) has been strengthened.

Network stimulations were run with different input frequencies in order to quanti-

tatively evaluate the emerging oscillations. Autocorrelograms in Figure 3.14b show the

high correlation index in all cell types in the granular layer (GrCs, GoCs, and SCs).

Moreover, different cell types correlate each other as shown in cross-correlograms in

Figure 3.14c.

For inputs with an average frequency ranging from 1Hz to 120Hz, the spectrogram

analysis revealed output oscillations ranging from about 30Hz to 43Hz (see Figure

3.15a). Another oscillation term emerges from this spectrogram from 65Hz to 90Hz.

This represents harmonic resonant frequencies. A more detailed spectrogram can be

observed in Figure 3.15b, where only 20Hz, 40Hz, and 80Hz-input-activity experiments

have been shown. Both frequency peaks (fundamental and second harmonic) are shown

for each input frequency.
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Figure 3.15: Frequency analysis of activity during continuous stimulation - (a)

Power Spectogram Density (PSD) of GrC activity using different input frequencies (X-

axis). Color code represents the power spectral density (dB/Hz). Note that the lowest

resonance band (from 30 to 43Hz) shows the resonance fundamental frequency and the

highest (from 60 to 86Hz) corresponds to the second harmonic for each input frequency.

(b) Frequency-domain graph using only 20Hz, 40Hz and 80Hz input. Note the different res-

onance frequencies (peak values). (c) Frequency-domain graph of two different simulations

using 20Hz random input and enabling/disabling (0nS synaptic weights) the SC → GoC

connection.

Finally, Figure 3.15c shows the influence of SCs in GrC oscillations when the network

is stimulated with 20Hz random inputs. Although it is not very remarkable, when
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using SCs, the resonance frequencies are slightly higher (from 32Hz without to 33Hz

with SC). This is caused by the inhibition of GoCs, which makes GrCs fire before the

activity pause. However, this factor is nearly negligible in relation with those explored

by [185]. In fact, this influence becomes insignificant when the network is simulated

with higher-frequency inputs.

3.5 Discussion

This chapter shows how synaptic weights at multiple synaptic connections may affect

temporal signal processing in the cerebellar granular layer. This effect on the processing

was demonstrated on a small network scale (4500 GrCs, 27 GoCs, and 300 SCs) and

was visible on the millisecond time scale. Synaptic weights in specific network loops

influenced coincidence detection and time slicing regulating the efficiency of temporal

noise filtering and temporal separation of transmitted spike trains. Due to the specific

time-constants in these loops, the circuit developed β/γ oscillations in response to

continuous inputs.

Coincidence detection is one of the supposed functions of the granular layer [192]

and has recently received experimental support [61, 148]. Our results showed that

coincidence detection was critically regulated by the GoC → GrC inhibitory connec-

tion. When the network was deprived of GoCs, the coincidence detection capabil-

ity vanished. Conversely, high synaptic weights in the feed-forward inhibitory loop

(MF → GoC → GrC) enhanced coincidence detection restricting GrC activity to a

permissive time window with a duration of a few milliseconds. The feed-forward in-

hibitory loop was dominant with respect to the feed-back inhibitory loop, whose effect

was subordinated to extremely low MF → GoC weights. This can be explained by the

delay in the action of the feed-back inhibitory loop, which operated after feed-forward

inhibition had already occurred; thus, parallel-fiber connections and SCs do not seem

to play a relevant role in controlling coincidence. It should also be noted that elec-

trical coupling between GoCs or SCs had almost no impact on coincidence detection,

although it may be important for low-frequency granular layer activity synchronization

[86]. The MF → GrC weights were crucial for coincidence detection, in that the net-

work required more-synchronized input trains when low values of these weights were

used.
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Time slicing in the granular layer network has been predicted on the basis of various

experimental data [59] and has been recently supported by the observation of the effects

of feed-forward inhibition in vitro [150, 190] and in vivo [130]. Our results indicated

that time slicing was regulated by connection weights at granular layer synapses. The

MF → GrC → SC → GoC dis-inhibitory loop proved to be the most important one

by affecting both the sensitivity rebound amplitude and the inter-train interval which

maximizes network activity. Clearly, the action of this feed-forward loop depended on

the GoC activity caused by the feed-forward inhibitory loop; therefore, the two loops

were not totally independent. It should be noted that both GoC electrical coupling

(reported experimentally [86] and SC electrical coupling (observed in the molecular

layer in [189]) were ineffective in enhancing the time slicing observed in our simulations.

However, it could become effective if GoC and SC were less synchronized by the GrC

input.

Although the dynamics of granular layer excitation were consistent with those of

previous models [185, 251], by implementing the SC loop, we have supported a theo-

retical prediction suggesting a new relevant property of the system [59]. Once certain

activity enters into the granular layer, it coactivates the GrC and the GoC. Then, the

inhibitory feed-forward loop can limit the GrC activity within a short time window.

Signals passing though this time window are sent back to the GoC through the parallel

fibers, providing the basis for sustained β/γ oscillations in the presence of continu-

ous inputs [274]. Interestingly, the SC loop blocks the GoC soon thereafter enhancing

GrC responsiveness over the resting level maintained by background activity in the

MF → GoC → GrC loop. It should also be noted that rebound excitability occurred

about 20ms after stimulation, a time at which electrophysiological data show that GoCs

generate a secondary peak response [273]. Therefore, dis-inhibition would not prevent

the GoC from making a second spike, but would rather modulate its probability and

precise time of occurrence.

Oscillations of electrical activity have been observed in the granular layer of the

cerebellum in vivo and in vitro [57, 194, 199, 263]. The emergence of high-frequency

β/γ oscillations in our simulations (Figures 11A and 11B) resembles results obtained

in a previous simulation study of the granular layer network [185]. In actual cells, this

mechanism would be further influenced by intrinsic excitable properties of the GrCs

[64] and GoCs [249, 250]. Moreover, a second preferential oscillation/resonance regime
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may occur in the theta band [116, 166, 215] under the influence of input patterns and

intrinsic neuron properties [251] which have not been considered here. However, it

should be taken into account that some of these groups were recorded their data from

different animal species (rats and monkeys), which could explain the discrepancy in

frequency.

Regulation of synaptic weights along the main MF input pathway (MF → GrC)

was compatible with both coincidence detection and time slicing, and regulation of

synaptic weights in the feed-back dis-inhibitory loop (GrC → SC → GoC) was mostly

relevant for time slicing. Thus, the MF → GrC and GrC → SC → GoC synapses

could be primary sites of plasticity calling for subsequent adaptation in the rest of the

circuit. This adaptation could lead to different working modes depending on the kind

of input activity (synchronized trains over basal activity getting sensitivity rebounds

or only random activity to generate output oscillations). Conversely, the feed-forward

inhibitory loop showed a conflicting regulation of coincidence detection and time slic-

ing and is therefore suited to counter-balance primary changes occurring along the

main input pathway and the feed-back dis-inhibitory loop. A balance between plas-

ticity towards enhacing certain processing properties and homeostasis was envisaged

in a previous model, in which weight changes at the MF → GrC synapse enhanced

information transfer but had to be counter balanced by changes at the GoC → GrC

synapse to preserve sparseness [237]. Finally, the feed-back inhibitory loop was poorly

effective in coincidence detection or time slicing and potential forms of plasticity in this

loop may be involved in fine-tuning the basal activity state of the GoC [234]. There-

fore, learning rules in actual cells may be adapted to satisfy these different network

requirements opening an issue for future biological research.

MF-GrC long-term synaptic plasticity (LTP and LTD) can be readily generated

by specific MF patterns reflecting the rate and duration of afferent bursts [14, 63, 96].

However, the same patterns do not seem to be effective for generating LTP or LTD

at the MF → GoC synapse (Cesana and D’Angelo, unpublished results), which may

therefore take part in different processes of network regulation. Likewise, at the GoC →
GrC synapse, intense bursts induce a reduction of GrCs input resistance by down-

regulating the inward rectifier channels, suggesting a form of homeostatic control [231].

No extensive studies have been performed so far at other synapses in the circuit (e.g.

see [114]), except for a preliminary report showing LTD at the GrC → GoC synapse
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[225]. Therefore, at present, MF-GrC long-term synaptic plasticity (LTP and LTD)

appears as the critical regulatory element in the whole circuit, which may be assisted

by various other forms of plasticity providing the homeostatic balance of the network.

Future experimental investigations will be needed to substantiate this hypothesis.

In previous models [185], some proposed functionalities and features such as the

oscillations of electrical activity were already demonstrated to happen at the cerebel-

lum. In the presented work, more detailed neuron models have been included and the

network topology has been refined including the SC loop which seems to highly influ-

ence the temporal capabilities in the granular layer (but not in the oscillatory state).

Thus, some other expected functionalities of the granular layer (coincidence detection

and time slicing) have been observed.

Other detailed neuron and network models have been recently developed and studied

[251]. In these models, several spatio-temporal properties which have been observed

(center-surround organization, time-windowing, high-pass filtering in response to bursts

of spikes, and coherent oscillations in response to input random activity) corroborate the

initial hypothesis about granular layer processing capabilities. Those spatio-temporal

properties complement the proposed ones on this work.

Our experiments do not corroborate the hypothesis of the cerebellum as a liquid

state machine [196, 288] which were based on statistical properties of the granular layer

connectivity. However, those hypotheses might be able to coexist with the one proposed

in this work as long as spatio-temporal properties of the granular layer could improve

the generation of different states (variable sets of GrCs) at parallel fibers based on

having different input stimuli reaching the MFs.

Essential aspects of the system have been captured by the studied network model.

In this way, permissive GrC time windows compare well to those measured experimen-

tally (4-5 ms in real life [150, 190]). Accordingly, the characteristic period of network

response to persistent random stimuli was in the β/γ frequency range, as predicted by

[185]. Nonetheless, the potential effect of some properties of other neural models on

the granular layer behavior (coincidence detection and time slicing and activity states

induced by patterned theta-frequency inputs) should be assessed in the future [67, 75].

For instance, several voltage-dependent currents are known to enhance bursting while

others can regulate the pattern of discharge during complex input patterns and lead

to forms of cellular oscillation and resonance [64, 187, 249, 250]. In particular, spike
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frequency adaptation in GoCs may allow GrCs to restore a certain excitability favoring

long-burst transmission (e.g. like those seen in vivo: [46, 148, 223]), while specific chan-

nels could enhance post-inhibitory rebounds and activity pauses [250]. Spontaneous

beating in GoC could increase the inhibitory background state and post-inhibitory re-

bound excitation could favor the sensitivity rebound period. The neurotransmitter

spillover can protract GABA-A, AMPA, and NMDA currents maintaining synaptic

response and regulating temporal integration of impulses. Finally, local regulation of

weights in extended networks could create differential processing in neighboring regions

[191, 251].

An additional capability of our system should be taken into account. EDLUT-

implemented models are able to run in real-time [227]. In this way, all these temporal

properties of the granular layer could be directly implemented in a whole functional

system to execute advanced control tasks (or any other tasks involving the cerebellum)

in the framework of neurobotics experiments.

In conclusion, this simulation suggests that coincidence detection and time slicing,

two major features of granular layer function, are markedly and differentially sensitive

to local synaptic weights prompting to experimentally search for long-term plasticity at

various synapses in the circuit. Thus, the cerebellum granular layer, possibly including

SCs, appears to behave as a complex adaptable filter providing the basis for spike

timing and pattern detection in Purkinje cells [59, 79]. It is also possible that β/γ-

band dynamics revealed in vitro and in vivo [57, 110, 199] are generated, at least in part,

in the granular layer. To further investigate these aspects, networks with spike-timing-

dependent plasticity optimizing information transfer [23] and neurons with voltage-

dependent dynamics [40, 208, 251] will be employed using the studied model as the

fundamental building block for a whole EDLUT cerebellar simulator.
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4

Using the cerebellum for

correcting in manipulation tasks

4.1 Abstract

This chapter presents how a simple cerebellum-like architecture can infer corrective

models in the framework of a control task when manipulating objects that significantly

affect the dynamic model of the system. The main motivation of this work is to evalu-

ate a simplified bio-mimetic approach in the framework of a manipulation task. More

concretely, this work focuses on how the model inference process takes place within a

feedforward control loop based on the cerebellar structure and on how these internal

models are built up by means of biologically plausible synaptic adaptation mechanisms.

This kind of investigations may provide clues about how biology achieves accurate con-

trol of non-stiff-joint robot with low-power actuators which involve controlling systems

with high inertial components. This work also studies how a basic temporal-correlation

kernel including specific long-term depression (LTD) and a non-specific manteined long-

term potentiation (LTP) at parallel fiber-Purkinje cell synapses can effectively infer

corrective models. We evaluate how this spike-timing-dependent plasticity correlates

sensorimotor activity arriving through the parallel fibers with teaching signals (depen-

dent on error estimates) arriving through the climbing fibers from the inferior olive.

Therefore this chapter addresses the study of how these LTD and LTP components

need to be well balanced with each other to achieve accurate learning. This is of in-

terest to evaluate the relevant role of homeostatic mechanisms in biological systems
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where adaptation occurs in a distributed manner. Furthermore, we illustrate how the

temporal-correlation kernel can also work in the presence of transmission delays in

sensorimotor pathways. We use a cerebellum-like spiking neural network which stores

the corrective models as well-structured weight patterns distributed among the parallel

fibers to Purkinje cell connections.

In addition to this, we have evaluated a way in which a cerebellar-like structure

can store a model in the granular and molecular layers. Furthermore, we study how its

microstructure and input representations (context labels and sensorimotor signals) can

efficiently support model abstraction towards delivering accurate corrective torque val-

ues for increasing precision during different-object manipulation. We also describe how

the explicit (object-related input labels) and implicit state input representations (sen-

sorimotor signals) complement each other to better handle different models and allow

interpolation between two already stored models. This facilitates accurate corrections

during manipulations of new objects taking advantage of already stored models.

4.2 Introduction: The problem of manipulation tasks

Controlling fast non-stiff-joint robots accurately with low power actuators is a difficult

task which involves high inertia. Biological systems are, in fact, non-stiff-joint plants

driven with relatively low-power actuators. However, in this case, control schemes

require building accurate kinematic and dynamic models (dynamic models would not

be required in the case of very-stiff-joint robots with inappreciable inertia). Even if

the basic dynamic model is very accurate, manipulating tools and objects will affect

this base model. This will lead to significant distortions along the desired movements,

affecting the final accuracy. Therefore, these systems require adaptive modules for

tuning the corrective models to specific object or tool manipulation.

This challenge has been smartly solved by the biological systems by using the cere-

bellum as a force, stiffness, and timing control machine in every human movement. The

cerebellar cortex performs a broad role in different key cognitive functions [170]. Three

different layers constitute the cerebellar cortex: the granular layer, the molecular layer,

and finally, the Purkinje layer. The cerebellar cortex seems to be well structured into

microzones [79] related to a specific somatotopic organization in sensor and actuator ar-

eas. The human cerebellum involves about 10 million Purkinje cells receiving excitatory
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inputs from parallel fibers (150,000 excitatory synapses at each Purkinje cell). Each

parallel fiber synapses on about 200 Purkinje cells; these parallel fibers are granule cell

axons. These granule cells are excited by mossy fibers (with afferent connections from

the spinal cord, with sensory and motor estimates). Each Purkinje cell receives further

excitatory synapses from one single climbing fiber. This connection is so strong that

the activity from a single climbing fiber can drive the Purkinje cell to fire [149]. These

spikes from the Purkinje cells generated by climbing fibers are called complex spikes,

while the Purkinje cell spikes generated by the activity received from the parallel fibers

are called simple spikes. Basket cells and stellate cells, being activated by parallel fiber

afferents, can inhibit Purkinje cells. Finally, Golgi cells receive excitatory input from

parallel fibers, mossy fibers, and climbing fibers, and inhibit granule cells. The output

of a Purkinje cell is an inhibitory signal to the deep cerebellar nuclei [149](Fig. 4.1).

Granule cells and Purkinje cells play an important role in pattern recognition [216]. We

can assume that the granular layer adaptation mechanism is essentially unsupervised

[238] towards enhancing information transmission. In this layer, an efficient recoding of

mossy fiber activity takes place improving the learning capability in subsequent stages

(granular cell-Purkinje cell synapse). The cerebellum seems to play a crucial role in

model inference within manipulation tasks but the way this is supported by actual

network topologies, cells, and adaptation properties is an open issue.

We have addressed the study of how this model inference task can be achieved

in a local and distributed manner within a basic cerebellum-like architecture based

on spiking neurons. Furthermore, we evaluate how spike-timing-dependent plasticity

(STDP) provides an efficient learning rule for this task. We do this by using a simple

specific temporal-correlation kernel (LTD) and a non-specific maintained compensat-

ing LTP as the adaptation mechanism at the parallel fiber (PF)-Purkinje cell (PC)

synapses. We explore how the LTD and LTP components of this learning rule need

to be well balanced to achieve an acceptable performance. Although different sys-

tems that potentially compensate transmission delays have been proposed [193, 254],

in this chapter, we explicitly avoid compensating them. The correlation kernel is able

to correlate sensorimotor activity with error estimates without explicitly taking into

account the transmission delays. This inferred model is therefore trajectory specific.

By means of a certain correlation kernel the effect of several input spikes on plasticity

is accumulated in a reduced number of variables, without the necessity of storing spike
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Figure 4.1: Scheme of the cerebellum organization - This scheme shows the most

relevant connections within a cerebellar module. The cerebellar module presents different

connections communicating different circuit elements in closed loops. Mossy fibers contact

granule cells (GrC) and DCN cells which, in turn, receive inhibition from the same common

set of Purkinje cells (PC). Moreover, the IO cells project climbing fibers that contact PC

which also are projected to DCN cells [67].

times. This makes this correlation kernel computationally efficient for event-driven

processing engines, as the one used in this chapter, EDLUT [227]. In this work, we

explicitly evaluate how these corrective models are structured in a distributed manner

among different synapses in the PF-PC connection space. The possibility of monitoring

this spatio-temporal learned weight pattern represents a powerful tool to interpret how

models are inferred to enhance the accuracy in a control task. We evaluate how this

learning engine with non-specific (fixed gain) LTP and correlation-based LTD compo-

nents can infer different corrective dynamic models corresponding to the manipulation

of objects of different masses.

In this chapter, we describe how a spiking neural network mimicking a cerebel-

lar micro-structure allows an internal corrective model abstraction. By adopting a

cerebellar-like network, we explore how different sensor representations can be effi-

ciently used for a corrective model abstraction corresponding to different manipulated

objects. When a new object is manipulated and the system detects that significant tra-

jectory errors are being obtained, the abstracted internal model adapts itself to match
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the new model (kinematic and dynamic modifications of a base arm plant model). The

stored models to be used can be selected by explicit object-related input signals (as

specific input patterns generated for instance from the visual sensory pathway) or im-

plicit signals (such as a haptic feedback). This can be seen as a cognitive engine that

abstracts the inherent object features through perception-action loops and relates them

with other incidental properties such as color, shape, etc. The cognition process that

relates both properties is important because it allows the inference of inherent proper-

ties just by activating explicit perceived primitives making possible to build up models

of the environment that describe how it will react when interacting with it. To better il-

lustrate this issue, we have simplified the cerebellum architecture. Through this simple

cerebellar structure, we have monitored how the weight’s space adapts to a distributed

stable model that depends on the basic network topology, the target trajectory, and

model deviations.

Control schemes of biological systems must cope with significant sensorimotor delays

(100 ms approximately) [40, 224, 271]. Furthermore, actuators are very efficient but

have a limited power and have to deal with viscoelastic elements. In order to deal

with all these issues, biology has evolved efficient model inference engines to facilitate

adaptive and accurate control of arms and hands [132, 153]. A wide range of studies

have proven the crucial role of the cerebellum in delivering accurate correcting motor

actions to achieve high precision movements even when manipulating tools or objects

(whose mass or moment of inertia significantly affects the base dynamic models of

the arm-hand) [160, 197]. For this purpose, the cerebellum structure needs to infer

the dynamics model of the tool or object under manipulation [284] and store it in a

structured way that allows an efficient retrieval of corrective actions when manipulating

this item. There are scientific evidences of synaptic plasticity at different sites of the

cerebellum and the sensorimotor pathway. The synaptic connection between PFs and

PCs seems to have a significant impact on the role of inferring models of sensorimotor

correlations for delivering accurate corrective commands during control tasks in most

cerebellar models [9, 77, 137]. Furthermore, the adaptation at this site seems to be

driven by the activity coming from the inferior olive (IO) and by the way this activity

correlates with the activity received through the PFs. Within a cerebellar-like cell-

based structure, the corrective model is inferred in a distributed way among synapses.
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Furthermore, this scheme based on distributed cell populations allows several models

to be inferred in a non destructive way by selecting a specific population each time.

The IO is an important paracerebellar center whose functional role is still an open

issue [67, 74, 141, 142, 195, 238]. Different research groups have studied its potential

role in delivering a teaching signal during accurate movements [136, 138, 236, 244].The

IO is the only source of cerebellar climbing fibers (CFs) which target the Purkinje cells

(PC). Each PC receives a single CF which massively connects with this single neuron

strongly driving its activity. When a spike of the IO reaches its target PC, the Purkinje

cell fires a complex spike. Each CF connects approximately with ten PCs. Nevertheless,

the IO fires at a very low frequency (between 1–10 Hz, average 1 Hz) and therefore, the

amount of spikes coming from the CFs is almost negligible compared to the activity

of the PCs generated by the parallel fibers (simple spikes, firing at frequencies over 40

Hz)) [21, 97, 222, 246].

Neurophysiologic studies have revealed that there are many adaptation mechanisms

at the cerebellum. Each of them may have a specific purpose (segmentation, maximiza-

tion of information transference, correlation of sensorimotor signals, etc.) [65, 154]. In

particular, the activity of the IO has a strong impact on the PF-PC synaptic adapta-

tion [114]. The adaptation of these synapses mediated by this activity seems to play

a crucial role in correlating the sensorimotor activity with a teaching signal (arriving

from the IO) [9, 103, 137, 192]. This teaching signal can be seen as an intentional signal

that highlights, in time domain, the accuracy of the movement that is being performed.

As proposed in [41, 252], this signal may be related to the error during a movement.

But since the IO is only capable of very low frequency output spikes (typically, output

activity between 1 and 10 Hz), it does not encode the error quantity accurately in

only one movement repetition, but rather provides a progressive estimate. Therefore,

during repetitions of movements, its statistical representation may reproduce the error

evolution more accurately [168, 236, 283] and thus, it can be a useful guide towards

efficient error reduction to achieve accurate movements.

In the last decades, neuronal network simulators have markedly evolved, achieving

to play a major role in neurophysiologic studies. New systems (such as the EDLUT

simulation environment commented in chapter 2) allow the simulation of detailed cell

models in the framework of large-scale networks. One of the main advantages of having

this kind of tools is the the capability of testing functional hypotheses of biological
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structures having a full control of the parameters involved in the experiment. Thus,

jointly with behavioral studies with animal species (rats, monkeys or even humans),

simulation works can help to further understand the factors which influence the accurate

realization of complex tasks. Concretely, in this chapter, we present a cerebellar-like

architecture which is able to accurately carry out fast trajectories by using non-stiff-

joint robots and we study the influence of the synaptic plasticity parameters at the

parallel fibers and the sensor information convergence at the granular layer.

The working hypothesis and methodology of this work can be briefly described as

follows:

• We address a biologically relevant task which consists in an accurate manipulation

of objects which affect a base (kinematic and dynamic) model of the base plant

using low power actuators.

• We define and implement a spiking-neuron based cerebellum model to evaluate

how different properties of the cerebellar model affect the functional performance

of the system.

It is important to remark that my personal contribution has been focused on the

implementation of the spiking neural cerebellar-like network (neuron models, network

topology, activity rates, parameter tuning, etc), while the actual control loop and

interfaces with the robot (sensorimotor signals and errors) have been worked out by

Niceto Luque.

4.2.1 The state of the art: functional models of the cerebellum

Since the earliest studies about the Central Nervous System, the cerebellum has re-

ceived an important part of the neuroscientist community attention. Traditionally, the

cerebellum has been reported to play an important role in motor control tasks [214].

However, in the last years, several studies have revealed that the cerebellum could be

involved in some other cognitive functionalities, such as attention [109] or language

[119], and probably some emotional ones, such as regulating fear or pleasure responses

[282].

Although due to the symptoms of different diseases related to cerebellum this in-

fluence has become evident, the way in which the cerebellum can perform these tasks
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remains unclear. Several working models have been proposed in the last years with

the target of explaining how the human motor system can achieve such high perfor-

mances. Different works at the literature focus on specific properties of the cerebellum

such as internal-clock-like behaviour, signal processing capabilities at different layers,

functional abstractions as adaptive filters within the system, etc. This section tries to

relate these different models and integrate them into a functional study of the cerebel-

lum model. It evaluates whether these different properties can co-exist or are supported

by complementary cell or network features.

The biological systems have not been engineered, they have evolved through millions

of years. This makes the system analysis difficult since many functional properties may

be distributed and supported by cell, network or adaptation mechanisms complemen-

tary. One of the challenges in these years is the integration of different functional models

or hypothesis, and their contrasted study against realistic models of the biological sys-

tems. This will reveal how different cell and network features support complementary

and in a distributed way functional properties. This review represents an integration

effort which relates specific functional hypotheses such as internal clock and system

adaptation (by means of adaptive filters) with a biologically realistic cerebellar model.

Though this has been usually discussed in the original works in which the different

working hypothesis are proposed, this review allows to evaluate them conjointly in an

integrative manner.

It is particularly interesting to integrate hypothesis related with spatio-temporal

processing (such as adaptive filters based models) and temporal properties of the net-

work (such as resonance frequencies, time window sensitivity, internal clocks) and how

they take place in a biologically realistic model. Some of these models such as the

internal clock based on random activity sequences (at the granular layer) may seem

conflicting with the adaptive filter models in which the granular layer delivers well

structured information about sensorimotor complexes. In this section, we discuss how

these different models and working hypothesis may co-exist and be supported by bio-

logically realistic properties of cells and system topology.

Furthermore, there has also been an intense debate in the scientific community

about the neural code itself, whether it is based on firing rates (encoding analog signals)

or if it is related with single events (spike timing encoding) or hybrid models (such as

rank order coding, in which the first spikes encode a major amount of information) or
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even models in which single spike times and cell stochasticity are used to sample analog

signals [168, 238]. Interestingly enough, the different functional properties discussed in

this review are supported by different neural codes, that seem to be compatible among

themselves.

In this section, we will separately analyze three concrete models which represent

the different perspectives from which neural systems can emerge:

• The model first proposed by Fujita [94] and the subsequent studies by Dean and

Porrill [79]. This general model explains the cerebellum as an adaptive filter

capable of correlating input signals and corresponding desired output signals by

means of the signal decomposition into its frequency components at the granular

layer. This model can correspond to an engineering point of view (signal filtering),

although it has been widely based on neuro-physiological evidences.

• The second studied model is strongly based in neuro-physiological studies. This

functional model, firstly proposed by Maex and De Schutter [185], develops a

granular layer which generates synchronous output activity at the parallel fibers.

Later, this hypothesis has been further developed including some others ex-

perimentally inspired capabilities such as center-surround organization, time-

windowing, high-pass filtering in response to spike bursts and coherent oscilla-

tions in response to diffuse random activity [251] (as we have deeply discussed in

chapter 3).

• Thirdly, we explain the functional model proposed by Yamazaki and Tanaka

[288] focused on how the cerebellum can inherently embed internal clock signals.

Following this model, the granular layer generates very long sequences of random

active neuron populations but without recurrence after the occurrence of an initial

input event. This long activity series can represent the passage of time (POT).

On this way, the granular layer can be seen as a liquid state machine [183]. This

model emerged from the attempt of implementing a functional model which could

successfully perform the eyelid conditioning task.

Finally, we evaluate which parts of each model can coexist based on different com-

plementary neural or network topologies or which ones are conflicting with each other.

115



4. USING THE CEREBELLUM FOR CORRECTING IN
MANIPULATION TASKS

4.2.1.1 The cerebellum as an adaptive filter

In order to understand the cerebellum as an adaptive filter, firstly we may focus on

what is meant with the terms adaptive and filter. The concept of filter involves a trans-

formation between an input and its corresponding output according to some rules to

achieve a specific goal. In our daily routine a common activity, such as running, gener-

ates tons of information from different sources (very high dimension sensor and motor

signals). This amount of information is collected by the central nervous system (CNS).

The CNS deals with incoming information from the visual cortex, auditory signals (we

can hear the footsteps), the surrounding environment sounds, even some traffic claxons,

and propioceptive information from muscles, joints, and tendons. The CNS filters and

structures all this information allowing only the most relevant information related to

the task under execution (running) to be considered. Once we learn to run, we are

unconscientiously able to filter the information to keep on running in a flat surface but,

what happen when the surface is plenty of rocks and holes in a hill?. The previous

running acquired experience is not applicable directly in an autonomous way, we need

to modify the way we run according to the newest sensorial incoming information, we

have to adapt ourselves.

Adaptive filters as cerebellar functional basis was firstly proposed by Maar-Albus

[9, 192]. It was a response coming from control theory towards a better understanding

of the unclear biological control mechanims taking place in a distributed way at the

CNS. It was a successful attempt to apply a very well known field (such as control

theories and adaptive filters) to as reverse engineering effort towards understading the

functional properties of the cerebellum [94].

Adaptive filters present parameters which can be self-adjusted to modify the output

form. The input signal is decomposed into component signals by means of a set of filters

with different spatio-temporal properties. Filter set outputs are weighted and summed

up to obtain the desired output. In the work of Marr-Albus it was proposed how

the self-adjustment can be driven by a learning rule consistent with the well known

Hebbian covariance rule [239]. The learning rule modifies the weights according to the

relation between the corresponding component signal and the teaching signal. This is

called the Analysis-Synthesis filter model proposed by Dean and Porril [77, 79]. The

system analyses and separates the frequency components of the input signal, correlates
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these individual components and the system error and is able to synthesize (through

local adaptation at the parallel fibers) the appropriate filter responses towards a desired

output.

To establish a comparison between this Analysis-Synthesis filter model and the

cerebellar microcircuitry the reader is referred to Figure 4.2.

(a) Cerebellar Module (b) Adaptive Filter

Figure 4.2: The most relevant connections within a cerebellar module and in

relation with an adaptive filter model - (a)The cerebellar module presents different

connections communicating different circuit elements in closed loops. Mossy fibers (MFs)

contact granule cells (GrC) and Deep Cerebellar Nuclei (DCN) cells which, in turn, receive

inhibition from the same common set of Purkinje cells (PC). Moreover, the IO cells project

climbing fibers that contact PC which also are projected to DCN cells. (b)Filter inputs

are assumed to be delivered as firing rate through the MFs. These incoming inputs are

conveyed by GrC into parallel fibers. The component weights act as the synapses made

by parallel fibers on PCs. PCs add the component weights signals obtaining the output.

The correlation between climbing-fiber inputs and parallel fiber climbing is used by the

correlation learning law, the strength of the synapse is decreased (Long Term Depression,

LTD) if the correlation (with the error signal) is negative and it is increased (Long Term

Potentiation, LTP) when the correlation is positive.

Climbing fiber and teaching signal It is well known that climbing fibers carry

information from various sources (spinal cord, vestibular system, red nucleus, sensory

and motor cortices,etc.). Within the adaptive filter, the climbing fiber activation is

thought to work as a motor error signal sent to the cerebellum. Although recent

117



4. USING THE CEREBELLUM FOR CORRECTING IN
MANIPULATION TASKS

studies revealed this is an important signal for motor timing, the way in which the

error is translated into a climbing fiber signal is still an open issue [22, 74, 102, 281]. In

the very first approach to cerebellum as an adaptive filter made by Fujita it was assumed

that the climbing fiber response acted as a teacher signal in which its variable impulse

rate was given by the difference between the output signal and a desired response.

Other related works, such as the contributions of Schweighoffer [236, 237, 238] further

study how this error estimation can be sampled with the low rate from the Inferior

Olive (1–10 Hz) studying the viability of chaotic sampling approach. The weights

are adjusted increasing or decreasing iteratively their values in order to obtain the

desired output signal, if the correlation between the error signal (climbing fiber) and

the component weights (mimicking the synapses made by parallel fibers on PCs) was

positive the weight was increased; otherwise it was decreased. Fujita adopts a similar

adaptation mechanism towards the reduction of the error. Although this approach does

not discuss how biologically plausible it is, taking into account specific issues such as

climbing fibers low rate, it is an inspiring source which is used in different applications

[24, 181, 213]. Fujita’s approach has been evolved along last decade [77, 78, 79] but

not much effort has been done to relate the model with actual biological plausibility of

different cell and network properties observed in biological systems.

Granular layer scheme In order to understand a functional scheme of this theory

different general assumptions need to be done:

• Golgi cells act as leaky integrators. According to discharge pattern observations

[121] it is assumed that Golgi cells act as temporal filters, with a transfer function

given by G(s) = K
1+Ts

a low pass filter in which K > 0 represents the Laplace

transform of complex frequency and T represents the cut-off period (the inverse

of the cut-off frequency). That means Golgi cells, in this model, work as leaky

integrator modules with a time constant T on the order of several seconds. Due to

the feedback inhibitory loop (Granule cells→Golgi cells→Granule cells), a similar

activity pattern can be expected at the corresponding parallel fiber. That means

that we obtain banks of low pass filters that respond to different ranges of frequen-

cies. Their output is convoluted with different weights (parallel fiber→Purkinje

cell synaptic weights are adapted according to a teaching signal driven by the
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error). In this way, the global response is a weighted sum of different frequency

components of the system input signal.

• Adaptive filter breaks down the input signal into different components (supposed

to be done at the granular layer [33, 201]), ensuring a diversification in parallel

fiber signals. This diversification is a phase diversification; this cerebellum model

uses spikes as simple activity estimators (rate coding).

• Identical mossy fiber input signals should hit onto identical Golgi-Granule cell

areas. This is a controversial point. Although in [78] this fact is justified by means

of biological records, until nowadays, multiple recording of Granule activity has

been a troublesome task, and the issue of neural code at the granular layer is still

open. There is no a consensus along adaptive filter cerebellum theory [77, 78, 79,

94] on how the mossy fiber codification is done. Mossy fiber inputs are treated as

signals given by transducers. Thus, transmission information spike theory [27, 90]

is not taken into account; interspike/intraspike distance [26], population neural

coding [90, 285] or first spike information [26] are not included in the general

adaptive filter model.

Purkinje cells Finally, the output signals from granular layer are conveyed to Purk-

inje cells. The connection pathways to purkinje cells are simplified, only the direct

synaptic contact PF/PC is represented as an excitatory connection and an inhibitory

interneuron per Purkinje is responsible of the negative contribution to PCs. Both

contributions are summed up into the final system output.

4.2.1.2 The cerebellum as a synchronous system

In 1998, Reinoud Maex and Erik De Schutter published their granular layer simulation

model [185]. This model was composed of Golgi cells, granule cells and mossy fibers

following an structure based in physiological findings. Their simulations concluded that

the populations of both Golgi and granule cells became entrained in a single synchronous

oscillation as the response to random mossy fiber stimulation. These oscillations showed

frequencies ranged from 10 to 40Hz depending on the average input frequency, and were

robust over different parameters such as synaptic connection strengths, mossy fiber

firing rates or the spiking propagation speed in parallel fibers. However, following this
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model, desynchronization could happen in the network if one of the next conditions

occurred:

• Very low mossy fiber input activity. The synchronization of activity at parallel

fibers is mainly based on the convergence-divergence ratios at GoC. Thus, a very

low activity rate at the mossy fibers (and therefore at the GrCs) generates almost

no excitation at the GoCs, and in this way, the synchronization path (GrC →
GoC → GrC) is disabled.

• Strong dominant excitation of Golgi cells through mossy fiber synapses (in relation

to parallel fiber synapses). The convergence ratio in GrC → GoC is lower than

the MF → GoC one due to the huge amount of GrCs existing in the cerebellum.

Thus, MF → GoC activity destabilizes the synchronism in the GrC.

• Tonic activation of granule cell inhibition. The tonic inhibition of granule cells

(which emerges from the Cl− current recordings in GrCs of adult rats in vitro

[276]) decremented the level of average activity in the granule cells. Thus, the syn-

chronization elements (the Golgi cells) remain nearly inactive and do not produce

such synchronism.

This model shows some weak points, most of them from the restrictions of the sim-

ulation capabilities in 1998. That is, the network topology oversimplifies some of the

main aspects of the granular layer, such as the glomeruli [146] or the presence of in-

terneurons [19]. Moreover, another point (which could be critical following Yamazaki’s

hypothesis [288]) is the absence of NMDA-receptor channels. In that model [288], the

NMDA receptors plays a major role in the temporal integration of activity specially in

Golgi cells due to the long time constant which is associated to these channels.

All the commented weaknesses were solved in a more detailed model presented

by Solinas et al. in 2010 [251]. This model simulates a realistic large-scale model

of the cerebellar granular layer and verifies some spatio-temporal filtering properties

which previously were found in physiological studies. These filtering properties are the

following ones:

• Center-surround organization.The response to a burst presents a central area

(closer to the stimulated mossy fibers) where the excitation dominates, while
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in the surrounding areas, inhibition dominates because Golgi cell axons reach

a wider area than the glomerulus ramifications. Thus, the excitation-inhibition

diagram presents a mexican-hat shape.

• Time-windowing. This model also presents a variable-in-time response to a burst.

After the stimulation of mossy fibers, the feedback inhibitory loop inhibits the

previously stimulated granule cells. Thus, time-windows when the granule cells

are mainly inhibited follows each excitation time. This effect has been previously

predicted [67] and more detailed studies have been carried out in chapter 3 where

the influence of the synaptic weights has been quantified.

• High-pass filtering in response to spike bursts. In response to different frequency

stimulation, the granular layer shows a high-pass filter behavior with a rapid

growth of the response between 50 and 100Hz.

• Coherent oscillations in response to random input activity. Finally, when the

granular layer is stimulated with continuous random activity, the granule cells

(and the Golgi cells as well) show synchronous oscillations in the theta band.

This hypothesis is the same proposed by Maex and De Schutter in their previously

commented paper [185].

Although this model further develops the previous hypothesis by Maex and De

Schutter, the extensive work in [251] includes the implementation of the glomeru-

lus topology following previously observed patterns, the usage of very detailed mod-

els (Hodking-Huxley gating schemes and synaptic transmission using synaptic vesicle

cycling schemes) and the inclusion of non-previously used receptors such as NMDA,

GABA-A (both a1 and a6) or kainite and the implementation of gap junctions confer

a strong biological base to this model.

However, the main weakness of this model remains in the lack of a functional model

of the whole system. Although this model shows the main granular layer properties

which make the cerebellum being such an important part of the nervous system, it

remains unclear how these properties can be efficiently used to get an efficient way

of signal processing and furthermore, how this processing capabilities can efficiently

resolve specific problems in the framework of relevant and well studied tasks, such as

eyelink conditioning or the movement correction. An important point addressed in
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these characterization works is the study of how the information is encoded at the

granular layer. The encoding mechanism proposed by Brasselet et al. [27] can profit

from the spatio-temporal properties of the granular layer. However, a more detailed

analysis and simulation evidences are still required.

4.2.1.3 The cerebellum embedding an internal clock

The hypothesis of the cerebellum as a liquid state machine emerges from a top-down

strategy as described in [196]. This model (first proposed by Yamazaki and Tanaka

[287]) confers the capability of generating activity patterns without temporal recurrence

to the cerebellum and, in this way, representing the passage of time (POT). Following

this hypothesis, the granular layer may work as an event-driven internal clock triggered

by an initial activity pattern, and in which each time step would be represented with

combinations of active granule cells.

Different performance has been shown in this model [287], such as:

• The sequences of activity are stable against noise, both with respect to input

signals and the connection matrix.

• The activation pattern is reproducible. The internal clock can be reset by only

stimulating the granule cells with a strong transient input signal.

• The sequence of activity becomes faster or slower by only changing different

parameters of the network (such as the Golgi cell’s time constant or the strength

of the inhibition from Golgi cells to granule cells). However, these modifications

in the speed of the clock caused a marked decrease in the accuracy of the model.

Following this model, the cerebellum can be seen as a liquid state machine [183]. As

proposed by Yamazaki and Tanaka [288], the presentation of finite sequences of active

neuron populations without recurrence as the response to different combinations of

binary inputs can be compared to a liquid state machine with high power of information

processing.

Although it seems clear that accurate mechanisms of passage of time exist in the

cerebellum, different implementations have been recently proposed and analysed [290].

However, neuro-physiological findings mostly corroborate the hypothesis that the neural

clock can be carried out by the inhibitory loop composed of granule cells and Golgi cells
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[289]. In this way, the granule cells would excitate the Golgi cells (through the parallel

fibers) as a result of the input stimuli, and subsequently would inhibit some of the

granule cells, and would obtain the transition between active and inactive states which

represents the passage of time.

Finally, a more detailed implementation was presented in [131]. This new version

of the model of the internal clock takes advantage of the inhibitory path composed

by granule cells, stellate cells and purkinje cells and the LTP suggested in the stellate

cells→purkinje cells connection. Moreover, this model incorporates more detailed cell

models (single-compartment Hodgkin-Huxley units in GrC, PC and SC and multi-

compartment Hodgkin-Huxley units in GoC), but the results seem to minimize the role

of the neuron model leaving to the network topology the key properties of the model.

This model especially fits with the problem of the Pavlovian eyelid conditioning.

In this experiment, a conditional stimulus (CS) is presented a certain time before an

unconditional stimulus (US). Typically, a tone is used as a CS, and an air puff directed

to one eye as the US. After repeating this training for some iterations, the subject

learns to close its eye (called conditioned response, CR) some time after the CS and

just before the air puff reaches the eye. The time between the CS and the US usually is

called the interstimulus interval (ISI). The resolution of the problem of the Pavlovian

eyelid conditioning implies the ability of accurately estimating the passage-of-time from

the CS to the US. Thus, this system, in conjunction with the US signal (which reaches

the Purkinje cells through the climbing fibers) and the presence of long-term depression

(LTD) of parallel fiber terminals at Purkinje cells [135], is able to successfully correlate

the US occurrence with the elapsed time since the CS onset.

Even though this simple model successfully resolves the problem of the eyelid con-

ditioning, some points remain unclear. First, this model has never been put into

practice with more difficult problems such as coordination of locomotor movements

in which the cerebellum is involved according to experimental and clinical observa-

tions [91, 128, 129, 180]. The eyelid conditioning solution implies the correlation of

the inter-stimulus interval and the US, which is carried out by the LTD in the par-

allel fiber connections. However, in this problem the output of the cerebellum (deep

cerebellar nuclei cells) could be considered bistable, because only two different states

can be presented (active DCN cells representing closed eyelid or inactive representing

open eyelid). In other motor tasks, such as target reaching or fast ballistic movements,
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a continuous in time and value correction is required in order to complete the desired

trajectory. Furthermore, different sensory and contextual information feedback (cur-

rent position, position error, information related to the physical characteristics of the

system, etc.) may help to improve the performance [40, 182] (further details about

these developments can be found in chapter 4 of this document). The way in which the

proposed model of POT at the granular layer may take advantage of all this information

needs to be investigated.

The model proposed by Yamazaki and Tanaka concludes a cerebellar circuit com-

posed of two different subcircuits [288]. The first one (where granule cells, Golgi cells

and mossy fibers are located) represents a liquid state machine, and generates non-

recurrent sequences of activity. The second one (where mossy fibers and cerebellar nu-

cleus cells are located) represents a simple perceptron. Both circuits receive a teaching

signal from the inferior olive. This signal carries the activity generated by the US (the

air puff hitting in the open eye) and supervises the input-output relationship. However,

there is no agreement in the neuroscientific community around the kind of signal which

the inferior olive carries. On one hand, several authors defend that the climbing fibbers

could carry teaching signals which encode the error of the movement or conditioned

response [41, 288]. On the other hand, physiological studies have showed very low firing

rates; in both anesthetized and awake animals, olivary neurons discharge either a single

spike or a burst of spikes (2–5 spikes with an interspike interval of 2–3 milliseconds)

about once or twice per second [15, 16, 54]. Thus, it seems unlikely that the climbing

fibers signals would encode any kind of error-related information. Nevertheless, there

are also models [168, 238] related to how low rate sampling of error signals may take

place at the Inferior Olive. Furthermore, physiological recordings showing synchronous

and rhythmic firing in climbing fibers seem to reject the representation of the error

signal.

Another point which has not been included in the Yamazaki’s model is the synchro-

nism in the parallel fiber activity. As discussed in section 4.2.1.2, several simulation and

physiological studies have shown that the activity at parallel fibers (and GoCs as well)

could follow rhythmic patterns due to the convergence-divergence ratios at granular

layer [185]. Although the author of this model points out the lack of NMDA (N-methyl

D-aspartate) channels as the determinant cause [289], recent simulations have reported

synchronism in both granule cells and Golgi cells even by using NMDA receptors [251].
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4.2.1.4 Discussion

In this section, we have analyzed three of the most important functional hypotheses

of the granular layer. Every model has been related with different points of view and

experimental data.

The first model, proposed by Fujita [94], and further developed by Dean and Porrill

[77, 78, 79] comes from a engineering point of view. In this way, if we see the cerebellum

as an whole analog system which receives input signals with different frequency com-

ponents, the granular layer would separate the signal components in order to correlate

those components and the error signal coming from the climbing fibers. Therefore, the

cerebellum is able to send a modified analog corrective signal to the deep cerebellar

nuclei. This model can solve most of the tasks where the cerebellum is involved, such as

the eyelid conditioning or the movement correction, but in the other hand, the lack of

realistic implementations of this system, and the suppositions that this model implies

(input signal with frequency components, error correlated with these components,and

the time constants of the Golgi cells as long as several seconds) makes this model still

not well established among the neurophysiology community.

The second model, first proposed by Maex and De Schutter [185], and implemented

in more detail by Solinas et al. [251], is based on the experimental observations in

mammalians. These models build an artificial granular layer following morphologic

characteristics and reproduce some of the previously studied effects (such as the center-

surround activity organization, time-windowing, high-pass filtering in response to spike

bursts and coherent oscillations in response to random input activity). The glomeruli

topology deserves an special mention due to the major role in the spatial organization

of the activity in the granular layer. Although this model fully fits from a neurophys-

iological point of view, yet its application in the context of a whole cerebellum model

and a problem to be solved remains unclear.

The third model, proposed by Yamazaki and Tanaka [287, 288, 290], presents a

third perspective. This model is created and evaluated in the framework of a defined

problem (the Pavlovian eyelid conditioning), but taking into account the restrictions

which the experimental studies impose. Therefore, following this model, the granular

layer can behave as an internal clock by means of the generation of activity patterns

without temporal recurrence at the parallel fibers. In the next stage, the teaching
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signal (the unconditioned stimulus) can correlate the stimulus with the parallel fiber

activity (the combination of active fibers at the same time than the US). In this way,

this model can be considered a primary application of the biological findings to the

resolution of a real problem, but even though this is efficiently solved, some points have

not been solved yet, such as the previously mentioned (the type of the signals reaching

the cerebellum through the climbing fibers, the random input activity in mossy fibers,

or the applicability of this model to a more complex task as the target reaching or

movement correction).

But could this three models be compatible? Or are they necessarily opposed? In

a first impression, the three models are not fully compatible, but some features might

be able to work together in an integrative manner. For example, we could design a

system where the passage of time could be represented by activity patterns without

temporal recurrence at the parallel fibers, but this system should also improve the

separation of the states by means of alternation of mainly active and mainly inactive

states synchronized in the cerebellum (different levels of sensitivity). This could be

applied to more complex motor control problems (than the traditionally used eyelid

experiments).

Finally, this review highlights the importance of the multidisciplinary studies where

both biology and engineering are involved. While biologists have studied and proposed

very detailed models where their experiments are fully reflected and layer property

characterization is specifically addressed, yet systems are not thought to carry out spe-

cific tasks at a system level. On the other hand, engineers have proposed machine-like

systems which try to solve the problems in the same way as engineered electronic sys-

tems, but whose systems miss the accuracy and the performance of biological systems.

Thus, both, neurophysiologists and system engineers need to work in close collabo-

ration with each other towards understanding how specific problems are solved using

neurophysiologically plausible computational principles.

4.3 Materials and methods

For extensive spiking network simulations, we have further developed and used an ad-

vanced Event-Driven simulator based on LookUp Tables [4, 227, 228] (for more infor-

mation about development related with these experiments, we recommend the chapter
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2 in this document). EDLUT is an open-source tool which allows the user precom-

piling the response of a predefined cell model (whose dynamics are driven by a set of

differential equations) into lookup tables. Then, complex network simulations can be

performed without requiring an intense numerical analysis. In this research, as a first

approximation, neurons were evolved versions of leaky integrate-and-fire neuron models

with the synapses represented as input-driven conductances.

For the experimental work, we have used a biomorphic robot plant, a simulated

LWR (Light-Weight-Robot). This robot has been developed at DLR [34]. The LWR’s

arms are of specific interest for machine-human interactions in unstructured environ-

ments. In these scenarios, the use of low-power actuators prevents potential damage on

humans in case of malfunctioning. Although a real impact on robotic applications is

beyond the scope of this work, the target application scenario of this robotic platform

based on non-stiff low power actuators shares certain characteristics with the daily ma-

nipulation tasks performed by humans. Therefore, we considered this robotic platform

an appropriate tool for validating the cerebellar-based model inference engine under

study.

For the sake of simplicity, in our simulations, we use a simulator of this robot in

which we have fixed some joints to reduce the number of actual joints to three, limiting

the number of degrees of freedom to three.

4.3.1 Training trajectories

The described cerebellar model has been tested in a smooth pursuit task [24, 112, 159].

A target (desired target movement) moves along a repeated trajectory, which is com-

posed of vertical and horizontal sinusoidal components. The target movement describes

the 8-shape trajectories illustrated in Fig. 4.3, whose equations, in angular coordinates,

are given by the following expressions 4.1. We have evaluated the learning capability

performing a goal movement along this target trajectory. Each joint movement in our

task is defined by q1, q2, and q3, respectively.

q1 = A1 · sin(π · t) + C1 (4.1a)

q2 = A2 · sin(π · t+ θ) + C2 (4.1b)

q3 = A3 · sin(π · t+ 2 · θ) + C3 (4.1c)
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This trajectory with the three joints which are moving following sine shapes is

shown in Fig. 4.3. We chose fast movements (one second for the whole target trajec-

tory) to study how inertial components (when manipulating objects) are inferred at

the cerebellar structure. Slow movements would hide changes in the dynamics of the

arm+object model, since they would not have significant impact when performing very

slow movements.

(a) Angular Joint Positions (b) Cartesian Positions (End Arm)

(c) End Arm Position X-Z Axes (d) End Arm Position Y-Z Axes

Figure 4.3: Three joint periodic trajectories describing 8-shape movements in

joint coordinates - (a) Cartesian coordinates of the 8-like trajectory. (b) 3D view of the

8-like trajectory. (c) X and Z-axe representation of this target trajectory. (d) Y and Z-axe

representation of the 8-like target trajectory.

Though for the sake of simplicity, we have used a single 8-like trajectory in each

trial, consecutive eight-like trajectories have also been tested leading to similar results

(provided that the corrective torque values do not get saturated along the global tra-

jectory).
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4.3.2 Control loop. Interfacing the cerebellar model and the robot

simulator

Some studies indicate that the brain may plan and learn to plan the optimal trajectory

in intrinsic coordinates [132, 133, 206, 264]. The CNS (central nervous system) is able to

execute three major tasks: the desired trajectory computation in visual coordinates, the

task-space coordinates translation into body coordinates, and finally, the motor com-

mand generation. In order to deal with variations of the dynamics of the operator-arm,

we have adopted a FEL scheme (Feedback-Error Learning) [156] in conjunction with a

crude inverse dynamic model. In this scheme, the association cortex provides the motor

cortex with the desired trajectory in body coordinates, where the motor command is

calculated using an inverse dynamic arm model. On one hand, the spinocerebellum

- magnocellular red nucleus system provides an internal neural accurate model of the

dynamics of the musculoskeletal system which is learned with practice by sensing the

result of the movement. On the other hand, the cerebrocerebellum - parvocellular red

nucleus system provides a crude internal neural model of the inverse-dynamics of the

musculoskeletal system which is acquired while monitoring the desired trajectory [156].

The crude inverse dynamic model works together with the dynamical model by

updating the motor command by predicting a possible error in the movement. As it

is illustrated in Fig. 4.4, the cerebellar pathways follow a feedforward architecture,

in which only information about sensory consequences of incorrect commands can be

obtained (i.e., the difference between actual and desired joint positions of the arm).

The natural error signal for learning motor commands is the difference between actual

and correct commands, this implies, for example, that if M muscles control N sensor

dimensions involved in a task, then N-sensory errors must be converted into M -motor

errors (MxN complexity). How to use this sensor information to drive motor learning

is the so called distal error problem [112, 219]. In order to overcome this motor error

problem, (the cerebellum in our scheme provides torque corrections) the implemented

spiking cerebellum used an adaptation mechanism described in Section 4.3.3 which can

correlate the actual and desired states towards the generation of accurate corrective

motor commands.

In our model, the cerebellum receives well structured inputs encoding the planned

trajectory. We assume that the errors occurred during the movement are encoded at

the IO and transferred (at low firing rates) to the cerebellum through the climbing
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fibers. We have built a module to translate a small set of signals (encoding the arm’s

desired state) into a sparse cell-based spike-timing representation (spatio-temporal pop-

ulation coding). This module has been implemented using a set of input fibers with

specific receptive fields covering the working range of the different desired state vari-

ables (position and velocity of the different joints). In this way, the robot (analog

domain consisting of trajectory planer, trajectory generator, crude inverse dynamic

arm model, and arm plant (Fig. 4.4)) has been interfaced with the spiking cerebellar

model (spiking domain).

In our control loop, the desired states (positions and velocities) that follow a certain

trajectory are obtained from an inverse kinematic model computed by other brain areas

[206] and then, they are translated into joint coordinates. These desired arm states are

used at each time step by a crude inverse arm dynamics model to compute crude torque

commands which are added to the cerebellum corrective torques. This control loop is

illustrated in Fig. 4.4.

Figure 4.4: System control loop - The adaptive module (cerebellar-like structure)

contributes to the actual torques being received by the crude inverse dynamics robot model

to enhance the accuracy of the movement.

Fig. 4.4 illustrates how the trajectory planner module delivers desired positions

and velocities for a target trajectory. The kinematics module translates the trajectory

Cartesian coordinates into joint coordinates. The crude inverse dynamics arm model

calculates the target torque in each joint which is necessary to roughly follow the target

trajectory. But this crude arm model does not take into account modifications in the

dynamics model due to object manipulation. Thus, if only these torque values are
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considered, the actual trajectory may significantly differ from the desired one. The

adaptive cerebellar component aims at building corrective models to compensate these

deviations, for instance, when manipulating objects.

In Fig. 4.4, the adaptive cerebellar-like structure delivers corrective actions that are

added to compensate deviations in the base dynamics plant model when manipulating

objects. In this forward control loop, the cerebellum receives a teaching error-dependent

signal and the desired arm state so as to produce effective corrective commands. Total

torque is delayed (on account of the biological motor pathways) and supplied to the

robot plant δtotal. The difference between the actual robot trajectory and the desired

one is also delayed δ1,2 and used by the teaching-signal computation module to calculate

the IO activity that is supplied to the cerebellum as a teaching input signal (for the

computation of the cerebellar synaptic weighs). Using this control loop architecture, an

accurate explicit model of the musculoskeletal arm inverse dynamics is not necessary.

The cerebellum can infer corrective models tuned to different tools which may affect

the dynamics of the plant (arm+object).

4.3.3 Spike-based cerebellar model

In order to test the working hypotheses, we have implemented two different oversim-

plified cerebellar models by using the EDLUT simulation environment (see chapter

2):

• In a first approach, we have tested the parameters which influence the learning

at parallel fibers. The cerebellum has been modeled as a system including only

Purkinje cell (PC) and Deep Cerebellar Nuclei (DCN) spiking cell models. The

granular and molecular layers have been simplified by using the Yamazaki’s hy-

pothesis [288]. Following this hypothesis, the granular layer provides random and

non-recurrent spiking states representing the passage-of-time. Since our input ac-

tivity represents different input states (desired positions) by activating different

mossy fibers each time, this activity could properly emulate the working model

of the granular layer (even though several properties such as the sparse coding

or other temporal properties are neglected). Therefore, this abstract cerebellar

model where we fully control the input activity reaching the parallel fibers allow

us the study of the learning characteristics.

131



4. USING THE CEREBELLUM FOR CORRECTING IN
MANIPULATION TASKS

• In a further approach, and as a second stage in the process of designing a more re-

alistic functional cerebellar model, we have built a more complex model including

a simplified version of the granular layer. This model includes only the granule

cells (in addition to the previous model counting with Purkinje and DCN cells)

which detect the coincidence of input spikes in more than one input synapses

(mossy fibers) simultaneously. Thus, this abstract granular layer allows testing

the influence of different input sources reaching coincident granule cells in the

model inference process.

4.3.3.1 First Approach: Studying adaptation at parallel fibers

The proposed cerebellar-like architecture, organized in cerebellar microzones [79] (so-

matotopic arrangement), tries to capture some cerebellum’s functional and topological

features [10, 149].This cerebellum model consists of the following layers (Fig. 4.5)

• Input layer (120 cells). This layer represents a simplification of the mossy and

granular layers of the cerebellum and drives PCs and cells of the deep cerebellar

nuclei (DCN). The goal of this simplification is to facilitate the study of how

the sensorimotor corrective models are stored in adapted weights at the PF-PC

connections. This input layer has been divided into 6 groups of twenty-grouped

cells which carry the desired joint velocity and position information (these de-

sired position and velocity coordinates can be thought as efferent copies of the

motor commands or motor intention); for the propioceptive encoding, 3 groups

of cells encode the desired joint positions (1 group per joint) and the other three

encode the desired joint velocities. The analog position and velocity transforma-

tion into the fiber spike activity is carried out by using overlapping radial basis

functions (RBF) (Fig. 4.6) [17] as receptive fields of the input-variable space, see

Expressions 4.2 (joint-specific angular position).

Imossyi = e
(InputSignal−µi)

2

2σ2

i (4.2a)

τmi
dvi
dt

= −vi(t) +RiImossyi (4.2b)

where 0 < i < n, n represents the size of each mossy group, µi is the mean and

σ the standard deviation of the ith RBF. Related to the cell dynamics, τmi is
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the resting time constant, vi the membrane potential, Imossyi the input current,

and Ri is related to the resting conductance of the membrane. For the sake of

simplicity, in our model, we have not included a more detailed cellular structure

(Golgi cells, interneurons, mossy fibers, etc). We have adopted well structured,

noise free patterns to encode sensorimotor signals to partially embed potential

roles typically performed in the granular layer [66, 67] (such as noise reduction,

pattern separation, etc). Parallel fibers are the output of this layer.

• Inferior olive cells (IO) (48 cells). This layer consists of 6 groups of 8 cells.

It translates the error signals into teaching spikes to the Purkinje cells. The

IO-output carries the teaching signal used for supervised learning (see STDP

section).

• Purkinje cells (PC) (48 cells). They are divided into 6 groups of 8 cells. Each input

cell sends spikes through excitatory connections to PCs, which receive teaching

signals from the IO. The PF-PC synaptic conductances are set to an initial average

value (15nS) at the beginning of the simulation, and are modified by the learning

mechanism during the training process.

• Cells of the Deep Cerebellar Nuclei (DCN) (24 cells). The cerebellum model

output is generated by 6 groups of these cells (2 groups of 4 cells per joint)

whose activity provides corrective torques to the specified arm commands. The

corrective torque of each joint is encoded by a couple of these antagonist groups,

being one group dedicated to compensate positive errors and the other one, to

compensate negative errors. Each neuron group in the DCN receives excitation

from every input layer cell and inhibition from the two corresponding PCs. In

this way, the PC-DCN-IO sub circuit is organized in six microstructures (Fig.

4.5), three for positive joint corrections (one per joint) and three for negative

joint corrections (one per joint).

We have used leaky integrate-and-fire (I&F) neurons with synapses modeled as

variable conductances to simulate Purkinje cells and DCN cells. These models are a

modified version of the Spike-Response Model (SRM) [100]. These synaptic conduc-

tance responses were modeled as decaying exponential functions triggered by input

spikes as stated by Expressions 4.3. Thus, these neuron models account for synaptic

133



4. USING THE CEREBELLUM FOR CORRECTING IN
MANIPULATION TASKS

Figure 4.5: First-approach cerebellum model diagram - Inputs encoding the desired

position and velocity (arm state) are sent (upward arrow) through the input layer which

represents a simplification of the mossy fibers and granular layer. Inputs encoding the error

are sent (upper downward arrow) through the inferior olive (IO). Outputs are provided by

the deep cerebellar nuclei (DCN) (lower downward arrow). The DCN collects activity

from the input layer (excitatory inputs which provide DCN with a basal activity when

an input stimulus is presented) and the Purkinje cells (inhibitory inputs). The DCN

activity represents the corrective torque generated by the cerebellum. This output activity

is transformed into a proper analog torque signal by means of a buffer in which the DCN

activity is accumulated. This activity buffer is used to compute an analog average value

that acts as a corrective torque.

conductance changes (driven by pre-synaptic activity) rather than simply for current

flows, providing an improved description over more basic I&F models. Table 4.1 con-

tains the neuron model parameters of the Purkinje cells and DCN cells.

gexc(t) =

{
0 when t < t0

gexc(t0) · e−
t−t0
τexc when t ≥ t0

(4.3a)

ginh(t) =

{
0 when t < t0

ginh(t0) · e−
t−t0
τinh when t ≥ t0

(4.3b)

Cm
dVm
dt

= gexc(t)(Eexc − Vm) + ginh(t)(Einh − Vm) +Grest(Erest − Vm) (4.3c)
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Figure 4.6: RBF bank encoding cerebellar input signals - Translation from joint-

related analog variables (angular positions and velocities) into spike trains is carried out

using overlapping radial basis functions (RBFs) as receptive fields in the analog domain.

One-dimensional values are transformed into multidimensional current vectors (one for

each RBF). Each current value is integrated using an integrate-and-fire neuron model and

determines the output activity of an input cell of the cerebellum model.

Where gexc and ginh represent the excitatory and inhibitory synaptic conductance

(time constant) of the neuron. τexc and τinh represent the time constants of the exci-

tatory and inhibitory synapses respectively. Synaptic inputs through several synapses

of the same type can simply be recursively summed when updating the total conduc-

tance if they have the same time constants, as indicated in Expression 4.4. Membrane

potential (Vm) is defined through Expression 4.3c depending on the different reverse

potentials and synaptic conductances.

gexc(post−spike)(t) = Gexc,j + gexc(pre−spike)(t) (4.4)
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Purkinje cells DCN cells

Refractory period 2ms 1ms

Membrane capacitance 500pF 2pF

Total excitatory peak conductance 1.3nS·175000syn·10% 1nS·7syn

Total inhibitory peak conductance 3nS·150syn 30nS·1syn

Firing threshold -52mV 40mV

Resting potential -70mV -70mV

Resting conductance 16nS 0.2nS

Mem. pot. time constant (τm) 20ms to 30ms 10ms

Exc. syn. time constant (τexc) 1.2ms 0.5ms

Inh. syn. time constant (τinh) 9.3ms 10ms

Table 4.1: Neuron model parameters for the simulations - These parameters have

been retrieved from [120, 143, 144, 232, 248]. In the table, nS stands for nanosiemens and

syn stands for synapses.

where Gexc,j is the weight of synapse j and a similar relation holds for inhibitory

synapses.

4.3.3.2 Second Approach: Studying information convergence at the gran-

ular layer

In this second approach we have tried to build a more reallistic cerebellum model by

means of including a simplified granular layer. Thus, the proposed cerebellar architec-

ture (Fig. 4.7) consists of the following layers:

• Mossy fibers (MF): Mossy fibers carry both contextual information and sensory

joint information. A mossy fiber is modeled by a leaky I&F neuron, whose input

current is calculated using overlapping radial basis functions (RBF) as receptive

fields in the value space of the input signals.

• Granular layer (1500 cells): This layer represents a simplified cerebellar granular

layer. The information given by mossy fibers is transformed into a sparse repre-

sentation in the granule layer [65]. Each granular cell (GR) has four excitatory

input connections; three of them from randomly chosen joint-related mossy fiber

groups and another one from a context-related mossy fiber. Parallel fibers (PF)

are the output of this layer.
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• Climbing fibers (CF) (48 climbing fibers): This layer is composed of 6 groups of 8

climbing fibers each. It carries the IO output which encodes teaching spike trains

(related to the error) for the supervised learning in the PF-PC connections.

• Purkinje cells (PC) (48 cells): They are divided into 6 groups of 8 cells. Each

GR is connected to 80 percent of the PCs. Each PC receives a single teaching

signal from a CF. PF-PC synaptic conductances are modified by the learning

mechanism during the training process.

• Deep cerebellar nuclei cells (DCN) (24 cells): The cerebellum model output is

generated by 6 groups of these cells. The corrective torque value of each joint

is encoded by a couple of these groups, one group is dedicated to compensate

positive errors (agonist) and the other one is dedicated to compensate negative

errors (antagonist). Each neuron group in the DCN receives excitation from

every MF cell and inhibition from the two corresponding PCs. In this way, the

subcircuit PC-DCN-IO is organized in six microzones; three of them for joint

positive corrections (one per joint) and the other three of them for joint negative

corrections (one per joint). The DCN outputs are added as corrective activity in

the control loop.

Using this cerebellar model, the mossy fibers encode input representation in a rather

specific way and the granular cells integrate information from different mossy fibers.

These characteristics partially embed functional roles of the inhibitory loop driven by

the Golgi cells. Therefore, although Golgi cells have not been explicitly included, part

of their functional roles has been integrated into the system.

Mossy layer configuration in the cerebellar model Different mossy layer con-

figuration models have been proposed in order to improve the cerebellum storage ca-

pability. All of them consist of 120 joint-related fibers;the mossy fiber layer has been

divided into 6 groups of twenty fibers; 3 groups of fibers encoding joint positions (1

group per joint) and the other three, encoding joint velocities.

• EC model. Explicit Context encoding approach (16 context-related fibers plus

120 joint-related fibers); this mossy layer configuration uses the base desired-

proprioceptive configuration adding 16 context-related fibers.The contextual in-

formation is coded by two groups of eight fibers. An external signal (related to
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Figure 4.7: Second-approach cerebellum model diagram - Cerebellum configura-

tion inputs encoding the movement (desired arm states, actual sensorimotor signals and

context-related signals) are sent (upward arrow) through the parallel fibers (PFs). Error-

related inputs are sent (upper downward arrow) through the climbing fibers (CFs). Outputs

are provided by the deep cerebellar nuclei (DCN) cells (lower downward arrow).

the label or any captured property of the object, for instance assuming informa-

tion captured through visual sensory system) feeds these dedicated-eight-grouped

fibers.

• IC model. Implicit Context encoding approach (240 joint-related fibers); the

mossy fiber layer consists of 12 groups of twenty fibers and delivers the actual

and desired joint velocity and position information. It uses the base desired

proprioceptive configuration and adds three groups of fibers encoding actual joint

positions and other three groups encoding actual joint velocities. The implicit

contextual information is conveyed using these six groups of fibers. The actual

position and velocity helps the cerebellum to recognize where and how far from

the ideal (desired) situation it is. These deviations implicitly encode a context-like

representation based on sensorimotor complexes.
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• EC and IC. Explicit and Implicit Context encoding approach (16 context-related

fibers plus 240 joint-related fibers). It uses the base desired-proprioceptive and

incorporates also IC and EC architectural specifications. Thus, this mossy fiber

layer is a combination of the EC and IC models described above.

The main aim of searching a proper mossy layer configuration is to exploit the

capability of the granule layer for generating a sequence of active neuron populations

without recurrence. This sequence is able to efficiently represent the passage of time

(representation of different time passages are related with different input signals). Our

system takes advantage of this spatiotemporal discrimination of input signals for learn-

ing different contexts.

As indicated in section 4.3.3.2, afferent mossy fibers are randomly connected to

granule cells, on average, four mossy fibers [204] per granule cell. When an input signal

pattern arrives at the mossy fibers, a spatiotemporal activity pattern is generated and

the population of active neurons in the granule layer changes in time according to this

received input. In order to evaluate the non-recurrence in this activation train, the

following correlation function (Eq. 4.5) is used [288]:

C(t1, t2) =

∑
i
fi(t1)fi(t2)√∑

i
f2
i (t1)

√∑
i
f2
i (t2)

(4.5)

Where fi corresponds to the instantaneous frequency of the i−th neuron (frequency

measured within a 20ms time window). The numerator calculates the inner product

of the population vector of active neurons at times t1 and t2, and the denominator

normalizes the vector length. C(t1, t2) takes values from 0 to 1; 0 if two vectors are

complementary, 1 if two vectors are identical. To facilitate the production of accurate

corrective terms, different input signals shall generate different spatio-temporal activity

patterns. The following correlation function is used to evaluate this point as indicated

in Equation 4.6.

C(t1, t2) =

∑
i
f

(1)
i (t1)f

(2)
i (t2)√∑

i
f

(1)2
i (t1)

√∑
i
f

(2)2
i (t2)

(4.6)
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Where f
(1)
i and f

(2)
i denote the activities of the i − th neuron at time t under

different input signals (1 and 2 respectively).

The left panels in Figs. 4.8a, 4.8b, and 4.8c show the similarity index using a

t1xt2 matrix within the active granular population at t1 and t2. A wide white band,

surrounding the main diagonal, points out that the index decreases monotonically as

the distance [t1 − t2] increases. That means a one-to-one correspondence between the

active neuron population and time. This implies that a dynamically active neuron

activity changing can represent the passage of time.

(a) EC (b) IC (c) IC&EC

(d) EC (e) IC (f) IC&EC

Figure 4.8: Similarity indices for a spatiotemporal activity between two activ-

ity patterns using EC, IC, and IC&EC configurations - The values of indices are

represented in gray scale; black 0, white 1. Left side panels show a white diagonal band

indicating a proper generation of a time-varying granular activity population. EC presents

a mean gray value of 0.18, IC leads to a mean gray level of 0.101, and IC&EC leads to a

mean gray value of 0.074. Right side panels show similarity indices for two contexts. The

darker the matrix is, the better uncorrelated activity patterns are. EC presents a mean

gray value of 0.024, IC leads to a mean gray value of 0.096, and IC&EC achieves 0.044.

The right panels in Figs. 4.8d, 4.8e, and 4.8f show how different input signals

can be discriminated by different activity patterns. The values of the similarity index

are small suggesting that the two represented activity patterns are independent of

each one. Actual and desired entries of the IC configuration vary during time leading

to a richer codification within a single context, while EC only uses desired entries

varying along the trajectory execution. On the other hand, EC gives a better granular

activity codification between contexts by using its specific contextual signals. IC has
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no specific entries helping to distinguish activity patterns when using two different

contexts. IC&EC takes advantages from both configurations; it uses the context and the

position/velocity entries to produce a better time-varying granular activity population.

4.3.3.3 Spike-Time dependant plasticity

The studied cerebellar model only includes synaptic plasticity at the PF-PC connec-

tions. The changes of the synaptic efficacy for each connection are driven by pre-

synaptic activity (spike-timing-dependent plasticity) and are instantaneous. In our

model, since there are delays in the transmission of joint torque values and joint posi-

tion measurements, the trajectory error measurements (which are used to calculate the

teaching signal) reach the cerebellum with a 100ms delay. This means that the learning

mechanism must adapt to provide corrective torque predictions.

k(t) = e−(t−tpostsynapticspike)sin(t− tpostsynapticspike)20 (4.7)

This plasticity has been implemented including LTD and LTP mechanisms in the

following way:

• LTD produces a synaptic efficacy decrease when a spike from the IO reaches a PC

as indicated in Eq. 4.8a. The amount of efficacy which decreases depends on the

previous activity arrived through the PF (input of the cerebellar model). This

previous activity is convolved with an integral kernel as defined by Eq. 4.7. This

mainly takes into account those PF spikes which arrived 100ms before the IO

spike (see Fig. 6). This correction is facilitated by a time-logged eligibility trace

[20, 24, 159, 258], which takes into account the past activity of the afferent PF.

This trace aims to calculate the correspondence in time between spikes from IO

(error-related activity) and the previous activity of the PF which is supposed to

have provoked this error signal. The eligibility trace idea stems from experimental

evidence showing that a spike in the climbing fiber afferent to a Purkinje cell is

more likely to depress a PF-PC synapse if the corresponding PF has been firing

between 50 and 150 ms before the IO spike (through CF) arrives at the PC

[24, 159].
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• LTP produces a fixed increase in synaptic efficacy each time a spike arrives

through a PF to the corresponding PC as defined by Eq. 4.8b. With this mech-

anism, we capture how an LTD process, according to neurophysiologists studies

[171], can be inverted when the PF stimulation is followed by spikes from the IO

or by a strong depression of the Purkinje cell membrane potential.

LTD.∀i,∆wi = −
∫ IOSpike

− inf
k(t− tIOspike)δGRspike−i(t) dt (4.8a)

LTP.∆wi = α (4.8b)

The strength of these two mechanisms needs to be tuned to complement and com-

pensate each other. These biological LTP-LTD properties at PF-PC synapses have

been tried to be emulated in different fields, i.e. in the adaptive filter [94] theory by

using the heterosynaptic covariance learning rule of Sejnowski [239] or in the adaptive

control theory by using the Least Mean Square learning rule [279]. Different alternative

temporal kernels are shown in Fig. 6. The sharper the integral kernel peak is, the more

precise the learning becomes. On the other hand, this leads us to a slower synaptic

weight adaptation. However, LTP can lead the weight recruitment to be compensated

by future IO activity. This situation drives us to faster synaptic weight saturation

where LTP can hardly carry out the weight recruitment for future IO activity. Af-

ter the main peak in the correlation kernel, a second marginal bump can be seen, as

a consequence of the mathematical model used for modeling the correlation engines.

The chosen mathematical models of the kernel allow accumulative computation in an

event-driven engine, avoiding the necessity of integrating the whole correlation kernel

each time a new spike arrives. Therefore, these correlation models are computationally

efficient in the framework of an event-driven simulation scheme, such as EDLUT [227],

but they suffer from this second marginal peak that can be considered noise in the

weight integration engine. This is indicated in the equations 4.8.

4.3.3.4 The Teaching Signal of the Inferior Olive

The crude inverse dynamics controller generates motor torque values for a rough control,

but the long delays in the control loop prevent the online correction of the trajectory

in a fast reaching task using a classical controller with a continuous feedback. In the
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(a) Learning Kernel Function (b) LTD Amount

Figure 4.9: LTD integral kernel - (a) Representation of a basic integral kernel (xe−x)

which has a rather wide peak that makes PC synaptic weights to decrease more prominently

and a more complex integral kernel (sin(x)20e−x) which has a sharper peak. (b) This plot

shows the amount of LTD at a particular synapse depending on the IO spike arrival time

elapsed since the PF spikes for different integral kernels. The figure includes a comparison

between the basic integral kernel (xe−x) and a more complex integral kernel (sin(x)20e−x)

which has a peak 100ms after the input spike. The PC receives three spikes through a

particular CF at times 0.0, 1, and 1.5s.

studied control model, the trajectory error is used to calculate the teaching signal. This

teaching signal follows Expression 4.9.

εdelayedi = Kpi · εpositioni +Kvi · εvelocityi (4.9a)

εpositioni = (qdesiredi − qreali) · [(t+ tpred)i − ti] (4.9b)

εvelocityi = (q̇desiredi − q̇reali) · [(t+ tpred)i − ti] (4.9c)

Where i = 1, 2, 3...joints, Kpi · εpositioni represents the product of a constant value

(gain) at each joint Kpi and the position error in this joint (difference between desired

joint position and actual joint position (qdesiredi − qreali)). Kvi · εvelocityi represents the

product between a constant value (gain) at each Kvi joint and the velocity error in

this joint (difference between desired joint velocity and actual joint velocity (q̇desiredi −
q̇reali)).

The IO neurons synapse onto the PCs and contribute to drive the plasticity of PF-

PC synapses. These neurons, however, fire at very low rates (less than 10 Hz), which
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appears problematic to capture the high-frequency information of the error signal of the

task being learned. This apparent difficulty may be solved by their irregular or chaotic

firing [153, 157, 168]. This is a very important property, which has the beneficial

consequence of statistically sampling the entire range of the error signal over multiple

trials (see below). Here, we implemented this irregular firing using a Poisson model

[173] for spike generation. The weight adaptation was driven by the activity generated

by the IO, which encoded the teaching signal into a low frequency probabilistic spike

train (from 0 to 10 Hz, average 1 Hz) [168, 238].

We modeled the IO cell responses with probabilistic Poisson processes. Given the

normalized error signal ε(t) and a random number η(t) between 0 and 1, the cell fired a

spike if ε(t) > η(t); otherwise, it remained silent [24]. In this way, on one hand, a single

spike reported accurately timed information regarding the instantaneous error; and on

the other hand, the probabilistic spike sampling of the error ensured that the whole

error region was accurately represented over trials with the cell firing almost 10 spikes

per second. Hence, the error evolution is accurately sampled even at a low frequency

[40]. This firing behavior is similar to the ones obtained in physiological recordings

[168].

LTD and LTP play complementary roles in the model inference process. The long-

term potentiation (LTP) implemented at the PF-PC synapses was a non-associative

weight increase triggered by each input cell spike [171]. The long-term depression (LTD)

was an associative weight decrease triggered by spikes from the inferior olive [136, 138].

This model of LTD uses a temporal kernel, shown in Fig. 4.9a, which correlates each

spike from the IO with the past activity of the parallel fiber [159, 224, 253]. Correlation-

based LTD allows the adjustment of specific PF-PC connections to reduce the error

according to the IO activity. When IO spikes are received, the synaptic weights of the

PF-PC connections are reduced according to the temporal-correlation kernel and to the

activity received through the PF. In this way, we reduce the probability of production

of simple spikes by PC due to the activity coming from the PFs through these specific

connections. Therefore, the IO effectively modulates the spatio-temporal corrective

spike patterns. In this model, a learning state in the cerebellum (PF-PC weights) can

be seen as a bi-dimensional function which relates each PF and PC combination with

their corresponding synaptic weight (Fig. 4.10c). Physiologically, the time-matching

of the desired and actual joint states can be understood by the fact that the trajectory
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error would be detected at the level of the spinal cord, through a direct drive from the

gamma motorneurons to the spinal cord [51].

4.3.4 Quantitative performance evaluation

We have carried out several experiments to evaluate the capability of cerebellar archi-

tecture to select and abstract models using different cerebellar topologies and learning

parameters. In these experiments, objects which significantly affect the dynamics and

kinematics of the base plant model have been manipulated to evaluate the performance

of different cerebellar configurations.

By means of the first cerebellar approach (see paragraph 4.3.3.1) we have studied

the following issues:

1. How LTD and LTP need to be balanced to optimize the adaptation performance.

2. How the temporal-correlation kernel (integral kernel) works even in the presence

of sensorimotor delays.

3. How the same learning mechanism can adapt the system to compensate different

deviations in the basic model dynamics (due to manipulating objects of different

weights).

Finally, using the second cerebellar approach (see paragraph 4.3.3.2) we have also

studied how interpolation/generalization can be naturally done for different plant+object

models which have not been used during the training process. We divided the experi-

ments into the following groups:

1. Cerebellar input configuration including only context-related signals (and desired

arm states) (EC).

2. Cerebellar input configuration including only sensorimotor representation (IC)

(i.e. desired and actual arm states).

3. Cerebellar input configuration including conjointly sensorimotor and context-

related signals. (IC&EC).
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For this purpose, we have used a set of benchmark trajectories that we repeat in

each iteration and evaluate how learning adapts the GR-PC weights to tune accurate

corrective actions in the control loop.

The learning performance is characterized by using four estimates calculated from

the Mean Absolute Error (MAE) curve [280]. For the calculation of the MAE of a

trajectory execution, we have considered the addition of the error in radians produced

by each joint independently.

1. Accuracy Gain (estimates the error reduction rate comparing the accuracy before

and after learning). This estimate helps to interpret the adaptation capability

of the cerebellum when manipulating different objects, since the initial MAE for

each of these manipulated objects may be different (see Eq. 4.10).

Accuracy Gain = MAEinitial −

(
1

n

n∑
i=0

MAEfinal,i

)
n = 30 (4.10)

Where MAEinitial represents the MAE before starting the learning process and

MAEfinal,i represents the MAE after i learning trials.

2. Final Error (average error over the last 30 trials) (see Eq. 4.11).

Final Error =
1

n

n∑
i=0

MAEfinal−i n = 30 (4.11)

3. Final Error Statibility (average of standard deviation over the last 30 movement

trials) (see Eq. 4.12).

Final Error Stability =
1

n

n∑
i=0

σ(MAEfinal−i) n = 30 (4.12)

4. Error Convergence Speed (number of samples to reach the final error average)

(see Eq. 4.13).

Error Convergence Speed = j; where MAEj ≤
1

n

n∑
i=0

MAEfinal−i 0 < j ≤ final

(4.13)
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4.4 Results

The experiments that we have carried out show that this system, composed by a control

loop and a cerebellum-like network topology, is able to inference the presented dynamic

and kinematic models, in order to reproduce accurately the target trajectories. In

addition to this, several parameters have significantly modified the learning capabilities

and the performance (accuracy and speed) of this learning. As expected, a balanced

rate between LTD and LTP has been needed in order to avoid the weight saturation

(high rate of LTP) or the activity absence at parallel fibers (predominant LTD). These

results suggest that a learning rule kernel as the one used in this work can correlate the

activity at parallel fibers and the IO activity (representing the error in the trajectories).

On the other hand, the experiments using the granular layer model show how the

presence of contextual information such as the system actual state or a signal indicating

the presented model (but remaining partially unknown its physical characteristics)

could enhance the performance when carrying out the movements. In the following

subsections, we further present all these results.

4.4.1 Influence of the learning mechanisms at the parallel fibbers

4.4.1.1 LTD vs LTP trade-off

At the beginning of the learning process (before the connection weights are adjusted),

the spikes received from the input fibers excite the DCN cells producing a bias correction

term on the motor commands. The role of the cerebellar PF-PC-DCN loop is to

specifically inhibit this bias term according to a spatio-temporal pattern that is inferred

during movement executions and to further compensate other deviations generated

by the manipulation of different objects or other elements affecting the dynamics of

the initial arm plant (without object under manipulation). The PF-PC-DCN loop

transmits an activity pattern which is adapted taking into account the teaching signals

provided by the IO (described in the previous section).

In the first simulations, the arm is manipulating a 1kg mass object. This mass

significantly affects the dynamics of the arm+object. Therefore the actual trajectory

(without corrective support) deviates significantly from the target trajectory. We have

studied how the cerebellar module compensates this deviation building a corrective

model.
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(a) Input Activity (b) Output Activity

(c) Weight Map (d) Corrective Torques

Figure 4.10: Cerebellum state after 300 trajectory-learning iterations - (a) Input

activity at the cerebellum. The input layer produces a set of spikes after the transformation

from analog domain into spike domain These spikes are transmitted directly by PF. This

activity (desired positions and velocities) keeps on constant during all iterations. (b) DCN

output activity generated by those synaptic weights. Error corrections are accomplished by

changes in the activity of PCs that in turn influence the activity of the DCN [221], which

afterwards is translated into analog torque correction signals. Each group of 4 DCN cells

encodes the positive or negative part of a joint corrective torque. The more activity the

positive/negative group has, the higher/lower corresponding corrective torque is generated.

(c) PC-PF synaptic weight representation. In x-axis, we can see the source cells (PFs). In

y-axis, target cells (PCs) are shown. Dark colors represent lower synaptic weights, thus,

the corresponding DCN cells are more active. We can see 6 well-defined rows, each row

represents weights related with the positive and negative torque output of the three joints

(q3, q2, and q1), and 6 well-defined columns (that has been remarked with blue lines and

are related with the input activity of the PF corresponding to the desired position and

velocity for the three joints). (d) Output torque after analog transformation from the

DCN output spikes. These corrective torque curves have a profile strongly related with the

number of DCN cells assigned per joint; thus, increasing the quantity of DCN per joint

will generate a smoother corrective profile.
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Fig. 4.10c illustrates how the corrective model is acquired through learning and

structured in distributed synaptic weight patterns. When the arm moves along a target

trajectory, different input cell populations are activated. They produce a temporal sig-

nature of the desired movement. Meanwhile, the IO continuously transfers trajectory-

error estimates (teaching signals) which are correlated with the input signature. In Fig.

4.10c, the system adaptation capability is monitored. This helps to interpret how the

corrective model is continuously structured. Similar monitoring experiments in much

simpler scenarios and smaller scale cell areas are being conducted in neurophysiologic

studies [67] to characterize the adaptation capability of neurophysiologic systems at

different neural sites.

When manipulating heavy objects which do not properly fit the basic plant model,

the followed trajectory drifts from the desired one before learning. This deviation is

more prominent when the desired trajectory changes direction (see Fig. 4.10a) due to

the arm’s inertia. After learning, the cerebellum output counteracts this inertia gener-

ating higher torques during these changes of the desired trajectory direction (see Fig.

4.10d). The weight matrix learned by the cerebellum reflects the moments when higher

corrective torque values are supplied. By looking at Fig. 4.10b and Fig. 4.10d, we

can see that the higher corrective torque is produced when the desired trajectory joint

coordinates change direction. This occurs in the peaks of the sine waves describing the

desired trajectory and corresponds to the activation of the higher and lower input fibers

of each block (left and right side of the six weight columns -blue lines- of Fig. 4.10c).

To generate a high corrective torque, the cerebellum must unbalance the magnitude of

the positive and negative parts of the joint corrective output (q+ and q- in Fig. 4.10b)

which is calculated from the activity of the DCN cells. These DCN cells are grouped by

joints. A higher activity affecting positive corrections in a joint produces higher correc-

tive torque. Since PCs inhibit DCN cells, a low PC activity is required for a high DCN

activity and vice versa. To obtain a low PC activity, low PF-PC weights are required,

which corresponds to small dark squares in Fig. 4.10c. Small light squares correspond

to high values of the weights. Looking at both sides of the six weight columns of Fig.

4.10c, we can observe how the weight values alternate between high and low in adjacent

rows which alternately encode the weights corresponding to the positive and negative

parts of each joint corrective torque.
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(a) MAE Global LTP=0.006 & LTD=0.075

Figure 4.11: Learning estimates - We evaluate the learning performance using four

estimates extracted from the Mean Absolute Error (MAE) curve. 1) Accuracy Gain, 2)

Final Error, 3) Final Error Stability, and 4) Error Convergence Speed.

During the learning process, the corrective model is captured in the PF-PC con-

nections. In this way, the movements become more accurate, the error decreases and

therefore, also the activity of the IO is reduced. This allows the learned models to

become stable once the error reaches appropriate values.

We have carried out 70 simulations of a complete training process, where each

training process consists of 400 trajectory executions and each trajectory execution is

carried out in 1 second simulation time (i.e. the whole system is executed 28000 times).

During each of these training processes, the obtained error in each trajectory execution

decreases until it reaches a final stable value. The obtained Mean Absolute Error

(MAE) of a single complete training process is shown in Fig. 4.11. We have tested this

learning process with different LTD and LTP components to evaluate how they affect

the adaptation capability of the system. From each of these training processes (with

different LTD and LTP values), we obtain the performance estimates defined above

(Accuracy Gain, Final Error, Final Error Stability, and Error Convergence Speed).

These performance estimates characterize the adaptation mechanism capability.

As it is shown in Figs. 4.12a. and 4.12b, both LTP and LTD must be compensated.

Low LTD values combined with high LTP values cause high weight saturation. This

can be seen in Fig. 4.12b. in which 3D Final normalized Error values of the first

figure are represented in a high flat surface corresponding to high errors. We also have
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(a) LTD vs LTP

(b) LTD vs LTP (3D-plot)

Figure 4.12: Learning characterization - During the learning process, the movement

error decreases along several iterative executions of trials of an 8-like trajectory benchmark.

(a) Using these four estimators, we can evaluate how LTP and LTD affect the learning

process. We have conducted multiple simulations with different LTD-LTP trade-offs to

characterize the learning behavior. The goal of an appropriate learning process is to achieve

a high accuracy gain and a low and stable final error. (b) In the same way, LTP and LTP

effect in the learning process showing 3-dimensional surfaces.
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a flat surface close to zero in Fig 4.12b (3D Final normalized Error Stability figure);

the cerebellum output is totally saturated. Therefore, when LTP-LTD trade off is

unbalanced (LTP dominating LTD) the system adaptation capability is low, leading

to high error estimators and useless high stability. On the other hand, when high

LTD values are combined with low LTP values, this causes low weight saturation. In

Fig. 4.12b, 3D plots, we see a good Final Average Error and a good Accuracy Gain

and Convergence Speed but very unstable output. This is also indicated by the error

variance figure estimates which are high in this LTD-LTP area. A compensated LTD-

LTP setting drives us to a high accuracy gain and also, to a low and stable Final Error

with high Convergence Speed. For instance, if our LTD choice is 0.075, our LTP must

be lower than 0.015 to achieve a proper stable learning mechanism. In all the following

simulations, we have fixed the LTD and LTP parameters to these values. Therefore,

we illustrate how different model deviations (by different object manipulations) can

be compensated with a fixed and balanced temporal-correlation kernel and how this

correction loop works even in the presence of different sensorimotor transmission delays.

4.4.1.2 Corrective learning in presence of signal delays

The cerebellum-like structure previously described works even with sensorimotor delays

by means of the temporal-correlation kernel which determines the amount of LTD

to be applied. This is summarized in Fig. 4.13. The results have been obtained

after performing 4 simulations (each one for different delay setups) of 400 trajectory

executions each. On the other hand, this temporal-correlation kernel remains robust

not only with different unbalanced delays but also with a non-perfect matching between

sensorimotor delays and the temporal correlation kernel peak as it is shown in Fig. 4.14.

These results have been obtained after performing 5 simulations (each one for a different

time deviation) of 400 trajectory executions each.

This robustness is achieved because the scheme is using desired coordinates (po-

sitions and velocities) which remain stable across different trials. Nevertheless, with

delays mismatching (between learning kernel inherent time shift and sensorimotor de-

lays) over 70ms, this scheme becomes unstable, while with delay mismatches below 70

ms the obtained performance is farily good as shown in Fig. 4.14b)
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(a) MAE Global (b) Final Average Error

Figure 4.13: Temporal-correlation kernel for different sensorimotor delays (de-

lays from 25ms to 150ms have been tested) - We have adjusted the correlation kernel

peak position to match (see Fig. 4.9) the sensorimotor delays of the control loop illustrated

in Fig. 4.4. As it is shown, the delay value does not affect to a large extent the obtained

performance. The final average error is nearly constant in these different simulations.

4.4.1.3 Adaptation to several dynamical models

The presented cerebellum micro-structure and the long-term plasticity, side by side,

facilitate internal model inference. The cerebellum model adapts itself to infer a new

model by using error signals which are obtained when manipulating this new object.

We study the ability of the cerebellar architecture to infer different corrective models

for dynamics changes on a base manipulator model.

MAE improvement Stability improvement

200 trials 400 trials 200 trials 400 trials

0.5kg 40.4% 49% 82% 60.1%

1kg 64.6% 64.5% 49.6% 42.1%

1.5kg 72.5% 74.4% 46.1% 26.4%

2kg 78.6% 79.3% 26.4% 25.1%

Table 4.2: Performance improvement using several dynamical models - We have

measured the MAE after 200-trial and 400-trial learning. In the same way, the average

standard deviation over 30 trials has been calculated after 200 and 400 trials. Values are

expressed as the percent regarding the initial value (in the earliest iterations).

Under normal conditions, without adding any extra mass to the end of the effector
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(a) MAE Global (b) Final Average Error

Figure 4.14: Temporal-correlation kernel behavior with different deviations be-

tween sensorimotor delays and the kernel peak (deviation from -50ms to 70ms

have been tested) - We have evaluated different deviations between the correlation kernel

peak position (see Fig. 4.9) and the sensorimotor delays of the control loop illustrated in

Fig. 4.4. As it is shown, despite the kernel peak does not exactly match with sensorimo-

tor delays, the cerebellum still works and the final average error keeps on constant. The

cerebellum is able to correlate the delayed sinusoidal inputs and the non-in phase peak

kernel.

(arm), the crude inverse dynamics model calculates rough motor commands to control

the arm-plant. In contrast, under altered dynamics conditions, the motor commands are

inaccurate to compensate for the new undergone forces (inertia, etc.), and this leads

to distortions in the performed trajectories. During repeated trials, the cerebellum

learns to supply the corrective motor commands when the arm-plant model dynamics

differs from the initial one. These corrective motor commands are added to the normal-

condition motor commands. Then, improved trajectories are obtained as the learning

process goes on. The cerebellum gradually builds up internal models by experience and

uses them in combination with the crude inverse dynamics controller. This cerebellum

adaptation is assumed to involve changes in the synaptic efficacy of neurons constituting

the inverse dynamics model [155], as it is shown in our simulation results (Fig. 4.15).

The performance results of the followed trajectory have been evaluated during 400

trajectory executions manipulating different objects attached at the end of the last

segment of the arm of 0.5kg, 1kg, 1.5kg, and 2kg. Fig. 4.15 illustrates the performed

trajectory for each simulation with an object of a different mass. Fig. 4.16 shows
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(a) (b)

Figure 4.15: Learning the corrective models for the 8-like target trajectory

when manipulating objects with different masses (2kg, 1.5kg, 1kg, and 0.5kg)

- (a) 3-joint value representation for the performed trajectory. The three joints are shown.

The followed trajectory is shown each 25 trials during a 400-trial complete learning process.

(b) 2D representation of the performed trajectory (Desired trajectory in red; in blue. initial

trial; in black, trial number 200; and in cyan, final trial).

how the cerebellar model is able to learn/infer the corrective dynamics model for the

different objects. Further detail about the performance improvement can be found in

table 4.2. The error curves of Fig. 4.16a (where each sample represents the error along

one 8-like trajectory) show how the control loop with the adaptive cerebellar module

is able to significantly reduce the error during the training process. Fig. 4.15 shows

that manipulating heavier objects means that the starting error is higher, since the

arm dynamics differ from the original one to a larger extent. Therefore, the cerebellum

learns to supply higher corrective torques, which makes a bigger difference between the

initial and final error. This makes the Accuracy Gain estimate higher than in the other

cases. On the other hand, for improving the global Accuracy Gain, higher forces have

to be counteracted to follow the desired trajectory.
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(a) MAE Global (b) Accuracy Gain

Figure 4.16: Learning Performance when manipulating different objects (0.5kg,

1kg, 1.5kg, and 2kg) during 400-trial learning processes - (a) MAE evolution.

Learning occurs on a continuous basis providing incremental adaptability throughout the

simulation time. (b) Accuracy Gain.

4.4.2 Influence of the information convergence at the granular layer

EC cerebellar input As commented in previous sections, the Explicit Context En-

coding Approach (EC) uses a set of MFs to explicitly identify the context, assuming

that they carry information provided by other areas of the central nervous system

(such as vision which helps to identify the correct model to be used) or even cognitive

signals. Therefore, a specific group of context-based MFs becomes active when the

corresponding context is present. In this way, when a certain context becomes active,

a GR population is pre-sensitized due to the specific context-related signals. We have

randomly combined the sensor signals (desired position and velocity) of the different

joints and the context-related signals (in the MF to GR connections) allowing granule

cells to receive inputs from different randomly selected MFs (at the network-topology

definition stage). In order to explicitly evaluate the capability of these signals to sepa-

rate neural populations for different object models, each granule cell has four synaptic

input connections: three random MF entries which deliver joint-related information

and one MF which delivers context-related signals. In this case, we have evaluated

the capability of the cerebellum model to efficiently use these context-related signals

to learn to separate models when manipulating objects of different weights or different

kinematics (deformation in the robot-plant end-segment) (Fig. 4.17).
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(a) Global Error (2kg and 1kg) (b) Global Error (π/2 and π/4)

Figure 4.17: Multi-context simulation with changes in dynamics and kinematics

using EC cerebellar input - Each sample represents the MAE evolution (sum of error

at different joints) for a trajectory execution (trial) during learning with no context-related

signals and with explicit context-related signals. (a) Manipulating two different loads with

and without context signals. Explicit context signals reduce 68.31% the final average

error and 70.73% the final standard deviation. (b) The equivalent end-segment of the

arm has been rotated in certain angles π/2 and π/4. The corrective torque values should

compensate these different deviations in each context (with and without activated context

signals). Explicit context switching signals reduce 62.04% the final average error and 26%

the final standard deviation.

IC cerebellar input In this section, we define an Implicit Context Encoding Ap-

proach (IC), where no context-identifying signals are used. The sensor signals (actual

position and velocity of the robot) implicitly encode (through MFs) the context during

object manipulation. We have randomly combined the sensor signals (position and

velocity) of the different joints (in the MF to GR connections) allowing granule cells

to receive four inputs from different randomly selected MFs. The context models are

distributed along cell populations. These cell populations are dynamically changing

during the learning process (because the actual trajectory changes as corrective torque

values are learned and integrated). Each time a new context is activated, the specific

neural population is tuned due to the slightly different sensorimotor signals during the

trajectory execution. The context switching in IC is done automatically and learning

is carried out in a non-destructive manner, learned contexts are not destroyed (Fig.

4.19).The fact that IC transitions do not need explicit contextual information may in-

dicate that this configuration allows interpolation between different learned contexts.

This capability is explored by making the cerebellum learn two contexts alternately

and then, presenting a new intermediate context (Fig. 4.20).
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(a) Global Error (2kg) (b) Global Error (1kg)

Figure 4.18: Single-context simulation using EC and IC cerebellar input - (a)

and (b) Manipulation of objects of different loads (2kg/1kg) without context signals. Each

sample represents the MAE for a trajectory execution (trial)

As shown in Fig. 4.18 and 4.19, although EC has a faster convergence speed, IC

presents a lower final error (0.007 rad. average final error in IC against 0.018 rad. in

EC) and a more stable behavior (0.002 rad. of standard deviation in IC against 0.006

rad. of standard deviation in EC) after the learning process.

Accuracy gain, final error average, and final standard deviation are similar in IC

and EC. EC develops a better inter-context transition. Comparing EC with IC in a dy-

namic context switching experiment, we obtain context switching error discontinuities

47.6% larger and a standard deviation 24.7% higher in the EC explicitly cancelling

context switching signals than in the IC configuration (Fig. 4.17a vs. Fig. 4.19a).

This highlights the importance of actual sensorimotor signals efficiently used in the IC

configuration, compared to EC which only used desired states during manipulation.

Finally, comparing EC with IC in a kinematic context switching experiment, we

obtain context switching error discontinuities 32.85% larger and a final standard devi-

ation 16.71% higher in the EC without activating context switching signals than in the

IC configuration (Fig. 4.17b vs. Fig. 4.19b explicit context signals are efficiently used

in EC configuration).

IC plus EC cerebellar input In this section, we evaluate how the previous EC and

IC input representations are complementary. In this case, the cerebellar architecture

includes both inputs.The MFs arriving in the cerebellum encode the desired states,

the actual states(positions and velocities), and also, context signals which identify the
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(a) Global Error (2kg and 1kg) (b) Global Error (π/2 and π/4)

Figure 4.19: Multi-context simulation with changes in kinematics and dynam-

ics using IC and EC cerebellar input configurations - (a) MAE evolution during

the learning process in EC and IC with dynamics-changing contexts. Two contexts with

different loads are manipulated, switching every 15 trials. (b) MAE evolution for EC and

IC configurations and two contexts with different ending deformation (kinematics change),

switching every 15 trials.

current contexts. Fig. 4.21 shows the learning curves by using EC and IC compared

to use only one of those information sources (only EC or only IC). Both dynamics

correction (see Fig. 4.21a) and kinematics correction (see Fig. 4.21b) achieve a faster

and accurate adaptation by taking advantage of the correlation between the teaching

signals and inputs encoding the context and the actual state (positions and velocities).

In addition to this, in Fig. 4.22a IC&EC uses the pre-learned synaptic weights

obtained in previous contexts to deal with a new payload. Nevertheless, sensorimotor

state signals feeding MFs drive fast to a new contextual adaptation. The kinematics

interpolation is not efficient (Fig. 4.22b); interpolation across kinematics changes is

not an easy task (not linear).

IC&EC configuration also becomes robust against incongruent external context-

related signals(for instance,extracted from vision). As we show in Fig. 4.22c, during

each epoch,the external context signal changes do not match the actual object switching

(i.e. the external context signal does not remain constant while manipulating a 2kg

object and it does not do it either when using a 1kg object). Thus, context1 value

in the first 2kg- 15-trial-context equals A and context2 value in the first 1kg-15-trial-

contexts equals B. In the following 15-trial-context switching trials, values A and B

are interchanged. The incoming external contextual information is not congruent but,
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(a) MAE Global (2kg and 1kg) (b) MAE Global (π/2 and π/4)

Figure 4.20: Multi-context simulation with changes in kinematics and dynamics

using IC cerebellar input. Interpolation capability - (a) After 450 trials of 15

iterations per context (2kg/1kg added alternatively to the robot arm), a new 1.5kg context

is presented to the cerebellum. (b) After 450 trials of 15 iterations per context (the end-

segment of the robot arm includes different rotations: π/2 and π/4 angles alternatively),

a new 5π/12 context is presented to the cerebellum.

(a) 2kg and 1kg (b) π/2 and π/4

Figure 4.21: Multi-context simulation with changes in kinematics and dynamics

using EC, IC, and IC&EC cerebellar input - (a) Dynamics correction task with

different loads in the robot arm. (b) Kinematics correction task with different deviations

in the end-segment of the robot arm.
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(a) 2kg and 1kg + 1.5kg (b) π/2 and π/4 + 5π/12

(c) 2kg and 1kg + Incongruent

Figure 4.22: Multi-context simulation by interpolating in kinematics and dy-

namics using EC, IC, and IC&EC cerebellar input - (a) Dynamics correction task

with different loads in the robot arm. (b) Kinematics correction task with different devi-

ations in the end-segment of the robot arm. (a) A 1.5kg load is fixed to the end-segment

of the robot. (b) A 5pi/12 rotation in the end-segment of the robot is presented. (c)

IC&EC configuration is able to avoid non-congruent contextual signals. Context-related

input signals are indicated with highlighted colors in the x axis of the plot.
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thanks to sensorimotor state signals (actual position and velocity of IC configuration);

the cerebellum is able to deal with these misleading external signals.

4.5 Discussion

The study described in this chapter has focused on how a cerebellar-like adaptive

module operating together with a crude inverse dynamics model can effectively provide

corrective torque to compensate deviations in the dynamics of a base plant model (due

to object manipulation). This is relevant to understand how the cerebellar structure

embedded in a biologically plausible control loop can infer internal corrective models

when manipulating objects which affect the base dynamics model of the arm. The

spiking neural cerebellum connected to a biomorphic robot plant represents a tool

to study how the cerebellar structure and learning kernels (including time-shifts for

compensating sensorimotor delays) provide adaptation mechanisms to infer dynamics

correction models towards accurate object manipulation. Concretely, we have evaluated

how a temporal-correlation kernel driving an error-related LTD and a compensatory

LTP component (complementing each other) can achieve effective adaptation of the

corrective cerebellar output. We have shown how the temporal-correlation kernel can

work even in the presence of sensorimotor delays. However, considering the results

obtained for several sensorimotor delays, we can state that the desired trajectory must

be coded using a univocal population coding in each time step, that is, the codification

of the desired position/velocity during the trajectory must be different for each point

of the trajectory. And thus, as our cerebellar structure can adaptively generate any

suitable output for each trajectory-point codification, the delay of the sensorimotor

pathways is not remarkably relevant, even if this delay does not match the intrinsic

compensatory delay of the learning integration kernel.

In this simple cerebellar-like structure, we have shown how the representation of the

cerebellar weight matrix corresponding to the PF-PC connections can be interpreted

in terms of the generated corrective torque (which in turn is a direct consequence of

this representation). This allows us to study the performance of this corrective model

storage and how the changes of the arm dynamics (manipulating different object) are

inferred on different synaptic weight patterns.
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We have also shown how LTD and LTP need to be balanced with each other to

achieve high performance adaptation capabilities. We have studied the behavior of

these two complementary adaptation mechanisms. We have evaluated how the learning

behaves when they are balanced and also when they are in value ranges in which one

of them dominates saturating the adaptation capability of the learning rule. We have

evaluated how well balanced LTD and LTP components lead to an effective reduction

of error in manipulation tasks with objects which significantly affect the dynamics of

the base arm plant.

We have used a simplified version of the cerebellum to focus on the way that the

cerebellar corrective models are stored and structured in neural population weights.

This is of interest to inform neurophysiologic research teams to drive attention to

potential footprints of inferred models within the PF-PC connections.

We have proposed a new simple biologically plausible cerebellar module which can

abstract models of manipulated objects that significantly affect the initial dynamics and

also kinematics of the plant (arm+object), providing corrective torque values towards

more accurate movements.The results are obtained from object manipulation experi-

ments.This new cerebellar approach, with two representations, receiving context-related

inputs (EC) and actual sensory robot signals (IC) encoding the context during the ex-

periments, has been studied.The IC&EC cerebellar configuration takes advantage of

both configurations which complement each other. Smoother inter-context transitions

are achieved at a fast convergence speed. It allows the interpolation of new contexts

(different loads under manipulation) based on previously acquired models. Moreover,

a good learning curve profile in long-term epochs can be achieved and finally, the capa-

bility of overcoming misleading external contextual information, making this cerebellar

configuration robust against incongruent representations (Fig. 4.22c), is remarkable.

Furthermore, the results obtained with this kind of cerebellar architecture are co-

herent with the experiments [5, 113].Therefore, when both representations congruently

encode the context, they shall complement each other, while when they are incongru-

ent, they interfere with each other. This is so because in the implemented cerebellar

architecture, context classification and model abstraction tasks are carried out in a dis-

tributed manner. No pre-classification process is executed to disambiguate incongruent

context identification. In our approach, we have also evaluated how sensorimotor repre-
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sentation can overcome incongruent incidental context-related signals (i.e. sensorimotor

representation dominating a context-related incongruent signal).

In a classical machine learning approach, disambiguation is usually explicitly done

through a classification module (decision making) that can be tuned to adopt a winner-

takes-all strategy and leads to a single context model to be recalled even in this in-

congruent context representation. In biological systems, this kind of pre-classification

(disambiguation) mechanisms may be processed in other nervous centers, although it

may reduce the interpolation and generalization capabilities of the cerebellar model

presented.

As future work, we will study how to dynamically optimize the LTD-LTP integra-

tion kernel, instead of a single, stable, and balanced LTD-LTP kernel, we will evaluate

the capability of improving the adaptation mechanism, shifting this balance to acquire

the corrective models faster and then, decrease the plasticity once an acceptable per-

formance is reached. This approach can optimize the learning capability of the system.

We will also develop further real-time interfaces between analog signals and spiking

neurons (between the robot and the EDLUT simulator) to perform simulations with

real robots and new cerebellar architectures working in a manipulation task scenario

in which granular layer, Golgi cells and stellate cells will be included. This will be ad-

dressed in a starting EU project (REALNET). The neuron models, cerebellar models,

and adaptation mechanisms will be available at the EDLUT simulator site to facilitate

the reproduction of the presented work.
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5.1 Future works

In future works, the time-driven implementation by using a variable and independent

time step for each neuron will be addressed, speeding up and enhancing the precision

of this method. This evolved simulation strategy has previously been tested in other

simulation tools [124] with impressive results. In addition to this, the spread of the

high-performance clusters of computers provide a promising chance to highly increase

the performance of the EDLUT simulation environment. However, the difficulty of

leading with event queues distributed over different nodes make this implementation a

challenge. In the same line of upgrading the EDLUT simulator, the integration with

other generic tools to describe the model in different abstraction levels (cell, neural

network, system,...) such as PyNN or NeuroML could make easier the learning curve

to potential EDLUT users and would allow the simulation models being largely reusable

from well-known tools such as NEURON or GENESIS.

The natural evolution of this work leads us to take advantage of temporal filtering

capabilities at the granular layer within a whole cerebellar model in the framework of a

control task. Although these capabilities are clear after this work, how these properties

could improve a cerebellar model requires finding an explanation on the signal codifi-

cation at both mossy and parallel fibers. Recent simulation and experimental studies

[27] might help to clarify this debate (at least partially).

On the other hand, the simulation of the biologically detailed cerebellar models still

represent a open issue. The inclusion of synaptic plasticity at most of the cerebellar
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synapses (where experimental studies have shown the existence of these mechanisms)

means a powerful tool capable of automatically setting the whole system to the actual

environment in order to get the best performance. This mechanisms could be specially

relevant in the granular layer, where plasticity might lead the synaptic weights to those

values which enhance the sensitivity rebound at the frequency range of the incoming

inputs.

A similar approach could be followed in other parts of the cerebellum, such as the

connections MF → DCN or PC → DCN . This plasticity, and the plasticity between

GrC → SC → PC has been proven recently to influence the consolidation of the

learning. These future works will be addressed in a recently started EU project (RE-

ALNET), and all these neuron models, cerebellar models, and adaptation mechanisms

will be available at the EDLUT simulator site to facilitate the reproduction of this and

other future studies.

5.2 Publication of results

Our research work has been evaluated in the framework of international conferences and

scientific journals (with impact factor on the JCR). In short, the scientific production

can be summarized as: 2 journal paper published (Q1 -Top 3- and Q2 in their respective

JCR categories), 2 accepted papers (Q1 journals in their JCR categories, in fact one of

them is also Top 3 at its respective categories), 3 other papers under review (Q1 and

Q2 in their respective categories in JCR). 5 International conferences (COGSYS 2008,

ICJNN 2010, COGSYS 2010, and IWANN 2011).

5.2.1 International Peer-review Journals

1. D’Angelo, E.; Koekkoek, S.K.E.; Lombardo, P.; Solinas, S.; Ros, E.; Garrido, J.;

Schonewille, M.; De Zeeuw, C.I.: “Timing in the Cerebelllum: Oscillations and

Resonance in the Granular Layer”. Neuroscience, 162, 805–815, 2009.

2. Luque, N. R.; Garrido, J. A.; Carrillo, R. R.; Coenen, O. J. M. D.; Ros, E:

“Cerebellar input configuration towards object model abstraction in manipulation

tasks”. IEEE transaction on neural networks, 22(8), 1321–1328, 2011. (Revista

Top 3 en Ciencias de la Computación, Hardware & Arquitectura, 1er cuartil

166



5.2 Publication of results

en Ciencias de la Computación, Inteligencia Artificial, Teoŕıa & Métodos, y en
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5.2.3 Other dissemination sources

The dissemination of the knowledge represents one of the key points in the development

of an European project. Since this work has been carried out during the evolution of the

SENSOPAC and REALNET projects (see section 5.3), an remarkable effort has been

done in order to release the advances emerging from these projects. Thus, the EDLUT

simulation environment was released as an open-source application under GPLv3 li-

cense. This allows the usage of this software for any research or industrial project with

almost no restriction. Therefore, after this required exhaustive documentation process

of the source code, it was released on the website [98] in April, 2009. Since them, several

groups have shown their interest in using EDLUT on their own projects and we have

supported all their questions and suggestions. The following statistics quantitatively

show the awoken interest in the scientist community:

• The website has received more than 11000 visits since its release in 2009.

• The presentation of the EDLUT software has been downloaded about 2000 times,

while the source code of the last released version has been downloaded more than

800 times.
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• Several groups have used EDLUT for their developments such as University of

Pavia (Egidio D’Angelo and Sergio Solinas), University of Pierre and Marie Curie

at Paris (Angelo Arleo, Luca Leonardo Bologna and Jean Baptiste Passot), Uni-

versity of Erasmus (Chris de Zeeuw and Jornt de Gruijl), University of Lund

(Henrik Jörntell and Carl Fredrik Ekerot), SICS (Martin Nilson) and other re-

searchers such as Boris Barbour (CNRS), Olivier Coenen and Mike Arnold.

The release of the source code of EDLUT was favorably received in the media,

and specially, in the open-source community, as we show in the following headlines

published in the media:

1. “Move to create less clumsy robots”at BBC News.

2. “EDLUT human nervous system researches disease and tests medicine” at Com-

pute Scotland.

3. “Artificial simulator of the nervous system created for research into diseases” at

Science daily.

4. “Development of an artificial simulator of the nervous system to do research into

diseases” at Eureka Alert.

5. “Liberado simulador del sistema nervioso: EDLUT” at Oficina de Software Libre

UGR.

6. “EDLUT: un simulador neuronal” at Microsiervos.

7. “Desarrollan un simulador del sistema nervioso para investigación biomédica” at

Universidades.

8. “Simulador artificial del sistema nervioso humano” at http://www.solociencia.

com/medicina/09052105.htm.

9. “Desarrollan un simulador del sistema nervioso” at Orion.

10. “La UGR participa en la construcción de un cerebelo artificial” at Universia.

11. “La Universidad de Granada desarrolla un simulador del sistema nervioso hu-

mano” at Ideal.
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5. DISCUSSION

5.3 General Scientific Framework

This scientific work has been done and partially funded by the European Projects SEN-

SOPAC: SENSOrimotor structuring of Perception and Action for emergent Cognition

(IST-028056), and REALNET: Realistic Real-time Networks: computation dynam-

ics in the cerebellum (IST-270434). This has represented an excellent collaborative

framework with diverse research groups at other European Universities and research

institutions. The presented work represents the major contribution of the University

of Granada in this SENSOPAC consortium. Therefore, a high responsibility in obtain-

ing timely the planned results was necessary during the whole investigation process.

Besides the required technical reports, presentations for EU scientific reviews, a final

demo (proof of concept) was required and implemented jointly with the University

Pierre and Marie Curie in Paris and the DLR (Munich). The effort invested in this and

another demo is significant but allows easy evaluating of the system capabilities and

also facilitates the dissemination of results beyond a pure scientific scenario, towards

industrial future collaborations and also impact in the media (newspapers, TV, etc.).

Since these kind of projects require a multidisciplinary approach, this work mainly

presents the results from the biological systems point of view. This is specially relevant

in the last part of this work (see chapter 4), where we use a cerebellum-like simulated

architecture in order to manipulate tools with a robotic arm. In addition to this,

this work implies dealing with robotic system (developing a robotic arm simulator,

studying the biologically plausible control loops, or the conversion from/to spiking

signals). All these other tasks have been mainly accomplished by Niceto Luque at

the University of Granada. In addition to this, a lot of efforts were accomplished in

designing and implementing an easy-to-use and intuitive simulator (taking into account

the difficulties of understanding this kind of systems per se) capable of running in

different environments and with a wide variety of controlled devices. This has required

high collaborative and coordinated work with the working team.

5.4 Main contributions

We now summarize the main contributions of the presented work:
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• An event-driven simulator based on look-up tables has been widely upgraded to

accomplish the main requirements of a real-time neural network simulator capable

of interfacing with a huge quantity of external systems. In addition to this, a Java-

based graphical user interface has been developed as well, which facilitates the

usage of this simulation tools for beginner researchers.

• The event-driven simulation environment has been widely improved to make it

capable of natively simulating time-driven methods (alone or in conjunction with

event-driven methods).

• Event-driven model (or more generally hybrid networks) showed good perfor-

mance and accuracy when working with low rates of activity. In the opposite,

time-driven model would be preferred when the characteristics of the experiment

produce high neural activity. However, a hybrid simulation system can be con-

venient in the simulation of biological systems which present different levels of

activity.

• A computational model of the granular layer has been developed and analyzed

showing that coincidence detection at this layer was critically regulated by the

feed-forward inhibitory loop (MF → GoC → GrC).

• In addition to this, the granular layer computational model has shown sensitiv-

ity rebound capabilities (recently predicted on the basis of various experimental

data). The feed-forward dis-hinibitory loop (MF → GrC → SC → GoC) proved

to be the most important one by affecting both the sensitivity rebound amplitude

and the inter-stimulus interval which maximizes network activity.

• This granular layer model also showed oscillations of electrical activity in the β/γ

band as a response to random input activity which had been observed in the

granular layer of the cerebellum in vivo and in vitro.

• A cerebellar model embedded in a control loop with a crude inverse dynam-

ics model is presented. This model can effectively provide corrective torque to

compensate deviations in the dynamics of a base plant model (due to object

manipulation).
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• This adaptive model has shown how LTD and LTP at parallel fibers need to

be balanced with each other to achieve accurate adaptation capabilities. We

have evaluated how well balanced LTD and LTP components lead to an effective

reduction of error in manipulation tasks with objects which significantly affect

the dynamics of the base arm plant.

• An evaluation of the influence of the input sensory signals to the cerebellum is

presented: with two representations, receiving context-related inputs (EC) and

actual sensory robot signals (IC) encoding the context during the experiments.

The IC&EC cerebellar configuration takes advantage of both configurations which

complement each other. Smoother inter-context transitions are achieved at a fast

convergence speed.

• This work shows how this model with IC&EC cerebellar input signals provides

the capability of overcoming misleading external contextual information, making

this cerebellar configuration robust against incongruent representations.
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Caṕıtulo 6

Introducción en castellano

En la tercera edición del libro Principles of Neural Science (que podŕıa considerarse

como un clásico de la neurociencia moderna) se afirma que “Tal vez la última frontera

de la ciencia —su último desaf́ıo— es entender las bases biológicas de la conciencia y los

procesos mentales por los que percibimos, actuamos, aprendendemos y recordamos”.

Pero este reto continua vigente, y podŕıa considerarse uno de los principales desaf́ıos

para el siglo XXI. El conocimiento profundo de las bases biológicas de los sistemas

neuronales puede aportarnos numerosos beneficios. En primer lugar, una mayor com-

prensión del cerebro podŕıa hacer posible el desarrollo de tratamientos innovadores para

las patoloǵıas relacionadas con el Sistema Nervioso Central. En segundo lugar, el cere-

bro humano puede ser considerado el mejor sistema de procesamiento de la información

debido a su fiabilidad, precisión, rendimiento y capacidad de almacenamiento. Ser ca-

paz de emular la forma de procesar la información de los sistemas biológicos podŕıa

permitir el diseño de una nueva generación de arquitecturas de procesamiento capaz de

sobrepasar los ĺımites de los sistemas actuales.

6.1 La neurociencia computacional

Desde esa perspectiva, y en buena medida debido a las crecientes capacidades de los

recursos de cómputo, la neurociencia computacional se ha posicionado en los últimos

años como una prometedora rama de la neurociencia. Neurociencia computacional se

refiere al uso de modelos matemáticos y computacionales para el estudio de los sistemas

neuronales. El diseño de modelos matemáticos y cuantitativos ha sido un componen-
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te clave de la investigación en neurociencia desde hace muchas décadas. De hecho,

uno de los logros más celebrados en el campo — el modelo de Hodgkin-Huxley para la

generación de potenciales de acción [126] en 1952 — supuso un hito del enfoque cuan-

titativo y significó un importante impulso para el desarrollo de nuevas herramientas.

Además, gran parte de lo que se entiende acerca de la funcionalidad de los sistemas

biológicos visuales, auditivos y olfativos, aśı como las bases neuronales del aprendizaje

y la memoria, ha sido obtenido en buena medida gracias a los modelos matemáticos

y computacionales desarrollados. Sin embargo, es justo decir que, hasta hace poco, el

modelado computacional representaba sólo una pequeña parte del esfuerzo investigador

en neurociencia, que tradicionalmente ha estado dominada por los estudios experimen-

tales (de hecho, la mayor parte de lo investigadores en neurociencia soĺıan tener una

fuerte formación en sistemas biológicos, dejando de lado los sistemas de cómputo). El

reciente movimiento hacia el modelado computacional ha abierto nuevas ĺıneas de in-

vestigación, y permitió la investigación de sistemas biológicos más allá de lo accesible

mediante el estudio experimental. Incluso podŕıamos decir más, la aparición de la neu-

rociencia computacional ha tráıdo e integrado nuevas ideas de campos tan dispares

como la f́ısica, la estad́ıstica, la teoŕıa de la información, la teoŕıa de sistemas no linea-

les y la ingenieŕıa, lo cual proporciona un marco conceptual suficientemente rico como

para responder gran parte de las preguntas fundamentales existentes.

La principal motivación para el uso de modelos computacionales es, por supuesto,

para entender el comportamiento del sistema objeto de estudio mediante el análisis

matemático y la simulación por ordenador. Este es el caso de la neurociencia. Los mo-

delos computacionales se han utilizado tradicionalmente para muchos otros sistemas

f́ısicos (tales como los sistemas astronómicos, los flujos de fluidos, dispositivos mecáni-

cos, estructuras, etc.) Sin embargo, y a diferencia de este tipo de sistemas, la aplicación

de modelos computacionales en sistemas biológicos — y especialmente en el caso del

sistema nervioso — es especialmente adecuado ya que los sistemas biológicos se pueden

ver de forma expĺıcita como procesadores de información. Es por ello que los mode-

los computacionales en estos sistemas no son meras herramientas para el cálculo o la

predicción, sino que a menudo ayudan a aclarar la funcionalidad. En el caso de las neu-

rociencias, esto puede ser visto en términos de dos funciones relacionadas y explicadas

por los modelos computacionales: 1) determinar QUÉ hacen las distintas partes del

sistema nervioso, y 2) determinar CÓMO lo hacen.
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6.1 La neurociencia computacional

Los estudios experimentales sobre el sistema nervioso en todos los niveles (sub-

celular, celular y de sistema) son fundamentales para la comprensión de las estructuras

anatómicas y los procesos fisiológicos del sistema, pero estas observaciones deben estar

organizadas dentro de un modelo coherente de la funcionalidad del sistema. Esto sólo

es posible si los elementos conceptuales apropiados para esa descripción funcional están

disponibles. Los psicólogos y neurólogos han utilizado tradicionalmente el rendimiento

(o su déficit en presencia de patoloǵıas), como base para la asignación de funciones a

los componentes del sistema nervioso, que ha producido modelos cualitativos y fenome-

nológicos de gran utilidad. Este es el caso de los experimentos del condicionamiento del

parpadeo o del reflejo vest́ıbulo-ocular, que tradicionalmente han estado estrechamente

ligados al estudio del cerebelo. Aunque estos son a menudo suficientes para fines cĺıni-

cos, sin embargo proporcionan una comprensión muy limitada del sistema completo.

Un enfoque alternativo (o complementario) puede ser obtenido mediante la visión del

sistema nervioso como un sistema que adquiere, transforma, almacena y usa la infor-

mación con el objetivo de controlar un sistema extremadamente complejo — el cuerpo

— dentro de un entorno complejo y dinámico. Desde este punto de vista, la funcio-

nalidad del sistema emerge desde los fenómenos de bajo nivel de abstracción, tales

como la dinámica del potencial de membrana, el flujo de corrientes en las dendritas, la

plasticidad sináptica, etc., tanto como la funcionalidad de un ordenador emerge de las

corrientes y voltajes en sus componentes.

Al igual que con el ordenador, la funcionalidad emergente del sistema nervioso

depende de los fenómenos subyacentes, pero no se puede describir por completo en

esos términos. Para entender de verdad esta funcionalidad, es necesario relacionar los

fenómenos concretos medidos por medio de experimentos con las abstracciones de pro-

cesamiento de la información — y por último a los fenómenos de la cognición y el

comportamiento —. Con este fin, el modelado computacional proporciona un forma-

lismo bien desarrollado sobre las señales y la información. A través de este tipo de

modelos, se pueden aplicar directamente modelos matemáticos y computacionales al

sistema nervioso, dando lugar a una descripción cuantitativa, verificable, funcional y

coherente del cerebro en lugar de un modelo cualitativo o un compendio de observa-

ciones. Esta conclusión ya fue predicha por Andrew Huxley (uno de los autores del

model del potencial de acción de Hodgkin-Huxley) cuando comentó en su discurso de

los premios Nóbel en 1963: “Lo que aprend́ı de estos trabajos de computación fue la
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completa inadecuación de nuestra intuición en intentar tratar con un sistema de este

grado de complejidad”. Esta frase recoge uno de los principios del modelado. Cualquier

sistema aspira a recoger absolutamente todos los detalles del sistema real análogo, pero

la primera decisión en el desarrollo de un modelo será el análisis de los factores que

podŕıan influir en el comportamiento final, y elegir el nivel de detalle con el que nuestro

modelo funcionará.

La misma filosof́ıa debe aplicarse con el fin de modelar el sistema nervioso central.

Ésta procesa la información en muchos niveles, desde el molecular hasta las grandes

redes con millones de neuronas. Para que un modelo basado en información de la fun-

cionalidad del sistema nervioso funcione es esencial explicar cómo los fenómenos en

cada nivel surgen de los niveles inferiores. Por ejemplo, cómo el reconocimiento de ob-

jetos en el campo visual se infiere de las señales generadas por las neuronas del sistema

visual, o cómo la actividad de las neuronas motoras individuales produce trayectorias

extremadamente suaves y precisas. Desafortunadamente, los métodos experimentales a

menudo no ofrecen los datos necesarios para ello. En particular, es muy dif́ıcil de obte-

ner los datos necesarios para entender cómo las redes de neuronas procesan información

colectivamente. La tecnoloǵıa actual permite el acceso restringido al sistema nervioso

vivo, principalmente en los regiones más externas: mediante la alta resolución de los

datos intracelulares y extracelulares obtenidas con grabaciones de un único electrodo, y

la baja resolución de los datos de la actividad regional a través de resonancias magnéti-

cas funcionales por imágenes (fMRI) y la magnetoencefalograf́ıa (MEG). Aunque las

matrices de electrodos son ya muy frecuentes, únicamente proporcionan el acceso extra-

celular a unos cientos de neuronas en el mejor de los casos. Sin embargo, la mayoŕıa de

las redes funcionales en ámbitos tales como el hipocampo y el cerebelo (dos de las regio-

nes mejor estudiadas) comprenden desde unos pocos cientos de miles a varios millones

de células. El procesamiento de la información en estas redes se produce a través de

patrones dinámicos auto-organizados de la actividad que abarca gran parte del sistema

[12, 99, 107, 158, 174]. Estos patrones emergentes dif́ıcilmente pueden ser entendidos

mirando la actividad de células individuales (o incluso unos cientos de células), de la

misma forma que parece complicado entender un libro leyendo letras individuales. De

la misma manera, tampoco los datos de gran escala provenientes de estudios fMRI pro-

porcionan la resolución necesaria para observar estos patrones y relacionarlos con las

interacciones celulares.
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Los modelos computacionales ofrecen una solución a este dilema, permitiendo el

estudio de los modelos de red — tan grande como se desee — construido usando mo-

delos neuronales que en śı mismos han sido diseñados sobre la base de datos de células

medidos experimentalmente [69, 100, 172, 226, 240]. Estos modelos de red se pueden

simular computacionalmente en variedad de situaciones para dar una idea de cómo las

redes correspondientes en el cerebro podŕıan funcionar. Temas espećıficos tales como

el efecto de la plasticidad sináptica, la modulación de las señales externas, o la impor-

tancia de los patrones de conectividad pueden ser estudiados, y las hipótesis (que no

se pueden probar directamente) puede ser provisionalmente validadas o rechazadas en

la simulación. En muchos casos, los modelos se están convirtiendo en una herramienta

indispensable en el ciclo de la hipótesis y la experimentación de la neurociencia. Los

modelos computacionales permiten a los investigadores probar sus “qué pasa-si” en la

simulación, lo que lleva a mejores hipótesis y mejores experimentos diseñados con una

mayor probabilidad de éxito. Por supuesto, la calidad de los resultados depende de

la calidad de los modelos, pero los modelos han ido progresando con los avances en

técnicas numéricas, la potencia de cálculo y los métodos experimentales [25, 37].

A medida que el foco de interés en neurociencia se desplaza desde los fenómenos a la

funcionalidad, el modelado computacional también se está utilizando para hacer frente

a problemas anteriormente inaccesibles, tales como las bases neurales de la cognición

e incluso la conciencia [93, 139, 163]. Cuestiones relacionadas con la representación,

la intención y el control ejecutivo están siendo explorados en el ĺımite entre la neu-

rociencia y la inteligencia artificial, y la comprensión del cerebro como un sistema de

procesamiento de información extremadamente sofisticado continúa avanzando de una

manera altamente multidisciplinar.

6.2 La importancia de estudiar el cerebelo

El cerebelo (cuyo nombre en lat́ın significa pequeño cerebro) es una región del cerebro

que juega un papel fundamental en el control motor. Sin embargo, también está involu-

crado en algunas funciones cognitivas como la atención y el lenguaje, y probablemente

en algunas de las funciones emocionales como el miedo y el placer que regulan las

respuestas [282]. Aunque el cerebelo no planifica los movimientos, śı contribuye a la
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coordinación, la precisión y a la sincronización exacta de estos. El cerebelo recibe in-

formación de los sistemas somatosensorial y de otras partes del cerebro y la médula

espinal, e integra estas entradas para ajustar de forma precisa la actividad motora.

Debido a esta función de ajuste, las enfermedades en el cerebelo no producen paráli-

sis, sino que producen trastornos en los movimientos que requieren gran precisión, el

equilibrio, la postura y el aprendizaje motor.

El número estimado de células en el cerebelo también demuestra la importancia de

esta parte del cerebro. Las células granulares son, con mucho, las neuronas más nume-

rosas en el cerebro: en los seres humanos, las estimaciones de su número total lo cifran

en torno a 50 billones, lo que significa que aproximadamente tres cuartas partes del

número total de neuronas en el cerebro son las células granulares del cerebelo. El ce-

rebelo tiene la apariencia de una estructura independiente unido a la parte inferior del

cerebro, escondido justo debajo de los hemisferios cerebrales. La superficie del cerebelo

está cubierto con finas ranuras paralelas espaciadas, en contraste con las circunvolucio-

nes irregulares amplias de la corteza cerebral. Estos surcos paralelos ocultan el hecho de

que el cerebelo es en realidad una capa continua delgada de tejido neuronal (la corteza

cerebelosa), bien doblado al estilo de un acordeón, como se muestra en la figura 1.1.

Dentro de esta capa delgada hay varios tipos de neuronas con una disposición muy re-

gular, siendo las más importantes las células de Purkinje y las células granulares. Esta

red neuronal compleja da lugar a una enorme capacidad de procesamiento de señales,

pero casi todas sus salidas se conectan con un conjunto de pequeños núcleos profundos

del cerebelo situados en el interior del cerebelo.

Además de su función principal de control motor, el cerebelo es también necesario

para varios tipos de aprendizaje motor, el más notable es aprender a adaptarse a los

cambios en las primitivas sensoriales. Varios modelos teóricos se han desarrollado para

explicar la calibración sensoriomotora en términos de plasticidad sináptica en el cere-

belo, la mayoŕıa de ellos derivados de los primeros modelos formulados por David Marr

[192] y James Albus [9], que fueron motivados por la observación de que cada célula de

Purkinje del cerebelo recibe dos tipos radicalmente diferentes de entradas. Por un lado,

miles de entradas provenientes de las fibras paralelas, cada una individualmente muy

débil por śı sola, y por otro lado, la entrada de una sola fibra trepadora que, sin em-

bargo, es tan fuerte que un solo potencial de acción de una de estas fibras es suficiente

para que una célula de Purkinje de destino dispare en respuesta un potencial de acción
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complejo [11]. El concepto básico de la teoŕıa de Marr-Albus es que las fibras trepadoras

actúan como una “señal de aprendizaje”, lo cual induce a cambio de larga duración en

la fuerza de las entradas simultáneamente activas de las fibras paralelas. Observaciones

de la depresión a largo plazo en las entradas por las fibras paralelas han apoyado este

grupo de teoŕıas, pero su validez es todav́ıa controvertida (véase la sección 4.2.1 para

una extensa revisión sobre los modelos funcionales propuestos en la literatura).

6.3 Motivación general del trabajo

El objetivo principal de este trabajo es el estudio y la implementación de un modelo

cerebelar. Es bien sabido que el cerebelo tiene un papel especialmente importante en el

control motor, pero también participa en otras funciones cognitivas como la atención y

el lenguaje. El cerebelo no inicia el movimiento, sino que contribuye a la coordinación,

la precisión y la sincronización exacta. Los aportes de los sistemas sensoriales y de otras

partes del cerebro y la médula espinal, se reciben y se integran con órdenes motoras

para producir la actividad motora correctamente ajustada. Sin embargo, el diseño de

un modelo del cerebelo de mediana escala requiere de varias etapas antes de alcanzar

la totalidad del sistema.

En primer lugar, un simulador ultra-rápido de redes neuronales biológicamente rea-

listas es necesario. De hecho, si el objetivo final es el control de un sistema robótico real

(en contraposición a un simulador), los requisitos de rendimiento nos llevan a necesitar

un simulador en tiempo real. EDLUT [98] puede ser considerado el único simulador de

redes neuronales biológicas capaz de cumplir con estos requisitos, tal y como se muestra

en trabajos previos de la literatura [40, 227]. Es por ello que el uso de esta arquitectura

biológica para el control de sistemas robóticos significa un reto y una novedad en śı mis-

mo. Sin embargo, la estrategia de simulación eficiente basada en tablas de búsqueda

(que implementa EDLUT) necesita una cuidada validación para evitar posibles errores

derivados de la compilación previa de la conducta neuronal en tablas de consulta. Por

lo tanto, en una primera etapa, en el caṕıtulo 2 continuamos el desarrollo del simula-

dor EDLUT para cumplir con todos los requisitos que los modelos posteriores pueden

necesitar.

En segundo lugar, podemos aprovechar este software de simulación para llevar a

cabo un estudio exhaustivo de la influencia de los parámetros del modelo (y su inter-
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pretación en los sistemas biológicos) de la capa granular. La capa granular se puede

considerar la primera capa de procesamiento en el cerebelo, y conduce las señales de

entrada hasta las fibras paralelas. La importancia de la capa granular está fuera de

toda duda, ya que las células granulares (el principal componente de la capa granular)

son las neuronas más numerosas en el cerebro (en los seres humanos, las estimaciones

del promedio de su número total está alrededor de los 50 billones, lo que significa que

alrededor de tres cuartas partes de las neuronas del cerebro son las células de la capa

granular del cerebelo). Pero además de este enfoque cuantitativo, los datos experimen-

tales han demostrado la existencia de un procesamiento complejo de señales en esta

capa [58, 59, 64]. Por lo tanto, en el caṕıtulo 3 estudiamos las capacidades de filtrado

temporal en la capa granular.

Por último, la simulación de un modelo completo de cerebelo dentro de un lazo

de control al objeto de controlar de forma precisa un brazo robótico supone un exi-

gente banco de prueba para nuestro sistema biológico [40]. Desde el punto de vista

de ingenieŕıa, el mejor sistema es aquel que consigue el mejor rendimiento (en térmi-

nos de precisión, velocidad, etc.). Este punto de vista también podŕıa encajar en la

neurociencia (o la neurofisioloǵıa), donde el sistema biológicamente inspirado con el

mejor rendimiento podŕıa ser un indicio para lograr un conocimiento más profundo del

sistema biológico real. Siguiendo este enfoque, en el caṕıtulo 4 se implementa un mo-

delo cerebelar capaz de controlar con precisión un brazo robótico mediante un sistema

adaptativo con aprendizaje.

6.4 Nuestra contribución

En este trabajo se desarrolló y evolucionó un entorno de simulación de redes neurona-

les de spikes capaz de simular redes con un alto nivel de detalle en entornos de tiempo

real: EDLUT [98]. Esta herramienta está especialmente indicada para interactuar con

aplicaciones externas, robóticas o sistemas de procesamiento visual basado en redes

neuronales realistas. Un trabajo previo en la literatura [227] sentó los fundamentos del

algoritmo de simulación eficiente conducido por eventos y basado en tablas de con-

sulta. Durante este trabajo, este algoritmo fue re-implementado como un entorno de

simulación completo, incluyendo una interfaz gráfica de usuario (GUI) y sistemas de co-

municación variados (por medio de archivos de registro de actividad, sockets TCP/IP,
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la interfaz de programación de aplicaciones —API— o la ejecución como un módulo de

Simulink R©). También se implementaron en EDLUT las simulaciones de sistemas h́ıbri-

dos incluyendo modelos celulares dirigidos por tiempo y por eventos, y se estudiaron las

ventajas que esta estrategia de simulación puede proporcionar en redes realistas tales

como la capa granular del cerebelo. Por último, se implementaron para este simulador

modelos celulares realistas de gran parte de las células existentes en el cerebelo (como

granular, Golgi, estrelladas y las células de Purkinje) y los modelos de spike-respuesta

(SRM) del núcleo cuneiforme.

Además de esto, se hizo un uso extensivo de estas herramientas implementadas con

el fin de estudiar el filtrado temporal que se realiza en la capa granular del cerebelo.

Estudios anteriores demostraron la predisposición de esta capa a producir oscilaciones

en varias bandas de frecuencia (sobre todo β y γ entre 12 y 80 Hz) y transmitir estos

ritmos a otras regiones del cerebro [58]. En este estudio hemos demostrado la influencia

de cada conexión sináptica para mejorar esas capacidades de filtrado.

Por último, se desarrolló un modelo biológicamente plausible del cerebelo (a pequeña

escala) que fue utilizado con el fin de controlar un brazo robótico con articulaciones no

ŕıgidas realizando tareas de manipulación de objetos. Usando ese sistema, se muestra

cómo este lazo de control incluyendo un módulo inspirado en el cerebelo logró una

inferencia precisa del modelo dinámico modificado al manipular herramientas pesadas

que afectan sustancialmente al modelo base. Además, se estudió la influencia de los

parámetros de aprendizaje (LTD y LTP) y la forma en que la información que retroali-

menta el módulo pseudocerebelar, tal como el estado actual, puede mejorar de manera

notable la capacidad de aprendizaje (en términos de precisión y rendimiento).

6.5 Objetivos

El objetivo principal de este trabajo es contribuir a la comprensión del sistema nervioso

central (y espećıficamente del cerebelo) desde el punto de vista que los estudios de si-

mulación pueden proporcionar. Por lo tanto, un modelo de red neuronal biológicamente

plausible es estudiado funcionalmente y utilizado posteriormente con el fin de resolver

problemas prácticos (por ejemplo, tareas de control robótico). Para lograr este objetivo,

esta tesis aborda los siguientes objetivos intermedios:
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• Desarrollo y evolusión de un sistema de simulación eficiente para sistemas neuro-

nales de impulsos (spikes) de tamaño medio, haciendo hincapié en la usabilidad

de las herramientas resultantes con el fin de ser usada en grupos de investigación

relacionados con la neurofisioloǵıa.

• Implementación de modelos realistas de los principales tipos de neuronas del

cerebelo en el software de simulación propuesto y análisis de las ventajas de la

utilización de cada una de las diferentes alternativas estudiadas en función de las

propiedades del modelo de red objeto de estudio.

• Estudio de las capacidades de procesamiento temporal de la capa granular (de-

tección de coincidencias y segmentación temporal), el comportamiento oscilatorio

y el papel funcional de estas propiedades emergentes en el marco de los modelos

del cerebelo completo.

• Estudio de cómo las primitivas sensoriomotoras pueden ser eficientemente inferi-

das mediante la adaptación de los pesos (LTD y LTP) en las fibras paralelas.

• Evaluación de las capacidades de inferencia de los modelos cinemáticos y dinámi-

cos en el cerebelo mediante la adaptación a largo plazo en la conexión entre las

fibras paralelas y las células de Purkinje.

• Evaluación de cómo las señales contextuales pueden ser utilizadas eficientemente

para el cambio de contexto en el marco de una tarea de control preciso.

6.6 Marco del proyecto

El trabajo descrito en este documento se ha desarrollado en el marco dos proyectos

europeos “SENSOrimotor structuring of Perception and Action for emergent Cogni-

tion” (SENSOPAC) [2] y “Realistic Real-time Networks: computation dynamics in the

cerebellum” (REALNET).

El proyecto SENSOPAC (financiado por el 6o Programa Marco de la UE en su

iniciativa de sistemas cognitivos) se extendió desde enero de 2006 a julio de 2010, en

colaboración con 12 instituciones de 9 páıses diferentes. El proyecto SENSOPAC com-

binaba conceptos de inteligencia artificial y técnicas de modelado de sistemas biológicos
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para desarrollar un sistema capaz de abstraer nociones cognitivas de las relaciones sen-

sorimotoras durante las interacciones con su entorno, y generalizar este conocimiento

a situaciones nuevas. A través de sensores activos y acciones de exploración, el siste-

ma descubre las relaciones sensorimotoras y por consiguiente, aprende la estructura

intŕınseca de sus interacciones con el mundo y desentraña las relaciones causales y pre-

dictivas. El proyecto ha demostrado que un sistema robótico puede arrancar su desarro-

llo mediante procesos de generalización y el descubrimiento de abstracciones basadas en

sensores, mediante los resultados obtenidos de estudios de neurociencia sobre la repre-

sentación y el procesamiento de datos sensoriales táctiles. El grupo de investigación de

la Universidad de Granada ha participado activamente en el desarrollo del entorno de

computación de neuronas de spikes (EDLUT) (véase el caṕıtulo 2 en este documento)

y la aplicación de los resultados neurológicos a fin de diseñar sistemas de control de

biológicamente inspirados capaces de llevar a cabo tareas de manipulación. La figura

1.2 muestra la organización en módulos del proyecto SENSOPAC. La Universidad de

Granada (y este trabajo como una parte) se centró en el cuarto módulo, a medio camino

entre la neurofisioloǵıa (módulo 5) y los sistemas más abstractos y la robótica (módulos

1, 2, y 3).

Como continuación a este proyecto, el proyecto REALNET (financiado dentro del

7o Programa Marco de la UE sobre Tecnoloǵıas de la Información y la Comunicación)

se inició en febrero de 2011 y se extenderá hasta febrero del año 2014. Este proyecto

tiene como objetivo comprender el procesamiento de las redes de neuronas mediante el

uso de un enfoque diferente: la elaboración de redes realistas de spikes y su utilizacion,

junto con registros experimentales de la actividad de la red, para investigar las bases

teóricas de la computación del sistema nervioso central. Como punto de referencia

de este proyecto se utiliza el circuito cerebelar. Basándose en datos experimentales,

en este proyecto se desarrollará el primer modelo de cerebelo realista en tiempo real

y será conectado con sistemas robóticos para evaluar el funcionamiento del circuito

en condiciones ciclo cerrado percepción-acción. Los datos extraidos de los registros

de actividad, las simulaciones a gran escala y los robots se utilizan para explicar el

funcionamiento del circuito mediante la teoŕıa del filtro adaptativo [94]. Dentro de

este proyecto, el grupo de investigación de la Universidad de Granada se centrará en la

evolución del entorno de simulación EDLUT con el fin de simular estructuras biológicas

más realistas y aumentando el rendimiento de las simulaciones (véase el caṕıtulo 2).
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Dado que este tipo de proyectos requieren un enfoque altamente multidisciplinar,

en este trabajo se presentan los resultados desde el punto de vista de los sistemas

biológicos. Esto es especialmente relevante en la última parte de este trabajo (véase el

caṕıtulo 4), donde se utiliza una arquitectura que emula el funcionamiento del cerebelo

con el fin de manipular herramientas con un brazo robótico. Además de esto, este

trabajo implica tratar con un sistema robótico (el desarrollo de un simulador de brazo

robótico, el estudio de los circuitos de control biológicamente plausible, o la conversión

de/en señales de spikes). Todas estas y otras tareas han sido principalmente realizadas

por Niceto Luque, perteneciente al mismo departamento de Arquitectura y Tecnoloǵıa

de Computadores de la Universidad de Granada.

6.7 Organización de caṕıtulos

Este documento ha sido organizado en tres caṕıtulos principales de acuerdo a las tres

cuestiones principales que se han abordado en este trabajo. En primer lugar, en el

caṕıtulo 2, desarrollamos y evolucionados un simulador de redes neuronales de spikes

extremadamente eficiente (EDLUT). Hemos incluido un apartado a modo de estado del

arte, donde las herramientas de simulación más conocidas se presentan y se comparan

(ver sección 2.2.2). El desarrollo de EDLUT se ha centrado en dos cuestiones principales:

facilitar el uso de EDLUT para los investigadores expertos en neurociencia (mediante

el desarrollo de una interfaz gráfica de usuario, nuevos métodos de comunicación o la

liberación como una herramienta de código abierto), y la implementación de estructuras

biológicamente detalladas y eficientes (como modelos de neurona dirigidos por tiempo,

modelos estocásticos de células basadas en tablas de búsqueda o modelos red h́ıbridos).

De esta forma, el caṕıtulo 2 representa la herramienta base que se utilizará en los

siguientes caṕıtulos.

En el caṕıtulo 3, llevamos a cabo un estudio de simulación de las propiedades

de filtrado temporal que tienen lugar en la capa granular y la influencia que la fuerza

sináptica de las conexiones pueden tener en estas capacidades. En este estudio, hacemos

uso de la simulación eficiente mediante el uso de EDLUT para simular la respuesta de la

capa granular de forma iterativa utilizando la misma estimulación, pero con parámetros

de red diferentes. El procesamiento temporal en la capa granular se piensa que puede
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tener una gran influencia no sólo en la actividad del cerebelo, sino también en los ritmos

de todo el cerebro también (ver el estado del arte en la sección 3.2.1).

Finalmente, en el caṕıtulo 4, se estudia la influencia de la plasticidad sináptica en las

fibras paralelas del cerebelo, aśı como la convergencia de información en la capa granular

en el marco de un problema real (como es una tarea de manipulación). Para lograr este

sistema de aprendizaje, que hace uso de uno de los principales modelos funcionales

del cerebelo (ver sección 4.2.1 donde se discuten las principales teoŕıas funcionales),

se implementa este modelo por medio de un modelo de red realista funcionando en

EDLUT y se utiliza para corregir el control de un brazo robótico con articulaciones no

ŕıgidas realizando trayectorias rápidas con precisión.

En resumen, este trabajo representa una evolución en el desarrollo de la herramienta

de simulación, para la implementación de un sistema robótico preciso. Cada caṕıtulo

trata de los diferentes niveles de abstracción (modelos celulares, modelos de red, y

los modelos del sistema, respectivamente), e incluye un estado del arte del problema

concreto.
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Caṕıtulo 7

Discusión en castellano

7.1 Trabajo futuro

En trabajos futuros, la implementación dirigida por tiempo usando un paso de tiem-

po variable e independiente para cada neurona será abordada, lo que nos llevaŕıa a la

aceleración y la mejora de la precisión de las simulaciones. Esta avanzada estrategia de

simulación ha sido previamente probado en otras herramientas de simulación [124] con

impresionantes resultados. Además de esto, la difusión de los clusters de ordenadores

de alto rendimiento ofrecen una oportunidad prometedora para aumentar considera-

blemente el rendimiento del entorno de simulación EDLUT. Sin embargo, la dificultad

de procesar las colas de eventos de manera distribuida a lo largo de los diferentes no-

dos suponen un importante desaf́ıo para esta implementación. En la misma ĺınea de

evolucionar el simulador EDLUT, la integración con otras herramientas genéricas de

descripción de modelos de neurociencia en diferentes niveles de abstracción (celulares,

redes neuronales, sistema,...) como PyNN o NeuroML podŕıa hacer más rápida y sen-

cilla la curva de aprendizaje para potenciales usuarios de EDLUT y permitiŕıa crear

modelos que fueran en gran medida reutilizables en herramientas más conocidas como

Neuron o Genesis.

La evolución natural de este trabajo nos lleva a hacer uso de las capacidades de

filtrado temporal en la capa granular del cerebelo dentro de un modelo completo de

cerebelo aplicado a tareas de control robótico. Aunque el filtrado temporal ha sido pues-

to de manifiesto en este trabajo, el conocimiento de cómo estas propiedades podŕıan

mejorar un modelo de cerebelo requiere la búsqueda de una teoŕıa completa sobre la
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codificación de las señales en las fibras musgosas y paralelas. Simulaciones y estudios

experimentales recientes [27] pueden ayudar a clarificar este debate (al menos parcial-

mente).

Por otro lado, la simulación de modelos biológicos detallados del cerebelo todav́ıa re-

presentan una cuestión sin resolver. La inclusión de plasticidad sináptica en la mayoŕıa

de las conexiones del cerebelo (estudios experimentales han demostrado la existencia de

estos mecanismos) es una potente herramienta capaz de configurar automáticamente

todo el sistema, adaptándolo al entorno existente, con el fin de obtener el mejor ren-

dimiento. Estos mecanismos podŕıan ser especialmente relevantes en la capa granular,

donde la plasticidad podŕıa llevar los pesos de las conexiones a aquellos valores que

optimizan el rebote de sensibilidad en el mismo rango de frecuencias que presenta la

actividad de entrada.

Un enfoque similar podŕıa llevarse a cabo en otras partes del cerebelo, como por

ejemplo las conexiones MF → DCN or PC → DCN . Esta plasticidad, aśı como

aquella entre GrC → SC → PC, se ha demostrado recientemente que influyen en

la consolidación del aprendizaje. Estos trabajos futuros se abordarán en el marco de

un proyecto europeo iniciado recientemente (REALNET), y conforme se vayan publi-

cando resultados, todos estos modelos neuronales y de cerebelo y sus mecanismos de

adaptación estarán disponibles en el sitio web del simulador EDLUT para facilitar la

reproducción de este y otros resultados futuros.

7.2 Publicación de resultados

Nuestro trabajo de investigación ha sido evaluado en el marco de conferencias inter-

nacionales y publicaciones cient́ıficas (con ı́ndice de impacto en el JCR). Haciendo un

rápido resumen, la producción cient́ıfica se puede concretar como: 2 art́ıculos publi-

cados en revista (Q1 —Top 3— y Q2 en sus respectivas categoŕıas JCR), 2 art́ıculos

aceptados (revistas Q1 en sus respectivas categoŕıas JCR, y de hecho, uno de ellos es

Top 3), 3 otros art́ıculos que se encuentran actualmente bajo revisión (Q1 y Q2 en sus

respectivas categoŕıas JCR). 5 Conferencias internacionales (COGSYS 2008, ICJNN

2010, COGSYS 2010, y IWANN 2011).
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7.2.1 Revistas internacionales

1. D’Angelo, E.; Koekkoek, S.K.E.; Lombardo, P.; Solinas, S.; Ros, E.; Garrido, J.;

Schonewille, M.; De Zeeuw, C.I.: “Timing in the Cerebelllum: Oscillations and

Resonance in the Granular Layer”. Neuroscience, 162, 805–815, 2009.

2. Luque, N. R.; Garrido, J. A.; Carrillo, R. R.; Coenen, O. J. M. D.; Ros, E:

“Cerebellar input configuration towards object model abstraction in manipulation

tasks”. IEEE transaction on neural networks, 22(8), 1321–1328, 2011. (Revista

Top 3 en Ciencias de la Computación, Hardware & Arquitectura, 1er cuartil

en Ciencias de la Computación, Inteligencia Artificial, Teoŕıa & Métodos, y en

Ingenieŕıa, Eléctrica & Electrónica).

3. Luque, N. R.; Garrido, J. A.; Carrillo, R. R.; Tolu, S.; Ros, E.: “Adaptive cerebe-

llar spiking model in a bio-inspired robot-control loop”. International journal on

neural systems, 21(5), 385–401, 2011. (1er cuartil en Ciencias de la Computación,

Inteligencia Artificial).

4. Luque, N. R.; Garrido, J. A.; Carrillo, R. R.; Coenen, O. J. M. D.; Ros, E:

“Cerebellar-like corrective-model abstraction engine for robot movement con-

trol”. Aceptado en IEEE Transaction on system, man, and cybernetics - Part

B. (Revista Top 3 en Automatización & Sistemas de Control, y en Ciencias de la

Computación, Cibernética. 1er cuartil en Ciencias de la Computación, Inteligen-

cia Artificial).

5. Garrido, J. A.; Carrillo, R. R.; Ros, E.; D’Angelo, E.: “The impact of synaptic

weights on spike timing in the cerebellar input layer: a simulation study”. Bajo

revisión en Neural Computation.

6. Luque, N. R.; Garrido, J. A.; Ralli, J.; Laredo, J. J.; Ros, E.: “From Sensors to

Spikes: Evolving Receptive Fields to Enhance Sensory Motor Information in a

Robot-Arm Scenario”. Bajo revisión en International journal on neural systems.

7. Tolu, S.; Vanegas, M.; Luque, N. R.; Garrido, J. A.; Ros, E.: “Bio-inspired Adap-

tive Feedback Error Learning Architecture For Motor Control”. Bajo revisión en

Biological Cybernetics.
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7.2.2 Conferencias Internacionales

1. Carrillo, R. R.; Garrido, J.; Ros, E.; Tolu, S.; Boucheny, C.; Coenen, O. J. M.

D. (2008): “A real-time spiking cerebellum model for learning robot control”.

International Conference On Cognitive Systems (COGSYS 2008).

2. D’Angelo, E.; Van der Smagt, P.; Solinas, S.; Jorntell, H.; Ros, E.; Garrido,

J. (2010): “Realistic circuit modelling: large-scale simulations of the cerebellar

granular layer”. International Conference On Cognitive Systems (COGSYS 2010).

3. Luque, N. R.; Garrido, J. A.; Carrillo, R. R.; Ros, E. (2010): “Cerebellar spiking

engine: Towards object model abstraction in manipulation”. International Joint

Conference on Neural Networks (ICJNN 2010).

4. Garrido, J. A.; Carrillo, R. R.; Luque, N. R.; Ros, E.: “Event and time driven

hybrid simulation of spiking neural networks”. International Work-Conference on

Artificial Neural Networks (IWANN 2011). Advances in Computational Intelligen-

ce. Lecture Notes in Computer Science, 6691, pp. 554–561. Springer, Heidelberg

(2011).

5. Luque, N. R.; Garrido, J. A.; Carrillo, R. R.; Ros, E.: “A spiking cerebellum

model in a multi-context robot control scenario for studying the granular layer

functional role”. International Work-Conference on Artificial Neural Networks

(IWANN 2011). Advances in Computational Intelligence. Lecture Notes in Com-

puter Science, 6691, pp. 537–546. Springer, Heidelberg (2011).

7.2.3 Otros medios de difusión

La difusión del conocimiento representa uno de los puntos clave en el desarrollo de

un proyecto europeo. Dado que este trabajo se ha realizado a la par que la evolución

de los proyectos SENSOPAC y REALNET (ver sección 7.3), se ha hecho un esfuerzo

notable en liberar los avances que surgen de estos trabajos. Es por ello que el entorno

de simulación EDLUT fue liberado como una aplicación de código abierto bajo licencia

GPLv3. Esto permite el uso de este software para cualquier proyecto de investigación

o industrial con casi ninguna restricción. Por lo tanto, después de un proceso de do-

cumentación exhaustivo del código fuente, EDLUT fue lanzado en el sitio web [98]
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en abril de 2009. Desde entonces, varios grupos han mostrado su interés en el uso de

EDLUT en sus propios proyectos y hemos apoyado todas sus preguntas y sugerencias.

Las siguientes estad́ısticas muestran cuantitativamente el interés despertado por este

proyecto:

• El sitio web ha recibido más de 11.000 visitas desde su lanzamiento en 2009.

• La presentación general del software EDLUT ha sido descargado unas 2.000 veces,

mientras que el código fuente de la última versión liberada ha sido descargado

más de 800 veces.

• Varios grupos han utilizado EDLUT para sus desarrollos tales como la Universi-

dad de Pav́ıa (Egidio D’Angelo y Sergio Solinas) de la Universidad Pierre y Marie

Curie en Paŕıs (Angelo Arleo, Luca Leonardo Bolonia y Jean Baptiste Passot),

la Universidad Erasmus de Rotterdam (Chris de Zeeuw y Jornt de Gruijl), la

Universidad de Lund (Henrik Jörntell y Carl Fredrik Ekerot), SICS (Martin Nil-

son) y otros investigadores, como Boris Barbour (CNRS), Olivier Coenen o Mike

Arnold.

La liberación del código fuente de EDLUT tuvo una calurosa acogida en los me-

dios de comunicación, y especialmente en la comunidad de software libre, tal y como

demuestran los siguientes titulares publicados en diversos medios de comunicación di-

gitales:

1. “Move to create less clumsy robots” en BBC News.

2. “EDLUT human nervous system researches disease and tests medicine” en Com-

pute Scotland.

3. “Artificial simulator of the nervous system created for research into diseases” en

Science daily.

4. “Development of an artificial simulator of the nervous system to do research into

diseases” en Eureka Alert.

5. “Liberado simulador del sistema nervioso: EDLUT” en Oficina de Software Libre

UGR.
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http://news.bbc.co.uk/2/hi/technology/6700691.stm
http://www.computescotland.com/edlut-human-nervous-system-researches-disease-and-tests-medicine-2352.php
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6. “EDLUT: un simulador neuronal” at Microsiervos.

7. “Desarrollan un simulador del sistema nervioso para investigación biomédica” en

Universidades.

8. “Simulador artificial del sistema nervioso humano” en http://www.solociencia.

com/medicina/09052105.htm.

9. “Desarrollan un simulador del sistema nervioso” en Orion.

10. “La UGR participa en la construcción de un cerebelo artificial” en Universia.

11. “La Universidad de Granada desarrolla un simulador del sistema nervioso hu-

mano” en Ideal.

7.3 Marco cient́ıfico general

Este trabajo cient́ıfico se ha realizado y financiado parcialmente dentro de los proyectos

europeos SENSOPAC: SENSOrimotor structuring of Perception and Action for emer-

gent Cognition (IST-028056), y REALNET: Realistic Real-time Networks: computation

dynamics in the cerebellum (IST-270.434). Esto ha representado un excelente marco de

colaboración con diversos grupos de investigación en otras universidades y centros de

investigación europeos. El trabajo presentado representa la principal contribución de la

Universidad de Granada dentro del consorcio SENSOPAC. Esto acarreó una gran res-

ponsabilidad por la necesidad de obtener los resultados en las fechas previstas durante

el proceso de investigación. Además de la informes técnicos requeridos y presentaciones

para las revisiones cient́ıficas de la UE, una demostración final (prueba de concepto)

fue requerida e implementada conjuntamente con la Universidad Pierre y Marie Curie

de Paŕıs y el DLR (Munich). El esfuerzo invertido en esta demostración y otras es sig-

nificativo, pero permite una fácil y vistosa evaluación de las capacidades del sistema y

facilita la difusión de los resultados más allá de un escenario puramente cient́ıfico, con

el objeto de iniciar futuras colaboraciones con la industria y llamar la atención en los

medios de comunicación (periódicos, TV, etc.).

Dado que este tipo de proyectos requieren un enfoque multidisciplinar, en este tra-

bajo se presentan los resultados principalmente desde el punto de vista de los sistemas

biológicos. Esto es especialmente relevante en la última parte de este trabajo (véase el
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caṕıtulo 4), donde se utiliza una arquitectura emulando el cerebelo con el fin de mani-

pular herramientas con un brazo robótico. Además de esto, este trabajo implica tratar

con sistemas robóticos (el desarrollo de un simulador de brazo robótico, el estudio de

los ciclos de control biológicamente plausibles, o la conversión de valores analógicos a

señales de impulsos). Todas estas tareas han sido principalmente realizadas por Niceto

Luque, de la Universidad de Granada. Además de esto, un esfuerzo considerable se

realizó en el diseño e implementación de una herramienta fácil de usar, intuitiva y un

simulador (teniendo en cuenta las dificultades de comprensión de este tipo de sistemas

en śı mismos) capaz de funcionar en diferentes entornos y con una amplia variedad de

dispositivos controlados. Esto ha requerido un trabajo con alto nivel de colaboración y

coordinación con el resto del equipo.

7.4 Principales contribuciones

A continuación se resumen las principales aportaciones del trabajo presentado:

• Un simulador dirigido eventos basado en tablas de consulta ha sido ampliamen-

te evolucionado para cumplir con los requisitos principales de un simulador de

redes neuronales en tiempo real, capaz de interactuar con gran cantidad de siste-

mas externos. Además de esto, se ha desarrollado una interfaz gráfica de usuario

basada en Java, lo que facilita el uso de estas herramientas de simulación para

investigadores que no están familiarizados con este simulador.

• El esquema de simulación dirigido por eventos ha sido reimplementado para ser

capaz de simular de forma nativa modelos de neurona dirigidos por tiempo (solos

o en combinación con otros dirigidos por eventos).

• Los modelos dirigidos por eventos (o más genéricamente, las redes h́ıbridas in-

cluyendo ambos) mostró un buen rendimiento y precisión cuando se trabaja con

bajos niveles de actividad. Por el contrario, los modelos dirigidos por tiempo son

preferibles en aquellos casos donde las caracteŕısticas del experimento producen

una actividad neuronal alta. Finalmente, un sistema de simulación h́ıbrido puede

ser conveniente en la simulación de sistemas biológicos que presentan niveles de

actividad diversos.
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• Un modelo computacional de la capa granular ha sido desarrollado y analizado,

mostrando que la detección de coincidencias en esta capa está regulada de manera

cŕıtica por el ciclo inhibitorio hacia adelante (MF → GoC → GRC).

• Además de esto, este modelo computacional de la capa granular ha demostrado su

capacidad para producir un rebote de sensibilidad (recientemente predicho sobre

la base de diversos datos experimentales). El ciclo de realimentación hacia ade-

lante deshinibitorio (MF → GRC → SC → GoC) resultó ser el más influyente

ya que afecta tanto a la amplitud del rebote de sensibilidad como al intervalo

entre est́ımulos que maximiza la respuesta de la red.

• Este modelo de la capa granular también mostró oscilaciones de la actividad

eléctrica en la banda de frecuencias β/γ como respuesta a una actividad de en-

trada aleatoria tal y como se ha podido observar en la capa granular del cerebelo

en experimentos in vivo e in vitro.

• Se ha presentado un modelo del cerebelo integrado en un circuito con un mode-

lo dinámico inverso crudo. Este modelo cerebelar es capaz de proporcionar con

eficacia pares correctivos para compensar las desviaciones en la dinámica de un

modelo de la planta original (debido a la manipulación de objetos).

• Este modelo de adaptación ha mostrado cómo los valores de LTD y LTP en

las fibras paralelas tienen que estar equilibrados para lograr las capacidades de

adaptación precisas. Hemos evaluado hasta qué punto unos valores correctamente

ajustados de las componentes LTD y LTP conducen a una reducción efectiva del

error en la realización de tareas de manipulación de objetos que puedan afectar

considerablemente la dinámica de la planta base del brazo.

• Se ha presentado una evaluación de la influencia de las señales sensoriales de

entrada en el cerebelo: con dos representaciones distintas, recibiendo entradas re-

lacionadas con el contexto (EC) y recibiendo sólo señales sensoriales del estado

actual del robot (IC) codificando el contexto durante los experimentos. Una confi-

guración IC&EC del cerebelo es capaz de aprovecharse de las dos configuraciones

de forma complementaria. Con el modelo propuesto se consiguen transiciones

entre contextos más suaves con una velocidad de convergencia mayor.
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• Este trabajo muestra cómo este modelo con señales de entrada cerebelares IC&EC

ofrece la posibilidad de sobreponerse a la aparición de información contextual

externa errónea (incoherente), haciendo que esta configuración del cerebelo sea

robusta contra representaciones incongruentes.
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