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Chapter 1 

 

Introduction 
 

Why does Physics study colloidal systems?  An oversimplified answer to this question 

could be: Physics studies natural processes from a fundamental viewpoint and colloidal 

systems show the emergence of several interesting natural processes such as the 

appearance of fractal structures, phase transitions, or the manifestation of Brownian 

motion as consequence of the interaction between liquid molecules and nanometric 

particles. That is, processes which are examples of phenomena present in many body 

systems. However, we have an additional reason which is less obvious but still true: 

Colloidal systems represent a field for testing theoretical models that were in principle 

developed for molecular or atomic systems. For instance, theories that were created to 

explain phase transitions which occur in molecular liquids are legitimately probed on 

colloidal systems.    

 

We can also argue that colloids have a ubiquitious presence in everyday life and, 

therefore, a significant interest per se. Thus, nowadays technology, mainly associated 

with industrial and biomedical applications, has an underlying colloidal “substratum”. 

Probably more fascinating, biological objects suspended in their physiological medium 

such as DNA, cells, erythrocytes or leukocytes (to mention only a few examples) are 

colloids. In general, according to the very nature of its interactions and its typical time 

and length scales, the “biological world” is a colloidal world. 

 

Motivated by these considerations, this dissertation is an attempt for rationalizing some 

of the emerging phenomena which are understood in terms of the interactions between 

colloidal particles suspended in a molecular liquid. These phenomena have two coupled 

manifestations:  Structure  and  Dynamics. Here  Structure  will be defined by the static  
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spatial correlations  between  the  colloidal   particles  which  form   the   system,  where   

static  will  refer  to  the average of time independent observables  over  an  ensemble of  

equilibrated colloidal systems. By Dynamics we will not signify the classical 

deterministic motion of a set of particles as the result of their interactions but the 

probabilistic representation of the relaxation of those fluctuations arising in a system in 

equilibrium.         

 

Different methodologies were employed to carry out the investigations present in this 

dissertation. From the experimental viewpoint, our most recurrent techniques will be 

dynamic and static light scattering, which will be complemented by cryotransmission 

electron microscopy, infrared spectroscopy and rheology. With these techniques we 

pretend to resolve in space and/or time those processes which constitute the object of 

our research. In addition, theoretical models will be proposed, and validated, for 

describing quantitatively our experimental results. For instance, the fluctuating signal 

scattered by a suspension of Brownian particles will be explained using as basis the 

mathematical formalism of the stochastic processes. Numerical models will be 

employed to describe the aggregation processes arising in a suspension of colloidal 

particles dominated by short range attractions. Mechanical statistical models will be 

also probed to account for by the experimental phenomenology of a colloidal system 

near the glass transition. Finally, numerical simulations based on molecular dynamics 

will be used as a predictive tool to tackle some of the present open problems which 

concern the glass transition phenomenon.  

 

Although not the unique, suspensions of lipid vesicles (liposomes) are here our main 

experimental system. Two essential reasons can be provided to argument our choice. 

First, liposomes present singular and useful properties to perform reliable and general 

experimental studies whose results can be extended to other colloidal systems. For 

instance, their size and surface charge can be controlled adequately whereas their 

refractive index, which is slightly different from that of the aqueous medium, allows us 

to prepare nearly transparent suspensions at high volume fractions. Second, the study of 

liposome suspensions has contributed over the last decades to a better understanding of 

biological processes involving cellular phenomena. Moreover, significant applications 

such  as  drug delivery  or  biological transport  through  the lipid membranes have been  
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developed from the synthesis of model liposome systems. Thus, here we will present 

results concerning some specific issues of liposome suspensions such as the study of the 

lipid membrane deformability or the influence of divalent cations on the hydration grade 

of the lipid molecules, a key point for understanding the aggregation and fusion of lipid 

membranes.  

 

The outline of this dissertation has been separated according to our aims. First, we will 

provide the reader with a concise but sufficient theoretical background to understand 

our main findings (chapters 2 to 5).  Second, we will present our experimental and 

theoretical results concerning the Brownian dynamics of colloidal particles at short and 

long times (papers I and II). In this respect, special attention will be paid to the 

Brownian motion of deformable particles, an issue which is surprisingly scarce in the 

previous literature. Third, we will present the first example of structure through our 

investigation concerning the fractal organizations emerging in liposome suspensions 

governed by short range attractions under the influence of divalent cations (papers III 

and IV). In this sense, we will discriminate between those results which are common to 

other colloidal systems and those which are specific of systems at which hydration 

forces play a central role. We devote the final part of this dissertation to the study of the 

puzzling problem of the glass transition (papers V and VI). Thus, we will deal with the 

structure and dynamics of systems near the glass transition which are dominated by 

repulsive interactions.  In this respect, the glass transition will be studied experimental 

and theoretically by offering a common description in time and frequency domains. 

Finally, based on molecular dynamics simulations (which can also be applied to 

molecular liquids), we present our interpretation of the glass transition phenomenon by 

recovering the old debate of its controversial origin in an attempt to reconcile its kinetic 

and thermodynamic perspectives.  

 

In a crude sense, this dissertation treats the ancient concept of Emergence and its 

manifestation in colloidal systems. That is, those complex patterns and self-

organizations arising in many body systems for which we know in principle the simple 

interactions between two isolated particles. Fractals are an emergence. Glasses are an 

emergence whose cause is not completely understood. Finally, the most fascinating and 

mysterious: Life itself is an emergence.    
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Chapter 2 

 

Interactions in Colloidal Suspensions 

 

In classical Physics, the mechanical state of a system of particles is completely 

determined at any instant if all the coordinates and velocities are simultaneously 

specified. The future state of the system is then determined by the relations between the 

accelerations, velocities and coordinates, that is, by means of the equations of motion. 

 

In spite of this experimental fact, there are several examples for which the mechanical 

phenomenology of a system is described by probabilistic laws. This description is often 

consequence of the non-accessibility to the mechanical state of the system (usually 

determined by a large number of variables) with a sufficiently accurate temporal coarse 

graining (“level of detail”).  Historically, one of the reference systems studied by this 

stochastic description is a suspension of Brownian particles whose motion is subjected 

to different mechanical constraints (classical references are [1-3]). The study of this 

motion, present in any system of colloidal particles suspended in a liquid medium, will 

be the starting point of this Chapter.  

 

2.1. Brownian Motion 

 

By Brownian motion we understand indistinctly the “random” motion of mesoscopic 

particles suspended in a liquid without direct interaction between them as well as the 

mathematical model describing this motion.  

 

One of the first documented observations of Brownian motion, from which its name 

was coined, was performed by the English botanic Robert Brown (1827) while looking 

through a simple microscope at the erratic motion of micron-scale pollen grains 

suspended in water [4]: 
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“While examining the form of these particles immersed in water, I observed many of 

them very evidently in motion […] These motions were such as to satisfy me, after 

frequently repeated observation, that they arose neither from currents in the fluid, nor 

from its gradual evaporation, but belonged to the particle itself.” 

 

Robert Brown’s interpretation (…belonged to the particle itself) was definitively 

rejected at the beginning of the 20th century when Einstein [5], von Smoluchowski [6], 

Langevin [7], and Perrin [8] established and validated the theoretical fundamentals of 

Brownian motion, supporting their new interpretation on the molecular constitution of 

the liquid. The Brownian particle would collide with the light molecules of the liquid in 

an extremely frequent fashion, leading the particle to perform jumps supposedly 

uncorrelated.  The duration of these collisions would be too short to be discriminated, 

therefore, the continuous change of Brownian velocity would not be appreciated. Thus, 

under this temporal coarse graining, the future velocity of the particle depends on the 

present velocity but not on its earlier values1.  

 

The first physical model of Brownian motion in which velocity was considered came 

with the Langevin Equation [1, 7]. Langevin equation interprets the interaction between 

the Brownian particle and its surrounding liquid in terms of two forces associated with a 

common origin, a systematic friction and a fluctuating noise, with no considerations of 

hydrodynamic memory effects. To facilitate our discussion, we treat the motion as if it 

were one-dimensional without loss of generality: 

 

)()(
)(

tFtv
dt

tdv
m +−= β         (2.1)   

m  being the mass of the Brownian particle, )(tv  its velocity at time t , β  is the friction 

coefficient, and )(tF  a stochastic force2. The frictional term, )(tvβ− , is assumed to be 

governed by Stokes’ law, which in case of spherical particles takes the form ηπβ R6= .  

 

                                                 
1 Formally speaking, the Brownian velocity would be Markovian. A formal definition of the Markovian 
property can be found in Paper II. 
2 The systematic friction, )(tvβ− , and the fluctuating noise, )(tF , represent in fact a manifestation of 

the so-called fluctuation-dissipation theorem [9] since they are associated with a common origin: The 
interaction between the Brownian particle with the liquid molecules.  
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Here R  is the radius of the particle whereas η  is the shear viscosity of the liquid. 

Concerning the “fluctuating part”, )(tF , two a priori hypotheses, which are 

characteristic of Brownian motion, are assumed: 

 

1- )(tF  is a Gaussian stochastic process with 0)( =tF
3.  

2- )()()( τδτ ∝+tFtF . 

 

Hypothesis 1 considers )(tF  as the result of several independent and isotropic 

collisions between the Brownian particle and the liquid molecules. Therefore, by virtue 

of the Central Limit Theorem, )(tF  is a Gaussian process with a zero time-averaged 

value [10-12].  Hypothesis 2 establishes that the collisions between the Brownian 

particle and the liquid molecules are uncorrelated4 (or, formally speaking, delta-

correlated). This is a consequence of the temporal coarse graining at which the motion 

is observed. 

 

In 1930 Ornstein and Uhlenbeck presented the solution of Equation (2.1) under the 

assumptions 1 and 2, founding their derivation on the relation between any Cartesian 

component of the mean-square displacement, 2)(τx∆ , of the Brownian particle and its 

velocity autocorrelation function, )()0( tvv xx  [1]: 

 

( )2

0

( ) 2 (0) ( )x xx t v v t dt

τ

τ τ∆ = −∫        (2.2) 

 

 

 

                                                 

3 Here we assume as time-average: ∫∞→
=

T

T
dttF

T
tF

0

)(
1

lim)(   

4 )(tF  is the so-called Gaussian white noise. Here the adjective Gaussian is not redundant despite 

sometimes it is incorrectly assumed that the Gaussian property is a necessary condition for the white 
noise definition. In this respect, there are other frequent examples of white noise with different probability 
distributions (e.g. Poisson or Cauchy distributions). 
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They obtained: 

 

( )2
0( ) 2 exp /  B B Bx Dτ τ τ τ τ τ∆ = − + −         (2.3) 

)/exp()()0( B
B

xx t
m

Tk
tvv τ−=        (2.4) 

 

Bk  represents Bolztmann’s constant and T  the absolute temperature5 (both included to 

impose the equilibrium Maxwellian variance mTktv Bx /)( 2 = ).  β/0 TkD B≡  is the 

free particle diffusion coefficient and ηρτ 9/2 2RB ≡  the Brownian time ( ρ  being the 

Brownian particle density).  

 

Two obvious regimes can be discriminated from Equation (2.3).  At short times, we 

have a ballistic regime: 

 

222 )()( ττ tvx x=∆ ,        (2.5) 

 

whereas at long times, motion is diffusive: 

 

ττ 0
2 2)( Dx =∆   ;  ( Bτ τ>> )       (2.6) 

 

Where Equation (2.6) is the celebrated result obtained by Einstein in his seminal work 

“On the disordered motion of particles suspended in a liquid and its relation to 

diffusion” [5]6.  

 

In spite of its mathematical significance, the Langevin equation predicts a rapid and 

non-realistic transition  from ballistic  to diffusive  motion.  A successful  description  of  

 

                                                 
5 We will indistinctly use T  for temperature and time. The meaning will be made clear by the 
dimensionality of the corresponding equation.  
6 Einstein’s words concerning the range of applicability of the diffusive time scale are as follows:  “We 

now introduce a time interval τ , which is very small compared with observable time intervals but still 

large enough that the motions performed by a particle during two consecutive time intervals τ can be 

considered as mutually independent events” [5]. 
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this transition came in the 1960’s when Alder and Wainwright [13, 14] found a 

“…surprising persistence of the velocities” [14] through a “long-time tail” 

( 2/3)()0( −∝ τtvv xx ) in the velocity autocorrelation function (see Paper I). By means 

of a molecular dynamics simulation, they “observed” a delay in the emergence of the 

diffusive motion which was explained in terms of a hydrodynamic memory effect: The 

fluid would circulate from the front of the particle, where it is compressed, to the rear, 

where a rarefaction wave is developed. This vorticity effect results in an effective boost 

that pushes the particle.  

 

This finding was theoretically described by means of a more complete hydrodynamic 

treatment where vorticity memory effects were considered [15-18]. Accordingly, the 

mean-square displacement results: 

 

 
1/ 2 3 / 2

2 1/ 2 1/ 2
0

2 4
( ) 2 2 8 7  ; ( )

9 ' '9
L L L

Lx D
τ τ τρ ρ

τ τ τ τ τ τ
π ρ ρπ

−
     

∆ ≅ − + − − − ≥     
       

(2.7)

  

 

Here ( )( )9 / 2 '/L Bτ ρ ρ τ= , where the fluid density, 'ρ , appears as a new parameter.  

Thus, despite the fact that both Equation (2.3) and (2.7) tend to a common diffusive 

regime,  2
0( ) 2x Dτ τ∆ =  ( Bτ τ>> ), the latter presents a second term, 2/12/1)/(2 τπτ L , 

which is easily associated through Equation (2.2) to the long-time tail in the velocity 

autocorrelation function  ( 2/3)()0( −∝ τtvv xx ). As a way of example, a simple 

calculation shows that this second term ( 2/1τ∝ ) represents a fraction 

13.0)15/(1 ≅−π  of the mean-square displacement at Lττ 100=  for 1/' =ρρ  

(Equation (2.7)) whereas for the same time 2)(τx∆  given by Equation (2.3) is close to 

τ02D  in 99.8%.  

 

First, Equation (2.7) was validated on real simple liquids [19, 20]. For rigid colloidal 

particles, experiments using dynamic light scattering (DLS) [18, 21, 22], diffusing-wave  
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spectroscopy [23, 24], and optical trapping interferometry [25], have confirmed the 

existence of the long-time tail7. However, the past and present studies are based on the 

assumption of a hard spheres-like interaction (computer simulations) or a fixed, rigid, 

geometrical shape of the tracer particles (experiments). In paper I, we extend these 

studies to deformable Brownian particles for which a lack of investigations still persist. 

 

Thus, in this dissertation we will present a firm experimental observation against the 

validity of the classic long-time tail prediction (Equation (2.7) in case of deformable 

Brownian particles. In addition to translational motion, our observation will consider the 

deformational motion of the particles on timescales of the order of the Brownian time. 

 

2.2. Interparticle Forces 
 

We have discussed the interaction between a colloidal particle and its surrounding 

liquid using as theoretical basis the classical Brownian model. However, this model is 

often insufficient when we increase the concentration of the colloidal particles since 

they start to “feel” the presence of their neighbours. In this case, if we neglect the effect 

of the external gravitational field, the only active observable governing the direct 

interaction between colloidal particles is the electric charge. Taking into account this 

experimental fact, we now present the most relevant interactions between colloidal 

particles, paying special attention to those that will be most apparent in the experimental 

systems explored within this dissertation. They are: 

 

1- Electrostatic Repulsion.  

2- London-van der Waals Attraction. 

3- Hydration Forces. 

4- Hydrodynamic Forces.    

 

The classical model constituted by the non-coupled addition of 1 and 2, whose 

effectiveness has been proven on several colloidal systems, is the so-called DLVO 

Theory, whose acronym was adopted from the works of Derjaguin and Landau [26] and 

Verwey and Overbeek [27]. 

                                                 
7 Additional results for rigid colloidal particles will be also provided in this dissertation (see Paper I). 
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2.2.1. Electrostatic Repulsion  

 

There are many examples of colloidal particles presenting a specific ionization when 

they are suspended in a polar liquid due to the chemical constitution of their surfaces. In 

these cases, the colloidal particle acquires charge being surrounded by counterions (ions 

with opposite charge from that of the particle) and, in general, by the ions of any 

electrolyte present in the fluid, maintaining the electric neutrality of the suspension. The 

resulting scenario is a colloidal particle surrounded by an electric double layer. The 

overlap between double layers corresponding to two neighbour particles results in a 

Coulombic repulsion. Although there exist sophisticated treatments which discriminate 

different regions of the electric double layer [28, 29], here we will discuss an essential 

approximation based on the classical Poisson equation.    

 

Let us consider the ions surrounding the colloidal particle as point charges creating a 

continuous charge density, ( )rρ , that is, a scalar function of class 0C at each point of the 

space around the colloidal particle. Poisson equation is then applied to obtain the 

potential ( )rϕ : 

 

( )
( )

r
r

ρ
ϕ

ε
∆ = −             (2.8)    

 

Where the liquid medium is only described by its electric permittivity,ε . If we consider 

the colloidal particle as spherical with a uniform surface charge density, the spatial 

dependence of the stationary problem (2.8) will rely on the radial coordinate, r .  Within 

this framework, only a functional form for ( )rρ  is required to solve Equation (2.8). In 

this respect, it is assumed that the small ions around the colloidal particle present a 

motion which is rapid enough compared to that associated to the colloidal particle. 

Therefore, their distribution can be taken as that corresponding to a system in 

equilibrium, that is, Boltzmann distribution [30]: 

 

( )∑
=

=
M

i

Biii Tkrzenzer
1

00 /)(exp)( ϕρ        (2.9)       
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Where we assume the presence of M  different species of ions, whose number densities 

and valences are given respectively by in  and iz  ( 1,...,i M= ), 0e  being the elementary 

charge. Equation (2.8) with the functional form (2.9) is the renowned Poisson-

Boltzmann Equation.  

 

Due to its highly non-linear character, the Poisson-Boltzmann Equation is usually 

linearised to overcome analytical difficulties.  In principle, the validity of this 

approximation is restricted to those cases in which the thermal energy, TkB , is 

comparable to the potential energy )(0 rze iϕ ( 1,...,i M= ), e.g. long distances from the 

colloidal particle surface. As in the Debye-Hückel theory for simple electrolytes, the 

exponentials in (2.9) are truncated at the first order leading the Poisson problem to an 

analytical solution which is well-known for different geometries of the colloidal particle 

surface. 

 

In particular, the solution for the potential energy )(rEelec of a pair of spherical colloidal 

particles of radius a  and equal uniform surface charge, adopts the form of a Yukawa 

potential energy [31]: 

 

)exp()(
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q
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0q  being the effective charge on the colloidal particle surface whereas 1−κ , the so-

called Debye screening length, indicates the range of interaction. As can be seen, this 

range does not only depend on the charge and density of the small ions but also presents 

a decreasing behavior upon increasing temperature. These dependences lead to values of  
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1−κ  ranging from a small fraction of the particle radius to values which are significantly 

larger than .a        

 

Despite that the acceptability of the linearised Poisson-Boltzmann Equation is restricted 

by the conditions )(0 rzeTk iB ϕ>  ( 1,...,i M= ), it is frequent to use this approximation 

when eq  and κ  are not well characterised experimentally. In these cases, eq  and κ are 

regarded as fitting parameters, eq  being usually smaller than the expected prediction in 

case of highly-charged colloidal particles. Nevertheless, not only the linearised version 

of the Poisson-Boltzmann Equation but also its exact, non-linear, starting point 

(Equation  (2.9)), present systematic predictive failures under certain conditions. We 

highlight here two of them: 

 

1- The assumption of the small ions as point charges is not adequate in many 

experimental systems where the ratio between the size of the colloidal particle and the 

ions is not large enough [31]. 

 

2- The effective charge 0q  suffers an obvious alteration upon approaching two double 

layers. This experimental fact conditions the validity of a stationary approximation as 

the Poisson Equation [32]. 

 

2.2.2. London-van der Waals Attraction  

 

Electrostatic repulsion is the main mechanism for colloidal particle stabilization. 

However, when the double layer around a colloidal particle is sufficiently screened until 

very short distances, e.g. by the addition of an electrolyte, the particles can start an 

aggregation process due to short-range attractive forces. Classical DLVO theory 

incorporates London-van der Waals Attraction
8 to explain this phenomenon [33]. 

 

 

                                                 
8 Here we clearly specify the kind of van der Waals forces discussed in this section: London-van der 
Waals, that is, forces between two instantaneously induced dipoles. We do not consider here Keessom-
van der Waals forces between two permanent dipoles or Debye-van der Waals forces between a 
permanent dipole and a corresponding induced dipole. 
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The fluctuation of the electromagnetic fields associated to the polarisability of two 

molecules creates an attractive force between them due to the emergence of 

instantaneously induced dipoles that decreases upon increasing their distance as 6−r . 

For macromolecules (or colloidal particles), Hamaker derived an expression by the 

addition of any pair of molecules constituting the colloidal particles presenting an 

asymptotic behaviour 2−r  and typically operating at distances of the order of a few 

nanometers [34]9. The corresponding potential energy is: 
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Where A , known as Hamaker’s constant, depends on the polarisability of the molecules 

and its relation to that of the liquid medium, being negligible when both are coincident. 

A typical order of magnitude for A  is 2010 J− [33]. 

 

Expression (2.13) does not possess a clear range of applicability since it presents a 

divergence at the contact ( 2r a→ ). However, it permits a good approximation at 

sufficiently short distances where a deep minimum appears (usually many times greater 

than TkB ). When distance decreases under the range of applicability of Equation (2.13), 

additional repulsive forces can prevent the contact (e.g. the hydration forces discussed 

in the next section).  Finally, the sharp Born repulsion due to the overlap of the 

electronic clouds usually ensures the particle impenetrability. In this respect, a hard-

spheres interaction, )(rEhs , is often added to the classic DLVO theory implementing 

this last repulsion: 
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9 Here r  is the center-center separation between two macromolecules. 
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2.2.3. Hydration Forces  

 

When colloidal particles have a surface with a certain degree of hydrophility, a new 

non-classical DLVO interaction appears. This interaction is usually understood in terms 

of a hydration energy which is generally repulsive [33, 35-37]. The earliest explanation 

of this hydration or structural force came in the 1970´s, when it was attributed to the 

strongly bound liquid molecules (e.g. water) on the colloidal particle surface [35]. 

Accordingly, the liquid would form an oriented layer around the colloidal particle 

inducing an effective repulsion when two particles became sufficiently close.  However, 

this is not the only plausible explanation since the local variation of the dielectric 

permittivity in the electric double layer [36] or the entropic repulsion arising from the 

confinement of thermally mobile surface groups would also provide a satisfactory 

interpretation [37]. Thus, a definite understanding of the hydration interaction still 

remains elusive. Due to its complexity, it seems that more sophisticated experiments as 

well as computer simulations should be considered over the following years to give us 

new insight on this phenomenon. In the meantime, some authors as Okhi and Arnold 

have proposed semi empirical expressions [38-40] to explain experimental results with a 

certain level of success. In their model, they define a hydrophobic index, p , that 

represents the degree of hydrophobicity of the surface [39]. Thus, the hydration energy 

would be purely repulsive when the surface is hydrophilic and tends to be completely 

hydrated ( 0=p ) whereas the interaction would be attractive when the surface is 

hydrophobic and then it is completely dehydrated ( 1=p ).  
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Their ansatz for the hydration energy per unit area is:  

 

( ) ( )'/exp''/exp)1()( 00 lRlpPlRlPpREh −+−−=      (2.15) 

 

Here R  represents the separation distance between the surfaces of two colloidal 

particles, 0P  (>0) and '0P (<0) are constants having the dimension of pressure whereas l  

and 'l  are decay rates indicating the range of the hydration repulsion and attraction 

respectively (usually of the order of a few Ångströms). 

 

Within this dissertation, the significace of )(REh  will be obvious in the aggregation 

processes of liposome suspensions mediated by divalent cations (see Paper IV). 

However, instead of using an analytical approximation as (2.15), we will show 

experimental results on the effective dehydration exerted by some metallic cations on 

the superficial lipid headgroups. 

 

2.2.4. Hydrodynamic Forces  

 

There are different notions under the appellative of Hydrodynamic Forces. In principle, 

by hydrodynamic forces we can understand any transfer of momentum between a 

colloidal particle and its surrounding liquid. In this respect, the Brownian interaction 

described in section 2.1 will belong to that category. However, when colloidal particle 

concentration is increased it can appear a new hydrodynamic component. Let us discuss 

briefly this interaction. 

 

By virtue of Newton’s third law, the liquid interacting with a mesoscopic particle 

receives a momentum transfer from the particle which is equal in magnitude to that 

received by the particle. If particle concentration is large enough, this perturbation in the 

fluid will be transmitted reaching the neighbour particles and appearing a new force, 

which is not strictly Brownian, with the fluid as propagating medium10.  This interaction  

                                                 
10 The range of this hydrodynamic interaction can be often of the order of a fraction of the colloidal 
particle radius [31].  
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will depend at any instant on the mechanical state of the system (position and velocities 

of the particles) as well as on the transport coefficients of the liquid medium (e.g. 

viscosity). This phenomenon is often described by a generalization of the Langevin 

Equation [31]:    
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N  being the number of colloidal particles, im  the mass of particle i , )(tvi

r
 its velocity 

at time t  and )(tFi

r
 is the three-dimensional version of the Gaussian white noise 

referred in section 2.1. Now the friction coefficient in Langevin Equation becomes a 

tensor,  ))(( tr N

ij

r
β , depending on the instantaneous particle configuration, { })(tr Nr . 

Again, we can take advantage of Newton’s third law to ensure the symmetry of ijβ 11.  

 

Nevertheless, it is difficult to find an analytic expression for ijβ . For that reason, authors 

such as Beenakker and Mazur have described the effect of the hydrodynamic interaction 

in simple terms for a suspension of hard spheres by means of a semi empirical 

correction of the free diffusion coefficient present in section 2.1 that depends on the 

particle volume fraction, φ  [41]: 

 

( )2
0 91.056.11 φφ ++= DDeff         (2.17) 

 

Now effD  is the effective particle diffusion coefficient. Thus, the effect of the 

hydrodynamic forces is manifested through the inequality 0DDeff >  as a slowing down 

of the motion with respect to the free diffusion. 

 

 

 

                                                 
11 In case of dilute systems, where the hydrodynamic forces between the colloidal particles are negligible,  

ijβ  recovers its diagonal form and the Equations (2.16) become uncoupled, that is, we recover the 

Langevin Equation (2.1). 
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Chapter 3 

 

Structure: General Concepts 

 

The previous Chapter was dedicated to the discussion of the most relevant interactions 

present in a suspension of colloidal particles, that is, liquid-particle and particle-particle 

interactions. These interactions have two coupled manifestations, one concerning the 

dynamics, whereas the other, is manifested through the static spatial correlations 

between particles. This latter effect is commonly known as Structure being classically 

described in terms of ensemble averages of functions that involve correlations between 

two or more particles. 

 

3.1. Pair Correlations 

 

In classical Statistical Mechanics the configurational space of a system of N  particles is 

weighted by an ensemble probability distribution )( NrP
r

  , that is, a joint distribution 

for finding the system at the state { } { }N

N rrr
rrr

,...,1= , where ir
r

 is the position of the 

particle labelled as i . Under equilibrium conditions, this distribution is stationary for 

any ensemble, in particular for that represented by the canonical ternary set { }TVN ,, , 

V  being the volume of the system.     

  

In the case of indistinguishable particles, we can reduce our description to a correlation 

between any pair of particles by means a generic distribution, ),( 21
/2 rrN rr

ρ , that is, a 

joint distribution for finding any particle of the system at position 1r
r

 and any other at 

position 2r
r

 [42]: 
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Where the rest of the particles can be at any position of the configurational space, Ω , 

)1( −NN  being the possible assignations between particles and positions. We can go 

further by assuming that space is homogeneous, that is, there are not privileged 

positions. Under this assumption, the generic distribution for an ideal system, a system 

with no interaction between particles, takes the form: 

 

2

limt) amic(Thermodyn        
constantV/N ,NV,     

2
21

/2 /)1(),( ρρ →
→∞→

−= VNNrrN

ideal

rr
     (3.2) 

 

ρ  being the density of our system. If space is also isotropic, that is, there are not 

privileged directions, we can define the radial distribution function, )( 12 rrrg
rr

−= , as: 

 

2
21

/2 /),()( ρρ rrrg N rr
≡         (3.3) 

 

Thus, by )(rg  we establish the correlation between any pair of particles separated by a 

distance r  with respect to that corresponding to an ideal system. Some simple 

considerations are pertinent: 

 

1- ( )g rρ  is the mean density of particles at a distance r  from a given particle with 

respect to the mean density ρ . 

 

2- If correlation is lost upon increasing r , then we have ( ) 1g r → ∞ = . 

 

3- Definition (3.3) is supported by three essential assumptions: particle 

indistinguishability, space homogeneity and space isotropy.  

 

The experimental accessibility to the pair correlations in a system of colloidal particles 

usually comes from directly measurable functions in Fourier space instead of real space.  
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To establish the connection between these functions and those defined above, let us 

consider an alternative way to express the generic distribution )',(/2 rrN rr
ρ  [43]: 
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Where )(r
r

δ  is the delta distribution whereas  denotes the ensemble average. 

Equivalently, the local particle density at position r
r

 can be expressed as: 
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Any Fourier component, 
k
rρ , of the local density is then given by: 
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Where its autocorrelation function is the so-called Static Structure factor
12: 
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We can conveniently develop expression (3.6) to rewrite the static structure factor in 

terms of the radial distribution function for homogeneous and isotropic suspensions 

[43]: 
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12 Vector k

r
 in Fourier space will correspond to the scattering vector in the scattering experiments shown 

in this dissertation (see Papers I-V). 
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Where )(rg
r

 is given by the trivial vector generalization of expression (3.3). Conversely 

we have: 

 

( )[ ]∫ −⋅= kdkSrkirg
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Finally, if the system is isotropic: 

 

( )∫ ∫
−
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1
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Within this dissertation, the connection given by expression (3.9) as well as the 

experimental determination of the static structure factor will be widely relevant (see 

Papers III, IV, and V).    

 

3.2. Point-to-set Correlations  

 

The structural description given by the radial distribution function and its counterpart in 

Fourier space, the static structure factor, does not only apply to colloidal suspensions 

but also to classic molecular liquids. In this second case, temperature usually plays an 

equivalent role as external parameter as volume fraction does in the case of a suspension 

of colloidal particles.  
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A phenomenon of special interest, present in both molecular liquids and colloidal 

suspensions, is the emergence of a glassy “state”13 when temperature reaches a 

sufficiently low value or, in the case of colloidal suspensions, when volume fraction is 

sufficiently increased [44] (see Chapter 5 and Papers V and VI). Under the point of 

view of the classical pair correlation functions, the microscopic structure of a system 

near the glassy state does not reveal a significant difference with that associated to a 

normal liquid despite these systems behave as solidlike materials [44-46]. However, 

near the Glass Transition (GT), a small change in the static structure of a glass-forming 

liquid (seen by means of the classical pair correlations functions) induces a dramatic 

change in the system relaxation dynamics. This experimental fact is usually accounted 

for by the idea of structural relaxation [46].  

 

Within this dissertation, a more complete study of some essential features of the GT 

phenomenon will be discussed experimental and theoretically not only for colloidal 

suspensions but also for molecular liquids (see again Chapter 5 and Papers V and VI). 

Nevertheless, we can now anticipate a long standing conundrum behind the structural 

description of a glass: Is the description of a glass offered by the classical pair 

correlation functions complete? If the answer is negative: Can we define new static 

observables showing a spatially increasing structure, different from that of a normal 

liquid, upon approaching the GT? The emergence of the so-called point-to-set 

correlation functions is focused at the heart of these questions. With them, it is 

attempted to reveal the structure that, in principle, would be invisible for the classic 

static observables.     

 

As a way of example, let us consider the radial distribution functions obtained by a 

molecular dynamics simulation and corresponding to the binary mixture of quasi-hard 

spheres considered in Paper VI, where the interaction potential is given by 

2)(2/1)( σ−= rrV  (σ  being the range of interaction, i.e. “the particle diameter”). As 

can be seen in Figure 3.1, the  envelopes of  the radial distribution functions at different  

 

 

                                                 
13 Here the word “state” appears between quotations marks since the existence of a true glass state still 
remains elusive (see Chapter 5 and Paper VI). 
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temperatures decay with a similar exponential rate, ξ , that is, structure does not 

propagate further upon approaching the GT despite the relaxation times, αt , present a 

significant change14. Thus, the classical structural description presented in Fig. 3.1 

given by )(rg  does not show, at least trivially, any evidence of a static correlation 

length divergent at the glass transition temperature. However, as we will discuss in 

Chapter 5, there exist thermodynamic arguments supporting the emergence of an 

increasing static correlation length accompanying the GT [47].  

 

 

Figure 3.1: Radial distribution functions for a system of elastic spheres (see Paper VI). The 

glass transition temperature is placed around 5.4=gT . Units for temperature, time and length 

are conveniently normalized according to the mass, diameter and mean energy of the particles.   

 

To shed light on this puzzle, computer experiments have been proposed to explore the 

effect of boundary conditions on the structure of a glass-forming liquid [48, 49] (see 

Chapter 5, section 5.2). On one hand, the boundaries are formed by frozen particles of 

the  studied  liquid in  an amorphous configuration,  acting as  pinning fields that “hold”  

                                                 
14 A formal definition of the relaxation time αt  is presented in Refs. [44-46] and Chapter 5 (section 5.1). 
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the structure of the unfrozen (liquid) part of the system. On the other hand, to 

investigate the structure of the liquid, appropriate multipoint static correlation functions 

are introduced to quantify the similarity between local configurations. 

 

One of the main candidates for a point-to-set correlation function is constructed as 

follows [47]: We divide the liquid part of the system in cells, that is, we construct a 

grid. Each cell will have an occupation number, 0or   1=n , according to whether or not 

the cell is occupied by a particle. Thus, the initial configuration associated to a given 

region, R , of the liquid will be specified by a set of occupation numbers, 

{ }Rini in  cells ofNumber  1,..., : = . Now, we proceed in the same way at the long time 

limit, that is, we assign a new set of occupation numbers to the region R . Finally we 

measure the overlap, RO , between these two local configurations separated by a long 

time as: 
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Here [ ]
boundary

 denotes an additional average over equivalent but independent frozen 

boundary realizations. By definition, the larger is the overlap the greater will be the 

remaining similarity between local configurations.  

 

It is clear that this new observable measures the correlation between a point (cell) and a 

set of particles (the frozen boundary). For that reason, RO  is considered as a point-to-set 

correlation function instead of a point-to-point correlation despite both deal with density 

fluctuations. In Paper VI, we will discuss how, by using this new observable, we can 

define a static length which increases upon approaching the GT. Thus, the overlap, as 

point-to-set correlation function, will carry static information which is not contained in 

the classical pair correlation functions. 

 

 

  

 



 

40 
 



Chapter 4 
______________________________________________________________________ 

41 
 

 

Chapter 4 

 

Aggregation: Structure and Kinetics 
 

                              “How long is the coast of Britain?” 

                                                            B. Mandelbrot15 

 

In Chapter 3 we have defined appropriate observables to describe the structure of 

colloidal suspensions. These suspensions can either be stabilised (e.g. by means of a 

Coulombic repulsion) or, on the contrary, develop an aggregation process where the 

particles become stuck (e.g. by virtue of London-van der Waals attraction, see Chapter 

2, section 2.2.2). Here we will present the theoretical fundamentals to account for the 

kinetics of such aggregation processes as well as the structure of the resulting 

aggregates. This structure is often satisfactorily pictured by the notion of Fractal.     

 

4.1. Fractals 

 

Since 1977, when Benoît Mandelbrot left to posterity his book “The Fractal Geometry 

of Nature” [51], the interpretation of natural phenomena in terms of fractal 

representations has been ubiquitous. In particular, literature where the notion of fractal 

is applied to aggregated colloidal systems is huge (see for instance [52-54]).  Before 

discussing this specific application, we will first introduce the concept of fractal. 

 

Let us consider a set, ,A  of a metric space16 and the covering of this set with the 

minimal number )(rN  of balls17 of radius r  providing that any point of the set is 

                                                 
15 See Ref. [50]. 
16 Although the adjective “metric” only implies the definition of a distance, from now on we will consider  

as particular case the  Euclidean space, 
3E , where the distance is given by the Euclidean metric or, in old 

literature, the Pythagorean metric.           
17 We take as definition of a ball of radius r  that set of points whose Euclidean distance from a given 
center does not exceed a prescribed radius r .  
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included in at least one of the balls. It is clear that with decreasing r  the number )(rN  

grows in general in a nontrivial fashion. If the covering process of A  satisfies the 

existence of the limit:  

 

D
r

rN

r
=−

→ log

)(log
lim

0
 ( )]3,0[∈D ,       (4.1) 

 

we will call, D , the Entropy dimension or, informally, the Hausdorff dimension of A , 

for which non-integer values are permitted. In particular, we call Fractal to a set whose 

Hausdorff dimension is strictly greater than its topological dimension18 [51]. In this 

case, D  is, roughly speaking, the Fractal dimension.     

 

Excursus 

 

The limit (4.1) offers the Hausdorff dimension of a set A  of a metric space in almost all 

cases (in particular, those cases explored within this dissertation) [51].  However, as 

Hawkes demonstrated [56], the equality between D , given by expression (4.1), and the 

strict definition of the Hausdorff dimension does not always hold.   

  

To reach a general notion of fractal, that is, a set whose Hausdorff dimension is strictly 

greater than its topological dimension, we have to consider the formal definition of the 

Hausdorff dimension [51]. Thus, the d -dimensional Hausdorff content, )(AC d

H , of a set 

A  of a metric space is defined by: 

 









>≡ ∑
i

i

d

i

d

H rArAC 0 radii of ballsby   ofcover  a is There :infimum)(   (4.2) 

 

                                                 
18 The topological dimension or Levesgue covering dimension of a set is an integer m  if for every open 

cover of that set there is an open cover that refines it such that the refinement has order 1+m at most 
[55]. In this respect, the “irregularity” of a fractal results in a Hausdorff dimension (by ball covering) 
greater than the topological dimension (by open covering). Mandelbrot remarked this intrinsic irregularity 
through the creation of the word fractal as follows: “I coined fractal from the Latin adjective fractus. The 
corresponding Latin verb frangere means “to break”, to create irregular fragments. It is therefore 
sensible- and how appropriate for our needs!- that, in addition to “fragmented” (as in fraction or 
refraction),  fractus should also mean “irregular”, both meanings being preserved in fragment.” [51] 
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Then, the Hausdorff dimension of A  is defined as the infimum of the set of ),0[ ∞∈d  

such that the d -dimensional Hausdorff content of A   is zero [51].  

 

4.2. Surface and Mass Fractals: Definitions 

 

In a seminal investigation, Pfeifer and Avnir proposed the application of the fractal 

theory to characterize heterogeneous chemical surfaces [57]. In their work, the degree of 

irregularity (or “roughness”) was identified by a real number )3,2(∈D  according to the 

limit (4.1), where they considered the ball covering of the surface in three-dimensional 

space. A surface belonging to that category was called Fractal Surface,  D  being the 

so-called Surface Fractal dimension.  

 

As particular case, we can consider those closed fractal surfaces which define the 

boundary of a completely compact three-dimensional object (a “walnut” as Martin and 

Hurd called it [53], see figure 4.1). The resulting geometrical object is now called 

Surface Fractal, having a surface fractal dimension D . Thus, specifically a surface 

fractal will define a closed fractal surface (see for details Ref. [58]).  

 

 

                           

 

Figure 4.1: “Fractal Egg” as intuitive example of Surface Fractal (reproduced with permission 

from [59]). 
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The surface fractal dimension can also be conviently defined if we associate a 

distinctive length to our surface fractal, e.g., its radius of gyration, R . Then, we obtain 

an equivalent expression for (4.1) if the surface fractal is expanded by a growth factor, 

keeping constant the radius of the covering balls. Thus, asymptotically )( ∞→R : 

 

DKRS =    )32( << D         (4.3) 

 

Where S  is the surface that covers the surface fractal, K  being a positive real number. 

Now, from 2→D  (limit of a completely smooth surface), the irregularity of a surface 

fractal increases upon increasing D  (see Paper IV). 

 

This process can be extended by definition to the covering of the volume of a three-

dimensional object which in general will not be completely compact, that is, it can be a 

“ramified” structure. Thus, starting from an inner point, we will cover again the object 

by increasing R , where we will remain always inside the object. The resulting structure 

is called Volume or Mass Fractal if the covering volume, V , scales as [53]: 

 

DRV ∝     )30( << D         (4.4) 

  

D , the so-called the Mass Fractal dimension, will identify the “compactness” of the 

mass fractal: From 3→D  (limit of a uniform or completely compact object), the 

compactness of a mass fractal decreases with decreasing D .  

 

From the previous definitions, it is obvious that two different surface fractals show only 

different properties on their boundaries, that is, they have different surface fractal 

dimension. However their uniform interiors will present an equivalent fractal 

description.  
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Thus, to discrimitate between surface and mass fractals, we will note by Dd s = , the 

fractal dimension corresponding to definition (4.3) and by Ddm =  (or simply fd , see 

Paper III) when it corresponds to (4.4). With this notation, a surface fractal will be 

characterized by 32 << sd  and 3=md
19. 

 

                                             

 

Figure 4.2: Example of a Mass Fractal aggregate of gold particles with radius 

nm 7.02.7 ±=a  and obtained under DLCA conditions (see section 4.4 of this Chapter, 

Brownian kernel). The experimental mass fractal dimension is 74.1=md  (reproduced with 

permission from [60]). 

 

4.3. Surface and Mass Fractals: Connection with Static Observables 

 

Let us start this section with a question: How is the fractal structure of a system of 

colloidal aggregates manifested when it is examined through the classical static 

observables? To answer this question, we will next establish the criterion to test the 

fractal geometry of an aggregate by means of its radial distribution function. 

 

 

 
                                                 
19 The equality 3=md  should be understood as a licence to gain intuition on the notion of Surface 

Fractal, i.e. a compact object ( 3→md ) with 32 << sd  . We have to remember that, formally 

speaking, md  defined by (4.4) is reserved for mass fractals, that is, objects with 3<md .  
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We say that an object is non-trivially scale-invariant [61] if the radial distribution 

function describing the structure of this object satisfies: 

 

)()( rgbbrg γ−=          (4.5) 

 

Where b  and γ are positive real numbers. It is obvious that Expression (4.5) imposes a 

degree of homogeneity, γ , (not necessarily integer) to the radial distribution function:  

 

γ−∝ rrg )(           (4.6) 

 

Using the definition of the radial distribution function (Expression (3.3)) we obtain the 

mass of the object, whose growth from an inner point (our origin) to a given distance R  

(remaining inside the object) is governed byγ : 

 

∫ −∝=
R

RrdrgM
0

33)( γρ         (4.7) 

 

Identifying (4.7) with (4.4), we partially answer the question posed at the beginning of 

this section. That is: 

 

3)( −∝ md
rrg           (4.8) 

 

Hence, Expression (4.8) is the manifestation of a mass fractal through its radial 

distribution function. Nevertheless, this result does not consider the finite size of a real 

object. In that case, we should contemplate an extended expression for (4.8) where the 

limits of the object are considered [61]: 

 

)/()( objRrfrrg γ−∝          (4.9) 
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Here objR  is the characteristic radius of the real object and )(xf  a cut-off function 

which describes its surface. In general, this “surface” function should satisfy: 

 

0     1
( )

1     1

x
f x

x

>>
= 

<<
         (4.10) 

  

 

In the case of surface fractals (where 0=γ  or 3=md )20, the fractal nature of the 

surface relies on the functional form of )(xf . This functional form depends in general 

on the growing mechanism by which the surface was created (for more details, see [57, 

61]). Here we merely consider one of these theoretical approximations, widely applied 

to real systems, through its manifestation in terms of its representation in Fourier space, 

that is, through the static structure factor.      

 

As anticipated in Chapter 3 (section 3.1), the direct experimental accessibility to the 

structure of a system of colloidal particles usually comes from the determination of the 

static structure factor. By virtue of Equation (3.9), the fractal nature of a structure is also 

proved by a power law dependence of )(qS  within the spatial range limited by the 

structure, that is, within a given q  range21.  

 

Thus, if a structure presents fractal nature between two characteristic lengths, a power 

law dependence of )(qS  is expected when 1−q  is included between these characteristic 

lengths22. In this respect, and in order to test the fractal nature of rough surfaces, Bale 

and Schmidt [62] were the first to propose a functional behavior for )(qS  (and then 

for )(xf ), applying their model to the study of lignite coal. Similarly, and starting from 

the seminal work of Schaefer and co-workers [63], several experimental studies have 

been performed in order to prove the structure of mass fractals through )(qS .  

 

                                                 
20 See footnote 19. 
21 Within this dissertation we will indistinctly use k  or q  for the modulus of a vector in Fourier space 

(see Chapter 3). 
22 By definition, 

1−q  plays the role of an inherent length scale in real space [54].   



Chapter 4 
______________________________________________________________________ 

48 
 

 

A compendium of their results is: 

 

α−∝ qqS )(           (4.11) 

 

Where: 

 





−=−
=

Fractals) (Surface       62

 Fractals) (Mass                               

ssm

m

ddd

d
α      (4.12) 

 

A common case proved on real systems (see Papers III and IV) is that which 

corresponds to fractal structures of representative radius R  formed by subunits 

(colloidal particles) of radius a. Thus, as mentioned above, Expression (4.11) will be 

typically satisfied within the range 11 −− <<<< aqR . 

 

4.4. Aggregation Kinetics: Smoluchowski’s Model 

 

In previous sections we have introduced the essential concepts to describe the structure 

of colloidal aggregates when they present fractal nature. Our purpose now is to illustrate 

by a simple model the time evolution of an aggregation process from the initial state, 

where the particles are regarded as individual entities, to the state at which they form 

well defined fractal structures. This model will depend at any time not only on the 

frequency distribution of particles forming the aggregates but also on the fractal 

structure of these aggregates. 

 

When we consider an aggregating colloidal suspension which is sufficiently diluted, the 

aggregation process can be understood schematically as a set of binary reactions in the 

form23: 

 

jiji AAA +↔+          (4.13) 

                                                 
23 A criterion concerning the validity of a binary reaction model in terms of the particle concentration is 
given in Ref. [64]. Taking as basis this investigation, we will consider the binary assumption as valid 
when the monomer volume fraction below 1%.  
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Where iA  represents an aggregate constituted by i  monomers (primary particles). The 

scheme (4.13) can be complemented by the assumption of a proportionality between the 

increment per unit time of the )( ji + -particle aggregates with those constituted by i and 

j  particles: 

 

)()(
)(

tNtN
dt

tdN
ji

ji
∝

+
        (4.14) 

 

Where now )(tN i  is the absolute frequency, that is, the absolute number of the i -

particle aggregates at time t . If we additionally admit no fragmentation24, that 

is, jiji AAA +→+ , a time evolution model for the cluster size distribution, 

( )),...(),()( 21 tNtNtN =
r

, arising in an aggregating system is given by the Smoluchowski 

Rate Equations [67, 68]: 

 

*

1

    ;   )()()()(
2

1)(
Ν∈∀−= ∑∑

∞

==+

ntNktNtNtNk
dt

tdN

i

iinn

nji

jiij

n   (4.15) 

 

Where the set of rates ijk  ( *, Ν∈∀ ji )25, usually known as kernel, contains the whole 

kinetic information through its mass (number of monomers) and geometry cluster 

dependences. Thus, from a given ijk  and an initial condition, ( )... ),0(),0()0( 21 NNN =
r

, 

Equations (4.15) provide a continuous set of frequencies, ( )N t
r

.  As anticipated by 

Equation (4.14), the first term of the right side in (4.15) gives the increment per unit 

time of )(tNn  due to the reactions nji =+ , whereas the second term gives the loss per 

unit time of )(tNn  due to the formation of clusters with ni +  monomers26.  

 

 

                                                 
24 Literature concerning fragmentation effects is wide (see for instance [65, 66]).  
25 We adopt the convention for the set of the natural numbers by which Ν∈0 . Then NN =*

\{ }0 . 
26 There is a subtlety involved in the factor 1/2 in the Equations (4.15): On one hand, if ji ≠ , we 

compute only the reactions nji =+  but not nij =+ . On the other hand, if ji = , the reaction  

ii +  is slower by a factor 1/2 than that corresponding to the loss of )(tN i [69]. 
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Apart from these considerations, it is worthwhile to mention two of the inherent 

assumptions contained in the Equations (4.15):  

 

1- The set of Equations (4.15) describes an aggregation process as a purely deterministic 

phenomenon, that is, for a given initial condition, )0(N
r

,  ( )N t
r

 is completely specified. 

 

2- The average cluster size diverges with time due to the non-fragmentation assumption. 

 

Equations (4.15) can be conveniently normalized to restate the problem in a non-

dimensional form: 

  

*

1

    ;   )()()()(
2

1)(
Ν∈∀−= ∑∑

∞

==+

nTXKTXTXTXK
dT

TdX

i

iinn

nji

jiij

n   (4.16) 

 

Here )0(/)()( 1NTNTX nn ≡ , 11/2 kkK ijij ≡ , and ( )2/)0( 111 kNtT ≡ . Where we can 

associate a characteristic time to our aggregation process corresponding to 1=T  or, 

equivalently, 111 )0(/2 kNtagg ≡ . This is the so-called Aggregation Time.  A simple 

inspection in (4.15) tell us that this time would be the hypothetical time at which all the 

initial monomers would become dimers (2-particle aggregates) if only this kind of 

reaction were allowed27. 

 

The existence of an explicit solution for the set of Equations (4.16) depends on the 

chosen kernel. Although, in general, the integration of (4.16) will need the use of 

numerical calculation, there are kernels with a special physical meaning for which an 

explicit solution is known. These kernels do not only provide a good approximation to 

describe real aggregation processes but also constitute a convenient tool for testing the 

accuracy of numerical calculations involving kernels without explicit solution (see 

Appendix A). In this respect, we will  present three examples of  kernels widely  studied  

                                                 
27 The factors 2 and 1/2 in 11/2 kkK ijij ≡  and ( )2/)0( 111 kNtT ≡  are obviously unnecessary to 

obtain the normalized version of Expression (4.15). In fact, the definition of T  includes the factor 1/2 to 

fix the aggregation time at T=1. Consequently, the factor 2 in 11/2 kkK ijij ≡  leads us to Expression 

(4.16).  
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in literature whose solution is known. For further discussion, the reader can consult the 

advisable review by Leyvraz [70].          

 

1- Constant kernel 

 

2=ijK   *, Ν∈∀ ji          (4.17) 

 

This simple kernel, for which all the reactions present the same weight, provides an 

accurate description, especially at short times, for those aggregation processes governed 

by diffusion (see Paper IV). Although its explicit solution is known for any arbitrary 

initial condition [70], here we present that corresponding to monomeric initial 

conditions, which was originally derived by Smoluchowski [67]: 

 

1

1

)1(
)(

+

−

+
=

n

n

n
T

T
TX   ; ,...)0,0,1()0( =X

r
 ; *Ν∈∀n      (4.18) 

 

2- Sum kernel 

 

jiK ij +=   *, Ν∈∀ ji         (4.19) 

 

For monomeric initial conditions [71]: 

 

( )
!

)(
1

n

enb
TX

Tnbn

n

−−−

=    ; Teb −−≡ 1 ; ,...)0,0,1()0( =X
r

; *Ν∈∀n    (4.20) 

 

3- Product kernel 

 

ijK ij =   *, Ν∈∀ ji          (4.21) 

 

This kernel presents a remarkable signature since its solution leads us to the formation 

of an infinite aggregate at a finite time 2/1=T . This singularity has been interpreted in 

terms of a sol-gel transition [72].  
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Although there are studies including the solution for times 2/1>T [72], we only 

present here that restricted to the hypothetical sol phase [73]: 

 

( )
!

2
)(

21

nn

enT
TX

nTn

n

−−

=    ; 
2

1
≤T  ; ,...)0,0,1()0( =X

r
 ; *Ν∈∀n    (4.22) 

 

The sol-gel transition can be accounted for by a non-conservation of the mass of the 

system, )(TM , which is normalized to unity for our relative frequencies, that is, 

∑
∞

=

==
1

1)()(
i

n TnXTM . In systems where the distribution )(TX n  decreases smoothly 

(e.g. as a power law) mass decreases. This decrease in the mass of the system is 

interpreted in terms of a flux of mass out of the system to an aggregate of infinite size: 

The “gel”. In this respect, Equation (4.22) presents a power law behaviour for 2/1=T , 

2/5)2/1( −∝ nX n , which indicates the emergence of the gel phase28 [72]. 

 

Brownian Kernel 

 

One of the essential aggregation processes is that corresponding to the binary 

aggregation of two Brownian particles or aggregates whose motion is purely diffusive. 

Thus, when two aggregates, driven by Brownian motion, are sufficiently close29 they 

become stuck by a short range attraction (e.g. London-van der Waals) and form a new 

aggregate.     

 

This kind of aggregation process is known as Diffusion Limited Cluster-Cluster 

Aggregation (DLCA). Formally, one of the aggregates (cluster) is considered as a sink 

whereas the other is subjected to Brownian motion, having a diffusion coefficient which 

is the sum of the two aggregates diffusion coefficients, ji DD + .  

 

 

 

                                                 
28 

2/5)2/1( −∝ nX n  is obtained by using Stirling’s approximation: ( ) n
ennn

−
≈ /2! π ( ∞→n ). 

29 In the light of the Brownian kernel model, “sufficiently close” means “geometric contact”.    
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Then, a primitive expression of the so-called Brownian kernel for two aggregates 

formed by i  and j  monomers with radii of gyration iR and jR  respectively, is [74]: 

 

( )( )
jiji

Br

ij RRDDk ++= π4         (4.23) 

 

First, we note that the diffusion coefficient, iD , can be expressed in terms of the 

hydrodymanic radius, h

iR ,  by virtue of Stokes-Einstein relation. As second hypothesis, 

experimentally supported [75], we can consider that the hydrodynamic radius, which is 

a dynamic observable, equals the radius of gyration, which is a purely geometrical 

concept. Finally, we use the definition of the mass fractal dimension to obtain 

dm

i aiR /1= , a  being the monomer radius. With these assumptions, the Brownian kernel 

results: 

 

( )( )dmdmdmdmBrBr

ij iijikk /1/1/1/1 −− ++=      ;    η3/8 Tkk B

Br ≡    (4.24) 

 

Since DLCA regime is given by well defined assumptions, it seems pertinent to ask if 

the resulting mass fractal dimension has also a well defined value. Experimental results 

[76] and theoretical simulations [77] seem to answer this question in a positive way, 

where 75.1≅md . However, a mathematical proof supporting this result is still elusive. 

As a way of example, Figure 4.3 shows, using the Brownian kernel with 75.1=md , the 

time evolution of those clusters formed by 1 to 7 monomers, where Equation (4.16) was 

solved numerically for monomeric initial conditions by means of an explicit Runge-

Kutta fourth order method (see Appendix A). Additionally, Figure 4.4 presents the 

monotonic time evolution of the aggregates mean size, ∑∑>=<
j

j

j

j XjXS / , and its 

corresponding mean diffusion coefficient, D  (inset).   



Chapter 4 
______________________________________________________________________ 

54 
 

                   

Figure 4.3: Time evolution of those clusters formed by 1 to 7 monomers under DLCA 

conditions. Time step=0.005 (aggregation time units), where the number of Equations (4.16) is 

500. 

                    

Figure 4.4: Aggregates mean size and mean diffusion coefficient (inset). Computing parameters 

are as in Fig. 4.3. 
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Reaction Limited Cluster-Cluster Aggregation (RLCA) 

 

In the previous section we have considered an aggregation process where all the 

reactions involving two aggregates sufficiently close30 generate a new aggregate. This 

situation was plausible since there was not effective repulsive interaction to avoid 

contact. However, if a remaining repulsive barrier still persists, only those aggregates 

whose kinetic energy was sufficiently large to overcome the repulsive barrier will 

become stuck, producing a new aggregate. Although there is a wide literature 

concerning this Reaction limited Cluster-Cluster Aggregation (RLCA) (see for instance 

the seminal work by Fuchs [78]), here we only consider as RLCA kernel that 

corresponding to an extension of the Brownian kernel [79]:   

 

ij

Br

ij

RLCA

ij Pkk =       ;  β)(11 ijpPij =         (4.25) 

 

Where ijP  represents the probability of an effective contact, being separated into to 

contributions: A prefactor 11p ,  representing the effective probability between two 

monomers, and β)(ij , which implements the number of combinations between 

monomers, being controlled by an exponent β . We have two a priori limits for β : 

0=β  (associated to 111 =p ), with which we recover the Brownian kernel, and 2=β , 

which gives the maximum number of combinations.  

 

In constract to the DLCA regime, RLCA has not a well defined value for the fractal 

dimension of the resulting aggregates. This is obviously due to the range associated to 

the ratio between the repulsive energy barrier and the mean kinetic energy of the 

aggregates. Nevertheless, a range for the RLCA fractal dimension is assumed, where  

1.28.1 << md  [80]. Clusters with fractal dimensions 31.2 << md  cannot usually be 

explained without appealing to compactification effects (see Paper IV).    

 

 

 

                                                 
30 See footnote 29. 
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Excursus 

 

The kernel proposed by Expression (4.25) presents a formal fallacy. At short times, 

where aggregates are not large, we have Br

ij

RLCA

ij kk < , that is, RLCA regime is slower 

than DLCA regime. However, at long times, when aggregates become sufficiently large, 

Br

ij

RLCA

ij kk > . This last inequality leads to incongruence: RLCA would be faster than 

DLCA. Therefore, Expression (4.25) fails at the long time limit (i.e. ∞→ji, ) and it 

must be considered only for practical purposes where the aggregation process is not far 

from the initial monomeric conditions.     

 

Scheme of van Dongen and Ernst 

 

On several real systems, it is difficult to assume a specific model for the reaction kernel. 

However, it is often possible to extract some general functional behaviors to describe, 

even quantitatively, those subtle aggregation processes whose kernel cannot be easily 

presupposed. In this sense, the scheme of van Dongen and Ernst [65, 81] is an attempt 

to rationalize and classify the kinetics of distinct aggregation processes under a common 

framework. According to this classification: 

 

ijaiaj kak λ=      ;   2≤λ            (4.26) 

νµ jik ji ∝<<      ;   νµλ +=   with 1≤ν  

 

Where λ , the so called homogeneity parameter, informs on the different reactivity 

between equally sized clusters. Thus, kernels with 0=λ  (constant and Brownian 

kernels) present no different reactivity between small-small and large-large clusters, that 

is, ijk   has a constant diagonal. This is typically the case of those aggregation processes 

essentially controlled by diffusion, where there is a compensation between the 

increasing collision cross section and the decreasing diffusivity of the clusters upon 

increasing j . Restriction 2≤λ  is obvious since 11kjk jj

λ=  must not increase faster 

than 2j   (product kernel). Additionally, 1=λ   (e.g.  sum kernel)  separates  non-gelling  
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( 1≤λ ) from gelling kernels ( 1>λ ). Finally, restriction 1≤ν  is easily confirmed if we 

consider the reactivity given by νjk j ∝1 , which cannot be faster than the increment of 

the cluster volume.  

 

For non-gelling kernels, we have two significant (and connected) results which provide 

a key point to probe experimental results. On one hand, the time evolution of the mean 

cluster size is governed by λ   as [82]: 

 

)1( λ−∝>=<
∑

∑
t

X

jX

S

j

j

j

j

        (4.27) 

 

On the other hand, the mean diffusion coefficient presents an asymptotic behavior ruled 

by λ  and md : 

 

ztD −∝     ;   mdz )1/(1 λ−=         (4.28) 

 

Where z  is usually known as kinetic exponent. Figure 4.4 shows both trends for the 

Brownian kernel with 75.1=md . 
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Chapter 5 

 

Glass Transition: Structure and Dynamics 

 

                                                          “La libertad, Sancho, es uno de los más preciosos 

                                                           dones que a los hombres dieron los cielos; con ella 

                                                           no pueden igualarse los tesoros que encierra la 

                                                           tierra ni el mar encubre; por la libertad, así como 

                                                           por la honra, se puede y debe aventurar la vida…” 
 
                                                           Miguel de Cervantes, “Don Quijote de la Mancha”,  
                                                                         Capítulo LVIII (Segunda Parte) 
 

 

If a molecular liquid is cooled below its melting temperature or, in the case of a 

sufficiently monodisperse colloidal suspension, volume fraction reaches a critical value, 

both systems crystallize.  However, in practice, crystallization can be bypassed when a 

molecular liquid is supercooled below its melting temperature or a colloidal suspension 

is led beyond its crystallization volume fraction. Thus, we arrive at a new regime at 

which both relaxation time and viscosity increase by several orders of magnitude if 

temperature (or volume fraction) are changed by a small factor. This dramatic evolution 

would ultimately lead to a divergence of the relaxation time which is associated to the 

Glass Transition (GT). As a result, it appears a solidlike “state”, the glass, whose 

microscopic structure does not reveal, in principle, any signature to be discriminated 

from that of a normal liquid. Is the glass a true state? Is the GT a thermodynamic 

transition or a purely kinetic phenomenon? (Do we need time to define the GT?). 

Finally, what is a glass? At present, we do not have any conclusive answer to these 

questions. 
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5.1. Mode Coupling Theory 

 

A classical observable to describe the dynamics of a liquid and, in particular, of a glass-

forming liquid, is the local particle density fluctuation, ),( tr
r

δρ  [43]: 

 

),(),(),( trtrtr
rrr

ρρδρ −=         (5.1) 

 

Where ),( tr
r

ρ  is the local density introduced by Expression (3.4) whereas ...  denotes 

the ensemble average. Similar to the definition obtained for the static structure factor, 

Expression (3.6), we can define the Dynamic Structure Factor of the particle density 

fluctuations, ( , )S q τ , as: 

 

),(),(
1

),( tqtq
N

qS −+≡ δρτδρτ        (5.2) 

 

From where the static structure factor is easily recovered: )0,()( == τqSqS . As )(qS , 

the dynamic structure factor is again a valuable observable from the experimental point 

of view since it is essentially what dynamic scattering experiments measure. 

Nevertheless, any correlation function of a variable only depending on the density 

fluctuations will present a functional behavior that will remit to that presented by 

( , )S q τ .  

 

From a pragmatic viewpoint, Mode Coupling Theory (MCT) will provide the dynamical 

information of a glass-forming liquid, e. g. through ( , )S q τ , using as input the static 

information contained in )(qS , that is, MCT considers that all the static properties of a 

glass-forming liquid will be similar to that of a normal liquid.  As we will see, MCT 

offers a picture of the GT in terms of a purely kinetic phenomenon.  Since the derivation 

of the MCT equations is out of the scope of this dissertation, we refer the reader to some 

excellent reviews [45, 46, 83].  
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Their expression for a molecular liquid result:      

 

( )    q; 0')',()'()()'(),()(),( '

0

222 ∀=∂−Ω+−+Ω+∂ ∫ dttqfttmqttMtqfqtqf t

t

reg

t (5.3) 

 

Where )(/),(),( qStqStqf =  and )(/)(2 qmSTqkq B=Ω  ( Bk  being Boltzmann constant, 

T the absolute temperature and m  the mass of any molecule31). Equations (5.3) picture 

the relaxation of our system from the initial condition ( 1)0,( ==tqf ) as a formally 

continuous set of coupled and damped oscillators with memory. Relaxation is governed 

by the frequencies )(2 qΩ , which depend on the structure of the glass-forming liquid 

through )(qS , whereas the damping is  ruled by )(tM reg , which controls the regular 

friction, that is, the friction associated to the modulus of the Fourier component, q , 

under consideration, while )(tm  introduces the coupling between different Fourier 

components. In principle, both damping terms are integrated in time, that is, they carry 

the memory of the system.  

 

The set of Equations (5.3) comes from an exact formalism (Zwanzig-Mori operator 

projection formalism [84, 85]) which can be adapted to colloidal liquids with two 

convenient assumptions [86]:  

 

- Inertial terms, ),(2 tqft∂ , can be neglected assuming that the temporal coarse graining 

is sufficiently rough and, therefore, ),(2 tqft∂  are small enough due to the large friction 

coefficients.  

   

-  )()( ttM reg δ∝ , where )(tδ  is again the delta-distribution: Due to the large friction, 

the regular kernel, )(tM reg , is delta correlated since the non-coupled density 

fluctuations are considered as a Markovian process (see Paper II). 

 

 

                                                 
31 Here we consider MCT for monocomponent systems. 



Chapter 5 
______________________________________________________________________ 

62 
 

 

With these approximations, the “colloidal” version of (5.3) results in a set of coupled 

relaxators: 

 

q  )1)0,((  ; 0')',()'(
)(

),(
)(

),(
1

'

0

22

0

∀===∂−++∂ ∫ tqfdttqfttm
qS

q
tqf

qS

q
tqf

D
t

t

t   (5.4) 

 

Where 0D  is the free diffusion coefficient of the colloidal particles. The final ingredient 

to close the set (5.4) is the assumption of a functional behaviour for )(tm . The standard 

approximation [86, 87] expands )(tm  in terms of a quadratic polynomials combination: 

 

∑
=+

=
qpk

tpftkfpkqVtqm
rrr

rrr
),(),(),;(),(       (5.5) 

 

Where the vertices are static quantities given by: 

 

[ ]( )2

4
)()()()()(),;( pcpkckqqSkSqS

q

n
pkqV

rrvrrr
+⋅=      (5.6) 

 

Here n  represents the number density of particles and ( ) )(/1)()( qnSqSqc −=  (direct 

Ornstein-Zernike relation). Thus, Expressions (5.4), (5.5) and (5.6) provide a closed set 

of integro-differential equations to obtain the dynamics of a glass-forming liquid from 

the static information contained in )(qS
32.  

 

Not surprisingly, in general there is no analytical solution for the MCT equations and 

they must be solved numerically. In this respect, the reader is referred to Appendix B, 

where we show a numerical resolution of the theory specialized to a hard-spheres 

system. There, apart from the q -discretization proposed in reference [86], we offer a 

simple recipe for the additional time-discretization by an explicit algorithm.  

 

 

                                                 
32 Formally speaking, a more refined model for the vertices would include not only the information 

contained in )(qS  but also multipoint correlations [43].    
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MCT Predictions 

   

MCT is rich in predictions, many of them being well supported experimentally. 

Certainly, there are also significant deviations between some of the MCT predictions 

and data coming from real systems. Here we will remark those successes and failures of 

the MCT which are significant for our subsequent studies (see Papers V and VI). For a 

more complete discussion of the MCT predictions, the reader can consult references 

[44-46].  

 

Let us start with the “high” temperature regime still far from the GT temperature (or the 

GT volume fraction for colloids). At this regime MCT provides a good quantitative 

description of the so-called “cage effect”, where the particles interaction is solely 

mediated by a repulsive potential. Under this picture, any particle will be surrounded by 

their neighbours: The cage. At short times, the intra-cage motion is well described by 

the first (or early) beta-regime, 1β , where every particle would rattle in its cage. MCT 

predicts a power law behavior of the form: 

 

attAqftqf −+∞≈ )/(),(),( σ          (5.7) 

 

Where ),( ∞qf  is the non-ergodicity parameter, that is, the horizontal asymptotic value 

that would eventually be reached at the ergodic to non-ergodic transition. A  and 

a ( 2/1≤ ) are real positive parameters, which depend on the system. Here σt  is an 

intermediate time which marks the final decay of 1β  (see Paper V). After this first beta-

regime, ),( tqf  reaches a plateau, reflecting the trapped motion of the particles in their 

cages even for time decades. This plateau is followed by the escape of the particles and 

the second (or late) beta regime, 2β , starts. Again, MCT predicts a power law behavior 

for ),( tqf  known as von Schweidler’s law:     

 

bttBqftqf )/(),(),( σ−∞≈         (5.8) 
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Where B and b ( 1≤ ) are again positive real numbers. Despite a  and b  are system 

dependent, MCT provides a universal, and very useful, constraint (not depending on the 

system) which links 1β  and 2β : 

 

λ≡
+Γ

+Γ
=

−Γ

−Γ

)21(

)1(

)21(

)1( 22

b

b

a

a
         (5.9) 

 

Where )(xΓ  is the Euler-gamma function whereas λ  is the so-called exponent 

parameter [45]. 

 

The final decay of ),( tqf , known as α -regime, reflects the final escape of the cage. 

Although not analytically predicted by MCT, the numerical resolution of the MCT 

equations shows a functional behavior that is satisfactorily approximated by the 

Kohlrausch-Williams-Watts (KWW) stretched exponential function: 

 

( )β
α )/(exp),( tttqf −∝         (5.10) 

 

Where αt  is the characteristic time associated to the α -regime whereas the exponent 

β ( 1< ) manifests a non-Debye (non pure exponential) decay which is still a matter of 

debate [45]. As a way of compendium, Figure 5.1 shows ),( tqf  obtained from the 

numerical resolution of a 40-component model, Equations (5.4), at the main peak, *q , 

of the static structure factor of a colloidal hard-spheres system. )(qS  was taken from a 

Brownian dynamics simulation [88] for a volume fraction of  0.585 (see details in 

Appendix B).  
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Figure 5.1: Here 75.0=λ , to be compared with the MCT prediction for hard spheres: 

735.0=HSλ  ( 312.0=HSa  and 583.0=HSb ) [86]. For the final α -decay we 

obtained 84.0=β . Units of time and length are conveniently normalized fixing the diameter 

and the free diffusion coefficient in accord with reference [88] (see Appendix B).   

 

We have shown some of the MCT predictions for the high temperature regime (low 

volume fraction for colloids), still far from the GT, but how is the GT seen by MCT? In 

the light of MCT, the relaxation time33 αt  presents a functional behavior which is 

divergent at a critical temperature34 cT
35: 

 

( ) γ

α

−
−= cTTCt          (5.11) 

 

                                                 
33 Here we discuss the MCT divergence in terms of αt . However, other dynamic observables would hold 

an equivalent expression to (5.11) (e.g. the relaxation time associated to the self scattering function or the 
inverse of the effective diffusion coefficient [45]).  
 
34 An equivalent expression for colloids would consider a critical volume fraction, cφ  (see Paper V). 
35 The functional behavior shown by Equation (5.11) is known as the α -scale universality [46]. 
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Where C  is a constant which depends on the system as well as on the considered 

observable whereas γ  is a system universal constant36. In practice, Expression (5.11) 

has range of validity when it is contrasted with real systems [45]: The real ergodic to 

non-ergodic transition temperature, gT , is found to be around  20% below cT . Thus, the 

functional behavior proposed by (5.11) necessarily fails when we approach the real GT. 

As example of canonical system, it has been shown that for colloidal hard-spheres 

51.0≈cφ  [86] whereas Brownian dynamics simulations [88] and experiments [89] 

place the glass transition at 59.0≈gφ . As a result, it is frequent to “soften”, at least 

partly, deviations with data coming from experiments or simulations by a convenient 

temperature or volume fraction rescaling (see Appendix B).    

 

In conclusion, MCT interprets the GT as a kinetic phenomenon where a critical 

temperature is associated to the divergence of the α -relaxation time, that is, MCT does 

need time as observable to define “its” own kinetic transition. However, as previously 

commented MCT fails upon approaching the real ergodic to non-ergodic transition. 

Therefore, is the GT transition a mere kinetic phenomenon? Has thermodynamics 

something to say on the GT problem? Next section offers a simplified thermodynamic 

version of the GT that will be complemented with our results (see Paper VI). 

 

5.2. Random First Order Transition: The mosaic picture 

 

Adam and Gibbs were the first to propose the idea that the relaxation behavior of glass-

forming liquids occurs in a cooperative manner [90]. Thus, particles motion would be 

connected into localized regions whose size would increase upon approaching the GT. 

In their model, configurational entropy (or complexity) would control the length 

associated to these domains. This idea started to have support from the 1990’s when 

numerical simulations and experimental phenomenology [91-93] proved the existence 

of increasingly larger regions that appeared dynamically connected as the glass 

transition  was  approached,  defining  a  growing   dynamic  correlation  length.  These  

 

                                                 
36 MCT establishes an additional constraint between γ , a , and b given by: )2/1()2/1( ba +=γ [46].  
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regions are now understood as dynamical heterogeneities since their relaxation 

(dynamics) is appreciably different from that of the average. However, the existence of 

a structural (static) long range order associated to the GT is still hotly debated. On one 

hand, the static description of a glass-forming liquid given by the classical two-point 

correlation functions does not show any direct evidence of an increasing length scale 

(see Chapter 3, section 3.2). On the other hand, inspired by thermodynamic arguments, 

a static correlation length divergent at the glass transition temperature might be 

expected. We will briefly discuss one of these arguments in terms of the so-called 

Random First Order Transition (RFOT) theory [94].  

 

In the light of the RFOT theory, the free energy landscape of a glass-forming liquid 

presents a rough (multivalley) structure. Then, for finite interactions a global state of the 

system will break into droplets. That is, the system would be composed of amorphous 

regions each of them associated to a local free energy minimum. Thus, there will be a 

surface tension between the interfaces of adjacent domains. This surface tension is 

formally defined as the free energy cost per unit area to create the interface. Then, the 

free energy cost associated to a region of characteristic length R  in a d -dimensional 

space is: 

 

θYRF t =∆ cos  ;  1−≤ dθ         (5.12) 

 

In principle, 1−= dθ  should be the logical dimensional choice but it has been argued 

that the very nature of the disordered regions can reduce this exponent [47]. For that 

reason, the prefactor Y  should be understood as a “conveniently” generalized surface 

tension. Thus, the free energy cost for a region of linear size R  to rearrange from one of 

its available states to another due to thermal fluctuations will be given by Expression 

(5.12). However, we must pay attention to an additional contribution to the free energy: 

If our region has many plausible states to be at, there will be an entropic tendency that 

drives the region to explore its available phase space. This gives us a gain for the free 

energy: 

 

d

cgain RTSF −=∆          (5.13) 
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Where cS  is the configurational entropy. We have to note that despite these two 

opposite contributions given by (5.12) and (5.13), we are dealing with a system (glass 

forming-liquid) still in equilibrium and, therefore, free energy does not increase nor 

decrease. Nevertheless, Expressions (5.12) and (5.13) will give us a balance at any 

given temperature. As a result, we obtain a typical domain size, ξ , by adding both 

contributions:    

 

θ

ξ
−









=

d

c TTS

TY
1

)(

)(
         (5.14) 

 

Here we have highlighted all the temperature dependences. Under this picture, our 

glass-forming liquid would consist in set of regions whose typical size at a given 

temperature is ξ , or, more intuitively, a mosaic whose tiles have a characteristic linear 

size given by (5.14). The size of these long-lived metastable regions (the tiles) would 

increase upon cooling the system reaching an ideal GT that would be associated to a 

divergence of ξ 37.  

 

To test the mosaic picture, numerical experiments have been suggested to investigate 

the effect of boundary conditions on the structure of glass-forming liquids which should 

become long-ranged upon cooling the system [48, 49]. These boundaries would act as 

pinning fields to retain the hypothetical mosaic tiles. In this respect, the 

gedankenexperiment proposed in Paper VI is an attempt to reconcile the range of 

validity of the MCT with the emergence of the mosaic picture.              

 

 

 

 

 

 

 

                                                 
37 Under this ideal vision of the GT, ξ  diverges at the Kauzmann Temperature, that is, at the hypothetical 

temperature at which the configurational entropy would vanish, see for details [45, 94]. 
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Paper I 

 

Nondiffusive Brownian Motion of 

Deformable Particles: Breakdown 

of the “Long-Time Tail” 

 
 

 

 

 

 

“While examining the form of these particles immersed in water, I observed many of 

them very evidently in motion; their motion consisting not only of a change of place in 

the fluid, manifested by alterations in their relative positions, but also not unfrequently 

of a change of form in the particle itself; contraction or curvature taking place 

repeatedly about the middle of one side, accompanied by a corresponding swelling or 

convexity on the opposite side of the particle.” 

 

Robert Brown, "A brief account of microscopical observations made in the months of 

June, July and August, 1827, on the particles contained in the pollen of plants; and on 

the general existence of active molecules in organic and inorganic bodies", Phil. Mag. 

4, 161–173, 1828. 
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Abstract 

 

We study the nondiffusive Brownian motion of both rigid and deformable mesoscopic 

particles by cross-correlated dynamic light scattering with microsecond temporal 

resolution. Whereas rigid particles show the classical long-time tail prediction, the 

transition to diffusive motion of deformable particles presents a striking behavior not 

explained by the existing hydrodynamic treatments. This new observation can be 

interpreted in terms of a damped oscillatory deformational motion on timescales of the 

order of the Brownian time. Finally, we show that the nondiffusive Brownian motion 

depends on the specific flexibility of the particles. 
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The dynamics of a Brownian particle can be formulated on different levels of 

description depending on the time scale of interest and the refinement of the 

hydrodynamic approach [1-3]. Thus, in Einstein’s classic investigation [4] no 

assumptions about the behavior of the particle velocity were made and the motion at 

long times of a “free” Brownian particle was shown to be diffusive. The initial attempt 

to incorporate velocity in the description of Brownian motion immediately came with 

the Langevin equation [5, 6]. Within this approximation, the interaction between the 

particle and the surrounding fluid was separated into two forces associated with a 

common origin, a systematic friction and a fluctuating noise, with no considerations of 

hydrodynamic memory effects. Despite its mathematical significance, this simple model 

predicts an extremely fast transition from ballistic to diffusive motion which is found to 

be non-realistic. 

 

The true character of the transition from ballistic to diffusive motion was successfully 

explored by Alder and Wainwright [7, 8] by means of molecular dynamics simulations 

assuming a hard-sphere (HS) interaction. They found a “…surprising persistence of the 

velocities” [8] trough a “long-time tail” ( 3 / 2τ −∝ ) in the velocity autocorrelation 

function, with the resultant delay in the emergence of the diffusive motion. In terms of 

macroscopic fluid dynamics, this observation was explained as a hydrodynamic 

memory effect due to the circulation of the fluid from the front of the particle, where the 

fluid is compressed, to the rear, where a rarefaction wave is developed. This vorticity 

effect pushes the particle resulting in a persistence of its motion. Soon, this finding was 

mathematically described by detailed hydrodynamics treatments [9-11] and the first real 

measurements of the long-time tail appeared for simple liquids [12, 13]. For rigid 

colloidal particles, experiments using dynamic light scattering (DLS) [14-16], diffusing-

wave spectroscopy [17, 18], and optical trapping interferometry [19], have consolidated 

the existence of the long-time tail. Nevertheless, these studies have been based on the 

assumption of a HS-like interaction (computer simulations) or a fixed, rigid, 

geometrical shape of the tracer particles (experiments). However, despite their 

ubiquitous presence, a lack of these investigations devoted to deformable particles still 

persists.    
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In this letter, we use cross-correlated DLS to present experimental evidence against the 

validity of the classic long-time tail prediction in case of mesoscopic deformable 

particles suspended in a small-molecule solvent. Thus, as opposed to rigid particles, we 

document an original observation that can be interpreted in terms of the interplay 

between the translational and the deformational motion of our deformable particles on 

timescales of the order of the Brownian time. These new data demand a complete 

theoretical approach to account for the nondiffusive Brownian dynamics of mesoscopic 

deformable particles. In absence of a theoretical understanding, we show that two 

deformable particles with similar diffusivity can be distinguished by their specific 

flexibility through their nondiffusive Brownian motion. As a result, our investigation 

appears as especially stimulating to be applied to mesoscopic biological objects whose 

functionality depends on their elastic properties to a great extent [20].  

 

An essential relation holds for the isotropic motion of a Brownian particle between any 

Cartesian component of its mean-square displacement, 2 ( )x τ∆ , and its corresponding 

velocity autocorrelation function, (0) ( )x xv v τ  [6]: 

 

( )2

0

( ) 2 (0) ( )x xx t v v t dt

τ

τ τ∆ = −∫  ,    (1) 

 

The brackets denote ensemble averages. Equation (1) applied to the case of a 

Langevin’s particle becomes [6]: 

 

( )2
0( ) 2 exp /  B B Bx Dτ τ τ τ τ τ∆ = − + −   ,    (2)    

 

where 0D  is the particle’s diffusion coefficient and 22 / 9B aτ ρ η=  the Brownian time. 

Here a and ρ  represent the radius and density of a rigid mesoscopic spherical particle, 

whereas η is the shear viscosity of the fluid.  
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In contrast, if we consider a complete hydrodynamic treatment including memory 

effects, Eq. (1) becomes [11, 15]: 

 

1/ 2 3 / 2
2 1/ 2 1/ 2

0

2 4
( ) 2 2 8 7  ; ( )

9 ' '9
L L L

Lx D
τ τ τρ ρ

τ τ τ τ τ τ
π ρ ρπ

−
     

∆ ≅ − + − − − ≥     
       

,   (3) 

 

where ( )( )9 / 2 '/L Bτ ρ ρ τ= , 'ρ being the fluid density. Although both results, Eq. (2) 

and (3), tend to a common diffusive regime,  2
0( ) 2x Dτ τ∆ =  ( Bτ τ>> ), the latter 

presents a slower transition due to its second term ( 1/ 2τ∝ ), which is associated to the 

presence of the long-time tail ( 3 / 2τ −∝ ) in (0) ( )x xv v τ , as can be deduced from Eq. (1).  

To test these theoretical predictions via DLS, an experimental determination of the 

normalized autocorrelation function of the scattered field 1 ( ; )g q τ  ( q  being the 

magnitude of the scattering vector) can be performed. In case of non-interacting, 

identical, and rigid spherical particles ( )1 ( ; ) exp ( )g q iq xτ τ= ∆ . If measurements of 

1 ( ; )g q τ are made at short times ( Lττ ≈ ), non-Gaussian effects are hardly appreciable 

regardless of the statistics of xv , as can be proved by Taylor’s expansion of 1 ( ; )g q τ  

[15]. Accordingly [21]: 

 

2 2
1

1
( ; ) exp ( )

2
g q q xτ τ

 
= − ∆ 

 
      (4) 

 

However, instead of using directly 1 ( ; )g q τ  to probe Eq. (2) or (3), an experimental 

time-dependent “diffusion coefficient” ( )2
exp 1( ) 1/ ln ( ; ) /D q d g q dτ τ τ≡ −  is frequently 

defined [15, 17]. As a result, the slopes of 2 ( ) / 2x τ∆  obtained from Eq. (2) and (3) are 

compared with exp ( )D τ , which is determined by numerical differentiation. Nevertheless, 

we should note that whereas Eq. (2) and Eq. (3) consider uniquely the theoretical 

translational motion, exp ( )D τ  could also reflect the motion corresponding to non-

translational degrees of freedom. This will be a central point in our discussion. 
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To obtain exp ( )D τ  for the suspensions investigated in this work, we used a three-

dimensional DLS spectrometer (LS instruments, Fribourg-Switzerland) with two 

incident He-Ne laser beams ( 632.8 nmλ = ). Suspensions were contained in a 

cylindrical scattering cell which was immersed in a thermostatized bath. A digital 

correlator (Flex03lq-OEM) computes the normalized cross-correlation function, 

2 ( ; )Cg q τ , of the registered scattered intensities, detected by two avalanche photodiodes 

(SPCM-AQRH), for which the time-dependent contributions of multiple scattered 

photons can be neglected. The experimental 1 ( ; )g q τ  were obtained through the relation 

[ ]
22

1( ; ) 1 ( ; )Cg q g qτ β τ= +  (0 1)β< < , with a similar protocol as that described in Ref. 

[22] for a two-color DLS scheme. The sample time resolved with our correlator 

is12.5 ns , with 286 τ -values along the interval 8 41.25 10 ,10 s− − ⋅  . For all the 

experiments, photon counting rates were kept within 5 5 -110 ,5 10 s ⋅   to ensure a 

maximum dead time of 40 ns , being always under the saturation limit. A reliable 

statistical estimator of 1 ( ; )g q τ   resulted from the average of 25 independent 

measurements with 1000 s  per measurement. Thus, spurious determinations due to 

electronic distortions, even at delay times as short as 0.2 µs , are minimized. The 

magnitude of the scattering vector was fixed at -10.026 nmfq = .   

 

For our experimental study, we used three different suspensions which were sufficiently 

diluted to avoid long-range interactions. First, an aqueous suspension of polystyrene 

microspheres, denoted as “sample R” (rigid), with mean radius 650 nmRa = , relative 

standard deviation RSD 0.04= , and particle volume fraction 0.002%Rφ = . The second 

sample, “sample D” (deformable), was an aqueous suspension of liposomes made of 

soybean phosphatidylcholine (SPC) from Lipoid, with mean external 

radius 244 nmDa = , RSD 0.15= , and 0.01%Dφ = . The third sample, “sample RD” 

(rigid-deformable), was an aqueous suspension of liposomes made of 

dimyristoylphosphatidylcholine (DMPC) from Sigma-Aldrich Inc., with 242 nmRDa = , 

RSD 0.15= , and 0.01%RDφ = . Due to the extrusion procedure, both SPC and DMPC 

liposomes show an unilamellar thickness of about 5 nm [23].  
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The twofold (rigid-deformable) behavior of sample RD comes from the composition of 

the lipid bilayers, since DMPC membranes exhibit two main phases separated by a 

threshold temperature (known as main transition temperature): A rigid gel phase and a 

deformable liquid crystalline phase. Below the main transition temperature, the DMPC 

membranes retain their rigidity. Above the main transition temperature, that is, in the 

liquid crystalline phase, it is considered that the majority of the single carbon-carbon 

bonds of the acyl chains of the lipid bilayers have free rotation [24]. This phenomenon 

evidences the conversion of the DMPC membrane from the gel to the liquid crystalline 

phase, where the membrane displays new properties such as an increased permeability 

and a fluidized state. Thus, we can treat sample RD as rigid or deformable by changing 

the temperature around its critical value. The main transition temperature of the DMPC 

bilayers was established at 23.0 0.1 ºC±  by means of Differential Scanning 

Calorimetry [24].  

 

Using the described protocol, two examples of the classic long-time tail prediction at 

13 ºC  and 25 ºC  are shown in Fig. 1(a) and 1(b) for sample R. While Langevin’s 

model does not predict the real evolution of exp ( )D τ , the full hydrodynamic model 

(without fitting parameters) and exp ( )D τ  show a good agreement. Thus, whereas at short 

times a significant contribution of the long-time tail term ( 1/ 2τ −∝ ) is apparent, at 

moderate long times ( 40 µsτ ≥ ) the diffusive regime, 0( ) / 1D Dτ ≈ , is nearly 

recovered. In addition, the time evolution of exp ( )D τ  corresponding to sample D at 

25 ºC  is shown in Fig. 1(c): Neither Langevin’s model nor the full hydrodynamic 

treatment describe satisfactorily these new experimental results. Now exp ( )D τ  shows a 

clear non-monotonic behavior with at least two marked maxima within our time 

window over the corresponding Langevin’s prediction.  After reaching the second 

maximum ( * 3.7 µsτ ≈ ), exp ( )D τ decreases smoothly and tends to its diffusive 

value, 0D . Since their environments are similar, the distinct trends shown by exp ( )D τ  for 

the polystyrene spheres and the SPC liposomes should be caused by the different 

structural properties of these particles.  
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To support this statement, we present the results obtained for sample RD at different 

temperatures around the main transition temperature. Thus, the unique significant 

change in the dynamics of this suspension only involves the elastic properties of the 

DMPC membranes. 

 

 

FIG.1 Normalized time-dependent diffusion coefficient 0( ) /D Dτ  corresponding to sample R 

at 13 ºC (a) and 25 ºC (b), and sample D at 25 ºC (c). Blue dash-dotted line stands for 

Langevin’s model: ( )2
0 0( ) / ( ) / / 2D D d x d Dτ τ τ= ∆ , Eq. (2). Red dashed line corresponds 

to the full hydrodynamic model: ( )2
0 0( ) / ( ) / / 2D D d x d Dτ τ τ= ∆ , Eq. (3). Black solid line 

represents the experiment: exp( ) ( )D Dτ τ= . 0D  is the experimental free diffusion coefficient 

corresponding to each temperature. Inset in (c): Dotted line represents the predicted exponential 

relaxation corresponding to 2τ = 32 µs and α =0.1. 

 

exp ( )D τ  corresponding to sample RD at 15 ºC , 23 ºC , and 34 ºC  are shown in Fig. 

2(a), 2(b), and 2(c). In accord with our calorimetric determination, sample RD at 15 ºC 

is associated to the rigid gel phase of the DMPC membranes. In fact, the full 

hydrodynamic model and the experimental data show again a common tendency as in 

the case of sample R (Fig. 2(a)). At 23 ºC , that is, at the main transition temperature, a 

moderated agreement between theory and experiment still persists although the 

fluctuations in exp ( )D τ  appear more pronounced (Fig. 2(b)). At 34 ºC   the deformable 

crystalline phase of the lipid membranes is expected, and indeed a noticeable change in 

the trend shown by exp ( )D τ occurs (Fig. 2(c)).  
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As in the case of sample D, we observe a non-monotonic behavior of exp ( )D τ  with a 

clear maximum at very short times ( * 0.6 µsτ ≈ ). However, sample RD presents a faster 

final relaxation than that associated to sample D, almost recovering its diffusive value 

around 5 µsτ ≈ . In our opinion, the complex experimental patterns shown in Fig 1(c) 

and 2(c) reflect the intricate interplay between the translational and the deformational 

motion of our flexible particles. At short times, when the translational velocity has not 

yet been damped, exp ( )D τ  would contain simultaneously the translational and the 

deformational displacements of the liposomes membrane. Thus, the strong fluid-

membrane interaction due to the translational velocity would induce fast changes in the 

membrane’s motion that would be elastically restored, being manifested through the 

sharp oscillations of exp ( )D τ . In the absence of a dynamic model for exp ( )D τ  in which 

both translational and deformational motions are considered simultaneously, the latter 

cannot be easily isolated to be described quantitatively. However, at long times, when 

the translational velocity is damped, the final relaxation of exp ( )D τ  towards 0D would 

reflect essentially the underlying over-damped deformations in the liposome’s form.   

 

 

 

FIG.2 Normalized time-dependent diffusion coefficient 0( ) /D Dτ corresponding to sample RD 

at 15 ºC (a), 23 ºC (b), and 34 ºC (c) with symbols as in Fig.1.  
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Since we have chosen an adequate q -value for our experiments ( liposome 6fq a ≈ ), see for 

details Ref. [25], we are able to explore if this hypothetical deformational motion is 

present in exp ( )D τ , attempting to reveal the internal modes of deformation of our 

flexible particles [26, 27]. Hence, we adopt the model proposed by Milner and Safran 

[26] to describe the small shape fluctuations of a single vesicle in thermal equilibrium, 

where the translational motion is not considered. Accordingly, the relative displacement 

of the membrane, ( , )r τ Ω , is expanded into spherical harmonics, ( )lmY Ω , around a fixed  

radius  

a : 
1,

( , ) 1 ( ) ( )lm lm

l m

r a u Yτ τ
>

 
Ω = + Ω 

 
∑ , where Ω  is the solid angle and ( )lmu τ  the 

amplitude associated to a given mode. By appealing the fluctuation-dissipation theorem, 

the autocorrelation functions of the amplitudes present an exponential 

decay ( )
2

( ) (0) ( ) exp /lm lm lm lu u uτ τ τ τ= − , where the relaxation time, lτ , of a mode 

driven by bending forces (negligible surface tension [26, 27]) is: 

 

3 2

2 2

(2 1)(2 2 1)

( 1) ( 2)( 1)
l

c

a l l l

k l l l l

η
τ

+ + +
=

+ + −
 ,     (5) 

 

ck  being the bending modulus of the membranes. According to Eq. (5), the slowest 

relaxation is expected for the second deformational mode. Restricting ourselves to the 

2l =  contribution [25, 27], the final relaxation of exp ( )D τ  would be in first 

approximation described by an over-damped exponential decay of the form 

( )0 2( ) 1 exp( / )D Dτ α τ τ≈ + − , where the damping is mediated by 2τ  as in the case of 

2 2( ) (0)u uτ  . Here we implicitly assume a small deformations regime, 1.0
2/12

≤u , 

according to the theoretical prediction for standard ck values of the lipid membranes 

[26, 28]. In particular, taking the bending modulus of the SPC membranes as 

( ) 191.5 0.5 10  Jck −= ± ⋅  [28], the relaxation time for a vesicle of 244 nma =  suspended 

in water at 25 ºC is 2 32 µsτ ≈  (Eq. (5)). Using this value, our exponential 

approximation  provides  a good description of  the final relaxation of  exp ( )D τ  even  for  
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amplitudes as big as 0.1α ≈  (see inset, Fig. 1(c)). This agreement is certainly 

encouraging, since it supports quantitatively our interpretation of the relaxation of 

exp ( )D τ  in terms of an over-damped deformational motion. Regarding sample RD, due 

to their strong temperature and membrane composition dependence, values for ck  that 

typically range  ( )J 106 ,102 1919 −− ⋅⋅  have been documented for the DMPC membranes 

at the liquid crystalline phase [29]. Accordingly, the corresponding 2τ -range for a 

vesicle of 240 nma =  suspended in water at 34 ºC results ( )µs 19 ,62 ≈τ . Although 

slightly overestimated, this prediction is also in reasonable accord with that observed for 

the final relaxation time of sample RD, which reaches the diffusive regime around 

5 µsτ ≈ (see Fig. 2(c)). From the best of our knowledge, these results concerning our 

flexible particles are the first quantitative observation of the damped deformational 

motion of a large vesicle under spontaneous nondiffusive Brownian motion. As a result, 

a powerful practical application emerges: Our methodology is useful to estimate and 

predict the elastic properties of a great variety of biological deformable particles. 

 

In conclusion, we have revealed the complex scenario present in the nondiffusive 

motion of a deformable Brownian particle, which is mediated by the coupling between 

translational and deformational degrees of freedom. As opposed to rigid particles, a 

complete theoretical understanding of this motion, including its short times description, 

remains as a challenge.     
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Paper II 

 

Stochastic Description of the Light 

Scattered by a Polydisperse 

Colloidal Suspension: Simulation 

and Experiment 

 
 

 

 

 

 

 

“Have you guessed the riddle yet?”  The Hatter said, turning to Alice again.  “No, I 

give it up”, Alice replied: “what’s the answer?” “I haven’t the slightest idea,” said the 

Hatter. “Nor I”, said the March Hare. Alice sighed wearily. “I think you might do 

something better with the time”, she said, “than wasting it in asking riddles that                                                                   

have no answers.” “If you knew Time as well as I do”, said the Hatter, “you wouldn’t 

talk about wasting it. It’s him.” 

 

Lewis Carroll, “Alice’s Adventures in Wonderland”, Chapter VII (A mad tea-party) 
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Abstract 

 

In this work, the stochastic properties of the detected signal in dynamic light scattering 

experiments are examined in the light of Doob’s theorem. For Markovian observations 

of the Brownian particle position, we prove from this theorem that the electric field 

scattered by a polydisperse suspension can be accounted for by a linear combination of 

Ornstein-Uhlenbeck processes. A new algorithm for generating the fluctuating field 

scattered by a polydisperse system is proposed from this alternative formalism. The 

statistics of our synthetic data is compared satisfactorily with that resulting from the 

experimental signal scattered by a binary suspension of polystyrene microspheres.  
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I. INTRODUCTION 

 

Due to their theoretical and technological significance, Brownian particles systems are 

still the topic of an impressive number of investigations [1, 2]. From a theoretical 

viewpoint, different levels of description of the Brownian dynamics are differentiated 

depending on the time scale of interest [3, 4]. Thus, starting from deterministic 

Liouville’s equation, or its equivalent Newton’s second law, the fluid variables can be 

substituted by an effective noise and the classical Langevin’s equation is obtained as an 

essential theoretical approach. In this context, the description of the dynamics of a 

“true” Brownian particle becomes stochastic instead of deterministic: The Brownian 

velocity is given by a well defined Markovian process, the Ornstein-Uhlenbeck process, 

whereas the particle position is non-Markovian [5, 6]. If the temporal coarse-graining is 

still increased, and the Brownian velocities are eliminated, we reach the diffusive 

description. In this theoretical frame, the position of a true Brownian particle is 

accounted for by the renowned Wiener process [6-8], which is Markovian by definition. 

 

So far, the most widely used experimental technique to probe these dynamic approaches 

has been Dynamic Light Scattering (DLS) [9]. Knowledge of the autocorrelation 

function ( (1) ( )g τ ) of the field scattered by a Brownian particles suspension is the 

cornerstone of this technique. Thus, (1) ( )g τ  has been interpreted in terms of the 

moments of the displacement of the scattering particles, inferring important features 

such as particle’s size and polydispersity [10, 11]. However, the general inversion of 

such function in terms of dynamic observables still remains as a non resolved problem 

in which many efforts have been spent [12].  

 

Conversely, the direct generation of (1) ( )g τ  based on statistical methods has been 

investigated as well (although more scarcely). In this respect, examples of Gaussian and 

non-Gaussian noise models to simulate the statistics of the electric field scattered by 

monodisperse colloidal suspensions can be found in literature. For instance, Lomakin 

[13] generated synthetic data normally distributed based on the maximum-likelihood 

principle for the observed signal. Earlier, Hughes [14] used a Gaussian-Markovian noise  
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also particularized to monodisperse systems whereas Jakeman and Tough [15] 

developed a statistical extension to non-Gaussian Markovian processes. 

 

This paper treats the generation of the fluctuating scattered field and its corresponding 

autocorrelation function from an alternative stochastic formalism. From such formalism, 

we prove that the fluctuating field scattered by an ideal polydisperse system can be 

accounted for by a linear combination of Ornstein-Uhlenbeck processes.  As a 

consequence, a new algorithm to simulate the field scattered by these systems is 

proposed. Some specific and novel aspects of our treatment deserve to be briefly 

commented in this introduction. 

 

Concerning the underlying physics, we first discuss the properties of the stochastic 

processes associated to the detected signal in a DLS measurement from Doob’s first 

theorem [16, 17]. The connection between this theorem and DLS has been barely 

indicated in scattering literature, being almost reduced to the significant work of Phillies 

[11] which covers the interpretation of (1) ( )g τ  under this theoretical frame. However, 

we show that Doob’s treatment can also be used as a tool to propose an algorithm for 

simulating the fluctuating signal of polydisperse systems separated in different 

relaxation modes. As far as we know, this constitutes itself a new theoretical insight 

since such formalism has not been previously applied to generate the synthetic signal 

associated to DLS measurements. Moreover, as mentioned before, the previous works 

have been focused on the simulation of the field scattered by monodisperse systems. To 

the best of our knowledge, however, the formal extension to polydisperse systems has 

never been investigated.  

 

Concerning practical aspects, our synthetic data can be employed for correlator testing 

as an alternative to a polydisperse calibration sample. In this way, uncertainties caused 

by the experimental set up as well as those resulting from the samples preparation [18] 

can be avoided. Apart from that, statistical errors in experimentally measured 

correlation functions are also correlated [13]. This additional correlation, which is not 

desirable in testing procedures, is not present in our simulated correlation functions.  
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Bearing this application in mind, a comparison with experimental data (which is also 

innovative) is carried out in the final part of our paper. More specifically, the 

experimental statistics of the signal scattered by a binary mixture of colloidal particles is 

compared with that resulting from our simulation. The choice of a binary colloidal 

suspension to test our stochastic data is due to two main reasons: First, the current 

technological significance of the binary suspensions in the development of new 

materials [19, 20]. Second, with the exception of the work of Krause and co-workers in 

the early nineties [21], this sort of basic DLS studies applied to binary systems are 

surprisingly scarce in scattering literature.  

 

Accordingly, the paper is organized as follows: In section II our theoretical approach is 

exposed. Section III presents a description of our simulation method. Section IV 

introduces the experimental characterization of our binary system. In section V the 

comparison between experimental and simulated data is presented and discussed. 

Finally, the conclusions of this research are highlighted. 

 

II. BACKGROUND AND THEORETICAL CONSIDERATIONS 

 

Under quasi elastic light scattering conditions, the instantaneous complex 

amplitude ( ; )sE q t
r

 of the electric field scattered by a N-Brownian particles system at 

time t  for a fixed magnitude of the scattering vector q
r

 is [9, 22]: 

 

1

( ; ) ( ) exp[ ( )]
N

s i i

i

E q t b q iq r t
=

= ⋅∑
r r r

 ,     (1) 

 

where ( )ib q  and ( )ir t
r

 are the scattered field amplitude and the center of mass position 

associated to particle i , respectively. Since in conventional (homodyne) DLS 

measurements photo-detectors are sensitive to the flux of energy carried by the scattered 

wave, the instantaneous intensity of the scattered light ( )I t has to be considered [4]: 

 

* 2( ) | ( ) ( ) | | ( ) |s ssI t E t E t E t≡ = ,        (2) 
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where ( ; )sE q t
r

 is notated as ( )sE t , omitting its q -dependence. The information of the 

temporal fluctuations of ( )I t  is generally supplied by a digital correlator through the 

intensity autocorrelation function (2) ( ) ( ) ( ) / ( )g I t I t I tτ τ=< + > < >  within the delay 

time τ , where  ...  represents the time-averaged value. 

 

The stochastic counterparts of the fluctuating observables given by expressions (1) and 

(2) come from the notion of stochastic process, which can be defined as any family of 

random variables { } ( ) :   0Y t t ≥ , ( )Y t  being the observation at time t  [17]. From this 

definition, the real stochastic process associated to ( )I t , identified by{ }( ) : 0I t t ≥ , will 

be conditioned by the stochastic properties of the complex process{ }( ) : 0sE t t ≥ . Two of 

these essential properties hold for ideal systems are: 

 

(1) { }( ) : 0sE t t ≥  is a complex Gaussian process. Since for non-interacting Brownian 

particles ( )sE t  is given by a sum of a large number of independent random variables 

identically distributed on time (expression (1)), the central limit theorem [8, 23] ensures 

the normal distribution of ( )sE t . Thus, its probability density is [22, 24]: 

 

2

2 2

1 | ( ) |
( ) exp

| ( ) | | ( ) |

s
s

s s

E t
P E

E t E tπ

 
= − 

< > < > 
     (3) 

 

By virtue of expression (3), { } { }( ) Re ( ) Im ( )s s sE t E t i E t= + has two real, uncorrelated, 

and identically distributed Gaussian components: 

 

{ } { }

{ }( ) { }( )

{ } { } { } { }

2 2 2

Re ( ) Im ( ) 0  ; 

1
Re ( ) Im ( ) | ( ) |  ;

2

Re ( ) Im ( ) Re ( ) Im ( ) 0

s s

s s s

s s s s

E t E t

E t E t E t

E t E t E t E tτ τ

< >=< >=

< >=< >= < >

< + >=< >< + >=

  (4) 

 

Consequently, from expression (4) we have the possibility to model the complex 

stochastic process { }( ) : 0sE t t ≥  just by attending one of its two real components. 
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(2) { }( ) : 0sE t t ≥  is a Stationary process, that is, ( ))(),...,( 1 nss tEtE   and 

( ))(),...,( 1 htEhtE nss ++  are identically distributed. As long as the observations ( )sE t  

are determined on an equilibrated system, a DLS measurement larger than the system 

relaxation time will present a stationary distribution for{ }( ) : 0sE t t ≥ . As a consequence 

of expression (2), { }( ) : 0I t t ≥  will also hold the stationary property. 

 

II.A) The Markov property and Doob´s Theorem 

 

The applicability of the Gaussian and Stationary properties imposes conditions to our 

system involving the number of particles, the absence of direct interactions, and the 

assumption of equilibrium. Apart from these conditions, the temporal coarse-graining of 

our observation plays an essential role in the stochastic description of the scattering 

phenomenon. In this respect, we next discuss the validity of our approach, which relies 

upon the applicability of the Markovian property.   

 

Let us consider a set of ordered times 1 20   ...   nt t t< < < < , the stochastic process 

{ } ( ) :   0Y t t ≥ is a Markov process, or has the Markovian property, if the conditional 

probability density at time nt , 1 - 1[ ( ) |  ( ),..., ( )]n nP Y t Y t Y t , is uniquely determined by the 

value - 1( ) nY t [6] : 

 

[ ] [ ])(|)()(),...,(|)( 111 −− = nntransnn tYtYPtYtYtYP ,    (5) 

 

where [ ])(|)( 1 −nntrans tYtYP is known as transition probability. Therefore, a sequence of 

Markovian observations (Markov chain) can be generated only by two functions: 

1[ ( )]P Y t , the initial probability density, and  - 1[ ( ) | ( )]trans n tnP Y t Y . In the context of a 

DLS measurement, the question is whether a Markovian description of { }( ) : 0I t t ≥  and 

{ }( ) : 0sE t t ≥  is appropriate. . Under certain conditions, the answer to this question is 

provided by Doob’s theorem.  
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The connection between Doob’s first theorem [16, 17] and DLS has been indicated very 

scarcely: As far as we know, Jakeman and Tough [15] were the first to point out this 

connection whereas, recently, Phillies [11] presented a remarkable discussion on this 

topic. It is sufficient for our purpose to introduce the restricted real version of this 

theorem that can be applied separately to { }Re ( )sE t  and { }Im ( )sE t :  

 

Doob’s first theorem [16]: Let be { } ( ) :   0Y t t ≥  a real, Gaussian and stationary 

process. If ( )Y t and ( ')Y t are not independent for all 't t≠ then { } ( ) :   0Y t t ≥   is a 

Markov process (in the sense defined above) if and only if: 

 

 2( ) ( ) ( )  ; 0Y t Y t Y t e γττ γ−< + >=< > >      (6) 

 

Therefore, the question considered previously is answered by means of the necessary 

condition of Doob’s theorem: Under the Gaussian and stationary assumptions, an 

experimental simple exponential decay of *( ) ( )s sE t E t τ< + >  implies that 

{ }{ }Re ( ) :  0sE t t ≥  and { }{ }Im ( ) :  0sE t t ≥  have to be treated as Markovian processes. 

An important consequence is inferred from this statement: Doob’s theorem is a test to 

check whether the observation of the scattered signal during a DLS measurement is 

Markovian. In addition, from the sufficient condition of Doob’s theorem, a Markovian 

description of ( )sE t  for an ideal monodisperse system implies (expressions (1) and (4)):  

 

( )
2* 2( ) ( ) | ( ) | ( )  ; 0s s sE t E t E t e N b q eγτ γττ γ− −< + >=< > = >   (7) 

 

We should remark that expression (7), which is a familiar result in scattering literature, 

is here deduced as a consequence of a first-principles description of the stochastic 

properties of { }( ) : 0sE t t ≥ . Thus, the decay rate γ  stated in the theorem corresponds 

to 2
0D qγ = , where 0D  is the free diffusion coefficient of the Brownian particles [4, 9]. 

 

We can now connect the stochastic description of { }( ) : 0sE t t ≥  to { }( ) : 0Nr t t ≥
r

, which 

is  the multivariate  stochastic process  that  represents  the system  configuration. If  the  
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temporal sensitivity minτ of our DLS experiment is much greater than the Brownian time 

Bτ  (the characteristic time of the Brownian velocity decay), { }( ) : 0Nr t t ≥
r

 will be 

Markovian: Since many variations of the velocity happen between two successive 

experimental observations of the position of a particle, the prediction of a future 

position would be uniquely determined by the last position. As a consequence, 

{ }( ) : 0sE t t ≥  must conserve the Markovian property since the scattered field depends 

on the system configuration with no explicit dependence on time (expression (1)).  

 

II.B)  The Ornstein-Uhlenbeck process 

 

A statement follows readily from Doob’s first theorem: The unique real, Gaussian, 

Stationary, Markovian process that is continuous in probability is the Ornstein-

Uhlenbeck (OU) process [16, 23].  

 

In fact, OU process is the best known and the most widely applied stationary Markovian 

process [5, 6, 8, 25-28]. According to definition (5), an OU chain, 1( ),..., ( )nY t Y t , can be 

generated from an initial probability density and a transition probability. Their 

continuous expressions for a zero-mean and unit variance process are [6]: 

 

2
1 1

2
2 1

2 1
22

1 1
( ) exp

22

1 ( ( ) ( ) )
[ ( ) | ( )] exp

2(1 )2 (1 )
trans

P Y Y

Y t Y t e
P Y t Y t

ee

γτ

γτγτ

π

π

−

−−

 
= −  

 −
= − 

−−  

  (8) 

 

As a result, an OU process is uniquely determined by a ternary set   { }2, ,Y Y γ< > < > . 

In conclusion, we have reached an alternative calculation of the signal scattered by a 

suspension of non-interacting particles from Doob’s theorem and the formalism of the 

OU processes:{ }( ) : 0sE t t ≥ , and then { }( ) : 0I t t ≥ , can be simulated as discrete OU 

chains when the Markovian assumption is satisfied.  
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III. SIMULATION 

 

Generation of discrete OU chains constitutes itself a branch in the field of the numerical 

resolution of stochastic differential equations. Details about the algorithm used here as 

well as other algorithms can be consulted in Refs. [27-31]. Our output will be a discrete 

real OU path within a partitioned time interval[0, ]T  starting from an 

input{ }2, ,Y Y γ< > < >  : 

 

(1) We divide the interval [0, ]T  by a large number N , taking as time step 

/h T N= .  

(2) According with the Gaussian property, we generate a real set { }0 ,....., NX X  

normally distributed with zero-mean and 2Y< >  variance.  

(3) Starting from 0 0Y Y X= 〈 〉 + , we will construct the real set { }0 1, ,..., NY Y Y  based 

on the recursive relation: 

( ) 2
1    ;      (1 )  1   ( )h

n n nY Y Y Y X n N e γκ κ κ −
−= < > + − < > + − ≤ ≤ ≡      (9) 

 

Assuming ( ) ( )n nY Y nh Y t= = , the generated set { 0 1, ,...., NY Y Y } is a discrete OU chain, 

consistent with expression (8), satisfying for the continuous limit: 

 

2lim m
n n m

N
Y Y Y e γ−

+
→∞

< >=< >        (10) 

 

Next, this generic recipe will be applied to a monodisperse system. After that, extending 

the range of applicability of previous works, this recipe will be generalized to 

polydisperse systems (section III.B). 
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III.A) Monodisperse System 

 

For a monodisperse system, only one effective decay rate γ  has to be considered. So, 

let { } { }( ) Re ( ) Im ( )s n s n s nE t E t i E t= +  be the simulated instantaneous complex amplitude 

of  the  field scattered by a  system of  identical non-interacting  Brownian particles a 

time nt . Without loss of generality, we assume the following normalization (see 

expression (4)):  

 

{ }( ) { }( ) ( )( ) 1
2

1
ImRe 2222

=>=<>=>=<< b(q)N(t)E   ;  (t)E(t)E sss  (11) 

According to expression (9): 

 

{ } { } ( )

{ } { } ( )

2
1 ,

2
1 ,

Re ( ) Re ( ) 1     

Im ( ) Im ( ) 1     

(1 ;  )

s n s n re n

s n s n im n

h

E t E t E

E t E t E

n N e γ

κ κ

κ κ

κ

−

−

−

= + −

= + −

≤ ≤ ≡

  ,  (12) 

 

where ,re nE  and ,im nE  are the n -components of two uncorrelated Gaussian sets with 

zero-mean and 1/ 2  variance (denoted previously by { 0 ,....., NX X }). In consequence, 

the simulated intensity at time nt  is { }( ) { }( )
2 2

( ) Re ( ) Im ( )n s n s nI t E t E t= + . As example, a 

simulated chain according to expression (12), and assuming a relaxation 

time1/ 1 msγ = , is shown in Fig. 1(a) for a normalized intensity 2( ) | ( ) | 1sI t E t< >=< >= . 

 

III.B) Polydisperse System 

 

In his work, Phillies [11] discusses the emergence of measurable non-exponential 

decays of *( ) ( )s sE t E t τ< + >  for polydisperse systems which are provoked by the 

different mobilities of the large and small particles present in the scattering volume. 

Thus, if a slow change in ( )sE t  is observed within a short time interval during a DLS 

measurement, that change will be mainly due to the fluctuations in the scattering 

volume involving large, and then less mobile, particles. The memory of  this  fluctuation  
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will persist to the next short time interval and ( )sE t will not be Markovian. However, 

this non-Markovian behavior is due to a temporary unbalance between large and small 

particles in the scattering volume, that is, to a phase fluctuation. Therefore, this effect 

can be avoided if we consider a large scattering volume with non-significant finite size 

effects.  Under  this assumption, to describe  the  polydispersity  of our system  we  will 

assume a M -modal particle distribution. Then, { }( ) : 0sE t t ≥  will be separated in M  

different relaxation modes by generalizing expressions (11) and (12).  

 

Let us consider a polydisperse system described by a M -modal 

distribution, ( )1,..., MN N , where the number of particles corresponding to the species 

j , jN , will be large enough for any 1,...,  j M= . At the same time, the optical and 

geometrical properties of the particles of species j , contained in ( )jb q , are considered 

as identical. Then, from expression (1): 

 

1

1

1

1

1 1

( ; ) ( ) exp[ ( )] ...  ( ) exp[ ( )]
M

M

M

N N

s i M i

i i

E q t b q iq r t b q iq r t
= =

= ⋅ + + ⋅∑ ∑
r r r r

  (13)  

 

Now, the stochastic process associated to ( ; )sE q t  is a sum of uncorrelated complex 

processes: 

 

{ } { } { }1( ; ) : 0 ( ; ) : 0  ...  ( ; ) : 0M
s s sE q t t E q t t E q t t≥ = ≥ + + ≥  ,  (14) 

 

where each individual process { }( ; ) : 0i

sE q t t ≥  ( 1,...,i M= ) is determined by its two 

uncorrelated real components, { }Re ( ; )i

sE q t and { }Im ( ; )i

sE q t  . Due to the equivalent 

stochastic description of both components, we present only the recipe for { }Re ( )i

sE t . 

As OU process, its corresponding ternary set is: 
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 { } { }
( )

( )

2

2

2

1

( )
Re ( ) 0, (Re ( ) ) ,    ;  1,...,

2 ( )

i i
i i

is s M

j j

j

N b q
E t E t i M

N b q

γ

=

 
  

< >= < >= ∀ = 
 
  

∑
 , (15) 

 

where the value of { } 2(Re ( ) )i

sE t< >  has been established to fix 

{ } { }2 2 2

1

| ( ) | (Re ( ) ) (Im ( ) ) 1
M

i i
s s s

i

E t E t E t
=

 < >= < > + < > = ∑ . 

 

Expression (12), applied now to each { }Re ( ; )i

sE q t results: 

 

{ } { } ( )2
1

,
Re ( ) Re ( ) 1      

(1  ;  ; 1,..., )i

i i i
n ns i s i

re n

h

i

E t E t E

n N e i M
γ

κ κ

κ

−

−

= + −

≤ ≤ ≡ =
     (16) 

 

Here ,
i

re nE  is the n -component of a Gaussian set with zero-mean and 

( ) ( )
2 2

1

( ) / 2 ( )
M

i i j j

j

N b q N b q
=

∑  variance. In this situation, the system will present M  

effective decay rates iγ , 1,...,i M= . As a result, expressions (14) to (16) give again 

{ }( ) { }( )
2 2

( ) Re ( ) Im ( )n s n s nI t E t E t= + . Finally, the non-correlation between different 

modes can be expressed as:  

 

[ ] ( )
1/ 2*

    ; ( ) ( ) ( ) ( ) exp , 1,...,i j
i j i j i ijs sE t E t N N b q b q i j Mτ γ τ δ< + >= − ∀ = ,  (17) 

 

where ijδ  is the Kronecker symbol. From expressions (14) and (17), the orthodox field 

autocorrelation function is recovered: 

 

( )* 2

1

( ) ( ) ( ) exp
M

s i is i

i

E t E t b q Nτ γ τ
=

< + >= −∑      (18) 
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IV. EXPERIMENTAL SETUP  

 

To test experimentally our simulation algorithm given by expressions (14) to (16), we 

used two samples of charge-stabilized highly monodisperse polystyrene spheres with 

identical refractive indexes. Size and polydispersity were estimated separately by means 

of static light scattering (SLS). In this respect, two aqueous suspensions were prepared, 

one for each sample at 0.01% volume fraction.  

 

The experimental form factors ( )P q were evaluated within the angular range [ ]10º,150º  

as the average of three independent measurements from [4]: 

 

2

0 0

( )( ) ( )
  ;  ( )

( ) ( ) (0)

I qP q b q
P q

P q I q b

 
= ≡  

 
,     (19) 

 

where ( )0 04 / sin( / 2)q nπ λ θ=  and 0 10ºθ = , n being the suspension refractive index. 

The SLS characterizations were performed using a slightly modified Malvern 4700 

System (UK) working with a He-Ne laser beam (wavelength in vacuo 632.8 nmλ = ). 

Polydispersity was theoretically accounted for by a trimodal Pseudo-Schulz’s 

distribution as in reference [32]. As a result, a mean radius of 40 nmAa = with a 

relative standard deviation of 0.07 was obtained for the “small” particle sample (sample 

A) whereas 240 nmBa = and 0.05 were the optimum radius and polydispersity for the 

“big” particle sample (sample B). ). Henceforth, A and B will be the labels for the 

corresponding sample. 

 

As in the case of the previous SLS measurements, our DLS essay with a binary 

suspension was performed with the same scattering device for a fixed scattering angle 

80ºfθ =  at   25 ºC.  The  experimental  normalized  intensity  autocorrelation  function  

2(2)
exp ( ) ( ) ( ) / ( )g I t I t I tτ τ= +  was provided by a digital correlator and analyzed by our 

own  computer software. The  corresponding   normalized  field autocorrelation function  

 



Paper II - J. Chem. Phys. 131, 034509 (2009) 
______________________________________________________________________ 

106 
 

 

(1) *
exp ( ) ( ; ) ( ; ) / ( ; )s f s f fg E q t E q t I q tτ τ= +  was then obtained via Siegert relation from 

(2)
exp ( )g τ  [22]: 

 

( )
2(2) (1)

exp exp( ) 1 ( )g c gτ τ= +        (20) 

 

c being an apparatus constant that in our case is close to 1.  

 

V. RESULTS: SIMULATION AND EXPERIMENT  

 

The aim of this section is to compare the experimental statistics of the field scattered by 

a bidisperse Brownian particles system obtained from a mixture of samples A and B 

with that resulting from our simulation method for 2M =  (section III.B).  

 

To perform our DLS essay, a bidisperse suspension was prepared by mixing samples A 

and B resulting in a ratio / 90 A BN N =  for a total volume fraction of 0.01%. The ratio 

/A BN N  was adjusted to have  ( ) ( )
2 2

3 ( ) ( )A A B Bf fb q N b q N=  within the experimental 

uncertainty for the fixed scattering angle 80ºfθ = . This ratio was chosen arbitrarily to 

have different mean intensities coming from the A and B particles 

( ( ) / ( ) 3B AI t I t = ).    

 

From an experimental viewpoint, the validity of a Markovian description of a physical 

observable, the scattered intensity ( )I t  in our experiment, depends entirely on the 

temporal coarse-graining of our observation. In this respect, a Markovian description is 

not appropriate if the temporal observation is sensitive enough to estimate the value of 

the physical observable as well as its “true” temporal variation at a given time. The 

estimation of a temporal variation implies a memory knowledge of the “immediate” 

past that will condition the prediction of the “imminent” future, breaking the Markovian  
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assumption. As mentioned in the last paragraph of section II.A, if minττ <<B   

{ }( ) : 0Nr t t ≥
r

 and { }( ) :  0sE t t ≥  (as well as{ }( ) :  0I t t ≥ ) will be Markovian. In our 

experiment, the Brownian times associated to each species are 

s 105A) (sample -10
 B ⋅≈τ  and s 10B) (sample -8

 B ≈τ , obtained from 22 / 9B aτ ρ η=  [4]. 

Here 3
 1.054 g/cmρ =  is the polystyrene density, 3

 0.891 10  Pa sη −= ⋅ ⋅ the shear 

viscosity of the aqueous medium at 25 ºC, and a the mean radius of the corresponding 

sample. Additionally, the experimental delay time τ  provided by our correlator run 

within the range 5[10 ,1] s− .  

 

Thus, the “true” velocity of the particles of both species is damped many times during 

our minimum delay time since 5 3
min 10  s 10 (sample B)Bτ τ−= ≈ ⋅ . Therefore, a 

Markovian description for the particle position, and then for the detected signal is a 

plausible assumption.  

 

To obtain our simulated field we used as input the inverse decay rates ms 57.01
A =−γ  

and ms 4.31
B =−γ , admitting the free Brownian motion assumption 2

0 fD qγ =  [4]. Here 

0 / 6BD k T aπη=  was evaluated via Stokes-Einstein’s equation from the particles radii 

obtained from SLS, T being the absolute temperature and Bk  Boltzmann´s constant. The 

OU processes associated to each real component of the simulated scattered field 

corresponding to each species were generated considering the experimental 

ratio ( ) ( )
2 2

( ) / ( ) 3B B A Ab q N b q N = . From expression (15), the ternary sets associated to 

each sample are: 

 

 

{ } { }
( )

( )

{ } { }
( )

( )

2

2 -1

2
2

1

2

2 -1

2
2

1

( ) 1 1
Re ( ) 0, (Re ( ) ) ,  ms   

8 0.57
2 ( )

( ) 3 1
Re ( ) 0, (Re ( ) ) ,  ms

8 3.4
2 ( )

A A
A A

As s

j j

j

B B
B B

Bs s

j j

j

N b q
E t E t

N b q

N b q
E t E t

N b q

γ

γ

=

=

 
 
 

< >= < >= = = 
 
  

 
 
 

< >= < >= = = 
 
  

∑

∑

  (21) 
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Once expression (16) is applied for 2M = , the simulated intensity at time nt  results 

(expressions (2) and (14)): 

 

{ }( ) { }( )
2 2

( ) Re ( ) ( ) Im ( ) ( )A B A B
n n n n ns s s sI t E t E t E t E t= + + +     (22) 

  

                     

 

FIG.1 (a) Simulated ( )I t  for a monodisperse system (section III.A) according to expression 

(12) with 1/ 1 msγ = . (b) Simulated ( )I t  for the bidisperse system  (section V) according to 

expressions (16), (21), and (22). In both figures, the time step for the simulation is h = 1 sµ . 

 

To illustrate the fluctuating behavior of this simulated signal, Fig. 2(b) shows ( )nI t  

according to expressions (16), (21) and (22) for a time step 

1 (sample A) / 500 1 µsh γ −= = . Qualitatively, the difference between the generated 

signals for the monodisperse (Fig. 1(a)) and bidisperse systems (Fig. 1(b)) is apparent.  

Whereas Fig. 1(a)  shows a simple fluctuating pattern typically  correlated within  times  
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of the order of 1 ms , a more complex fluctuating behavior is presented in Fig. 1(b). 

Because of the two separated correlation times, the latter can be seen as a fast 

fluctuating pattern, typically correlated during a delay time of the order of 1
A
−γ , which is 

enveloped by a slow one, correlated within delays of the order of 1
B
−γ .  

 

        

FIG.2 Experimental and simulated field autocorrelation functions for the bidisperse system 

(section V).  Line stands for the simulated field autocorrelation function (1) ( )simg τ  whereas 

empty dots represent the experimental autocorrelation function (1)
exp ( )g τ . The inset shows the 

decay associated to the small particles. The time step for the simulation was h = 1 sµ  whereas 

both, experimental and simulated, autocorrelation functions were evaluated during 25 s. 

 

From the simulated bidisperse signal, we obtained the normalized field autocorrelation 

function (1) *( ) ( ) ( ) / ( )n n nsim s sg E t E t I tτ τ= +  which was compared with (1)
exp ( )g τ  obtained 

from expression (20). Figure 2 shows ( ))(ln )1( τg  for the simulated and the experimental 

signals, where both (1)
exp ( )g τ  and (1) ( )simg τ  were evaluated for an identical time interval of 

25 sT = . The inset in Fig. 2 shows a detail of the fast decay corresponding to the 

motion of the small particles, sample A, whereas the slow decay associated to the big 

particles has  also  been  remarked  through its slope, given by  -1
B ms 29.0−≈− γ . Both  
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slopes are the obvious manifestation of the correlation times present in Fig. 1(b). From 

Fig. 2, an excellent accord between experiment and simulation is found: The slopes and 

the temporal ranges where these slopes are obvious agree completely. Furthermore, an 

additional remark is pertinent: Formally, the convergence to an analytic model, e.g. a 

cumulant expansion [33], of an experimental correlation function as (1)
exp ( )g τ  is 

approached after an infinite time of observation. Therefore, from such analytic models it 

is not possible to estimate a priori the duration of finite time experiment in order to 

obtain a given accuracy. However, a direct stochastic simulation as that presented here 

confirms and quantifies the accuracy reached from a finite time experiment.  In 

summary, these results are certainly encouraging since they suggest that our synthetic 

data, particularized in this section for 2M = , can be used as a substitute of a 

polydisperse calibration sample.  Moreover, the theoretical frame from which 

expressions (14) to (16) have been deduced could be considered as a starting point for 

the simulation of complex systems where non-Gaussian and non-Markovian behaviors 

are present.  

 

VI. CONCLUSIONS  

 

In this work, the stochastic properties of the signal detected in conventional DLS 

experiments have been revisited from an alternative stochastic viewpoint. For 

Markovian observations of the particle position, we have shown that the electric field 

scattered by a polydisperse Brownian particle system can be generated from a linear 

combination of Ornstein-Uhlenbeck processes. Doob’s theorem plays a key role in this 

proof connecting the plausibility of a Markovian description with the statistical 

properties of the detected signal. 

 

From this alternative formalism, a new algorithm for simulating the signal scattered by 

a polydisperse suspension has been proposed. Its practical realization has been 

illustrated for a binary mixture of colloidal particles. We have reported excellent 

agreement between the (synthetic) data generated by this algorithm and those resulting 

from the real bidisperse sample. Consequently, our simulation method could be a useful 

tool for analyzing and characterizing polydisperse mixtures of variable composition. 
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Abstract 

 

In this work, the calcium-induced aggregation of phosphatidylserine liposomes is 

probed by means of the analysis of the kinetics of such process as well as the aggregate 

morphology. This novel characterization of liposome aggregation involves the use of 

static and dynamic light scattering techniques to obtain kinetic exponents and fractal 

dimensions. For salt concentrations larger than 5mM, a diffusion limited aggregation 

regime is observed and the Brownian kernel properly describes the time evolution of the 

diffusion coefficient. For slow kinetics, a slightly modified multiple contact kernel is 

required. In any case, a time evolution model based on the numerical resolution of 

Smoluchowski´s equation is proposed in order to establish a theoretical description for 

the aggregating system. Such model provides an alternative procedure to determine the 

dimerization constant, which might supply valuable information about interaction 

mechanisms between phospholipid vesicles.     
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I. INTRODUCTION 

 

Phospholipid vesicles (liposomes) are colloidal systems that present a major interest in 

the pharmaceutical, cosmetic and food industry since they are biocompatible structures 

to encapsulate proteins, nucleic acids, drugs, etc. Moreover, liposomes are considered as 

model systems of the cellular membrane. In particular, they have been widely applied to 

the study of biological transport through membranes, induced aggregation phenomena, 

etc...[1-3]. Therefore, liposomes play an important role in many research areas since the 

early 60s. Besides their numerous medical applications, liposomes could be considered 

as model colloidal systems since magnitudes such as size, charge and rigidity can be 

easily controlled during their synthesis. In this sense, vesicular suspensions present the 

typical properties of colloidal dispersions from a physicochemical point of view. This 

twofold role of liposomes is precisely the main advantage of this system. Namely, a 

colloidal formalism of aggregation applied to phospholipid vesicles appears as a crucial 

step for a better understanding of complex phenomena in cell biology such as the 

membrane fusion. In this sense, knowledge about the temporal evolution of an 

aggregating colloidal system, as well as the study of the geometrical properties of the 

resulting aggregates, have demonstrated to be a key to understand and control the 

interaction mechanism between individual particles.  

 

Due to the importance of the aggregation-fusion between vesicles, in the last decades a 

considerable progress has been made towards the comprehension of the underlying 

mechanisms and factors involved in these processes [1, 4-6]. In most of these works, it 

is well established that the ion-induced vesicular aggregation and fusion depend 

essentially on the composition, charge, size and concentrations of the liposomes as well 

as on characteristics of the dispersion media such as pH, ionic strength, temperature and 

type of ions presented therein. In particular, the well known fact that Ca+2 is involved in 

many biological membrane fusion phenomena results in a numerous research works 

devoted to the study of aggregation and fusion of pure bovine brain phosphatidylserine 

(PS) liposomes by effect of the divalent cations [4,5,7,8]. Accordingly, the main goal of 

this research work is dedicated to deepen into the study of the Ca+2-induced aggregation  
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between PS liposomes by means of a novel modus operandi based on the analysis of the 

aggregation kinetics as well as the morphology of the resulting aggregates.     

 

From the point of view of colloidal science, an enormous effort has been done in the 

past in order to reach a whole knowledge of the particle aggregation phenomena from 

theoretical, simulation and experimental approaches. However, in reviewing the 

literature, the aggregation of “biological particles” such proteins or vesicles have been 

scarcely studied using the well developed techniques from colloidal aggregation. This is 

the main interest of this work, to describe the aggregation of vesicles using some 

methods from colloidal science. This is the primal reason why in this work the 

aggregation kinetics and cluster structure of the liposomes are analyzed. On one hand, 

the term cluster structure refers to the spatial distribution of the monomers into the 

aggregate. When a scale-invariant growth appears the geometrical description can be 

expressed in terms of a cluster fractal dimension, df . In colloidal science, this magnitude 

can be straightforwardly determined by means of scattering techniques hence it is 

surprising that this magnitude has been rarely employed in the studies of aggregation of 

liposomes as Lasic claims [7]. Certainly, there are previous works in which liposomes 

and their aggregation processes are studied by light scattering. However, the number of 

them that apply the notion of fractal dimension is considerably scarce. For instance, 

Bordi et al. [9] offers an advisable work in which light scattering becomes a powerful 

tool to investigate polyion-induced aggregation but fractal dimensions are not 

considered by them. Stauch et al. [10] do apply this concept to the study of the inner 

structure of chemically modified liposomes (but as individual entities). As far as we 

know, only Linch et al. looked into the kinetics of liposome aggregation (induced by 

proteins in this case) by means of turbidity measurements with the help of this concept 

[11]. 

 

On the other hand, aggregation kinetics addresses to the possibility to do a whole 

description of the aggregating dispersion, i.e, to know at a fixed time the number of 

clusters Nn(t) having n particles each one. A feasible approach to solving this nontrivial 

problem is the resolution of the Smoluchowski equation at which the key parameters are  
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the “aggregation kernels”, i.e. a set of kinetic rate constants for all possible cluster-

cluster reactions. Additionally, the van Dongen-Ernst homogeneity parameter, λ , can be 

useful to complete the description of an aggregating system [12,13]. 

 

Historically, two limiting regimes have been identified in colloidal aggregation: a rapid 

diffusion limited cluster aggregation (DLCA) and a slow reaction limited cluster 

aggregation (RLCA). Salt-induced aggregation of electrically stabilized bare particles 

aggregating at low and high electrolyte concentration is an example where these 

limiting regimes have been successfully obtained. To date, both the resolution of 

Smoluchowski´s equation (via the selection of an adequate kernel) and the kinetics 

description in the van Dongen-Ernst scheme have not been applied to liposomes 

aggregation. 

Bearing all this in mind, the paper is organized as follows: Firstly, an overview of the 

colloidal aggregation theory is presented. Next, a section in which the experimental 

procedures are described. Finally, experimental and numerical results are shown. 

Namely, the spatial distribution of liposomes into the clusters is estimated via 

measurements of the aggregates fractal dimension obtained by means of Static light 

scattering (SLS). On the other hand, Dynamic light scattering (DLS) technique is used 

to describe the kinetics of the liposomes aggregation induced by calcium. In addition, an 

evolution kinetic model based in the numerical resolution of Smoluchowski´s equation 

is proposed in order to establish a theoretical description for the aggregating system. 

 

II. THEORETICAL BACKGROUND 

 

A. Fractal Geometry and Static Light Scattering (SLS) 

 

The spatial correlations between particles of a structure are usually accounted for the 

pair correlation function )(rc
r

: 

 

∑ +=
'
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where V is the volume of the structure and )(r
r

ρ  the local density ( )(r
r

ρ = 1 if r
r

 

belongs to the structure, otherwise it is equal to zero). The functional behaviour of )(rc
r

 

can be used as a criterion to determine the fractal growth of an object (aggregate). An 

isotropic finite object presents a non-trivial scale-invariant growth if [14]:  

 

),/()( obj
ddf Rrfrrc −∝        (2) 

 

where d is the topological spatial dimension, df  is the fractal dimension, objR  the 

average radius  of the object  and )(xf  is a cutoff  function in which the finite size of 

the object is considered, satisfying 1)( ≈xf  for 1<<x  and 0)( ≈xf  for 1>>x .  

 

According to its definition in scattering theory, the structure factor S(q) is related with 

the pair correlation function through a Fourier transform [14]. This relationship gives an 

equivalent condition for (2) expressed via S(q): 

 

,/1/1   )( aqRqqS obj
df <<<<∝ −       (3) 

 

where the finite size of the constituent particles of the object has been considered 

through the domain given by the inequality, si kkq
vrr

−=  is the scattering vector, defined 

as the difference between the incident and the scattered wave vectors, and a  is the 

average radius of the particles.  

 

Thanks to this equivalent description in the q-space given by the structure factor, the 

fractal geometry of a distribution of aggregates in a 3D-suspension can be determined 

by means of a SLS experiment, where experimental values for S(q) and, in the case that 

fractal nature appears,  df , are obtained. This experimental access is given by: 
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where we assume )2/sin(
4

θ
λ

π

m

q =  (elastic light scattering), being mλ  the wavelength 

of the incident light beam in the medium, θ  is the scattering angle, ρ is the particle 

concentration and )(qI  is the time-averaged light intensity scattered by the particle 

dispersion. The lower index 0 indicates the corresponding values to the diluted and 

disordered suspension. 

 

B. Diffusion and Dynamic Light Scattering (DLS) 

 

The temporal fluctuations in the instantaneous electric field, ),( tqE , scattered by a 

particle suspension and detected in a far-field position are the measurable effect of the 

diffusive motion of the particles. The time correlations of these fluctuations are studied 

in terms of the normalised field autocorrelation function )(τg , its expression for a 

polydisperse cluster system adopts the form [15]: 

 

,)exp()(
)(

1

)(

),()0,(
)(

*

∑ Γ−==
n

nn qb
qIqI

qEqE
g τ

τ
τ    (5) 

 

where )(qbn  contains the relative frequency and the structure of a n-particle cluster and 

nΓ  is its associated decay rate, in which rotational and translational diffusions are 

included, 

 

,62 rot
nnn DqD +=Γ         (6)   

 

where nD  and rot
nD are the translational and rotational diffusion coefficients of a n-

particle cluster, assuming that nD  and rot
nD are uncoupled. Taking into account the 

typical values for q and the average cluster size, through its hydrodynamic radius, we 

can assume that rotational and translational diffusions happen in two separated time 

scales and 

 

,2 rot
nn DqD >>         (7)  
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can be considered as a plausible assumption [13].   

 

In order to obtain the average value for the translational diffusion coefficient )(qD over 

the system at any time, the experimental autocorrelation function is treated as an 

expansion in powers of τ , this treatment is known as cumulant method [16]. The 

expression for its logarithm results: 

 

( ) ...
2

1
)(ln 2

21exp ++−= τκτκτg ,      (8)   

 

where iκ  is the i-order cumulant. Relating (5) with (8) and assuming (7) we find that 1κ  

represents  the average decay rate, 2κ contains the standard deviation while )(qD   is 

given by: 
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which is the basis for the access, through a DLS experiment,  to the aggregation kinetics 

of a particle suspension. 

 

C. Aggregation kinetics and Smoluchowski´s equation  

 

A time evolution model for the cluster size distribution arising in an aggregating system 

may be obtained by solving Smoluchowski’s rate equation [17, 18]: 
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where )(tNn  can be used as a frequency distribution in order to obtain the mean value of 

any function of  n. ijk  is a set of constants called kernel, hypothetically infinite, inwhich 

the  whole  kinetic information  is contained.  The aggregation kernel, ijk , quantifies the  
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average rate (for all orientational and structural configurations) at which two i- and j-

particle clusters react and form an (i+j)-particle cluster.  The above equation, in which 

fragmentation does not occur, is applied to diluted systems where only binary reactions 

are contemplated.  

 

A general scheme to classify the aggregation kernels attending their homogeneity was 

proposed by van Dongen and Ernst [19].  This classification can be expressed as 

follows: 

 

ijaiaj kak λ∝       ;   ( 2≤λ ) 

µλµ −
<< ∝ jik ji    ;   ( 1≤− µλ )      (11)                               

 

The homogeneity parameter, λ,  correlates the aggregation rates involving two different 

reactions between similar sized clusters, while µ  controls the rates for the reactions 

involving different sized clusters. Restrictions over λ and µ  come from the non-

physical possibility for which cluster reactivity cannot rise faster than its mass.  

Restricting ourselves to nongelling-kernels (λ≤1), the scaling theory [20] gives us the 

asymptotic behaviour in time for the number-average cluster-size, )(tnn , as a function 

of λ : 
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On the other hand, the n-dependence for the n-particle cluster translational diffusion 

coefficient, nD , was estimated  assuming the aggregates to be fractal objects [19], 
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where 0D  is the diffusion coefficient of the free individual particles. Considering (12) 

and (13), the following asymptotic behaviour for );( qtD  can be predicted: 

 

, ~ );( α−tqtD          (14) 

 

where fd)1/(1 λα −= . This behaviour is the key to associate a type of kernel to the 

results obtained for an experimental aggregation kinetics.  In order to describe DLCA 

regime, mentioned in the introduction, the Brownian kernel is commonly accepted [17, 

18]: 

 

),)((
4

1 /1/1/1
11

dhdhdfdfBrownBrown
ij jijikk −− ++=     (15) 

 

where Brownk11  is the dimer aggregation rate, df is the previously defined cluster 

geometric fractal dimension and dh is the cluster hydrodynamic fractal dimension. In 

this work, we assume for liposomes dh = df   as others authors do for rigid particles [21, 

22]. In any case, the plausibility for this assumption will be argued later.  

 

A common kind of kernels for describing slow-type regime evolution usually consider 

the Brownian kernel as a limit, introducing function ijP  (depending on a sticking 

probability, 11p ) in order to impose a rate of effective contacts[23], 

 

),)((   , 11  
βijpPPkk ijij

Brown
ijij ==       (16) 

 

where the probability for an effective monomer-monomer contact, 11p , has been 

separated from the total effective combinations of contacts between two i and j-clusters, 

through the β parameter, where λ = 2β.  β  lies in general between  the limiting values 0 

and 0.5, but an expected value comes from the hypothesis that only particles at the 

surface of the cluster contribute in the collision [12].  
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For this multiple contact (MC) diffusionlike case, β becomes: 

 

,/)(3 fDffDf dddd −=β        (17) 

 

here fd  is the fractal dimension for the slow aggregates while fDd  is the diffusive 

fractal dimension. As expected, this non-diffusive kernel reduces to the Brownian case 

when fDf dd = .  

 

III. MATERIALS AND METHODS 

 

PS  from bovine spinal cord was obtained from Lipid Products (Nutfield, UK). 

Phospholipid at the proportions indicated below were dissolved in a mixture (2:1, 

volume ratio) of chloroform and methanol in a round-bottom flask and dried in a rotary 

evaporator under reduced pressure at 40 0C to form a thin film on the flask. The film 

was hydrated with desionized water (MilliQ, Millipore, USA) to give a lipid 

concentration of 30mM. Multilamellar liposomes (MLV) were formed by constant 

vortexing for 4 min on a vortex mixer and sonication in a Transonic Digitals bath 

sonifier (Elma, Germany) for 10 min. MLV were downsized in an Extruder device 

(Lipex Biomembranes, Canada) through polycarbonate membrane filters of variable 

pore size under nitrogen pressures of up to 55x105 N.m-2  [24]. Liposomes were 

extruded in three steps: first, three consecutive extrusions through a 0.8 µm pore 

diameter filter and three other consecutive extrusions through two stacked 0.4 µm 

membranes. The resulting lipid suspension was then extruded fifteen consecutive times 

through two stacked 0.2 µm filter. After preparation, a nitrogen stream was passed to 

displace the air, and, finally, liposomes were stored at 4-7 0C in a refrigerator in 

quiescent conditions until their use.  

 

A. Characterization of the liposomes 

 

To characterize a liposome suspension two different requirements are necessary. The 

first  involves  their  characterization in size  and  shape while  the second  concerns  the  
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determination of the initial liposomes concentration, which is a troublesome problem 

when vesicles are used as colloidal particles.     

 

In order to determine liposome size, several DLS experiments were performed for 

different diluted liposomes volume fractions and angles verifying a constant value (in 

time and experiment) for the mean particle diffusion coefficient, );(exp qtD , obtained 

using the cumulant analysis given by (8). The experimental field autocorrelation 

function results from the scattered intensity autocorrelation function, )(τIg , through the 

Siegert relation, being γ <1  a constant, 

 

( )22 )(1)( τγτ fieldI gg +=        (18) 

 

An approximated value for the mean liposome external radius comes from the 

hydrodynamic radius hR  associated to );( qtD  via Stokes-Einstein relation. Combining 

these previous DLS experiments with a SLS experiment, an alternative size 

determination can be done by fitting the form factor, P(q), realising )()(0 qPqI ∝ . 

Theoretically, a hollow sphere is usually accepted as simple geometrical model to 

describe the form of a liposome. Form factor for a hollow sphere in the context of the 

Rayleigh-Gans-Debye theory is given by the expression:   
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where R is the inner radius of the sphere and R(t-1) the thickness of the shell, which 

value applied to unilamellar liposomes is closed to 4.5 nm. [25]. Since a direct 

estimation for the size distribution in a polydisperse suspension is an ill conditioned 

problem, a probability distribution has to be assumed. In order to consider the intrinsic 

size polydispersity, Schulz’s distribution is commonly used as a semiempirical model, 

where thickness remains constant. This continuous distribution is defined by two 

parameters, the mean inner diameter,σ , and the relative standard deviation s [26,27] .  
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In this work, however, the polydispersity description has been done by using an 

alternative discrete trimodal distribution, characterized by three modal values and their 

weights, and related with a Schulz distribution asking for equal values for the five first 

moments for both distributions (the sixth condition is the normalization condition for 

the weights).   The best estimation comes from the optimum values for σ  and s that 

minimize mean quadratic error between the linear combination given by the trimodal 

distribution 

 

∑
=

=
3

1

)()(
i

iitri qPaqP                                                                                          (20) 

 

and the experimental data, where )(qPi  is the form factor for a vesicle with modal inner 

radius Ri according with (19) weighted by ia . Figure 1 shows the best fitting for the 

form factor (normalized by the value corresponding to 30º) of the PS  vesicles used 

within this study and its optimum trimodal distribution, best agreement was reached for 

nm. 1842 == Rσ  and 20% polydispersity. The previous DLS experiments commented 

above, averaging six individual measures, presented a similar value, nm 1792 == Rσ , 

for the same suspension. 

 

In order to verify the initial liposomes concentration, we have followed the procedure 

by Haro-Perez et al. [28]. If we consider a homogeneous distribution of vesicles in 

space, we can define a typical distance, L, between a pair of neighbour particles 

associated to a volume fraction vφ : 
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where Rext is the mean external radius of the vesicles.  
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On the other hand, if the whole PS mass is forming vesicles, mass fraction, x, can be 

related with vφ  through: 
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where 015.1'=ρ  is the relative density PS/water  [29]. 

 

                   

 

FIG.1 Normalized Form Factor P(q)/P(q0). Open circles stand for experimental values, 

according to )()(0 qPqI ∝ , whereas solid line denotes the best trimodal fit given by Equation 

(20). 

 

Although the structure factor contains the whole information of the interparticle 

distance distribution through its relationship with the pair correlation function, it is 

useful to give an interpretation in terms of Bragg’s law for the interference peak in a 

non-aggregating and structured dispersion in order to check the expected value for the 

volume fraction from a known mass fraction. We have obtained the experimental 

structure factor corresponding to a mass fraction 0031.0=x , where three individual 

measures  were done at each angle.  Bragg’s law gives an experimental approach to the  
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most frequent distance, L, for a pair of vesicles in the suspension related with a 

difference in phase, ϕ∆ , for the field intensity scattered by them: 

 

πϕ 2==∆ Lqm         (23) 

 

The maximum value for S(q) in the previous structure accounts for qm=  0.0120 nm-1, 

corresponding to 0219.0=vφ  using (21) and (23). By means of (22) we obtained 

0227.0=vφ , where only a relative deviation of 3.5% comes out.  

 

B. Experiment 

 

The light scattering experiments presented in this paper were performed using a slightly 

modified Malvern 4700 System (UK) working with a 632.8 nm wavelength He-Ne 

laser. Aggregation was monitored simultaneously by SLS and DLS. For SLS 

experiments, the photomultiplier arm was previously located at the reference position in 

order to set the zero angle. After that, the mean scattered intensity was obtained for 

different angles in the range 10º-100º. For DLS experiments, the scattered intensity 

autocorrelation functions were determined at different times and a fixed angle of 90º 

during aggregation and registered by the same computer which controls the instrument. 

Data analysis was performed using our own computer software.  

 

Aggregation was induced by adding electrolyte to the initially stable aqueous 

suspensions of liposomes. The water used for sample preparation was purified by 

inverse osmosis using Millipore equipment. The different electrolyte-particle mixtures 

were prepared by mixing equal amounts of buffered electrolyte solution and particle 

suspension through a Y-shaped mixing device in a cylindrical quartz glass cuvette. The 

electrolyte concentration was varied from 1mM to 7mM of CaCl2.  

 

The cluster fractal dimension was obtained by measuring the time-averaged scattered 

light intensity, )(qI , as a function of the scattering vector. Inequality present in 

Expression (3) conditions the range for data interpolation, a correct choice for this 

range deserves explanatory comments. The  q-range  at which  Expression (3) is strictly  
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accurate is ext1/ 1/aggrR q R<< <<   (where aggrR  is the radius of the aggregate). 

However, in practice, a commonly accepted criterion to choose the highest q-value is 

max ext1/q R≤  whereas the election for the lowest q considers min 1/ aggrq R≥ . This 

effective range ensures a non-incursion into Porod and Guinier regimes respectively 

[30]. 

 

For the DLS results obtained in this work, even in the most unfavourable case (2,5mM), 

the ratio 0exp/ DD  is lower than 0,2 (when the fractal regime holds), this implies that, in 

a crude calculus, the corresponding aggrR  reaches about 1000 nm and 

1
min  001.0 −≈ nmq , in accord with the mentioned condition. In our experiments, the 

smallest value for the modulus of the scattering vector has been, in all 

cases, 1
min 0.002 q nm−≥ , at which reliability is guaranteed. A right election for the 

interpolation interval discards possible misinterpretations between fractal dimensions 

closed to 2 (e.g. see Table I where df =1.91 at 2.5mM) and the exponent at the Guinier 

regime, which typically operates at qRaggr >>/1 . 

 

TABLE I. Experimental Kinetic Exponents, Fractal Dimensions and van Dongen-Ernst  

homogeneity parameter. 

 

[Ca++] (mM) 

 

α 

 

df 

 

λ 

          2.5 0.85 ± 0.03 1.91 ± 0.07 0.38± 0.04 

          3.5 0.76 ± 0.02 1.84 ± 0.07 0.28± 0.04 

           5 0.54 ± 0.02 1.75 ± 0.06 -0.06± 0.07 

           7 0.52 ± 0.02 1.75 ± 0.05 -0.10± 0.08 

 

 

)(qI  measurements were performed for different electrolyte initial concentrations 

stopping the aggregation in an advanced stadium by diluting the original mixture under 

a non-aggregating electrolyte concentration, where a previous DLS experiment was 

done in order to probe the stabilization in time for the mean diffusion coefficient value.  
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Special attention has to be paid in order to determine the time required by an 

aggregating system to evolve to a stable state in which its self-similar growth becomes 

patent, reaching a constant value for the fractal dimension. The necessity to stop the 

aggregation is obviously imposed by the fact that a complete I(q)-scan takes additional 

time. In consequence, a rigorous measurement protocol has to be chosen. To determine 

the time at which the SLS-scan starts, we made previous experiments, for each sample, 

stopping the aggregation at different times in order to find out the sufficient time for 

which a permanent value for the fractal dimensions were verified. With the exception 

of the 2.5mM-sample, 1h. resulted enough in all cases for the initial monomeric 

concentrations. The results presented within this work were obtained for this self-

similar aggregation stadium, according with the commented experimental protocol, 

averaging 10 I(q)-scans for each sample. 

 

It is essential to confirm, when we deal with deformable and potentially fusionable 

particles, the permanence of the individuality, as well as the form, of the initial 

monomers during the aggregation process.  The well correlated results obtained for the 

fractal dimension via SLS constitute themselves an indirect confirmation. We have to 

take into account that, according to expression (4), the detected signal for the 

aggregating system is normalized by the detected signal for the diluted system, in 

which only a monomer information is contained. The resulting signal will have the 

structural cluster information, with the expected potential behaviour, only if the initial 

monomers are still present in the clusters. In order to have additional evidence, parallel 

fluorescence experiments, based in the so-called ANTS/DPX assay [31], were 

performed. No significant reduction in the fluorescent intensity due to the quenching of 

ANTS by DPX was registered for the electrolyte and particle concentrations used 

within this work.  
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IV. RESULTS AND DISCUSSION 

 

A. Liposome aggregation: Kinetic exponents 

 

In a preliminary set of experiments, we found that aggregation took place for [CaCl2] ≥ 

2.5mM.  For lower values, neither the diffusion coefficient nor the form factor 

underwent significant changes. At any rate, similar aggregation salt concentrations were 

reported by other authors [4]. Apart from that, we have determined the optimal 

liposome volume fractions to carry out aggregation experiments above this salt 

concentration, 0.15% for 2.5 and 3.5mM, and 0.08% for 5 and 7mM. The liposome 

volume fraction is a critical parameter from experimental point of view: it should be 

chosen to avoid too fast or slow aggregation kinetics.  

 

Time resolved DLS was employed for monitoring the experimental average diffusion 

coefficient of the aggregates, );(exp qtD . In Figure 2, the time evolution of );(exp qtD  is 

plotted in a double logarithmic scale for [CaCl2] = 2.5, 3.5, 5 and 7mM. The curve 

decreases as time increases and is characterized by a power law at large times. This 

suggests that the cluster size distribution may be described by the dynamic scaling 

approach in this time interval. As can be observed, the data align on a straight line even 

for quite small clusters. This observed power law, , ~ );( α−tqtD  is also obtained in all 

cases. Accordingly the a parameters were obtained by fitting the experimental data. 

Table I contains the obtained values. It should be pointed out that the values for 5-7mM 

are in good agreement with the theoretical prediction given for the diffusion regime 

( 57.0/1 ≈= fdα , since 75.1=fd  is widely accepted for DLCA) [32, 33]. DLCA is 

considered as the result of the absence of a repulsive barrier of potential between 

particles in which aggregation happens at any contact due to an attractive well between 

the particles, typically operating at very short distances. Regarding the kinetic exponent, 

α, this parameter decreases with increasing the salt concentration, reaching a stable 

value at 5mM.  



Paper III - Phys. Rev. E 75, 021912 (2007) 
_____________________________________________________________________
  

136 
 

 

FIG.2  Normalized experimental mean diffusion coefficient 0exp/ DD   as a function of time 

for: a) 2.5mM; b) 3.5mM; c) 5mM; d) 7mM. Open circles stand for experimental values 

whereas solid lines denote the asymptotic fit according to (14). 

 

B.  Liposome aggregation: Fractal dimension 

 

Although an implicit single scattering assumption is considered in the determination of 

fractal dimensions via SLS, it is clear that any monomer inside an aggregate scatters a 

field proceeding from the incident beam radiation in addition with the fields scattered 

by the rest of the monomers in the cluster. The relevance of this intra-cluster multiple 

scattering yields to a coupled problem that still remains open. A complete theoretical 

approach to this problem would involve the size and geometry of the aggregates, as well 

as the monomers, the optical properties of the scatterers (through their refractive index) 

and the wave length of the incident light [30]. Early theoretical work by Chen et al. [34] 

shows no influence due to multiple scattering for the measurement of fractal dimensions  
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through the potential behavior of S(q) for the range considered in Eq. (4), even for df > 

2. This theoretical prediction was experimentally confirmed by Lattuada et al. [35] for 

clusters and monomers comparable in size and refractive index to the particles used 

within this work (n=1.36 [36]). Additionally, efficiency of SLS essays to determine 

fractal dimensions has been proven for aggregating suspensions of polystyrene latexes, 

involving large clusters and particles, in which the refractive index of the scatterer 

particles is considerablely greater (n=1.49) [37,38]. These experimental accesses 

confirm the values for the fractal dimension obtained by computer simulations, which 

are not related with light scattering, under rapid and slow aggregation regimes. Apart 

from that, we consider the experimental convergence to a DLCA fractal dimension (df 

≈1.75) as an indication of self-consistency for a SLS essay under our suspension 

conditions, providing the single scattering assumption. 

 

Having determined the structure factor from light scattering data (Eq. (4)), df was 

obtained by fitting the experimental data to the power law given in Eq.(3).  Good 

agreement was reached in all cases. Figure 3 shows typical plots of the structure factor  

for [CaCl2] = 2.5, 3.5, 5 and 7mM.  It can be clearly seen that this function presents a 

functional behaviour from which the cluster fractal dimension can be easily obtained. In 

Table I the fractal dimensions estimated at different electrolyte concentrations are 

summarized. As can be concluded, the fractal dimension decreases with increasing 

electrolyte concentration and ranges from 1.91 to 1.75. It should be noted that the latter 

fractal dimension is the well established value for DLCA regime so, at 5-7mM, the 

liposomes have reached such regime and form ramified open structures. For lower salt 

concentration, more dense structures will be formed, as the increase in fractal dimension 

reveals (1.84-1.91). 
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FIG.3 Structure Factor S(q) for: a) 2.5mM; b) 3.5mM; c) 5mM; d) 7mM. Experimental values 

(open circles) result from Equation (4). Solid lines represent the theoretical fit according to the 

expected behaviour given by (3). Vertical dash lines denote the interpolation q-ranges. 

 

Consequently, SLS experiments provide us a direct access to the aggregate structure and 

a clear observation of the different aggregation regimes. In a previous work by Lynch et 

al., a fractal dimension value was reported by fitting the time evolution of turbidity 

protein-induced liposome aggregation although these authors did not analyze the 

aggregate morphology. 

 

Once the a parameter is known, and using the fractal dimension obtained from 

independent SLS experiments, the homogeneity λ parameter was determined by (14). 

The results are also summarized in Table I. For the 5 and 7mM, the λ value is 

practically 0 within the experimental uncertainty. This is the well-accepted value for 

DLCA kinetics. The λ-values between 0.3 and 0.4 point towards a relatively slow 

aggregation kinetics.  
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C. Liposome aggregation: Time evolution of the diffusion coefficient 

 

The values of fractal dimensions obtained in the preceding section will be used as input 

in our time evolution model, which involves the resolution of Smoluchowski’s equation. 

As mentioned in the theoretical background, we are assuming h fd d≈ . Such 

assumption is well admitted for hard particles (see, for instance, references [21,22]). 

Although no experimental contrast has been reported in that way for liposomes, 

however, we have found that the vesicle sizes determined by static light scattering and 

dynamic light scattering are practically identical, which suggests that the liposome 

flexibility does not affect the diffusive behavior of the monomers. On the other hand, 

the fluorescence assays (mentioned above) points to the absence of fusion after 

aggregation, that is, monomers conserve their individuality inside the aggregates. 

Regarding the good correlation for the results of the SLS experiments, the form factor 

of the monomers appears to be contained in the signal scattered by the aggregating 

system. Therefore, in the light of our experiments, liposomes aggregates seem to behave 

as hard objects structures (for which this assumption holds).  

 

The experimental values for λ and df obtained above for 5-7mM suggest a DLCA 

regime while a slow regime can be assumed for smaller salt concentration values. At 

this point we are going to corroborate these features for the whole time evolution with 

the appropriated kernel model at Smoluchowski’s rate equation.  

 

First, we describe the numerical calculation procedure used here. The existence and 

uniqueness for the solution of Smoluchowski´s equation depend on the election for the 

kernel and the initial condition. For the different proposed kernels, a normalized 

evolution problem was resolved in terms of the relative concentrations, 

)0(/)()( 1NTNTX nn = , where )2/)0(( 111 kNtT = , 11/2 kkK ijij =  and initial monomeric 

conditions were assumed:  
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In order to obtain the master curve ( )(TX
r

), which is associated to a {df,λ} input and 

solution to this dimensionless problem, numerical calculations were carried out by 

cutting off the number of equations, Nc, for the previous system, taking under 

consideration the error related with the non-computed equations. In order to neglect this 

cutting-off error, the conservation for the number of monomers was imposed within the 

whole integration process. This conservation condition can be expressed as: 

 

TTiXiabs
Nc

i

∀≈≤







−∑

=

,01)(
1

ε       (25) 

 

being ε  the imposed accuracy. The numerical algorithm was based in a Runge-Kutta 

fourth-order explicit iterative method. 

       

The estimation for the numerical diffusion coefficient, );( qtD num , was done according 

to light scattering theory in which )(qD may be expressed, at any time, as 

 

    ,
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1
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∑
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n

n

Nc

n

nn

qb

Dqb

qD         (26) 

 

where )(2
 gnn qRSnNb =  and )( gqRS  is the structure factor of an  n-particle aggregate 

with radius of gyration gR  [15] . In literature, several functional forms for )( gqRS  can 

be found. The main difficulty lies in obtaining an expression for the structure factor 

valid for the whole range 1>gqR . We adopt the expression calculated by Lin et al. [39] 

directly from computer generated clusters obtained under diffusion and reaction limited 

conditions.  

 

In order to compare experimental data for the diffusion coefficient );(exp qtD with those 

obtained from the expressions (26) and the solution of (24) for );( qtD num , a 

transformation between the normalized time in the numerical model into the real one for  
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the experimental data should be done. The relationship must adopt the form of an afin 

transformation, 

 

, ntmT +=          (27) 

 

where 1
111 2/)0( −≡= aggtkNm , aggt  is the so called aggregation time and n/m gives us 

the possible delay between the start of the experimental measure and the start of the 

aggregation process. The values for m and n were determined by imposing the 

minimum distance between numerical and experimental data through their mean 

quadratic error over the whole time evolution. This optimization problem takes the 

form: 

 

2
exp

, ,
min  ( , ) min  ( ( ) ( ))num i i

m n m n
i

E m n D mt n D t= + −∑     (28) 

 

According to λ and df values obtained, we will analyze the results for 5mM as a 

representative case of DLCA regime using the Brownian kernel.  Figure 4 shows a good 

accord between the theoretical curves and the experimental data in the whole time 

range. This best fitting between numerical and experimental data corresponds to 

.10)1.13.9( 1320
1111

−−±== smkk Brown  Although this value agrees with those determined 

by other authors for liposomes [40], it is significantly smaller than the value predicted 

from Smoluchowski’s diffusion model [17, 18] and obtained for other systems (latexes).  

This model assumes that free diffusion works at distances larger or equal than 2a (i.e., 

geometrical contact). Our λ- and df -data suggest that this hypothesis is valid at large 

distances. In our opinion, however, the disagreement mentioned above might be due to 

the fact that this free diffusion model is not properly working at short distances for 

liposomes. Although the scope of this paper does not go beyond the geometrical and 

kinetic properties, this result points to differences in the interaction mechanisms 

between liposomes and other model systems at short distances.  
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FIG.4 Normalized mean diffusion coefficient 0/ DD  as a function of time (5mM).Solid line 

shows the numerical solution for Smoluchowski’s Equation assuming the Brownian Kernel. 

Open circles denote the experimental values. 

 

Now we will investigate a first case of slow aggregation regime (3.5mM). Figure 5 

shows the experimental data and three different theoretical fittings. As expected the 

solution obtained using the Brownian kernel is not able to capture the asymptotic 

behaviour. In the attempt to improve the agreement between experimental data and the 

theoretical model, the MC kernel given by the expression (17) was applied. Here df 

=1.84 and dfD =1.75. Certain improvement is achieved but at very large times the 

agreement is still rather poor. Taking into account the general slow aggregation model 

given by (16) in which λ=2β and having experimental access to λ, we explore if using 

this value, a complete description over the whole time range can be done. This is 

somewhat logical since the experimental λ successfully captures the asymptotic 

behaviour. This result (with λ = 0.28) is also plotted in figure 5. As can be seen, the 

agreement is considerably improved. In this case, 1320
11 10)4.06.3( −−±= smk , which 

implies 3/132.0/ 111111 ≈== Brownkkp . These quantities are of the order of those 

reported by other authors practically at the same conditions [41].  p11 can also be 

interpreted in terms of a energy barrier with the help of the Arrhenius equation. In this 

case, such barrier would be of the order of TkB2
3  (where kB is Botlzmann’s constant and  

T   the  absolute temperature).  In fact, a  slow  aggregation  regime is characterized by a  
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residual repulsive barrier with height comparable to the mean kinetic energy of the 

reacting particles. 

 

Concerning the other slow aggregation (2.5mM), the same fittings as those mentioned 

previously were tried. Unfortunately, the accord was not so good. In our opinion, this 

bad description comes from the possibility of fragmentation, which is not accounted for 

Smoluchowski’s approach considered here. 

      

                    

FIG.5 Normalized mean diffusion coefficient 0/ DD  as a function of time (3.5mM). Three 

numerical solutions for Smoluchowski’s Equation are plotted: Dot line for the Brownian Kernel, 

Dash line for MC Kernel, (17), and solid line for the general slow aggregation kernel, (16), 

using the experimental value obtained for β. Open circles denote the experimental values. 

 

V. CONCLUSIONS 

 

The aggregation of PS liposome dispersions has been studied in terms of the fractal 

dimension and the homogeneity parameter of the van Dongen–Ernst. Cluster structure 

and aggregation kinetics found at 5-7mM of divalent Ca indicate that the DLCA regime 

was reached. For these salt concentrations, the Brownian kernel was able to describe the 

time evolution of  the effective diffusion coefficient. For  lower  calcium concentrations,  
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the fractal dimension and the homogeneity parameter suggest a transition from DLCA 

to a slow aggregation regime.  

 

The Brownian kernel does not explain the whole time evolution of the effective 

diffusion coefficient for the slow kinetics. Although the multiple contact kernel 

improves the predictions, a slightly modified kernel is required. In this framework, an 

alternative procedure to determine the dimerization constant has been put forward in 

both rapid and slow cases. The values here obtained are in good agreement with others 

reported previously by different methods.     
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Abstract 

 

In this work, the aggregation of charged liposomes induced by magnesium is looked 

into. Static and Dynamic Light Scattering, Fourier-Transform Infrared Spectroscopy, 

and Cryo-Transmission Electron Microscopy are used as experimental techniques. In 

particular, multiple intracluster scattering is reduced to a negligible amount using a 

cross-correlation light scattering scheme. The analysis of the cluster structure, probed 

by means of static light scattering, reveals an evolution from surface fractals to mass 

fractals with increasing the magnesium concentration. Cryo-Transmission Electron 

Microscopy micrographs of the aggregates are consistent with this interpretation. In 

addition, the comparative analysis of these results with those previously reported in the 

presence of calcium suggests that the different hydration energy between lipid vesicles 

when these divalent cations are present plays a fundamental role in the cluster 

morphology. This suggestion is also supported by Infrared Spectroscopy data. The 

kinetics of the aggregation processes is also analyzed through the time evolution of the 

mean diffusion coefficient of the aggregates.   
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I. INTRODUCTION 

 

Aggregation of mesoscopic biological objects such micelles, vesicles, and large 

macromolecules has generally a great relevance: In Physics, it could shed light on the 

relationship between structure and kinetics of the aggregates with the relative strength 

of diverse interaction forces (electrostatic, magnetic, steric, depletion, ...). In Biology, 

knowledge of the interaction mechanism at short distances between these objects 

immersed in an electrolyte solution is a key to elucidate essential biological processes 

involved in many cellular phenomena, e.g. membrane fusion [1, 2]. Here, we focus on 

the morphological and kinetic aspects of the aggregates formed by liposomes made of 

phosphatidilserine (PS), which is the major anionic phospholipid of many cell 

membranes.  

 

Fractal Geometry can be used to describe the morphology of the clusters through the 

measurement of their fractal dimension [3]. In this framework, many of the 

morphologies formed in aggregating colloidal systems have been identified as mass 

fractals: Their mass M scales with their radius R as )3( <∝ m

d
dRM m , md  being the 

mass fractal dimension. In this way, more or less branched clusters 

)1.275.1( ≤≤ md has been reported in irreversible aggregation [4] whereas dense cluster 

structures have been documented, even with 5.2>md , when internal restructuring is 

allowed [5,6]. In particular, it is a common place to speak of dense morphologies when 

md  is larger than 2.5. In that case, the underlying physics of this high md  values has 

been rarely explored. Moreover, we suspect that some of these large md  could be 

attributed to a wrong interpretation of the experimental data, due to the non-considered 

effect of the multiple scattering on the experimental determination of the fractal 

dimensions of dense objects.   

 

In addition to mass fractals, another class of dilation symmetry has been described for 

uniform structures )3( →md  limited by a fractal rough surface S  which scales with 

the radius of the object as )32( <<∝ s

d
dRS s  [7]. These objects are known as surface  
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fractals and sd  is their surface fractal dimension. In literature, and from an 

experimental viewpoint, it is difficult to find aggregation phenomena (or others related 

to them) described using the concept of surface fractal. A noticeable exception is the 

work of Keefer and Shaefer [8] on the growth of silicate particles in solution.  

 

In a recent study on PS liposome aggregation induced by calcium, a transition from 

1.91md = to 1.75md =  for the mass fractal dimension of the resulting structures was 

observed, by means of Static Light Scattering (SLS), when the calcium concentration 

increased from 2.5 to 5 mM. A convergence to a diffusion-limited cluster aggregation 

(DLCA) regime, 75.1=md , was also experimentally documented [9]. More recently, we 

have described in a short communication a transition from surface fractal to mass fractal 

structures in a suspension of aggregating liposomes using the divalent cation Mg2+ as 

aggregating agent [10]. This change in the morphology of the clusters is controlled by 

the amount of magnesium added and shows a final stable value of the mass fractal 

dimension appreciably larger, 2.6 2.7md = − , than that corresponding to the DLCA 

regime previously documented in our calcium study. 

 

In this paper, a considerably detailed description and analysis of both structural and 

kinetic aspects of this surface- to mass-fractal transition controlled by the magnesium 

concentration are presented. The interaction energies involved in these aggregation 

processes are also discussed in the light of the experimental data. In this way, the 

previous report [10] is fairly completed. From the experimental point of view, the 

influence of the Multiple Intracluster Scattering (MIS) and polydispersity of the 

aggregates on the measured fractal dimensions are widely discussed. The morphologies 

revealed by our SLS study are also supported by Cryo-Transmission Electron 

Microscopy (Cryo-TEM) micrographs. At the same time, our analysis of the 

aggregation phenomenon is completed with a study of the aggregation kinetics. To do 

that, the experimental time evolution of the mean cluster diffusion coefficient is 

measured by means of Dynamic Light Scattering (DLS) and compared with the 

theoretical result obtained from the resolution of Smoluchowski´s equation. 
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Discussing the influence of the total interaction energy between liposomes on the 

resulting cluster morphologies, we will also argue why the classical Derjaguin-Landau-

Verwey-Overbeek (DLVO) theory (which only considers the Coulomb and van der 

Waals interactions [11, 12]) is not suitable in this case. In this respect, it is well known 

in biophysics that the phospholipid head groups belonging to the surface of the lipid 

vesicles are more or less hydrated. Thus, a hydration energy may appear. In fact, some 

authors claim [13-15] that this hydration interaction energy could play a key role in the 

liposome aggregation. Hence, we decided to analyze the dehydration effect due to 

magnesium and calcium ions from Fourier-Transform Infrared Spectroscopy (FTIR). 

This analysis suggests that the hydration grade of the lipid molecule in presence of these 

two divalent cations plays an essential role in the vesicles short-range interaction 

mechanism and conditions the resulting cluster morphology.  

 

The rest of the paper is organized as follows: First, the theoretical background is 

outlined. Section III contains a detailed description of the experimental procedures and 

methods. Then, the main results of the work and the corresponding discussion are 

presented and, finally, some conclusions of this research are highlighted. 

 

II. BACKGROUND 

 

A. Surface and mass fractals: Concept and measurement 

 

In a pioneering work, Pfeifer and Avnir proposed the application of Fractal Theory to 

characterize heterogeneous chemical surfaces [7].  In that investigation, surfaces with 

different degrees of irregularity (roughness) were labelled by a real number d , where 

32 << d , if certain conditions were satisfied. 

 

Let us specify these conditions by considering the usual ball-covering process of a 

rough surface in three-dimensional space, i.e. the covering of the whole surface with the 

minimal number ( )N r  of  balls of  radius r  providing that any point of the surface  will  
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be included in at least one of the balls. It is clear that with decreasing r  the 

number ( )N r grows generally in a non-trivial fashion.  If the covering process satisfies 

the existence of the limit: 

 

d
r

rN

r
=−

→ log

)(log
lim

0
  ;  ( )3,2∈d ,    (1) 

 

the surface will be called fractal surface and its roughness, which is persistent at 

different spatial scales, will be described by d , the surface fractal dimension. If the 

fractal surface under consideration is closed and it defines the boundary of a completely 

compact three-dimensional object (a “walnut” [16]), this object will be called surface 

fractal, having a surface fractal dimension d . Therefore, from these definitions, the 

distinction between a fractal surface and a surface fractal is evident (for more details see 

Ref. [17]).   

 

If we associate a characteristic length to our surface fractal, e.g. its radius of gyration R , 

an equivalent expression for (1) can be found if we dilate the object by a growing factor, 

keeping constant the radius r of the covering balls. Then, asymptotically ( R → ∞ ): 

 

)32( <<= dRKS d
,      (2) 

 

where S is the covering surface of the surface fractal and K is a positive real number. 

Accordingly, from 2→d  (smooth surface) the roughness of a surface fractal increases 

with increasing d . 

 

Certainly, as it is well known, the process described above can be extended to the 

covering of the volume of a three-dimensional object which in general will not be 

completely compact.  If we start now the covering process in an inner point of the object 

and we continue our covering from this point by increasing the distance R , remaining 

always inside the  object,   we  shall called  this  object a  volume or mass fractal  if   the  
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covering volume V  scales as: 

 

)30( <<= dRV d        (3) 

 

Similarly, d , called now mass fractal dimension, is an estimation of the compactness 

(not the roughness) of the mass fractal: from 3→d  (uniform object), the compactness 

of a mass fractal decreases with decreasing d .  

 

Nevertheless, it must remain clear that two different surface fractals show only different 

fractal properties on their boundaries whereas their interiors are uniform. Then, for 

clarity, we shall identify by dd s = the fractal dimension corresponding to definition (2) 

and by ddm = when it corresponds to (3). With this notation, a surface fractal will be 

always described by 32 << sd  and 3=md . 

 

In order to probe the emergence of fractal structures in colloidal aggregation as those 

described by (2) or (3), a widely used technique is Static Scattering in its different 

versions (X-rays, neutrons or light). In this sort of measurements an experimental value 

of the structure factor ( )S q of the analyzed sample is accessible [18]: 

 

( )∑∑
= =

−⋅=
N

i

N

j

ji rrqi
N

qS
1 1

)(exp
1

)(
rrr

,      (4) 

 

where q
r

 is the scattering vector, ir
r

 and jr
r

 represents the positions of i  and j -th 

scatterers, N is the number of particles (scatterers), and ⋅⋅⋅  represents the ensemble-

averaged value. Thus, the term )(. ji rrq
rrr

−  informs if the scattering waves combine 

constructively or randomly at the detector. Then, ( )S q reveals, through its q -

dependence, the structure of the system. Here we focus on the light scattered by a 

system of aggregates constitute of colloidal particles. 
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From a general point of view, the fractal nature of a structure within a given spatial 

scale is proved by a “power law” dependence of ( )S q within a given q -range. Thus, if a 

structure presents a fractal nature between two characteristic lengths, a “power law” 

dependence of ( )S q is expected when 1q−   is included between these characteristic 

lengths. In this respect, and in order to test the fractal nature of rough surfaces, Bale and 

Schmidt [19] were the first to propose a functional behavior for ( )S q , applying their 

model to the study of lignite coal. On the other hand, starting from the work of Schaefer 

and co-workers [20], several experimental studies have been performed in order to 

prove the structure of mass fractals. A compendium of their results is:  

 

α−∝ qqS )( ,        (5) 

 

where  )( FractalsMassdm=α   and   2 6 ( )m s sd d d Surface Fractalsα = − = − . 

 

In the case that the fractal structures are aggregates of representative radius R  made of 

subunits of characteristic radius a , expression (5) will be typically satisfied within 

1 1R q a− −<< << . 

 

From a physical point of view, the scattering phenomenon comes from the fluctuations 

in the density of the scatterers. In a mass fractal, essentially all the primary particles are 

on the surface, there are not inner particles, and the density fluctuations come from any 

point of the structure. In a surface fractal, only a fraction of the primary particles belong 

to the surface, the rest are inner particles. In this kind of fractal, internal fluctuations do 

not contribute significantly to the scattered intensity [21].    

 

B. Structure factors in aggregated systems: Effect of the multiple scattering   

 

In a lighted colloidal dispersion, a fraction of the incident photons is scattered twice or 

more in passing through the sample, which is known as Multiple Scattering. This 

phenomenon  is  always  present  even  though  the initial non-aggregated  suspension is  
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diluted enough, having a small concentration of “scatterer material”, i.e. when First 

Born approximation is satisfied [4, 22]. In aggregation, however, the light scattered by 

an aggregate is rarely scattered again by others if the suspension is sufficiently diluted. 

In contrast, multi-reflections inside the aggregates do take place. This is called Multiple 

Intracluster Scattering (MIS). To clarify the incidence of this MIS on the determination 

of fractal dimensions, great efforts have been done from theoretical and experimental 

point of views, at least for mass fractal, see for instance [21, 23, 24]. In this respect, 

experimental designs based on cross-correlation schemes [25-27] have proved to be 

successful reducing to a negligible amount the Multiple Scattering in stabilized dense 

colloidal suspensions. Here we provide a basic theoretical description of one of these 

schemes, three-dimensional dynamic light scattering (3D-DLS) [26], which will be 

applied to an aggregating system. This description has been essentially adapted from 

[28].  

 

Accordingly, two laser beams with equal wavelength and intensities coming from above 

and below of an average scattering plane are focused onto a colloidal dispersion. At the 

same time, a digital correlator computes the cross-correlation function of the scattered 

intensities registered by two detectors (1 and 2) which are positioned at an equal 

scattering angle (i.e. they are positioned at an equal q -value).  For a dilute a non-

aggregated system, the time-averaged single scattered intensity 0
1,2 ( ) volume

SingleI q< >  coming 

from the scattering volume is: 

 

 
0
1,2 1,2( ) ( )volume

SingleI q A P qφ< > =    ,                                    (6) 

 

where 1,2A  includes the incident laser intensities and other constants of proportionality 

whereas φ  and ( )P q are the particle volume fraction and the form factor of the primary 

particles respectively. Similarly, for a dilute aggregated system, the corresponding 

timeaveraged single scattered intensity coming from the scattering volume, denoted 

now by  1,2 ( )a volume

SingleI q< > , results: 

 

1,2 1,2( ) ( ) ( )a

SingleI q A P q S qφ< > =  ,                                    (7) 
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where )(qS is the Structure Factor of the aggregated system. 

 

 By virtue of the statistical properties of the scattered signal, 

{ }1,2 ( )   ( ,0 )system volume

SingleI q system a< > ∈  can be factorized as a product of the registered 

signals: 1,2 1 2( ) ( ) ( )system volume system volume system volume

Single Single SingleI q I q I q< > = < > < > , ( )system volume

i SingleI q< >  being 

the time-averaged single scattered intensity coming from the scattering volume and 

registered at detector i ( 1 or 2)i = . Then we would obtain )(qS  from expressions (6) 

and (7): 

 

1 2

0 0
1 2

( ) ( )
( )

( ) ( )

a volume a volume

Single Single

volume volume

Single Single

I q I q
S q

I q I q

< > < >
=

< > < >
    (8) 

 

Note that φ  was removed because the initial and the aggregated samples have identical 

particle volume fractions.  

 

However, on propagating from the scattering volume to the wall of the scattering cell, 

the scattered signals suffer attenuation and only a fraction of the scattered photons will 

reach the detectors. This fraction is accounted for the system’s transmission coefficient 

out( )

( )

system

i Singlesystem

i system volume

i Single

I q
T

I q

< >
=

< >
, where out( )system

i SingleI q< >  is the time-averaged single 

scattered intensity that would reach detector i after the attenuation effect. At the same 

time, although the structure and form of the primary particles are related through (6) and 

(7) to the single scattered intensities, in practice we detect a mixture of intensities 

(single + multiple). Although we do not have a direct access to the single scattered 

intensities, a cross-correlation scheme as 3D-DLS allows us to obtain the ratio between 

the required single intensities and the total measured intensities as it will be discussed in 

section III.C. This ratio is represented by 
2

( )system qβ   : 

 

out out
2 1 2

1 2

( ) ( )
( )    

( ) ( )

system system

Single Singlesystem

system system

I q I q
q

I q I q
β

< > < >
  =  < >< >

,    (9) 
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where ( , )system

iI q t< >  is the total (single + multiple) time-averaged intensity registered 

at detector i  for a given system. Therefore ( )system qβ computes the contribution of the 

Multiple Scattering. It is clear that for a dilute system ( ) 1qβ ≈ .  

 

Substitution of equation (9) and 
out( )

( )

system

i Singlesystem

i system volume

i Single

I q
T

I q

< >
=

< >
 in equation (8), finally 

gives: 

 

0 0
1 2 1 2
0 0 0
1 2 1 2

( ) ( ) ( )
( )

( ) ( ) ( )

a a a

a a

I q I q T T q
S q

I q I q T T q

β

β

< >< >
=

< >< >
                            (10) 

 

Thus )(qS is expressed in terms of measurable quantities.  

 

C. Aggregation kinetics 

 

Regarding the aggregation kinetics, it is possible to consider the movement of an 

aggregate as a solid body by distinguishing a rotational and an isotropic translational 

diffusion. For the q -range and the mean cluster sizes studied in this work (mean 

hydrodynamic radius greater than1 µm ), the relaxation time associated to the rotational 

diffusion is at least two orders of magnitude greater than the relaxation time associated 

to the translational diffusion [29], then we assume that these two diffusions are 

temporally separated.  On the other hand, the restructuring movement due to cluster 

compactification should be considered, at least a priori, if the bound between two 

particles of an aggregate is weak enough. Although this effect has a great influence on 

the value of the fractal dimension (as we will comment later), we will assume (as other 

authors do [30]) that restructuring happens during a time of the order of the aggregation 

process, being conditioned by the cluster size. Therefore, the translational diffusion of 

an n-particle cluster will be temporally separated from the dynamics of the rest of the 

system. Thus,  the  time  scale corresponding  to our aggregation  kinetics  study  will be 

associated to the temporal evolution of the translational diffusion coefficient of the 

clusters with a typical length scale associated to their mean hydrodynamic radius. 
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In order to obtain the experimental average of the translational diffusion coefficient 

exp ( ; )D q t over the system at any time, the normalized electric field autocorrelation 

function 

*

2

( ,0) ( , )
( )

| ( ) |
E

E q E q
g

E q

τ
τ =  is treated as an expansion in powers of τ [31]: 

 

2
1 2

1
ln( ( )) ...

2Eg τ κ τ κ τ= − + + ,     (11)   

 

where iκ  is the i -order cumulant. Thus, 
1

κ  gives the average decay rate whereas 
2

κ  

contains the standard deviation. In this context: 

 

2
exp 1( ; )D q t qκ=        (12) 

 

From a theoretical viewpoint, an estimation of the mean translational diffusion 

coefficient ( ; )D q t can be performed at any time by means of an average of the diffusion 

coefficients nD  of the n -particle clusters: 

     

     
1

1

( ; )

( ; )

( ; )

Nc

n n

n

Nc

n

n

b q t D

D q t

b q t

=

=

=
∑

∑
     ,      (13)   

 

 

where 2
 ( ; ) ( ) ( )n nb q t N t n S qR=  contains the frequency and the structure of the n -

particle clusters [32], ( )nN t  is the frequency of the n -clusters at time t and ( )S qR  their 

corresponding  structure  factor, R  being  again  the radius of  gyration of  a n -particle 

cluster.  At long times, i.e. when the aggregates reach a non-evolving fractal 

morphology, an estimation of nD  can be done by assuming that the cluster compactness 

is given by the final mass fractal dimension md : 
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11

0

)( −− ∝= Rn
D

D
mdn  ,                                            (14) 

 

where 0D  is the diffusion coefficient of the free individual particles.  

 

The assumption of a functional form for ( )S qR  within all accessible values of qR  

involves a problem with an unknown analytical solution that has only been estimated 

by means of computer simulations [32]. However, this difficulty can be overcome if our 

estimation of ( ; )D q t  is performed for 1qR >> . In that case, the fractal structure is 

resolved and dd qnqRqRS −−− ∝∝ 1)()( . Therefore, only an a priori knowledge of 

( )nN t  is needed in order to obtain the theoretical mean translational diffusion 

coefficient given by (13) and (14).  

 

The frequency ( )nN t  can be predicted if the aggregating suspension is diluted enough 

(monomer volume fraction usually below 1%). In this respect, the aggregation process 

can be considered as a set of binary reactions i j i jA A A ++ →  ( iA  denotes an aggregate 

formed by i  monomers) neglecting the simultaneous reactions involving 3 or more 

clusters [33]. A widely used mean-field aggregation model based on the binary reaction 

assumption is Smoluchowski´s Rate Equation [34, 35]. Its expression for reactions in 

which fragmentation does not take place is: 

 

   

1

( ) 1
( ) ( ) ( ) ( )

2

n
ij i j n in i

i j n i

dN t
k N t N t N t k N t

dt

∞

+ = =

= −∑ ∑     (15) 

 

The set of rates ijk  ( , 1,...,i j = ∞ ), usually known as kernel, contains the whole kinetic 

information through its mass (number of monomers) and geometry cluster dependences.  

From a known ijk  and an initial condition, e.g. 1 2(0) ( (0) 1, (0) 0,...,0)N N N= = =
r

, 

expression (15) gives a continuous and deterministic set of frequencies ( )N t
r

 at any 

time.   
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Due to the difficulty of assuming a functional form for the reaction kernel, it is useful to 

consider its asymptotic behaviour under the homogeneous scheme of van Dongen and 

Ernst [36]. In this context, small-large and large-large cluster interactions are governed  

by two exponents ν  and λ : νjk j ∝1  and λjk jj ∝ (large j ). This scaling theory 

applied to nongelling-kernels ( )1λ ≤  also provides the asymptotic behavior of ( ; )D q t : 

 

( ; ) ; ( 1 (1 ) )z

mD q t t z dλ−∝ = −       (16) 

 

In fact, expression (16) is a key to associate a type of kernel to the results obtained from 

the experimental kinetics of an aggregation process.  

 

Pure diffusion aggregation processes have also a special interest under this formalism: 

On one hand, these processes are dominated by small-large cluster interactions whereas 

interactions between identical sized clusters do not show any dependence on j  for large 

j  ( constant0 ≈∝ =λjk jj ) due to the compensation between the increasing collision 

cross-section and the decreasing diffusivity of the clusters when j  grows [37].  

 

D. Interactions between liposomes 

 

From a physicist’s viewpoint, charged liposomes can be considered as colloidal 

particles whose interactions can be treated with the help of a well-known mean-field 

approach: The DLVO theory. Accordingly, the lipid vesicles would interact through 

Coulomb repulsive forces (characterized by an interaction energy elecE ) and short-range 

van der Waals attractive forces (whose interaction energy will be denoted by vWE ).  

Usually, elecE  is modelled as a Yukawa decaying function that contains as input 

parameters the Debye-length and the surface potential (or charge). For vWE , Hamaker´s 

constants of water, hydrocarbon and polar phase, together with the thickness of the 

surface phospholipids layer, have been used as input parameters. 
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Apart from classical DLVO theory, when colloidal particles have a surface with certain 

degree of hydrophobicity, different experimental techniques and theoretical 

approximations [13-15] have pointed out the existence of a hydration energy, hydE , 

which is generally repulsive. In the 70´s, the origin of this hydration or structural force 

was mainly attributed to the strongly bound and oriented layers of water molecules on 

the surfaces [13]. However, there are other possible explanations such as the local 

variation of the dielectric permittivity in the electric double layer [14] or an entropic 

repulsion arising from the confinement of thermally mobile surface groups [15]. Thus, a 

conclusive comprehension of hydE  is still lack and to find an analytical expression for 

hydE  is not a straightforward task. For that reason, experiments and computer 

simulations based on statistical mechanics incorporating even quantum effects should 

be used in the next years. In absence of them, some authors use semi empirical 

exponential expressions for hydE  that also introduce fitting parameters [38, 39] in order 

to explain experimental results. In particular, Okhi and Arnold define a hydrophobic 

index that represents the degree of hydrophobicity of the membrane surface [39]. They 

propose to model the hydration energy from a purely repulsive interaction (the surface 

is hydrophilic and tends to be completely hydrated) to an attractive interaction (the 

surface is hydrophobic and then it is largely dehydrated). In this model, the surface 

tension of the present interfaces also appears as input parameter, together with the 

hydrophobic index. 

 

In our work, the importance of hydE  in the aggregation processes mediated by divalent 

cations will be experimentally analyzed via FTIR spectroscopy. Thus, we will 

conclusively  show  that  the dehydration of  the superficial  lipid headgroups exerted by 

some metallic cations must be considered. Due to the large number of parameters 

involved in the total interaction energy, elec vW hydE E E E= + + , a qualitative (rather than 

quantitative) analysis will be preferred in order to explain our experimental results. 
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III. MATERIALS AND METHODS 

 

A. Synthesis and characterization of liposomes 

 

Phosphatidilserine (PS) from bovine spinal cord was obtained from Lipid Products 

(Nutfield, UK). Phospholipid at the proportions indicated below were dissolved in a 

mixture (2:1, volume ratio) of chloroform and methanol in a round-bottom flask and 

dried in a rotary evaporator under reduced pressure at 40 0C to form a thin film on the 

flask. The film was hydrated with desionized water (MilliQ, Millipore, USA) to give a 

lipid concentration of 30mM. Multilamellar liposomes (MLV) were formed by constant 

vortexing for 4 min on a vortex mixer and sonication in a Transonic Digitals bath 

sonifier (Elma, Germany) for 10 min. MLV were downsized in an Extruder device 

(Lipex Biomembranes, Canada) through polycarbonate membrane filters of variable 

pore size under nitrogen pressures of up to 55x105 N.m-2 . Liposomes were extruded in 

three steps: first, three consecutive extrusions through a 0.8 µm pore diameter filter and 

three consecutive extrusions through two stacked 0.4 µm membranes. The resulting 

lipid suspension was then extruded fifteen consecutive times through two stacked 0.2 

µm filter. After preparation, a nitrogen stream was passed to displace the air, and, 

finally, liposomes were stored at 4-7 0C in a refrigerator in quiescent conditions until 

their use.  

 

To characterize a liposome suspension as a colloidal dispersion, two different 

requirements are necessary: The characterization of particles in size and shape and the 

determination of the initial liposome concentration, which is a troublesome problem 

when vesicles are used as primary particles. In order to determine the liposome size, 

DLS and SLS experiments were performed for different dilute liposome volume 

fractions  and angles. In the case of  DLS,  the size was  obtained from the mean particle 

diffusion coefficient, exp( ; )D q t , which was in turn determined using the cumulant 

analysis (expression (12)), by averaging six individual measures at different scattering 

angles. By means of SLS, the particle size was determined fitting the particle form 

factor of a three modal distribution of hollow spheres, since liposomes were assumed to 

be unilamellar vesicles  within certain  degree of  polydispersity (see Ref. [9] for a more  
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detailed explanation). The best agreement was reached for a mean radius 75 nma =   

and 0.2 of polydispersity (standard deviation of the particle radius divided by the mean). 

This size and a thickness of 4.5 nm, contrasted by means of small angle X-ray 

scattering, typify our liposomes as large unilamellar vesicles. 

 

To measure the initial liposomes concentration, the procedure proposed by Haro-Perez 

et al. [40] has been followed. This method compares the volume fraction obtained 

assuming that the whole PS mass is forming vesicles with that obtained considering a 

homogeneous distribution of repulsively structured vesicles. The obtained values differ 

about 3.5 %.  

 

B. Aggregation experiments 

 

Aggregation was induced by adding electrolyte to the initially stable aqueous 

suspensions of liposomes at 25ºC. The water used for sample preparation was purified 

by inverse osmosis using a Millipore equipment. The different electrolyte-particle 

mixtures were prepared by mixing equal amounts of buffered electrolyte solution and 

particle suspension through a Y-shaped mixing device in a cylindrical quartz glass 

cuvette. The magnesium concentration was varied from 5 mM to 150 mM of MgCl2. In 

all cases, the final liposome volume fraction was 0.1%. The experimental threshold salt 

concentration to induce aggregation was 2[Mg Cl ] 4 mM= . No change on time of the 

first cumulant of the field autocorrelation function was observed for smaller salt 

concentrations, which confirms the existence of such threshold. 

 

C. Experimental measurement of the Structure factor and the Diffusion Coefficient 

 

On the basis of the 3D-DLS scheme discussed in section II.B, our light scattering 

experiments were performed with the help of a 3D-DLS spectrometer equipped with a 

rotatory arm, supplied by LS instruments (Fribourg, Switzerland). Formally, in this 

design the scattering volume is defined by the intersection between the collecting optics 

and the cross of two incident incoherent He-Ne laser beams (wavelength in 

vacuo 632.8 nmλ = ) coming  from  above and  below  the  average  scattering  plane.  A  
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digital correlator computes the normalized cross-correlation function 

1 2
12

1 2

( , ) ( , )
( , )

( ) ( )

system system

system

system system

I q t I q t
g q

I q I q

τ
τ

< + >
=

< >< >
 of the intensities registered by the two 

detectors for a given system. These scattered intensities are photomultiplied by two 

avalanche photodiodes coupled to the arm. The cross-correlation function 12 ( , )systemg q τ  is 

also recorded by the same computer that controls the spectrometer. 

 

In order to obtain ( )S q , and according to Section II.B, the function 0( ) / ( )a q qβ β , that 

corrects the magnitude of the structure factor due to the disturbance of multiple 

scattering, has to be evaluated (see expression (10)). Expression (9) is not applicable 

since we do not have a direct access to the single scattered intensities. In this respect, as it 

was mentioned above, our cross correlation scheme provides an experimental 

determination of 12 ( , )systemg q τ .  

 

The cross-correlation function is related to the normalized single scattering dynamic 

structure factor ( )Eg τ  [28] by:  

 

[ ]
2

12 ( , ) 1 ( ) ( )system system

Eg q C q gτ β τ= +  ,   (17) 

 

where 1C ≤  is constant that accounts for the different scattering volumes seen by the two 

detectors and the ratio of the size of the detector apertures to the size of the coherent 

areas of  the scattered  light.  Expression (17)  can be used to  determine ( )system qβ  taking 

advantage of the zero-limit 
0

lim ( ) 1Eg
τ

τ
→

=  [28] and then 12 ( , 0) 1 ( )system systemg q C qτ β= = + . 

Thus, if the measurements on the aggregated and non-aggregated systems are performed 

under identical experimental conditions C will remain invariant and: 

 

2

12
0 0

12

( , 0) 1( )

( ) ( , 0) 1

aa g qq

q g q

τβ

β τ

  = −
= 

= − 
                                      (18) 

 

By means of expression (18) we make a quantitative measurement of 0( ) / ( )a q qβ β .   



Paper IV - Phys. Rev. E 79, 011905 (2009) 
_____________________________________________________________________
  

168 
 

 

At the same time, we consider as constant factors, within the explored q-range, the 

transmissions ratios between the aggregated and non-aggregated samples (expression 

(10)). So, their influence on the scattering exponents as a multiplicative constant can be 

discarded (expression (5)). Therefore, we adopt the experimental determination of an 

“effective” structure factor * ( )S q : 

 

* 1 2
0 0 0
1 2

( , ) ( , ) ( )
( )

( , ) ( , ) ( )

a a aI q t I q t q
S q

I q t I q t q

β

β

< >< >
=

< >< >
                    (19) 

 

                           

FIG. 1  Experimental * ( )S q  according to expression (19) at 5mM of magnesium. The diverse 

measurements correspond to different times (stadiums) at which the aggregation process was 

stopped. Differences in the slope of * ( )S q  are negligible after 10 min from the beginning of the 

aggregation process. From that moment, * ( )S q  presents a power-law behaviour over the entire 

q -range with a non-evolving slope of -3.46 (see also figure 5 and table I). At previous times, 

* ( )S q presents an evolving behaviour, thus the lines corresponding to 3 and 6 min are guides to 

the eye. 

 

With the aim to obtain a reliable determination of * ( )S q  for each electrolyte 

concentration, the aggregation processes were stopped at different stadiums until a 

constant value for the fitting scattering exponent was reached (expression (5)). The 

stops  were  carried out by diluting the evolving system below the threshold aggregating  
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salt concentration. At their final states, the apparent mean hydrodynamic radius of the 

aggregates exceeded 1.5 mµ for all the samples. Figure 1 shows an example of the time 

evolution of * ( )S q .  

 

Certainly, the q -range employed to determine the scattering exponents appears as a 

crucial point. In this respect, sufficient, but not necessary, conditions have been 

proposed by different authors in order to obtain reliable values for the scattering 

exponents, see for instance Ref. [41]. Here, in addition to the constraint introduced by 

the primary particle radius a  ( 1q a−< ), we have an experimental difficulty due to the 

rapid increment of the scattered intensity for small q  values, which is caused by the 

large scattering exponents. In this situation, the saturation limit of the detectors is 

promptly achieved when q  decreases and the proportionality between the scattered 

intensity and the photomultiplied signal becomes broken. This difficulty seems to be 

present  in  other  SLS  measurements  involving  large  scattering   exponents,  see  for 

instance Ref. [42] where the authors found a characteristic scattering exponent of -3.38 

using a similar q -range as we do. 

 

In order to overcome this problem, we performed our measurements under the 

saturation limit of the detectors, i.e. in the linear range. Thus, we extended our q -range 

to large q -values for which the saturation limit is not achieved. At the same time, we 

tested the reliability of the employed q -range by reproducing satisfactorily the 

universal DLCA fractal dimension ( 75.1=md ) obtained in our previous study at 5 mM 

of calcium [9]. This diffusive regime at 5 mM of calcium had been also proved from 

aggregation kinetics data obtained via independent DLS measurements (see again [9]). 

At the same time, we confirmed for the explored q -range that a reliable and 

reproducible statistical estimator to determine our structure factors resulted from the 

average of 5 independent measurements per q -value and 1min per measurement.  

 

With respect to the system aggregation kinetics, the experimental average value for the 

translational diffusion coefficient exp ( ; )D q t  at any time was evaluated from expressions  
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(11) and (12). In this case, the scattered field autocorrelation function ( )Eg τ was 

obtained from the intensity autocorrelation function via Siegert relation, and was 

recorded with our computer in intervals of 25s during the aggregation processes. The 

measures were performed at a fixed angle of 90º.  

 

D. Cryo-TEM measurements 

 

With the aim of complementing our structural study based on light scattering 

experiments, we took Cryo-TEM images from an aggregated sample containing a small 

concentration of magnesium which is similar to that used in some of our light scattering 

experiments. At the same time, Cryo-TEM measurements were performed for a non-

aggregated sample, i.e. in absence of salt. For the case of the sample containing 

magnesium, the appropriate volume of a concentrated salt solution was added to the 

liposome suspension and vortexed. After 5 minutes, a drop of the mixture was deposited  

on a perforated grid (Quantifoil, Germany), previously ionized by glow discharge in air, 

and, after removing part of the drop with a filter paper strip, it was immediately frozen 

dipping it in ethane at -182ºC using a Cryo Work Station EM CPC (Leica Microsystems 

GmbH, Germany). This lag time allows us to obtain liposome aggregates whose size is 

bigger that 1 µm. This size was previously verified by means of DLS. For the case of 

non-containing salt samples, a drop of the initial liposome suspension was employed, 

and the same treatment was done. The obtained grids containing the samples were 

maintained frozen with liquid nitrogen in a cryo holder and loaded into a transmission 

electron microscope Jeol JEM-1400 (Jeol Ltd, Tokyo, Japan) working at 120 kV.  

 

E. FTIR measurements 

 

The FTIR spectra of liposomes prepared in D2O containing the appropriate amounts of 

the desired cations were acquired with a Mattson Polaris spectrometer. The intensity of 

the infrared absorption was quantified by means of a cooled liquid nitrogen mercury-

cadmium-telluride detector. Each spectrum was a mean of 1,000 individual scans 

performed at 25 ºC, at a resolution of 2 cm-1 and using two CaF2 windows with a 50 µm 

spacer containing  the sample. The final spectra were obtained subtracting the spectra of  
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the corresponding solvent acquired in the same conditions. It is known that chemical 

groups of the phospholipid molecule, as phosphate or carboxylate, can interact with 

cations resulting in a change in their vibrational state [43] but the stretching band of the 

carbonyl ester, located at 1,720 cm-1, have been proved to be very sensitive to 

environmental factors as, for example, the hydration grade of the molecule [44], the 

phase state of the bilayers, or the temperature. For these reasons, we focused our 

attention on the stretching band of the carbonyl ester. This stretching band presents a 

fine structure composed by minor bands corresponding to the hydrated and non-

hydrated carbonyl ester groups. We analyzed the contribution of the non-hydrated 

carbonyl band, which is located at 1744 cm-1, to the multicomponent band quantifying 

its relative area after Fourier deconvolution. The fit of the component bands was done 

using the Grams 3.2 program (Galactic Inc.).  

 

IV. RESULTS AND DISCUSSION 

 

A. Effect of MIS and Polydispersity 

 

To understand the cluster morphologies, a precise and undoubted determination of the 

α -exponent must be achieved.  To do that, the effects of the aggregate polydispersity 

and MIS on the measured scattering exponents must be evaluated.  

                           

FIG. 2 Experimental ratio 0( ) / ( )a q qβ β from Expression (18). [MgCl2]: 5 mM (black circles), 

7.5 mM (magenta squares), 10 mM (blue triangles), 30 mM (red diamonds) and 100 mM (green 

pentagons). This figure has been shown in Ref. [10]. 
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In relation to the MIS, the normalized cross-correlation functions 12 ( , )systemg q τ  were 

measured and the ratio 0( ) / ( )a q qβ β  was calculated using expression (18) for all the 

examined electrolyte-liposomes samples. In Figure 2, the q -dependence of 

0( ) / ( )a q qβ β  is plotted for several samples. A remarkable q -dependence of 

0( ) / ( )a q qβ β  was observed for 5 mM (and a slight dependence for 7.5 mM). The rest 

of the samples exhibited a constant 0( ) / ( )a q qβ β  quotient over the explored q -range. 

In these cases, therefore, the MIS has a constant contribution, which means that the 

values  of  the   scattering  exponents  are  not   significantly  affected  by   MIS. On  the 

contrary, the 5 mM sample is very influenced by MIS. This is illustrated in Figure 3, in 

which the effective structure factors determined with and without the MIS correction are 

plotted for such sample. As can be seen, if this correction is not performed we would 

obtain (5 mM) 3.12spuriousα =  instead of 3.46 (the true value). This wrong result was 

also confirmed within the experimental uncertainty by a conventional light scattering 

device with a single He-Ne laser beam (Malvern 4700IIC). Consequently, the use of a 

cross-correlation scheme based on a three-dimensional light scattering design provides, 

under our experimental conditions, the necessary accuracy to discern the differences 

between dense clusters. 

                          

FIG. 3 Experimental * ( )S q  at 5mM of magnesium. Black circles correspond to expression (19) 

whereas red squares do not consider the MIS correction accounted for by 0( ) / ( )a q qβ β . Black 

and red solid lines stand for the corresponding linear fits.  
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FIG. 4 Normalized mean translational diffusion coefficient exp 0( ; ) /D q t D  corresponding to the 

100 mM magnesium concentration. A weak q -dependence is revealed by a relative increment 

of exp max exp min exp min( ; ) ( ; ) / ( ; ) 0.3D q t D q t D q t− ≈ . 0D  is the free diffusion coefficient of the 

individual monomers. 

 

On the other hand, the polydispersity reached in an aggregation process can introduce a 

drastic disturbance on the scattering exponents determined by means of SLS when the 

cluster size distribution is broad. In these situations, a direct interpretation of the 

scattering exponents as fractal dimensions can cause misunderstandings. According to 

the work by Martin et al. [37], we have examined the experimental q -dependence of the 

first cumulant of the field autocorrelation function divided by 2q , 2
1 qκ , for all the 

stopped  suspensions (expressions (11) and (12)).  As  it  was  previously discussed, this 

ratio can be interpreted as an apparent mean translational diffusion coefficient 

2
exp 1( ; )D q t qκ≡  of the cluster distribution. It should be clear that in this context, we 

explore the q -dependence of 2
1 qκ for non evolving suspensions at a time in which the 

aggregates of these suspensions have achieved their final fractal structure and the 

aggregation processes have been stopped (see section III.C). In this framework, 

exp ( ; )D q t will present a clear dependence on q, for 1qR > , in case of a wide cluster 

polydispersity (here R  stands for the apparent mean hydrodynamic cluster radius). In 

our  experiments,  the evaluation of  exp ( ; )D q t  over  the  q-range  3 2 -1[6 10 ,2.6 10 ]nm− −⋅ ⋅   
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showed a weak q-dependence for all the examined samples. The maximum increment 

detected for exp ( ; )D q t  was approximately of 30% corresponding to the 100 mM sample 

(see figure 4). This result is consistent with those obtained for aggregation kinetics, as 

we will argue later, being both the evidence of a narrow cluster distribution, and 

consequently of a weak regime of polydispersity. 

 

B. Discussion of the Structure Factors and Cryo-TEM images 

 

According to the previous protocol, the experimental * ( )S q were determined for all the 

electrolyte concentrations and an unquestionable power law dependence was obtained at 

each case (see Figure 5), from which the scattering exponents α  were extracted. Table I 

also summarizes the results for the considered electrolyte-liposome samples. The 

absolute error associated to each exponent was estimated from the statistical 

reproducibility of the scattering data by their optimum power law fit. From this analysis, 

a clear trend is revealed: α  decreases with increasing the magnesium concentration 

reaching a permanent value in the vicinity of 30 mM. The α  values in the range 2.6-2.9 

are a sign of dense morphologies that can be clearly identified as mass fractal with 

α=md  ((expression (5)). On the other hand, after a careful analysis of the experimental 

data (which includes the MIS and polydispersity effects), structure factors with 3>α   

reveal the existence of surface fractals (see again expression (5)). Consequently, within 

the range 25mM [MgCl ] 15 mM≤ ≤ , the resulting morphologies, included into the 

domain of surface fractals, will present a surface fractal dimension 6sd α= − .  

 

The surface fractals domain has Porod´s law, 2sd = , as the lowest limit for a smooth 

surface [21], whereas 3sd →  corresponds to the highest limit for a completely rough 

surface. Our surface fractal dimensions are contained within (5 mM) 2.54 0.08sd = ±  

and  (15 mM) 2.96 0.05sd = ± . 
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FIG. 5 Effective Structure Factors * ( )S q  for the different magnesium concentrations. The 

experimental values (circles) result from Expression (19) whereas solid lines represent the 

theoretical fit according to Expression (5). The content of this figure has been shown in Ref. 

[10]. 

 

Certainly, the above interpretation of the experimental * ( )S q , obtained from expression 

(19), is based on the conservation of the form factor, ( )P q , of the primary particles 

inside the aggregates (see the cancellation between expressions (6) and (7) to give 

expression (8)). In this respect, it is essential to prove that we extract the real structural 

information from the scattered intensity when we deal with aggregates formed by 

primary particles that are deformable and potentially fusionable. Thus, it is frequent to 

find in literature dramatic distortions due to the deformation of the vesicles when they 

stick together [45, 46]. In these situations, the vesicles lose their original shape, and 

( )P q included in expression (6) would not be anymore their form factor after 

aggregation. Then, the implicit cancellation assumed in expression (8) is not admissible 

and the resulting q -dependence is not only due to ( )S q . However, this misinterpretation 

of ( )S q  due to the deformation of the primary particles will be manifested only at large 

q -values ( 1q a−≥ ). This is the range for which the details of the shape of the vesicles 

can be clearly  distinguished via SLS. In this respect, our measurements of  * ( )S q  were  
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performed for  0.8qa < . Therefore, only for large values of this  q -region, the plausible 

disturbance introduced by the deformation of the particles would have some effect on 

the determination of * ( )S q  via expression (19). Thus, one would expect bad correlated 

results, presumably far from a power law behaviour, only at large q  if the vesicles 

change their shape when they aggregate. However, in our case, the same experimental 

power law behavior is manifested within the whole q -range (see figure 5) and, 

therefore, a non significant deformation of the vesicles inside the aggregates can be 

presumed. This experimental fact can be use as argument not only to discard an 

important deformation but other severe distortions as vesicle fusion, for which the 

primary particles would not retain their individuality. 

 

From a theoretical viewpoint, the small deformation of our vesicles assumed from the 

experimental behavior of * ( )S q  at large q , can be accounted for by the approach 

proposed by Petsev [47]. In his paper, the author presents a general model for vesicle 

adhesion based on the coupling between van der Waals attraction and bending elasticity 

forces. Using standard values for Hamaker’s constants, this author shows calculations 

that are relevant for vesicles in which the ratio between the bilayer thickness and the 

vesicle radius is around 0.01. Together with this ratio, a significant deformation is 

expected only when the ratio between the separation distance of two adhered vesicles 

and the vesicles radius is smaller than 0.02.  In our case the first ratio results much 

greater, 0.06. Although no experimental data is available for the separation distance 

between two adhered PS vesicles in the presence of Magnesium, works as that cited in 

Ref. [39] by Ohki and Arnold, suggest a ratio between the separation distance and the 

particle radius of about 0.02-0.03. Accordingly, in the light of this model, a small 

deformation, consistent with our experimental data, is expected for our vesicles. 
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TABLE I. Experimental Scattering Exponents α  with their corresponding fractal dimensions 

at different magnesium concentrations.  

[Mg2+] (mM) α  d  

5 3.46 ± 0.08 sd = 2.54 ± 0.08    ( md = 3) 

7.5 3.28 ± 0.05 sd = 2.72 ± 0.05    ( md  = 3) 

10 3.18 ± 0.05 sd = 2.82 ± 0.05    ( md = 3) 

15 3.04 ± 0.05 sd = 2.96 ± 0.05    ( md  = 3) 

20 2.91 ± 0.12 md = 2.91 ± 0.12 

30 2.68 ± 0.07 md = 2.68 ± 0.07 

50 2.67 ± 0.08 md  = 2.67 ± 0.08 

70 2.66 ± 0.06 md = 2.66 ± 0.06 

100 2.65 ± 0.07 md  = 2.65 ± 0.07 

150 2.67 ± 0.08 md = 2.67 ± 0.08 

 

 

In addition to the experimental * ( )S q , we took Cryo-TEM images of different samples. 

Figures 6.b and 6.c show the micrographs corresponding to two aggregates at 7mM of 

MgCl2. Uniform clusters can be observed in both cases.  Thus, this high compactness 

would support and illustrate the interpretation that the high values obtained for the α  

exponent in these cases (5 and 7.5 mM) are associated to a surface fractal structure. 

 

             

 

FIG. 6 Cryo-TEM images of PS liposomes in water (a) and after 5 minutes in water containing 

7 mM of MgCl2 (b and c). Dark areas indicate the presence of crystalline ice (amorphous ice 

appears as transparent area in images).  
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Accordingly, we can state that a transition from surface fractals to mass fractals has 

been found in the range from 5 to 150 mM of magnesium. The reader should however 

note that this interpretation cannot be done if the experimental data are not MIS-

corrected, particularly at low salt concentrations ( 10 mM< ). As it was discussed 

previously, in the case of uniform clusters the MIS effect is stronger at high q -values, 

i.e. small spatial scales, as the experimental function 0( ) / ( )a q qβ β  reveals (figure 2). 

At these scales, the light experience more reflections in uniform clusters than in those 

which are less compact and then the MIS has an effect on the measured fractal 

dimensions. 

 

Certainly, very few structures of biological interest have been described by the surface 

fractal notion [42]. On the other hand, similar morphological evolutions have been 

rarely documented in colloidal physics from small angle scattering techniques. For 

instance, the pioneering results obtained by Keefer and Schaefer [8] in a system of 

rough  particles made  from silica condensation show a clear analogy with our measured 

fractal dimensions, even though they studied a significantly different system. In that 

work, the authors pointed out the application of the Eden model [41] to account for a 

theoretical description of the observed fractal structures. In any case, we should remark 

that our observed dilation symmetries need a deeper investigation to be theoretically 

justified.  

 

C. Qualitative interpretation of morphologies using hydration energies. 

 

We have concluded from the previous data that, when the Mg2+ concentration increases 

from 5 to 150 mM, the corresponding clusters experience a transition from uniform 

( 3)md =  to also dense structures, 2.6 2.7md = − . In the framework of a classical DLVO 

qualitative analysis, this high compactification would be explained by means of an 

aggregation in a secondary shallow minimum of the total interaction energy, 

elec vdWE E E= + ,  whose depth is electrolyte dependent since that the increase of 

divalent  salt  leads  to  a progressive  screening  of  the surface charge. However, some 

difficulties arise when a comparison with the aggregation induced by calcium is done 

[9].  Aggregation induced by  CaCl2 showed  a slow  regime (Reaction  Limited  Cluster  
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Aggregation) from 2.5 to 5 mM calcium concentration whereas and a DLCA regime 

from 5mM to 7mM was documented. In both cases, ramified structures were observed 

ranging from 1.91md = to 1.75md = . In this situation, the energy of the bond between 

two liposomes after sticking (accounted for van der Waals attraction) prevents 

reversibility and cluster compactification. Thus, as an example, whereas 5mM of 

magnesium leads to a dense morphology, 3md = , an identical calcium concentration 

induces branched structures, 1.75md = . This experimental behavior suggests that the 

bound between two vesicles would be appreciably stronger in the case of calcium. In 

any case, the DLVO picture, elec vdWE E E= + , cannot explain why the behaviors in the 

presence of calcium and magnesium at identical concentrations are so different if both 

are divalent cations. Hence, we turn our attention to the possible specific effect of the 

hydration energy in the presence of these two cations via the determination of the 

hydration grade of the liposome surfaces. The Fourier-Transform Infrared Spectroscopy 

(FTIR) analysis provides us this possibility.  

                    

As a result of this analysis, figure 7 shows the component bands of the fine structure of 

the spectra of PS liposomes in the carbonyl stretching zone (red) in D2O at 0, 2.5, 5 and 

7 mM of CaCl2. In D2O, the stretching CO band is composed by three bands located at 

1,744 cm-1 (green), 1,727 cm-1 (yellow) and 1,708 cm-1 (blue). These bands are a 

consequence of the different hydration grade of the CO groups of both hydrocarbon 

chains. Thus, each one of component bands is exclusively the result of the hydration 

state of the two CO groups of the phospholipid and, if no isotopic labeling of the 

carbonyl group is performed, no differences between them can be observed [43]. As a 

result, the previously commented component bands observed in D2O are originated by 

dehydrated carbonyl (1,744 cm-1), monohydrated carbonyl (1,727 cm-1) and dihydrated 

carbonyl (1,708 cm-1). As can be observed, there is a progressive increment of the 

relative area of the 1744 cm-1 band (green) -corresponding to dehydrated CO- upon Ca2+  

concentration. At the same time, at CaCl2 concentrations of 2.5, 5 and 7 mM the 

experimental stretching band is composed by 5 component bands. These two 

supplementary  bands  are  located  in  the low  wave number  zone of  the experimental 

carbonyl band. This fact indicates that, in presence of the salt, the CO groups undergo a 

new  type of  interactions  not present in pure  D2O. At  high  Ca2+  concentrations  these  
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changes have been explained by different rotational chain isomers in the lipid-Ca2+ 

complex and a new strong hydrogen bond established between CO and water [45]. Our 

results show that the effect of CaCl2 on CO groups, as observed by the FTIR spectra, is 

concentration-dependent and can be quantified.  

                  

 

FIG.7 FTIR spectra of the carbonyl band of PS liposomes: (a) in pure D2O, (b) 

2[Ca Cl ] 2.5 mM= , (c) 2[Ca Cl ] 5 mM=  , and (d) 2[Ca Cl ] 7 mM= . Black line: 

experimental deconvolved spectrum. Dashed light red line: synthetic spectrum obtained from 

the component bands (it is overlapped with the experimental band). Filled dark green peak: 

component band corresponding to the dehydrated carbonyl group. Other lines: component peaks 

corresponding to carbonyl groups with different hydration grades. 

 

The relative areas of the deconvolved component bands showed that, when CaCl2 was 

added to the aqueous medium, there was an increase of the area of the non-hydrated 

carbonyl  band, which  had no significant  shift of its maximum at any salt concentration  
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assayed. Thus, the microenvironment of the dehydrated CO is not affected by the 

presence of the divalent cation. At 2.5 mM of CaCl2 this band had an area 16% larger 

than that in pure water, reaching a plateau at 5 mM, with a mean relative increment of 

62%. Consequently, no further change occurs between 5 and 7 mM of CaCl2 (filled 

green peak, figure 7). On the other hand, equivalent essays were performed in the 

presence of MgCl2 over the range 0-20 mM. In that case, the studied carbonyl peak 

showed no significant change of the percentage area of its dehydrated carbonyl band in 

the studied range. Nevertheless, other functional groups  of the  phospholipid  molecule, 

as phosphate or carboxylate, should  be explored in a further investigation in order to 

account for the evolution of the fractal dimension in the presence of this cation. 

                    

Consequently, we propose a qualitative analysis on the basis of the area of the non-

hydrated carbonyl band. With calcium concentration, the increase in this area suggests a 

progressive dehydration of the liposome surfaces. Water molecules would be removed 

from the surface and the hydration repulsive interaction would become smaller. 

Consequently, the barrier due to this hydration energy would decrease and, if the 

Coulomb repulsion is strongly screened, the resulting total energy could therefore show 

a deep minimum essentially accounted for van der Waals attraction. For the sake of 

clarity we present in Figure 8 a sketch with this qualitative interpretation. On the other 

hand, with magnesium, the dehydration of the lipid membrane associated to the 

carbonyl group would not take place and the hydration repulsive barrier would persist. 

Now the total interaction energy, when Coulomb repulsion is screened, vW hydE E E≈ + , 

would  present a “shallow” minimum with different depth depending on the magnesium 

concentration, see sketch of figure 9. Hence, this non-suppressed hydration would 

condition the depth of the energy minimum as well as the separation distance for two 

bound vesicles. This lower energy minimum would enhance the cluster 

compactification.  
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FIG. 8 Qualitative description of the interaction energy E  at short distances between two 

liposomes in the presence of different calcium concentrations. With increasing the calcium 

concentration the barrier resulting from the addition of hydration and Coulomb repulsive 

interactions decreases. At 5 mM, for which a DLCA regime was achieved [9], only a deep 

minimum due to van der Waals attraction remains. The distance d (arbitrary units) represents 

the separation between the membranes of the two liposomes. 

 

These observations, involving calcium and magnesium, may be consistent with the 

model proposed by Ohki and Arnold [39], which is based on the addition of Coulomb 

and hydration repulsions together with van der Waals attraction. We should remark how 

these authors examine under this model a possible mechanism of ion-induced vesicle 

fusion. Furthermore, we would like to mention the analogy of our results with the recent 

work by Lu et al. [46] in which similar contrasting morphologies are documented, from 

confocal microscopy, in a suspension of colloidal spheres of polymethylmethacrylate. 

They obtain dense clusters, 2.4 2.6md = − , which are induced by a “long” range 

depletion attraction whereas they found ramified structures, 1.7 1.8md = − , as a 

consequence of a “short” range depletion attraction. In our opinion, the long range 

depletion in this particular aggregation plays the same role as the total energy in the 

presence of magnesium whereas the total energy in aggregation of liposomes induced 

by calcium is equivalent to their “short” range depletion attraction. 
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FIG. 9 Qualitative description of the interaction energy E  at short distances between two 

liposomes. The green dashed line stands for the repulsive Coulomb energy (according to a 

Yukawa functional form), the blue dotted line represents an exponentially decaying hydration 

energy [36], and the red dashed-dotted line symbolizes van der Waals attraction. In simple 

terms, when magnesium is added, Coulomb repulsion is screened whereas the hydration 

interaction persists. The total energy in that case is therefore the result of the addition of van der 

Waals attraction and hydration repulsion (black solid line).  This total energy presents a shallow 

minimum that conditions the dense cluster morphology of the magnesium induced aggregates. 

The distance d  (arbitrary units) represents the separation between the membranes of the two 

liposomes. 

 

D. Diffusion coefficient 

 

Experimental data of the time evolution of exp ( ; )D q t obtained from DLS measurements 

according to the protocol presented previously are plotted in a double logarithmic scale 

in Figure 10. Figure 10.a shows exp 0( ; ) /D q t D  for the aggregation processes involving 

dense mass fractal aggregates (magnesium concentrations of 30 mM, 100 mM and 150 

mM), whereas the results corresponding to surface fractals populations (magnesium 

concentrations of 5 and 7 mM) are shown in Figure 10.b.  
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FIG.10 Normalized experimental mean diffusion coefficient exp 0( ; ) /D q t D  as a function of 

time: (a) Mass Fractals at different magnesium concentrations: 150 mM (green circles), 100 

mM (red squares) and 30 mM (black triangles). Linear fit at long times are plotted as solid lines 

whereas their corresponding slopes appear in brackets. Vertical dot lines denote the 

interpolation range. (b) Surfaces Fractals at different magnesium concentrations: 5 mM (blue 

circles) and 7 mM (magenta squares). Solid and dash lines show the numerical solution for 

Smoluchowski’s Equation. 

 

In both cases, all the experimental aggregation kinetics data exhibit a long time behavior 

consistent with 1 3
exp ( ; )D q t t−∝  within the experimental uncertainty, in spite of the time 

shift between them. Expression (16) indeed gives us a clue to elucidate this common 

asymptotic behavior by a simple relationship: md)1(3 λ−= .  Certain advantage can be 

taken  from  our  experimental  determination  of  md , which  showed  a  common value 

3=md  for the 5 and 7 mM samples. In this case (surface fractals), a value 0λ =  

corresponding to a diffusive aggregation regime seems to be a convenient election. 

Accordingly, the interaction picture discussed before is coherent with that type of 

regime since aggregation happens due to the presence of a shallow minimum at short 

distances without any long-range interaction disturbing the diffusive motion of the 

clusters before sticking.  

  

As pointed out previously, both nD  and ( )nN t  are required in order to account for these 

experimental  data  by  means  of expression (13). The  frequency ( )nN t  is  obtained  by  
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solving Smoluchowski’s model under the assumption of a reaction kernel. As our SLS 

data indicate, we are dealing with uniform clusters. Due to their high compactness, these 

clusters can be considered as uniform objects, 3=md , at least for surface fractals 

structures, whose size grows as 1 3
nR n∝ . This scaling growth together with our 

experimental determination 0λ =  and the assumption of Stokes-Einstein relation, 

1 1/ 3
nnR D n− −∝ ∝ , lead us to the classical Brownian kernel 

( )( ) ( ) ( )1/ 3 1/ 3 1/ 3 1/ 3 1/ 3 1/ 3 1/ 3 1/ 3
ij i j i jk R R D D i j i j− − − −∝ + + ∝ + +  as a formal election [37]. 

In this context, the small-large reaction exponent, which also incorporates the collision 

cross-section of the aggregates (   ; 1 ∞→∝ jjk j

ν ), is 1/ 3ν = . Therefore, the theoretical 

asymptotic behaviour will be essentially conditioned by the cluster compactness, i.e. by 

md .Under this framework, the aggregation processes will be dominated by the small-

large clusters reactions and then cluster polydispersity will be discouraged [37]. This 

aspect is corroborated by the weak q -dependence of exp ( ; )D q t (see section IV.A) . As a 

conclusion, if we consider two diffusion-limited aggregation processes involving two 

different populations of surface fractals, i.e. populations with different sd , the same 

values 0λ = and 1/ 3ν =  should be expected, independently of sd .  

 

In practice, it is found that a constant kernel ( 11  ,ijk k i j= ∀ ) reproduces essentially the 

same solution that the classical Brownian kernel even at moderate long times. Thus, the 

experimental  values of the diffusion coefficient for the aggregation processes involving 

surface fractals were fitted using 11k  as unique free parameter. Figure 10.b shows the 

results of these fits: in both cases the agreement is good even at short times. The delay 

between these two aggregation processes is theoretically accounted for by 

( )19 3 1
11(5 mM) 2.5 10   0.5  m sk − −= ⋅ ±  and ( )18 3 1

11(7 mM) 1.6 10   0.3  m sk − −= ⋅ ± . In 

our opinion, this delay is due to the different strength of the bound between two vesicles 

at different magnesium concentrations. At 7 mM the roughness is higher than that at 5 

mM and then a vesicle would be, in general, rounded by a less number of neighbours on 

the surface of an aggregate, being more likely the effective small-large captures during 

the aggregation process. Therefore, the different  values  of  sd   have influence  only on  
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the delay time during the aggregation process but not on the asymptotic behavior as 

expected.  

 

This discussion seems to be a key to understand the aggregation kinetics results 

obtained for dense mass fractals (figure 10.a) even though they need a more complex 

model to account for them completely. Nevertheless, the mass fractals dimensions 

obtained at 30 mM, 100 mM and 150 mM magnesium concentrations are not far from 

that associated to a uniform object ( 3=md ). In this respect, as we pointed out 

previously, the experimental values of exp ( ; )D q t  show a similar long time tendency to 

that corresponding to surface fractals. In addition, no structural differences were found 

within the range [ ]230 MgCl 150≤ ≤ (see Table I), i.e. the strength of the bound between 

two vesicles would not be increased within this range. This is also supported by the 

aggregation kinetics data shown in figure 10.a, where identical kinetics results (without 

delay time between them) are obtained at 30 mM, 100 mM and 150 mM, being the 

evidence for a common kinetics within [ ]230 MgCl 150≤ ≤ . 

 

In spite of the good qualitative, and even quantitative, description offered by our basic 

diffusive model, it should be stressed that other plausible options of reactive kernels 

could prove useful in order to account for the aggregation kinetics in the presence of 

magnesium. Certainly, our interpretation is based on the simplified interaction picture 

sketched  in  figure 9  together  with  the  experimental  evolution  of exp ( ; )D q t   and the 

measured fractal dimensions. This experimental phenomenology and the a priori 

interaction scenario lead us to a basic diffusive aggregation regime, 0λ = , if we apply 

van Dongen and Ernst scheme. Thus, the classical Smoluchowski’s Brownian kernel 

seems a sensible choice. However, the previous picture is not the unique suggestive 

possibility. In this respect, a reaction kernel with a sticking probability [50] obtained 

from the inter-vesicles interaction could be effective in order to explain the evolution of 

the measured mass fractal dimensions (from 3 to 2.6) upon increasing magnesium 

concentration. This option was actually explored in our previous study in the presence 

of calcium [9], where the evolution from a slow to a DLCA regime was interpreted in 

terms of  a decreasing  repulsive barrier  (see figure 8)  and, consequently, an increasing  
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sticking probability. In the present work, the evolution of the measured mass fractal 

dimensions when we increase the magnesium concentration is understood in terms of a 

small change in the depth of the energy minimum (figure 9), enhancing the strength of 

the bond between two adhered vesicles. This could be caused by a small reduction of 

the hydration repulsion as the magnesium concentration is increased. Nevertheless, a 

more exhaustive study of the fine structure of the IR-absorption associated to the 

chemical groups of the phospholipid molecule is needed in order to elucidate this point. 

Furthermore, we feel that the use of reaction kernel would be associated to additional 

fitting parameters governing the inter-vesicles interaction. Although the values of these 

fitting parameters would have a predictive meaning, they cannot be specifically 

contrasted with our current empirical phenomenology. Moreover, in our opinion, and 

due to the high compactification, a complete model should also contemplate 

reversibility through a Smoluchowski’s equation including fragmentation [51]. 

Undoubtedly, these refinements deserve to be contemplated in further studies although 

they are far from the scope of this work.   

 

V. CONCLUSIONS 

 

In this article the aggregation processes of charged phosphatidilserine liposomes 

induced by the presence of magnesium have been studied. Static and Dynamic Light 

Scattering, Fourier-Transform Infrared Spectroscopy and Cryo-Transmission Electron 

Microscopy have been used as experimental techniques. The main conclusions are: 

 

a) The structure of the liposome clusters shows a transition from uniform (surface 

fractals) to less dense structures (mass fractals) when the magnesium concentration 

increases. These morphologies contrast with those reported in the presence of calcium at 

similar electrolyte concentrations. 

 

b) We have proved that the multiple intracluster scattering has an influence on the 

determination of the fractal dimensions of the aggregates when they are very dense, i.e. 

at  low   magnesium concentration. In this respect, a  careful  experimental   study of the  
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multiple   intracluster  scattering,   based  on  a  cross-correlation  scheme,   has   been 

performed in order to obtain reliable values of the fractal dimensions. If this effect is not 

properly corrected, fractal dimensions could be wrongly determined. 

 

c) We have shown that the classical DLVO model cannot explain the different 

morphologies documented in the presence of calcium and magnesium at identical 

concentrations. As a result, the hydration energy between liposomes due to the presence 

of magnesium and calcium should be introduced in order to explain (at least 

qualitatively) the different cluster morphologies. Thus, by means of Fourier-Transform 

Infrared Spectroscopy, we propose the measurement of the infrared absorption 

associated to the lipid headgroups in order to provide a quantitative estimation of the 

hydration grade of the liposome surfaces.                                                                                                                                         

 

d) The kinetics of the aggregation processes has been studied through the time evolution 

of the mean translational diffusion coefficient of the aggregates. The experimental data 

were fitted solving Smoluchowski´s Equation. It has been shown that the relationship 

between structure and kinetics is consistent. 
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Abstract 

 

We study the relaxation of both spontaneous and shear-induced fluctuations in 

suspensions of charged-stabilized colloidal particles near the glass transition by 

dynamic light scattering and rheology. Both observations are here understood in terms 

of a common structural relaxation process under a hard sphere mode coupling 

formalism. For ergodic systems, we show that the descriptions of the relaxation 

dynamics in time and frequency domains are governed by a common set of dynamic 

parameters. It is further shown that the microscopic ergodicity break-up induces the 

emergence of the macroscopic glass elasticity.      

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Paper V - Phys. Rev. E 82, 021406 (2010) 
_____________________________________________________________________ 

196 
 

 

I. INTRODUCTION 

 

Most of the current hopes to understand the glass transition (GT) phenomenon rely upon 

the idea of structural relaxation: Near the GT, a small change in the static structure of a 

glass-forming system induces a dramatic change in the system relaxation dynamics [1-

3]. To investigate this phenomenon, one of the reference systems amenable to 

experimentation is a suspension of mesoscopic particles whose interaction is solely 

mediated by a repulsive potential [4, 5]. In these systems, the caging between nearest 

neighbors tends to constrain the individual motion when the particles volume fraction, 

φ , is increased. Eventually, if crystallization is bypassed in a controllable fashion [6], a 

critical volume fraction, gφ , emerges from which only the local motion of the trapped 

particles remains. As a result of this structural arrest, the system becomes nonergodic, 

or glassy. While close to the glassy state their microscopic structure does not reveal a 

significant difference with that associated to a normal liquid, these systems behave as 

solid-like materials since they can sustain a given shear stress. Thus, their macroscopic 

liquid-to-solid transition has been associated to the microscopic ergodic-to-nonergodic 

transition, suggesting that macroscale elasticity arises from microscale structural arrest 

[7, 8]. 

 

So far, the relaxation dynamics of these colloidal systems has been studied extensively 

by dynamic light scattering (DLS) and rheology. The former have provided a time 

domain description of the slow system relaxation through the temporal correlation 

function, ),( τqf , of the particle-density fluctuations at a given magnitude of the wave 

vector q  [9, 10]. The latter have proved the frequency dependence of the storage, 'G , 

and loss, ''G , moduli when the system is weakly perturbed by a small shearing force 

[11]. Based on these experimental studies, the relaxations of these fluctuations have 

been interpreted separately in terms of structural relaxation processes [8-10]. However, 

the quantitative connection between these observations has only been investigated 

vaguely on real systems [7, 12-14].  

 

In this work, we present experimental evidence of the equivalence between both 

relaxations in  suspensions of  charge-stabilized mesoscopic particles near the GT. From  
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light scattering and rheological measurements, our study provides a close interplay 

between the time and frequency domain descriptions of the GT under a mode coupling 

formalism. The dynamic parameters governing the ergodic multi-step relaxation 

observed through ),( τqf  are also revealed by mechanical spectroscopy using 'G  and 

''G  as rheological material functions. Furthermore, the threshold volume fraction at 

which ergodicity is broken is consistent with that at which the glass elasticity emerges. 

As a result, both observations are here presented as the manifestations of a common 

structural relaxation process. Finally, we also show that despite the long-range Coulomb 

repulsion through which the particles interact, the observed relaxations can be 

essentially described by the effective hard-sphere (HS) Mode Coupling Theory (MCT).  

 

II. EXPERIMENTAL SYSTEM 

 

In our experiments, we used phosphatidylserine (PS) liposomes dispersed in purified 

water at different concentrations. Measurements by dynamic and static light scattering 

on dilute suspensions gave a mean particle diameter of nm220=σ  and a polydispersity 

(relative standard deviation) of about 0.3. As a consequence of the extrusion procedure 

[15], the liposomes showed a lipid layer thickness of about nm5 . These thin layers 

enclosing an aqueous volume (i.e. our liposomes) present a refractive index ( 36.1=n ) 

slightly different from that of the water, allowing the preparation of nearly transparent 

suspensions at relatively high volume fractions. Due to the specific ionization of the PS 

molecule in water, our liposomes are negatively charged. To model their interaction, we 

considered the repulsive screened Coulomb part of the Derjaguin-Landau-Verwey-

Overbeek potential [16]. Thus, using the rescaled mean spherical approximation to fit 

the experimental static structure factor (SSF), )(qS , of several concentrated 

suspensions, we obtained a mean liposome surface charge ( )eZ 50270 ±=  and a 

reciprocal Debye screening length 63.1=κσ  for a residual ionic strength of M610− . 
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III. TIME DOMAIN DESCRIPTION: LIGHT SCATTERING AND 

MODE COUPLING THEORY 

 

For our microscopic description, we performed light scattering experiments using a 

three-dimensional DLS spectrometer (LS instruments, Fribourg-Switzerland) with two 

incident He-Ne laser beams. Suspensions were contained in a cylindrical scattering cell 

which was immersed in a thermostatized bath at Cº 25=T . With a digital correlator we 

computed the cross-correlation function of the scattered intensities, detected by two 

avalanche photodiodes positioned at an equal angle, for which the time-dependent 

contributions of multiple scattered photons can be neglected [17]. Both the SSFs and the 

(coherent) dynamic structure factors (DSFs), ),( τqf , were experimentally determined 

with a similar protocol as that described in Ref. [18] for a two-color DLS scheme. 

Ensemble average of )(qS  was ensured by continuously rotating the sample during the 

measurements. To determine ),( τqf , “brute-force” ensemble averaging was done: The 

sample was rotated by a small angle between each time-averaged measurement to a 

different orientation, exploring more than one hundred configurations each of them 

corresponding to an independent  Fourier component. Since our samples did not present 

a significant influence of multiple scattering, our “brute-force” approach was also tested 

successfully using the procedure exposed in Ref. [19]. In this respect, the samples 

corresponding to our highest volume fractions and exhibiting a nonergodic behavior 

within our time window, showed a maximum deviation smaller than 2% in the 

nonergodicity parameters obtained by both methods. This result corroborates the 

statistical reliability of our ensemble averaging and the weak presence of multiple 

scattering.    
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FIG.1 Experimental SSFs at different concentrations. Volume fractions are normalized to unity.   

 

Using the previous protocol, the experimental SSFs for different volume fractions are 

shown in Fig. 1. The most apparent structural effect is the moderate change in the height 

and position of the main peak ( pq ) upon increasing φ . Roughly speaking, a larger 

height is associated to a higher probability to find two neighbor particles at the most 

frequent distance whereas the shift to higher q  implies a reduction of this distance.  The 

corresponding dynamic information is shown in Fig. 2, where the DSFs measured at the 

main peaks of the previous SSFs present an archetypal ergodic-to-nonergodic transition. 

The ergodic systems ( 0.17  and  155.0=φ ) show multi-step relaxation [2, 3]: Two 

typical β -decays, reflecting the localized motion of the particles in their cages, which 

are followed by the cage break-up (α -decay) [20]. For the nonergodic systems 

( 0.215  and  , 0.195 , 19.0=φ ), only the first β -decay remains (see inset Fig. 2), i.e. the 

particles only retain some local freedom during an experimental measurement [21]. This 

strong φ  dependence of the relaxation time (Fig. 2) associated to a moderate structural 

change (Fig. 1) is the most prominent signal of a structural relaxation process.  
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FIG.2 DSFs at the main peaks of the previous SSFs (Fig. 1). Symbols correspond to 

experimental data as shown in Fig. 1. Dashed lines stand for the MCT solutions (Eq. (1)). Solid 

lines are an example of interpolation curves for 0.17 =φ  according to the predicted power law 

behaviors for the first and second β -decays. The inset shows a detail of the first β -decay 

corresponding to the nonergodic systems. 

 

One of the main candidates for a theory of structural relaxation is the MCT. Its simplest 

version for a glass-forming liquid of identical colloidal particles consists in a discrete 

set of M integro-differential equations [22]: 

 

2 2

0 0

1 ( , ) ( , ')
( , ) ( , ') ' 0 ; 1,...,

( ) ( ) '

f q q q f q
f q m q d q M

D S q S q

ττ τ
τ τ τ τ

τ τ

∂ ∂
+ + − = ∀ =

∂ ∂∫   (1) 

 

where 0D  is the free diffusion coefficient and the ( , )m q τ  functions, known as kernels, 

are mode-coupling functionals expressed in terms of quadratic polynomials 

combinations: ),(),(),( τττ kfpfqm ∝  { }( )Mpk ,...,1, ∈ . The imposed initial 

conditions are ( ,0) 1  f q q= ∀ . A detailed discussion of the derivation and contents of 

this model can be found in Ref. [22].  
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Apart from ( )S q , if the theory is specialized to a HS system, the unique input parameter 

is the HS diameter, MCTσ , which is contained in ( , )m q τ . A remarkable difficulty 

appears if we want to use our experimental SSFs (Fig. 1) as input in the MCT equations 

to explain our dynamic results (Fig. 2): All length scales, then all q -values, are 

important and have to be considered. Therefore, we extended our experimental SSFs to 

4.28=σq , i.e. far beyond the observational limit which is placed at 68.5=σq (Fig. 1). 

This extension was performed by concatenating to our experimental SSFs those 

obtained from our rescaled mean spherical approximation assuming a monocomponent 

system. The employed q -range lead to relative errors smaller than 1% for the whole set 

of parameters defining the α  and β  decays of ),( τpqf . In this respect, a more 

complete discussion of our methodology will be presented elsewhere.  

 

Despite the “true” long range interaction between our particles, we used Eq. (1) for a 

50=M  component model with MCTσ  as unique fitting parameter, where the numerical 

discretization was similar as that presented in Ref. [22]. The power law behaviors 

predicted by the MCT for the first, ( ) a

pp qfqf
−

∝∞− ττ ),(),( , and second, 

( )b

pp qfqf ττ ∝∞− ),(),( , β -decays are well supported by the experimental data (Fig. 

2). Thus, for our ergodic systems, both the MCT solutions and the fitted power laws 

present almost constant values for the dynamic exponents which are consistent with 

those corresponding to a HS system [22]: 02.028.0 ±=MCTa  and 02.047.0 ±=MCTb  

(extracted from the MCT curves) whereas 01.030.0 ±=fita  and 02.049.0 ±=fitb  

(extracted from the experimental data and corresponding to the average exponents of 

both  155.0=φ  and 17.0=φ ). We should observe that the MCT solutions were 

adjusted to match the precise location of the plateau, given by the experimental 

inflection point σt (Fig. 2), and not by imposing the best fit for the dynamic exponents. 

In spite of the good theoretical description of the β -decays, we find deviations in the 

length and the height of the plateaus between our MCT curves and the experimental 

data which can be associated to a nonrealistic treatment of the polydispersity of our 

system [23]. However, this disagreement deserves a more systematic investigation to be 

elucidated since  the true  long range interaction between our particles could  also have a  
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non-negligible influence on it. For the nonergodic systems, the MCT predictions also 

provide an excellent description of the first β -decays (see inset Fig. 2) where 

03.033.0 ±=a . We emphasize that the whole set of the MCT curves (ergodic and 

nonergodic systems) are consistent with a ratio 03.041.1/ ±=σσ MCT . This result also 

supports the idea that the essential physics of our system can be captured by an effective 

HS interaction. Concerning the value of gφ , any finite time measurement precludes its 

precise determination since it is formally associated to a singularity at which the 

relaxation time diverges. Although the measured ),( τpqf  present a nondecaying 

behavior from 19.0≈gφ  within our time window, we can perform an additional test to 

assume a value for gφ  from the power law behavior placed by the MCT for the location 

of the plateau: 
a

tt
2/1

0 εσ =  [2, 3]. Here 0t is the system microscopic time associated to 

the initial intra-cage dynamics and ( )
gg φφφε /−= . Thus, assuming 19.0=gφ  and 

according to this scaling behaviour, our experimental σt  at 0.17  and  155.0=φ  give us 

a common value st 3
0 10−≈ , which is a coherent time for the initial dynamics of our 

particles. Contrary to previous works [8], where an experimental time domain 

description was not performed, we next show that the macroscopic mechanical response 

of our system to small-amplitude oscillatory shear (SAOS) is also explained by the 

described spontaneous cage dynamics.  

 

IV. FREQUENCY DOMAIN DESCRIPTION: RHEOLOGY AND 

MODE COUPLING THEORY 

 

SAOS frequency sweep tests allow to measure viscoelastic observables such as 'G  and 

''G , providing a mechanical fingerprint of the material [11]. Although not only the 

linear [8, 24] but also the nonlinear [25, 26] rheology of colloidal glasses have been 

described in the past using a mode coupling formalism, here we focus on the linear 

viscoelastic regime (LVR). 

 

Our rheological tests were carried out using a Paar Physica MCR rheometer. Parallel 

plates of  40 mm  diameter  were used  to minimize handling problems which frequently  
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come up for long relaxation time fluids. Precautions were also taken to avoid any 

sample evaporation: A small amount of low viscosity silicone oil was poured at the rim 

of the upper disc and, furthermore, a solvent trap was used. To prevent wall slip, 

surfaces were covered with sandpaper. The temperature was fixed at 25.0 ± 0.1 ºC and 

controlled using a Peltier. The spacing between the plates was 300 µm (more than 1000 

times the typical size of the constituents). The sample was initially subjected to a gentle 

steady shear rate of 20 s-1 during 10 s. After this, a 30 s rest period followed where no 

shear was applied ensuring that the local stresses created during the cell loading had 

relaxed and obtaining a reproducible initial state. This way the same structure 

conditions exist at the beginning of each test. Next, a sinusoidal shear strain was applied 

to the sample, and the stress response of the material to this deformation was then 

analyzed. Two kinds of rheological experiments were performed: i) Strain amplitude 

sweeps at a frequency of 1 Hz to determine the extent of the LVR. ii) Oscillation 

frequency sweeps in the LVR to obtain the mechanical spectrum of the sample, where 

)(' ωG  and )('' ωG  were determined, respectively, as the stress in-phase and in-

quadrature with the strain divided by the strain amplitude.  

 

The strain amplitude dependence of 'G  and ''G  is shown in Fig. 3. At low volume 

fractions, ''G  is larger than 'G  as expected for a viscous material. However, upon 

increasing concentration, 'G  overpasses ''G  ( 0.18 >φ ), presenting a single-stage 

yielding typical of a repulsive colloidal glass with ''10' GG ≈  [27]. We highlight that the 

volume fraction corresponding to this rheological transition is in agreement with that at 

which the ergodic-to-nonergodic transition was documented by DLS ( 19.0≈gφ ). This 

result supports the argument that macroscopic elasticity is a consequence of the 

microscopic particle-level arrest. Whatever the volume fraction in the nonergodic state, 

the LVR safely extends up to strain amplitudes of 3 %. Above this strain value, 

structure breaks, 'G  decreases and ''G  reaches a maximum. Miyazaki et al. [28] 

provide a qualitative argument to explain this ubiquitous behavior in metastable 

complex fluids in terms of the MCT, adopting the “isotropically sheared hard-sphere 

model” [29]. In this respect, we observe that the low-strain storage modulus plateau, 

PG , scales with φ  as 2.12.12 ±∝ φPG  (see inset Fig. 3). This power law dependence can 

be derived  from a simple scaling  analysis at maximum packing ( 31−∝ φr ) involving  a  
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power law behavior for the interaction potential ( nrV −∝ ) and PG  ( 221 rVr ∂∂∝ − ). 

Accordingly, in our case the interaction potential would scale as 34−∝ rV , a result 

which is, once more, in accord with the effective HS-description also supported by our 

previous DLS study. Furthermore, the volume fraction dependence of PG  and ),( τpqf  

is also shown in the inset, Fig. 3. A clear correlation exists, suggesting that both the 

constant PG -value and the nondecaying behavior of ),( τqf do reflect the same physical 

information. However, the theoretical elucidation of this correlation is still a matter of 

debate that may be right at the heart of the existence of a true yield stress associated to 

the onset of flow [30, 31]. 

                 

FIG.3 SAOS strain sweep curves at different volume fractions: 0.14 (squares), 0.16 (circles), 

0.18 (up triangles), 0.2 (down triangles), 0.22 (diamonds). 'G  is represented by solid symbols 

and ''G  by open symbols. Lines are plotted to guide the eye. Inset: Volume fraction 

dependence of PG  and ),( ∞pqf in the LVR (for the ergodic systems ),( ∞pqf  was taken as 

),( σtqf p , see Ref. [5]). 
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To understand now the data corresponding to our oscillation frequency experiments, 

functions in frequency domain for ( )ω'G  and ( )ω''G  can be proposed for the β -decays 

via Fourier transformation as a validation of the fluctuation-dissipation theorem [1, 8]: 

 

( ) ( ) ( ) ( ) ( ) 















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


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
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2
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2
sin1''        (3) 

 

where σG  determines both the functional frequency dependence of ( )ω'G  and the 

magnitude of ( )σtG 1'' , Γ  is the gamma function, ∞η  is the viscosity of the dispersing 

medium, and 1=B  ( 0=B ) for gφφ <  ( gφφ > ). In Fig. 4, we show a comparison 

between our experimental results for %1=γ  and the theoretical predictions (Eq. (2) 

and (3)). It should be stressed that we connected our DLS and rheological experiments 

by using as input parameters those previously obtained from our DLS measurements 

( fita , fitb , and σt ), σG  being the unique free parameter. In all cases, a reasonable 

agreement is found bearing in mind that the observed scatter at low φ  is due to the 

limited torque experimental resolution. Once more, a significant change in 'G  is found 

somewhere close to the glass transition, 0.18 >φ , where ( )ω'G  overpasses ( )ω''G  for 

any frequency within the explored ω -range (Fig. 4 (a) and (b)). For our highest φ -

values ( 0.22  and  2.0=φ ), 'G  is almost constant and about one order of magnitude 

larger than ''G , as expected at the glassy state. Finally, ''G shows a minimum at an 

excitation frequency around 
a

tt
2/11

0
1 −−− = εσ (Fig. 4 (b)) which is consistent with our 

DLS measurements (Fig. 2) [32], enhancing the connection between our time and 

frequency domain descriptions.  
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FIG.4 Mechanical spectra in the LVR: (a) )(' ωG  and (b) )('' ωG . Symbols correspond to 

experimental data as shown in Fig. 3. Lines stand for the MCT predictions (Eq. (2) and (3)). 

 

V. CONCLUSIONS 

 

The relaxations of both spontaneous and shear-induced fluctuations in repulsive 

colloidal suspensions near the GT have been empirically presented within a common 

structural relaxation process, supporting their equivalence on a mode coupling 

formalism. Our work encourages the impetus for more future systematic investigation to 

highlight the role of this equivalence. 
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Paper VI 

 

Non-monotonic Temperature 

Evolution of Dynamic Correlations 

in Glass-Forming Liquids 
 

 

 

 

 

 

 

 

 

 

 

“Wir müssen wissen. Wir werden wissen.“∗ 

David Hilbert 

                                                 
∗ “We must know. We will know.” Phrase pronounced at the 1930 annual meeting of 
the Society of German Scientists and Physicians. It was declaimed in opposition to the 
19th century Latin maxim “ignoramus et ignorabimus” ("we do not know and we will 
not know"). 
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Abstract 

 

The viscosity of glass-forming liquids increases by many orders of magnitude if their 

temperature is lowered by a mere factor of 2-3 [1, 2]. The microscopic mechanisms 

governing structural relaxation in viscous liquids are not well understood and therefore 

there exists no well-accepted theoretical explanation for this dramatic evolution that 

ultimately leads to the glass transition [2]. Recent studies suggest that this widespread 

phenomenon is accompanied by spatially heterogeneous dynamics [3, 4], and a growing 

dynamic correlation length quantifying the extent of correlated particle motion [5–7]. 

However, the microscopic origin, nature and geometry of these collective movements 

remain largely unknown. Here we use a novel numerical method to detect and quantify 

spatial correlations which reveals a surprising non-monotonic temperature evolution of 

spatial dynamical correlations, accompanied by a slower, monotonic growth of a second 

lengthscale of a very different nature. Our results directly unveil a dramatic qualitative 

change in atomic motions near the mode-coupling crossover temperature [8] which 

involves no fitting or indirect theoretical interpretation. We observe a maximum in the 

size of dynamic correlations that has gone so far undetected, which we interpret as a 

striking signature of an avoided dynamical critical point. At low temperature, we also 

observe an accelerated growth of a static correlation length scale, suggesting that the 

development of amorphous order [9] controls structural relaxation. Our results impose 

severe new constraints on theoretical descriptions of the glass transition, and open 

several research perspectives, in particular for experiments, to confirm and quantify our 

observations in real materials. 
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More than forty years ago Adam and Gibbs [10] put forward the seminal idea that the 

relaxation dynamics of highly viscous liquids occurs through ‘cooperatively relaxing 

regions’. Their theory suggested that particle motion occurs in a collective manner in 

localized domains whose typical size is controlled by entropy, and thus increases with 

decreasing temperature. This result implied that the relaxation mechanism is controlled 

by a unique lengthscale of thermodynamic origin with a direct signature in the 

dynamics. This approach regained momentum in the 1990’s when novel experimental 

techniques and large scale computer simulations established the presence of dynamical 

heterogeneities, i.e. localized regions where dynamics is significantly different from the 

average [3, 4], although these observations can also be interpreted as a purely dynamical 

phenomenon [11]. 

 

A qualitatively similar, but much more detailed, theoretical description is obtained 

within the framework of the random first order transition (RFOT) theory [12]. Within 

this approach, there exists an ideal glass transition which underlies glass formation, with 

an associated diverging correlation lengthscale of entropic origin, related to the 

existence of a large number of long-lived metastable states. At very low temperature, 

the glassformer is described as a ‘mosaic’ of correlated domains that rearrange in a 

thermally activated, collective manner, such that again static and dynamic correlations 

coincide and grow with the viscosity [13]. However, models with an RFOT (mainly 

mean-field like models) also display a ‘spinodal’ singularity at a higher temperature, cT , 

at which metastability is lost and therefore the mosaic picture is no longer useful [12, 

14]. Thus above cT , a different approach must be used and it is found that the dynamics 

within mean-field models [15] has profound similarities with the one predicted from 

mode-coupling theory [8], where cT  corresponds to a dynamic critical point associated 

with a diverging dynamical correlation length [16]. Thus, even at the theoretical level, 

the physics near cT  remains ‘mysterious’ [17]: How can a dynamical correlation length 

diverge at two distinct temperatures? The mystery thickens in finite dimensions for 

which the mode coupling singularity is cut off, and its existence can be inferred only 

from fitting relaxation data [8], a procedure that is prone to criticisms, and therefore the 

physical relevance of the ‘avoided’ singularity at cT  has remained a debated issue. 

 



Paper VI - Under revision in Nature 
______________________________________________________________________ 

213 
 

 

Progress is also slow because experiments on molecular systems do not have enough 

resolution to follow atomic motions over long times [3], and numerical simulations 

often cannot access low enough temperatures to make definite statements on the size 

and nature of dynamic heterogeneities (in fact there are so far no numerical studies on 

the dynamical heterogeneities below cT ). At present, the most direct measurements [4] 

seem to indicate the growth of a dynamical correlation length increasing from 1-2 

particle diameters at moderately supercooled temperatures to 5-10 diameters close to the 

glass transition temperature, but the interpretation of the experimental data is often 

rather difficult [7]. 

 

In parallel to the quest for a dynamical length scale, evidence has also been found for an 

increasing of static correlations. However, this information is not captured by standard 

two-point correlation functions. Recent work has for instance suggested the growth of 

locally favored geometric structures in some model systems [18, 19], but these methods 

are not easily generalized to different glass-formers. One possibility to tackle this 

problem are the point-to-set correlations which are an elegant, general method to 

capture the multi-point static correlations which might characterize the non-trivial 

structure of viscous liquids [20]. The conceptual idea is to ‘pin’ the position of a 

number (or a ‘set’) of particles in an equilibrated configuration of the fluid, and measure 

how the position of the remaining particles is affected. It was recently argued that in the 

geometry in which particles outside a spherical cavity are pinned, this point-to-set 

correlation should detect the typical domain size of the RFOT theory mosaic state [21]. 

Numerical simulations confirmed qualitatively the growth of point-to-set correlations in 

this particular geometry [9]. However, the connection to dynamic correlations and the 

precise temperature dependence of the various lengthscales were not studied, and these 

results did not resolve the ‘mystery’ [17] of the cT  crossover. 

 

Inspired by previous work on confined fluids [22], we have generalized the idea of a 

point-to-set correlation to a novel geometry. We pin particles in a semi-infinite space 

and detect the resulting effect on the other half space. The principal advantage is that we 

can measure simultaneously  the static and dynamic profiles induced by the frozen wall.  
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Additionally we were able to perform simulations from the high temperature liquid 

down to below cT  with a realistic molecular dynamics, thus allowing us to resolve at 

once multi-point static and dynamic correlations in a very broad temperature regime 

encompassing the (hypothetical) mode-coupling crossover. 

 

We study a binary mixture of quasi-hard spheres [23], as described in the Methods. The 

fluid is equilibrated by means of standard molecular dynamics using periodic boundary 

conditions in all three directions. To simulate particles pinned within a semi-infinite 

space, 0<z , it is enough to freeze at an arbitrary time 0=t  the position of all particles 

within a slice of thickness σ4.1=walld  which is perpendicular to the z −axis: They 

form our ‘set’. Because we use periodic boundary conditions, we work with a very large 

system size in the z -direction, ensuring that bulk behaviour is recovered at the center of 

the simulation box, i.e. the replicated walls do not interfere with each other. 

 

To properly measure a point-to-set correlation it is crucial that these frozen walls have 

the same structure as the equilibrated liquid at temperature T , such that the average 

static properties of the confined liquid are unperturbed [20, 22]. We have measured how 

far (in z ) the wall influences both the static local density field and its dynamics, giving 

us independent access to static and dynamic correlation length scales. Note that within 

RFOT theory, the spatial extent of the static profile near a wall is not directly controlled 

by the mosaic lengthscale [14], and a comparison with results obtained with a spherical 

cavity [9] is not immediate. 

 

A convenient observable to characterize the influence of the wall is the overlap profile 

),( ztqc , defined as follows [9]. We discretize space into small cubic boxes of linear size 

σδ 55.0≈ , and define 1)( =tni  if box i  is occupied by at least one particle at time t , 

and 0)( =tni  if not.  
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The overlap profile in the z direction with respect to the template configuration at time 

0=t  is 
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where the sums run over all boxes at distance z  from the wall, ⋅⋅⋅  is the usual thermal 

average, and [ ]wall⋅⋅⋅  is an additional average over independent wall realizations. Thus 

),( ztqc  quantifies the similarity of particle configurations separated by a time t  at 

distance z , and, by construction, 1),0( == ztqc , for all z . We also studied ),( ztqs , 

the single particle version of Eq. (1), obtained by requesting that the box i  is occupied 

at times 0 and t  by the same particle. 

 

       

 

FIG. 1: (a) Time dependence of 

the overlap ),( ztqc , Eq. (1), for 

0.8=T  and various values of 

z , increasing from 0.2736=z  

(near the wall, rightmost curve) 

by increments of 0.2. The 

leftmost curve presents the bulk 

behaviour. (b) z −dependence of 

the nontrivial part of the static 

overlap )(zq∞  for different 

temperatures (symbols). The 

solid lines are fits with the 

exponential given in Eq. (3). 
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In Fig. 1a we show the time dependence of ),( ztqc  at 0.8=T  for different values of z . 

For large z  (leftmost curves) the correlators become independent of z  and present the 

bulk behavior. The presence of a shoulder at intermediate times reflects the usual cage 

motion of particles observed in glassy systems [2]. In the long-time limit, ∞→t , the 

correlator decays to 110595.0=randq , the probability that a box is occupied, a quantity 

we measured with high precision from bulk simulations. With decreasing z , the height 

of the plateau at intermediate times increases and the timescale to reach it decreases. 

The final decay becomes much slower near the wall than in the bulk, showing that the 

α -relaxation is strongly affected by the frozen wall. Furthermore the long-time limit of 

the overlap increases from its trivial value, randc qztq >∞→ ),( , showing that 

sufficiently close to the wall, the density cannot freely fluctuate. Thus the set of frozen 

particles with 0<z  influences the position of the liquid particles at 0>z  over a non-

trivial static lengthscale. Finally, Fig. 1a shows that there exists a range of z  values for 

which the long-time limit of the overlap is the trivial bulk value, while the relaxation 

timescale is slower than the bulk. This directly shows, with no further analysis, that 

dynamic correlations have a larger range than static ones, as we confirm below. 

 

To quantify these observations, we fit the final decay of ),( ztqc  to the stretched 

exponential form 

 

[ ] ∞+−=− qtAqztq randc

βτ )/(exp),( ,      (2) 

 

where A , τ , β , and ∞q are fitted for each z . The profile of the static overlap, )(zq∞   

measures how far from the wall density fluctuations are correlated, while )(zτ  

measures how far dynamics is affected. We found that Eq. (2) also describes well the 

single particle overlap, ),( ztqs , with the obvious difference that 0),( =∞→ ztqs , 

because all particles eventually leave the box that they occupy at 0=t . Thus, we obtain 

a second, ‘self’ dynamic profile from the study of ),( ztqs .  

 

 

 



Paper VI - Under revision in Nature 
______________________________________________________________________ 

217 
 

 

In Fig. 1b, we display the temperature evolution of the static overlap profiles )(zq∞ . 

The semi-log plot suggests to describe these data using an exponential decay [24]  

 

( )statzBzq ξ/exp)( −=∞ ,        (3) 

 

which allows us to define a static point-to-set correlation lengthscale )(Tstatξ . From 

these data it is clear that statξ  grows when temperature decreases, a result in good 

qualitative agreement with previous work [9] using a very different geometry. Notice 

that )(TB  also changes rapidly with T  , which suggests to define statstat TB ξξ )(int ≡−   

as a convenient estimate of the integrated profile, ∫≈
∞

∞
−

0

int )( dzzqstatξ . 

 

We now analyse the dynamic profiles. To take into account the fact that the amplitude 

and stretching of the time dependent correlations evolve with z , see Fig. 1a, we have 

calculated the area under the correlators ),( ztqc  and ),( ztqs , taking into account only 

the secondary, slow relaxing part. We denote these resulting times by )(zcτ  and )(zsτ , 

respectively. Previous studies [22] have suggested that for large z  the z −dependence 

of )(zsτ can be described well by an exponential functional form, 

 

( ) ( ) ( )dyn

ss

bulk

ss zB ξττ /exploglog −+= ,      (4) 

 

where )(zBs  and, more importantly, the dynamic lengthscale, )(Tdyn

sξ , are adjusted for 

each z . The bulk relaxation time )(Tbulk

sτ  is measured independently with a very good 

precision, see Fig. 2a. Using a power law fit inspired by mode-coupling theory [8], 

( ) γτ −
−∝ c

bulk

s TTT )( , we obtain 2.5≈cT , but deviations from the algebraic fit appear 

above cT  near 0.6=T , see Fig. 2a. 

 

In Fig. 2b we show that the data at large z  can indeed be fitted well by the ansatz in Eq. 

(4). We have found a similar behaviour for  )(zcτ , providing us with a second dynamic  
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correlation lengthscale, )(Tdyn

cξ . For high temperatures Eq. (4) gives a good description 

of the data over the entire range of distances z . For intermediate and low temperatures 

we see the development of a curvature in a semi-log plot, suggesting at small z  

deviations from the simple exponential dependence. This might suggest, although very 

indirectly, the appearance of more than one relaxation process for the relaxation 

dynamics. 

 

 

 

 

 

A remarkable behaviour occurs at intermediate and large distances, which has, to our 

knowledge, remained undetected. The dynamic profiles exhibit a striking nonmonotonic 

evolution with temperature. A close inspection of Fig. 2b shows that the dynamic 

profiles  extend   to  increasingly  larger  distances  when   temperature  decreases  from  

 

FIG. 2: (a) Temperature 

evolution of bulk relaxation time 

for large (top) and small 

(bottom) particles. Solid lines 

represent a power-law fit with 

2.5≈cT  (dashed line), the 

arrow indicates  0.6=T  where 

deviations from the fit appear. 

(b) z −dependence of the 

relaxation time ),( Tzsτ at 

various temperatures. Note the 

non-monotonic T −dependence 

at intermediate and large z .      
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0.30=T  down to 0.6=T , but become shorter-ranged when T  is decreased further, 

down to 25.5=T  and then  0.5=T . The maximum occurs near 0.6=T , which is also 

the temperature where deviations from mode-coupling fits appear, see Fig. 2a. 

 

We have carefully checked that this behaviour is not a result of our numerical analysis. 

A direct visual inspection of the time correlations functions ),( tzqs  reveals that the 

spread of the curves in the slow decay has a maximum at 0.6=T , so that the non-

monotonic temperature behavior in Fig. 2a is not an artifact of our fits, but is a genuine 

effect. In addition, we found very similar results for the collective relaxation time, 

),( Tzcτ , which further shows that this non-monotonic behavior does not sensitively 

depend on the considered observable. Thus, these results give us direct evidence that the 

relaxation processes responsible of spatial dynamic correlations have a non-monotonic 

temperature behavior. To our knowledge, all previous numerical and experimental 

studies of spatially heterogeneous dynamics have reported spatial correlations which 

grow as the temperature is decreased and dynamics slows down [3–7, 19]. 

 

                       

FIG. 3: Temperature dependence of static and dynamic length scales identified in this work. 

The arrow at 0.6=T  and the dashed line at 2.5=cT  are as in Fig. 2. Dynamic length scales 

display a non-monotonic behaviour with a maximum at 0.6=T , while static length scale 

increase modestly above cT . 

                   

In Fig. 3 we summarize the temperature dependence of the static and dynamic 

lengthscales  identified  above. The  static length  scales  show  a  modest but steady and  
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monotonic growth with decreasing temperature, which seems to become more 

pronounced below 0.6≈T . These are natural findings from the RFOT theory 

perspective [12, 14, 17], in the sense that static correlations should only become 

prominent below cT . We also include in Fig. 3 the dynamic lengthscales, which have a 

striking local maximum near 0.6=T . A comparison with Fig. 2a strongly suggests to 

interpret this maximum in the context of RFOT theory where a dynamic critical point at 

cT  exists in the mean-field limit (but which is avoided in finite dimensions) whereas 

activated dynamics governed by growing static correlations appears at low 

temperatures. Using RFOT theory Stevenson et al. have suggested that around cT  the 

cooperative domains should indeed change shape, in that they have an open structure 

above cT  and a more compact structure below cT  [25]. Our findings may be viewed as a 

striking confirmation of this scenario. Although a gradual change from ‘flow-like’ to 

‘hopping’ motion was often invoked in the past [8], mainly to rationalize successes and 

failures of the mode-coupling theory, our results provide a very direct, microscopic 

evidence of a change of relaxation mechanism which involves no theoretical fitting or 

indirect interpretation. 

 

If we naively extrapolate our results to lower temperatures, we find a temperature below 

which static correlations become larger-ranged than dynamic ones, a situation which is 

physically not very meaningful. We are led to speculate that at much lower 

temperatures, dynamic lengthscales should exhibit an upturn, and perhaps become 

slaved to static ones, as in the Adam-Gibbs picture [10] and the scaling regime of RFOT 

theory [12]. However, studying numerically this final regime is at present too difficult. 

We suggest that experimental work is needed to resolve these issues further. Our study 

also suggests that investigations of confined systems should be revisited in both 

simulations and experiments, and the mode-coupling crossover studied more 

extensively in glassformers of varying fragility. However, since the model investigated 

here has no unusual features regarding the relaxation dynamics [23], we expect our 

results to apply also to other simple models such as hard spheres, Lennard-Jones-like 

systems, or soft spheres. 

 

 



Paper VI - Under revision in Nature 
______________________________________________________________________ 

221 
 

 

Methods– We study an equimolar binary mixture of harmonic spheres [23] with 

diameter ratio 1.4, with interactions between particle i  and j  given by 

 

( )2
)( ijjiij rrrV σε −−=

rr
 if ijji rr σ<−

rr
,     (5)   

 

where σσ ≡11  is the unit of length, 2.112 ≡σ , and 4.122 ≡σ . The total number of 

particles is 4320 and all of them have the same mass m . Time is expressed in units of 

εσ /2m  and temperature in units of ε410− , setting the Boltzmann constant 0.1=Bk . 

We have used a rectangular box of size 68.13== yx LL  and 2.34=zL , yielding a 

number 0.6749715 =ρ . The equations of motion have been integrated with the velocity 

form of the Verlet algorithm. The longest runs extended over 830 million time steps, 

which took about 6 weeks of CPU time on a high end processor. In order to improve the 

statistic of the results we have averaged over 10-30 independent walls. The total amount 

of computer time to obtain the described results was therefore around 7 years. In 

practice, to prevent particles to penetrate in the frozen half-space, we introduced at the 

two surfaces of the frozen slice an infinitely hard wall, and have checked that this frozen 

geometry has negligible influence on the structure of the fluid. Note that we are 

investigating here a dynamical equilibrium, i.e. all fluid particles can leave their initial 

positions and explore the whole confined space, thus assuring thermodynamic 

equilibrium conditions. 
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Conclusions 

 

What have we learned?  

 

The first part of this dissertation concerns the Brownian dynamics of rigid and 

deformable mesoscopic particles suspended in a molecular liquid. We have learned that 

there is no way to discriminate between the (diffusive) motion at long times of rigid and 

deformable Brownian particles. We have also learned that this discrimination can be 

made if we explore the Brownian motion at short times, that is, times at which dynamics 

is still non-diffusive. At such as short times, the Brownian motion of rigid particles is 

understood in terms of a crossover between ballistic and diffusive motion: The long 

time tail prediction works. However, for deformable Brownian particles we have to 

consider not only translational but also deformational motion, where the latter is a 

consequence of the specific flexibility of the particles. Therefore, merely by appealing 

Brownian dynamics, we can distinguish between two deformable particles with similar 

size but different elastic properties. Nevertheless, it is also true that, despite our efforts 

to understand the Brownian dynamics of deformable mesoscopic particles, a complete 

theoretical understanding of this motion, including the coupling between translational 

and deformational degrees of freedom, still remains elusive.          

 

Our second finding also concerns Brownian motion. So far, the most widely used 

experimental technique to study Brownian motion has been dynamic light scattering 

(DLS). In this sense, here we have provided a stochastic description of the signal 

detected in conventional DLS experiments for Markovian observations of the particle 

position. From a purely theoretical viewpoint, we have shown that this fluctuating 

signal has a stochastic representation: The Ornstein-Uhlenbeck (OU) process. Thus, the 

electric fields scattered not only by  monodisperse but also by  polydisperse Brownian 

particle systems have been satisfactorily pictured by the notion of the OU process. 

Concerning  practical  purposes,  we have further shown  that  this representation results  
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in a useful tool for characterizing colloidal mixtures of variable size as well as for 

testing digital correlators. In spite of this finding, we do not have a model for describing 

adequately the detected signal for non-Markovian observations of the Brownian particle 

position.  

 

The second part of this dissertation shows an example of structure and dynamics: The 

fractal organizations arising in an evolving aggregating suspension of charged 

liposomes as consequence of their short range (London-van der Waals) attractions. We 

have learned that the short range hydration repulsive forces between lipid membranes 

play a central role on these aggregation processes. That is, the classical DLVO theory, 

where hydration forces are not considered, does not explain part of our experimental 

phenomenology. Thus, if hydration is negligible, e. g. in the presence of divalent 

Calcium, aggregation kinetics and fractal structures are similar to those reported for 

more conventional mesoscopic particles such as polystyrene microspheres. However, if 

hydration is obvious, as in the presence of divalent Magnesium, compact fractal 

structures scarcely documented in the previous literature emerge: Surface fractals.  In 

this sense, we have reported an interesting transition from surface to mass fractal 

structures upon increasing Magnesium concentration. Since hydration forces are 

significant in our study, we have proposed a methodology to quantify the hydration 

grade of the liposome surfaces by means of Fourier-Transform infrared spectroscopy. 

However, some important problems remain unsolved such as the elucidation of an 

adequate theoretical description of the hydration forces and their role to prevent 

membrane fusion.   

 

The final part of our investigation treats the glass transition phenomenon. Founding our 

interpretation on the Mode Coupling Theory (MCT), we have shown that the 

phenomenology in time and frequency domains of the relaxation dynamics of a 

colloidal system near the glass transition is governed by a common set of dynamic 

parameters. That is, both descriptions can be understood in terms of a common 

structural relaxation process. Moreover, our work connects the breakdown of the system 

ergodicity with the emergence of the glass elasticity. However, we know that MCT has 

a range of validity. The naive physicist’s question arises: Is MCT valid whereas the 

structure of a glass-forming liquid is similar to that of a normal liquid?   
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To explore the emergence of “non-liquid” structures in glass-forming liquids, we have 

proposed a gedankenexperiment whose realization has been performed by means of a 

molecular dynamics simulation.  As a result, we observed the accelerated growth of an 

amorphous structural order near the mode-coupling crossover temperature. This 

acceleration is accompanied by a striking dramatic change in the system relaxation 

dynamics which had been so far undetected. This latter effect leaves its signature as a 

maximum in the size of the dynamic correlations. Could our results be an initial step to 

confirm the MCT crossover? Does our growing static correlation length control 

structural relaxation near the glass transition? Can we construct a solid theoretical 

“bridge” between these structures and the system relaxation dynamics? Hopefully, our 

work will encourage future systematic investigation devoted to answer these questions. 
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Conclusiones 

 

¿Qué hemos aprendido? 

 

En la primera parte de esta disertación hemos estudiado la dinámica Browniana de 

partículas mesoscópicas rígidas y deformables suspendidas en un líquido molecular. 

Hemos aprendido que no podemos discriminar entre el movimiento difusivo (a tiempos 

largos) de partículas rígidas y deformables.  Hemos aprendido también que esta 

discriminación es posible si exploramos el movimiento Browniano a tiempos cortos, 

esto es, tiempos para los cuales la dinámica no es todavía difusiva. Para estos tiempos, 

el movimiento de las partículas Brownianas rígidas presenta un cambio que puede ser 

entendido como una transición de movimiento balístico a movimiento difusivo: la 

predicción de “la cola a tiempos largos” funciona. Sin embargo, para partículas 

Brownianas deformables debemos considerar no sólo el movimiento de traslación sino 

también el movimiento de deformación, siendo este último una manifestación de la 

flexibilidad de la partícula. De esta manera, simplemente apelando al estudio de la 

dinámica Browniana, podemos distinguir entre dos partículas deformables que tengan 

un tamaño similar pero diferentes propiedades elásticas. En cualquier caso, es también 

cierto que, a pesar de nuestros esfuerzos por entender la dinámica Browniana de 

partículas deformables, carecemos todavía de una comprensión teórica completa de este 

movimiento que incluya el acoplamiento entre grados de libertad de traslación y 

deformación. 

 

Nuestro segundo resultado se refiere también al movimiento Browniano. Hasta hoy, la 

técnica experimental más ampliamente utilizada para el estudio del movimiento 

Browniano ha sido la dispersión dinámica de luz (que aquí notaremos con su acrónimo 

inglés, DLS).  En esta disertación, hemos descrito estocásticamente la evolución 

temporal de la señal detectada en experimentos convencionales de DLS para 

observaciones  Markovianas de la  posición  de  las  partículas.  Desde un punto de vista  
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puramente teórico, hemos mostrado que esta señal fluctuante posee una representación 

estocástica bien definida: el proceso de Orsntein-Uhlenbeck (OU). Así, la señal 

correspondiente al campo eléctrico dispersado no sólo por sistemas monodispersos sino 

también por sistemas polidispersos ha sido satisfactoriamente representada mediante la 

noción de proceso de OU. En cuanto a la aplicación práctica, hemos mostrado además 

que esta representación deviene en una herramienta útil para la caracterización de 

mezclas coloidales de tamaños variables, así como para la calibración de correladores 

digitales. A pesar de haber logrado ciertos objetivos, no poseemos un modelo 

estocástico adecuado con el que describir la señal detectada para observaciones no 

Markovianas de la posición de las partículas. 

 

La segunda parte de esta disertación muestra un ejemplo de estructura y dinámica: las 

organizaciones fractales que emergen en una suspensión agregante de liposomas 

cargados como consecuencia de sus interacciones atractivas de corto alcance (London-

van der Waals). Hemos aprendido que las fuerzas repulsivas de hidratación entre 

membranas lipídicas juegan un papel central en estos procesos de agregación. De esta 

manera, si la hidratación es despreciable, como ocurre en presencia del catión de Calcio 

divalente, la cinética de agregación y las estructuras fractales resultantes son similares a 

las documentadas para otras partículas mesoscópicas más convencionales, v. g.  

partículas de poliestireno. Sin embargo, si la hidratación es patente, como ocurre en 

presencia del catión de Magnesio divalente, aparecen estructuras compactas que hasta 

ahora han tenido una presencia muy escasa en la literatura precedente: los fractales de 

superficie. En este sentido, hemos documentado una interesante transición entre 

fractales de superficie y fractales de masa a medida que aumentamos la concentración 

de Magnesio. Dada la relevancia de las fuerzas de hidratación en este trabajo, hemos 

propuesto una metodología para cuantificar el grado de hidratación de las superficies 

lipídicas de nuestras partículas mediante el uso de espectroscopía de infrarrojos. No 

obstante, quedan todavía problemas abiertos tales como la dilucidación de un marco 

teórico con el que describir las fuerzas de hidratación así como su papel para prevenir la 

fusión entre membranas lipídicas.         
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La parte final de nuestra investigación aborda el fenómeno de la transición vítrea. 

Basando  nuestra  interpretación  en  la  teoría de modos acoplados (usamos aquí su 

acrónimo inglés, MCT),   hemos   mostrado  que  las descripciones fenomenológicas  en  

los  dominios  del   tiempo  y  la frecuencia de la dinámica de relajación de un sistema 

coloidal cercano a la transición vítrea, están gobernadas por un conjunto común de 

parámetros dinámicos.  Esto nos dice que ambas descripciones pueden ser entendidas en 

base a un proceso de relajación estructural común. Hemos conectado, además, la ruptura 

de la ergodicidad del líquido vítreo con la aparición de la elasticidad propia del vidrio. 

Sin embargo, sabemos que la MCT tiene un rango de validez. Llega entonces la 

pregunta del físico ingenuo: ¿Es la MCT válida mientras la estructura del líquido vítreo 

es similar a la de un líquido normal? 

 

Con objeto de explorar la aparición de estructuras “no-líquidas” in líquidos vítreos, 

hemos propuesto un experimento mental (gedankenexperiment) cuya realización se ha 

llevado a cabo mediante una simulación de dinámica molecular. Como resultado, 

observamos el crecimiento acelerado de un orden estructural amorfo cerca de la 

temperatura de transición de la MCT. Esta aceleración está acompañada por un cambio 

dramático y significativo en la dinámica de relajación del sistema que hasta ahora no 

había sido detectado. Este último efecto deja su firma a modo de máximo en el tamaño 

de las correlaciones dinámicas. ¿Podrían ser nuestros resultados un paso inicial para 

confirmar la existencia de la transición predicha por la MCT? ¿Nuestra longitud estática 

creciente controla la relajación estructural cerca de la transición vítrea? ¿Podemos 

construir un puente sólido entre estas estructuras y la dinámica de relajación del 

sistema? Tal vez, nuestro trabajo impulse la aparición de investigaciones sistemáticas 

futuras dedicadas a dar respuesta a estas preguntas.  
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APPENDIX A 

 

Resolution of the Smoluchowski Equations 

 

As mentioned in Chapter 4 (section 4.4), the existence of an explicit solution for the set 

of Smoluchowski Equations (4.16) depends on the chosen kernel. Not unfrequently, 

Equations (4.16) have to be solved numerically, e.g. the Brownian kernel (4.24) and the 

RLCA kernel (4.25) (see also Paper III, section IV.C). Accordingly, in this appendix we 

present a simple method, used within this dissertation, to obtain and validate the 

numerical solution of Equations (4.16) for those cases with no analytical solution. Our 

procedure is based on a Runge-Kutta fourth order explicit method. To have a precise 

approach to the mathematical and programming fundamentals, the reader can consult 

references [1, 2] at the end of this appendix.         

 

By definition, an explicit method allows us to express the value of the unknown 

function ( )y t h+  at time t h+  as a function of its values at previous times. One simple 

case is: 

 

( )( ) ( ),y t h F y t t+ =          (A.1) 

 

Where ( )y t h+  is an explicit function of )(ty  and time. Thus, relation (A.1) can be 

used as basis to solve numerically the complete problem:   

 

( ) 0
( )

( ),    , (0)
dy t

f y t t y y
dt

= =        (A.2) 
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In the case of the Runge-Kutta fourth order explicit method, problem (A.2), under the 

explicit option (A.1), results in the well known discretization: 

 

( )

( )

( )

1 2 3 4 0

1

2 1

3 2

4 3

( ) ( ) 2 2     , (0)
6

( ),

( ) ,
2 2

( ) ,
2 2

( ) ,

h
y t h y t k k k k y y

k f y t t

h h
k f y t k t

h h
k f y t k t

k f y t hk t h

+ = + + + + =

=

 
= + + 

 

 
= + + 

 

= + +

    (A.3) 

 

Where relation (A.3) presents four evaluations within the interval [ , ]t t h+ , two of them 

at the extremes ( 1k  y 4k ) whereas the others, doubly weighted, are evaluated at the 

middle point / 2t h+  ( 2k  y 3k ). With these evaluations, this method has an error of the 

order of 4h  for the interval [ , ]t t h+ . 

 

The Smoluchowski problem (4.16) with initial monomeric conditions involves an 

additional difficulty since, in principle, it is formally defined for an increasing set of 

Equations (expressed here in terms of the aggregation time T ): 
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Or equivalently: 
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If we now apply (A.3): 
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   (A.6) 

 

In our study (Chapter 4 and Paper III), we used a simple cut off on the number of 

equations, that is, we imposed a previous dimensionality to )(TX
r

 and ( ))(TXf
rr

. In this 

sense, there are methodologies to approximate the computation of the non-considered 

Equations (see reference [3]). In practice, these implementations are only worthwhile in 

those cases where the homogeneity parameter, λ , Equation (4.26), is large, e.g. product 

kernel ( 2=λ ). Nevertheless, to ensure the reliability of our cut off, we first introduced 

a control on the conservation of the number of monomers from 0=T  to finalT  (see 

Paper III, section IV.C): 

 

1

( ) 1 0  ,
Nc

i final

i

iX T T Tε
=

− ≤ ≈ ∀ ≤∑        (A.7) 

 

Where 1ε <<  is the imposed accuracy, Nc  being the number of computed Equations, 

that is, ( ))(),...,()( 1 TXTXTX Nc=
r

. However, condition (A.7) is insufficient to ensure 

the convergence to the real solution since we need not merely to ensure stability but also 

consistency (Lax equivalence theorem [1]). In this sense, an efficient and obvious 

criterion is to decrease the time step h  until we reach the required constant solution. 

Thus, our problem couples the input ternary set ( , , )finalh Nc T  with the accuracy ε .  

 

To test our input parameters, we satisfactorily reproduced the analytical solution for the 

constant  and  sum kernels  (Equations (4.18) and (4.19)), whose asymptotic  behavior is  
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equal or faster than that presented by the Brownian and RLCA kernels (Paper III). The 

Brownian and constant kernels are characterized by 0λ = , the fastest RLCA kernel in 

Paper III by 0.28λ = , and the sum kernel by 1λ = . Thus, we found that the ternary set 

( 50 ,500 ,105 3 ==⋅= −
finalTNch ) with 510−=ε provides us with a reliable result. 

 

Finally, we offer our algorithm which can be easily specialized to the Euler or Runge-

Kutta second order methods by taking 1m =  or 1,2m =  respectively. 

 

Runge-Kutta four order explicit method for solving Smoluchowski’s Equations 

 

 

<Input parameters ( ,h Nc , finalT , ε )> 

<Select kernel> 

<Set initial conditions ( 0=T ), e.g. monomeric initial conditions: xNcX 1,...)0,0,1()0( =
r

 

 

Time loop ( ≤T finalT ) 

 hTT +=    ( h preferably adaptative) 

 Number of Equations loop ( ,...,1=n Nc ) 

  Runge-Kutta order loop ( 4,...1=m ) 

   <Evaluation of ( ))(( TXfk nm

r
> 

  End Runge-Kutta order loop 

  [ ])()(2)(2)(
6

)()( 4321 nnnnnn fkfkfkfk
h

TXhTX ++++=+  

 End Number of Equations loop 

 < Control on the conservation of the number of monomers (A.7)> 

 <Evaluation of the average over the population X
r

, e.g. Diffusion coefficient> 

End time loop 
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APPENDIX B 

 

Resolution of the MCT Equations 

 

This appendix is dedicated to the numerical discretization of the MCT Equations for 

monocomponent colloidal systems, Equations (5.4)38: 
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)(

),(
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22

0

=∂−++∂ ∫ dttqfttqm
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q
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q
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D
t
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t q  )1)0,(( ∀==tqf

           (B.1) 

 

In particular, here we offer a recipe for the time-discretization which will be completed 

with the q -discretization presented in reference [2] for a hard-spheres (HS) system.  

 

First, we use the right Riemann sum to approximate the integrals:    

 

[ ]∑∫
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Derivatives will be approximated by the forward Euler method: 
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     (B.3) 

 

Thus, the first step ( 00 == tt →  1tt = ) corresponding to the integral results: 

 

[ ])0,(),()0,( ')',()',( 1

0

'1

1

qftqfqmdttqfttqm

t

t

t −≅∂−∫
=

    (B.4) 

                                                 
38 For an extention to binary mixtures the reader can consult ref. [1] at the end of this appendix. 
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Now, we proceed in the same way for the second step ( 00 =t →  2tt = ): 
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1 2
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[ ] [ ]),(),()0,()0,(),(),( 12112 tqftqfqmqftqfttqm −+−−≅    (B.5) 

 

Here we have to note that, in general, the time-discretization will be adaptative, that is, 

it will not be equidistant: mnmn ttt −≠−  ( Nn,mmn ∈>   : ). Therefore, we will take as 

mn tt −  the nearest time to mn tt −  which had already been computed. We will notate this 

time as nmt . Then, we can rewrite ),( 12 ttqm − , Expression (B.5), as  ),( 21tqm .  

 

Finally, for 00 =t →  1+= ntt : 
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If we now incorporate the non-integral terms of the Equations (B.1), by also using 

(B.3), we obtain the expected explicit expression for ),( 1+ntqf : 
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Equations (B.7), which provide us with ),( 1+ntqf  as a function of its preceding values, 

must be completed by introducing the q -discretization of the kernel ),( tqm  (See 

Chapter 5, section 5.1, Expressions (5.5) and (5.6)). For a HS system, this discretization 

takes the form [2]:     

 

( )∑ ∑ ×
∆

=
k p

qpkpSkSqS
d

qdn
tqm ˆ

'

ˆ

5

23

3
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32

)(
),(

π
 

                ( ) ( )[ ] ),(),()ˆ(ˆˆˆ)ˆ(ˆˆˆ 2
tpftkfpckqpkcpqk −++−+×    (B.8) 

 

Where, again, n  represents the number density of particles, ( ) )(/1)()( qnSqSqc −=  is 

the direct Ornstein-Zernike relation, d  the HS diameter, qd∆  the non-dimensional step 

size, qdqdq ∆= /ˆ , qdqkk ∆= /ˆ , and qdqpp ∆= /ˆ . Finally, the prime at the sum 

represents the restriction: 

 

... ,2/3 ,2/1ˆ,ˆ      where2/1ˆˆˆ2/1ˆˆ =−+≤≤+− kpkqpkq     (B.9) 

 

Thus, Expressions (B.7), (B.8), and (B.9) offer the numerical solution of the MCT 

Equations (B.1) for a HS system. Accordingly, figure 1 shows a simple scheme from 

which we see how ),( ij tqf  depends on the previous times and also on the coupling of 

the different q .   

                                     

 FIG. 1: MCT Scheme: time and q  discretizations. 
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To perform a rough test, we compared our results (Equations (B.7), (B.8), and (B.9)) 

with those corresponding to a Brownian dynamics simulation for a HS-like system (Ref. 

[3]). As input we use the discrete version (40-component model) of the static structure 

factor coming from the mentioned simulation (see figure 2). 

                     

FIG. 2: 40-Equations model (dots), Equations (B.8) and (B.9). The q -discretization 

is: 85.1625.1 << qd , 4.0=∆qd . “Continuous” )(qS  (red line): Brownian Dynamics 

simulation of a HS-like system at 585.0=φ  (10% polydispersity) [3].  

 

As first comparison, figure 3 shows the results obtained from Equations (B.7), (B.8), 

and (B.9) at the mean peak of the normalized dynamic structure factor, *q , (Fig. 2) and 

those corresponding to the Brownian dynamics simulation of reference [3]. We found 

75.0=λ , to be compared with the MCT prediction for hard spheres: 735.0=HSλ  

( 312.0=HSa  and 583.0=HSb ) [2] (see also Chapter 5, section 5.1). For the final α -

decay we obtained 84.0=β . Units of time and length were conveniently normalized by 

taking 1=d  whereas the free diffusion coefficient was fixed according to the 

optimization criterion∗: )*,()*,(   tqftqf dynamicsBrownianMCT ≈ . An additional “shift” was 

applied where 585.053.0   =→= dynamicsBrownianMCT φφ  (see Chapter 5, section 5.1). 

                                                 

∗ 
+∈ RD0  minimizes [ ]









−∑
i

idynamicsBrownianiMCT tqftqDf
2

  0 )*,( )*,;( . 
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FIG. 3: Dynamic structure factor at the mean peak of the corresponding static structure factor 

(Fig. 2). Black lines (up to down) correspond to four different adaptative time-discretizations: 

400, 800, 1600, and 3200 time steps respectively. Red dots stand for the results of the Brownian 

dynamics simulation [3].  

 

Finally, figure 4 shows ),( tqf  for two additional q  values: 4/*3q  and 3/*4q  (see 

Fig. 2). Here again, the optimization criterion was )*,()*,(   tqftqf dynamicsBrownianMCT ≈ . In 

this sense, we clearly see the emergence of deviations presumably due to the right and 

left cut offs in the number of the computed MCT Equations.   

                     

                            FIG. 4: Dynamic structure factor at different q (see Fig. 2) 
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