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únicos. Quiero que sepas que te admiro tanto que me resulta imposible

encontrar una manera adecuada para expresar cuánto, cómo, dónde y
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Caṕıtulo 11

Treinta radios se unen en un eje;

Precisamente donde no hay nada,

hallamos la utilidad de la rueda.

Horneamos arcillas y hacemos vasijas;

Precisamente donde no hay sustancia,

hallamos la utilidad de los pucheros.

Con el escoplo hacemos puertas y ventanas;

Precisamente en esos espacios vaćıos,

hallamos la utilidad de la sala.

Aśı pues, consideramos que la posesión es beneficiosa,

Pero no tener nada es útil.

Caṕıtulo 24

Quien se jacta no está establecido;

Quien se pavonea no llega a ser importante;

Quien se exhibe carece de intenso brillo;

A quien alardea de śı mismo no le conceden crédito;

Quien se alaba a śı mismo resiste poco.

Exceso de alimento y acción redundante

Se llama en el Camino a tales cosas.

Y hay quienes odian esas cosas.

Aśı pues, quien está con el Camino

no insiste en ellas.

Lao-Tse, Tao Te Ching
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7.2 Español . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

References 203

x



Chapter 1

Introduction

A colloidal suspension is a system of particles1 suspended in a solvent medium,

formed by molecules that are very small compared to the particle size, in such a

way that the continuity of the medium can be assumed. Such particles (colloids)

are well defined by their typical size, 1nm < L < 1µm, the typical time scale of

their motion, 1µs < τ < 1s, and the weak mechanical response comparing with

atomic solids. From a physical viewpoint, colloids are used as “model atoms”,

since both colloids and atoms can be theoretically described with the same frame-

work 2 (Statistical Mechanics). The main experimental advantages of the colloids

(colloidal suspensions) respect to the atoms (atomic systems) are the following

ones: visibility (bigger particles), slow motion (easier temporal resolution), softer

materials and tunable interactions (leading to a richer phase diagram than the

atomic systems). In this sense, many statistical mechanical theories developed

for atomic systems have been directly confronted with experimental results using

colloidal suspensions. The ubiquitous presence of colloids in everyday life also

justify the experimental and theoretical study of such systems with the intention

to improve the quality of our life. In this respect, one find the boom of the col-

loidal applications mainly linked to the first world emergence in fields such as

health (1), industry (2) and technology (3).

The large number of different colloidal interactions is strongly related with the

huge number of different colloidal suspensions that can be synthesized. The

modelling of these interactions is a challenge per se, although there are accu-

1Here, the term particle refers to a macromolecule (hundred of glued molecules).
2“The same equations have the same solutions . . . so what is different?”, R. Feynman (1918-1988).
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1. INTRODUCTION

rate theoretical descriptions for some of them. The experimental control of the

colloidal interactions allows the study of many interesting physical phenomena,

depending on whether they are attractive or repulsive. Repulsive interactions

are mainly found in colloidal suspensions containing sterically coated particles

and/or bearing certain superficial charge. The resulting repulsive interaction can

be short-range (sterically coated particles) or long-range (charged particles) de-

pending on the ionic conditions of the medium. Repulsive interactions are usually

employed to stabilize the suspension and even to establish a microscopic order.

Attractive interactions are perhaps more requested by the scientific community,

because they generate instability in colloidal suspensions leading to the emergence

of non-equilibrium processes: aggregation, gelation, . . . ; the van der Waal’s force

between colloids at short distances, as well as magnetic forces or the electrostatic

attraction are good examples of attractive interactions.

Concerning the experimentally controlable interactions, the mixtures of colloids

and polymers in a common medium deserves a special mention. The polymer

can be adsorbed to the colloidal surface, or not, depending on properties such

as the direct colloid-polymer electrostatic interaction, the chemical affinity, the

hydrophobicity of the particles, etc. In consequence, the monomer density close

to the colloidal surface differs from the bulk composition. In case of adsorption,

the adopted conformation of the polymer along the colloidal surface can provide

a steric short-range repulsion or attraction between colloids. This interaction is

controlled among others by the degree of adsorbed polymer and/or the molec-

ular mass of the polymer (4). In case of non-adsorption, the depleted polymer

from the colloidal surface can lead to an imbalance of osmotic pressure gener-

ating attraction between colloids. Usually, the range of this polymer-induced

attraction is controlled by its radius of gyration, Rg, while the strength of the

attraction is proportional to the polymer concentration, c/c∗, being c∗ =
3

4πR3
g

the overlapping polymer concentration. As a curiosity, the first of this twofold

behaviors (adsorbing polymer) was applied by the Ancient Chinese people who

found, by mixing suspension of carbon with Arabic gum1, that the sedimentation

of the Chinese ink was slowed down (stabilization). Nowadays, an example of the

second case (non-adsorbing polymer) is found in the treatment of wine after fer-

1That is a natural polymer taken from the sap of the acacia tree.
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mentation, where the so-called in enology fining agent (generally bentonite clay)

is added to speed up the precipitation process of some undesirable substances,

flocculation (5, 6).

This memory tries to shed light into the specific problem on the interplay be-

tween opposite tunable colloidal interactions. For that propose, we have focused

our attention on mixtures of colloids and non-adsorbed polymers. The repulsive

interaction is achieved using charged colloids in a low ionic strength medium,

where the repulsion is long-ranged. The attractive interaction is induced by the

presence of non-adsorbing polymers. From a thermodynamic viewpoint, the inter-

est of this work lies on the understanding of the way how charged colloid-polymer

mixtures minimize the free energy of the system to reach the equilibrium state.

It is well known that a mixture of colloids and ideal non-adsorbing polymers min-

imizes the free energy by increasing the entropy, S. Indeed, the polymer tries to

be homogeneously distributed along the free space. Since colloids do not allow

the polymer homogenization, a gradient of polymer concentration emerges lead-

ing to a flux in the opposit sense of the gradient, i.e., the Fick’s law. Therefore,

an imbalance of pressure arises around the colloidal surface pushing colloids at

closer distances to each other; this interaction leads to an effective attraction

between colloids induced by the polymers. When colloids bear charge, the extra

electrostatic repulsive interaction leads to a different route to minimize the free

energy. In this case, to approach two colloids also induces an increase of the po-

tential energy, U , which drives to an unfavorable configuration to minimize the

free energy, F = U − TS. At this point, a non-trivial competition between both

routes emerges. Moreover, it is expected that the interplay between repulsion

and effective attraction will drive to new phenomena, which are undocumented

for atoms and/or monocomponent colloidal suspensions.

Recently, the interest has been focused on the study of charged colloidal sus-

pensions containing two components. Waltz-Sharma et al. (7) calculated numer-

ically the depletion force between two charged planar parallel walls in a solu-

tion of charged spherical macromolecules. They reported results confirming that

the long-range wall-particle electrostatic repulsion induces an enhancement of

the induced effective attraction between walls, the so-called depletion. Mondain-

Monval et al. performed measurements of the depletion forces focusing on charged

3



1. INTRODUCTION

droplets under the presence of smaller charged micelles and concluded that, apart

from the electrostatic repulsion, an attractive depletion induced by the charges of

the micelles has to be considered too (8). Helden et al. presented measurements

of the depletion potential generated by charged rods using the Total Internal

Reflection Microscopy technique, showing the important role that the depletion

plays in this kind of charged colloid-polymer mixtures (9). Campbell et al. stud-

ied gelation in suspensions of model colloidal particles with short-range attractive

and long-range repulsive interactions by means of three-dimensional fluorescence

confocal microscopy. They studied the gel formation process by increasing the

packing fraction of particles (10, 11). L. Belloni et al., using the Polymer Ref-

erence Interaction-Site Model, studied theoretically the structural properties of

charged colloid-polymer mixtures and specifically focused on the electrostatic de-

pletion mechanism (12).

In relation with the aim of this thesis, we are also interested in performing an ex-

haustive documentation of this electrostatically enhanced depletion mechanism.

For this reason, charged colloid-polymer mixtures have been studied by means of

experimental observations, simulations and theoretical models. Colloids such as

polystyrene latex and biocompatible liposomes have been used given their interest

in technological and pharmaceutical applications, respectively. The experimental

information has been mainly obtained by Light Scattering techniques, which al-

lows to measure the dynamic and structure of the system without disturbing the

sample. Then, the Liquid State Theory has been also applied to describe charged

colloid-polymer mixtures and to reinforce the discussion of the experimental re-

sults. Additionally, Monte-Carlo simulations have been also performed to study

the effective potential between two charged colloids induced by the presence of

smaller charged ones.

This thesis is divided in 7 chapters. A theoretical, as well as an experimen-

tal background supporting our main findings is presented from Chapters 2 to 5.

In Chapter 6, the production of this thesis is collected in 6 sections. In sec-

tion 6.1 (paper I), the motion of deformable/non-deformable particles at short

times (transition from ballistic to diffusive motion) is compared. The main re-

sult is that the deformability affects to the particle non-diffusive motion, and at

longer times (diffusive regime) the vibrational modes affecting to the particle mo-

4



tion become compensated, so the particle diffusion is recovered. Although in this

first work we have not employed colloid-polymer mixtures, the results are useful

for the next works, where we study the dynamic of charged vesicle in presence of

charged polymers at time scales where the deformational effects can be certainly

neglected under the conclusions of this work. In paper II (section 6.2), mixtures

of charged colloids and charged polymers in water at low electrolyte concentra-

tion are studied. This work represents an experimental evidence of the so-called

electrostatic depletion mechanism. The experimental measurements are success-

fully confronted with a theoretical model that is able to capture the monomer

connectivity along the polymer as well as the colloid-monomer interaction. The

relevant length scales governing the structure of these mixtures are discussed in

paper III (section 6.3). We also find that the dynamical properties of the col-

loids are consistent with the structural ones. In paper IV (section 6.4), we have

extended the studies on charged colloid-polymer mixtures to a higher colloidal

concentrations using liposome-polymer mixtures. The increase of the liposome

packing fraction enhances the competition between entropic and electrostatic de-

pletion mechanisms absent in sections 6.2 and 6.3. In paper V (section 6.5), we

present a simulation study of the mixture of charged asymmetric spheres in the

“colloidal limit”, i.e., when the big colloid density vanishes. This work highlights

the subtle mechanisms that can appear in charged binary systems, as the fact

that increasing the charge of the big particles does not necessarily leads to the in-

crease of the repulsion between big colloids. Finally, in section 6.6, the theoretical

model used in the physical description of the charged colloid-polymer mixtures is

improved to capture the rearrangement of polymer close to the colloidal surface.

This section only contains a brief summary of the results developed in this the-

oretical project, which was carried out in the University of Konstanz (Germany)

under the supervision of Prof. M. Fuchs. In Chapter 7, the main conclusions of

this thesis are exposed.
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Chapter 2

Interactions in Colloidal

Suspensions

In Colloidal Physics, the knowledge of the interactions between particles is the

keystone to solve many physical problems. One of the advantages of the colloidal

suspensions respect to the atomic systems lies on the rich variety of interactions,

which depends on the physical and chemical details of the colloidal surface, the

magnetic character of its core, the temperature, the conductivity of the medium,

. . . . The interactions in colloidal suspensions arise from experimentally accessible

features and, therefore, can be controlled. Against, an accuracy notion of these

interactions stand for a problem per se, although appropriate approximations ex-

ist to model a wide range of different systems.

The aim of this chapter is to review the most important interactions arising in

colloidal systems. We start from the interaction between the colloids and the

solvent molecules that leads to the emergence of the Brownian Motion. Next, as

a consequence of the charge on the colloidal surface, the electrostatic interaction

between colloids is introduced. Finally, the effective interaction between colloids,

induced by the presence of non-adsorbing polymers, is discussed.

2.1 Particle-solvent interaction: Brownian Motion

By Brownian Motion we understand the random motion that a particle suffers

as a consequence of the continuous exchange of momenta with the surounding

7



2. INTERACTIONS IN COLLOIDAL SUSPENSIONS

solvent molecules. Despite the some few historical precedents 1 concerning this

phenomenon, it is justified to take the original research of the biologist R. Brown

in 1826 (13) as the first scientific treatment of the description of the Brownian

motion, observed in suspensions of pollen grains in water with the help of a simply

microscopy. About its erratic motion, he pointed out the next: “[...] I observed

many of them very evidently in motion [...] These motions were such as to satisfy

me, after frequently repeated observation, that they arose neither from currents

in the fluid, nor from its gradual evaporation, but belonged to the particle itself

[...]”. The excellent description given by R. Brown called the attention of A.

Einstein, who published in 1905 (14) a physical interpretation in terms of the

kinetic theory of heat. After the Einstein’s work, many scientists focused their

attention on the study of this phenomenon (15, 16, 17) supporting the origin of

this phenomenon on the molecules of the liquid.

Assuming that the solvent molecules are very small compared with the size of the

colloidal particles, in 1908 P. Langevin (18) established that a neutral particle

with radius Rc and density ρ, which is suspended in a stationary liquid with

viscosity η, moves by the imbalance of exchange of momentum following the next

equation,

mr̈(t) = −ζ ṙ(t) + f(t) (2.1)

where m = 4πR3
cρ/3 is the mass of one spherical particle, ζ = 6πηRc stands for

the liquid friction coefficient, and f is a Gaussian force with null average 〈f(t)〉 = 0

and time-correlation 〈f(t)f(t′)〉 ∝ δ(t− t′). The proportionality factor can be de-

termined assuming that the kinetic energy is equally distributed among all the

translational modes of each particle at equilibrium. For simplicity, hereinafter

eq. (2.1) will be considered in just one dimension.

In eq. (2.1) the force f , also called white-noise, collects the sum of the mechanical

collisions coming from the solvent molecules (see fig. (2.1)). Due to the huge num-

ber of solvent molecules involved in any colloidal suspension, the deterministic

1Perhaps the first one is contained in the De Rerum Nature where T. Lucretius assumed the

existence of atoms based on the erratic movement observed on the Nature. Almost twenty century

later, J. Perrin won the Nobel Prize proving the existence of atoms experimentally with the help of the

advances done in the Brownian Motion.

8



2.1 Particle-solvent interaction: Brownian Motion

calculation of this force is prohibitive. Consequently, a pre-averaged description

of the colloid-solvent forces is given by means of this stochastic force, f . If we

neglect both the external forces, like gravity, and interparticle interactions, the

time-correlation of the velocity for a Brownian particle is derived from eq. (2.1),

〈ẋ(0)ẋ(t)〉 ∝ exp (−t/τB) (2.2)

where τB =
m

ζ
stands for the relaxation time during which the velocity of a single

particle typically remains correlated from an initial time. In a typical colloidal

suspension, the value of τB is really small (for a colloidal particle with Rc = 50

nm, in water at room temperature τB ≈ 0.6 ns). Due to the experimental lim-

itations concerning the minimum accessible correlation time (in the best case

several nanosecond), the description in terms of a time-correlated velocity is pro-

hibitive. Instead, for a larger time-window (the velocity is already decorrelated),

the description of the colloidal particle motion is provided by the measurement of

the mean-square displacement, or m.s.d. (〈∆x2(τ)〉 =
∑
i

〈(x(ti)− 〈x〉)2〉), since

the spatial jumps from the coordinates {x(0), y(0), z(0)} to {x(t), y(t), z(t)} are

experimentally observable. Fig. (2.1) illustrates the latter with several spatial

jumps joined by red solid lines. This temporal sequence of positions follows a

Gaussian distribution, so the experimental determination of the m.s.d. allows us

to know the temporal distribution of positions and so the particle motion. From

eq. (2.1), the m.s.d. is given by (16),

〈∆x2(t)〉 = 2D0(t− τB + τB exp (−t/τB)) (2.3)

where D0 = kBT/ζ is the particle diffusion coefficient. Here two special lim-

its appear: the so-called ballistic flight when t << τB (〈∆x2(t)〉 ∝ t2) and the

diffusive motion when t >> τB (〈∆x2(t)〉 ∝ t). The transition from ballistic

to diffusive motion in eq. (2.3) was explored by Alder and Wainwright using

molecular-dynamics simulations in a hard-sphere system (HS) (19). Their results

showed up the existence of an extra delay of the onset of the diffusive motion

respect to eq (2.3). This effect was explained in terms of the hydrodynamic in-

teractions, which induce the circulation of the fluid from the front of the particle

where is compressed to the rear where a rarefaction wave is developed.

9



2. INTERACTIONS IN COLLOIDAL SUSPENSIONS

!"#$

%$

!$

Figure 2.1: 2D scheme of the motion suffered by a colloid. The illustrated time-step t is

assumed greater than τB . The jumps in the positions, from t = 0 to t = τ , are symbolized

as points joined by red lines. Within this description, the temporal sequence of the particle

positions is the only relevant information.

Introducing the corresponding memory-effect correction in the Langevin equation

one can obtain a more accurate equation for the m.s.d. (19),

< ∆x2(t) >= 2D0[t−2(
τL
π
t)1/2 +

τL
9

(8− 2ρ

ρ′
)− τ

3/2
L

9
√
π

(7−4
ρ

ρ′
)t−1/2]; (t ≥ τL) (2.4)

where τL = (9/2)(ρ′/ρ)τB is the characteristic time that the hydrodynamic ef-

fect introduces and ρ′ stands for the fluid density. Effectively, the new version

of the m.s.d. presents a softer transition between the two existing regimens,

which agrees with the simulation results (19). To corroborate experimentally the

transition predicted in eq. (2.4), a good time resolution together with a large

τL time is necessary. The latter combination provides a wide temporal window

where the second term in eq. (2.4) is still relevant respect to the diffusive one

(first term in eq. (2.4)) in such a way that the hydrodynamic effect on the tran-

sition is indeed observed. Many studies have been devoted to the experimental

corroboration of eq. (2.4) for hard-sphere particles using different kind of tech-

niques (20, 21, 22, 23). However, a lack of experiments focused on deformable

10



2.1 Particle-solvent interaction: Brownian Motion

particles still persists. In chapter 6, paper I shows the first experimental evidence

against the validity of the transition predicted in eq. (2.4), for deformable Brow-

nian particles.

Until now we have briefly described the consequences of the interaction with

the surrounding medium on the motion of the colloidal particles. However the

Langevin’s equation (eq. (2.1)) can also include external forces and/or interpar-

ticle interactions. In this work, the action of an external uniform field (like

gravity) is neglected, although an study of the influence of the Earth’s gravity

on charged colloid-polymer mixtures can also be interesting, as was for neutral

colloid-polymer mixtures (24). In absence of an external uniform field, only the

presence of an interparticle force FI(t) can perturb the free Brownian motion of

a test particle. Eq. (2.1) is consequently rewritten as in one-dimension follows,

mẍ(t) = −ζẋ(t) + f(t) + FI(t) (2.5)

For a short time interval (∆t ≥ τB), the interparticle force can be assumed to be

time-independent, since small changes in the particle configuration are expected

during times where the particles only undergo short excursions1. So, taking

an interval ∆t much larger than τB and much smaller than the time taken by

the system to reconfigure itself (the so-called structural relaxation time τR) the

integration of eq. (2.5) leads to (25),

∆xi(∆t) = ∆xBi (∆t) +
1

ζ
FIi(0)∆t, (τB << ∆t << τR) (2.6)

where ∆xBi (∆t) is the Brownian displacement for a non-interacting particle as

was presented before. Eq. (2.6) describes, without hydrodynamic effects, the

motion of an interacting colloid, since it includes the Brownian motion and the

drift velocity established by FI(t). The m.s.d. for short-times can be obtained,

as in the non-interacting case, from eq. (2.5) (25),

〈∆xi(τ)2〉
6

= τ
kBT

ζ
− τ 2

2!

kBT

ζ
〈(∂U
∂ri

)2〉+O(τ 3). (2.7)

1Here, by short excursion is understood as 〈∆r2(τ)〉 � R2
c .

11



2. INTERACTIONS IN COLLOIDAL SUSPENSIONS

Here, the term 〈(∂U
∂ri

)2〉 is the average square force per particle. This result con-

firms that for t ≥ τB, the diffusive motion of a single colloid is slowed down by

the interaction with the nearest neighbor colloids (no matters if the interaction

is attractive or repulsive).

Under the presence of longer-range repulsive interactions, or highly concentrated

suspensions, the particle motion becomes strongly coupled with the other parti-

cles. In such cases, an arrested motion emerges as a consequence of the contin-

uos restriction to the diffusion. In this new framework, the description of these

slow-dynamic systems is commonly given by means of a memory-function for-

malism (26) (e.g., Mode Coupling Theory) since such systems keep memory of

their initial configurations during long time. In this thesis, both eq. (2.7) (paper

III) and the Mode Coupling Theory (27) (paper IV) have been applied to help

the discussion on the slow dynamic arising in interacting colloidal systems.

2.2 Electrostatic interaction

The presence of a colloidal particle suspended in a liquid is not free of chemi-

cal interactions with the surrounding molecules, which can lead to the partial

ionization of its surface (28). Given the electrostatic character on the surface of

the particles and the presence of ions suspended in the medium, a spontaneous

rearrangement of cations and anions emerges, drawing up an scenario where each

colloidal particle is surrounded by an electric double layer composed by a complex

mixture of cations and anions (29). Here, we will present the simplest approxima-

tion to this problem based on the Poisson equation, which drives to the interaction

potential used in this memory to model the electrostatic interaction.

Let us consider that the ions surounding the colloidal surface are point charges

creating a continuous charge density, ρ(r). If the liquid medium is defined by an

electric permittivity ε, the electrostatic potential ψ created by the colloid is given

by the Poisson equation:

∆ψ(r) = −ρ(r)

ε
. (2.8)

Given the large size ratio between colloids and ions, the ionic distribution around

12



2.2 Electrostatic interaction

colloids can be assumed in equilibrium (following the discussion in section 2.1,

concerning τB and its dependence on R2, it is expected that τ colB ≫ τ ionsB ). This

allows to take ρ(r) as a Boltzmann distribution (30),

ρ(r) = e
M∑
i=0

zini exp (
e−ziψ(r)

kBT
), (2.9)

where e is the elemental charge of an electron, M stands for the number of ionic

species, and zi and ni represent the valence and density number of the i-th specie.

The charge density will only depend on the distance in spherical coordinates, r

(ion isotropic distribution), therefore we can rewrite eq. (2.8) as follows,

d2Ψ

dr2
+

2

r

dΨ

dr
= κ sinh(Ψ) (2.10)

where some terms have been regrouped assuming that ions bear symmetrical

valence, |zi| = z. Here, Ψ =
zeψ

kBT
, κ is the so-called inverse Debye length κ =√

8πLBNAI with LB the Bjerrum length, and I is the ionic strength1 which

contains information about the whole ionic content I = 1
2

∑n
i=1 ciz

2
i where ci is

expressed in molar concentration and the sum is performed over all the ionic

species (including charged colloids). If eq. (2.10) is linearized (31), it can be

analytically solved leading to the following result,

Ψ(r) = Ψo
σc
r

exp (−κ(r − σc)) (2.11)

According to this solution, the electrostatic potential generated by a colloid to-

gether with the surrounding ions follows an exponential decay with a tail which

is mainly regulated by the Debye length. As was shown in the last paragraph, κ

depends on the ionic concentration, so that the exponential decay of the gener-

ated electrostatic potential is controlled by the ionic content of the electric double

layer (29). The resulting electrostatic interaction may be regarded as an interac-

tion between electric double layers.

Using the solution given by eq. (2.11), the potential energy between particles

of charges Z1 and Z2 and diameters σ1 and σ2, may by calculated as the work

involved to approach the particles from the infinite to a distance r through an

1Note that in paper II and III this magnitude is defined as fion.
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2. INTERACTIONS IN COLLOIDAL SUSPENSIONS

isothermal process. This calculation leads to the interaction potential that has

been employed in this dissertation to simulate the electrostatic interaction be-

tween two different particles 1 and 2.

βφel12(r) =
Z1Z2

4πεkBT

exp (0.5κσ1 + 0.5κσ2)

(1 + 0.5κσ1)(1 + 0.5κσ2)

exp (−κr)
r

(2.12)

where β =
1

kBT
being kB the Boltzman’s constant and T the temperature.
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Figure 2.2: Dimensionless electrostatic potential generated between two identical colloids.

Each type of line stand for different charges, Z, and dimensionless Debye length, κσ (see

legend).

Fig. (2.2) shows the dimensionless electrostatic potential between two equal-size

colloids as a function of the distance centre-to-centre r derived from eq. (2.12).

The interaction is repulsive for equally charged particles (as in fig. (2.2)) and

attractive for particles with different sign. The different types of lines and symbols

show up the dependence on Z and κ. As was shown before, κ is proportional to

I1/2, so an increase of the ionic concentration leads to the decrease of the inverse

of the Debye length, κ−1. Therefore, the range of the repulsion becomes shorter

by the increase of the ion concentration (compare green solid line with dashed and
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2.3 Depletion interaction

dotted lines in fig. (2.2)). In this case, it is said that the electrostatic interaction

is screened. If we focus now in the Z-dependence, we can find that the increase

of the charge in the surface leads to a stronger repulsion with a similar range

(compare the solid lines in fig. (2.2)). These results are only consistent with a

system where I does not depend strongly on the colloidal concentration, since

following its definition, it can be separated in two terms:

I =
1

2
(ccol(Zcol)

2 +
∑

cions(zions)
2), (2.13)

where ccol and cions stand for the molar concentration of colloids and rest of

ions, respectively, and zion represents the valance of the ion. For a high colloidal

concentration respect to cions, the Z-dependence will be relevant also for κ as is

shown in the definition of the Debye length.

2.3 Depletion interaction

In Colloidal Physics, by depletion is understood the mechanism by which a col-

loidal suspension minimizes the free energy under the presence of a non-adsorbing

second component. A clear example of this phenomenon is given in colloid-

polymer mixtures, which were firstly treated by Asakura and Oosawa more than

fifty years ago (32). When a polymer approaches to a colloidal surface, closer

than about one coil radius, its conformation becomes altered. The increase of

configurational free energy render this process unfavorable, so a layer around

any colloidal particle emerges, where the polymer is partially depleted, namely

a depletion layer (33). If a colloidal particle is isolated, the net osmotic force

exercised by the polymer in the entire surface is zero. However, if two colloids

overlap their depletion layer, there exist an imbalance osmotic pressure driving

the colloids together. The so-called depletion mechanism is illustrated in fig. (2.3).

In terms of entropy, when two depletion layers overlap, the total accessible vol-

ume for the polymer increases. This process induces the increase of the entropy of

the system and, consequently, a decrease of the free energy. In a one-component

model where only colloids are explicitly considered, the increase of entropy im-

plies an attractive interaction between colloids. Both experimental (34, 35, 36)

and theoretical (37) works have confirmed the validity of the latter providing a

tool to induce, in a controlled way, attractive interactions between colloids, by
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2. INTERACTIONS IN COLLOIDAL SUSPENSIONS

adding non-adsorbing polymer chains. Moreover, a colloidal system with this kind

of induced attraction generates a richer phase diagram respect to the HS one (38).

Figure 2.3: Depletion mechanism scheme based on the description of the Asakura-Oosawa

model. Orange spheres represent the interpenetrable polymer. Blue spheres, as the colloids,

are non-interpenetrable spheres (even for the polymers). Red halos around colloids stand

for its depletion layer. Arrows indicate the sense of the polymer-exerted pressure.

As was mentioned two paragraphs before, the first analytical result of the induced-

polymer attraction was given by the Asakura-Oosawa Model (AO) (32) and gen-

eralized by Vrij (36). Here, we will discuss essentially the AO model. To derive

it, let us consider a continuous solvent where the interactions (colloid-colloid

φcc, colloid-polymer φcp and polymer-polymer φpp) are pairwise additive. In this

model, the colloids (with diameter σc) are HS-like and the polymers (with radius

of gyration Rg) are interpenetrable spheres (ideal or non-interacting polymers).

However, the cross interaction is again HS-like since the polymers are excluded

from the colloids a distance of σcp ≥ (
σc
2

+ Rg). Under these conditions, the
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2.3 Depletion interaction

pairwise potentials are mathematically described as follows,

φcc(r) =

{
∞ r ≤ σc
0 r > σc

, φcp(r) =

{
∞ r ≤ σcp
0 r > σcp

, φpp(r) = 0 , (2.14)

where r is the distance center of mass to center of mass for any combination

of components. The force resulting on the imbalance osmotic pressure can be

calculated by integrating the pressure over the accessible colloidal surface to the

polymers. Equivalently, one can obtain the same result via the geometrical cal-

culation of the overlap volume Voverlap between two spheres, of radius σcp, at

distance centre-to-centre σc < r < (σc + σcp) (39).

Voverlap(r) =
4π

3
σ3
cp(1−

3r

4σcp
+

r3

16σ3
cp

) (2.15)

The net force is proportional to the osmotic pressure, P , and also proportional

to the decrease of excluded volume when they overlap −Voverlap. Therefore, the

normalized Asakura-Oosawa potential that describes the effective interaction be-

tween two colloids immersed in a sea of interpenetrable polymers comes from the

product −VoverlapP :

βφAO(r) =


∞ r < σcp

−
4πρrp

3
σ3
cp[1−

3

4

r

σcp
+

1

16
(
r

σcp
)3] r ≤ σcp

0 r > σcp

, (2.16)

where ρrp is the polymer number density in the reservoir. A reservoir is an hy-

pothetical system connected to the real system via a semi-permeable membrane.

The polymer goes from the real system to the reservoir until the thermodynamic

equilibrium is reached. In that situation the polymer concentration at the reser-

voir is ρrp.

Three limitations to this model must be highlighted:

• It is assumed that Rg is the only length scale relevant for the polymer.

However for high polymer concentrations this is not true, since the polymer

chains overlap each other forming a mesh and so, the polymers lose their ini-

tial average conformation. In this respect, theoretical approaches including

correlations between the polymer segments are necessary (40).
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2. INTERACTIONS IN COLLOIDAL SUSPENSIONS

• The interpenetrability of the polymers loses consistency when the medium

is not a Θ-solvent, or the polymer is slightly ionized, so that the repulsion

between monomers avoid a clean overlap.

• It is not considered the overlapping between the excluded volume of three or

more particles in the calculation of Voverlap. For the size ratio
σp
σc

< 0.1547,

the geometrical derivation of the effective interaction potential is exact, but

for higher size ratios, triple or higher order overlaps should be considered.

The latter leads to weaker attractive potential than the one predicted by

the AO potential.

For these reasons, the applicability of this model is very restrictive and more

sophisticated derivations of the depletion potential must be taken into account

to compare with simulation and experimental results (41, 42).
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Chapter 3

Structural Description of a

Colloidal Suspension

The previous chapter was devoted to the interactions in the colloidal suspensions.

In this chapter, basic concepts of Statistical Mechanics are applied to the colloidal

dispersions. This allows us to determine the mechanical and thermodynamical

properties of any colloidal system in equilibrium from the knowledge of the spatial

distribution of the particles. For that reason, in section 3.1, we introduce the

radial distribution function, g(r), as the observable magnitude able to describe

the structure of interacting colloids in suspension. Then, the Liquid State Theory

is employed to predict theoretically such structure. Since the aim of this memory

is to seed light in the knowledge of binary mixtures, these concepts are generalized

for a two-component system in section 3.2.

3.1 One-component system

3.1.1 Radial distribution function

Let us consider an isolated system consisting of N classical spherical particles

(with diameter σ), where each particle has three translational degrees of freedom.

Then the state of the system at any time will be given by a set of positions

rN = {r1, r2, ...rN} and momenta pN = {p1,p2, ...pN}. Let HN(rN ,pN) be the
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3. STRUCTURAL DESCRIPTION OF A COLLOIDAL SUSPENSION

hamiltonian of the system, written as follows (43),

HN(rN ,pN) =
1

2m

N∑
i=1

|pi|2 + ΦN(rN) (3.1)

where m denotes the mass of one particle and Φ(rN) represents the total potential

energy between the N particles, which will be assumed to be pairwise additive,

i.e., ΦN(rN) = 1
2

∑N
i=1

∑
j 6=i φ(|ri− rj|), being φ(r) the pair potential. Therefore,

knowing the latter interaction potential, the time evolution of the system, from

an initial state is given by the canonical Hamilton’s equations:

ṙi =
∂HN

∂pi
(3.2)

ṗi = −∂HN

∂ri
(3.3)

Gibbs formulated a method to calculate the macroscopic mechanical properties of

the system as a function of the average performed over an ensemble of microscopic

systems (44). He showed that any microscopic dynamical function A(pN , rN) has

a macroscopic observable given by,

〈A〉 =

∫
drN

∫
dpNA(pN , rN)f (N)(pN , rN ; t), (3.4)

Here, 〈· · · 〉 is the so-called ensemble-average. f (N)(rN ,pN ; t) is the phase-space

probability density for a given configuration {rN ,pN} of the coordinate system

and drN = dr1dr2 . . . drN . In principal, 〈A〉 depends implicitly on time. How-

ever, in thermodynamic equilibrium, the phase-space probability density is not

an explicit function of time f (N)(rN ,pN ; t) = f
(N)
0 (rN ,pN), consequently 〈A〉 is

not dependent too. Therefore, the quantity f
(N)
0 drNdpN is the probability, at

any time, to find the physical system in a microscopic state represented by a

phase point lying in the infinitesimal element drNdpN . To determine the phase-

space probability density, we have assumed our system in the canonical ensemble,

i.e., a system of N identical particles in a volume V , which have been brought

into thermal equilibrium with each other by immersing them in a heat bath of

temperature T . In that case, the equilibrium probability density is given by (45),

f
(N)
0 (pN , rN) =

h−3N

N !

exp[−βHN(pN , rN)]

QN(V, T )
(3.5)
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3.1 One-component system

where h is the Planck’s constant, the factor
1

N !
takes account that the particles are

indistinguishable QN(V, T ) =
h−3N

N !

∫ ∫
exp[−βHN(rN ,pN)]drNdpN is the so-

called canonical partition function, which normalizes eq. (3.5),

∫ ∫
f

(N)
0 drNdpN =

1. By factorization of positions and momenta, one can integrate the pN momenta

leading to a probability density function depending only on the positions,

f
(N)
0 (rN) =

exp[−βΦN(rN)]

ZN(V, T )
. (3.6)

where the configuration integral ZN(V, T ) =

∫
exp [−βΦN(rN)]drN is now the

normalizing factor.

The integration of a subset of n < N particles in eq. (3.6) yields an equilibrium

particle density ρ(n)(rn), where ρ(n)(rn)drn is
N !

(N − n)!
times the probability of

finding n particles of the system with coordinates in the element drn, irrespective

of the positions of the remaining particles and their momenta. In the canonical

ensemble, the n-particle density is given by,

ρ
(n)
N (rn) =

N !

(N − n)!

∫
exp[−βΦ(rN)]dr(N−n)

ZN(V, T )
(3.7)

where the prefactor
N !

(N − n)!
includes the possible combinations of n subset of

identical particles in a system formed by N particles. Eq. (3.7) provides a com-

plete description of the structure of a fluid. In particular, in our work the pair

distribution function, n = 2, have been indirectly used as the observable magni-

tude to describe the structure of the colloidal dispersions.

Attending to the definition of ZN(V, T ) for a homogeneous system, in the absence

of external fields and taking n = 1, the normalization factor of eq. (3.7) leads to

the next result: ∫
ρ

(1)
N (r)dr = N ⇒ ρ

(1)
N (r) = N/V = ρ (3.8)
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3. STRUCTURAL DESCRIPTION OF A COLLOIDAL SUSPENSION

being ρ the bulk particle density. A relevant result is that for an ideal gas the

particle distribution function is given by,

ρ
(n)
N (rn) = ρn(1 +O(

n

N
)) (3.9)

In particular, for n = 2, ρ
(2)
N (r1, r2) = ρ2(1 − 1

N
), which means that in a system

containing a fixed number of particles, the probability of finding a particle at r2,

while another is at r1, is proportional to (N−1)/V and not to N/V . The so-called

pair distribution function is commonly defined in terms of the corresponding

particle density ρ
(2)
N (r1, r2) by

g
(2)
N (r1, r2) =

ρ
(2)
N (r1, r2)

ρ2
. (3.10)

Therefore, eq. (3.10) reaches the ideal-gas limit (non-interacting particles) when

the separation distance, namely r12, is much larger than the range of the in-

terparticle potential, g
(2)
N (r12 → ∞) ∼ 1 − 1

N
. At typical distances where the

interparticle potential does not vanish, the pair distribution function measures the

extent to which the structure of the fluid deviates from complete randomness due

to the particle-particle interactions. Hereinafter, we will consider homogeneous

and isotropic systems, so that for simplicity, g
(2)
N (r1, r2) = g(r), where r = |r1−r2|

is the distance between a pair of particles. Additionally, the knowledge of the

2nd-order particle distribution function defined in eq. (3.10) is often sufficient to

calculate the equation of state and other thermodynamic properties of the system.

As an example, the excess internal energy can be obtained applying eq. (3.4) to

the result in eq. (3.10) and assuming that the total potential energy ΦN(r) is

pairwise additive,

U ex

N
=

4π

NZN(V, T )

∫
r2ΦN(r) exp [−βΦN(r)]dr = 2πρ

∫ ∞
0

φ(r)g(r)r2dr (3.11)

The g(r) function defined in eq. (3.10) is also useful to know the phase state of a

system attending to its shape, or r-dependence. Studying the shape of g(r) illus-

trated in fig. (3.1), we can distinguish between a solid (a), a liquid (b) and a gas

phase (c). Panel (a) shows that for a crystalline order structure g(r) is character-

ized by very thin peaks corresponding with the typical lattice parameters defined

in a crystal. Instead, panel (b) represents the liquid-order given by g(r), where a
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3.1 One-component system

persistence of a main peak is consequence of the well-defined coordination layer

around one particle (see illustration on panel (b)). Secondary peaks stand for

the seconds and next coordination layers but the correlation of this liquid-order

becomes generally lost at far distances. The broad width of this peak compared

with the solid one comes directly from the configurational differences between

both phase states: in the liquid state particles has more mobility and, so can

break up the close solid-order. Panel (c) shows the position randomness of the

particles of a gas state. Indeed, we find that g(r) ∼ 1 for distances greater than

the contact (r = 1) meaning that all typical distances are equally likely.
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Figure 3.1: Solid (a), liquid (b) and gas (c) phases represented by their characteristic

g(r). Left panels illustrate the typical microscopic arrangement of each phase, while right

panels show its corresponding g(r).
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3. STRUCTURAL DESCRIPTION OF A COLLOIDAL SUSPENSION

Despite to the importance of g(r) describing the structure and thermodynamic of

a colloidal system, in some cases it is more useful to work with the corresponding

Fourier transform, called static structure factor, which is given by

S(q) = 1 + 4πρ

∫ ∞
0

r2 sin (qr)

qr
(g(r)− 1)dr. (3.12)

If we consider ρ(q) as the Fourier component of the number density ρ(r) (pair

particle density defined by eq. (3.7)), the static structure factor in eq. (3.12)

can be calculated by means of the autocorrelation function of ρ(q), S(q) =
1

N
〈ρ(q)ρ(−q)〉. This autocorrelation function provides information about the

fluctuation of density particles in the system.
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Figure 3.2: Correspondence between g(r) (left panel) and S(q) (right panel) for a liquid

of charged colloids.

One of the major advances of using S(q) is the fact that it can be experimentally

determined by means of light scattering techniques and similar (neutron, x-rays

scattering, . . . ). On the contrary, g(r) can only be measured with the help of

sophisticated microscopy techniques (47). The visual shape of S(q) is similar to

the g(r) one. Fig. (3.2), shows an example of both functions (panel (a) g(r) and

panel (b) S(q)) for the same charged colloidal suspension. The first peak in S(q)

stands for the typical length of the system, in this particular case, typical distance

between colloids. The first peak in g(r), as was mention before, corresponds with

the first coordination layer of particles around one central particle. So, the height

and position of the main-peak is directly related with the one on S(q). In fact, if
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3.1 One-component system

rpeak is the preference distance in g(r), then qpeak ∼
2π

rpeak
, under the relationship

established in eq. (3.12). However, the secondary and higher order maximums in

S(q) come from the secondary and further constructive interference orders (46),

similar to the one defined by the Bragg’s law for the solid state. Therefore, the

secondary peak of S(q) does not correspond to the secondary coordination layer

in the g(r).

3.1.2 The Ornstein-Zernike Equation

A theory that establishes a relationship between the structural information, the

correlations and the pair interaction potential is the Ornstein-Zernike Equation

(OZE) (48), in such a way that one can predict g(r), or S(q), for a given interac-

tion and so extract any thermodynamic information. Despite it was formulated in

1914, the OZE still persists as a powerful approach to study homogeneous liquids.

This equation sets that the correlation between two particles in an isotropic and

homogeneous monocomponent system can be separated into two contributions:

the direct correlation between these two particles and the indirect correlation

through the rest of particles. Mathematically, it is expressed as follows,

h(r) = c(r) + ρ

∫
c(|r− r′|)h(r′)dr′. (3.13)

where h(r) = g(r)− 1, c(r) stands for the direct correlation and the convolution

term covers the rest of correlations through the other particles. In the Fourier

space, eq. (3.13) may be expressed as an algebraic equation,

ĥ(q) = ĉ(q) + ρĉ(q)ĥ(q). (3.14)

To solve eq (3.13), an additional equation relating c(r), g(r) and φ(r) is needed:

the so-called closure equation. The theoretical explanation of this closure is some-

what artificial, although a physical interpretation can be provided using a dia-

grammatic expansion (48). In general, there are many possible closure equations

attending to the diagrammatic expansion formalism. In this memory, we have

used only a pair of theirs: HNC1, which is given by

c(r) = −βφ(r) + h(r)− ln [h(r) + 1], (3.15)

1Acronyms of Hyppernetted Chain.
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3. STRUCTURAL DESCRIPTION OF A COLLOIDAL SUSPENSION

used with good results for long-range repulsive potentials like the electrostatic

one, and PY1,

c(r) = (1− exp [βφ(r)])(h(r) + 1), (3.16)
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Figure 3.3: The radial distribution functions of a hard-sphere colloidal suspension pre-

dicted from OZE with HNC (solid line) and PY (dashed line) closure equations are com-

pared with the one resulting from a Monte Carlo simulation (dotted line) at φ = 0.35.

commonly employed in systems with short-range interactions (e.g. HS-like sys-

tems). Both are always applied under repulsive interactions, since attractions

may lead to inhomogeneities that are not contemplated by OZE. A lack of accu-

racy is also found in the description of polydisperse systems.

Fig. (3.3) shows an example of the accuracy of this theory for a monodisperse

colloidal suspension of hard-spheres. It includes the predictions from OZE with

the HNC (solid line) and the PY (dashed line) equations (45) together with a

Monte-Carlo simulation for a system of hard spheres (49) (dotted line) at the

1Acronyms of Percus-Yevick.
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3.1 One-component system
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Figure 3.4: The radial distribution functions of a charged colloidal suspension predicted

from OZE with HNC (solid line) and PY (dashed line) closure equations are compared

with the one resulting from a Monte Carlo simulation (dotted line). Parameters: φ = 0.1,

κ = and Z = 25.

volume packing fraction φ(=
π
6
σ3N

V
) = 0.35. For HS-like colloids, the PY closure

is more accurate than the HNC one, although both throw acceptable results. If we

compare fig. (3.3) with fig. (3.4), a different conclusion is derived. Following the

same notation that in fig. (3.3), fig. (3.4) shows the radial distribution function

for a charged colloidal suspension with packing fraction φ = 0.06, charge Z = 25

and repulsive range κ−1 = 2.5σ. Now, the HNC closure provides a quite good

description of the particle structure, while PY predicts a result far from the

simulated one. Both figs. (3.3) and (3.4) highlight the relevance of the closure

equation under the framework of the OZE to describe faithfully the structure of

a real colloidal suspension, that in last term depends on the particle interactions.

27



3. STRUCTURAL DESCRIPTION OF A COLLOIDAL SUSPENSION

3.2 Generalization to binary mixtures

A formal generalization of the section 3.1 to binary mixtures is fully justified

since in this memory we have dealt with two-component system (mainly with

colloid-polymer mixtures, but this will be particularly treated in chapter 4). Let

us consider again an isolated, homogeneous and isotropic system consisting on

N1 particles of the specie 1 and N2 of the specie 2 in a volume V at temperature

T . The new hamiltonian is given by the sum of kinetic energy of the two species

K =

N1∑
i=1

p2
i

2m1

+

N2∑
i=1

p2
i

2m2

and the total potential energy Φ = Φ11 +Φ12 +Φ22 where

Φ11 =

N1∑
i<j

φ11(rij); Φ12 =

N1∑
i=1

N2∑
j=1

φ12(rij); Φ22 =

N2∑
i<j

φ22(rij). (3.17)

Again pairwise additive potentials have been assumed. The subscripts indicate

any combination between particles.

To simplify, it is convenient to substitute the two-component description by a

one-component system (50, 51), where the potential energy is decomposed into

two terms: Φ11 and an effective one Ω. For that, the ensemble used is not (N1,

N2, V , T ) as before, but (N1, µ2, V , T ), i.e. the chemical potential of the

specie 2 is keep fixed instead of the corresponding number of particles 2. Here,

Ω = Ω(N1, µ2, V ; r1
i ) is the grand potential of a fluid of small particles at fugacity

z2 = Λ−3
2 exp (βµ2) with Λ2 the corresponding de Broglie’s wavelength of the

specie 2, subjected to the external potential of the fixed configuration {r1
i } of

the particles type 1. This grand potential can be further expanded as a sum of

n-body terms in order to calculate it explicitly,

Ω =

N1∑
n=0

Ωn. (3.18)

Once Ω, and thus H = K + Φ11 + Ω, is known for all values of z2, the ther-

modynamics and the phase behavior of the mixture can be determined from the

standard procedures discussed for a one-component system in section 3.1.

In this work, the mapping onto an effective one-component system has been used

specially in paper V. There, an asymmetric binary mixture (σ1 > σ2) is studied
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3.2 Generalization to binary mixtures

in the “colloidal limit” (where ρ1 → 0), in such a way that just a pair of big

particles are considered. In this case, eq. (3.18) is only expanded until n=2, since

higher order terms are not expected to be very important, as long as the ranges

of φ22 and φ12 are small compared to the range of φ11 (51, 52). For a calculation

of the mean-field potential in the “colloidal limit”, a simulation in the canoni-

cal ensemble can be carried out, keeping in mind that the φTotal11 (r) (sum of the

direct interaction φ11(r) and the effective one) will depend on ρ2, the density of

small particles at the reservoir. Another example where the expansion to n = 2

eq. (3.18) is enough, is the Asakura-Oosawa potential mentioned in chapter 2.

Here, the 2-order expansion of Ω leads to the exact result that the one obtained

by Asakura and Oosawa (32) being
R2

R1

< 0.157.

Turning back to the description of the structure of a colloidal suspension, it is

easy to define the partial structure factor, by generalization of the structure factor

in section 3.1.1,

Sνµ(q) =
1

N
< ρν(q)ρµ(−q) > . (3.19)

ν and µ stand for the different combination of species. The relationship between

Sνµ(q) and gνµ(r) follows directly from the eq. (3.12) taking into account that

the contribution to the structure factor will depend on the fraction of particles

of each νµ-pair of species. So we can rewrite eq. (3.12) as,

Sνµ(q) = xνδνµ + 4πρνµ

∫
r2 sin (qr)

qr
(gνµ(r)− 1)dr (3.20)

where ρνµ =
√
ρνρµ, δνµ is the Kronecker’s delta and xν =

ρν
ρν + ρµ

. Now, the

function gνµ(r) is the pair distribution function of particles of type µ around a

central particle (at r = 0) of type ν and satisfy gνµ(r) = gµν(r)

Following section 3.1, the generalization of the OZE will be given by a system

of 4-equations. Again, the total correlation between any νµ-pair of particles not

only depends on the correlation through the direct correlations of all the νµ-pairs

but also through the direct correlations of all the νν-pairs and µµ-pairs. In the
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3. STRUCTURAL DESCRIPTION OF A COLLOIDAL SUSPENSION

real space, eq. (3.13) is generalized for binary mixtures as follows,

h11(r) = c11(r) + ρ1

∫
c11(|r− r′|)h11(r′)dr′ +

√
ρ1ρ2

∫
c12(|r− r′|)h12(r′)dr′

h12(r) = c12(r) +
√
ρ1ρ2

∫
c11(|r− r′|)h12(r′)dr′ +

√
ρ1ρ2

∫
c12(|r− r′|)h22(r′)dr′

h22(r) = c22(r) +
√
ρ1ρ2

∫
c12(|r− r′|)h12(r′)dr′ + ρ2

∫
c22(|r− r′|)h22(r′)dr′,

(3.21)

and in the Fourier space, eq. (3.21) leads to an algebraic system as in the mono-

component case,

ĥ11(q) = ĉ11(q) + ρ1ĉ11(q)ĥ11(q) +
√
ρ1ρ2ĉ12(q)ĥ12(q)

ĥ12(q) = ĉ12(q) +
√
ρ1ρ2ĉ11(q)ĥ12(q) +

√
ρ1ρ2ĉ12(q)ĥ22(q)

ĥ22(q) = ĉ22(q) +
√
ρ1ρ2ĉ12(q)ĥ12(q) + ρ2ĉ22(q)ĥ22(q).

(3.22)

Hereinafter, eq. (3.22) will be considered in its matrix version to simplify the

discussion, [
ĥ11(q) ĥ12(q)

ĥ21(q) ĥ22(q)

]
=

[
ĉ11(q) ĉ12(q)

ĉ21(q) ĉ22(q)

]
{[

1 0

0 1

]
+

[
ρ1

√
ρ1ρ2√

ρ2ρ1 ρ2

][
ĥ11(q) ĥ12(q)

ĥ21(q) ĥ22(q)

]}
.

(3.23)

f̂νµ(q) stands for the Fourier component of the function fνµ(r). Note that the sys-

tem of equations (3.23) is reduced to three coupled equations since f̂ij(q) = f̂ji(q).

Therefore, three closure equations are needed to solve (3.23). Here, the selec-

tion of a suitable closure for each pair of interactions emerges as a delicated

point. In fact, for binary mixtures the diagrammatic expansion developed for

one-component system becomes a hard task (40). Hence, the closure must be

based on heuristic reasons (e.g., in paper V, the HNC closure equation has been

used to complete the system (3.23), since the interaction between each pair of

particles is long-ranged).

Fig. (3.5) shows an example of the pair distribution functions for a binary mixture

of charged spheres (φ1 = 0.10, φ2 = 0.001, σ1 = 10 nm, σ2 = 1 nm, κ−1 = 1.5σ1,

Z1 = 250 and Z2 = 6). Relevant information about the configuration of each
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3.2 Generalization to binary mixtures
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Figure 3.5: Example of the radial distribution function for each kind of pair in a binary

mixture of charged colloids. The results come from the solution of eq. (3.23) with HNC

closures. The label 1 indicates the biggest particle while 2 stands for the smallest one.

component respect to the other and itself can be obtained from these functions,

i.e., a complete information about the structure. On one hand, g11(r) and g22(r)

show that both components remains in a liquid-order. On the other hand, from

the peak of g12(r) is deduced that the small particles form a coordination layer

around the big ones. It is important to highlight that the height of the peak of

g12(r) and the broad width of the g22(r) peak are related: the layering of small

particles around the big ones breaks up the liquid-order for the small particles

leading to the spread of the typical distance, defined by the peak of g22(r).

The validity of the OZE to hard-spheres or slightly charged colloidal suspension

in a low concentration regimen has been tested, finding that eq. (3.15) is a good

approximation (53, 54). Even for colloid-polymer mixtures in the “colloidal limit”

(vanishing colloidal concentration) eq. (3.23) together with HNC is a suitable

theory to describe system under Θ-solvent conditions (55). In this memory, an

explicit comparison between OZE and simulations has been carried out for highly
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3. STRUCTURAL DESCRIPTION OF A COLLOIDAL SUSPENSION

charged asymmetric spheres (paper V). Our results will show that as much as the

repulsion becomes more important the agreement between OZE and simulation

is lost.
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Chapter 4

Polymer Reference

Interaction-Site Model

In Chapter 3, we have shown that the OZE represents a powerful theoretical

technique to predict the structure of a binary colloidal suspension. Here, we will

improve this model to study the structure of a charged colloid-polymer mixture.

Real colloid-polymer mixtures demand a model able to capture their fundamental

aspects such as the connectivity between monomers along the polymer chain and

the rigidity of the polymer as well as the polymer-polymer and polymer-colloid

interactions. The latter draws a non-trivial scenario from a theoretical point of

view, since many restrictions must be imposed. In this chapter, we will introduce

the Polymer Reference Interaction-Site Model (section 4.1) that will be applied

to deduce the structure of like-charged colloid-polymer mixtures (section 4.2). In

section 4.3, a brief exposition of the PRISM improvements to take into account

the polymer deformability close to the colloidal surface is presented.

4.1 Polymer Reference Interaction-Site Model: Basic as-

pects

As was exposed in Chapter 3, the OZE is a theoretical description suitable to

model an isotropic and homogeneous system of interacting spherical particles,

i.e., atomic or colloidal liquids. In 1982, D. Chandler (56) presented an equilib-

rium theory of polyatomic fluids, or molecular fluids, where the OZE was gen-
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4. POLYMER REFERENCE INTERACTION-SITE MODEL

eralized from atomic to molecular liquids: the Reference Interaction-Site Model,

also called RISM. It establishes that each particle (molecule) is subdivided into

bonded symmetric entities called interaction-sites simulating the chemical bonds

inherent in a molecule. To do that, the intramolecular distribution of atoms in

the molecule is introduced through the intramolecular pair distribution:

w(r) =
1

Nm

∑
αγ

wαγ(r), (4.1)

Here, wαγ(r) is defined, following eq (3.7), as the probability density of finding

two sites, α and γ, in the same molecule separated by a distance r, being Nm the

number of atoms per molecule.

Following the correlation scheme drawn by the OZE (eq. (3.13)), the correlations

between atoms (sites) of the same molecule, intramolecular correlations, must be

in principle linked up together with the intermolecular correlations. For a one

component system, the RISM equation is given by (56),

H(r) =

∫
dr′
∫
dr′′w(|r− r′|)C(|r′ − r′′|)(w(r′′) + ρH(r′′)) (4.2)

where ρ stands for the molecule number density and H(r) and C(r) are Nm ×
Nm matrices with element hαγ(r) and cαγ(r), respectively. Assuming a linear

molecule, where all the links are equals, eq. (4.2) can be formulated in an simple

manner where hαγ(r) = h(r) and cαγ(r) = c(r) for any α and γ pair of sites. In

such case, eq. (4.2) is rewritten as follows,

h(r) =

∫
dr′
∫
dr′′w(|r− r′|)c(|r′ − r′′|)(w(r′′) + ρah(r′′)) (4.3)

where ρa = Nmρ stands for the atom (or site) density. As in chapter 2, in the

Fourier space eq. (4.3) becomes algebraic,

ĥ(q) = ŵ(q)ĉ(q)(ŵ(q) + ρaĥ(q)). (4.4)

Here, ŵ(q) is the Fourier transform of w(r), also called form factor of the molecule.

Note that for a molecule containing just one spherical atom (spherical colloid)

ŵ(q) ≡ 1, therefore eq. (4.4) is immediately reduced to the OZE (eq. (3.14)).

An expansion in geometric series, using ρa as the ordering parameter, is demanded

to understand the physics behind eq. (4.2) after introducing the w(r) function
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Figure 4.1: Scheme for the correlation decomposition in a diatomic liquid under the RISM

approximation (eq. (4.2)) (blue symbols). It is schematically compared to the atomic liquid

(red symbols) defined in eq. (3.13).

(this can be formally consulted in ref (56)). For simplicity, the meaning of eq. (4.2)

is schematically illustrated in fig. (4.1) for a diatomic liquid. The total correla-

tion is decomposed into direct and indirect correlations (first and second terms

in eq. (4.2), respectively). In general, the direct correlation between an atom of

the molecule A, labelled 1A, and another of the molecule B, labelled 1B, arises

in the following way: the site 1A is connected to the site 2A of the same molecule

(w1A2A(r)), the site 2A is directly correlated with the site 2B (c2A2B(r)) and it is

in turn connected with the site 1B (w1B2B(r)). So that, the intramolecular infor-

mation is “propagated ” along the direct correlation between any two sites. The

indirect correlation can be also understood following the scheme in fig. (4.1): the

site 1A is connected to the site 2A, which is correlated to the site 2C in an inter-

mediate molecule. The site 2C is connected with the site 1C and it is correlated

to the site 2B, which in turn is connected with the site 1B. Eq. (4.2) also includes

indirect correlations through 2-intermediate molecules, 3-intermediate molecules
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4. POLYMER REFERENCE INTERACTION-SITE MODEL

and so on. The latter description is shown in fig. (4.1) using blue symbols to help

and to compare with the simple framework for atomic liquids, which is illustrated

as well (red symbols).

As it is schematically proved, eq. (4.2) couples the intracorrelations with the in-

tercorrelations and vice versa. It must be noted that under this integral equation

theory, a configurational pre-averaging of the molecule conformations is imposed.

For small molecules, e.g., Nm = 3 or 4, a real static configuration can be assumed

and, therefore w(r) is equal to the real one (57).

The application of RISM to polymer systems, the so-called Polymer Reference

Interaction-Site Model (PRISM), was suggested and studied by K. S. Schweizer

et al. in 1990 (40). The idea consisted in expanding the RISM formalism to

molecules with a high Nm value. It is equivalent to speak about polymers, replac-

ing atoms by spherical monomers with diameter σm. At the most fundamental

level, the applicability rests on the assumption that the site-site direct corre-

lation function does not depend on where the monomers are located along the

chain. Such simplification would be exact for cycling ring homopolymers (57). In

spite of the loss of details due to the “pre-averaging of end-effects” (58), PRISM

agrees with simulations and experiments for Nm ∼ 1000, or even higher, using a

suitable conformational pre-averaging (59), where the end-effects are not really

important due to the extension of the polymer chain. Under the “pre-averaging

of end-effects” applied to the polymers, the use of eq. (4.3) instead of eq. (4.2)

becomes valid, since a polymer is in fact a well-defined linear molecule. So, it is

the version of the PRISM equation that we will refer onwards.

In order to solve eq. (4.3), a “closure equation” is required again. In RISM, or

PRISM, it has become a question of enduring interest, since a proper diagram-

matic expansion, like for atomic liquids (48), cannot be derived. Therefore, the

use of a closure is argued to be useful based on analogies with atomic liquids and

heuristic physical concepts (60). For example, the use of PY is based on exploit-

ing the standard idea that the atom-atom (site-site) direct correlation function is

spatially short-ranged for HS-like atoms. Following the same reasoning, another

closures (e.g., the HNC-equation for long-ranged repulsive forces) have been also

applied in PRISM (12, 61). So, in this memory an heuristic sense is also taken
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4.1 Polymer Reference Interaction-Site Model: Basic aspects

into account to decide which kind of closure should be employed.
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Figure 4.2: Monomer-monomer radial distribution function predicted by solving numer-

ically the PRISM equation at different polymer concentrations, c/c∗ = 0.01, 0.05, 0.1, 0.2

and 0.3. For that, we have employed a HS-like monomer-monomer potential, the gaussian

polymer chain and the PY closure. Dimensionless distance has been used in the x-axis,

being σm the monomer diameter.

As an example, the monomer-monomer radial distribution function of a polymer

derived from PRISM is shown in fig. (4.2). It is calculated for a polymer gaussian

chain (a brief description of this model will be given on the next section) with

Nm = 2000, a HS-like monomer-monomer interaction, a PY closure and for dif-

ferent polymer concentrations, c/c∗ = 0.01, 0.05, 0.1, 0.2 and 0.3, where c∗ is the

overlap polymer concentration. Two main features must be noted: there is not a

defined typical distance (a main peak) and the monomer-monomer radial distribu-

tion function at the contact, g(r = σm), increases with the polymer concentration.

On the one hand, the ausence of a monomer coordination layer is explained as a

consequence of the connectivity of monomers along the chain, whose restrictions

break the simple arrangement shown in fig. (3.1) for the atomic liquids. On the
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4. POLYMER REFERENCE INTERACTION-SITE MODEL

other hand, the monomer connectivity gives rise to a monomer depletion hole

at short distances. Increasing the polymer concentration, the packing leads to

shorter monomer depletion holes (see the arrow in fig. (4.2)). For HS-like atoms,

the contact value of g(r) is not zero (see fig. (3.3)) as is for long-ranged repulsive

atoms, or colloids, (results shown in figs. (3.2), (3.4) and (3.5)). The ausence of

repulsion until the contact between particles, allows the arrangement of particles

very close to the surface, therefore, at the contact, g(r) rises up. The increase of

the polymer concentration in fig. (4.2) shows that the polymer packing leads to

an increase of the monomer concentration at contact.

In this memory (paper II and III), as well as in other works (62, 63), PRISM has

been employed to predict the monomer rearrangement (equivalently, the polymer

rearrangement) in the presence of big colloids and vice versa. Therefore, the

next section is mainly devoted to the generalization of PRISM to colloid-polymer

mixtures.

4.2 Generalization to colloid-polymer mixtures

In this theory, colloid-polymer mixtures have been modelled by means of eq. (4.3),

generalized to two-component systems. In the Fourier space and using matrix

notation, we find the following PRISM equations,[
ĥcc(q) ĥcm(q)

ĥmc(q) ĥmm(q)

]
=

[
ŵc(q) 0

0 ŵm(q)

][
ĉcc(q) ĉcm(q)

ĉmc(q) ĉmm(q)

]
{[

ŵc(q) 0

0 ŵm(q)

]
+

[
ρc

√
ρcρm√

ρcρm ρm

][
ĥcc(q) ĥcm(q)

ĥmc(q) ĥmm(q)

]} (4.5)

where the subscripts “c” and “m” stand for colloid and monomer, respectively.

Two points in eq. (4.5) must be highlighted: the matrix containing the in-

tramolecular information is diagonal by definition and all the cross-terms are

equal, f̂ij(q) = f̂ji(q), so the system of equations is reduced again to three equa-

tions.

The first application of PRISM to mixtures of nanoparticles immersed in a poly-

mer solution was performed by A. Yethiraj et al. (64). Their study proved that

the PRISM agrees with the simulations and the experimental results (65). One
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4.2 Generalization to colloid-polymer mixtures

of the goals of PRISM theory compared to other approaches is the fact that in-

cludes the polymer correlations (66). Another advantage of PRISM is the easy

implementation and its adaptability to a large number of real systems by playing

with the w(r) function and the combination of interaction-sites (12, 67).
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Figure 4.3: PRISM prediction of the radial distribution functions for a neutral colloid-

polymer mixtures. Solid lines stand for the analytical solution in the so-called “thread

limit” (courtesy of Prof. M. Fuchs) while dashed lines correspond with the numerical solu-

tion for Nm = 8000, polymer gaussian chain and HS-like interaction-sites. The calculation

were performed with the next set of parameters: φc = 0.10, c/c∗ = 0.001 and Rg = 0.7σc,

where σc stands for the colloidal diameter.

In this thesis, we have specially focus on the applicability of PRISM to charged

colloid-polymer mixtures. For this propose, eq. (4.5) must be numerically solved.

Before applying the PRISM, we have checked our numerical algorithm (based on

the standard Picard’s method (68) to solve integral equations) with the analytical

solution of eq. (4.5) for a particular case: neutral colloid-polymer mixtures with

the polymer in the so-called “thread limit”. By “thread limit” is understood that

σm → 0, while Nm → ∞, in such a way that the polymer radius of gyration,
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4. POLYMER REFERENCE INTERACTION-SITE MODEL

Rg, remains finite. In this case, eq. (4.5) is analytically solvable for a gaussian

polymer chain, HS-like interaction-sites and PY closures (69). Since such limit

is not numerically reachable, we have studied the convergence of our numerical

results to the analytical one. Fig. (4.3) proves that for large enough Nm (in that

case Nm = 8000), our numerical solution (dashed lines) successfully converges to

the analytical one (solid lines).

4.2.1 Intramolecular correlations

As was pointed out, the results shown in figs. (4.2) and (4.3) correspond to a

gaussian model for the polymer pre-averaged conformation. In a gaussian poly-

mer, the monomers follow a random walk along the chain, in such a way that

given two joined monomers, the third one posses a random three dimensional

orientation. The explicit expression of this model in the Fourier space is given

by,

ŵ(G)(q) =
1− f 2 − 2f/Nm + 2fNm+1/Nm

(1− f)2
(4.6)

where f = e−q
2σ2
m/6. Actually, in fig. (4.3), a Padé interpolation of eq. (4.6)

is employed in substitution of the gaussian model. The Padé interpolation is

another function that reproduces the asymptotic behavior, in this case, of the

gaussian model. The expression satisfying the latter condition is,

w(G)(q) = 1 +
Nm

1 + σ2
mq

2
√

6

. (4.7)

It is particularly a necessary condition to solve analytically eq. (4.5) in the “thread

limit” (69). Therefore, we have used the same expression (eq. (4.7)) in our nu-

merical calculations with the intention to reproduce the same conditions within

the two cases shown in fig. (4.3) (analytical and numerical solution).

Nevertheless, a real polymer conformation is consequence of the coupling of sev-

eral effects: the polymer-specific chemical bond, the presence of long-range inter-

actions, the deformation caused by a physical wall, or a colloid, . . . . Accordingly

to these restrictions, an improvement respect to the randomly gaussian chain

considering some of the latter effects is well demanded for the intramolecular
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4.2 Generalization to colloid-polymer mixtures

correlations. In this respect, in 1980, R. Koyama proposed a model alluding to

the semi-flexibility properties that a polymer manifests in solution (70). Based

on the worm-like chain model (71), the so-called Koyama’s form factor is a semi-

empirical model, since it takes into account the interpolation between two limit

cases, the gaussian and the rigid chain (72). The interpolating parameter is called

the persistence length, lp, and describes the local rigidity (rod-like shape) that is

transmitted along the chain. If lp ≈ Lc(= Nmσm) we can consider the polymer

as a rigid chain, while if lp ≈ σm the polymer is similar to the one defined by

the gaussian model (an explicit expression of the Koyama’s model may be found

in ref. (73)). To check the advantages of the semi-flexible model respect to the

gaussian one, we show in fig. (4.4) the form factor for three different cases: a gaus-

sian chain from eq. (4.6) (dashed line), a Koyama’s chain in the gaussian limit

lp = σm (solid blue line) and a Koyama’s chain with a higher stiffness, lp = 10σm
(red symbol-line).

 1
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 0.001  0.01  0.1  1  10

w(
q)

q!m
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1/lp
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1/!m
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Koyama’s Model (lp=!m)

Gaussian Model

Figure 4.4: Theoretical polymer form factors. Dashed line stands for the gaussian model

(eq. (4.6)), while solid and symbol-line correspond with the Koyama’s model for lp = σm

and lp = 10σm, respectively. Labels of the relevant lengths are included.

In the limit lp ≈ σm, the Koyama’s model effectively looks like the gaussian form
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factor (compare blue lines) at least until q−1 ≈ σm. However, for q−1 > σm
both models are markedly different. To understand the latter, it must be distin-

guished three different ranges in the Koyama’s form factor. For Rg < q−1 < lp,

w(q) ∝ q−2, like a gaussian chain dependence, for lp < q−1 < σm, w(q) ∝ q−1

like a rigid chain dependence (72), and for q−1 > σm the asymptotic behavior

is reached by oscillations around 1, where the period of the oscillations can be

related with σm. In the above discussion, we have assumed that two neighboring

monomers are connected at a distance given by b = σm (monomers connected

at the contact). However, it can be larger, b > σm, being b the so-called Kunh

length (74). In the case of b > σm the period of the oscillation for q−1 > σm is

related with b instead of σm.

For a charged polymer, it is important to taking into account the extra-rigidity

introduced by the repulsive interaction between neighbor monomers. In this re-

spect, lp represents an excellent parameter to model charged polymers respect to

the gaussian chain, since it allows us to vary the local-rigidity of the polymer.

There exist some models that separate the persistence length into two contribu-

tions, of a different physical meaning (75): the intrinsic one, lo, originated by the

specific properties of the polymer and the electrostatic one, le, due to the elec-

trostatic repulsion between the charged monomers. Assuming a Debye-Hückel

potential and considering that cationic condensation occurs (76), Odijk, Skolnick

and Fixman found,

le =
LB

4κ2b2
, for LB < b, (4.8)

where the Debye length, κ−1, introduces the ionic concentration dependence (ad-

ditional information about this model can be found in refs. (77, 78, 79)).

The assumption of the cation condensation in the monomers along the linear

polymer chain makes also valid the use of the Manning’s expression to predict

the monomer charge, Zm = b/LB. A previous study on polyelectrolyte using

PRISM proofs that this expression remains correct in the presence of flexible

linear polymers as in our case (62). For that reason, in this thesis we have

used the Manning’s expression to document the monomer charge alluding to the

condensation of ions, since the experimental knowledge of this magnitude is only

known for some specific polymers.
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4.2 Generalization to colloid-polymer mixtures

4.2.2 Electrostatic depletion mechanism

An example of how far we can go with PRISM lies on the applicability to charged

colloid-polymer mixtures. In this mixtures, the depletion interaction between col-

loids has an electrostatic contribution, that is mainly caused by the electrostatic

repulsion between colloids and polymers. This electrostatic enhanced depletion

attraction is the key to understand the equilibrium distribution of charged colloid-

polymer mixtures. To separate the electrostatic depletion mechanism respect to

the entropic depletion (section 2.3), the radial distribution functions predicted by

the PRISM for a mixture of like-charged colloids and charged/uncharged poly-

mers are presented in fig. (4.5) (charged polymers at the top and uncharged

polymers at the bottom). A couple of polymer concentrations are given in both

cases, c/c∗ = 0.001 and 1. As fig. (4.5) shows, two relevant features emerge:

• For neutral polymers (panel at the bottom), the increase of polymer con-

centration leads to weak changes based on just the packing of polymer. In

particular, gcc does not show any important changes by increasing of the

polymer concentration even in three order of magnitudes.

• For charged polymers (panel at the top), we observe an important polymer

rearrangement in gmm and gcm as a consequence of the monomer-monomer

and colloid-monomer electrostatic repulsion, respectively. However, the

colloid-colloid radial distribution remains equal for the diluted case that

the one for neutral polymers. By increasing the charged polymer concen-

tration, again in three order of magnitude, the packing of polymer is really

important and, now, the colloid distribution is strongly affected. Colloids

become typically closer (shift of the main peak to small r values) and the

number of colloids at such distance markedly increases (higher main peak).

In fig. (4.5), like-charged colloids at φc = 0.05 are typically at distances centre-

to-centre of rcc = 1.6σc(∼ 65σm). Under the depletion interaction discussed

on section 2.3 for neutral polymers, the range of the induced attraction is 2Rg

(∼ 80σm in fig. (4.5)), so that the colloids are separated at a distance where

the polymer-induced attraction can be neglected. As a consequence of that, the

increase of the neutral polymer concentration in three order of magnitude only

induces a very slightly change respect to the colloidal structure for c/c∗ = 0.001

(panel at the bottom).
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Figure 4.5: PRISM prediction of the radial distribution functions for colloid-polymer

mixtures. The polymer was modelled with the Koyama’s form factor: Nm = 500 and

lp = 10σm leading to Rg = 40σm. Site-site interactions were modelled with the Debye-

Hückel potential using the following set of parameters: Zc = 50, Zm = 0.347, κ−1 = 6σm

and σc = 40σm. HNC for the colloid-colloid correlation and PY for the rest of correlations

were employed to close the system of equations. For φc = 0.05, two polymer concentrations

have been included: c/c∗ = 0.001 and 1.0.

However, for charged polymers the arrangement of both components strongly vary

with the polymer concentration. The monomers are depleted from the colloidal

surface and from each other by means of electrostatic repulsion (see red lines gcm
and gmm). At c/c∗ = 0.001, gcc(r) is similar to the one for neutral polymers,
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4.3 Deformation of the polymer close to the colloidal surface

since the polymer concentration is really small and the electrostatically repelled

polymer can move away from the colloidal surface without packing restrictions.

By increasing the polymer concentration until c/c∗ = 1, the polymer is forced to

be close to the colloidal surface. At such separation distances the colloid-polymer

repulsion becomes stronger. In a simple view, if two charged colloids are close

enough to typically prevent the charged polymer to fit inside the volume between

them, an imbalance of electrostatic repulsion will generate an effective attraction

between them. This effect does not only depend on the size of the polymer, Rg,

but also on the range of the electrostatic colloid-poylmer repulsion. Therefore, the

resulting effective depletion attraction can have a range much longer than 2Rg.

The latter mechanism, was properly analyzed by L. Belloni under the PRISM

formalism (12) and then corroborated by simulations (80, 81) and experiments

(paper II and III of this memory).

4.3 Deformation of the polymer close to the colloidal sur-

face

The model discussed in section 4.2 is able to describe a huge variety of colloid-

polymer mixtures. As it was commented, PRISM takes the monomer correlations

and the finite size of the monomers into account. These effects are important and

wrong predictions are obtained with theories that do not include them (82, 83, 84).

We have already mentioned that PRISM relies on two relevant assumptions that

in real systems are not always valid: to neglect end-effects and pre-average the in-

tramolecular correlation. However, when a real polymer approaches to a colloidal

surface, the number of possible conformations diminishes due to the restrictions

that the hard-surface (colloid) offers (see fig. (4.6)). In principle, this effect rep-

resents an important inconvenient as the PRISM formalism needs to pre-average

the polymer conformation. In order to include the polymer deformation close to

a colloidal surface, Fuchs et al. proposed a new strategy to include this physical

mechanism within the PRISM formalism (63, 85, 86).

The PY equation states that the direct correlation, c(r), is a short range function

that at long distances than the contact one rapidly tends to zero. For hard-sphere

suspensions, this is an acceptable hypothesis. However for the colloid-monomer

correlation, given the connectivity of one monomer along the chain, the validity
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Bulk Conformation 
Deformation induced 

by the colloidal surface 

! 

Figure 4.6: The scheme illustrates how a colloid avoids that the polymer develops its

natural conformations in solution. The λ parameter represents the distance from which the

polymer feels the colloidal surface as a non-negligible obstacle to adopt some conformations.

of the PY-assumption at longer distances than σcm(=
σc + σm

2
) is not strictly

justified. Since the monomer connectivity leads to the emergence of the polymer

rearrangement close to the colloidal surface, Fuchs et al. proposed that c(r) should

be extended at distances longer than σcm. In this respect, a new length parameter,

λ, was defined to take into account the distance at which the polymer feels the

colloidal surface as a non-negligible obstacle. In consequence, λ should extend

the colloid-monomer direct correlation beyond the overlap. These premises are

satisfied under the so-called modified PY (or m-PY) equation, given by (63),

ĉcm(q) =
ĉPYcm (q)

1 + q2λ2
, (4.9)

where ĉPYcm (q) stands for the direct correlation defined by the PY equation already

defined in Chapter 3 (eq (3.16)). In the real space, eq. (4.9) is equivalent to,

ccm(r) =

∫
1

4πλ

1

|r− s|
e|r−s|/λcPYcm (s)ds, (4.10)

that clearly shows that the colloid-monomer correlation does not vanish immedi-

ately beyond the overlap but decays to zero smoothly along a distance of the order

of λ. An example is given in fig. (4.7) calculated for a neutral colloid-polymer
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4.3 Deformation of the polymer close to the colloidal surface

mixtures with a gaussian polymer chain (Nm = 50000, Rg = 1.4, with σc = 1),

c/c∗ = 0.0001 and φc = 0.01. In the figure, the analytical solution as well as the

numerical solution for PY and m-PY (λ = 0.3) are included (see legend). In the

“thread limit”, the direct colloid-monomer correlation is a constant value that

depends on the parameters of the system (solid line). However, comparing with

the numerical solution (PY closure), the direct correlation shows a strong devia-

tion from the constant value close to the contact point r = σcm as a consequence

of the monomer finite-size (dashed line). In contrast, the m-PY closure result for

λ = 0.3 shows the emergence of a smooth decay of the direct correlation at the

range σcm < r < (σcm + λ), as is desired. In other words, the spatial convolution

that introduces eq. (4.10), captures the non-local changes in the polymer confor-

mation close to the colloidal particles not included in the PY description.

It is expected that λ varies non-trivially with the physical system parameters

and its magnitude should be smaller than Rg and/or σc. For that reason, it

is necessary the implementation of a thermodynamic consistency to enforce the

determination of λ uniquely for each system, or set of parameters. The thermo-

dynamic consistency philosophy lies on the fact that the solution of PRISM must

provide the same thermodynamic results calculated by different routes (87). In

particular, the polymer excess chemical potential, δµp, is calculated by means of

two routes. The λ value is then chosen as the one which forces that both δµp
values are the same. The routes proposed to reach the consistency were (63):

• The compressibility route (45),

βδµ(1)
p |ρm→0 = −

∫ ρc

0

dρcĉcm(q = 0, ρc)|ρm→0, (4.11)

where the excess chemical potential, δµ
(1)
p |ρm→0, for inserting polymers into

a colloidal suspension at density ρc is calculated, in the limit ρm → 0.

• The second route is based on the calculation of δµ
(2)
p |ρm→0 in a process where

the colloid size is continuously increased from geometrical points (σ(ζ)
c (=

ζσc) = 0, with ζ = 0) to their real sizes (σ(ζ)
c = σc, with ζ = 1) (56).

Therefore, it formally consists on an integration over the colloidal size being

ζ the parameter that controls the colloidal size. During the growing process,
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Figure 4.7: The direct colloid-monomer correlation for a gaussian polymer with Nm =

50000, Rg = 1.4, c/c∗ = 0.0001 and φc = 0.01. Three different cases are shown: the

analytical solution (σm = 0.0) for the PY closure (λ = 0) with solid line, the numerical

solution (σm = 0.015) also for the PY closure with dashed line and the numerical solution

for the m-PY closure (λ = 0.3) with dotted line. Additionally, two vertical lines have

been included to remark the colloid-monomer contact distance and the range of λ. As in

previous calculations, all spatial lengths are reduced to σc = 1.

the colloids have to push against the pressure of the surrounding polymers.

Then, calculating the excess chemical potential from the free energy of this

process finally leads to the following expression,

βδµ(2)
p |ρm→0 =

πρcσc
2

∫ 1

0

dζ(σm + ζσc)
2g(ζ)
cm(σcm)|ρm→0+

2πρ2
cσ

3
c

∫ 1

0

dζζ2∂g
(ζ)
cc (ζσc)

∂ρm
|ρm→0.

(4.12)

It must be noted that g
(ζ)
ij (r) stands for the corresponding radial distribution

of a mixture with colloidal particles with diameter σ
(ζ)
c .

Comparing both routes, it is easy to understand that both calculations in prin-
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4.3 Deformation of the polymer close to the colloidal surface

ciple will lead to different results. On the one hand, the compressibility route

takes the large spatial scales into account (q = 0, being q the scattering vector)

to obtain the excess chemical potential. Usually, the result is rather insensitive

to λ. On the other hand, the “growing” route depends on gcm(r) at the contact,

which is strongly dependent on λ. In summary, the method consists on reaching

the λ value, which makes equal both routes, looking for the thermodynamic con-

sistency of the PRISM theoretical predictions.

At the end of Chapter 6, we have briefly exposed the first results on this topic

for mixtures of hard spheres and neutral polymers as well as mixtures of charged

colloids and polymers with finite-size monomers. This theoretical project has

been carried out in collaboration with Prof. Matthias Fuchs from the University

of Konstanz (Germany).
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Chapter 5

Experimental details

In this chapter, all experimental details of this dissertation are presented 1.

Firstly, a wide description of the light scattering methods has been provided

in section 5.1. It has been the main experimental technique used for the particle

characterization and the study of the structural and dynamics properties of our

experimental systems. A special treatment has been given to the device (3D-DLS

Spectrometer) in section 5.2, since it has allowed us to work with turbid systems

eluding the multiple scattering from the analysis. In section 5.3, the particles em-

ployed in our experiments are described. Moreover, the previous light scattering

knowledge are applied in the characterization of such particles.

5.1 Light Scattering methods

When a monochromatic and polarized light beam passes through a colloidal sus-

pension, the interaction of the light with the colloidal particles scatters the light

in all directions. The scattered light is collected by a photon-detector placed

at a fix position, which forms an imaginary plane with the incident light beam,

i.e., the so-called scattering plane. Under this geometry, the scattering vector

is defined as the vector difference between the wave propagation vectors of the

incident, ~ki, and the scattered beam, ~ks, ~q = ~ki − ~ks. In a quasi-elastic light

scattering experiment, the scattering vector can be expressed with its modulus,

q =
4πn sin (θ/2)

λo
, where λo is the wave length of the light in the vacuum , n is

1In chapter 6, they are scarcely given due to the format of the result chapter as individual publi-

cations.
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the refractive index of the medium and θ is the angle between vectors ~ks and ~ki.

The scattering volume Vs is defined as the intersection between the incident beam

and the optic field of the detector. This intersection defines the control volume,

from where the experimental information is registered, and it should contain a

large enough number of particles to be a representative sub-sample of the whole

system. All this parameters are illustrated in fig. (5.1).

Ki 

Ks 

Vs 

! 

Scattering Plane 

Figure 5.1: Illustration of a light scattering experiment.

5.1.1 Basic concepts

An electromagnetic field propagated through a material medium can induce, by

means of its oscillatory electric component, dipoles on the colloidal particles.

These dipoles also oscillate generating new isotropic radiation. This physical

phenomenon leads to the so-called light scattering (88). The resolution of the

Maxwell’s equations for the conditions, where the light scattering phenomenon is

defined, leads to the following expression for the scattered electric field, Es(~R, t),
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5.1 Light Scattering methods

in a far-field point1, ~R, and at a given time t,

Es(~R, t) = −k
2
sE0

4π

exp [i(~ks · ~R− ωt)]
R

∫
V

[
ε(~r, t)− ε0

ε0
] exp[−i~q · ~r]d~r. (5.1)

Here, ω is the frequency of the incident scattered light, respectively, E0 stands

for the amplitude of the incident beam, ε(~r, t) is the dielectric constant at the

position ~r on the suspension and ε0 is the average dielectric constant of the sus-

pension. In eq. (5.1), the term
ε(~r, t)− ε0

ε0
represents the relative fluctuation of

the dielectric constant on the medium, which is essentially the origin of the scat-

tering phenomenon. The term exp [−i~q · ~r] describes the phase factor between

the scattering radiation of two points separated a distance ~r.

The colloidal suspension contained in the scattering volume can be decomposed

into subvolumes, since the system is constituted by discretes spots (colloids) where

the dielectric constant is different to the solvent, εmedium. Under this idea, eq. (5.1)

can be rewritten as follows,

Es(~R, t) = −E0(R)
N∑
j=1

∫
Vj

k2

4π
[
εp(~rj, t)− εmedium

ε0
] exp[−i~q · ~rj] exp [−i~q · ~Rj(t)]d~rj

(5.2)

where N is the number of scattering particles, εp(~rj, t) stands for the dielectric

constant of the j-th particle at ~rj and the factor E0(R) = E0
exp [i(~ks · ~R− ωt)]

R
.

Rj(t) denotes the centre of mass position of the particle j, being Vj its volume.

Hereinafter, let us consider just the term that modulates the scattered electric

field regardless the term E0(R). This will be noted as E(q, t),

E(q, t) =
N∑
j=1

bj(q, t) exp [−i~q · ~Rj(t)] (5.3)

1By far-field assumption, we mean that the electromagnetic radiation is collected far away from the

scattering object, so that the scattering electric field is a planar wave perpendicular to the propagation

direction and the amplitude decays inversely with the distance to the object.
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where bj(q, t) =

∫
Vj

k2

4π
[
εp(~rj, t)− εmedium

ε0
] exp[−i~q · ~rj]d~rj. Since in a light scat-

tering experiment the scattered photons are detected per unit of area and time,

the relevant physical magnitude will be the instantaneous scattered intensity. It

is given by,

I(q, t) = |E(q, t)E∗(q, t)| =
N∑
i=1

N∑
j=1

|bi(q, t)b∗j(q, t)| exp (−i~q · (~Ri(t)− ~Rj(t))).

(5.4)

Eq. (5.4) represents a fluctuant observable, since it comes from a system of moving

scattering particles. Thus, it should be considered in terms of time-average,

〈I(q)〉. In this respect, the time during the intensity is collected must be longer

than the typical time where the system explores a representative set of points in

the phase-space. This allows us to assume that the intensity time-average is equal

to the intensity ensemble-average: the ergodicity condition. There are systems

where this typical time is much longer than the time taken for a standard light

scattering experiment, the so-called arrested systems. In such cases, the intensity

ensemble-average is measured by means of more sophisticated methods (89, 90).

5.1.2 Static Light Scattering (SLS)

This technique is based on the detection of the average intensity per angle within

a wide angular range. Depending on the ratio between the laser wave length,

λo, and the size of the scattering particle, a 1, several scattering regimes can be

distinguished: Rayleigh, if λo >> a, Rayleigh-Gans-Debye (RGD), if λo ∼ a,

and Mie2, if λo << a. In this research, we have worked with different spherical

particles 3 but always satisfying λo ≈ Rc, the radius of the particle, so the RGD

model is good enough to describe the scattering pattern of the average intensity

per angle (88).

1For homogeneous spherical particles, a corresponds with its radius, Rc.
2The Mie’s regime requires a special treatment, since the scattered photons at far-field points can

interfere depending on the geometry of the particles. In this sense, the particles act as a set of scattering

centers.
3Note that in paper I, we have used particles with Rc ∼ 0.7 µm, therefore the Mie’s regime could

be applied for SLS measurements. However, this work was focused only on the colloidal dynamics at a

fixed angle, so that the SLS technique is not required and also the Mie’s treatment.
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5.1 Light Scattering methods

From eq. (5.4), the intensity average can be easily decomposed into the product of

two q functions assuming identical particles (bi(q, t) = b(q) for all the particles).

So, eq. (5.4) can be rewritten as follows,

〈I(q)〉 = AP (q)S(q). (5.5)

where A = N〈|b(0)|2〉 depends mainly on the particle number density, the size of

the particle and the refractive index. P (q) is the form factor, already defined in

section 4.1. Although for the RISM formalism, the form factor is usually noted

as ŵ(q), in light scattering the P (q) notation is more common. P (q)(≡ 〈|b(q)|
2〉

〈|b(0)|2〉
)

contains the interference of the photons scattered from individual particles. In-

stead, S(q) stands for the structure factor (already defined in section 3.1) and

takes into account the interference of the scattered light from different particles.

For a homogeneous spherical particle of radius Rc(∼ λ0), the RGD form factor is

given by,

P (q) = [
3

(qRc)3
(sin (qRc)− qRc cos (qRc))]

2. (5.6)

Eq. (5.6) may be used to obtain an accurate prediction of Rc by measuring the

〈I(q)〉 in a very diluted colloidal suspension (where S(q) ∼ 1). In section 5.3 will

be shown that the predictions obtained by means of eq. (5.6) are quite similar to

the one obtained with other techniques (91).

From eq. (5.4), the exponential term is identified with the structure factor that

was already defined in section 3.1.1,

S(q) =
1

N
〈
N∑
i=1

N∑
j=1

exp (−i~q · (~Ri(t)− ~Rj(t)))〉. (5.7)

The scattering vector q takes here an important role. In an ensemble-average,

all relative distances between particles for all the possible configurations of the

phase-space are considered. If there is not a preferential separation distance be-

tween particles (non-structured system), the average in eq. (5.7) will be equal to

N . In case of correlated particles, leading to the emergence of a typical separa-

tion distance each other, we can look for the q value satisfying the relationship

~q · (~Ri− ~Rj) ∝ 2π, since it relates the typical distance with its Fourier component
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(position of the main peak of S(q), see section 3.2). Experimentally, the infor-

mation concerning the spatial distribution of the particles in equilibrium, S(q),

can be derived from the interference pattern in a range of q using eq. (5.6):

〈Icon(q)〉 ∝ P (q)S(q)

〈Idil(q)〉 ∝ P (q)
⇒ S(q) =

ρdil
ρcon

Tdil
Tcon

〈Icon(q)〉
〈Idil(q)〉

(5.8)

Here, labels “dil” and “con” stand for a diluted and a concentrated sample,

respectively. The prefactor ρ is the number density of particles and T is the

transmission factor. A typical cylindrical cell posses a thickness of 1 cm, while

the thickness of the scattering volume is much smaller, therefore the photons

go through several millimeters before they leave the sample. During such optic

path, the energy of some photons can be absorbed by the medium and these

photons does not reach the photon-detector. The ratio between the real number

of scattering photons at q in the scattering volume and the photons at the same

q that reach the detector defines the latter transmission factor. In a scattering

experiment, the transmission parameter is elusive. However, using the fact that

the S(q) approaches asymptotically to the unity1 for q → ∞, the transmission

parameter can be indirectly known.

5.1.3 Dynamic Light Scattering (DLS)

A DLS experiment consists on the measurement of the scattered intensity time-

correlation at a fixed scattering vector, q,

G(2)(q, τ) = 〈I(q, t)I(q, t+ τ)〉. (5.9)

At τ → 0, G(2)(q, 0) = 〈I(q, t)2〉, while at τ → ∞, G(2)(q,∞) = 〈I(q, t)〉2.

Therefore, eq. (5.9) is commonly normalized with 〈I(q, t)〉2,

g(2)(q, τ) =
G(2)(q, τ)

〈I(q, t)〉2
. (5.10)

Since I(q, t) is a fluctuant signal, the temporal dependence in eq. (5.10) between

the two limit cases (τ → 0 and ∞) provides information about the temporal

decorrelation of the signal. This decorrelation must be related with the motion

1S(q) goes to 1 for q → ∞, since at such spatial scales (r → 0) there is not interaction between

particles.
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of the dispersed particles in the medium. As was pointed out in the chapter 2,

the particles move following specific statistical properties. Extrapolating these

statistical properties to the scattered intensity, it can be demonstrated (92) that

the scattering electric field, E(q, t), is a complex gaussian variable with null aver-

age. From eq. (5.9), the relationship between the intensity time-correlation and

the electric field time-correlation can be established as follows,

G(2)(q, τ) = 〈I(q)〉2 + β2
inter|G(1)(q, τ)|2, (5.11)

where G(1)(q, τ) = 〈E(q, t)E∗(q, t+ τ)〉 is the electric field time-correlation. This

is the so-called Siegert relationship1. The coefficient βinter, commonly called in-

tercept, is the ratio between the coherence area of the scattered light beam and

the surface area where the signal is detected.

The most important magnitude in a DLS experiment is the function G(1)(q, τ) .

This is clearly shown on the following expression, constructed from eq. (5.4) and

normalized by 〈I(q)〉,

g(1)(q, τ) =

∑N
i=1

∑N
j=1 〈bi(q, t)b∗j(q, t+ τ) exp [−i~q[~Ri(t)− ~Rj(t+ τ)]]〉∑N

i=1

∑N
j=1 〈bi(q, t)b∗j(q, t+ τ) exp [−i~q[~Ri(t)− ~Rj(t)]]〉

. (5.12)

In eq. (5.12), the so-called normalized dynamic structure factor, g(1)(q, τ) =
G(1)(q, τ)

〈I(q)〉
, contains explicit information about the relative motion between any

two interacting particles, ~Ri(t)− ~Rj(t+ τ). Therefore, the measure of eq. (5.12)

by means of eqs (5.10) and (5.11) allows us to follow the particles motion of an

interacting particle system. For a colloidal suspension without structure (non-

interacting particles), eq. (5.12) is reduced to,

g(1)(q, τ) =
1

Nb2(q)

N∑
j=1

b2
j(q)〈exp [−i~q[~Rj(t)− ~Rj(t+ τ)]]〉. (5.13)

The cross terms i 6= j that correlate different particles have been removed. In

this case, the displacement ~Rj(t) − ~Rj(t + τ) can be expressed by means of the

1This is a statistical relationship established between the fourth and second moment of a gaussian

distribution.
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free-diffusion coefficient, D0 (eq. (2.3)), giving,

g(1)(q, τ) =
1

Nb2(q)

N∑
j=1

b2
j(q) exp [−D0,jq

2τ ]. (5.14)

where D0,j = 1
6
〈|~Rj(t)− ~Rj(t+τ)|2〉 is the diffusion coefficient of the j-th particle.

In the trivial case of identical particles, eq. (5.14) leads to,

g(1)(q, τ) = exp [−D0q
2τ ]. (5.15)

Therefore, the hydrodynamic radius, Rh, of the colloidal particle in suspension

can be calculated by fitting eq. (5.15) with an exponential function.

As was pointed out some paragraphs before, an exponential decay similar to

the one obtained in eq. (5.15) can be also found on the dynamic analysis of

interactive particle suspensions. In such cases, an effective diffusion coefficient,

Deff , is incorporated to eq. (5.15) in substitution of D0. It is usually distinguished

between different temporal ranges (short and long times coefficients) and different

spatial scales q, alluding to a regimes where the motion is autodiffusive (q > 1/Rc)

or the diffusion is cooperative between an ensemble of particles. (0 < q < 1/Rc)

(a wide theoretical treatment of the latter is given in refs. (25, 93)).

5.2 3D-DLS device

The main laser light scattering device used within this dissertation is the 3D-DLS

Spectrometer, from LS Instrument (Fribourg, Switzerland). This apparatus was

designed with the intention of avoiding the multiple scattering effects. The mul-

tiple scattering becomes a serious inconvenient in highly concentrated colloidal

systems or even at low concentrations, if the refractive indexes particle-solvent

do not match (turbid sample). In these cases, the use of techniques to eliminate

the multiple scattering contribution becomes essential.

5.2.1 3D-DLS description

Next, we list the main components of the 3D-DLS Spectrometer giving a brief

description of each one. Fig. (5.2) shows a picture of the apparatus with labels
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5.2 3D-DLS device

identifying the different components:

A B  C  D E  F 

G 

H 

I  J  K L 

M 

Figure 5.2: Picture of the 3D-DLS Spectrometer device. Labels indicate the different

components (see text).

• A - Helium-Neon Laser beam. A coherent and polarized beam with a

wave length λo = 632.8 nm and maximum power 35 mW. The fluctuation

of the power does not change in more than 1% during the stable phase of

the laser1.

• B - Mirrors. A set of two mirrors placed in a black box guiding the light

beam to the sample. This reduces the extension of the device, since the

optical arrangement can take a long distance in straight-line.

• C - Light Filters. The beam passes through a filter to reduce its power. A

set of seven filters are settled in a rotatory wheel to carry on the experiments

in optimal photon-counting conditions.
1The stable phase of a laser is reached around 30 min after to turn on. Then, it can be stable

during 5-6 hours.
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• D - Potentiometer. This device instantaneously registers the power of

the main beam after crossing the filter. The potentiometer is connected

to the computer to provide the average power during any light scattering

experiment.

• E - Beam Splitter. Optical device to split the main beam into two parallel

and incoherent beams.

• F - Converging Lenses. They are focused on the center of the bath, where

the sample is placed. This allows to cross the parallel incident beams in the

centre of the sample and register the scattered light again as two parallel

beams.

• G - Bath. The centre of a thermal bath is placed just in the image focus of

the latter lenses. A water closed circuit covers the bath to keep a constant

temperature. The circuit is connected to a thermostat (Thermostat HAAKE

K10) and to the computer, where the temperature is registered at any time.

The bath is filled with decahydronaphtalene (cis+trans) with the aim to

match the refractive index of the sample cell.

• H - Double Goniometer. The thermal bath is assisted by two indepen-

dent motors moving the nest, where the sample is placed, and the light

detector arm. The first goniometer is useful for samples with slow dynamics

like glassy systems (89, 90), since the rotation of the sample allow us to

perform a fast ensemble-average. The second goniometer selects the angle

θ, where the photons are collected by the detectors placed on it.

• I - Micrometer Screws. Suitable for squares sample cells, since the optical

path of the light can be reduced changing the x-y position of the cell from

an overhead view. This application is specially indicated for turbid samples.

• J - Cells. We can use either quartz or glass cells. They can be geometrically

different (square or cylindrical with diameter 5 or 10 mm). The quality of

the cell material does not affect the angular distribution of intensity, but

improves the photon transmission.

• K - Fiber Optic. After crossing the second lens, the photons are col-

lected by two detectors consisting on two fiber optic “eyes”, which drive the

collected light to an electronic device where both beams are treated.
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• L - Photodiode Receivers (EG and G). Avalanche photodiodes are

settled during the fiber optic circuit to multiply the input signal. The con-

fidence range of this device is (1-50)·105 photon per second.

• M - Correlator Multi-tau (ALV). In this electronic device the corre-

lation of the signal is calculated. One can chose between auto and cross

time-correlation to obtain the correlation between the two beams (cross)

or only one (auto). The resulting information is finally transmitted to the

computer.

5.2.2 Suppression of the multiple scattering

During a light scattering experiment, the incident light beam is scattered from

the sample and collected by a detector placed at the scattering angle θ. When

the photons are inside the sample, they can interact with several particles, or

scattering centres, and so the collected photons do not always come from a single

scattering. Let us consider now the scheme illustrated in fig. (5.3). In a single

scattering, the incident light beam is scattered by the scattering centre A and

collected by the detector. In a double scattering, the incident light is scattered

from the centre B and, before leaving the sample, is again scattered from the

scattering centre C in such a way that the photons ends up in the detector. Con-

sidering both examples, the registered intensity is not only the one coming from

particle A, but also from the double scattering, (optical path B-C). As the scat-

tering vector q contains specific information from the 2π/q spatial scale, under

the situation illustrated in fig. (5.3), the latter ceases to be valid, since 〈I(q)〉
becomes contaminated by other q vectors.

In this work, we have treated with different kind of particles at several concen-

trations (section 5.3) and almost always exceeding the limit where the multiple

scattering can be neglected. Fortunately, using the 3D-DLS Spectrometer, we

are able to eliminate the multiple scattering effect in all our experiments from

the analysis. On the next paragraphs, the theoretical fundaments to understand

how the single scattering information is isolated from the multiple scattering are

exposed.

In 1980, G. D. J. Phillies proposed an idea (94, 95) to elude the multiple scatter-
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Figure 5.3: Single and double scattering scheme.

ing contamination in a quasi-elastic light scattering experiment keeping the basic

structure of a standard scattering device. This pioneering idea was widely devel-

oped and applied to more sophisticated apparatus on the next twenty years (96,

97). The new scheme was based on the cross-correlation of the scattered electric

field of two simultaneous experiments coming from the same scattering volume,

but for two different scattering vectors: ~q and −~q. Let us consider the field

amplitude as a sum of two contributions: single plus double and higher-order

scattering,

E(~q, t) = Es(~q, t) + Em(~q, t). (5.16)

The superscripts s andm stand for the single and multiple scattering, respectively.

Both are complex gaussian variables for a large enough scattering volume. Let us

also consider the signal coming from another scattering vector −~q. The average
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5.2 3D-DLS device

intensity at any scattering vector will be given by,

〈I(q)〉 = 〈Is(q)〉+ 〈Im(q)〉 (5.17)

and the auto-correlation of I(q, t) by,

〈I(q, 0)I(q, τ)〉 = 〈Is(q, 0)Is(q, τ)〉+ 〈Es(q, 0)Es∗(q, τ)〉〈Em∗(q, 0)Em(q, τ)〉
+〈Es∗(q, 0)Es(q, τ)〉〈Em(q, 0)Em∗(q, τ)〉

+〈Im(q, 0)Im(q, τ)〉+ 2〈Is(q)〉〈Im(q)〉
(5.18)

By auto-correlation is understood the time-correlation between the scattering in-

tensity coming from the same scattering vector. Eq. (5.18) explicitly contains

the contributions from both single and multiple scattering. Given the statistical

independence between the single-multiple and multiple-multiple 1 scattering con-

tributions to the electric field, only the Es(~q, t) and Es(−~q, t) will show correlated

fluctuations in the cross-correlation function of the intensity (the time-correlation

between ~q and −~q), since in a single scattering only the modulus of the scattering

vector, q, is relevant and is equal for both simultaneous experiments. Following

the latter expression, the cross-correlation of the intensity can be calculated as

follows,

〈I(~q, 0)I(−~q, τ)〉 = 〈Is(~q, 0)Is(−~q, τ)〉+ 〈Im(~q, 0)Im(−~q, τ)〉
+〈Is(~q)〉〈Im(−~q)〉+ 〈Im(~q)〉〈Is(−~q)〉.

(5.19)

where the vectorial notation for q, has been explicitly shown to distinguish be-

tween both simultaneous scattering experiments. The statistical independence of

the electric field from ~q and −~q has been applied to suppress the cross-correlated

terms. Using eq. (5.17) on eq. (5.19) and simplifying, the normalized cross-

correlation function can be written as follows

g(2)
c (q, τ) = 1 +

〈Is(~q)〉〈Is(−~q)〉
〈I(~q)〉〈I(−~q)〉

[
〈Is(~q, 0)Is(−~q, τ)〉
〈Is(~q)Is(−~q)〉

− 1] (5.20)

where the subscript in gc(q, τ) notes that is a cross-correlation function. The

main consequence of this results is that the time-dependent factor in eq. (5.20)

1The higher order scattering involves different Fourier components, which are statistically indepen-

dent and undergo uncorrelated temporal fluctuations (see ref. (95))
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only involves the single scattering. In fact, using eq. (5.12) on eq. (5.20), it

is easy to show that the time-dependent term
〈Is(~q, 0)Is(−~q, τ)〉
〈Is(~q)Is(−~q)〉

− 1 is equal to

(βg(1)(q, τ))2. The ratio between single and total intensities enters here as an am-

plitude modulating the temporal information contained in the cross-correlation

function. Following the notation for the intercept, βinter, the new static pre-factor

is commonly rewritten as β2
MS(q). Additionally, any misalignment in the over-

lap of the scattering volumes must be taken into account on the pre-factor term

(βOV ), since it also modulates the electric field cross-correlation (more informa-

tion about this can be found in ref. (97)). Thus, the final expression follows the

same aspect than eq. (5.12) but with βcross(q) = βMS(q)βOV βinter.

Special care should be taken during a cross-correlation experiment concerning

the duration of the measurement. In case of a strong multiple scattering contri-

bution, the collected photons coming from single scattering can be scarce, even

though the ensemble-average of the total intensity, 〈I(q)〉, is rapidly reached. So

that, the expended time to measure the cross-correlation of the single scattering

electric field (in particular, the second term in eq. (5.20)) will be insufficient to

reach an ensemble-average of this magnitude. There is not a rule to know a priori

the extra-time necessary to measure the ensemble-average of the latter. In our

experiments, we focused on the βMS value at the end of each g(1)(q, τ) measure-

ment, since it contains the rate of average single photons registered respect to

the total intensity, to decide if a long-time measurement is required.

In fig. (5.4), the normalized electric field time-correlation calculated by means of

the auto and cross techniques are compared. The results correspond to a diluted

colloidal suspension of polystyrene latex (see section 5.3). At low colloidal con-

centration (as in this example), the sample is transparent and, so the multiple

scattering contribution should be totally negligible. However, this is not the case,

as there is still a small difference between the cross and the auto correlation func-

tions. As the particle concentration increase, the small disagreement becomes

more significant.

We have not yet mentioned the advantages of this multiple scattering suppression

method applied to the SLS technique. As was presented in section 5.1.2, we have

to measure the total average intensity as a function of q to obtain the shape
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Figure 5.4: Auto and cross normalized electric field time-correlation for polystyrene

particles in free-diffusion at φc = 0.02% and [KNO3]=2 mM. Under this conditions the

sample is transparent.

and spatial order of the particles. However, following eq. (5.17), the multiple

scattering is not removed from that measurements, since it contains the 〈I(q)〉(=
〈Is(q)〉+〈Im(q)〉) average magnitude. To perform an analysis based on the single

scattering scheme, one can derive the corresponding structure factor, S(q), taking

into account only the single contribution (98). From eq. (5.19), the total average

intensity as a function of the single scattering is derived as follows,

〈IAs (q)〉〈IBs (q)〉 = βMS(q)〈IA(q)〉〈IB(q)〉. (5.21)

βMS(q) =
√
g(2)(q, 0)− 1 is directly deduced from eq. (5.20). The superscripts A

and B denote each detector (to distinguish between ~q and −~q) and the notation

of the single scattering is taken now in the subscript. Since the modulus of the

~q vector of both light beams is the same, in a single scattering both intensities

share a common spatial scale information and therefore the vectorial notation is

removed. So, if we insert eq. (5.21) into eq. (5.8) for the structure factor, we
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finally obtain the next expression,

S(q) =
ρdil
ρcon

Tcon
Tdil

√
〈IAcon(q)〉〈IBcon(q)〉
〈IAdil(q)〉〈IBdil(q)〉

βconMS(q)

βdilMS(q)
(5.22)
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Figure 5.5: Comparison of the colloidal structure factor measured with (red) and without

(black) the multiple scattering corrections. The inset shows the dependence of βMS on q

when the multiple scattering is considered.

Here, we assume that the transmission factors are equal for both beams along

the sample. Note that in the latter expression the angular dependence does not

only lies on the explicit intensity but also in the βMS(q) function.

Fig. (5.5) compares the colloidal structure factor obtained using the technique

of the cross-correlation with the one without the multiple scattering suppression,

auto-correlation. It should be noted that the colloidal packing fraction is here

more than 10 times greater respect to the one studied in fig. (5.4), therefore it is

expected a more presence of multiple scattering than in the sample of fig. (5.4).

With the multiple scattering corrections, a result quite different to the one ob-

tained without corrections is documented for qRc < 1.75. This discrepancy comes
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from the βMS(q) function (see inset of fig. (5.5)), which for low q values shows

an important q-dependence respect to the diluted case. At q → 0, the single

scattering respect to the total one drastically decreases, since the photons are

collected from a large spatial scale where the multiple scattering is more likely

respect to the single one.

5.3 Experimental systems

In section 5.1, we have presented the fundamental observables, 〈I(q, t)I(q, t+ τ)〉
and 〈I(q)〉, that were measured by light scattering techniques in our experimental

studies. These were also useful to perform the individual characterization of the

particles employed in this thesis. Here, the information about the systematic

characterization of each kind of particles is presented.

5.3.1 Colloidal particles

We have employed polystyrene latex (PS) as colloids, which are generally pre-

sented as highly monodisperse particles (99). The PS particles were synthesized

by the POLYMAT group using the standard synthesis procedures described in

ref. (100). During the particle preparation, nanometric spheres of polystyrene are

formed and grow, until the chemical reaction is interrupted. At the last stage of

the chemical reaction, an ionic surfactant is added covering some of the surface

of the polystyrene nucleus to give them an ionic character. After the synthesis,

residual amounts of chemical components can be still found in dissolution. To

remove the latter, the original sample was purified by means of the commonly

known Serum Replacement procedure (68). Figure (5.6) shows the resulting par-

ticles after the synthesis. This picture was taken using Transmission Electron

Microscopy (TEM). From the picture, the average diameter is around 100− 110

nm and the polydispersity was found to be smaller than 5% (in particular, the

width of the size distribution is 2%).

The PS colloidal particles were characterized using light scattering techniques. In

particular, fig. (5.7) shows the experimental form factor (via SLS) together with

the prediction given by eq. (5.6) (RGD model). This measurement was carried

out at very low particle concentration in order to guarantee that S(q) = 1. To

ensure the absence of particle-particle electrostatic repulsive interactions, we have
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Figure 5.6: TEM image of the polystyrene latex courtesy of J. Ramos and I. Iranburu

(POLYMAT Institute).

also added a small amount of salt ([KNO3] = 2 mM). As observed, the experi-

ments fit well to a monodisperse suspension of hard-spheres with hydrodynamic

radius Rc = 55 nm, which is quite similar to the one obtained with TEM.

To confirm the radius estimated using the SLS technique, we performed a second

measurement using DLS. The experimental result and the best theoretical predic-

tion is given in fig. (5.8). Here, the exponential decay for g(1)(q, τ) (eq. (5.14)) is

employed to model the free diffusion of the PS particles. The best fit was reached

at Rh = 58.5 nm that agrees quite well with the previous result. The small dif-

ference between the DLS and the SLS predictions for Rc lies on differences in the

theoretical fundaments of both techniques (SLS measures the radius of a sphere,

while DLS measures the hydrodynamic radius).

For the wavelength of our laser (λo = 632.8 nm), the polystyrene has a refractive

index of 1.587, while the water one is 1.33. This difference is large enough to

have strong multiple scattering effects, even at low colloidal concentrations (see

fig. (5.4)). Notwithstanding, the latter characterization procedure is performed

using the cross-correlation technique to assure that only single scattering enters
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Figure 5.7: Experimental form factor for the polystyrene latex measured with the 3D-

DLS Spectrometer (hollow circles). The solid line represents the best fit found respect to

the experimental data using eq. (5.6).

in the analysis. At larger particle concentrations, not only the multiple scattering

becomes extremely important, but also another trouble emerges. For a colloidal

packing fraction of 1%, the PS latex suspension is so turbid that the maximum

laser power (35 mW) is insufficient and so, the photons are not able to leave the

sample. Therefore, there is no detected signal to analyze.

The latter limitation concerning the high colloidal concentration may be avoided

using another kind of particles with a better index matching. In order to extend

our experimental studies to larger colloidal particle concentrations, phosphatidyl-

serine liposomes have been used. From a geometric viewpoint, a liposome is a

sphere constituted by a water core and a phospholipid shell. The shell of a

phosphatidyl-serine liposome is a bilayer with a thickness given by 4.5 nm. Using

the synthesis process described in ref. (101), a polydisperse liposome suspension

with an average diameter smaller than 0.5 µm is obtained. The large size of these

particles and the narrow thickness of the shell makes the phosphatidyl-serine li-
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Figure 5.8: Normalized electric field cross-correlation for the PS latex (hollow circles)

taken at θ = 90◦ (q = 0.019 nm). The solid line stands for the best fit of the experimental

data using the exponential decay predicted for non-interacting Brownian particles.

posomes extremely deformable. In this respect, after typically 1-2 weeks after the

synthesis, it is not recommended to use these colloidal suspensions, since a large

fraction of liposomes can be blowed up by thermal agitation leading to a notably

different system.

Fig. 5.9 shows an example of the form factor of the phosphatidyl-serine liposomes

(hollow circles). The strong dependence with q respect to the result shown in

fig. (5.7) indicates that a large variety of sizes exist in the liposome suspension,

i.e., the polydispersity. The RGD model can be modified to the case of hollow

spheres with core refractive index equal to the medium one and polydispersity.

From eq. (5.6), the liposome form factor can be rewritten as follows,

P (q) = [
3

(1− t3)(qR
(int)
c )3

(sin (qR(int)
c )− qR(int)

c cos (qR(int)
c )

+qtR(int)
c cos (qtR(int)

c )− sin (qtR(int)
c ))]2.

(5.23)
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Figure 5.9: Form factor of liposomes (hollow circles). Solid line stands for the best fit of

the experimental data with a polydisperse vesicle model derived from eq. (5.23) (courtesy

of Dr. S. Roldán-Vargas).

where R
(int)
c stand for the internal radius of the liposome and the external radius

R
(ext)
c is t times R

(int)
c . The polydispersity is introduced by means of a tri-modal

pseudo-Shultz distribution. The theoretical prediction (solid line) was calculated

using a code provided by Dr. S. Roldán-Vargas. The best fit (solid line) was

found for an average diameter of 240 nm and polydispersity 30%. A DLS anal-

isys performed for different q values throws different results as a consequence of

the polydispersity. Setting different spatial windows, the diffusion in a prede-

termined length scale, of a liposome size, is captured. So that, the results are

strongly dependent on the angular position of the detector and, thus the charac-

terization of the average particle size and polydispersity is only recommended to

carry out using the SLS technique.

In this thesis, we have also employed a PS latex with a larger size (∼ 1 µm) and

liposomes with phospholipid bilayer of PC (Phosphatidyl Coline) and DMPC

(Dimiristoil Phosphatidyl Coline) all in paper I. The first phospholipid is similar
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Table 5.1: Table with the relevant parameters of the particles used in this thesis and

the papers where they appear. σc stands for the size diameter, µe is the electrophoretic

mobility and Zeff corresponds with the colloidal effective charge measured by the fit of

S(q).

Particle σc (nm) Polydispersity µe (×10−8 m2

V s ) Zeff ( e
particle) Paper

PS-micro 1300 4% − − I

PC-lipo 488 15% − − I

DMPC-lipo 484 15% − − I

PS-nano 110 2% −3.2 600 II & III

PS-lipo 240 30% −2.1 180 IV

to the phosphatidyl-serine, but uncharged in water. The second one was particu-

larly chosen because it is able to modify the elastic constant of the liposome shell

with the temperature (102). A systematic characterization, following the same

procedure as before, was carried out for these particles (the results are given in

table (5.1)).

The sign of the charged colloidal surfaces were determined using electrophoretic

mobility measurements. It consists in a oscillatory electric field that is applied to

the colloidal suspension. By means of a laser, the induced motion by the electric

field is measured. The electrophoretic mobility, µe, is defined as the ratio be-

tween induced velocity and electric field. Following the standard procedure given

in ref. (68), a value of µe = −3.2 · 10−8 m2V−1s−1 was obtained for the PS latex

(the one with σc = 110 nm), while for the PS liposomes, an average value of

µe = −2.1 · 10−8 m2V−1s−1 was registered. In both cases, these particles shown

a negative charge in water. As is shown in table (5.1), the electrophoresis was

not performed for the particles of paper I. In this work, we focused on the study

of the dynamic in absence of interactions, for what we screened the electrostatic

repulsion by the addition of KNO3.

The determination of the effective charge that a colloid bear in suspension is a

hard task, since it strongly depends on the kind of measurements used to reach

such information. The electrophoretic measurements can indirectly provide a pre-

diction of the electrokinetic effective charge Zelec
eff . This method requires a suitable

model including information of the colloidal shape, the ionic size, etc, connect-
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ing µe with Zelec
eff (103). Another way to determine the colloidal effective charge

in suspension is by means of the experimental static structure factor, S(q). We

can predict a theoretical S(q) using the Ornstein-Zernike equation (section 3.1.2)

and an interaction model that includes Zstruc
eff as a parameter (e.g., Debye-Hückel

potential given in section 2.2). Knowing the rest of system parameters, we can

consider Zstruc
eff as the free parameter that fits the theoretical S(q) with the experi-

mental one. As an example of the methodology to predict Zstruc
eff , in fig. (5.10), we

show the measurement of the PS latex effective charge, Zstruc
eff = 600, by means of

S(q) at a low ionic concentration. The symbols stand for the experimental struc-

ture factor while the solid lines correspond with the theoretical predictions for

several Zstruc
eff (the rest of parameters are given in the figure legend). To reach a

low ionic strength condition (∼ 1 µM), we put the colloidal suspension in contact

with the ion-exchanger Amberlite NRM-150 resins (more details can be found in

ref. (104, 105, 106)).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.5  1  1.5  2  2.5  3  3.5

S
(
q
)

q!c

100
300
500
600

Figure 5.10: Static structure factor of a PS latex in water at low ionic conditions. Symbols

stand for the experimental measurement while solid lines correspond with the theoretical

prediction (OZE-HNC) for several Zstruceff values, giving in the legend. The experimental

parameters also used in the calculations are the following: the φc = 0.56% and the ionic

concentration cion = 1 µM.
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5.3.2 Polymers

We have used polyacrylamide from Polyscience Inc., as the polymeric specie in

the colloid-polymer mixtures. An important advantage of choosing this linear

polymer is its high hydrosolubility. Indeed, the use of a hydrophobic polymer

would introduce an additional problem to the mixture as the possible adsorption

of the polymer on the colloidal surface.

Two different polymers with molecular masses 5.0 · 106 g/mol and 1.0 · 106 g/mol

have been employed in this thesis. To characterize both polymers, a standard

procedure denominated Zimm-Plot diagram was carried out (107). This kind

of representation is based on the dependency of the scattered intensity with the

polymer concentration and the angular position of the detector. This provides

relevant information of the polymer, as is its radius of gyration, Rg, the second

virial coefficient, B2, and the molecular mass of the polymer, Mw. In figure (5.11),

the results for the two linear polymers (solid circles) are shown divided in two

panels. The corresponding analysis leads to the next information about the poly-

mers: Rg = 33 nm, Mw = 2 · 105 g/mol for the smaller polymer (panel (a)) and

Rg = 54 nm, Mw = 2 · 106 g/mol for the longer polymer (panel (b)). The latter

information was extracted from the linear fits, also shown in fig. (5.11), as solid

and dashed lines with the following equation:

Kc

Rθ

=
1

Mw

(1 +
q2R2

g

3
) + 2B2c, (5.24)

where K = 4π2n2(dn/dc)2/NAλ
4
o, n is the refractive index of the polymer solu-

tion at concentration c (in g/cm3) and Rθ =
〈Iθ〉
〈Iinc〉

RToluene
θ is the Rayleigh ratio

of the sample, being 〈Iinc〉 the intensity of the incident beam, 〈Iθ〉 the scattering

intensity at angle θ and RToluene
θ the toluene Rayleigh ratio also at angle θ, which

can be found tabulated at different temperatures (107).

Electrophoretic mobility of the polymers was carried out in the dilute regime,

c < c∗. Although they are commercially presented as non-ionic polymers, the po-

larity of the water slightly ionizes the polymer giving rise to a certain charge (see

comments of section 4.2 concerning the ion condensation giving to the monomer

an effective charge). The electrophoretic mobility is µe = −1.1 and −0.9 · 10−8
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Figure 5.11: Zimm-plot for the short polymer, panel (a), and the long polymer, panel (b).

Circles stand for the experimental data at different polymer concentrations c (g/cm3) and

angular positions θ. Dashed lines represent the fits of the experimental data at constant c

or θ. Hollow circles stand for extrapolation from the latter linear fits to c = 0 or θ = 0. The

two solid lines correspond with the lineal fit of the hollow circles following the procedure

exposed in ref. (107).
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m2V−1s−1 for the small and long polymer, respectively. So that, both poly-

mers present a negative charge in water. The prediction of the zeta-potential for

polymers becomes a hard task, since the polymer is a conformational complex

macromolecule. Therefore, the charge distribution and the resistance to flow in

water are two subject hardly to model. In our case, the knowledge of the charge

sign of both polymers in water was calculated by means of the Manning’s expres-

sion for linear polyelectrolytes giving Zeff
m = 0.8 (76).

Given the charge sign shown for colloids and polymer in water, the adsorption

of the polymer in the colloidal surface can be discarded by electrostatic rea-

sons, even more when the mixture remains in contact with Amberlite NRM-150

ion-exchanger resins that are responsible for enhancing the electrostatic repul-

sion. This ion-exchanger resin reduces the length of the ionic double layer, since

it substitutes the big ions on suspension by protons (H+) keeping fix the elec-

troneutrality of the medium. Nevertheless, we have performed an additional test

to confirm the non-adsorption. We have compared the viscosity ηpol of several

polymer solutions with the viscosity of the bulk, ηcol−pol, in a colloid-polymer mix-

ture (i.e., the viscosity depending on the solvent and the polymer suspended on

it). The equivalency between ηpol and ηcol−pol was then studied. If ηpol = ηcol−pol,

the polymers mixed with the colloidal particles remains in the bulk. On contrary

if
ηpol

ηcol−pol
> 1, the polymer will be partially adsorbed to the colloidal surface.

The bulk viscosity was indirectly measured by means of DLS. From the Stokes-

Einstein equation, ηbulk(= ηcol−pol) =
kBT

D06πRc

, the bulk viscosity can be obtained

knowing Rh and D0 (which are measured in a DLS experiment). The ηpol was

determined using a rheomether. The relative error was less than 1% in all the

measurements performed. Additionally, the ηpol−col measurements obtained via

DLS were used to rescale the correlation time in paper III.

Finally, special care has been taken with the rate
〈Icol(q)〉
〈Ipol(q)〉

, where 〈Icol(q)〉 and

〈Ipol(q)〉 stand for the intensity scattered by colloids and polymers, respectively.

We are interested in the study of the colloidal structure factor, Scc(q), and the

effect of the polymer presence on that. In this respect, we should consider only

single scattering from colloids. However, the light is also scattered from the poly-

mers, in such a way that the collected information is analyzed together. To elude
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a sophisticated analysis separating both contributions, we have always worked in

a scattering intensity rate
〈Icol(q, φc)〉
〈Ipol(q, c/c∗)〉

> 103, in which it is totally justified to

neglect the polymer contribution from the analysis, so 〈I(q)〉 ∼ 〈Icol(q)〉.
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Abstract

We study the nondiffusive Brownian motion of both rigid and deformable mesoscopic

particles by cross-correlated dynamic light scattering with microsecond temporal resolu-

tion. Whereas rigid particles show the classical long-time tail prediction, the transition

to diffusive motion of deformable particles presents a striking behavior not explained by

the existing hydrodynamic treatments. This observation can be interpreted in terms of

a damped oscillatory deformational motion on times cales of the order of the Brownian

time. Finally, we show that the nondiffusive Brownian motion depends on the specific

flexibility of the particles.
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The dynamics of a Brownian particle can be formulated on different levels of descrip-

tion depending on the time scale of interest and the refinement of the hydrodynamic

approach [1-3]. Thus, in Einstein‘s classic investigation [4] no assumptions about the

behavior of the particle velocity were made and the motion at long times of a “free”

Brownian particle was shown to be diffusive. The initial attempt to incorporate ve-

locity in the description of Brownian motion immediately came with the Langevin

equation [5, 6]. Within this approximation, the interaction between the particle and

the surrounding fluid was separated into two forces associated with a common origin,

a systematic friction and a fluctuating noise, with no considerations of hydrodynamic

memory effects. Despite its mathematical significance, this simple model predicts an

extremely fast transition from ballistic to diffusive motion which is found to be nonre-

alistic.

The true character of the transition from ballistic to diffusive motion was successfully

explored by Alder and Wainwright [7, 8] by means of molecular-dynamics simulations

assuming a hard-sphere (HS) interaction. They found a “surprising persistence of the

velocities” [8] through a “long-time tail” (∝ τ−3/2) in the velocity autocorrelation

function, with the resultant delay in the emergence of the diffusive motion. In terms of

macroscopic fluid dynamics, this observation was explained as a hydrodynamic mem-

ory effect due to the circulation of the fluid from the front of the particle, where the

fluid is compressed, to the rear, where a rarefaction wave is developed. This vorticity

effect pushes the particle resulting in a persistence of its motion. Soon, this finding was

mathematically described by detailed hydrodynamics treatments [9-11] and the first

real measurements of the long-time tail appeared for simple liquids [12, 13]. For rigid

colloidal particles, experiments using dynamic light scattering (DLS) [14-16], diffusing-

wave spectroscopy [17, 18], and optical trapping interferometry [19], have consolidated

the existence of the long-time tail. Nevertheless, these studies have been based on the

assumption of a HS-like interaction (computer simulations) or a fixed, rigid, geomet-

rical shape of the tracer particles (experiments). However, despite their ubiquitous

presence, a lack of these investigations devoted to deformable particles still persists.

In this paper, we use cross-correlated DLS to present experimental evidence against the

validity of the classic long-time tail prediction in case of mesoscopic deformable particles

suspended in a small-molecule solvent. Thus, as opposed to rigid particles, we docu-

ment an original observation that can be interpreted in terms of the interplay between

the translational and the deformational motion of our deformable particles on time
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scales of the order of the Brownian time. These data demand a complete theoretical

approach to account for the nondiffusive Brownian dynamics of mesoscopic deformable

particles. In absence of a theoretical understanding, we show that two deformable par-

ticles with similar diffusivity can be distinguished by their specific flexibility through

their nondiffusive Brownian motion. As a result, our investigation appears as especially

stimulating to be applied to mesoscopic biological objects whose functionality depends

on their elastic properties to a great extent [20].

An essential relation holds for the isotropic motion of a Brownian particle between

any Cartesian component of its mean-square displacement, < ∆x2(τ) >, and its corre-

sponding velocity autocorrelation function, < vx(0)vx(τ) > [6]:

< ∆x2(τ) >= 2

∫ τ

0
(τ − t) < vx(0)vx(τ) > dt, (6.1.1)

The brackets denote ensemble averages. Equation (6.1.1) applied to the case of a

Langevin‘s particle becomes [6]:

< ∆x2(τ) >= 2D0[τ − τB + τB exp (−τ/τB)], (6.1.2)

where D0 is the particle‘s diffusion coefficient and τB = 2a2ρ/9η the Brownian time.

Here a and ρ represent the radius and density of a rigid mesoscopic spherical particle,

whereas η is the shear viscosity of the fluid. In contrast, if we consider a complete

hydrodynamic treatment including memory effects, Eq. (6.1.1) becomes [11, 15]:

< ∆x2(τ) >= 2D0[τ−2(
τL
π

)1/2τ1/2+
τL
9

(8−2ρ

ρ′
)−

τ
3/2
L

9
√
π

(7−4ρ

ρ′
)τ−1/2]; (τ > τL), (6.1.3)

where τL = (9/2)(ρ′/ρ)τB, ρ′ being the fluid density. Although both results, Eq. (6.1.2)

and (6.1.3), tend to a common diffusive regime, < ∆x2τ >= 2D0τ (τ >> τB), the lat-

ter presents a slower transition due to its second term (∝ τ1/2), which is associated to

the presence of the long-time tail (∝ τ−3/2) in < vx(0)vx(τ) >, as can be deduced from

Eq. (6.1.1).

To test these theoretical predictions via DLS, an experimental determination of the nor-

malized autocorrelation function of the scattered field g1(q; τ) (q being the magnitude

of the scattering vector) can be performed. In case of noninteracting, identical, and

rigid spherical particles g1(q; τ) =< exp (iq∆x(τ)) > . If measurements of g1(q; τ) are

made at short times (τ ∼ τL), non-Gaussian effects are hardly appreciable regardless of
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the statistics of vx, as can be proved by Taylor‘s expansion of g1(q; τ) [15]. Accordingly

[21]:

g1(q; τ) = exp (−1

2
q2 < ∆x2(τ) >), (6.1.4)

However, instead of using directly g1(q; τ) to probe Eqs. (6.1.2) or (6.1.3), an ex-

perimental time-dependent “diffusion coefficient” Dexp(τ) ≡ (−1/q2)d ln g1(q; τ)/dτ is

frequently defined [15, 17]. As a result, the slopes of < ∆x2(τ) > /2 obtained from

Eqs. (6.1.2) and (6.1.3) are compared with Dexp(τ), which is determined by numeri-

cal differentiation. Nevertheless, we should note that whereas Eqs. (6.1.2) and (6.1.3)

consider uniquely the theoretical translational motion, Dexp(τ) could also reflect the

motion corresponding to nontranslational degrees of freedom. This will be a central

point in our discussion.

To obtain Dexp(τ) for the suspensions investigated in this work, we used a three-

dimensional DLS spectrometer (LS instruments, Fribourg, Switzerland) with two in-

cident He-Ne laser beams (λ = 632.8 nm). Suspensions were contained in a cylin-

drical scattering cell which was immersed in a thermostatized bath. A digital cor-

relator (Flex03lq-OEM) computes the normalized cross-correlation function, g2
C(q; τ)

of the registered scattered intensities detected by two avalanche photodiodes (SPCM-

AQRH) for which the time-dependent contributions of multiple scattered photons can

be neglected. The experimental g1(q; τ) were obtained through the relation g2
C(q; τ) =

1 + β[g1(q; τ)]2 (0 < β < 1), with a similar protocol as that described in Ref. [22] for a

two-color DLS scheme. The sample time resolved with our correlator is 12.5 ns, with

286 τ values along the interval [1.25 · 10−8, 10−4] s. For all the experiments, photon

counting rates were kept within [105, 5 · 105] s−1 to ensure a maximum dead time of 40

ns, being always under the saturation limit. A reliable statistical estimator of g1(q; τ)

resulted from the average of 25 independent measurements with 1000 s per measure-

ment. Thus, spurious determinations due to electronic distortions, even at delay times

as short as 0.2 µs, are minimized. The magnitude of the scattering vector was fixed at

qf = 0.026 nm−1.

For our experimental study, we used three different suspensions which were sufficiently

diluted to avoid long-range interactions. First, an aqueous suspension of polystyrene

microspheres, denoted as “sample R” (rigid), with mean radius aR = 650 nm, relative

standard deviation RSD= 0.04, and particle volume fraction φR = 0.002%. The second

sample, “sample D” (deformable), was an aqueous suspension of liposomes made of soy-

87



6. RESULTS

bean phosphatidylcholine (SPC) from Lipoid, with mean external radius aD = 244 nm,

RSD= 0.15, and φD = 0.01%. The third sample, “sample RD” (rigid-deformable), was

an aqueous suspension of liposomes made of dimyristoylphosphatidylcholine (DMPC)

from Sigma-Aldrich Inc., with aRD = 242 nm, RSD=0.15, and φRD = 0.01%. Due to

the extrusion procedure, both SPC and DMPC liposomes show an unilamellar thick-

ness of about 5 nm [23]. The twofold (rigid-deformable) behavior of sample RD comes

from the composition of the lipid bilayers, since DMPC membranes exhibit two main

phases separated by a threshold temperature (known as main transition temperature):

a rigid gel phase and a deformable liquid crystalline phase. Below the main transition

temperature, the DMPC membranes retain their rigidity. Above the main transition

temperature, that is, in the liquid crystalline phase, it is considered that the majority

of the single carbon-carbon bonds of the acyl chains of the lipid bilayers have free ro-

tation [24]. This phenomenon evidences the conversion of the DMPC membrane from

the gel to the liquid crystalline phase, where the membrane displays new properties

such as an increased permeability and a fluidized state. Thus, we can treat sample RD

as rigid or deformable by changing the temperature around its critical value. The main

transition temperature of the DMPC bilayers was established at 23.0±0.1◦C by means

of differential scanning calorimetry [24].

Using the described protocol, two examples of the classic long-time tail prediction at

13◦C and 25◦C are shown in Figs. 6.1.1(a) and 6.1.1(b) for sample R. While Langevins

model does not predict the real evolution of Dexp(τ), the full hydrodynamic model

(without fitting parameters) and Dexp(τ) show a good agreement. Thus, whereas at

short times a significant contribution of the long-time tail term (∝ τ−1/2) is apparent,

at moderate long times (τ ≥ 40 µs) the diffusive regime, D(τ)/D0 = 1, is nearly recov-

ered. In addition, the time evolution of Dexp(τ) corresponding to sample D at 25◦C is

shown in Fig. 6.1.1(c): Neither Langevin‘s model nor the full hydrodynamic treatment

describe satisfactorily these new experimental results. Now Dexp(τ) shows a clear non-

monotonic behavior with at least two marked maxima within our time window over the

corresponding Langevin‘s prediction. After reaching the second maximum (τ∗ = 3.7

µs), Dexp(τ) decreases smoothly and tends to its diffusive value, D0 . Since their envi-

ronments are similar, the distinct trends shown by Dexp(τ) for the polystyrene spheres

and the SPC liposomes should be caused to the different structural properties of these

particles. To support this statement, we present the results obtained for sample RD

at different temperatures around the main transition temperature. Thus, the unique

significant change in the dynamics of this suspension only involves the elastic properties
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of the DMPC membranes.

Figure 6.1.1: Normalized time-dependent diffusion coefficient D(τ)/D0 corresponding to

sample R at (a) 13 and (b) 25◦ C, and sample D at 25◦ C (c). Blue dash-dotted line stands

for Langevin‘s model: D(τ)/D0 = (d〉∆x2(τ)〈/2dτ)/2D0 [Eq. (6.1.2)]. Red dashed line cor-

responds to the full hydrodynamic model: D(τ)/D0 = (d〉∆x2(τ)〈/2dτ)/2D0 [Eq. (6.1.3)].

Black solid line represents the experiment: D(τ) = Dexp(τ). D0 is the experimental free

diffusion coefficient corresponding to each temperature. Inset in (c): dotted line represents

the predicted exponential relaxation corresponding to τ = 32 µs and α = 0.1.

Dexp(τ) corresponding to sample RD at 15◦C, 23◦C, and 34◦C are shown in Figs.

6.1.2(a)- 6.1.2(c). In accord with our calorimetric determination, sample RD at 15◦C

is associated to the rigid gel phase of the DMPC membranes. In fact, the full hydro-

dynamic model and the experimental data show again a common tendency as in the

case of sample R [Fig. 6.1.2(a)]. At 23◦C, that is, at the main transition temper-

ature, a moderated agreement between theory and experiment still persists although

the fluctuations in Dexp(τ) appear more pronounced [Fig. 6.1.2(b)]. At 34◦C the

deformable crystalline phase of the lipid membranes is expected, and indeed a notice-

able change in the trend shown by Dexp(τ) occurs [Fig. 6.1.2(c)]. As in the case of

sample D, we observe a nonmonotonic behavior of Dexp(τ) with a clear maximum at

very short times (τ∗ ∼ 0.6 µs). However, sample RD presents a faster final relaxation

than that associated to sample D, almost recovering its diffusive value around τ ∼ 5 µs.

In our opinion, the complex experimental patterns shown in Figs 6.1.1(c) and 6.1.2(c)

reflect the intricate interplay between the translational and the deformational motion of
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Figure 6.1.2: Normalized time-dependent diffusion coefficient D(τ)/D0 corresponding to

sample RD at (a) 15, (b) 23, and (c) 34◦C symbols as in Fig. (6.1.1).

our flexible particles. At short times, when the translational velocity has not yet been

damped, Dexp(τ) would contain simultaneously the translational and the deformational

displacements of the liposomes membrane. Thus, the strong fluid-membrane interaction

due to the translational velocity would induce fast changes in the membrane‘s motion

that would be elastically restored, being manifested through the sharp oscillations of

Dexp(τ). In the absence of a dynamic model for Dexp(τ) in which both translational

and deformational motions are considered simultaneously, the latter cannot be easily

isolated to be described quantitatively. However, at long times, when the translational

velocity is damped, the final relaxation of Dexp(τ) toward D0 would reflect essentially

the underlying overdamped deformations in the liposome’s form.

Since we have chosen an adequate q-value for our experiments (qfaliposome ∼ 6), see

for details Ref. [25], we are able to explore if this hypothetical deformational motion

is present in Dexp(τ), attempting to reveal the internal modes of deformation of our

flexible particles [26, 27]. Hence, we adopt the model proposed by Milner and Safran

[26] to describe the small shape fluctuations of a single vesicle in thermal equilibrium,

where the translational motion is not considered. Accordingly, the relative displacement

of the membrane, r(τ,Ω), is expanded into spherical harmonics, Ylm(Ω), around a fixed

radius a: r(τ,Ω) = a(1 +
∑

l>1,m ulm(τ)Ylm(Ω)) , where Ω is the solid angle and ulm(τ)

the amplitude associated to a given mode. By appealing the fluctuation-dissipation

theorem, the autocorrelation functions of the amplitudes present an exponential decay

< ulm(τ)ulm(0) >=< |ulm(τ)|2 > exp (−τ/τl), where the relaxation time, τl, of a mode
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driven by bending forces (negligible surface tension [26, 27]) is

τl =
η3(2l + 1)(2l2 + 2l + 1)

kcl2(l + 1)2(l + 2)(l − 1)
, (6.1.5)

with kc being the bending modulus of the membranes. According to Eq. (6.1.5), the

slowest relaxation is expected for the second deformational mode. Restricting our-

selves to the l = 2 contribution [25, 27], the final relaxation of Dexp(τ) would be

in first approximation described by an overdamped exponential decay of the form

D(τ) ∼ D0[1 + α exp (−τ/τ2)], where the damping is mediated by τ2 as in the case of

< u2(τ)u2(0) >. Here we implicitly assume a small deformations regime < |u|2 >1/2≤
0.1, according to the theoretical prediction for standard kc values of the lipid mem-

branes [26, 28]. In particular, taking the bending modulus of the SPC membranes as

kc = (1.5 ± 0.5) · 10−19 J [28], the relaxation time for a vesicle of a = 244 nm sus-

pended in water at 25◦C is τ2 = 32 µs [Eq. (6.1.5)]. Using this value, our exponential

approximation provides a good description of the final relaxation of Dexp(τ) even for

amplitudes as big as α = 0.1 [see inset, Fig. 6.1.1(c)]. This agreement is certainly

encouraging, since it supports quantitatively our interpretation of the relaxation of

Dexp(τ) in terms of an over-damped deformational motion. Regarding sample RD, due

to their strong temperature and membrane composition dependence, values for kc that

typically range (2 · 10−19 − 6 · 10−19) J have been documented for the DMPC mem-

branes at the liquid crystalline phase [29]. Accordingly, the corresponding τ2-range for

a vesicle of a = 240 nm suspended in water at 34◦C results τ2 ∼ (6, 19) µs. Although

slightly overestimated, this prediction is also in reasonable accord with that observed

for the final relaxation time of sample RD, which reaches the diffusive regime around

τ ∼ 5 µs [see Fig. 6.1.2(c)]. These results concerning our flexible particles are the

quantitative observation of the damped deformational motion of a large vesicle under

spontaneous nondiffusive Brownian motion. As a result, a powerful practical applica-

tion emerges: Our methodology is useful to estimate and predict the elastic properties

of a great variety of biological deformable particles.

In conclusion, we have revealed the complex scenario present in the nondiffusive motion

of a deformable Brownian particle, which is mediated by the coupling between transla-

tional and deformational degrees of freedom. As opposed to rigid particles, a complete

theoretical understanding of this motion, including its short times description, remains

as a challenge.
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Abstract

We use a light scattering technique to investigate the effect of adding non-adsorbing

charged polymers to a very dilute electrostatically stabilized colloidal suspension at

low electrolyte concentration. The experimental results show that, as the polymer

concentration increases, the main peak of the colloid-colloid structure factor moves to

higher q-values, which cannot be only due to the screening of the direct colloid-colloid

electrostatic repulsion. We show that the colloid-polymer electrostatic repulsions lead

to enhanced depletion forces that have a strong influence on the colloid structure, even

for diluted suspensions. The experimental results are interpreted using the off-lattice

Polymer Reference Interaction Site Model (PRISM), and very good agreement is found

for all polymer concentrations.

98



6.2 Paper II. Structure of charged colloid-polymer mixtures

Adding non-adsorbing polymers to an originally stabilized colloidal suspension in a

good solvent leads to a new complex system with a very rich structural and phase

behavior [1]. The stability of this kind of binary systems has motivated a growing

attention of experimentalists and theoreticians during the last fifty years [2-9], as it is

involved in many technological and industrial applications and in important biologi-

cal processes [10]. Moreover, the colloid-polymer mixtures represents a model system

where its properties can be easily tuned by varying, among others, the size ratio of the

components, their concentrations, the quality of the solvent or the mutual interactions

(controlling, for instance, the surface charge of the particles) [11, 12].

In general, it is known that the addition of a smaller component (polymers, colloids, . . . )

to a sample of bigger colloidal particles leads to new small-small and small-big interac-

tions that induce an effective interaction between the big particles. This interaction can

be attractive (depletion) [2], repulsive (accumulation repulsion) [13] or even show other

complex behaviours (haloing or bridging) [14], depending on wether the small and big

particles attract or repel each other. Specifically, if the small component is a polymer

chain, there are several theoretical models that try to explain the equilibrium prop-

erties of the mixture. In the seminal Asakura-Oosawa model [2] (where polymers are

treated as interpenetrating spheres and colloids as hard spheres) the so-called effective

depletion attraction between colloids emerges from purely entropic arguments. If this

model is extended to consider that polymers are not ideal, but they interact through a

soft excluded-volume repulsion [15-17], then the previous depletion attraction becomes

reduced. More sophisticated models take into account the monomer-monomer correla-

tions inside the polymer chain [18, 19]. Under the latter consideration, it is shown that

the effective interaction induced by polymers is mainly controlled by its characteristic

length, which depends on its concentration [20]. Finally, if the colloids bear certain

amount of surface charge and the polymer coils are formed by ionizable monomers,

there are extra colloid-colloid, colloid-polymer and polymer-polymer electrostatic in-

teractions that have a strong influence on the stability and structure of the sample [21,

22]. Although one may find some theoretical works that study this situation [23-26],

in literature there are scarce experiments focused on the microstructure of this kind of

charged mixtures.

In this work, a light scattering technique is used to study the interplay between elec-

trostatic repulsion and the attractive depletion interaction in mixtures of like-charged

colloids and polymers in water. Initially, we start from a reference system consisting
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of a strongly charged and highly structured diluted colloidal suspension at very low

electrolyte concentration. Then, the effect of adding increasing amounts of a slightly

charged non-adsorbing polymer on the colloid-colloid structure factor is studied. Using

the Polymer Reference Interaction Site Model (PRISM), we are able to fit accurately

the experimental structure factors and find a theoretical explanation in terms of the

colloid-colloid effective potential.

The colloidal particles used in our experiments are polystyrene spheres synthesized us-

ing the procedures given in ref. [27], with a hydrodinamic diameter of σc = 100 ± 2

nm measured by Dynamic Light Scattering (DLS) [28]. The particles bear a negative

surface charge which is corroborated from the electrophoretic mobility measurements

(µe = −3.5 · 10−8 m2/Vs). The hydrosoluble polymer is polyacrylamide from Poly-

sciences, Inc. Its molecular weght is (1− 0.6) · 106 g/mol and its radius of gyration in

water is Rg ≈ 25 nm determined again by DLS. Electrophoretic measurements reveal

that polyacrylamide in water is slightly charged (µe = −0.9·10−8 m2/Vs). Since colloids

and polymer coils have the same charge sign, no adsorption of polymer on the colloidal

surface is expected. The samples are prepared by mixing the binary colloid-polymer

system in a bed of ion exchanger resin inside a cylindrical quartz cell two days before

the light scattering measurement is performed. We found that this time is long enough

to assure that the mixtures has reached equilibrium conditions. In all cases, the colloid

volume fraction was φc = πρcσ
3
c/6 = 0.0056, where ρc is the colloidal number density.

The different polymer volume fractions used in our study are shown in table (6.2.1).

The colloidal structure was captured via the structure factor S(q) determination using

the Static Light Scattering technique (SLS) [28]. The experimental setup comprises

a three-dimensional light scattering spectrometer, 3D-DLS from LS Instruments (Fri-

bourg, Switzerland), having two avalanche photodiode detectors (A and B) and digital

correlator that computes the cross correlation function of the registered scattered in-

tensities, for which the time-dependent contributions of multiple scattered photons is

removed [29]. According to this design [30], the colloid-colloid structure factor of the

sample is proportional to

S(q) ∝

√
〈ImA (q)〉〈ImB (q)〉
〈I0
A(q)〉〈I0

B(q)〉
gmAB(q, τ = 0)− 1

g0
AB(q, τ = 0)− 1

(6.2.1)

where 〈Imi (q)〉 is the total time-averaged intensity registered by detector i = A,B

for the colloid-polymer mixture in a fixed q-value, whereas 〈I0
i (q)〉 is the intensity

corresponding to a dilute colloidal suspension. In our measures the time-averaged
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Table 6.2.1: The first column stands for the polymer volume fraction φp used on the

experimetns and theory. Iion is the ionic strength that gives the best fit and it is the

result of the sum of three contributions: a fixed colloidal contribution Zcρc = 0.01, a

monomer contribution Zmρm and a free electrolyte contribution Celectrolyte which is the

real fit parameter. The last two are represented together with their percentage on the value

of Iion.

φp (%) Iion Zmρm Celectrolyte

− 0.01 - 10−6

0.00003 0.015 0.002(13.3%) 0.003(20.0%)

0.00015 0.029 0.007(24.1%) 0.012(41.4%)

0.00075 0.055 0.03(54.5%) 0.015(27.3%)

0.00100 0.08 0.04(50.0%) 0.03(37.5%)

intensity scattered by the polymers is negligible compared to the one by colloids

〈Ip(q)〉 < 10−3〈Ic(q)〉. Therefore, the structure factor given in eq. (6.2.1) is indeed the

colloid-colloid structure factor Scc(q). The ratio (gmAB(q, τ = 0)−1)/(g0
AB(q, τ = 0)−1)

corrects the magnitude of the structure factor due to the disturbance of multiple scat-

tering [30], where gAB(q, τ) = 〈IA(q, t)IB(q, t + τ)〉/〈IA(q)〉〈IB(q)〉 is the normalized

cross-correlation function of the registered intensities.

Fig. (6.2.1) shows the experimental colloid-colloid structure factor Scc(q) for mixtures

with increasing polymer concentration (see table (6.2.1)). At zero polymer concen-

tration (black hollow squares), Scc(q) shows a well-defined microstructure of a typical

monocomponent colloidal fluid. The main peak at qσc = 1.54 reveals a centre-to-centre

distance between particles of about 4.1σc, obtained from the relationship rcc ∼ 2π/qmax.

The peak height (Scc(qmax) = 2.64) and the trend of Scc(q → 0) to 0 for a diluted col-

loidal system are two signatures of a highly repulsive scenario. However, this peak is

strongly affected by the polymer concentration, as can be seen in fig. (6.2.1). Three re-

markable facts are observed with this increase in polymer concentration. Firstly, there

is a noticeable increase of Scc(q) for q → 0. Secondly, the height and width of the main

peak decreases and broadens, respectively. Finally, the position of the peak moves to

relatively high q-values.

The growth of Scc(0) when the polymer concentration increases is usually caused by
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Figure 6.2.1: Colloid-colloid static structure factor Scc(q) corresponding to different

colloid-polymer mixtures. Lines stand for the PRISM theoretical results and hollow sym-

bols for light scattering experiments. The type of lines and symbols correspond to different

polymer volume fractions as follow: 0 (black squares and solid line), 0.00003 (red circles

and dashed line), 0.00015 (green triangles and dotted line), 0.00075 (blue diamonds and

dot-dashed line) and 0.001 (pink pentagons and double-dashed line). The inset shows the

colloid-colloid static structure factor at the same colloid volume fraction 0.0056 for different

electrolyte concentrations without polymer: 0.6 (red circles), 1.2 (green triangles) and 2.4

mM (blue diamonds).

the existence of spatial inhomogeneities in the system [7]. Attractive interactions and

polidispersity are the main reasons leading to heterogeneities in colloidal systems. Nev-

ertheless, the excellent monodispersity of our colloidal particles points out to the conclu-

sion that an attractive contribution in the effective interaction induced by the charged

polymers appears as the most plausible explanation. However, this attraction is not

strong enough to induce the fluid-fluid phase separation, as Scc(0) does not show any

divergence for q → 0. Moreover, we did not find any evidence of two phases emergence

during the preparation and measurement process.

The decrease of the main peak shows that, as we increase the polymer concentration,
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the liquid order becomes gradually lost. In principle, this effect could be attributed to

the increase of the ionic strength Iion induced by the inclusion of charged polymers in

the sample, as entropic depletion effects should be insignificant at the small concentra-

tions of colloids and polymers employed in our experiments [2, 7]. However, it should

be stressed that the shift of the peak cannot be justified in this way.

In order to demostrate that the ionic strength does not control all the structure behav-

ior, we performed other experiments where the structure factor of colloidal suspensions

at the same colloidal packing fraction was measured for different KBr concentrations

without polymer (results are shown in the inset of fig. (6.2.1)). In these experiments,

the conductivity of the sample was chosen identical to the one measured for the mixture

with polymers. Indeed, as we increase the electrolyte concentration, the colloidal struc-

ture factor tends to 1.0 for all q-values (non- interacting particles). However, the shift

of the peak is in all cases smaller than the one obtained by adding charged polymers.

This can be appreciated in fig. (6.2.2), where the position of the peak is shown as a

function of the polymer concentration (full circles). The experiments show that the

presence of polymers induces an attractive effective interaction between colloids that

leads to closer interparticle separations (going from 4.1σc to 2.3σc) compared to the

ones obtained by varying the KBr concentration (from 4.1σc to 3.8σc).

Therefore, the observed shift in the colloid-polymer experiments is caused by a driving

interaction counteracting the direct colloid-colloid electrostatic repulsion. This inter-

action is the enhanced depletion induced by the charged polymers around the colloids,

provoked by the colloid-polymer electrostatic repulsion. In this sense, the physical ori-

gin of this depletion is more electrostatic than entropic. Nevertheless, the explanation

of this behavior rests on the coupling of several effects that cannot be separated [26].

On the one hand, as we increase the polymer concentration in the mixture, depletion

attraction becomes more important. On the other hand, increasing the polymer con-

centration also raises the ionic strength of the sample, which leads to the screening of

all electrostatic interactions. While the screening of colloid-colloid electrostatic repul-

sion helps the particles to approach each other, the screening of the colloid-polymer

repulsion weakens the electrostatic depletion induced by the polymers, so the shift of

the peak is the result of the competition between these effects. However, in our opinion

the experimental data clearly indicate that the combination of the screening of the

colloid-colloid electrostatic repulsion plus the depletion induced by the added polymer

dominate over the screening of the colloid-polymer electrostatic repulsion. This finally
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Figure 6.2.2: Position of the main peak of Scc(q), qmaxσc, as a function of the polymer

volume fraction. Full circles are the experimental results, while the solid line is the PRISM

prediction obtained under the assumption that the ionic strength of the sample does not

grow with the polymer concentration.

leads to a net effective attractive well at intermediate distances that moves to smaller

values as the polymer concentration (and so the ionic strength) increases. We will

confirm this hypothesis later on in the paper.

So, although the underlying physics of the experiments appears to be understood,

it would be desirable to contrast them with a suitable theoretical description. The

selected model should consider the fact that polymers are not simple objects, but they

are flexible chains formed by the bending of many smaller monomers (that hereafter will

be considered as spherical). In other words, the correlations between monomers that

belong to the same polymer chain must be included in order to obtain correct theoretical

predictions for the structure of the polymers. This may be done by means of the

PRISM theory, firstly proposed by Schweizer and Curro [19] for one-component polymer

suspensions, and the excluded to colloid-polymer mixtures. The PRISM is based on the

Ornstein-Zernike integral equation theory [31], where the correlation between monomers

are taken into account explicitly. It states that, in a N-molecular system, the inter-
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monomer total correlation (between monomers belonging to different chains), h(r), is

related to the inter-monomer direct correlation c(r) and the intra-correlation function

for monomers on the same chain, w(r). For a binary mixture, in the Fourier space, the

PRISM is generalized to

hij(q) = wij(q)[cji(q)wij(q) +
∑
l

cil(q)ρlhlj(q)] (6.2.2)

where the first term in eq. (6.2.2) represents the direct correlation between species i

and j, whereas the second term gives the correlation between i and j through the rest

of particles. We will treat our colloid-polymer system as a mixture of colloids and

monomers, while the solvent enters implicitly via an effective interaction-site potential

as is the Debye-Hückel one,

βV direct
ij (r) =

 +∞ r < σij(=
σi+σj

2 )

LBZiZje
−κ(r−σij)

r(1+0.5κσi)(1+0.5κσj)
r ≥ σij

(6.2.3)

where subscripts i and j denote the colloid (c) and monomer (m) species. In the

previous expression β = 1/kBT , LB is the Bjerrum length. σi is the diameter of

the i-component, Zi is its surface charge and κ is the inverse of the Debye length

κ =
√

8πLBIion. The ionic strength of the mixture, Iion, is the sum of all possible

ionic species present in the suspension: charged colloids, charged monomers and free

electrolyte, Iion = Zcρc + Zmρm + Celectrolyte.

In order to solve eq. (6.2.3) additional equations relating the interaction potentials

to the correlations are required to close the algebraic system. We use the HNC clo-

sure equation for the colloid-colloid correlations and the PY closure for the colloid-

monomer and monomer-monomer correlations [24-26]. The intra-monomer informa-

tion stored in wij(q) has been modeled as wcc(q) = 1 (valid for spherical particles)

and wcm(q) = wmc(q) = 0, while wmm(q) is given by the form factor of a single poly-

mer chain. A suitable description for wmm(q) is provided by Koyama’s model [32, 33],

where an interpolation between two limit cases (Gaussian and rigid chain models) is

performed through a semi-empirical parameter, the persistence length Lp. Intuitively,

Lp is a measure of the intrinsic stiffness of the chain, and it controls the radius of

gyration of the polymer [34].

Therefore, our mixtures have been modeled with the next parameters: for colloids

σc = 100 nm, Zc = 600 electrons per particle (calculated from the method explained

105



6. RESULTS

elsewhere [35]) and φc = 0.0056. For polymers, the non-solution of the integral equa-

tions for large polymer chains demands an effective monomer size of σeffm = 15σm,

where (σm = 0.8 nm). This leads to N eff
m = 1000 (Nm = 14000). The persistence

length has been taken to be equal to this effective diameter, Leffp = σeffm . The polymer

charge, Zm, has been chosen to be the one predicted by the Oosawa-Manning theory

[31]. This model takes into account the electrostatic condensation of the counteri-

ons on the charged polymer coil. Although this model was derived for linear chains,

it remains correct for the case of flexible ones [36] (according to this, Zm = 0.8 for

acrylamide monomer). The calculations were performed using the same experimental

polymer volume fractions showed in table (6.2.1). The free electrolyte concentration is

an uncontrolled parameter which can be substantially affected by external impurities

coming from the polymer synthesization process or the external contamination during

the protocol preparation. For these reasons, Celectrolyte is selected as the only fitting

parameter of our theoretical predictions. Table (6.2.1) shows the ionic strength that

leads to the best fit. Zmρm and Celectrolyte have also been shown in order to confirm

that they are increasing functions of the polymer concentration. Once these parame-

ters have been chosen, the PRISM allows us to determine the theoretical colloid-colloid

structure factor that will be compared to the experimental light scattering observations.

The results of these calculations are also shown in fig. (6.2.1) as different type of lines

superimposed to the experimental data. In all cases, the theoretical predictions agree

with the experimental Scc(q) for the five studied polymer concentrations. It must be

emphasized that not only the height and width of the peaks is well captured, but also

their positions. The PRISM is also able to predict the increase of the structure factor

at low q-values, although the theory overestimates the light scattering observational

evidence. In our opinion, this happens because the wmm(q) model employed is not

exact and causes that PRISM calculations lose precision at large spatial scales in favor

of an apparent fine accuracy at large q-values.

Since the PRISM capture quantitatively the experimental results, it is worth using

this theory to deepen in the interplay between depletion attraction and electrostatic

repulsion. Particularly, we are interested in understanding the previously mentioned

shift of the peak of Scc(q). In fig. (6.2.2) we show the theoretical predicted peak po-

sition, assuming that κ does not increases with the polymer concentration. As can be

observed, the peak displacement is also quite important, which is a confirmation that

the almost unscreened polymer-colloid electrostatic repulsion induces a very strong de-
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pletion attraction between colloids. However, the shift is still below the experimental

data, showing that the screening of the colloidal charge enhances still more the deple-

tion effect.
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Figure 6.2.3: Colloid-colloid (gcc(r)) and colloid-monomer (gcm(r)) pair distribution

functions obtained with the PRISM theory at the same experimental conditions. The type

of lines stand for the polymer volume fractions studied in the experiment: 0.00003 (red

dashed line), 0.00015 (green dotted line) and 0.00075 (blue do-dashed line).

An alternative way to quantify the importance of the depletion is comparing the colloid-

colloid and colloid-monomer pair distribution functions (gcc(r) and gcm(r), respectively)

predicted by the PRISM for the same experimental conditions. They are shown in

fig. (6.2.3) for three different polymer concentrations. In all cases, the colloid-polymer

electrostatic repulsion is strong enough so that the maximum of gcm(r) falls at larger

distances than the maximum of gcc(r). That is, polymers are on average excluded from

the region between two colloids, giving rise to an enhanced depletion attraction at such

distances. These results agree with the conclusion given by a previous theoretical study

performed for a similar situation [37].

Finally, we use the PRISM predictions to calculate the two-body total colloid-colloid
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interaction potential as a function of the polymer packing fraction φp. To derive the

latter potential we make use of the relationship βV Total
cc (r) = − ln gcc(r). This expres-

sion is exact by definition [38] only when the number of colloidal particles tends to zero.

In other cases, the effective density pair potential must be properly interpreted taking

into account the hypothesis used to derive it, as concluded in ref. [39]. Although the

colloidal packing fraction used in our experiments is not diluted enough, the obtained

potential is a suitable approximation to consider, in terms of interactions, a qualitative

physical interpretation of our results.
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Figure 6.2.4: Dimensionless colloid-colloid total potential βV Totalcc (r) and colloid-colloid

effective potential βV effcc (r) (shown in the inset). Curves were obtained from the PRISM

predictions as is indicated in the text. The type of lines assigned in figs. (6.2.1) and (6.2.2)

has been maintained.

Figure (6.2.4) shows βV Total
cc (r) in the limit φc → 0 for the five studied polymer con-

centrations. This interaction is in fact the sum of two contributions: the direct colloid-

colloid electrostatic repulsion V direct
cc (r) and the polymer-induced effective potential

V eff
cc (r), (V Total

cc = V direct
cc (r) + V eff

cc (r)). The interaction potential picture helps us to

separate all the effects responsible for the colloid structure. First of all, the plots show

that as we increase the polymer concentration, V direct
cc (r) becomes gradually screened
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by the extra ionic strength of the suspension. This causes the shift to shorter distances

of the repulsive barrier of V Total
cc (r). At the same time, increasing of the ionic strength

also induces the screening of the colloid-monomer repulsion, reducing the attractive

effective depletion between colloids (see the inset of fig. (6.2.4)). However, if we add

both contributions, the overall effect is attractive and a potential well appears at in-

termediate distances. Indeed, the polymer presence changes the shape of the curves

from a purely repulsive pair interaction (black solid line) to a repulsive barrier with an

attractive well (other lines). In fact, when the polymer concentration is increased, the

attractive well moves to shorter centre-centre distances (from rmin = 6σc to rmin = 3σc)

and its width becomes narrower (from 4σc to 2σc), while the depth remains almost con-

stant (βV Total
cc (r) ∼ −0.4).

These theoretical results confirm that the depletion attraction induced by the colloid-

polymer repulsion is playing the dominant role. Moreover, the effective potential pic-

ture gives another confirmation of the electrostatic origin of this depletion. Indeed,

if we take a naive picture where polymer chains are treated as ideal [2], the range

of the depletion attraction is given by 2Rg. However, this framework must be auto-

matically rejected since the range of the attractive wells shown in fig. (6.2.4) is always

larger than 4Rg. This results are in agreement with the shift of the main peak of Scc(q).

In conclusion, the experimental observations of the structure in charged colloid-polymer

mixtures reveal a complex scenario, where different effects are coupled to yield impor-

tant depletion attractive interactions, even at very low density of colloids. The results

show that the addition of charged polymers induces an enhanced depletion attraction

between the charged colloids that dominates over the electrostatic repulsion. This gives

rise to an attractive potential well that moves to smaller interparticle distances as the

polymer concentration increases. The PRISM theory is able to capture the interplay

between repulsive and attractive interactions in the mixture, and represents a powerful

tool to disentangle all the effects involved in this kind of systems.
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Abstract

In this work, light scattering methods have been used to study the effect of adding

charged polymer chains on the structural and dynamic properties of a charged colloidal

system. The experimental measurements of the static structure factor Scc(q) show that

as the polymer concentration increases, the main peak moves to higher q-values, which

is interpreted in terms of the electrostatically enhanced depletion attraction induced by

the polymer. Moreover, we found that the shift of the peak depends on the interplay

between two relevant length scales, the polymer radius of gyration, Rg, and the Debye

length, κ−1. To reach these conclusions, the polymer reference interaction site model

has been employed to explain the experimental results and to study how the effective

depletion attraction depends on the polymer concentration, Rg and κ−1. Additionally,

the measurements of the dynamic structure factor f(q, τ) indicate that the colloidal

diffusion increases with the polymer concentration. Both static and dynamic analysis

point out that the repulsion between colloids becomes weaker as the charged polymer

is added.
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Introduction

In general, real colloidal suspensions are mixtures of particles with different proper-

ties. In these complex systems, one of the goals in colloidal physics is to know and

manipulate the particle interactions (London van der Waals, electrostatic, magnetic,

depletion, . . . ). One of the most studied systems in the literature is the polymer and

colloid mixture (CPM) suspended in a solvent. At this respect, mixtures of hard neutral

colloidal particles and nonadsorbing polymers have been well studied experimentally [1-

6], theoretically [7-10] and by means of computer simulations [11-12]. In this particular

case, the excluded volume repulsion between colloids and polymers induce an effective

interaction between colloids, the so-called depletion attraction. This interaction is orig-

inated by entropic reasons, as the overlap of the depletion layers of two approaching

colloids implies a larger free volume for the polymers, giving rise to the increase of the

entropy of the mixture. The depth of this depletion interaction is mainly controlled by

the polymer density, whereas its range is of the order of the polymer radius of gyration,

Rg. For high enough polymer concentrations, this depletion attraction may lead to

the destabilization of the solution towards phase separation between colloid-rich and

polymer rich phases [3].

However, the above mentioned depletion attraction becomes strongly altered if both

colloids and polymers are like-charged. Indeed, one of the more significant differences

between charged and uncharged colloid-polymer mixtures is that the depletion attrac-

tion has an electrostatic origin instead of entropic, since it becomes dominated by the

electrostatic repulsion between colloids and polymers. In the limit of small electrolyte

concentration, this electrostatic depletion attraction can reach a relative large strength

compared to the case of uncharged mixtures, and the range of the attraction may ex-

ceed the polymer radius of gyration, as it scales with the Debye length, κ−1 [13-15].

Recently, there has been a considerable interest focused on studying the electrostatic de-

pletion mechanism manifested in binary charged colloidal systems. Waltz and Sharma

[16] calculated numerically the depletion force between two charged spheres in a solu-

tion of charged spherical macromolecules. They reported results confirming that the

long-range wall-particle electrostatic repulsion induces an enhancement of the deple-

tion attraction between walls. Mondain-Monval et al. performed measurements of the

force focus on charged droplets in the presence of smaller charged micelles and con-

cluded that, apart from the electrostatic repulsion, an attractive depletion caused by
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the charges of the micelles has to be considered too [17]. Helden et al. presented mea-

surements of the depletion potential generated by charged rods using the total internal

reflection microscopy technique, showing the important role that electrostatic depletion

plays in this kind of charged colloid-polymer mixtures [18]. Campbell et al. studied

gelation in suspensions of model colloidal particles with short-ranged attractive and

long-ranged repulsive interactions by means of three-dimensional fluorescence confocal

microscopy. They focused on the gel formation by increasing the packing fraction of

particles [19, 20].

In this paper, we use experimental and theoretical methods to study the two component

system formed by charged colloids and nonadsorbing like-charged polymers in water

as solvent. We are particularly interested in the observation of the interplay between

the electrostatic repulsion and this attractive depletion interaction. We will focus on

mixtures at low colloid and electrolyte concentrations, where we expect to observe the

above mentioned electrostatic enhancement of the depletion attraction. Then, we will

explore the significant lengths involved in this electrostatic mechanism using two dif-

ferent chain lengths of the same polymer. The study is limited to the situation where

the sample behaves as a stable fluid, so arrested states or aggregation phenomena are

not present.

The experiments were performed applying light scattering techniques to measure the

colloid-colloid structure factor Scc(q) and the dynamic structure factor f(q, τ). We

started from a diluted colloidal suspension in water at very low electrolyte concentra-

tion, where electrostatic repulsion dominates. By adding increasing amounts of charged

polymer the resulting structures were accordingly analyzed. Under these conditions of

low salinity, the short-range excluded volume interaction between colloids and polymers

are masked by the presence of long-range electrostatic interactions. The experimental

results are compared to the theoretical predictions obtained using the polymer refer-

ence interaction site model (PRISM) [21, 22]. This model takes into account the fact

that the monomers of the polymer are not free entities, but they are linked to form the

polymer chain. Although the PRISM was originally applied to one-component polymer

systems, it has been shown to be a very useful tool in the case of colloid-polymer mix-

tures. For instance, this model has been applied to show that the typical correlation

length of uncharged polymer systems controls the behaviour of the induced interaction

[23, 24]. Moreover, it has been also employed to predict the phase behaviour of a wide

range of unexplored mixtures [25]. Recently, the PRISM has been used to describe the
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structural properties of mixtures of charged colloids and polyelectrolytes (polymer coils

formed by ionizable monomers) [14]. However, there is a lack of experimental results

to compare the previous theoretical predictions.

The paper is organized as follow. In Sec. II, we present the experimental techniques and

protocols, the colloid-polymer systems employed, and the theoretical model. In Sec.

III, we show the static light scattering experiments performed for different polymer

concentrations and polymer chain lengths. The results are compared and discussed

in terms of the theoretical predictions obtained with the PRISM. A dynamic analy-

sis is inserted in the discussion in order to investigate the effects of the electrostatic

depletion on the colloidal dynamics. Finally, in sec. IV we briefly show the conclusions.

Materials and Methods

Experimental System

We have employed a binary colloid-polymer system consisting on a mixture polystyrene

colloids (latex) and polyacrylamide polymers (PAM), both characterized by light scat-

tering. The polystyrene spheres were synthesized in distilled water using the polymer-

ization procedures given in Ref. [26]. The colloidal characterization puts up an average

diameter of σc = 100 ± 2 nm and a negative surface (its electrophoretic mobility at

T = 25 ◦C in distilled water is µe = −3.5 × 10−8 m2V−1s−1). The polymers used in

this work are two different Polyacrylamide (Polysciences, Inc.) of molecular weights

(0.6− 1) · 106 g/mol (catalog number 19901) and 5 · 106 g/mol (catalog number 21485),

henceforth denoted by PAM1 and PAM2. The hydrodynamic radius measured by dy-

namic light scattering (DLS) for each polymer is 25 nm (PAM1) and 50 nm (PAM2),

respectively. Although the manufacturer presents both products as nonionic polymers,

they are slightly negatively charged in distilled water at low ionic strength due to the

ion condensation around the monomers of acrylamide. This was experimentally con-

firmed by electrophoretic mobility measurements (µe ≈ −0.9 × 10−8 m2V −1s−1 and

µe ≈ −1.1× 10−8 m2V −1s−1 for PAM1 and PAM2, respectively). Given the repulsive

character of the colloid-polymer interaction, the adsorption on the colloidal surface can

be discarded. In any case, the nonadsorption of the polymer on the colloidal surface

was also corroborated via shear viscosity measurements of the mixtures, as their values

did not change significantly with respect to the free polymer system.
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Experimental Procedure

The colloidal structure factor was determined using static light scattering (SLS) [27].

The experimental setup comprises a three-dimensional light scattering spectrometer 3D-

DLS from LS Instruments (Fribourg, Switzerland), with two avalanche photodiodes (A

and B) as detectors. A digital correlator computes the cross-correlation function of the

registered scattered intensities, for which the time-dependent contributions of multiple

scattered photons is attenuated [28]. According to this design [29], the colloid-colloid

structure factor of the sample is proportional to

S(q) ∝

√
〈IcpA (q)〉〈IcpB (q)〉
〈I0
A(q)〉〈I0

B(q)〉
gcpAB(q, 0)− 1

g0
AB(q, 0)− 1

(6.3.1)

where 〈Icpi (q)〉 is the total time-averaged intensity registered by detector i = A,B of

the colloid-polymer mixture as a function of the scattering vector, q, whereas 〈I0
i (q)〉

is the time-averaged intensity corresponding to a dilute colloidal suspension. In our

measurements the time-averaged intensity scattered by the polymers is negligible com-

pared to the one for colloids (〈Ip(q)〉 < 10−3〈Ic(q)〉), so Eq. (6.3.1) corresponds to the

colloid-colloid structure factor, Scc(q). The ratio (gcpAB(q, τ = 0)−1)/(g0
AB(q, τ = 0)−1)

corrects the magnitude of the structure factor due to the disturbance of multiple scat-

tering [29], where gAB(q, τ) = 〈IA(q, t)IB(q, t+ τ)〉/〈IA(q)〉〈IB(q)〉 is the so-called nor-

malized cross-correlation function of the registered intensities.

The samples were prepared by mixing the binary colloid-polymer system in a bed of

ion exchanger resin inside a cylindrical quartz cell. The use of the resin assures that all

the electrolyte excess of the sample is removed, leading to electrostatically stabilized

colloid-polymer mixtures [30]. The light scattering measurements were performed two

days after the preparation of the samples. We checked that this time was in all cases

long enough to guarantee that the mixtures have reached equilibrium conditions since

no changes of the structure factors were observed. After equilibration, the samples

were transferred to a thinner cylindrical quartz glass cells to minimize the attenuation

caused by the non-illuminated remaining sample. The measurements were performed

at temperature T = 25 ◦C, within a wide angular range going from 20◦ to 150◦, where

〈I(q)〉 and 〈I(q, t)I(q, t + τ)〉 were determined with an angular interval of ∆θ = 2◦

degrees. The average intensity 〈I(q)〉 was collected during 160 s to avoid spurious fluc-

tuations.
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The colloidal dynamics was obtained by (DLS). For that, the normalized correlation of

the registered intensities was measured from the stored scattered intensities in a wide

interval of delayed times, τ . Under the assumption that this variable is ergodic, the

so-called dynamic structure factor f(q, τ) can be extracted from the relationship [27]

f(q, τ) = C
√
gAB(q, τ)− 1 (6.3.2)

where the factor C is the inherent correction from the cross-correlation technique men-

tioned above [29]. For a one-component system of interacting particles f(q, τ) is defined

as

f(q, τ) =
1

NS(q)

N∑
i=1

N∑
j=1

〈exp (i~q · [~ri(0)− ~rj(τ)])〉 (6.3.3)

where N is the number of colloidal particles. If the system is ergodic [31] then the

displacement of the particles follows a Gaussian distribution and eq. (6.3.3) can be

written as

f(q, τ) = exp (−q2< ∆r2(τ) >

6
) (6.3.4)

where 〈∆r2(τ)〉 is the mean square displacement of the particles at time τ . Eqs. (2)

and (4) allow the determination of 〈∆r2(τ)〉 to be done by means of the DLS tech-

nique. In all cases, each measurement is the result of the average performed over three

independent runs, collecting the experimental data during a long enough time interval

(t = 200 s).

Theoretical Model

We consider a binary mixture formed by charged spheres (colloids) of diameter σc, and

like-charged monomers of diameter σm, representing the units of the polymer chains.

The water molecules and the electrolyte are treated as a background continuum, so that

they only have an effect on the effective interactions between colloids and monomers.

These interactions are assumed to have a hard core part plus an electrostatic repulsive

tail given by the screened Debye-Hückel potential [32]. Therefore, considering the

species i and j of diameters σi and σj , the dimensionless potential βV direct
ij (r) is written
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as,

βV direct
ij (r) =

 +∞ if r < σij(=
σi+σj

2 )

LBZiZje
−κ(r−σij)

r(1+0.5κσi)(1+0.5κσj)
if r ≥ σij

(6.3.5)

where i and j indexes correspond to colloid (c) or monomer (m), r is the distance

between particle centres, LB is the Bjerrum length, and κ =
√

8πLBIion with Iion =

Zcρc + Zmρm + Celectrolyte the ionic strength. Zi and ρi stand for the effective surface

charge and number density of the colloids (monomers), respectively, and Celectrolyte de-

notes the electrolyte concentration in solution, which can have an important influence

on the interaction range. This model for the site-site interactions neglects the struc-

ture of the electrolyte and the water molecules, and ignores the difference between the

permittivities inside and outside the colloid, what may lead to a significant variation

of its effective charge [33]. However, we believe that the exact details of the interaction

potentials will not modify qualitatively the conclusions deduced in our work. At this

respect, the simple Debye-Hückel potential is good enough to provide a fair theoretical

justification of the experimentally observed electrostatic depletion mechanism, as will

be shown latter on.

In order to study the effect of the polymer coils on the colloid-colloid structure factor,

the chainlike structure of the polymers must be properly taken into account. The

detailed treatment of the polymer structure at the monomer level description is in

general a very complicated task as it needs the use of intensive calculations to determine

the polymer configurations. At this point, an approximate theory for the intramolecular

and intermolecular polymer correlations is required. An excellent candidate is the

PRISM theory. This model takes into account the connectivity between the monomers

that belong to the same polymer chain through the so-called intramolecular correlation

wij(r) (also known in the Fourier space as the form factor). PRISM establishes a

relationship between wij(r), the total intermolecular site-site correlation hij(r) and

the intermolecular direct correlation cij(r) by means of a set of Ornstein-Zernike-like

integral equations. In Fourier space, the PRISM equations take the following form,

hij(q) = wij(q)

[
cij(q)wji(q) +

∑
l

cil(q)ρlhlj(q)

]
(6.3.6)

The intermolecular structural factor Sij(q) is

Sij(q) = wi(q)δij +
√
ρiρjhij(q) (6.3.7)
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where δij is the Kronecker delta. Since our colloidal particles are spherical, the colloidal

form factor is simply given by wc(q) = 1. For the polymers, we use the Koyama’s form

factor [34], which gives a good description of polyelectrolyte chains [13, 35]. It is

an interpolation between two physical limits, attending to the stiffness of the chain:

the Gaussian model and the rigid chain model. The parameter controlling the local

stiffness is the persistence length, Lp. This model takes into account the fact that the

positions of two monomers inside the polymer chain are strongly correlated at short

monomer-monomer distances, whereas they are uncorrelated for large separations. The

persistence length depends on the monomer-monomer electrostatic interactions and so

it will be affected by the electrolyte concentration [36]. Neglecting end-effects and

swelling, the form factor is given by

wm(q) = 1 +
2

Nm

Nm−1∑
|α−γ|=1

(Nm − |α− γ|)ŵ|α−γ|(q)

ŵ|α−γ|(q) =
sin(B|α−γ|q)

B|α−γ|q
e−(A|α−γ|q)

2

(6.3.8)

where Nm denotes the number of monomers per chain, ŵ|α−γ|(q) represents the inter-

correlation between monomers α and γ and the constants A|α−γ| and B|α−γ| are func-

tions of the persistence length and the monomer size (explicit expressions can be found

in [37]).

To solve Eq. (6.3.8), a set of three extra closure relations must be provided. We have

employed the Hypernetted Chain (HNC) for the colloid-colloid correlation, and Percus-

Yevick (PY) for the monomer-monomer and monomer-colloid correlations. This choice

leads to a fair description of the structure of charge colloid-polymer mixtures, and

avoids the spurious divergence obtained in other cases [14, 35].

ccc(r) = e(γcc(r)−βV directcc (r)) − (γcc(r) + 1) HNC

cim(r) = e(−βV directim (r)−1)(1 + γim(r)) PY
(6.3.9)

Again, i denotes colloid (c) and monomer (m) and γij(r) = hij(r)− cij(r). The system

of integral equations given by Eq. (6.3.6), together with Eqs. (6.3.8) and (6.3.9) can

be solved using the standard iterative Picard method. Although the method used in

this work is similar to the scheme presented in Ref. [25], we have also employed an

additional density-loop to start in a dilute mixture and reach the convergence faster.
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System Parameters

Before showing and discussing the results, it is convenient to carry out a careful argu-

mentation of the parameters used to model our mixtures. Particularly, we need to know

the colloid and monomer charge (Zc and Zm, respectively), the number of monomers

per chain (Nm), the persistence length (Lp) and the Debye length, κ−1. The latter

two parameters depend on the electrolyte concentration of the suspension, Iion. Un-

fortunately, Iion can not be directly measured and, moreover, it can be substantially

modified by external impurities from the polymer initial sample (e. g., due to the syn-

thesization process and/or the external pollution, caused by the transference between

cells). For these reasons, it must be considered as a fitting parameter of our model.

A value of Zc = 600 was obtained by fitting the colloidal structure factor for a pure

colloidal system (black hollow symbols in Fig. 6.3.1 with the Ornstein-Zernike-HNC

using the potential given by Eq. (6.3.5) (information about the fitting method may be

found elsewhere [38]). To find the best fit it was not necessary to increase the value

of Celectrolyte, so that it may be assumed that the suspension is totally deionizated

(Celectrolyte ≈ 10−6 M). Although Zc may be determined using alternative routes, as

electrophoretic mobility measurements [39], renormalization methods [40] or ion con-

densation theories [41], it is well known that the OZ-HNC procedure is particularly well

suited in the case of highly charged colloidal suspension. Moreover, the HNC approx-

imation is able to give an excellent fit of the experimental colloidal structure factor.

The goodness of the HNC closure has been corroborated by comparing the results with

the ones obtained with the more sophisticated Rogers-Young closure, finding a value

of Zc = 635.

In the case of polymers, the accessible experimental information has not a trivial in-

terpretation. The number of monomers per chain can be extracted from the polymer

molecular weight and from the molecular weight and mass density of acrylamide (all

provided by Polysciences Inc.). For the two polymers employed in this work, Nm is

1.4 × 104 for PAM1 and 7 × 104 for PAM2. Then, the monomer diameter is obtained

assuming that monomers are spherical entities, leading to σm ≈ 0.8 nm. The monomer

effective charge is Zm = 0.8, calculated from the Manning’s expression [42]. The total

persistence length Lp may be estimated by following the model proposed by Odijk [43]

for polyelectrolyte chains, where Lp is separated in two contributions Lp = L0 +Le. L0

denotes the intrinsic chain local stiffness, and Le corresponds to the contribution due

to the electrostatic repulsion between neighbouring monomers. The value L0 = 12 nm
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was estimated from the experimental Rg using the expression for the radius of gyration

of a wormlike chain [36, 44],

〈R2
g〉 =

LcL0

3
− L2

0 +
2L3

0

Lc
− 2L4

0

L2
c

{
1− exp(

−Lc
L0

)

}
(6.3.10)

where Lc = σmNm is the chain contour length. Le may be calculated using an explicit

expression found by Skolnick and Fixman [45] considering a Debye-Hückel interaction

potential between monomers and assuming that ion condensation occurs. It is given

by Le = ξ2

4κ2LB
for ξ < 1 (with ξ ≡ LB

σm
) [36]. Since we don’t have a priori information

of the value of κ after mixing the polymer chains with the colloidal suspension, we

performed a subsequent evaluation of this parameter after solving the integral equa-

tions. Notwithstanding, for the ionic strength values used to fit our results (shown in

the Table (6.3.1), Le is always very small compared to L0.

An important inconvenience of PRISM is that it shows divergence problems when the

number of monomers per polymer, Nm, is greater than ≈ 104. Also the computing

time greatly increases with Nm. To elude these problems we have chosen an optimum

effective monomer radius 15 times larger, keeping the same contour length for the poly-

mers, Nm = 103 for PAM1 and Nm = 5 × 103 for PAM2. This mapping is performed

by keeping constant the monomer charge Zm derived previously by means of the Man-

ning’s equation. This approximation is indeed strong since the real monomer chain has

been substituted by an effective chain with equivalent length but different width. This

can affect the predictions at short distances, where the geometry of the polymer chain

and its interaction is far away of the real one. Fortunately, the electrostatic repulsions

between colloidal particles and polymers and the low concentrations employed in our

experiments prevent the colloid-colloid and colloid-polymer approach, so that they are

typically far away one from each other. For this reason, we expect that the theoretical

predictions for the structure factor, the radial distribution function and the effective

depletion potential obtained with our theoretical model are still valid in this framework.

Results and Discussion

Static Properties

Figs. 6.1.1(a) and 6.1.1(b) show a set of experimental colloid-colloid structure factors

measured for binary mixtures of colloids at a volume fraction of 0.56% with the two

kind of polymers PAM1 and PAM2, respectively (see Table (6.3.1)). In both plots we
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Table 6.3.1: Experimental and theoretical relevant parameters. The second column

stands for the monomer volume fraction φm used in both experiments and theoretical

predictions. κσc is the one that gives the best fit between the experiments and theory. The

latter depends on three ionic contributions: the colloidal Zcρc, the monomer Zmρm, and

the free electrolyte contributions Celectrolyte, which is treated as the only fitting parameter.

In all cases the colloidal volume fraction is φc = 0.56%.

Polymer φm × 104 κσc Zmρm (mM) Celectrolyte (mM)

PAM1 0.3 0.32 2.0 3.0

PAM1 1.5 0.44 7.0 12.0

PAM1 7.5 0.53 30.0 15.0

PAM2 1.5 0.29 2.0 1.0

PAM2 2.3 0.33 4.0 3.1

PAM2 7.3 0.50 20.0 5.4

include the structure factor for a pure colloidal system as a reference. At zero poly-

mer concentration (black hollow squares), Scc(q) shows a very large and narrow peak

of height Scc(qmax) = 2.67 located at qσc = 1.56. This maximum clearly reveals the

existence of a highly repulsive interaction between colloids, with a typical interparticle

distance of about 4.03σc. This result is consistent with the fact that the electrolyte

concentration is very low as the ion exchanger resins have removed most of the ions

from the suspension. In the limit q → 0, the structure factor tends to 0, which indicates

that the system is far from the fluid-solid binodal.

However, all the previous liquid-order properties become strongly affected by the pres-

ence of the polymer chains. As we increase the polymer concentration, the height and

width of the main peak decreases and broadens, respectively, while the position of the

peak shifts to relatively high q-values for both polymers, PAM1 and PAM2. It can be

also appreciated a noticeable increase of Scc(q) for q → 0, what can be interpreted as

a consequence of interparticle attractions. A similar behaviour has been reported in

other binary systems, such as mixtures of casein micelles and exocelular polysaccha-

ride [46], and mixtures of PMMA particles and linear polystyrene polymer chains with

short-range attractive interactions [47].

These results reveal that the liquid order becomes gradually lost and the colloidal par-

ticles approach each other to closer distances as we increase the polymer density. This
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Figure 6.3.1: Colloid-colloid structure factor of colloid-polymer mixtures at different

polymer concentrations for (a) PAM1 and (b) PAM2. The experimental results are rep-

resented with different types of symbols (see the legend) while the theoretical predictions

are plotted with different type of lines.

behaviour can not be only attributed to the increase of the ionic strength induced by

the presence of charged polymers in the solution. Indeed, as it was stressed in our

previous work [13], the shift of the main peak due to the addition of KNO3 is much

smaller than the one obtained adding polymers. Therefore, this clearly indicates the

existence of a polymer-induced depletion attraction between colloids. However, it must

be emphasized that such depletion can not be caused by the excluded volume inter-

actions between colloids and polymers, given the small colloidal density employed in

our experiments [13]. On the contrary, the strength and long-range character of the
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depletion effects observed in our experiments must be interpreted as a consequence of

the colloid-polymer electrostatic repulsion. In other words, we are treating with an

electrostatic depletion instead of an entropic one.

Keeping this fact in mind, it is obvious that adding charged polymers also increases

the total ionic strength of the sample, which in turns leads to a more efficient screening

of the electrostatic interactions. On the one hand, this screening reduces the colloid-

colloid repulsion, leading to a particle approach. On the other hand, it also reduces

the colloid-polymer repulsion, which plays the opposite role as it causes the decrease

of the electrostatic depletion attraction. In real experiments, both effects can not be

separated one from another and always come together. Therefore, the final colloidal

structure is the result of the competition between them.

In order to separate these crossed effects and help us to understand the underlying

physics behind the observed structure factors, we have fitted the experimental data

using the PRISM. This integral equation theory comes out as a suitable model to dis-

entangle the structure and determine the contribution of the polymer-induced effective

potential to the total colloid-colloid interaction. We have fitted the experimental data

using the parameters given in Table (6.3.1), leaving Celectrolyte as the only free parame-

ter of the model. The value of Celectrolyte employed to fit the experimental curves grows

with the polymer concentration, as expected (see Table (6.3.1)). The results are shown

again in Fig. 6.3.1 as different line types. In all cases, the theoretical predictions agree

with the experimental Scc(q) for the four studied polymer concentrations. It must be

emphasized that not only the height and width of the peaks is well captured, but also

their positions. The PRISM predictions are also able to capture the rising of the struc-

ture factor at low q-values, although the model overestimate the experimental results.

In particular, a large disagreement is observed for the longer polymer [Fig. 6.3.1(b)]

at low q-values [48-51]. These discrepancies could be caused by the approximations

performed in our theoretical model, since only pair correlations are considered [52]. In

fact, the contribution of higher level correlations for long polymer chains could have a

great relevance in the final average polymer conformation. In this sense, future theo-

retical works employing better models are necessary.

Next, we study the effect of the chain length on the colloidal structure. Fig. 6.3.2

compares the position of the main peak of the structure factor qmax as a function

of the polymer volume fraction for the two studied polymer lengths. As it may be
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Figure 6.3.2: Position of the main peak of Scc(q) vs the monomer volume fraction (φm)

for the two polymers studied in this work (full circles for PAM1, and full square for PAM2).

The PRISM predictions for the peak position have been calculated for two κσc values (see

the legend) and for the two polymer lengths. The figure also shows qmaxσc as a function

of φm for the particular case of uncharged polymers, Zm = 0.

observed, the experimental data for both polymer lengths fall approximately into a

common curve. Similar results are obtained for other packing fractions of colloids.

Nevertheless, the fact that the displacement of the main peak is roughly the same for

both polymers does not necessary mean that the depletion effect is independent on

the polymer size, as the ionic strength of the sample is different for each case. In

fact, there are two relevant length scales involved in the depletion attraction arising in

charged colloid-polymer mixtures: the polymer radius of gyration Rg, and the reach

of the electrostatic double layer κ−1. The relative importance of these length scales

will depend on the ionic strength of the sample. At low electrolyte concentrations the

range of the depletion interactions will be of the order of κ−1. On the contrary, at high

salt concentration, the electrostatic repulsions between colloids and polymers will be

screened and only excluded volume interactions will be important, leading to a range

of the depletion attraction around 2Rg.

Again, the PRISM can help us on separating these coupled effects involved in the ex-

perimental results, as κ−1, Rg and φm can be independently tuned. In Fig. 6.3.2 we
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plot qmax for the two polymer lengths and for two electrolyte concentrations. Also the

theoretical predictions for uncharged polymers (Zm = 0) are included. As observed, the

shift depends on both, κ−1 and Rg. Although increasing the electrolyte concentration

weakens the depletion attraction, the screening of the colloid-colloid electrostatic re-

pulsive barrier dominates. This finally enhances the approach between colloids and so,

leads to larger qmax values. On the other hand, increasing the polymer length induces a

smaller peak shift. The reason why longer polymers are less efficient depletants may be

attributed to the fact that the depletion attraction has longer range but smaller depth.

Therefore, the attraction induced by long polymers is not strong enough to compen-

sate the electrostatic repulsive barrier between colloids. It is important to emphasize

again that these depletion effects are mainly electrostatic. Indeed, if we plot qmax for

uncharged polymers, we find that it is practically insensitive to the increase on polymer

concentration.

In order to confirm these results, we have also calculated the two-body total colloid-

colloid interaction potential. The total potential was derived from the relationship

βV Total
cc (r) = − ln gcc(r), where gcc(r) was obtained from PRISM. The latter expression

is exact in the so-called colloidal limit, when the number of colloidal particles tends

to zero [53, 54]. In our case, although φc is not zero, it is small enough to consider

the latter expression as a valid approximation. Fig. 6.3.3(a) shows βV Total
cc (r) in the

limit φc → 0 for the two polymer lengths and for different electrolyte concentration at

a constant monomer packing fraction given by φm = 0.001. For both polymers there

is a clear attractive well at small ionic strength. By increasing the salt concentration

the range of the repulsive barrier shortens and the position of this minimum moves to

smaller interparticle distances, at the time that its depth becomes reduced. For the

longer polymers, the minimum disappears completely, so the depletion attraction is

overcome by the repulsive electrostatic barrier at any distance.

We can have a more clear picture of these effects by plotting the effective deple-

tion colloid-colloid interaction (see Fig. 6.3.3(b)), defined as V eff
cc (r) = V Total

cc (r) −
V direct
cc (r), where V direct

cc (r) is the direct colloid-colloid repulsion (Eq. (6.3.5)). The ef-

fective potential shows a pronounce attractive well at low ionic strength, what is a clear

indication that the colloid-polymer electrostatic repulsion greatly enhances the deple-

tion attraction between colloids, even for small values of the polymer concentration.

Also the range of the depletion is larger than the one expected for uncharged polymers.

Although the range of the depletion induced in charged colloid-polymer mixtures is
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Figure 6.3.3: The plot shows (a) the total interaction potential between colloids, pre-

dicted by the PRISM in the colloidal limit and (b) the effective interaction potential. All

the calculations are performed at the same monomer volume fraction (φm = 0.001). The

figure shows the results at three different κσc for two polymer lengths (PAM1, line-points

and PAM2, lines).

mainly controlled by κ−1, the results reveal that the length of the polymer chains plays

also an important role. This can be easily checked by comparing the effective inter-

actions at the lowest studied salt concentration. Indeed, long polymers induce a less

deep depletion attraction with longer range, what corroborates the explanation given

above for the shift of qmax. Increasing the salt concentration induces the screening of

the colloid-polymer repulsion, and so reduces dramatically the depletion attraction.
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Table 6.3.2: Relevant parameters in the discussion of the dynamic analysis (Fig. 6.3.4)

and comparison with the static ones. The first column shows the four studied PAM1 con-

centrations. Second column is the effective diffusion coefficient obtained from the short-

time slope of the fexp(q, τ). Third column is the mean square force used to fit the experi-

mental data with Eq. (6.3.11). Fourth column stands for the effective diffusion coefficient

derived from the static light scattering experiments. Finally, fifth column represents the

mean square force, but calculated with Eq. (6.3.12) using data from the static analysis.

Samples DYNAMIC ANALYSIS STATIC ANALYSIS

φm × 104 Deff (q∗)
D0

Eq. (6.3.11)
Deff (q∗)

D0
(= 1/Scc(q

∗)) Eq. (6.3.12)

0.0 0.38 68801 0.38 55819

0.3 0.51 2009 0.50 6346

1.5 0.63 1394 0.62 3640

7.5 0.72 1080 0.71 2780

Dynamics Properties

In Sec. III A, we have shown that the addition of charged polymers to an originally

stabilized like-charged colloidal suspensions has a deep impact on the colloidal structure

factor. Using the PRISM model we were able to conclude that these changes on the

colloidal microstructure are induced by the existence of an electrostatically enhanced

depletion attraction. However, we still don’t know how this depletion can affect the

dynamic of the colloidal particles. In principle, we expect that the electrostatic deple-

tion will also have an important influence on the dynamics, since the particle diffusion

strongly depends on the particle-particle interactions [55, 56]. It is well known that

the long-range repulsive interparticle interactions arising in colloidal suspensions at low

electrolyte concentration reduces the particle mobility. At extremely low salinity con-

ditions, this reduction finally leads to the loss of ergodicity (caging) [49]. However, in

our experiments the electrostatic repulsion is not strong enough to induce caging [47],

since in all cases the samples showed liquid behavior. As we include polymer chains

in the sample, we expect that the electrostatic-enhanced depletion attraction and the

subsequent increase of the electrolyte concentration will lead to an increase of the par-

ticle mobility.

In order to quantify the effect of the polymer on the colloidal dynamic, we have mea-
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Figure 6.3.4: (a) Dynamic structure factor for two samples without polymer, diluted

(hollow triangles), φc = 0.002%, and concentrated at φc = 0.56% (hollow squares), and

for three colloid-polymer mixtures using PAM1 (full symbols) . All the results are shown

in a common rescaled time, τr = (σcq)
2τ/ηr. The plot shows in a semi-log scale the

experimental dynamic structure factor fexp(q, τ) and the fit of the diluted sample to the

exponential decay e−q
2D0τ (solid line). The inset shows, in lineal-lineal scale, ln (f(q, τ)) for

the concentrated sample (hollow square) to highlight the different diffusive regimes found

for interacting particles at short (solid line) and long times (dashed line). (b) Dimensionless

mean square displacement for the same samples shown in plot (a). The results are plotted

in lineal-lineal scale to highlight the lineal or parabolic shapes of the curves. The fitting

performed with Eq. (6.3.12) is also shown as solid lines.

sured the normalized cross-correlation function, gAB(q, τ), of the mixtures at the main

peak qmax. Then, the dynamic structure factor, f(qmax, τ), is obtained appealing to

Eq. (6.3.2). These results are shown in Fig. 6.3.4(a) for some of the samples studied

in the last section (PAM1 mixtures). Before discussing the results, it is important to

emphasize that the shear-viscosity of each sample varies slightly with the polymer con-

centration. Also the position of the main peak of the structure factor qmax is different

for each sample (Fig. 6.3.4). To discuss these results using a common time, we have

employed a rescaled time given by τr = (σcqmax)2

ηr
τ , where ηr = η/ηH2O is the relative

shear-viscosity between the polymer sample, η, and water, ηH2O.

Firstly, we discuss the results obtained for the two samples without polymer, one di-

luted (φc = 0.002%) with added salt (2 mM) to screen the surface charge, and another

concentrated (φc = 0.56%) without salt, which corresponds with the reference case

studied in Sec. III A. As it may be observed in Fig. 6.3.4(a), the experimental dynamic
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structure factor obtained for the diluted sample (hollow triangles) is well described

by the exponential decay e−D0q2τ , theoretically predicted for non-interacting particles

[57], where D0 = 4.9 × 10−12 m2/s is the Stokes-Einstein diffusion coefficient for our

particles within the free-diffusion regimen (F-D). This agreement confirms that the

surface charge has been screened so colloidal particles diffuse freely. On the contrary,

long-range electrostatic interactions are present in the second sample without polymer

(hollow squares) so that fexp(qmax, τ) deviates notably from the single exponential de-

cay. In fact, there are two well separated diffusive regimes at short and slightly long

times, as is usually found in systems with strong repulsive interactions [see inset of

Fig. 6.3.4(a)].

Fig. 6.3.4(a) also shows fexp(qmax, τ) for the colloid-polymer mixtures with PAM1 at

exactly the same experimental conditions that the ones employed in Sec. III A (see

Table (6.3.1)) (similar results have been found for PAM2). The comparison between

these curves provides a qualitatively estimation of how the colloidal diffusivity increases

as the colloid-colloid interaction is tuned by addition of polymer. As we have shown

in the static section, the addition of charged polymer leads to the screening of the

original long-range repulsion. From a dynamical point of view, long-range repulsion

implies slower relaxation of any correlation function. Consequently, the screening of

the long-range repulsion means a faster relaxation. This may be clearly appreciated in

Fig. 6.3.4(b), where the mean square displacement of the particles is plotted against the

rescaled time τr. As observed, increasing the polymer concentration leads to a larger

mean square displacement, so that particles diffuse more during the same given time.

The mean square displacement for the dilute sample can be fitted by a straight line, as

expected for diffusion in the absence of interparticle interactions. However, as soon as

colloidal interactions become important, we observe a progressive deviation from the

linear behavior. According to Langevin theory [58], the first short-time correction to

this linear dependence is given by the expression

〈∆r2
i (τ)〉 = 6D0τ(1− τ

2f
〈(∂U
∂ri

)2〉+O(τ2)) (6.3.11)

where f = 3πησc is the colloidal friction coefficient and 〈( ∂U∂ri )
2〉 is the average square

force on a i-colloid exerted by the surrounding ones. We have applied this equation to

reproduce the experimental results in the short-time regime, using 〈( ∂U∂ri )
2〉 as fitting

parameter. This expression provides a rough estimation of the mean strength on the

colloidal particle. The obtained curves are shown in Fig. 6.3.4(b) as solid lines and

the resulting average square forces are given in Table (6.3.2). As can be seen, this
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theoretical approach is able to capture the first-order deviation from the linear trend.

The results indicate that the average square force becomes smaller as the polymer con-

centration increases. This agrees with the fact that the colloidal repulsion becomes

weaker as we add polymer, caused by the screening of the repulsive double layers and

the existence of the electrostatic-enhanced depletion attraction.

The numerical results obtained in the dynamic analysis (shown in Table (6.3.2)) have

been compared with those derived from the static data. Within the static route, the

average square force is given by the following integral

〈(∂(βU)

∂r
)2〉 = 4πρc

∫ ∞
0

r2gcc(r)(
∂(βVcc(r))

∂r
)2dr (6.3.12)

where gcc(r) is the radial distribution function derived from the fitting of the experi-

mental structure factor using the PRISM integral equations (Fig. (6.3.1)), and βVcc(r)

is the pair interaction potential obtained with the PRISM in the colloidal limit, ρc → 0.

The results are shown in Table (6.3.2) together with those obtained from the dynamic

analysis. As observed, the average square force predicted by the static route also de-

creases with the polymer concentration. However, the static route leads to different

values than the ones calculated by dynamics. These discrepancies are the consequence

of the strong hypothesis used in the static case. Moreover, the PRISM theory overesti-

mates the structure factor in the limit of q → 0, inducing a wrong prediction of gcc(r)

for large r. Despite this problem, the numerical values obtained with both routes are

consistent with the fact that the depletion forces arising in charged colloid-polymer

mixtures have an strong effect on the colloidal dynamics.

Finally, it is well-known that the dynamic of the colloidal particles could be also af-

fected by the solvent-induced hydrodynamic interactions (HI). However, this is not our

case given the low particle concentration employed in our experiments. To corroborate

this fact, we studied the dynamics at very short times, where the mean square displace-

ment grows linearly with time. In that case, when interaction between particles is not

negligible, the proportionality constant is not longer D0 but the effective diffusion coef-

ficient Deff (q), which describes the initial decay of f(q, τ). This coefficient is expected

to follow the relationship Deff (q) = D0
S(q) [57], when HI are negligible. In Table (6.3.2)

we compare the Deff (qmax) derived from the short-time slope of the experimental data

shown in Fig. 6.3.4(b) with the ones obtained from the latter relationship using the

corresponding experimental S(qmax) shown in Fig. (6.3.1). Indeed, we find that there

is always good agreement between both routes within an error of < 5% which suggests

135



6. RESULTS

that hydrodynamics interactions do not play an important role here.

Conclusions

We show that adding small amounts of charged polymers to a charge-stabilized col-

loidal dispersion provokes a shift of the structure factor that can not simply explained

by the screening of the electrostatic interactions neither by the standard entropic de-

pletion interaction arising for uncharged polymer chains. With the help of the PRISM

theory, we are able to conclude that this shift is the consequence of the polymer charge,

as the colloid-polymer electrostatic repulsion greatly enhances the depletion attraction

between colloids.

At very low electrolyte concentrations, the range of this depletion is mainly controlled

by the range of the electrostatic colloid-polymer repulsion, which is given by the inverse

of the Debye length. However, for larger ionic strength the polymer length also plays

an important role, as larger polymers induce depletion potentials of longer range and

smaller depth.

Although the addition of polymers also leads to the increase of the ionic strength of the

sample and the subsequent screening of the electrostatic interactions, we observe that

the enhanced depletion attraction is still strong enough to induce an attractive well at

intermediate distances in the colloid-colloid interaction potential.

We also study the dynamic properties of the colloidal suspensions in the limit of very

short times, and show that the addition of charged polymer coils enhances the colloidal

diffusivity. At intermediate times, the deviation of the mean square displacement from

the linear time-dependence is interpreted in terms of the average square force acting

on the colloids. The results show that the average square force, and so the overall

colloid-colloid repulsive strength, decreases with the polymer concentration. Qualita-

tive agreement of the latter is found determining the average of the square force with

Eq. (6.3.12). Nevertheless, more sophisticated theoretical models for improving the

PRISM are necessary in order to find quantitative agreement between the static and

dynamic predictions.

Finally, it would be very interesting to investigate the effect of the electrostatic deple-

tion attraction on the long-time behavior of the dynamic structure factor (τ >> σ2
c

D0
).
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New experiments are planned to address this question and to study the dependence of

the long-time diffusion coefficient as a function of the polymer concentration.
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Abstract

The effect of adding charged non-adsorbing polymers to electrostatically structured

suspensions of charged liposomes has been experimentally studied by light scattering

techniques. The static structure factor of the mixtures is explored using two polymers

of different sizes. As the polymer concentration increases, the main peak of structure

factor decreases and shows an important shift to larger values of the scattering vector.

Such displacement is the consequence of the entropic and mainly electrostatic-enhanced

depletion attraction induced by the polymers that counteract the electrostatic repulsion.

For the shorter polymer, the system remains stable for all studied polymer concentra-

tions. However, for the larger polymer chains the effective attraction is strong enough

to induce the aggregation of the liposomes, in such a way that clusters and particles

coexist during several days in the sample. In general, the clusters have a low fractal

dimension, which corresponds to linear and ramified structures.
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Introduction

Complex fluids are usually found in technological products, biological fluids, foods, etc.

They are formed by mixtures of different types of colloids (synthetic particles, proteins,

polymers, . . . ). The characterization and knowledge of binary mixtures, i.e., two com-

ponents immersed in a solvent, represents a first step in a further comprehension of

those more complex systems. One of the most studied binary mixture is the formed by

neutral sterically stabilized colloids and non-adsorbing polymers [1-3]. Simulation and

experimental results show that the presence of neutral polymers in a colloidal sample

has a deep impact on the structural and dynamical properties. This leads to a very

rich phenomenology, including the formation of gels, glasses or fluids of clusters [4-9],

where the driven mechanism is mainly the so-called entropic depletion attraction [10,

11]. For mixtures of charged colloidal particles and uncharged polymer coils, there is a

competition between the long-range electrostatic repulsion and the short-range entropic

depletion attraction. For these systems the colloidal structure goes from electrostati-

cally stabilized colloidal clusters to the formation of attractive gels [5, 12-19].

Recently, the attention has been drawn to colloid-polymer mixtures where both species

are like-charged. Here, the electrostatic repulsion between colloids and polymers en-

hances the effective depletion attraction between colloids. The existence of such long-

range electrostatic depletion has been confirmed theoretically [20], by means of com-

puter simulations [21] and experiments [22-27]. The resulting depletion attraction aris-

ing in this kind of systems is very strong even at small polymer concentrations, where

the entropic depletion is negligible. Moreover, its range can be tuned by changing the

electrolyte concentration in the suspension and the polymer radius of gyration, Rg. In

spite of these studies, more efforts are required to understand the colloidal microstruc-

ture, dynamic, phase separation and gel formation.

In this article, we perform an experimental study on the structure of mixtures formed

by a charged colloids (liposome) and like-charged non-adsorbing polymers immersed

in water. Reviewing the literature, most of the experimental works regarding charged

colloid-polymer mixtures employ weakly charged colloids, so that the repulsive elec-

trostatic interaction are easily overcome by the depletion attraction induced by the

polymer [4, 17]. Under this situation, the colloidal particles can be arrested into an

attractive gel, that arises as the consequence of the attractive bonds between colloids.

However, our experimental studies strongly differs from this procedure. Here, we start
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from a quasi-arrested colloidal systems (a low-density Wigner glass [28-30]), in such

a way that the addition of polymer coils of different lengths causes an increase of the

particle mobility and a weakening of the colloidal microstructure, that can be explained

in terms of the competition between electrostatic and depletion interactions.

This interplay between long-range electrostatic repulsion and short-range depletion at-

tractive interactions points out a noticeable phenomenology [31]. In particular, it has

been observed that the electrostatic repulsion between the colloidal double layers is

counteracted by the entropic and mainly electrostatically-enhanced depletion attrac-

tion induced by the charged polymer. We find that the addition of short polymer coils

causes a weak screening of the electrostatic repulsion. However, for long polymers the

depletion attraction is strong enough to induce the formation of clusters and finally

the phase separation of the mixture. Static (SLS) and dynamic light scattering (DLS)

techniques are used to follow the structure of the mixtures.

This paper is organized as follows. In Section II we briefly describe the experimental

setup and the characteristics of the liposome and polymer samples employed in this

work. The results and discussions are shown in Section III, and the main conclusions

are summarized in Section IV.

Materials and methods

In the experiments, different concentrations of phosphatidylserine (PS) liposomes dis-

persed in purified water are used. Via the measure and fit of their form factor P (q) in

dilute suspensions, a mean liposome radius of Rc = 120 nm and polydispersity (relative

standard deviation) of about 0.3 are obtained. As a consequence of the extrusion pro-

cedure [32], the liposomes showed a lipid bilayer with thickness of about 4.5 nm. The

liposome dispersions have a refractive index only slightly different to 1.33 (water), allow-

ing the preparation of nearly transparent suspensions at relatively high volume fractions

[33]. Consequently, these colloidal systems allow us to explore the structure and dy-

namic of concentrated suspensions reducing the multiple scattering effects. Due to the

specific ionization of the PS molecule in water, the liposomes are negatively charged,

having an electrophoretic mobility of about −2.1× 10−8m2V−1s−1. The polymers are

two different Polyacrylamide (Polysciences, Inc.) of molecular weights (0.6 − 1) · 106

g/mol (catalog number 19901) and 5 · 106 g/mol (catalog number 21485), henceforth

denoted by PAM-short and PAM-long, respectively. Their radius of gyration obtained
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via Zimm-Plot diagrams are 25 nm (PAM-short) and 50 nm (PAM-long). Although the

manufacturer presents both products as non-ionic polymers, they are slightly negative-

charged when immersed in distilled water at low ionic strength, due to the dissociation

of the acrylamide monomers. This was experimentally confirmed by electrophoretic

mobility measurements (µe ≈ −0.9× 10−8 m2V−1s−1 and µe ≈ −1.1× 10−8 m2V−1s−1

for PAM-short and PAM-long, respectively).

The light scattering experiments were performed using a three-dimensional DLS spec-

trometer (LS instruments, Fribourg-Switzerland) [34]. The scattered light was collected

using two avalanche photodiodes and the corresponding cross-correlation function was

calculated within a digital correlator. According to this design, the time-dependent

contributions of multiple scattered photons can be neglected [35]. Omitting multiplica-

tive factors, the experimental structure factor of the samples may be determined using

the following equation [36]

S(q) ∝

√
< IcpA (q) >< IcpB (q) >

< I0
A(q) >< I0

B(q) >

gcpAB(q, τ = 0)− 1

g0
AB(q, τ = 0)− 1

(6.4.1)

where < Icpi (q) > is the total time-averaged intensity registered by the detectors i = A

and B, whereas < I0
i (q) > corresponds to the intensity of a dilute liposome suspension.

The ratio
gcpAB(q, τ = 0)− 1

g0
AB(q, τ = 0)− 1

corrects the magnitude of the structure factor due to the

q-dependent disturbance of the multiple scattering [35, 37] in a cross-correlation exper-

iment, where giAB(q, τ) =
< IiA(q, t+ τ)IiB(q, t) >

< IiA(q)IiB(q) >
is the normalized cross-correlation

function of the registered intensities. In our colloid-polymer mixtures, the intensity

scattered by the polymers was always very small compared to the one by liposomes,

so that the experimental structure factor obtained is directly the liposome-liposome

structure factor Scc(q).

Using both polymers, two kinds of mixtures were prepared. In the first one, liposomes

and polymers were mixed without adding ion-exchanger resins. Under these conditions,

all samples with PAM-short formed stable dispersions and did not show any noticeable

change during weeks. On the contrary, with PAM-long the initially homogeneous sus-

pensions became unstable in a time scale of one week, after that a rich colloid zone was

observed in the bottom of the cell, indicating a phase separation between liposomes and

polymers. These results clearly indicate that long polymers induce a stronger depletion

attraction than the short ones.
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In the second kind of samples, the mixtures were prepared with a fixed amount of

ion-exchanger resins in order to remove all the ionic impurities of the sample, so that

the electrostatic interactions were reinforced. The samples were tumbled during a

couple of hours after the preparation of the mixture to assure the low ionic strength

condition in the systems. After one day, the mixtures were transferred to a thinner

cylindrical quartz glass cell. This allows as to minimize the attenuation caused by the

non-illuminated remaining sample and to remove the possible angular distortion of the

resin in the light scattering pattern. Then, the light scattering experiments were car-

ried out. The measurements were performed at a temperature of T = 25◦C, within a

wide angular range going from 20◦ to 150◦, with a resolution of 2◦. For PAM-short, the

mixtures showed a homogeneous aspect that persisted during very long time. Quite

differently is the behaviour found with PAM-long. Now, the mixtures were apparently

homogeneous within the first 2 days after preparation. However, after the third day, the

system undergoes a visible phase separation into a concentrated and a diluted colloidal

phase. Therefore, the measurements with PAM-long were performed in a metastable

state where the system is under phase separation. This means that our measurements

contain information about the process that finally leads to a phase separation, but they

are collected during an initial period where the system is evolving slowly but still in a

single phase.

Results and discussion

Figure 6.4.1(a) depicts the experimental static structure factor Scc(q) calculated via

eq. (6.4.1) for different liposome volume fractions (φc = 0.1, 0.12, 0.14 and 0.17, re-

spectively) without added polymer. As may be observed, a well defined peak is obtained

as a consequence of the interparticle electrostatic repulsion. By increasing the liposome

concentration, the peak height grows and its position, q∗, shifts to higher q-values, what

agrees with the expected trend observed for fluid-like structures formed in the presence

of repulsive interactions. The position and height of the main peak have been fitted us-

ing a Yukawa interaction potential and the Ornstein-Zernike integral equation within

the HNC approximation. According to this, the effective charge of the liposomes is

given by 180 e− for an electrolyte concentration of 10−6M. The large value of the peak

width is reminiscent of the polydispersity of the liposome sample. The height of the

peak reaches a value of 2.5 for the larger particle concentrations. This is close to the

critical value 2.8 predicted by the Hansen-Verlett criterion for a monodisperse repulsive
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Figure 6.4.1: Panel (a) shows the liposome-liposome structure factor, Scc(q), for increas-

ing liposome concentrations φc as a function of the dimensionless scattering vector qRc.

The normalized dynamic structure factor, measured at the peak q∗, is shown in panel (b)

versus a rescaled correlation time. The lines in panel (b) correspond with the best fit

according to the MCT theory. The inset in panel (b) represents the liposome mean-square

displacement < ∆r2(τ) > /R2
c derived from f(q∗, τ).

glass. This means that although the colloidal particles are in the fluid state, they are

almost arrested by the repulsive interactions [39].

By measuring the normalized intensity cross-correlation, f(q∗, t) was obtained appeal-

ing to the Stiegert relationship f(q, τ) =
1

A

√
gAB(q, τ)− 1, where A is a parameter

mainly dependent on the experimental conditions. Figure 6.4.1(b) shows f(q∗, τ) ob-

tained at the main peak of Scc(q) for the same liposome samples. The measurements

were performed during 3500 s that is a long enough time to guarantee good statistics and

to capture the full decay of the dynamic structure factor. In all cases, f(q∗, t) deviates

notably from the single exponential decay of free liposomes, what is a straightforward

consequence of the long-range electrostatic repulsive interactions. This repulsion is able

to induce a highly structured system, but is not strong enough to induce the total caging

of the particles. Indeed, f(q∗, t) always decays to zero, with a relaxation time that in-

creases with the liposome concentration. Although the liposome dispersion behave as

a non-arrested colloidal fluid, the shape of the curves clearly resembles the one ob-

tained for an arrested Wigner glass [28]. In particular, they show multistep relaxations

(specially at the largest particle concentration), typically observed in concentrated col-

loidal dispersions close to the glass transition [40]. Figure 6.4.1(b) also depicts the
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two β-decays, indicating the bounded motion of the liposomes inside their cages. Both

decays are followed by the cage break-up (α-decay) which is hardly captured even dur-

ing a long-time DLS experiment. As it is well known, Mode Coupling Theory (MCT)

is able to describe these dynamical behaviour [40, 42, 43]. From the fit of f(q∗, τ),

both the a parameter corresponding to the first β-decay (f(q∗, τ)− f(q∗,∞) ∝ (τ)−a)

and b parameter, the second β-decay, (f(q∗, τ) − f(q∗,∞) ∝ −(τ)b) can be calcu-

lated. For this task, τD is defined as the time when f(q∗, τ) shows the inflection

points. Figure 6.4.1(b) includes the corresponding fits for φc = 0.17 to obtain a (solid

line) and b (dashed line). They are given bya = 0.135 and b = 0.20, that satisfy the

relation
Γ(1− a)2

Γ(1− 2a)
=

Γ(1 + b)2

Γ(1 + 2b)
, where Γ is the Euler function. Also, the inset of Fig-

ure 6.4.1(b) plots the mean square displacement of the liposomes calculated through

< ∆r2(τ) >= − 6
q2

ln (f(q∗, τ)). The decrease of the slope at intermediate times, as

much as φc increases, clearly supports the idea that liposomes are confined into their

electrostatic-origin cages.

Figures (6.4.2) and (6.4.3) depict the experimental Scc(q) for liposome-polymer mix-

tures using three different liposome volume fractions for PAM-short and PAM-long,

respectively. The curves without added polymer are also included for comparison.

First, we analyze the effect of adding PAM-short. As may be observed in fig. (6.4.2),

the position of the main peak of the structure factor moves to high q-values while

their height and width decreases and broadens, respectively. For the lowest liposome

concentration (fig. 6.4.2(a)) the shift of the main peak is indeed very important even

at the small polymer concentrations employed in the experiments, implying that the

liposomes are approaching each other. This effect is caused by a driving interaction

counteracting the colloid-colloid electrostatic repulsion. However, it should be empha-

sized that such displacement is very large compared to the one obtained assuming only

the double layer screening induced by the presence of charged polymers in the solution.

This means that attractive depletion interactions will play a key role in the equilibrium

structure factor as is demonstrated on [25].

In order to understand this effect, we need to account for all the effective interactions

arising in the liposome-polymer mixture. In fact, including charged polymers implies

three different effects to the liposome-liposome interaction. Firstly, the extra charge

of the polymer (and the corresponding electrolyte concentration necessary for the elec-

troneutrality of the mixture) induces the above commented screening of the repulsive

electrostatic double layers. Secondly, the electrostatic repulsion between liposomes and
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Figure 6.4.2: Liposome-liposome structure factor for liposome-polymer mixtures with

PAM-short, at different liposome packing fractions: φc = 0.1 (a), 0.14 (b) and 0.17 (c).

Polymer concentrations are given using different type of symbols (see the legends).
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polymers causes a depletion region around the liposomes. For small polymer concentra-

tion, the size of this region is very large compared to the polymer length, and the result

is an important enhanced and long-ranged depletion attraction between liposomes. The

origin of this depletion is mainly electrostatic. For large polymer concentrations, the

screening of the double layers also reduces the range and magnitude of this electrostatic

depletion. The third effect of adding polymer is caused by the excluded volume interac-

tions between polymers and liposomes, which induces an entropic depletion attraction

between liposomes. The range of this depletion is roughly equal to 2Rg and its strength

is nearly proportional to the polymer density. The competition between these effects

has been discussed in previous papers working on dilute suspensions of charged latex

particles [25-26]. In the current case, the large liposome packing fraction employed

in the experiments suggests that both entropic and electrostatic depletion will both

contribute to the final microstructure of the binary mixtures.

At higher lipsome packing fractions (fig. 6.4.2 (b)-(c)) the shift of Scc(q∗) becomes

smaller. However, it does not mean that the polymer-induced effective depletion at-

traction is less important here, as the depletion interaction only depends on the solvent

and polymer properties. For higher liposome packing fraction, the particles are closer

to each other and so they feel a stronger and sharper repulsive electrostatic barrier.

Under this situation, the effect of adding an attractive contribution to the total inter-

particle interaction is only to slightly reduce this repulsive barrier, leading to a small

approach between liposomes.

We have tried to fit these experimental results, without success, with a theoretical model

(PRISM [41]). Although it was corroborated that PRISM is a suitable description for

charged colloid-polymer mixtures [25, 26], we have to note that it is not accurate for

the description of our polydisperse suspensions [44].

Next, we discuss the results with PAM-long, figure (6.4.3). By increasing its concen-

tration, similar trends are found, i.e., a weakening and displacement of the main peak

of the structure factor to larger q-values. However, there are important differences

comparing with the structure factor measured with PAM-short. Now, a larger peak

displacement is observed. Moreover, increasing the concentration of PAM-long leads to

a noticeable upturn of Scc(q) at low q-values. Although our observation window is not

wide enough, the trends shown by Scc(q) are consistent with the evidence of a second

peak at low q. This results points out the existence of an aggregation process between
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Figure 6.4.3: Liposome-liposome structure factor for liposome-polymer mixtures with

PAM-long, at different liposome packing fractions: φc = 0.1 (a), 0.12 (b) and 0.14 (c).

Polymer concentrations are shown using different type of symbols (see the legends). The

inset in panel (a) shows the Scc(q) at short q-values for the three higher polymer con-

centrations: 0.3, 0.5 and 0.65 wt.%. Lines stand for the best fit using the power law

Scc(q) ∝ q−df .
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liposomes resulting from the competition between long-range electrostatic repulsions

and the depletion attraction induced by the charged polymers. PAM-long can induce

a stronger and longer-range depletion forces than the ones created by the PAM-short.

Indeed, this behavior resembles the one obtained in the formation of clusters in neu-

tral and charged binary mixtures, as has been reported experimentally [6-8]) and by

computer simulation [12, 28]. In this framework, the aggregation process induced by

depletion attractions and the different routes leading to gelation are still controversial

subjects [12, 14]. There is a wide literature focused on mixtures of hard-sphere col-

loids and non-adsorbing uncharged polymers where the entropic depletion is the only

mechanism causing the phase separation [6-8, 19]. However, less is known about the

aggregation process arising in binary mixtures when both colloids and polymers are

charged, or when the polymer-colloid size ratio is high [19].

For small amounts of PAM-long, the liposomes still repel each other strongly and they

persist in a nearly Wigner glass. This structure is the origin of the peak of the structure

factor located at high q. For larger amounts of polymer, the screening of the double

layers plus the polymer-induced depletion attraction are able to break the repulsive

cages and allow the liposomes to approach each other. The experiments suggest that

the depletion is strong enough to counterbalance the electrostatic repulsion and induce

the aggregation of the liposomes that stick together by short-range London-van der

Waals attractions. Therefore, the peak at low q-value corresponds with clusters sepa-

rated by several particles diameters, although our q-range does not allow to determine

the exact location of this peak. Under these conditions, the system is composed by a

mixture of particles and clusters.

In our opinion, the stronger attraction induced by PAM-long can be related with a larger

entropic contribution to the depletion due to the size. As an example, at φc = 10% and

0.05 wt. %, i.e., using the same colloid and polymer concentrations, (see figs. 6.4.2(a)

and 6.4.3(a)), the aggregation is only observed with PAM-long. In this case, the typical

surface-surface liposome distance is about 80−90 nm, so the PAM-short can get inside

the inter-liposome space the PAM-long cannot. Consequently, entropic depletion would

be only expected for the mixtures with PAM-long. For higher φc the typical surface-

surface distance diminishes and the entropic depletion would be stronger for PAM-long

and even would appear for PAM-short at the higher liposome concentrations. Never-

theless, this pure entropic analysis is disturbed by the presence of charge on colloids

and polymers. Although both contributions (entropic and electrostatic) cannot be sep-
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arated from each other, entropic depletion represents an additional effect that explain

the aggregation observed only in the PAM-long case.

Here, we also provide experimental evidences of the aggregation process in charged

liposome-polymer mixtures, using PAM-long. As usually, the cluster morphology is

characterized by means of its fractal dimension df . It has been calculated from the

fitting of the Scc(q) using the power law S(q) ∼ q−df (see inset of Figure 6.4.3(a)), in

the corresponding q range (R−1
agg ≤ q ≤ R−1

c , where Ragg is the hydrodynamic aggregate

radius).

The low fractal dimensions obtained (see inset in fig. 6.4.3(a)) suggests that liposomes

coagulate into linear clusters. In this sense, our experimental results agree with the

observations of Campbell [14], who obtains chain-like aggregates, and Sedgwick [15],

where mixtures of particles and chain-like clusters are found. On the contrary, our

results disagree with other experimental evidences in fluid of clusters induced by de-

pletion attractions [7], where the clusters are compact structures with larger fractal

dimensions, 2.4− 2.6. The reason for this discrepancy can be attributed to two effects.

First, the reminiscent electrostatic repulsions between liposomes that favour the aggre-

gation at the tips of the cluster. Secondly, due to the very strong short-range of van

der Waals attractions, the bonds between liposomes forming the cluster are almost irre-

versible, impeding the particle reorganization inside the aggregate. It can be observed

that the fractal dimension slightly grows with the polymer concentration, see inset in

fig. 6.4.3(a), which can be also understood in terms of the competition between elec-

trostatic repulsion and depletion attraction. Indeed, a higher polymer concentration

implies the screening of the Coulombic forces and an increase of the entropic depletion

attraction and in some cases also the electrostatic one [25]. Therefore, with weaker re-

pulsive interactions the aggregation takes place in more internal regions of the clusters

leading to the slightly increase of df . In principle, these clusters will grow until they

reach a critical total charge that is large enough to compensate the depletion attrac-

tion. However, in our case the clusters formed by addition of PAM-long are not stable,

as they keep slowly growing during several days, and finally the system phase-separate

after 3 days into two phase.

Conclusions

It has been shown that the addition of charged polymers to charged stabilized lipo-

155



6. RESULTS

some suspensions at low electrolyte concentration leads to significant changes on the

structure of liposome suspensions. The displacement of the main peak of the struc-

ture factor can be only explained in terms of an induced long-range attraction. This

is mainly explained by the electrostatic depletion attraction, arising by the fact that

charged polymers are depleted from the surrounding region around the liposomes as

a consequence of the electrostatic liposome-polymer repulsion. However, a stronger

induced attraction for the larger polymer has been documented which support the fact

that entropic depletion is also relevant in our experiments.

What is more, the polymer length has an important effect on the stability of the mix-

ture. For the shorter polymer chain the suspensions remain stables while the addition

of the longer one destabilizes the suspensions, inducing the aggregation of the lipo-

somes. This fact has been experimentally confirmed by the evidence of two peaks in

the liposome structure factor, the first one at large q-values (particle-particle) and the

second at very low q (cluster-cluster). For small polymer concentrations, the liposome-

liposome electrostatic repulsion is not totally counteracted and the aggregation occurs

in the external regions of the clusters, leading to almost linear fractal objects. For

larger polymer concentrations, the screening of the double layer repulsion allows the

free diffusion of particles and clusters, more branched structures are formed and, for

that reason, we have obtained an increase of the measured fractal dimension that ap-

proaching the value predicted by DLCA.
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Previous studies [38] have shown that, although one can solve OZ with polydispersity,

the improve in the fit is not good enough to make the effort (the width of the structure

factor still remains far, too narrow from the observed experimentally).
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Abstract

In this work we study the effective force between charged spherical colloids induced

by the presence of smaller charged spheres using Monte Carlo simulations. The analysis

is performed for a broad spectrum: two size ratios, q = Rs/Rb, two screened direct

repulsions, κ, and two small particle packing fractions, φs. We specially focus on the

effect charge of the big colloids (Zb), and observe that the repulsion between big particles

shows a non-monotonic behaviour: for sufficiently small charge, we find an anomalous

regime where the total repulsion weakens by increasing the big colloid charge. For large

charges the system recovers the usual behaviour and the big-big repulsion grows with Zb.

This effect is linked to the existence of strong attractive depletion interactions caused by

the small-big electrostatic repulsion. We have also calculated the effective force using

the Ornstein-Zernike equation with the HNC closure. We find this theory is able to

capture the mechanism leading to this non-monotonic behaviour and provide theoretical

results that agree with the simulations for small Zb, but strongly underestimates the

depletion forces for large Zb.
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Introduction

One of the most studied topics in Colloidal Physics is the stability of colloidal sus-

pensions. The stability is commonly associated to the repulsive interaction between

colloids that avoids the colloidal coagulation [1]. A clear example may be found for

charged colloidal suspensions, where the long-range electrostatic repulsion between col-

loids prevents the approach of the particles at distances where the London-van der

Waal’s attraction is manifested. Notwithstanding, there is a great debate on the con-

ditions for which two charged colloids suspended in a medium formed by anions and

cations are repealed. It has been proved that under some specific conditions, e.g., tak-

ing into account the size of the ions, the effective interaction between charged colloids of

the same sign could be attractive driving even to the destabilization of the system [2-5].

The research on the stability of asymmetric binary mixtures of colloids, i.e., a mixture

of two kind of colloidal sizes, is fully justified due to the ubiquitous presence of systems

with more than one component in many technological and biological applications [6-8].

The presence of the second component introduces additional thermodynamic degrees

of freedom leading to a much richer phase diagram than for an one-component system.

It is usual to describe a binary mixture as the one-component system (big colloids),

where the second component (small colloids) is substituted by an effective interaction

between the big colloids [9-12]. For mixtures of (big) hard spheres and smaller inter-

penetrable spheres, the excluded volume interactions between big and small particles

create a depletion layer around the big particles. When two big particles overlap their

depletion layers, the total volume accessible for the small particles increases, enhancing

the entropy. The result is an entropically induced effective attraction between big col-

loids [13]. The stability of an asymmetric binary mixture will depend on the strength

of this effective attraction, which increases with the concentration of small particles,

ρs [14,15]. For large ρs, these depletion attraction can be strong enough to induce the

fluid-fluid phase separation of the system.

A more complex system arises when we consider mixtures of charged spheres of different

size and charge [16-18]. In principle, for particles with the same charge sign we expect

that the system will become electrostatically stabilized by increasing the charge of the

big particles, as is usually observed for one-component systems. However, in binary sys-

tems there are also effective interactions induced by the presence of the second smaller

component that can have a strong influence on the structure, thermodynamic properties
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and stability of the mixture. At this point, two aspects must be highlighted: on the one

hand, the phase separation of these kind of mixtures is not only entropically-driven [19],

since the long-range electrostatic repulsive interactions plays also an important role.

In fact, the competition between both entropic-origin and electrostatic interactions has

devoted very much interest in recent years, mostly in colloid-polymer mixtures [20, 21].

On the other hand, the presence of long-range repulsions, or even attractions, between

big-small and small-small colloids give rise to new physical phenomena, as the formation

of repulsive-halos [11] or the bridging [22] representing alternative ways of stabilization.

The effective attraction between two charged colloids induced by the presence of the

charged small colloids has been intensively studied in the last decade. Using computer

simulations and theory, A. A. Louis et al. systematically investigated the latter prob-

lem. They focus on the effect of a hardcore pair potential with either repulsive or

attractive Yukawa tails for the direct interactions. The arbitrary combination of both

repulsive and attractive interactions, for big-small and small-small, enhances the rich

variety of mechanisms present in such mixtures leading to either depletion attraction

emerged by repulsion or accumulation repulsion mediated by attraction [11]. E. Al-

lahyarow et al. studied the second virial coefficient, B2, as a function of the added

salt for a globular protein solutions (two big colloids with discrete charge in a sea of

finite microions). Their study proofs that the existence of a discrete charge pattern

on the protein surface profoundly influences the effective interactions leading to a non-

monotonic behaviour of B2, which in last term is due to the finite microion distribution

around the protein [23]. G. Cinacchi et al. calculated the interaction between two

colloids mediated by a fluid of small spheres with theory and simulation considering

soft repulsive spherical particles (Lennard-Jones). Their results indicate that even a

modest degree of softness in the pair potential governing the direct pair interactions

may lead to a significantly more attractive total potential between big particles than

in the hard-sphere case. This attraction showed an important impact on the phase

diagram, leading to stable fluid-fluid coexistence respect to the fluid-solid one [24].

Trying to shed light in more complex systems, A. Jamnik et al. studied the effective

interaction between two large hardcore colloids immersed in a bidisperse suspension of

short-ranged attractive colloids mimicking a lyophobic suspension. Using theory and

simulations, they have shown that the induced attraction between big colloids reaches

a longer range as much as the stickiness between small colloids is increased [25]. The

non-additivity of the repulsion between particles was also studied by E. Allahyarov et

al. for binary charged colloidal suspensions using computer simulations. They have
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shown that a realistic model of charged suspensions based on the effective pairwise

Yukawa model should incorporate a non-vanishing additivity either for repulsive or at-

tractive big-small interactions [26].

Despite of the interest aroused in charged colloidal binary mixtures, there is a lack of a

systematic study on the effect of the big and small charges, range of the interactions, size

ratio and the particle concentrations on the effective interaction between big particles.

In this paper, we study like-charged asymmetric binary mixtures, with equal charge

sign (direct repulsion), of two motionless big spherical particles immersed in a sea of

small charged particles. The induced force between the two big particles is calculated

by Monte-Carlo simulation. We find that the coupling between the direct big-small and

small-small long-range repulsion has a strong influence on the big-big total force, which

corroborates results for relatively similar systems [11, 23-25]. As we increase the charge

of the big colloids, we observe a non-monotonic behaviour of the induced potential,

which becomes less repulsive until a critical value of the charge is reached. Above this

value, the repulsion between the big particles grows with the charge, as is usually found

in one component charged colloidal samples. From our knowledge, this non-intuitive

phenomenon has not been studied for like-charged asymmetric binary mixtures either

in simulations, theories or experiments before. The study of this phenomenon under

different size ratios, small particle concentrations and electrostatic repulsive ranges is

performed to capture the conditions where the non-monotonic behavior is enhanced.

We also compare our simulations results with the Ornstein-Zernike predictions together

with the HNC closure equation [27] looking for a suitable theoretical description cap-

turing the latter behaviour. Our simulation results represent an experimental challenge

to be corroborated and exploited as a useful stabilizing/destabilizing tool.

The paper is organized as follows. In Section II, we explain the simulation details used

to calculate the big-big total force calculation; Section III presents the theoretical model

used to compare with the simulation results; In Section IV, the simulation results are

presented and discussed. Moreover, we compare with the theoretical results in terms

of the effective force between big colloids and the second virial coefficient; Finally in

Section V, we highlight the relevant points stated in this paper.

Simulation details

We have used Monte-Carlo (M-C) simulations to obtain the interaction force between
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a pair of big particles immersed in a sea of small ones [28]. Each simulation has been

performed in a box of dimensions Lx×Ly×Lz, where the volume V and temperature T

remain constant. The simulation box contains two motionless big particles of diameter

σb separated a center-to-center distance R, located at the coordinates (0.5(Lx − R
2 ),

0.5Ly, 0.5Lz) and (0.5(Lx + R
2 ), 0.5Ly, 0.5Lz), respectively. The rest are Ns moving

small particles of diameter σs, which are randomly placed at the beginning of each

simulation. The dimensions of the simulation box are determined from Ns, the size

ratio q =
σs
σb

and the packing fraction of small spheres φs using the following set

equations:

φs =
vsNs

LxLyLz − 2vb
=

π

6
σ3
sNs

LxLyLz −
π

3
σ3
b

Ly = Lz

Lx = Ly + σb +R,

(6.5.1)

where φs really represents the packing fraction of small spheres in the reservoir.

The suspension is considered as a continuous solvent of relative dielectric permittivity

given by εr = 80 and temperature T = 300K, mimicking water at room temperature.

Both big and small colloids bear effective negative charges given by Zb and Zs, respec-

tively. We also assume the existence of certain concentration of monovalent cations

n+ and anions n−, such that the electroneutrality condition is satisfied. To model the

direct interaction between any pair of particles suspended under the latter conditions,

we employ the simple Debye-Hückel (D-H) interaction potential [29],

βVij(r) =


+∞ , r < σij(=

σi+σj
2 )

LBZiZje
−κ(r−σij)

r (1 + 0.5κσi) (1 + 0.5κσj)
, r ≥ σij

(6.5.2)

where r is the center-to-center distance between any pair of particles, β = 1/kBT with

kB the Boltzmann constant, LB = e2

4πε0εrkBT
is the Bjerrum length (in our simulations

LB = 6.97 Å) with ε0 the vacuum permittivity, κ is the inverse of the Debye length and

the subscripts denote the different kind of particles. As can be seen in eq. (6.5.2), the

Debye length controls the range of the repulsive tail. In our study, we have assumed that

κ depends only on the ionic concentration of the medium, κ =
√

8πNALB(|n+|+ |n−|),
being NA the Avogadro’s number. Such assumption simplify the discussion of our re-

sults being n+ >> n− to work with a neutral system, since the charge of the colloids
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Figure 6.5.1: Normalized pair interaction between big and small spherical colloids as a

function of the interparticle distance for some of the particular cases studied in this work

(see table (6.5.1)). The vertical dashed-dotted line indicates the simulation box size from

the center of a big colloid, while the vertical dotted line represents the cut-off distance

rtrunc for the longer ranged big-small repulsive potential.

has been selected negative.

For each simulation, the D-H potential is truncated at rtrunc, where βVij(r
trunc) =

0.0005. As is shown in fig. (6.5.1), the big-small cut-off distance is in all cases smaller

than the simulation box dimensions. In fact, the distance between the cut-off and the

end of the simulation box is long enough allowing the separation of big colloids up

to distances of ∼ 17σs. Periodic boundary condition have been applied in the three

directions as usual.

In the course of each simulation, we systematically compute the small particles bulk

density, defined as ρbulk(r) = 〈
∑

j δ(rj − r)〉, where rj is the position of the centre

of the jth-particle, and the angular bracket 〈. . .〉 denotes a canonical average over a

large enough number of configurations. For that, the simulation box was divided in

100× 100× 100 cells, which were continuously updated during the simulation with the
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average number of small particles contained inside. In order to determine the density

of small particles in contact with the surface of the big colloids, we define a thin slice

of thickness ∆ and compute the density of small particles close to the surface using

spherical coordinates, ρshell(r′, θ, φ), where r′ ∈ [
σb
2
,
σb
2

+ ∆] and the spherical coordi-

nates θ and φ are taken respect to the center of each big particle. The spherical shells

around the big colloids are divided into 360×360 equal elements and the small particle

average density for each element is also updated during the simulation run.

By means of an accurate estimation of the latter magnitudes, we are able to calculate

the total force acting on the big colloids at all directions, ~F , taking into account that

it involves three different contributions:

~F (R) = ~f (1)(R) + ~f (2)(R) + ~f (3)(R). (6.5.3)

~f (1)(R) is the direct force that the particle 1 exerts on particle 2 at a centre-to-centre

distance of R, given by eq. (6.5.2). ~f (2)(R) is the electrostatic force induced by the

small charged particles, which is calculated using the bulk density of small particles as

follows,

~f (2)(R) = −
∫
ρbulk(r′;R)

∂

∂r′
Vbs(r

′)dr′ (6.5.4)

Here R notes the dependence of the bulk density on the pre-fixed distance between

the two big colloids, in such a way that ~f (2) is explicitly a function of the relative

distance between the big colloids. Finally, ~f (3)(R) stands for the force that may be

traced back from the imbalance of the small particles at the contact of the big colloid

surface. Fig. (6.5.2) shows a color map of the small particle density in a central slice

along the z-axis. As can be appreciated, near to each big particle an important high

density halo of small particles emerges. Therefore, the imbalance of pressure at the

contact when the big colloids approach must be taking into account in the total force

calculation, specially to modest big-small repulsions. In a M-C simulation, the force

between particles is not calculated in the course of the simulation as in the Molecular

Dynamic one, so that a special routine for the small particle pressure at the contact was

developed. The explicit expression for the force calculation at the contact is derived

from eq. (6.5.4) taking the limit r′ →
σ+
b

2
,

f (3)
x (θ, φ;R) = lim

∆→0

ρshell(
σ+
b
2 = σb

2 + ∆, θ, φ;R)

∆
sin(θ) cos(φ). (6.5.5)
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Figure 6.5.2: Color map of the small particle density in the simulation box with the two

big colloids placed in the x-axis. The average corresponds with a central slice along the

z-axis.

In our simulations, we have found that the optimal thickness value for the calculation

of eq. (6.5.5) is ∆opt = 0.06σs. To reach this value, we have looked for the best com-

promise between computing time and accuracy. On the one hand, if ∆ > ∆opt we get a

quickly average value for ρshell, however the thickness of the shell is too large, so that

many particles far to the contact area are considered for the calculation of the contact

density. Thus, the absolute error of the calculated pressure is unacceptable. On the

other hand, if ∆ < ∆opt, we get a more reliable average at the contact. Against this,

the calculation of the ensemble average takes longer computing time than the necessary

for the other calculated magnitudes, as ρbulk. We consider that our technique to com-

pute f
(3)
x (R) does not employ much more computer time than other more sophisticated

options [30].

Starting from a random configuration of Ns = 7000 small particles, 2× 104 M-C cycles

were run to thermalize the system (each cycle consists of Ns trials of randomly chosen

small particles). The maximum displacement of the random trials is adapted in such a

way that the ratio of accepted trials is 50%. After the thermalization, 106 additional

M-C cycles were performed to compute the average densities and forces. During the
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Table 6.5.1: The table shows the different cases studied in this work. φs is the small

particles packing fraction in the reservoir, κσs is the normalized inverse of the Debye length,

q stands for the small-big size ratio and Zs corresponds with the small particle charge.

SET φs κσs q(= σs
σb

) Zs

(a) 0.10 3.2 0.1 5.0

(b) 0.10 6.5 0.2 20.0

(c) 0.10 14.5 0.2 20.0

(d) 0.25 6.5 0.2 20.0

production stage, the average total force applied to one of the big colloids is calculated.

Here, we will only consider the x-component of this force, since the y and z components

are zero after performing their corresponding averages.

Theoretical details

A detailed theoretical description of a binary mixture of colloidal particles can be

found under the framework of the Ornstein-Zernike equation [27]. For a system of two

spherical components the equations which describes the pair correlations are

hij(r) = cij(r) +
2∑
k

ρk

∫
d3r′cik(r

′) · hkj(r− r′) (6.5.6)

where c(r) is the direct correlation function, h(r)+1 is the radial distribution function,

ρi is the density number of particles and the subscripts i, j and k run for each species

of particles. Besides these integral equations, three extra closure equations that relate

these three functions are necessary. We have employed the Hippernetted Chain closure

equation (HNC), which is commonly used for long-range repulsive interactions.

cij(r) = −βVij(r) + hij(r)− ln [hij(r) + 1]. (6.5.7)

We have numerically solved the system formed by eqs. (6.5.6) and (6.5.7) using the

iterative Picard’s method. In order to compare with the simulations, the equations

must be solved in the so-called colloidal limit, where the concentration of big particles

tends to zero, ρb → 0. In this case, the total potential between two big colloids is given

by the exact relationship, βV Total
bb (r) = − ln [hbb(r) + 1] [27].

172



6.5 Paper V. Study on the effective potential of an asymmetric charged
binary mixture: the non-monotonic behaviour with the big colloid charge

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5

 0

 0.5

 1

 1.5

 2

 0 1 2 3 4 5
!
e
x
t
s
(
r
)
/
!
*
s

(r-"bs)/"s

!" #"

Figure 6.5.3: External density profile of small particles in the outer face of each big

particle (colored regions in the scheme) normalized to the unity. The red and blue lines

stand for the external density profile of small particles at the right hand of the particle 2

and the left hand of the particle 1, respectively. The latter can be expressed as a function of

r (distance in spherical coordinates) given the spherical symmetry in the consider regions.

This result corresponds with the set (d) for Zb = 280 and was taken for a centre-to-centre

big separation of R = 10σs.

Results and Discussion

The properties of an asymmetric binary mixture of hard spheres in the colloidal limit

depend on φs, and q. Including the electrostatic interaction between any pair of par-

ticles, we get three new parameters to account for: Zb, Zs and κ. Therefore, the

phenomenology presented in such systems is hidden among a large number of possible

combinations between the set of parameters. In this study, we mainly focus on the ef-

fect of Zb on the big-big induced effective potential. For that reason, we have explored

the increase of Zb keeping fixed Zs with the intention of assessing the charge effect

under certain conditions of q (set (a) front set (b)), κ (set (b) front set (c)) and φs (set

(b) front set (d)) (see table (6.5.1)). In a charged binary mixture, the big-big effective
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potential, V eff
bb (r) (= V Total

bb (r)− Vbb(r)), is a complex function of both big-small and

small-small direct interactions. Therefore, our systematic study deeps into V eff
bb (r) as

a function of Vbs(r), since Vss(r) remains equal for any studied case (Zs is constant).

The big-small repulsion goes from HS-like (Zb = 0) to a strong repulsive tail (maxi-

mum Zb value). Before to show the computed effective forces, we should mention that

even for the most repulsive case, the rearrangement of small particles around the big

one is completely captured within the simulation box dimensions. To confirm this,

we show in fig. (6.5.3) the external density profile of small particles around the big

ones, ρexts (r)/ρs, where ρs is the number density of small particles far from the sur-

face of the big particles. By external density profile, we mean the average density of

small particles in the outer face of each big particle (colored region in the scheme pre-

sented in fig. (6.5.3)). Fig. (6.5.3) shows an extremely charged case (set (d), Zb = 280,

R = 10σs and Ns = 7000), where the dimensions of the simulation box are Lx ∼ 40σs

and Ly = Lz ∼ 20σs. As observed, the oscillations of the density profile in the outer

regions becomes negligible before reaching the border.

Fig. (6.5.4) shows the simulation results divided in a set of four panels, each one re-

lated with one of the studied cases (the relevant parameters for each case are given

in table (6.5.1)). In each panel, the big-big normalized effective force, βσb ~F
eff (R)

(= βσb(~f
(2)(R) + ~f (3)(R))), is plotted as a function of the interparticle distance, R, for

six different Zb values.

In general, we observe that the effective force shows a similar qualitative behaviour as

we increase Zb. It is attractive near to the big-big contact (R ≥ σb). This is a direct

consequence of the depletion region appearing in the region between the big colloids,

that generates an unbalanced pressure exerted by the small particles at the outer faces

of the colloids. For small Zb values, the attractive well is mainly originated by the con-

centration of small particles at the contact, and the range of the attraction is roughly

given by σs. Moreover, the effective force shows a repulsive barrier at Rbar = (σb+σs).

This repulsion is provoked by the accumulation of small particles around the big col-

loids. Indeed, at such big-big distance, the space between the surfaces of the big colloids

is large enough to allow the small particle to fit inside. Since the repulsion between the

small charged particles is larger than the repulsion with the big colloids, the result is

the accumulation of small particles in the internal region that overcomes the pressure

originated in the outer faces of the big colloids. As Zb increases, there is a progressive
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Figure 6.5.4: Effective force between big colloids induced by the small charged particles

obtained by simulation (eqs. (6.5.4) and (6.5.5)) for different values of Zb. The four plots

corresponds to the four cases shown in table (6.5.1).

enhancement of the big-small direct repulsion leading to a more efficient depletion of

small particles. Since the big-small repulsion becomes more and more dominated by

the electrostatic contribution, the range of the attraction slightly increases to reach the

value σb + σs + κ−1. For large enough Zb, the big-small repulsion is so strong that

the small particles are not able to diffuse inside the region between the big colloids for

R ≈ Rbar, and the repulsive barrier disappears, leading to an attractive effective force

that tends motononically to zero as a function of R.

Although we have observed the same behaviour with Zb for different values of q, κ and

φs, it should be emphasized that there are important differences between the four cases

studied. First, we compare plot 6.5.4(a) with (b). Both sets have the same packing

fraction of small spheres, but with twice larger radius (Ns, Zs and κσs have been con-
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veniently modified in order to keep constant φs, the surface charge of the small colloids

and the inverse Debye length, κ−1). Increasing σs leads to weaker but longer-range

depletion forces, which is consistent with the fact that the size of the small particles is

larger but the number density is smaller.

Comparing plot (b) with (c) we observe that reducing the range of the electrostatic

interactions (that is, increasing κ) has a strong impact on the effective force. For small

Zb, increasing κ has an almost negligible effect on the big-small repulsion, that is mainly

controlled by the hard-sphere contribution. However, the repulsion between the small

charged particles is decreased and shortened, and so there is a weaker accumulation of

small particles on the surface of the big colloids. It leads to a smaller attractive deple-

tion force for R < σb +σs with a smaller repulsive barrier. For large Zb, the increase of

κ also screens the repulsion between big and small particles. This reduces the pressure

over the outer faces of the big colloids, resulting in a weaker effective depletion forces.

The effect of the packing fraction of small particles is deduced from the comparison

between plots (b) and (d). Increasing the packing fraction to φs = 0.2 leads to an

enhancement of the attraction at short distances, which again may be explained in

terms of the largest concentration of small particles near the big colloids. For small

Zb, this enhancement is nearly proportional to the packing fraction. Moreover, the ef-

fective force has a higher repulsive barrier and shows oscillations at larger interparticle

distances, the reason being that the equilibrium distribution of small particles around

one big colloid has several coordination layers where particles have a larger local den-

sity, typically observed in dense hard-sphere systems. For large Zb the depth of the

attractive forces grows with φs even faster than the linear behaviour. For φs = 0.2, the

repulsive barrier remains for greater Zb values, due to the fact that small particles are

now strongly pushed in the region between the big colloids.

Following the same scheme that in fig. (6.5.4), fig. (6.5.5) shows the big-big effective

forces calculated by simulation and theory. Due to the number of Zb values studied,

we have presented just 4 cases to clarify the comparison between theory (lines) and

simulation (symbols) (Zb = 0, 30, 150 and 180). In general, for small Zb, the agree-

ment between theory and simulation is acceptable, specially at small φs values. As Zb

increase, the theory leads to less attractive and shorter-range forces respect to the M-C

simulations. Moreover, the OZ-HNC model predicts the appearance of the repulsive

barrier at intermediate distances, even for the larger studied Zb cases, where the M-C
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Figure 6.5.5: Effective force between big colloids induced by the small charged particles

obtained by simulation (eqs. (6.5.4) and (6.5.5)) for different values of Zb. Here, we keep

the same panel structure that in fig. (6.5.4). Symbol stand for some of the studied cases

by simulation, while lines stand for the OZ-HNC predictions.

simulation indicates that this repulsive barrier disappears from the effective depletion

potential being attractive and monotone. At the big-big contact (R ∼ σb), the theory

agrees with simulation overall for set (b) and (c), which correspond with the biggest q

and κ studied for the smallest φs. As the size ratio diminishes (set (a)) or the small

packing fraction increases (set (d)) the theory overestimates the attraction at the con-

tact. It also coincides with the cases where the induced attraction is stronger. So, we

can conclude that the OZ-HNC equation predicts effective interactions less attractive

than the calculated by simulation and becomes worst as much as the repulsion and the

induced attraction are enhanced.

The previous results show that the effective forces between big colloids is in general at-
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tractive. However, in order to know exactly the role of this attractive interaction in the

stability of the mixture, we need to calculate the total force, defined as the sum of the

effective force (induced by the small particles) and the direct Yukawa repulsion between

big particle, F = F eff + F Y uk. By increasing Zb, the direct repulsion grows, but at

the same time the effective forces become more attractive. This leads to a competition

between opposite effects where it is not clear which effect is the dominant. To express

clearly the final results, we have calculated the normalized big-big second virial coeffi-

cient as a function of Zb, B
∗
2(Zb) =

B2(Zb)

BHS
2

. To calculate B∗2 , we have interpolated and

integrated the effective forces of fig. (6.5.4) and added the corresponding direct big-big

Yukawa potential (eq. (6.5.2)) to obtain V Total
bb (R). Then, the normalized second virial

coefficient is obtained as follows,

B∗2(Zb) = 1 + 3σ2
b

∫
R2(1− exp (−βV Total

bb (R;Zb)))dR. (6.5.8)

The simulation results of B∗2 are plotted in fig. (6.5.6) with different symbol-lines (see

the legend). As observed, the second virial coefficient is always positive, which indicates

that the repulsion always dominates over the effective induced attraction. However, it

clearly shows a non-monotonic behaviour as a function of Zb. The origin of this effect

can be attributed to the interplay between the big-big direct interaction (eq. (6.5.2))

and the effective induced potential (mainly attractive as is shown in fig. (6.5.4)). Indeed,

the big-big repulsive amplitude grows as Z2
b , but the big-small direct repulsion depends

on ZbZs. For small Zb values (compared with Zs) the electrostatically-enhanced de-

pletion attraction is larger than the direct electrostatic repulsion between big colloids,

and so B∗2 drops by increasing Zb. For larger Zb values, the direct repulsion dominates

and becomes the main interaction governing the stability of the mixture, so the second

virial coefficient grows again.

The critical charge Zcb at which this crossover occurs depend on φs, Zs and κ−1. On

the one hand, for strongly screened electrostatic interactions (see set (c), which corre-

sponds to the smaller value of κ−1 studied in this work), all interactions are mainly

dominated by the hard-sphere contributions, so the results become lees sensitive to

changes in Zb. In fact, the crossover is not reached for the studied values of Zb. On

the other hand, by increasing the concentration of small particles (set (d)) we observe

a significant enhancement of this non-monotonic behaviour. Also the critical charge Zcb
increases, as a consequence that the direct big-big repulsion must overcome the strong
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guide the eye with the expected behaviour for a total potential given by eq. (6.5.2).

depletion exerted by the small particles in order to be the dominant contribution. As

expected from fig. (6.5.5), the theoretical predicted values of B∗2 are quite similar to

the simulation ones for small Zb, but become larger when we increase Zb due to the

fact that the theory underestimates the effective attraction. Nevertheless, the OZ-HNC

is still able to capture the non-monotonic behaviour, as is shown in fig. (6.5.6) with lines.

Conclusions

The effect of the charge in the effective force for a binary mixture of asymmetric charged

colloids is studied by Monte-Carlo simulation. The increase of the big colloid charge,

Zb, is analysed for several cases: two size ratios, q, two screened repulsions, κ and

two small particle packing fractions, φs. The simulation results show that the effective

force becomes more attractive as Zb increase keeping fix Zs and the rest of parameters.

Comparing the results for different set of parameters, we have observed that for smaller

particles and larger packing fractions (φs) the induced force is more attractive, while

179



6. RESULTS

as the direct repulsions are screened (increase of κ) the effect of Zb on the induced

attraction is decreasing.

The competition between big-big and big-small direct repulsions induce a non-monotonic

behaviour of the second virial coefficient. This phenomenon is enhanced for smaller q

and κ values and larger φs. The latter emerges as an experimental challenge to proof

that under the suitable conditions the use of more charged colloids in a binary mixture

not necessarily implies an increase of the interparticle repulsion. It has been also shown

that the OZ-HNC theoretical approach is able to capture the competition between di-

rect interactions leading to this non-monotonic behaviour. However, the quantitative

agreement between theory and simulation is only reached for small Zb values, so that

an accuracy theoretical description for more repulsive mixtures is demanded.
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[4] E. Allahyarov and H. Löwen, Phys. Rev. E 63, 041403 (2001).

[5] A. Cuetos, J. A. Anta and A. M. Puertas, J. Chem. Phys. 133, 154906 (2010).

[6] K. P. Velikov, C. G. Christora, R. P. A. Dullens and A. van Blaaderen, Science 296,

106 (2002).

[7] A. Y.-G. Fuh, J. G. Chen, S.-Y. Huang and K.-T. Cheng, Applied Physics Letters

96, 051103 (2010).

[8] T. H. Windhom and C. A. Cain, Transactions on biomedical engieneering 148,

BME.26 3, (1979).

[9] M. Bier, R. van Roij, M. Dijkstra, J. Chem. Phys. 133, 124501 (2010).

[10] M. Dijkstra, R. van Roij and R. Evans, Phys. Rev. E 59, 5744 (1999).
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Here, we present the advances in the theoretical project performed during a short stay

in the Soft Matter Theory Group at the University of Konstanz (Germany). It is been

carried out in collaboration with Prof. Matthias Fuchs. Although this project is not

concluded, we have already found some relevant results that will be exposed on the next.

Until now, the PRISM formalism has been applied to charged colloid-polymer mixtures

with good results (paper II and III). Indeed, this model represents an useful tool to

describe the structural properties of these mixtures. However it is limited in the sense

that the model does not considers the polymer deformation near the colloidal surface

induced by entropic or electric effects (see section 4.3). Therefore, the application of

the m-PY closure equation to charged colloid-polymer mixtures is fully justified with

the aim to improve our theoretical description.

For highly repulsive mixtures (e.g., paper II, III and IV), it is expected that the elec-

trostatic interactions govern all the structural behavior. However, the polymer defor-

mation effects (e.g., the one captured with the m-PY closure) should be evaluated to

establish the conditions where they can be relevant. The numerical resolution of PRISM

m-PY with thermodynamic consistency allows us also to deep into the structure and

phase behavior of mixtures where the polymer is constituted by finite-size monomers.

It represents an important step forward to the description of more real polymers, which

has not been carried out until now, even for uncharged colloid-polymer mixtures.

Thermodynamic consistency applied to neutral mixtures of
colloids and polymers with finite-size monomers

The PRISM m-PY theory is here applied to neutral mixtures of colloids and poly-

mers with finite-size monomers. It can be considered as the first step before studying

charged colloid-polymer mixtures. We have to note that in the literature this problem

has been only treated in the “thread limit”1, where the theory becomes analytic (63).

Since the PRISM m-PY analytical solution cannot be applied to finite-size monomers,

the first stage of this subproject represents an original work in itself. The finite-size

monomer limitation is easily solved by mean of the numerical resolution of the PRISM

equations using the m-PY as the colloid-monomer closure relation. Nevertheless, it

should be noted that the use of the m-PY closure is not defined as usual (compare

with eqs. (3.15) and (3.16)), since it cannot be trivially introduced in the standard

1A brief description of the “thread limit” is given in section 4.2.
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numerical scheme of resolution (62, 68). It demands a special care, since the m-PY

closure is defined from the previous knowledge of the PY direct correlation function.

Therefore, this is an unusual closure equation that require a calculation in accord with

its definition.

In order to study the validity of the numerical solution reached from the PRISM m-PY

theory under the new algorithm, we have followed the same procedure that the one

given in section 4.2, looking for the convergence of our numerical prediction to the

analytical one (by increasing the number of monomers per chain, Nm). Indeed, we

have not yet applied the thermodynamic consistency (the reason will be given some

paragraphs later). Instead of this, the convergence is studied using the λ provided for

neutral colloid-polymer mixtures in the “thread limit”, which satisfies the thermody-

namic consistency) of the analytical solution (see ref. (63)):

λ−1 = ξ−1 +
1 + 2φc
1− φc

λ1

σc
(6.6.1)

where ξ =
Rg√

2
is the polymer correlation length and λ1 = 1 +

√
5. A set of gij PRISM

m-PY predictions are shown in fig. (6.6.1) using c/c∗ = 0.001, φc = 0.05 and ξ = 0.5

(hereinafter, σc = 1). For this test, a gaussian polymer chain and HS-like interactions

are selected to mimic the analytical conditions. In fig. (6.6.1), solid lines stand for the

analytical solution in the “thread limit”, while dashed lines represent the numerical

one. The most important finding is that the numerical solution of PRISM m-PY con-

verges to the analytical one for Nm = 106. Comparing with the results in fig. (4.3)

(the convergence was found for Nm = 8000), we have to note that the m-PY closure

is more sensitive to the finite-size monomer than the PY one. The small disagreement

in gmm (the logarithmic scale is applied to enhance it) comes from a numerical preci-

sion problem in the calculation of the analytical gmm at short distances. It leads to

gmm(r) < 0 for very short distances. The latter unphysical result is slightly transmitted

along the gmm function and leads to a small general disagreement. Despite the satis-

factory agreement found for gcc and gcm (even gmm, if the accuracy of the analytical

prediction is improved), we have to point out that the special sensitivity of m-PY to the

finite-size monomer has strong consequences in the applicability of the thermodynamic

consistency.

Regardless the application of the thermodynamic consistency, some relevant results of
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Figure 6.6.1: PRISM m-PY prediction of the radial distribution functions for a neutral

colloid-polymer mixture close to the “thread limit” in semi-log scale. Solid lines stand

for the analytical solutions in the “thread limit” (courtesy of Prof. M. Fuchs), while

dashed lines correspond with the numerical solutions for Nm = 106, HS-like interactions

and a gaussian polymer chain. The rest of used parameters are as follows: c/c∗ = 0.001,

φc = 0.05 and ξ = 0.5.

the gcm dependence with λ have been illustrated in fig. (6.6.2) for a gaussian polymer

with Nm = 106 and ξ = 0.5, while φc = 0.05 and c/c∗ = 0.01. The increase of λ

from 0.0 (PY) to 0.2 generates strong changes in the monomer distribution around a

colloidal particle: the polymer is depleted from the colloidal surface and, at the con-

tact, the linear dependence of gcm(r) is lost becoming quadratic. Both results agree

with the analytical predictions given in ref. (86). It is important to highlight that the

colloid-monomer redistribution for λ > 0 implies a more depleted polymer, which is

transformed into a stronger attraction between colloids. This supports the original idea

that PY (λ = 0) underestimates the induced depletion attraction.

In order to discuss the new features derived from the finite-size monomer, the inset (a)

of fig. (6.6.2) shows a zoom around the colloid-monomer contact, r ∼ σcm. The results

suggest that gcm(σcm) tends to 0 as λ is increased. Although this result is congruent
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Figure 6.6.2: PRISM m-PY predictions for gcm and several λ values. Nm = 106, φc =

0.05, c/c∗ = 0.01 and ξ = 0.5 remain equal in all calculations. Inset (a) shows a zoom

around the contact of the before gcm curves. Inset (b) presents a zoom around the contact

for a smaller polymerization degree, Nm = 5 · 104. In inset (b), the rest of parameters and

λ values have been kept equal to the ones given in the legend of the main window.

with the behavior predicted by Fuchs et al. in the “thread limit”, there are differences

of several order of magnitude between the numerical and the analytical results at the

contact (compare with eq. (29) of ref. (63)). For this reason, the numerical application

of the thermodynamic consistency looking for the convergence to the analytical solu-

tion becomes unappropriated. Only in the limit N → ∞ (numerically unreachable),

the numerical solution seems to converge.

The other inconvenient that avoids the application of the thermodynamic consistency

is shown in the inset (b) of fig. (6.6.2). Here, the zoom around σcm is again represented

for a gaussian polymer chain, now with Nm = 5 · 104 or, equivalently a larger monomer

size (see that the new contact value is greater in the inset (b) than in the inset (a)).

For a larger monomer, the numerical solution of the PRISM m-PY theory predicts now

that gcm at the contact increases with λ. The physical meaning of this result is opposite

to the general idea that a monomer becomes more depleted from the colloidal surface
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by increasing the interaction length λ. Although far to the contact gcm behaves as is

expected with λ, this new behavior at the contact has also a strong influence on the

thermodynamic consistency. On the one hand, the compressibility route predicts that

to the excess polymer chemical potential, δµ(1), increases with λ (63). On the other

hand, inset (b) shows that from certain monomer size, gcm(σcm) also increases with λ,

which in turn induces an upturn on δµ(2) (eq. (4.11)) leading to a situation where the

convergence of both routes is unreachable.

Here, it should be reminded that fig. (6.6.1) proofs the accurate convergence of our

numerical solutions using the λ value predicted for eq. (6.6.1) and, therefore these

surprising results (shown in the inset of fig. (6.6.2)) are just a consequence to the finite-

size monomer. The understanding of what happens demands more effort and it will

be treated in the future with the intention to find the right λ value able to predict the

phase diagram of neutral colloid-polymer mixtures under thermodynamic consistency.

Thermodynamic consistency applied to charged mixtures
of colloids and polymers with finite-size monomers

The main interest to apply the m-PY closure to charged colloid-polymer mixtures comes

from the fact that the theory accounts for the conformational changes on the polymer,

even when the system is mainly governed by electrostatic repulsive interactions. Since

this memory treats to shed light into charged colloid-polymer mixtures, a theoretical

description where both entropic and electrostatic effects are captured would respond to

the desire of a complete theoretical description. Therefore, we have initiated this task

by extending the PRISM m-PY theory to charged systems.

The main point consists in developing a new local packing route (eq. (4.12)) considering

the long-range interaction between sites. By means of the local packing route (δµ(2)),

the polymer excess chemical potential is calculated for a process where the colloid goes

from geometric points to σc. In this respect, the latter excess chemical potential depends

only on the gcm(σcm) and gcc(σc) for neutral colloids and polymers. However, when both

components interact at long distances, the excess chemical potential calculated by the

local packing route will also depend on the colloid-monomer and colloid-colloid spatial

distribution for all the distances, i.e. gcm(r) and gcc(r). Following the Chandler’s

formalism (56) for functional integration procedures in polyatomic systems, we have
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generalized eq. (4.12) to charged colloid-polymer mixtures,

βδµ(2)
p |ρm→0 = 2πρcσc

∫ 1

0
dζ

∫ ∞
|r|≥0.5(σm+ζσc)

r2g(ζ)
cm(r)|ρm→0

∂βφ
(ζ)
cm(r)

∂ζ
dr

+2πρ2
cσ

3
c

∫ 1

0
dζ

∫ ∞
|r|≥ζσc

r2∂g
(ζ)
cc (r)

∂ρm
|ρm→0

∂βφ
(ζ)
cc (r)

∂ζ
dr

(6.6.2)

where g
(ζ)
ij (r) and φ

(ζ)
ij (r) stand for the site-site radial distribution and the site-site

direct interaction, respectively, for a mixture where the effective colloidal diameter is

given by σ
(ζ)
c = ζσc. Thus, φ

(ζ)
ij (r) is a parameterized long-range pair potential. It

is easy to proof that for HS-like colloids and monomers, eq. (6.6.2) leads directly to

eq. (4.12).

At this point, it should be mentioned that for charged colloid-polymer mixtures, the

behavior shown in the insets (a)-(b) of fig. (6.6.1), concerning the dependency at the

contact value of gcm with λ, still persists. In eq. (6.6.2), the excess chemical potential

has two different contributions, namely HS-like and repulsive long-range tail contribu-

tions. The first one can be important for charged colloid-polymer mixtures, so it must

be taken into account for the local packing calculation. Therefore, the thermodynamic

consistency applicability to charged colloid-polymer mixtures again requires more work.

Although we are not able to apply the thermodynamic consistency, we still can ex-

plore the structure of charged colloid-polymer mixtures as a function of λ, while a well

conditioned solution with the thermodynamic consistency problems is developed. The

number of relevant parameters in an uncharged colloid-polymer mixture is four: σm,

Rg, φc and c/c∗ (assuming that σc = 1). In charged colloid-polymer mixtures, we must

include four additional parameters: Zc, Zm, κ−1 and lp (if we consider a semiflexible

polyelectrolyte, the Koyama’s form factor is recommended). Following the decomposi-

tion of lp explained in section 4.2 for charged polymers, the set of 8 parameters can be

reduced to 7 in case of le ≫ lo, under a strong electrostatic repulsion. Since a charged

colloid-polymer mixture depends on more parameters as usual, we have only focused on

some of them to show how the polymer deformation is presented in a mixture governed

by electrostatic repulsion.

The results are shown in fig. (6.6.3), where 4 panels represent gcm for two different

κ−1 values and two c/c∗ (both parameters are contained in the legend of each panel).
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The rest of parameters are fixed: Nm = 500, lp = 10σm (Koyama’s model), Zc = 50,

Zm = 0.347, σc = 40σm (Debye-Hückel potential) and φc = 0.05. In each panel, we

have presented results for several λ values covering a wide range of the relevant poly-

mer lengths (from λ = 0 to λ = lp). To simplify, the discussion of the results shown in

fig. (6.6.3) are divided in two points: the first one concerning charged colloid-polymer

mixtures with a strong electrostatic repulsion (κ−1 = 6σm), panels (a) and (b), and the

second one, with a weaker electrostatic repulsion (κ−1 = σm), panels (c) and (d).
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Figure 6.6.3: PRISM m-PY prediction for the colloid-monomer radial distribution func-

tions of a charged colloid-polymer mixture. The results are divided in 4 panels: in (a) and

(b) κ−1 = 6σm and c/c∗ = 0.1 and 0.5, respectively, while in (c) and (d) κ−1 = σm for

the same concentrations. The rest of parameters are pre-fixed: Nm = 500 and lp = 10σm

leading to Rg = 40σm (Koyama’s model) and Zc = 50, Zm = 0.347 and σc = 40σm (Debye-

Hückel potential), while φc = 0.05. Within each panel the prediction for several λ values

is given.
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• In panel (a), no relevant changes on the colloid-monomer radial distribution are

appreciated, even when λ is similar to the polymer persistence length. However,

as the polymer concentration increases (see panel (b)) the polymer deformation

becomes relatively important for the largest λ values (λ = lp). This confirms

that the colloid-monomer arrangement is mainly controlled by the electrostatic

repulsion and the polymer deformation effect only can be appreciable when the

polymer is enforced to be close to the colloidal surface by increasing c/c∗. Conse-

quently, in panel (a) and (b), the so-called depletion layer (defined as the length ω

that satisfy gcm(σcm+ω) = 0.5 (63)) remains constant for all the λ-values (follow

the horizontal dashed line plotted ad hoc). The dashed vertical line indicates that

the range, where the polymer deformation effects may be important (the largest

λ value is presented), is smaller than the range of the depletion layer for λ = 0.

So that, due to the strong electrostatic repulsion, the polymer depletion caused

by entropic effects is negligible.

• In panels (c) and (d) the range of the electrostatic repulsion is smaller respect to

the panels (a) and (b). Therefore, the entropic effects are more important for the

same set of λ values. The weaker electrostatic repulsion allows monomer/polymer

to approach the colloidal surface (for λ = 0 the depletion layer is smaller than

some of the studied λ values). The theory predicts that the polymer feels the

presence of the colloid adapting its conformation and so, the monomer distribution

around the colloids. In this situation, the increase of the depletion layer with λ is

recovered (fig. (6.6.2)). From these results, we can confirm that when the system

is less charged, the deformation of the polymer becomes important. It must be

remarked that the prediction for the thermodynamic consistency λ will be related

also with the intensity of the repulsion, giving smaller λ values as the electrostatic

repulsion increases. Notwithstanding, it will always be greater than the monomer

diameter, σm, so that the polymer deformation cannot be discarded a priori.

Two assumptions have been imposed in the latter example to make clear the discussion:

κ−1 is constant respect to the increase of c/c∗ (from 0.1 to 0.5) and lp ∼ lo, so that the

changes in le when κ−1 increase does not overcome the value of the intrinsic rigidity

of the polymer, lo. If we want to compare with experimental results, both coupled

effects must be incorporated in the theory. In this respect, it should be said that the

complete description of an experimental system (including the coupling between κ−1

with c/c∗, . . . ) can be in principle carried out with PRISM m-PY theory. Anyway,

as fig. (6.6.3) illustrates, the extension of m-PY to charged colloid-polymer mixtures
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makes sense, since details of the polymer deformation by the action of the colloid can

be non-negligible. In summary, this theory represents a very promising tool providing

more accuracy results to compare with experiments and simulations.
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Chapter 7

Conclusions

7.1 English

Paper I:

In this first work, the non-diffusive motion of rigid and deformable Brownian particles

was experimentally studied using dynamic light scattering.

• The non-diffusive motion of deformable Brownian particles is quite different to the

rigid ones as a consequence of the coupling between translational and rotational

degrees of freedom.

• Our results with deformable liposomes represent a theoretical challenge, since

the hydrodynamic theory that describe with accuracy the non-diffusive motion of

rigid particles fails in its prediction for the deformable ones.

• The deformable particles reach the diffusive regime at time-scales where the trans-

lation and rotation are decoupled. It strongly depends on the elastic characteristic

of each particle. This conclusion will be useful on future works to disentangle the

time-resolution where the effects of the particle deformability are present in its

diffusive motion.

Paper II:

The behavior of the colloidal structure factor on a mixture of charged colloid and

non-adsorbing charged polymer was experimentally analyzed for increasing polymer

concentrations. The experiments were performed using static light scattering. The ex-

perimental results where compared with a theoretical model considering colloid-colloid,

colloid-monomer and monomer-monomer interactions, as well as the connectivity of

monomers along the polymer chain.
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• The presence of charged polymer in a structured suspension of charged colloids

induces a strong effect on its structure: the colloids are forced to be at closer

distances with the increase of the polymer concentration. The origin of this

behavior is explained in terms of the coupling of two effects: the colloid-monomer

electrostatic repulsion inducing an effective attraction between colloids and the

screening of any electrostatic interactions, which is provoked by the increase of the

charged polymer concentration. In turns, the screened colloid-colloid repulsion

allows to the colloids approach each other, while the screened colloid-monomer

repulsion weakens the polymer-induced attraction. Therefore, we find that the

mechanism controlling the equilibrium of the system is more electrostatic than

entropic.

• The theoretical model (PRISM) that we have used is able to describe with high

accuracy the experimental results using just one fit parameter: the ionic strength.

Moreover, PRISM allows us to deep into the structure features of each component

of the mixture more than light scattering techniques.

Paper III:

From the conclusions derived in paper II, we carried out in this paper a second study

of the effect that the polymer size has on the colloidal structure factor of charged

colloid-polymer mixtures. The experimental results obtained by means of static light

scattering were correlated with the dynamic analysis in the main peak of the structure

factor.

• The effective force induced by the charged polymer does not only depend on the

polymer radius of gyration, Rg, as occurs in neutral mixtures. From the performed

experiments at two different polymer sizes and the help of the PRISM, it is proved

that the range of the electrostatic repulsion, κ−1, also plays an important role

controlling the induced attraction for mixtures.

• The experimental data obtained with static light scattering (SLS) are consistent

with the ones measured with dynamic light scattering (DLS). In both cases, the

results show that the colloid-colloid total interaction becomes more attractive, or

less repulsive, as much as the charged polymer concentration is increased.

Paper IV:

The work developed in the two previous papers was extrapolated to charged colloid-

polymer mixtures using liposomes as biocompatible colloids. Another relevant property
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to employ this colloidal particles was the transparency of such system, allowing us to

work with mixtures at high colloidal concentrations.

• At the studied liposome packing fractions, the short polymer chain is smaller than

the typical distance between colloids. Therefore, the colloidal structure changes

in accord with the electrostatic mechanisms documented in paper II.

• For larger polymer chains and using the same liposome packing fractions as before,

the experimental structure factor shows an upturn at low q values (large spatial

scales). This evidence, is explained in terms of the aggregation of the liposomes

due to the polymer-induced attraction. In our opinion, the extra-attraction acti-

vating the colloidal aggregation must be related with the entropic depletion, since

in this case the polymer size is greater than the colloidal interspace (entropic de-

pletion is favored).

Paper V:

A study of the effective force between two charged particles (big colloids) induced by a

system of smaller charged particles was performed using Monte-Carlo simulations. The

dependence of the effective force on the big colloid charge was systematically studied.

The simulation results were compared with the Ornstein-Zernike equation with the

HNC closure.

• As much as the big colloid charge is increased, the induced attraction is stronger.

Such behavior is mainly controlled by the big-small repulsion giving rise to an

imbalance of electrostatic pressure on the two big colloids, which leads to an

effective attraction.

• The big-big total interaction, sum of the big-big electrostatic and the induced

interaction, behaves non-monotonically with the big colloid charge. The non-

monotonicity behavior controls the total interaction in such a way that it is more

attractive with the increase of the charge of the big colloids. From a certain value

of the big colloid charge this behavior is reversed being more repulsive with the

big colloid charge.

• The comparison between simulation and theory shows an intriguing qualitative

agreement, since the theory also captures the non-monotonic dependence of the

total potential. In this respect, the theory is far to describe quantitatively the

simulation results for relatively charged big colloids.
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7.2 Español

Art́ıculo I:

En este primer trabajo, se estudia experimentalmente el movimiento no difusivo de

part́ıculas Brownianas ŕıgidas y deformables, mediante la técnica de dispersión de luz

dinámica.

• El movimiento no difusivo de part́ıculas Brownianas deformables presenta grandes

diferencias con el de part́ıculas ŕıgidas. Esto es consecuencia del acoplamiento

entre los grados de libertad de traslación y rotación de cada tipo de part́ıculas.

• Estos resultados con part́ıculas deformables representan un reto teórico, ya que

la teoŕıa hidrodinámica que describe con bastante precisión el movimiento no

difusivo de part́ıculas ŕıgidas falla en sus predicciones para el caso de part́ıculas

deformables.

• Las part́ıculas deformables alcanzan el régimen difusivo como consecuencia del

desacoplamiento entre la traslación y la rotación en el movimiento. Dicho de-

sacoplamiento depende fuertemente de las caracteŕısticas elásticas de cada part́ıcula.

En trabajos futuros, este resultado será útil para distinguir la escala tempo-

ral donde los efectos de la deformabilidad de la part́ıcula están presentes en su

movimiento Browniano.

Art́ıculo II:

El comportamiento del factor de estructura coloidal de mezclas de coloide y poĺımero,

ambos cargados con el mismo signo, se ha estudiado experimentalmente para can-

tidades crecientes de poĺımero. Los experimentos se llevaron a cabo mediante dis-

persión de luz estática. Los resultados experimentales se han comparado también con

un modelo teórico el cual considera las interacciones coloide-coloide, coloide-monómero

y monómero-monómero, además de la correlación entre los monómeros de una misma

cadena polimérica.

• La presencia de poĺımero cargado en una suspensión coloidal estructurada por

repulsión electrostática induce un fuerte efecto sobre su estructura: los coloides

son forzados a estar t́ıpicamente más cerca debido al aumento de concentración

de poĺımero. El origen de este comportamiento es explicado en términos del

acoplamiento de dos efectos: la repulsión directa coloide-monomero, que induce

una atracción efectiva entre los coloides, y el apantallamiento de cualquier re-

pulsión electrostática, el cual es provocado por el aumento en la concentración
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de poĺımero cargado. A su vez, el apantallamiento de la repulsión entre coloides

permite a estos aproximarse entre śı con más facilidad, mientras que el apan-

tallamiento en la repulsión coloide-monomero debilita la atracción inducida por

el poĺımero. Por lo tanto, el mecanismo que gobierna el equilibrio del sistema es

más electrostático que entrópico.

• El modelo teórico empleado (PRISM) es capaz de describir los resultados ex-

perimentales con tan solo un parámetro de ajuste: la fuerza iónica del medio.

Además, PRISM nos permite obtener más información, sobre el ordenamiento

espacial de ambos componentes de la mezcla, que la meramente accesible a través

de un experimento de dispersión de luz.

Art́ıculo III:

Partiendo de la base establecida con los resultados del art́ıculo II, el efecto del tamaño

del poĺımero sobre el factor de estructura del coloide se ha estudiado en mezclas cargadas

de coloides y poĺımeros. Los resultados obtenidos mediante dispersión de luz estática

se han correlacionado con los de la dinámica de las part́ıculas en el pico del factor de

estructura coloidal.

• La fuerza efectiva inducida sobre los coloides cargados no solo depende del radio de

giro del poĺımero, Rg, como ocurre en mezclas neutras. A partir de la información

experimental recopilada para dos tamaños diferentes de cadena y la ayuda del

modelo PRISM, se ha demostrado que el alcance de la repulsión electrostática,

κ−1, juega un papel fundamental en esa atracción. El alcance de dicha interacción

llega a ser controlado por κ−1 en sistemas experimentales con una fuerza iónica

muy baja.

• Los datos experimentales obtenidos con la dispersión de luz estática son consis-

tentes con los medidos mediante dispersión de luz dinámica. En ambos casos, los

resultados muestras que la interacción total entre coloides llega a ser más atrac-

tiva, o menos repulsiva, a medida que la concentración de poĺımero aumenta.

Art́ıculo IV:

El trabajo presentado en los dos art́ıculos anteriores se extrapoló a una mezcla coloide

poĺımero cargada utilizando liposomas como coloides biocompatibles. Otra propiedad

importante que sugiere su uso, reside en sus propiedades ópticas, ya que tales part́ıculas

son transparentes incluso para altas concentraciones.

199



7. CONCLUSIONS

• Para las concentraciones de liposoma estudiadas, el poĺımero corto es más pequeño

que la distancia t́ıpica entre coloides. Por lo tanto, la estructura coloidal cambia

de acuerdo con el mecanismo electrostático descrito en el art́ıculo II.

• Para el poĺımero más largo, usando las mismas concentraciones de liposoma que

antes, el factor de estructura coloidal muestra un alzamiento a bajo q (escalas

espaciales grandes). Esta nueva observación, es explicada en términos de la agre-

gación de los liposomas debido a la atracción inducida por el poĺımero. En nues-

tra, opinión la atracción extra que activa el proceso de agregación debe estar

relacionada con la depleción entrópica, ya que en este caso el poĺımero está ex-

cluido de la zona intercoloidal debido a su tamaño.

Art́ıculo V:

Un estudio de la fuerza efectiva entre dos part́ıculas coloidales cargadas (coloides

grandes) inducida por un sistema de part́ıculas de menor tamaño y también cargadas

(coloides pequeños) se llevó a cabo utilizando simulaciones Monte-Carlo. Se estudió sis-

temáticamente el efecto del aumento de la carga de los coloides grandes en dicho fuerza

efectiva para distintos casos. Los resultados obtenidos mediante simulación fueron

comparados con la ecuación de Ornstein-Zernike para el cierre HNC.

• A medida que se va aumentando la carga de las part́ıculas grandes se ha en-

contrado que la atracción inducida por las part́ıculas pequeñas sobre las grandes

es cada vez mayor. Dicha comportamiento de la atracción inducida es principal-

mente controlado por la repulsión grande-pequeña, la cual genera un desequilibrio

en la presión electrostática sobre los coloides grandes dando origen a una atracción

efectiva.

• Al estudiar el potencial total grande-grande, suma de la interación electrostática

directa grande-grande y la interacción inducida, se ha observado un compor-

tamiento no monótono de la parte efectiva respecto a la carga de las part́ıculas

grandes. El comportamiento no monótono llega a controlar la interacción total de

manera que es más atractiva con el aumento de la carga de las part́ıculas grandes

cuando dicha carga no es muy alta. A partir de un cierto valor, la dependencia de

la interacción total con la carga se invierte siendo más repulsivo con el aumento

de la misma.

• La comparación de las simulaciones con las predicciones teóricas de Ornstein-

Zernike para el cierre HNC muestra un acuerdo cualitativo interesante entre
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ambas, ya que la teoŕıa captura el comportamiento no monótono anterior. No

obstante, la teoŕıa está lejos de describir cuantitativamente los resultados de sim-

ulación para coloides grandes relativamente cargados.
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[68] M. Quesada-Pérez, Estructuras en Ĺıquidos Coloidales: Interacción entre

Part́ıculas y Carga Efectiva., PhD Thesis, Universidad de Granada (1999). 39,

67, 72, 186

[69] M. Fuchs, Z. Phys. B 103, 521 (1997). 40

[70] R. Koyama, Macromolec. 1986, 178 (2002). 41

[71] O. Kratky and G. Porod, G. Recl. Trav. Chim. 68, 1106 (1949). 41

[72] S. Lifson, A. Katchalsky, K. Polym. Sci. 13, 43 (1954). 41, 42

[73] K. G. Honnell, J. G. Curro and K. S. Scweizer, Macromol. 23, 3496 (1990). 41

[74] P. J. Flory, J. Chem. Phys. 9, 660 (1941). 42

[75] T. Odijk, J. Polym. Sci., Polym. Phys. 15, 477 (1977), idem, Phys. A 278, 347

(2000). 42

[76] G. S. Manning, J. Chem. Phys. 51, 924 (1969). 42, 76

[77] M. Fixman, J. Chem. Phys. 76, 6346 (1982). 42

[78] J. Skolnick and M. Fixman, Macromol. 10, 944 (1977). 42

[79] E. Buhler and F. Bou, Eur. Phys. J. E 10, 89 (2003). 42

[80] A. Denton, M. Schmidt, J. Chem. Phys. 122, 2449111 (2005). 45

[81] O. A. Croze and M. E. Cates, Langmuir 21, 5627 (2005). 45

[82] E. J. Meijer and D. Frenkel, Phys. Rev. Lett. 67 1110 (1991); idem J. Chem. Phys.

100, 6873 (1994). 45

[83] X. Ye, T. Narayanan, P. Tong and J. S. Huang, Phys. Rev. Lett. 76, 4640 (1996).

45

[84] X. Ye, T. Narayanan, P. Tong, J. S. Huang, M. Y. Lin, B. J. Carvalho and L. J.

Fetters, Phys. Rev. E 54, 6500 (1999). 45

207



REFERENCES

[85] M. Fuchs and K. S: Schweizer, Europhys. Lett., 51, 621 (2000). 45

[86] M. Fuchs and K. S. Schweizer, J. Phys.: Condens. Matter 14, R239 (2002). 45,

187

[87] J. Bergenholtz, N. J. Wagner and B. D’Aguanno, Phys. Rev. E 53, 2968 (1996).

47

[88] B. J. Berne and R. Pecora, Dynamic Light Scattering, New York, Wiley (1976).

52, 54

[89] K. Pham, S. Egelhaaf,, A. Mouss̈ıad and P. N. Pusey, Rev. Sci. Instrum. 75, 2419

(2004). 54, 60

[90] P. N. Pusey and W. van Megen, Physica A 157, 705 (1989). 54, 60

[91] B. Fultz and J. Howe, Transmission Electron Microscopy and Diffractometry of

Materials, Springer (2007). 55

[92] S. Roldán-Vargas, M. Quesada-Pérez, J. Callejas-Fernández, J. Chem. Phys. 131,

034509 (2009). 57
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