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Chapter 1

General introduction

”Does the flap of a butterflys wings in Italy set off a tornado in Spain?”

The study of the nervous system has increased significantly during the second

half of the past century, principally due to the advances in molecular biology, elec-

trophysiology, and the development of computational neuroscience. For instance,

it has become possible to understand and simulate in detail a large number of

complex biophysical processes occurring within a single neuron. However, it is

still poorly understood how networks composed by a large number of neurons in-

terconnected by synapses can produce complex cognitions and behaviours.

Understanding the brain is among the most challenging problems to which a

physicist can be attracted. As a system with an enormous number of elements (i.e.

neurons and synapses), affected by many non-linear dynamical mechanisms, both

at cellular and network level, the brain exhibits collective dynamics that in many

aspects resemble some of the well studied problems in statistical physics. One of

the most interesting collective behaviours recently observed in neural systems is

the emergence of critical phenomena. The hallmark of criticality is the appear-

ance of long range spatio-temporal correlations in neural media, that are revealed

through the existence of power law distributions, also called scale free, for some

magnitudes of interest. This critical behaviour has been observed experimentally

both at large “whole brain“ scale (characterized for instance by the existence of

long-range correlations, correlation length divergence and anticorrelated states in

the activity of some cortical areas) [9], and at relatively small scale (where cortical

circuits exhibit neuronal avalanches, cascades of activity obeying inverse-power-

law statistics as well as long-range correlations) [6].

1
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Critical states have raised a great excitement in neuroscience due to the intrigu-

ing functional properties they entail. On a small scale, critical neural avalanches

have been claim to lead to the optimization of different properties, such as trans-

mission and storage of information, computational capabilities, large network sta-

bility and sensitivity to sensory stimuli, to name a few [10]. On the other hand,

at large scale, critical spatiotemporal patterns of activity, characterizing the col-

lective dynamics of huge numbers of interacting neurons distributed throughout

the cortex, support higher brain functions in humans such as perception, learning

and goal directed movement, dynamically adapting them to a varying environment

[11, 12], or finally can be the fingerprint of some neural diseases such as epilepsy

[13].

The most relevant and still open problems concerning neural critical states are

those related with the neuron mechanisms and network structures (i.e. topolo-

gies made by neuronal connections) responsible for their emergence and stability.

Moreover, the relationships between these elements and the optimal functional

properties shared by critical networks are not yet completely understood.

Other intriguing phenomena in system biology that depict critical properties

are those related to solid tumour growth, recently matter of an intense debate.

Also in this case one has to deal with a system formed by a great number of units,

i.e. the cells, with complex nonlinear interactions among them. Experiments have

shown that tumours develop as self-affine objects [14], with typical spatiotemporal

correlations that are power law distributed [15]. The measure of their associated

critical exponents (i.e. the exponents of the power law correlation functions) are

highly relevant to understand the essential dynamical process of tumour invasion.

Moreover is crucial to find the relationship that exists between exponents values

and the mechanisms of tumour cell proliferation, in order to develop therapeutic

tools [16].

The aim of this thesis is to investigate, using different mathemat-

ical approaches and numerical simulations, the mechanisms responsible

for the appearance of critical states in different neural systems, as well

as the optimal functional properties emerging in them. Secondly, with

the purpose to extend the study of criticality to other classes of system

biology, we investigate, in the same framework, the relationships be-

tween critical characterization of tumour growth and its fundamental

invasion dynamic.
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In particular, the main goals of this thesis are:

• Explore the role that activity-dependent synaptic processes in neural net-

works play on the emergence of critical phenomena, as well as in the ro-

bustness of criticality and in the optimization of neural networks functional

properties in such critical states (see chapters 5-6).

• Find the relationships between non trivial network topologies with scale free

distributions (for both, the node-degree distribution and node-node corre-

lation) and neural network performance (for instance, during the retrieval

process of static and dynamical patterns of neural activity) (see chapters

7-8).

• Improve dynamic scaling analysis techniques in the characterization of the

main dynamic of self affine solid tumour fronts, and study the relation be-

tween tumour cell proliferation mechanisms and the behaviour of fluctuations

at the tumour surface (see chapters 10-11).

Structure of the Thesis

The thesis is structured as follows:

In chapter 2 the concepts of criticality and scale invariance in the study of

complex systems constituted by many identical interacting elements are presented.

More precisely, four paradigmatic examples of simple mathematical models or class

of models displaying critical properties are described: the 2D Ising model, the Bak

Tang Wiesenfeld Sandpile, the Barábasi-Albert Preferential Attachment Network

and some discrete models of Self Affine Surface Growth. These models form the

basic mathematical framework used in this thesis to study neural media behaviour

and tumour growth.

In chapter 3 useful definitions concerning the biology of neural tissue and

some mathematical models used to study its behaviour are introduced. Such basic

principles constitute the starting point of the theoretical models developed and

studied in this thesis. First, it is briefly described the physiology of the neu-

rons, the most important cells of neural tissues, focusing on its ”spiking dynamic“

(i.e. the generation of action potentials) and on the main mechanisms for signal

transmission through the synapses, i.e. the functional connections among neurons.
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Then, a classical model in theoretical neuroscience is presented, namely the Hop-

field Model, originally formulated to describe associative memory, characteristic of

some brain areas. Hopfield model considers the state of each neuron as a binary

variable (i.e. silent or generating a signal), and synaptic intensities fixed in time

(statics). However, in actual neurons there are many internal biochemical mecha-

nisms modulating in time both the generation of neuron signals and the synaptic

transmission. Then a brief description of the integrate and fire (IF) model, one

of the simplest neuron model implementing membrane potential dynamics, and of

the Tsodyks Model, that accounts for activity-dependent synaptic strengths (that

is, dynamical synapses), is introduced.

In chapter 4 we describe some relevant experiments performed on neural sys-

tems at various scales (single cell, tissue and brain level) and different settings

(internal and external potential recordings on cell cultures both in vitro and in

vivo, or Electroencephalogram (EEG) records), in which critical states, character-

ized by different power law distributions, emerge. In particular, we focus on the

experimental settings and methods that use tools from statistical physics, and that

show evidences of optimization of some neural functions in such critical states.

In the chapters that follow, the original scientific contributions of

this thesis are presented. We start with the study of simple models of neural

media and then continue with implementing more realistic and detailed neurons

and synapses descriptions.

Thus, in chapter 5, we extend the standard Amari-Hopfield neural network

model for associative memory adding some biologically justified dynamic rules,

that put the system out of equilibrium. The consequence is the emergence of new

nonequilibrium phases and critical phase transitions [17]. In the standard Hopfield

model, network activity can converge to one of the patterns of activity, previously

stored by calibrating the synaptic weights, using for instance the Hebbs rule [18].

However, the activity of actual neural systems does not remain indefinitely in a

particular pattern and, in general, it can show a complex dynamical behaviour.

To account for that we have generalized the standard model introducing activity

dependent synaptic fluctuations, and partial neuron updating, that occasionally si-

lences group of neurons. In this model one can identify additional non-equilibrium

phases, in which the network state oscillates irregularly between the various pat-

tern attractors. We have described in detail the second order transition between
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the phase of associative memory and the phase characterized by irregular oscilla-

tions between attractors. At this transition point, we observed that the network

activity presents long range correlations, characterized by fluctuations whose fre-

quencies obey a power law. This kind of criticality is similar to what has been

recently observed in the activity of cortical regions. Thus, our study gives some

new elements for the understanding of the emergence of critical dynamics in the

activity of cortical networks [12].

In chapter 6 we investigate in deep a recent model for neural media, pro-

posed by Levina, Herrmann and Geisel (LHG) [19], which displays self-organized

activity. This model shows power law distributed avalanches of electrical activity,

as those recently observed and well characterized in experiments on cortical neu-

ral networks [6, 8]. LHG model is constituted by a deterministic sandpile model,

where site height mimics the membrane graded potential of each neuron, coupled

with the Tsodyks model, that modulates the efficacy of each synaptic strength

(i.e. grains redistribution) during an avalanche. In this model, neural dynamic

is dissipative and has a loading mechanism for the background synaptic strength,

being very similar to some examples of non-conserving self-organization, recently

demonstred to lack true criticality [20]. Our purpose has been to explain from a

theoretical point of view if the mechanisms of self-organization, such as the Self

Organized Criticality (SOC) or non-conservative quasi-Self Organized Criticality

(SOqC) can justify the invariance scale observed in neuronal avalanches. With nu-

merical evidences (LHG model simulations) and by means of a theoretical analysis

(derived from its mean-field equations) we conclude that LHG model is generally

not critical. Therefore, unless the parameters are fine tuned, the dynamics is either

sub or supercritical, although the pseudo-critical region in the parameter space is

relatively large [21].

In chapter 7 we introduce and study a simple model of associative memory

in a neural network with scale free topology which includes a tunable structure

of node-node correlations [22]. Several recent experiments have shown that dif-

ferent regions of the cortex present scale-free functional network topologies [4],

with an highly non trivial, inhomogeneous, connective structure [23, 24]. We ex-

amined here, both theoretically and by means of numerical simulations, the effect

of the correlations between the degrees (i.e. the number of links of each neuron)

of nearest neighbour neurons on the behaviour of an Amari-Hopfield neural net-

work with scale-free topology [25]. If the mean nearest neighbours degree function
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knn(k) increases with k, the network is said to be assortative, while it is disassor-

tative if it decreases. We have constructed this kind of topology using a method

recently suggested in [26] on the ensemble of all networks with the chosen node-

node correlations that can be considered theoretically. Our main finding is that

memory retrieval performance against a general stochastic noise increases with

assortativity, mainly because the hubs are the main responsible for the storage of

information. The good agreement we have found between the mean-field analysis

and Monte Carlo simulations supports both the robustness of the results in terms

of neural systems, and the validity of using this method to study the underlying

dynamics in correlated networks.

In order to study the computational effects of network structure correlations

in more realistic situations, in chapter 8 we have investigated the emergent be-

haviour of a network of spiking neurons with a complex topology that includes, as

in chapter 7, degree-degree correlations. As a model neuron for nodes, we used the

Integrate and Fire mechanism to model neuron membrane dynamics. In networks

of spiking neurons different types of synchronization phenomena can emerge. In

particular we have focused on the role that degree-degree correlations have on the

stability of the fully synchronous state. We also observed that depending on the

nature of such correlations some mixture states appear, in which a subpopulation

of neurons with synchronous activity and a second one with asynchronous activ-

ity coexist. We have found that synchrony among neurons is enhanced when the

network is assortative while in disassortative networks the asynchronous state is

the rule. Moreover, we stress the importance of local homogeneous subnetworks

of neurons on the emergence of local synchronous activity.

In chapter 9 we make a small introduction to the study of dynamic scaling, a

theoretical framework recently applied to describe tumour growth fronts [27], that

exploits the geometrical features of growing surfaces using different concepts from

the theory of stochastic processes and fractal geometry. Following the work by Brú

et al. [15, 16, 28], there are strong experimental evidences that the fluctuations

of solid tumour interfaces have a non-trivial spatiotemporal behaviour, which is

the fingerprint of self-affinity. Moreover, tumour interface correlations seem to

evolve according to some power laws with robust exponents, belonging to the

Molecular Beam Epitaxy/Mullins Herring (MBE/MH) universality class [29]. This

type of universality explains the roughening processes in which cells are generated

randomly close to surface and then relax towards the highest surface curvature
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region. These findings are the starting point of some continuous models in terms

of Langevin evolution equations.

In the framework of dynamic scaling analysis for solid tumour fronts, in chap-

ter 10 we implement and analyze some Langevin surface evolution equations in

the radial symmetry case [30]. In fact, most of the proposed models in the liter-

ature consider the roughening of a surface on a planar substrate of constant size.

A key question here concerns the analysis of the fluctuations of radially growing

fronts in terms of dynamic scaling techniques. The problem consists in determine

if the models exhibiting radial symmetry, resembling solid tumours fronts growth,

belong to the currently known universality classes, or else make part of some new

ones. A similar remark applies to the case of one dimensional interfaces with non

constant substrate size. We have thus implemented some continuous models in

radial symmetry, i.e. Edwards Wilkinson (EW) and Kardar Parisi Zhang (KPZ)

equations, finding that they still belong to the respective well-known one dimen-

sional universality classes, at least in the limit of large radius. Then, considering

some one dimensional examples with non constant substrate, we have found that

systems with growth for dilatation (i.e. with fixed number of discretization points

and increasing dx) have a new scaling behaviour, different from the one prescribed

by the usual Family-Vicsek ansatz, and in the asymptotic limit, the interface is

completely uncorrelated. These results calls for a more rigorous study of the limit

for a continuous description of microscopically discrete systems.

In chapter 11 we study the dynamic scaling of surface fluctuations for a

lattice-gas (LGCA) model of solid tumour growth. Despite the several models pro-

posed in order to describe solid tumour growth dynamic, the available techniques

to check models consistency with experiments are often ambiguous or qualitative,

and the problem of models validation by biomedical data is an open challenge. Dy-

namic fractal scaling, used by Brú et al. to characterize tumour front dynamic [28],

could be definitively an efficient tool to evaluate tumour models, and interrelate

their mathematical assumptions with the relevant involved biological mechanisms.

Here we implement a discrete tumour growth LGCA model with diffusive-kinetic

dynamics, i.e. cells perform random walks and undergo birth/death processes,

originally developed in [31, 32]. Then, we analyze numerically their growing fronts

by using fractal scaling analysis. Our study shows that diffusive dynamic induces

tumour surface fluctuations to develop according to EW universality observed

experimentally [15] and which is not consistent with the MBE/MH universality
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class. However linear growth rate of the tumour radius and proliferative activity

restricted to the external layer, also found in the same experiments, are recovered.

In order to obtain the correct universality we suggest to introduce some adhesive

cell-cell interaction mechanism.

Finally the main conclusions of this thesis are presented, focusing on the role

that different dynamic mechanisms have in the emergence of critical states for

neural systems, and in the performance of their functional properties. In second

instance some observation on the validity of dynamic scaling analysis in the char-

acterization of tumour growth dynamic are given. The possible implications of

our findings, and also the future research lines that this thesis may suggest, are

summarized as well.



Chapter 2

Criticality and scale invariance in

physics and biology

”the whole is more than the sum of the parts”

We introduce here some basic ideas regarding the concept of criticality and scale

invariance in the study of complex systems. We describe four paradigmatic exam-

ples of simple mathematical models or class of models displaying critical properties

that we will use in the rest of the thesis, namely the 2D Ising model, the Bak Tang

Wiesenfeld Sandpile model, the Barábasi-Albert Preferential Attachment Network

and some discrete models of Self Affine Surface Growth.

2.1 Introduction

In classical mechanics the predictions on the dynamics of a system result by solving

the deterministic Newton equations defined for each of its elements. That is, once

Newton equations are integrated over time, the system future trajectory is exactly

known. Unfortunately, this is not a viable strategy to study systems composed

by many elements, as for instance in the study of a gas which is constituted by

order of NA ∼ 1023 (Avogadro number) molecules. Statistical physics, however,

helps us to deal with this problem, and allows to study physical systems with a

huge number of identical elements interacting each other with simple rules, and

permits the analysis of the macroscopic and collective properties that emerge from

9
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these microscopic interactions. To do that, statistical physics uses a probabilistic

approach: it tries to make predictions on the probability that a system will evolve

to a particular configuration, or state. Thus, the principal strategy of statistical

physics consists in extract informations concerning the system behaviour mea-

suring mean values, or higher order moments, like variance, and other different

statistical observables, with the use of this probability distribution.

In most of the systems of interest the observed phenomenology cannot be de-

duced from the dynamics of its single elements, and it is the result of a collective

behaviour of all elements: this emergent behaviour is in general complex 1. More

precisely, systems with numerous components capable of structured interactions

can generate emergent features, i.e. phenomena, functions, or effects that cannot

be trivially reduced to some properties of the components alone. Instead, these

functions describe properties of the system as a whole. In general, complexity is

achieved in systems that exhibit a mixture of order and disorder, i.e. regularity

and randomness, a property which has a great capacity to generate non trivial

emergent phenomena. This is exactly the case of systems configured in a critical

state, as we will see next in this chapter.

Complexity is a paradigm not only in the structure and the dynamics of many

classic multiparticle physical systems, like gases, but also it appears in “live mat-

ter“. In biology, different systems consisting of many identical interacting ele-

ments, as neurons in neural network, cells in tumours or bacteria in colonies, have

a complex dynamics which displays collective behaviours in the form of spatiotem-

poral correlations [33, 34], pattern formation [35–37] or synchronization phenom-

ena [38]. Starting from the 50’s of the past century with the Turing seminal paper

“The Chemical Basis of Morphogenesis“ on a reaction-diffusion system for mor-

phogenesis [39], the modelling of biological systems has been turned out to be one

of the paradigmatic fields of application of statistical physics [40–42]. One of the

most intriguing properties observed in biological system in the last 30 years is the

appearance of long-range spatial and temporal correlations in physiological signal

recordings [1, 43], in spatiotemporal dynamics [6, 28], or in structure formation

[14, 44]. Such long range correlations are characterized by different statistical

observables that exhibit a power law, or scale free, distribution P (z), i.e.:

P (z) ∝ zγ;

1In general, complex systems are characterized by the existence of highly non-linear processes
involved in their dynamics and high sensitivity to initial conditions.
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where P (z) is the probability distribution of the quantity z taken in consideration

(i.e. being space and/or time) and γ is an exponent characterizing the long range

behaviour of P (z).

As an illustrative example of scale free distributed correlations, let’s consider

the case of the heartbeat time series measured in electrocardiography (ECG)

recordings from subjects with heart disease [1] (see figure 2.1). It is possible

to define, as a statistical observable, the interbeat time interval B(n), that is the

time interval between the n-th and the n + 1-th heart pulse. The mean inter-

beat fluctuation function F (n′) ≡ 〈|B(n + n′) − B(n)|〉n (where 〈·〉n means the

mean value over the whole beat time series) increases with n as F (n) ∝ nγ , with

γ ∼ 0.5, while for healthy subjects this function is flat with γ = 0, as depicted

in figure 2.2. Long range behaviour analysis, also called scaling analysis, could

give several indications about the particular mechanisms governing such system

dynamics. Concerning the time series of F (n), the exponent value γ = 0, observed

in normal subjects, indicates anticorrelation properties, consistent with neurophys-

iological feedback processes that ”kicks” heart rate away from extreme values. On

the contrary, γ = 0.5 is the typical exponent resulting from the trajectory of a

random walker, produced by a ”step by step” summation of uncorrelated random

variables [45], and gives the evidence of a different types of correlations between

the interbeat intervals, in which the heart lacks any mechanisms of beat rate self-

regulation.

The peculiar scale-free distributed function, characterized by a power law,

described in the former example, has been found in a great variety of biological

systems, and characterizes, for instance, the size of neural activity bursts [6, 46, 47],

the structure of functional brain topology [4] or the shape of bacterial colonies [48].

Power law distributed spatiotemporal correlations emerge essentially in two situ-

ations: at the exact point of a continuous (second order) transition between two

different macroscopic phases or in spontaneuos, self-organizing, non equilibrium

critical states.

In Equilibrium Statistical Mechanics [49, 50] it is possible to define, for

some systems, an Hamiltonian, or energy functional, which depends on the micro-

scopic states of the system. Their macroscopic equilibrium stationary states

are related to the minima of the free-energy potential, which can be derived from

the Hamiltonian by using standard statistical mechanics tools. This potential

allows to study the influence that the different external parameters (e.g. tempera-

ture, pressure and driving forces) have on the equilibrium states. Let us consider a
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Figure 2.1: Interbeat intervals B(n) series for an healthy subject (Top) and
for a patient with severe cardiac disease (dilated cardiomyopathy). The healthy
heartbeat time series shows more complex fluctuations compared to the diseased
heart pattern (reprinted from [1]).

Figure 2.2: Log-log plot of F (n) versus n calculated from data in figure 2.1.
The two lines with slope α = 0 and α = 0.5 correspond to ”1/f” noise and
”brown noise” respectively (reprinted from [1]).

system ofN elements characterized by the state variables {a1(~r1, t), · · · , aN(~rn, t)},
where the state of i-th element, at time t and position ~ri, is characterized by the

value of ai(~ri, t). When the system reaches a well defined macroscopic equilibrium

state, i.e. a minimum of the free-energy, it can be characterized by the mean value

of one or more statistical observables, derived from the Hamiltonian. In this equi-

librium state, spatial and temporal correlations among the state variables ai(~ri, t)



Chapter 2. Criticality and scale invariance in physics and biology 13

decay rapidly, as an exponential function:

〈ai(~r1, t)aj(~rj, t′)〉 ∝ e−χ(|~ri−~rj |,|t−t′|),

where χ(|~ri − ~rj|, |t− t′|) is a 1st order polynomial with non negative coefficients.

On the other hand, power law distributions emerge in phase transitions between

two different macroscopic states, in general constituted by an ordered phase and

a disordered one. Each phase is characterized by an observable, or order param-

eter, that changes its value when it approaches the transition point between the

macroscopic phases. When the order parameter change continuously from a non

zero value in the ordered phase to 0 in the disordered one, a second order phase

transition occurs.

Let us consider for example the 2D Ising model [51, 52], describing the ferro-

magnetic interactions between N binary spins, with state variables σi ∈ {−1, 1},
placed in the nodes of a square lattice, under the effect of a thermal bath with

temperature T . In this system, considering as a order parameter the global magne-

tization M ≡ 1
N

∑N
i=1 σi, one can observe a second order phase transition between

an ordered ”Ferromagnetic“ phase, dominated by the deterministic spin-spin in-

teraction, with M 6= 0, and a disordered ”Paramagnetic“ phase, with M = 0, in

which the dynamic is dominated by stochastic fluctuations induced by the thermal

bath (see section 2.2).

Close to a second order transition the system is said to be in a critical state,

and the respective transition point is called critical point. While a local per-

turbation has only localized effects in a stable phase, close to a critical point it

propagates throughout the whole system, because its effect decays algebraically in-

stead of exponentially. Although the Ising model considers only nearest neighbour

interactions, very near the critical point there is a non zero correlation between

every pairs of spins in the system, as if they had an effective interaction mutually

influencing each other: this is the intrinsic meaning of a critical state. Thus, when

one sets the system, tuning conveniently its relevant parameters, exactly or very

close to the transition point, spatial correlations will decay with a large queue,

power law shaped [53], that is

〈ai(~ri, t)aj(~rj, t)〉 ∝ |~ri − ~rj|−α
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More generally, systems in a critical state are characterized by scale invariance,

or scale free behaviour, i.e. they have the same appearance at any spatial and tem-

poral scale. Mathematically, this feature is described by functions, like correlation

functions or probability distributions, dominated by power laws:

f(x) = Ax−α.

Scale invariance could be easily visualized if one change the variable x to ζx in

f(x), resulting:

g(x) ≡ f(ζx) = (Aζ−α)x−α, (2.1)

so that, for any value of the scaling factor ζ and the exponent α, g(x) has the same

form that f(x), with a multiplicative factor scaled by ζ−α. Alternatively, one can

say that the relative change f(x)/f(ζx) = ζα has no dependence on x; thus it

does not exist any characteristic scale in the phenomena depicted by the function

f(x). On the other hand, scale invariance implies a functional decay qualitatively

prolongated, i.e. algebraically shaped. But is this the only class of functions that

accomplish with the scale invariance criteria? To answer that, one can look for a

general distribution function p(x) that satisfy the following property:

p(bx) = g(b)p(x),

for any b. If the scale of x is increased (or decreased) by a factor b, the shape of

p(x) must remains unchanged, apart from an overall multiplicative constant g(b).

It can be easily demonstrate that the only and unique solution of this problem

is a power law function [54]. Mathematically speaking, one can say that a scale

free function p(x) with exponent −α is an homogeneous function of degree −α,

having the property

p(λx) = λ−αp(x).

On the other hand, scale invariance is not present in phenomena controlled by an

exponential function, like e−x/ξ. Here the function decays quickly, and the scaling

x → ζx changes the correlation length ξ (that measures the characteristic scale

of the decay) by a factor ζ. In practical cases, power law behaviour strictly occurs

only in a finite range for the distance, time or other variables, due to the finite

size of the real systems. Therefore and in order to check the consistence of scale

invariance hypothesis, in numerical studies of complex systems it is necessary to

perform a finite size analysis that estimates the increase of such finite range when
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the size of the system changes.

There is another class of systems displaying criticality with scale free behaviour

in which the attractor of their dynamic is exactly at the critical point, i.e., it

achieves there a stationary non-equilibrium state characterized by the existence of

long-range correlations. In this case, we deal with the so called Self Organized

Criticality (SOC) phenomena. During SOC dynamics a system spontaneously

settles in the critical state, without the need of any parameter tuning, and thus

one can always observe power law distributions in the relevant macroscopic ob-

servables. On the contrary, ordinary criticality (non self organized) emerges by

fine tuning of some external parameter (e.g. the temperature in the Ising model)

necessary in order to put the system close to a second order phase transition. For

the systems displaying SOC is not possible to define an Hamiltonian, so the sta-

tionary states are non equilibrium stationary states, and usually are studied

using Non Equilibrium Statistical Mechanics techniques [55].

The first attempt to model a SOC mechanism was made by Bak, Tang and

Wiesefeld in 1987 with a simple model of sandpile dynamics on a plane surface.

In this model the grains of sand fall at random positions on the surface, and a

column of piled grains topples on their neighbours when exceeds a certain height,

inducing chain reactions of topplings, or avalanches [56] (see section 2.3). In this

model the avalanche sizes and avalanche time durations are power law distributed,

with well defined exponents, and the system achieves this state without the need

of any parameter fine tuning.

Power law distributions appear often also in the analysis of self assembled

structures, i.e. in the connectivity distributions of complex network, or in the

statistic of spatiotemporal correlations of growing surfaces. Networks with scale

free degree distributions are observed in nature, as in the neural network of the

worm Caenorhabditis Elegans [57], in metabolic networks [58], geological forma-

tions [59], and artificial systems, as in the World Wide Web connection topology

[58, 60]. It has been reported that systems implemented in a scale free network

improve the synchronization among their elements and stability, mainly due to

the role played by the few nodes with high connectivity, the so called hubs [61].

Specific characteristics of scale free networks can only depend on the generative

mechanisms used to create them and on the particular dynamic of nodes (see chap-

ter 6). One famous generative process for scale free topology is the preferential

attachment mechanism, described in section 2.4.

Geometric structures in which each subpart is a scaled copy of the whole are
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ubiquitous in nature, and are the consequence of a subtle interplay between ran-

dom and deterministic processes at small scales. The result is the emergence of

long range correlated structures, called self affine surfaces, in which macroscopic

coherence is generated from a microscopic short range dynamic. One can think,

for example, about geological formations [59] or snowflake deposition surfaces. In

industrial processes self affine surfaces are observed in the growth of thin films by

molecular beam epitaxy [27]. Also this class of phenomena are related with a SOC

mechanism that induces these systems to evolve with a kind of structure placed

in the frontier between a flat, homogeneous surface, and an extremely rough one

dominated by noise without any spatial correlation nor pattern.

At this point one can ask: ”Why critical behaviour is so interesting, in partic-

ular when observed in biological systems?” One can try to address this question

by pointing out the differences between correlations in equilibrium phases and

non equilibrium critical states. In an ordered phase all the microscopic elements

are identically and strongly correlated while in a disordered one, dominated by

stochastic fluctuations or deterministic chaotic oscillations, their mutual correla-

tions are null. In both phases, any little external perturbation or drift produces

little effects on short scale, and the system quickly returns to the original equilib-

rium state. Only in the critical state, which occurs when the system moves from

an ordered to a disordered equilibrium phase or vice versa, correlations are long

tailed, power law distributed, and have a substantial role at every scale. Thus a

critical system, situated in a rocky/wobbly position between order and disorder,

becomes extremely susceptible and reactive in response to any small external han-

dling, noise or perturbation.

This general property results to be extremely relevant when one deals with

biological systems, because it allows for the optimization of their main functions.

For example, one can think on cognitive tasks (memory storage and processing) in

the case of neural structures (see for instance chapters 5-7), or regarding tumour

growth on invasion processes and survival against host environment (see chapters

10-11).

In order to give an appropriate description of the main mechanisms in which

critical states and structures with power law correlations emerge (i.e. phase transi-

tions, self organized criticality and self organized assembly of structures) we briefly

describe next four paradigmatic models or class of models displaying criticality,

that represent the essential structure of the biological system models studied in

this thesis: the 2D Ising Model, the Bak Tang Wiesenfeld Sandpile Model, the
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Barabási-Albert Preferential Attachment Algorithm and some discrete models of

Self Affine Surface Growth.

2.2 2D Ising Model

Ising Model was formulated and studied firstly in 1920 by Wilhelm Lenz and Ernst

Ising [62] in order to study the ferromagnetism in solids produced by magnetic

spin interactions. The two dimensional version of this model is constituted by a

system of N binary spin variables σi ∈ {−1, 1} placed in a square lattice of size

L× L (L =
√
N). Each spin interacts with its nearest neighbours by mean of an

exchange energy term J , and the whole system is driven by an external magnetic

field h. The configurational energy of the system is described by the Hamiltonian:

H = −1

2
J
∑

<i,j>

σiσj − h
N
∑

i=1

σi

where < i, j > means that the sum is extended only over pairs of nearest neighbour

spins. In statistical mechanics, once the Hamiltonian is formulated, one obtains all

the relevant information about the system at an equilibrium state, characterized

by a temperature T , by studying the partition function:

Z =
∑

~σ

exp−(H(~σ)/kBT ) .

The partition function is a sum over all the possible configurations of the proba-

bility to have the system in a particular configuration ~σ = {σ1, ..., σN}, which is

assumed to follow the Boltzmann distribution:

P (~σ) = e−(H(~σ)/kBT ).

Here kB is the Boltzmann constant. Using the partition function, one can study the

equilibrium states of the system, by minimizing the related free-energy potential

F , i.e.

F = −kBT logZ

The two-dimensional square lattice version of Ising model has been solved

analytically in the zero field case h = 0 by Lars Onsager in 1944 [51]. Considering
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Figure 2.3: Global magnetization M versus temperature T , for a 2D Ising
model with N = 1600 spins and linear dimension L = 400. Here is possible to
notice the second order phase transition, with a continuous change inM between
the ordered ferromagnetic phase, with M 6= 0, and the disordered paramagnetic
one, with M = 0. The difference between actual critical temperature, placed
around ∼ 2.35 and the theoretical prediction Tc = 2

ln(1+
√
2)

≃ 2.27 is due to a

finite system size effect.

as order parameter the global magnetization M ≡ 1
N

∑N
i=1 σi, the system presents

a continuous phase transition between a ferromagnetic phase, where M 6= 0 and

a paramagnetic phase, where M = 0 (as depicted in figure 2.3). The transition

point of this transition is obtained at a critical temperature Tc given by:

kBTc

J
=

2

ln(1 +
√
2)

which implies Tc ≃ 2.27 for J = kB = 1. Close to the transition point various

physical quantities, that depend on T , M , h or on the spatial distance among

spin pairs, either vanish or diverge in the form of power laws with well defined

exponents [63]. For example, global magnetization M , specific heat Ch ≡ ∂2H
∂T 2

∣

∣

∣

h=0

and magnetic susceptibility χ ≡ ∂M
∂h

∣

∣

h=0
behave in the limit T → Tc as

C ∝ (Tc − T )−α

M ∝ (Tc − T )β (T � Tc)

χ ∝ |Tc − T |−γ ,

with α = 0 (corresponding to a logarithmic divergence), β = 1/8 and γ = 7/4. In

the paramagnetic phase, the spin-spin correlation function decays exponentially:

C(~r) = 〈σ(~ri)σ(~rj)〉{ij:(~ri−~rj)=~r} ∝ e−|~ri−~rj |/ξ,
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where ξ is the typical correlation length. On the other hand, near the transition

point ξ diverges with the temperature as:

ξ ∝ |Tc − T |−ν

with ν = 1, and as a consequence C(~r) spans over the whole system with an

effective long range interaction with a power law decay:

C(~r) ∝ |~r|−η,

with η = 1/4. Analytically, ξ and C(~r) can be derived by Fourier transform of

correlation function, namely C̃(~k) =
∫

d~rC(~r) expi~k·~r, that can be approximated

by the Ornstein-Zernike formula [49]:

C̃(~k) ∝ 1

k2 + ξ−2
.

Some examples of functions displaying power law scaling in the 2D Ising model

are shown in figure 2.4. When the system is far from the transition point, it

has a finite typical correlation length ξ, which is a measure of the typical size of

clusters with aligned spins, while at the transition point this length diverges, and

the system shows clusters with aligned spins of all sizes. More intuitively, one can

appreciate the graphical meaning of scale free behaviour looking to the different

configurations of the Ising model depicted in figure 2.5: close to Tc the system has

always the same appearance at any scale of the picture, i.e. we can zoom in or

zoom out the picture without appreciate any difference in the structure. Summing

up, in Ising model one observes that:

• Close to the ferromagnetic/paramagnetic transition, different macroscopi-

cally measurable physical quantities have a scale free (power law) behavior

• Such macroscopic observables are homogeneous functions of the macroscopic

external parameters h and t ≡ |T − Tc|

• An analytical formulation of the observables can be obtained from the par-

tition function Z, i.e.:

C = kB
∂2T 2 logZ

∂T 2

∣

∣

∣

h=0
M = kBT

∂ logZ
∂h

∣

∣

h=0

χ = kBT
∂2 logZ
∂h2

∣

∣

∣

h=0
C̃(0) = (kBT )

2 ∂2 logZ
∂h2

∣

∣

∣

h=0
.
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Figure 2.4: Left: global magnetization M versus |T − Tc| for a 2D Ising
model. Close to the transition it diverges as M = |T − Tc|1/8. Right: spin-spin
correlation function versus distance, measured in a log-log plot with subcriti-
cal (paramagnetic), critical and supercritical (ferromagnetic) temperature. In
the ferromagnetic phase almost all spins are aligned, and the spin pairs have
same correlations at each scale. On the contrary, in the paramagnetic phase
correlations decay exponentially with a typical correlation length, as one can
verify from its linear behaviour in the semilogarithmic inset plot. Close to the
critical point, at T = 2.33, correlations have a power law decay with exponent
η = −1/4. System parameters are the same of figure 2.3.

At this point one could deduce that the different power law behaviour at the critical

point for all these statistical quantities are somewhat related each other. In fact, it

can be easily demonstrated that their critical exponents satisfy the relations [27]:

α + 2β + γ = 2 γ = ν(2− η) 2− α = dν,

where d is the dimension of the system (d = 2 for the case described here).

Often a number of systems with different dynamics, i.e. microscopic rules

among their elements, share the same set of values for the critical exponents. As a

matter of fact, defining coherently an unique set of independent order parameters,

one can find just a few different set of critical values among thousands of differ-

ent systems. For example, all fluids with different chemical composition have the

same critical exponents at the liquid-gas critical point. In addition, they match

exactly the critical exponents of the ferromagnetic/paramagnetic phase transition

in a 3D Ising model [50]. Thus, in this group of phenomena and models, although

the microscopic dynamics is different (especially for different kind of systems), the

critical behaviour is identical. This phenomenon is known as universality, and

the common set of critical exponents defines an Universality Class. Systems



Chapter 2. Criticality and scale invariance in physics and biology 21

grouped in the same universality class have the same long range properties, which

characterize their common critical and collective behaviour. Universality is a pre-

diction of the renormalization group theory of phase transitions, firstly introduced

by Kadanoff in the 60’s of the past century [64] which states that the thermody-

namic properties of a system near a critical point depend only on a small number

of features, such as the embedded geometry dimension and the symmetries of the

system, and are insensitive to the underlying microscopic properties of the sys-

tem. Thus, universality is a very powerful concept, because it allows to predict

the critical behavior of a system, and classify the relevant essence of its diverging

correlations in few classes, just by identifying system symmetries.
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Figure 2.5: 2D Ising model in ferromagnetic (subcritical) (T = 2.1, left),
almost critical (T = 2.33, middle) and paramagnetic (supercritical) state (T =
2.5, right). Note that the picture in the middle is composed by four panels.
They correspond, in clockwise order, starting in the up-left panel to the original
size L = 400, and to ×4, ×9 and ×16 zooms, respectively.
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2.3 Bak Tang Wiesenfeld Sandpile Model

At the end of the 80’s of the past century Per Bak, Chao Tang and Kurt Wiesenfeld

presented in two seminal papers [56, 65] a dynamical system, inspired by a pile

of sand, which displays Self Organized Criticality. In the original model at each

time step a grain of sand is placed on a plane (discretized by a 2D square lattice)

at a random position. Then, when the height of a pile zi,j reaches the threshold

zth = 4, it topples its grains on the nearest neighbours, generating eventually a

successive sequence of topplings, also called avalanche. More precisely, the system

is governed by three main dynamical processes, described by the following rules:

1. Driving: A randomly chosen site (i, j) in the 2D square lattice receives one

single grain:

zi,j → zi,j + 1.

This driving step is repeated until at some site the height of a pile becomes

unstable and topples.

2. Toppling: When a site fulfills the condition zi,j = zth = 4, all its grains

are equally distributed to each of its nearest neighbours in order to recover

stability, that is

zi,j → zi,j − 4

zi±1,j±1 → zi±1,j±1 + 1.

A simple sketch of a grain deposition with toppling is depicted in figure 2.6.

If one toppling destabilizes one or more nearest neighbour sites, by increasing

their heights up to the threshold, then another toppling will be generated,

involving their neighboring sites, and so on until all the grains on the lattice

become stable again with zij < zth ∀i, j. During this avalanche process the

driving step is retained.

3. Dissipation: The grains toppled out of the lattice, due to the toppling of

an unstable site at the border, are lost.

In figure 2.7 is represented one example of avalanche process, starting from a sin-

gle site in the center of the lattice which had just reached the threshold height by

driving. Note that the dynamical rules for this sandpile are extraordinary simple,
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Figure 2.6: Scheme of a grain deposition in the site with critical height z = 3
(left), enhancing toppling, with deposition of one grain in each one of its four
nearest neighbours sites (right). After the first toppling, initiated by a grain
deposition in the centric pile, the pile on the right becomes unstable, and will
topple in the following step.

but the underlying behavior is extremely complex. Thus, sandpile dynamic is an-

other example in which complexity and collective behaviors emerge from simple

microscopic interactions. In fact, the distribution of avalanche sizes (the number

of sites toppling during a single avalanche process) between two driving events,

and of avalanche lifetimes (the number of steps in which an avalanche is spreading)

are power laws with exponents τ = 1.13(3) and τt = 1.16(3) respectively, as it is

depicted in figure 2.8.

Self organized criticality can be always associated with a regular continuous,

second order transition between an active and an absorbing state (i.e. without

activity) for a dynamical system [66]. The local dynamics of the system depends

on a type of memory, which in the sandpile case is related with the existence of

a non zero threshold. Also in this case, in order to visualize the active/absorbing

phase transition one can use as order parameter the density ρ = 1
Nzth

∑

i,j zi,j of

grains in the system. Now eliminating both external driving and dissipation, and

considering periodic boundary conditions, one obtains a system with conserved

energy, or equivalently constant ρ. The second order phase transition between the

dynamical active phase, with non zero probability of persistent dynamic, and the

absorbing phase, where the probability to obtain a configuration with asymptotic

non zero dynamics is null, results at ρ = 1. Vice versa in order to transform a

conventional active/absorbing phase transition to SOC, is necessary to couple the

local dynamics of the system into the driving and dissipation processes.

The relevant order parameters, like ρ, associated with the phase transition are
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Figure 2.7: Avalanche of size s = 17 and time duration t = 9 generated
in a 2D BTW model. Subthreshold sites height is indicated by grey scale,
i.e. (black, white) → (0, 3), while red sites corresponds to unstable sites with
zi,j = zth = 4.

10-5

10-3

10-1

101

100 101 102 103 104 105

P
(s

)/P
(t)

s/t

s-τ τ=1.0
t-τt τt=1.1

Figure 2.8: Log-log plot of avalanche size P (s) and avalanche lifetime P (t)
distribution (shifted on y axis for a better visualization), for a 2D BTW model
in a square lattice of linear size L = 80. Both distributions have a typical power
law shape with exponents τ ≃ τt ≃ 1.

controlled by the drive, in a way that does not make explicit reference to ρ [66].

One example is the extremal dynamics, implemented in the Sneppen model [67]

for species evolution, that restricts activity to the least stable element in the sys-

tem, thereby tuning the order parameter itself to zero. On the other hand, the

sandpile model involves slow driving, in which the interaction with the environ-

ment is contingent on the presence or absence of activity in the system, linked to

order parameter via the absorbing-state phase transition. To locally ensure the

conservation of energy, the driving process is retained during an avalanche. This
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implies an infinite separation of time scales among the typical avalanche lifetime

Tava and the time between two driving perturbations Tdrv, i.e.
Tava

Tdrv
→ 0. On the

other hand, energy is conserved globally by mean of the dissipation of toppling

grains at the open boundaries.

In order to understand how the SOC state emerges, is useful to follow in de-

tail the dynamics of the system. Let’s consider as initial state a configuration in

which there are no grains in the system. In each driving event ρ is increased a

fixed amount dρ. At the first stages of the system evolution, energy density is not

large enough and driving events trigger only a few site activations; moreover, the

first avalanches cannot propagate a long distance, and activity decays exponen-

tially fast to zero. In this situation, the system is in a subcritical regime. Driving

goes on until ρ is large enough so that any perturbation triggers a reaction and

all avalanches spread over the whole system, being the boundaries the only limit

for them. Now there is a characteristic size (and activity density) for these events

which scales with the size of the system, which is now in a supercritical regime.

However, when activity reaches the border during large events, energy is dissi-

pated and ρ decreases a (non-fixed) quantity dρ. As energy is lowered, as it is the

case during an avalanche, the system enters again in a subcritical regime. Then,

a driving is performed and the cycle starts again. Thus, after an initial transient,

ρ is maintained around a specific value ρ̃, which coincide with the critical value

for absorbing phase transition ρc. In this way, the SOC regime is obtained for any

set of relevant system parameters values, while in a standard critical point there

is only one set of values for the parameters which makes the system critical [68].

Although, as commented before, the driving parameter is actually dynamic, that

is, it evolves each time a driving event occurs, depending in a hidden way from the

order parameter. In other words, for a predefined choice of the rest of parameters,

the dynamic parameter is driven towards its critical value without any apparent

fine external tuning of it, and the critical point is an attractor of the dynamics. In

this scenario any stochastic fluctuations disappears in the thermodynamic limit,

which is a very striking point in characterizing and discriminating SOC from sim-

ilar non-conserved cases, called self organized quasi criticality (SOqC), where the

distribution of order parameter fluctuations remains broad, even in the thermo-

dynamic limit [20]. In chapter 5 we have studied in deep the emergence of Self

Organized Quasi Criticality for a neural network model with non-conserved synap-

tic intensities (the so called dynamic synapses, see chapter 3 for further details),

producing (pseudo)critical avalanche dynamics.
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2.4 Barabási-Albert preferential attachment net-

work model

Networks with scale free node degree distributions are widely observed in natural

and man-made systems, including neural networks [57], protein-protein interaction

networks [58], the world wide web and some social networks [60]. In such networks

the most notable characteristic is the existence of a non neglecting probability for

nodes with a degree that greatly exceeds the mean degree with respect to the

case of Gaussian distributed networks. Scale free networks are thus characterized

by power law degree distribution, which presents relatively few nodes with large

connectivity, the so called hubs, and many nodes with poor connectivity. It has

been reported that these networks have optimal properties in enhancing node-node

interactions. In fact, the average distance between two nodes in the network, i.e.

the minimum number of links connecting two nodes, is very small compared with

that of an highly ordered network such as a regular lattice [69]. This feature of

scale-free networks allows for local and global synchronization and for an efficient

flow of information between the different nodes of the network [70–72]. On the

other hand, scale free topologies are also optimally stable against random node

failures, due to the presence of the hubs which guarantees the compactness of the

whole network. However, a degree dependent attack to these highly connected

nodes can destroy the whole network [73].

One of the most famous generative models for scale free topologies is the so

called Barabási-Albert preferential attachment network model. Although

the first use of a preferential attachment mechanism was reported by Udny Yule

in 1925, its mathematical treatment was opaque due to the lack of appropriate

tools for analyzing stochastic processes. Albert-László Barabási and Réka Albert

rediscovered independently this network model in 1999 [60]. In general, the mech-

anisms proposed to generate these networks are constituted by a linking process

among a fixed number N of nodes that accomplishes a degree distribution, chosen

a priori. The Barabási-Albert (BA) model is able to generate scale free networks

in systems with increasing size, by mean of a local attachment rule applied to the

new incoming nodes. Their paper, with more than 8000 cites up to now, generated

a great stimulus in the scientific community, that oriented its attention on the fas-

cinating topic of network topology and related applications. BA mechanism, in

fact, constitutes a minimal evolutive algorithm that reply the actual mechanisms



Chapter 2. Criticality and scale invariance in physics and biology 28

by which natural networks self assembly. The BA network is generated with the

following rules:

1. The initial configuration is made by a small number m0 of nodes, each

one with at least one link, randomly connected each other.

2. Growth step: at every time step a new node with m ≤ m0 links is added

to the network.

3. Preferential attachment step: the new node links to m different nodes,

already present in the system, with a probability of connection to node i,

Π(ki), which depends on the connectivity ki of that node:

Π(ki) =
ki

∑

j kj
.

Then, heavily linked nodes, the so called hubs, tend to quickly accumulate even

more links, while nodes with only a few links are unlikely to be chosen as the

destination for a new link. The new nodes have thus a preference to attach them-

selves to the already heavily linked nodes, as one can see in the sketch 2.9. It can

be easily demonstrated that the asymptotic degree distribution reached by the

system is:

P (k) ∝ k−γ,

with γ = 2.9± 0.1, as it is shown in figure 2.10.

One example of scale free topology obtained with preferential attachment gen-

erative algorithm is depicted in figure 2.11. Growth and preferential attachment

ingredients are necessary in order to obtain a stable scale free distribution: elim-

inating one of them implies that the final distribution will be respectively expo-

nential or fully connected. On the other hand, changing some relevant parameters

or details from these two simple rules, scale free distributions are always obtained.

For example, choosing the number of new links m randomly will not change nei-

ther the distribution shape and its exponent γ, and modifying the dependence of

Π(ki) with ki + c (with c > 0), the resulting distribution is still scale free with an

exponent γ = 2 + m0+c
m

. Scale-free networks created by mean of a generalization

of such preferential attachment process emerge in topological phase transitions

between heterogeneous (Gaussian distributed) networks and homogeneous ones
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Figure 2.9: Preferential attachment mechanism. A new incoming node, col-
ored in blue, has a probability to link with one of the preexistent nodes in the
network, i.e. the red arrows, which is proportional to their degree.
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Figure 2.10: Log-log plot of the degree distribution P (k) versus k, calculated
from the Barabási-Albert preferential attachment network model with 5 · 105
steps (new incoming nodes), m0 = 5, m = 3, and an uniform network as initial
topology with k = 2. The resulting connectivity distribution is compared with
a power-law line of slope γ = 2.9.

(fully connected) [74] as well as in a broad region of the parameters space, resem-

bling the SOC phenomenology [60, 75].

The BA has very intriguing properties due to the short mean distance between

nodes and the high tendency to clustering (i.e. to form groups of nodes very

interconnected). These features can be revealed respectively by measuring the

mean shortest path length and the clustering coefficient. The first is defined as

the mean distance, measured in number of links, among any pair of nodes in the

network, while the second is the number of links between all the pairs of nodes
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Figure 2.11: Scale free topology from a Barabási-Albert preferential attach-
ment network model with 102 steps (that is, new incoming nodes), m0 = 5,
m = 3, and an uniform network as initial topology with k = 2. Node size
and color are associated with their degree ranging from small and blue (poorly
connected nodes) to big and red (high connected nodes).

that are neighbours of a certain third one, divided by the number of all possible

links between pairs of neighbours. For a node i, there are ki(ki − 1) links that

could exist among the nodes within the neighbourhood, and therefore the local

clustering coefficient is given by:

Ci =
|{#links (j, k) : j, k neighbours of i }|

ki(ki − 1)
,

and the global clustering will be

C̄ =
∑

i

Ci.

Clustering coefficient per node degree distribution defined as C(k) ≡ 〈Ci〉{i: ki=k}

decreases as the node degree increases, and also follows a power law, i.e. C(k) =

k−1. That means that the low-degree nodes belong to very dense sub-graphs and
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those sub-graphs are connected to each other through hubs. Consider, for instance,

a social network in which nodes are people and links are acquaintance relation-

ships between people. It is easy to see that people tend to form communities, i.e.,

small groups in which everyone knows everyone (one can think of such community

as a complete graph). In addition, the members of a community also have a few

acquaintance relationships to people outside that community. Some people, how-

ever, are so related to other people (e.g. politicians) that they are connected to a

large number of communities. Those people may be considered the hubs respon-

sible for the so called ”small world” phenomenon. In fact, BA networks are part

of the small world networks family, generally characterized by short average path

length and high clustering [76], with some of these features in common with ran-

dom and regular (e.g. square lattice) networks. For instance, on regular networks,

like ordered lattices, the mean shortest path length and the clustering are both

high, while in totally random topologies, like Erdös Rényi random graph [77], one

finds low short path length and a poor clustering. In the BA model instead the

average path length is short, eventually shorter than in a random graph and, at the

same time, clustering coefficient is significantly higher than for random networks.

Thus, BA networks are in the middle between ordered and disordered topology

configurations, and this ensures an efficient communication between each pair of

nodes together with a good cluster separation. These features could be useful,

for instance, for neural networks that perform dynamics that include sequentially

ordered and/or spatially located tasks [4, 22, 78].

2.5 Self affine surface growth, dynamic scaling,

discrete and continuous Langevin models

The spontaneous generation of fractal interfaces or fronts has been observed in

many natural processes [27, 79], and fractal geometry is the mathematical tool

that allows to understand some of their morphological properties and dynamic

mechanisms. The main assumption made in such framework is that these in-

terfaces exhibit self similarity, namely, their statistical properties do not change

under isotropic scale variations. The lack of any characteristic length is a common

property of fractal objects, and an important feature of physical systems close to a

critical point, as we have already explained in section 2.1. On the other hand, dy-

namic scaling deals with interfaces that roughen in space and time and that can
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be described by means of a continuous, self-affine, function, which are invariant

under anisotropic spatial scaling. A self-affine surface, or interface, is represented

by its height function h(~r, t), i.e. the height of the surface over the substrate point

of coordinates ~r at time t. The self-affine height function has the following scaling

properties:

h(λ~r, t) ∼ λαh(~r, t)

h(~r, λt) ∼ λβh(~r, t).

Here α, β 6= 1 determine the anisotropic scale transformation. α is the roughness

exponent, that describes the morphological characteristic of the interface, β the

growth exponent, which controls its time evolution, and z = α/β the dynamic

exponent, which governs the spreading velocity of the parallel correlation length,

i.e. ξ(t) ∝ t
1

z . Scaling analysis considers the interface dynamic as a stochastic

process, and study the evolution of its spatiotemporal fluctuations. Due to the self-

affine character of the interface, fluctuations display power-law behaviours. Let’s

consider for instance a surface in dimension 1 + 1 (one spatial and one temporal),

whose evolution is described by the height function h(x, t). Its fluctuations can be

characterized by means of the interface width:

W (L, t) ≡
〈[

(

h(x, t)− h̄(t)
)2
]

L

〉1/2

,

where h̄(t) = [h]L (t) ≡ 1
L

∫ L

0
h(x, t)dx is the mean height of the interface, whose

fluctuations are averaged over the whole system of size L (or can be calculated

averaging on every subsystem with window size l ≪ L) and over different realiza-

tions of the experiment or model as denoted by 〈〉. Another statistical observable,
often considered, is the height-height correlation function C(l, t) given by:

C(l, t) =
〈[

(h(x, t)− h(x+ l, t))2
]

L

〉

,

that can be used to study the small-scale fluctuations of size l (see figure 2.12).

Finally, the power spectra

S(k, t) ≡
〈

ĥ(k, t)ĥ(−k, t)
〉

,

where

ĥ(k, t) = L−1/2
∑

x

[h(x, t)− h̄(t)]exp(ikx),



Chapter 2. Criticality and scale invariance in physics and biology 33

x

h(x,t
0
) W(l,t

0
)

l

h
l

h(x
1
,t

0
) h(x

2
,t

0
)

x
1 x

2
=x

1
+l

l

C(d,t
0
)

Figure 2.12: The correlation function C(l, t) =
〈

(h(x1, t)− h(x2 = x1 + l, t))2
〉

is defined as the mean square height dif-

ference among all pairs of surface points (x, y = h(x, t)) placed at a distance d
from x. The local surface width W (l, t) is the mean of the local variances of
h(x, t), calculated around a mean height h̄l over a domain of fixed size l.

describes the scaling behavior of the Fourier modes for the interface and obeys

the following relationships:

C(l, t) ∼
∫ π/a

2π/L

dk

2π
[1− cos(kl)]S(k, t) ,

W 2(L, t) =

∫

dk

2π
S(k, t) .

(2.2)

These statistical observables completely describe the class of scale invariance for

the spatiotemporal fluctuations of a self-affine interface, displaying typical power

laws with exponents that depend on α, β, and z. For example, the typical be-

haviour of W (L, t) follows the scaling Ansatz

W (L, t) = Lαf(L/ζ(t)), f(u) ∼
{

uα if u ≫ 1

const if u ≪ 1.



Chapter 2. Criticality and scale invariance in physics and biology 34

The function f(u) is the so-called scaling function which captures the change

between a non stationary regime, where correlation length ξ(t) has not reach yet

the window size L, and a stationary regime, when finally ξ(t) spreads over the

whole window size considered. Similarly, the power spectra scales as

S(k, t) = k−(2α+1)s(kt1/z), s(u) ∼
{

const if u ≫ 1

u2α+1 if u ≪ 1,

while the scaling of the correlation function C(l, t) can be computed using (2.2),

resulting

√

C(l, t) = tβg(l/ζ(t)), g(u) ∼
{

u if u ≪ 1

const if u ≫ 1.

The aim of the dynamic scaling procedure is to perform a classification of growth

processes into a few universality classes, determined by the values of the critical ex-

ponents, in order to develop general tools to establish their asymptotic behaviour.

In order to account for these roughening and self-affine properties, a number

of discrete and continuous growth models have been proposed. For instance, a

class of discrete models considers the surface growth as the result of both particle

deposition and relaxation processes: each time step one particle falls down on the

surface at a random substrate coordinate and then, according to the local geome-

try, eventually relaxes moving at one of the neighbour positions. Such models are

defined with the solid-on-solid (SOS) hypothesis, by which no surface overhangs or

bulk vacancies are allowed [2]. One of the simplest examples is the Family model,

which has the following rules:

• Deposition: each time step one particle is deposited on the surface at a

random substrate coordinate.

• Relaxation: an incoming particle relaxes on the neighbour site with the

local minima. After this relaxation the particle cannot move anymore.

The critical exponents found for this model are α = (2 − d)/2 and z = 2, where

d is the dimension of the substrate. Similarly in the Wolf Villain (WV) model

the deposited particle relaxes to the site with the maximum number of bonds, or

coordination number. On the other hand, in the Das Sarma-Tamboranea (DT)

model, the deposited particle can relax to a randomly chosen neighbour site with a
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Figure 2.13: Schematic configurations defining the growth rules for the dif-
ferent SOS models described, in d = 1 dimension. From top to bottom: the
Family model, where particle relax to the local minima, the Wolf-Villain model,
with relaxation to local maximum bonds site, and the Das Sarma-Tamborenea
model, in which particles with lateral bonds cannot relax. Reprinted from [2].

higher number of bonds (not necessarily the maximum one) only if the deposition

site has no lateral bonds, as depicted in figure 2.13. Both WT and DT models

have the scaling behavior characterized by α = (4 − d)/2 and z = 4, at least for

d = 1, even if in DT model the asymptotic regime is still unclear [2].

Different surface roughening processes can be described and generated also by

perimeter growth rules, for instance in the three version of Eden model (Eden A,

Eden B and Eden C), first implemented and studied in the 60’s of the past century

to simulate the growth of solid tumors [80]. Eden model considers particles in a

square lattice. In the first version, each time step a single perimeter site (i.e. a site
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adjacent to the particles in the surface) is filled with equal probability. In version

B each perimeter site is filled with a probability proportional to the bonds it has

with the surface. Finally in version C a particle of the surface is chosen randomly

and then a new particle is placed in one of the adjacent empty sites with the

same probability. Contrary to the models with relaxation dynamics, here surface

overhangs and bulk vacancies could be present. For d = 1 all the versions of the

Eden model have exponents α = 1/2 and z = 3/2, and until now the dependence

of the universality class on d for d > 1 has not yet been addressed.

In order to study the universality classes, that associate the roughening and

self-affine properties of different particles models into the main dynamic processes

characterized by their critical exponents, a number of continuous models have been

proposed. In the continuum setting and under the assumption of linear symmetry,

these models are usually written in terms of a Langevin-like equation, namely

∂h(~r, t)

∂t
= F +G(h(~r, t)) + η(~r, t), (2.3)

where h(~r, t) stands for the surface height function, G is a generic function of ~r, t,

h(~r, t) and its spatial derivatives, F is a driving force term and η(~r, t) is the noise

term which accounts for the roughening of the front. The physical meaning of each

of these terms is the following: F is the mean rate of particle deposition or creation

over the surface h(~r, t), the functional G represents the local dynamic processes

which adjust the shape of the surface by a relaxation process or preferential growth

(like in the Eden model), and also it is involved in the shaping of both the short-

time and the steady state properties of the growing interface. The noise term η(~r, t)

accounts for the stochastic fluctuations in the deposition rate and in the relaxation

dynamics, and it is mainly a consequence of the average on the microscopic degrees

of freedom, represented by each single particle dynamics. There are different types

of noise that influence the critical features of surface growth, but in our case the

noise used to study all the discrete particle models above described is a white

noise, characterized by its first two moments, i.e.

〈η(~r, t)〉 = 0
〈

η(~r, t)η(~r′, t′)
〉

= 2Aδd(~r − ~r′)δ(t− t′),

where A is the amplitude of the autocorrelation. In practice, such noise is imple-

mented by choosing at each time step and for each position ~r a random number

extracted from a Gaussian distribution with mean µ = 0 and variance σ2 = A.

In the case of deposition-relaxation processes, the most general continuum
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equation which preserves the surface mass conservation and the symmetries of

translational invariance along the growth direction and rotational invariance in

the substrate plane, is:

∂h

∂t
= ν2∇2h− λ4∇4h+ λ2,2∇2(∇h)2 + λ1,3∇h(∇h)3 + F + η(~r, t),

where ν2, λ2,2, λ1,3 and λ4 are the macroscopic growth coefficients. Without the

SOS hypothesis, e.g. in the perimeter growth models, the Langevin equation with

the leading order is the Kardar-Parisi-Zhang (KPZ) equation:

∂h

∂t
= ν2∇2h+ λ2(∇h)2 + F + η(~r, t),

Using Fourier transformation or the dynamical renormalization group (DRG) tech-

niques, one can theoretically derive the values of the scaling exponents, resulting

that the asymptotic dynamic is determined by the dominant relaxation terms with

non zero coefficients. The hierarchy for the different terms is λ2 > ν2 > λ1,3 >

λ2,2 > λ4. In this way, one can reduce the surface roughening behavior of many dif-

ferent discrete particle models in few universality classes (represented by Langevin

equations) containing their essential dynamics, as it is summarized in table 2.1.

G(~x, h, t) α β z

EW (Family Model and asymptotic WV) ν2∇2h 2−d
2

2−d
4

2
KPZ (A, B and C Eden models with d = 1) λ2∇2h 1

2
1
3

3
2

MBE (WV and DT models with d = 1) −λ4∇4h 4−d
2

4−d
8

4

Table 2.1: Universality classes defined by the deterministic relaxation term
G(~x, h, t) of the corresponding Langevin equation (2.3). The value of critical
exponents α, β and z, depends on the geometrical dimension d of the surface.



Chapter 3

Mathematical models of neuron

and synapse dynamics

In this chapter a brief description of the physiology of neurons, the most impor-

tant cells of neural tissues, and of the synapses, that constitute the mechanisms

by which they communicate each other, is introduced. We also present the In-

tegrate and Fire Model (IF), one of the simplest neuron models implementing

membrane potential dynamic, and of the Tsodyks Model, which describes the so

called dynamical synapses. Finally a brief description of a classic model in theo-

retical neuroscience, namely the Hopfield Model, originally formulated to describe

the phenomena of associative memory displayed in some brain areas, is given.

3.1 Neuron physiology and dynamics

In superior animals the nervous system receives information from the external

environment through senses and then organizes and coordinates the actions by

mean of the transmission of motor signals to the different parts the body. The

nervous system is therefore responsible of the individual adaptation in a changing

environment, which is a crucial mechanism for the survival of the species. Nervous

system is constituted by specialized cells, called neurons, which are organized in

two different structures [81]:

38
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• The Central Nervous System (CNS), constituted by the brain and the

spinal chord, where neurons, structured in a very sophisticated network, pro-

cess the huge amount of information coming from the external environment

through the senses.

• The Peripheral Nervous System (PNS), constituted by cranial and

spinal nerves, that represent the pathways that allow communication and

interchange of information between the CNS and the rest of the body and

vice versa by mean, respectively, of the motor nerve fibers and the somatic

sensory nerve fibers.

Animal brains are thus essentially networks composed by a great number of

interconnected neurons. In such networks, each neuron receives a number of in-

put signals from other neurons through some specialized junctions, the synapses.

A neuron processes the input signal by modulating its own internal state, that

depends essentially on the level of its membrane potential. Neuron membrane po-

tential changes in response to ionic currents flowing across the membrane. The

different ions flow through voltage dependent or specific ligands (i.e. neurotrans-

mitters) dependent channels.

The anatomy of a typical neuron is constituted by the following parts (see in

figure 3.1):

• A central cell body or soma that houses the cell nucleus and most of the ge-

netic expression and synthetic machinery for elaborating the proteins, lipids,

sugars and others constituents of cytoplasm environment. In the cell mem-

brane membrane, moreover, there are communication sites between the ex-

tracellular medium and the interior of the cell constituted by specific trans-

membrane macromolecules that control the level of the membrane potential

and ion concentrations, as the voltage and ligand activated ionic channels

and the ionic pumps.

• The receiving pole consists of wide branching tree-like extensions of the soma

membrane, known as dendrites, and arises in vertebrate directly from the

cell body. Each one of such poles is closely joined to the output pole of

another neuron. These junctions are called synapses.

• The output pole, called axon, arises as a single branch structure from the

soma. Axon membrane allows for the conduction of the propagating neuron
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Figure 3.1: Schematic representation of a neuron. In the central body, or
soma, neuron integrates the changes in membrane potential that are produced,
by synaptic inputs coming from presynaptic neurons, in the dendritic termina-
tions. Then when membrane potential reaches the threshold potential, neurons
generate an action potential wave that propagates from the soma to the termi-
nal branches through the axon. At the end of terminal axon branches, in the
synaptic buttons, action potential is transducted, i.e. it produces an output in
the form of a change in postsynaptic neuron membrane potential, by mean of
different synaptic biochemical mechanisms.

electrical signals, called action potentials (AP), which are generated in the

Hillock of the soma and travel towards the synaptic junctions. An action

potential, also called spike, lies in a rapid change in voltage across the mem-

brane, and constitutes the way a neuron ”speaks” to others neurons. In the

axon terminations, i.e. the so called synaptic buttons, an action potential

from a presynaptic neuron is transducted, evoking a change in membrane

potential of the linked postsynaptic neuron.

The synapses, that transduce neurons action potential in the synaptic button,

could be classified essentially in two different types, depending on the nature of

the mechanisms involved [82], which are schematized in figure 3.2:

• Electrical synapses. In these synapses, presynaptic and postsynaptic

membrane are joined by specific protein structures, called gap junctions,

which form channels that connect the cytoplasm of both cells. When a neu-

ral signal (action potential) comes to the gap junction, it depolarizes (or

hyperpolarizes) the membrane which induces the opening of the channels

and the diffusion of ions through them from one neuron to another. Ion flux,
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depending on the difference between presynaptic and postsynaptic neuron

membrane potentials, triggers a change in postsynaptic membrane potential.

• Chemical synapses, which are mediated by chemical messengers, called

neurotransmitters. These are released from the presynaptic neuron into

the synaptic cleft (i.e. the narrow space between the membranes of the

pre- and post-synaptic cells) each time an AP arrives to the synaptic but-

ton. Once they are released, these neurotransmitters diffuse and activate

ionic channels in the postsynaptic neuron. In a chemical synapse there

is not physical contact among the neurons. Signal transmission there oc-

curs as follows: when a presynaptic action potential arrives to the synapse,

it produces the opening of some neurotransmitter filled vesicles near the

membrane. Vesicles exocytosis causes the release and diffusion of a large

amount of neurotransmitters in the intersynaptic space. The released neuro-

transmitters have affinity for certain molecular receptors in the postsynaptic

membrane and, after binding to them, induce the opening of specific ionic

channels. The last finally produces the depolarization (or hypepolarization)

of the postsynaptic membrane. Then, the released vesicles in the presynap-

tic neuron are replaced by others which are in some reserve pool of vesicles,

located relatively far from the membrane.

Chemical synapses efficacy have then a dependence on neurons activity. In

fact, spiking frequency modules the quantity of released neurotransmitters,

which is also influenced by vesicles/neurotransmitters recycling mechanisms,

with a characteristic time τrec. Moreover, the arrival of action potentials

regulates the influx of Ca+2 in the synaptic button, which enhances the

probability of releasing a vesicle [83]. The result is a phenomenon known as

synaptic plasticity, that is described and modeled in section 3.3.

3.1.1 Action potential generation

The main properties of membrane potential dynamic and action potential gener-

ation, described in figure 3.3, are the following:

• Linear subthreshold summation. When the neuron is in a resting state,

its membrane potential, also called graded potential, is hyperpolarized, typ-

ically around −70 mV . The membrane ionic currents generated from the
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Figure 3.2: Scheme showing the differences during signal transmission between
electrical synapses (right) and chemical synapses (left). Signal transmission in
electrical synapses is a passive mechanism in which ions can quickly diffuse
between presynaptic and postsynaptic neurons through the gap junctions. In
chemical synapses signal transmission occurs as the result of different biophysics
mechanisms, which occur sequentially in different time scales, and which gen-
erate an excitatory (or inhibitory) postsynaptic potential, namely, EPSP (or
IPSP for inhibitory synapses)

different synapses in the dendritic terminations contribute to module this

potential. Such contributions are linearly summed in the soma, until the

graded potential reaches a threshold value, namely the threshold potential,

and the neuron then generates an action potential.

• Positive and negative contributions to membrane potential. The

chemical synapses, depending on the type of neurotransmitters and recep-

tors in postsynaptic neurons, can be excitatory, increasing the postsynaptic

membrane potential (producing an Excitatory Post Synaptic Potential, or

EPSP), or inhibitory, i.e. decreasing it (Inhibitory Post Synaptic Potential,

or IPSP).

• All or none spike generation. The generation of an action potential is

a threshold process, thus only when the membrane potential reaches the

threshold potential, a depolarizing wave, the action potential, is produced

in the soma termination of neuron axon, i.e. the axon Hillock. Action po-

tential is generated by a fast depolarization of the membrane potential from

−70 mV to +30 mV , and propagates maintaining its shape, amplitude and

velocity towards neuron synaptic terminations through the axon [84]. On
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Figure 3.3: Top: First published intracellular recording of an AP, obtained
in 1939 by Hodgkin and Huxley from the squid giant axon. The vertical scale
indicates, in millivolts, the potential of the internal electrode used to perform
the recording. Adapted from [3]. Bottom: Scheme showing the changes of the
membrane potential in the soma, during the generation of an AP. Membrane
potential linearly sums excitatory and inhibitory input contributions, until the
threshold potential value is reached. Then, it rapidly depolarizes, generating
an AP which propagates through the axon. Finally it repolarizes and becomes
insensitive to any input for a time interval called refractory period.

the contrary, when membrane potential is subthreshold no signal can be

transmitted to the synapses. Action potential propagation in the axon also

depends on the ionic currents flowing across the membrane through ionic

channels (the most common being sodium, potassium, calcium and chloride

channels) which modulate the active (voltage dependent) and passive (ca-

pacitive and voltage independent) electrical properties of the cell membrane.

• Refractory period. After a spike is emitted, the membrane potential can

not integrate any contribution from synapses during a period of time called

refractory period. Refractory period is the characteristic time necessary to

recover the membrane resting potential state.
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Figure 3.4: Scheme of the basic mechanism of STD. Left: A first AP induces,
via an influx of Ca+2 into the cell, the fusion of a certain number of vesicles with
the membrane, and the release of their neurotransmitters into the synaptic cleft.
The binding of the neurotransmitters to the postsynaptic receptors causes a flux
of extracellular ions into the postsynaptic cell which induces an EPSP. Right:
After a relatively short period of time, a second AP arrives at the presynaptic
terminal. Since the neuron needs some time to replace the released vesicles near
the membrane, the amount of neurotransmitter released will be lower than in
the case of the first AP. As a consequence, a smaller number of postsynaptic
receptors will open, and the EPSP will be smaller in amplitude than the first
one.

3.2 The integrate and fire neuron model

The integrate and fire (IF) model constitutes the simplest paradigm of the threshold-

firing neuron mechanism. It was introduced by Lapicque in 1907 [85] as a simple

model which presents the most basic features of actual subthreshold membrane

potential dynamics. The model has the form of a single linear differential equation

defining the dynamics of the membrane potential V (t) with a threshold condition

for spike generation, that is:

τ
dV (t)

dt
= − [V (t)− Vr] +RmI(t). (3.1)

Here I(t) is the input current that models the contributions to the membrane

potential due to presynaptic inputs and Rm is the membrane resistance. The neg-

ative term on the right-hand side is the so called leakage term that accounts for

the ion flow across passive channels, and it tends to reset the potential to the rest

value with characteristic time τ .

In addition the model includes an auxiliary condition which states that, when
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the membrane potential exceeds the threshold Vth, an AP is generated and the

membrane potential is reset to a resting value Vr in which the neuron, for a short

period of time τref , i.e. the refractory period, is insensitive to any additional input.

The simplicity of this model implies that only a few realistic neural features are

reproduced, such as tonic spiking and integrating capacities. However the simplic-

ity of the model implies some advantages from a theoretical point of view, since

in many cases one can analytically solve the dynamics of networks of IF neurons,

or at least to find approximate solutions by employing mean-field techniques. For

instance, if the input current is sufficiently simple, it is possible to find adequate

solutions which allow to compute magnitudes of interest, such as the mean firing

rate or the coefficient of variation of the neural activity [86]. On the other hand,

the IF model can be easily extended to include more biophysically realistic fea-

tures, such as neural adaptation, bursting activity, resonance properties, or spike

latency, to name a few [87, 88]. In addition, the parameters employed in the basic

IF model are physiologically meaningful (such as the membrane resistance Rm,

the refractory time τref , or the membrane threshold Vth) and therefore they can

be measured directly in experiments. For all these reasons, the IF neuron model

is one of the most studied and used in the computational neuroscience literature.

Coupled IF neurons systems have been studied on different classes of networks.

The IF coupled equations for a N -neurons network can be written as:

τ
dVi(t)

dt
= − (Vi(t)− Vr) +Rm

(

Ineti (t) + Iexti

)

∀i ∈ {1, . . . , N}

where Ineti (t) is the sum of all synaptic currents arriving to neuron i from other

neurons in the network. Synaptic currents are the sum of the spikes contribu-

tions arriving at different synapses. One of the easiest way to model these spike

contributions is with the use of delta functions:

RmI
net
i (t) = τ

N
∑

j=1

Jijaij
∑

k

δ(t− tkj ).

Here aij is the i, j-th element of adjacency matrix (aij = 1 if exists a synapse from

neuron j to i, aij = 0 if not), Jij is the postsynaptic potential (PSP) amplitude

(or efficacy), while the second sum represents a sum over different spikes arriving

at synapse j, at time t = tkj , where tkj is the emission time of k-th spike at neuron

j. PSP amplitudes Jij are positive for excitatory synapses, and negative for in-

hibitory ones. External synapse contributions, from other neuron layers (outside
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the network considered) or from the senses, are modelled by Iexti (t), that in general

is implemented as a constant term, a Gaussian variable or a Poisson process [86].

With this model it has been reported a wide range of behaviours, ranging, for

instance, from totally asynchronous to global synchronous activity states, depend-

ing on the balance between excitatory and inhibitory synapses, and also on the

membrane time constant τ and on the external input currents Iexti [89]. Also the

properties of the underlying topology of networks of IF neurons has shown to have

influence on the emergent features of such type of synchronization states [90–92].

Finally and very recently, it has been reported some intriguing behaviour in net-

works of IF neurons with non-conservative couplings (which includes the case of

static [93] and dynamic synapses [21, 94]) as, for instance, the appearance of Self

Organized Criticality (SOC) with avalanches of spikes in the network power-law

distributed [6], and the existence of SOC events with subthreshold UP/DOWN

transitions [94] (see also section 4.4).

3.3 Basic model of chemical synapses: Tsodyks

Model

Synaptic strength can vary dynamically on short time scales depending on the

presynaptic spiking activity [95]. Synapses presenting such activity-dependent

dynamics are also known as dynamic synapses, and can be described by two com-

plementary mechanisms, short-term facilitation (STF) and short-term depression

(STD):

• In STF, high frequency spiking enhances vesicles release, due to the influx of

Ca2+ ions into the synaptic button through voltage-sensitive channels just

after the arrival of each presynaptic spike. Calcium concentration activates

a set of calcium-sensitive proteins attached to the vesicles. Then these pro-

teins change shape, causing the membranes of some ”docked” vesicles to fuse

with the membrane of the presynaptic cell, thereby opening the vesicles and

releasing their neurotransmitter contents into the synaptic cleft [83]. Thus

higher concentration of Ca2+, due to residual cytosolic calcium produced

by immediate past spiking activity, see figure 3.5, facilitates the neurotrans-

mitter vesicle depletion, and by this mechanism the postsynaptic response

increases for successive spikes [96].
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Figure 3.5: Scheme of the mechanism of STF. Left: A first AP induces, via
the influx of Ca2+ into the cell, the fusion of a certain number of vesicles and
the release of their neurotransmitters into the synaptic cleft. The binding of
the neurotransmitters to the postsynaptic receptors causes a flux of extracel-
lular ions into the postsynaptic cell, and this induces an EPSP. Right: After
a relatively short period of time, a second AP arrives at the presynaptic ter-
minal. This induces a new influx of extracellular Ca2+ into the presynaptic
terminal, which still houses a residual amount of Ca2+ from the first AP. Since
the concentration of presynaptic Ca2+ is larger than before, a higher amount of
neurotransmitter will be released, and as a consequence this second EPSP will
be larger than the first one.

• In STD, fast presynaptic spiking activity induces a weakening in the post-

synaptic response, due to a partial depletion of synaptic vesicles and neu-

rotransmitters in the synaptic button, as one can see in figure 3.4. This

occurs due to the recovering process of the synaptic vesicles (whose dynamic

has a characteristic time τrec), which are released into the synaptic cleft in

response to a presynaptic AP (see figure 3.6).

The dynamic of the synapses is thus affected by some activity-dependent mech-

anisms that produce non-linear effects in the postsynaptic response. Synapses can

be dominated by depression effect, when the probability to release a vesicle is high,

or by facilitation, for low values of vescicle release probability. For intermediate

values of U , one can find an optimal spiking frequency enhancing synaptic strength

[97], see figure 3.6. Short-term depression plays an important role in several emerg-

ing phenomena in the brain, such as selective attention [98], cortical gain control

[97], and has been introduced in different neural models to describe the collective

switching dynamic between high and low neural activity levels [94, 99], the so

called UP/DOWN transitions (for details see section 4.4), the enhancing of the
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stability of SOC (or quasi -SOC) neural states [21], or spike coincidence detection

[100], to name a few. STD is also responsible for the complex switching behavior

between activity patterns observed in neural network models with depressing and

facilitating synapses [101, 102], while synaptic facilitation is involved in the precise

detection of bursts of action potentials [103, 104], and in the efficient transmis-

sion of temporal correlations between spike trains arriving from different synapses

[105].

One of the most important theoretical approaches to model dynamic synapses

is the phenomenological model presented in [95], the so called Tsodyks model,

which considers that the state of a synapse between a presynaptic neuron j and

a postsynaptic neuron i is governed by the following system of three differential

equations,
dxj(t)

dt
=

zj(t)

τrec
− Uj(t)xj(t)δ(t− tspj )

dyj(t)

dt
= −yj(t)

τin
+ Uj(t)xj(t)δ(t− tspj )

dzj(t)

dt
=

yj(t)

τin
− zj(t)

τrec
,

(3.2)

where xj(t), yj(t), zj(t) are dynamical variables that represent the fraction of neu-

rotransmitters in a recovered, active and inactive state1, respectively, and the delta

functions consider that a spiking event reaches the synapse at time t = tspj . Here,

τin is the typical time for inactivation of postsynaptic receptors and τrec is the typ-

ical time for neurotransmitters recovery process in the presynaptic neuron. The

variable Uj(t) in this phenomenological model is defined as

Uj(t) ≡ uj(t)(1− USE) + USE

and represents then the maximum fraction of neurotransmitters that can be acti-

vated, both by the arrival of a presynaptic spike, included in the term USE, and by

means of facilitating mechanisms, i.e. uj(t)(1− USE), where uj(t) is a dynamical

variable which takes into account the influx of calcium ions into the presynaptic

neuron near the synapse through voltage-sensitive ion channels [83] (see figure

1Neurotransmitters in a recovered state are those in the vesicles that refill the ready releasable
pool, i.e. the set of vescicles of the presynaptic button very close to the membrane. Active
neurotransmitters are those which have been released and can produce a postsynaptic response,
while inactive neurotransmitters are the remaining, in such a way that x(t) + y(t) + z(t) = 1.
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B C D

Figure 3.6: Simulated train of EPSPs generated in a single synapse after the
arrival of a train of presynaptic spikes at frequency of 5 Hz (top panels) and
20 Hz (bottom panels), when the synapse is static (A), and dynamic with only
a depressing mechanism (B) and with depressing and facilitating mechanisms
(C and D). The synapse parameters were USE = 0.02 and τrec = τfac = 0
for panel (A), USE = 0.3, τrec = 600ms, τfac = 0 for panel (B), USE = 0.02,
τrec = 10ms, τfac = 6s for panel (C) and USE = 0.02, τrec = 100ms, τfac = 6s
for panel (D).

3.2). Its dynamic is described by:

duj(t)

dt
=

USE − uj(t)

τfac
+ USE[1− uj(t)]δ(t− tspj ). (3.3)

In the limit of τfac → 0 the resting value Uj(t) = USE ∀t is obtained, suppressing
all the STF effects, and recovering a pure depressing synapse (if τrec > 0) or a

static synapse (if τrec = 0).

Equations (3.2) constitute a close phenomenological description of activity de-

pendent short-term synaptic mechanisms. Some of the main functional properties

of STD and STF can be understood via the former equations. In order to under-

stand that, one may assume, for instance, a presynaptic excitatory neuron, firing

APs periodically (being ∆t the time interval between two successive presynaptic

spikes and f ≡ 1/∆t the corresponding presynaptic firing rate), connected to a

postsynaptic one via a depressing synapse (that is, with τrec > 0 and τfac = 0).

In this simple situation, analytical solutions of the model can be obtained easily

[106]. Figure 3.6 shows that the effect of repetitive presynaptic stimulation in
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the presence of STD is a decrease of the EPSP, until a stationary EPSC value is

reached. This effect is observed in experimental in vitro recordings, and numerical

simulations of the model presented above nicely fits such behavior [95]. A straight-

forward consequence is that this filtering effect depends on the presynaptic firing

rate, in such a way that higher firing rates induce stronger decreases of the EPSP.

A similar effect can be obtained also by increasing the value of τrec (which is a

measure of the mean time employed by the synapses in refilling with neurotrans-

mitters vescicles the ready releasable pool) instead of the presynaptic firing rate.

Therefore, STD provides a synapse-level mechanism to control the gain of postsy-

naptic responses in an activity dependent manner [107]. On the other hand, the

inclusion of STF induces an increment in the postsynaptic response under repeti-

tive presynaptic stimuli. This can be seen by setting τrec > 0 and τfac > 0 in the

model and analyzing the effect of a presynaptic periodic stimulation in the EPSC

in the presence of STD and STF. The particular stationary value of the postsy-

naptic response depends on the presynaptic firing rate and/or the facilitation time

constant τfac. When both STD and STF mechanisms are considered together, a

competition between the two a priori opposite tendencies can occur. In this par-

ticular situation, a maximum value of the postsynaptic response is obtained for

certain value of the presynaptic firing rate, as the figure 3.6 (panel D) shows.

3.4 Collective behavior in neural networks: as-

sociative memory and synaptic reverbera-

tions

In the previous sections we have seen how neuron and synapse dynamics includes

several non linear mechanisms occurring at different spatial and temporal scales.

For example, one can mention the feedback interactions among ion fluxes and

membrane channels in membrane potential integration, the all or none spiking

generation process, the traveling dynamic of the action potential through the axon,

and finally the synaptic plasticity mechanisms affecting synapses transmission. In

addition the actual neural systems are structured in large networks, in general,

with a complex topology. The cerebral cortex of the human brain, for example,

contains roughly 15−33 billions of neurons [108] linked with up to 104 synaptic con-

nections each [109]. However, human brain is continuously receiving, processing
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and reacting in an appropriate way to a large amount of external stimuli, produc-

ing a lot of different behaviours and phenomenologies that cannot be considered

as the result of a simple sum of the contributions of its components, neurons and

synapses. Thus the brain must be considered indeed as a paradigm of complex

system (in the meaning of section 2.1).

Many efforts have been made in the last decades to develop mathematical and

computational models able to reproduce the different properties of the brain. Al-

though the realization of a complete model reproducing the whole behavior of a

brain is a very difficult task, and nowadays it is still a far aim, one can elaborate

simple models focusing their attention just on few features, for example neural

signal integration, network topology or synaptic dynamic, and observe the role

they have on a particular kind of network phenomena. One classic example is the

Hopfield Attractor Neural Network (HNN) (see section 3.4.1 for details). In the

Hopfield network, nodes corresponds to neurons and links represent synapses. The

state of a neuron is described by a binary variable (i.e. corresponding to silent and

spiking states), and synaptic intensities are fixed in time and weighted according

to some prescription (in the original model the so called Hebb rule [18]) which

allows the network to store information in the form of a set of given patterns of

neurons activity. In fact, these patterns become attractors of the dynamic, so

that the network is able to retrieve the stored pattern which is close to its initial

condition. This process, known as associative memory, can be considered as a

suitable representation of the memory and recall processes observed in the brain

[110].

Associative memory phenomenon has been extensively studied in the literature

[110–112], and could be considered as the mechanism by which neural networks

are able to retrieve a particular memory by simply presenting as an input incom-

plete or partial information of such memory. By mean of such mechanism one can

recover, for instance, the memory of a known familiar face, or more in general an

image or a word previously “learned“. Although an image can be seen only in some

details, or a word can be heard from different voices, with some wrong accent, one

recovers always the same detailed and precise associate mental representations of

them. Moreover, even when the input disappears, it is possible to retain such

representations for a certain period of time in the consciousness, encoding them

in the activity pattern of certain brain subsystem.

One of the first experimental works that suggested the central role of the neural
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network synaptic structure in the storage and in the recovering of visual represen-

tations was performed by Miyashita et al. [113–115]. The goal of their experiments

were to recognize in some neural structures of monkeys the mental representations

of visual stimuli. In a first training phase, some couples of images have been pre-

sented to the monkeys. Successively, the monkeys performed an image recognition

test, trying to recognize correctly the couple of images previously learned. At

the same time extracellular spiking activity of single neurons, located in a small

zone of the anterior ventral temporal cortex (AVT) were recorded. Such neurons

resulted to have an activity strongly dependent with the images proposed during

the test, even within in the delay period before the presentation of the second

image. More precisely, single neurons, during the delay period, are active only in

response to some couples of stimulus-(correct)response images, while the activity

of whole group of neurons resulted to mark different fingerprints for each image

pairs. Miyashita experiments allows the following conclusions [115]:

• In the anterior ventral temporal cortex (AVT), where neurons forms highly

interconnected networks, is possible to observe self sustained, long lasting,

neurons activity patterns. These patterns, also called reverberations, as well

as the activities of each single neuron constituting them, depend on the

first image presented (i.e. the initial stimulus). The reverberations can be

considered as internal representation of the stimulus.

• The reverberations are not single-neuron features because single neurons

cannot maintain selective activity rates. On the contrary the internal rep-

resentations are distributed, that is, many neurons are involved in the rep-

resentation of each memory, and different representations can share some

active neurons.

• The internal representations can be considered as attractors of network dy-

namics. In fact they are insensitive to color, size or angular orientation of

stimulus, thus they can be recalled with partial or distorted inputs [116].

Moreover, in some experimental settings, different stimuli leads to the same

internal representation [117].

These conclusions strongly support the idea that the internal representations of

memories depend essentially on the network structure and the synapse strength

distributions, as previously argued by Hebb [18] in his works on the physiological
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bases of learning. Hebb proposed a learning rule which, each time an input is

presented to a neural network, establishes the relation between the reinforcement

of a synapse and the level of correlation in the activity of the two neurons linked

by such synapse. That is, reiterative activity is able to induce long-term plastic

modifications which lead to specific changes in the synaptic response. Synaptic

reinforcements induced by neural activity have been measured in a wide variety of

experiments, both in vivo and in vitro, as well as in psychophysical experiments

[118–120].

Associative memory constitutes a typical example of emergent large-scale phe-

nomena induced by cooperation between microscopic elements, i.e. neurons and

synapses. As mentioned above, the first mathematical model which demonstrated

the plausibility of associative memory is the Hopfield model (also known as Amari-

Hopfield model because was developed independently by Amari [121] and Hopfield

[110]) which we will describe with more detail in the next section.

3.4.1 The Amari-Hopfield Neural Network Model

In the 80’s Hopfield [110] formulated a neural network model that included the

hypothesis of Hebbian learning in order to study associative memory. The model

consists in a network composed by N binary neurons, i.e. the state of i-th neuron

can assume only two values si ∈ {+1,−1}, that represent respectively neuron at

the resting potential and emitting an action potential. The state of the whole

network is described by a N component vector ~S = {s1, . . . , sN}. The original

model considers in addition a fully connected topology network, where each

neuron i is connected with all the other neurons, and receives as input from j-th

neuron the quantity wijsj, where wij is a constant representing the weights of the

synapse between j-th presynaptic and i-th postsynaptic neuron. According to the

linear subthreshold summation principle for neuron graded potential [84], all the

inputs reaching the i-th neuron are merely summed in its local field potential,

hi(~S), defined as:

hi(~S) =
∑

j 6=i

wijsj − θi,

where θi is the threshold potential for the generation of an action potential. The

local field potential induces sj to assume its same sign. From the physical point of

view hi(~S) represents the energy per neuron in the network, and allows to define,

when all the synapse strengths are symmetric, i.e. wij = wji ∀i, j, a Hamiltonian
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of the system, very similar to that of the Ising model (described in Section 2.2),

that can be written as:

H = −1

2

∑

i

hi(~S) = −1

2

∑

i,j 6=i

wijsisj +
∑

i

θisi. (3.4)

The evolution of the probability distribution for the network configuration ~S, i.e.

Pt(~S), can be described in term of the following Master Equation:

Pt+1(~S) =
∑

~S′

T̄ (~S ′ → ~S)Pt(~S ′), (3.5)

with transition probability from state ~S ′ to ~S given by

T̄ (~S ′ → ~S) = ϕ
[

β
(

H(~S ′)−H(~S)
)]

.

Here the parameter β ≡ 1/T , being T a ”temperature” parameter which de-

fines the level of noise in the network, due to the different sources of intrinsic

stochastic fluctuations, for example, affecting the generation of APs or the recy-

cling mechanism of the released vesicles in the synaptic cleft. ϕ(x) is a generic

function of the temperature and the energy gap between the old configuration ~S ′

and the new one ~S, which we assume to satisfy the detailed balance condition, i.e.

Φ(x) = e−xΦ(−x). In the deterministic limit T → 0 (that is β → +∞) neural

network state always reaches a minimum of the associated Hamiltonian H(~S), so

that ϕ(x) has to fulfill the conditions ϕ(x → +∞) → 1 and ϕ(x → −∞) → 0.

Let’s define in the model, as previously mentioned in section 3.4 an activity

pattern, or memory, as a particular configuration of the system ~ξ ≡ {ξi, . . . , ξN},
with ξi ∈ {−1, 1} ∀i. In order to store P memories in the network, i.e.

{

~ξν
}

ν=1...P
,

the connection weights must be defined using for instance a hebbian learning

rule:

wij =
1

N

P
∑

ν=1

ξνi ξ
ν
j θi = −

P
∑

ν=1

ξνi u
ν , (3.6)

where ~u =
{

u1, . . . , uP
}

is a P components constant vector, representing the

contributions to the threshold potential of the different patterns. This particular

choice allows for the appearance of the associative memory property [18]. In fact,

via this rule, the activity patterns are thus stored in the synaptic weights wij,

that are reinforced by a positive quantity δ = ξνi ξ
ν
j > 0 when a certain pattern

ν contemplates both neurons i and j in the same state, and are weakened when
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the same are in different states, with δ = ξνi ξ
ν
j < 0. Moreover, the hebbian rule

establishes symmetric weights, i.e. wij = wji ∀i, j, that is a necessary condition in

order to define the Hamiltonian of the system. Due to this symmetry, each stored

memory yields the appearance of two attractor in the dynamics of the system,

one associated with the corresponding activity pattern ~ξµ, and the other with

the antipattern − ~ξµ = {−ξµ1 , . . . ,−ξµN}. Due to this association between stored

activity patterns and dynamical attractors, Hopfield-like models are commonly

denoted as Attractor Neural Networks (ANN). At this point one can ask: in what

sense can we say that an ANN exhibits the property of associative memory?

Let’s consider a case with weak noise, i.e. low T , and few stored patterns,

or small memory load α = P/N . In addition we define the overlap function of

network configurations ~S with pattern µ as

mµ(~S) ≡ 1

N

N
∑

i=1

ξµi si

If the initial condition of the network ~S ′ close to the pattern configuration ~ξν ,

mµ(~S) ≫ 0, the network will evolve toward such a memory, being the state ~ξν

the attractor for network dynamics. In other words, when one starts with a con-

figuration similar to a particular activity pattern µ (e.g. giving to the network

a partial or distorted pattern as initial input), the system will rapidly move to

the basin of attraction of such stored pattern, recovering the previously learned

information. The dynamics of model has been implemented essentially with two

different neurons updating protocols: parallel updating, also called Little dynam-

ics, and randomly sequential updating, i.e. Glauber dynamics. In both cases the

network converges to one of the pointwise memory attractors, at least at T = 0.

The Hopfield model can be analytically solved within the statistical mechanics

theory for spin-glasses using a mean-field replica trick [122–124]. This mean-field

treatment allows to characterize for instance the phases of the system, the sta-

bility of such phases, or the maximum storage capacity αmax, i.e. the maximum

number of patterns that can be recovered efficiently at a certain temperature. In

this approach the steady states are obtained by solving the following fixed-point
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set of equations:

mν =

〈

〈

ξν tanh
[

β(rα)1/2z + m̂ · ξ̂
]〉

ξ

〉

z

q =

〈

〈

tanh2
[

β(rα)1/2z + m̂ · ξ̂
]〉

ξ

〉

z

r = q [1− β(1− q)]−2 ,

where 〈. . .〉ξ indicates the average over the quenched disorder, i.e. over the dis-

tribution of the discrete values of the ξν ’s, and 〈. . .〉z indicates the average over a

normal variable z. The vectors m̂ ≡ {m1, · · · ,ms} and ξ̂ ≡ {ξ1, · · · , ξs} have s

components each, corresponding to the condensed patterns, i.e. the patterns with

a macrscopic non zero overlap in the thermodynamic limit N → +∞. The former

equations depend on three macroscopic observables, or order parameters:

m̂ ≡ 1

N

〈

∑

i
ξ̂isi

〉

ξ

r ≡ 1

α

〈

∑

mµ /∈m̂
(mµ)2

〉

ξ

q ≡ 1

N

〈

∑

i
si

2
〉

ξ
,

where (. . .) denotes the mean over the ensemble, i.e. over the Boltzmann distri-

bution P (~S)2. The order parameter r sums up the rest of non condensed patterns,

while q is a measure of the persistence of the system in a particular state. The

limit cases are q = 0, when all the neurons fluctuates randomly in time, and q = 1,

where each neuron stays in only one state during the whole dynamic.

A global picture of the network phases in the diagram (T, α = P/N) is reported

in figure 3.7, where one can observe:

• The ”Memory Recover”, or Ferromagnetic, phase (MR), corresponding to

the region below TC line, where the stable solutions of equations 3.7 have

m̂, r, q 6= 0. These solutions, that in this phase are the absolute minima

of the free energy, are essentially the so called Mattis states, or memory

configurations, where m̂ has just one non-zero component mν , that is only,

the overlap with a given pattern ~ξν is non zero. In this phase then the

network exhibits associative memory.

2If the system is ergodic, as is the replica symmetric solution, this average is equivalent to
the temporal average.
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Figure 3.7: Phase diagram of the Hopfield model as a function of temperature
T and memory load α = P/N . Above a critical load αc = 0.138, the network
cannot recover any stored pattern, and assumes only the Spin Glass phase or
the Paramagnetic Disordered phase (for high T ).

• ”Spin Glass” phase (SG), corresponding to the region between TM and TP =

1 +
√
α lines, where m̂ = 0 and r, q 6= 0. Here new absolute minima in the

free energy landscape emerge, corresponding to ”spurious” states, in which

the network does not have a macroscopic overlap with any previously stored

pattern. Thus, the system is not able to recover any memory. Note that

even in the deterministic case, at T = 0, there is a critical load parameter

αc = 0.138, upon that associative memory fails.

• ”Unstable Memory” phase, corresponding to the region between TC and TM

lines, where “spurious“ Spin Glass states are still the absolute minima, but

MR solutions appears as local minima, lowering their energy value until TC

line, that marks the first order transition between SG and MR.

• ”Paramagnetic Disordered phase” (PD) phase, corresponding to the region

over TP . Here m̂ = r = q = 0, and the dynamic of the system is disordered

and completely dominated by thermal noise.



Chapter 3. Mathematical models of neuron and synapse dynamics 58

Although the steady state of the general model defined above represents an equilib-

rium system in the sense of the statistical mechanics, some nonequilibrium versions

of such model can be studied by using for instance effective hamiltonians or dif-

ferent mean field approaches. Some interesting situations, such as the presence of

fast synaptic mechanisms (that mimics synaptic plasticity) which strongly alters

the dynamics of the system, fall into this class of nonequilibrium frameworks. In

this case, the phase diagram will change qualitatively, with the emergence of new

no equilibrium dynamic phases, chaotic switching among memory patterns and

criticality (see chapter 5 and [17, 125] for further details).

There are several qualitative differences between the IF coupled neurons model

and the Hopfield model. In the IF neuron equation (3.1), there are some non lin-

earities, consisting for example in the threshold firing process, and the interaction

that firing has with potential dissipation due to the leakage term. Such on lineari-

ties allow for a disordered dynamic in a IF neurons network, even in the completely

deterministic case, i.e. using a non stochastic external input [91]. Moreover, in

the IF equation (3.1) it is possible to add different specific sources of noise, bio-

logically well defined, as for example considering a probabilistic synaptic efficacy

dynamics [94], or a stochastic fluctuating external current input [19, 94]. Neuron

updating in an IF neurons network emerges in a natural way, and is not nec-

essary to postulate any arbitrarily chosen scheme. This last property results to

be particularly useful in the study of synchronize/asynchronous states [89]. On

the other hand, in the Hopfield model neuron dynamics for T 6= 0 is intrinsically

stochastic. In other words, noise, which is controlled by temperature parameter

T , constitutes a general source of fluctuations, that accounts for all the fluctu-

ations associated to the many different biochemical processes implied in spiking

generation and synaptic transmission mechanisms. In addition, neuron updating

protocol in Monte Carlo simulations, is not determined from the model and is

not possible to associate it to any biological mechanism. In some cases different

updating rules could produce extremely different dynamical behaviours, related

both to equilibrium and non equilibrium stationary states, in particular when one

considers non linear variation of Hopfield original model [17, 125]. Finally, while

in Hopfield model neurons binary states are symmetric respect to the dynamics,

allowing for the implicit appearance of antipatterns, in the more realistic IF net-

works, leakage term, resting value Vr and refractory period τref produce in the

single neuron dynamics an asymmetry between firing and not firing state.
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Summing up, in this thesis we mainly focus the attention on the effect of chem-

ical synapses on neural networks performance in a broad range of experimentally

observed phenomenology (see chapter 4), consisting for example in chaotic, crit-

ical oscillations among two different subthreshold levels (section 4.4), switching

between different memories (see section 3.4 and chapter 5), and in critical (or

quasi critical) neuronal avalanches (section 4.3 and chapter 6). The idea is that

non linear adaptive mechanisms involved in synaptic plasticity, coupled with the

all-or-none action potential threshold processes, are the key ingredients in order

to have stable quasi critical avalanches (see chapter 6), or in other cases persis-

tent critical switching among different network attractors (see chapter 5). The

difference between the generation of well time separated neuronal avalanches and

persistent attractor switching depends on the role of external stochastic fluctua-

tions/perturbations and on neurons updating.



Chapter 4

Evidence of criticality in neural

systems

In this chapter we describe some experiments performed on neural systems at

single cell, tissue and brain level, where some distributions of interest, describing

the emergent properties of these systems, show power-law behaviour. Although

there is still a strong debate on the possibility to rigorously relate the appearance

of scale free distributions found here with criticality, nevertheless these systems

are good examples of biosystems with critical (or pseudocritical) properties that

allows for the optimization of their main functions.

4.1 Scale free brain functional network

The hypothesis of large scale correlations in neural systems was firstly tested by

Egúıluz et al [4], which designed an experiment for the measure of anatomical

spatial correlations in human brain activity by mean of Functional Magnetic Res-

onance Imaging (FMRI). FMRI is a type of specialized magnetic resonance imag-

ing scan, that measures the Blood-Oxygen-Level Dependence (BOLD), related to

neural activity in the brain. In fact, supposing that active neurons increase their

oxygen intake and consumption, this technique exploits the different magnetic

properties of oxygenated and deoxygenated hemoglobin, that is the oxygen carrier

in the blood. A schematic representation of the experimental method is shown in

figure 4.1.

In these experiments FMRI signals are recorded from subjects performing some

60
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Figure 4.1: Methodology used to extract functional networks from FMRI
brain signals. The correlation matrix among the different voxels (i.e the nodes
of the functional network) is calculated using formula 4.1. Then, a functional
network is defined by linking nodes with a correlation higher than a chosen
threshold rth. (Top) four images representing snapshots of activity and three
traces which correspond to selected voxels from visual (V1), motor (M1) and
posterio-parietal (PP) cortices (Reprinted from [4]).

kind of simple actions, like listening music or finger tapping. Brain activity V (x, t)

is measured in 36 × 64 × 64 brain sites, the so called ”voxels”, of dimension

3 × 3, 475 × 3, 475 mm3. Then, a voxel-voxel functional correlation matrix R̄

is constructed, where the matrix element corresponding to the voxel pair (x1, x2)

is:

r(x1, x2) ≡
〈V (x1, t)V (x2, t)〉 − 〈V (x1, t)〉〈V (x2, t)〉

σ(V (x1, t))σ(V (x2, t))
. (4.1)

Here 〈·〉 represents a temporal average and σ2(V (x)) ≡ 〈V (x, t)2〉− 〈V (x, t)〉2. Fi-
nally, one obtains a kind of functional topology of the voxel elements by considering

that two voxels i and j are connected if r(xi, xj) > rth, being rth a threshold valued

properly chosen. Functional topology not necessarily reflects the real connection
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Figure 4.2: Log-log plot of the degree distribution P (k) for the functional
topology obtained for different values of the threshold rth in the correlation
matrix. Each curve has been averaged from 22 networks extracted from 7 in-
dividuals. The straight line illustrates a decay of k−2, compatible with all the
curves (reprinted from [4]).

structure of the brain, nevertheless it stress out the spatial correlations that the

brain develops among its various subcomponent activities in order to accomplish

the different tasks performed in the experiments.

Such topology results to have a scale free distribution P (k) ∝ k−γ, with expo-

nent γ ≃ −2, very robust under parameter, subject and task variations, as it is

depicted in figure 4.2. In addition, clustering coefficient and average path length

(defined in section 2.4) are significantly higher than those for a random network,

which implies that the resulting functional topology is small world. This result is

highly relevant because small world networks are known to show resistance to fail-

ure, facility for synchronization, and fast signal processing both in neural system

models [126] and experiments [127].

As it is shown in the bottom panel of figure 4.3, there is a positive correlation

between the degrees of adjacent nodes. Such positive degree-degree correlation,

called assortative mixing, indicates a hierarchical structure among the node degrees

which connect the nodes with similar degree. Such correlations have interesting

properties on memory capacity and stability [22], as we demonstrate in chapter 7.

4.2 Is the resting brain state critical?

Magnetic resonance and Electroencephalogram (ECG) low frequency fluctuations

were shown to be correlated across widely spatially separated but functionally re-

lated brain regions in subjects at rest [128]. Brain resting state can be defined
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Figure 4.3: Log-log plot of a neighboring node degree versus degree which
illustrates the assortative feature. Symbols represents individual data and con-
tinuous lines depict the average values for nodes with the same degree. Subjects
were the same used for the data in figure 4.2 with rth = 0.6 (reprinted from [4]).

as the state in which there is no explicit brain input or output and the overall

brain activity fluctuates around a baseline value. In different experiments these

fluctuations, corresponding to the neuronal baseline or idle activity of the brain,

exhibit long range correlations with the power spectrum of frequencies f decaying

as 1/fβ [129, 130]. On the other hand, observations on anatomical and func-

tional connectivity [4, 23] depict some indications of dense local correlations with

few long-range links, that is, scale free connectivity distribution with assortative

features 1. Coexistence of large positively correlated domains with equally large

anticorrelated ones has been also observed [131].

Fraiman et al [5] analyzed different statistical functions of the brain functional

topology, obtained from the BOLD correlation matrix (4.1) and compared them

with the respective ones obtained in a simple 2D Ising model (see section 2.2).

The result of this study shows that experimental distributions have an excellent

overlap with the ones obtained from the model close the critical temperature.

In figures 4.4-4.5 one can observe the effective degree distribution and the mean

nearest-neighbor degree distribution measured in both model and experiments.

In addition, this work shows that the correlations distribution is centered around

zero, indicating a symmetry between distributions of correlated and anticorrelated

regions (see [131] for details). It is remarkable how a very simple Ising model tuned

at critical point in an elemental geometry, i.e. a square lattice, is able to replicate

different long range properties actually measured in the brain, supporting and pro-

moting the idea of a critical state as the brain default functional state. The idea

1Assortativity indicates the tendency for the nodes to be connected with nodes with similar
degree, for details see section 2.4 and chapter 7
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Figure 4.4: Log-log plot of degree distribution for positively correlated net-
works. Top three panels depict the degree distribution for the Ising networks at
T = 2, T = 2.3, and T = 3 for three representative values of 〈k〉 = 26, 127, and
713. Bottom panel: degree distribution for positively correlated brain network
for the same three values of 〈k〉 (reprinted from [5]).

of criticality in the resting brain state is supported by our analysis of a variation

of the Hopfield model, implemented with the introduction of a synaptic plasticity

mechanism, as reported in chapter 5. In this model, at the point of transition

between regular and chaotic behaviour, i.e. at the onset of criticality, the network

wanders irregularly among memory attractors. In such state the network has the

optimal sensitivity to sensory stimuli, and is able to recover a stored memory pat-

tern even with a little stimulus [22, 132]. This last indicates the relevant role of

criticality in the optimization of the brain response to a broad range of external

stimuli, necessary for the evolution and the survival of superior animals [11].
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Figure 4.5: Log-log plot of the nearest-neighbor degree, 〈k1〉, as a function of
own degree k for the two type of networks extracted from the brain (left) and
from the Ising model at Tc (right) (reprinted from [5]).

4.3 Self Organized Criticality in Neural Avalanches

(or at least Quasi-SOC )

Recent experiments on neural tissues have claimed not only a critical behaviour

in neural systems, but a proper SOC characterization (for details about Self Or-

ganized Criticality, see section 2.3). Under a theoretical point of view one can

investigate the emergence of SOC in neural systems by studying in deep neuron

and synapse dynamics. As commented in section 3.2, one of the simplest realistic

description for neuron AP generation is the so called integration and fire mecha-

nism. In this model a neuron, which receives all the information in terms of presy-

naptic inputs, modules its membrane graded potential until a certain threshold is

overcome; then the neuron “fires“ its output in the form of an action potential.

After that, it resets the membrane potential to some resting state. A single neu-

ron firing event can eventually trigger additional firings in its postsynaptic neurons

connected through synapses, and therefore the spiking activity propagates to other

different parts of the system in the form of an avalanche, as depicted in figure 4.6.

In experiments, this kind of activity can be measured by the local-field potential

(LFP), that takes into account the electrical current flowing from all the synapses

within a volume of tissue, and thus represents the level of neurons synchronous
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Figure 4.6: Example of a typical avalanche of neural activity. Each black dot
correspond to an electrode in firing state, i.e. measuring a LFP larger than a
determined threshold. In this avalanche the spatial size is 9 and the temporal
duration, or the number of time frames, is 5. Please note how this kind of
activity reminds to avalanches measured in BTW sand pile model, descripted
in section 2.3 (reprinted from [6]).

activity of the zone under study. The first experimental studies that have defined

and measured neural avalanches have been reported by Beggs et al [6, 8], both

on in vivo (slices of rat cortex placed in a cold, oxygenated solution of the cere-

brospinal fluid) and in vitro (organotypic cultures bathed into a culture medium)

samples of somatosensory cortex. They collected LFPs signals by means of square

8x8 electrode arrays (60 electrodes separated by a distance of 200µm), as depicted

in figure 4.7. In general, the electrode size used to measure LFP on neural tissues

is able only to catch the mean behaviour of a large group of neurons, that is, each

electrode records the activity of a group of neurons placed around its location;

thus from these experiments it is possible to extract useful information on the

mesoscopic dynamic of the system 2. In later works the same kind of experiments

have been performed on 512 electrodes arrays [133], extending in space and time

the observation of avalanches, and confirming with more confidence the main re-

sults.

In all these experiments, activity is not induced by external stimuli, but is

spontaneously generated by fluctuations in the density of ions in the medium in

which the samples are immersed. At a rough large time scale, the spatiotemporal

activation patterns, as the ones depicted in the second panel of figure 4.7, show

all neurons firing in a synchronized way. However, if the temporal resolution is

increased, more complex patterns arise (see lower panel of the right part of fig-

ure 4.7). Such patterns suggest a consecutive, more than synchronized, activation

of neurons, similar to a chain reaction. The set of activation events occurring

between two periods of silence is defined as a neuronal avalanche. Numerical

2Nevertheless, in this section, as well as in chapter 6 we will use the term ”neuron” to indicate
one ”electrode” of the array
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simulations of a network of integrate and fire neurons (see section 3.2) [125] ex-

hibits characteristics similar to those observed in a typical SOC system [56, 93],

that is

• An accumulation period for the single neuron, during which it collects the

incoming information in the form of depolarization of membrane potential.

Throughout this period, the site remains inactive.

• The existence of a threshold for the accumulated potential. Once

it is exceeded, the site turns into an active unit.

• A separation of time scales. The time between the spontaneous activa-

tion of a site, i.e. the triggering of avalanches, is of the order of seconds,

while the burst-propagation of activity lasts only a few milliseconds.

This mechanism, which better represents the behaviour of neurons of an in vitro

sample connected by chemical synapses, resembles the dynamic of a SOC sandpile,

described in section 2.3.
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Figure 4.7: Experimental setting of the experiments of Beggs and Plenz [6],
measuring neural avalanches on in vitro and in vivo samples. Top panel: Local
Field Potential (LFP) signals (right) recorded in a 8x8 electrode array (left).
Electrode is considered in firing state when its LFP reaches a chosen threshold.
Middle panels: at a large temporal scale of observation, in the order of seconds,
the whole activity is characterized by synchronous firing, followed by large inter-
vals of silence. In a finer temporal scale, in the order of milliseconds, each syn-
chronous collective firing results to be an avalanche of successive firings. Bottom
panel: avalanches have different temporal duration (i.e. number of time frames)
and spatial sizes (the number of neurons firing in an avalanche)(reprinted from
[6]).
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The relevant observables associated with neuronal avalanches are their size s,

i.e., the number of firing electrodes or equivalently the total amount of millivolts

µV registered during an avalanche, and their lifetime, measured in number t of

time bins ∆t used to discretize the record of activity. For both P (s) and P (t),

a power law shape with mean field critical exponents, i.e. τ = 3/2 and τt = 2,

have been reported [134] (see figure 4.8). The exponent associated with avalanche

size distribution is very robust under different experimental settings, and its value

corresponds to the one obtained in the mean field description of SOC models [20].

This result is not surprising, because it have been found in such networks con-

nections between neurons separated a long distance, both functional and anatom-

ical [127, 135]. Such connections blur the differences between local and global

structures (as in small-world networks), and confers the system the mean-field

feature [76]. The reported probability distributions have a cutoff which depends

on the total number of electrodes and on the inter-electrode distance; the larger

is the system, the higher is the value of the cutoff. Taking into account that a

mean-field avalanche in a sandpile can be translated into a branching process [20],

a study of the branching ratio, defined here as the fraction of active electrodes in

a time bin per each active electrode of the previous time bin, has been performed

[136]. This ratio was found to be c = 1.04(19), very close to the value ccbp = 1

obtained for a critical branching process. Finally in order to understand the sta-

bility of the network activity and of the power law avalanche size distribution,

network excitability has been increased, with the use of a picrotoxin, a blocker of

inhibitory synapses receptors. In this case, the power law behavior was destroyed

and the distribution of event sizes changed to a bimodal distribution, where net-

work activity was dominated either by very small or very large events, typical of

epileptic behaviour. The peak corresponding to small events still decays with a

power law but with a slope considerably lower than 3/2 [6]. Summing up, in the

experiments performed by Beggs et al., neuronal avalanches were characterized by

means of three different findings:

• The propagation of synchronized LFP activity is described by a power law.

• The slope of this power law, as well as the branching parameter, indicates

that the mechanism underlying these avalanches is a critical branching pro-

cess.



Chapter 4. Evidence of criticality in neural systems 70

Figure 4.8: Characteristic probability distributions of avalanche in the exper-
iments reported in [6]. Exponents for neuronal avalanche sizes is −3/2. Left:
The slope value is independent on the array size and the interelectrode distance
(IED). Icons indicate resampled arrays at IED = 200, 400, and 600µm. Middle:
Resampled power laws for summed LFP values (same arrays as in Left). Right:
The cutoff point of the power law is determined by the number of electrodes in
the array (n = 15, 30, 60; IED = 200m). Broken line in red indicates slope of
−3/2.

• Pharmacological experiments suggest that a critical branching process op-

timizes information transmission while preserving stability in cortical net-

works.

As a consequence, one can conclude that the self sustained, power law distributed,

activity places the examined neural tissues at the edge of stability, which implies

an efficient transmission of information and, at the same time, guarantees some

stability under pathological conditions, as for instance during epileptic seizures.

In order to study in details the emergence of power law distributed avalanches

and the robustness such activity, in the chapter 6 we implement a biologically

motivated neural network of IF neurons with a Tsodyks dynamic for synaptic

plasticity [125]. Our study shows that critical avalanches result to be robust

under a broad variation of internal and external environmental conditions (i.e. in

an extended zone of relevant parameters space). Thus neural critical avalanche

phenomenology has to be considered not as produced by SOC, but rather by a more

stable, dissipative self-organized quasi criticality (SOqC) dynamics (see chapter 6

for further details and conclusions).
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4.4 Up/Down cortical transitions and criticality

Experiments of LFP and multiarray electrode recordings in different neural media

show two preferred neuron membrane potentials, both subthreshold for the gener-

ation of an action potential. These two levels, depending from the kind of neural

system observed, could be stable, i.e., once placed the neuron potential in either

state it will remain there with no additional stimulation, or metastable, which can

be induced by brief depolarizations and last for some period of time before the

membrane potential spontaneously returns to its resting state. In some cases the

neuron membrane potential presents bistability, and could switch between the two

levels with a self consistent dynamic mechanism. Such kind of subthreshold states

are called Up and Down states. Figure 4.9 shows a typical example of up down

switching for two different single neuron records. Usually, membrane potential

fluctuations around the Up state are of higher amplitude, whereas the Down state

is relatively free of noise. Up/Down transitions can be observed both in single

neuron dynamic and in collective bunch of neurons, oscillating in a synchronized

or coordinated way [137, 138]. There are two main hypotesis on the regulating

mechanism for up down transitions: the first considers that neurons may exhibit

two state behaviour because of their intrinsic excitability, while the second states

that there is a network mechanism involved, which essentially is based on a dy-

namic balance of excitatory and inhibitory currents [139, 140].

Following the second hypotesis, in cells possessing no intrinsic bistability, bistable

networks may produce Up/Down transitions. Several models of cortical circuits

have made an attempt to describe this network behaviour considering a population

of excitatory neurons and a population of inhibitory neurons mutually connected.

It has been reported that the stable level of activity in both the Up and Down

states is determined by a balance between the mutual excitation among excitatory

neurons and the feedback inhibition generated by the inhibitory population [141].

Creation of a stable Up state at moderate membrane potentials is achieved by bal-

ancing excitation with inhibition from interneurons. This mechanism can readily

be altered to generate rhythmic transitions between excited and quiet states of

the network. To achieve this, the Up and Down states must both be made to be

transiently stable. However, recent biophysically realistic network models employ

synaptic depression to destabilize it with time and generate Up/Down transitions

[99, 142]. Periodic re-entry into the Up state is achieved by postulating a stochas-

tic mechanism that randomly triggers a transition to the excited network state
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Figure 4.9: (Right) Neuron membrane potential recordings shows typical ex-
amples of Up/Down transitions on a striatal spiny neuron, and for a cortical
pyramidal cell in layer V, recorded simultaneously. The histograms to the left
show the amount of time the cell spends at each value of membrane potential.
Both cells toggle between two preferred membrane potentials, one very hyper-
polarized, the Down state, and one more depolarized, the Up state. In both
cells, the Up state is only a few millivolts from the action potential threshold
(reprinted from Scholarpedia http://www.scholarpedia.org/article/Up and down
states).

from time to time.

An intriguing connection between Up/Down oscillation and criticality has been

argued by Fujisawa et al. [7], which studied the statistical properties of some intra-

cellular recordings from hippocampal CA3 pyramidal cells ex vivo. In this work,

they measure the Significant Depolarizing Shift (SDS) in neuron membrane po-

tential, i.e. the time in which the neuron is in the UP state, and characterize with

SDS duration and spike rate five neuronal internal states, ranging from a silent

Down state (I) to a permanently bursting Up state (V). Multiple recordings from

adjacent neurons revealed that the neuron internal states were coherent, indicat-

ing that the internal state of any given cell in a local network could represent the

whole network state. Repeated stimulation of single neurons leads over time to

transitions to different internal states in both the stimulated neuron and neigh-

boring neurons. In particular, most of the transitions occurs between state IV,

characterized for Up/Down oscillations, and state V. Thus, single cell activation is

sufficient to shift the state of the entire local network, indicating some evidences

of extreme susceptibility in response to an external stimulus. In state IV, both

SDS and Inter Spike Interval (ISI) distributions show power law behaviour, as
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Figure 4.10: Characterization of the internal state IV in the Fujisawa et al.
experiments [7]. Left panel show representative Up Down oscillation waveforms
and their membrane potential histograms. The middle-left panel indicates the
frequency of the SDS duration. State IV shows a scale free 1/sν structure
with ν = 1.43. The middle right histogram indicate the frequency of inter-
spike intervals (ISIs), also scale free distributed with ν = 1.33. The right panel
indicates first-return maps of ISIs, in which ISIs are plotted against the next ISIs.
State IV shows a typical bell-shaped distribution, indicative of deterministic
chaos (reprinted from [7]).

it is depicted in figure 4.10. Moreover, the ISI return map has a typical bell-

shaped structure, indicative of deterministic chaos, which suggests the existence

of a non-linear chaotic process that controls spike generation sequences [143]. In

conclusion, these results give us different hints for a critical behaviour of Up/Down

oscillations. Remarkably scale free behaviour seems to emerge from a collective

dynamic, more than from the individual neuron fluctuations. In fact, SDS du-

rations observed in individual neurons usually has a multi-peaked distribution,

with peak frequencies varying from cell to cell, suggesting that the dynamics of

membrane fluctuations is multistable and diverse at the single cell level. Since

the responsiveness to external stimuli depends on internal states, the balanced

input conductance is the mechanism that regulates network performance during

information processing. For this reason Fujisawa et al. proposed a simple model

in which the input conductance generated by network activity is plastic, thereby

achieving self-sustained multistability of the internal states. In their system, neu-

rons are modelled with a Hodgkin-Huxley equation for membrane potential, with

an input conductance dependent on the global network activity, which is moving

in a bistable potential. This model has shown Up/Down transitions with statisti-

cal properties similar to the ones observed in their experiments. We have studied

a similar critical switching among different network activity patterns in chapter

5 for an ANN model exploring a different hypothesis, namely, we have consid-

ered the possibility that the strength of individual synapses could be modulated

stochastically with a probability that depends on the actual level of activity in the

network, i.e. a mechanism that resemble activity-dependent synaptic plasticity
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[125]. Similarly to the experiments performed in [7] we have also observed power

law distributions for the time of permanence in a certain activity pattern and

studied the biophysical conditions for the emergence of such behaviour.



Chapter 5

Nonequilibrium Phases and

Criticality in an Attractor Neural

Network model

In this chapter we present and study a model of excitable media constituted by

an attractor neural network (ANN) with occasionally quiet nodes (i.e. considering

partial system updating) and with connection weights that vary with activity on

a short time scale. The network global activity shows spontaneous (i.e., even

in the absence of stimuli) unstable dynamics, nonequilibrium phases- including

one in which the global activity wanders irregularly among attractors - and 1/f

noise as the system falls into the most irregular behavior. The combined effect

of dynamic connection weights and partial node updating on resilience results in

an efficient search in the model attractors space that can explain the origin of

similar behavior observed in some experiments on neural systems. By extensive

computer simulation we also address a previously conjectured relation between

observed power law distributions and the possible occurrence of a “critical state”

during functionality of (e.g.) cortical networks, and describe the precise nature of

such critical noise in the model.

5.1 Introduction

As we have already introduced in chapter 3, a neural network is said to have at-

tractors when it can autonomously change its state, characterized by the pattern

75
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of activity, in order to converge in time towards one particular region of phase

space (e.g., a single fix point, a trajectory or a chaotic “strage attractor“). Thus

once the system reaches its attractor, it remains there permanently, and is resilent

to perturbations. Following psychological observations [18] and the formal works

of Amit [144] and Hopfield [110], this concept has been popular two decades ago as

a mathematical tool to explore the fundamentals of brain tasks attributed to coop-

eration between many neurons. According to the, say, standard model [122–124],

patterns of information, corresponding to sets of the nodes activity, are stored in

a way that affects the intensities of the edges, representing the synapses, which

follows an heterogeneous weights distribution. The global activity may then con-

verge towards one of the given patterns when starting with a degraded version

of it. That is, the system exhibits resilience which causes associative memory,

a property of some brain regions, that are able to store mental representations

of the objects of perception (for example visual images), by mean of patterns of

neural activity, and subsequently recover them under partial stimulation. Such

mechanism is common to humans (one can think for example to the process of

recognizing a childhood friend we have not seen for dozens of years) and exten-

sively demonstrated in experiments on primates [113–115] (see section 3.4), results

to be difficult to be efficiently emulated with computers.

However neural networks, and more in general the systems of interest in nature

do much more than just choosing one out of a set of patterns and staying in its

neighborhood, see for example the phenomenologies described in [46, 145, 146]. For

example, signals from the heart and cortical neural activities have been success-

fully interpreted using non-linear dynamics theory [147], and the Hopfield standard

model has been generalized along biologically motivated lines that endow it with

even more interesting behavior [148, 149]. In particular, it was shown that one

may capture some of the observed shaky mechanisms and instabilities by taking

into account two features that seem to characterize generically excitable media

[150], namely, assuming both rapid activity-dependent fluctuations of the edge

weights and the existence of nodes that are reluctant to a change of state during

a time interval after the last change. It is remarkable that incorporating these

simple mechanisms into the standard model has allowed one to recreate [151] the

transient dynamics of activity as observed in experiments concerning the locust

odor representation [146]. Instead of just associative memory, one may readily

identify in this experiment, as in most of the available observations e.g., the ones

mentioned in the previous paragraph a kind of continuous and irregular wandering
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among attractors, say, roaming dynamics.

In this chapter, we describe in detail model phenomenology bearing relevance

to situations with spontaneously unstable dynamics associated to excitability. By

extensive computer simulations, we show both first and second order phase tran-

sitions, characterize the nature of different nonequilibrium phases [55] that occur

as one modifies the system parameters, study the details of the network activ-

ity dynamics, and determine the conditions in which long-range correlations and

non-Gaussian noise emerge. This results in a systematic study that adds up to

recent efforts trying to understand the origin of the observed relation between

certain statistical criticality and dynamically critical functionality in neuroscience

[4, 9, 21, 152, 153]. Our study here complements analytical study of the simplest

limits of the same model in [151] and related exploratory numerical studies therein.

5.2 Definition of model

We first consider the standard Hopfield Attractor Neural Network (ANN) model,

as described in section 3.4.1, in which the consequences of the activity changes of

each node (neuron) above some defined threshold may be sketched by means of a

binary variable: si = ±1, i = 1, . . . , N . This is known to suffice in practice to in-

vestigate the main effects of cooperation in different network contexts [58, 69, 154].

The topology structure considered is one of the most simplest, i.e. the fully con-

nected one, where every neuron is connected with all the rests in the system. Each

node receives a signal, called local field, hi(~S) =
∑

j 6=iwijsj, where ~S = {si} stands
for the global activity and wij is the weight of the connection between nodes i and

j, i.e. the synapse strength. In the problems of interest, one may typically single

out P patterns of activity, namely, {ξµi = ±1} with µ = 1, . . . P , that have some

special relevance. The weights then follow accordingly to the Hebbs superposition

rule wij = 1
N

∑P
µ=1 ξ

µ
i ξ

µ
j . This is one of the simplest conditions that transforms

the special P patterns into attractors of dynamics [18, 123]. In our study we

implement on the Hopfield ANN model the following two novel elements for the

dynamics, that attempt to model with simply rules important aspects of neurons

and synapses mechanisms:

Partial Neuron Updating

Classic ANN models have been extensively analyzed and studied both in the case of
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parallel updating (or Little dynamics), where at each Monte Carlo Step (MCS) the

whole N neurons system is updated, and sequential updating (or Glauber dynam-

ics), where each MCS only one randomly chosen neuron is updated. However the

former updating rules, in addition to fully connected structure and instantaneous

velocity of synapses, are not supported by any realistic assumption on network

dynamics. Actually neurons do not update their state in an ordered sequence

or group. As a matter of fact there are many internal effects influencing neuron

updating, like connection structure and impulse velocity along the axon, refrac-

tory times, variability in neuron thresholds, stochastic fluctuations in membrane

currents and potential or in neurotransmitters dynamics, as well as collective prop-

erties, like extended connection structure, impulse velocity along the axon and its

branching structure. We can mention for example, regarding asynchronous neu-

rons updating, the experiments on neural systems in which groups of the so called

silent neurons, i.e. some neurons that keep inactive during a specific network task,

are detected [155].

Thus we generalize the idea of neuron updating in our model, defining the the

transition rate for the master equation (3.5) as:

T
(

~S → ~S ′
)

=
∑

x

pn(x)
∏

{i|xi=1}
Tn (si → s′i)

∏

{i|xi=0}
δsi,s′i . (5.1)

Here, x is an operational set of binary indexes fixed to 1 at n sites chosen at each

time according to distribution pn (x) , and to zero at the other N − n sites. The

choice (5.1) simply states that one (only) updates simultaneously the selected n

nodes. The corresponding elementary rate is

Tn (si → s′i) = ϕ (si → s′i)
[

1 +
(

δs′i,−si − 1
)

δn,1
]

, (5.2)

where we consider the choice:

ϕ(si → s′i) =
1

2

{

1 + tanh[−siβhi(~S)]
}

. (5.3)

In other words during the dynamics we update at each Monte Carlo step only a

fraction ρ = n/N of the neurons (with 1 < n < N), randomly chosen. It has been

demonstrated that the an Hopfield network at T = 0 reaches always a fixed point

with any kind of block updating [156]. However our partial updating, even at very

low T , produces a different non equilibrium behaviour when some fast fluctuations

in local fields, depending on the network activity, are introduced [151], as we will
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see next.

Time-dependent connection weights

As we argued in chapter 3, synaptic mechanism, that encodes the transmission of

information from presynaptic to postsynaptic neuron, is very elaborate, and the

biochemical processes involved in it generally are not stationary, thus transmission

capability or connection strength are variable in time [96, 98, 103, 104]. We focus

our attention on short term synaptic plasticity mechanism, described in section

3.1, where synaptic strength changes in response to the number of vesicles and thus

of neurotransmitters ready to be released by the advent of an action potential out

in the synaptic cleft, and thus is modulated by spiking frequency. Continuous

firing activity produces a negative effect on synapse strength, namely synaptic

depression, when spiking frequency overcomes the recovery time for vesicles, but

in some cases it generates also positive effect, i.e. the synaptic facilitation, be-

cause in consecutive action potentials, neurotransmitters release is enhanced by

the rest of Ca2+ ions, produced by the previous spike event, and still remaining

in the button. Short term neural plasticity at synaptic level (synaptic depression

and facilitation) plays a central role in memory storage, retrieving, transmission

of information and computation [97].

One possible choice to study the effect of such synaptic fluctuations is to as-

sume the state of synapses at time t̄ as

wij = ǫjwij. (5.4)

where ǫj is a stochastic variable distributed according to a time-dependent con-

ditional probability distribution given the network history ~S(t̄ − t) until time t̄,

that is Pt̄(ǫj|~S(t̄ − t)). In the limit of fast synaptic changes, when ǫj varies in a

time scale infinitely smaller than the one governing ~S changes, it reaches some

steady-state, namely Pst(ǫj|~S(t̄)) (see [102, 151] for the general formalism). Here,

we consider the choice

Pst(ǫj|~S) = ζj(~S)δ(ǫj − Φ) + [1− ζj(~S)]δ(ǫj − 1). (5.5)

This assumes that with some probability ζj(~S) (which depends on the actual net-

work state) the synaptic intensities are multiplied by an amount Φ which induces

a kind of fatigue or depression of the synaptic transmission for −1 < Φ < 1, and

an enhancement or facilitation for Φ > 1. In standard attractor neural networks,
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the memory states are stable fixed points for the dynamics in some regions of the

phase diagram. The dependence of the probability of depression or facilitation

on the current neuron state tries to mimic activity-dependent synaptic depression

and facilitation on real neural media.

We suppose that the average neuronal mean firing rate in that steady-state is

proportional to the overlap of the network state with the retrieved pattern and,

therefore, that the probability for a synapse to be depressed increases when the

system approaches to one of the memory pattern. Roughly speaking, the more the

network configuration get close to a memory pattern, the long is the time it re-

mains in that configuration. This implies to consider ζj(~S) = ζ[~m(~S)]. A suitable

choice can be a normalized monotonic increasing function of the overlap vector

~m(~S) ≡ {m1(~S), . . . ,mP (~S)} with mν(~S) = 1
N

∑N
i=1 siξ

ν
i , for instance,

ζ[~m(~S)] =
1

1 + P/N

P
∑

µ=1

[mµ(~S)]2, (5.6)

where we put the factor 1
1+ P

N

to have a correct ζ[~m] normalization. For random

patterns and under a standard mean-field approach sj ≈ 〈sj〉, which is valid for

extended systems with long-range interactions, as in our case. Thus the effective

synaptic weights are [102]:

wij = [1− (1− Φ)ζ(~m)]wij. (5.7)

For simplicity, we shall be concerned only with mutually orthogonal patterns.

This is achieved in practice setting every node in ξµi for all µ equal to +1 or −1

independently with the same probability, so that ξµ · ξν ≃ 0 for any µ 6= ν in a

large system 1. Then, under some restrictions which strictly require also the limit

ρ → 0 (see [102] for technical details), the conditions so far stated may be taken

into account by assuming effective weights:

w̄ij =

{

1− 1− Φ

2

[

ζ (~m) + ζ
(

~mi
)]

}

wij, (5.8)

where the components of ~mi are mµ(s) − 2siξ
µ
i N

−1. We shall consider in the fol-

lowing this simplified version of our model which coincides with the general case

for any ρ > 0 after averaging w̄ij = ǫjwij over the stationary noise distribution

1Assuming specific sets of P correlated patterns, which is of great practical interest, is beyond
the scope of the study presented here that intentionally understates this model detail
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Pst(ǫj|~S). As a matter of fact, (5.8) may formally be viewed as any learning pre-

scription, wij, which is affected by a multiplicative noise -with correlations built

due to the dependence on ~m. Recently, connections that are roughly of this type

were recently shown to induce sort of criticality in neural population dynamics

[157]. Simulations and theoretical analysis have shown different emergent behav-

iors depending on the relevant parameters Φ and ρ. For instance, with negative

Φ and small ρ the system has the well know associative memory property and

recovers a given pattern, while beyond a value ρcrit emerges a chaotic behavior

with irregular jumps between the stored patterns. Transitions between static and

dynamic phases are obtained in some cases also when one tunes the depression

parameter Φ with fixed ρ [17], including in the limit of ρ = 1 (parallel updating)

[158]. In the next section we give a systematic definition and characterization

of classic static and emergent phases and of some parametric phase diagrams, in

which one can observe how the system can change among different regimes tuning

the relevant dynamic parameters (Φ and ρ).

5.3 Phases and diagrams

A main observation concerns the nature of the phases exhibited as one varies the

noise parameter, Φ, the fraction of active nodes, ρ, the temperature T, and the

load parameter α = P/N . It turns out convenient to monitor the time evolution of

various order parameters [124], that we define essentially with some modifications

to the original Hopfield order parameters, see equation (3.7). in particular, we

define

M = 〈|m∗|〉 = 1

N

〈∣

∣

∣

∣

∑

i
ξ∗i si

∣

∣

∣

∣

〉

, (5.9)

where the asterisk is the value of µ that identifies the pattern having the largest

squared overlap, (m∗)2 , and (· · · ) and 〈· · · 〉 stand, respectively, for averages over
time and over independent realizations of the experiment (i.e., changing both the

initial conditions and the set of the particular stored patterns). The set of the

other overlaps, mµ with µ 6= ∗, may be characterized by:

R =
1

1 + α

〈

∑

µ6=∗
(mµ)2

〉

, (5.10)
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where the sum is over all patterns excluding the one in equation (5.9). We also

monitor the global activity by means of

Q =
1

N

〈

∑

i
si

2
〉

. (5.11)

In the standard case Φ = 1, for uncorrelated patterns, the system shows three

phases [124, 159]:

(Ph1) Memory phase, in which the system evolves towards one of the given pat-

terns, often known as pure or Mattis states. The stationary state corresponds

to maximum overlap with the particular pattern, so that M is large while R

is small in the stationary state, namely, R ∼ O [(P − 1)/(N + P )] . One also

has that Q ≃ 1 near T = 0. (This case is illustrated by the two top graphs

in figure 1.)

(Ph2) Mixture phase, in which a large system converges to a mixture of pure

states, so that it exhibits some order but not associative memory. Therefore,

one may have several relatively large overlaps, which induces that 0 < M < 1

with a lower bound - due to finite size - of order of 1/
√
N, while 0 < R <

(1 + α)−1 with a lower bound of order of (P − 1) / (N + P ) . Also, Q ≃ 1

near T = 0.

(Ph3) Disordered phase, in which the system remains completely disordered as

dominated by thermal noise. Then, all the overlaps oscillate around zero, so

that M ∼ O(1/
√
N) and R is of order (P − 1) /(N + P ), and Q ≃ 0 in the

stationary state.

These cases correspond, respectively, to the familiar ferromagnetic, spin glass and

paramagnetic phases that are well characterized in studies of equilibrium magnetic

models.

The behavior of our system is more complex than suggested by this picture,

however. A main novelty for Φ 6= 1 is that, as illustrated in figure 5.1, the

system exhibits different types of dynamic behavior that cannot be fitted to the

above ones. That is, one observes that dynamics may eventually destabilize and

irregular jumping - among attractors as well as from one pattern to its negative

(antipattern) - occurs. The observed behavior suggests to define the following

dynamic scenarios, say, nonequilibrium phases that do not occur in the standard

model:
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Figure 5.1: The overlap functions mν(t) showing typical different behaviors
for N = 1600 nodes, P = 5 patterns, noise parameter Φ = −0.5, temperature
T = 0.01 and, from top to bottom: associative memory as inPh1 at (a) ρ = 0.10
(left) and (b) ρ = 0.30 (right); irregular roaming among patterns at (c) ρ = 0.375
(left) and (d) ρ = 0.40 (right) as in Ph4; eventual jumping between patterns
after a set of oscillations between a pattern and its negative (antipattern) as in
Ph5 at (e) ρ = 0.50 (left); and pure pattern-antipattern oscillations as in Ph6

at (f ) ρ = 0.60.

(Ph4) Irregular roaming in which the activity keeps randomly visiting the basins

of attraction corresponding to different patterns. (This is the case in figures

5.1(c) and 5.1(d)).

(Ph5) Irregular roaming as for Ph4 but eventually interrupted at random during

some time by oscillations between a pattern and its antipattern. (This occurs

in figure 5.1(e)).

(Ph6) Pure pattern-antipattern oscillations. (As in figure 5.1(f)).

These three genuine nonequilibrium cases correspond to Q ≃ 0 and M ≃ 0 (due to

orthogonality). Case Ph6 also has R ≃ 0 (revealing the symmetry of oscillations),

while both Ph4 and Ph5 have R 6= 0. In order to properly characterize these dy-

namic cases, we shall monitor latter the statistics of the itinerant trajectory.
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Figure 5.2: Nonequilibrium phase diagram (Φ, ρ) at low temperature. This
was obtained for N = 1600, P = 5 and T = 0.1 from detailed analysis of all
the order parameter functions. The top (blue) line is for M = 0.8. This leaves
the equilibrium phases above, where Ph1 occurs with probability 0.87 and Ph2

otherwise. To the bottom, the next (violet) line - leaving also Ph1ǫ above - is
for M = 0.5. The next (green) lines comprise an inverted-U shaped region in
which R > 0.18. The inset shows the roaming region in more detail.

The different behaviors are better observed and interpreted at very low tem-

perature. As shown in figure 5.2, the disordered phase Ph3 is not observed at the

chosen (low) temperature, while the ordered, ferromagnetic and spin-glass phases

then occur for any Φ as far as ρ is not too large. That is, one may have familiar

order as in equilibrium -practically independently (over a wide range) of the noise

affecting the connections- as far as only a relatively small fraction of nodes are si-

multaneously active [102]. However, one observes small fluctuations or dispersion

with time around the mean value M, and that the amplitude of this kind of “error”

increases as one lowers Φ and increases ρ. This effect, which is evident when one

compares the two top panels in figure 5.1, led us to indicate a zone Ph1ǫ around

the region for Φ < 0 and ρ . 0.5. It is worth to distinguish this zone which reveals

how the ferromagnetic phase Ph1 has resilience, i.e., a remarkable stability of the

attractor to large fluctuations. These increase monotonously with increasing ρ

and/or decreasing further Φ, and it finally results in jumping to other attractors
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Figure 5.3: M(Φ, ρ) (left) and R(Φ, ρ) (right; same axes but not shown for
clarity) for N = 1600, P = 5, and T = 0.1. There is coexistence of Ph1 and
Ph2 for Φ > 0, while the latter phase does not show up for Φ < 0 and memory
then occurs but as Ph1ǫ (see the main text) at sufficiently low ρ.

(as in the two middle graphs in figure 5.1) when more than one half of the nodes

are simultaneously active. This is the origin of the genuine nonequilibrium cases

Ph4, Ph5 and Ph6. In fact, as shown in figure 5.2, one observes the onset of

irregular roaming with R 6= 0 and M = 0 for Φ < 0 and ρ between 0.4 and 0.6.

The above picture and figure 5.2 follow from a detailed combined analysis of

functions M(Φ, ρ), R(Φ, ρ) and Q(Φ, ρ) as illustrated in figure 5.3. This also shows

that two main types of phase transitions between equilibrium and nonequilibrium

phases occur (see figure 5.4). There is a second-order or continuous transition,

as one maintains Φ < 0 at a constant value, from the memory phase with large

“error”, i.e., Ph1ǫ, to the irregular roaming phase Ph4. Then, at least near

T = 0, one also observes a first-order or discontinuous transition (figure 5.4) as

ρ is maintained constant, from the memory phase to the irregular roaming with

pattern-antipattern oscillations, namely, Ph5. Furthermore, it is noticeable here

that, as illustrated in figure 5.5, the transition region depends on the value of

α = P/N, that is, the critical value of ρ increases somewhat with decreasing α for

finite N , and it seems to go to ρ ≃ 0.5 as N → ∞ for finite α and T .
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Figure 5.4: Left: Second-order phase transition between Ph1ǫ and Ph4

around ρ ≃ 0.37 when Φ = −0.8. Right: First-order phase transition between
Ph1 and Ph5 around Φ ≃ −0.1 when ρ = 0.8. Both plots are for N = 1600,
P = 5, and T = 0.01. Note that different realizations using a different seed
produce here different values corresponding to the different symbols; the mean
of all the realizations is represented by a solid curve.

The rare shape of the roaming region in plane (Φ, ρ) for P = 5, which shows in

detail the inset of figure 5.2, is roughly the same as the one obtained analytically

when P = 1 for the change of sign of the Lyapunov exponent in a closely related

model (figure 2 in Ref.[55]). This confirms the general observation during our MC

experiments of kind of chaos within the inverted-U region which is delimited in

figure 5.2 by the green lines. That is, one should endow a chaotic character to the

roaming region. That similarity also reinforces the reliability of our measures of

order, and it shows how robust the model here is in relation to the dynamically

irregular behavior. It also follows, in particular, that the model parameter P is

irrelevant to this qualitative behavior, at least as far as not too many patterns are

stored.

The “phases” Ph4 and Ph5, e.g., cases (d) and (e) in figure 5.1, cannot be

discriminated on the basis of M, R and Q only. The top panel in figure 5.6

illustrates how these functions change with ρ for fixed Φ at low temperature. The

bottom panel shows some overlap functions time series, depicting the dynamic

transition from irregular roaming in Ph4 to the more regular behavior in Ph5 as
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Figure 5.5: The second-order phase transition on the left of figure 5.4. For
the same system as in this figure, the main graph here shows data for P = 5 and
N = 1600, 3200 and 6400, respectively from left to right in the middle of the Q
value. The inset is for the same values of N but P = 5, 10 and 20, respectively,
i.e., same value of α.

a consequence of increasing the amplitude of fluctuations around the attractor as

the fraction ρ of active nodes is increased during time evolution. As indicated

in figure 5.2, the separation between the memory phase Ph1 or Ph1ǫ and the

nonequilibrium cases is clear cut, while again it results more difficult to discrim-

inate numerically the region Ph6 of pure pattern–antipattern oscillations (where

M = R = 0) out of the Ph4–Ph5 chaotic region (where M = Q = 0 with R 6= 0).

In any case, however, our finding concerning this agrees with the analytical result

in a related case [150].

5.4 The onset of irregularity

The above section shows that the most intriguing behavior is when the system ac-

tivity becomes irregular, e.g., as one crosses the second–order transition from the

memory phase region to the nonequilibrium behavior —either at Ph4 with irregu-

lar roaming among attractors or at Ph5 where this may be randomly interrupted

by series of pattern-antipattern oscillations. Figure 5.7 illustrates an aspect of this

transition. In addition to the time evolution of some of the overlaps (right pan-

els), which indicates where the activity is at each moment, this shows (left panels)



Chapter 5. Nonequilibrium Phases and Criticality in an Attractor Neural
Network model 88

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4  0.5  0.6  0.7  0.8  0.9  1

ρ

M
R
Q

-1

-0.5

 0

 0.5

 1

m
ν (t

)

ρ=0.425 ρ=0.575 ρ=0.825 ρ=0.925

Figure 5.6: Upper panel: Functions M(ρ), R(ρ) and Q(ρ) for Φ = −0.7,
T = 0.1, N = 1600 and P = 5. Bottom panels: Time series for the overlap
functions mν(t) in the same case. The value of ρ is increased here during time
evolution as indicated by the horizontal axis in the upper panel. Different
colours correspond in this graph to different values of ν.

the signal hi(t) that can sometimes be monitored in experiments. As a matter of

fact, this may be compared, for instance, with electrical signals measured in single

neurons - as well as more delocalized, local fields - in the cortex and hippocampus

of rats, and with Magnetoencephalogram (MEG) signals and recordings for single

neuron action potentials.

It thus seems it would be most interesting to characterize more quantitatively

how the model signal transforms while performing the relevant transitions. That

is, when moving from the case of random fluctuations around a constant value

in the memory phase, to the case in which the amplitude of the fluctuations in-

creases and eventually switches to the negative of the original value, and finally

reaches the case in which the frequency of switching and all the other variables

become fully irregular in Ph4 and Ph5. With this aim, we studied in detail the

distribution of times of permanence in an interval around significative values of h.

More specifically, in order to extract the relevant information in the case of quite

different signals such as those in figure 5.7, it turned out convenient to compute



Chapter 5. Nonequilibrium Phases and Criticality in an Attractor Neural
Network model 89

-1

-0.5

 0

 0.5

 1

 5000  5400  5800  6000

MCS

-1

-0.5

 0

 0.5

 1

h
i(
t)

-1

-0.5

 0

 0.5

 1

 5000  5400  5800  6000

MCS

m
ν (t

)

Figure 5.7: The local signal or field h(t) on a typical neuron (left panels) and
five overlaps mν (t) (right panels) indicated with different colours for a system
with N = 1600, P = 20, Φ = −0.80, T = 0.01 and, respectively from top to
bottom, ρ = 0.225, 0.325 (near the transition point), and 0.425.

the distribution of time intervals, say ∆τ, in which the signal continuously stays

in any of two ranges either h (t) > h0 or h (t) < −h0. The cutoff h0 intends to sup-

press the smallest fluctuations, which correspond to non–significative noise; this

is achieved here in practice for h0 ∈ [0.05, 0.1] . We thus observe, after averaging

over the network, time and different experiments that the interesting behavior

requires relatively large systems, so that it does not occur for, say, N = 400 and

P = 5 while it already becomes evident for, e.g., N = 6400 and P = 40. The most

interesting fact from this study is that the exponent β in a power law fit ∆τ−β

monotonously increases with size from β ≃ 1 for N = 800 and P = 10 in a way

that might indicate a tendency of β to 1.5–2 (though our data never reached this

regime). These facts are illustrated in the following figures.

The left panel in figure 5.8 shows a changeover from a general exponential be-

havior to a power law behavior near the interesting second–order phase transition.

Analysis of the Fourier spectra reveals a similar situation, i.e., changeover from

exponential to power law behavior, concerning both the signal h(t) (right pannel

in figure 5.8) and the overlap function m(t). Figure 5.8 is a definite evidence for
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Figure 5.8: Logarithmic plots. Left: Distribution of time intervals in which
the signal continuously stays in any of the two ranges either h (t) > h0 or
h (t) < −h0, with h0 = 0.1, when N = 1600, P = 20, Φ = −0.8 and T = 0.01,
for the sub–critical cases ρ = 0.225 (a) —a practically horizontal signal in the
Ph1 phase— and 0.3 (b), the super–critical cases ρ = 0.35 (d) and 0.425 (e) —an
exponential behavior in the Ph4 phase—, and the near–critical case ρ = 0.325
(c). The latter, near–critical case approximately follows the dotted line ∆τ−β

with β = 1.4 for a large time interval. Each case corresponds to an average over
50 neurons and 20 independent systems running for 105 MCS. Right: Power
spectra of h (t) for the same cases as in the left pannel using runs with 4×105

MCS. The power law is illustrated with a dotted line.

statistical criticality as one approaches the relevant transition. On the other hand,

figure 5.9 shows how the system activity close to the transition between the mem-

ory equilibrium phasePh1 and the irregular behavior in Ph4 tends to follow the

power law distribution over a larger range as one increases the size N for fixed P,

which decreases α. However, we observed that β does not depend on N, namely,

the same value β = 1.4 is obtained when P = 20 for N = 1600, 3200 and 6400.

5.5 System performance at the edge of chaos

Once the different emergent nonequilibrium phases in the system have been fully

described in the previous sections, we have explored here the performance of the
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Figure 5.9: The same as in fig.5.8, but for h0 = 0.05, to show the effect
of varying the size N at fixed α = P/N = 0.003125 and ρ = 0.375. From
bottom to top, the data —corresponding to an average over 50 neurons and 10
independent systems— are for N = 1600 and 3.5×106 MCS (red), N = 3200
and 6×105 MCS (green), and N = 6400 and 8×104 MCS (blue), respectively.
(For clarity purposes, there is a vertical translation of the data points.) Both
the exponent β in ∆τ−β as well as the cutoff at which this power law fails clearly
increase as N is increased.

system during some information processing tasks. As previously discussed in sec-

tion 2.1 and in chapter 4, a system close to criticality is able to perform optimally

different tasks due to its high sensitivity to any small perturbation. On the other

hand, different theoretical works have shown the emergence of a high computa-

tional capacity in systems at the edge of chaos [160, 161], i.e. at the onset of

a chaotic dynamical behaviour. In our model, we have characterized a second

order transition between the memory equilibrium phase Ph1 and the chaotic ir-

regular phase Ph4, which implies that the critical point is at the same time the

onset for chaotic behaviour. To investigate if our system presents these optimal

computational abilities at the edge of chaos, we have investigated its performance

during the retrieval of stored patterns under small external stimuli close to this

transition. We proceed as follow: first we have stimulated a particular neuron i

with an external current of amplitude δ and duration tper MCS associated with a

randomly chosen memory pattern each tint = 300 MCS (see figure 5.10), so that

its corresponding local field is

hi(s, t0 + t) =
∑

j 6=i

w̄ijsj(t0 + t) + δξµi ∀i t ∈ [1, tper] .

Second, we computed the overlap of the network activity with the stimulated
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Figure 5.10: Overlap functions mµ(t) for a network of N = 1600 nodes,
P = 5 patterns, Φ = −0.8, ρ = 0.275 and temperature T = 0.01, with an
external stimulation of amplitude δ = 0.1 and duration tper = 10. Black curve
represents the memory input applied to local fields. In this case memory input
corresponds always to the actual retrieved pattern.

pattern µ∗ during the interval tint (which is a measure of the performance of the

system to retrieve this pattern) as well as the overlaps with the non-stimulated

patterns, respectively

Mst ≡ 〈
∣

∣mµ∗
∣

∣〉tint

Mno−st ≡ 1

P − 1
〈
∑

ν 6=µ∗

|mν |〉tint
.

In addition, we have compared the retrieval performance close to the transition

Ph1-Ph4 (with tuning parameter ρ), with the one obtained in an ordinary second

order ferromagnetic-paramagnetic phase transition (with tuning parameter T ) of

the classic Hopfield model (i.e. with Φ = 1).

Implementing different stimulation protocols to networks close to these transi-

tions, we observed and concluded the following:

• Retrieval performance is efficient, in general, for high δ and tper, in the whole

Ph1 region, being Mst ∼ M and Mno−st ≪ M . Decreasing the intensity

and/or duration of the stimulous, the retrieval is still optimal close to the

Ph1-Ph4 transition (see left panels of figure 5.11).

• Assuming different stimulation protocols such that the product δ × tper re-

mains constant, network retrieval performance is better for low δ and large

duration tper compared to stimulation with high δ and short tper (compare

A-left and B-left panels in figure 5.11).
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• In the ferromagnetic-paramagnetic transition retrieval performance is always

worse than the one relative to Ph1-Ph4 transition (compare in figure 5.11

the panels A, B, C), result that demonstrates the positive role of the onset

of chaos for pattern retrieval tasks.
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Figure 5.11: Mean overlap function with stimulated Mst and non stimulated
Mnost patterns, for a Ph1-Ph4 transition (network of N = 1600 nodes, P = 5
patterns, Φ = 0.8 and T = 0.01, left panels) and a ferromagnetic-paramagnetic
transition in the correspondent classical Hopfield network (obtained for Φ = 1
and ρ = 1, right panels), with different stimulation protocols. Panels A: δ = 0.1
and tper = 5. Panels B: δ = 0.5 and tper = 1. Panels C: δ = 0.1 and tper = 10.
Red curves corresponds to the overlap M with the condensed pattern, as defined
in formula 5.9, in absence of stimulation.
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5.6 Final discussion

Chemical reactions diffusing on a surface, forest fires with constant ignition of

trees, parts of the nervous system vigorously reacting to weak stimuli, and the

heart enduring tachycardia are paradigms of excitable systems, out of many cases

in mathematics, physics, chemistry and biology; see [162, 163], for instance. De-

spite obvious differences, these systems share some characteristics. They comprise

spatially distributed “excitable” units connected to each other and cooperating to

allow for the propagation of signals without being gradually damped by friction.

The simplest realization of the relevant excitability consists in assuming that each

element has a threshold and a refractory time between consecutive responses. In

order to deal with a setting which is both realistic and mathematically conve-

nient, one may suppose the system is networked with occasionally quiet nodes and

connection weights that vary with activity on short–time scales. As a matter of

fact, experimental observations reveal rest states stable against small perturba-

tions, which correspond to the silent nodes here, and rapid varying strength of

connections, either facilitating or impeding transmission, which temporarily af-

fect thresholds and may also induce time lags during response. Furthermore, it is

known that such nonequilibrium setting induces dynamic instabilities and attrac-

tors [150, 164]. On the other hand, we believe it is likely that this modeling of

excitable media may in fact be related to the one by means of partial differential

equations such as when the simple FitzHugh-Nagumo neuron model [165, 166] is

used to represent each unit.

With this motivation, we have studied a neural excitable media by extensive

computer simulations of a discrete time model with an updated rule which gener-

alizes the Hopfield–like standard case. The resulting phenomenology as described

here is expected to describe the basic behavior in a number of apparently diverse

man–made and natural excitable systems. In particular, we explicitly show how

the model exhibits in the absence of stimuli highly unstable dynamics when a

sufficiently large fraction ρ of nodes are synchronized and for certain values of a

noise parameter Φ that controls the noise within the connections strength. We also

illustrate how these instabilities induce the occurrence of novel, first and second

order nonequilibrium phases. One of these happens to be most interesting as it

describes the global activity wandering irregularly among a number of attractors,

details strongly depending on the values of ρ and Φ. In particular, one may tune

an efficient search in the model attractors space which is sensible to assume it may
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be at the origin of phenomenology previously described for neural, genetic and ill–

condensed matter systems. There is also definite evidence of non–Gaussian, 1/f

noise when the system is tuned into this irregular behavior, which may explain

recent experimental observations of criticality and power law distributions in cor-

tical networks.

Additionally, we remark how the mechanism behind the irregular jumping from

one pattern to the other is well understood in the model. That is, the relevant

instabilities are to be directly associated to the effective local fields that one may

write as

heff
i ≈ [1− (1− Φ)ζ(m)]

∑

j 6=i

ωijsj (5.12)

for large N, i.e., neglecting terms of order N−1. After some manipulation, one may

write this more explicitly as

heff
i = hHebb

i − η
∑

µ

ξµi (m
µ)3 − η

∑

(µ6=ν)

ξµi m
µ(mν)2. (5.13)

Here, hHebb
i stands for the energy per neuron in the standard model, η = (1 −

Φ)/(1 + α), and the last sum is over all pairs of different indexes µ and ν. As

discussed above, hHebb
i tends to drive the system activity near the attractor asso-

ciated to one of the stored patterns. Together with the second term in equation

(5.13), this sums up to
∑

µ ξ
µ
i m

µ[1 − η(mµ)2] which, depending on the value of

η, induces instabilities and irregular behavior of the overlaps dynamics similar to

those in a cubic map [167]. The third term in (5.13), on the other hand, may

be written as −η
∑

ν m
νhν

i with hν
i =

∑

µ6=ν m
µξµi m

ν . Given that ν differs from µ

here, this only includes asymmetric terms ξµi m
νsimilar to those that characterize

the local fields for asymmetric learning rules, namely, ĥi =
∑

µ ξ
µ
i m

µ+1, which are

often used to stored and retrieve ordered sequences of patterns [111, 168]. It is

sensible to assume, therefore, that this term is most efficient in the present case in

inducing transitions among patterns. Unlike for asymmetric learning [111], how-

ever, the destabilization here does not induce any order nor predictability in the

sequence of visited patterns. On the other hand, we have also demonstrated that

this general emergent behaviour allows a better response of the system to some

external changing input. These results could explain the ability of actual neural

systems to efficiently process information arriving from other different areas or to

process continuously changing stimuli from the senses.



Chapter 6

Self-organization without

conservation: Are neuronal

avalanches generically critical?

Recent experiments on cortical neural networks have revealed the existence of

well-defined avalanches of electrical activity. Such avalanches have been claimed

to be generically scale-invariant - i.e. power law distributed - with many ex-

citing implications in Neuroscience. Recently, a self-organized model has been

proposed by Levina, Herrmann and Geisel to justify such an empirical finding.

Given that (i) neural dynamics is dissipative and (ii) there is a loading mechanism

“charging” progressively the background synaptic strength, this model/dynamics

is very similar in spirit to forest-fire and earthquake models, archetypal examples

of non-conserving self-organization, which have been recently shown to lack true

criticality. In this chapter we show that cortical neural networks obeying (i) and

(ii) are not generically critical; unless parameters are fine tuned, their dynam-

ics is either sub- or super-critical, even if the pseudo-critical region is relatively

broad. This conclusion seems to be in agreement with the most recent experimen-

tal observations. The main implication of our work is that, if future experimental

research on cortical networks were to support that truly critical avalanches are

the norm and not the exception, then one should look for more elaborate (adap-

tive/evolutionary) explanations, beyond simple self-organization, to account for

this.

96
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6.1 Introduction and outlook

6.1.1 Generic scale invariance

In contrast to what occurs for standard criticality, where a control parameter needs

to be carefully tuned to observe scale invariance, certain phenomena as earth-

quakes, solar flares, avalanches of vortices in type II superconductors, or rainfall,

to name but a few, exhibit generic power-laws, - i.e. they lie generically at a criti-

cal point without any apparent need for parameter fine tuning [56, 66, 169]. Ever

since the concept of self-organized criticality [56, 169] was proposed to account for

phenomena like these, it has generated a lot of excitement, and countless applica-

tions to almost every possible field of research have been developed. Underpinning

the necessary and sufficient conditions for a given system to self-organize to a crit-

ical point is still a key challenge.

In this context, it has been established from a general viewpoint that con-

serving dynamics (i.e. that in which some quantity is conserved along the sys-

tem evolution) is a crucial ingredient to generate true self-organized criticality in

slowly driven systems, see section 2.3 and [20, 170]. In this way, non-conserving

self-organized systems have been shown not to be truly scale-invariant (see [20]

and references therein). While sandpiles, ricepiles, and other prototypical self-

organized models are examples of conserving self-organizing systems, forest-fire

and earthquake automata are two examples of non-conserving models. They both

were claimed historically to self-organize to a critical point and they both were

shown afterwards to lack true scale-invariant behavior [20]. The main reason for

this is, in a nutshell, that non-conserving systems combine driving (loading) and

dissipation, and this suffices to keep the system “hovering around” a critical point

separating an active from a quiescent or absorbing phase (driving slowly pushes the

system into the active phase and dissipative takes it back to the absorbing phase).

But, in order to have the system lying exactly at the critical point requires of an

exact cancellation between dissipation and driving (loading) to achieve a critical

steady state; such a perfect balance can only be achieved by parameter fine tuning,

and then the system cannot be properly called “self-organized”.

This mechanism of (non-conserving) self-organization has been termed self-

organized quasi-criticality (SOqC) [20] to underline the conceptual differences with

truly scale-invariant, (conserving) self-organized criticality (SOC) [56, 66, 169].
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From now on, we shall use the acronym SOqC to refer to non-conserving self-

organized systems, and shall keep the term SOC for self-organized conserved sys-

tems.

SOqC may explain the “approximate scale invariance” (with apparent power-

law behavior extending for a few decades) observed in many real systems as those

mentioned above (earthquakes and forest fires) but, strictly speaking, it fails to

explain true scale-invariance. SOqC systems require some degree of parameter

tuning to lie sufficiently close to criticality. For a much more detailed explanation

of the SOqC mechanism and its differences with SOC, we refer the reader to [20].

6.1.2 Scale invariance in neuronal avalanches?

Neuronal avalanches were first reported by Beggs and Plenz, who analyzed in

vitro cortical neural networks using slices of rat cortex as well as cultured net-

works [6, 8, 10, 171]. More recently, neuronal avalanches have been observed also

in vivo [46, 47]. In all these cases, cortical neurons form dense networks which,

under adequate conditions, are able to spontaneously generate electrical activity.

The associated local field potentials can be recorded by using multielectrode arrays

[6, 8]. Each electrode in the array monitors the electrical activity of a local group

of neurons 1. According to Beggs and Plenz [6, 8, 10, 171] activity appears in the

form of “avalanches”, i.e. localized activity is generated spontaneously at some

electrode and propagates to other ones in a cascade process which occurs at a much

faster timescale (tens of milliseconds) than that of the quiescent periods between

avalanches (typically of the order of seconds). Previous experimental research in

cultured networks had identified the existence of spontaneously generated syn-

chronized bursts of activity (involving synchronous activation of many neurons),

followed by silent periods of variable duration [70, 72, 145, 173] (theoretical work

has been done to explain such a coherent or synchronous behavior, see for instance,

[174, 175]). The main breakthrough by Beggs and Plenz in [6, 8] was to enhance

the resolution and bring the internal structure of “synchronized” bursting events

to light. In other words, the apparently synchronous activation of many neurons

required for a synchronized burst corresponds to a sequence of neuron activations,

i.e., a neuronal avalanche, which generates spatio-temporal patterns of activation

confined between two consecutive periods of quiescence.

1which for convenience can be thought of as a unique “effective” neuron; a review of the
involved experimental techniques and methods can be found in [172]
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Experimental measurements of avalanches can be performed, and the distribu-

tion of quantities as i) the avalanche size s (i.e. the number of electrodes at which

a non-vanishing signal is detected during an avalanche) and ii) the avalanche life-

time, t, can be recorded, see section 4.3. What is relevant for us here is that,

according to Beggs and Plenz, avalanches seem to be generically scale invariant

[6, 8, 10, 171]; in particular, avalanche sizes, s, and times t are distributed as:

P (s) ∼ s−3/2F(s/sc), P (t) ∼ t−2G(t/tc) (6.1)

respectively, where F and G are two cut-off functions; the cutoff sc grows in a

scale invariant way as a function of system-size: the larger the system the larger

the cutoff, providing evidence for finite size scaling. The cut-off tc appears at very

small times, so the evidence for scale invariance is much larger for s than for t.

These results have been claimed to be robust across days, samples, and phar-

macological variations of the culture medium [6, 8, 10, 171]. The exponent values

in equations (6.1) coincide with their mean-field counterparts for avalanches in

sandpiles (the prototypical examples of self-organized criticality) [134]. Mean-

field exponents do not come as a surprise: given the highly entangled structure of

the underlying network (which has been reported to have the small-world property

[127, 135]) mean-field behavior is to be expected for critical phenomena occurring

on it [69].

Finally, recalling that, at a mean-field level, avalanche dynamics can be inter-

preted as a branching process [136, 176], an empirical study of the branching ratio,

σ, (defined as the fraction of active electrodes per active electrode at the previous

time bin) was performed in [6, 8, 136]. It was found that the value of σ measured

for avalanches started from one single electrode is very close to unity, in agreement

with the critical value of marginally propagating branching processes, σc = 1.

From these results, it has been claimed that cortical neural networks are gener-

ically critical, i.e. scale-invariant, and that they reach such a critical state in a

“self-organized” way [6, 8]. Scale invariance in the propagation of neural activity

has raised a great deal of interest and excitement in Neuroscience. For instance,

critical neural avalanches have been claim to lead to [6, 8, 173]:

• optimal transmission and storage of information [6, 8, 10, 136, 171],

• optimal computational capabilities [177],
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• large network stability[160],

• maximal sensitivity to sensory stimuli [11, 132], etc.

Let us caution that discrepant results, i.e. non-critical neuronal avalanches, have

also been recently reported in the literature. For instance, measurements of corti-

cal local-field-potentials were performed by Bédard et al. [178] using parietal cat

cortex. None of the features reported by Beggs and Plenz [6, 8] was observed for

such a network; not only the observed behavior was not critical, but it was not

even possible to observe clean-cut avalanches. It was argued that the absence of

scale-free avalanches could stem from fundamental differences between the consid-

ered cortex regions used in [178] and in [6, 8]. Moreover, in a recent review paper,

Pasquale et al. [179] report on different empirical types of avalanche distribu-

tions: critical, subcritical, or super-critical, depending on various factors. These

authors conclude that critical avalanches can indeed emerge, but they are more

the exception that the rule.

6.1.3 Goals and outlook

The main goal of this chapter is to elucidate from a theoretical viewpoint whether

neuronal avalanches are truly critical or not. Or, more precisely, to understand

whether self-organizing mechanisms (such as those of SOC or SOqC) can jus-

tify the findings for neuronal avalanches. To this purpose, we rely extensively on a

model for neuronal avalanches, proposed recently by Levina, Herrmann and Geisel

[19]. The model is a self-organized one, including integrate-and-fire neurons and

short-term synaptic plasticity. It has been claimed, both analytically and numeri-

cally, to back the existence of generically (strictly) critical neuronal avalanches in

a very broad region of parameter space [19].

The key observation, which motivated the present work, is the fact that lo-

cal conservation laws, such as those required to have truly critical self-organized

(SOC) behavior, are not present in neural networks in any obvious way. In fact

the information coming from action potential, is transmitted to postsynaptic neu-

rons, by mean of several transduction biochemical mechanisms acting in synaptic

button: such processes are highly no linear, and do not allow for any kind of

potential and/or ionic current conservation, see section 3.1. Thus if cortical net-

works are represented as an electrical circuit, perfect transmission without loss
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of energy is an unrealistic idealization and, analogously, if they are modeled as

networks of dynamical synapses, there also exist dissipative or “leakage” phenom-

ena. In summary, no quantity is strictly conserved in neural signal transmission.

Reasonably enough, the Levina, Herrmann and Geisel (LHG) model [19] is also a

non-conserving one (see below).

Therefore, the existence of critical neuronal avalanches (both experimentally

and in the LHG model) seems to be in contradiction with the general conclusion

in [20], i.e. the lack of true criticality in non-conserving systems. In this way, a

rationalization of neuronal avalanches would only be possible, at most, in terms

of self-organized quasi-criticality (SOqC) and not in terms of strict criticality as

suggested in [19].

Following the steps in [20], here we shall underline the analogies and differ-

ences between the model by Levina et al. and other non-conserving self-organized

models such as those for earthquakes or forest fires. We shall show that the LHG

model is not generically critical: it can be either critical, subcritical or super-

critical depending on parameter values; fine tuning is required to achieve strict

scale-invariance. Still, the model is capable of generating, for a relatively wide

parameter range, pseudo-critical avalanches with associated truncated power-laws

which can suffice to explain empirical observations.

This conclusion, i.e. the lack of true criticality, is expected to apply not only

to the model in [19], but also to empirical neuronal avalanches. It suggests that

if neuronal avalanches turned out to be truly critical, the ultimate reason for that

should be looked for in some type of adaptive/evolutionary mechanism [180] or

in homeostatic processes [181], but cannot be generically ascribed to plain self-

organization.

The rest of the chapter is structured as follows. In section 6.2, we present

the self-organized model proposed by Levina et al. for neuronal avalanches. A

discussion of its main properties appears in sections 6.3 (numerical) and 6.4 (an-

alytical). Then, in section 6.5, we put this model under the general framework of

self-organized quasi-criticality introduced in [20] by deriving explicitly a Langevin

equation from its microscopic rules, emphasizing the lack of true generic critical-

ity. Finally, the main conclusions and a critical discussion of recent experimental

results are presented.
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6.2 The Levina-Herrmann-Geisel (LHG) model

Aimed at understanding the origin of power-law distributed cortical avalanches,

Levina, Herrmann, and Geisel (LHG) [19] proposed a variation of the well-known

Markram-Tsodyks model of chemical synapses [175]. Such a model had been al-

ready extensively used to reproduce the dynamics of synchronized bursting events

(also called “population spikes”) [175].

Consider a fully connected network of N integrate-and-fire neurons each of

them characterized by its local (membrane) potential, Vi, with

0 ≤ Vi ≤ Vmax. (6.2)

Neurons i and j (with i 6= j) are connected by a synapse of strength Jij. This

can be thought of as the amount of available neurotransmitters or, more generally,

“synaptic resources”, for such a connection.

In the original Markram-Tsodyks model [175], together with Vi and Jij, there

is a third variable, ui,j , representing the fraction of neurotransmitters which is

actually released every time a pulse is transmitted between i and j. Its dynamics

can be used to implement synaptic facilitation (see, for instance,[182]); but, aimed

at keeping the model as simple as possible, and following LHG [19], we fix ui,j = u

to be a constant.

The simplified Markram-Tsodyks or LHG dynamics is defined by the following

equations:























∂Vi

∂t
= Iextδ(t− tidriv) +

∑N−1
j=1

uJi,j
N − 1

δ(t− tjsp)− Vmaxδ(t− tisp)

∂Ji,j

∂t
=

1

τJ

(α

u
− Ji,j

)

− uJi,jδ(t− tjsp).

(6.3)

The different terms in equations (6.3) are as follows:

• Driving: Iext is the amplitude of an external random input which operates at

discrete times tidriv on i. Driving impulses can be introduced at a fixed rate

h. Alternatively, slow-driving (h → ∞) can be implemented by switching

Iext on if and only if all potentials are below threshold.
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• Firing: −Vmaxδ(t− tisp); if the potential at i overcomes the threshold, Vmax,

at time tisp, the neuron spikes, and it is reset to

Vi(t
i
sp) → Vi(t

i
sp)− Vmax; (6.4)

otherwise, nothing happens.

• Integration:
∑N−1

j=1

uJi,j
N − 1

δ(t − tjsp); the (post-synaptic) neuron i integrates

signals of amplitude uJi,j/(N − 1) from each spiking (pre-synaptic) neuron

j. A non-vanishing delay between the time of discharge and the time of in-

tegration in neighboring neurons could also be introduced, without affecting

significantly the results.

• Synaptic depression: −uJi,jδ(t−tjsp); after each discharge involving the (pre-

synaptic) neuron j all synaptic strengths Jij (where i runs over all post-

synaptic neurons) diminish by a fraction u.

• Synaptic recovery:
1

τJ

(α

u
− Ji,j

)

; synapses recover to some target value,

Jij = J = α/u, on a timescale determined by the recovery time, τJ .

Observe that the only sources of stochasticity are the initial condition and the

external driving process, while the avalanche dynamics is purely deterministic.

Also, the set of equations above can be implemented on any generic network

topology; here (following LHG) we will mostly restrict ourselves to fully connected

networks, even if results for random networks and two-dimensional lattices are also

briefly discussed.

6.3 Model analysis

6.3.1 Static limit

Let us first discuss the static limit of the model in which the synaptic recovery

rate is so fast (i.e τJ → 0) that Ji,j can be taken as a constant for all pairs i, j and

for all times: Ji,j = J = αstatic/u. In such a case (keeping u fixed), αstatic acts as

a control parameter [183, 184]. Observe that, in the limit in which αstatic → Vmax,

the model becomes conserving: each spiking neuron reduces its potential by Vmax

and each of its (N − 1) neighbors is increased by Vmax/(N − 1) (integration term
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in equations (6.3)).

Once the system has reached its steady state, it is possible to assume that the

values of V are uniformly distributed in the interval [ǫ, Vmax − ǫ] with ǫ → 0 when

N → ∞. This assumption parallels what is done in a similar analysis of related

self-organized systems such as earthquake models [185] and can be numerically

verified to hold with good accuracy (see section 6.6). This implies that, fixing

(without loss of generality) Vmax = 1, in the large system-size limit, a randomly

chosen neuron can be in any possible state with uniform probability. Thus, upon

receiving a discharge of size uJ/(N−1), it becomes over threshold with probability

uJ/(N − 1). Hence, viewing the propagation of activity within avalanches as a

branching process with branching rate uJ/(N−1) and N−1 neighbors per neuron,

the average avalanche size 〈s〉 can be written as the sum of an infinite geometric

series [176]

〈s〉 = 1

1− (N − 1) uJ/(N − 1)
=

1

1− uJ
. (6.5)

Observe that this expression is valid only for uJ < 1. The model critical point

can be identified by the presence of a divergence in equation (6.5); this occurs at

the conserving limit αstatic
c = 1, in agreement with what happens in other models

of SOC (like sandpiles) which are critical only in the case of conserving dynamics.

For αstatic > 1 (i.e. above the conserving limit) the potential at each site grows

unboundedly (i.e. there is no stationary state) with perennial activity (generating

an “explosive” super-critical phase) while, for αstatic < 1, the process is dissipative

on average, i.e. the total potential is reduced at every spike and avalanches die after

a characteristic time (sub-critical phase). Thus, in summary, as already discussed

in the literature [183, 184], the static version of the LHG model exhibits a standard

(absorbing) phase transition separating a sub-critical from a super-critical phase.

Let us remark that, for finite systems, the critical point has size-dependent

corrections. It is only in the infinite size limit, in which driving and dissipation

vanish, that αstatic
c = uJc = 1. Actually, for any finite system, ǫ 6= 0, and additional

finite-size terms need to be included in the calculation above. This is a consequence

of the fact that, in order to achieve a steady state for finite systems, some form

of dissipation needs to be present to compensate the non-vanishing driving, Iext,

entailing αstatic
c (N) < αstatic

c (N → ∞) = 1 (see Table 1 where numerical estimates

for the critical point location are reported; details of the computational procedure

are reported in the forthcoming section).
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N 300 500 700 1000 2000 3000 ... ∞
αstatic
c 0.92(1) 0.93(1) 0.94(1) 0.95(1) 0.96(1) 0.97(1) ... 1

Table 6.1: Location of the critical point αstatic
c as a function of the system

size N , as obtained in computer simulations of the static model (τJ → 0). The
critical point location does not depend on the way the system is driven, i.e. on
Iext.

6.3.2 Dynamic model

Let us now turn back to the full dynamic model. Observe that:

• The equation for Ji,j in equations (6.3) includes a loading mechanism (anal-

ogous to those reported in [20] for earthquake and forest-fire models) or

“synaptic recovery mechanism” which counterbalances the effect of synap-

tic depression in the absence of spikes: the “background field” Jij increases

steadily towards its target value α/u. Note that in contrast with models of

forest fires or earthquake automata, in which the “loading mechanism” (see

[20]) acts only between avalanches, the recovery dynamics of J occurs also

during avalanches, at a finite timescale controlled by τJ .

• In the limit in which u〈Ji,j〉 → Vmax ∀(i, j), where 〈.〉 stands for steady-

state time averages, conservation is recovered on average. In analogy with

the static model, the dynamics becomes non-stationary above such a limit:

loading overcomes dissipation and potential fields grow unboundedly.

In the case in which Iext drives the system slowly we are in the presence of

the main ingredients characteristic of non-conserving self-organized models, as

described generically in [20]:

1. separation of (driving and dynamics) timescales,

2. dissipative dynamics (provided that u〈Ji,j〉 < Vmax), and

3. loading mechanism, increasing the average value of the “background field”

Jij.

Prior to delving into further analytical calculations, which are left for Section

6.4, let us present in the rest of this section computational results obtained for

equations (6.3).
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6.3.2.1 Numerical analyses

Numerical integration of equations (6.3) becomes very costly as the number of com-

ponents grows, limiting the maximum system size (up to N = 3000 in the present

study). Observe that, owing to the presence of δ-functions, equations (6.3) is an

“impulsive dynamics” equation and thus, caution must be paid when integrating

it numerically not to miss delta peaks when discretizing.

The system is initialized with arbitrary (random) values of Vi ∈ [0, Vmax] and

Ji,j ∈ [0, 1] ∀(i, j). We keep α as a control parameter and fix parameter values

mostly as in [19]: u = 0.2, Vmax = 1 and τJ = 10N .

Let us remark that the choice τJ = 10N [19] might be not very realistic from a

neuro-scientific point of view; i.e. it is not clear whether the synaptic recovery rate

should depend on the total number of connections of the corresponding neuron or

not. Observe that N is the number of synapses per neuron, therefore in principle,

it could be the case that, if a given neuron has limited resources, the recovery rate

per synapse depends on the total number of synapses. But also the opposite could

be true; i.e. the recovery time of a given synapse could depend only on its local

properties and not on those of its corresponding neuron. This is a neuro-scientific

issue that is beyond the scope of the present chapter and that we prefer not to

enter here. Anyhow, we have verified that our results are not significantly affected

by such a choice; for example, we have also considered values of τ fixed for any N

and checked the robustness of our results. We work in the slow driving limit, i.e.

we drive the system with an input, Iext at a randomly chosen site if and only if

all potentials are below threshold. The sequence of activity generated therefrom

constitutes an avalanche. We have used two different N -dependences for Iext: (i)

Iext = 7.5 × N−1, and (ii) Iext = N−0.6467; both of them engineered to comply

with the scaling form Iext ∼ N−w considered by Levina et al., and to reproduce

the value Iext = 0.025 for N = 300 used in simulations in [19]. Results are mostly

insensitive to the choice of Iext.

Running computer simulations of equations (6.3) with this set of parameters,

a steady state for both Vi and Ji,j is eventually reached, after an initial transient.

In such a regime, driving events generate avalanches of activity. figure 6.1 shows

time series in the steady state for the network-averaged value of uJi,j , uJ̄ , with

J̄(t) ≡
∑

i,j, i6=j

Ji,j(t)

N(N − 1)
. (6.6)
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Figure 6.1: Time evolution of uJ̄ and the number of spiking neurons for α =
0.9 subcritical (up), α = 1.4 critical (center), and α = 1.9 supercritical (down), in
simulations with N = 1000. It is only above the critical point of the dynamical model
that uJ̄ goes beyond the critical point of the static model for the considered system
size, αstatic

c = 0.95(1) (dashed line).

Results correspond to N = 1000 and three different values of α, 0.9, 1.4 and

1.9. Large avalanches (which are much more frequent in the supercritical phases)

correspond to abrupt falls in uJ̄ , while in between avalanches uJ̄ grows linearly in

time owing to the external driving.

Observe the intermittent response of the system in all cases: peaks of activity

of various sizes appear in all cases; note also the “quasi-periodic” behavior in all

the three cases (similar quasi-periodic behavior had already been described for the

Markram-Tsodyks model [101]).

In order to determine the critical point, in figure 6.2(left) we show the associ-

ated avalanche-size distributions for the same three values of α. All of them show,

for small values of s a power-law decay, with exponent close to 1.5; for α = 0.9

(subcritical) there is an exponential cut-off while for α = 1.9 (supercritical) there

is a “bump” for large size values, which defines a characteristic scale. In the in-

termediate case, α = 1.4 there is also an exponential cut-off but, upon increasing

system size, it shifts progressively to the right in a scale invariant way, as cor-

responds to a critical point. This is illustrated in figure 6.2(right) where critical
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Figure 6.2: Top: Avalanche-size distribution of the LHG model for N =
1000 and three different values of α, 0.9, 1.4 and 1.9 (slightly below, at, and
slightly above the critical point, respectively). Bottom: Rescaled avalanche-size
distribution showing good finite size scaling. This implies that the cut-off for
the critical value (see Left) shifts progressively to the right, in a scale invariant
way, upon enlarging the system size.

distributions (i.e. for α = 1.4) for various system-sizes have been collapsed into a

unique scale-invariant curve.

In figure 6.3(top) we plot the distributions of uJ̄ for different values of α, ob-

tained by sampling values of J̄ all along the dynamics. Observe the progressive

broadening and displacement to the right upon increasing α. Figure 6.3(bottom)

illustrates the presence of strong finite size effects; in particular, for the critical

point α = 1.4, we see that the distribution of J̄ moves progressively to the right.

The main observation to be made is that these distributions do not converge to

narrower ones upon enlarging system size. Similar broad distributions are typical

of non-conserving self-organized models, for which delta-peaked distributions are

not obtained even if the infinite-size limit is taken [20]. This means that the dy-

namical model does not correspond to the static one with some fixed “effective”

or averaged value of J̄ , but to a dynamical convolution of different values of J̄ ,
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Figure 6.3: Top: Probability distribution of uJ̄ for a system size N = 1000 and
different values of α. Only for α > αc = 1.4(1), the right tail of the distribution
extends beyond the critical value of the static model αstatic

c (N = 1000) = uJc =
0.95. Bottom: P (uJ̄) at the critical point, αc = 1.4, for different system sizes; the
width of the distribution does not decay with increasing system size and, therefore, this
distribution is not delta-peaked in the thermodynamic limit. This reflects the fact that,
for sufficiently large values of α the system hovers around the critical point alternating
subcritical and supercritical regimes. For smaller values of α the system is always
subcritical.

distributed in some interval [J̄min(α), J̄max(α)], with weights given by the distri-

butions above. The probability of finding the system at any point out of such an

interval [J̄min(α), J̄max(α)] is zero (within numerical precision).

As illustrated in figure 6.4 we have verified that for u〈J̄〉 > 1 (which occurs

for large values of α; in particular, for α → ∞ when N → ∞ limit), the load-

ing mechanism dominates over the discharging one (synaptic depression), and the

potential grows unboundedly with never ceasing activity; this is a non-stationary

supercritical or explosive phase, analogous to the one reported for the static ver-

sion of the model.

Finally, we have also computed the average value of J at spike, i.e. right
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Figure 6.4: Phase diagram for the LHG model for different system sizes.
Observe the presence of a critical line separating an active (supercritical) from
an absorbing (subcritical) phase. Also, for large values of α a non-stationary or
“explosive”phase (in which potentials grow unboundedly) exists.

before the corresponding pre-synaptic neuron fires and before the value of J is

diminished (see figure 6.5). This quantity, that we call Jsp, appears in the an-

alytical approach to be discussed below. Observe in figure 6.5, in analogy with

the histograms above, the existence of broad distributions whose width does not

decrease significantly upon enlarging system-size. Analyzing the highly non-trivial

structure of these (multi-peaked) histograms is beyond the scope of this section,

but let us just mention that similar histograms with various peaks appear in re-

lated non-conserving model of SOqC [185]. Note also that they extend beyond

uJsp = 1, even if their average is close to unity.

6.3.2.2 Characterization of criticality

Perusal of either figure 6.1 or figure 6.3(top) leads to the important observation

that it is only for values of α above the critical point (αc ≈ 1.4) that the support

of the distribution of uJ̄ extends beyond the (N -dependent) critical point of the

static limit, i.e. that uJ̄max ≥ αstatic
c (N) (see figure 6.3(up)). For α < αc the

dynamics is subcritical at every time (i.e. uJ̄max(N) is always below the thresh-

old of the static model, αstatic
c (N)), and hence avalanche distributions, being a

dynamical convolution of avalanches with instantaneous subcritical parameters,

are subcritical. Instead, for α > αc, uJ̄max > αstatic
c (N), and one can observe

instantaneous values of the average synaptic strength, J̄ , above the static model
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Figure 6.5: Probability distribution of values of uJ computed at spike, i.e. at
their local maxima, just before being depressed. Curves correspond to different
system sizes (from 300 to 1000) and fixed α, α = 4 > αc, i.e. in the supercritical
phase. Observe the broad distribution, whose width does not decrease signifi-
cantly upon enlarging system-size. Similar broad histograms, typical of SOqC
systems, are obtained for other values of α.

critical point, giving raise to instantaneous super-critical dynamics and system-

wide propagation (observe that, in a fully connected topology, any site/neuron can

be reached within one time-step). Then, during the avalanche, owing to the term

−uJijδ(t − tjsp) in the second equation of equations (6.3), uJ̄ decreases, and the

system moves progressively from the supercritical regime to the subcritical one.

This, in turn, becomes supercritical again upon recovering/loading. This cyclical

shifting (analogous to the one for SOqC as described in [20]) provides a dynami-

cal mechanism for the generation of a broad distribution of avalanche sizes in the

steady state.

Thus, it is only for α > αc that arbitrarily large avalanches appear, and the

critical point of the dynamical model corresponds, for any system size, to the value

of α for which the maximum of the support of the distribution of values of J̄ , J̄max,

coincides with the critical point of the static model:

uJ̄max = αstatic
c = uJc. (6.7)

figure 6.6(left) illustrates the coincidence (within numerical resolution) of the crit-

ical line for the static model, uJc(N), and the maximum of the support of the

distribution of J̄ at the critical point of the dynamical model for various system
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Figure 6.6: Top: Critical value of J , Jc, in the static model (upper curve),
maximum of the support of the distribution of J̄ , Jmax, in the dynamic model
(central curve), and average value of J̄ , i.e. 〈J̄〉 at the critical point (lower
curve). Note that this last curve lies in the subcritical region: 〈J̄〉 is not equal
to 1 at the critical point. The dashed bell-shaped curve represents in a sketchy
way the J̄-probability distribution for N = 2000; its height is unrelated to the
x-coordinate in the main graph; the peak is located around 0.88 (in coinci-
dence with the 〈J̄〉 curve), while the upper tail of the distribution “touches” the
vertical line, around 0.95 (i.e. at the corresponding point in the Jmax curve).
Bottom: Scaling of the distance to the infinite-size critical point (i.e. 1) in both
the static and the dynamic LHG model as a function of the system size. As
predicted by the general theory for non-conserving self-organized models, they
both are power-laws with an exponent close to 1/3 (dashed line).

sizes. The small deviation between the two curves stems from the binning proce-

dure employed to determine J̄max.

The average value of J̄ at the critical point is also plot in figure 6.6(left) for

illustration: at criticality, the average value is always far below unity, i.e. far below

the conserving limit. Even in the infinite size limit, this curve remains below 1

(as a consequence of the fact that the maximum of the distribution converges to

1 and the distribution is not a delta-function).

Using our numerical estimates of the critical point as a function of N (taken
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Figure 6.7: Propagation of activity as a function of time in a two-dimensional
(100 ∗ 100) implementation of the LHG model, for α = 2, in the supercritical
phase.

from figure 6.6(left)) we have shown (see figure 6.6(right)) that the critical point

converges to unity as 1 − uJ̄max(N) ∼ N−0.36(6). The same property holds for

the static model, for which we obtain 1 − uJc(N)) ∼ N−0.36(6). This illustrates

that the progressive shifting of the distributions in figure 6.3(bottom) to the right

occurs at the same pace as that of the critical point of the static model, in such

a way that our estimate of the critical point, αc, is hardly sensitive to finite-size

effects: for every studied system size, we obtain αc(N) ≈ 1.4(1) as illustrated in

figure 6.4.

Using the absorbing state picture of non-conserving self-organized systems,

which predicts scaling to be controlled by a dynamical percolation critical point,

we made the quantitative prediction that, for generic SOqC systems, the finite-size

correction to the critical point should scale with system size as N−1/3 (see [20] and

Section 5 below). In our case,

uJ̄max(N → ∞)− uJ̄max(N) ∼ N−1/3, (6.8)

in agreement with the numerical estimates (see the dashed line in figure 6.6(right)).

This supports the validity of the theoretical framework presented in [20] to account

for the present model: the critical behavior of neural avalanches is controlled by

a dynamical percolation critical point.

Before finishing this section, let us briefly present some results for the LHG
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model implemented on different type of topologies. In particular, we have numer-

ically studied a version with a finite connectivity (random neighbors) as well as

a two-dimensional lattice. In both cases, we find sub-critical and super-critical

phases separated by a critical point, as in the fully connected lattice.

For the random neighbor case, some details, as the way the cut-offs scale with

system size, are different, but the main results are as in the fully connected case.

For the two-dimensional lattice, figure 6.7 illustrates the evolution of an avalanche

of activity for a particular value of α (in the supercritical regime). Observe the

presence of a noisy wave of activity propagating outward from the seed; similar

avalanches cannot be visualized in the fully connected case where activity reaches

all sites in a single time-step. The waves shown in figure 6.7 resemble very much

the ones observed in the retina (which is an almost two-dimensional network) be-

fore maturation [186] and, more importantly for the discussion here: they are fully

analogous to supercritical waves appearing in

• other non-conserving self-organized systems as forest-fires and

• the dynamical percolation theory in the supercritical regime.

This observation confirms, once again, the very close relationship between the

LHG model and the theory of SOqC [20].

In summary, the LHG model is a representative of the class of non-conserving

self-organized systems or SOqC, in which, as shown in a previous work [20], ex-

hibits a conventional critical point separating a subcritical from a supercritical

phase. Criticality is controlled by the maximum of the support distribution of J̄ ,

J̄max, and not by its average value. This is in accordance with the general criterion

for criticality in SOqC systems put forward in [20]: criticality emerges when the

temporarily changing background field, J̄ , overlaps with the active phase of the

underlying (static) absorbing state phase transition [20]. This result is of relevance

for the analytical approach in the next section

6.4 Analytical results

The main conclusion of the previous section, i.e. the need to fine tune α to observe

true criticality, seems to be in disagreement with the one presented in [19] for the

LHG model. There it was claimed, relying on a mean-field calculation, that all
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values of α in the interval [1,∞[ are strictly critical. Using the hindsight gained

from the results above, it is not difficult to find where the problem lies, as we show

in what follows.

Let us first construct (following LHG) a balance equation for the static limit

of the model. Calling ∆isi the inter-spike interval (time between two consecutive

spikes of a given neuron) and ∆iai the inter-avalanche interval (time between two

consecutive avalanches, started at any neuron), the average number of avalanches

between two spikes of the same neuron, 〈M〉, is

〈M〉 = ∆isi

∆iai
. (6.9)

Obviously, ∆iai has to be inversely proportional to Iext: if the external driving is

reduced by a factor r the average time to generate an avalanche grows by a factor

r. Levina et al. [19] actually showed that

∆iai =
Vmax − ǫ(N)

Iext
, (6.10)

where, as above, ǫ(N) vanishes for N → ∞. Focusing on a single neuron, in the

steady state, it must obey the following balance equation

Vmax =
Iext

N
∆isi +

uJ

N − 1
〈s〉〈M〉, (6.11)

which equates the potential decrease for each spike (l.h.s. term) to the total

potential increase between two consecutive spikes; this comes from two possible

sources: (1) the average loading owing to external driving between two consecutive

spikes (first term in the r.h.s.) and (2) the average charging from avalanches

(second term). Note that N − 1 is the number of neighbors of a given neuron

and 〈s〉 is the averaged avalanche size. Fixing Vmax = 1, ǫ(N) = 0, and plugging

equation (6.9) and equation (6.10) into equation (6.11), one readily obtains

N

∆isiIext
∝ uJ〈s〉 (6.12)

for large values of N .

In the static case, 〈s〉 is given by equation (6.5), so ∆isi can be expressed as a

function of J , N and Iext. We have numerically verified that the resulting balance

equation holds.

On the other hand, in the dynamical case, J is not a constant and we do not
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have a simple expression for 〈s〉. The authors of [19] assume that the average

avalanche size can still be written using equation (6.5) but replacing uJ by u〈Jsp〉.
In particular, it is hypothesized that avalanches can be effectively described as

static avalanches with an effective branching rate given by the average branching

ratio at spike (i.e. the synapses which are about to spike are the ones controlling

the branching process of activity); this is:

〈s〉 = 1

1− u〈Jsp〉
. (6.13)

This equality is expected to hold in the infinite system-size limit and for infinitely

large avalanches (where the law of large numbers applies) in which case, the average

of sampled values of Jsp along sufficiently large avalanches can be safely replaced

by 〈Jsp〉. In any case, it can be valid for only for branching ratios up to 1 (for which

the geometric series converges). Substituting equation (6.13) into equation (6.12)

LHG readily obtain

u〈Jsp〉 =
N2 −∆isiIextN

N2 +∆isiIext
(6.14)

which, trivially, is smaller or, at most, equal to 1. From this, one concludes that

the effective branching process is either subcritical or critical, but cannot be super-

critical. Two comments are in order:

The first one is that equation (6.12) is valid if and only if u〈Jsp〉 is not larger
than 1, hence, the calculation above does not exclude the existence of other (super-

critical) solutions, for which equation (6.12) would not hold. Actually, as illus-

trated in the numerics, for any finite system, an exploding phase, with branching

ratio larger than unity, does exist (as a mater of fact, given a fixed value of α,

depending on how the “loading” constant τJ is scaled with system size, i.e. de-

pending on how fast is the recovery of synapses, one can shift the location of the

critical point and enlarge or reduce the size of the supercritical region).

The second one is as follows: the main approximation of the calculation above

is the replacement of the average of sampled values of Jsp along any sufficiently

large avalanche by 〈Jsp〉. If, during avalanche propagation, the uncovering of val-

ues of Jsp from P (Jsp) (which is depicted in figure 6.5 for a particular value of α)

occurred in a random, uncorrelated, way then the process would be what is called

in the literature a “branching process in a random environment” [176]. Such a

process turns out to be controlled by the average value of the random branching

ratio [176]. In such a case, the calculation would be exact and, for any value of α

for which the average branching ratio is unity, the process would be critical.
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However, the uncovering of values of Jsp in the LHG model exhibits strong

correlations. Jsp fluctuates around the central value uJsp = 1 in a rather cor-

related way. This is illustrated in figure 6.8, where we plot a return map for

of uJsp averaged along each single avalanche. Notice that the return map is not

structureless as would correspond to a random process. Instead, the system is pro-

gressively charged towards large values of the synaptic intensity and, afterwards,

it gets suddenly discharged, starting a new cycle. In this way, the true dynamics

of the system consists of a continuous alternation of supercritical (where most of

the Jsp take values above 1), and subcritical dynamics: individual avalanches are

either subcritical (average branching ratio smaller than 1) or supercritical (average

branching ratio above 1), and hence the resulting avalanche-size distribution is a

complex one (not a simple power-law). This is illustrated in figure (6.9) which

shows the avalanche size distribution for different system sizes and α = 4 which

lies in the supercritical phase (the rest of parameters are as in figure 6.5). Even

if the averages of uJsp (as calculated from figure 6.5) are very close to 1 for all

sizes, the curves in figure 6.5 show a bump at large avalanche-sizes, reflecting the

presence of many supercritical avalanches. This effect does not decrease upon in-

creasing system size, even if the bump moves progressively to larger values as the

system size is increased. Similarly, correlations are also responsible for the shift

from the predicted mean-field critical point α = 1 to the actual one αc ≈ 1.4.

In conclusion: even if the branching ratio turns out to be always very close to

unity for any value of α ≥ αc, the avalanche-size distributions are not generically

pure power-laws. In the supercritical phase there are bumps revealing its non-truly

scale-invariant nature. This conclusion is in agreement with the general scenario

for non-conserving self-organized systems introduced in [20].

As a final remark, we want to emphasize that the results by Levina et al. are

mostly correct: the branching ratio is actually equal to unity in a broad region of

parameter space (in the infinitely large system size limit). However, as explained

above, this “marginality” of the averaged branching ratio does not exactly corre-

sponds generically to true scale invariance.

The main virtue of the LHG model is that, even if not generically critical, it

generates a rather broad “pseudo-critical” region, exhibiting partial power-laws.

The ultimate reason for this is rooted in the extremely slow loading (recover-

ing) process of the background field (synaptic strength), which occurs during

avalanches. This is to be compared with the more abrupt loading in forest-fire and

earthquake models, which occurs between avalanches. This more abrupt loading
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Figure 6.8: Return map for uJsp averaged along two consecutive avalanches
An and An+1 in the supercritical regime. The broken line joints (clockwise)
20 consecutive points of the map to illustrate the temporal structure of the
charging-discharging cycle. The non-trivial structure of the map reflects the
presence of strong correlations: the system typically moves up in a few steps
along the main diagonal (see the broken line) then, after reaching the super-
critical regime uJsp > 1, a large avalanche is produced, and the system returns
back to the subcritical regime uJsp < 1, to start a new charging-discharging
cycle. The diagonal dashed-line, uJsp(An+1) = uJsp(An), is plotted as a guide
to the eye.

induces excursions around the critical point to be broader than their counterparts

in the LHG model. This is particularly true in the (probably unrealistic) case in

which τJ diverges with system size.

6.5 A simple absorbing-state Langevin equation

approach

In order to have a more explicit connection between the LHG model and the fam-

ily of SOqC models and theory discussed in [20], in this Section we construct a

Langevin equation for the LHG model, which includes absorbing states (and is

therefore a natural extension of the Langevin theory for SOC, as introduced in

[66, 187–191]) and turns out to be almost identical to the general Langevin theory

for SOqC systems (as introduced in [20]).

For the sake of simplicity, and without loss of generality, let us consider homo-

geneous initial conditions for all Vi and Ji,j, i.e. Vi = V ∀i and Ji,j = J ∀i, j, and
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Figure 6.9: Avalanche size distribution for α = 4 (rest of parameters, as in
plots above) and different system sizes (as in figure 6.5) Observe the presence of
bumps, which do not disappear by increasing system size. This illustrates the
existence of a supercritical phase in the LHG model.

also, Iext = 0. Under these conditions, and given the deterministic character of

the dynamics, all neurons evolve synchronously and equations (6.3) can be simply

rewritten as:






∂tV = [uJ − Vmax] δ(t− tsp)

∂tJ =
1

τJ

(α

u
− J

)

− uJδ(t− tsp).
(6.15)

where tsp are the firing times. Let us remark that in order to treat the more general

heterogenous case it suffices to keep sub-indexes in the different variables.

The spike terms, proportional to δ(t− tsp), can be alternatively written as

δ(t− tsp) → ρ ≡ Θ(V − Vmax), (6.16)

where Θ(x) is the Heaviside step function (we take the convention Θ(0) = 0); i.e.

spike terms operate only whenever the potential is above threshold, implying that

the activity variable, ρ, is non-zero only in such a case. Thus:







∂tV = [uJ − Vmax] ρ

∂tJ =
1

τJ

(αJ

u
− J

)

− uJρ.
(6.17)

Further analytical progress can be achieved by regularizing the step-function in

equation (6.16) as a hyperbolic-tangent:

ρ ≈ 1

2
(1 + tanh [β (V − Vmax)]) , (6.18)
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which is a good approximation provided that β ≫ 1. Inverting equation (6.18):

V =
arctanh (2ρ− 1) + Vmax

β
(6.19)

and, taking derivatives on both sides,

∂tV =
1

2β

∂tρ

ρ (1− ρ)
, (6.20)

which is well-defined provided ρ ∈]0, 1[. Let us underline that the forthcoming

equations are also valid at ρ = 0, where activity ceases. Using this, equations (6.17)

can be rewritten as:







∂tρ = 2β (uJ − Vmax) ρ
2 (1− ρ)

∂tJ =
1

τJ

(αJ

u
− J

)

− uJρ
(6.21)

which, omitting higher order terms, reduces to:







∂tρ = 2βuJρ2 − 2βVmaxρ
2

∂tJ =
1

τJ

(αJ

u
− J

)

− uJρ.
(6.22)

Renaming variables as: 2βVmax → b, 2βu → w, J → φ,
1

τJ
→ γ, αJ/u → φc, and

u → w2, one obtains:

{

∂tρ = wφρ2 − bρ2

∂tφ = γ (φc − φ)− w2φρ.
(6.23)

The equation for ρ is a typical mean-field equation for a system with absorbing

states (i.e. all dynamics ceases when ρ = 0). It includes a coupling term with

the background field φ: the larger the background the more activity is created. In

the simplest possible theory of SOqC (see [20]), such a coupling is linear in ρ, but

the effect of both types of coupling can be argued to be qualitatively identical.

On the other hand, the second equation is identical to the mean-field background

equation for SOqC systems: the presence of activity reduces the background field

while the loading mechanism, acting independently of activity, increases it.

Except for the coupling term which is quadratic in ρ, these mean-field equations

are identical to the ones proposed in [20] to describe non-conserving self-organized

models at a mean-field level. Also, in analogy with SOqC systems, when slow

driving is switched on, i.e. Iext 6= 0, activity can be spontaneously created, even
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if ρ = 0, generating avalanches of activity. Moreover, if some sort of stochasticity

(and hence heterogeneity) is introduced into the dynamics, then it can be easily

seen that:

• a noise term, proportional to
√
ρ, needs to be added to the first equation,

• a diffusion term accounting for the coupling with nearest neighbors, and

• a linear-coupling term is perturbatively generated in the activity equation

(and, thus, the quadratic-coupling becomes a higher order term).

Therefore, after including fluctuations and omitting higher order terms, the final

set of stochastic equations that we have derived is identical to the one of dynamical

percolation [192] in the presence of a “loading mechanism”, i.e. to that of SOqC

systems as described in [20].

This heuristic mapping between the LHG model and the general theory of

SOqC, justifies from an analytical viewpoint all the findings in previous sections

(including the quantitative prediction for the finite-size scaling of (1−uJmax(N)))

and firmly places the LHGmodel in the class of self-organized quasi-critical models,

lacking true generic scale-invariance.

6.6 Synchronization and oscillatory properties

Synchronization was studied in the self-organized criticality literature as a possible

mechanism, alternative to conserving dynamics, leading to generic scale invariance

[93, 193]. Even though such a suggestion turned out not to be true [20], let us

explore here the oscillatory and synchronization properties observed in numerical

simulations of the LHG model. With this aim, we compute the power-spectra,

S(f), for the time series of J shown in figure 6.1 (as well as for other values of

α). In all cases, as illustrated in figure 6.10, the spectra exhibit peaks at some

characteristic frequencies, f . Closer inspection reveals that the maximum peak

appears at a characteristic frequency, fc, which we have verified to be inversely

proportional to 〈∆isi〉. This indicates that the typical time needed for a neuron

to overcome threshold and spike again introduces a characteristic scale into the

system, entailing periodicity. Observe also that the power-spectra exhibit fat tails,

with exponent k−2, characteristic of sawtooth profiles with linear increases.
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Figure 6.10: Power spectrum of the LHG model for α = 2 (i.e. supercritical).
Frequencies f are plotted rescaled by a factor 〈∆isi〉. Note the presence of peaks,
at f ∝ 〈∆isi〉−1, coexisting with fat tails. The tail decay k−2 (dashed line) is
characteristic of sawtooth profiles (i.e. with linear increases).

The previous numerical analysis can also be done for the static model, with

almost identical results: the origin of the periodic behavior lies in the charg-

ing/discharging cycle of potentials, V , and is not crucially affected by the synaptic

strengths being fixed or not.

Given that individual neurons oscillate with a certain periodicity, let us study

(in analogy with other analyses of non-conserving self-organized systems) the syn-

chronization (or absence of it) between different units (either neurons or synapses).

In order to quantify synchronization, we use bins of size 2 · 10−7 (for V ) and

10−6 (for J), and consider as an order parameter the fraction of neurons/synapses

which are synchronized, i.e. which lie in the same discrete bin, divided by the

number of occupied bins. Such a parameter becomes arbitrarily small for a large

enough random system and is 1 in the case of perfect synchronization. If the total

number of elements into a multiply occupied bin is Ns and the number of bins is

Nb, the value of the synchronization order parameter, φ, is

φV ∼ Ns/N

Nb

φJ ∼ Ns/N(N − 1)

Nb

(6.24)

for neurons (V ) and synapses (J), respectively. By monitoring φV , we observe that

the potentials in the system converge to a totally un-synchronized state (φV ∼
10−5). This is in agreement with the uniform distribution of values of V employed

in analytical arguments above.

On the other hand, by measuring φJ we observe that it rapidly converges to a
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stationary state value, Nb = N , reflecting a perfect synchronization of the different

synapses of any given neuron, j, i.e. Jij = Jkj for any values of i and k: all the

synapses Jij emerging from of a given (pre-synaptic) neuron, j, converge to a

common state. This can be easily understood using the following argument. The

dynamics of Jij and Jk,j are controlled by the same equation

∂Jl,j

∂t
=

1

τJ

(α

u
− Jl,j

)

− uJl,jη(t), (6.25)

where l is either i or k and η(t) is a (positive) noise, accounting for the spikes of

(pre-synaptic) neuron j, which is obviously common to all synapses of j. Subtract-

ing equation (6.25) for k from equation (6.25) for i we obtain that the difference,

∆ = Jij − Jkj evolves as
∂∆

∂t
= −∆[

1

τJ
+ uη(t)], (6.26)

which, given the positivity of τJ , u and η, entails a negative Lyapunov exponent

and, hence, convergence to the synchronous state, Ji,j = Jk,j – i.e. all synapses

emerging from a given pre-synaptic neuron synchronize. Observe that this type

of synchronization is similar (but not identical) to that observed in, for instance,

earthquake models [93, 193].

6.7 Conclusions

Cortical avalanches, first observed by Beggs and Plenz [6, 8], were claimed to be

generically power-law distributed and, thus, critical. Such a claim led to an out-

burst of activity in Neuroscience trying to understand the origin and consequences

of such a generic scale-invariance. At a theoretical level, Levina, Herrmann, and

Geisel [19] proposed a simple model (a variation of the Markram-Tsodyks model

for chemical synapses), claimed to reproduce generically scale-invariance. In par-

ticular, these authors performed a mean-field calculation leading to the conclusion

that, for any value of the control parameter, α, larger than unity, generic critical

behavior is observed. They also conducted some computational studies to support

their findings.

The LHG model turns out to be very similar to slowly driven models of

self-organized criticality such as earthquake and forest-fire models. As in these

other models, and in contrast to sandpiles, in the LHG one the dynamics is non-

conserving (reflecting the leaking/dissipative dynamics of actual synaptic signal
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transmission).

It is by now a well-established fact that non-conserving self-organized models

are not generically critical but just “hover around” the critical point of an underly-

ing absorbing phase transition, with finite excursions (of tunable amplitude) into

the active and the absorbing phases. As they do not converge to the critical point

itself, generic scale-invariance cannot be invoked (see [20] and references therein).

The term self-organized quasi criticality (SOqC) has been proposed to refer to

such a class of systems, emphasizing the differences with conserving SOC models.

Given the contradiction between this general result and the claim in [19], in this

chapter we have scrutinized the LHG model, both numerically and analytically,

and reached the following conclusions:

• Both in its static and its dynamical form, the model exhibits absorbing and

active phases and a non-trivial critical point separating both of them.

• It is only if parameters are fine tuned to such a critical point that true

scale-invariance emerges and the distribution of avalanche-sizes is power-law

distributed.

• The mean-field calculation in [19], supporting generic criticality, lead indeed

to a branching ratio equal to unity in a broad interval of phase space, but

this does not imply generic scale-invariance.

• A Langevin equation, including absorbing states, has been derived for the

LHG model. Such an equation reduces to the analogous one proposed to

describe generically non-conserving self-organized (SOqC) models. Thus, all

the general conclusions obtained from such a theory in [20] apply to the LHG

model, providing analytical support to the numerical findings above.

It is worth stressing that our results do not subtract merit from the LHG model.

Actually, strict criticality might not be required to explain the truncated power-

laws reported by Beggs and Plenz; the dynamical LHG model generates partial

power-laws compatible with the empirical findings by Beggs and Plenz for a rel-

atively broad parameter (α) interval, as shown in figure 6.11. Moreover, the fact

that the model can generate critical, subcritical, and supercritical regimes, de-

pending on parameter values, converts the LHG model into an adequate one to

describe the state-of-the-art in neuronal avalanches. As mentioned in the Intro-

duction, Pasquale et al. have shown in a recent paper [179] that, depending on
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Figure 6.11: Range of compatibility between the results of the LHG model,
for different values of N , and the empirical results by Beggs and Plenz; for
large system sizes (N > 700) values of α between 1 and 1.4 give avalanche-size
distributions compatible with those observed by Beggs and Plenz [6, 8], even if
they are subcritical.

several experimental features, cortical avalanches can indeed be either critical,

subcritical, or supercritical.

The main implication of our work can be summarized as follows: if future

experimental research conducted on cortical networks were to support that crit-

ical avalanches are the norm and not the exception, then, one should look for

more elaborate theories, beyond simple self-organization, to explain this. Stan-

dard self-organization does not suffice to explain criticality in non-conserving sys-

tems. Parameters have to be tuned or “selected” to achieve a close-to-criticality

regime. For instance, the claim by Royer and Paré [181] that homeostatic regu-

lation mechanisms keep cortical neural networks with an approximately constant

(i.e. conserved) global synaptic strength could be at the basis of such a less generic

theory beyond simple self-organization. Another inspiring possibility is that nat-

ural selection by means of evolutionary and adaptive processes leads to parameter

selection, favoring critical or close-to-critical propagation of information in the

cortex [180]. A more realistic approach should also include long-term plasticity

[194], as well as co-evolutionary mechanisms, shaping the network topology. We

shall explore these possibilities in a future work.



Chapter 7

Enhancing neural-network

performance via assortativity

The performance of attractor neural networks has been shown to depend crucially

on the heterogeneity of the underlying topology. In this chapter we take this

analysis a step further by examining the effect of degree-degree correlations – or

assortativity – on neural-network behavior. We make use of a method recently

put forward for studying correlated networks and dynamics thereon, both analyt-

ically and computationally, which is independent of how the topology may have

evolved. We show how the robustness to noise is greatly enhanced in assortative

(positively correlated) neural networks, especially if it is the hub neurons that

store the information.

7.1 Introduction

For a dozen years or so now, the study of complex systems has been heavily in-

fluenced by results from network science – which one might regard as the fusion

of graph theory with statistical physics [58, 69]. Phenomena as diverse as epi-

demics [76], cellular function [195], power-grid failures [196] or internet routing

[197], among many others [61], depend crucially on the structure of the underly-

ing network of interactions. One of the earliest systems to have been described as

a network was the brain, which is made up of a great many neurons connected to

each other by synapses [82, 115, 198]. Mathematically, the first neural networks

combined the Ising model [62] with the Hebb learning rule [18] to reproduce, very

126
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successfully, the storage and retrieval of information [110, 115, 121]. Neurons were

simplified to binary variables (like Ising spins) representing firing or non-firing

cells. By considering the trivial fully-connected topology, exact solutions could be

reached, which at the time seemed more important than attempting to introduce

biological realism. Subsequent work has tended to focus on considering richer

dynamics for cells rather than on the way in which these are interconnected [199–

201]. However, the topology of the brain – whether at the level of neurons and

synapses, cortical areas or functional connections – is obviously far from trivial

[4, 23, 24, 57, 74].

The number of neighbors a given node in a network has is called its degree,

and much attention is paid to degree distributions since they tend to be highly

heterogeneous for most real networks. In fact, they are often approximately scale-

free (i.e., described by power laws) [58, 69, 112, 202]. By including this topological

feature in a Hopfield-like neural-network model, Torres et al. [25] found that de-

gree heterogeneity increases the system’s performance at high levels of noise, since

the hubs (high degree nodes) are able to retain information at levels well above

the usual critical noise. To prove this analytically, the authors considered the

configurational ensemble of networks (the set of random networks with a given de-

gree distribution but no degree-degree correlations) and showed that Monte Carlo

(MC) simulations were in good agreement with mean-field analysis, despite the

approximation inherent to the latter technique when the network is not fully con-

nected. A similar approach can also be used to show how heterogeneity may be

advantageous for the performance of certain tasks in models with a richer dynam-

ics [164]. It is worth mentioning that this influence of the degree distribution on

dynamical behavior is found in many other settings, such as the more general sit-

uation of systems of coupled oscillators [203].

Another property of empirical networks that is quite ubiquitous is the existence

of correlations between the degrees of nodes and those of their neighbors [204, 205].

If the average degree-degree correlation is positive the network is said to be assor-

tative, while it is called disassortative if negatively correlated. Most heterogeneous

networks are disassortative [58], which seems to be because this is in some sense

their equilibrium (maximum entropy) state given the constraints imposed by the

degree distribution [26]. However, there are probably often mechanisms at work

which drive systems from equilibrium by inducing different correlations, as ap-

pears to be the case for most social networks, in which nodes (people) of a kind

tend to group together. This feature, known as assortativity or mixing by degree,
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is also relevant for processes taking place on networks. For instance, assortative

networks have lower percolation thresholds and are more robust to targeted attack

[205], while disassortative ones make for more stable ecosystems and are – at least

according to the usual definition – more synchronizable [206].

The approach usually taken when studying correlated networks computation-

ally is to generate a network from the configuration ensemble and then introduce

correlations (positive or negative) by some stochastic rewiring process [207]. A

drawback of this method, however, is that results may well then depend on the

details of this mechanism: there is no guarantee that one is correctly sampling

the phase space of networks with given correlations. For analytical work, some

kind of hidden variables from which the correlations originate are often consid-

ered [208–211] – an assumption which can also be used to generate correlated

networks computationally [210]. This can be a very powerful method for solving

specific network models. However, it may not be appropriate if one wishes to con-

sider all possible networks with given degree-degree correlations, independently of

how these may have arisen. Here we get round this problem by making use of

a method recently suggested by Johnson et al. [26] whereby the ensemble of all

networks with given correlations can be considered theoretically without recurring

to hidden variables. Furthermore, we show how this approach can be used com-

putationally to generate random networks that are representative of the ensemble

of interest (i.e., they are model-independent). In this way, we study the effect of

correlations on a simple neural network model and find that assortativity increases

performance in the face of noise – particularly if it is the hubs that are mainly

responsible for storing information (and it is worth mentioning that there is ex-

perimental evidence suggestive of a main functional role played by hub neurons in

the brain [212, 213]). The good agreement between the mean-field analysis and

our MC simulations bears witness both to the robustness of the results as regards

neural systems, and to the viability of using this method for studying dynamics

on correlated networks.
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7.2 Preliminary considerations

7.2.1 Model neurons on networks

The attractor neural network model put forward by Hopfield [110] consists of N

binary neurons, each with an activity given by the dynamic variable si = ±1. Ev-

ery time step (MCS), each neuron is updated according to the stochastic transition

probability P (si → ±1) = 1
2

[

1± tanh
(

hi(~S)/T
)]

(parallel dynamics), where the

field hi(~S) is the combined effect on i of all its neighbors, hi(~S) =
∑

j ŵijsj, and

T is a noise parameter we shall call temperature, but which represents any kind

of random fluctuations in the environment. This is the same as the Ising model

for magnetic systems, and the transition rule can be derived from a simple inter-

action energy such that aligned variables s (spins) contribute less energy than if

they were to take opposite values. However, this system can store P given config-

urations (memory patterns) ξνi = ±1 by having the interaction strengths (synaptic

weights) set according to the Hebb rule [18]: ŵij ∝
∑P

ν=1 ξ
ν
i ξ

ν
j . In this way, each

pattern becomes an attractor of the dynamics, and the system will evolve towards

whichever one is closest to the initial state it is placed in. This mechanism is

called associative memory, and is nowadays used routinely for tasks such as image

identification. What is more, it has been established that something similar to the

Hebb rule is implemented in nature via the processes of long-term potentiation

and depression at the synapses [214], and this phenomenon is indeed required for

learning [120].

To take into account the topology of the network, we shall consider the weights

to be of the form ŵij = ω̂ij âij, where the element âij of the adjacency matrix rep-

resents the number of directed edges (usually interpreted as synapses in a neural

network) from node j to node i, while ω̂ stores the patterns, as before:

ω̂ij =
1

〈k〉

P
∑

ν=1

ξνi ξ
ν
j .

For the sake of coherence with previous work, we shall assume â to be symmetric

(i.e., the network is undirected), so each node is characterized by a single degree

ki =
∑

j âij. However, all results are easily extended to directed networks – in

which nodes have both an in degree, kini =
∑

j âij, and an out degree, kouti =
∑

j âji – by bearing in mind it is only a neuron’s pre-synaptic neighbors that
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influence its behavior. The mean degree of the network is 〈k〉, where the angles

stand for an average over nodes: 〈·〉 ≡ N−1
∑

i(·) 1.

7.2.2 Network ensembles

When one wishes to consider a set of networks which are randomly wired while

respecting certain constraints – that is, an ensemble – it is usually useful to define

the expected value of the adjacency matrix, E(â) ≡ ǫ̂ 2. The element ǫ̂ij of this

matrix is the mean value of âij obtained by averaging over the ensemble. For

instance, in the Erdős-Rényi (ER) ensemble all elements (outside the diagonal)

take the value ǫ̂ER
ij = 〈k〉/N , which is the probability that a given pair of nodes

be connected by an edge. For studying networks with a given degree sequence,

(k1, ...kN ), it is common to assume the configuration ensemble, defined as

ǫconfij =
kikj
〈k〉N

This expression can usually be applied also when the constraint is a given degree

distribution, p(k), by integrating over p(ki) and p(kj) where appropriate. One way

of deriving ǫ̂conf is to assume one has ki dangling half-edges at each node i; we then

randomly choose pairs of half-edges and join them together until the network is

wired up. Each time we do this, the probability that we join i to j is kikj/(〈k〉N)2,

and we must perform the operation 〈k〉N times. Bianconi showed that this is also

the solution for Barabási-Albert evolved networks [215]. However, we should bear

in mind that this result is only strictly valid for networks constructed in certain

particular ways, such as in these examples. It is often implicitly assumed that

were we to average over all random networks with a given degree distribution, the

mean adjacency matrix obtained would be ǫ̂conf . As we shall see, however, this is

not necessarily the case [26].

1In directed networks the mean in degree and the mean out degree necessarily coincide,
whatever the forms of the in and out distributions.

2As in statistical physics, one can consider themicrocanonical ensemble, in which each element
(network) satisfies the constraints exactly, or the canonical ensemble, where the constraints are
satisfied on average [215]. Throughout this work, we shall refer to canonical ensembles.
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Figure 7.1: Mean-nearest-neighbor functions knn(k) for scale-free networks
with β = −0.5 (disassortative), 0.0 (neutral), and 0.5 assortative, generated
according to the algorithm described in section 7.3.2. Inset: degree distribution
(the same in all three cases). Other parameters are γ = 2.5, 〈k〉 = 12.5, N = 104.

7.2.3 Correlated networks

In the configuration ensemble, the expected value of the mean degree of the neigh-

bors of a given node is knn,i = k−1
i

∑

j ǫ̂
conf
ij kj = 〈k2〉/〈k〉, which is independent

of ki. However, as mentioned above, real networks often display degree-degree

correlations, with the result that knn,i = knn(ki). If knn(k) increases with k, the

network is said to be assortative – whereas it is disassortative if it decreases with k

(see figure 7.1). This is from the more general nomenclature (borrowed form soci-

ology) in which sets are assortative if elements of a kind group together, or assort.

In the case of degree-degree correlated networks, positive assortativity means that

edges are more than randomly likely to occur between nodes of a similar degree. A

popular measure of this phenomenon is Pearson’s coefficient applied to the edges

[58, 69, 205]: r = ([klk
′
l] − [kl]

2)/([k2
l ] − [kl]

2), where kl and k′
l are the degrees of

each of the two nodes belonging to edge l, and [·] ≡ (〈k〉N)−1
∑

l(·) is an average

over edges.

The ensemble of all networks with a given degree sequence (k1, ...kN ) contains

a subset for all members of which knn(k) is constant (the configuration ensemble),

but also subsets displaying other functions knn(k). We can identify each one of

these subsets (regions of phase space) with an expected adjacency matrix ǫ̂ which

simultaneously satisfies the following conditions: i)
∑

j kj ǫ̂ij = kiknn(ki), ∀i (by
definition of knn(k)), and ii)

∑

j ǫ̂ij = ki, ∀i (for consistency). An ansatz which
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fulfills these requirements is any matrix of the form

ǫ̂ij =
kikj
〈k〉N +

∫

dν
f(ν)

N

[

(kikj)
ν

〈kν〉 − kν
i − kν

j + 〈kν〉
]

, (7.1)

where ν ∈ R and the function f(ν) is in general arbitrary [26]. (If the network

were directed, then ki = kini and kj = koutj in this expression.) This ansatz yields

knn(k) =
〈k2〉
〈k〉 +

∫

dνf(ν)σν+1

[

kν−1

〈kν〉 − 1

k

]

(7.2)

(the first term being the result for the configuration ensemble), where σb+1 ≡
〈kb+1〉 − 〈k〉〈kb〉. To prove the uniqueness of a matrix ǫ̂ obtained in this way (i.e.,

that it is the only one compatible with a given knn(k)) assume that there exists

another valid matrix ǫ̂′ 6= ǫ̂. Writing ǫ̂′ij − ǫ̂ij ≡ h(ki, kj) = hij, then Condition

i) implies that
∑

j kjhij = 0, ∀i, while Condition ii) means that
∑

j hij = 0, ∀i.
It follows that hij = 0, ∀i, j. This means that ǫ̂ is not just one possible way of

obtaining correlations according to knn(k); rather, there is a two-way mapping

between ǫ̂ and knn(k): every network with this particular function knn(k) and no

other ones are contained in the ensemble defined by ǫ̂. Thanks to this, if we are

able to consider random networks drawn according to this matrix (whether we

do this analytically or computationally; see section 7.3.2), we can be confident

that we are correctly taking account of the whole ensemble of interest. In other

words, whatever the reasons behind the existence of degree-degree correlations in

a given network, we can study the effects of these with only information on p(k)

and knn(k) by obtaining the associated matrix ǫ̂. This is not to say, of course,

that all topological properties are captured in this way: a particular network may

have other features – such as higher order correlations, modularity, etc. – the

consideration of which would require concentrating on a sub-partition of those

with the same p(k) and knn(k). But this is not our purpose here.

In many empirical networks, knn(k) has the form knn(k) = A + Bkβ, with

A,B > 0 [69, 204] – the mixing being assortative if β is positive, and disassortative

when negative. Such a case is fitted by equation (7.2) if

f(ν) = C

[

σ2

σβ+2

δ(ν − β − 1)− δ(ν − 1)

]

, (7.3)
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with C a positive constant, since this choice yields

knn(k) =
〈k2〉
〈k〉 + Cσ2

[

kβ

〈kβ+1〉 −
1

〈k〉

]

. (7.4)

Johnson et al. [26] obtained the entropy of ensembles of networks with scale-

free degree distributions (p(k) ∼ k−γ) and correlations given by equation (7.4), and

found that the most likely configurations (those maximizing the entropy) generally

correspond to correlated networks. In particular, the expected mixing, all other

things being equal, is usually a certain degree of disassortativity – which explains

the predominance of these networks in the real world. They also showed that the

maximum entropy is usually obtained for values of C close to one. Here, we shall

use this result to justify concentrating on correlated networks with C = 1, so that

the only parameter we need to take into account is β. It is worth mentioning

that Pastor-Satorras et al. originally suggested using this exponent as a way of

quantifying correlations [204], since this seems to be the most relevant magnitude.

Because β does not depend directly on p(k) (as r does), and can be defined for

networks of any size (whereas r, in very heterogeneous networks, always goes to

zero for large N due to its normalization [216]), we shall henceforth use β as our

assortativity parameter.

So, after plugging equation (7.3) into equation (7.1), we find that the ensemble

of networks exhibiting correlations given by equation (7.4) (and C = 1) is defined

by the mean adjacency matrix

ǫ̂ij =
1

N
[ki + kj − 〈k〉]

+
σ2

σβ+2

1

N

[

(kikj)
β+1

〈kβ+1〉 − kβ+1
i − kβ+1

j + 〈kβ+1〉
]

. (7.5)

7.3 Analysis and results

7.3.1 Mean field

Let us consider the single-pattern case (P = 1, ξi = ξ1i ). Substituting the adja-

cency matrix â for its expected value ǫ̂ (as given by equation (7.5)) in the expression
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for the local field at i – which amounts to a mean-field approximation – we have

hi(~S) =
1

〈k〉ξi
{[

(ki − 〈k〉) + σ2

σβ+2

(〈kβ+1〉 − kβ+1
i )

]

µ0

+ 〈k〉µ1 +
σ2

σβ+2

(kβ
i − 〈kβ+1〉)µβ+1

}

,

where we have defined

µα ≡ 〈kα
i ξisi〉
〈kα〉

for α = 0, 1, β+1. These order parameters measure the extent to which the system

is able to recall information in spite of noise [164]. For the first order we have

µ0 = m ≡ 〈ξisi〉, the standard overlap measure in neural networks (analogous to

magnetization in magnetic systems), which takes account of memory performance.

However, µ1, for instance, weighs the sum with the degree of each node, with the

result that it measures information per synapse instead of per neuron. Although

the overlap m is often assumed to represent, in some sense, the mean firing rate

of neurological experiments, it is possible that µ1 is more closely related to the

empirical measure, since the total electric potential in an area of tissue is likely to

depend on the number of synapses transmitting action potentials. In any case, a

comparison between the two order parameters is a good way of assessing to what

extent the performance of neurons depends on their degree – larger-degree model

neurons can in general store information at higher temperatures than ones with

smaller degree can [25].

Substituting si for its expected value according to the transition probability,

si → tanh(hi(~S)/T ), we have, for any α,

〈kα
i ξisi〉 = 〈kα

i ξi tanh(hi(~S)/T )〉;

or, equivalently, the following 3-D map of closed coupled equations for the macro-

scopic overlap observables µ0, µ1 and µβ+1 – which describes, in this mean-field

approximation, the dynamics of the system:

µ0(t+ 1) =

∫

p(k) tanh[F (t)/(〈k〉T )]dk

µ1(t+ 1) =
1

〈k〉

∫

p(k)k tanh[F (t)/(〈k〉T )]dk (7.6)

µβ+1(t+ 1) =
1

〈kβ+1〉

∫

p(k)kβ+1 tanh[F (t)/(〈k〉T )]dk,
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with

F (t) ≡ (kµ0(t) + 〈k〉µ1(t)− 〈k〉µ0(t))

+
σ2

σβ+2

[kβ+1(µβ+1(t)− µ0(t))

+ 〈kβ+1〉(µ0(t)− µβ+1(t))].

This can be easily computed for any degree distribution p(k). Note that taking

β = 0 (the uncorrelated case) the system collapses to the 2-D map obtained in

Ref. [25], while it becomes the typical 1-D case for a homogeneous p(k) – say a

fully-connected network [110]. It is in principle possible to do similar mean-field

analysis for any number P of patterns, but the map would then be 3P -dimensional,

making the problem substantially more complex.

At a critical temperature Tc, the system will undergo the characteristic second

order phase transition from a phase in which it exhibits memory (akin to ferro-

magnetism) to one in which it does not (paramagnetism). To obtain this critical

temperature, we can expand the hyperbolic tangent in equations (7.6) around the

trivial solution (µ0, µ1, µβ+1) ≃ (0, 0, 0) and, keeping only linear terms, write

µ0 = µ1/Tc,

µ1 =
1

〈k〉2Tc

[

〈k〉2µ1 + σ2µβ+1

]

,

µβ+1 =
1

Tc〈k〉〈kβ+1〉
[

σβ+2µ0

+
σ2

σβ+2

(

〈kβ+1〉2 − 〈k2(β+1)〉
)

µ0

+ 〈k〉〈kβ+1〉µ1 −
σ2

σβ+2

(

〈kβ+1〉2 − 〈k2(β+1)〉
)

µβ+1

]

.

Defining

A ≡ σ2

〈k〉2 ,

B ≡ σ2

σβ+2

〈k2(β+1)〉 − 〈kβ+1〉2
〈k〉〈kβ+1〉 ,

D ≡ σβ+2

〈k〉〈kβ+1〉 ,

Tc will be the solution to the third order polynomial equation:

T 3
c − (B + 1)T 2

c + (B − A)Tc + A(B −D) = 0. (7.7)
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Note that for neutral (i.e., uncorrelated) networks, β = 0, and so A = B = D. We

then have Tc = 〈k2〉/〈k〉2, as expected [164].

7.3.2 Generating correlated networks

Given a degree distribution p(k), the ensemble of networks compatible with this

constraint and with degree-degree correlations according to equation (7.4) (with

some exponent β) is defined by the mean adjacency matrix ǫ̂ of equation (7.5)

– as described in section 7.2.3 and in Ref. [26]. Therefore, although there will

generally be an enormous number of possible networks in this volume of phase

space, we can sample them correctly simply by generating them according to ǫ̂.

To do this, first we have to assign to each node a degree drawn from p(k). If the

elements of ǫ̂ were probabilities, it would suffice then to connect each pair of nodes

(i, j) with probability ǫ̂ij to generate a valid network. Strictly speaking, ǫ̂ is an

expected value, which in certain cases can be greater than one. To get round this,

we write a probability matrix p̂ = ǫ̂/a with a some value such that all elements

of p̂ are smaller than one. If we then take random pairs of nodes (i, j) and, with

probability p̂ij, place an edge between them, repeating the operation until 1
2
〈k〉N

edges have been placed, the expected value of edges joining i and j will be ǫ̂ij .

This method is like the hidden variable technique [210] in that edges are placed

with a predefined probability (which is why the resulting ensemble is canonical).

The difference lies in the fact that in the method here described correlations only

depend on the degrees of nodes.

We are interested here in neural networks, in which a given pair of nodes can

be joined by several synapses, so we shall not impose the restriction of so-called

simple networks of allowing only one edge at most per pair. We shall, however,

consider networks with a structural cutoff: ki <
√

〈k〉N , ∀i [217]. This ensures

that, at least for β ≤ 0, all elements of ǫ̂ are indeed smaller than one.

Because we can expect effects due to degree-degree correlations to be largest

when p(k) is very broad, and since most networks in nature and technology seem

to exhibit approximately power-law degree distributions [58, 61, 112, 202], we shall

here test our general theoretical results against simulations of scale-free networks:

p(k) ∼ k−γ . This means that a network (or the region of phase space to which it

belongs) is characterized by the set of parameters {〈k〉, N, γ, β}.
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Figure 7.2: Stable stationary value of the weighted overlap µ1 against tem-
perature T for scale-free networks with correlations according to knn ∼ kβ ,
for β = −0.5 (disassortative), 0.0 (neutral), and 0.5 (assortative). Symbols
from MC simulations, with error bars representing standard deviations, and
lines from equations (7.6). Other network parameters as in figure 7.1. Inset: µ1

against T for the assortative case (β = 0.5) and different system sizes: N = 104,
3 · 104 and 5 · 104.

7.3.3 Assortativity and dynamics

In figure 7.2 we plot the stationary value of µ1 against the temperature T , as

obtained from simulations and equations (7.6), for disassortative, neutral and as-

sortative networks. The three curves are similar at low temperatures, but as

T increases their behavior becomes quite different. The disassortative network

is the least robust to noise. However, the assortative one is capable of retain-

ing some information at temperatures considerably higher than the critical value,

Tc = 〈k2〉/〈k〉, of neutral networks. A comparison between µ1 and µ0 (see fig-

ure 7.3) shows that it is the high degree nodes that are mainly responsible for

this difference in performance. This can be seen more clearly in figure 7.4, which

displays the difference µ1 − µ0 against T for the same networks. It seems that,

because in an assortative network a sub-graph of hubs will have more edges than

in a disassortative one, it has a higher effective critical temperature. Therefore,

even when most of the nodes are acting randomly, the set of nodes of sufficiently

high degree nevertheless displays associative memory.

The phase diagram if figure 7.5 shows the critical temperature, Tc, as ob-

tained from equation (7.7). In addition to the effect reported in Ref. [25] whereby

the Tc of scale-free networks grows with degree heterogeneity (decreasing γ), it also

increases very significantly with positive degree-degree correlations (increasing β).
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Figure 7.3: Stable stationary values of order parameters µ0, µ1 and µβ+1

against temperature T , for assortative networks according to β = 0.5. Symbols
from MC simulations, with error bars representing standard deviations, and
lines from equations (7.6). Other parameters as in figure 7.1.
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Figure 7.4: Difference between the stationary values µ1 and µ0 for networks
with β = −0.5 (disassortative), 0.0 (neutral) and 0.5 (assortative), against tem-
perature. Symbols from MC simulations, with error bars representing standard
deviations, and lines from equations (7.6). Line shows the expected level of

fluctuations due to noise, ∼ N− 1

2 . Other parameters as in figure 7.1.

At large values of N , the critical temperature scales as Tc ∼ N b, with b ≥ 0

a constant. However, because the moments of k appearing in the coefficients of

equation (7.7) can have different asymptotic behavior depending on the values of

γ and β, the scaling exponent b differs from one region to another in the space of

these parameters. These are the seven regions shown in figure 7.6, along with the
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Figure 7.5: Phase diagrams for scale-free networks with γ = 2.5, 3, and 3.5.
Lines show the critical temperature Tc marking the second-order transition from
a memory (ferromagnetic) phase to a memoryless (paramagnetic) one, against
the assortativity β, as given by equation (7.7). Other parameters as in figure
7.1.

scaling behavior exhibited by each one. This can be seen explicitly in figure 7.7,

where Tc, as obtained from MC simulations, is plotted against N for cases in each

of the regions with γ < 3. In each case, the scaling is as given by equation (7.7)

and shown in figure 7.6. For the four regions with γ < 3, from lowest to highest

assortativity we have scaling exponents which are dependent on: only γ (region

I), only β (region II), both γ and β (region III), and, perhaps most interestingly,

neither of the two (region IV) – with Tc scaling, in the latter case, as
√
N . As

for the more homogeneous γ > 3 part, regions V and VI have a diverging critical

temperature despite the fact that the second moment of p(k) is finite, simply as a

result of assortativity.

The case in which more than one pattern are stored (P > 1) can be explored

numerically. Assuming there are P uncorrelated patterns, we have an order pa-

rameter µν
1 for each pattern ν. A global measure of the degree to which there is

memory can be captured by the parameter ζ, where

ζ2 ≡ 1

1 + P/N

P
∑

ν=1

(µν
1)

2.

Notice that the normalization factor is due to the fact that if one pattern is con-

densed – i.e., |µ1| . 1 – the others have |µν | ∼ 1/
√
N , ν = 2, ..P , and so ζ ≃ 1.

Figure 7.8 shows how ζ decreases with T in variously correlated networks for P = 3



Chapter 7. Enhancing neural-network performance via assortativity 140

 2

 2.5

 3

 3.5

 4

-1 -0.5  0  0.5  1

γ

β

(0) finite Tc

(I) Tc∝ N
(3-γ)/4

(IV)Tc∝ N
1/2

Tc∝ N
-β/2

(II)
(III)Tc∝ N

(3+β-γ)/2

(V)

Tc∝
N(3+2β-γ)/2

(VI)Tc∝ N
β/2

β+2
β+3

2β+3

Figure 7.6: Parameter space β−γ partitioned into the regions in which b(β, γ)
has the same functional form – where b is the scaling exponent of the critical
temperature: Tc ∼ N b. Exponents obtained by taking the large N limit in
equation (7.7).
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Figure 7.7: Examples of how Tc scales with N for networks belonging to
regions I, II, III and IV of figure 7.6 (β = −0.8, −0.35, 0.0 and 0.9, respectively).
Symbols from MC simulations, with error bars representing standard deviations,
and slopes from equation (7.7). All parameters – except for β and N – are as
in figure 7.1.

(left panel) and P = 10 patterns (right panel). The behavior is not qualitatively

different from that observed for the single-pattern case in the main panel of figure

7.2, suggesting that the influence of assortativity we report is robust as to the

number of patterns stored, P .
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Figure 7.8: Global order parameter ζ for assortative (β = 0.5), neutral (β =
0.0) and disassortative (β = −0.5) networks with P = 3 (left panel) and P = 10
(right panel) stored patterns. Symbols from MC simulations, with errorbars
representing standard deviations. All parameters are as in figure 7.1.

7.4 Discussion

We have shown that assortative networks of simple model neurons are able to ex-

hibit associative memory in the presence of levels of noise such that uncorrelated

(or disassortative) networks cannot. This may appear to be in contradiction with

a recent result obtained using spectral graph analysis – that synchrony of a set

of coupled oscillators is highest for disassortative networks [206]. A synchronous

state of model oscillators and a memory phase of model neurons are both sets

of many simple dynamical elements coupled via a network in such a way that a

macroscopically coherent situation is maintained [203]. Obviously both systems

require the effective transmission of information among the elements. So why are

opposite results as regards the influence of topology reported for each system? The

answer is simple: whereas the definition of a synchronous state is that every single

element oscillate at the same frequency, it is precisely when most elements are ac-

tually behaving randomly that the advantages to assortativity we report become

apparent. In fact, it can be seen in figure 7.2 that at low temperatures disassorta-

tive networks perform the best, although the effect is small. This is reminiscent of



Chapter 7. Enhancing neural-network performance via assortativity 142

percolation: at high densities of edges the giant component is larger in disassor-

tative networks, but in assortative ones a non-vanishing fraction of nodes remain

interconnected even at densities below the usual percolation threshold [205]. Be-

cause in the case of targeted attacks it is this threshold which is taken as a measure

of resilience, we say that assortative networks perform the best. The relevance of

partial synchronization and the important role of hubs have already been noted

for systems of (weakly) coupled oscillators [71, 218] – for which, however, assorta-

tivity has not been expected to be of consequence [218]. In general, the optimal

network for good conditions (i.e., complete synchronization, high density of edges,

low levels of noise) is not necessarily the one which performs the best in bad condi-

tions (partial synchronization, low density of edges, high levels of noise). It seems

that optimality – whether in resilience or robustness – should thus be defined for

particular conditions.

We have used the technique suggested in Ref. [26] to study the effect of cor-

relations on networks of model neurons, but many other systems of dynamical

elements should be susceptible to a similar treatment. In fact, Ising spins [215],

Voter Model agents [219], or Boolean nodes [220], for instance, are similar enough

to binary neurons that we should expect similar results for these models. If a

moral can be drawn, it is that persistence of partial synchrony, or coherence of

a subset of highly connected dynamical elements, can sometimes be as relevant

(or more so) as the possibility of every element behaving in the same way. In the

case of real brain cells, experiments suggest that hub neurons play key functional

roles [212, 213]. From this point of view, there may be a selective pressure for

brain networks to become assortative – although, admittedly, this organ engages

in such complex behavior that there must be many more functional constraints

on its structure than just a high robustness to noise. Nevertheless, it would be

interesting to investigate this aspect of biological systems experimentally. For

this, it should be borne in mind that heterogeneous networks have a natural ten-

dency to become disassortative, so it is against the expected value of correlations

discussed in Ref. [26] that empirical data should be contrasted in order to look

for meaningful deviations towards assortativity. Similarly, it may be necessary

to take into account the correlations that could emerge due to the spatial layout

of neurons [23, 78]. In any case, it would be in areas of the cortex specifically

related to memory – such as the temporal (long-term memory) [113, 114] or pre-

frontal (short-term memory) [221, 222] lobes – that this effect might be relevant.

A curious fact that would seem to support our hypothesis is that whereas the vast
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majority of non-social networks are disassortative [58], one that appears actually

to be strongly assortative is the functional network of the human cortex [4].



Chapter 8

Synchronization phenomena in

networks of spiking neurons with

a correlated scale-free topology

To go a step further in the understanding of the behaviour of neural populations in

networks characterized by non trivial long range degree distributions, we study in

this chapter neural networks with a more realistic spiking neuron description, by

mean of the Integrate and Fire (IF) model (described in section 3.2) in the same

class of correlated complex topologies implemented in chapter 7. This allows for

the study of the emergence of different type of synchronization dynamical states

as a function of the underlying topology and its degree-degree correlations. Our

study shows that network global heterogeneity and local degree-degree correlations

play a determinant role in the emergence and stability of synchronous states, as

well as in the appearance of asynchronous states and mixture states including both

synchronous and asynchronous activity within the whole neuron population.

8.1 Introduction

The topology of neural networks has been found recently to be relevant in different

computational and storage performance tasks, as well as in their robustness under

the effect of noise. Torres et al. found in a Hopfield-like neural-network model

with a non trivial topology that degree heterogeneity increases the system’s perfor-

mance in the presence of high levels of noise, since the hubs (i.e. the neurons with

144
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high degree) are able to retain information at levels well above the usual critical

noise level for the appearance of non-memory states [25]. As described in chapter

7, there are network topologies that could be characterized by finer features, other

than the simple degree distribution, that we demonstrated to have a great influ-

ence in their emergent behaviour. As we have already introduced in the previous

chapter, different empirical networks present correlations between the degrees of a

node and those of their neighbours (i.e. the nodes with which it establishes a link)

[204, 205]. If the average nodes degree-degree correlation is positive the network

is said to be assortative, while it is called disassortative if negatively correlated.

Thus, in chapter 7, we have demonstrated that an assortative Amari-Hopfield

neural network enhances associative memory in the presence of high level of noise.

Moreover, assortativity seems to be also relevant in different and more complex

dynamic processes taking place on networks, see for example [203, 205, 206]. The

particular dynamics defined on the nodes of the network is also essential for the

role played by assortativity on the behaviour of the system under study, and in

some cases it can generate counterintuitive effects. For example, the phenomenol-

ogy associated to assortative configurations in binary neural networks described

in chapter 7 is in contradiction with a recent result obtained using spectral graph

analysis, i.e. that synchronizability of a set of coupled oscillators is highest for

disassortative networks [206].

Synchronization of distributed brain activity has been proposed as an impor-

tant mechanism for neural information processing, and the experimentally ob-

served brain activity, characterized by synchronization phenomena over a wide

range of spatial and temporal scales, reflects a hierarchical organization of the

overall dynamics [224]. Realistic neural network models with richer neuron dy-

namics have often been modeled in networks with trivial degree distributions, i.e.

fully connected or homogeneous (Gaussian or Poisson distributed) [89]. More re-

cent works have investigated the contributions of small world [91] or hierarchically

organized [225] network topological features to the dynamic behaviour of excitable

neural populations. In this chapter we study a population of neurons, with a leaky

Integrate and Fire (IF) dynamics, structured in a scale-free network with non triv-

ial neurons degree-degree correlation, and analyze theoretically and with numerical

simulations the different synchronous and asynchronous phases that emerge. The

IF mode includes the most simple neuron mechanism of subthreshold membrane

potential dynamics, and constitutes the paradigm of the threshold-firing neuron

models [85] (see section 3.2 for details). Several works on IF networks have been
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focused on the appearance of synchronous states, on the transient dynamics until

synchrony is reached [90, 226], or finally on the transition between synchronous

and an asynchronous state induced by thermal or quenched noise [227, 228]. In our

case the synchronous/asynchronous behaviour of the network depends also on the

heterogeneity of the degree-degree correlations. In fact, our analysis shows that

heterogeneity in the network topology enhances the appearance of asynchronous

activity, involving the whole system or, in some cases, only a subnetwork. Thus

disassortative scale-free networks, that display both global and local heterogeneous

structures, have a great tendency to desynchronize neuronal activity.

8.2 Definition of the model

8.2.1 Networks of IF neurons

As we have previously described in section 3.1, one of the main features regarding

the generation of an action potential in neurons is the threshold mechanism of

membrane potential. By virtue of this mechanism, a neuron integrates the signals

incoming from the presynaptic inputs by depolarizing its membrane potential until

this reaches a threshold value. Then the neuron emits an action potential, which

finally generates the output signals in the postsynaptic terminations. Let us con-

sider a network of N excitatory Integrate and Fire neurons where the membrane

voltage of each neuron i, namely Vi, follows the dynamics

τmV̇i = −Vi +R(Iexti + Ineti ), (8.1)

where R is the membrane resistance, τm = 20 ms is the membrane time constant

and Iexti is the external current applied to neuron i and Ineti is the contribution

of the other neurons in the network. As a consequence of the incoming inputs,

the neuron membrane depolarizes and once it reaches the threshold θ = 20 mV ,

neuron emits an action potential after which the voltage membrane is reset to a

resting value Vr = 10 mV during a refractory period τref = 5 ms. Each one of the
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inputs current terms usually are defined as follows

RIexti = ω +D
√
τmξi(t)

RIneti = τm

N
∑

j=1

∑

n

aij Jg(t− tnj ). (8.2)

Here ω is the mean external current, D is the amplitude of a Gaussian noise ξi(t),

while the parameter J = 0.1 mV is the synaptic coupling strength and aij is the

adjacency matrix (defined in chapter 7) which contains all the information about

the topological structure of the network. The function g(t − tnj ) describes the

shape of the depolarization in the postsynaptic neuron i caused by the arrival of

an action potential in the presynaptic neuron j at time tnj . We consider here g(t)

with the form of a narrow pulse

g(t− tnj ) =

{

1 t ∈
[

tnj , t
n
j + λ

]

0 t 6∈
[

tnj , t
n
j + λ

] (8.3)

with λ = 1 ms. All the values of the parameters have been set within the physio-

logical range [84].

8.2.2 Network generation

Throughout the analysis that follows, we have considered random networks with

sparse connectivity, which is characterized by some probability distribution p(k)

to have a given neuron with some connectivity degree k. We assume here that

p(k) follows a scale-free distribution, that is p(k) ∼ k−γ, with mean degree 〈k〉
and standard deviation σ. In addition, we consider non trivial correlations among

the degrees of the nearest neighbour neurons, assuming that the neighbours av-

erage degree for a neuron with degree k also follows a power law. The number

of incoming synapses to a postsynaptic neuron i, i.e. the degree of neuron i, is

denoted by ki. Similarly to the method implemented in section 7.2, we generate

such kind of neural networks by sorting a priori the degree of each one of the N

neurons (k1, ...kN ) from the distribution p(k), and then considering the following
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probability to have a link between neurons i and j:

ǫ̂ij =
1

N
[ki + kj − 〈k〉]

+
σ2

σβ+2

1

N

[

(kikj)
β+1

〈kβ+1〉 − kβ+1
i − kβ+1

j + 〈kβ+1〉
]

. (8.4)

With this choice, the mean degree of the neighbours of a given neuron i results to

be a power law function of ki, i.e.

knn,i ≡ k−1
i

∑

j

ǫ̂ijkj =
〈k2〉
〈k〉 + σ2

[

kβ

〈kβ+1〉 −
1

〈k〉

]

∝ kβ. (8.5)

Neurons degree-degree correlations are positive if β > 0, and the network is said

assortative, while it is disassortative when β < 0.

8.3 Mean-field analysis

A mean field study of the system can be done if the mean activity in the network

is almost constant and persistent during time. In order to do that, we first ap-

proximate the adjacency matrix by its mean value, following the configurational

model also employed in [22, 26]:

aij ≃ aij =
1

N
[ki + kj − 〈k〉] + σ2

σβ+2

1

N

[

(kikj)
β+1

〈kβ+1〉 − kβ+1
i − kβ+1

j + 〈kβ+1〉
]

.

Then, it is straightforward to write the recurrent part of the input current in

equations (8.1)-(8.2) as

RIneti (t) = τmJFi + J
√

τmFiξi(t) (8.6)

where Fi is defined as

Fi ≡ (kiµ0 + 〈k〉(µ1 − µ0))

+
σ2

σβ+2

[kβ+1
i (µβ+1 − µ0)

+ 〈kβ+1〉(µ0 − µβ+1)],
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where µα is defined as

µα ≡
∑N

i=1 k
α
i νi

N〈kα〉 , (8.7)

with νi being the stationary firing rate of the subpopulation of neurons with degree

ki. For α = 0 µ0 constitutes the mean firing rate per synapse in steady state

conditions. In case of a homogeneous network, one has µ0 = ν0 (with ν0 being the

stationary network mean firing rate), whereas in case of having a heterogeneous

network, some deviations from this value may appear. If we put equation (8.6)

in (8.1), the IF equation becomes a Langevin equation for the membrane voltage,

i.e.

τmV̇i = −Vi + χi +Di

√
τmξi(t) (8.8)

where χi is the deterministic part of the total current arriving at neuron i, given

by

χi = ω + τmJFi. (8.9)

On the other hand, the fluctuations of the total current arriving at neuron i are

Di =
√

D2 + τmJ2Fi. (8.10)

The mean firing rate of the neuron i in stationary conditions can be computed

using the first-passage time calculus for a leaky IF neuron model (see [86] for

further details), that yields

νi =

[

τref + τm

∫ yi
θ

yir

f(z)dz

]−1

, (8.11)

where yiθ =
θ−χi

Di
, yir =

Vr−χi

Di
and f(z) =

√
π exp(z2)(1+erf(z)). In order to obtain

the stationary mean firing rate per synapse of the network, we have to average

over all the stationary firing rates. However, assuming that the variability in the

firing rates is caused by the heterogeneity of the connectivity degree, which follows

a distribution p(k), a reasonable hypothesis is to consider νi = νi(ki). Then, in

the limit N → ∞ one can replace the sum in (8.7) by an integral over p(k). Now,
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using (8.11) one finally obtains:

µ0 =

∫ kmax

kmin

p(k)dk

[

τref + τm

∫ yθ(k)

yr(k)

f(z)dz

]−1

µ1 =
1

〈k〉

∫ kmax

kmin

kp(k)dk

[

τref + τm

∫ yθ(k)

yr(k)

f(z)dz

]−1

(8.12)

µβ+1 =
1

〈kβ+1〉

∫ kmax

kmin

kβ+1p(k)dk

[

τref + τm

∫ yθ(k)

yr(k)

f(z)dz

]−1

,

where

yθ(k) =
θ − χ− τmJF (k)
√

D2 + τmJ2F (k)
, yr(k) =

Vr − χ− τmJF (k)
√

D2 + τmJ2F (k)
. (8.13)

We have numerically implemented the self consistent system of equations (8.12)

with an iterative method. At each step we randomly sort only one subpopulation

of neurons with degree k̂, and then calculate their correspondent new firing rate

ν(k̂)new with the use of equation (8.11). Finally replacing ν(k̂)new in the integrals

of right sides of equations (8.12), we obtain the new values of µ0, µ1 and µβ+1.

The iteration is repeated until µ0, µ1 and µβ+1 reach a steady state.

8.4 Results

8.4.1 Global synchronization dynamics

Extensive numerical simulations and the mean field results have allowed us to

distinguish three different dynamical behaviours in the system: the silent phase,

the synchronous phase and the asynchronous phase. In the silent phase the ex-

ternal current is not sufficient to produce any activity in the network. In the

synchronous phase all neurons fire at the same frequency. Finally in the asyn-

chronous phase each neuron fires with a frequency ν(k) dependent on their degree

k. For some topological constraints and parameter conditions, is also possible to

obtain a mixture phase, characterized by synchronous firing for neurons with a

degree k ∈ [k−, k+] and asynchronous firing for neurons with a degree out of this

interval. The stability of the mixture phase, as well as the range of synchrony,

depends on the level of network assortativity. A first quantitative description of

these phases could be done with the analysis of time series of the instantaneous
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mean firing rate m0(t), defined as:

m0(t) ≡
∑

n

∑N
i=1 δ(t− tni )

N
.

In the synchronous phase all neurons fire in phase at the same frequency, as de-

picted in the top panel of figure 8.1. In the mixture phase, see middle panel of

figure 8.1, only a subpopulation of neurons with a degree included in a compact

range, i.e. k ∈ [k−, k+], fires synchronously with the same frequency, while all

other neurons in the system fire asynchronously with a frequency which depends

on its degree as it is predicted by the mean-field equations (8.11)-(8.12) (see black

solid lines in right panels in figure 8.1). Finally in the asynchronous phase (bottom

panels of figure 8.1) all neurons in the whole range of k have a degree dependent

frequency. In this case, the frequency distribution of the whole system agrees op-

timally with the one obtained within the theoretical mean-field approach. On the

other hand, the time average of m0(t) (corresponding in the stationary state to

the mean firing rate µ0 defined in equation (8.7) ), depicted in the diagrams of

figure 8.2 as a function of the external current parameters (ω,D), assumes high

values in the asynchronous phase, due to the little but persistent activity of the

network. In the synchronous phase however, the network is silent for the most of

the time, except when all neurons fire abruptly in a narrow time window with a

fixed frequency. Then µ0 have a low value in this phase and the standard devia-

tion of m0(t), i.e σ(m0) ≡
√

〈m0(t)2〉t − 〈m0(t)〉2t (shown in the diagrams of figure

8.3), has higher values than in the asynchronous phase. Assortative topologies

makes the synchronous phase more robust under the desynchronization induced

by high values of the mean external driving ω and the external noise D, as one

can deduce by direct comparison of the diagrams of figures 8.2-8.3 for assortative

and disassortative configurations. This conclusion can be easily understood by

looking on the behaviour of excitatory IF networks with homogeneous topologies

(e.g. uniformly, Gaussian or Poisson distributed), where the synchronous state

is extremely robust [226]. In fact, among the networks with heterogeneous de-

gree distributions, like the scale-free networks, assortative configurations result

to be locally homogeneous, and can be considered as the union of different and

almost homogeneous subnetworks (with different mean degrees). Thus for each

k we can define an almost homogeneous subnetwork constituted by all neurons

with degree k and their nearest neighbours, which have degree k̂ ∼ knn(k) ∼ k.

Each one of these subnetworks has a high tendency to synchronize and moreover
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Figure 8.1: Instantaneous mean firing rate m0(t) (left panels) and the mean
firing rate per degree distribution νk(t) (right panels), for a network of N = 104

IF neurons with a scale-free degree distribution (with exponent γ = −2.5) and
mean neighbours degree knn(k) ∝ kβ . Top: Synchronous phase in an assortative
configuration (β = 0.5), with ω = 20 mV and D = 0, 89 mV . Middle: mixture
phase for the same assortative case, with ω = 24 mV and D = 0, 89 mV .
Bottom: asynchronous regime in a disassortative configuration (β = −0.5),
with ω = 24 mV and D = 0, 89 mV .

only subnetworks with similar mean degree have some neuron in common. The

result is the emergence of a global synchronous state, where in any subnetwork

neurons fire with the same frequency. On the contrary, disassortative networks

are extremely heterogeneous both globally and locally, except in a subnetwork of

neurons with degree k ∼ 〈k〉 (i.e. around the crossing point between curves knn(k)
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and 〈k〉), and therefore induce more likely asynchronous phases [228]. For any
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Figure 8.2: Mean firing rate µ0 as a function of ω and D, for a scale-free
IF network with β = −0.5 (disassortative, left) and 0.5 (assortative, right),
generated according to the algorithm described in Sec. 7.3.2. Other parameters
are γ = 2.5, 〈k〉 = 100, N = 104.
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Figure 8.3: Variance of mean firing rate as a function of ω and D, for a scale-
free IF network with β = −0.5 (disassortative, left) and 0.5 (assortative, right),
for the same networks of figure 8.2.

assortativity level of the network topology, i.e. for any β, the transition between

silent and synchronous phases results to be of second order, while the one between

synchronous and asynchronous phases (i.e. the proper asynchronous phase or the

mixture phase) is a discontinuous, first order, transition, see figure 8.4. In the

extreme case of an assortative network with low level of external noise D, the syn-

chronous/asynchronous coexistence region could be extremely broad, as depicted

in figure 8.4 (bottom-left panel). On the other hand the mean field approxima-

tion, developed with the assumption of a stationary regime, fits well only with the

asynchronous regime.
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Figure 8.4: Mean firing rate µ0 for a scale-free IF network with β = −0.5
(disassortative, upper panels) and 0.5 (assortative, bottom panels), with fixed
D = 0.179 (left panels) and ω = 18.8 (right panels). Symbols correspond to
different network realizations, black curve with their average, and red curve with
the mean field approximation resulting from equations 8.12. Transitions from
silent phase to synchronous phase are of second order, while from synchronous
to asynchronous phase there is a discontinuous first order transition.

8.4.2 Emergence of mixture phase and robustness of syn-

chronization in central cluster

It is important to remark that, during the transition to the asynchronous phase,

once the desynchronization affects the large majority of the nodes, let’s say all the

neurons until a degree k ∼ 〈k〉, is not possible to distinguish between mixture and

asynchronous phases from the values ofm0 and σ(m0) alone (compare, for instance,

middle and bottom panels of figure 8.1). Nevertheless the analysis of frequencies

ν(k) allows to analyze the mixture states and their corresponding transitions to a

completely asynchronous state. The mixture state of assortative networks present

synchronous activity only in neurons that have a degree in an interval k ∈ [k−, k+].

Such group of synchronous neurons is larger and more robust than in the case of

dissasortative networks, as it is depicted in figure 8.5. Thus assortative networks

keep synchronized the global neuron activity (at a low frequency) for a broad
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Figure 8.5: Frequencies vs neurons degree ν(k), with D = 1.342, for networks
with β = −0.5 (disassortative, left panel) and β = 0.5 (assortative, right panel).
Network activity is asynchronous in all cases, except for the red curve of right
panel, corresponding to a synchronous phase.

region of parameters and, even when the system is in the asynchronous phase,

it still has a considerable number of synchronized neurons (at a high frequency).

On the contrary once a disassortative network enters in the asynchronous phase,

almost all neurons have an asynchronous activity, except the ones with a degree

k ∼ 〈k〉 in a narrow region of parameters. In any case during the mixture state

desynchronization starts from the neurons with degree at the lower and upper limit

of the degree distribution. In fact, neurons with degree k ∼ 〈k〉 constitute a central
cluster with a robust synchronized activity because for any level of assortativity

they form a local, almost homogeneous, subnetwork.

In order to go a step further in a detailed description of local synchronization,

we have analyzed the time series of the instantaneous mean firing rate per degree

distribution, defined as the density of neurons with degree k firing at time t, i.e.

νp(k, t) ≡
∑

n

∑

i:ki=k δ(t− tni )

Np(k)
. (8.14)

In the top panel of figure 8.6, it is depicted a typical synchronous phase, where

neurons of any k fire with the same frequency and phase, while in the partial

asynchronous phase (shown in the middle panel), neurons with k < 〈k〉 fire with

different frequencies and not in phase (as it is possible to deduce from the low

level of νp(k, t)), with a persistent background activity. Surprisingly, when disas-

sortative networks are in a completely asynchronous phase (see bottom panel of

figure 8.1), one can still observe the central cluster with an almost synchronous

activity, as depicted in the bottom panel of 8.6, although here neurons with differ-

ent degrees fire with different mean frequencies. In this case, as expected, for any
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k degree subpopulations out of the central cluster, neurons fire out in phase. As

commented in section 8.4.1, the emergence of a stable synchronous central clus-

ter is probably due to the heterogeneous subnetwork composed by neurons with

degree k ∼ 〈k〉.

Figure 8.6: Time series of mean firing rate per degree distribution νp(k, t) for
the same networks described in figure 8.1 (top panel: β = 0.5, ω = 20 mV and
D = 0, 89 mV ; middle panel: β = 0.5, ω = 24 mV and D = 0, 89 mV ; bottom
panel: β = −0.5, ω = 24 mV and D = 0, 89 mV ).
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8.5 Discussion

In the last decade several works have fully characterized the different synchronous

and asynchronous phases appearing in networks of IF spiking neurons with ho-

mogeneous topologies [89], as for instance, the random Erdös-Rény topology [77],

introducing both excitatory and inhibitory synapses and a transmission delay of

spikes. Other works have shown that in the most simple case of IF neuron net-

works with only excitatory synapses and a homogeneous topology, synchronization

is the only active phase observed [91, 226]. In our model of IF excitatory neurons,

however, we have observed that the heterogeneity of the topology also induces

the emergence of a completely asynchronous phase, with a distribution of typi-

cal frequencies, which depends on the degree of the neurons in the network, as

well as a mixture phase, where there is a subpopulation of neurons that fires syn-

chronously. In addition, the level of assortativity, that modulates the local neuron

degree-degree correlation, influences the robustness of the different phases under

variation of external stimulation parameters. Global and partial synchronization

are enhanced by networks with assortative configurations, in which a certain level

of homogeneity is guaranteed, at least locally. Between synchronous and asyn-

chronous phases there is a discontinuous first order phase transition, particularly

prominent in the assortative case at low level of external noise, where there is a

broad region of coexistence between the synchronous and mixture phases. This

broad region of coexistence can have important computational consequences be-

cause it allows for bistability of two dynamical behaviours with very different

frequencies (the low frequency of the synchronous phase and the high frequency

of the mixture phase), and the possibility to switch among them under an ap-

propriate external stimulation. Moreover, important consequences concerning the

functionality or the emergent activity of different neural media could be derived

from our study, once the correlations among neurons in different parts of the brain

or other neural systems will be revealed definitively in experimental works.



Chapter 9

Self affinity and dynamic scaling

in tumour growth

The state of the art concerning the knowledge of tumour growth has revealed cer-

tain of common traits in malignant tumour dynamics. Tumour cells are known to

escape from the complex set of biochemical checks that regulate the normal cell

cycle, evading in particular programmed cell death or apoptosis, by accumulat-

ing genetic mutations. The multiple genetic changes which result in cancer may

take many years to accumulate. During this time, the biological behavior of the

pre-malignant cells slowly change from the properties of normal cells to cancer-

like properties. Pre-malignant tissue can have a distinctive appearance under the

microscope. Among the distinguishing traits are an increased number of dividing

cells, variation in nuclear size and shape, variation in cell size and shape, loss

of specialized cell features, and loss of normal tissue organization. Dysplasia is

an abnormal type of excessive cell proliferation characterized by loss of normal

tissue arrangement and cell structure in pre-malignant cells. These early neo-

plastic changes must be distinguished from hyperplasia, a reversible increase in

cell division caused by an external stimulus, such as a hormonal imbalance or

chronic irritation. The most severe cases of dysplasia are referred to as ”carci-

noma in situ”, referring to an uncontrolled growth of cells that remains in the

original location and has not shown invasion into other tissues. Nevertheless, car-

cinoma in situ may develop into an invasive malignancy. In malignant tumours

cells acquire the ability to penetrate the walls of lymphatic and/or blood ves-

sels, after which they are able to circulate through the bloodstream to other sites

and tissues in the body, forming a new tumour. The newly formed ”daughter”

158
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tumours are called a local metastasis. An important feature stressed by clinical

analysis is the relation between malignancy and morphology. In fact clinicians

use to forecast tumour evolution, by the observation of tumour contours shape.

On the other hand, malignant tumours, after reaching a few cubic millimeters

in size develop an irregular microscopic structure [14]. At the beginning of 60’s

Eden formulate one of the first discrete automata model, in attempting to de-

scribe solid tumor growth [229], while recently normal and tumor cell patterns

in vivo and in vitro were characterized by their fractal dimensions and cluster

size distribution functions [230, 231], reinforcing the great current interest in the

search for basic principles of growth in living organisms, which are the most com-

plex and challenging self-organized systems. For tumour growth, one of the most

aggressive phenomena in biology, numerous mathematical models have recently

been investigated in order to describe features of tumour development, like front

velocity, necrotic core and proliferative rim dynamics, interactions with the extra-

cellular medium and vasculogenesis, with and without the exposure to chemicals

and radiation. A central problem in the mathematical modelling of biological pro-

cesses is the evaluation of its biological relevance. In particular, for the problem

of tumour development numerous models have been proposed but the methods to

check their consistency with experiments or medical observations are sometimes

ambiguous or qualitative. In each case the goal consists in create models that

fit with the experimental quantities or functions commonly used by biologist and

medical doctors, such as tumour growth speed, spatiotemporal pattern formation,

tumour cell population evolution. Mathematicians use to adapt their models to

the experiments. An essential question is which of the existing model assumptions

are justified for simulating tumour growth, see [232] and chapter 11. From the

other hand a complementary approach one can consider, in order to implement

mathematical models able to made quantitative predictions on tumour evolution,

establishes its starting point on the experimental observations performed by mean

of measures originally developed in some mathematical theoretical frameworks. In

others words while in the first approach mathematicians create models in order

to fit the relevant standard parameters or functions used by biologists in experi-

ments, in the second one they first measure, on biological samples, observables or

functions included is a robust and consistent theoretical framework, and then try

to trace back tumour dynamics to an existent mathematical model, sharing the

same observables behaviour. Here we deal with experiments driven by maths tools,

while before one has maths models driven by experiments. One of the advantage
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of this approach consists in improve quantitatively the information that can be

extracted from experiments, and thus the respective conclusions, with new inno-

vative tools coming from the mathematical disciplines, theoretically more rigorous

and stable. Moreover, in moving the problem from experimental observations to

a well established model, the efforts in order to better understand tumour growth

will be focused on finding a relation between the theoretical model and more re-

alistic and biologically plausible ones, eventually connecting causally short scale

(biomolecular, genetic) and large scale (cellular, tissue) mechanisms by mean of

multiscale modelling. The first step of the experiments driven by maths tools ap-

proach has been performed by Br et al. [15] with some experimental works on in

vivo cell colonies lines and in vitro tumour samples, taking advantage of dynamic

scaling theory, originally used to study the problem of thin films surface growth

by atomic random deposition, see section 2.5 and [27], in order to characterize the

rough surface of solid avascular tumour mass. They observed that the shape of

the 1D cutted sections of solid tumour surfaces, i.e. their front of expansion, is a

self affine object, it scales as h(x, t) = λ−αh(λx, t) with α > 0 (with h(x, t) height

function, defined in section 2.5), and the scale transformation is anisotropic. This

way, the roughness exponent α reveals a morphological characteristic of the inter-

face. One of the statistical observables used in dynamic scaling theory is the mean

of the interface width, characterizing the roughness of the interface, given by:

W (L, t) =

〈

√

〈h2〉L − 〈h〉2L
〉

r

,

where < · >L is the mean value over different the system of total size L, and

< · >r over different replicas r (i.e. system realizations). Usually W (L, t) follows

the Family-Vicsek ansatz behaviour

W (L, t) ∝ tβf

(

L

ξ

)

f(u) =

{

uα ∝ t−β u ≪ 1 (L ≪ ξ)

const u ≫ 1 (L ≫ ξ)

The values of exponents α and β give indications of the essential surface spatiotem-

poral dynamic mechanism. The most of individual discrete models implemented

to describe surface growth, in which deposition and relaxation rules are explicitly

applied to each single atom, are equivalent to a general Langevin stochastic PDE

description. Br et al claimed that all avascular solid tumours share the same frac-

tal surface dynamics. In particular, these exponents are typical of the MBE/MH

(Molecular Beam Epitaxy/Mullins Herring) surface dynamics, characterized by
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cells generated (or deposited) randomly on the surface and then relaxing towards

the highest surface curvature region:

∂h(x, t)

∂t
= −K∇4h(x, t) + F + η(x, t). (9.1)

Equation (9.1) describe proliferative and diffusive processes exclusively limited to

the surface, thus MBE characterization supports the following conclusions on solid

tumour growth dynamics:

• Cell diffusion at the colony or tumor borders

• Cell proliferation mainly restricted to the colony or tumour border, i.e.,

growth is greatly inhibited inside the colony or tumour

• A linear growth for both colonies and tumours, by virtue of the constant

growth rate F in equation (9.1)

It is important to underline that, from these observations, MBE/MH equa-

tion seems to characterize the essential dynamics of all solid avascular tumours.

This universal behaviour could be extremely determinant in planning therapeutic

strategies based on tumour mechanic properties, e.g. generating some targeted

attack from the extracellular matrix (ECM), in which tumour expands, in order

to obstacle the natural cellular dynamics on the front. One attempt in this direc-

tion has been made by Br et al. In treating mice with implanted tumours with

GM-CSF, a maturation factor for neutrophils. Neutrophils are non specific cells

of the immune system, very resistant to high Ph values (acid environment), thus

they are able to get very close to the deep valleys of tumour front, developed by

MBE dynamics. In these experiments front dynamics universality seems to change

in response to the interaction with immune system population cells, modeled in

a Langevin approach as a quenched noise [16]. They observed a transition from

the MH/MBE universality class to quenched universality, i.e. QEW universality,

described by:
∂h(x, t)

∂t
= D∇2h(x, t) + F + η̂(x, h(x, t))

Quenched noise η(x, h(x, t)) determines a new class of Langevin equations, dif-

ferent from the one of equation (9.1), considered in section 2.5. In fact, it is

independent from time, and is characterized essentially by its first two moments

〈η̂(x, t)〉 = 0 〈η̂(x, t)η̂(x′, t′)〉 = 2fq(x− x′), (9.2)
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where fq(x) is a function of distance, rapidly decreasing to 0. This class of equa-

tions have been extensively used to model fluid expansion process in an external,

disordered medium. Quenched noise takes in consideration the impurities of exter-

nal medium, in our case it account for the pinning effect generated by neutrophils.

QEW equation is characterized by a phase transition, at a critical driving force

Fc, between a frozen front (F < Fc) and a growing front (F > Fc) phase [233].

Br et al. reported in these same experiments this phenomenology, in which pinned

surface dynamics block the increasing of the front, thus stopping tumour growth.

Fractal scaling could be definitively an efficient tool to evaluate tumour models,

and to link their mathematical assumptions with real biological properties.



Chapter 10

Fractal analysis and tumour

growth

Tumour growth can be described in terms of mathematical models from differ-

ent points of view due to its multiscale nature. Dynamic scaling is an heuristic

discipline that exploits the geometrical features of growing fronts using different

concepts from the theory of stochastic processes and fractal geometry. This chapter

is concerned with some problems that arise in the study of tumour-host interfaces.

The behaviour of their fluctuations lead to some stochastic evolution equations,

which are studied here in the radial symmetry case. Some questions concerning the

dynamic scaling of these models and their comparison with experimental results

are addressed.

10.1 Introduction

Tumour growth has become a paradigmatic example of multidisciplinar research,

where biology and mathematics have met each other to deal with a multiscale

problem. The search for a few general laws involving measurable macroscopic

quantities is the leit-motive of an ever-increasing number of modelization attempts.

This special issue puts together a number of examples concerning the mathemati-

cal description of cancer. Although this is a difficult task, there is also confidence

about the benefits that could be obtained from this research line [234–237].

One of the modelization tools that has recently been applied to describe tu-

mour growth is the so-called dynamic scaling of interfaces [27]. Following the
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work by Brú et al [15, 16, 28], there is a strong experimental evidence that the

fluctuations of these interfaces show a non-trivial spatiotemporal behaviour, which

shows the fingerprints of self-affinity. In fact, the interface fluctuations seem to

evolve according to some power laws with robust exponents. These findings are

the starting point of some continuous models in terms of stochastic partial differ-

ential equations (SPDE), that in some appropiate sense share the same statistical

properties than the experimental interfaces.

In this chapter we first review the state of the art of dynamic scaling and then

address some questions concerning its use in the description of interfaces as those

appearing in tumour growth. Dynamic scaling was first developed to describe the

roughening of initially flat interfaces due to external noise. Thus, the archetypal

example is provided by a SPDE of a function h(x, t) in the real interval [0, L]n,

where L is the system size (fixed), and the initial condition is h(x, 0) = 0. Most of

the analytical results and proposed models in the literature have been performed

in such a situation, where one looks for a scaling function which encompasses

the power-law behaviour of the interface fluctuations. It is an open problem to

ascertain if these scaling functions are relevant in a different setting, as that cor-

responding to radially growing or multivalued interfaces, that are usually found

in experiments and real systems. In the latter situation, there is some agreement

that if the number or size of the overhangs is residual with respect to the system

size, the currently scaling functions still reflect the actual dynamical properties

[238].

A key question in our approach concerns the analysis of the fluctuations of

radially growing fronts in terms of dynamic scaling techniques. More precisely, a

fundamental problem consists in determining if the models exhibiting radial sim-

metry belong to the currently known universality classes, or else make part of

some new ones. A similar remark applies to the case of one-dimensional moving

interfaces. This is particularly relevant in the case of experimental models, where

the scaling techniques commonly used are one-dimensional. These questions are

discussed throughout this chapter which is organized as follows. After a brief

account of dynamic scaling and remark on some of its current limitations, we in-

troduce some continuous models in radial symmetry that are expected to belong

to well-known universality classes and describe their scaling behaviour. Then we

describe some one-dimensional (in space) examples where we distinguish between

dilatational and agreggation dynamics for moving interfaces and find very different

scaling behaviors for them, a fact that calls for further analysis of experimental
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interfaces.

10.2 A bird’s eye view of Dynamic Scaling:

The spontaneous generation of fractal interfaces or fronts has been observed in

many natural processes [27, 79], and fractal geometry is a mathematical tool that

allows us to compute some of their morphological properties. A basic hypoth-

esis is that these objects exhibit self-similarity, that is, their statistical proper-

ties do not change under isotropic scale variations. The lack of any characteris-

tic length is a common property of fractal objects. Dynamic scaling deals with

fronts that roughen in time but remain graphs (i.e. can be described by means

of continuous functions) showing self-affinity. In this case, the interface scales

as h(~r, t) ∼ b−αh(b~r, t) with α > 0 and the scale transformation is anisotropic.

This way, the roughness exponent α reveals a morphological characteristic of the

interface. To account for that roughening and self-affine properties, a number of

discrete and continuous growth models have been proposed. In the continuum set-

ting and under the assumption of linear symmetry (that is, one space dimension),

they are usually written in terms of Langevin-like equations:

∂h(~r, t)

∂t
= F +G(h(~r, t)) + η(~r, t) , (10.1)

where h(~r, t) stands for the growing front, G is a generic function of ~r, t, h and its

derivatives, F is the driving force and η(~r, t) is the noise term which accounts for

the roughening of the front. Then, the growing process proceeds along the follow-

ing rules: mass is created over the surface h(~r, t) with a mean rate F and η(~r, t)

accounts for deviations from the local mean rate (for instance, deviations from

the cell duplication mean time). The noise is due to the averaging of microscopic

degrees of freedom (i.e. noisy environment, microscopic biochemical processes. . . ).

The functional G represents the processes by which the surface relaxes (i.e. surface

diffusion, surface tension) and plays the main role in determining both the short-

time and steady state properties of the growing interface. One usually finds that

an initially flat front roughens in time, attaining in the long-time limit a steady

state in which some observables show non-trivial spatial scaling. Henceforth the

interface is studied as an stochastic process, and the evolution of its fluctuations is

the main point at issue. Because of the interface self-affinity, fluctuations display
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power law behaviours. To begin with, let us consider for simplicity the case of

a (1+1) dimensional interface h(x, t). It can be characterized by means of the

interface width:

W (L, t) =< [h(x, t)− h̄(t))2]L >1/2 , (10.2)

where h̄ is the mean height of the interface and fluctuations around h̄ are averaged

over the whole system of size L and over n realizations of the experiment or model

as denoted by <>. Moreover, the height-height correlation function C(l, t) given

by:

C(l, t) =< [(h(x, t)− h(x+ l, t))2]L > , (10.3)

can be used to study the small-scale fluctuations of size l. Finally, the power

spectrum density :

S(k, t) =< ĥ(k, t)ĥ(−k, t) > , (10.4)

where

ĥ(k, t) = L−1/2
∑

x

[h(x, t)− h̄(t)]exp(ikx) , (10.5)

describes the scaling behavior of the Fourier modes of the interface and obeys the

following relationships [239]:

C(l, t) ∼
∫ π/a

2π/L

dk

2π
[1− cos(kl)]S(k, t) ,

W 2(L, t) =

∫

dk

2π
S(k, t) .

(10.6)

These quantities are instrumental to describe the scaling behavior of the fluctu-

ations of a rough interface around its mean position. A typical behavior of the

interface width W (L, t) can be summarized as follows. For short times, the width

increases as a function of time, W (L, t) ∼ tβ, where β is called the growth exponent.

This power-law behavior is followed by a saturation regime where W (L, t) = Wsat.

The crossover occurs at a time tc, when the lateral correlation length reaches the

system size. Both the saturation width and crossover time depend on the system

size, and one usually has that Wsat(L) ∼ Lα and tc ∼ Lz, where α is the roughness

exponent and z is the so-called dynamic exponent. One readily sees that z = α/β

in order to match the t → t±c limits. These empirical laws can be summarized in
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a scaling ansatz for the interface width:

W (L, t) = Lαf(L/ζ(t)) , f(u) ∼















uα if u ≫ 1 ,

const if u ≪ 1 ,

(10.7)

where ζ(t) ∼ t1/z stands for the correlation length parallel to the interface. The

function f(u) is the so-called scaling function which captures the aforementioned

behavior (see figure 10.1). If a particular model or experimental system is assumed

to obey this ansatz, a set of graphs W (L, t)/tα/z versus L/t1/z for several values

of L must collapse into a single curve corresponding to the f(u) behavior above.

But the whole scaling picture turns out to be less clear when the local scales are

Figure 10.1: Example of data collapse of the interface width according to
equation (7) for simulations of size 64, 128, 256, 512, 1024 using α = 1/2, z = 2.
Inset: The original log-log plot of W (L, t) versus time.

involved. A variety of short-time behaviors have been observed [28, 240–242] and,

as a consequence, C(l, t) may show an anomalous scaling that can be accounted

for by means of more refined ansatzs. Arguably, the more generic scaling behavior

proposed to date has been introduced in [241] in terms of the power spectrum
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density:

S(k, t) = k−(2α+1)s(kt1/z) ,

s(u) ∼















u2(α−αs) if u ≫ 1 ,

u2α+1 if u ≪ 1 ,

(10.8)

where s(u) is a new scaling function and αs is the spectral roughness exponent.

The scaling of the correlation function C(l, t) can be computed using (10.6):

√

C(l, t) = tβg(l/ζ(t)) , (10.9)

but now several cases arise concerning the choice of αs. Whether the spectral

roughness exponent is lower or greater than 1, the scaling function is:

gαs<1(u) ∼
{

uα
s if u ≪ 1 ,

const if u ≫ 1 ,
(10.10)

or

gαs>1(u) ∼
{

u if u ≪ 1 ,

const if u ≫ 1 .
(10.11)

Thus, there are two main categories of scaling behavior. If αs < 1, this exponent

describes the scaling of small-length scales, and is called the local roughness ex-

ponent αloc. On the contrary, when αs > 1 the small-length scales show a trivial

scaling with αloc = 1. This generic picture includes most of the scaling behav-

iors found so far in models and experiments. For example, tumour growth has

been experimentally shown to obey an infrequent superrough dynamics [15, 28],

characterized by αloc = 1 and α = αs > 1. Using the corresponding scaling func-

tion (11), one can see that the short time behavior is
√

C(l, t) ∼ ltβ
⋆

(instead

of the standard behavior
√

C(l, t) ∼ l), where β⋆ is called the anomalous growth

exponent, β⋆ = (α − αloc)/z. Therefore anomalous fluctuations at small scales

are particularly relevant in this case. We refer the reader to [241] for a complete

description of the scaling behaviours that follow from (10.8).

The aim of dynamic scaling is to perform a classification of growth processes

into a few universality classes, to develop general tools to ascertain their asymp-

totic behaviour. Every set of critical exponents is intended to define a universality

class, where some dynamical features are shared by all the processes belonging

to that class. When implementing such approach, a number of open problems
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arise that are poorly understood , particularly in size-changing domains as those

corresponding to tumour growth. For instance, the steady state scaling properties

after saturation are often required to determine the actual universality class the

process belongs to. But if one has to deal with a non-fixed size interface, the

steady state could be out of reach. Moreover, the scaling functions obtained for

fixed domains need not represent such a system. In particular, this is the case for

radially growing interfaces, where less is known about the universality properties

of the simplest models, and there are few analytical results available.

A physical system we are particularly interested in is solid tumour growth. Cell

colony growth and tumour-host interfaces have been studied experimentally using

dynamic scaling. In [15, 28], it was found that the fluctuations of these interfaces

scale as those of the MBE universality class in (1 + 1) dimensions:

∂h

∂t
= −K

∂4h

∂x4
+ F + η(x, t) , (10.12)

where h(x, t) represents the cell colony or tumour-host profile. The fourth order

derivative accounts for a local potential that is proportional to the curvature of

the interface ([243, 244]). This term describes a surface diffusion current at the

interface that transports mass from high curvature to low curvature locations.

Considering the fact that almost all proliferating cells are located at an outer rim

of the colony, this surface diffusion accounts for the movement of newly produced

cells along the tumour border. Cells diffuse until they come to rest in, and grad-

ually fill, the available concavities of the tumour front. Actually, experimental

interfaces often grow in radial symmetry (at least in early stages), but the rela-

tionship between scaling functions in one-dimensional and radial growth is not

known as yet. We address this issue in the following Section. As a starting point,

in this paper we study the scaling behaviour of two models in radial symmetry

that are expected to belong to the EW and KPZ universality classes. Different

dynamical behaviours showing anomalous fluctuations (as for instance the MBE

case illustrated by (12)) will be discussed elsewhere.
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10.3 Scaling analysis of continuum models in ra-

dial symmetry.

Bearing in mind our previous remarks, in this section we examine some general

questions about the scaling properties of stochastic equations in radial symmetry,

in an attempt to clarify some issues concerning the proper handling of radial

interfaces. To begin with, consider a general growth equation for a surface in a

(D + 1)-dimensional space (cf. [245]):

∂t~r(s, t) = n̂(s, t)G(~r(s, t)) + ~F (s, t) , (10.13)

where the vector ~r(s, t) runs over the surface as s varies in the parameter space.

The outer normal vector to the surface is denoted by n̂, and G is a functional

containing a deterministic growth mechanism that causes growth along the normal.

Finally, a random ad-hoc force ~F is introduced . From this general model, one

can obtain different equations according to the physics of the problem (which

specifies the form of G and ~F ) as long as reparametrization invariance is satisfied.

This requires that only terms that are independent of the particular choice of s

should appear in the equation. For instance, one can consider the well-known

one-dimensional KPZ equation:

∂h

∂t
= ν∇2h+ λ(∇h)2 + η(~r, t) , (10.14)

which contains a surface diffusion term that minimizes the surface tension energy

(A = ν
∫ 1

0

√
gds, where g is the determinant of the metric tensor, g = |d~r/ds|2),

a term of preferential growth normal to the interface with a rate λ, and a noise

term (for a recent work that considers the curvature term of the MBE equation,

see [246]). According to these rules, the radial version of (14) has been obtained

from (13) in [247]:

∂~r

∂t
= ν

1√
g

∂

∂s

(

1√
g

∂~r

∂s

)

+ λn̂+ η , (10.15)

where the noise term has the form:

< ηα(s, t)ηβ(s′, t′) >= 2Dδαβ
δ(s− s′)
√

g(s)
δ(t− t′) , (10.16)
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This precise choice for the noise ensures that the previous equation is indepen-

dent of the parametrization selected. If we use polar coordinates (x(s, t) =

ρ(s, t) cos θ(s, t), y(s, t) = ρ(s, t) sin θ(s, t)), then g = ρ2s + ρ2θ2s , and assuming

that ρ(s, t) = ρ(θ, t) (a single-valued interface), we obtain:

∂ρ

∂t
= ν

1
√

ρ2θ + ρ2
∂

∂θ

(

ρθ
√

ρ2θ + ρ2

)

− ν

ρ

(

1 +
ρ2θ(ρ

2
θ − ρρθθ)

(ρ2θ + ρ2)2

)

+

+
v

ρ

√

ρ2θ + ρ2 +
(ρ2θ + ρ2)1/4

ρ
η(θ, t) ,

(10.17)

where ρθ = ∂ρ/∂θ and the noise has the following correlations:

< η(s, t)η(s′, t′) >= 2Dδ(θ − θ′)δ(t− t′) . (10.18)

A further assumption is to consider the large–radius limit ρθ/ρ ≪ 1, to obtain a

simplified version of the KPZ equation in radial symmetry:

∂ρ

∂t
=

ν

ρ2
∂2ρ

∂θ2
− ν

ρ
+ v

(

1 +
1

2ρ2

(

∂ρ

∂θ

)2
)

+
1√
ρ
η(θ, t) . (10.19)

This is the equation we are going to consider next.

10.3.1 EW universality

In the case where the surface tension term dominates, the stochastic growth equa-

tion would be the radial counterpart of the Edwards-Wilkinson equation:

∂ρ

∂t
=

ν

ρ2
∂2ρ

∂θ2
− ν

ρ
+ v +

1√
ρ
η(θ, t) , (10.20)

where a constant velocity term v is maintained. The main difference with respect

to the one-dimensional case is that the equation is nonlinear. Moreover, let us

consider that the interface is self-affine, so that if we scale an arc-length element

as l → bl, the interface scales as ρ → bαρ. This implies that the angle variable

scales as θ → b1−αθ. Finally, the dynamic exponent governs the time scaling,

t → bzt. The previous equation is invariant under this transformation if the

critical exponents are those of the EW universality class (z = 2, α = 1/2) but only

when the nonlinear term ν/ρ is disregarded. When this last isotropic shrinking
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term is kept, the equation is not invariant under the ρ → −ρ inversion, and an

interface of initial radius ρ0 can either grow or collapse. This fact breaks down

the traslational invariance that is an exact symmetry in the linear case, and does

not allow to study the dynamics in a co-moving frame reference h → h + vt.

However the actual significance of the non-linear term on the scaling properties

could be marginal, by virtue of the v constant term in the large-radius limit. So,

we want to study if, above a critical radius, the previous equation belongs to the

EW universality class. The critical radius can be easily obtained. To this end, we

make use of the following expansions:

ρ(θ, t) =
+∞
∑

n=−∞
ρn(t)e

inθ , η(θ, t) =
+∞
∑

n=−∞
ηn(t)e

inθ , (10.21)

with < ηn(t)ηn(t
′) >= D

π
δ(t − t′). By substituting in equation (10.20) and using

the center of mass as the origin of the radial variable, one can readily obtain for

radially symmetric solutions:

ρ0(t) = − ν

ρ0
+ v +

η0√
ρ0

. (10.22)

Therefore, the deterministic zeroth-order estimate for the critical radius is ρc =

Figure 10.2: Numerical solution of the radial EW equation.

ν/v. We have performed the numerical integration of equation (10.20) for an

initial radius greater than ρc (see figure 10.2). figure 10.3 shows the behaviour
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of W (L, t) versus time. As shown therein, a power-like growth tβ with β ∼ 1/4

is sustained for long times of evolution. Thus, the growth exponent is similar

to that of the one-dimensional EW universality class. Moreover, this result does

not depend upon the particular value of the velocity v, whenever the condition

ρ(t = 0) ≫ ρc is satisfied, as can be seen in the inset of figure 10.3. An intriguing

fact is that the fluctuations do not saturate for long times, as it happens in the one-

dimensional case for not too long evolutions (see Figure 1). This novel feature may

be related with the non-fixed size of radial interfaces. We have noticed above that

the saturated state is reached when the correlation length is equal to the system

size, and this might not happen for a growing size interface. As a matter of fact,

taking into account that the lateral correlation length scales as lc ∼ t1/z, saturation

will take place whenever the system size grows slower than t1/z (for an example of

this case see [238]). In the current example, it can be seen (data not shown) that

L(t) ∼ t > t1/2, and saturation is out of reach. Therefore W (L, t) does not encodes

Figure 10.3: Time evolution of W (L, t) for the radial EW equation. The
parameters are: ρ(t = 0) = 10, ν = 0.01, D = 1, v = 0.003. Inset: The same
for v = 0.1. A best fit yield a slope of 0.23 ± 0.03, the value of β for the EW
universality class.

the whole scaling properties of equation (10.20), and we need to proceed further in

order to obtain the complete set of critical exponents. To that end, we would like

to make use of either the correlation function C(l, t) or the power spectrum density

S(k, t). A graph of the former for several times is shown in figure 10.4. These data

are obtained by computing C(l, t) as a function of the arc-length variable l, while

the discretization is performed with dθ fixed. Then the element of arc-length grows

with time as dl ∼ ρ̄(t)dθ, as so does the arc-length of the full interface. This fact
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can be readily seen in figure 10.4 by keeping track of the minimum and maximum

abscissa for different times. Notice that at first sight the correlation functions look

similar to those of a one-dimensional equation. In fact, the smaller scales below

the correlation length follow a power-law C(l, t) ∼ lα, with α ∼ 0.5 (the value

of the EW universality class, as predicted by the invariance of equation (10.20)

without the nonlinear term). In view of the previous remark we may wonder which

Figure 10.4: Correlation function for the radial EW equation for several times.
A best fit yield a slope of 0.48 ± 0.03, the value of α for the EW universality
class.

scaling function would correspond to the behaviour of C(l, t) just described. We

have mentioned above that there is a lack of analytical results for this kind of

systems, although some heuristic proposals have recently been discussed (see next

section). However, when the interface is parametrized according to the arc-length

variable, the currently known scaling functions are very often employed. Then, if

we make use of the same scaling function than that of the one-dimensional EW

equation (see the previous section), we obtain a good data collapse (figure 10.5)

using the theoretical values z = 2 and α = 1/2.

10.3.2 KPZ universality

The celebrated nonlinear KPZ equation (14) [248] has been proposed to describe

the scaling properties of a number of systems far from equilibrium. This equa-

tion accounts for lateral growth through the term (∂xh)
2 (see equation 14) that
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Figure 10.5: Data collapse of C(l, t) in figure 10.4 according to equations
9–10.

dominates the scaling behavior of the steady state. This nonlinearity prevents

us from obtaining the critical exponents by power counting argument as for the

EW equation. However, in dimension d = 1, there are two properties that can be

used to circumvent a more difficult computation. In fact, the KPZ equation can

be mapped into the Burgers equation for v by changing variables as v= −∇h.

Thus, they share the same Galilean’s invariance that leads to the relationship

α+ z = 2. Moreover, an application of the fluctuation-dissipation theorem tell us

that the local slopes ∇h are distributed according to a gaussian distribution, and

therefore the interface can be generated as a Brownian motion. In this way, we

obtain α = 1/2 and, as a consequence, z = 3/2. Whether the same arguments can

be applied for equation (19) in other cases is unknown. As a matter of fact, the

invariant form of the Langevin equation in the case of a growth term derived from

a potential is [245]:

∂~r(s, t)

∂t
= −√

g Γ
δH

δ~r(s, t)
+ η(s, t) . (10.23)

A classical argument shows that the associated Fokker-Planck equation has a sta-

tionary solution of the form [249]:

P [~r(s), t → ∞] ∼ exp

[

−H(~r(s)

T

]

(10.24)
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for the configurational probability P [~r(s), t]. In the case of the KPZ equation, we

have:

H(~r(s) = HKPZ =

∫

ds(D
√
g − vh) (10.25)

which is unbounded as h → ∞. Thus, the KPZ equation does not have the pre-

vious equilibrium distribution P [~r(s), t → ∞]. Anyway, it is not clear if (as it

happens in linear symmetry), a different choice can be done for the stationary so-

lution leading to the exact values of the critical exponents. The standard approach

consists instead in making use of renormalization group techniques to derive the

scaling behaviour of this equation [27]. Following the same scheme as for the EW

Figure 10.6: Numerical solution of the radial KPZ equation at different times.

equation, we have performed the numerical integration of equation (19). The crit-

ical radius remains the same in this case, because the nonlinear term does not

contribute to the zeroth-order radially symmetric solution in the linear stability

analysis. Figure 10.6 shows some simulations of expanding interfaces. The next

figure 10.7, describes the time evolution of the fluctuations W (L, t). It can be

readily seen that, after a transient regime dominated by the EW term, the in-

terface width grows as W (L, t) ∼ tβ with β ∼ 1/3, close to the theoretical value

of the KPZ universality class. We remark on pass that the presence of transient

regimes is usually found whenever several terms appear in the growth functional,

and the interplay between these terms (depending on the model and the value of

the parameters) determines the crossover times. Again, due to the fact that the

system size is not constant, we need to look at the correlations or power spectrum
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Figure 10.7: Time evolution of W (L, t) for the radial KPZ equation. The
parameters are: ρ(t = 0) = 10, ν = 0.001, D = 1, v = 0.01. The straight line is
a best fit with slope 0.30±0.03, close to the value of β for the KPZ universality
class.

density to obtain the remaining critical exponents. For instance, the behavior of

the correlations (data not shown) is again well described by the Family-Vicsek

scaling function, and we obtain α = 1/2, so that z = 3/2. It thus seems reason-

able to think that in the large radius approximation, the KPZ equation in radial

symmetry belongs to the expected universality class.

10.4 Aggregation vs. dilatation: a model prob-

lem.

In this section we want to focus in one-dimensional, size changing domains, paying

attention to the particular growth properties of the system that one wants to study.

As a starting point, we introduce two main categories of systems. Some systems

grow by aggregation or generation of new particles over the surface (for instance,

in the case of a cell colony). In this situation, there exists a natural lower cut-off,

namely, the typical size of the particles σ. But in a coarse-grained description, the

same system can be envisaged as a continuum, and the growing size L is accounted

for a dilatational term. Actually, these two categories correspond to the limits

L/σ → 1 and L/σ → ∞, respectively. The main idea under this classification is

that, in practice, one always has to deal with a discrete function for the interface

position, and therefore the discretization should be consistent with one of the
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aforementioned limits. In fact, just from an analytical point of view, one has to

take care of these limits to obtain the scaling proposal. For instance, the generic

dynamic scaling introduced in Section 2 was obtained after a careful examination of

the limits a → 0, L → ∞ and ζ/L → ∞ (where a is the lower cut-off and ζ stands

for the correlation length) which do not commute [241]. In fact, the ambiguity of

the scaling analysis in the case L = L(t) comes from the fact that the ζ/L → ∞
limit could be unreachable. Because of the lack of analytical results, some authors

have introduced heuristic scaling functions to address this problem. In [250], a

generalization of the generic dynamic scaling was performed by changing variables

as L → f(t)L, l → f(t)l, k → k/f(t) (k being the Fourier variable) where f(t)

stands for a dilatational factor that is intended to rescale the system before the

critical exponents are involved. The strong hypothesis underlying this proposal

is that f(t) affects equally all length scales. It is then clear that a successful

application of this ansatz will depend upon the selected limit, and its validity in

systems with a well-known dynamics has not been checked as yet.

We have studied a couple of simple problems in one space dimension that

could illustrate these ideas. The first one is a discrete model belonging to the EW

universality class, where the discretization length a is constant throughout the

evolution. We begin with a system of size L and new particles are created over

the surface according to a prescribed rule. Since the system evolves according to

the EW dynamics, the correlation length grows as lc ∼ t1/2. Thus, we choose a

dilatational factor of the form f(t) ∼ tγ, and we study the cases γ < 1/2, γ > 1/2.

The aggregation rule is as follows: according to f(t), a random position xr is chosen

at the interface at consecutive times. We choose at random a nearest neighbour of

xr, denoted by x0
r. A new interface position is created between the two points to

locate the newly created particle y, and h(y) = 1/2(h(xr)+h(x0
r)). Henceforth, the

interface evolves according to the EW equation in (1+1) dimensions. This model

problem behaves in a standard way, and remains inside the EW universality class.

In the following plots we show the behaviour of the fluctuations and the power

spectrum density. From the value of β in figure 10.8, and the critical exponents

that collapse the power spectrum data in figure 10.9, it follows that a EW-like

dynamics is achieved independently of the particular value of γ. It is worth to

mention that this is not a trivial fact, due to the anomalous fluctuations induced

by the aggregation rule. In fact, the source of anomalous scaling behaviours has

to do with the evolution of the local slopes that grow as < |∇h| >∼ tβ
∗

, where β∗

is the anomalous growth exponent. Our aggregation rule does not preserves the
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value of the local slopes, but the results obtained seem to confirm the weakness of

this effect.

Figure 10.8: Time evolution of W (L, t) for the aggregation model for γ = 0.4
(lower curve) and γ = 0.6. The red line has a slope of 0.25, the value of β for
the EW universality class.

Figure 10.9: Data collapse for the density of the power spectrum of the ag-
gregation model using α = 0.5, z = 2. Inset: Original data.

In what follows, we want to reproduce graphically some of the arguments

that were just outlined concerning the accessibility of the steady state. In these

simulations we have computed the evolution of the lateral correlation length. Using

the correlation function, this can be done by matching the lα regime and the

saturated region. In figure 10.10 the correlation function is represented along with

the power-law fit of the computed ζ(t) and the system size L(t). It can be seen
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that for γ = 0.4 < 1/z, the correlation length will eventually equal the system size

and the scaling properties of the steady state will be obtained. Not surprisingly,

if γ = 0.6 > 1/z, the steady state is not reached. The second model problem that

Figure 10.10: Comparison of the evolution of the correlation length (blue)
and the system size (red) for γ = 0.4 (left) and γ = 0.6 (right).

has been analyzed concerns the properties of a pure dilatational dynamics. To

do this, we have performed numerical integrations of the EW equation in linear

symmetry with a non-constant discretization length dx′ → f(t)dx. Again, we

impose the particular form of f(t) similarly to the previous model problem. But

in this case, the growth rule equally enlarges all length scales greater than dx.

In this manner, this model problem is intended to be the large radius limit of

a radially growing interface. We do not discuss the behaviour of the correlation

length and the approach to the steady state, referring the reader to the previous

aggregation problem because the same ideas apply here. On the contrary, there is

now a number of novel features that have not appeared before, closely related with

the particular character of this model. To begin with, one can figure out what

happens when the discretization length begins to grow. As the distance between

neighbour points increases, the intensity of the diffusion term is weakened while the

intensity of the noise remains constant. Therefore, there is a continuous source

of fluctuations at the smallest length scales that are not triggered by diffusion

and an anomalous behaviour is expected. Eventually, the noise dominates the

process, and a pure Poissonian growth will be observed with β = 1/2, while

the crossover time should depend upon the dilatational velocity. This hypothesis

can be checked on in figure 10.11 below. An intriguing feature of this model is

the different behaviours of C(l, t) and S(k, t). Figure 10.12 shows the evolution



Chapter 10. Fractal analysis and tumour growth 181

Figure 10.11: Time evolution of W (L, t) for the dilatational model for γ =
0.6. The straight lines have a slope of 0.27 ± 0.01, the value of β for the EW
universality class, and 0.48± 0.01 corresponding to noise dominance.

of the power spectrum density in time, with the corresponding displacement of

the Fourier modes k due to dilatation. Surprisingly, S(k, t) does not show any

anomalous behaviour and a good data collapse is obtained using the EW critical

exponents and the Family-Vicsek scaling hypothesis. On the contrary, anomalous

Figure 10.12: Data collapse for the density of the power spectrum of the
dilatational model using α = 0.5, z = 2. Inset: Original data.

fluctuations are displayed by the correlation function, as can be noticed from the

small-l behaviour in figure 10.13. It is apparent that we need a different scaling

function to take into account these anomalous fluctuations. In fact, inspecting

the C(l, t) behaviour one can observe that the saturation value does not follows
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the usual power-law regime, and a progressive shift develops. This may be due to

the additional correlations induced by the noise dominance. On the other hand,

we have computed (data not shown) the correlation length, and show it obeys a

standard power law. This suggests trying a collapse using the scaling hypothesis:

C(l, t) ∼ (lf(t))αlocG

(

ζ

l

)

, (10.26)

where G(u) is again the scaling function corresponding to the Family-Vicsek

ansatz. The obtained data collapse can be seen in Figure (13). The scaling be-

Figure 10.13: Data collapse for the correlation function of the dilatational
model using α = 0.5, z = 2 and the scaling function in the text. Inset: Original
data.

haviour of this last model problem resembles that of a superrough dynamics, where

the anomalous fluctuations are not shown by power spectrum density. In any case,

the unusual features of this example are mentioned here to remark the ambiguous

status of dynamic scaling techniques concerning the study of growing-size systems

both in mathematical models and real systems.

10.5 Discussion

The stochastic approach to the modelling of growth processes intends to provide

some insight about the macroscopic features of developing patterns. Roughly

speaking, it can be considered as a first step to describe the different mechanisms



Chapter 10. Fractal analysis and tumour growth 183

that enter into the dynamics, where the microscopic degrees of freedom are gath-

ered as a random event. This is actually the main idea behind dynamic scaling

and the main reason of its wide-ranging scope: to capture the core properties be-

fore coming into details. We have recalled some of the various ideas that are used

in this technique, which have their origins in the theory of stochastic processes,

non-equilibrium thermodynamics and critical phenomena, and fractal geometry.

With tumour growth in mind, there is a number of practical problems that

have to be overcome in order to analyze cell colony interfaces and to eventually

achieve, a complete analytical description of interface growth. At first, the main

issue to be handled is the analysis of fluctuations in radially propagating fronts.

We have shown that using the customary parametrization of the interface in terms

of the arc-length variable we are able to obtain the whole set of critical exponents

in this case, at least on the large-radius approximation of one of simpler growth

equations. The highly non-linear character of the general model prevents us from

doing an heuristic approach in this case, and a complete numerical study of the

fluctuations as well as a rigorous derivation of the steady-state properties (i.e.,

by means of renormalization arguments) has not been achieved as yet. In this

respect, an intriguing question is how to handle the limit ζ(t)/L → ∞ when L(t)

is a increasing function. We have shown numerically an otherwise natural result:

the steady state is not attained whenever L(t) grows faster than the correlation

length. Although in this case most of the scaling concepts are still valid, the

formal derivation of new scaling functions is tricky. A reasonable working plan

would be to study a broad number of systems in order to gain some knowledge

about the different scaling regimes to be expected, and then to gather them in

a new scaling proposal. After that, some analytical computations will be needed

in order to obtain the whole scaling picture, in the same manner that was done

in [241]. Similar arguments can be applied to other limits indeed. Self-affinity

is a morphological feature that appears in many growth processes when observed

at certain length scales. Beyond these limits, there are lower and higher cut-offs

that have to be done in the systems under consideration. The discrete nature

of our measuring tools, both numerical and experimental, has to be taken into

account when we compute the evolution of fluctuations because other important

limits may become relevant. Whenever the discretization length dl and the typical

particle size σ (the lower cut-off of self-affinity) are such that σ/dl ≪ 1, the system

can be regarded as continuous and we can make use of the scaling arguments at

hand. The recognition of the relevance of this issue is far-reaching in practice,



Chapter 10. Fractal analysis and tumour growth 184

since a wrong parametrization of the interface can lead to incorrect results (see

[238]). Furthermore, albeit the continuum description of radial growth includes a

dilatational driving force, we need to understand the real influence of such a term

in the dynamical properties of the fluctuations. Our numerical results show the

emergence of anomalous fluctuations due to noise dominance, and only a rigorous

analysis of future scaling ansatzs could clarify this issue.



Chapter 11

Analysis of Lattice-Gas Cellular

Automaton Models for Tumour

Growth by Means of Fractal

Scaling

Mathematical modeling of tumor development has become a real hype within the

last decade. The abundance of mathematical models has created a great need for

the validation of their biological relevance. Recently, in order to characterize the

tumor growth dynamics, Brú et al. have determined some statistical properties

of both in vitro and in vivo solid tumor-surfaces by using fractal scaling analy-

sis. Surprisingly, for all tumor surfaces, the statistical observables converged to a

unique set of critical exponents which indicates some common features of tumor

growth dynamics (linear growth rate, growth activity limited to the outer rim of

the tumor mass and diffusion of newborn tumor cells on the surface from lower to

higher curvature regions, typical of Molecular Beam Epitaxy (MBE) Universality).

Here, we develop and analyze a lattice-gas cellular automaton (LGCA) model of

solid tumor growth. Random walk dynamics are assumed for tumor cell migration

and a density-dependent birth process describes the cell mitotic dynamics. Fractal

scaling analysis shows that for any parameter variation the model interface dynam-

ics follow Edward-Wilkinson (EW) Universality. Interestingly, the observation of

the linear growth rate of the tumor radius and the location of proliferative activity

characterizing in vitro and in vivo solid tumors are recovered by the model.

185
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11.1 Introduction

At the beginning of 60’s Eden formulate one of the first discrete automata model,

in attempting to describe solid tumor growth [229]. Recently, there is a boom of

new mathematical models describing various aspects of tumor growth and devel-

opment. Different mathematical models have been developed in order to describe

features of tumor development, like front velocity, necrotic core and proliferative

rim dynamics, interactions with the extracellular medium and vasculogenesis, with

and without the exposure to chemicals and radiation [251–253]. A central prob-

lem in the mathematical modeling of biological processes is the evaluation of its

biological relevance. In particular, for the problem of tumor development numer-

ous models have been proposed but the methods to check their consistency with

experiments or medical observations are sometimes ambiguous or qualitative. Re-

searchers have tried to compare different characteristics of their models such as

growth speed, spatiotemporal pattern formation, tumor cell population evolution

with in vivo or in vitro observations. An essential question is which of the ex-

isting model assumptions are justified for simulating tumor growth. Brú et al.

have claimed, on the evidence of their experimental investigation of in vivo and in

vitro tumor samples, that all avascular solid tumors share the same fractal surface

dynamics [15, 28, 30]. In particular, these exponents are typical of the MBE/MH

(Molecular Surface Dynamic/Mullins Herring) surface dynamics [29], character-

ized by particles/cells generated (or deposited) randomly on the surface and then

relaxing towards the highest surface curvature region. This characterization sup-

ports the following conclusions on solid tumor growth dynamic: linear growth rate,

cell replication activity limited to the outer rim of the tumor mass and displace-

ment of newborn tumor cells on the surface preferable in lower curvature regions.

Fractal scaling could be definitively an efficient tool to evaluate tumor models,

and to link their mathematical assumptions with real biological properties. In

the present study, we analyze a discrete model with diffusive-kinetic dynamics,

i.e. cells perform random walks and undergo birth/death processes. These are two

classical assumptions and a lot of continuous [254–256] and discrete [257] tumor

growth models are based on them. Hatzikirou et al. have developed a tumor

growth lattice-gas cellular automaton (LGCA) model [31, 32], which incorporates

these diffusion-kinetic assumptions. In this paper, we analyze the growing front in

model simulations by using fractal scaling analysis. The main goal is to calculate

numerically the statistical observables that allow for the extraction of the critical
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scaling exponents and to relate them with the proper universality class. We in-

vestigate the exponents’ dependence on different lattices (square and hexagonal),

and on relevant model parameters. Numerical analysis indicates that diffusive

dynamics induces the tumor surface developing according to Edward-Wilkinson

(EW) Universality, which is not consistent with real in vitro and in vivo tumors.

To obtain the correct MBE/MH Universality [258] it is necessary to introduce ad-

hesive cell-cell interactions. The paper is organized in the following way: first, we

introduce briefly the model, describing its main assumptions and formalizing the

mathematical notation. Then we give a basic description of fractal scaling analy-

sis. In the following, we present numerical results about surface critical exponents’

extraction, and investigate the compatibility of our model with some appropriate

universality class. Finally, some suggestions for future tumor modeling approaches

are given.

11.2 The Model

We consider a lattice-gas cellular automaton [41] defined on a two-dimensional

regular lattice L = Lx × Ly ∈ Z
2, where Lx, Ly are the lattice dimensions. Let b

denote the coordination number of the lattice, that is b = 4 for a square lattice and

b = 6 for a hexagonal lattice, respectively. Cells move on the lattice with discrete

velocities, i.e. they hop at each time step from a given node to a neighboring one,

as determined by the cell velocity. The set of velocities for the square lattice is

represented by the two-dimensional channel velocity vectors c1 =

(

1

0

)

, c2 =

(

0

1

)

, c3 =

(

−1

0

)

, c4 =

(

0

−1

)

, c5 =

(

0

0

)

, while for the hexagonal lattice

it is c1 =

(

1/2√
3/2

)

, c2 =

(

1

0

)

, c3 =

(

1/2

−
√
3/2

)

, c4 =

(

−1/2

−
√
3/2

)

, c6 =

(

−1

0

)

, c7 =

(

−1/2√
3/2

)

, c8 =

(

0

0

)

. In each of these channels, we impose an

exclusion principle, i.e. we allow at most one cell per channel. We denote by b̃ =

b+b0 the total number of channels per node which can be occupied simultaneously,

where b0 is the number of channels with zero velocity (rest channels). We represent

the channel occupancy by a Boolean random variable called occupation number

ηi(r, t) ∈ {0, 1}, where i = 1, ..., b̃, r = (rx, ry) ∈ Z
2 the spatial variable and t ∈ N
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Figure 11.1: Example of node configuration in a lattice-gas cellular automa-
ton: channels of node r in a two-dimensional square lattice (b = 4) with one
rest channel (b0 = 1). Gray dots denote the presence of a cell in the respective
channel.

the time variable (see figure 11.1). The b̃-dimensional vector

η(r, t) := (η1(r, t), ..., ηb̃(r, t)) ∈ S

is called node configuration and S = {0, 1}b̃ the automaton state space. We define

a total node density as the sum of node densities:

n(r, t) :=
b̃
∑

i=1

ηi(r, t)

The global configuration is given by

η(t) := (η(r, t))r∈L

11.2.1 LGCA dynamics

In our automaton model, cell dynamics are defined by rules. Automaton dynamics

arise from the repetition of three rules (operators): Propagation (P), reorientation

(O) and growth (R). In particular, the combination of reorientation and propa-

gation operators describe [32] cell motion while the growth operator controls the

change of the local number of cells on a node. In the following, we describe these

operators in detail.

11.2.1.1 Propagation (P)

The propagation step is deterministic and it is governed by an operator P. By the

application of P all cells are transported simultaneously to nodes in the direction

of their velocity, i.e. a cell residing in channel (r, ci) at time k is moved to a
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Figure 11.2: Reorientation rule of random motion. The first column corre-
sponds to the number of cells on a node n(r, k) at a time km, with capacity
b̃ = 4. The right column indicates all the possible cell configurations on node
and the transition probability of obtaining a certain configuration (11.1).

neighboring channel (r+mci, ci) during one time step (see figure 11.1). Herem ∈ N

determines the speed and mci is the translocation of the cell. Cells residing on rest

channels do not move since they have zero velocity. We note that this operator is

mass and momentum conserving.

11.2.1.2 Reorientation(O)

The reorientation operator is responsible for the redistribution of cells among the

velocity channels of a node, providing a new node velocity distribution. Here, we

assume that cells perform random walks. A possible choice for the corresponding

transition probabilities is

P (η → η
O)(r, t) =

1

Z
δ
(

n(r, t), nO(r, t)
)

, (11.1)

where Z =
∑

ηO(r,t) δ
(

n(r, k), nO(r, k)
)

is a the normalization factor. The

Kronecker δ guarantees the mass conservation of this operator. Simply, we choose

one configuration at random among those with the same number of particles as the

initial one (see figure 11.2). The particular choice for the reorientation operator is

one out of various possible ways to describe random motion by means of LGCA

models [41]. This choice greatly simplifies the possible analytical derivation of

the equations describing the meso- and macroscopic evolution of the automaton

[31, 32].
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11.2.1.3 Cell Kinetics (R)

In our model we take into account only mitotic processes (and neglect cell death).

We assume that tumor cells can divide only if they have just a few competitors on

the node, i.e. the cancer node density nC(r, t) should be lower than a threshold

θM . The probability of mitosis rM is a function of tumor node density:

nR(r, t) :=

{

n(r, t) + 1,w.p. rM if n(r, t) ≤ θM

n(r, t), else
(11.2)

where w.p. denotes ”with probability”. In practice at time t one adds a cell

in the node with coordinates r in a randomly chosen channel, accomplishing its

occupation number, with probability rM . In a more complete formulation an

additional population of necrotic cells (dead cells) model is considered [31]. These

interact with tumor cells when the total node density exceeds θN , assuming that

the nutrient consumption is critical and inducing tumor cell necrosis. Generally,

the precise definition of these interactions is a difficult and ambitious task. For in

vivo tumors the complexity of the interacting phenomena cannot be captured easily

by computational models. However, necrotic-tumor population interactions are

not relevant in analyzing tumor front fluctuation dynamics since necrosis typically

occurs some distance away from the tumor front and in our work it has been

disregarded.

11.3 Basics of Fractal Scaling Analysis

Physical systems such as surfaces growing on a substrate by a particles deposition-

relaxation process often have a fractal self-affine nature; such systems have been

mathematically described both by using continuous Langevin equations and dis-

crete models [27]. The main information that can be extracted from these systems

is the spatiotemporal evolution of some statistical observables, such as the disper-

sion of the surface height around the mean value calculated on the whole surface.

These statistical observables typically have a power-law dependence in space and

time. The dominant dynamic process may be characterized by measuring the value

of the power-laws’ exponents, also called scaling critical exponents (for details see

[241]). Taking into consideration the fractal scaling analysis of the experimental

results found by Brú et al. [15, 28], here we describe a way to define a surface
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for the propagating front of a 2D tumor growth LGCA model, and the respective

method of scaling exponents measurements, trying to establish relations between

the local microscopic rules (birth death process, re-orientation process) and the

surface behavior dynamics (defined by the critical exponents).

A self-affine surface is represented by a height function h(~r, t)1, that is the height

coordinate ry of the surface for the substrate point described by coordinates ~r at

time t, having the scaling properties:

h(λ~r, ωt) = λαωβh(~r, t) (11.3)

where α, β and z = α
β
are the scaling exponent; this last governs the characteristic

surface correlation length dynamic ξ ∝ t
1

z . β is called the growth exponent, while

α is the roughness exponent and z is the so-called dynamic exponent. This scaling

exponent can be measured by the local surface width W (l, t) and the correlation

function C(l, t) defined as:

W (l, t) =

〈〈

√

〈h2〉l − 〈h〉2l
〉

L

〉

r

C(l, t) =

√

〈〈

(h(~r)− h(~r +~l))2
〉

L

〉

r
, (11.4)

where 〈·〉l is the mean value over a window of size l, 〈·〉L over different windows

of the system of total size L2, and 〈·〉r over different replicas r (i.e. system real-

izations), see figure 11.3. These two quantities follow similar power laws in t and

l:

C(l, t) ≈ W (l, t) ∝ tβf

(

l

ξ

)

, (11.5)

where f
(

l
ξ

)

is the scaling function, dependent only on the value of the correlations

size respect to the system size

f(u) =

{

uαloc u ≪ 1

const u ≫ 1
(11.6)

The exponent αloc is called the local roughness exponent. There are two main

categories of scaling behavior. If α < 1, this exponent describes both the scaling

of large and small-length scales, and α = αloc. For this case C(l, t) and W (l, t)

increase until a time tthr, when the characteristic correlation length ξ ≫ l, and they

1Alternatively, it is defined as the furthermost occupied node in Ly direction, for each rx ∈ Lx

2More rigorous definitions could be given by: 〈f〉l,x =
∫ x+l

x
f(x′)

(

1

l

)

dx′ and
〈

〈f〉l,x
〉

L
=

∫ L

0
〈f〉l,x

(

1

L

)

dx.



Chapter 11. Analysis of Lattice-Gas Cellular Automaton Models for Tumour
Growth by Means of Fractal Scaling 192

reach a threshold value Wthr ≈ Cthr ∝ l, as one can observe for example in figure

11.5. On the contrary, when α > 1 the small-length scales show a trivial scaling

with αloc = 1. This generic picture includes most of the scaling behaviors found

so far in models and experiments. tumor growth has been experimentally shown

to obey an infrequent superrough dynamics [15, 28], characterized by αloc = 1 and

α > 1. Using the corresponding scaling function of equation (11.5), one can see

that the long time behavior is C(l, t) ∼ lαloctβ
⋆

(instead of the standard behavior

C(l, t) ∼ lα), where β⋆ is called the anomalous growth exponent, β⋆ = (α−αloc)/z.

Therefore anomalous fluctuations at small scales are particularly relevant in this

case. An useful observable measuring α is the Power Spectrum of h(~r, t), namely

the spatial Fourier Transform

S(~k, t) =
〈

ĥ(~k, t), ĥ(−~k, t)
〉

r
= k−(2α+1)s(kξ) (11.7)

where the scaling function has the form

s(u) =

{

u2α+1 u ≪ 1

const u ≫ 1
(11.8)

The most general stochastic Langevin equation describing the dynamic of interface

growth function h(~r, t) is

∂h

∂t
= G(~r, h, t) + F (~r, t) (11.9)

where F (~r, t) term is responsible for the addition/deposition, in our case ”repro-

duction”, of new particles on the surface and G(~r, h, t) dictates their movements

and interactions on it. Typically, F (~r, t) is composed of a constant growth rate f

plus a white noise ζ(~r, t), having its first two moments:

〈ζ(~r, t)〉 = 0 〈ζ(~r, t)ζ(~r, t′)〉 = 2Aδd(~r − ~r)δ(t− t′); (11.10)

on the other hand G(~r, h, t) is a function of time t, spatial coordinates ~r and sur-

face profile h and it is generally represented by a differential operator. In some

simple cases by means of heuristic scaling arguments, deriving spectral properties

or applying renormalization group theory, is possible to derive the theoretical val-

ues of the scaling exponents, that depends in general on the geometrical dimension

of the surface d. In table 11.1 are defined the universality classes discussed in our

work in terms of their set of critical exponents.
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G(~r, h, t) α β z

EW D∇2h 2−d
2

2−d
4

2

MBE/MH −K∇4h 4−d
2

4−d
8

4

Table 11.1: Edward Wilkinson (EW) and Molecular Beam Epitaxy/Mullins
Herring (MBE/MH) universality classes, defined in terms of their set of crit-
ical exponents α, β and z. The value of critical exponents depends on the
geometrical dimension d of the surface.

While Edward Wilkinson (EW) dynamic has a diffusive interaction term, typi-

cal of particles random motion. The fourth order term corresponds to the Molecu-

lar Beam Epitaxy/Mullins Herring (MBE/MH) Universality, whose scaling expo-

nents are compatibles with the ones measured by Brú et al., results from particles

moving from lower to higher curvature regions, trying to minimize surface curva-

ture.

11.4 Numerical Analysis and Results

We have implemented the model described in section 11.2 on a 2D lattice (b = 4 ve-

locity channels) and hexagonal lattice (b = 6 velocity channels) lattice L = Lx×Ly,

with |Lx| = |Ly| = {1024, 2048} 3, lateral periodic boundary conditions and re-

flecting boundary at Lx (e.g. a particle in a velocity channel pointing towards the

boundary, is placed - reflected - in the opposite velocity channel). The initial con-

ditions are defined as n
(

(rx, 1), 0
)

= 1, ∀rx ∈ Lx. We consider principally the case

in which mitotic threshold is half of the maximum node density, i.e. θM = b̃/2,

and the number of rest channels b0 = 4.

Height function h(x, t) at x is defined as the y coordinate of the lattice site with

the last nonzero cell density at time t, measuring the density of the x− th column

starting from ry = 1, see figure 11.4. Alternative definitions of height function have

been considered for lattice gas or percolation front [238, 259], producing multival-

ued surfaces with overhangs. Our definition can be considered as one of the most

simplest in order to perform dynamic scaling, and has a good consistency at least

in the case of compact tumors observed at short scale, in linear approximation.

In the case of more jagged profiles and non linear geometries, more sophisticated

definition of height function have to be considered to obtain a consistent scaling,

3The notation | · | denotes the cardinality of a given set, i.e. |Lx| = 1024 when Lx = [1, 1024]
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able to identify correctly the universality class [28].

In all cases studied, the front velocity, which is defined as the slope of the mean

height 〈h(t)〉x, was found to be constant (see [31]). We note that the height func-

tion h(x, t) provides the actual position of the front, as in figure 11.4 up-right.

The cell proliferation activity is concentrated to a narrow region near to the front

(see the two lower graphs of figure 11.4). The location of the proliferation events

is in good agreement with the observations of in vivo and in vitro tumors [15].

The surface height function h(x, t) exhibits non trivial spatiotemporal scaling ex-

ponents when varying the mitotic rate rM in a broad range (up to 3 orders of mag-

nitude). The scaling exponent β = α
z
is evaluated by direct calculation of W (L, t)

time slope, while α and z by the data collapse of a set of functions W (l, ts) (or

C(l, ts)) taken at different times ts (see equation (11.5) ). The fractal scaling anal-

ysis shows that the exponents fit well with EW universality, as it is shown in figures

11.5-11.7. Variation in mitotic threshold θM and in the number of rest channels b0

does not seem to affect universality, as one can see in figure 11.6. Some differences

are observed due to the lattice topology. In particular, on the hexagonal lattice

the global width W (L, t), after an initial transient, grows with an exponent typical

of the EW regime for a broad range of mitotic rates rM ∈ (0.01, 0.5). The station-

ary regime is observed in our simulations even in the case of small system size,

i.e. Lx = 1024. However, in the square lattice it is more difficult to observe the

final growth - stationary - regime, due to a very long transient that follows KPZ

dynamics, with β = 1
3
, as a result of the square lattice induced symmetry (data

not shown), particularly persistent for high rM . The surface correlation functions

C(l, t) exhibit also an EW-compatible regime. Moreover, the spatial correlations

collapse in a suitable way using both the EW universality spatial α and temporal

β exponents, at least for long spatial distances l. The spatial correlations are

mainly developing due to the proliferation events, since the random walk dynam-

ics induce only uncorrelated spatial structures. Thus, we can state that the low

mitotic probabilities rM , in combination with a short domain size, are responsible

for the lack of a sufficiently large number of proliferative events for the building up

of significant spatial correlations. From the other hand with high rM fluctuations

in surface roughness reaches saturation rapidly, thus also in this case finite system

size play a main role in the observation of EW regime in temporal scaling of global

width W (L, t). Thus in the limit of low mitotic probability and large system size,

surface front grows following a power law with a typical EW exponent for many

decades.
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11.5 Conclusions and Perspectives

In this study, motivated by the work of Brú et al., we used fractal scaling analysis

to evaluate the suitability of some common assumptions in tumor growth model-

ing. In particular, we tested the hypothesis that avascular tumor dynamics may

emerge from the combination of random cell motion coupled with a stochastic birth

process. The corresponding model is motivated by a recently developed LGCA

model [31, 32], which can effectively describe the avascular growth phase. The key

idea is to check if the resulting spatiotemporal dynamics of the front, described in

terms of fractal scaling exponents, match with the ones found by Brú et al.

We have considered our model in 2D with appropriate periodic cylindrical bound-

ary conditions, that allow for the development of a well defined 1D front, described

by a corresponding height function h(x, t). Then we have measured the self affine

properties of increasing tumor border in our simulations by means of fractal scaling

analysis. Our study provides numerical evidence that our virtual tumor surfaces

are compatible with the EW universality, which describes, in the context of surface

growth by random particle deposition, a relaxation process that moves the parti-

cle towards the local height gradient minimum. It is worth pointing out that the

spatially homogeneous migration/proliferation dynamic rules produce non-trivial

front structures, usually obtained by one-dimensional models involving only sur-

face particle interactions.

This model is a very simplified view of tumor growth. Actually microenvironment,

by means of diffusive signals (nutrients, growth factors etc.), ECM components or

other stroma interactions, plays a significant role in tumor development. The ma-

jor difference between 2D and 3D embedded geometry is the penetration length of

diffusible signals in the tumor bulk. This fact can lead to important phenomena

such as diffusion barriers, which is one of the major reasons for chemotherapeutic

treatment failure, since chemotherapy efficiency is based on the penetration of the

diffusible agents. Another point we want to stress out concerns the actual exper-

imental setup limitations of Brú et al. in the measure of critical exponents. In

fact critical properties are extracted in in vivo samples from 2D cut sections of a

3D tumour mass, while in in vitro case the original systems grow just on a plane

on the Petri dish. Then one of the main criticisms to their work is related to the

finding, in both cases, of 1D MBE universality scaling exponents, measured on a

linear front, where a real tumor growth in a three dimensional space, with a 2D

spherical surface front. This is still an interesting open question, out the purpose
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of this work, so we limited our analysis to 2D planar systems, mimicking better in

vitro experiments, at least at short scales, where an arc segment can be approxi-

mated with a straight line. There are few studies on self affine surface growth that

consider cut section or geometries different from the euclidean [30, 246], and more

solid numerical and theoretical works are needed in these topics, in order tackle

with more realistic tumor models, replicating at the best both spherical growth

dynamic and experimental techniques.

Implementing our model within a hexagonal lattice geometry has some advantages

with respect to a square lattice, such as higher order directional isotropy. This

effect is expressed in the front dynamics on hexagonal lattices as a shorter tem-

poral dynamic transient, a prominent asymptotic growth dynamics under both

size and mitotic rate modulations, and the shorter equilibration of the relevant

surface statistical observables. On the contrary, front dynamic on square lattice

are characterized by a long rM -dependent KPZ transient.

Our model predicts two of the solid tumor dynamic features claimed by Brú et

al, i.e. proliferation concentrated at the outer rim of the tumor bulk and a linear

front velocity. However, the universality class of the surface front dynamics found

here is not the MBE/HM found by Brú et al. [15, 28]. Microscopically, the tradi-

tional view on MBE dynamics imposes a particle relaxation process which directs

particles to the minimum of the surface curvature. The latter suggests us to im-

plement a different reorientation rule, for example dependent on a function of local

cell density gradients, in order to find the universality characterizing real tumors.

Please note, that MBE dynamics describe a non-local mechanism of motion, in

contrast to EW, whereas the curvature “information“ is non-local, i.e. refer to an

extended neighborhood. In a following study, we will introduce a mechanism that

provides the desired universality for the surface dynamics. Finally, another very

intriguing and important step is the derivation of a coarse-grained partial differ-

ential equations for density ρ(~r, t) in d dimensions, obtained from the microscopic

model, by use of standard mean-field techniques [31, 32, 260], and the calculation

of the corresponding Langevin equation describing the (d−1)-dimensional surface

front dynamics for h(x, t).
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Figure 11.3: The correlation function C2(l, t) =
〈

(h(x1, t)− h(x2 = x1 + l, t))2
〉

is defined as the mean square height dif-
ference among all pairs of surface points (x, y = h(x, t)) placed at a distance d
from x. The local surface width W (l, t) is the mean of the local variances of
h(x), calculated around a mean height 〈h(x)〉l over a domain of fixed size l.
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Figure 11.4: Top: Front cell density profile (left) and height function h(x, t)
(right) for the LGCA model (parameters θM = 5, rM = 0.1) on a hexagonal
lattice (number of rest channels b0 = 4) with x size L = 1024. Bottom: Mitotic
events at a given time step (left and right inset) and their frequency distribution
vs the height level y = h(x). Mitotic activity is highly concentrated on a
thin front layer, consistent with the hypothesis of Brú about linear growth
concentrated on the outer rim of the tumor mass



Chapter 11. Analysis of Lattice-Gas Cellular Automaton Models for Tumour
Growth by Means of Fractal Scaling 199

10-1

100

101

102

100 101 102 103 104 105

W
(t)

t

Hex. Lattice Lx=1024 rM=0.01
rM=0.1
rM=0.5

Lx=2048 rM=0.01
rM=0.1
rM=0.5

Sq. Lattice Lx=2048 rM=0.01
t1/4

100

101

102 103 104 105

W
(t)

/t-0
.2

5

t

Hex. Lattice Lx=1024 rM=0.01
rM=0.1
rM=0.5

Lx=2048 rM=0.01
rM=0.1
rM=0.5

Sq. Lattice Lx=2048 rM=0.01

Figure 11.5: Global surface width W (L, t) (top) and its scaling with the EW
universality β exponent (bottom), for different lattice geometries, system sizes
and mitotic rates rM . Mitotic threshold is set to θM = b̃/2. For all cases global
width growth is compatible with the typical EW universality scaling Ansatz
W (L, t) ∝ tβ with β = 1

4 . It is possible moreover to observe for size L = 1024 the
transition between growth regime and threshold regime, as predicted by scaling
Ansatz in equations (11.5)-(11.6), when characteristic correlation length reach
the system size. Each curve has been averaged over 50 different realizations (10
realizations for b0 = 1). Curves corresponding to different rM are shifted in y
direction for a better visualization.
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Conclusions

In this thesis we have studied critical phenomena appearing in different biological

motivated systems. In particular, our work has been focused on some fundamen-

tal aspects concerning the dynamics of neural networks and the growth of solid

tumours, which can be considered as prominent examples of complex systems.

These are systems composed of many elements, cells in this case, with simple and

short-range interactions, mediated by the synapses in the case of neural networks,

or by contact enhanced signals and exchange of chemical messengers in the case

of cancer cells.

As described in chapter 2, when a complex system is in a critical state (e.g.

near a second order phase transition, or near a self organized critical state), its

dynamics is determined by non trivial spatiotemporal correlations in its correspon-

dent emergent collective behaviour. In order to study these collective properties,

systems have to be considered as a whole, and not merely as the sum of all its

elements, and it is useful to study their dynamics within a probabilistic approach.

Thus, the framework used to implement the models and the mathematical tools

of analysis here considered are part of equilibrium and non-equilibrium statistical

mechanics.

Different experimental works have shown a broad range of phenomena in neural

systems depicting criticality, which is associated to the observation of correlations

power law distributed, as described in chapter 4. The efforts to find and describe

critical states in neural systems has generated a great interest in the scientific

community due to their functional relevance. In fact, it is known from the study

of criticality in classic physical systems, e.g. in the Ising model, that long range

correlations increase the sensitivity of the system to small perturbations or stimuli

[5]. On the other hand, concerning some biological systems, critical states allow

for an optimization of their functional properties. For example, a neural system in
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the critical state optimizes transmission and storage of information, computational

capabilities, large network stability and sensitivity to sensory stimuli, to name a

few [10, 132]. Another class of biological systems in which emergent properties

related with criticality have been observed are solid tumours, described in chapter

10. During solid tumour growth, the critical behaviour of the front of expansion,

that evolves as a self affine surface, leads to an increasing surface/volume ratio,

allowing for the optimization of oxygen and nutrients intake and furthermore for

an effective invasion strategy, by mean of extracellular matrix degradation.

By virtue of the emergence of these important properties in critical systems,

the motivation of the research work done in this thesis has been to investigate

the most relevant mechanisms responsible for the appearance of critical states in

different neural systems and in tumour growth processes. To reach this main ob-

jective we have developed original biologically inspired mathematical models, in

general constituted by many elements, that we have studied using both numerical

simulations and some analytical approaches as mean-field techniques.

In chapter 5 we have implemented a non-equilibrium version of the standard

Hopfield ANN model introducing fast synaptic fluctuations, whose steady-state

distribution depends on the current activity of the network in such a way that

it models synaptic plasticity dynamics [106]. In addition we have considered an

hybrid synchronous-asynchronous neuron updating [125], i.e. the so called par-

tial updating (i.e. a sort of half way between sequential and parallel updating,

usually considered), which introduces the possibility of simulate a network with

silent neurons [155] or with partially synchronized states. Previously it has been

shown that one may capture some of the experimentally observed shaky mecha-

nisms and instabilities in the attractors of neural systems [46, 145, 146] by taking

into account these two features [150]. The main properties of this model are:

• The appearance of non equilibrium phases, which are characterized by chaotic

fluctuations of the network state among different patterns of activity, related

with the previously stored memories, or among different oscillatory memory

states, defined as pattern-antipattern oscillations.

• The emergence of a continuous second order phase transition between the

memory retrieval phase and the chaotic phase. The onset of criticality in

the dynamics of the network is depicted at this transition by the appearance

of power-law distributed temporal correlations in synaptic currents or local
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fields time series. Such criticality at the edge of chaos resulted to be rele-

vant in order to optimize the sensitivity of the network to external stimuli,

improving dynamic memory retrieval tasks.

Our systematic study adds up some elements to understand the role of fast synap-

tic fluctuations in the appearance of criticality in neural states at the edge of

chaos, experimentally observed and sometimes associated to a dynamics that ex-

plores different memories [4, 8, 46] and in the emergence of strange attractors in

neural dynamics recently reported in some experimental works [145, 146].

In order to study more in depth the role of activity dependent synaptic pro-

cesses (occurring at short time scales) on the emergence and the stability of neu-

ral critical states, we have considered in chapter 6 a more realistic neuron and

synapses description, and implemented the Levina, Herrmann and Geisel model

[19] (LHG), that includes the Tsodyks-Markram model for synaptic depression,

a mechanism of great importance for synaptic plasticity [175], and an Integrate

and Fire (IF) dynamics for neuron excitability. This model allows to describe

neural avalanches similar to those observed in experiments on cortical neural tis-

sues [6, 8]. Under a mathematical point of view, this model is essentially equiv-

alent to the well-known sandpile model, with grain height representing on the

LHG model membrane graded potential and, instead of a grain toppling mecha-

nism, energy is dissipated to neighbour sites through synapses modeled with the

Tsodyks-Markram model.

LHG model has been claimed by their authors to reproduce generically scale-

invariance, in the form of SOC neural avalanches of activity. However in the LHG

model the dynamics is non-conserved, reflecting the leaking/dissipative mecha-

nisms of actual synaptic transmission, and generic scale-invariance cannot be in-

voked. The term self-organized quasi criticality (SOqC) has been proposed to refer

to such a class of systems, emphasizing the differences with conserving SOC mod-

els [20]. In order to investigate the SOC or SOqC features of the LHG model, we

have scrutinized it, both numerically and analytically, and obtained the following

results [21]:

• The LHG model exhibits absorbing and active phases and a non-trivial crit-

ical point separating both phases. Thus, only when the control parameters

of the model are fine tuned to such a critical point, true scale-invariance

emerges and the distribution of avalanche-sizes is power-law distributed.
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• The mean-field calculation in [19], supporting generic criticality, leads indeed

to a branching ratio equal to unity in a broad interval of phase space. In

addition a Langevin equation, analogous to the one proposed to describe

generically non-conserving self-organized (SOqC) models in [20], has been

derived for the LHG model.

As a general conclusion our study suggests that synaptic plasticity mechanisms

are not sufficient to guarantee the appearance of self organized criticality in neu-

ral activity, as argued in [19, 136] with respect to recent experiments on neural

avalanches of activity [6, 8]. Anyway, even in absence of proper SOC, the dy-

namical LHG model generates partial power-laws compatible with the empirical

findings for a relatively broad interval of the relevant parameters which ensures the

stability of such quasi critical states. If future experimental research conducted on

cortical networks will support the robustness of critical avalanches, we suggest to

investigate for more elaborate theories, beyond simple self-organization, to explain

this. For instance one can consider the interplay of homeostatic regulation mech-

anisms [181] for synaptic strength, or an evolutionary/adaptive processes leading

to critical (or close-to-critical) propagation of information[180].

On the other hand, the topology of the brain has been observed to have an

highly non trivial structure, with evidences that different regions of brain cortex

are structured in a scale free topology, at least functionally [4]. Scale free con-

nectivity distribution encompasses a huge variety of networks that differ in fine

and microscopic structures, as for example in the correlation between the degrees

of nearest neighbors nodes. Degree-degree correlations both positive, also called

assortative, and negative, i.e. disassortative, have been found in many empirical

networks, among others, neural networks [4, 58]. With this in mind, in chapter 7

we have studied a simple model of an Amari-Hopfield neural network in a scale

free topology, i.e. with a power law degree distribution, focusing on the non triv-

ial node-node correlations, and its relevance on memory storage and retrieval [22].

The main results of our analysis were:

• The memory retrieval performance increases is enhanced in assortative net-

works against a general stochastic noise, in particular due to the hubs which

are the main responsible for the storage of information.
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• At low temperature, however, disassortative networks perform the best, i.e.

their overlap is higher than assortative ones, although the effect measured is

small.

As a general conclusion, we claim that the optimal network for good conditions

(i.e., complete synchronization, high density of edges, low levels of noise) is not

necessarily the one which performs the best in bad conditions (partial synchroniza-

tion, low density of edges, high levels of noise). It seems that optimality should

thus be defined for particular environmental variables and tasks that the network

has to deal with. Persistence of partial synchrony, or coherence of a subset of

highly connected dynamical elements, can sometimes be as relevant as the possi-

bility of every element behaving in the same way, in a perfectly synchronized state.

In real neuronal networks, experiments suggest that hub (high degree nodes) neu-

rons play key functional roles [212, 213]. From this point of view, there may be

a selective pressure for brain networks to become assortative, in particular in ar-

eas of the cortex specifically related to memory [113, 114] or prefrontal [221, 222]

lobes, where this effect might be relevant.

In order to go a step further in the study of collective behaviours of actual

neural system whith complex topologies, in chapter 8 we have studied in the same

class of scale-free assortative topologies considered in chapter 7, the dynamics

of a population of spiking neurons, with a more realistic description of neuron

membrane dynamics, using the Integrate and Fire (IF) model (see section 3.2 for

details). Our study have shown that these networks depict different dynamical

phases depending on the particular features of the degre-degree correlations, in-

cluding synchronous and asynchronous spiking activity, and mixture phases with

different populations of neurons with different synchronization behaviour. The

main results of our analysis were:

• Heterogeneous scale-free topologies allow for the appearance of asynchronous

phases and a crossover regime where a mixture of synchronous and asyn-

chronous activity appears. On the contrary excitatory networks with a ho-

mogeneous topology, often considered in other works, tend always to rapidly

synchronize all neurons in the network [91, 226].

• Both global and partial synchronization are enhanced by networks with as-

sortative configurations, in which a certain level of homogeneity is guaran-

teed, at least locally.
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• Between synchronous and mixture phase there is a discontinuous first or-

der transition. In particular assortative networks have a broad region of

phase coexistence, which can be considered in order to allow the network

to switch between two frequencies (the low frequency of synchronous phase

and the high frequency of the synchronous part of the mixed phase) under

an appropriate external stimulation.

In the second part of this thesis, starting on chapter 10, we considered some

modeling problems related to the dynamic scaling analysis for the solid tumours

fronts of invasion, studied and characterized as critical self affine objects. In

particular we concern for the analysis of the fluctuations in radially growing fronts

and in interfaces with non constant substrate size, in terms of dynamic scaling

techniques [30]. Our main goal stays in determining if the models exhibiting non

planar geometries belong to the currently known universality classes, or else make

part of some new ones. The main results of our analysis were:

• EW and KPZ equations, implemented in radial symmetry, result to still

belong to the respective well-known one dimensional universality classes, at

least in the limit of large radius and short evolution time, prescribed by the

Family-Vicsek Ansatz.

• In one dimensional continuous Langevin models with non constant substrate

(i.e. the substrate size increase exponentially) there are importante differ-

ences between the growth for dilatation (in which the spatial discretization

dx stretches), and the growth for aggregation (in which discretization points

increase at fixed dt) case. Concerning the growth for aggregation, the usual

Family-Vicsek scaling Ansatz still holds. On the other hand systems with

growth for dilatation behave with a new scaling behaviour, where the scaling

of the correlation function depends from the substrate growth rate, and in

the asymptotic limit, the interface is completely uncorrelated.

These results call for a more precise and rigorous study of the limit for a

continuous description of microscopically discrete systems, like cells forming solid

tumours, and a further analysis of experimental interfaces. Self-affinity is a mor-

phological feature that appears in many growth processes when observed at certain

length scales. Beyond these limits, there are lower and higher cut-offs that have to

be done in the systems under consideration. The discrete nature of our measuring
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tools, both numerical and experimental, has to be taken into account when we

compute the evolution of fluctuations because other important limits may become

relevant. Furthermore, albeit the continuum description of radial growth includes

a dilatational driving force, we need to understand the real influence of such a

term in the dynamical properties of the fluctuations.

In chapter 11, motivated by the work of Brú et al., we used the fractal scaling

analysis to evaluate the suitability of some common assumptions in tumor growth

modeling, i.e. the combination of random cell motion and a stochastic birth pro-

cess. The model we have considered is based on a Lattice Gas Cellular Automata

(LGCA) [31, 32], which can effectively describe tumour growth, implemented in

2D with a well defined 1D front of invasion. The key idea is to check if the re-

sulting spatiotemporal dynamics of the front, described in terms of fractal scaling

exponents, match with the ones found by experimentally by Brú et al. [15]. The

main results of our analysis were:

• The velocity of the front advance was found to be constant, and the cell

proliferation activity is concentrated to a narrow region near to the front.

• The front of invasion exhibits non trivial spatiotemporal correlations, and

thus could be actually considered a self affine curve, with characteristic scal-

ing exponents. The measured dynamic exponents fit well with EW univer-

sality, and this results seems to be robust under variations in mitotic density

threshold, in mitotic rate and in the maximum density per node.

Our model resemble two of the solid tumour dynamic features claimed by Brú

et al., i.e. proliferation concentrated at the outer rim of the tumor bulk and a

linear front velocity. However the universality class of the front dynamics found

here is not the MBE/HM found in their experiments [15, 28]. MBE dynamics,

in contrast to EW, describes a cells motion on the front dependent on non-local

“information“, i.e. that refers to an extended neighborhood. These considerations

suggest us to implement a different cell motion rule, for example dependent on the

local cell density gradients, in order to find the universality characterizing actual

tumors.
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Resumen en Castellano

El estudio del sistema nervioso se ha incrementado significativamente durante la

segunda mitad del siglo pasado, principalmente debido a los avances en bioloǵıa

molecular y en electrofisioloǵıa, y al desarrollo de la neurociencia computacional.

Se ha hecho posible comprender y simular en detalle un gran número de proce-

sos biof́ısicos complejos, cómo por ejemplo los mecanismos intracelulares de la

neurona. Sin embargo, aún se conoce poco sobre cómo se generan fenómenos cog-

nitivos y comportamientos complejos en redes constituidas por un gran número

de neuronas conectadas entre śı por las sinapsis.

Entender el funcionamiento del cerebro es uno de los problemas más desafiantes

que puedan atraer a un f́ısico. El cerebro, considerado como un sistema compuesto

de una gran cantidad de elementos (es decir, las neuronas y las sinapsis), y regu-

lado por distintos mecanismos dinámicos no lineales, tanto a nivel celular como de

red, muestra fenómenos de dinámica colectiva que en muchos aspectos se parecen

a algunos de los t́ıpicos problemas de la f́ısica estad́ıstica. Uno de los compor-

tamientos colectivos más interesantes observados recientemente en los sistemas

neuronales consiste en la aparición de fenómenos cŕıticos. Los estados cŕıticos se

caracterizan por la aparición de correlaciones espacio-temporales de largo alcance,

que se manifiestan a través de distribuciones de ley de potencia, también llamadas

libres de escala (scale-free), para algunas magnitudes de interés. Este compor-

tamiento cŕıtico ha sido observado experimentalmente, tanto a escala de todo el

cerebro (donde por ejemplo, se caracteriza por la existencia de correlaciones de

largo alcance y por la divergencia de la longitud de correlación) [9], como en es-

calas relativamente pequeña (donde los circuitos corticales presentan avalanchas

neuronales, es decir cascadas de actividad que presentan distribuciones estad́ısticas

con leyes de potencia inversa, aśı como correlaciones de largo alcance) [6].
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Tal como se describe en el caṕıtulo 2, cuando un sistema complejo se encuen-

tra en un estado cŕıtico (por ejemplo, cerca de una transición de fase de segundo

orden, o en un estado cŕıtico auto organizado), su dinámica está determinada por

las correlaciones espacio-temporales no triviales en su comportamiento colectivo

emergente. Para el estudio de sus propiedades colectivas, los sistemas tienen que

ser considerados en su conjunto, y no sólo como la suma de todos sus elementos,

con un enfoque probabiĺıstico. Por lo tanto, el marco teórico utilizado para imple-

mentar los modelos y las herramientas matemáticas de análisis aqúı considerados

es el de la mecánica estad́ıstica tanto de equilibrio y como de no equilibrio.

Los estados cŕıticos han generado una gran expectación en neurociencia y en

neurociencia computacional debido a las interesantes propiedades funcionales que

implican. A pequeña escala, la aparición de avalanchas neuronales cŕıticas se

ha asociado con la optimización de diferentes propiedades de la red neuronal,

como por ejemplo la transmisión y almacenamiento de información, las capaci-

dades computacionales, la estabilidad misma de la red y la sensibilidad frente a

est́ımulos sensoriales [10]. Por otro lado, a gran escala, patrones cŕıticos de activi-

dad (espacio-temporal) que caracterizan la dinámica colectiva de un gran número

de neuronas que interactúan a lo largo de toda la corteza cerebral, favorecen al-

gunas funciones superiores del cerebro (como la percepción, el aprendizaje y el

movimiento dirigido) y su continua adaptación en un entorno variable [11, 12],

o bién en otros casos pueden representar la huella de algunas enfermedades neu-

rológicas como la epilepsia [13].

Los problemas a resolver más relevantes con respecto a los estados cŕıticos neu-

ronales son aquellos relacionados con los mecanismos dinámicos de las neuronas

y las estructuras de las proprias redes neuronales (es decir, las topoloǵıas que de-

finen las conexiones entre neuronas) que son responsables de su aprición y de su

estabilidad. Por otra parte, las relaciones entre estos elementos y las propiedades

funcionales óptimas de las redes cŕıticas aún no están completamente comprendi-

das.

Diferentes trabajos experimentales en medios neuronales que han puesto de

manifiesto fenómenos cŕıticos se describen en el caṕıtulo 4, mientras que en el

caṕıtulo 3 se presentan algunos fundamentos de la bioloǵıa del tejido neuronal y

se introducen algunos modelos matemáticos utilizados para estudiar su compor-

tamiento. Estos principios constituyen el punto de partida de los modelos teóricos

desarrollados y estudiados en esta tesis.

Por otra parte, otros fenómenos cŕıticos interesantes en sistemas biológicos son
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aquellos relacionados con el crecimiento de tumores sólidos, objeto en tiempos re-

cientes de un intenso debate. También en este caso se tiene un sistema formado

por un gran número de unidades, es decir, las células, que presentan interacciones

complejas no-lineales entre ellas. Algunos experimentos han demostrado que los

tumores se desarrollan como objetos auto-afines [14], con correlaciones espacio-

temporales t́ıpicas distribuidas mediante leyes de potencia [15]. La medida de los

exponentes cŕıticos asociados (es decir, los exponentes de las leyes de potencia

de las funciones de correlación) son muy importantes para entender los procesos

dinámicos fundamentales involucrados en la invasión tumoral. Por otra parte es

importante encontrar la relación que existe entre los valores de los exponentes y

los mecanismos de proliferación de las células tumorales, con el fin de desarrollar

herramientas terapéuticas [16].

El objetivo de esta tesis es investigar, utilizando diferentes métodos

matemáticos y de simulación numérica, los mecanismos responsables

para la aparición de estados cŕıticos en diferentes sistemas neuronales,

aśı como sus propiedades óptimas funcionales emergentes. En segundo

lugar, con el propósito de ampliar el estudio de la criticalidad a otras

clases de sistemas bioloǵıcos, se investiga, en el mismo marco, las rela-

ciones entre la caracterización cŕıtica del crecimiento tumoral y su

dinámica fundamental de invasión.

Los principales objetivos de esta tesis son los siguientes:

• Explorar el papel que la actividad sináptica juega en la dinámica de las

redes neuronales y su influencia en la aparición de fenómenos cŕıticos [125],

aśı como en su robustez y estabilidad [21], y finalmente en la optimización de

las propiedades funcionales de las mismas redes neuronales en tales estados

cŕıticos (véanse los caṕıtulos 5-6).

• Buscar las relaciones entre la redes con topoloǵıas no triviales, i.e. libre de

escala [26, 60] (tanto en la distribución de enlaces como en las correlaciones

entre número de enlaces de los nodos primeros vecinos) y el rendimiento op-

timo de algunos modelos de redes neuronales [89, 154] (por ejemplo, durante

el proceso de recuperación de patrones estáticos y dinámicos de actividad

neuronal) (véanse los caṕıtulos 7-8).
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• Mejorar las técnicas de análisis de scaling dinámico en la caracterización

de los procesos dinámicos fundamentales de invasión de los tumores sólidos

[30, 234], estudiando los frentes de invasión de estos últimos como superficies

auto-afines [27], y estudiar la relación entre los mecanismos de proliferación

celular del tumor y el comportamiento de las fluctuaciones en la superficie

del tumor (véanse los caṕıtulos 10-11).
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