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Chapter 1

Introduction

Colloidal dispersions are defined as a substance consisting of particles that,
although too tiny to be seen with the unaided eye (typically from 1 nanome-
tre to 10 micrometres), are substantially larger than atoms and ordinary
molecules and that are dispersed in a continuous phase (figure 1). Both the
dispersed phase and the continuous phase may be solid, liquid, or gas. Ex-
amples include suspensions, aerosols, smokes, emulsions, gels, sols, pastes,
and foams. Dyes, detergents, polymers, proteins, and many other important
substances exhibit colloidal behaviour. Colloidal systems have been impor-
tant for technological development through all of history, be it in the form
of making ceramics, paints, inks or later to make steel.

The researcher who coined the word colloid was Thomas Graham who in
1861 studied solutions and classified them in two categories: the solutions
that can pass through a semi—permeable membrane and the solutions that
cannot. He called colloid the second ones (from the Greek koAAa that means
glue).

Important experiments before Graham were also performed by Faraday
(1791-1867) on gold sols which he flocculated by adding salt. Without salt
however, they showed a quite stable behavior; several of Faraday’s gold sols
are still on display in the British museum. Faraday also discovered that small
particles could be detected by focusing light into a conical region.

In 1827 the botanist Robert Brown studied the thermal motion of pollen
grains using a microscope. Contrary to others who had tried to explain this
erratic motion before him, he concluded by studying a range of finely divided
substances that this motion had nothing to do with life or “life force”.

In 1905 (the annus mirabilis), Einstein published three great papers. The
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paper on relativity, the photoelectric effect and a third one where he examined
the possibility that molecular motions could explain Brownian motion. One
must remember that in 1905 many scientists did not believe in the existence
of atoms. Einstein carried out a statistical analysis of molecular motion and
its effect on particles suspended in a liquid. From this analysis he calculated
the mean square displacement of these particles. As he says in ref [1]

“If the movement discussed here can actually be observed (together with the
laws relating to it that one would expect to find), then classical
thermodynamics can no longer be looked upon as applicable with precision to
bodies even of dimensions distinguishable in a microscope; an exact
determination of actual atomic dimensions is then possible. On the other
hand, had the prediction of this movement proved to be incorrect, a weighty
argument would be provided against the molecular-kinetic conception of
heat”

In 1910 Perrin used the Einstein’s results to experimentally determine
the Awvogadro’s number by analyzing the diffusive motion observed through
a microscope of a model dispersion of a monodisperse colloidal spheres [2].
He determined Avogadro’s number from looking at how particles were dis-
tributed vertically when placed in colloidal suspensions. He prepared tiny
spheres of gamboge, a resin, all of uniform size and density. He measured
how the particles were distributed vertically when placed in water; calculat-
ing what forces would have to be in place to account for this keeping the
particles suspended, he could calculate their average kinetic energy. If we
know the mass and velocities, we can then determine the mass of a molecule
of the fluid, and hence Avogadro’s number, which is the molecular weight
divided by the mass of a single molecule. Due to this and other experiments,
he won the Nobel prize in Physics in 1926. His work contributed to put a
definitive end to the controversy about the existence of molecules.

It took until after the development of Quantum Mechanics in the 1940’s
before the first general description of the interaction forces between two col-
loidal particles was given. This theory was developed independently by Der-
jaguin and Landau [3] and by Verwey and Overbeek [4] . This so—called
DLVO theory describes the interactions between identical particles as the
result of attractive Van der Waals forces and electrostatic repulsive forces
produced by the charges residing on the particles surfaces. This potential is
still a cornerstone of colloid science.



The formation of colloidal monolayers (colloidal particles which movement
is restricted to a plane) is especially interesting due to the ability of colloidal
particles to influence the stability of emulsions, foams and interfacial prop-
erties. Particularly, the study of aggregation in colloidal systems confined in
two dimensions has drawn wide attention. The structure of the clusters and
the kinetic properties of the coagulation process have been investigated by
means of both, experiments and simulations [5, 6, 7, 8.

Theoretically, the success of techniques for treating phase transition phe-
nomena has motivated the application of these idea for the analysis of some
magnitudes in aggregating systems at long times, as the cluster—size distribu-
tion, to explain their power law behavior [9](scaling properties). The results
showed that the morphology of colloidal clusters is fractal scale-invariant,
and it is related to the time evolution of the cluster—size distribution.

Some years ago, other interesting aspects of colloidal coagulation have
been studied in dense colloidal suspensions in two and three dimensions:
the inter—cluster spatial [10, 11, 12, 13, 14, 15] and topological ordering
[16, 17, 18]. These recent pictures complement the ones given by the ki-
netics and fractal growth description, and provide information about the
organization of the colloidal clusters in the space. The topological properties
have been found to reach a final stationary value in an aggregating system.
This facts implies that the aggregation induces structuring not only inside
the fractal clusters, but also in the the inter—cluster correlations. Therefore,
the topological aspects have to be included in order to have a self-consistent
theory of the aggregation phenomenon.

The aim of this work is to study the structural and kinetic properties of
colloidal monolayers and their relationship with the interparticle interaction
potential and with a possible external force. The main questions that we
want to answer here correspond on each one of the chapters of this thesis:

1.- In chapter 2 we present briefly the main theoretical aspects of the col-
loidal monolayers that are going to be useful in the develop of this thesis.
The questions analysed here are:

i.- How s the movement of the colloidal particles at the
monolayers? We introduce the Langevin and the Fokker—Planck
equations in order to describe the Brownian motion of the particles.

ii.- When the particles coagulate between them, how is the structure
of the resulting clusters? We will introduce the concept of
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iii.-

fractality.

After that, the following question is: how are the dynamics of
the growing clusters and how that dynamics are affected
by the interaction between the particles? To answer this
question we introduce the Smoluchowski equation, that depends on
the so—called aggregation kernels and we see the relationship between
such kernels and the interaction potential.

2.- In chapter 3 we answer the question: how s the interaction poten-
tial between colloidal particles trapped at a polar—mon/polar
interface?. First, we present the typical model for colloids trapped at
an interface (due to the surface tension) and how use the interaction po-
tential between infinite half space to calculate the interaction between
spheres through the Derjaguin approzimation. After that, we comment
on the different terms of the interaction potential:

1.-

ii.-

DLVO theory: we introduce the electrostatic repulsion and the
London—van der Waals attraction which are able to explain the pres-
ence of a primary minimum in the total interaction potential.

Non DLVO interactions: the impossibility to explain some of
the experimental results make necessary to introduce other interac-
tion terms:

a.- Hydrophobic interaction: it is due to the interaction of the
colloidal particles with the surrounding molecules of fluid.

b.- Dipolar and monopolar potentials: these are characteris-
tic interactions between particles trapped at a polar-non polar
interface induced by the presence of dipoles (even monopoles)
in the non—polar phase. It was necessary to introduce them in
order to explain the great stability of the colloids at interfaces
in comparison with the three-dimensional case.

c.- Capillary interaction: this interaction is the result of the dis-
tortion of the interface where the colloidal particles are trapped.
The capillary interaction can be classified in two different cate-
gories: flotation capillary forces, when the interface deformation
is provoked by the weight of the particles (and its considerate
negligible for particles with radius < 5um); and immersion capil-
lary forces, when the deformation is due to the wetting properties



3.-

7.-

of the particle surface. This last interaction can be important in
certain cases for the colloidal stability.

In chapter 4 we show the main mathematical tools used to study the ag-
gregation process from a topological point of view. We define the Voronos:
diagram which is used to describe a set of points over the planes (that,
in our case, represents the mass center of our clusters) as a tessellation
of the plane. Each cluster is represented by a cell which main properties
(number of sides and area) are directly related with the properties of the
aggregation process.

In chapter 5, we use the Voronoi diagrams in order to study the topolog-
ical properties of a system of colloidal clusters in two—dimensional DLCA
simulations. Moreover, with the Voronoi diagrams is also possible to ob-
serve how the aggregation process tends to order the clusters and how
this ordering increases with the surface packing fraction.

In chapter 6, we study the influence of the interaction range of the re-
pulsive interaction on the colloidal aggregation process. The particles are
assumed to interact through a Yukawa potential. Three different kinetic
region can be observed in the aggregation process depending on the pa-
rameters used on the Yukawa interaction. Moreover, we develop a new
method to obtain the kinetic rate constants directly from the simulations.
Using this kernel in the Smoluchowski equation, we are able to reproduce
the simulated cluster size distribution.

In chapter 7 we show an experimental study of the formation of a
loosely bound, internally ordered structures (usually called mesostruc-
tures) which have been tried to be explained in base of an unknown
long-range attractive interaction. We see that the formation of such
mesostructures is related to the presence of an oily contamination at the
interface. The experiments show that mesostructures can be formed even
with very small amounts of contaminant agent (silicon oil). Moreover, we
present a simple model, based on oil droplets dispersed at an air—water in-
terface, in order to explain the formation of such mesostructures. Finally,
we show some Monte Carlo simulation of this model that can reproduce
some of the colloidal mesostructures obtained in our experiments.

In the chapter 9 we extract the main conclusions of this thesis.



Chapter 2

Basic properties of the colloidal
monolayers

2.1 Brownian motion of the colloidal parti-
cles

Many real-world phenomena which take place over time are not “determin-
istic”. This means that even if we know exactly what has happened up to
the present, we can’t tell exactly what will happen next. The reason for this:
complexity and intrinsic indeterminability is that there are so many factors
involved that we can’t effectively make an exact calculation. For example, if
we drop a bucket of marbles into a bathtub, it is simply impossible to deter-
mine exactly where each marble will be after, say, a minute (actually, even
after a much shorter time). Examples of “intrinsic indeterminability” come
from Quantum Mechanics, where we simply can not know enough, even in
the present, to make exact descriptions of submicroscopic events.

When we have non-deterministic phenomena, scientists and mathemati-
cians are forced to describe their behavior not with certainly but only with
likelihood, i.e. by giving probabilities. Non-deterministic phenomena de-
scribed in this way are sometimes called stochastic processes.

In the early 19th century, the botanist Robert Brown observed strange
random motion of microscopic pollen grains in water. They zig-zagged back
and forth, almost as if they were alive. He described these movements care-
fully, but couldn’t explain them. Nobody could until 1905 when Albert
Einstein suggested that the motion was caused by hundreds-of-thousands of

9



10 2.1. Brownian motion of the colloidal particles

invisible collisions between water molecules (too small to be seen, even in
a microscope) and the tiny pollen grains. The water molecules themselves
moved randomly, but at any given time, following the laws of probability,
somewhat more in one direction hit the pollen than in other directions — the
favored direction itself shifting randomly. Einstein’s explanation described
the Brownian motion perfectly, and was one of the first corroborations of the
actual existence of atoms and molecules.

Brownian motion is a Markov process: the motion of a pollen grain is
determined by a shifting imbalance in the forces of random collisions. Its
direction and magnitude depend only on current collisions, not on those
which happened in the past.

A refinement of Einstein’s calculations was made by the physicist Paul
Langevin. He gave the force on a Brownian particle as a sum of a large
external force (gravity, magnetism or other attractive or repulsive deter-
ministic forces), a viscous force (caused by friction between the particles)
and a random “noise” (the unpredictable collisions with water molecules).
Langevin’s equation could theoretically predict, in a statistical sense, the
likely position of a particle subject to these conditions. A modern com-
puter can simulate these forces, hence simulate Brownian motion. Note that
Langevin’s equation describes the total force on a particle. Calculus, com-
bined with Newton’s Laws of Motion enables us to translate this force
description into a formula for position in terms of time.

Many properties of colloidal monolayers are determined by the fact that
the particles perform Brownian motion. Indeed, the colloidal size range (1 -
1000 nm) is defined such that the random displacements of the particles are
significantly smaller than those of solvent molecules, but still large enough
to affect suspension behavior on time scales of interest to humans.

In this section we describe Brownian motion which is based on the mi-
croscopic dynamics of a system composed of colloidal particles and solvent
molecules. A full statistical mechanical description of this system would start
with the Liouville equation. The solvent molecules are smaller than colloidal
particles and they move on a smaller time scale. The characteristic time
for colloids is 107 s and for molecules of water it is experimentally known
to be around 10~'* s. Therefore, the positions and momenta of the solvent
molecules can be integrated out. This results in a Fokker-Planck equation
for the momenta and positions of the colloidal particles. In the Fokker-Planck
time scale, the solvent molecules only cause small, rapidly fluctuating forces
on the colloids by colliding with them.
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2.1.1 The Langevin equation

Consider a colloidal particle with position coordinate 7, momentum p, and
mass m. A model that describe the motion of a particle assumes that the
action of a net force, ﬁwt = dp/dt, on a particle is the result of the sum
of a systematic frictional force, —(v/m)p (where v is he friction coefficient)
and a rapidly fluctuating force f (t). This model is the well-known Langevin
equation [19, 20]:
Vo T fi 21)
For a sphere of radius a, 7 = 67noa where 7y is the viscosity of the fluid.

The random force f(t) can only be prescribed in statistical sense and its
average vanishes:

< f(t)>=0 (2.2)

Since the random force fluctuates on a time scale much shorter than the

time scale on which the Brownian particle moves it is usually assumed that

its autocorrelation function vanishes identically, except at a time delay of
zero, i. e. :

< FOft) >=Go(t —t) (2.3)

Here, ¢ is the Dirac delta function, and G a d-dimensional matrix.

The Langevin equation 2.1 is an Stochastic equation in the sense that it
doesn’t have a deterministic solution. The integration of this equation yield
to:

P(t) = p(0)e/m +/0 dr f(r)e 1t=7)/m (2.4)

In order to calculate the average time that the particle takes to change
its momentum we can calculate the average of the momentum at time ¢:

t t
n / dr, / dry < F(r)frs) > e=1C=n=m)/m (2.5)
0 0

Using 2.2 and 2.3 we find:
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In the long time limit the momenta must relax to those of an equilibrium
system, given by the equipartition theorem:
< pp >
2m

1 ~
= §k‘BT[ for t >> 75, (2.7)

where I is the identity matrix, 75, = m/~ is the relaxation time! and kg is
the Boltzmann constant. Therefore, we find that:

G = 2ykpTI (2.8)

The mean square displacement of the colloidal particles due to the colli-
sion with the molecules of the fluid can be calculated by integration of the

Langevin equation 2.1:
t —
7(t) = / 420
0

A7(t) = 7(t) — 7(0)
PO ey o L [Ty (] et
-2 )<= [ rfr (0 ) 29)

Thus, the mean square displacement can be calculated using 2.2, 2.3 and
2.8:

—

< AFH)AF(E) = PO () reimy?

72

lt 1 = 2yt/m] _ _—t/m
m+2[1 e~ M — 21— e (2.10)

—

omkpT -
+mf I(
,

Thus, on a time scale much longer than the Brownian time (¢t >> 7g,),
it is immediately shown that the particle moves diffusively:

2kgT
v

< AFO)AF(E) >~ 1 t = 12Dyt (2.11)

where Dy is the diffusion coefficient that can be written as

kT kT

D =
0 ol 67mnoa

(2.12)

!The Brownian time which typically for colloidal particles is ~ 10~
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which is the Einstein relation.
We can estimate the Brownian length as the typical distance a particle
moves in a time 7g,. From equation 2.4 we obtain:

< pt) >= p(0)e /™ (2.13)

which could be integrated in order to calculate the Brownian length [z, =
|p(0)]/~, where p(0) can be calculated through the energy equipartition the-

orem 2.7:
Iy~ V2T (2.14)
Y

This can be estimated to be around ~ 107 m for typical values of the
parameters. It is clear that this is a small fraction of the typical particle
radius.

For processes in which a significant displacement of the colloidal particle
is important a statistical description on the Brownian time scale, and its
associated Brownian length scale, is sufficient as solvent molecules can be
taken into account in an average sense by means of a fluctuating force. Since
this is always the case for our study of colloidal particles we will only need
to describe their dynamics using their position coordinates.

2.1.2 The Fokker-Planck equation

Considering the impracticability of describing in detail the motion of indi-
vidual colloidal particles, it is useful to have equations for the distribution
of such Brownian particles as a function of the position and time, P(7,t),
which represents the probability to find a particle in a position 7 at time ¢.
The Fokker-Planck equation? describes the time evolution of such probability
density function.

If we restrict to the diffusive regime, the movement of the particle is
determined by its position on the space 7 which is a stochastic variable. In
this case, it can be demonstrated that the Fokker—Planck equation for the
distribution function P(7,t) is [21]:

OP(r,t)

—— 7 — D\VZP(7t 2.1
ot Ovr (Tu ) ( 5)

2Also known as the Kolmogorov Forward equation
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with the boundary conditions that at time ¢ = 0 the particle is in the position
Foi

P(ryt=0) =6(r— 7o) (2.16)

It can be shown that the solution of the diffusive Fokker—Planck equa-

tion in a d—dimensional space with this boundary condition is the Gaussian

distribution: )
P(7.t) = —|7—=7o|/(4Dot) 217
If the colloidal particles interact among them through a interaction po-
tential, or/and there is a deterministic external force (like a gravitational,
electrostatic or magnetic force, for example), this force can be introduced in

the Fokker—Planck equation as:

OP(r,t 1=
ﬁ = DoViP(7,t) + —F - VzP(7,t) (2.18)
ot ~y
The solution of this differential equation, with the same boundary condi-
tion as in the case of absence of deterministic forces 2.16 yields:

1 Lo, o=
- o —|F—7o—Ft/~|/(4Dgt)
P(7t) = 7(47‘(‘[)015)6[/26 (2.19)

Hence, the presence of a deterministic force acting on the particles pro-
vokes that the function distribution is not centered in the initial position of
the particle, 7, but is displaced to 7y + Ft /-

In the next chapter we will study some of such deterministic forces whose
origin is the pairwise interaction potential between the colloidal particles.

2.2 Fractal structure of the aggregates

The destabilization of a suspension of colloidal particles leads them to the
formation of bigger units, which range from loose flocs at low solid contents to
percolating particle networks at high solid contents. At low solid contents,
the flocs are fractal objects, which the fractal dimension depends on the
interaction potential, i.e. on the sticking probability between particles. In
the so—called “fast” aggregation, where any two touching particles become
bonded, the structure is open and has a low fractal dimension (d; ~ 1.44
for a two—dimensional system). In contrast, for “slow” aggregating systems,
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with sticking probability lower than 1, the particles can penetrate deeper into
the already existing clusters leading to denser systems with relatively high
fractal dimension (d; =~ 1.55).

2.2.1 Fractals

The fractals are rough at every point, i. e., they are fractured at every point.
This characteristics led Mandelbrot [22] to call them fractals (from the Latin:
fractus). Some examples of well-known fractals are pictured in figures 2.1
and 2.2. Fractals are best constructed in a recursive way. Thus, for example,
the Koch curve (figure 2.1) is constructed by starting with a unit segment.
The middle third section of this segment is erased and replaced by two other
segments of equal length 1/3. Next, the same procedure is repeated for each
of the four resulting segments (of length 1/3). The process is iterated “ad
infinitum”. The limiting curve is of infinite length, yet it is confined to a
finite region of the plane. The best way to characterize it is by using its
Hausdorff-Besicovitch or fractal dimension, dy. In a Koch curve magnified
by a factor of three there are exactly four of the original curves. Therefore
its fractal dimension is given by 3% =4, or dy = In4/In3 = 1.262.

The Sierpinski triangle of figure 2.2-a is constructed from an equilateral
triangle, subdividing it into four smaller triangles and taking out the central
triangle. This generator is iterated “ad infinitum”. The resulting Sierpinski
gasket has a fractal dimension given by 2% = 3 or d; = In3/In2 = 1.585.
Another famous example of a fractal is the Sierpinski’s sponge (figure 2.2-b).
It is constructed by starting from a cube, subdividing it into 3x3x3 = 27
smaller cubes, and taking out the central small cube and its six nearest
neighbors. Each of the remaining 20 small cubes is processed in the same way;,
and the whole procedure is iterated “ad infinitum”. After each iteration, the
volume of the sponge is reduced by a factor of 20/27, while the total surface
area increases. In the limit of the fractal sponge, the surface area is infinite,
while the volume vanishes. This is consistent with the fractal dimension of the
Sierpinski’s sponge, which is given by 3% = 20, or df =1In20/1n3 = 2.727.

All of the above examples of fractals are deterministic fractals. That
means they are constructed by a rigorous deterministic recursive law. This
deterministic fractals are usually called self-similar fractals as one part of
them is equivalent to the whole. However, in the nature there are many
other objects that have the self-similarity property characteristic of fractals,
but only in a statistical sense. It was first realized by Mandelbrot [22] that
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Figure 2.1: The construction of the Koch curve. The photograph corresponds
to Helge von Koch.
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Figure 2.2: The most famous fractals of Sierpinski (in the photograph). a)
The construction of the Sierpinski’s triangle. b) The Sierpinski’s sponge.
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Figure 2.3: Examples of polystyrene aggregates at the air-water interface

many objects in nature are of a statistical-fractal shape. These range from
polymers and coastlines to clouds and the pockmarked surface of the Moon.

A number of fractal models have been applied to physical problems:
diffusion—limited aggregation [23] has been used as a model for real aggre-
gates, dielectric breakdown, growth processes, viscous fingering, percolation
theory, etc. This is also the case of the clusters formed by coagulation of
spheres of polystyrene (see figure 2.3). The observations that the structure
of clusters formed during an aggregation process exhibit fractal behavior, at
least within certain length scales, has substantially simplified the descrip-
tion of the cluster geometry. It should be pointed out that clusters made of
spherical primary particles are not fractal objects in the mathematical sense.
This is because fractals are defined as a mathematical limit, and for natural
fractals the self similarity property holds only over a limited range of sizes.
In general, the self similarity property can be observed only for clusters con-
taining a large number of primary particles. Furthermore, clusters are self
similar only in a statistical sense, i.e. each individual cluster is not strictly
self similar, but if one considers the average over clusters with the same mass,
the self similarity holds true. For fractal clusters a fractal dimension d; can
be easily defined by the scaling of the cluster size ¢ with its cluster radius of
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gyration (R,) defined as

1
k=1

NS TSI
R2(i) = <—. (7 — rcm)2}> (2.20)
where 7, denotes the position of each particles in a cluster of size i and 7%,
indicates the position of the center of mass of the cluster

%

1
Fem = — 7 2.21
r i ZTJ (2.21)

J=1

Computer simulations [24, 25] and experiments [26], indicate that the
radius of gyration of fractal clusters is related with the cluster size i by

R, (i) ~ '/ (2.22)

where dy is the fractal dimension.

The fractal dimension characterizes the inner structure of the cluster and
it depends on both the clusters diffusion and the cluster—cluster interaction.
Aggregation limited by the diffusion of the particles (DLCA) leads to more
open structures (dy ~ 1.44 for 2D-DLCA) than in the case of short-range
likely repulsion (d; ~ 1.55 in RLCA regime) [27]. For RLCA regime, clusters
require multiple collisions between them before coagulation. Therefore, a
higher interpenetration between clusters can occurs. This fact explains the
formation of more compact aggregates under RLCA regime in comparison
with those formed under DLCA regime.

2.3 Kinetic properties of the aggregation

2.3.1 Introduction

The groundwork for our present understanding of the process of particle ag-
gregation is the result of the work published in 1916 by von Smoluchowski
[28]. The Smoluchowski equation describes the kinetic aggregation in terms
of the reaction probability (kernel k;;) between clusters of sizes ¢ and j (ag-
gregates composed by i and j monomers, respectively). The physics of the
coagulation process is embodied in this reaction probability, which depends
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on the nature of the relative motion between the aggregates as well as the
details of the pairwise interaction potential among the clusters.

In the last decade, both theory and experiment have shown the exis-
tence of two universal behaviors, independent of the particle nature, called
Diffusion—Limited Cluster Aggregation (DLCA) and Reaction—Limited Clus-
ter Aggregation (RLCA). The better known aggregation kinetic corresponds
to the DLCA regime [29]. In this case, colloidal particles freely move by
Brownian diffusion (without interparticle interactions) and they become ir-
reversibly stuck after a collision. The kinetics properties of this aggregation
process have been described using the Brownian kernel [30].

Another well known aggregation regime corresponds which colloidal par-
ticles that experiment short-range interparticle repulsions. These repulsions
provoke a decrease of the aggregation rate. When the potential barrier is
short-ranged (compared to the particle radius), the interaction between the
particles can be approximated by a sticking probability defined as the frac-
tion of collisions that effectively leads to the formation of new bonds. This is
usually called Reaction-Limited Cluster Aggregation (RLCA) regime [31, 25].

When the range of the repulsive interactions is not negligible, the aggre-
gation process cannot be modelled in terms of the sticking probability. In
this case, it is necessary to include the effect of the interaction range in the
kinetic model in order to describe properly the kinetics of the aggregation
process.

2.3.2 Smoluchowski equation

The kinetic of an irreversible aggregation can be described as the pair reaction
between aggregates composed by i—mers with aggregates of j—mers to form
aggregates of size ¢ + j. In a mean-field theory approach, one write down
rate equations for this process, assuming that

A+ Ay 5 A (2.23)

where k;; are the aggregation rates or kernel at which the aggregation process
takes place. We denote by ¢;(t) the concentration of aggregates A; at time
t. The time evolution of the cluster size distribution is described by the
Smoluchowski equation [28]

8ck Z kijei(t)c(t) — cx(t Zk‘lkcz (2.24)

z—i—] k




20 2.3. Kinetic properties of the aggregation

The aggregation kernel is directly related to the “average life time” <
ti; >, which represents the mean time used by aggregates of sizes 7 and j to

diffuse and coagulate:

1
< tij >
For certain aggregation kernels analytical as well as scaling solutions of
equation 2.24 are available [30, 32]. However, in the general case only nu-
merical solutions can be obtained.

The derivation of 2.24 involved certain hypotheses

1.- It considers only binary collisions.

2.- The aggregation is irreversible, i.e., the possibility of fragmentation
and rearrangement of the particles in the aggregate is not taken into
account.

3.- The effect of the cluster morphology on the aggregation rates is
taking into account implicitly in the expression for the kinetic
rate constants, £;;.

4.- It assumes that there is not spacial correlations between the clusters.
This is a good approximation when the transport mechanisms responsible
for bringing the clusters to react are significantly faster than the reaction
step.

Smoluchowski equation is a mean—rate description that predicts the evo-
lution of the mass spectrum of a collection of particles due to successive
mergers. It is widely used for modelling growth in many fields of science.
Examples include planetesimals accumulation, mergers in dense clusters of
stars, coalescence of interstellar dust grains, galaxy mergers in astrophysics,
aerosol coalescence in atmospheric physics, colloids, and polymerization and
gelation [33, 34, 35]. The first term of eq. 2.24 accounts for the creations
of k—mers through collision of j—mers and (k — j)-mers and the second
term represents the annihilation of k—mers due to a coagulation with other
clusters.

A more general and realistic description of the aggregation process should
include the possibility that the aggregates could break into smaller pieces or
rearrangement. This is the well-known reversible aggregation process, which
has been the subject of extensive theoretical and computational work [36, 37].
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However, the experimental results for two—dimensional coagulation processes
showed than the bonds formed by aggregation use to be so rigid that don’t
allow the rearrangement or the clusters break. Therefore, we only consider
irreversible aggregation in this work.

The most important quantity that characterizes the kinetic properties of
a coagulating system is the cluster size distribution n;(t) = ¢;(t) - S, defined
as the number of clusters containing ¢ monomers at time ¢ within the system
with a total area S. The time evolution of the aggregation process is featured
in global terms using the number—average cluster size S, (t) given by [38]:

Sn(t) = % (2.26)

Analogously, the weight—average cluster size is defined as

Su(t) = % (2.27)

2.3.3 Scaling hypothesis

For long aggregation times, it has been demonstrated both by experiment
and simulations that the weight—average cluster size develops a power-law
behavior for long times

Sw(t) ~ t* (2.28)

where z is the so—called kinetic exponent.

It has been demonstrated also that if the function S,,(¢)%n,(t) is plotted
again the normalized cluster size, i/5,(t), all the curves scale into a single
time-independent master curve W (i/S,,(t)) = S, (t)*>n;(t). The shape of this
master curve depends on the aggregation regime [39, 40].

Most kernels used in the literature are homogeneous functions of ¢ and j.
According to van Dongen and Ernst [41], this kind of kernels are characterized
by two exponents, A and u, which are defined as:

kai,aj = a)‘k:ij Z,] >>1
kij it jr =t >> (2:29)
where a is a large positive constant. For A < 1, the exponents z and )\ are
related by

z=1/(1-X) (2.30)
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2.3.4 Aggregation regimes
Brownian kernel

One of the most studied aggregation regimes is the Diffusion—Limited Clus-
ter Aggregation (DLCA [42]), which can be considered a reference process
because of its simplicity. In this regime, colloidal particles freely move by
Brownian diffusion (without interparticle interactions) and they become ir-
reversibly stuck after collision. Therefore, the aggregation process is totally
determined by the time involved in the diffusion of the clusters before they
collide to form a new larger cluster. The clusters formed under those condi-
tions have an open structure, with a fractal dimension of 1.44 for two dimen-
sions [43] and 1.55 for three dimensions [44, 45|, while the master curve is
bell shaped in both cases [9, 39], which means that the monomers and small-
sized species are rapidly removed during the aggregation process to form
larger clusters. For this regime, an explicit expression for the kernel may be
obtained by estimating the rate of collisions for sufficiently long times. In a
d-dimensional space, this reasoning yields [46]:

kD"~ (D; + D;)(R; + R;)*? (2.31)

where D; and R; are the diffusion coefficient and the radius of gyration of a
clusters of size 7, respectively.

We can assume that the average diffusion coefficient for a cluster with a
characteristic radius of gyration R, is given by D ~ 1/R, [47] (eq. 2.12).
Then, inserting here the scaling behavior of the radius of gyration (eq. 2.22)
one finally obtains for d = 2
ki —1/d —1/d
L (Vs 4 g Vdry (2.32)

Br __

This kernel is homogeneous, having A = yp = —1/dy = —1/1.44 = —0.69.

Short-range interaction: RLCA regime

If the pairwise interaction potential Vi;(r) has a short-range repulsive com-
ponent after the primary minimum, the kinetic of the coagulation regime
corresponds to the Reaction—Limited Cluster Aggregation (RLCA) model.
In this model aggregation is prevented by using a low sticking probability
for two colliding aggregates [7]. In this case, the kinetics properties and
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the cluster population is mainly determined by the cluster—cluster reaction
time, which becomes much larger than the diffusion time. In this regime,
the master curve shows a different shape: for two—dimensional aggregation
the bell shaped form broadens significantly [48], while for three dimensions
the master curve becomes a monotonous decreasing function of the cluster
size [9]. That means that the reaction controlled cluster—cluster coagulation
leads to more polydisperse cluster—size distributions and, therefore, to more
disordered systems.

Considering primary particles, the reduced sticking efficiency due to re-
pulsive forces for a three—dimensional colloidal aggregation can be expressed
by the Fuchs stability ratio

W = 2a /OO exp (Vin(r)/ksT) | (2.33)

r2

a

This expression applies only for primary particles and not for aggregates,
which are composed of many primary particles. Unfortunately, the equation
2.33 is not longer valid for two-dimensional coagulation®. However, it has
been verified experimentally, that the reactivity of aggregates increases with
their mass [49, 9], and, therefore, an additional factor P,; has been introduced
into the aggregation kernel, leading to the following general RLCA kernel

Int the rest of this section, we will review the various reported RLCA
kernels and recast them in the previous form.

Using theoretical scaling arguments, Ball et al. [50] concluded that the
efficiency of aggregation is determined by the larger of the two aggregat-
ing clusters through a power A. This parameter accounts for the increased
aggregation efficiency of larger clusters due to a larger number of contact pos-
sibilities on their surface, and it has been shown to be in the range Ae[1, 1.1].
The resulting kernel can be written in terms of P;; as

P = k* where k = max{i, j} (2.35)
Other authors [31] used the product kernel, given by

Py = (ij)" (2.36)

3The 2D diffusion equation has not a stationary solution
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The parameter A determines how fast the reactivity of clusters grows with
size, and, therefore, it strongly affects the resulting cluster size distribution.

It is worth noting that, since DLCA represents the upper limit of the
cluster aggregation rate! [51], all kernels must be corrected by restricting
P;; values to at most 1. This corresponds to the experimentally observed
transition from RLCA to DLCA, which occurs as the cluster size increases
[49, 52).

Moncho-Jorda et al. [27] proposed an extension of the product kernel that
accounts intrinsically for the RLCA to DLCA transition mentioned earlier.
This kernel is given by

o PN;
Y PN+ (1-P)

(2.37)

where P is the sticking probability and N;; is defined as the number of col-
lisions per encounter between i and j—mers. The encounter is defined as
a sequence of consecutive collisions between a given pair of clusters. This
means that an encounter starts with the first collision and ends when the
clusters aggregate or diffuse away.

Effect of the interaction with a non—negligible range over the ag-
gregation rates

The effect of the interaction range on the coagulation process could be ex-
plained on the basis of the superposition principle applied to find the cluster—
cluster interaction potential. This potential can be obtained as the sum of
all the interactions between the monomers that compose the interacting clus-
ters. Therefore, the total interaction between an i—mer and a j—mer can be
calculated by:

)

Vig =YY Vit(rim) (2.38)

k=1 m=1

where Vj1(r) is the monomer—-monomer interaction potential and r,, is the
center—to—center distance between the k—monomer of the i—cluster and the
m~—monomer of the j—cluster.

When we have colloidal particles that interact among them through a
potential with a non—negligible interaction range, it is not possible to define

4In absence of attractive interactions.
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a) I;,(r)=025k,T
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Figure 2.4: Scheme of cluster—cluster interactions. The monomers are rep-
resented as grey disks and their interaction regions are sketched by dashed
circles. a) The monomer-monomer interaction is isotropic. When one of
the monomers is outside the interaction region of the other monomer, the
interaction potential is neglected. b) The dimer-monomer interaction is
anisotropic. Around the dimer there is a region where the superposition
of the two monomers interactions occurs (denoted as I = 2 in this scheme)
and a region where the approaching monomer only feels the interaction of
one of the monomers of the dimers(/ = 1). ¢) For trimer—-monomer case, in-
teraction is also anisotropic. Then, it appear a region where the approaching
monomers feel the interaction with the three trimer particles. d) In this ex-
ample, for the tetramer—-monomer case, the approaching monomers does not
interact with all the tetramer particles. e) The cluster—cluster interaction,
only the monomers that are inside the circles participate in the interaction.
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a collision between two clusters as usual. In this case, two approximating
clusters “feel” each other before and after they collide. For this reason, it is
necessary to define an interaction region between two monomers. This region
is limited by a circle of radii 7., centered in one of the monomers so that
outside of this region, i. e., when the distance between the centers of the
monomers is largest than r.,, the interaction can be considered negligible.
For a cluster, the interaction region is given by the union of all the interaction
region of each one of its particles.

In figure 2.4 we show a sketch of these interaction regions as the size of
the cluster increases. Since r,; is finite, when the clusters become big enough
the interaction between two of them is determined by only a fraction of its
particles, the nearest ones.

Now, we redefine an encounter between two clusters as the even that be-
gins when any monomer of one aggregate cross the interaction region of some
monomer of the other aggregate. The encounter finishes when these clusters
coagulate or when one of the clusters diffuses away from the interaction region
of the other.

A dimer is formed when two monomers collide, forming a strong bond.
For experimental colloidal aggregation, the van der Waals interactions is the
bond forming force. This strong bond would not allow each of the particles
to roll over around the other, due to the roughness of their surfaces. In figure
2.4-b we represent the interaction between a dimer and a monomer. As the
interaction range is larger than the particle diameter, there is some region
around the dimer where the pairwise interactions are summed due to the
superposition principle. Therefore, we can distinguish two different regions
around a dimer: a more repulsive region® (depicted as I = 2 in figure 2.4-b)
due to the overlapping of the repulsive interactions of the two monomers that
compose the dimer, and a less repulsive region (depicted as I = 1 in figure
2.4-b) where there is no overlapping of the interaction regions. Hence, the
resulting interaction potential Vis is anisotropic, what means that when a
monomer interacts with a dimer, there is a convenient orientation between
them which minimizes the repulsive interaction. So, the coagulation is easier
when they approach through the less repulsive region I = 1.

Using the same idea, three different spatial regions appear when a trimer
interacts with a monomer, depending on the number of superposed monomer—
monomer interactions. In figure 2.4-c they are represented as [ =1, [ = 2

5If we consider repulsive long-range forces.
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and I = 3 regions. Again, the aggregation will occur preferently through a
low—number region (less repulsive region). The I = 1 regions are usually at
the extremes of the aggregates, so it is easier that monomer coagulates in
such extremes, and therefore, the small aggregates tend to develop a linear
structure (chains).

In the case of the tetramer—-monomer interaction (figure 2.4-d), the monomer
can coagulate through an interaction region with I < 4. This means that
not all the monomers forming the tetramer participate in the interaction (the
monomer can aggregate with the tetramer without feeling the interaction of
the whole cluster). Therefore, we can define a critical cluster size, ig, as
the maximum size that all the monomers forming the cluster participate in
the interaction with an approaching monomer. The interaction between a
monomer and a cluster of size i becomes more repulsive with the increas-
ing of 7 until it reaches the critical size 7. After that, the monomer—cluster
interaction becomes independent on the cluster size.

When two clusters with a size larger than the critical one approach each
other, not all the monomers participate in the interaction. So, there is not
any “privileged” direction and the clusters with a size ¢ > iy begin to lose
their linearity. In figure 2.4-e two interacting big clusters are shown. In this
case, the monomers that participate in the interaction are those inside the
circles.

Therefore, when colloidal particles interact through a potential with a
non-negligible range (as compared with the particle diameter) three kinetic
regions can be distinguish:

i.- First region. For small aggregates, the cluster—cluster repulsion in-
creases with the cluster size due to the superposition of the interactions.
Therefore, the function P;; (equation 2.34) decreases with the clusters
size. In this region, the cluster—cluster interaction is anisotropic and
this causes the formation of chains, which is the preferred configuration
to minimize the repulsive interaction between two approaching clusters.

ii.- Second region. When the size of the interacting clusters is bigger than
the critical size, ig, the cluster—cluster interaction potential becomes
size independent since not all the monomers that form the aggregates
participate in the interaction. Since the range of the cluster—cluster
interaction does not grow anymore with the cluster size, the probability
to overlap the repulsive barrier tends to be also size-independent. Under
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1ii.-

this situation we can use again the term “collision” between clusters.
Moreover, the interaction is more isotropic than in the previous region
and the chains coagulate to form clusters with higher fractal dimensions.
Although the collision efficiencies are constant, the probability F;; of
coagulation of two clusters with sizes larger than i still grows with the
size, due to the increase of the cluster cross section. Hence, the typical
coagulation kinetics for the RLCA regime is recovered.

Third region. For long enough aggregation times, the cross section of
the clusters is so large that the number of consecutive collision per en-
counter between a pair of neighboring clusters is usually very high. This
implies that two colliding big clusters are not able to diffuse away and
finally end up forming a bond. Hence, in this region a cluster coagulate
almost certainly during its first encounter with another cluster and the
aggregation rate becomes diffusion controlled (DLCA). However, there
is a finite time between the encounter and the coagulation that prevent
reaching completely the DLCA regime. Therefore, the kernel for this
third region will be:

kij=A-k] (2.39)

where A is a constant with values 0 < A < 1.

Hence, the coagulation of the large clusters is controlled by the Brownian
diffusion and then the kinetic exponent z of equation 2.27 and the fractal
structure of the final clusters will be the same as in a typical DLCA
coagulation regime.



Chapter 3

Interactions in colloidal
systems trapped at interfaces

3.1 Introduction

Particle monolayers are formed when small colloidal solid particles adsorb at
liquid—-vapour or liquid-liquid interfaces. Typical examples are latex mono-
layers at the air-aqueous salt solution [53] and oil-water interfaces [54, 55].
The interaction between particles within the monolayer is dependent on both
the properties of the fluids that make up the interface and on the nature of
the adsorbed particles. Therefore, a detailed analysis of the interactions in
colloidal monolayers is quite complex and distinctions must be made to take
into account the different components of the monolayer.

The total interaction between particles in the monolayer determines their
stability behavior. Thus, examples of stable monolayer systems with particles
that remain independent for a long time have been reported [56], in spite of
the fact that in a thermodynamic sense, colloidal particles are not stable be-
cause of their great surface to volume ratio. Some monolayer systems show
a triangular structure suggesting the existence of long—ranged particle inter-
actions. In other reported systems, however, it has been found that particles
are unstable and aggregate to form fractal structures [6] or even became orga-
nized to form the so—called mesostructures [57, 58]. When fractal structures
appear, the particle interaction potential is short ranged and has a minimum
at very short distances. In the other cases, the formation of mesostructures
can be explained if the interaction energy between the particles has a min-

29



30 3.2. Theoretical Model

imum at a typical average distance between particles of the order of a few
times the particle diameter [59].

The different colloidal stability behavior shown experimentally by parti-
cle monolayers has fundamental importance in a wide set of industrial ap-
plications. Typical examples are the manufacture of emulsion polymers in
stirred—tank reactors [60] and separation processes such as froth and solvent
extraction. In these cases, it is found that 2D colloidal aggregation can oc-
cur with different consequences. When manufacturing emulsion polymers, it
is important to prevent aggregation because it has a negative effect on the
characteristics of the synthesized particles as increasing the particle polydis-
persity increases. However, in separation processes, the aggregation of the
colloidal particles is accelerated by the re—dispersion of aggregates formed
at the bubble surfaces. This foaming action [61] of colloidal particles at the
bubble surfaces is dependent on the degree of surface aggregation [62] and
finally on the interfacial properties of the particles.

Thus, a correct description of interactions between colloidal particles in
monolayers is of great interest and could enable us to understand these kinds
of processes and to improve the use of colloidal particles for industrial appli-
cations. In this chapter, a detailed discussion of the theory of interactions in
colloidal monolayers is presented. The theory considers Derjaguin—Landau—
Verwey—Overbeek (DLVO), capillary, hydrophobic, monopolar and dipolar
interactions between the particles. The contribution of these terms to the
total interaction energy has been computed numerically using typical values
for most of the parameters included in the theory.

3.2 Theoretical Model

As stated in the introduction, the interaction between particles forming
monolayers is dependent on the particle characteristics and on the properties
of the fluids defining the interface where colloidal particles are trapped.

3.2.1 Model of the colloidal particles

The shape, size, chemical composition and internal and surface structural
properties of the particles must be given in order to have a complete model
of them. Although it is not infrequent to find works reporting experimental
results using ellipsoidal particles, here we only consider spherical particles
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with radius a. This does not represent an important limitation as most
applications make use of spherical particles since they are easily synthesized.

Due to their surface properties, colloidal particles are strongly trapped
at an interface by capillary and electrostatic forces [63]. Thus, the contact
angle @ is the main parameter that determines the position of the particles
at the interface, i.e. the immersed fraction of the particles. Its value is given
by Young’s law equation:

cos = [PA—IPL (3.1)

Y

Here, ~v is the interfacial tension between the fluid phases and vp; and yp4
and ~ are the interfacial energies between the colloidal particle and phases
L and A, respectively.

Usually, ionic surface groups on colloidal particles can become dissociated
when they are in polar media and then produce dipoles or even monopoles
that give rise to long-ranged interactions. The formed dipoles originate at
least in part from the counterions in the polar phase and they can become
exposed to the non-polar phase because of thermal fluctuations that are able
to rotate the colloidal particles. For example, this is the case of colloidal
latex particles at the air-water surface. As the dipole number depends on
the number of ionic surface groups on the particles, it is expected that its
maximum amount is not directly related to the ionic strength of the polar
phase. The monopoles, like the dipoles, come from the dissociated surface
groups of the particles and they can be exposed to the non-polar phase across
the interface; however, it is not so clear how they can remain stable without
attaching counter charges as some experimental work has reported [64].

Internal properties of the colloidal particles, i.e., chemical composition
and structure, affect their interaction both in dispersion and at the interface
when they form monolayers. The chemical composition and structure of
the particles determine the strength of the dispersion forces and even the
existence of a dipolar type interaction, as might be the case for magnetic
particles. There is also the possibility that particles have not a smooth
surface but a surface that can be structured or rough. This fact can affect the
particle arrangement at the interface and the inter—particle interactions and
consequently the colloidal stability. Despite the number of possible choices,
we take a particle model that considers spherical particles with radius a,
contact angle #, a uniform chemical composition and carrying some dipoles
and monopoles on their surfaces.
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3.2.2 The model of the fluid phases

The simplest model for the fluid phases assumes a uniform continuous polar
or non—polar medium characterized by some physical average properties like
the mass density (p) and the dielectric constant (e).

3.2.3 Derjaguin approach

For the sake of simplicity, some of the interaction terms between particles
at the interface have been computed with the assumption that interaction
occurs only between their emergent parts and between their immersed parts,
respectively, and that the interaction between the emergent part of one par-
ticle and the immersed part of another one can be neglected. This is also the
case of the dispersion and double layer interaction (DLVO interaction) and
of the dipolar and monopolar interactions.

As the model considers spherical colloidal particles, the computation of
their potential of interaction, V,n_spn, can be done in some cases using the
Derjaguin approzimation [65]

A / Vi (h)AS (h) (3.2)

which makes use of the corresponding interaction potential per unit area
between infinite half spaces, V.. The integration must be done over the
particle surface. Here hg is the minimum distance between the particles and
h is the local distance between the different surface elements. The Derjaguin
approximation is useful to estimate the total interaction when the range of
interaction is small compared to the radius of curvature of the particle.

To compute the pair interaction potential by using the Derjaguin ap-
proximation presents two main problems. The first one is related to the
determination of the particle surface fraction above and below the interface
which must be taken into account to calculate the interaction. The second
one relates to the specific expression of the interaction potential per unit
area between half spaces, Vyq, that depends on the kind of the interaction.
The first problem is solved with the help of the flat meniscus approzimation.
With this assumption, the calculation of the immersed and emergent parti-
cle surface fraction becomes easier. Figure 3.1 sketches the variables used
to calculate both emergent and immersed parts of the particle. The ratio
between both parts depends on the value of the contact angle . Indeed, the
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(i) 6>90° (ii) 8<90°

Figure 3.1: Sketch of the colloidal particle arrangement at the interface be-
tween phases 1 and 2 for (a) 6 > 90°and (b) 8 < 90°. The particle surface
fraction included into each phase depends on the particle hydrophobicity,
i.e., on the contact angle . The immersed part is indicated in (¢) by a thick
black line for s > [.
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immersed part increases as the contact angle decreases. For 6 > 7/2 the
emergent part of the particle is larger than the immersed one (figure 3.1a)
while for § < 7/2 the inverse occurs (figure 3.10). This dependence with the
contact angle has a great importance on the value of the different terms of
the interaction.

3.3 The Energy of Interaction

The calculation of the total pair energy is quite difficult and it is mainly de-
termined by the particle accommodation at the interface. Thermodynamics
limits the form that the interface can adopt, in such a way that the interface
near the particle surface forms a curved meniscus contacting the surface of
the particle at a well-defined angle, the contact angle 0; 6 depends on the
properties of the particle surface and on the nature of the fluids that form
the interface as indicated by Young’s equation. Nevertheless, for colloidal
particles whose size ranges from a few nanometres to some micrometres, the
meniscus can be considered approximately flat. This is true because the
Bond number (= Apga?/v) for these systems is very small [66], usually of
the order of 1078 for colloidal particles of many hundred nanometres radius
at the air-water surface. Here Ap is the difference of densities between the
two fluid phases and g is the gravity constant. The flat meniscus approx-
imation helps us to simplify the computation of the immersed part of the
particle. It also implies that capillary interaction is practically negligible for
particles of colloidal size.

3.4 Terms of the energy of interaction

There are different terms of the interaction energy that must be taken into
account for interfacial particles in order to explain their stability properties.
Usually, the DLVO theory [67, 39] allows to study the stability behavior of
colloidal particles in bulk (3D stability). However, this is not the case for
colloidal particles at an interface (2D stability). Furthermore, in two dimen-
sions there are new elements like capillary attraction, intrinsic to interfacial
phenomena, which have no analogy in bulk aggregation. Besides, the DLVO
expressions for the double layer and dispersion interactions have to be cor-
rected in order to account for the presence of the interface that reduces the
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degrees of freedom for the movement of the colloidal particles.

The different terms of the inter-particle interaction energy that we will
consider here are: double layer and dispersion interactions (2D DLVO), cap-
illary interaction, hydrophobic interaction and monopolar and dipolar in-
teractions. These terms have a different order of contribution to the total
interaction energy, which depends on the specific values of the parameters
included in the theoretical model. Here, typical values from the literature
have been assigned to the parameters in order to account for most of the ex-
perimentally reported situations and to have as correct as possible weighting
of the different energetic contributions.

3.5 The DLVO approximation at the inter-
face

The DLVO approximation for colloidal interaction at the interface considers
only two energetic terms: the electrical double layer interaction between that
part of the particles in the polar phase and the dispersion van der Waals
interaction that, in our approximation, takes place between the immersed
parts and between the emergent parts of the particles through the different
fluid media, i.e. with a different Hamaker constant for each fluid.

3.5.1 Electrostatic interaction between the double lay-
ers of the particles

In order to determine the electrostatic interaction between the double lay-
ers of the colloidal particles at the interface, the Poisson—Boltzmann (PB)
equation for the electrostatic potential ¥ in the polar phase

1
VA = —— Z nlez e~V /keT (3.3)

€€
0

should be solved simultaneously with the Laplace equation in the dielectric
non—polar phase
VU =0 (3.4)

where n? is the salt concentration, z; the valence of the salt, kg the Boltzmann
constant, 1" the temperature and e the electron charge. This was done by
Lyne [68] and Levine [69] who demonstrated the accuracy of the Derjaguin
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approximation for the case of thin to moderate double layers (ka > 5), where
k is the inverse Debye screening length given by

€222%n0 1/2

where € is the dielectric constant of the polar phase and ¢, the potential at
the particle surface

Thus, the potential of interaction between half spaces can be obtained
for symmetric electrolytes using the PB equation and the assumption that
the double layers do not overlap significantly [4]. Within these approxima-
tions the electrostatic interaction potential per unit area between half spaces
separated a distance h is

64nkpTZ2 .,
—€
Rra

Vitar(h) = (3.6)

where (Z = tanh(vepy/4kgT)).

3.5.2 Dispersion van der Waals interaction

The van der Waals interaction is completely understood under quantum me-
chanics formalism. It originates from the fluctuations of the electron clouds
around the atomic nucleus. These fluctuations produce temporary dipoles
that are able to induce the formation of new dipoles in the neighboring atoms,
giving rise to an attraction between them. To calculate the van der Waals
interaction energy we have used the Derjaguin approximation. The expres-
sion for the interaction potential per unit area between half spaces separated
a distance h was obtained from Gregory [70] and Overbeek [71]

A 1
12782 1 + bh/\

Vit (h) = (3.7)
It takes into account the retardation effect due to the limit on the speed
of light. In this expression, the constants b and A have values 5.32 and
100 nm, respectively. Furthermore, the Hamaker constant A was assigned
different values for both fluid phases. For the case of polystyrene particles

at the air—water surface the values of the Hamaker constants were taken to
be Auir = 6.6x10720 J and Ay uter = 0.95x10720 J.
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Table 3.1: Typical parameter values for the hydrophobic interaction potential
between half spaces.

Parameter | Hydrophilic particles | Hydrophobic particles
Ao (nm) 0.6-1.1 1-2
Wo (mJm™2) 3-30 —20 to —100

3.6 Non—DLVO interactions

3.6.1 The hydrophobic interaction

The interaction of the colloidal particles with the surrounding fluid molecules
is the origin of the so—called structural forces. This interaction affects the
structure of the fluid near the particle surface, giving rise to an increase or
decrease of its order as compared with the fluid structure far away from the
particles surface. Therefore, structural forces can be regarded as entropic
interactions. The character of this interaction allows solid particles to be
classified as lyophilic or lyophobic depending on whether they have or do not
have affinity for the liquid in which they are dispersed, respectively. When
the fluid is water, the colloidal particles are designated as hydrophilic or
hydrophobic.

Hydrophobic particles repel water from their surface so when dispersed in
water they experience an attraction. However, the interaction of hydrophilic
particles with the fluid produces a layered arrangement of the nearest fluid
molecules that prevent the approach of the colloidal hydrophilic particles,
i.e. they feel a net repulsion. Besides the dependence of the structural forces
on the chemical properties of the particles surface and the fluid, they are
also affected by the surface roughness [72] and the wetting degree of the
particles. For example, colloidal particles at the air—water surface that are
partially wetted will experience less interaction than fully wetted ones. As
our model for the particles considers that they have smooth surfaces, the
effect of roughness will not be explicitly taken into account, although the
effect of the wetting degree is considered through the contact angle.

Experimentally, the hydrophobic attraction is detectable when the con-
tact angle is greater than 64° [73], while the hydrophilic repulsion is impor-
tant when the contact angle is lower than 15° [74]. For contact angle values
ranging from 15° to 64° the hydrophobic interaction is negligible and the



38 3.6. Non-DLVO interactions

DLVO theory is sufficient to explain the colloidal stability in solution. Chris-
tenson and Claesson [75] have shown that the hydrophobic interaction decays
exponentially for plane surfaces. Thus, because of the short range of this in-
teraction, the Derjaguin approximation is useful to estimate the hydrophobic
interaction between two partially immersed particles. The expression used
for the hydrophobic interaction potential per unit area between half spaces
separated by a distance h is

V(h) = Wye o (3.8)

where W, and )y are constants related to the strength and range of the
interaction. Typical values for these parameters obtained from ref. [76] are
given in Table 3.1.

3.6.2 The monopolar and dipolar interactions

The proposed model for the particle at the interface includes the possibility
of some kind of charges, monopoles and dipoles, in the non—polar fluid phase.
The most important question now is to understand how these dipoles and
residual charges can arise in this part of the particle surface. The origin of
this charge and dipoles can be understood if one takes into account the rough
character of the particles at a molecular level and the process of monolayer
formation, i.e. the so—called spreading process.

Usually, particle monolayers are formed from a particle suspension using a
spreading agent like methanol, which helps the formation of a uniform surface
distribution of colloidal particles at the interface. The spreading process is
rather turbulent because of the spreading agent effect that allows the colloidal
particles to rotate and even penetrate into the sub—phase, i.e. the polar fluid
phase that is most frequently water. This process is so vigorous that particles
can trap traces of polar fluid at their surfaces around the hydrophilic surface
charged groups [54, 77, 78]. Therefore, there is not a complete dewetting
of the part of the particle lying above the water level. This water could be
in the form of either small droplets or as a thin layer of water around the
particle surface in the non—polar medium (air, oil, etc.). The presence of the
polar liquid at this part of the particle surface can affect the configuration
of their surface chemical groups, which can be found in the following three
possible configurations in the non—polar phase (see figure 3.2):

1.- Non—dissociated: most of the surface groups remain neutral and do not
contribute to the interaction potential.
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Nonpolar phase

dipoles chart charge-charge neutral groups

Electrolyte solution

Figure 3.2: Illustration of the particle-particle interactions through the non—
polar phase (charge—charge and dipole-dipole) and the polar phase (DLVO
forces) for particles at a liquid interface.
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2.- Forming dipoles: some wetted surface groups, even though dissociated,
can form dipoles together with the counterions from the polar phase.
These dipoles are effectively screened in the polar phase as a cloud of
ions is formed around the particle. However, this does not occur in the
non—polar phase, as usually it has no dissolved salt. Hence, the dipoles
at the surface of particles can give rise to a total dipole moment and to
quite strong dipole-dipole repulsion between particles that is mediated
through the non—polar phase. To account for the number of dissociated
groups on the particle surface we define the fraction of dipoles, f;, as the
percentage of them forming dipoles in relation to the total surface groups
above the polar liquid (water) level.

3.- Totally dissociated: only a few of the total surface groups acquire a net
charge and form monopoles. Analogously to f4, the fraction of monopoles,
fe, is defined as the percentage of dissociated groups forming monopoles.
Since the non—polar phase has generally a low dielectric constant, these
charges generate a monopole Coulombic repulsive potential which is very
intense and long ranged, even for very small monopole fraction values f..

Since the number of initially dissociated ionic surface groups above the
water level is expected to be small, most of the groups will be neutral, i.e.
fe, fa << 1. The exact location of these dipoles and charges is still un-
clear. However, because of the turbulent nature of the spreading process, it
is usually assumed that they are homogeneously distributed at the part of
the particles exposed to the non—polar fluid phase. The presence of dipoles
and monopoles on the upper surface of the particle causes the appearance
of three contributions to the total potential energy: the monopole charge—
charge (V,.(r)), the monopole—dipole (V,4(r)) and the dipole-dipole (Vy4(7))
potentials.

However, in a first approximation, the monopole-dipole interaction has
an asymptotic behavior that can be written as

—
A~

P-r

‘/Cd(T) = k‘/

= (3.9)
where &’ includes the monopole charge and some constants and 7 = 7/r where
7 is the position vector of the charge taken from the net dipole moment of
the particle P and 7 is its modulus. If the particle has a homogeneous surface
dipole distribution, P is always normal to the interface and also to the vector
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7. Therefore, under this approximation, the monopole—dipole interaction
potential term is zero and does not contribute to the total energy. Thus we
will only consider the contribution of the dipole-dipole interaction, Vgy(r),
and monopole—monopole interaction, V,.(r).

It should be emphasized that the total surface area exposed to the non-
aqueous phase depends on the contact angle. Therefore, the dipole—dipole
and charge—charge repulsions change if the particle hydrophobicity is varied.
This effect has been experimentally observed in colloidal monolayers formed
by polystyrene spheres trapped at the air—water surface, where adding small
amounts of surfactant to the aqueous phase (around 107°M) leads to a re-
duction of the stability of the monolayer, inducing aggregation [77]. At the
oil-water interface, the particle hydrophobicity has also a significant role in
the spatial distribution of the colloidal particles [79]. Very hydrophobic par-
ticles with large contact angles (above 129°) lead to well-ordered hexagonal
monolayers. On the contrary, the monolayers of less hydrophobic particles
with contact angles below 115° are completely disordered or aggregated. Be-
tween 115° and 129°, a disorder—order coexistence region occurs. Of course,
these intervals can be different if we change the non—polar medium or the
surface density of charged groups in the colloidal particles.

The repulsion produced by the charge—charge and dipole—-dipole pair in-
teractions is in general very strong, and dominates over the other energetic
contributions even for very small values of f. and f;. Consequently, the sta-
bility of colloidal monolayers for a given contact angle will be essentially ruled
by the surface charge and surface dipole percentages f. and fy, respectively.

3.6.3 Dipolar electrostatic interaction between the emer-
gent parts of the particles

To estimate numerically this dipolar interaction we have supposed that the
part of the particle exposed to the non—polar phase has a uniform distribution
of dipoles. As the dipoles are originated from the surface groups of the
particles and the counterions from the solution, we can consider them as two
unit charges with opposite sign separated by a distance, dg,, equal to the
sum of the radius of typical anions and cations, i.e. of the order of 0.3 nm.
This parameter can be changed in the calculation but there is no apparent
reason to do it.

To calculate the dipolar interaction energy the emergent surface has been
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divided into different parts with a surface dS and charge fyodS, where o is
the surface charge density and f; is the fraction of the surface groups forming
dipoles, as was indicated above. At a distance d, equal to the dipole length
from these surface elements, we have considered the existence of a charge of
equal magnitude and opposite sign that forms part of the dipole. Therefore,
the total charge on the emergent dipole is zero. The interaction between
these pairs of charges for two particles allows the dipolar interaction energy
to be determined. This calculation implies a 4D integration given by

V(ho) = / a0, / o, / don / 63V (01, 0, 61, ) (3.10)

where V (01,05, ¢1, ¢2) depends on the particle radius a, the distance between
particles h,, the spherical coordinates 6, 05, ¢; and ¢, taken with origin
at each particle, the surface charge density o, the dipole fraction f; and
the dipole length dg;,. The expression for V (6,02, ¢1, ¢2), obtained using
Coulomb’s law, has the form

20204 ‘
V (61,02, 01, 02) = Z sin 0; sin 0:G(a, dgip, 01, 02, O1, P2) (3.11)
Tee
where
Gla, iy, 01, 0s, b1, o) = —— — — 1
s Wdip, V1, V2, 1, 2 —F(a,a,) F(a—‘—ddip,a)
- ! + ! (3.12)

F(a, a + ddz‘p) F(a —+ ddip7 a + ddip)

and the function F' reads

F(A,B)=VX2+Y2 4 72 (3.13)
where

X = Asin6; cos p; — Bsinfy cos oy — 2a — hg
Y = Asin 6, sin ¢1 — B sin 0s sin ¢
Z = Acosf; — B cos by (3.14)

Here € is the dielectric constant of air and ¢ is the permittivity of vacuum.



3. Interactions in colloidal systems trapped at interfaces 43

3.6.4 Monopole—monopole interaction

The dipole-dipole interactions arising between colloidal particles trapped at
interfaces account for the higher electrolyte concentrations needed to induce
aggregation in such a kind of 2D system, as compared to colloidal systems in
bulk dispersion. For large surface packing fractions of particles, the dipole—
dipole interactions seems to give a fair description of the spatial ordering
and the experimental surface pressure—area curves obtained by compressing
the colloidal monolayers at the air-water and oil-water interfaces. However,
for dilute systems, i.e. large inter—particle distances, the particle monolayers
exhibit a long-range repulsion, which cannot be explained assuming dipole
repulsive interactions between the emergent parts of the particles [54, 76].

In this respect, Sun and Stirner [80] performed molecular dynamic simu-
lations including charge—charge interactions besides the dipole-dipole contri-
bution in order to account for the experimental results obtained by Aveyard
et al. [54] in colloidal monolayers of polystyrene particles trapped at the
octane—water interface. The net dipole moment and total charge densities
were taken as fitting parameters. They observed that each mechanism gives
rise to a specific surface pressure-area behavior. The dipole-dipole interac-
tions were only able to reproduce the experimental data for high coverage
(above 0.45) but not for more dilute regimes. Analogously, they showed
that the charge—charge interactions could describe the data for low particle
densities. Clearly, all these results point out that the short-range repulsion
between colloidal particles is mainly mediated by dipole-dipole interactions,
depending asymptotically on the inter-particle distance r as Vgq(r) oc 1/r3.
Analogously, they found that the long-range repulsion is governed by charge—
charge Coulombic interactions through the oil phase, V,.(r) oc 1/r. According
to their calculations, about 0.4% of the maximum charge on the upper part
of the particle is sufficient to explain the long-range repulsion through the
oil phase.

The existence of Coulombic long-range forces between colloids at inter-
faces has also been supported by other experiments in stable polystyrene
particle monolayers at the air-water surface, even at quite low particle sur-
face packing fractions (around 0.01).

The dipole-dipole interaction energy dominates at short distances, and
it has to be calculated integrating numerically over the whole distribution
of dipoles. In principle, V_.(r) should also be determined in the same way.
However, since this potential has a longer range than the dipole—dipole con-
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tribution, it is worth simplifying the calculations assuming that the total
charge of the upper part of the spherical particle is concentrated in its center.
This approximation fails at short inter—particle distances, where the specific
details of the surface charge and dipole distributions have to be considered
in order to obtain accurate values for the interaction potentials. Neverthe-
less, for such small distances, Vy4(r) dominates over the other terms and
the correction introduced by the exact calculation of V.(r) becomes negligi-
ble. According to this, the charge— charge interaction between two colloidal
particles reads [54]

_ ¢ (1oL
Veelr) = 4rre,€ (7“ \/W) (3.15)

Here, r is the distance between the centers of the particles, €, is the
relative dielectric constant of the non—polar phase, and ( = a(1 — cosf)/2,
where 6 is the contact angle. The net charge of the particle above the water
level, q, is given by

q= Ao f.=2ma*(1 — cosh)o f. (3.16)

Here, A is the area of the particle exposed to the non-polar medium
and o is the surface charge density. The first term in equation 3.15 is the
usual Coulombic interaction energy through the non—aqueous phase between
two identical point charges of value q, separated by a distance of r. The
second term corresponds to the interaction between the second particle and
the image charge of the first one, located at a distance \/4¢? 4+ r? from the
second one, symmetrically with respect to the interface that divides both
media. For large inter-particle distances, equation 3.15 takes the form

s
e, €q 13

VCC(T>

(3.17)

One of the most important experimental results that support the pres-
ence of unscreened Coulombic pair inter—particle interactions acting through
the non-polar phase are those obtained using optical tweezers [55]. In such
experiments, a couple of particles at the interface are originally entrapped in-
side two laser beams well removed from each other. Then, the inter—particle
distance is decreased until one of the particles is released from the beam.
At this point, the inter—particle force is equal to the trapping force of the
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laser. By repeating the same procedure for several laser powers, the force
can be determined as a function of the particle separation. The experimental
data showed that colloidal particles at the oil-water interface interact with
a long-range repulsive force that scales with the inter—particle distance as
F(r) ~ r~*, but does not depend on the ionic strength in the water phase.
These results agree with the interaction potential given in equation 3.17 and
points out the fact that charge—charge interactions are involved in the sta-
bility of the colloidal monolayers at the oil-water interface.

3.7 Contact angle dependence of the interac-
tion potential

As stated previously, the contact angle value is the main parameter control-
ling the behavior of colloidal particles at the interface. So, as a practical
application, we study the different terms of the interaction and the total pair
energy for the case of colloidal particles with different hydrophobic proper-
ties and the same radius (300 nm) at the air-water surface. For the sake
of simplicity, we have not included the monopolar interaction, analyzed in
detail in the previous sub—section.

The theoretical conditions of the computed potential values correspond
with experimental systems for which it is hoped that no monopoles appear;
i.e. for high salt concentration. In the computation we have used standard
constant values as those already indicated. In this section we will not consider
the capillary interaction because it is negligible for colloidal particles, as will
be shown in Section 3.8.

The first analyzed interaction is the van der Waals interaction. In figure
3.3 we show the dependence of the van der Waals interaction energy on the
separation distance between particles for different contact angles taking into
account the retardation effect. The effect of the contact angle on the van der
Waals interaction for different fixed values of the separation distance is shown
in figure 3.4. This interaction potential changes abruptly at short distances
when the contact angle goes from values lower than 90° to values greater
than 90°, contrary to the predicted soft dependence reported by Williams
[81].

The dependence of the double layer electrostatic interaction between the
immersed parts of the particles on the contact angle at fixed separation is
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Figure 3.3: Retarded van der Waals interaction energy between particles at
the air—water surface as a function of the inter—particle distance for three
values of the contact angle (given in degrees) and particle radius a = 300
nm.
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Figure 3.4: van der Waals interaction energy between particles at the air—
water surface as a function of contact angle for different inter—particle sep-
aration values hg (given). It should be noted that this interaction is a very

sensitive function of the contact angle.
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Figure 3.5: Double layer interaction energy between immersed parts of the
colloidal particles as a function of contact angle for different inter—particle
distances (given). The dependence on the contact angle has a similar critical
behavior to that of the van der Waals interaction at 6 = 90°.
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Figure 3.6: Hydrophobic interaction versus inter—particle distance for two
values of Wy (given) with Ay = 1 nm. The interaction range extends to a few
nanometres.

shown in figure 3.5.

In this case, there is also a critical dependence with the contact angle
value. The interaction strength is considerable for contact angles below 90°,
while for values above 90°it is negligible. This energetic term decays strongly
with the separation between the particles (compare 0.4 and 6.4 nm).

The decaying behavior of the hydrophobic interaction with the separa-
tion between particles is shown in figure 3.6. This behavior is similar to that
of the electrostatic interaction in the sub—phase as could be expected, since
both interactions have the same dependence on the inter—particle distance.
The dipolar repulsion is shown in figures 3.7 and 3.8 as a function of the con-
tact angle at different distances and as a function of the separation between
particles for different contact angles, respectively. As a general behavior, the
curves have a maximum near 6 = 90°.

For partially immersed particles at the air-liquid surface, the van der
Waals interaction between colloidal particles is enhanced due to the partial
particle exposure to the air phase. The increase of the van der Waals at-
traction coupled with the decrease of the electrostatic repulsion due to the
electrical double layer overlapping does not account for the great stability
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Figure 3.7: Dependence of the dipolar interaction energy on the contact
angle 0 for different inter—particle distances (given). A typical maximum
near # = 90° is found in all cases. The values used in the computation were
o =0.6enm~?, f; =1 and dg;, = 0.3 nm.

experimentally observed in colloidal monolayers. The sum of these terms,
i.e. electrostatic interaction between the sub—phase double layers and van
der Waals interaction, that constitute the DLVO approximation, is shown
in figure 3.9. As can be seen, the change of the contact angle can drasti-
cally reduce the repulsive energy barrier of the interaction potential between
colloidal particles at the interface. This reduction is so important that in-
creasing the surface potential and decreasing the Hamaker constant values in
the DLVO interaction potential are not enough to justify the great stability
of colloidal particles at the interface even for 1 M salt concentration.

This difficulty is overcome by adding the hydrophobic and dipolar inter-
action terms to the DLVO interaction. Figures 3.10—a and —b show this total
contribution for both hydrophobic and hydrophilic particles, respectively. As
expected, the hydrophobic interaction gives a potential with a minimum and
repulsion at short distances for hydrophilic particles while there is a stronger
attraction at short distances for hydrophobic ones. When the dipolar repul-
sion term is included, the interaction pair energy shows a repulsive barrier
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Figure 3.8: Dipolar interaction energy as a function of the inter—particle
distance for different values of the contact angle (given in degrees). The
asymptotic dipolar behavior as hy® is observed at long distances. The values
used in the computation were o = 0.6e"nm=2, f; = 1 and dg;, = 0.3 nm.
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Figure 3.9: Dependence of the DLVO interaction energy between interfacial
particles on the inter—particle distance for different values of the contact angle
(given in degrees). When changing 6 from 0° to 180°, the repulsive barrier
disappears. The plotted data were obtained for a 1 mM salt concentration
and ¢ = —40mV. The Hamaker constants were those indicated in section
3.5.2
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that prevents the aggregation of the colloidal particles. The dipolar interac-
tion strength can be changed by varying the dipole fraction on the particle
surface. This effect is shown in figure 3.11 where the dependence of the total
pair energy on the dipole fraction is indicated for hydrophobic particles. The
number of dipoles is indicated as a percentage of the maximum quantity that
corresponds with all the surface groups forming dipoles. For 100% of dipoles,
it is practically impossible that the potential barrier could be overcome by
the particles and so they remain stable without aggregating. Thus, it can
be concluded that the dipolar interaction is the most important contribution
to the stability of colloidal particles at the air-liquid surface for high salt
concentration in the sub-phase.

The dipolar interaction allows one to explain quantitatively why the CC'C
(the Critical Concentration Coagulation), i.e. the lower salt concentration for
which fast colloidal aggregation occurs, is much lower for colloidal particles
in dispersion than for aggregation at the interface. Thus, this term justifies
the great stability found for colloidal particles at the air-liquid interface.

The shape of the pair interaction potential curves is different for hy-
drophobic and hydrophilic particles (figure 3.10). Hydrophobic particles
can aggregate at a primary minimum while for hydrophilic ones aggrega-
tion occurs at a secondary minimum. This difference could explain the re-
structuring phenomena observed by Horvolgyi et al. for glass beads of lower
hydrophobicity [82], which aggregate at larger distances. The aggregates
formed by these particles are re-structured and become more compact.

3.8 The capillary interaction

The capillary interaction has no equivalent in bulk dispersions. When a
particle contacts the boundary between two fluid phases, their different in-
teractions with both phases causes the perturbation of the interface from its
original form. Usually, the interface is flat and the effect of the particle is
to depress or elevate the interface around it to form the so—called meniscus.
When particles placed at an interface approach each other, their menisci
overlap generating an interaction that can enhance or impede their further
approach.

The capillary interaction can be classified in two different categories:
flotation and immersion capillary forces, depending on whether the interfa-
cial deformation is produced by the weight of the particle or by the wetting
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Figure 3.10: Addition of the hydrophobic and dipolar interactions to the
DLVO interaction energy for (a) hydrophobic and (b) hydrophilic particles
respectively. The parameters used were: (a) § = 82°, salt concentration
= 1M of 1 : 1 electrolyte, g = 40mV, surface density of dipoles = 0.18dipoles
nm?. Hydrophobic character is characterized by Wy = 60mJm=2 and Ay = 1
nm. (b) § = 50°, salt concentration = 1M of 1 : 1 electrolyte, ¢ = 56mV,
surface density of dipoles = 0.18 dipoles nm~2. Hydrophobic character is

characterized by Wy = 3mJm~2 and \g = 1 nm
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Figure 3.11: Effect of the dipole fraction on the total pair potential for
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properties of the particle surface that, in turn, are functions of the position
of the contact line and the value of the contact angle rather than gravity. A
theoretical description of lateral capillary forces requires to solve the Laplace
equation of capillarity and to determine the meniscus profile around the par-
ticle. This can be done by means of an energy approach that accounts for
the contributions due to the increase of the meniscus area, gravitational en-
ergy and/or wetting energy. Flotation and immersion forces have a similar
behavior on the inter-particle separation but very different dependencies on
the particle radius and the surface tension of the interface. The flotation
capillary forces appear in systems formed by particles trapped at a liquid—
fluid interface. This is a long—range interaction and negligible for particles
of small size (radius below 10 pm). Immersion forces arise when particles
are trapped at a liquid interface over a substrate or in a thin liquid film, and
they are long-range interactions that can be very important even for small
particles (radius between few nanometres to micrometres). Recent studies
have shown that immersion forces can also arise in floating particles when
these particles display an irregular meniscus over their surface [83, 84] or
when there is an external electric field that pushes the particle into the lig-
uid sub—phase, so-called electrodipping [85, 86, 87, 88]. These immersion
interactions between particles trapped at interfaces were used to explain the

unexpected long range attractive interaction reported in recent experiments
of colloidal particles spread on interfaces [57, 58, 59, 83, 85, 89, 90].

3.8.1 Calculation of the capillary interaction potential

The thermodynamic approach to calculate the capillary interaction potential,
Vinen, between particles at an interface uses the change of free energy that
occurs when the colloidal particles approach each other. Its value is given by

Vipen(d) = F — Fy — Fy = F — 2F} (3.18)

where F' is the free energy of the equilibrium configuration for the two col-
loidal particle system and Fy (= F3) is the single particle equilibrium free
energy. In order to calculate the pairwise capillary potential, the terms F)
(due to the presence of one particle alone at the interface) and F' have to
be determined. These three contributions depend, in turn, on the interface
profile near the particles, characterized through the distortion of the menis-
cus, ((r). ((r) is defined as the difference between the real profile z(r) and
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Figure 3.12: (a) Description of the reference state for a colloidal particle
confined at an interface where 6,.; is the equilibrium contact angle. (b)
Description for the deviations from the reference state where ( is the meniscus
profile and h is the height from the particle center to the interface.

a reference profile with flat meniscus, z,.5: ((r) = 2(r) — 2.f, where r is the
distance between any point of the interface and the center of the particle. We
detail the calculations of these three contributions for the free energy below.

One particle at the interface

To compute the capillary free energy of a colloidal particle at the interface
it is necessary to consider a reference state, with respect to which changes
in free energy will be measured. Usually, the reference state has a planar
meniscus with the colloidal particle at such a height h,.; that Young’s law is
satisfied (figure 3.12), i.e. the contact angle 6 formed by the planar interface
and the single particle surface is given by Young’s law in the equilibrium
state: cost = (1 — ¥2) /7.

The capillary free energy, Fi, of a single particle at a liquid interface will
depend on the meniscus profile {(r), i.e. on the distortion of this meniscus
from the reference state. According to ref. [88], the free energy may be
separated into the following terms

Fl:Fcont+Fmen+Fgrav+FH+Fcoll (319)

Next, we analyze each of these five contributions separately.



58

3.8. The capillary interaction

1.-

ii.-

iii.-

F.,n: is the free energy due to the change of the areas of the particle
exposed to each phase

Fcont = 71141 + 72142 - (VlAl,ref + 72A2,ref> (320>

Here, A; is the surface area of the particle that is in contact with the
phase i, and A;,.s is the same area but for the reference case. By
using the fact that A; o = 2ma?(1 F cosa) and A; 5,..p = 2ma?(1 F cosb)
together with Young’s law (eq. 3.1), equation 3.20 becomes

Front = ma*y[(cosf — cosa)® + sin*a + sin*6)] (3.21)

This expression can be written in terms of the deformation of the inter-
face at contact ((rg) by replacing sina = 1¢9/a, cosa = ({(ro) — h)/a,
sinf = 1o ref/a and cosd = —h,.r/a. Assuming that the distortion of
the meniscus is small, we can approximate the real deformation ((rg)
by the one corresponding to the reference contact line, i.e., ro & 7 ycs.
Therefore, we approximate ((ro) ~ ((rocr) (see figure 3.12)

Fcont ~ Ty [C(TO,T’ef) - Ah] - 7T’y(’l"g - rg,ref) (322)
where Ah = h — hyey.

Fen is the free energy contribution due to the change of the meniscus
area, given by

Fon zy/ dA 1+|AC(7°)|2—7/ dA (3.23)
Smen Smen,ref
where Syc, and Spen e are the meniscus areas (excluding the area
occupied by the particle) in the perturbed and the reference system,
respectively. For small slopes of the meniscus deformation ((r), i.e. for
|AC(r)]* << 1, and with the approximation Syen & Spmenres, we have

1
Fmen ~ ’}/W(Tgﬁ«ef - T(2)) + 5 /5 |AC(T)|2dA (324)

men,ref

Fyqv represents the change in the gravitation potential energy with
respect to the reference state due to displacements of the volumes of
the fluid phases

1
Fpraw = 57/5 ¢°¢(r)*dA q=Apg/y (3.25)

men,ref
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Here, ¢=! symbolizes the characteristic capillary length which deter-

mines the action range of the capillary forces. The capillary length has
the typical value ¢~* = 2.7 mm for the air-water surface (and it is higher
than any other characteristic length of the system) and Ap = py — p; is
the difference between the densities of the fluid phases 1 and 2.

iv.- Fpr accounts for the presence of external fields acting perpendicularly to
the fluid interface. Its origin can be diverse. It can be produced by the
disjoining pressure between two adjacent phases across the liquid film,
by the electrostatic pressure caused by an electric external field, etc.
By defining I1(r) as the force per unit area, this energetic contribution

reads
FH ~ —/
s

v.- F.y is the free energy change due to the vertical displacement of the
particles

I(r)((r)dA ~ 27 /OO rIL(r)(r)dr (3.26)

men,ref To,ref

Fcoll = _fAh (327)

where f is the total force acting on the particle perpendicularly to the
interface.

By adding these five terms, we finally obtain the total free energy F,
calculated with the approximation of small slope of the meniscus (JA(|? <<
1) and assuming Spen & Smen,ref

00 1 2 22 1
F1%27T’)// r _(d_() +&——HC dr
TO,ref 2 d/r 7 f}/
+79(C(Tores) — AR)? — FAR (3.28)

We can find the shape of the meniscus that minimizes the free energy by
solving the so—called linearized Young-Laplace equation [91]

a5
d¢

d*’¢  1d
=0 S AR . R o
= dr2+rdr ¢

1) (3.29)

Cm in

The last expression is the key equation giving a theoretical description of
the capillary interactions. This equation governs the meniscus shape for a
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given configuration of particles at an interface. In order to solve this differ-
ential equation, two boundary conditions are necessary. First, the slope of
the meniscus height just at the contact line r = 7 & 19 ,..; has to be [88]

dg . C(TO,ref>
> _ S\Togref) (3.30)

Toref

T=To,ref

The second requirement comes from the fact that the meniscus has to be
asymptotically flat at sufficiently large distances from the particle surface

lim ¢(r)=0 (3.31)

The solution of the differential equation 3.29 with the boundary condi-

tions (egs. 3.30 and 3.31) may be expressed in the following general form
[38]

¢(r) = %Iaqr) / " Sl1(s) Ko(gs)ds

+%Ko(q7“) <C+/T sH(S)lo(qS)d$> (3.32)

To,ref

where Ky(x) and Iy(z) are the modified Bessel functions of zero order of first
and second kind, respectively [92], and C' is an integration constant which
can be obtained with the boundary condition given by equation 3.30. By
replacing the explicit form for {(r) into equation 3.8.1 we finally obtain the
free energy of one particle, Fj.

Two particles at the interface

In order to calculate the effective pairwise interaction potential, Ve, (d), be-
tween two identical particles at a liquid interface at a fixed lateral distance d
in equilibrium, it is necessary to find out the free energy of this configuration.
According to Oettel et al. [88] this free energy may be approximated as

. 1 . 202 1.
mef da | Tacp+ L8 Lhe
Smen,r'ef 2 2 /7

”y ~ ~ A ~
+ > { és dl(Ahy, — )% — FaAha} (3.33)
a=1,2 o

2T0,ref
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Here, é (r) is the meniscus shape in the presence of two particles, Ah, are
the corresponding heights of each particle, I1 is the vertical force per unit area
acting on the interface due to external fields and F), is the force acting on each
particle perpendicularly to the interface. S, is the area of the circular disk
defined by the contact line around each particle while 0S,, are the contact
lines (counter-clockwise). In this context, the area of the meniscus in the
reference system (flat interface) is defined as Spen ey = R? — (S1J S2).

By minimizing F' with respect to ¢ as in equation 3.29 the following
second order partial differential equation is found

V=g - (3:34)
7

This equation has to be solved again imposing two boundary conditions.
The first one is the transversality conditions at the boundary defined by the
contact lines defined by [8§]

05; ()05 (3.35)
aA . - 705
(_ =& f 5.36)
ana To,ref 27T7r0,ref
where 9/0n,, is the derivative in the outward normal direction of 0S,, and
_ 1 .
(o = j{ di¢ 3.37
2Ty ref OSaipha ( )

is the mean height of the distortion of the meniscus at the contact line.
The second boundary condition tells us again that the meniscus has to
be asymptotically flat at sufficiently large distances from the particle surface

lim (M =0 (3.38)

The final solution of equation 3.34 with the boundary conditions given by
equations 3.36 and 3.38 is a very complex analytical problem that can only
be solved in the homogeneous case, i.e. for Il = 0 [93]. The general problem
is solved introducing the approximation of superposition, valid in the limit
of large interparticle separation (d >> a) [94]

C(r) = Gi(r) + Go(r)
1(r) ~ Iy (r) + Iy (r)
F(r) = Fi(r) = Fy(r) (3.39)
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where (,, Il,, F,, with a = 1,2, are the meniscus profile, the stress of
the interface and the force acting on the interface due to each particle in
analogo to the case of one particle at the interface. The effective potential
between two particles due to the interface deformation that they produce
can be calculated now using equation 3.18. Oettel et al. [88] calculated
an approximate general form for the effective potential due to the meniscus
deformation using the assumption of superposition

vmen(d) ~ = / HICQdA + / H2C2dA - f}/% Mdl
Smen,ref S1 051 anl
1 (2 . 7
2 051 anl Toref Jos,

R

with respect to the contact line of the other colloidal particle. There are two
different asymptotic behaviors of the effective potential (a << d << ¢71'),
depending on the relation between the dimensionless quantities er; and €p,
defined as

- fasl (2dl, is the mean height of the single particle meniscus

—f

F=7—
2TV e f

S / TdA
27T7T0,ref S,

men,ref

€

(3.41)

All the forces acting on the particles are included in ez, while the stress
over the interface is included in er. Thus, the ratio between er and ep is
directly related ti that between f and II. If ey # €, Viyen reads

Vinen(d) =~ —271"}/7’877,6!:(6]:‘ — en)?Ko(qd)
2 VE
qd

where v = 0.577216 is the Euler’s constant. This is a long-range (logarith-
mic) attractive effective potential that does not depend on the sign of the
forces and stress acting on the system. If e = ep, then

vmen(d) ~ —2H(d) fsmen,'ref CdA with S; =5, =5 (343)

~ =21 e p(€r — €en) In (3.42)

In this case, Vjen(d) has the same dependence on the distance as the

stress. It is a short-ranged interaction that can be attractive or repulsive
depending on the form of II(d). Typically II(d) ~ d™" so Vyen(d) ~ d™™.
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Capillary flotation forces

In this particular case, there are no stresses acting at the meniscus (II = 0)
and the force f on the particles is due to their weight and the buoyancy force.
Thus, we are in the case ep # ey with ef = 0. Using equation 3.43 we obtain

Vinen(1) = —27w7“§7mfe%Ko(qr) = —2myQ*Ko(qr) (3.44)

where () = 79, €p is the so-called “capillary charge” [84, 91, 94] by analogy
with the 2D electrostatic problem. The dependence of the capillary charge
on the particle radius a is easily obtained from equation 3.41

—F
Q=roreer=—2xmxa’® = @Q*oxd (3.45)

27y
Thus, the capillary flotation interaction strongly depends on the particle
radius a. The “capillarity charges” for floating particles can be expressed in
terms of a and the three-phase contact angle, 6, through the expression [95]

1
Q= 6q2a3(2 — 4D + 3cond — cosf) (3.46)

where D = (ps — p1)/(p2 — p1) and ps is the density of the colloidal
particle. The values for the flotation capillary interaction for two spherical
particles at contact (d = 2a) trapped at an air-water surface are plotted in
figure 3.13 versus the particle radius. As can be seen, the flotation capillary
interaction is negligible, i.e. V(2a) << kgT, for particles with a a < 10 pm.
In other words, the weight of floating micrometers (or submicrometrers) sized
particles is too small to create any surface deformation.

Capillary immersion forces

Long-range attractive forces between micrometer—sized particles at a fluid
interface were experimentally detected [58, 57, 59, 83, 85, 96, 90] and at-
tributed to immersion capillary interactions. Usually, these kind of capillary
interactions come out when colloidal particles are trapped in a thin liquid
film [91, 97] or at a liquid interface formed over a substrate [98]. Never-
theless, it has been reported recently that the immersion capillary inter-
actions between floating particles may also appear when the three—phase
contact line (particle-liquid-fluid) is irregular rather than flat due to the
non-homogeneous wetting of the particle surfaces [83, 84| or when there is an
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Figure 3.13: Floating capillary interaction energy between two spherical col-
loidal particles in contact (d = 2a) trapped at the air-water surface versus the
particle radius, for a contact angle § = 82°. As can be seen, the interaction
is negligible for particles with radius under 10 ym
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electrical stress that causes an immersion of the particles into the liquid phase
[85, 86, 87]. However, some of these models are still nowadays incomplete
and none of them could explain all the characteristics of the mesostructures
found experimentally'. Here, we will comment on these immersion capillary
interactions between floating particles. Then, we will focus on the long-range
behavior of those interactions used here to explain the attractions reported
experimentally for large inter-particle distances.

Roughness of the particle surface

Notwithstanding, we have not considered particle roughness in our model.
The surface deformation of the meniscus could appear even with small parti-
cles (submicrometer—sized) if the phase contact line on the particle surface is
irregular rather than circular (see figure 3.14-A). This is the case of colloidal
particles with an irregular shape with surface roughness, chemical inhomo-
geneities, etc. In such cases, the meniscus shape around the colloidal particles
is described by the expression [83]

(r,@) =Y Ki(qr)(Acos(ip) + Bisin(ie)) (3.47)

=1

which is the solution of the linearized Young—Laplace equation for small
meniscus slopes in cylindrical coordinates (r, ¢). Here A;, B; are integration
constants and K;(z) is the modified Bessel function of order i. For ¢r <<
1, K;(qr) o< (gr)™", in this case the equation 3.47 reduces to a multipolar
expansion (analogue to an electrostatic multipolar expansion in 2D).

The capillary forces between particles with an irregular contact line could
be considered as a kind of immersion force insofar as they are related to
the particle wettability, rather than to the particle weight. A theoretical
description of the lateral capillary force between colloidal spheres with an
undulated contact line was recently given by Stamou et al [83]. They realized
that the leading multipole order in the capillary force between such particles
is the quadrupole-quadrupole interaction (i = 2 in equation 3.47) (see figure
3.14-B). The capillary interaction energy is given by

4
Viougn(d) ~ —1210vH2c0(2(p4 + ¢5)) (%) fori=2;d>>2r. (3.48)

'We will see a complete description of such mesostructures in chapter 7
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Figure 3.14: (A) Sketch of the contact line for a colloidal particle at a
fluid interface. The dashed line is the ideal flat contact line, the continu-
ous line corresponds of the undulated contact line and the dotted line is the
quadrupoles contribution of the irregular contact line. (B) Representation
of the quadrupolar term for two colloidal cylindrical particles trapped at a
fluid interface. The total interface deformation, which is due to the presence
of the particles, depends on the mutual orientation between them.
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where H is the maximum amplitude of the deformation of the contact line
at the particle surface, r. = a - sinf is the contact radius and ¢4 and ¢p
are subtended angles between the diagonals of the respective quadrupoles
and the line connecting the centers of both particles. Thus, the pairwise
interaction potential at long distances could be a combination of V,,ugn(d)
together with the dipolar interaction Vg,(d).

A Bcos(2p4 + 2
‘/d>>a(d) = dep(d) + V;“ough(d) ~ E - ( Spdj ()OB) (349)

where A and B are constants independent of both the inter—particle distance
(d) and particle orientation (w4 + ¢p). In this way, even a minimal rough-
ness of the contact line could be sufficient to produce a significant capillary
attraction [83]. For multipoles, the sign and the magnitude of the capillary
force depend on the particular mutual orientation. So, quadrupoles tend to
assemble in a square lattice [84].

This model is, however, rather incomplete since the meniscus deformation
is calculated with the approximation of the absence of stress and perpendic-
ular forces acting on the interface and the particles, respectively (i. e. I1 =0
and F' = 0). According to these approximations, the effective potential asso-
ciated with this deformation is obtained and added to the dipolar interaction.
So, for a correct analysis, it is necessary to introduce the electrostatic stress
due to the dipolar field in the Young—Laplace capillary equation. This adds
new terms to the effective interaction potential with the same dependence on
the distance as that found by Stamou et al. [83]. Therefore, the introduction
of this new term does not change quantitatively the interaction potential:
the dependence of the dipolar interaction with the distance is like 1/r® and
the attractive interaction has again an asymptotic behavior like 1/r%.

Meniscus deformation due to an electric field

The mechanical equilibrium of the colloidal particle at the interface (figure
3.12-a) is given by the counterbalance of a normal external force and the
surface tension force f(= 2mr.ysinf). In the case of floating capillary forces,
the normal force is due to gravity and the magnitude of the surface distortion
decreases rapidly when decreasing the particle size, becoming negligible for
particles with a radius a < 10 pum.

Nevertheless, for such small particles, Nikolaides et al. [85] suggested that
the normal force f could have also an electric origin, f,;, rather than only
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gravitational, f,. They proposed that the asymmetric charging of the par-
ticles absorbed at interfaces could produce a dipolar field. The electrostatic
force associated with this field could be responsible for the interfacial defor-
mation and the lateral capillary interactions. With these considerations, and
neglecting the electrostatic stress acting on the interface (Il (r) = 0), they
finally obtained a long-range (logarithmic) capillary attraction. However,
if we take this stress into account the situation changes drastically. Then,
the new dependence [86, 85] on the inter—particle distance is 1/d® rather
than logarithmic, i.e. it is a short-range interaction that does not explain
completely the origin of the secondary minimum.

In turn, Danov et al. [87] reported experimental results showing that the
interfacial deformation around glass particles (with radius between 200 and
300 nm) at the oil-water interface is dominated by an electrical force. They
called this effect electrodipping[87]. In that work, they suggested that this
force is due to charges at the particle-oil boundary (or, in general, at the
particle-non-polar phase boundary in general). They solved numerically the
electrostatic boundary problem which gives rise to a long-range (logarithmic)
electric field than induces the capillary attraction between two floating par-
ticles. However, they calculated the pairwise effective potential solving the
Young—Laplace capillary equation only in the presence of gravity (IT = 0,
F. =0, F, # 0) with the superposition approximation as usual the solution
even in the case of II # 0. Hence, the solution given in ref. [87] appears in-
accurate because the approximation of superposition is not correctly applied
and new terms arise when the capillary equation with II # 0 is formally
solved. Moreover, Danov et al. solve the electrostatic problem using the
asymptotic behavior (r >> rg,.r) of II(r), but the dominant contribution to
the interaction potential due to the meniscus deformation stems from points
r & roref. Accordingly, they obtain a non-vanishing pre-factor of the loga-
rithmic term in the interaction potential. Therefore, the presence of charges
at the particle-non—polar phase boundary cannot explain an attractive log-
arithmic interaction.

Oettel et al. [88] proposed a logarithmic long-range attractive attraction
tuned by a small external electrostatic field. However, this attraction is only
possible if the net force acting on the system does not vanish. In order to show
this, they considered the total stress tensor T which consists of the Maxwell
stress tensor (due to the electrostatic field) and a diagonal osmotic pressure
tensor (due to the electrolyte). The total force acting on the whole system
(interface and particles) perpendicularly to the interface can be calculated
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through.
fo=é,- 7{ dA - T = 2yrg pes (e — €r) (3.50)
Stot

where Syt = Spen + 51+ S2. In the absence of external forces, f, = 0, we are
in the case of €, = er and we have to apply equation 3.43 which gives a short—
range interaction. Thus, the existence of a net force acting on the interface
is necessary to have an attractive logarithmic (long-range) interaction. If
f. # 0, then €, # er and so we have to use equation 3.8.1 which gives a
long-range interaction. Therefore, in the presence of an external electric
field, the values of €, and €r; can be calculated numerically solving the
electrostatic boundary problem. Subsequently, the interaction potential due
to the interfacial deformation, V,,.,(d), can be theoretically obtained by using
equation 3.8.1.

Oettel et al. calculated the external electric field necessary to obtain the
long-range attractive interaction shown in ref [85] and they obtained a rel-
atively small value E ~ 1.8x107* Vm™!. Indeed, an electric field £ ~ 1073
Vm~! is enough to provoke a secondary minimum of about 1 kgT. These
calculations indicate how sensitive the system can be to spurious external
electric fields that give the required long-range attraction. This model, how-
ever, is not able to explain such an attraction for isolated systems (f, = 0).
In view of these conclusions, further effort (theoretical and experimental) is
needed to achieve a complete understanding of the interactions that appear
when colloidal particles are spread at a liquid interface.

3.9 Conclusions

The interactions between particles in monolayers have been theoretically dis-
cussed. These interactions are dependent on both the properties of the fluids
that make up the interface and on the nature of the adsorbed particles. We
can distinguish three different stability behaviors: particle monolayers that
remains stable for a long time, unstable monolayers with clusters of fractal
structure and the mesostructure formation. In the first case some very reg-
ular geometrical structures have been observed suggesting the existence of
long-ranged particle interactions. When the structures are fractal in char-
acter the interparticle repulsions are short-range, and the total interaction
potential shows a minimum at very short distances. The third case, the for-
mation of mesostructures, is still a controversial subject and we will study
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them in chapter 7.

The different terms of the inter-particle interaction energy are double
layer and dispersion interactions (2-D DLVO), capillary interactions (which
are intrinsic to interfacial phenomena and have no analogy in the 3-D case),
structural forces and monopolar and dipolar interactions. These terms have
a different weight in the total interaction energy. The capillary interaction
involved the flotation and immersion capillary forces, depending on whether
the interfacial deformation is produced by the weight of the particle or by
the wetting properties of the particle surface that, in turn, are functions of
the position of the contact line and the value of the contact angle rather than
gravity. Immersion forces are long-range interactions and play an important
role in the behavior of colloidal monolayers even for small particles.



Chapter 4

Voronoi diagrams

4.1 Introduction

A very useful tool to determine the correlations and ordering in spacefilling
systems is the one based on the topological properties. Topology is the mathe-
matical study of the properties that are preserved through deformation, twist-
ings, and stretching of objects. The study of the topological properties of
such systems can be achieved with the help of the Voronoi construction,
which creates a division of the whole space in irregular partitions (cells).
Such a method has been successfully used to describe the evolution of many
natural systems, as soap froths [99, 100, 101, 102, 103], propagation of de-
fects in foams [104, 105], metallurgical grains [106], biological tissues [107],
crack patterns in ceramics [108], etc. Even though these systems differ in the
way how they evolve (mitosis for biological tissues, diffusion of gas between
neighbor cells for soap froths;...), it is found that most of them arrive at a fi-
nal stationary state where topological properties remain constant. Moreover,
this state is described by the same common laws, that come from maximum
entropy predictions [109, 110]. However, all these works are essentially mean
field studies and only account for the correlations between adjacent cells. In
recent times, the description of the long-range topological ordering and the
correlation between non—nearest neighbors have attracted interest and new
theoretical methods based on shell structure have been applied to the under-
standing of the evolution of cellular systems [111, 112, 113, 114, 115, 116].

71
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4.2 Voronoi diagrams

There is a one-to—one correspondence between many—particle systems, such
as simple fluids or granular materials, and cellular systems. Mathematical
tools provide the geometric duality between the spatial distribution of par-
ticles and a cell structure. For instance, the Voronoi construction method
provides a unique map of an arbitrary arrangement of points named gener-
ators to a cellular tessellation of space. To each generator a Voronoi cell is
assigned containing all points closer to this generator than to any other. If
all generators are located on a Bravais lattice, the Voronoi cells are identical
with the Wigner—Seitz cells. Therefore, the Voronoi construction, which is
applicable to any distribution of generators, can be regarded as a natural
generalization of the Wigner—Seitz construction for crystal lattices.

The number of sides of a cell, n, informs about the number of closest
neighboring generators, while the area of the cell, A, is related to the total
area filled by each generator. Hence, the Voronoi diagram of a set of points
give us a tool to study the repartition of the space by these generators.

4.2.1 Definition

For any (topologically) discrete set P = {p1,pa, ..., pn} / pi € R of points in
Euclidean space and for almost any point x, there is one point of P closest to
x. The word almost is occasioned by the fact that a point  may be equally
close to two or more points of P.

In general, the set of all points closer to a point py of P than to any other
point of P is the interior of a (in some cases unbounded) convex polytope
called the Dirichlet domain or Voronoi cell V(py) for py.

Vi(pr) = {zeR” : |p; — 2| < |p; — x|Vj # i} (4.1)

The set of such polytopes tessellates the whole space, and it is called the
Voronoi tessellation corresponding to the set P. If the dimension of the space
is only D = 2, then it is easy to draw pictures of Voronoi tessellations, and
in that case the set of Voronoi cells V(p;) is called Voronoi diagram V (P).

The dual graph for a Voronoi tessellation corresponds to the Delaunay
triangulation of the same set of points P. It is obtained by connecting gener-
ators of neighboring Voronoi cells, as illustrated in figure 4.1. The resulting
structure represents a tessellation of the plane by triangles of different shapes.
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Points distribution n Delaunay Delaunay + Voronoi
L]

Figure 4.1: A) Set of random points. B) Delaunay triangulation of such
points. C) Voronoi diagram (continuous lines) and Delaunay triangulation
(dashed lines) of the set of points.

The nodes, located on the positions of generators of the Voronoi cells, have
a varying coordination in the triangulated structure.

In figure 4.2 examples of construction of some Voronoi diagrams are
shown:

a) 2 points diagram:

If P contains only two points, p; and ps, then the set of all points equidistant
from p; and ps is a hyperplane — an affine subspace of co-dimension 1. That
hyperplane is the boundary between the set of all points closer to p; than to
p2, and the set of all points closer to ps than to p;. It is the perpendicular
bisector of the line segment from p; and p,.

b) 3 points diagram:

If P contains three points py, ps, p3, the Voronoi diagram is formed by the
three perpendicular bisectors to the segments p1ps, Pop3 and prps. The in-
tersection between the three bisectors is a Voronoi vertex.
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Figure 4.2: Diagram associated to a) two points. b) three points. ¢) four
points with degeneration (the Voronoi vertex is of fourth order. d) four
points without degeneration (two vertex of third order)

c and d) 4 points diagram:

If P is composed by four points p1, po, p3, p4 that are the vertex of a rectangle,
the resulting Voronoi diagram is showed in figure 4.2—c. In this diagram, the
four bisectors intersect among them in the same vertex. Therefore, this is
a Voronoi vertex of order 4 (degenerate vertex). A small displacement of
any point of P modifies the diagram and causes the apparition of two non—
degenerated vertex of order 3 (figure 4.2-d). In this work, we will consider
only non—degenerated Voronoi diagrams where only three edges meet in a
vertex.

4.3 Statistical properties of the Voronoi dia-
grams
In two—dimensional coagulation, the center of masses of the growing clusters

can be used to build the Voronoi diagram, where each cell represents a single
cluster (figure 4.3). The number of sides (n) and the area (A) of the cells
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$ o

Figure 4.3: (1) Each aggregate i is substituted by its mass center p;. There-
fore, in each instant of the coagulation process we will have a set of points
P ={pi}iz1n,.- (2) We associate to each point of the set P; its Voronoi cell
defined as the region of the space that is closer to p; than to the other points
of P.

are related to the number of nearest neighbors and the size of the clusters,
respectively. The evolution of the cellular pattern is ruled by two independent
processes. The first one is the diffusive motion of the clusters in the plane:
every time a cluster moves a large enough distance, a new rearrangement of
the cells is found in terms of a local side switching (also called T1 process).
The second process takes place when two clusters coagulate together to form
a larger cluster; here, one of the cells disappears and the surrounding cells are
accommodated to the new configuration (T2 process) [102]. Both processes
(figure 4.4) induce a topological restructuring of the two—dimensional froth
that is connected in general, to the physical conditions of the aggregating
system, and more specifically to the aggregation regime and the particle
packing fraction .

The number of sides and area of the cells will be statistical properties
distributed according to P(n, A), defined as the probability of finding a cell
of n sides and area A. This probability is normalized in the form:

AZH@le (4.2)

The probability to find a n-sided cell is given by

HMZAHAMM (4.3)
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C

Figure 4.4: (A) T; process: topological transformation consisting of an ex-
change of neighbors between four cells. (B) T, process: topological transfor-
mation where a cell is created or destroyed.

Analogously, the area distribution P(A) is obtained by the summation
over all number of sides:

P(A) =) _P(An) (4.4)

The average area per cell, < A >, is just given by the total area of the
tessellation divided by the total number of cells:

<A>= Z/ AP(n, A)dA = % (4.5)
n A ¢

where A is the area of the whole froth, and NNV, is the total number of cells.

4.3.1 Euler’s theorem

In a Voronoi diagram composed by a large number of cells (N — o0), the
number of vertex V and the number of edges F are related through the
Euler’s formula [117]:

N-E+V=x (4.6)
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where x is a topological invariant that has a constant value which depends on
the dimension of the space where the Voronoi diagram is defined. Moreover,
as each edge represent the boundary between two cells. The number of cells
and edges are related through:

P2 Z N(n)n (4.7)

where N(n) is the number of n—side cells.

In this work we consider that the Voronoi vertex are not degenerated,
and so, these vertex have order 3 (they are formed by the intersection of 3
edges). Therefore, the vertex and the edges numbers are related by

T > N (4.8)

If we introduce 4.7 and 4.8 in 4.6, we obtain the following relationship for
the average cell edge number:

<n>:ZnP(n) :ZnN](Vn) =6 —6y/N 2226 (4.9)

i=1

As conclusion, for a Voronoi diagram composed by infinite cells without
degenerated vertex, each cell has in average 6 nearest neighbors.

The general property 4.9 of planar cell structures greatly simplifies their
analysis. It should be kept in mind that only the average cell topology is
fixed. In natural and constructed cell structures, the appearance of cells with
topologies n # 6, is the rule rather than the exception. The deviation from
the ideal froth where there are only 6-sided cells can be measurement using
the second central moment of the side number distribution P(n) defined as:

fo =< n?>— <n>*= i(n —6)*P(n) = f: Q2 P(n) (4.10)

where we defined the topological charge of an n—sided cell as ),, = 6 — n.
In the literature, the variance ps of the cell topologies is frequently used
as measures of the degree of disorder in the froth.
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4.3.2 Lewis’s law

Investigating the cell structure of cross—sections of different biological tissues,
the American botanist Lewis [118] discovered a linear increase of the mean
area of a cell with the edges number n:

< A(n;t) >= k(t)(n — no(t)) (4.11)

The Lewis’s law has been confirmed for many natural and constructed cell
structures, except for cells with n = 3 or 4 sides.

The linearity predicted by 4.11 has long been matter of controversy. Var-
ious “derivations” of this law have been proposed [117, 109, 119], mostly
involving the maximization of an entropy defined as a functional of the prob-
ability edges distribution, P(n). None of these derivations, however, is based
on first principles, and Chiu [120, 121] has shown that entropy arguments of
this kind do not allow firm conclusions. Moreover, significant deviation from
the Lewis’s law has been observed in binary and fractal tessellations.

4.4 Neighboring correlations: the Aboav—Weaire
law

The topological correlations between neighboring cells are contained in the
topological two-point function p® (n, k), defined as the probability that an
arbitrarily chosen edge separates a k- and an n-sided cells. Consequently, the
probability that one side of an arbitrarily chosen edge belongs to an n—sided

cell is:
pM(n) => pP(n, k) (4.12)
k

This distribution differs from the n—sided cell distribution P(n) since each
n-sided cell is counted n times. Therefore, the relation between p(*)(n) and

P(n) is: .
p(l)(n) = >P(n) (4.13)

We can define now the topological pair correlation function for neighboring
cells', g(n, k), as the function that relates the two-point function p® (n, k)

Lg(n, k) is a particularization of the general topological pair correlation function (that
will be defined in section 4.5.4), C;(n, k), for j =1
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with the one-point function p(!)(n) as:
p®(n, k) = g(n, k)p (n)p (k) (4.14)
Insertion of 4.14 in equation 4.12 yields to:
PV (n) =g, k)pV (n)pW (k) = Ypg(n k)pV(k) =1 (4.15)

The effective correlation between two adjacent cells characterized by a
topological charge of @),, and ), respectively, can be defined as:

<< QuQp >> — << Qp >>?

=0 o7 (4.16)

where the brackets corresponds to the average of all pairs of neighbors cells

(<< .o >>= Zn’kp@)(n, k)).
Now, we can calculate the average number of sides of the neighbor cells
of n-sided cell, m(n), as:

m(n) =Y kg(n, k)p" (k) (4.17)
k

In the case of the topological gas (TG) the cell structure is uncorrelated,
i. e., g(n,k) =1 Vk,n, and using 4.10 and 4.13:

1

m" = " kpM (k) = — > kK P(k) =
k k
1
D (k= <n>)— <n>*+42k <n>)P(k) =
<n> k
2\ _ M2
<n>(u2+<n>)_<n>+<n> (4.18)

An exact identity can be derived from equations 4.17, 4.10 and 4.15:

S mymn) =3 gln, )k (n)pD (k) =
n n,k

> kI (k)Y M (n)gn k) =Y kp (k) =
k n,k

) k
1
<n>

> K P(k)=m"¢ (4.19)

k



80 4.4. Neighboring correlations: the Aboav—Weaire law

where is interesting to see that,

Z nm(n)P(n) = Z k*P(k) (4.20)

k

This relationship is known as the Weaire’s sum rule [122]. Now, using the
equations 4.4, 4.10, 4.13, 4.14, 4.15 and 4.17:

<<Qr>>=Y > PP k)Qr=<n>> Y p?(nk) -
n k n k
T

ZZ kp® (n, k) (4.21)

g

11

T=<n> Y S p¥ k) =< n> 3" p0 ) S gln (k) =

> nP(n) =<n> (4.22)

IT=>" "kp?(n.k) => kp® (k)Y g(n, k)pM(n) =

n k
1
N K P(k) =< n > + -2 (4.23)
<n> B <n>
[+11=——12 (4.24)
<n>

<< QnQp >> — << Q) >>*=
Zzp(2)(n> k>_ << Qk >> Zzp(2)(n> k)Qk =
n k k n

DD PP k) (@QuQu— << Qk >> Qy) (4.25)
n k
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Therefore, the correlations p defined in 4.16 can be rewritten as:

2
Ha (2) _
— =<n> E ) (<< Qr >> —Qr)Qn =
p< n> n p (n, )( k k)

nk
> P(n)(nm(n) — nm")Q, (4.26)
' (4.27)

Finally, it is reduced to:
nm(n) —nm’% = —p s Qn (4.28)

<n>

Originally, the linear variation of nm(n) with n has been discovered em-
pirically by Aboav, analyzing the cross—sections of poly—crystals. Later, the
relation 4.28, known as the Aboav—Weaire law [123, 122, 117], has been
confirmed in high accuracy by experiments and simulations. Usually, the
Aboav-Weaire parameter a is used instead of the correlations p. The rela-
tion between both parameters is:

— H2
a:—<n>(p—1) (4.29)

Therefore, the usual expression for the Aboav—Weaire law is:

6a + fio

m(n) =6 —a+ -

(4.30)

The number of sides of adjoined cells are correlated: many—sided cells
have few-sided neighbors and vice versa. The various derivations of 4.30
that one can find in the literature involve approximations (usually of the
mean—field kind) or hypotheses whose general validity is subject to caution
(we consider the “maximum entropy method” to be in this class). The dom-
inant view today is probably that 4.30 is not exact, but merely a good ap-
proximation to some unknown “true” curve, which need not be the same for
all cellular systems. Finite system size effects caused m(n) to depart signif-
icantly from this law when n > 9. The exact calculation made by Hilhorst
[124] has explained both qualitatively and quantitatively this fail: the exact
asymptotic formula for m(n) exhibits an inverse square root decay with n.
This large n behavior represents a new paradigm in the field of planar cellular
systems.
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4.5 Long-range topological correlations of the
Voronoi construction

As we have seen in the previous section, the analysis of two—dimensional
cellular patterns can be performed by means of several laws regarding the
evolution of the probability P(n) and the correlations between adjoining cells
(Aboav—Weaire law). However, these descriptions are mean field treatments
and do not include the correlations between non-adjoining cells. In order to
describe the correlations between any pair of cells in the whole system, we
need the topological distance. In general, any froth can be studied by means
of a shell structure around a central cell (seed). The first layer (with j = 1)
corresponds to the nearest neighbor cells, the second layer corresponds to
the cells adjoining the first layer, and so on (figure 4.5). Therefore, we can
define the topological distance, j, between two cells as the minimum number
of edges that it must to be crossed to put them in contact.

In the shell structure, the cells forming the layer j can be divided into
two categories. Some cells simultaneously have neighbors in the layers 7 — 1
and j + 1. These cells form closed layers and constitute the skeleton (sk) of
the shell structure. Other cells are inclusions between the layers of the shell
skeleton (they have neighbors in the layer j—1 or other topological inclusions
but not in the layer j + 1). These cells are called topological defects. These
topological defects has a great importance in the statistical properties of the
Voronoi diagrams as we will see in section 4.5.3.

This decomposition of the plane in concentric regions allows us to system-
atically explore the long-range ordering induced by the coagulation process
and to measure the topological distances at which a colloidal cluster “feel”
the presence of a second cluster. In a topological point of view, what we are
looking for is to describe how the fact of having an n-sided cell affects the
whole froth, and to give an estimation of the topological distance 7 = £ where
the correlations vanish. When ¢ is large, the cells in the froth are strongly
correlated and a mean field models break down. On contrary, if £ = 1, only
the adjoining cells are influenced by the central seed, and for £ = 0 we find
a totally uncorrelated system (topological gas).
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Figure 4.5: Cell structure and defects around a given central cell. The num-
ber inside the cells is the topological distance from the central cell. The grey
cells represent topological defects. The '+’ (*-’) symbol represents the convex

(concave) vertexes of the first layer.

4.5.1 Important definitions

Some j—dependent topological quantities are required in order to describe the
structure of concentric shells. Here we will follow the notation introduced by

Aste et al. [113]:

e K;(n): average number of cells in the j-layer around an n-sided central

cell.

e m;(n): average number of sides of the cells in the j-layer around an

n-sided central cell.

e ¢ = 6 — n: topological charge of an n-sided cell.
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Qj(n) = > ,<;(6 —mi(n))K;(n): total topological charge of the cells
that go from the central seed to the j-layer.

e Cj(n,m): probability of finding a m-sided cell at a distance j from an
n-sided cell.

° Vf(n) average number of convex vertexes going from the j—layer to the
(7 + 1)-layer around an n-sided central cell (represented as + symbols
in figure 4.5).

o V7 (n): average number of concave vertexes going from the j—layer to
the (j—1)-layer around an n-sided central cell (represented as - symbols

in figure 4.5)

e I'i(n) =0Q,;(n)— <Q; >=Q;(n) = > Q;(n)P(n): fluctuation part of
the topological charge @;(n) with respect to its average value < @); >.

4.5.2 Shell-Structured—Inflatable froths

We defined a Shell-Structured-Inflatable froth (SSI) as the Voronoi diagrams
free of topological defects. For SSI froths the shell structure and its skeleton
coincide.

The total topological charge of cells bounded by the shell j can be written
in terms of vertex coming into and going out from the shell j

j j
Qi(n) = (6 —m)K; =) (6—n;) =6-V;"(n)+V; (n)  (4.31)
=1 =0

where the sum runs over all the cells 7 in the cluster and n; is the number of
sides of the cell 7. Equation 4.31 is a general expression which is valid also for
non—SSI systems. It states that the total topological charge inside a cluster
depends only on its boundary. For SSI froths, Eq. 4.31 can be rewritten as

Qj(n) =6— K;11(n) + K;(n) (4.32)

We can find the inverse of this expression using the following iterative
process

Kj(n) =6+ Kj1(n) — Qj-1(n) =
(6 — Qj-1(n)) + (6 + kj2(n) — Qj—2(n)) = ... (4.33)
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and therefore,
j+1

K;(n) =6 = 1) +n=3_ Qin) (4.34)

First shell (j=1)

The number of cells around an n-sided cell is
Ki(n)=n (4.35)
and the topological charge inside the first shell is
Q1(n) = (6 = n) + (6 — ma(n)) Ki(n) (4.36)

The average of the topological charge in the first layer can be calculate
using the Weaire’s sum 4.20 and the Euler’s theorem 4.9

< QL >=<(6—n) >+ < (6—my(n))Ki(n) >=< (6 —n)n >= —uy (4.37)

We can express the topological charge in the first layer, ()1, in terms of
the fluctuation of the charge in this layer, I';(n) = Q1(n)— < @1 >, where
the average of the fluctuation has to satisfied < I'y >= 0

Q1(n) =(6—n)+ (6 —myi(n))n = —ps +T'i(n) (4.38)

This is a relationship between the number of sides n of a cell and the
average number of sides of the adjacent neighbors. The Aboav—Weaire’s law
(eq. 4.30) can be obtained from this expression by imposing a linear form in
the fluctuation part

I'i(n)=(1-a)6—n) (4.39)

This linear dependence can be interpreted in terms of the screening of
the central charge ()9 = 6 — n by the charges of the first layer. The total
screening charge in the first layer is (6 —my(n))n and its deviation from the
average value is

(6 —mqi(n))n— < (6 —my)n >= ps —a(n —6) — s = —a(n — 6) (4.40)

This expression give us the interpretation of the Aboav—Weaire parameter
a as a screening factor of the internal topological charge. When a = 0 there
is no screening and when a = 1 all the charge of the central cell is screened.
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Generic shell

The Weaire’s sum 4.20 can be generalized introducing the topological dis-
tance j as [113]
< (6 —m;)K; >=< (6 —n)K; > (4.41)
where < ...>=>"P(n)....
We can express the portion of charge inside the layer j in terms of the
topological fluctuations using the generalized Weaire identity 4.41, 4.34 and
the Euler’s theorem 4.9

< (6 —my)K; >=< (6 — n)KJ>

=6j<(6—n)>—<(6 2> - Z< 6—n)l; >+

i1
JZ <Q;>< (6—n)>= —py — Z < ( (4.42)
=1

Hence, the total charge inside a generic shell j is

j—1
<Q; >= Z (6—mi)K; >=—ppj— » (j—i) < (6—n)T; > (4.43)

=1

In the case of the absence of fluctuations (I';(n) = 0 Vi), the topological
charge decreases linearly with the distance j and each shell has a constant
topological charge value equal to —pus.

We can rewrite the expression 4.34 for K;(n) in terms of the fluctuation
using eq. 4.43

Kj(n) =6j—(6—n)— > Qin)
—6]—(6—71)—)_ Fi(n)Jr]_ < Qi >
= 6j — ]2_: Ti(n) + U= i)(]; i-h (6 —n)I; > (4.44)

All the relations showed for K;(n), Q;(n) are exact results valid for any
SSI froth.
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Minimum correlation length

In a froth where the cells are uncorrelated after a topological distance &, the
average number of edges per cell, m%"¢(n), in a layer j > £ has to be inde-

J
pendent of the edges number of the central cell (mj"“(n) = m}"¢). Therefore

unc

J

<mi"K; >=m{" < K; > (4.45)
Using the generalize Weaire rule 4.41

<m;*"cKj>_<nKj>:<—(6—n)Kj>+6<Kj>

my(n) =mj™ = <K;>  <K;> < K; >
=06— f 4.4
6 <K, > (for j > ¢€) (4.46)

According to 4.31, the topological charge inside the layer j is

Qj(n) — Qj-1(n) = (6 — m;(n))K;(n)
=< Qj > =< Qj_l > +Fj(n) — Fj_l(n)
=< (6 —m;)K;(n) > +L(n) —T;_1(n)
=< (6 —n)K;(n) > +I;(n) —T';_1(n) (4.47)

Hence,
Fj = Fj—l + (6 — mj(n))K](n)— < (6 — H)KJ > (448)

Introducing eq. 4.5.2 here, we obtain

K-
F]:F]_1+<(6—H)KJ> (<Kj> —].) (449)
In the case of a topological gas which is completely uncorrelated (£ = 0)
and for j =1

Ty =(6—n)+ < (6—n)n > (%-1)

— (6 —n)(1+ %) (4.50)
where we have used that K;(n) = n and I'y(n) = 6 — n. If we compare this
expression with eq. 4.39, we obtain that the value of a = —pu5/6 for a froth
completely uncorrelated.
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Now, we will demonstrate that for a SSI froth with ps # 0 where the
Aboav-Weaire’s law is verified, the cells must be correlated at least to the
third layer (£ > 3). So, if we take the average value of K;(n) of the eq. 4.34
we obtain

7j—1
< K; >= 6j—Z<Q]~ > (4.51)
i=1
It must be a minimum topological distance v in order to fill the 2D space,
i. e., < K; >o< j for 7 > v. Therefore, in base of eq. 4.51, the average charge

inside the layer j must be equal to zero for j > v. Using the definition of the
topological charge and eq. 4.5.2 we obtain

j—1
<Qj>—< Qi1 >=<(6—m;)K; >= —,UQ—Z < (6—n)I'; >=0 (4.52)
i=1

Hence, the following condition

[y

< (6—=n); >=—pg forv > 1 (4.53)

i=1

is imposed to the fluctuation, and to keep the topological charge independent
of the topological distance it must be verified

<(6—n)'; >=0forj>v (4.54)
For a froth which topological correlations vanish for layers j > & the
relation 4.5.2 must be satisfied. Therefore

< (6 — mZ)KJ >2

< (6 — H)Fj >= (6 — n)Fj_l > + - Kj =

(4.55)

Now the question is: which distance is greater? & or v?. If we suppose
that j = v > £, and we introduce equations 4.52 and 4.54 into 4.55 we obtain

<(6-—n),_1>=0 (4.56)

In this case, contrary to the definition of v as the topological distance
afterward the topological charge per layer remains constant (eq. 4.52), we
have that this charge is constant too in the layer v/ = v — 1. As conclusion,
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¢ > v. If the Aboav—Weaire’s law 4.30 is satisfied, we have I'y = (1—a)(6—n)
(eq. 4.39), so, if v = 1, using the eq. 4.54 we obtain

<(6-—n)'1>=<(6-n)(1—-a)(6—n)>=(1—a)us =0 (4.57)

Expression that is verified only for uy = 0 (perfect hexagonal array) or a = 1
(total screening of the charge of the central cell). If v = 2, using the eq. 4.53
we have

<(6—n)'y >=<(6—n)(1 —a)(6—n) >=(1—a)us = —po (4.58)

This expression is verified only for gy = 0 or @ = 2. In other case, the
parameter a is restricted to fixed values for uy # 0. It follows that if a
must be a free parameter for the froth, then v > 3 and £ > 3. Thus, using
equations 4.49 and 4.53 we have

Fi(n)=0 forj>v (4.59)

Statistic for SSI froths with minimal correlation length (£ = 3)

For a SSI froth where v = ¢ = 3 (and then, I'; = 0 for ¢ > 3) and the
Aboav-Weaire’s law is satisfied, we have that eq. 4.53 remains as

Using that I'y = (1 — a)(6 — n) we obtain

(1—a)<(6—n)*>+<(6—n)ly>=

A solution for this equation is given by
[y(n) = (a—2)(6 —n) (4.63)

Using 4.59 and 4.63 equations and the general expression 4.5.2 for the
number of cells per layer K;(n) we can find

Ki(n)=n
Ky(n)=(2—a)(n —6) + 12+ py
Kin) = (6+ (B —aym)j— (52 for j=3 (464
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Then, we can calculate the topological charge, using eq. 4.32 into eq.
4.5.2, as

Qi(n) = —p2 + (1 —a)(6 —n)
Qa(n) = —(3 — a)uz + (a — 2)(6 — n)
Qj(n) = —(3 —a)us for j >3 (4.65)

4.5.3 Shell-Structure froths with topological defects

Topological defects? are roughness of the shell structure and their number, as
12, give an estimation of the disorder degree of the froth. Indeed, they are not
present in perfectly ordered froths (as hexagonal or rectangular lattices), but
only in such systems where the Voronoi diagram is not constituted by regular
cells. In our case, the Voronoi construction derived for a time-dependent
two—dimensional system of aggregating clusters is definitively a non—ordered
process, so the quantification of the number of defects during the coagulation
will give a characterization of the evolution of the cluster—cluster correlations.

We use use the notation K;(n), Q;(n) and m;(n) for the global froth
(skeleton and topological defects), K3*(n), Q3*(n) and mjk (n) for the quan-
tities associated with the shell skeleton. The symbols K¢(n) and md(n) are
associated to the number of defective cells and their average number of sides.
Thus, the total number of cells at topological distance j from the central cell
is

Kj(n) = K*(n) + K{(n) (4.66)

Some of the equation obtained in the previous section are still valid for
the skeleton when topological defects are included in the froth. In particular,
the equations 4.32 and 4.34

Qj(n) =6 — K3{(n) + K;*(n) (4.67)
and .
Kt () =6 = 1) +n=3_ Q"(n) (4.68)

The expression 4.31 for the total topological charge as a function of the
concave and convex vertex remains unchanged

Q;(n) =6~ Vi (n) + V; (n) (4.69)

2also known as topological inclusions
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Without defects the outgoing convex vertexes from the j—layer are equal
to the incoming concave vertexes to the (j + 1)-layer, i.e. V;"(n) =V, (n).
However, if topological defects are present in the froth, part of the outgoing
vertexes are trapped in the defective cells. In this case, the previous relation
does not hold any more and a correction must be included in order to consider

the lost of outgoing vertexes. One obtains
= Vj+ - nK;.lH (4.70)

where 7 is the average number of sides lost in one defect?

The number of concave vertex (V) are related only with the number of
skeleton cells in this layer. Moreover, it can be demonstrate that

Vi =K* (4.71)

Thus, if we introduce this property plus the equation 4.70 into equation
4.69, we obtain

Q(n) = 6 — K%, (n) + K35(n) — nK, () (4.72)

which is a generalization of eq. 4.32. Now, the substitution of eq. 4.67 into
4.72 leads to the following general expression

Q;(n) = Q5 (n) — ki, (4.73)

Hence, the topological charge inside the shell j is equal to the charge
associated with the shell skeleton minus a contribution due to the defects
attached to the external shell and so, the defects present in the internal
layers do not contribute to the total charge. It is interesting to see that the
defects always decrease the total topological charge.

The average value of the topological charge can be calculated using the
definition of the charge (Q;(n) = >".(6 — m;(n))K;), the Weaire’s sum 4.20

3Please note that we have explicitly omitted the dependence of i on the number of
sides of the central seed (n) and the topological distance j since the value of this quantity
is found to be rather constant for all the defects in the whole system and close to 1
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and the expression 4.68 for K*(n)

< (6—my)K; >=< (6 —n)K; >=< (6 —n)K! >+ < (6 —n)K;* >

7j—1
=< (6-n)K{!>-) <(6-n)Q" >
i =0
=< (6-n)K] > =) (< (6—n)Q; >+ < (6 —n)nKf,, >)
=0
7j—1
=< (6-n)K] > - (<(6-nT;>+<(6-nnK, >)  (474)
=0

Hence,

<Q;>= Z(e —m;(n))K;) = Z < (6-n)K! >~

Y (< (6=n)ly >+ < (6—n)nK,, >) =

[< (6= n)Ky > = —i)(< (6 —n)Ti > + < (6 —n)nKfy, >)] (4.75)

We can use this expression together with equations 4.68 and 4.68 in order
to calculate? the average number of cells of the shell skeleton at topological

4For simplify the notation, the n dependence of the magnitudes considered are omitted
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distance j
j—1 j—1
KF =65 =) QF=> (Qi+nk)
=0 =0
j—1
=65 — Y (it < Qi > +nK{.,)
=0
j—1 i—1
=65 — Y (Ti+nKi, + ) [< (6-n)Ki,, >
=0 i'=0
—(i =)< (6 =)Dy >+ < (6 = n)nKj,, >)))
j—1
=65 — > (Ti+nKly + (G —i) < (6—n)K! >)
=0
j—2 (._Z.)(A_Z._l)
Ly LY (< (6-n)T; >+ < (6—nnK%, >)  (4.76)

2

Il
o

This expression is a generalization of equation 4.5.2. Following the same
procedure than is the section 4.5.2, it can be shown that, for a SSI froth
with topological inclusions for which the Aboav—Weaire’s law is verified, the
system can be uncorrelated after the first neighbors (£ > 1). Hence, the
reduction of the correlations due to the presence of topological defects shows
the relationship between the raise of the disorder of the cells distribution and
the increase of the topological defects.

If we have a system that the adjoining cells verify the Aboav-Weaire
law and the cell-cell correlations vanish after the second layer £ = 2 (the
froth has short-range correlations), then it is possible to find simple approxi-
mated expressions for Ky(n) and K3(n) through equation 4.5.3 and using the
reasonable assumptions that the first shell have a small number of defects
(K¢ << 1)

Ka(n) ~ 12 + iz + (2 — a)(n — 6) + (1 — n) K3(n)

(2 —a)’us
o Y
—nkS(n) + (1= ) (m) (477

K3(n) =~ 18+ (4 —a)pa + (3 —2a +

In a Euclidean 2D froth, the number of cells per layer grows linearly with
the distance for 7 >> 1. So, if there is a topological distance £ afterward there
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is no correlations, the slope of this linear dependence must be independent
of the number of sides, i. e., for 7 > £ the number of sides of the central cell
has not influence on the number of cells for long distances due to the absence
of long correlations. Therefore,

K;n)=C-j+B(n) for j >>1 (4.78)

From equations 4.5.3, we can obtain an explicit expression for the asymp-
totic value of the average topological charge, < @); >. Using the definition
of the topological charge and the generalized sum rule of Weaire (eq. 4.28),
we obtain

<Q;>—<Qj_1 >=<1[6—m;(n)]K;(n) >=<[6 —n|K;(n) > (4.79)
In the asymptotic limit, K;(n) is given by eq. 4.78. Hence, we have
<Qj>—< Qi1 >=
<(6—-—n)>Cj+ < (6—n)B(n) >=<(6—n)B(n) > forj>¢& (4.80)
Thus, the difference (< Q; > — < ;-1 >) is independent of the topo-
logical distance for large j. In other words, the topological charge inside a
layer is constant. Assuming now that this is true for 7 = 2 and using egs.
4.5.3, we have
<@2>— <@ >=
<Qj>—<Qj_1 >=<(6—n)Ks(n) >=—(2—a)us for j >2  (4.81)

where the contribution of the defects has been neglected. By iterating last
expression, we obtain

<Qi>=—-2—-a)u(j — 1)+ < Q1 > (4.82)

where < ()7 > is the average topological charge contained up to the first layer;
which is given by < Q1 >=<6—n >+ < [6 — my(n)|n >=< (k —n)n >=
— 2. So, finally, < @); > is given by
< Qj >= —,u2(2 — a)j + (1 — a),ug (483)
By combining eqgs. 4.69, 4.70, and 4.71, the following expression for the
average topological charge in the j layer is found
<Qj>=<6-V/+V~ >
=6+ < -V, —nK{ +V] >

=6+ < K; — Kju1 — K{+ (1=K}, > (4.84)
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We can deduce an analytic expression for C, the slope of Kj;(n) for large

7, by taking the asymptotic limit 7 >> 1 and using eqs. 4.78 and 4.83 in eq.
4.5.3

—(2—a)uj=6—-C+(1-nK, — K/ (4.85)

It is appropriate to define the proportion of defects in the j layer as the
ratio A; =< K]C-l > / < K; >. With this definition and using eq. 4.78, the
last equation can be written as

—(2—=a)paj = [(1 —=n)Ajp1 — Nj]Cj + (6 = C)
+(1=n)A;1(B+C) — A,B (4.86)

In the asymptotic limit, the proportion of defects converges to a constant
value independent of j, lim; ., A; = A. Hence,

—(2 — a)uzj = nACj + const (4.87)

where const is a value independent of j. The matching of both terms for
j >> 1 imposes the following identity for the slope C":

C= (277% (4.88)

which predicts that C' is directly correlated to the short— and long-range
disorder of the froth (u and A, respectively).
Finally, for large j, we have that

<KFf>=(1-A)<K;> (4.89)

therefore, as Kj(n) is linear, < K3* > also has a linear behavior with j. This
implies that

< (6—mj)K; >=<Q; —Qj_1 >
=< QF-QF > - <nKl, —nK! >
=<K} - K, >=nA<K; — Kj 1 >
= nAC (4.90)

that is, the charge decreases linearly with j with a decrement of nAC' per
layer.
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Taking into account that C =< Kji1(n) — K;(n) > and using the ex-
pressions obtained in 4.5.3, we can obtain finally an approximate theoretical
expression for nA through equation 4.5.3.

< (6 — mj)Kj > _ (2 —CL),UQ
C 6+ (3 —a)u— < Kg >

nA ~ (4.91)

4.5.4 Topological pair correlations

The two—cell topological correlation function defined in section 4.5.1 , C;(n, m),
is the probability of finding a cell with m sides at a topological distance j
from a cell with n sides. The two—cell topological correlation function is
equal to the total number, N;(n,m), of couples of cells with, respectively, n
and m sides that are at a relative distance j, divided by the number of all
couples of cells at a relative distance j

_ Nj (n, m)
2 nm Ni(n,m)

We consider the n— and m—sided cells as distinguishable. Therefore, each
couple is counted twice and N;(n,m) and C;(n, m) are symmetric in n and
m, that is , C;(n,m) = C;(m,n).

By definition, for uncorrelated systems the correlation function must fac-
torize as

C(n,m)

(4.92)

Cy(n,m) = s;(n)s;(m) (4.93)

The normalization and the symmetry of C;(n, m) imply that ) s;(m) =1,
consequently s;(n) =Y C;(n,m).

Consider two cells with n and m sides that are at a relative topological
distance j. Such a pair, connected by a path of length j, can be seen as
a “string” with n— and m-sided terminations. Clearly the number of these
strings in the cellular system is IV;(n, m) (where each string is counted twice
since the terminations are distinguishable cells). The number of strings of
length 7 with a termination in a cell with n sides and the other termination
free is given by > N;(n,m). The same quantity is equal to the number of
n—sided cells in the system N (n) multiplied by the average number of strings
of length j which terminate in one n-sided cell K;(n). Therefore,

> Nj(n,m) = N(n)E;(n) (4.94)

m=3
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Finally, the total number of strings of length j is equal to the total number
of cells (Nr) multiplied by the average number of strings of length j that
terminate in any given cell (< K; >). Thus, we have

S Nt = 3N Ry = N 30 S ) =
N7 Y P(n)Kj(n) = Ny < K; > (4.95)

The probability to find a string of length j with a termination in a cell
with n sides is consequently given by the ratio

_ 2w Nilnm)  N(n)K;(n)

(n) = = = P(n)——~ 4.96
si(n) > Ni(n,m)  Np < k; > (n)< K; > (4.96)
Thus, for a complete uncorrelated system
es K;(n)K;(m
€1 (n,m) = sy (n)sy(m) = LK) by pmy  (a.07)
< K;>

Even when the system is uncorrelated, taking two cells at distant j, the
probability to have one cell with m sides and the other cell with n sides is
not given by the simple product of the probabilities of finding independently
an n— and an m-sided cell P(n)P(m). The factor K;(n)K;(m)/ < K; >? in
Eq. 4.97 indicates that a cell in a froth (even in an uncorrelated one) cannot
be topologically independent of its neighbors.

In order to study the long—range topological correlation in a system, we
will study the 3;"™ functions defined as
g™ = Cj(n, m)/C’fes(n, m) (4.98)

J
For an uncorrelated system, we have that 3™ = 1 for all j.

4.6 Relations between topology and the number—
average cluster size

The topological magnitudes are related with the kinetic magnitudes of the
colloidal aggregation. So, if as for example, we can consider the number—
average cluster size, S, (t) (eq. 2.26)

(4.99)
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where Nj is the total number of particles and N, (¢) the number of clusters
at time t. Introducing in this expression the equation 4.5, we can connect
S, (t) with the average area of the cells

Su(t) === P(n,t)A(n,1) (4.100)

And, now, using the Lewis’ law 4.11, we have

Su(t) = 32 3 Pl k(1) — no(t)) = 26— mo(8) = 30A(G:1) (1.101)

so if the system satisfies the Lewis’s law at all times, only the six—sided cells
are needed to know the temporal evolution of S, (t).

Usually, ng(t) is independent on the time, and therefore, the scaling prop-
erties of S,,(t) is also expected for k(t)

1

Sinlt) ox Ne(t)

oc A(n,t) o k(t) = k(t) o £ (4.102)



Chapter 5

Topological order induced by
cluster diffusion and
aggregation

5.1 Introduction

The aim of this chapter is to study how the aggregation process affects the
topological properties of a system of colloidal clusters. The topological cor-
relations will be then a direct consequence of the spatial structuring of the
space—filling system of clusters. We have neglected the particle-particle inter-
actions in order to pick up solely the effects of the pure diffusive aggregation
(DLCA) and the monomer concentration on the behavior of the topological
properties. For this purpose, the growing clusters are substituted by convex
non—overlapping polygonal domains (cells) that form a tessellation of the
space where aggregation takes place. The number of sides and area of each
cell denote the number of nearest neighbors and area filled by the real cluster
together with its surrounding depletion region, respectively. In our study we
go further the nearest neighbor clusters and investigate the short and long—
range ordering created by the aggregation process and how this structuring
is related to the surface packing fraction of particles.

99
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5.2 Connections between topology and aggre-
gation

The kinetics of aggregation processes are usually described in terms of the
cluster—size distribution {n;(t)}, defined as the number of cluster formed
by i individual colloidal particles (see section 2.3.2). The time evolution
of the cluster—size distribution is strongly connected to the particle-particle
interactions, the spacial dimensionality and the geometry of the clusters.
One of the most studied property derived from {n;(t)}, is the weight—average
cluster size, S, (equation 2.27)

The kinetic aspects are essential to understand the affinity between clus-
ters with different sizes and to give an estimate of the total aggregation rate.
However, the cluster size distribution, n;(t), only gives information about the
population of the different species formed during the aggregation process, but
not about the structure and distribution of these clusters in the space. In
order to understand the short and long-range structure of the whole system
of clusters confined in two dimensions, a topological description is needed.
By means of the Voronoi construction, each cluster is replaced first by a point
representing its center of mass, and then, the space around each point is par-
titioned into convex, irregular polygons, called cells. What we obtain after
this mapping is a disordered tessellation or froth, where the original clus-
ters are represented by non-overlapping cells. Figure 5.1 illustrates a typical
snapshot of the colloidal clusters and the froth derived from this method
during the coagulation process.

The number of sides of a cell, n, informs about the number of closest
neighboring clusters, while the area of the cell, A, is related to the total area
filled by the colloidal cluster and its depletion region. The relative distance
between two non—neighboring clusters is now represented by the topological
distance, j that, as we saw in section 4.5. is defined as the minimum number
of cells that we must go through from a starting cell to a given final cell. The
topological distance allows us to consider the froth as a collection of concen-
tric shells which are at the same topological distance from a central seed.
The main advantage of using the topological distance, j, instead of the met-
ric distance, 7, is the fact that j gives an unambiguous and time-independent
measurement of the coordination shell at which a cluster is localized in rela-
tion to a central one. For a system of growing clusters, however, the typical
metric distance of a certain coordination shell is not a constant quantity, but
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Figure 5.1: Typical snapshot of a two—dimensional system of aggregating
clusters, and the subsequent Voronoi diagram built up from their center of

masses.
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it increases as the aggregation proceeds. The topological distance also gives
a good characterization of the correlation between any couple of cells of the
froth (i.e. correlation between two colloidal clusters). Indeed, any modifica-
tion in the shape or the number of sides of a particular central cell produced
by the motion and/or aggregation of the colloidal clusters will have more
influence on the cells placed at small topological distances. For large j the
statistical properties of the cells become independent on the central one. In
fact, as we will see later, the cell-cell correlations are negligible for j > 2.

As we saw in section 4.3, in two—dimensional coagulation the evolution of
the cellular pattern is ruled by two independent processes. The T'1 process,
where every time a cluster moves a large enough distance, a new rearrange-
ment of the cells is found in terms of a local side switching and the T2 pro-
cess when two clusters coagulate together to form a larger cluster and one
of the cells disappears. Therefore, the surrounding cells are accommodated
to the new configuration. Both topological processes induce a topological
restructuring of the two—dimensional froth that is connected in general, to
the physical conditions of the aggregating system, and more specifically to
the aggregation regime and the packing fraction of particles .

Since the aggregation process induces a disordered froth with irregular
cells, the number of sides and area of the cells will be statistical properties
distributed according to P(n, A) (the probability of finding a cell of n sides
and area A).

One of the most interesting quantities derived from the probability distri-
bution P(n) (equation 4.3) is its second central moment, s (eq. 5.6), which
can be understood as an estimate of the degree of the disorder in the froth.

In principle, n and A are both important to give a complete description of
the froth. However, only one of them is really necessary since these quantities
are in fact strongly correlated through the Lewis’ law (see section 4.3.2), that
states that the mean area of the n-sided cells shows a linear dependence on
n, A(n) = k(t)(n —ng) [118]. Here, k(t) increases with the aggregation time
whereas ny is found to be a constant value [18]. Hence, the number of sides n
is sufficient to give a good representation of the froth and the cluster-cluster
correlations.

The study of correlations between the shapes of two neighboring cells in
the froth can be easily done with the help of m;(n), defined as the average
number of sides of the adjacent cells of n-sided cells. From spacefilling
conditions follows the result that large cells (i.e. with many sides) tend to
be surrounded by small cells. This intuitive property can be expressed in a
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semi-empirical law called the Aboav- Weaire law [125, 126] (see section 4.4),
that states that on average my(n) is linear in 1/n:

6a + po
n

mi(n) ~ (6 —a) + (5.1)

where p5 is again the second central moment and a is the screening factor.

5.3 Simulations

Brownian Dynamics off-lattice DLCA simulations were done in a square
box of side L by considering a total number of monomers of Ny = 30000
with a particle diameter d = 735 nm, and for five different packing frac-
tions: ¢ = Nymr?/L? = 0.005, 0.01, 0.03, 0.06 and 0.1. In the initial state,
monomers were placed at random avoiding particle-particle overlapping. Pe-
riodic boundary conditions are imposed at the boundaries of the simulation
surface. The simulations were stopped when the number of clusters was
around 1500 aggregates. For the entire surface packing fractions considered
this condition is good enough to reach the scaling time and it is a warranty
to have good statistics for all aggregation times.

The diffusion coefficient (D) of a single cluster is obtained from its radius
of gyration (R,) assuming the Stokes’ law D ~ 1/R,. To move the clusters
they are selected one by one for a movement test. A random number &
uniformly distributed in [0; 1] is generated. If £ < D/Dyar = (Ry)min/ Ry,
the cluster is moved in a random direction. If & > D/ D4, the cluster does
not move. D, is the largest diffusion coefficient and (R, )i, the smallest
radius gyration in the whole system of clusters. Whether the cluster moves
or not, the time is increased by

1
B NDmax

A collision is considered to occur when a moved aggregate overlaps an-
other one. Then, the position of the moved cluster is corrected backwards
along the direction of the movement as far as the surfaces of both clusters
are in contact. These contacting clusters are joined to form a larger cluster
that will continue the diffusive motion in the following time step. For DLCA
every collision produces coagulation.

The programs used in this chapter for the DLCA aggregation and to
obtain the topological properties of the Voronoi diagrams associated to this

At (5.2)
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Figure 5.2: Cluster size ¢ versus the gyration radius R, for ¢ = 0.005 on the

left and ¢ = 0.1 on the right. As expected, we obtain a behavior in power
. d

as i ~ Ry’

aggregation process were developed by the Dr. Arturo Moncho Jordd and
has been used successfully in previously works [18, 27, 127, 128].

5.4 Structural and kinetic properties of the
DLCA regime

The representation of the number of monomers of the aggregate versus its
gyration radius is shown in figure 5.2 for ¢ = 0.005 and 0.1. As predicted
by the scaling law 2.22 we obtain a power law dependence where the scaling
exponent is the fractal dimensions. In figure 5.3 shows the fractal dimensions
for the DLCA simulation as a function f the packing fraction . For all cases,
we obtained values close to the typical fractal dimension characteristic for
the two—dimensional DLCA coagulation (~ 1.44). However, we can discern
an increasing of the fractal dimension with the packing fraction.

In figure 5.4, the weight—average cluster size is plotted as a function of
the aggregation time for the five surface packing fractions. S, () monotoni-
cally increases as time goes on, and after the so called scaling time t. (see
cross symbols), it reaches the scaling behavior given by a power—law growth:
Sw(t) ~ t*. For higher particle concentrations the aggregation process is
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Figure 5.3: Dependence of the fractal dimension of the aggregates, d, versus
the packing fraction, . Although the values are close to the result expected
for DLCA regime (~ 1.44), we observed an increase of the fractal dimension
with ¢.



106 5.5. P(n) and ps

T T T T ERPAM T T
,'/' J
—=— $=0.005 P
% 9 ‘
- $=0.01 y
—¢= g
0.03 PV
—— $=0.06 7oA
/
Y, J &
—+— $=0.10 7 ’
10_. 77 .,o 4 .
7 /
’-l: ] 4 % o. // ]
4 » 2 )
w 4 X
/ / of
4 o
/ /' o
; // // 4
; 7 o,
. o s
- /"/ / ) 5 7
7 7 & s
1 - o " // -
s , .
S/ /
T T T T T T

1 10 100 1000
t(s)

Figure 5.4: Time evolution of the weight—average cluster size obtained from
DLCA simulations for five surface packing fractions. At long times, S, ()
shows a power—law behavior (scaling). The cross symbols represent the scal-
ing time tg..

faster, and consequently the scaling region is manifested at shorter times
with a larger kinetic exponent z [129] (see Table 5.1).

5.5 P(n) and p»

After this brief description of the kinetic properties, we will focus on the topo-
logical aspects of the aggregation process. For all the studied situations (i.e.
different times and initial particle concentration conditions), the probability
of number of sides P(n) is a centered distribution around the maximum value
at n = 6, and the first moment verifies the Euler theorem (< n >= 6). The
time evolution of P(n) for four different packing fractions is shown in figure
5.5. We observed that the probability of finding cells with n = 6 increases
with time. Also, P(n) becomes tighter when the particle concentration is
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@ z (£0.01) tse(S)
0.005 0.60 101.7
0.01 0.61 55.8
0.03 0.63 17.1
0.06 0.68 7.4
0.10 0.76 3.8

Table 5.1: Kinetic exponent z and scaling time t,. for the five surface packing
fractions studied in this work.

increased. For long aggregation times, P(n) becomes independent on time.

The second central moment, ps, determines the dispersion of P(n), so it
can be regarded as the key quantity to characterize the global topological
disorder of the system of clusters. As shown in figure 5.6, uy decreases with
time for all cases for short times. However, after certain time which corre-
sponds to the scaling time t,. it finally reaches a roughly time—independent
value. This long—time behavior has been previously observed by several au-
thors [100, 16, 17]. Indeed, experiments on soap froths indicate that, as time
goes on, there is a final state where the topological properties reach stable
values [113]. Some experiments of two—dimensional colloidal coagulation per-
formed by Earnshaw and Robinson also show similar topological results for
t >ty [17].

The decrease of iy reveals that the clusters formed in the DLCA regimen
tend to adopt an hexagonal-like structure as the aggregation proceeds, i. e.
the aggregation process induces a topological ordering that is intimately re-
lated to the spatial organization of the clusters in the plane. As soon as the
scaling of the cluster—size distribution is manifested, the topological ordering
ends and the system of aggregating clusters reaches a final stationary state
with constant ps. Therefore, the dynamic scaling can be understood as a
“stationary” state in a topological point of view. Our simulation results also
show that the final stationary value of uy decreases as the particle concentra-
tion increases (from py = 1.42 for ¢ = 0.005 to pus = 1.07 for ¢ = 0.1), which
means that aggregation induces stronger topological ordering for dense col-
loidal suspensions than for the dilute ones. Figure 5.7-A represents the slope
of the ps(t) versus the aggregation time. As it can be observed, this slope
is independent The final stationary value, however, decreases with the par-
ticle packing fraction (figure 5.7-B). This clearly shows that the intercluster
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Figure 5.5: P(n) versus n for four different packing fractions.

ordering induced by the aggregation process is stronger for dense colloidal
suspensions.

This ordering is linked to the growth of the colloidal clusters and the
existence of free space between them. Clusters are non—compact fractal—-
type structures with a special ability to fill the space even for relatively
small number of particles. The typical distance between the surfaces of two
nearest neighbor clusters (r4(t)) is given by

rs(t) = 1ee(t) — 2R(t) (5.3)

where 7..(t) is the average distance between centers of the clusters and R(¢)
is the characteristic cluster radius. r is a measure of the size of the depletion
zone around a cluster. The cluster growth is achieved at the expense of the
surrounding particles/clusters, which are mopped up after diffusion through
this depletion distance. When the dynamic scaling is established, the fractal
dimension of the clusters dy is a well-defined quantity and R(t) scales with
the number—average cluster size as R(t) ~ S,(t)"/%. The center-to—center
distance is, however, given by 7..(t) ~ S, (t)/2. Since d; < 2, we observe that
R(t) grows faster than r..(t). At very low particle concentrations, this effect
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is not really important since the average cluster—cluster distance is much
larger than the cluster radius at any aggregation time. However, for higher
particle densities, the free space available between a cluster and its nearest
neighbors becomes rapidly small compared to the effective surface filled by
the fractal clusters. Then, the cluster structure is able to induce spatial order
in the cluster localization: the surrounding clusters around a central one tend
to adopt a more closely packed two—dimensional structure (the more particle
density we have, the stronger is the inter—cluster ordering). Topologically, it
yields the increase of 6 sided cell probability and the subsequent reduction of
o for more dense systems and long aggregation times. Since this effect is a
consequence of the trend of fractal clusters to fill up the whole space, we do
not expect the same spatial organization when clusters are not fractal. This
is the case of aggregation into a finite energy minimum, which allows the
colloidal particles to rearrange inside the cluster and to form more compact
structures [130].

The final stationary value for ps obtained during the scaling regime (figure
5.7-B) seems to be an intrinsic property of the self-assembly of the clusters
linked to the value of the average fractal dimension of the cluster. In fact,
we expect departures from our results for us at very high particle densities
and long times, when the aggregating system is close to undergo gelation
(rs & 0)), since the clusters lose their individual fractal character and become
homogeneous structures (with dy = 2).

5.6 Lewis’s law

As we see in section 4.3.2, there is a linear behavior of the mean area of the
cells versus the edges number as A(n,t) = k(t)(n — ng). This relationship
is the Lewis’s law. Here, we corroborate this law for a Voronoi diagram of
an aggregating system. In figure 5.8 we represent the mean area of the cells,
A(n;t) versus the number of sides n for different times for the simulation of
¢ = 0.06. We observed the linearity behavior for all the simulations.

In figure 5.9 we represent k(t) as a function of time obtained from the
simulations. In all cases, k(t) collapse in a common curve after the scaling
time independently of the packing fraction, with a power law dependence
with time that can be fitted with an exponent close to the kinetic exponent.

As we saw in section 4.6, the area of the 6-sided cells scale with time
through the kinetic exponent. In figure 5.10, the quantities p- A(6;t) (p is the
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A(n;t) = k(t)(n — nyg)
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Figure 5.10: The relationship 4.101 between S,,(t) and p- A(6;t) is checked. In
all the cases a good agreement is found for the five different packing fraction.

particle surface density) is plotted against the aggregation time and compared
to the mean cluster size, S, (t). There is a perfect agreement between both,
as expected by equation 4.101. Therefore, if we know the time dependence
of the area of the 6-sides cells, we have completely determined the growth of
the mean cluster size.

5.7 Topological ordering between nearest neigh-
bor clusters

A similar steady state behavior is found for the screening factor a obtained
fitting the results to the the Aboav—Weaire law for the average number of
sides of the nearest neighbor cells of an n-sided cell, m;(n). Figure 5.11
shows m4(n) as a function of 1/n for the particular case of ¢ = 0.01 at four
different times (similar curves are found for the rest of particle concentrations
and aggregation times). The increase of mi(n) as a function of 1/n means
that large clusters (with many number of sides) tend to be surrounded by
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Figure 5.11: Example of m(n) versus 1/n for ¢ = 0.005 and 4 different
times. The linearity predict by the Aboav—Weaire’s law is verified except for
the cells with large number of sides. The dashed lines represent the fits using
the Aboav—Weaire law.

small ones (with low n). Together with the simulated data, we represent the
fit using the Aboav—Weaire law given by Eq. 5.1 (solid line). As observed,
simulated and theoretical m;(n) agree well, except for the cells with large
number of sides (n > 9) where departures from the Aboav-Weaire prediction
are found. This departure from the linear behavior can be explained in terms
of an exact asymptotic formula for the first—neighbor correlation of Poisson—
Voronoi cells as m(n) ~ 1y/n (instead of m(n) ~ 1/n) predicted by Hilhorst
[124] .

The screening factor a obtained from the fits of m;(n) is not an indepen-
dent property but it is also strongly correlated to the topological order of the
system. In fact, for most of the froths with weak and moderate disorder, a is a
positive quantity and grows as po decreases [131]. This behavior is also found
for the particular case of two—dimensional colloidal coagulation. Indeed, as
observed from figure 5.12, the parameter a first increases for times below the
scaling time and arrives at a rather stationary state when the dynamic scal-
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Aboav-Weaire law (cf. Eq. 5.1). After the scaling time a also reaches a
stationary value (dashed lines are only guides for the eyes).



116 5.7. Topological ordering between nearest neighbor clusters

-1.89
)

1.0

alp, = 1.17(u,

0.94

0.8+

0.6

0.54

oadl * ¢ =0.10 S

1.0 11 1.2 1.3 14 15 1.6 1.7
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but in the opposite direction.

ing is established. The final value of a increases with particle density, going
from a = 0.91 for ¢ = 0.005 to a = 1.07 for ¢ = 0.1. Moreover, if we plot
the simulated values of a/us for all times and for the five different surface
packing fractions of particles as a function ps, the results lie in a univer-
sal curve (see figure 5.13), given by a = D(u2)® = 1.17(p2) "%, A similar
universal behavior is found for other natural or computer simulated froth
systems but with different values of D and w [131, 116]. Since the exponent
w may be considered as a universality class feature of the froth evolution,
we deduce that the topological structuring induced by two—dimensional ag-
gregation processes correspond to a unique universality class (w = —0.89)
which does not longer depend on the monomer density, but it is a general
property linked to the space—filling aspects of the cluster growth.
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5.7.1 Correlations between non—adjacent clusters.

This section extends the study of the topological properties beyond the first
nearest neighbor cells.

K3(n) and K3(n)

First we investigate the average number of cells around an n-sided cell for the
two nearest non-adjacent layers around the central seed: Ky(n) and K3(n).
Figure 5.14 shows an example of the dependence of the simulated K3(n)
and K3(n) on the number of sides (symbols) together with the theoretical
prediction (lines) deduced for froths where the cell-cell topological correla-
tions vanish after the second layer (see Eq. 4.5.3) and where the first cell is
correlated according to the Aboav-Weaire law. As observed, this theoretical
model reproduces fairly well the simulation data, although some departures
are found for cells with n > 9 as a consequence of the failure of the Aboav—
Weaire law for such many—sided cells (see figure 5.11.) Although the complete
set of results is not shown, similar agreement between theory and simulation
was found for all aggregation times and particle densities, supporting the idea
that the aggregation process is not able to produce correlations for j > 2.
Moreover, the values of Ky(n) and K3(n), that characterize the shape of the
second and third layer of the shell structure, are basically given by topolog-
ical properties related to single cell averages and first layer correlations, as
the second central moment 9 and a.

Asymptotic behavior of < Q; >

In the next step we go beyond the first 3 nearest layers with the aim of
studying the long-range topological properties and their asymptotic limit.
Using the quantities defined in Section 4.5.1, we can describe the long-range
ordering of the froth induced by the aggregation process. First of all, we start
our analysis with the average topological charge < ); >. Figure 5.15 shows
typical examples of the dependence of < ); > on the topological distance for
the particular case of ¢ = 0.005. The topological charge decreases linearly
with j. Moreover, < ); > is well described by the theoretical prediction <
Q; >= —p2(2—a)j given in Eq. 4.83 for froths where the cell-cell correlations
vanish after the second layer. Similar results are found for all times and other
particle densities.
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Figure 5.16: C;(n,m) (n,m = 5,6,7) for ¢ = 0.05 and different times. The
topological correlations vanish for j > 2.

The result corroborate an already mentioned fact: the spatial and topo-
logical correlations between two clusters are negligible if the topological dis-
tance between them is larger that 2. This conclusion has been independently
confirmed by measuring the probabilities C;(n,m) defined in section 4.5.4
for several values of n and m (see figures 5.16 and 5.17).

Indeed, the amplitude of the oscillations of "™ = chi?nmnz) (eq. 4.98)
J b

is only important for 7 = 1,2, and becomes insignificant for 5 > 2. Fur-
thermore, since Eq. 4.83 holds for all particle concentration and aggregation
times (before and after the scaling), we conclude that the aggregation process
is only able to induce short-range inter—cluster correlations (up to j = & = 2)
even at high particle packing fraction: clusters in the third layer do not feel
the presence of a given central cluster.
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Figure 5.18: Proportion of defects as a function of the topological distance
obtained for DLCA simulations with ¢ = 0.005, 0.01, 0.03 and 0.1. After
the scaling regime the curves become time-independent.

5.7.2 Topological defects

We now turn to the study of another important aspect of the froth: the
topological defects. Their presence in the shell structure has a dramatic
influence on the cell assembly. In fact, for froths with large values of the
proportion of defects, A;, the cell-cell correlations drop off very fast with
the topological distance j. It means that cluster—cluster correlations beyond
nearest neighbors are mainly dominated by the percentage of defects.

Figure 5.18 shows the proportion of defects as a function of j for several
aggregation times for ¢ = 0.005, 0.01, 0.03 and 0.1. In all cases A; increases
with j, and for large distances it reaches an asymptotic constant value, A,
that features the long-range shell structure. As the coagulation progresses,
the whole curves go down and reach lower values of A. This decrease of the
defect concentration as time evolves clearly indicates that the aggregation
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Figure 5.19: Asymptotic value of the proportion of defects as a function of
the aggregation time for the five studied surface packing fractions. After the
scaling time A reaches a final stationary value (dashed lines are only guides
for the eyes).

process induces ordering not only between nearest neighbors (j = 1), but
also between well removed clusters (j >> 1). It is remarkable that, for times
beyond the scaling time the curves saturate and the topological ordering of
the froth arrives at a stationary state.

This behavior can be better observed if we represent the asymptotic value
of the proportion of defects A as a function of time. Unfortunately, our
simulated data go up to topological distances j < 19 and we do not have
valuable information at larger distances. This is mainly due to the poor
statistics that we have for such large distances, especially for long aggregation
times, where the number of clusters is small and the analysis becomes affected
by the boundaries of the simulation box. Nevertheless, although the defect
concentration shown in figure 5.18 does not reach completely this asymptotic
value, there is a clear trend that points out the existence of a constant value
for large enough topological distances. This constant value is rather logical'

'We refer the reader to ref [113], where a similar behavior for the proportion of defects
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Figure 5.20: Histogram of the values obtained for the parameter p for all
times and surface packing fractions.

since there is not difference between any shell and the next one for large
values j. In this respect, our asymptotic value is in fact an extrapolation of
the simulated data for large j.

In order to estimate this parameter, the simulated data have been fitted
according to the following empirical law:

Aj=A+ A (5.4)

. p
1+ (ﬂj—;)

where A is the asymptotic value for j >> 1, A; is the percentage of defects for
the first layer and p and j, are fitting parameters. The regression coefficient
was r > 0.99 in all fittings and, as we can see in figure 5.20, the value for the
parameter p = 1.6 + 0.1 for all times and surface packing fractions.

In figure 5.19 the asymptotic behavior of the topological defects is shown.
What we obtain is a plot which resembles the one obtained for s (figure 5.6),

i.e. A decreases with the aggregation time for ¢t < t,. and becomes constant
for t > ts. Once again, the arrangement provoked by the aggregation is

is observed and a final asymptotic stabilization is found.



5. Topological order induced by cluster diffusion and aggregation 125

0.18

| A=(0.107+0.002) 1, - (0.0140+ 0.003)

0.16

0.14-
<

0.12 1

0.10+

Figure 5.21: Asymptotic value for the topological defects, A, versus ps for all
the packing fraction considered. As we can see, there is a linear dependence
between these magnitudes.

more important for higher particle concentrations: the average value found
in the scaling regime decreases as we increase the surface packing fraction up
to ¢ = 0.1. As discussed in Section 5.7 for us and a parameters, the decrease
of the number of defects at all topological distances also accounts for the fact
that fractal cluster growth at high particle concentrations leads to a stronger
density modulation of the system and so, to more structured close—packed
structures (an ideal hexagonal froth has pp =0, a = 0 and A = 0).

In figure 5.21, we represent A versus us for the different simulations. As
can be observed, there is a linear dependence between both magnitudes which
slope do not depend on time.

By using the simulated values of A, ps and a into expression 4.91 we can
calculate theoretically the average number of sides lost in the defective cells,
1. The behavior of 1 does not show clear tendencies with the aggregation
time or particle density. On the contrary, it remains roughly constant for all
the studied situations, and given by n = 1.30 £ 0.05 (figure 5.22).
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< K; >

Finally, we study the behavior of the slope C', obtained from the fitting of
< K; > (eq. 4.78) in the asymptotic limit. Figure 5.23 shows a typical
examples of the dependence of < K; > on the topological distance for the
particular case of ¢ = 0.06. The values obtained for C are shown in figure
5.24 for the five studied particle densities and times before and after the
scaling. Again we observe different behavior between the early stages of the
aggregation (where C' decreases monotonically with ¢) and the final stationary
value found in the scaling regime. Particularly, C' takes values close to 11 at
the beginning of the coagulation and decays to a final value that is smaller
at higher particle concentrations (from C' = 9.57 for ¢ = 0.005 to C' = 8.82
for ¢ = 0.1).

The quantity C'-j can be understood as the average perimeter of a j—layer.
For perfect spherical layers the value of C' should be 27 ~ 6.28. However, the
C—values calculated from the DLCA computer simulations are always higher
at all aggregation times and particle densities, what is an evidence for the
roughness of the shell structure, due not only to the fact that the cells do not
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Inset: < K; > grows linearly for n > 3.



128 5.7. Topological ordering between nearest neighbor clusters

11 ) A B A LA B AL LA B
o o n
] ° O .
1 ¢} u] ] 1
10—_ o * O. o ., __
O ] 53 - o, ° o .
] o . .
] b3 ° o Ei.f
] % o ., g
o] = $=0005 = ., ]
— o ° O
1 o ¢$=0.01 B85 o 0% o o
e $=003 .
o ¢=0.06 .
% =01
1E-3 0.01 0.1 1 10 100 1000
Time (s)

Figure 5.24: Time evolution of the slope C' of < K; > for the five studied
surface packing fractions. After the scaling time C' also has a constant value.

form a smooth circle, but also to the presence of topological defects. Indeed,
shell structures with many defective cells will have layers of larger perimeter
and higher values of C'. This fact establishes a connection between C' and
the defect concentration A (C' decrease with A). Therefore, the long-range
topological order induced by the aggregation process is also the responsible
of the decrease in C' with ¢ during the pre-scaling regime.

The comparison between the simulated results for C' and the theoretical
prediction given in Eq. 4.88 for froths uncorrelated after the second layer,
is generally in good agreement. Although some departures are observed be-
tween simulated data and theory, they are mainly due to statistical errors in
the determination in the parameters involved in such expression. It proves
that C is not an independent variable, but it is attached to the values of
ft2, a and A. Similar dependencies have been observed for several topologi-
cal quantities, as Ky(n), K3(n) and < @); >. Since the asymptotic value of
the defect concentration A is also linked to the global disorder in the froth
(set by ps), we conclude that all the short and long-range topological prop-
erties in the system of aggregating clusters are controlled by the screening
factor a and the second central moment po. Both parameters are mean field
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Figure 5.25: Comparisons of the C' values obtained from the simulation and
the theoretical results.

properties that characterize the global disorder and the correlation between
nearest neighbor clusters, but do not give any information about the long—
range structure. Thus, we find the surprising fact that the long-range order
is determined by average properties involving only single cells and nearest
neighbors correlations.

In our opinion, the fact that the long-range correlations are determined
by average properties as the second central moment py and the parameter a,
is basically a consequence of the lack of cell-cell correlations for topological
distances beyond the second concentric layer, 7 > 2. It allows us to express
the topological properties for 7 > 2 as functions of the properties for j < 2,
that are mainly given by us and a. One good example of this may be seen in
the study of the average topological charge < (); > (see Egs. 4.5.3, 4.82 and
4.83), where the lack of cell-cell correlations for j > 2 leads to an expression
for < (); > only in terms of properties of the cells with j < 2, as Ky(n)
and < ()7 > that, in turn, are given in terms of ps and a. For such froths
where the topological correlations reach larger distances, this simple scheme
will not hold and a more sophisticated description will be called for.
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Figure 5.27: A) P(A) distribution obtained for ¢ = 0.06 for different times.
B) Representation of < A(t) > P(A) versus A/ < A(t) > for the same
simulation. We can see that the area distribution becomes more symmetric
when the time increases to reach a time, after that, the area distribution
remains constant.

It should be noted that these results obtained for two—dimensional cluster—
cluster aggregation can not be, in principle, extrapolated to other types of
space—filling structures. For instance, the correlations between biological
cells can be important even for 7 > 2, and then all the theoretical expres-
sions shown above will break down.

5.8 Area distribution

Here, we study of the area distribution of the cells P(A) (defined as P(A) =
Y s P(n, A)) of a system of clusters under coagulation in two dimensions.
The area of the cells is the area filled by the real cluster together with its
surrounding depletion region. In figure 5.27-A we show the distribution P(A)
versus the area expressed in particle area units (Apq+ = WRI%) for the simula-
tion ¢ = 0.06. In all cases, P(A) is asymmetric 2 respect to the mean value
A. This means that there is a higher probability to find a cell with an area
a above the mean value A than under it.

In section 5.7, we showed that the number of sides distribution (P(n,t))
was time independent after the aggregating system reaches the scaling regime.

2Note that the time is presented in logarithmic scale
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Figure 5.28: Example of fitting of P(A) with a Schultz distribution.

Here, we observed a similar behavior for the area distribution P(A,t). As it
can be observed in figure 5.27-B, the function f(z) =< A(t) > P(A,t) with
r=A/ < A(t) > is also invariant [132]. We also observe that the area dis-
tribution becomes more symmetric with the time to reach the scaling time,
afterward, it remains roughly constant.

The distribution P(A) can be fitting with good accuracy using a Schultz
distribution (figure 5.28), which is usually employed to determine the poly-
dispersity index of colloidal dispersions

A v (V o 1)1/+1 _
Psohuz(A) = [ = | s=——2—e~#DA/A 5.5

etz () (A) AT(v +1) (5:5)
where A is the mean value of the distribution and v represents its asymmetry.
In the fitting process, we used the values of < A(t) > obtained from the
simulations and we use as a free parameter v. The v parameter is relate to
the polydispersity index ind as

i 1 I° a*P(a)da — (J;° aP(a)da)2 o? (5.6)
ma = = %) = — .
V1i+tv Jo aP(a)da A
The obtained values for v (figure 5.29) grow with time to reach a constant
value after the scaling time, that is, the polydispersity index ind decrease
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with time. In other words, the DLCA aggregation process tends to make
more uniform the size of the cells before the scaling time. Afterward, the
polydispersity of the system remains constant.

The behavior of the v parameter is similar to the one observed for the
second moment of the side distribution, us, and it is possible to find a rela-

tionship between them as v = 14.67u; >°® as we see in figure 5.30

5.9 Conclusions

We studied the time evolution and the topological properties of computer—
simulated two—dimensional aggregating systems for several surface packing
fractions of particles. We assumed the simplest case of freely Brownian dif-
fusive sticking particles without interactions (DLCA). The topological prop-
erties have been measured with the help of the Voronoi construction, which
replaces the original system of aggregating cluster by an equivalent system of
convex non—overlapping regions (cells) that completely tessellate the plane,
each cell representing a single cluster of the system and its surrounding de-
pletion zones. The study of the correlations between non—-adjacent cells was
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in the opposite direction.
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achieved by analyzing the system as structured in concentric layers around
a given central one. This method allows us to go beyond the internal fractal
structure of the clusters and to study the external inter—cluster properties.
Indeed, it determines the short and long-range spatial organization and the
cluster—cluster “interactions” induced by the mutual competition between
neighboring depletion regions that occurs when the fractal-like clusters fill
up the whole space.

We found that the topological aspects of the aggregation are strongly
connected to the kinetic ones . In all cases, we obtained a continuous ordering
of the cell structure as aggregation proceeds. Specifically, clusters tend to
adopt a more ordered hexagonal organization in the plane, what topologically
means a reduction in both, the second central moment of the number of
sides distribution ps and the proportion of defects A. This ordering is more
important for higher particle densities, where the already small free space
existing between growing clusters becomes rapidly shrunk due to the fractal
growth. This ordering finishes as soon as the scaling of the cluster—size
distribution is reached (¢t > t,.). Since all the studied topological properties
(P(n), po, a, < K; >, < Q; > and A) remain constant in this final scaling
limit, it can be regarded as a topological invariant state. We also found that
the whole coagulation process (after and before the dynamic scaling) lies in
a universal topological class independent on the particle concentration, given
by the general relation a ~ 5.

After the comparison of the simulated data and the theoretical expres-
sions, we concluded that colloidal aggregation in two dimensions is only able
to produce short-range inter—cluster correlations (up to the second layer of
clusters around a central one, j = 2) even for the very high packing fraction
of particles. However, the ordering is manifested in the whole shell structure
at any topological distance in terms of a decrease of the proportion of defec-
tive cells A;. We have also shown that the main topological property that
controls the degree of structuring at short and long inter—cluster distances is
the second central moment py, which is a measurement of the global order
in the whole system.

Finally, in a logical step forward, it is highly interesting to extend the
topological /structural description to three-dimensional aggregating systems
of dense colloidal suspensions and to colloidal systems with interacting par-
ticles as those with long-range particle-particle repulsive interactions. Note
the difference between our results and earlier results in 3D [14, 15|, where
it is found that, after the depletion region, the particle-particle correlation



136 5.9. Conclusions

function tends to the value one after reaching the nearest neighbor clusters,
without further oscillations in this function (besides those coming for the sta-
tistical uncertainties). It is possible that the clusters in 3D, due their ability
to interpenetrate more easily without touching [129], “feel a lower repulsion
between them”, while in 2D the greater "repulsion” would make the clusters
to become more ordered, increasing in this way the ¢ to a value equal to two.
Absence of further oscillations could also be due to having considered the
particle-particle correlations function and not the cell-cell correlations as in
the present work. All this merit a similar study for the three dimensional
case, as stated above.



Chapter 6

Effect of repulsive interaction
with non—negligible range

We have studied the effect of the interaction’s range in computer—simulated
two—dimensional aggregating colloidal system [128]. For this purpose, we
considered that the particles of the system interact among them through a
repulsive Yukawa potential which depends on two parameters: the value of
the interparticle interaction potential at contact V5 > 0 and the range of
the interaction x~!. We observed that the increase of the interaction range
provokes the arrangement of the small aggregates in linear structures. The
repulsive interactions also have a strong influence on the kinetic behavior
of the coagulation process. Indeed, they induce the transition between two
different aggregation regimes. In the first regime (at early states) the aggrega-
tion is dominated by the range of the repulsive forces, and the cluster—cluster
repulsion increases with the cluster size. The second regime (at intermediate
times) is reached when the average cluster size is larger than the interaction
range. In this regime, the strength and the range of the cluster—cluster re-
pulsion becomes nearly independent of the cluster size, so the probability of
overcoming the repulsive barrier is the same for all clusters. This corresponds
with the so called RLCA regime, where more than one collision is needed to
form a bond.

137
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6.1 Introduction

A previous simulation work [133], using a Metropolis Monte Carlo Procedure,
was successfully reproduced the low cluster fractal dimensions experimentally
obtained for a two-dimensional colloidal aggregating systems [134], whose
particles were assumed to interact via a repulsive medium-range potential.
However, that work was restricted to the analysis of the structural behavior,
while the dynamics was set aside.

In this chapter we report kinetics and structural results from two di-
mensional colloidal aggregation simulations using a medium-range repulsive
interaction potential. The repulsive interaction considered is the Yukawa po-
tential, which has been used in many fields to model screened interactions.

The kinetics results were fitted using the general form for the coagulation
kernel k;; = kf;T’Pi- (see section 2.3.4), where no purely diffusive aggregation
(DLCA-regime) contributions are included in the P,; functions.

6.2 Simulations description

Brownian Dynamics off-lattice simulations were performed in a square box
of side L with periodic boundary conditions. A total number of monomer
particles Ny = 21904, with a particle radius a = 300 nm, were used. The
length of the box L was fitted to have a packing fraction ¢ = Nywa?/L?* =
0.005. Initially, monomers were placed at random avoiding particle—particle
overlapping. The simulations time step At was set a constant value so that
the mean square displacement of a particle is given by Ar? = 2kgT At/ (37na)
where T is the temperature and 7 the viscosity.

The interaction potential between the particles was the Yukawa potential.
This potential represent the analytical solution for the Poisson-Boltzmann
equation (3.3) in the framework of the Debye-Hiickel approximation®:

Vi = ) (6.1)

where 7* = r/d is the distance between the centers of the particles expressed
in units of the particle diameter d, Vj is the value of the potential at contact

!That is obtained from the linearization of the Poisson-Boltzmann equation, which is
valid when the electrostatic energy is small compared with the thermal energy



6. Effect of repulsive interaction with non—negligible range 139

Figure 6.1: Interaction potentials used in the simulations with Vy = 3kgT
and kd = 1.0,1.5,2.0,2.5 and 5.0

(r* = 1), and 1/(kd) is related to the range of the potential. In our simu-
lations, we fixed V5 = 3 kgT and we used xd = 1.0, 1.5, 2.0, 2.5 and 5.0.
The resulting potential interactions are showed in figure 6.1. In practice,
the Yukawa potential of interaction was cut at a cut—off length r},, such as
Vir(rk,,) = 0.1kgT.

In the simulations, the movement of the aggregates was performed picking
cyclically each cluster and determining the total force oo acting on it. This
force is the result of the interaction of each particle of the cluster with the
particles of the neighbor clusters that are closer than the cut-off length r7,,.

ﬁext = - Z ﬁVvll (62)

particles

In order to have a good sampling of the interaction range, the time step
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of the simulation was taken so that r,,/Ar ~ 30. In this way, we guarantee
that a cluster needs to make a lot of steps to contact with another cluster.

The motion is assumed to be governed by the Langevin equation (see sec-
tion 2.1.1). This equation 2.1 is solvable and the probability density function
in the diffusive time scale, defined as the probability to find a cluster at the
position 7 at time ¢ when it was in 7y at time tg, is given by:

> 1 —|P—To—Fegtt/~|?
P(rt) = 47rDAt6 |T—To—Fextt/v|?/(ADAL) (6.3)

where D is the cluster’s diffusion coefficient, 1/y = D/(kgT), kp is the
Boltzmann constant and 7' is the temperature. Thus, the center of mass of
the cluster is moved by a vector d = (d,, d,) where d, and d, are numbers
distributed according to this Gaussian probability distribution 6.3.

Coagulation occurs when a cluster overlaps another one. Then, the posi-
tion of the cluster is corrected in the opposite direction of its movement just
to put them in contact. Afterwards, these clusters becomes joined to form a
larger cluster that will continue the movement in the following time step.

Finally, the simulations were stopped when the number of clusters was
smaller than 200 aggregates. For all the performed, this is enough to reach
the scaling time and to have a good statistics for all aggregation times.

The algorithms used were already applied to show the existence of dy-
namic scaling in both DLCA and RLCA regimes [27, 18, 127].

6.2.1 Obtaining the aggregation kernel

Due to the cut—off of the interaction potential each monomer has associated
an interaction region defined by a circle centered on it and with radius r},,.
Outside this region, the interaction potential with another monomer is ne-
glected (Vi1 (r* > rk,,) < 0.1kgT). So we will consider that a collision occurs
between two clusters, if the particles of one of them overlap the interaction
region of one (or more) particles of the other one. We also define an encounter
between two clusters as the set of consecutive collisions between them before
they coagulate or one of them diffuse to collide with a different cluster (figure
6.2).

We define N;; as the number of encounters between clusters of size ¢ with
clusters of size j, and Cj; as the number of coagulations between i—clusters
with j—clusters. Therefore, we can calculate the “probability of coagulation
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Figure 6.2: In this scheme we depicted three monomers labeled as 1, 2 and
3. The dashed circles around the monomers 2 and 3 of radii 7, represent
the interaction regions around them. First, the moving particle 1 crosses the
interaction region of particle 2 several times (first encounter). This encounter

finishes when the particle 1 diffuses away from particle 2 to collide with
particle 3.

per encounter” (PE;;) as:
Cij
PEZ'j - N-J- (64)

If we consider the same cutoff radius, r¥,, for the DLCA coagulation
process we found that PESY“4 < 1, because not all encounters lead to
coagulation. In order to account only the effect of the interaction potential
(not the diffusion effect), we need to correct the probability of coagulation
by encounter using the PEZ-IJ? LCA values. Therefore, the functions P;; may be

obtained as the ratio:

Fij = PEDLCA — 1.Br
1] 1]

(6.5)
Hence, as both PE;; and PEJ"4 values can be obtained from the simu-

lations, we are able to estimate the effect of the interaction on the
coagulation kinetics.
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6.3 Solving the Smoluchowski equation

In order to solve the Smoluchowski equation 2.24, we need to know the explicit
expression of the coagulation kernel, k;;, given by k7" P;;, where k[ is the
Brownian kernel (eq. 2.32 with ky; = 4.5-1072 m?/s) and P;; are obtained
in our case from the simulation results as previously indicated (section 6.2.1).
The numerical integration of these equations was done using a fourth—order
Runge-Kutta technique with an adaptive time step [135], with ¢, () evaluated
sequentially at each time step.

We truncated the infinite differential equation system to have only 500
equations. So, we reach a good accuracy and we are able to compare with
simulation results for which a weight average cluster size of S, ~ 200 is
obtained.

The program code has been tested using both: the constant and the sum
kernels [30]:

1.- Constant kernel. If the kernel has a constant value for all aggregate sizes,
kij = ki1, the analytical solution is
(k’llcot)i_l

(1 + k’llcot/2)i+l

ci(t) = co (6.6)

2.- Sum kernel. It corresponds to the kernel k; ; = (k11/2)(i + 7). In this
case, the analytical solution is given by

(1 _ [1 _ €_k1160t/2])(’i[1 _ e—kncot/2])i—le—i(l—e*kucotﬂ)

ci(t) = co (6.7)

2!

Figure 6.3 shows the analytical and numerical solutions for several cluster
sizes and both kernels. The perfect agreement between them demon-
strates the correctness of our numerical method to solve the Smolu-
chowski equation.

6.4 Results and discussion

6.4.1 Structure

The characterization of the structure of the colloidal clusters is strongly re-
lated to the study of the aggregation kinetics. The fractal dimension fea-
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Figure 6.3: Analytical and numerical solutions for the Smoluchowski equation
for: A) the constant kernel. B) the sum kernel.

tures the inner structure of the cluster. It is well known that DLCA ag-
gregation leads to more open structures (dy ~ 1.44 for 2D — DLCA) than
those obtained with short interparticle repulsive interactions (dy ~ 1.55for
2D — RLCA) [27]. Here, we want to analyze here is the effect that a
pairwise interaction with a non-negligible range has on the fractal
structure o the formed clusters.

We have used the radius of gyration method (eq. 2.22) in order to calcu-
late the fractal dimension (figure 6.4). For the longest interaction range case
(kd = 1.0), two different regions with different slopes can be distinguished in
the behavior of ¢ vs R, one for clusters composed by less than 15 monomers
(small aggregates region) and the other for clusters composed by more
that 15 monomers (big aggregates region). This fact reveals that the
structure of the aggregates depends on their sizes. Although it is not possi-
ble to define the fractal dimension for clusters before the scaling region, this
slope is clearly related to the structure of these small clusters. The value of
the slope in the first region (dy = 1.16) clearly points out an enhancement
of the linear conformation of the small clusters while the fractal dimension
associated to the big clusters region (dy = 1.55) recovers the typical fractal
dimension of the RLCA aggregation regimen. As the interaction range de-
creases, the slope of the first region increases (figure 6.5), i.e., small clusters
are less linear, and the differences between the first and the second regions
become less pronounced. Therefore, the origin of the first region is a di-



144 6.4. Results and discussion

E T T T T 1T I T T T T 1T I T T l=- E
125E Kd= 1.0 d~1.56 o 125F
5E oo 1 s
-, ~1 16 ] A
1 1 11 1 1 I 1| 11 1 1 I 1| 1 l
6><10 2><10 6><10 6><10 2><10_ 6><10_
E T T |||| T T |||| ',-?;-‘ E T T |||| T T |||| '.é:,:;
125 ;—Kd 2 0 d~1. 55 125FK d 2 5 d~ 1
5E oo 5
= d~129 - "d~133
1 1 11 11 II 1 11 11 II 1 1 1 i 1 1111 II 1 1111 II 1 1
6><10 2><10 6><10 6><10 2><10 6><10
L Kd=5.0
125¢ #1155
25F E
-OI Illdlt-r14]-l 1 1 IIIIII I_
1x10° 1x10”

R,()

Figure 6.4: The cluster size versus the radius of gyration for the different
simulations performed. Two different regions can be distinguished, with
different slopes, for all the cases. The small aggregates tends to be more
linear when the interaction range is increased as is demonstrated by the
decreasing of the slope of i vs R, as kd decreases.
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rect consequence of the repulsive interaction potential with a non—negligible
range. The structure of the big clusters, as indicated by the fractal dimen-
sion, is similar for all the interaction ranges and comparable to that of the
RLCA aggregation regime.

A direct confirmation of the high linearity of the small clusters is given in
figure 6.6 where we can see typical fractal clusters formed in the simulations.
For the longest interaction range (kd = 1.0), we observed a high linearity of
the small clusters, for the big ones. When the interaction range decreases, the
small clusters become more ramified, but they still are more linear than the
big ones. This fact is demonstrated by the increase of the fractal dimension,
compared with the smallest clusters, when changing the interaction range
from kd = 1.0 to kd = 5.0.

In conclusion, the formation of linear small clusters is a consequence of
the range of cluster—cluster repulsions, according to the discussion of sec-
tion 2.3.4. Indeed, a non negligible interaction range induces an anisotropic
cluster—cluster interaction potential, that depends on the relative orientation
between the clusters. In this case, the orientation that minimize this repul-
sion between clusters give rise to the formation of linear structures, since two
clusters tend to coagulate setting their monomers as separated as possible.
When the clusters are large enough (larger than a critical size ip), their in-
teraction potential becomes nearly independent on the cluster size, as not
all the monomers that form the clusters participate in the cluster—cluster
interaction. For medium-size clusters, there is not a privileged orientation
of aggregation so the interaction potential becomes more and more isotropic
as the cluster size increase. Thus, finally the fractal dimension for RLCA
regime is recovered.

In order to demonstrates this important property of the cluster—cluster
interactions the average interaction potential, < V;; > was calculated. <
Vi; > using 50 different clusters of size ¢ and j selected from the simulations.
The total interaction was averaged over their relative orientations and shapes.
The < V;; > potentials (i = 1,2,...,9) for different interaction ranges are
shown in figure 6.7. We observe that the interaction potential < Vj; >
becomes independent of ¢ being the critical size values ig = 6,5,4 and 3
for kd = 1.0,1.5,2.5 and 5.0, respectively. This supports that the reactions
between clusters larger than 7y do not depend on their size. As the interaction
potential becomes independent of the cluster’s size and the interaction range,
the fractal cluster dimension value approach that of the RLCA regime.

For long enough aggregation times, the mean cluster size is so big that the
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Figure 6.5: Fractal dimension versus x«d obtained by the fitting of the radius
of gyration in the small clusters region (fill symbols) and in the big clusters
region (open symbols). The linearity of the small aggregates decreases as
the interaction range is reduced, however the fractal dimension for the big
clusters is constant and compatible with the typical value for the RLCA
aggregation regime (~ 1.55).
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Figure 6.6: Typical fractal clusters formed in the simulation of the aggre-
gation with a Yukawa potential for different interaction ranges and Vy = 3
kgT. For the longest range (kd = 1.0) we can observe a high linearity of the
clusters structure. As the interaction range is decreased we observe that the
smallest clusters have a low fractal dimension but, when they grow up, the bi
clusters become more ramificated. After that, the “fractal dimension” of the
small clusters increases continuously as the interaction range decreases and
the big clusters reach a fractal dimension value equal to that of the RLCA

case.
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Figure 6.7: Average of the i-mer/i-mer interaction potential versus the

cluster—cluster separation, r = rg, —

R,(i) — Ry(j) for different interaction

ranges. Here, r., is the distance between the center of mass of the clusters
and R, (i) and R,(j) are the radius of gyration of the clusters i and j, respec-
tively. Each point was obtained averaging with 50 different cluster shapes
and orientations. We observed that the interaction becomes more repulsive
with the increase of the cluster size 7. After reaching the critical size, i = iy,
the interaction becomes independent on ¢. All distances are expressed in

particle radius units.
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coagulation should be dominated by the diffusion (transition from the RLCA
to the DLCA regime) as commented in section 2.3.4. However, this transition
has been observed only for the shortest interaction range (kd = 5.0), but not
for the other simulations. This could means that not enough big cluster size
was reached in order to observe the crossover to DLCA regime.

Thus, the formation of chains clusters and the transition to the RLCA
regimen can be explained on the basis of the superposition of the cluster—
cluster interactions with a non—negligible range and their dependence of such
interactions on the size of the involved clusters.

The formation of chains has also been observed in experiments [136] and
simulations [137, 138] for 3D—colloidal systems when the particles interact
among them with a potential that prevents the aggregation in the primary
minimum. However, in the refered works, the potential has a secondary
minimum induced by the presence of non-adsorbing polymers (depletion
interactions), That provokes a non—truly irreversible aggregation. In this
situation, the clusters are not rigid but they fluctuate around typical con-
figurations and the rearrangement of the particles provokes the formation of
the so called Bernal spirals [137, 138].

6.4.2 Kinetics

Figure 6.8 shows the evolution of the mean cluster size, S,(t) (Eq. 2.27),
versus the aggregation time for the simulations performed varying xd. We
can distinguish two different kinetic regions in the behavior of S, (¢). In
the first region (range effect region), the mean cluster size increases very
slowly with the time. Here, the growth of the clusters is strongly dependent
on the parameters of the interaction potential. This range-effect region is
widther more clear for the longer interaction range. In the second region,
the growth of the cluster is faster and the kinetics exponent tends to the
characteristic values of the RLCA regime (zrpca ~ 0.67)[27]).

The kinetics results are consistent with the effect of the interaction range
as considered in section 2.3.4. For small aggregates (with sizes ¢ < ig) the
cluster—cluster repulsion increases with the cluster size. That explains the
first kinetics region where the growth of the clusters is very slow. When the
mean cluster size reach the critical size, 7y, the interaction becomes inde-
pendent of the size and the interaction range looses its main importance to
control the aggregation kinetic. Then, the aggregation rate becomes faster
due to the increase of the cross section of the clusters, while the interaction
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Figure 6.8: Mean cluster size for the different performed simulations.
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potential remains constant: this corresponds to the RLCA region. When
the aggregates are large enough, every encounter between clusters provokes
coagulation after some collisions. So, a transition towards a DLCA regime,
displaced in time, is expected to occurs. However, we are not able to ob-
serve this third region in our simulations except for the case of the shorter
interaction range (kd = 5.0).

6.4.3 Coagulation kernels

The aggregation rate constants k;; account for all the relevant physical and
chemical effects on the kinetics of the aggregation process. The influence of
the pairwise interaction potential between the particles on the coagulation
kinetics is included into the P,; functions (k;; = kg-’“Pij). The P;; values
can be computed from the ratio between the probability of coagulation per
encounter (PE;;) for the considered potential and the PEZ-? LECA values corre-
sponding to the DLCA case, which can be determined during the simulations.

The computed probability of coagulation per encounter for the monomers,
PFEy; is showed in figure 6.9 for V = 3kgT, kd = 5.0 and the DLCA simula-
tions. As can be seen, after a transitory region, these probabilities fluctuate
around a constant value. In order to solve the Smoluchowski equation 2.24,
this constant values were used to calculate the ratios P; = PE,;;/PELM¢4
for all interaction ranges xkd and for 7,5 =1, ..., 9.

In figure 6.10 we show the P;; values obtained from our simulations against
the sizes of the reacting clusters ¢ and j. For the shorter interaction range
(kd = 5), the kernel increases with ¢ and j until it reaches a constant value.
In this case, the range of the interaction is very short and the cluster—cluster
interaction potential V;; does not depend on the clusters sizes for 7 and j > 2.
The P;; functions grows with the cluster sizes i and j due to the increase of
the clusters effective cross section because the number of particles that can
collide per encounter increases with their sizes. This is the typical RLCA
aggregation regime which kernel is given by the equation 2.34.

When the interaction range is enlarged, the cluster—cluster interaction
potential becomes more repulsive as the increase of clusters grow till the
critical size i. This causes the decrease of P;; with ¢ and j for small clusters.
This effect can be clearly observed in the figure 6.10. For large enough
aggregates (i,j > i), V;; becomes independent on i and j so the functions
P;; start to grow with the cluster sizes due to the increase of the cross section
of the cluster.
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Figure 6.9: Time dependence of PFEj;for DLCA and the simulation with
Vo = 3kgT and kd = 5.0.
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Figure 6.10: P;; functions obtained from the simulations for V, = 3kgT and
kd =5, 2.5, 2.0, 1.5, and 1.0.
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The quantitative dependencies of the P;; functions with the interaction
range k' are shown in figure 6.11. Each inset shows P;; versus i for a
fix j and for the simulations with Vy = 3kgT and kd = 1.0, 1.5, 2.0, 2.5
and 5. Two different kinetics regions can be clearly observed: the first one
controlled by the interaction range, and the second one by the cluster cross
section. The P;; dependence for small values of ¢ and j is enhanced for long
range repulsions. This is joined to the growth of the critical size ig with the
interaction range.

By solving the Smoluchowski equation (eq. 2.24) with this aggregation
kernel we are able to fit the average cluster number size (figure 6.12) and
the cluster size distributions (figure 6.13) with good accuracy for all the
simulations.

6.5 Conclusions

We studied the effect of the interaction range on the kinetic properties
and the structure of the aggregates formed by computer simulation of two—
dimensional colloidal system.

Two different regions can be distinguished on the time dependence of
the number—average cluster size S, (t), that correspond with two different
kinetics. In the region controlled by the interaction range the cluster—cluster
interaction potential, V;;, becomes more repulsive as the cluster size increases,
due to the range of the particle-particle repulsion. In this region, the clusters
aggregates forming a linear structures. This phenomenon is verified by the di-
rect observation of the small aggregates from the simulations. RLCA region:
when the reacting clusters reach sizes above the critical size 79, not all the
monomers that compose the clusters participate in the interaction. There-
fore, V;; becomes independent on ¢ and j (for ¢, j > 4y), and the cluster—cluster
interaction recovers in average its isotropy. The chains formed in the pre-
viously region coagulate to form fractal aggregates with a fractal dimension
typical for the RLCA coagulation regime. In this region, the growth of the
clusters is faster than in the previous region. At long times a RLCA-DLCA
transition is expected, because the diffusion coefficients of the reacting clus-
ters are very low and so, it is easier for two interacting large clusters to collide
between them many times and coagulate than to diffuse away to collide with
another cluster. Hence, for large enough clusters all “encounter” between of
them end up in coagulation after some time and their coagulation becomes
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Figure 6.12: Average cluster size in number S, (t) given by the simulations
(circles) and the numerical results calculated by solving the Smoluchowski
equation (black line) with the obtained kernels for Vj = 3kgT and kd = 1.0,
1.5,1.0, 2.5, and 5.0. The dashed line represents the DLCA simulation
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Figure 6.13: Cluster size distribution x;(t) = n;(t)/No, given by the sim-
ulations and the numerical results computed by solving the Smoluchowski
equation with the obtained kernels for V; = 3kgT and xd = 1.0, 1.5, 2.0, 2.5,
and 5.0.
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limited by the Brownian diffusion (DLCA). However, we need to make simu-
lations with more particles and longer aggregation times to reach aggregates
with sizes large enough to observe this crossover.

A new method has been developed to obtain the aggregation rate con-
stants kernel directly from the simulations. Then, the kernel was introduced
in the Smoluchowski equation 2.24 and the resulting cluster size distribution
was found to be in good agreement with the simulation results.

Therefore, we have connected the new kinetics region induced by the
range of the interaction with the well-known RLCA-DLCA crossover. Hence,
we have a complete description of the kinetics behavior of a two—dimensional
aggregating system composed by colloidal particles that interact with a medium—
range pairwise repulsive interaction. We have observed that the range of the
interaction modifies the kinetics of the coagulation process at short times
and also the structure of the small aggregates formed in this process.



Chapter 7

Colloidal mesostructures

7.1 What are mesostructures?

We can distinguish three different types of experimental colloidal monolayers
depending on the morphology of the structures formed by the spread colloidal
particles

One type is found when the colloidal particles that form the monolayer
are not stable and can aggregate. The formed clusters have usually a fractal
character featured through a fractal dimension[139, 140]. The formation of
fractal aggregates can be explained using the DLVO theory of interactions.
Another type occurs when the colloidal particles remains homogeneously dis-
tributed over the interface without coagulate (stable colloidal monolayer).
This stability is due to the dipolar and monopolar interactions between col-
loids trapped at the interface between a polar and a non—polar fluids' (see
section 3.6.2). Finally, it has been reported since 1995 the formation of some
colloidal loosely bound structures, those are internally well ordered, when
particles are spread at an air-water surface [57, 58, 59, 89, 141] or at an
oil-water interface [85]. In order to distinguish such ordered structures from
the random fractal objects formed in colloidal aggregation processes, Ghezzi
and Earnshaw [89] proposed to call them colloidal mesostructures.

The diverse morphology of the mesostructures arising at an interface is
surprisingly rich. We can distinguish between circular patterns of particles,
voids, line patterns, soap froths and loops [59, 141] (see figure 7.1).

A common feature of all these colloidal mesostructures is the significant

!For example, particles at an air-water interface.
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Figure 7.1: Different patterns of mesostructures formed by polystyrene col-
loidal particles at the air-water interface. A) Circular clusters. B, C) Rings.
D) Lines. E) Coexistence of lines, circular clusters and rings. F) Foams. G)
Loops. H) Voids [141, 142].
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Figure 7.2: A) Example of a mesostructure foamed by circular clusters. B)
Computed g(r) for the particles of the clusters on image A). The main peak
is around d,,, ~ 1.45 diameters. In general, d,,e[l,2] diameters for all the
circular clusters obtained in our experiments.

separation between the constituent particles, which in most of the cases is
about the particle diameter, 2a (see figure 7.2). Another important charac-
teristic of the mesostructures is that they arise immediately after spreading
the particles at the interface and then evolve in different ways. So, for in-
stance, the evolution from void structures to soap froths after some hours
has been reported[58]. Likewise, a change from circular arrays of particles to
a stable colloidal monolayer was reported[89] (after several hours). This slow
evolution indicates that the mesostructure are not stable but metastable.

7.2 Origin of mesostructures: long—range at-
tractive interaction?

At this point, the question that arises is what is the origin of the mesostruc-
tures? The fact that for all the observed mesostructures the average distance
between neighboring particles is typically constant and of the order of the
particle diameter, suggest that the inter-particle interaction potential should
have a secondary minimum located at that distance. Figure 7.3 depicts the
pairwise interaction potential used to explain the origin of mesostructures
[58, 59, 89, 85]. According to this, the secondary minimum explains why the
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Figure 7.3: Shape of pairwise interaction potential used to explain the for-
mation of circular clusters. It has a secondary minimum at distances around
the particle diameter, which could explain the characteristic distance between
particles in the mesostructures. Besides, there is a repulsive barrier after the
secondary minimum that prevents the coagulation of the mesostructures.

inter—particle distance is roughly constant, while the small potential barrier,
situated at a larger distance prevents the collapse of the individual struc-
tures. The spreading process is quite turbulent, and the particles may be
forced to approach each other very closely, passing over the potential barrier
to become temporarily trapped in the secondary minimum at ry. The barrier
at r; cannot be very high, as the metastable mesostructures disaggregate on
timescales of the order of hours due to thermal energy at room conditions.

In order to obtain this secondary minimum both an attractive and a repul-
sive interactions, which sum does not vanish at such distance, are necessary.
On the one hand, there is only one repulsive interaction that can be impor-
tant at distances around the particle radius that is the dipolar interaction.
On the other hand, until our knowledge, all the attractive interactions vanish
at such distances. So, the proposed pairwise interaction potential could not
be explained using the known interactions.

Some theoretical models have tried to explain the formation of these
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mesostructures, i.e. the origin of the long range attractive interaction, on
the basis of capillary immersion forces (section 3.8.1) [83, 84, 85, 87, 88].
In order to have a complete description of the interactions between colloidal
particles at interfaces, it is essential to understand the origin of these struc-
tures. A great effort has been done to provide a theoretical model for this
long-range attraction, but none of the suggestions explains the totality of
the experimental results. However, in our recent experimental work [141] we
suggested that these mesostructures can be caused by the non—-homogeneous
surface tension of the interface due to the presence of polluting agents like
silicone oil. As we will see in section 7.4, with this assumptions, our model
is able to explain the great variety of mesostructures.

7.3 Experiments

This section is devoted to understand the causes underlying the self-assembly
of colloidal particles in order to form mesostructures. It will be shown that
no long-range force at the interface exists and that the physical reason for
the formation of mesostructures is given by the interfacial tension.

7.3.1 Colloidal system

In all the performed experiments we have used polystyrene microspheres
particles synthesized by Dr. Arturo Moncho Jorda. This system has a
great stability at the air—water interface, even at high particle concentration.
Moreover, the colloidal monolayer remain stable independently on the ionic
strength of the subphase. Therefore, this is an optimal system to prepare
stable monolayers at the air-water interface.

The colloidal particles were synthesized from styrene by free-emulsifier
polymerization [143] with potassium persulfate (K25,03) as an initiator and
potassium bicarbonate (K HCOs3) as a buffer. They were cleaned by steam
stripping and then with serum replacement and mixed-bed ion—exchange
resin following the work in ref [144]. The average particle diameter and poly-
dispersity index (measured by Transmission Electronic Microscope: TEM)
were 600 £+ 25nm and 1.004, respectively. Therefore, this system can be
considered as very monodisperse.

The particles have a maximum surface charge density of 0 = —5.3 £0.5
puC/cm?; as it was determined by conductometric titration.
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7.3.2 Experimental setup

Microscopy is a very common technique used in many scientific applications.
With the microscopy help, one gets very accurate two—dimensional infor-
mation because we can observe directly the behavior of the particles at the
interface. In order to observe polystyrene particles, it is necessary a con-
trast phase microscope because the refraction index of the polystyrene is
very similar to the refraction index of the water. The microscope used in our
experiments was a Nikon Optiphot-2. The magnification of the objective
was fixed to 10x.

The self-assembly process was monitored using a CCD camera (model
CCD-1300D) attached to the microscope. This camera has a resolution of
1280x1024 and a frequency of capture of 12.5 images per second. The images
were stored on a PC using a Frame-Grabber PCimage-SDIG/AIAZ and
further processed in the computer.

The particles were deposited in a cell designed as shown in figure 7.4. It
consists of a small cylindrical cell of Teflon (area, 2.01 cm?; height, 1.0 cm)
glued to a microscopy slide. After forming the monolayer, the Teflon cell
is covered using a cover glass that is put on a auxiliary external ring that
encloses the cell. This cover prevents contamination of the monolayer and
the convective fluxes produced by the air motion.

The effects of external vibrations were avoided by placing the system
formed by the cell, microscope, and camera on an antivibratory table.

The images acquired by the microscope were calibrated with the help of
a ruler (figure 7.5-A). The calibration gives us that the pixel width is about
462 nm. Therefore, each pixel is approximately as wide as a particle.

7.3.3 Preparation of the dispersions and deposition

In order to prepare the air-water interface, we fill with water the Teflon
cell. The interface has to be as planar as possible to prevent the particle
emigration as a consequence of gravity during the experiments. However,
as the Teflon is very hydrophobic, a curved meniscus is formed when we
introduce the water into the cell. Hence, we used a syringe to extract water
in order to flatten the interface (figure 7.6).

The colloidal suspensions were prepared in a solution of ultra—pure water
(from a Millipore Milli-Q system) and methanol and were sonicated for 5 min
to assure a good initial monodispersity. The methanol was used as spreading
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Figure 7.5: A) The ruler used to calibrate the microscope image resolution,
i.e., the size of a pixel. We have obtained that one pixel corresponds with 462
nm. B) A detail of a colloidal monolayer and particles of radius equal to 300
nm that has been transformed in pixels with the performed calibration. As
we can see, the equivalence between a particle and a pixel is almost perfect.

Figure 7.6: Due to the hydrophobicity of the Teflon cell, when we fill it with
water a curve meniscus appears. In order to flatten it we extract water using
a syringe of 1ml.
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Figure 7.7: Two different runs of a typical experiment performed with the
same dispersion under identical experimental conditions at the stationary
state. A) Stable monolayer ¢ = 0.081%. B) Mesostructures ¢ = 0.078%

agent in order to avoid the immersion of latex beads into water. It should be
noted that the use of methanol in the deposition procedure is essential for
obtaining a uniform monolayer. In all the performed experiments we have
used 80% of methanol and 20% of water mixtures.

The latex particles were placed at the liquid—air interface using a Hamil-
ton micro—syringe. After methanol evaporation, the cell was covered by a
thin glass plate to prevent the contamination of the monolayer and the con-
vective fluxes produced by the air motion.

7.3.4 Experimental results
Low reproducibility of the experiments

Figure 7.7 shows two pictures from two different runs of a typical experiment
performed under identical experimental conditions. The images corresponds
to the stationary state which is reached after 30 min from deposition. The
liquid subphase was in both cases ultrapure water without an additional
electrolyte. The microspheres were spread on the air-water interface using
a syringe (1 ml Plastipak) and a needle (Microlance 3). After some ex-
periments, we observed that the morphology of the colloidal monolayers at
the air-water interface was dependent on the number of times that we used
the same needle and syringe. At the beginning, we always observed sta-
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ble monolayers (see figure 7.7-A). However, after a certain number of uses,
we observed the spontaneous formation of mesostructures (see figure 7.7-B),
and that phenomenon was more evident with the repeated use of the same
syringe and needle.

Once the cause of the spontaneous formation of mesostructures was ex-
perimentally confirmed to be the repeated use of the same syringe and needle,
we decided to contact with the manufacturer of both materials in order to
check if some kind of contaminant agent from the syringes or the needles
could affect the monolayers formation. The manufacturer of the syringes
and needles informed us that they were made with an internal silicone oil
coating.

This information suggested us that as a consequence of the aging the
needles and syringes could loose their internal silicon oil coating. The lib-
erated silicon oil could affect the interfacial properties (surface tension) of
monolayer giving rise to the formation of the mesostructures. To test this
hypothesis, the surface tension values of a water drop were measured using
the axisymmetric drop shape analysis (ADSA) technique[145] (see figure 7.8-
A). We observed that the surface tension of a water drop changed from 73 to
62 mJ/m? as a result of the contact with an aged needle for 1 s (figure 7.8~
B). However, the surface tension of the water-air interface remained constant
when it was put in contact with a needle, which had been previously washed
with toluene. We never observed the formation of mesostructures using glass
syringes and the washed needle.

It should be noted that the silicone oil is partially miscible in methanol
[146], and that this alcohol is very often used as the spreading agent in the
formation of colloidal monolayers trapped at the air-water interface. So,
it is feasible that some silicon oil molecules (even drops!) can remain at
the interface after evaporation of the methanol for most of the reported
works on mesostructures. The hypothetical presence of some contaminant
oily film (say from dissolved styrene oligomers) as a possible cause for the
mesostructure formation was already pointed out by Kralchevsky and Denkov
[97]. In our case, we cleaned the latex particles by steam stripping, so the
residual monomers were removed. Therefore, we excluded that some oily film
from the dissolved styrene oligomers could be present on the interface when
spreading the suspension of latex particles with the methanol/water mixture
help.

The pattern formations of stable colloidal monolayers or mesostructures
were reproducible for six different experiments. The surface particle density
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facial tension values of liquids. B) Variation of the interfacial tension of a
drop of water when put in contact with an old needle. The interfacial tension
changes from 73 mJ/m? to 62 mJ/m?.
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of the formed colloidal monolayers was between 0.6 and 0.8%.

Effect of the silicon oil impurities

To check the effect of silicone oil on the spontaneous formation of mesostruc-
tures, we performed some experiments where the colloidal particles were
contaminated with silicone oil (AR200 from Fluka; density, 1.042 g cm™3;
refractive index, 1.450) dissolved in methanol.

First, we dissolved 5 pl of silicon oil in 5 ml of extra—pure methanol and
the solution was sonicated for 15 min to assure a good dissolution. Thus,
the contaminated methanol (CONT-meth) has a concentration of silicon oil
of ¢por = 0.001 in volume. After that, we used this contaminated methanol
to prepare 6 different dispersions. We deposited 5 pul of each dispersion over
the interface in all the experiments performed. Assuming that the silicon
oil was homogeneously dispersed in the solution and that all the silicon oil
deposited is going to remain at the interface, we can made an approximate
calculus of the silicon oil mass concentration at the interface (pgo) for each
experiment. In table 7.1, the composition of the different dispersion used in
our experiments is resumed.

N° | CONT-meth Pso
(1) (pgem ™)

1 0.5 ~ 1.3x1073
2 1.0 ~ 2.5x1073
3 1.5 ~ 3.8x1073
4 2.5 ~ 5.0x1073
5 5.0 ~ 12.7x1073
6 20.0 ~ 25.4x1073

Table 7.1: The different dispersions were obtained by addition of 1 ml of latex
solution (composed by 0.125 ml of the original polystyrene solution (AMJ2),
0.125 ml of ultrapure water and 0.750 ml of methanol) and an increasing
amount of CONT-meth (as indicated).

Figure 7.9 shows some mesostructures obtained by this procedure for
the different silicone oil concentrations. For the lowest solutions 1 and 2
(figures 7.9-A and B), the particles are distributed homogeneously at the
interface forming a uniform monolayer. When the silicon oil concentration is
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increased (figure 7.9-C), the monolayer becomes less homogeneous and then
appear arrays of three or four particles forming circumference arcs. This is
the first step of the self-assembly of the particles to form mesostructures. If
we still increase the silicon oil concentration (figures 7.9-D and E), circular
clusters and voids appear and the isotropy of the monolayer is completely
lost. Finally, for the highest silicon oil concentration, the particles tend to
adopt complex structures as loops and other irregular shapes 7.9-F. Hence,
the pattern of these structures depends on the number of silicone oil molecules
that are present at the air—water interface. In addition, the molecular weight
of the silicone oil might also affect the geometric pattern of mesostructures.
This is likely to explain the great number of geometric patterns found by
different authors [58, 89, 90, 57, 147, 59].

Figure 7.10 shows until our knowledge the first experimental evidence
of the time evolution of a uniform colloidal monolayer to form a colloidal
mesostructures. The picture shows the evolution from a thin and long cluster,
that turns into an elliptical cluster and which finally becomes an almost
spherical mesostructure with voids and other smaller clusters. The evolution
from an elliptical shape to a more circular structure can be explained in
terms of the surface energy minimization of the silicon oil drops that drag
the particles inside to form a circular array of particles. It should be noted
that, in our experiments, these mesostructures appear spontaneously at the
interface without applying external fields to the system, in contrast to the
experiments reported by Chen et al. [148]. They supplied kinetic energy to
the system by pipetting periodically a small amount of water, in order to
overcome the repulsions and to obtain colloidal rings and circular patterns.
The simulated colloidal rings, circular clusters, and voids are quite similar to
those experimentally obtained.

The spontaneous formation of mesostructures can be explained in terms
of the difference between the surface tension of the water (73 mJ/m?) and
silicon oil (35 mJ/m?). Even a very small amount of silicone oil is able to
change the surface tension of the air-liquid interface and to lead to the forma-
tion of a two—dimensional emulsion with hydrophobic (silicone oil droplets)
and hydrophilic patches (water surface) with different interfacial tensions.
When the polystyrene microspheres (hydrophobic in character) are spread
on this nonuniform interface, most of them tend to locate on the hydropho-
bic silicon patches and form mesostructures. Basically, in our experiments,
the mesostructures are the result of the decoration with microspheres of a
two—dimensional emulsion of silicon oil droplets on water. Thus, the mean
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Figure 7.10: Experimental evidence of the spontaneous formation of colloidal
mesostructures. There is 5 seconds between each snapshot.
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Figure 7.11: Formation of oil drops at the air-water interface. The used
dissolution was pure methanol with a silicon oil concentration of 0.05% in
volume. The gray profile of the drop has a gradient at its border but is
roughly constant at the drop center. This means that the drops must be
very flats.

particle distance between the colloidal particles depends on the manner in
which they accommodate inside of the hydrophilic and hydrophobic patches
at the air-liquid interface. This explains the appearance of circular clusters
in mesostructures. We have observed that the most irregular mesostructures
(loops) are formed for the largest silicone oil concentration (see figure 7.9),
whereas circular clusters are always present for all used concentrations. The
patterns of the formed mesostructures are quite similar to that obtained
previously by other authors [58, 89, 90, 57, 147, 59].

The formation of oil droplets can be observed in figure 7.11 for which
we used a solution of methanol with a concentration of silicon oil of 0.05%
in volume, without latex particles. Here, we directly observe the formation
of big drops that provokes heterogeneities in surface tension at the interface
and that could explain the mesostructures formation.

In short, in our case, the mechanism behind the formation of mesostruc-
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tures is not related to a long-range attraction between colloidal particles [149]
confined at the air-water interface but to the formation of an oily patched
film due to the contamination caused by the silicone oil. This contamination
can arise from the coating of the needles and syringes used to deposit and
spread the particle solution at the air-water interface. Our results support
the suggestion made by Kralchevsky and Denkov [97] on the effect of an
oily film in the apparently spontaneous formation of mesostructures on the
air-water interface.

7.4 Proposed model

As can be thought when we observe the mesostructure pictures showed in
this chapter, even the simplest ring—shaped structure (figures 7.1-A,B,C) is
difficult to be explained using an isotropic force. The difficulty is even greater
if we try to reproduce more complex structures (figures 7.1-D,EF).

An heterogeneous interface can induce the appearance of mesostructures,
so we decided to simulate the behavior of a colloidal monolayer formed by
microspheres spread onto a nonhomogeneous air-liquid interface [142]. The
inhomogeneous interface is due to the presence of two liquids with different
surface tension. The total potential that a particle experiments is assumed to
be composed by only two terms. The first one is due to the repulsive pairwise
dipolar force between the partly emergent parts of charged microspheres.
The second term depends on the position of the particle at the interface,
and it is connected to the interfacial stress caused by the surface tension
difference between both liquids. As we will show, this simple potential is able
to reproduce the experimental mesostructures, formed by colloidal particles
confined at the air—water interface, found by different authors.

7.4.1 Model

Our model for the inhomogeneous interface considers the existence of two
domains with different surface tension: the air—water (the largest one) and
the air—oily phase, that is located forming lenses. This implies that the so—
called spreading coefficient (S = Yo — Ywo — Yoa) 1S Negative, here v, and
Yoo are the surface tension of the water—air and oil-air interfaces and 7, is
the interfacial tension of the water—oil interface.

For the sake of simplicity we assume that flat lenses represent the oily
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Figure 7.12: Gray profile, at the black line, of the drop used as the back-
ground of this graphic. It can be observed that the grayscale values inside
the drop remains nearly constant, implying that the drop is flat.

phase. The goodness of this approximation is demonstrated by the analysis
of the phase contrast images obtained with the silicon—oil spread at the air—
water interface (figure 7.11). So, if we represent the grayscale values along
a diameter of a drop (figure 7.12) we found a nearly constant value. This
indicates that the optical path for those points is similar and that be the
case for the drop thickness. Moreover, we can consider that the oil lenses are
thinner than the particle size (hgrop < 600 nm), because both the particles
outside and inside of the drops keep focused simultaneously. According to
this model, the interaction between a colloidal particle and an oil droplet can
be visualized as the intersection between a sphere and a flat lens (see figure

7.13).
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Figure 7.13: . (a) Sketch of the interception of a spherical particle with a
flat oil lens both situated at the air-water interface. (b) Representation of
the different interfaces those must taken into account to calculate the energy
of the particle at the interface using the lens model for the oil droplet.
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Figure 7.14: Construction of a flat drop through the intersection between
two spheres and two planes.

Flat drop model

We represent a drop as the intersection of the lens formed using two spheres
of radius Ry and Ryger and two parallel planes at distances z = hyiarair
and z = —hfiat water from the interface plane (z = 0). That is, the flat drop
is composed by the lens part between the two planes (see figure 7.14).

As it is indicated in figure 7.14, the shape of the drop is determined by the
angles 044, 04, its diameter dg,, and the drop thickness in the air region,
Nfiat.air, and in the water region, Afiarwater- The other parameters can be



7. Colloidal mesostructures 179

obtained using

sin 6y, = gg:i

cos b, = ;‘Z

: daro
T

cos Og, = JZZZZ (7.1)

and therefore

Rair = 0.5dgrop/ sin 044
Ryater = 0.5dgr0p/ SI0 Ogy
hair = darop/ (2 tan y,)
Powater = darop/ (2 tan Og,, ) (7.2)

Interactions

The only direct interaction between particles that we have considered is the
dipolar repulsion, V%P which is strong enough to avoid particle coagulation
(section 3.6.2). Any other pairwise interaction is assumed to have a negligible
effect.

Colloidal particles are also affected by an external potential, V7, due to
the surface tension inhomogeneities at the interface. The particle energy is
different if it is located at the water—air interface, at the oil-air interface, or at
the water—oil-air triple contact line. For the sake of simplicity, in our model,
we have assumed that flat lenses represent the oily phase. Accordingly, the
total interaction potential for a particle placed at position 7 is given by

N
VtOtal(T_’;') — V“/(f;.) + Z Vdip(|f;, — F]|) (7.3)
J#i

where N is the total number of particles. According to Horozov et al. [79],
the dipolar interaction potential (section 3.6.2) at large distances reduces to:

2 2p2pd (i
T[40 P*R"sin” 0

4eeyr3

Vi = (7.4)
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where o is the surface charge density of the particle, fg, is the percentage
of charges that forms dipoles, P is the dipolar moment of the dipole, R is
the particle radius, # is the particle contact angle, ¢y is the vacuum dielectric
permittivity and e is the dielectric constant of the air.

To calculate V7, it must be take into account that the energy required
to create an interface area S,;, between two media “a” and “b” with a sur-
face tension 7, is given by V, = Sg - Ya- The calculation of V7 involves
the study of how the area of the different interfaces are modified when a
particle moves from position 7, to 7. To help the computation, figure 7.13
the most general case. We have considered flat oily lenses with a maximum
thickness hgrop = 2|hfiat.air| and that |hgiareir] = |Pfiatwater|- These areas
depend on this parameter. As figure 7.13 shows, six different interfaces can
be distinguished:, Spa(7, harop) 5 Spw(Ti, Parop)s Spo(Tis harep), represent sur-
face areas corresponding to the particle—air, particle-water, and particle—oil
interfaces, respectively and analogously, Sda.(7i, Rarep), Sdwo(Ti, harep) and
Sdao(Ti, harep) are the surface area of the air-water, water—oil and air-oil
disks that would be created if the particle were removed form the system.
Thus, the energy increment of a particle that moves from position 7 to 75 is
given by

AV - V'Y(Fé) - VPY(F1>
= (Sﬁw - S;w)’ypw + (Sio - S;%o)’ypo + (Sia - S;a)'ypa
_(Sdiw - Sdtlzw)fyaw - (Sd%vo - Sdzluo)fywo - (Sdzo - Sdtlzoyylw (75>

Therefore, the external potential V7 can be written as

V7 (’T_", hdrop) = Spw (ﬁa h’drop)’}/pw + Spo(ﬁa h’drop)’}/po
+Spa (/F;a hdrop)’}/pa - Sdaw (ﬁa h’drop)’}/aw
_de()(ﬁu hdrop)fywo - Sdao(ﬁa hdrop)Vao (76>

7.4.2 Numerical results
Effective potential across the interface V7

Table 7.2 shows the constant data values used to compute the external poten-
tial V(7 harop). The values of v,, and 7,, are the typical for the water-air
and polystyrene-air interfaces. The contact angles 6,, and 6,, have been



7. Colloidal mesostructures 181

Set Ypw | Vpo | Vpa | Yao | Yow 6)oa (O) eow (O) Sspread hdrop 10_7 (m)
a | 32 |14 ] 33| 38| 38 20 20 —4.62 1.5
b | 32 | 14| 33| 38| 38 20 20 —4.62 3.0
c | 32|14 ]33] 38| 38 20 20 —4.62 1.5
d | 32 | 31|33 ] 21| 53 20 10 —2.97 1.5

Table 7.2: Different set of values used for the surface and interfacial tensions
and contact angles of the different interfaces. Surface tensions are expressed
in mJ m~2. In all cases, Yau, darops Opw, and 0,, were assumed to be 72 mJ
m~2, 7.2x107% m, 89°, and 60°, respectively.

assigned as fixed values and the others + values were obtained using the
Neumann relationships (see figure 7.15)

Yao €08 Oao = Yaw €08 Ouy — Yow COS Oy

Yao SN Oao = You SIN Oy, + Var SIN Oy (7.7)

We assume that both menisci of water and oil around the colloidal particle
are flat as in our experiments both the Bond numbers (B = ga’Ap/vyrv)),
are small at the air—water interface. Here, g is the gravity, Ap is the density
difference between the subphase (water or oil) and the upper phase (air), a
the particle radius and =7y the liquid—vapor surface tension. Therefore, we
can approximate #,, = 0°. Hence, these equations joined with the Young
equation 3.1 for the particle at an air—water and at an air—oil interface allow
us to determine the unknown surface tension values, Yao, Yow, Vpos» a0d Vpu-

For all the cases, the obtained spreading coefficient (S) is negative in-
dicating that the oily phase forms droplets at the air—water interface. The
values used for interfacial tensions and contact angles of the oily phase do
not correspond to the values of these properties for a particular oil, but they
are assumed ad hoc.

Figure 7.16 shows the V(7 hgrop) potential as a function of the particle
distance to the air-water—oil contact line divided by the particle radius. The
harop value affects the external potential as can be seen comparing panels A
and B in figure 7.16. Also, figure 7.16C' shows the V7 potential for ~,, and
Yow Values, so that 6,, and 6,,, are slightly different to those used in the cases
shown in panels A and B. These changes in the values of the interfacial ten-
sions and contact angles of the air—oil and oil-water interfaces dramatically
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Figure 7.15: Sketch of an oil drop at a fluid—fluid interface.

modify the external potential profile, causing an inversion in the potential
experimented by the particle when entering into the oily phase.

As can be seen in figure 7.16B, the energy of a particle inside the oil
lens is smaller than the energy outside the drop; so, in principle, the col-
loidal particles will tend to emigrate to the oil drops. However, due to
the different air-water and air-oil surface tensions a minimum is found at
(r — Rarop)/ Rpart = —1.5, which prevents particle migration till the oil drop
center. To remove the particle from this three phase contact line involves
a very high—energy cost caused by the creation of a new oil-water interface
(Swo).- The presence of this minimum can explain the appearance of the
colloidal rings found for some liquid mixtures.

7.4.3 Simulations

The simulations were conducted off-lattice using the Monte Carlo method in
a two-dimensional simulation cell of dimensions LxL with periodic boundary
conditions. In each simulation N spherical particles were randomly placed
inside the cell and their surface areas Sy, Spo, Sdaw, Sdae and Sd,,, calcu-
lated by numerical integration. Then, the total energy was obtained using
Eqgs. 7.3, 7.4 and 7.6. After that, the particles are displaced independently
with a Brownian movement to a new positions. After each particle move-
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line reduced by the particle radius. A and B were computed using data sets
a and b (Table 7.2) while C is obtained from data set d in table 7.2.
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ment, the total energy was calculated and the movement accepted or rejected
depending on the differences between the new and the previous energy (like
a typical Monte Carlo simulation). The simulation stopped when a stable
situation was reached.

Input data for the simulations are as follows: time step (At = 4x 107 s),
number of particles (N = 300), fraction of area ¢ = 0.10, number of droplets
and positions, ¢ = 6-10"® e~ /m? | fz;, = 1%, R=3-10"" m, P = 4.8 -10%
C-m assuming a dipole length of 0.3 nm, ¢y and ¢ = 1. The contact angle
considered for the particle at the air-water and at the oil-water interface were
Op = 82°and 6,, = 15°, respectively. The surface tensions were v,, = 34
mJ/m? v = 72 mJ/m?, 74, = 21 mJ/m? and 7,,, = 33 mJ/m?. 7, and Y,
can be easily obtained using the Young’s equation, giving 7,, = 23 mJ/m?
and 7, = 14 mJ/m?.

7.5 Simulation results

The formation of oil lenses at the air—water interface leads to the existence of
a nonhomogeneous interface with hydrophobic (oily lenses) and hydrophilic
patches (water surface). When polystyrene microspheres are spread onto
this nonhomogeneous interface most of them tend to reach the three phase
contact line where they are eventually trapped and form the colloidal rings.
Figure 7.17, panels a and b, shows the colloidal rings obtained from sim-
ulations using the interaction potential given by eq 7.3. Particles at the
air-water interface cannot migrate to the oil-air interface (and vice versa),
because they have not enough energy to cross the three phase contact line
where the potential V7 acting on the particle has a minimum (figure 7.16).
This further implies that the average interparticle distance depends on par-
ticle accommodation inside the hydrophilic and hydrophobic patches at the
air-liquid interface. This model explains the appearance of circular rings
which are common structures observed in colloidal monolayer experiments.
It should be noted that a change in A4, modifies the external potential val-
ues (see figure 7.16, panels a and b) but that not affects the ring patterns.
The number of colloidal particles that takes part of a ringed pattern depends
on Ngrep as if hgpep increases the potential minimum becomes widther and
then double or triple rings could be appear. Other mesostructure patterns
like circular clusters could be explained if an initial inhomogeneity in the
colloidal distribution, due to the turbulent spreading of the particles at the
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Figure 7.17: Simulated mesostructures at the air-nonhomogeneous liquid
interface. (a) and (b) Colloidal rings, (c) Circular clusters, and (d) Voids
are obtained using the data parameters showed in lines a — d of Table 7.2,
respectively.
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interface, is considered. Figure 7.17—c shows the structure formed with an
initial Gaussian distribution of particles centered on the oil lens. The forma-
tion of voids (see figure 7.17-d) is reached changing the values (see Table 7.2)
of Y40 from 38 to 21 mJ m™2, 7,,, from 38 to 53 mJ m~2, v, from 14 to 31 mJ
m~2, and 6, from 20° to 10°. As can be seen in figure 7.16C, these changes
in the surface and interfacial tensions cause an important modification of the
external potential, V7, profile.

In summary, the proposed simple interaction model that take into account
the dipolar repulsion between particles and surface tension heterogeneities
can explain the formation of most usual mesostructure patterns found in the
experiments with colloidal particles.



Chapter 8

Summary and conclusions

This thesis concentrates on the study of the structural and kinetics proper-
ties of two—dimensional colloidal systems where the particles interact among
them with different kinds of potentials. The questions that we want to an-
swer is: how modify the interaction potential the structure, kinetics
and distribution over the plane of the clusters formed during the
coagulation process?

First, we have studied the order of the aggregates trapped at an interface
that is induced by the Brownian diffusion of such aggregates and the depen-
dence of this order with the surface packing fraction of particles. In order
to do this we have used Brownian dynamic simulations where the particles
remain irreversibly stick after collision.

Second, we go further and we introduce a medium-range repulsion on the
total interaction potential to study the effect of the interaction range over
the structure of the aggregates and the kinetic properties of the aggregation
process. Again, we used Brownian dynamic simulations where the parti-
cles interact with a Yukawa potential. Then, we have studied the effect of
varying the range and the interaction between particles in contact over the
coagulation process.

Finally, we have studied the origin of a new kind of colloidal structures
(mesostructures) that has been reported since the 90’s. This mesostructures
could appear when colloidal particles are spreading at an liquid—fluid interface
(as an air-water interface). We found the experimental conditions that are
necessary to obtain such structures and we have showed that the formation of
mesostructures is induced by the presence of an contaminating agent which in
our case is silicon oil. Moreover, we have developed a simple model based in a

187



188 8.1. Topological order induce by diffusion

heterogeneous interface in surface tension due to the presence of oil drops at
the interface. In order to check this, we have developed a simple Monte Carlo
simulation at a heterogeneous interface in surface tension. Those simulations,
where particles diffuse in this heterogeneous interface, are able to reproduce
the more frequently mesostructures found by other authors.

The following paragraphs briefly summarize the main points of this work.

8.1 Topological order induce by diffusion

By means of Brownian dynamics, we studied the effect of the surface pack-
ing fraction on the topological properties of two—dimensional aggregating sys-
tems where we assumed the simplest case of freely Brownian diffusive sticking
particles without interactions (DLCA). The topological properties have been
measured with the help of the Vorono: construction. The study of the cor-
relations between non—adjacent cells was achieved by analyzing the system
as structured in concentric layers around a given central one. This method
allows us to go beyond the internal fractal structure of the clusters and to
study the external inter—cluster properties. Indeed, it determines the short
and long-range spatial organization of the clusters and the cluster—cluster
“interactions” induced by the mutual competition between neighboring de-
pletion regions that occurs when the fractal-like clusters fill up the whole
space. The main results of this work where

1.- We obtained a continuous ordering of the cell structure as ag-
gregation proceeds. Specifically, clusters tend to adopt a more or-
dered hexagonal organization in the plane, what topologically means a
reduction in both, the second central moment of the number of sides
distribution us and the proportion of defects A.

2.- This ordering is more important for higher particle densities,
where the already small free space existing between growing clusters be-
comes rapidly shrunk due to the fractal growth.

3.- This ordering finishes as soon as the scaling of the cluster—size
distribution is reached (¢ > t,.). Since all the studied topological
properties (P(n), po, a, < K; >, < ); > and A) remain constant in this
final scaling limit, it can be regarded as a topological invariant state.
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4.- The whole coagulation process lies in a universal topological
class independent on the particle concentration, given by the general
relation a ~ 5%,

5.- Colloidal aggregation in two dimensions is only able to produce
short-range inter—cluster correlations (up to the second layer of
clusters around a central one, j = 2) even for the very high packing
fraction of particles. However, the ordering is manifested in the whole
shell structure at any topological distance in terms of a decrease of the
proportion of defective cells A;.

6.- The main topological property that controls the degree of struc-
turing at short and long inter—cluster distances is the second
central moment iy, which is a measurement of the global order in the
whole system.

8.2 Effect of repulsive interaction with non—
negligible range

We studied the effect of an interaction potential with a non—negligible range
on the kinetic properties and the structure of the aggregates formed in a
computer—simulated two-dimensional aggregating system. We have con-
nected the new kinetic region induced by the range of the interaction with
the well-known RLCA aggregation regime. Hence, we have a complete de-
scription of the kinetic behavior of a two-dimensional aggregating system
composed by colloidal particles that interact with a medium-range pairwise
repulsive interaction. We have observed that the range of the interaction
modifies not only the kinetics of the coagulation process at short times but
also the structure of the small aggregates formed in this process. Moreover,
although the effect of the interaction range appears only in the first stages
of the coagulation, the consequences of this affect the complete evolution of
the process. The main results obtained in this work were the following ones

1.- Two different kinetics regions has been observed in the rep-
resentation of the number—average cluster size S,(t). The first
region appears due to the effect of the non—negligible interaction range
and the second one represent the classical RLCA regime.
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2.- Two different regions has been observed also in the mean struc-
ture of the aggregates, depending on the kinetic region where they
appear. At short times, the aggregates tend to adopt a linear structure,
that correspond to the effect of the non—negligible interaction range. At
medium time, the fractal structure characteristic for the RLCA regime is
recovered.

3.- The cluster—cluster interaction potential becomes more repul-
sive and anisotropic with the increasing of the sizes of the clus-
ters for aggregates with sizes under the critical size iy due to
the superposition of the interactions. For aggregates of sizes larger than
19, not all the monomers that compose these aggregates participate in
the total interaction. Therefore, V;; becomes independent on 7 and j for
1,7 > 19, the cluster—cluster interaction recovers its isotropy. This transi-
tion between anisotropic to isotropic interaction clearly explain the first
kinetic region and the arising of linear structures in this region and the
transition to the fractal aggregates when the isotropy is recovered.

4.- A new method has been developed in order to obtain the ag-
gregation rate constants through the functions P;; = k;;/ kﬁ" directly
from the simulations performed. This method allows us to study the
effect of the interaction range over the real coagulation kinetics.

5.- The kernel found was introduced in the Smoluchowski equation
2.24 and the cluster size distribution were obtained. These
functions were compared with the simulation and the agreement
is practically perfect.

8.3 Colloidal mesostructures

The spontaneous formation of the so—called mesostructures has been ob-
served in colloidal monolayers trapped at the air—-water interface. The dis-
tance between particles in these mesostructures is of the order of the particle
radius (micrometers), implying that the colloidal interaction potential has
a minimum at such distances, which could induce the phase separation of
colloidal monolayers in dense and dilute regions. Recently, a great deal of ef-
fort has focused on understanding the mechanism behind the phenomenon of
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long—range attraction between colloidal particles confined in interfaces which
could explain the formation of these structures.

8.3.1 Experimental part

Here, we have shown that the formation of our mesostructures is due to
the contamination of colloidal monolayers by silicone oil (poly— (dimethyl-
siloxane)), which arises from the coating of the needles and syringes used
to deposit and spread the particle solution at the air-water interface. The
difference in the interfacial tension of water and silicone oil accounts for the
formation of the experimentally observed mesostructures.

1.- We have shown that the presence of small traces of an oily agent
(silicon oil) is able to reproduce all the experimental structures
observed by other authors.

2.- For first time, we were able to observe the formation of colloidal
mesostructures in real time.

3.- For small concentrations of silicon oil we observed the formation
of rings, circular patterns and voids. When the concentration
of oil is increased, it appears loops and other irregular shapes.

8.3.2 Simulation results

Using computer simulations, we have shown that the formation of colloidal
rings, circular clusters and voids is due to the presence of surface tension
inhomogeneities at the air water interface. In this case, the total interaction
potential was assumed to be composed of only two terms; the first one is due
to the (repulsive) pairwise dipolar force between partly immersed charged
microspheres, whereas the second depends on the position of the particle at
the interface and is connected to the interfacial stress caused by the difference
of surface tension between both liquids.

1.- A simple Monte Carlo simulation was performed to reproduce
some of the simulation experimentally obtained. In this simula-
tion, the particles interact through a dipolar repulsion and a term that
take into account the presence of flat oily drops at the air—-water interface.
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2.- It is not necessary to introduce any unknown long—range attrac-
tive interaction to explain the formation of colloidal mesostruc-
tures.



Chapter 9

Resumen y conclusiones

Esta tesis se centra en el estudio de propiedades cinéticas y estruc-
turales de sistemas coloidales cuyo movimiento se encuentra con-
finado en un plano (sistemas coloidales bidimensionales). En estos sis-
temas, las particulas pueden interactuar entre ellas a través de diferentes
tipos de potenciales de interaccion. El principal objetivo planteado en esta
tesis consiste en tratar de responder a la pregunta ;Cdémo dependen las
propiedades estructurales, las cinéticas y la ordenacion de las es-
tructuras formadas durante el proceso de coagulacién del potencial
de interaccién entre particulas?

En primer lugar, hemos estudiado el ordenamiento de los agregados
formados en un proceso de coagulacién limitado por la difusién Browniana de
las particulas, asi como la dependencia de dicho ordenamiento de la concen-
tracion. Para ello realizamos una serie de simulaciones de dindmica Browni-
ana en la que las particulas permanecen enlazadas de forma irreversible tras
una colision.

El siguiente paso en nuestro trabajo fue introducir en estas simulaciones
el efecto de un potencial de interaccién con un alcance no despre-
ciable para analizar el efecto que dicho alcance posee sobre la estructura
de los agregados formados, asi como la cinética de coagulacién del sistema.
De nuevo, empleamos simulaciones de dinamica Browniana donde ahora las
particulas interactuaran a través de un potencial tipo Yukawa. Para car-
acterizar el efecto del alcance, realizamos una serie de simulaciones para
distintos valores de dicho alcance.

Finalmente, hemos estudiado el origen de un nuevo tipo de estructuras
coloidales (llamadas “mesoestructuras”) que pueden aparecer cuando deposi-
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tamos particulas sobre una interfaz liquido—fluido (por ejemplo, sobre una
interfaz agua—aire). Estas estructuras aparecen por primera vez en la bibli-
ograffa a finales de la década de los 90 y a dia de hoy no existe un modelo for-
mal capaz de explicar su origen. Nosotros hemos encontrado las condiciones
experimentales necesarias para obtener este tipo de estructuras. Ademas,
hemos puesto de manifiesto que la formacién de estas mesoestructuras
puede inducirse mediante la presencia de un agente contaminante
de tipo oleoso, que en nuestro caso fue aceite de silicona. En base a estos
resultados experimentales, hemos propuesto un sencillo modelo basado el
la presencia de heterogeneidades de energias interfaciales en el sis-
tema originadas precisamente por la presencia de este aceite. Para compro-
bar la validez de dicho modelo, implementamos una serie de simulaciones de
tipo Monte Carlo modelando esta interfaz heterogénea, donde las particulas
se organizan formando estructuras muy similares a las mesoestructuras que
con mas frecuencia aparecen tanto en nuestros resultados experimentales
como en los publicados en la bibliografia.

Los siguientes apartados resumen brevemente las principales conclusiones
alcanzadas en este trabajo

9.1 Order Topolégico inducido por difusion

Empleando simulaciones de dindmica Browniana, hemos estudiado el efecto
de la concentracién de particulas sobre las propiedades topolégicas
en un proceso de coagulacion bidimensional limitado por difusién.
Este es el conocido regimen de agregacién DLCA donde las particulas no
interactuantes difunden Brownianamente hasta colisionar, tras lo cual, per-
manecen irreversiblemente agregadas. Las propiedades topoldgicas de estos
sistemas fueron calculadas empleando los llamados diagramas de Voronoi.
El estudio de las correlaciones entre celdas (agregados) no adyacentes fue
realizado mediante la descomposicion del sistema en estructuras de capas
concéntricas alrededor de una celda central. Este método nos permite pasar
del estudio de la estructura de los agregados individuales al estudio de como
se ordenan los agregados formados sobre el plano. Esta ordenacion espacial
viene originada por la aparicién de regiones de depleccién (o de vaciamiento)
entre los agregados debido al crecimiento fractal de los mismos que tienden
a llenar el espacio. Los principales resultados de este trabajo fueron

1.- Observamos un ordenamiento continuo de la estructura de cel-
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das a medida que transcurre el proceso de coagulacién. Mas conc-
retamente, los agregados tieneden a adoptar una estructura mas hexago-
nal en el plano en el que se encuentran. Topoldgicamente, esto significa
tanto una reduccién tanto del segundo momento de la distribucion del
numero de lados de las celdas s como de la proporcion de defectos A.

El ordenamiento observado es mas importante para el caso de
sistemas mas concentrados donde, el ya pequeno espacio libre exis-
tente entre los mondémeros antes del proceso de coagulacion, disminuye
rapidamente debido al crecimiento fractal de los agregados.

El proceso de ordenamiento de los agregados formados termina
tan pronto como se alcanza la regién de escalado en la dis-
tribucién de tamanos(t > t,.). Debido a que todas las propiedades
topoldgicas estudiadas en este trabajo (P(n), ps, a, < K; >, < @Q; >
y A) permanecen constantes en este limite final de escalado, éste puede
verse como un estado topoldgicamente invariante.

El proceso de coagulacién completo cae en una clase topologica
universal, independiente de la concentracién de particulas, dada por la
relacién general a ~ p5 %,

El proceso de agregaciéon en dos dimensionaes solo es capaz
de producir correlaciones de corto alcance entre agregados cer-
canos (hasta la segunda capa de agregados en torno a uno central, j = 2),
incluso para el caso de alta concentracién de particulas. Sin embargo,
el ordenamiento se manifiesta en la estructura de capas completa para
cualquier distancia topoldgica en términos de una disminucion de la pro-
porcién de defectos topolégicos A;.

La principal propiedad topolégica que determina el grado de
estructuracion a corta y laras distancias entre agregados es el
segundo momento de la distribuciéon del niimero de lados s, el
cual es una medida del orden global del sistema completo.
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9.2 Efecto de las interacciones repulsivas de
alcance no despreciable

En esta seccion estudiaremos el efecto de un potencial de interaccién
con un alcance no despreciable sobre las propiedades cinéticas y es-
tructurales de los agregados formados mediante simulaciones de un pro-
ceso de coagulacion de dinamica Browniana bidimensional. Hemos enon-
trado una nueva region cinética inducida por el alcance de la in-
teraccién de tipo repulsivo, asi como hemos conectado esta nueva
regién con el conocido regimen de agregacion RLCA. Asi pues, ten-
emos una descripciéon completa de la cinética de un proceso de coagulacién
bidimensional formado por particulas coloidales que interactian a través de
un potencial repulsivo a pares de medio alcance. Hemos observado que el
alcance de la interaccién no solamente modifica a la cinética del proceso de
coagulacion, sino que también cambia la estructura de los pequenos agrega-
dos formados en este proceso. Mas ain, aunque el efecto del alcance de la
interaccién se manifiesta inicamente en los primeros estadios del proceso de
coagulacion, la consecuencia de esto afecta al completo desarrollo del proceso.
Los principales resultados obtenidos de este trabajo fueron

1.- Se observaron dos regiones cinéticas en la representacién del
tamano medio en nimero S, (t) frente al tiempo. La primera region
aparece como consecuencia del alcance de la interaccion repulsiva mien-
tras que la segunda corresponde al clésico regimen de agregacion RLCA.

2.- Se encontro que las estructuras de los agregados formados en
cada una de estas regiones cinéticas son distintas. A tiempos cor-
tos, el efecto del alcance de la interaccién repulsiva provoca que los agre-
gados tiendan a adoptar estructuras lineales. Cuando los agregados son
suficientemente grandes, el efecto del alcance de la interaccién se vuelve
menos importante, recuperando las estructuras fractales caracteristicas
del regimen de agregacion RLCA.

3.- La repulsién agregado—agregado se intensifica con el incremento
del tamano de los agregados involucrados hasra alcanzar un
cierto tamano critico iy debido a la superposicién de las interacciones.
Para agregados de tamano mayor a iy no todos los monémeros que com-
ponen estos agregados participan en el potencial de interaccién total. Asi
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pues, el potencial de interaccién agregado-agregado V;; serd independi-
ente del tamano para 7,7 > i¢ y, a partir de ese momento, tiende a ser
mas isotropo. Esta transiciéon entre una interaccion anisétropa a otra
isotropa explica claramente porqué en la primera region cinética las par-
ticulas tienden a formar cadenas (potencial anisétropo), que al alcanzar
un cierto tamano recuperan la estructura fractal caracteristica del regi-
men RLCA (potencial isétropo).

4.- Hemos desarrollado un nuevo método para obterner el kernel
de agregacién directamente de las simulaciones a través de las
: _ Br
funciones Py = ki /k;j"

5.- Los kernels encontrados fueron introducidos en la encuacion de
Smoluchowski 2.24 obteniendo de su solucién tanto el tamano
medio en nimero de los agregados como su la distribucién de
tamanos. Estas curvas fueron comparadas con las obtenidas
directamente de las simulaciones obteniendo una buena concor-
dancia entre ambas. Esto demuestra que el método empleado
es capaz de proporcionarnos un kernel de agregacién que nos
describe la cinética de crecimiento de los agregados formados.

9.3 Mesoestructuras coloidales

La formacién espontanea de las llamadas mesoestructuras coloidales ha sido
observada en sistemas formados por particulas esféricas de poliestireno dis-
persas sobre una interfaz agua—aire. La distancia entre las particulas que for-
man estas mesoestructuras es del orden del radio de las mismas (micrémetros),
lo cual implica que el potencial de interaccion entre coloides posee un minimo
a esta distancia. La presencia de dicho minimo podria provocar la separacién
de fases del sistema en regiones densas y regiones empobrecidas de particulas.
En los tltimos anos se ha dedicado un gran esfuerzo en tratar de entender
el mecanismo que se esconde tras una posible interaccién atractiva de largo
alcance que pudiera explicar la formacién de estas estructuras.

9.3.1 Parte experimental

En esta seccién hemos mostrado que la formacion de las mesoestructuras
observadas en nuestro laboratorio es debida a la contaminacién de las mono-
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capas coloidales por un aceite de silicona, el cual procede del recubrimiento
de las agujas y de las jeringuillas empleadas para depositar y dispersar las
disolucion de particulas sobre la interfaz agua—aire. La diferencia entre las
energias interfaciales del agua y del aceite de silicona es la responsable de la
formacion de estas mesoestructuras. Las principales conclusiones a las que
hemos llegado en este trabajo fueron

1.- Hemos demostrado que la presencia de pequenas trazas de una
sustancia oleosa (aceite de silicona) es capaz de reproducir to-
das las mesoestructuras encontradas experimentalmente en la
bibliografia.

2.- Por primera vez, hemos sido capaces de observar paso a paso la
formacion de mesoestructuras coloidales.

3.- Para pequenas concentraciones de aceite de silicona observamos
la formacién de anillos, patrones circulares y agujeros. Cuando
incrementamos la concentracién de aceite aparecen lazos y un
gran numero de formas irregulares.

9.3.2 Resultados de las simulaciones

El objetivo de esta parte es introducir el potencial de interaccién externo
procedente del modelo propuesto para explicar la formacion de las mesoestruc-
turas y comprobar que es capaz de reproducir la formacion de los anillos, pa-
trones circulares y agujeros observados en nuestros experimentos y por otros
autores. La presencia de dos liquidos con distinta energia superficial conduce
a la formacion de lentes de aceite sobre la interfaz agua—aire, lo cual provoca
la aparicion de heterogeneidades en tensién superficial sobre la interfaz. En
las simulaciones realizadas consideramos que el potencial de interaccion total
estd compuesto por dos términos: el primero debido a la interaccion dipolar
repulsiva entre particulas. Esta es la interaccién mds caracteristica en sis-
temas formados por particulas coloidales atrapadas entre una fase polar y
otra apolar. El segundo término del potencial total dependeré de la posicién
de la particula sobre la interfaz y es debido a las diferencias en la energia
superficial entre los distintos liquidos. Los principales resultados alcanzados
fueron
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1.- Se realizaron una serie de simulaciones Monte Carlo capaces
de reproducir parte de las mesoestructuras encontradas exper-
imentalmente.

2.- No es necesarion introducir ninguna interaccién atractiva de
largo alcance para explicar la formacion de las mesoestructuras
coloidales.
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