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Abstract 1 

 2 

The combination of “ex-situ” portable X Ray Fluorescence with unsupervised and 3 

supervised pattern recognition techniques such as hierarchical cluster analysis, principal 4 

components analysis, factor analysis and linear discriminant analysis have been applied 5 

to rock samples, in order to validate a “in situ” macroscopic rock samples classification 6 

of samples collected in the Boris Angelo mining area (Central Chile), during a drill-hole 7 

survey carried out to evaluate the economic potential of this Cu deposit. The analysed 8 

elements were Ca, Cu, Fe, K, Mn, Pb, Rb, Sr, Ti and Zn. The statistical treatment of the 9 

geological data has been arisen from the application of the Box-Cox transformation 10 

used to transform the data set in normal form to minimize the non-normal distribution 11 

of the data. From the statistical results obtained it can be concluded that the 12 

macroscopic classification applied to the transformed data permits at least, to 13 

distinguish quite well in relation to two of the rock classes defined (70.5 % correctly 14 

classified (p< 0.05)) as well as for four of the five alteration types defined “in situ” 15 

(75% of the total samples).  16 

17 



 3

1. Introduction  1 

 2 

The extraction of metals from the earth crust initially requires the identification 3 

of the areas in which they have anomalous concentration in relation to the host rock of 4 

the ore mineralization and, in general sense, to the background in the mining zone. In 5 

this sense, the geological characterization of the potential host rocks of ore 6 

mineralization is crucial and must be the preliminary objective in any exploration 7 

survey. 8 

 9 

 In relation with this fact, two fundamental stages must be covered, the 10 

establishment of the geological cartography and the drill-hole survey. The former 11 

because permits the knowledge of the main geological features (lithologies, structures, 12 

mineralization evidences, etc.) and the later because gives an invaluable set of data over 13 

the geology under the surface. From the study of the information obtained in these 14 

stages it is possible to get a three dimensional idea about the existing rocks and their 15 

characteristics. Thus recognition and classification of the different rock types, as well as 16 

its alteration pattern, play an important role which could be critic in the selection of the 17 

areas that could be adequate to explore host ore bodies with economic interest. 18 

 19 

 During the initial field campaign necessary in order to obtain the data, a lot of 20 

samples are generates. In this sense, they must be classified attending criteria closely 21 

related to the type of deposits to be exploited, e.g. type of lithologies, hydrothermal 22 

alteration patterns among others. In the most of the cases these criteria are applied “in 23 

situ” in remote areas without confirmatory analytical information from a laboratory, 24 

and, in the best of the cases, using basic equipment like a magnifying glass or some safe 25 

and easily portable chemical reagent. In this way, it could be helpfully to dispose of 26 

qualimetric tools that could validate this macroscopic rock samples classification in 27 

order to facilitate and accelerated the remained work necessary to determine the 28 

goodness of the ulterior mining exploration of the zone investigated. 29 

 30 

 Bearing in mind these reasons, the use of analytical techniques as portable X-ray 31 

fluorescence (P-XRF) combined with statistical pattern recognition techniques can be 32 

offered as an adequate tool in order to obtain a feasible model that could permits the 33 
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assessment of a validated macroscopic rocks samples classification in an ore exploration 1 

survey. 2 

 3 

 Up to the present day, the use of field portable X-ray fluorescence (P-XRF) 4 

analysers [1-5] has been demonstrated be adequate in order to solve questions related 5 

with a great variety of deals, e.g. for the assessment of the composition of painting 6 

materials in order to offer information about their conservation and/or restoration 7 

procedures [6,7], for archaeological studies [8,9], for the screening and assessment 8 

studies about metalloids and/or heavy metals in contaminated or potentially 9 

contaminated areas [3,4,10-14], FDA regulated products [15], or metal contents in 10 

waters [16], among others. On the other hand, the relatively low cost of these devices 11 

permits the possibility of their use in lab for routine analysis in quality control 12 

assessments.  13 

 14 

  In parallel, it has been demonstrated that the use of unsupervised and supervised 15 

pattern recognition techniques permits to extract reliable information from analytical 16 

parameters for exploratory assessment of geological sets [17-19], mainly due to they 17 

allow (a) to verify associations among variables, (b) to group or to cluster samples with 18 

respect to comparable chemical or geological descriptors, and (c) to search multivariate 19 

data classification on the basis of known class membership of those objects.  20 

 21 

Nowadays, copper is one of the most demanded materials on the metal market  22 

showing a growing demand perspective at the present such as the future. Together with 23 

this growing demand, the exploration of this metal has been widespread for the entire 24 

world to satisfy the copper supply. In this context, Chile is the first copper-producing 25 

country holding a 36% of the world production of this metal. 26 

 27 

Boris Angelo Cu-(Ag) deposit is located in the “stratabound Cu-(Ag) belt” [20] 28 

in the Costal Cordillera, Central Chile. It corresponds to practically unknown deposit in 29 

this belt, thus the study carried out in the area can be considered as a typical case study 30 

of an exploration survey of a copper deposit. In this paper, a normalized data matrix 31 

obtained from P-XRF measurements of rocks samples from a “preliminary ore 32 

exploratory survey” has been subjected to different pattern recognition techniques in 33 
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order to confirm the rock classification parameters of samples taken during the drill-1 

hole survey made in the Boris Angelo area. 2 

 3 

2. Material and Methods 4 

 5 

2.1. Studied area and macroscopic classification defined 6 

 7 

 The Boris Angelo Cu-(Ag) deposit is located in the easternmost Coastal 8 

Cordillera, in Central Chile, between 32º30’ S and 70º40’ W (Fig. 1). It is part of the 9 

Cretaceous stratabound Cu-(Ag) deposits belt, which are also known as “Chilean 10 

Manto-type” Cu-(Ag) deposits. The geology of the deposit area is characterized by 11 

volcanoclastics sequences intruded by different small subvolcanic bodies. Table I shows 12 

the four different lithologies recognized in the zone and its most representative 13 

characteristics. As well as, the Table 1 included the coded values assigned to them in 14 

the macroscopic classification made “in situ”.  15 

 16 

FIGURE 1 17 

 18 

TABLE 1 19 

 20 

From the point of view of the alteration patterns, the area of the metallic deposit 21 

is affected by hydrothermal alteration, caused by the interaction between hot and 22 

slightly acidic fluids and the host rocks [21]. These fluids can leach metals (with 23 

economic interest) and re-concentrate them. As mentioned above, the recognition and 24 

cartography of alteration patters in the rocks is a useful tool used by exploration 25 

geologist as evidence to localize enriched-metals areas with economic potential. The 26 

most common classification method, and the simplest visual method too, is that which 27 

defined the type of alteration as a function of the most abundant or most obvious 28 

mineral in the altered rock. Table I shows the five different hydrothermal alterations 29 

recognized in the zone, on the basis of the occurrence of certain “key minerals” or “key 30 

mineral assemblages” product of the hydrothermal alteration, and its most 31 

representative characteristics. In order to facilitate the analysis of the data, a second 32 

numerical code has been assigned to the alteration types used in the study. These codes 33 

have also been included in Table 1. 34 
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 1 

2.2. Sampling preparation and measurement 2 

 3 

During the field campaign 44 rocks samples, corresponding to ore grade zones 4 

and barren zones, were taken from five different drill-hole cores selected (see Figure 1). 5 

The samples were coded and placed into sealed plastic bags in order to their 6 

preservation and transportation to the “Minera Las Cenizas S.A.” mining facilities 7 

where they were powdered (until <  100 microns particle size) and homogenised using 8 

standard procedures before their transportation to the laboratory. 9 

 10 

The monitored parameters were the concentration of Ca, Cu, Fe, K, Mn, Pb, Rb, 11 

Sr, Ti and Zn. The measurements were made in the laboratory to select the better 12 

measure conditions; the equipment used in this study was a field portable X-ray 13 

fluorescence analyser NITON XLt 792 (Niton, Billerica, USA), with a 40 kV X-ray 14 

tube with Ag anode target excitation source and a Silicon PIN-diode with a Peltier 15 

cooled detector. As part of the standard set-up routine, variables as type of holder (zip 16 

sealed plastic bag or polyethylene sample cups with Mylar X-Ray Fil (TF-160-255; 17 

Gauge 0.00024”-6 µm, 2.5’ diameter) obtained from the supplier, source count time (60, 18 

90 and 120 s) and matrix effects among others were tested. 19 

 20 

 In relation to the holder to be used in the procedure, the influence of the type of 21 

material used was studied analysing a set of 15 holders for each type of containers  22 

without sample. No statistical differences (P = 0.95) were found between the holders 23 

supplied by NITON and the plastic bags used in the exploratory survey to storage the 24 

samples. In all the cases, the content of the elements were lower than those expected in 25 

the samples, not being necessary to used the average element content to correct the 26 

measurements. For ulterior analysis the zip sealed plastic bags were chosen. 27 

 28 

In relation with the influence of the source count time the best results were 29 

obtained using  90s. These variables were then kept fixed for the rest of measurements. 30 

On the other hand, no matrix effect was detected using the program algorithm included 31 

in the analyser software. The analyser was calibrated using the silver and tungsten 32 

shielding on the inside shutter. After data acquisition, the results were downloaded to a 33 

portable PC for further processing. The results obtained for the rocks samples analysed 34 
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(expressed as the arithmetic means of five replicates of each sample) are shown in Table 1 

2.  2 

TABLE 2 3 

 4 

The RPD found for each measured element in the five replicated analysis of the 5 

samples has been: 5,9 < RPDCa < 7,8; 6,9 < RPDCu < 9,9; 5,8 < RPDFe < 9,2; 7,1 < 6 

RDPK < 9,5; 9,2 < RPDMn < 11,9; 12,6 < RPDPb < 15,2; 13,9 < RPDRb < 15,1; 7,8 < 7 

RPDSr < 9,9; 6,9 < RPDTi < 9,3; 13,1 < RPDCa < 15,0. 8 

 9 

The accuracy of the method for all the elements except Rb, was corroborated 10 

analysing nine replicates of two Certified Materials: CRM052-050 (RT Corporation, 11 

Salisbury, United Kingdom) and RTS-1 (Canadian Certified Reference Methods 12 

Project, CANMET, Ottawa, Canada). According to the US EPA Method 6200 13 

recommendations for soil samples [22], the accuracy was estimated by the relative 14 

percent difference (RPD) between the concentration in the reference material and the 15 

concentration measured (expressed as arithmetic mean of the nine replicates) by P-XRF, 16 

in all the cases results were in good agreement with the quality US EPA Method (RPD 17 

< 10 for Cu, Fe, Mn, Ti and Zn, 10< RPD < 25 for the rest of the elements).  18 

 19 

The establishment of the accuracy in the determination of Rb was made by 20 

means of an “in house validation protocol”. Thus, three sets of spiked matrix matched 21 

samples (nine replicates) containing known Rb concentrations (one level for each set of 22 

spiked samples) were measured. The RPD estimated was 12, which is in good 23 

agreement with those obtained for the rest of the elements. 24 

 25 

The precision was estimated as intermediate precision by the relative percentage 26 

deviation percentage (RPD) of the nine measurements of each reference materials or 27 

spiked-matrix samples for Rb. In all the cases the obtained RPD values are lesser than 28 

15. In order to estimate the detection limits sets of nine replicate samples that contained 29 

the target elements at concentration levels close to the detection limit estimated by US 30 

EPA Method 6200 [22].  31 

 32 

 33 

2.3. Data treatment and statistical methods 34 
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 1 

Figure 2 shows the statistical procedure used to the data treatment. Initially, to 2 

check the fit of the data to a normal distribution, Kolmogorov-Smirnov, Shapiro-Wilks 3 

and skewness score normality tests were applied. In all the cases, statistical evidences at 4 

95% confidence interval showed that not all variables are normally distributed.  5 

 6 

FIGURE 2 7 

 8 

In order to transform the data set into normal form, Box-Cox transformation was 9 

used [17, 23-25]. To study the correlation structure between normalized variables the 10 

Spearman rank-order correlations (Spearman R coefficient) were used, due to the 11 

samples are less sensitive to outliers than the Pearson coefficients. 12 

 13 

In all the cases, the univariate and multivariate statistical treatment of the data 14 

was performed using: (a) Statgraphic Centurion XV (15.2.05 version) for Windows 15 

(Statpoint Technologies Inc, Warrenton, USA) and Matlab Version 7.0.4 R14 (The 16 

Mathworks, Inc.) and the PLS Toobox Version 3.0.4 (eigenvector Research, Inc.).. 17 

 18 

 19 

2.4. Unsupervised pattern recognition methods: Cluster Analysis (HCA), Principal 20 

Component (PCA) and Factor Analysis (FA) 21 

 22 

 Hierarchical agglomerative HCA was performed on the normalized data set by 23 

means of Manhattan (city-block) distance -a particular case of Minkowski distance 24 

(taxicab geometry)- as similarity measurement and Ward`s method as amalgamation 25 

rule. These criterions have been selected with two objectives: (i) to find at each stage 26 

those two clusters whose merger gives the minimum increase in the total within group 27 

error sum of squares (Ward objective) and, (ii) to dampen the effect of outliers bearing 28 

in mind using city-block distance the average differences across dimensions are not 29 

squares. It was applied to the Box-Cox transformed monitoring matrix data set in order 30 

to observe the relationship between natural grouping observed and the two criteria of 31 

macroscopic classification made (lithologies and alteration patterns). On the other hand 32 

in order to verify the natural grouping obtained in HCA, a PCA was applied to the 33 

standardized normalized data set. Finally, to reduce the interdependence of the data set 34 
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of standardized normalized variables and to obtain knowledge of the underlying 1 

structure of the data, FA was applied. In this case the factorization type used was a 2 

principal component which supposes that all of the variability of the data corresponds 3 

exclusively to common factors. The orthogonal rotation of the axis defined by PCA, and 4 

obtained maximizing (Varimax rotation) produces new groups of variables called 5 

varifactors (VFs), which usually group the studied variables in accordance with 6 

common features which can include unobservable, hypothetical and/or latent variables 7 

[26]. 8 

 9 

2.5. Supervised pattern recognition methods: Linear Discriminant Analysis (LDA) 10 

 11 

 This method has been applied in order to obtain a discriminant model that 12 

permits us validated the “in situ” macroscopic rock samples classification of the sample 13 

assuming the number of groups or classes, as well as, the group membership of each 14 

sample taken.  Thus, by means of linear discriminant analysis, a discriminant function 15 

has been built up for each group on raw data. The classification functions associated to 16 

each group defined could be used to determine to which group each sample most likely 17 

belongs. In this study, LDA were performed on the Box-Cox transformed measured 18 

data. 19 

 20 

3. Results and discussion  21 

 22 

3.1. Macroscopic classification made on the basis of lithology criteria. 23 

 24 

The Dendogram resulting from HCA of normalized data set is represented in 25 

Figure 3. It can be seen that assuming a Dlinkage = 0.8 Dmaximum, the samples could be 26 

grouped in two different clusters: (i) Cluster I, constituted by 29.7% of the samples. 27 

According the rock codes, it contents samples of the four defined lithologies. From 28 

which, there are included 100% of the rocks samples defined like porphyritic dykes 29 

(rock code 11) and brecciated porphyritic sub-volcanic rocks (rock code 13). (ii) Cluster 30 

II, constituted by the 70.3% of the samples, it can be observed that it is characterized by 31 

the biggest city-block distance (high significant clustering). Belonging to this cluster it 32 

can be found 93.5% rocks samples defined as porphyritic sub-volcanic rocks (rock code 33 

12) and 40% of the samples defined as volcanoclastic rocks (rock code 14). 34 
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 1 

FIGURE 3 2 

 3 

The PCA (made on the basis of eigenvalues > 1 criterion) facilitated the 4 

explanation of the original 10 geochemical variables in a reduced space by three sets of 5 

the calculated principal components (PCs) which explaining about 73.9% of the total 6 

variance. The analysis of the data (see Table 3(a)) shows that PC1 (41.6% of the total 7 

variance) is mainly influenced positively by the normalized concentration of Ca, Sr and 8 

Ti, and negatively by the normalized concentration of K and Rb. PC2 (19.9% of the 9 

total variance) is manly influenced positively by the normalized concentration of Fe, 10 

Mn and Zn, and PC3 (which explains the 12.4% of the total variance) influenced 11 

positively by Pb, Zn and Cu.  12 

 13 

TABLE 3 14 

 15 

On the other hand, from the scattered plot obtained, considering PC1 and PC2 16 

(Figure 4(a)) two group of samples (A and B) can be observed. Group A is mainly 17 

characterized by negative values of the PC1 and PC2 whereas Group B is characterized 18 

by positive values of the PC1. In relation to the samples lithological classification made, 19 

Group A is formed by one lithology class, i.e. porphyritic sub-volcanic rocks and 20 

contents 93.5% of all of the samples coded as 12. Group B, more heterogeneous than 21 

the one, collects 100% of the samples classified as porphyritic dykes (rock code 11), 22 

brecciated porphyritic sub-volcanic (rock code 13) and volcanoclastic rocks (rock code 23 

14), as well as two samples coded as rock code 12. 24 

 25 

 26 

FIGURE 4 27 

 28 

In relation with the previous HCA it can be observed that, although the natural 29 

behaviour of the samples is quite similar, the lineal combination of the normalized 30 

values of concentrations of the elements made by PCA permit us the grouping of the 31 

samples into two groups well defined: Group A, constituted by porphyritic sub-volcanic 32 

rocks and Group B, constituted mainly for the rest of the lithologies classes.  33 

 34 
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When the FA was applied, the Varimax rotation of the axes defined by the PCs 1 

explains again about 73.9% of the total variance of the normalized data, but modify the 2 

weight of the normalized variables in the three varifactors (VFs) obtained by means of 3 

the eigenfactor >1 criterion (see Table 3(b)). The scattered plot of the first two 4 

varifactors is shown in Figure 5(a). It can be observed again two different groups of 5 

rock samples (A and B) which can be considered as identical as those obtained by PCA. 6 

 7 

FIGURE 5 8 

 9 

In general, the unsupervised pattern recognition methods applied to the Box-Cox 10 

transformed concentrations of the analysed elements by P-XRF permit asses that in all 11 

cases 61.4% of the samples are “naturally” grouped as belonging to the macroscopic 12 

group named porphyritic sub-volcanic rocks (rock code 12). The samples 13 

macroscopically classified as porphyritic dykes and brecciated porphyritic sub-volcanic 14 

rocks (rock codes 11 and 13 respectively) present a slightly defined patter of 15 

distribution between them (Fig. 4). The dispersion shown by rocks classified like 16 

volcanoclastics rocks (14) could be attributed to the compositional heterogeneity 17 

characteristics of them.  18 

 19 

In order to verify the natural grouping obtained and to validate the macroscopic 20 

classification, by means a statistical significant driscriminant model, a LDA was 21 

performed. The discriminant functions were calculated considering the Box-Cox 22 

normalized metals concentrations that mainly affect to VF1. On these bases, i.e. WCa, 23 

WFe, WK, WRb, WSr and WTi, three discriminant orthogonal functions were 24 

calculated. DF1 and DF2 contribute 99.20% to the total discriminant power being both 25 

functions statistically significant at 95% percentage.  Eq. 1 and 2 represent the 26 

expression of these functions. 27 

 28 

DF1lithol.= -0.9 WK + -0.4 WCa + 0.2 WFe + 0.5 WRb + 0.6 WSr + 0.8 WTi [Eq. 1] 

DF2lithol. = -0.9 WK -0.1 WFe + 1.6 WRb + 0.6 WSr -0.2 WTi [Eq. 2] 

 29 
 30 
In order to evaluate the adequation of the classification model obtained, the samples 31 

were split into six groups and two levels for a 6-fold cross validation inner group by 32 
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means of Venetian blinds. The percentages of variance captured by the model were 1 

72.80 %. Figure 6(a) shows the scatter plots of observations in the space of discriminant 2 

functions.  3 

 4 

FIGURE 6 5 

 6 

Table 4(a) shows the classification percentages obtained from each class 7 

macroscopically defined. It can be observed that the predicted model with DF1 and 8 

DF2, considering the normalized geochemical information obtained with P-XRF 9 

measurements, classify satisfactory the 70.45 % of the data. These facts could be closely 10 

related to (i) the heterogeneous composition of the “volcanoclastics rocks” (rock code 11 

14), (ii) The similarity of the original composition between the “brecciated porphyritic 12 

sub-volcanic rocks (rock code 13)” and “porphyritic sub-volcanic rocks (rock code 12)”, 13 

as well as the matrix composition of the first rock type, (iii) the state of aggregation 14 

(powdered particles with < 2mm) in which the samples are measured that does not 15 

permit to appreciate the brecciated structure. 16 

 17 

TABLE 4 18 

 19 

 20 

3.2. Macroscopic classification made on the basis of hydrothermal alteration criteria 21 

 22 

 In relation with the macroscopic classification made on basis of hydrothermal 23 

alteration criteria, from the analysis of the Dendogram (see Figure 3) can be observed 24 

that, in this occasion Cluster I is also the most heterogeneous. It is constituted by 25 

56.25% of samples coded as propylitic alteration (alteration code 21), 100% of samples 26 

classified as “chloritic alteration” and “carbonatization” (alteration codes 25 and 22) 27 

and 50% of samples coded as “argillic assemblages” (alteration code 24). Whereas 28 

Cluster II is constituted by 100% of samples macroscopically defined as “albitic 29 

alteration” (alteration code 23), 50% of samples defined as “argillic assemblages” 30 

(alteration code 24) and by 43.75% of samples defined like propylitic assemblages 31 

(alteration code 21).  32 

 33 
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The results arisen from PCA (see Figure 4(b)) permit us consider again two 1 

groups: Group A constituted by 100% of samples as “albitic alteration” (alteration code 2 

23), 45.45% of rock samples assigned as “propylitic alteration (alteration code 21) and 3 

50% of rock samples assigned as “argillic assemblages” (alteration code 24). Whereas, 4 

Group B includes 68.75% of samples assigned to “propylitic alteration” (alteration code 5 

21), as well as samples defined as carbonatization (100%), argillic assemblages (50%) 6 

and chloritic (100%) alterations respectively.  7 

 8 

In relation with the information obtain from FA, the scattered plot of the first 9 

two varifactors is shown in Figure 5(b). It can be observed again two different groups of 10 

rock samples (A and B) which can be defined as those obtained by PCA. Thus, Group A 11 

is mainly constituted by 100% of “albitic alteration” (alteration code 23), meanwhile 12 

Group B is mainly constituted by samples belonging to “propylitic alteration” 13 

(alteration code 21) most of them characterized by high values of VF1 and VF2 and 14 

widespread distributed.  15 

 16 

On the other hand, VF1 could be considered in close relation with alteration 17 

process, because most of the elements with highest weight, i.e. Ca, K, Rb and Sr could 18 

be involved in hydrothermal process [21]. These facts are in good agreement with 19 

positive influence of WCa, WSr and WTi, and negative influence of WK and WRb in 20 

VF1 found in Group B, constituted by samples with propylitic assemblages and chloritic 21 

and carbonatization alterations. Additionally, this is too concordant with the mineralogy 22 

(possibly unaltered plagioclase like main mineral phase) of porphyritic (andesitic) 23 

dykes. The effect of Ti could be attributed to the presence of ilmenite in the ground 24 

mass of dykes. The samples classified as “albitic alteration” has a higher negative 25 

influence of WK and WRb, this fact could be due to Na widespread replacement 26 

involved in the plagioclase albitization process. This last mineral could be constituted 27 

(as initial composition) by significant amounts of K an Rb in its structure.  28 

 29 

 VF2 is influenced by the normalized concentrations of base metals as Mn and 30 

Zn, while VF3 are influenced by Cu and Pb. These elements could be related with ore 31 

mineralization process, nevertheless all the samples show a similar scattered distribution 32 

pattern in the diagrams without significance statistical differences inter samples. 33 

 34 
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 Finally, in order to obtain a feasible classification model a PLS-LDA was made. 1 

In this case, considering geochemical features i.e. (a) elements closely related to 2 

hydrothermal alterations, i.e. WCa, WK, WRb, WSr and (b) the element with 3 

economical interest, WCu. On these bases, four discriminant orthogonal functions were 4 

calculated. DF1 and DF2 contribute 89.13% to the total discriminant power being both 5 

functions the most statistically significant at 95% percentage. Eq. 3 and 4 show the 6 

expressions of these functions, 7 

 8 

DF1alt = 0,6 WCa -1,1 WK + WRb + 0.3 WSr – 0.5 WCu                         [Eq. 3] 

DF2alt = WCa + 0.8WK -0.2 WRb -0.6 WSr – 0.1 WCu   [Eq. 4] 

 9 

On the other hand, in order to evaluate the adequation of the classification model 10 

obtained, the samples were split into six groups and two levels for a 6-fold cross 11 

validation inner group by means of Venetian blinds. For this stage the analyses were 12 

performed the percentages of variance captured by the model were 72.80 % for 13 

lithology and 73.32% for alteration. Figure 5(b) shows the scatter plots of observations 14 

in the space of discriminant functions.  15 

 16 

Table 4(b) shows the classification percentages obtained from each type of alteration 17 

macroscopically considered. It can be observed that the predicted model considering (i) 18 

geological features and (ii) chemical information obtained with P-XRF measurement 19 

classify satisfactory the 75 % of the data. The heterogeneity in the predicted types 20 

obtained for the samples assigned to “propylitic alteration” could be attributed to the 21 

fact that this kind of alteration could content, at micro-scale level, small bodies 22 

corresponding to a different alteration process (e.g. carbonatization, chloritic, etc.) not 23 

detectable with the equipment used in field campaign sampling. 24 

 25 

 26 

4. Conclusions 27 

 28 

 The statistical treatment of the Box-Cox transformed geological data obtained 29 

from “ex-situ” portable X Ray Fluorescence measurements of ore exploratory samples 30 

with unsupervised and supervised pattern recognition techniques such as HCA, PCA, 31 

FA and LDA has been shown as a helpfully tool for validate the “in-situ” macroscopic 32 
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rock samples classification applied to an exploratory survey in a potential mining area. 1 

From the DLA it can be concluded that in relation with the macroscopic rock samples 2 

classification based on lithology classes assuming a probability level of 80% the 3 

discriminant model obtained confirms correctly 81.8% of the analyzed samples. When 4 

the alteration types are considered, the discriminant model obtained permits to confirm 5 

four of the five alteration types defined “in situ” (75% of the total samples). Thus, it can 6 

be pointed out that the classification assessed could be applied to facilitate and 7 

accelerated the remained work necessary to determine the goodness of the ulterior 8 

mining exploration. 9 

 10 

On the other hand, the proposed approach could be apply directly “in situ” without pre-11 

treatment of the rocks samples during exploratory in those cases in which the 12 

characteristic of the samples could be well assessed.  13 

 14 
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FIGURE CAPTIONS 1 

 2 

Figure 1. Geological map of the Boris Angelo area. 1. Porphyritic dykes 2 & 3. 3 

Brecciated porphyritic sub-volcanic rocks 4. Porphyritic sub-volcanic rocks 5. 4 

Volcanoclastics rocks 6. Fault 7. Mineralized vein-fault 8. Contact 9. Drill-hole A, B, C 5 

and D. Cross section showing the drill holes position and samples location.  6 

 7 

Figure 2. Scheme of the statistical procedure used for data treatment. 8 

 9 

Figure 3. Dendogram resulting from HCA of the Box-Cox normalized data set (R: rock 10 

code; A: alteration code; S: sample). 11 

 12 

Figure 4. Scatterplots obtained from PCA of the Box-Cox normalized data set using:  13 

(a) rock codes and (b) alteration codes. 14 

 15 

Figure 5. Scatterplots obtained from FA of the Box-Cox normalized data set using (a) 16 

rock codes and (b) alteration codes. 17 

 18 

Figure 6. Scatterplots obtained from Discriminant Functions of the Box-Cox 19 

normalized data set using (a) rock codes and (b) alteration codes. 20 

 21 
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TABLE 1. Lithological types (A) and hydrothermal alteration types (B)  
identified in the studied zone. 

 
 
(A)   

Classes Characteristics Coded 
values 

Porphyritic dykes Small and tabular bodies with andesitic 
composition. Porphyritic to aphanitic texture with 
plagioclase and occasionally amphibole 
phenocrysts. 

11 

Porphyritic sub-
volcanic rocks 

Sub-volcanic intrusive body (stock). Porphyritic 
texture with plagioclase and amphibole 
phenocrysts. 

12 

Brecciated porphyritic 
sub-volcanic rocks 

Brecciated texture sub-volcanic intrusive body 
(stock). Brecciated and porphyritic texture with 
plagioclase and amphibole phenocrysts. 

13 

Volcanoclastic rocks Tuff, breccias and agglomerated sequences. 
Homoclinal structure. 14 

 
(B)  

Alteration Characteristics Coded 
values 

Propylitic Chlorite (Chl), epidote (Ep), calcite (Cac) and 
hematite (Hem) assemblages. 21 

Carbonatization Calcite veins. 22 
Albitic Strong replacement of plagioclase by albite or 

albite veins presence. 23 

Argillic assemblages Assemblages of undetermined clay minerals, Fe 
oxy-hydroxide. This alteration is mainly related 
with fault zones. 

24 

Chloritic Veins and replacement of rock components by 
chlorite. 25 

 
 
 



TABLE 2. Analytes concentrations in the rock samples analysed 
 
 

 Code Content of elements analyzed (expressed as mg/kg) 

Sample Rock  Alteration Ca Cu Fe K Mn Pb Rb Sr Ti Zn 
2010 11 25 65394 90 59518 8918 1255 < l.o.d 20 554 4698 77 
20104 12 22 62591 356 35454 11934 1508 31 38 396 1908 118 
2060 12 21 33347 20899 44028 17251 1509 146 48 372 1978 < l.o.d
2066 11 21 34559 376 63901 15345 1747 14 39 595 5742 79 
2098 12 23 30490 782 39927 19037 1789 26 52 327 2233 179 
3918 13 24 39603 130 45353 15216 1183 177 46 487 3015 94 
3980 13 21 36430 455 46006 8933 1149 57 23 362 2939 34 
41100 14 21 23879 10143 64067 17028 1800 60 85 410 3955 103 
4115 13 21 33144 798 46765 14652 1225 86 38 449 3251 109 
4141 14 21 33634 95 57738 17780 1253 40 52 608 4681 96 
4160 14 21 54627 271 42096 7456 1126 49 24 908 4727 78 
4161 14 21 43300 244 54505 12096 1389 34 34 704 5196 98 
4198 11 21 35326 649 60672 11675 1523 79 31 519 5320 84 
4199 14 21 24932 21193 74146 12254 2118 81 62 391 3011 182 
46145 12 23 30026 1109 39501 18823 1405 36 57 388 2249 125 
46146 12 23 28999 1372 36744 19900 1641 152 54 341 2239 132 
46147 12 23 31156 1342 42245 19365 2003 44 54 402 1970 147 
46148 12 23 29162 1457 43010 21714 1868 27 60 345 2124 135 
46149 12 23 27233 985 38604 20166 1475 14 59 321 2403 114 
46150 12 23 28988 741 33599 19807 1429 15 58 350 2071 135 
46151 12 21 29941 165 33961 19946 1395 20 56 384 2130 110 
46152 12 23 29218 478 37989 19713 1378 19 53 421 2083 92 
46153 12 23 28530 446 34185 18404 1381 21 49 405 2154 95 
46154 12 23 27669 1250 38656 18521 1600 24 51 388 2190 93 
46155 12 23 27794 1075 43310 20612 1598 18 58 406 2082 104 
46156 12 23 30885 1658 40289 19044 1568 29 45 420 2254 112 
46157 12 23 29943 876 33427 18759 1359 22 53 346 2121 106 
46158 12 23 27928 379 35874 17373 1203 21 46 331 2159 82 
46159 12 23 27100 348 33360 17850 1331 29 49 441 2100 75 
46160 12 23 26597 813 32892 21555 1292 19 59 577 1979 76 
46161 11 21 34623 203 42404 14304 1613 19 42 376 4617 131 
46162 12 23 30826 1960 37317 17308 1336 32 52 286 2299 110 
46163 12 23 31330 1244 37513 17092 1452 27 57 295 2151 86 
46164 12 23 28131 350 39190 20512 1606 50 60 342 2254 94 
46165 12 23 32414 2239 34170 17103 1216 22 47 320 2071 74 
46166 12 23 30772 2109 36361 17134 1464 36 53 394 2389 128 
46167 12 23 24912 978 37848 18888 1329 27 46 448 2017 68 
46168 12 23 29855 743 36164 16095 1251 24 41 402 1979 97 
46169 12 21 26345 525 40945 18021 1435 33 51 435 2064 102 
46171 12 21 25233 164 37103 19325 1103 30 54 422 2010 79 
46172 12 24 25949 274 36263 17169 1122 139 56 369 2155 105 
5844 12 21 36269 216919 43426 17828 1385 152 58 411 1963 < l.o.d
5860 11 25 49599 108 51867 13772 1266 19 31 678 4819 67 

5861 12 21 47808 514 58262 14273 2177 92 40 444 5686 161 

         



TABLE 3.  Standardized coefficients of Weights of Box-Cox transformed variables in Principal 
Component and Factorial analysis functions. 

 
 

Variables Principal Components Varimax rotated Varifactors 
       
 PC1 PC2 PC3 VF1 VF2 VF3 
       

WCa 0.4 0.02 - 0.1 0.4 0.02 -0.1 
WCu - 0.3 0.3 0.4 -0.3 0.3 0.4 
WFe 0.3 0.5 0.05 0.3 0.5 0.05 
WK - 0.4 - 0.1 - 0.2 -0.4 -0.1 -0.2 

WMn - 0.2 0.6 - 0.2 -0.2 0.6 -0.2 
WPb 0.04 0.3 0.7 0.04 0.3 0.7 
WRb - 0.4 0.2 - 0.01 -0.4 0.2 -0.01 
WSr 0.3 0.02 - 0.1 0.3 0.02 -0.1 
WTi 0.4 0.3 - 0.1 0.4 0.3 -0.1 
WZn - 0.2 0.4 - 0.4 -0.2 0.4 -0.4 

 
 



TABLE 4.  DLA classifications obtained for the rock samples analysed. 
 
 

 
(a) Criteria: Lithology of the samples 
 

Classes Code Samples Predicted 
    

11 
 

 
12 
 

 
13 
 

 
14 
 

Porphyritic dykes 11 5 0 
(0.00%) 

5 
(100%) 

0 
(0.00%) 

0 
(0.00%) 

       
Porphyritic sub-
volcanic rocks 12 31 0 

(0.00%) 
31 

(100%) 
0 

(0.00%) 
0 

(0.00%) 
       
Brecciated porphyritic 

sub-volcanic rocks 13 3 0 
(0.00%) 

3 
(100%) 

0 
(0.00%) 

0 
(0.00%) 

       

Volcanoclastic rocks 14 5 0 
(0.00%) 

5 
(100%) 

0 
(0.00%) 

0 
(0.00%) 

       
 

 
(b) Criteria: Alteration types 
 
Alteration Code Samples Predicted 
   

21 22 23 24 
 

25 
 

Propylitic 21 16 6 
(37.50%) 

1 
(6.25%) 

3 
(18.75%) 

4 
(25%) 

2 
(12.50%)

        

Carbonatization 22 1 0 
(0.00%) 

1 
(100%) 

0 
(0.00%) 

0 
(0.00%) 

0 
(0.00%) 

        

Albitic 23 23 1 
(4.35%) 

0 
(0.00%) 

22 
(95.65%) 

0 
(0.00%) 

0 
(0.00%) 

        
Argillic 

assemblages 24 2 0 
(0.00%) 

0 
(0.00%) 

0 
(0.00%) 

2 
(100%) 

0 
(0.00%) 

        

Chloritic 25 2 0 
(0.00%) 

0 
(0.00%) 

0 
(0.00%) 

0 
(0.00%) 

2 
(100%) 

        
 


