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Part I. PhD dissertation

“If you torture the data long enough,

it will confess”

[Ronald Coase]

1 Introduction

Knowledge discovery from data, or KDD, has been defined as the non-
trivial extraction of implicit, previously unknown, and potentially useful
information from large amounts of data [58]. Knowledge discovery is a
process that consists of an iterative sequence of the following steps [30]:

• Data preprocessing: Data is cleaned, integrated, selected, and trans-
formed into appropriate form for data mining.

• Data mining, where algorithmic techniques are applied to the data in
order to extract patterns.

• Pattern evaluation: The extracted patterns are evaluated using some
interestingness measures to identify the truly interesting ones.

• Knowledge presentation, where visualization and knowledge represen-
tation techniques are used to present the mined knowledge to the user.

Data mining is an essential step in this process because it uncovers hidden
patterns from data. Most of the data mining techniques that have been
developed in the last two decades deal with linear structures (e.g., identifying
frequent patterns and sequences in lists of transactions or data tables).

However, many scientific and commercial applications require the analy-
sis of more complex patterns [30]. The identification of patterns in non-linear
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<customer>

   <order>

      <item>milk</item>

      <item>bread</item>

   </order>

   <order>

      <item>beer</item>

      <item>diapers</item>

   </order>

</customer>

public int TestNestedFor (int n) {

  int sum = 0;

  for (int i=0; i<n; i++)

     for (int j=0; j<n; j++)

          sum += i*j;

  return sum;
}

1

2 8

9

3 6

7

4

5

Figure 1: A simple XML document (left) and a simple code snippet (right).

structures (like trees, networks, or graphs, in general) is useful for modeling
these structures and for studying the interactions among their components.

In Bioinformatics, for example, graphs provide a natural representation
for chemical compounds and, with the analysis of these graphs, it is possi-
ble to identify characteristics that compounds have in common and also to
highlight their differences. This is useful in databases like Mutagenesis [20],
which contains a set of chemical compounds labeled as muted or non-muted,
and in other similar datasets [22][40].

Another field of application is the analysis of social networks, which
constitutes an approximation of the study of the social interactions within
different groups of people. These social relationships are usually represented
as graphs and can be used, for example, to study community structure [18].

In the Internet, the structure of HTML pages (and the links between
them), allows the identification of patterns in tree and graph format. These
patterns can be used for classifying web pages, which is useful for improving
the results to Web queries [43][65]. Furthermore, it is possible to extract
information about the structure of the Web in order to identify new web
page communities or study the relevance index of a web page within the
results of a query (as done by Google’s PageRank) [13].

Figure 1 shows two application areas where trees provide a good repre-
sentation model: XML documents and software representation.

XML has become a popular format for the storage and exchange of data
due to its flexible semi-structured nature, which allows the representation
of a wide variety of databases as XML documents. XML data thus forms
an important data mining domain [68]. In the past few years, some novel
techniques have been proposed for dealing with XML documents and their
structure. Frequent discriminatory substructures within XML documents
have been used to perform rule-based classification of XML data in XRules
[68] and in effective clustering algorithms for XML data [2]. Apart from be-
ing at the heart of many interesting and challenging data mining problems,
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the discovery of frequent XML patterns is also useful in many other situ-
ations. For instance, the discovery of frequent XML query patterns in the
history log of XML queries can be used to expedite XML query processing,
as the answers to these queries can be cached and reused when the future
queries “hit” such frequent patterns [7].

In Nature, complexity frequently takes the form of hierarchic systems -
the complex system being composed of subsystems that in turn have their
own subsystems -, maybe because hierarchic systems can evolve far more
quickly than non-hierarchic systems of comparable size [55]. Hierarchies also
appear in human problem solving and in Software Engineering (a domain
with no obvious connections with natural evolution). In the form of trees,
hierarchies provide relatively simple descriptions for complex systems when
they are decomposable (or near decomposable). Dependence higraphs [10],
for instance, can be used for representing a hierarchical model of software
systems.

Apart from the aforementioned applications, there are many other ap-
plications of trees and graphs in the resolution of current problems [18]:
VLSI circuit design, the Internet Movie Database(http://www.imdb.com),
information retrieval, multirelational databases, etc..

The use of non-linear data structures in many interesting problems has
spurred the interest of data mining researchers in the development of effi-
cient and scalable data mining techniques for these special data structures.
Trees, in particular, have recently attracted the attention of the research
community, in part because they are particularly amenable to efficient pat-
tern mining techniques. Identifying frequent patterns in a database of trees
is an important task in solving many tree mining problems. These frequent
patterns, also known as frequent subtrees, represent common substructures
in a tree database.

Formally, a tree is a connected and acyclic graph. In a tree, these two
properties hold:

• There is an unique path between each two vertices.

• #E = #V − 1, where #E and #V are the number of edges and
vertices, respectively.

Trees can be classified according to their structural properties as free
trees or rooted trees:

• A tree is said to be free if its edges have no direction, that is, when it
is an undirected graph. A free tree, therefore, has no predefined root.



4 Part I. PhD dissertation

• A tree is rooted if its edges are directed and a special node, called
root, can then be identified. The root is the node from which it is
possible to reach all the other nodes in the tree.

Rooted trees can be classified as:

– Ordered trees, when there is a predefined order within each set
of sibling nodes in the tree.

– Unordered trees, when there is not such a predefined order
among sibling nodes in the tree.

– Partially-ordered trees contain both ordered and unordered
sets of sibling nodes within the same tree. This distinction is
useful when there is an order between some sibling node sets but
it is not necessary to establish an order relationship within all the
sibling node sets of the tree.

Partially-ordered trees appear in different application domains, for exam-
ple, Figure 2 (left) shows the partially-ordered tree representing the purchase
history of a particular customer shown in the XML document in Figure 1
(left). In this case, taken from a typical scenario in market basket analysis,
it is important to preserve the order among the different orders placed by
the same customer, while the order among the items in the same order is
irrelevant.

Another example application of partially-ordered trees can be found in
software mining. Figure 2 (right) shows the higraph [10] representation of
the code snippet in Figure 1(right). When we represent the structure of a
software program as a hierarchy, program segments can be represented as
nodes within trees. Existing dependences among program segments can be
made explicit as order relationships among tree nodes. The resulting trees
are, therefore, partially-ordered trees.

As the goal in itemset mining is to find the frequent itemsets in a trans-
actional database, the frequent tree pattern mining task consists of
discovering of all the frequent subtrees in a large database of trees, also
referred to as a forest, or in a unique large tree.

A subtree can be formally defined just as a subgraph of a tree. However,
different kinds of subtrees can result depending on the way the relationships
between the nodes within a tree are preserved:

• Bottom-up subtrees: A bottom-up subtree T ′ of T (with root v) can
be obtained by taking one vertex v from T with all of its descendants
and corresponding edges, and preserving the order between siblings if
it exists.
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Customer

Order

Milk Bread

Order

Beer Diapers

1

2 3

87 65

9

4

Figure 2: Partially-ordered tree representing XML document in Figure 1
(left) and the dependence higraph corresponding to the code snippet in
Figure 1 (right), which can also be interpreted as a partially-ordered tree.

• Induced subtrees: We can obtain an induced subtree T ′ from a tree
T by repeatedly removing leaf nodes from a bottom-up subtree of T .

• Embedded subtrees: An embedded subtree T ′ cannot break the
ancestor relationships among the vertices of T .

The approach we present in this Ph.D. dissertation is embraced in the
tree mining field. We propose a new algorithm, called POTMiner, which
deals with situations that previous algorithms could not address. In or-
der to improve the time efficiency and reduce the memory consumption of
POTMiner, improved versions of our algorithm have also been developed.

These algorithms correspond to in the data mining step of the KDD
process. In this dissertation, however, we also address three different appli-
cations where other stages of the whole KDD process, such as data prepro-
cessing or pattern evaluation, are involved:

• Mining multirelational databases, where we apply our algorithms to
extract frequent patterns and association rules from this kind of databases.

• Group association rules, a new kind of association rules that lets us
discover and study groups of individuals within a given database and
rank them in order to highlight the most interesting ones according to
different criteria.

• The identification of musical motifs, where we are able to find frequent
melodic and rhythmical patterns in music.

This dissertation is divided into two parts. The first one is devoted to
the description of the problems that we have addressed and the discussion
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of the results we have obtained. The second one collects the publications
where our research has been featured.

In this introduction to Part I, we have already motivated the issues we
address in this Ph.D dissertation. In Section 2, we present the goals we pur-
sued during the elaboration of this dissertation. The summary of the results
we have achieved in each one of the specific problems we have addressed is
presented in Section 3. Section 4 presents our conclusions while, in Section
5, we provide some pointers to future work.

Part II of this Ph.D. dissertation collects the journal papers that have
resulted from the research we have conducted. Those papers have been
classified into two groups: those that are directly related to frequent tree
pattern mining and those that correspond to applications.

2 Objectives

The present dissertation is organized around six objectives that involve
the analysis of existing tree mining techniques, the development of efficient
algorithms that address the partially-ordered tree mining problem, and the
application of data mining techniques to different problem domains.

In particular, the objectives we aimed at during the elaboration of this
Ph.D dissertation were the following ones:

• Analysis of existing tree mining techniques. One of the goals
of this dissertation is to provide a full survey of the state of the art
in the tree mining area, studying the different tree mining algorithms
proposed in the literature. An overview that analyzes a few tree pat-
tern mining algorithms in terms of their efficiency was proposed in
2005 [15]. However, many tree mining algorithms have been devel-
oped since then. We will also propose a different approach in our
survey, where the algorithms are compared in terms of their similar-
ities and their peculiarities are highlighted. Our review will provide
a classification of existing algorithms according to the kind of input
trees they can be applied to and the kind of subtrees they are able to
identify within their input trees.

• Partially-ordered tree mining. Although many tree mining al-
gorithms had been developed prior to this work, none of them was
able to deal with partially-ordered trees. Partially-ordered trees are
useful in several domains like XML document mining or program rep-
resentation, as explained in Section 1. One of the main goals of this
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dissertation is to deal with this kind of patterns. Hence, we will de-
velop an algorithm, called POTMiner (Partially-Ordered Tree Miner),
which will be able to mine partially-ordered trees as well as completely-
ordered and completely-unordered trees. Our algorithm will also be
able to identify induced and embedded patterns in all those trees.

• The design of efficient algorithms is another objective of this dis-
sertation. Since tree mining algorithms must work with huge amounts
of data, efficiency is a requirement for those algorithms, not only in
CPU time but also in memory consumption. Therefore, refinements of
the POTMiner algorithm will be devised in order to be more efficient
both in CPU time and in memory consumption. The results of these
refinements will be a parallel version of POTMiner and two new vari-
ants of the POTMiner algorithm that make different memory/CPU-
time trade-offs.

• With respect to the applications of our fundamental research, we will
address several problems in three different areas:

– Multirelational data mining: Several algorithms have been
proposed in order to mine multirelational databases. Those that
resort to join-based techniques do not preserve the proper support
counts, and others are especially devised for solving classification
or clustering problems. Our goal in this area is to extract fre-
quent patterns from multirelational databases. Our proposal will
be based on transforming the multirelational database into a set
of trees. This way, efficient tree pattern mining algorithms can
be applied to multirelational databases. We will also extract as-
sociation rules from multirelational databases using the identified
tree patterns.

– Group association rules: We will show how a new kind of asso-
ciation rule which we have called group association rule, is useful
to identify groups in databases. Using classical interestingness
measures defined for association rules as our basis, we will also
define interestingness measures for group association rules, which
will let us rank the group association rules and the groups within
the database. This ranking will highlight the most interesting
groups and will help expert users sift through the vast number of
rules that are often obtained when mining a real-word database.

– Identifying transposed motifs in music. The problem of
motif extraction in a piece of music can be seen as a particular
case of mining frequent patterns from a sequence when using
the symbolic representation of the song. Another goal of this
dissertation is to adapt our algorithms to deal with sequences,
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as well as with the particular kind of similarity metric between
motifs that is suitable for this particular application domain (i.e.,
transpositions).

3 Discussion of results

This section summarizes the different proposals contained within this
dissertation and the main results we have obtained fom each one. Two
different subsections group our results in the frequent tree pattern mining
area and in the applications we have addressed.

3.1 Frequent tree pattern mining

In this section, we present the results obtained during the elaboration of
this dissertation that are directly related to the frequent tree pattern mining
problem: a full review of the state of the art, the design and implementation
of a new tree mining algorithm devised to deal with partially-ordered trees,
and the improvements on this algorithm that make it more efficient in terms
of CPU time as well as in terms of memory consumption.

3.1.1 State of the art

Two well-known algorithms are commonly used to identify frequent patterns
in transactional databases: Apriori [4] and FP-Growth [31].

Both Apriori and FP-growth algorithms have been extended to mine
frequent substructures in tree databases, and many frequent tree pattern
mining algorithms proposed in the literature are derived from them. Most
of the existing proposals, however, follow the Apriori iterative pattern min-
ing strategy. Using the Apriori iterative pattern mining strategy [4], each
iteration is broken up into two distinct phases:

• Candidate Generation: Potentially frequent subtree candidates are
generated from the frequent patterns discovered in the previous it-
eration. Most Apriori-like algorithms generate candidates of size k +1
by merging two trees of size k having k − 1 elements in common.

• Support Counting: Given the set of potentially frequent candidates,
this phase consists of determining their actual support and keeping
only those candidates that are actually frequent (a subset of the can-
didates generated in the previous phase).
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Different algorithms have been devised in order to deal with the dif-
ferent kinds of trees and subtrees we mentioned in Section 1. FreqT [1],
AMIOT [32], TreeMiner [67], X3Miner [56], and IMB3Miner [57] are algo-
rithms that work with ordered trees. Unordered trees have also been mined
using algorithms such as Unot [5], SLEUTH [66], or Uni3 [29]. Most of
the algorithms devised to mine free trees are also able to deal with un-
ordered trees, such as HybridTreeMiner [17], Gaston [47] and two different
algorithms that were given the same name, FreeTreeMiner [16] [52].

There are also algorithms that follow the FP-Growth pattern growth
approach, which does not explicitly generate candidates. For instance, the
PathJoin algorithm [62] uses compacted structures called FP-Trees to encode
input data, while Chopper and XSpanner [59] use a sequential codification
for trees, which lets them extract frequent subtrees by discovering frequent
subsequences.

In order to obtain a complete survey of the state of the art in this area,
a handful of noteworthy tree pattern mining algorithms have been ana-
lyzed [37]. They have been compared from different points of view in order
to highlight their similarities and recognize their dissimilarities.

On the one hand, these algorithms have been classified according to
the kinds of input trees they can be applied to (ordered, partially-ordered,
unordered, or free) and the kinds of subtrees they are able to identify within
their input trees (induced, embedded, incorporated, or subsumed). We have
also pointed out which of those algorithms have been especially devised for
discovering closed and/or maximal tree patterns.

On the other hand, the following structural properties of tree pattern
mining algorithms have been fully studied:

• Tree representation: When mining a tree database, it is useful to have
a unique representation for each tree, commonly a string. This canoni-
cal representation makes the problems of tree comparison and subtree
enumeration easier. Several tree representation schemes have been
proposed in the literature.

• Candidate generation approach: As explained above, most of the algo-
rithms proposed in the literature follow the Apriori iterative pattern
mining strategy. Therefore, they decompose each iteration into two
main steps: candidate generation and support counting. We have
studied the different candidate generation approaches and, when ap-
plicable, each algorithm has been classified according to its candi-
date generation strategy. Within the Apriori-based algorithms, most
of them resort to the rightmost expansion method or employ Zaki’s
class-based extension technique for candidate generation [67] [66].
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• Implementation details: The specific implementation details of each al-
gorithm have also been studied. In some cases, these details correspond
to the support counting strategy chosen for each algorithm. In other
cases, those details involve the introduction of ancillary data struc-
tures, which are used by the algorithms to be more efficient. For ex-
ample, vertical [29] [57], RMO [1] [32], or plain occurrence lists [17] [5]
are typically used with the right-most expansion method, while scope
lists [67] [66] are used for those that resort to Zaki’s class-based exten-
sion, in order to speed up the support counting phase.

The journal article associated to this part of the dissertation is:

A. Jiménez, F. Berzal, and J.C. Cubero.
Frequent tree pattern mining: A survey
Intelligent Data Analysis 14(6):603-622,2010.
DOI 10.3233/IDA-2010-0443.

3.1.2 POTMiner: Mining partially-ordered trees

We have extended Zaki’s TreeMiner [67] and SLEUTH [66] algorithms to
mine partially-ordered trees. The algorithm we have devised is able to iden-
tify frequent subtrees, both induced and embedded, in ordered, unordered,
and partially-ordered trees. Hence its name, POTMiner [38], which stands
for Partially-Ordered Tree Miner.

Our algorithm is based on Apriori [4], just like TreeMiner and SLEUTH.
Therefore, it follows an iterative pattern mining strategy. The k−th iteration
of the algorithm mines the frequent subtrees of size k starting from the
frequent subtrees of size k − 1 discovered in the previous iteration. Each
iteration, as in Apriori, is subdivided in two phases, candidate generation
and support counting.

• Candidate generation: POTMiner uses Zaki’s class-based extension
strategy. This method generates (k +1)-subtree candidates by joining
two frequent k-subtrees with k − 1 elements in common. Candidates
that share k − 1 elements in common are grouped into equivalence
classes. Then, elements in the same equivalence class are joined to
create a new candidate. It is important to note that this strategy does
not generate duplicate candidates.

• Support counting : Once POTMiner has generated the potentially fre-
quent candidates, it is necessary to determine which ones are actually
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algorithm POTMiner

Obtain frequent nodes (frequent patterns of size 1)
Build candidate classes C1 from the frequent nodes
for k=2 to MaxSize

for each class P ∈ Ck−1

for each element p ∈ P .
Compute the frequency of p

if p is frequent
then

Create a new class P ′ from p.
Add P ′ to Ck

Figure 3: POTMiner algorithm pseudocode.

frequent by counting their support. Instead of checking if each candi-
date is present in each database tree, which is a costly operation when
dealing with trees, occurrence lists are used to preserve the occurrences
of each pattern in the database, thus facilitating the support counting
phase. Checking whether a pattern is frequent, therefore, consists of
counting the elements in its occurrence list. POTMiner employs scope
lists to preserve the occurrences of a pattern in the tree database. The
scope list for a new candidate is built by joining the scope lists of the
subtrees involved in the generation of the candidate. In order to work
with partially-ordered trees, the elements in the scope lists used in
POTMiner include an additional parameter that is not needed when
dealing with completely-ordered or completely-unordered trees.

The pseudocode of the resulting algorithm is shown in Figure 3. POT-
Miner is O(t∗ (Ln2)MaxSize/(MaxSize−1)!), where t is the number of trees
in the database, L the number of frequent patterns of size 1, and n the size
of the trees. Therefore, our algorithm is linear with respect to the number
of trees in the tree database and its execution time is also proportional to
the number of considered patterns. It should also be noted, however, that
POTMiner has to store the scope lists of all the candidates in memory, which
can be up to LMaxSize−1 ∗ (MaxSize− 2)! different lists in the worst case.

The experiments we have performed show that our algorithm is as ef-
ficient and scalable as existing algorithms that exclusively work on either
ordered or unordered trees.
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The journal article associated to this part of the dissertation is:

A. Jiménez, F. Berzal, and J.C. Cubero.
POTMiner: Mining ordered, unordered, and partially-ordered trees
Knowledge and Information System 23(2): 199-224, 2010
DOI 110.1007/s10115-009-0213-3 199-224.

3.1.3 POTMiner improvements

In order to improve the performance of the POTMiner algorithm, several
issues have been taken into account. On the one hand, the design of a
parallel version of our algorithm has been tackled in order to reduce its
response time. On the other hand, the candidate generation process is very
memory consuming due to the huge number of scope lists that have to be
maintained. Moreover, the size of each scope list is proportional to the
number of embedded occurrences of each pattern, which can also be huge in
large databases. We have devised two variants of the POTMiner algorithm
(POTMiner Light and POTMiner DP) that make different memory/CPU-
time trade-offs to compute scope lists on demand, instead of keeping all of
them in memory, which is impractical in many real-world situations [35].

Parallel POTMiner

Parallelism can be used to improve the performance of data mining algo-
rithms. The parallel implementation of these algorithms lets us exploit the
architecture of modern multi-core processors and multiprocessors.

In order to parallelize POTMiner, we have followed a candidate distri-
bution approach [3]. In POTMiner, generating candidates in parallel simply
involves partitioning the set of all candidate classes to be extended among
the available processors.

The main idea behind the parallel version of POTMiner is that, in each
step of the algorithm, the extension of each candidate class and the corre-
sponding scope list join operations can be performed in parallel. Since these
operations are independent from each other, each one can be assigned to a
different processor without incurring into significant coordination costs.

The parallel version of POTMiner independently processes each class of
size k to obtain candidates of size k + 1 and, at the end of each iteration,
the results of the independently-processed classes are combined to return all
the candidate classes of size k + 1. The pseudocode of the parallel version
of POTMiner is shown in Figure 4.
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algorithm ParallelPOTMiner
Obtain frequent nodes (frequent patterns of size 1)
Build candidate classes C1 from the frequent nodes
for k=2 to MaxSize

for each class P ∈ Ck−1

Extend P in parallel to obtain Pextended

for each class P ∈ Ck−1

Ck = Ck
⋃

Pextended

Figure 4: Parallelization of the POTMiner algorithm.

POTMiner Light

POTMiner builds the scope list of a new candidate pattern by joining the
scope lists of the patterns involved in its generation. POTMiner Light
recursively computes such scope lists directly from the scope lists of the
frequent nodes, i.e., the tree patterns of size 1. The key idea of this re-
cursive process is that it is always possible to infer which subtrees were
used to generate the tree pattern and obtain the corresponding scope lists.
With respect to the efficiency of this approach, POTMiner Light is O(t ∗
(2Ln2)MaxSize/(MaxSize− 1)!), i.e., we introduce a 2MaxSize factor in the
execution time of POTMiner Light in order to reduce its memory consump-
tion. On the other hand, LightPOTMiner only has to store L lists, where L
is the number of frequent patterns of size 1.

Figure 5 shows how the candidate subtree (top) is decomposed in order
to obtain the trees that were used to generate it and its corresponding scope
lists.

POTMiner DP

The recursive on-demand computation of scope lists in POTMiner Light re-
peats the generation of some of these scope lists. We can use dynamic pro-
gramming in order to avoid the repeated computation of the same scope lists,
which leads us to a new variant of our tree pattern mining algorithm: POT-
Miner DP. Our dynamic programming algorithm uses a bottom-up strategy
to build scope lists and, by memorizing the scope lists that are recomputed
by POTMiner Light, it trades CPU time for memory space (the space needed
to store the scope lists that will be reused). The trees depicted in a darker
color in Figure 5 are the ones whose scope lists are recomputed by POT-
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Figure 5: Recursive scope list generation in POTMiner Light.

Miner Light and they are the trees whose scope lists will be kept in memory
by POTMiner DP.

POTMiner DP is O(t ∗ MaxSize2 ∗ (Ln2)Maxsize/(Maxsize − 1)!). In
POTMiner DP, we introduce a (MaxSize2) factor in its execution time
with respect to our original POTMiner algorithm. It should be noted that
this factor is much lower than the factor introduced by POTMiner Light,
2MaxSize, especially for large values of MaxSize. On the other hand, POT-
Miner DP needs to store L scope lists corresponding to the frequent patterns
of size 1, as POTMiner Light, plus k−1 ancillary lists to speed up the scope
list computation using a dynamic programming algorithm.

Figure 6 shows the order in which operations are performed by POT-
Miner DP in order to build the scope list of a pattern of size 5 (the same
pattern that was used in Figure 5 to illustrate the redundant computations
in POTMiner Light). During a first step, the subtrees involved in the scope
list computation are identified from right to left and top-down following the
hollow arrows. In a second step, scope lists are generated from left to right
and bottom-up following the solid arrows.

Table 3.1.3 summarizes the efficiency of the three POTMiner variants we
have devised. POTMiner is the fastest version, although it is also the one
that requires more memory. On the other hand, POTMiner Light is the one
with less memory consumption, although it is also the slowest. POTMiner
DP provides the most attractive trade-off in terms of time and space.
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Figure 6: POTMiner DP computation of scope lists.

Algorithm CPU Time Memory consumption

(number of scope lists)

POTMiner O

(
t ∗ (Ln2)MaxSize

(MaxSize− 1)!

)
O(LMaxSize−1 ∗ (MaxSize− 2)!)

POTMiner Light O

(
t ∗ (2Ln2)MaxSize

(MaxSize− 1)!

)
O(L)

POTMiner DP O

(
t ∗MaxSize2 ∗ (Ln2)Maxsize

(Maxsize− 1)!

)
O(L + k − 1)
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The journal article associated to this part of the dissertation is:

A. Jiménez, F. Berzal, and J.C. Cubero.
Mining frequent patterns from XML data: Efficient algorithms and
design trade-offs
Submitted to Expert Systems with Applications

3.2 Applications

In this section, we present three applications that have been addressed dur-
ing the preparation of this dissertation: mining multirelational databases,
the identification of group association rules, and the identification of trans-
posed motifs in music.

3.2.1 Multirelational data mining

Many data mining techniques, ranging from clustering and classification to
association rule mining, have been developed to extract useful information
from databases. However, these techniques usually require all the informa-
tion to be in a single relation.

In multirelational database mining problems, there are several relations
involved. A typical solution to these problems consists of joining all the
relations of our interest into a single relation, usually called universal rela-
tion [24] [41][42]. Then, classical data mining techniques can be applied to
this universal relation. Other techniques have been specially devised to deal
with classification [48] [63] or clustering [64] problems.

Our proposal consist of identifying frequent patterns in multirelational
databases. In this dissertation, we introduce two different schemes for repre-
senting multirelational databases as sets of trees. Once we have transformed
a multirelational database into a set of trees, we can apply existing tree
mining techniques to identify frequent patterns in the trees representing the
multirelational database [36].

The analysis of multirelational databases typically starts from a partic-
ular relation. This relation, which we will call target relation (or target
table), is selected by the end user according to her specific goals. The main
idea behind our two representation schemes is building a tree from each tu-
ple in the target relation and following the links between relations (i.e. the
foreign keys) to collect all the information related to each tuple in the target
relation. Our tree-based representation schemes are the following:
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Figure 7: Multirelational database schema in UML notation (left) and its
corresponding relations with some tuple examples (right).

• The key-based tree representation scheme is inspired by the concept of
identity in the relational model. Relational databases rely on primary
keys to ensure that each table row can be univocally referenced. In
these trees, each tuple is identified by its primary key, which is placed
at the root of the subtree representing the tuple. The values of each
attribute in the tuple will be children nodes of the one representing its
primary key.

• The object-based tree representation scheme is based on the concept
of identity in object-oriented models. In the object model, each object
is already unique, and no specific key is needed. That means that you
can create objects that have identical field values but are still differ-
ent objects. In this representation scheme, we will use intermediate
nodes as roots of the subtrees representing each tuple in the multire-
lational database. All the attribute values within the tuple, including
the primary key attribute values, will be children of the root node
representing the tuple in the tree.

Figure 7 (left) depicts the conceptual schema of a multirelational database
using the UML notation [12]. Given such a conceptual schema, we can de-
rive the suitable logical data model for a relational database [27] [54]. The
relations obtained from the conceptual model are shown in Figure 7 (right)
with some example tuples. Figure 8 shows the key-based (top) and the
object-based (bottom) tree representation of the multirelational database
instance shown in Figure 7.

We have identified induced and embedded subtrees using both represen-
tation schemes. Therefore, we have obtained four different kinds of patterns:
induced key-based (IK), induced object-based (IO), embedded key-based
(EK) and embedded object-based (EO) patterns. We have studied the for-
mal relationships among these four set of patterns and we have proved that:
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a) Key-based tree representation.
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person.car[ownerID].type=SUV

person.car[ownerID].make=Chevrolet
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person.idhouse.location=suburb

b) Object-based tree representation.

Figure 8: Tree representation schemes for the multirelational database
shown in Figure 7.
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IK ⊆ EK ⊂eq IO ⊆ EO

Induced and embedded patterns provide us different information about
the multirelational database. Induced patterns preserve the structure of the
original trees in the database. However, in order to obtain useful informa-
tion from the multirelational database, the identification of large induced
patterns is often necessary. Embedded patterns are typically smaller than
the induced patterns required to represent the same information. However,
if we use embedded patterns, some of the relationships among the nodes in
the original trees will not be preserved.

The key-based and the object-based tree representation schemes also pro-
vide us different information about the multirelational database. When we
use the key-based representation scheme, no induced patterns with informa-
tion about the target table can be identified. Therefore, the object-based
representation scheme is our only choice if we are interested in induced pat-
terns, which preserve the original structure of the trees in the database.

Using the object-based representation scheme we can represent patterns
that show that a particular object in a given relation is related to at least n
objects in another relation. An example of this kind of pattern is shown in
Figure 9. That pattern indicates that people living in suburbs with at least
two cars are frequent in our database, without any references to particular
car features. This kind of pattern cannot be identified with traditional data
mining techniques and it cannot be identified using the key-based represen-
tation scheme.

person.car[ownerID]person.car[ownerID]

person

person.idhouse.location=suburb

Figure 9: Embedded pattern from the object-based tree representation of
the multirelational database in Figure 7, as shown in Figure 8 b).

In this dissertation, we also describe how tree patterns can be employed
to discover association rules from multirelational databases. We also study
the use of constraints, which are useful for reducing the number of rules that
are returned to the user, and help us improve the performance of the rule
mining process.

The journal article associated to this part of the dissertation is:
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A. Jiménez, F. Berzal, and J.C. Cubero.
Using trees to mine multirelational
Submitted to Data Mining and Knowledge Discovery

3.2.2 Group association rules

The approach we propose in this section intends to solve the second-order
data mining problem that often arises in practice. Researchers in the data
mining field have traditionally focused their efforts on obtaining fast and
scalable algorithms in order to deal with huge amounts of data. When
dealing with association rules, for instance, the overwhelming number of
discovered rules, usually in the order of thousands or even millions, makes
them of limited use in practice. The mere volume of these sets of rules
causes the aforementioned second-order data mining problem [9].

Databases can naturally contain groups of individuals that share some
characteristics [50]. For example, within a census database, we can find
many different groups of individuals (e.g. according to their sex, their mar-
ital status, whether they have children, or just by combining several of such
features). Our proposal consists of automatically identifying potentially
useful groups of related association rules and ranking the resulting group
association rules so that expert users can easily sift through vast amounts
of association rules [34].

Let I = {I1, I2, ..., Im} be a set of items. Let D be a set of database
transactions where each transaction T is a set of items such that T ⊆ I.
Let S be a set of items. A transaction T is said to contain S if and only
if S ⊆ T [30]. An association rule is an implication of the form A ⇒ C,
where A ⊆ I, C ⊆ I , and A ∩ C = ∅.

We define a group as a set of items G = {G1, G2, ..., Gn} such that
G ⊆ I. A group association rule G : A ⇒ C is an association rule
A ⇒ C defined over the group G. In other words, a group association rule
G : A ⇒ C is equivalent to the classical association rule GA ⇒ C.

In this dissertation, we explain how to adapt the classical measures de-
fined to evaluate the interestingness of association rules [53] [28] [8] to group
association rules and we also propose some novel interestingness measures.
We have studied some of the formal properties of these new measures as well
as how these new measures can be useful for evaluating the interestingness
of group association rules:

• Group gain represents the difference between the confidence in the
presence of the consequent when we know that the antecedent appears
in the group, and the support of the consequent within the group.
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• Group gain factor highlights the most frequent subgroups within a
group.

• Variation highlights anomalies because it overweighs those subgroups
that have a low support in the group.

• Impact represents the number of individuals within a group that are
directly affected by a given rule.

• Impact ratio represents the ratio of the impact of the rule within the
group with respect to the size of the group.

We have used group association rules to describe groups in a database
and to provide a ranking of the most interesting rules. Given that groups
can be described by many different association rules, if we intend to rank
groups, we must somehow compute an aggregate value that represents the
overall interestingness of the group. Impact seems to be a good candidate
for estimating the potential interestingness of the group, since it takes into
account the number of individuals that are affected by each rule within
the group. We have then defined a weighted impact measure for the rules
within a group using different interestingness measures as weights. We have
also defined a weighted impact ratio measure in order to obtain a more
balanced ranking for groups of disparate size. Depending on their particular
goals, users should choose which measure to employ in order to highlight the
potentially most interesting groups.

We have performed experiments on a real-world database that have cor-
roborated our intuitions on the behavior of different ranking criteria and
demonstrated that our approach can be useful in practice for dealing with
the huge amount of association rules that can be derived from real-world
databases.

The journal article associated to this part of the dissertation is:

A. Jiménez, F. Berzal, and J.C. Cubero.
Interestingness measures for association rules within groups
Submitted to Knowledge and Information Systems.

3.2.3 Identifying transposed motifs in music

The third applied line of research we address in this dissertation is the
identification of transposed motifs in music.

The discovery of frequent musical patterns (motifs) is a relevant prob-
lem in musicology. In music, we can find several entities that can be re-
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peated, such as notes, intervals, rhythms, and harmonic progressions. In
other words, music can be seen as a string of musical entities, such as
notes or chords, on which pattern recognition techniques can be applied [33]
[51] [44] [49].

We can define a music motif as the smallest meaningful melody element.
As a rule, motifs are groups of notes no longer than one measure. In human
speech, a word is a motif. In the same way that sentences consist of words,
motifs form musical phrases. A melody is formed by several main motifs,
which are repeated, developed, and opposed one against another within the
melody evolution.

When analyzing a music work, musicians carry out a deep analysis of the
musical material. This analysis includes motif extraction as a basic task.
Musician studies include contextual information (such as the author, the
aim, or the period) but also morphological data from the music itself [14].
Looking for the motifs that build the whole work is the first step that a
musician takes when faced with a music sheet.

In this dissertation, we address the problem of discovering long motifs
that are repeated within a single song. Our hypothesis is that those pat-
terns probably correspond to the chorus or the more significant part of the
song [39]. However, it is frequent that, within a melody, motifs are repeated
not only in an exact way but also in a similar way.

In this dissertation, hence, we considered transposed motifs: those motifs
that preserve the interval distances within notes although the notes are not
the same than in the original motif. We also took into account the similarity
between notes that have the same pitch but differ in their duration. There-
fore, our goal in this application was to find frequent melodic and rhythmical
patterns in music starting from the MusicXML[61] representation of a song.

First, we transformed this symbolic representation into a sequence of
notes that are defined at their lowest level (pitch and duration). Then, we
adapted the POTMiner algorithm to work with sequences, developing a new
version, called SSMiner (Similar sequence miner), that mines sequences (i.e.,
degenerate trees where each node has, at most a single child). SSMiner can
be used to find common motifs in several songs and also find repetitions
within a song.

Figure 10 shows a piece of an example song. In this example, the motif
G4 A4 G4 E4 appears three times within the sequence. The motif D5 E5
D5 B4 is transposed up one fifth with respect to G4 A4 G4 E4. Therefore,
if we consider this transposition, the support of the motif G4 A4 G4 E4 in
this piece is 4, even though its exact support is 3.
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Figure 10: Sample piece of music: G4 A4 G4 E4 D5 E5 D5 B4 G4 A4 G4
E4 A4 G4 B4 G4 A4 G4 E4.

SSMiner, as POTMiner, is an Apriori-based algorithm. Therefore, it
has two phases: candidate generation and support counting. The main
differences between POTMiner and SSMiner are:

• In the candidate generation phase of SSMiner, only candidates with a
sequence form can be generated, i.e., each node of the candidate has
an unique child.

• In the support counting phase, it is necessary to add a new parameter
to the scope lists in order to preserve the similarity between the can-
didate pattern and the particular occurrence (i.e. it can be an exact
occurrence or a transposed one).

Regarding SSMiner computation time, SSMiner is O(LMaxSize · t · (S −
MaxSize + 1)2). Therefore, our algorithm execution time is proportional
to the number of sequences in the sequence database (t = 1 in our motifs
identification problem), and to the number of patterns than can be identified
(LMaxSize). Finally, its execution time is quadratic with respect to the size
of the sequences (S).

Our experiments suggest that our approach performs well in a set of
randomly-selected songs. It is remarkable that considering transposition
but not rhythm results in more patterns belonging to the chorus of the
songs. This fact indicates that patterns are not always exactly repeated
as themselves, but slightly modified. Therefore, our approach for mining
transposed motifs is useful in this particular scenario.

Audio-thumbnailing (i.e., summarizing or abstracting) is an interesting
application in the musical domain that is related to motif extraction[69][6].
It provides the user with a brief excerpt of a song that (ideally) contains
the main features of the work. This technique is also important for indexing
large datasets of songs, which can be browsed more quickly and searched
more efficiently if indexed by those small patterns instead of being indexed
by the whole song.

The journal article associated to this part of the dissertation is:



24 Part I. PhD dissertation

A. Jiménez, M. Molina-Solana, F. Berzal and W. Fajardo.
Mining transposed motifs in music
Journal of Intelligent Information Systems 36:99-115, 2011.
DOI 110.1007/s10844-010-0122-7.

4 Concluding remarks

The results of this Ph.D. thesis can be grouped into two broad categories,
those directly related to tree pattern mining techniques and those that refer
to applications.

Frequent tree pattern mining

• We have completed a full survey of the state of the art in tree pattern
mining by studying the different tree mining algorithms proposed in
the literature. This review provides a classification of the algorithms
according to the kinds of input trees they can be applied to and the
kinds of subtrees they are able to identify within their input trees. We
have also examined these algorithms and compared them in order to
highlight their similarities and differences.

• We have devised a new algorithm, called POTMiner, that is able to
work with partially-ordered trees, as well as completely-ordered and
completely-unordered trees. This algorithm is as efficient and scal-
able as existing algorithms that exclusively work on either ordered or
unordered trees.

• The POTMiner algorithm has been improved in order to reduce its
execution time and its memory consumption. In order reduce its ex-
ecution time, a parallel version of POTMiner has been implemented.
Parallel POTMiner lets us exploit the architecture of modern multi-
core processors and multiprocessors. Furthermore, POTMiner Light
and POTMiner DP, other two variants of POTMiner, have been de-
vised to reduce its memory consumption.

Applications

• Multirelational data mining: Several algorithms have been developed
in order to mine multirelational databases. Those that resort to join-
based techniques do not preserve the proper support counts, while oth-
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ers are especially oriented to classification or clustering problems. Our
proposal consists of transforming the multirelational database into a
set of trees. This way, efficient pattern mining algorithms that exist for
working with trees can be applied. Furthermore, we discover patterns
that previous techniques could not identify within the multirelational
databases. Several kinds of tree patterns can now be extracted from
the multirelational database and we have studied the relationships
among these sets of patterns. Moreover, we have extracted associa-
tion rules from the multirelational database using these tree patterns.

• Group association rules: Databases can naturally contain groups of in-
dividuals that share some characteristics. The goal of our approach is
to discover such groups in the database and describe them using a new
kind of association rule which we have called group association rules.
We have described how to adapt some of the interestingness measures
that have been defined for standard association rules to group asso-
ciation rules and how these modified measures will help us rank the
different groups in a database in order to highlight the most interesting
ones.

• Identifying transposed motif in music: The study of frequent patterns,
called motifs in this context, that appear in the melody of a song is use-
ful, for example, for determining the chorus of the song. The problem
of motif extraction in a piece of music can be seen as a particular case
of mining frequent patterns from a sequence when using the symbolic
representation of the song. Therefore, we have adapted our POTMiner
algorithm to deal with sequences. The resulting algorithm, called SS-
Miner, is able to identify frequent motifs in songs even when they are
transposed.

5 Future work

In this section, we provide some pointers to future lines of research that
stem from the proposals described in this dissertation.

On the one hand, there are several extensions and modifications that can
be done to POTMiner in order to work on other interesting situations:

• Following the idea of finding similar sequences in SSMiner, we plan
to extend POTMiner to deal with partial or approximate tree match-
ing [60]. This is a natural extension to POTMiner that can take ad-
vantage of the similarity parameter included in SSMiner to represent
this approximate matching. The transpositions in the music problem
are, in fact, a crude kind of approximate matching. This feature will
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be useful, for instance in many real-world problems, from entity res-
olution in XML documents to program element matching in software
mining.

• Our algorithms have been applied to crisp databases. It would also
be interesting to apply it to fuzzy databases, where the attributes can
have fuzzy values [19]. The use of trees in this kind of databases can
be also useful in order to extract association rules from them [21].

Our tree mining approach has already been applied in three different
areas, but we also consider some improvements on this applications:

• In the case of the multirelational databases, more constraints can be
applied into the tree pattern mining process as well as in the rule
mining part to reduce the number of rules to be considered. The use
of this constraints can be useful, for instance, when using the resulting
rules to build classifications models [11].

• We have extracted group association rules from databases using a com-
pletely unsupervised approach. The use of expert knowledge can help
focus on some groups that are specially interesting in the database
and to reduce the number of groups and group association rules con-
sidered. This way, a semi-supervised tool for analyzing groups within
a database could be devised.

• With respect to the music application, we intend to employ interval
strings to represent notes rather than the absolute pitches we have
used in the experiments reported in this paper. We will also consider
more abstract representations of melodies, such as the one proposed
by Narmour [45], where melodies are represented at a higher level than
notes but low enough to capture the essence of the melody.

Finally, we also find interesting the application of our algorithm to mine
partially-ordered trees in new application domains:

• Longitudinal studies are research studies where each individual is re-
peatedly observed through time, so that it is possible to evaluate
changes in the individuals over time [25] [23]. Our proposal would
consist of representing the longitudinal study as a set of trees where a
partially-ordered tree is built for each individual in the study. Then,
the different attributes of the study will be unordered nodes in the
tree, while the different observations will preserve its relative order.
We can extract patterns from these studies and evaluate if different in-
dividuals present similar or different patterns. Furthermore, groups of
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individuals could be identified in longitudinal studies using the group
association rules described in this dissertation.

• XML [46] documents, due to their hierarchical structure, are directly
amenable to tree mining techniques. Since XML documents can con-
tain both ordered and unordered sets of nodes, partially-ordered trees
provide a better representation model for them and POTMiner is,
therefore, better suited for mining them than previous tree mining
techniques.

• In Software Engineering, it is usually acknowledged that mining the
wealth of information stored in software repositories can “support the
maintenance of software systems, improve software design/reuse, and
empirically validate novel ideas and techniques” [26]. For instance,
there are hierarchical program representations, such as dependence
higraphs [10], that can be viewed as partially-ordered trees, hence the
potential of tree mining techniques in software mining.
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Abstract. The use of non-linear data structures is becoming more and more common in many data mining scenarios. Trees, in
particular, have drawn the attention of researchers as the simplest of non-linear data structures. Many tree mining algorithms
have been proposed in the literature and this paper surveys some of the recent work that has been performed in this area.
We examine some of the most relevant tree mining algorithms and compare them in order to highlight their similarities and
differences.
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1. Introduction

Many data mining problems are best represented with the help of non-linear data structures. Graphs,

for instance, are commonly used to represent data and their relationships in different problem domains,

ranging from web mining [18] and XML document mining [2,20,39] to bioinformatics [5] and social

networks [17].

The use of non-linear data structures in many interesting problems has spurred the interest of data

mining researchers in the development of efficient and scalable data mining techniques for these special

data structures. Trees, in particular, have recently attracted the attention of the research community, in

part because they are particularly amenable to efficient pattern mining techniques.

Identifying frequent patterns in a database of trees is an important task in solving many tree mining

problems. These frequent patterns, also known as frequent subtrees, represent common substructures in

a tree database.

The aim of this paper is to survey the state of the art in tree pattern mining. Chi et al.’s survey [8]

analyzes a few tree pattern mining algorithms in terms of their efficiency. Our survey provides a more

comprehensive overview of the different tree pattern mining algorithms that have been proposed in the

literature. We try to highlight the commonalities among different frequent tree pattern mining algorithms

and reveal the peculiarities of each one.

Our paper is organized as follows. We introduce some standard terminology and notation in Section 2.

Tree mining techniques are analyzed in Section 3. A survey of tree mining algorithms according to the

kinds of input trees they can be applied to and the kinds of subtrees they are able to identify within their

input trees can be found in Section 4. Finally, Section 5 summarizes and concludes our survey paper.

∗Corresponding author. E-mail: aidajm@decsai.ugr.es.

1088-467X/10/$27.50  2010 – IOS Press and the authors. All rights reserved
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Fig. 1. Example dataset with different kinds of rooted trees (from left to right): (a) completely-ordered tree, (b) and (c)
partially-ordered trees, (d) completely-unordered tree.

2. Terminology and notation

We will first review some basic concepts and provide some definitions related to labeled trees, their
representation, and the kinds of tree patterns we might be interested in.

2.1. Trees

A labeled tree is a connected acyclic graph that consists of a vertex set V , an edge set E ⊆ V × V ,
an alphabetΣ for vertex and edge labels, and a labeling function L : V ∪E → Σ∪ ε, where ε stands for
the empty label. Optionally, a tree can also have a predefined root, v0, and a binary ordering relationship
6 defined over its nodes (i.e. ‘6’ ⊆ V × V ). The size of a tree is defined as the number of nodes it
contains.
A tree is rooted if its edges are directed and a special node v0, the root, can be identified. The root is

the node from which it is possible to reach all the other vertices in the tree. In contrast, a tree is free if
its edges have no direction, that is, when the tree is undirected. Therefore, a free tree has no predefined
root. Rooted trees can be further classified into:

– Ordered trees, when there is a predefined order 6 within every set of siblings in the trees.
– Unordered trees, when there is not such a predefined order among siblings.
– Partially-ordered trees, which are trees that have both ordered and unordered sets of siblings. This
can be useful when the order within some sets of siblings is important but it is not necessary to
establish an order relationship for all sets of siblings.

Figure 1 shows some rooted trees, from a completely-ordered tree (left) to a completely-unordered
tree (right). In this figure, sibling nodes are joined by an arc when there is an order relationship defined
between them. When such an arc is not present, siblings do not present a predefined order.

2.2. Tree representation

A canonical tree representation is an unique way of representing a labeled tree. This canonical
representation makes the problems of tree comparison and subtree enumeration easier. We now proceed
to describe the most common canonical tree representation schemes.
Three alternatives have been proposed in the literature [8] to represent trees as strings:

– Depth-first codification: The string representing the tree is built by adding the label of each tree
node in a depth-first order. A special symbol ↑, which is not in the label alphabet, is used when the
sequence comes back from a child to its parent.

– Breadth-first codification: Using this codification scheme, the string is obtained by traversing the
tree in a breadth-first order, i.e., level by level. Again, we need an additional symbol $, which is not
in the label alphabet, in order to separate sibling families.
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Fig. 2. Three alternative representations of the same unordered tree.

– Depth-sequence-based codification: This codification scheme is also based on a depth-first traversal

of the tree, but it explicitly stores the depth of each node within the tree. The resulting string, known

as depth sequence, is built with (d, l) pairs where the first element, d, is the depth of the node in the
tree and the second one, l, is the node label.

2.2.1. Ordered tree representation

The three schemes explained above can be directly applied to the representation of rooted ordered

trees. Since all sets of siblings in such trees are ordered, there is a single string that represent each

ordered tree. This unique string is usually referred to as the canonical representation of the tree.

The depth-first codification of the (a) tree in Fig. 1 is ACB↑A↑↑B↑, the breadth-first codification for

that tree is A$CB$BA, and its depth-sequence-based codification is (0,A) (1,C) (2,B) (2,A) (1,B).

2.2.2. Unordered tree representation

The representation of an unordered rooted tree might change depending on how we order its sets of

sibling nodes, as shown in the example in Fig. 2. If we used a depth-first codification scheme, we would

have to choose among the following strings:

– ABA↑C↑B↑↑C↑CB↑A↑↑.

– ABA↑C↑B↑↑C↑CA↑B↑↑.

– ABA↑C↑B↑↑CA↑B↑↑C↑.

The canonical representation for an unordered tree is defined as the minimum codification, in lexico-

graphical order, of all the ordered trees that can be derived from it.

In the previous example, we would choose the third string as the canonical representation because

it is the minimum depth-first codification in lexicographical order (the symbol ↑ is considered to be

lexicographically greater that any other symbol in the tree labeling alphabet). It should be noted that,

even though we have used a depth-first codification in our example, we could have used any of the other

codification schemes we have described above.

2.2.3. Partially-ordered tree representation

Partially-ordered trees also have different representations depending on the order of their sibling nodes.

As in unordered trees, their canonical representation is the minimum codification, in lexicographical

order, of all the ordered trees that can be derived from their depth-first representation strings.

The possible codifications for the tree in Fig. 1 (c) are:

– ACC↑A↑↑B↑

– AB↑CC↑A↑↑

The canonical representation for this tree is the second one because it is the minimal codification.
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Fig. 3. Two free trees: a centered tree (top) and a bicentered tree (bottom).

2.2.4. Free tree representation

Free trees have no predefined root, but it is possible to select one node as the root in order to get a
unique canonical representation of the tree, as described in [8,11].
The procedure consists of repeatedly removing leaf nodes (with their incident edges) from the free

tree until a single vertex or two adjacent vertices remain. If there is a single remaining node, the tree
is centered. If there are two remaining nodes, then the tree is said to be bicentered. Figure 3 shows
examples of both kinds of trees.
When the tree is centered, the center node is uniquely identified as the root node to obtain a rooted

unordered tree whose canonical representation can be obtained as we explained above.
When the tree is bicentered, two rooted unordered trees can be obtained from the free tree, one from

each bicenter node. The rooted unordered tree with a smaller canonical representation is then selected
as the canonical representation of the free tree.

2.3. Tree patterns

A subtree could be formally defined just as a subgraph of a tree. However, different kinds of subtrees
can result depending on the way the relationships between the nodes within a tree are preserved:

– Bottom-up subtrees: A bottom-up subtree T ′ of T (with root v) can be obtained by taking one
vertex v from T with all of its descendants and corresponding edges, and preserving the order
between siblings if it exists. Formally, in a rooted tree T with vertex set V and edge set E, we say
that a tree T ′ with vertex set V ′ and edge set E′ is a bottom-up subtree of T if and only if:

1. V ′ ⊆ V

2. E′ ⊆ E

3. The labeling of V ′ and E′ in T is preserved in T ′.
4. The order among siblings, when it exists in T , is preserved in T ′.
5. For every vertex v ∈ V , if v ∈ V ′ then all descendants of v ∈ T are also in V ′.

– Induced subtrees: We can obtain an induced subtree T ′ from a tree T by repeatedly removing leaf
nodes from a bottom-up subtree of T .
We can define induced subtrees as bottom-up subtrees without the last fifth constraint above. For
any vertex v ∈ V , when v ∈ V ′, there is no need for all of its descendants to be also in V ′. However,
if v is the parent of w in T and both of them are present in T ′, then v must also be the parent of w

in T ′, since E′ ⊆ E.
In a rooted tree T with vertex set V and edge setE, we say that a tree T ′ with vertex set V ′ and edge
set E′ is an induced subtree of T if and only if:
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Fig. 4. Different kinds of subtrees (from left to right): (a) original tree, (b) bottom-up subtree, (c) induced subtree, (d) embedded
subtree.

1. V ′ ⊆ V

2. E′ ⊆ E

3. The labeling of V ′ and E′ in T is preserved in T ′.
4. The order among siblings, when it exists in T , is preserved in T ′.

– Embedded subtrees: An embedded subtree cannot break the ancestor relationships among the
vertices of T .

In a rooted tree T with vertex set V and edge setE, we say that a tree T ′ with vertex set V ′ and edge
set E′ is an embedded subtree of T if and only if:

1. V ′ ⊆ V

2. The labeling of V ′ and E′ in T is preserved in T ′.

3. If (v1, v2) ∈ E′ then v1 is an ancestor of v2 in T .

4. For all v1, v2 ∈ V ′: v1 < v2 in T ′ if and only if v1 < v2 in T .

– Incorporated subtrees: The ancestor-descendant relationships in the original tree do not have to

hold in its incorporated subtrees [6]. Incorporated subtrees still preserve the order relationship
within the sets of siblings.

In a rooted tree T with vertex set V and edge setE, we say that a tree T ′ with vertex set V ′ and edge

set E′ is an incorporated subtree of T if and only if:

1. V ′ ⊆ V

2. The labeling of V ′ and E′ in T is preserved in T ′.
3. If v1 is an ancestor of v2 in T ′ then v1 is an ancestor of v2 in T .

4. For all v1, v2 ∈ V ′: v1 < v2 in T ′ implies that v1 < v2 in T .

It should be noted that, when v1 is an ancestor of v2 in T , v1 and v2 might end up as siblings or

cousins in the incorporated subtree T ′.
– Subsumed subtrees: Subsumption, which was introduced in [30], is even laxer than incorporation.

The ancestor-descendant relationships in the original tree do not have to hold in its subsumed

subtrees, as happened with incorporated subtrees. In addition, subsumed trees do not preserve the
order relationship among the nodes in the original tree.

In a rooted tree T with vertex set V and edge setE, we say that a tree T ′ with vertex set V ′ and edge

set E′ is a subsumed subtree of T if and only if:

1. V ′ ⊆ V

2. The labeling of V ′ and E′ in T is preserved in T ′.
3. If v1 is an ancestor of v2 in T ′ then v1 is an ancestor of v2 in T .

As above, when v1 is an ancestor of v2 in T , v1 and v2 might also end up as siblings or cousins in the
subsumed subtree T ′. It should also be noted that tree subsumption is based on Prolog subsumption.
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Fig. 5. Inclusion relationships among tree patterns.

This means that the mapping of pattern nodes to data nodes is not required to be injective (i.e., the

same data node might appear several times in the subsumed pattern).

As shown in Fig. 5, bottom-up tree inclusion is more restrictive than induced tree inclusion. Induced

tree inclusion, in turn, is more restrictive than tree embedding. Therefore, all induced subtrees are also

embedded subtrees. Likewise, tree embedding is more restrictive than tree incorporation. Finally, tree

incorporation is more restrictive than tree subsumption, which defines the weakest inclusion relationship

between trees.

Formally, we can assert that, for all trees T , T ′: T ′ is a bottom-up subtree of T ⇒ T ′ is an induced

subtree of T ⇒ T ′ is an embedded subtree of T ⇒ T ′ is an incorporated subtree of T ⇒ T ′ is a subsumed

subtree of T .

Figure 4 shows some examples of the different kinds of subtrees that could be identified in the tree

shown as Fig. 4 (a). If we start from that original tree, we can identify the bottom-up subtree shown in

(b) by taking the rightmost node C and all its descendant. The induced subtree in (c) can be obtained
by taking the root node A with all its descendants and repeatedly removing some leaves. Finally, the

embedded subtree shown in (d) can also be derived from the original tree by removing some leaves

and two of the nodes in the intermediate level of the tree, yet still preserving the ancestor-descendant

relationship between the nodes in the original tree.

It is important to note that we can consider the (d) subtree to be present in the (a) tree in at least three
different ways depending on how we match the subtree nodes to the original tree. For example, the B

node in the embedded subtree can be matched to any of the leaves in (a) with the label B.
Figure 6 shows examples of incorporation and subsumption. Please note that all the subtrees shown

in the second row of Fig. 6 are present in both trees of the example dataset. Since incorporated and

subsumed subtrees generalize embedded subtrees, mining these kinds of subtrees typically leads to a

huge number of identified patterns, which can be unmanageable in practice. Hence, they have been used

only in marginal applications [6].
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Fig. 6. Examples of incorporated and subsumed subtrees that appear in both trees of the database [7].

3. Tree pattern mining

Once we have introduced some basic terminology and notation, we can proceed to analyze the

algorithms that have been proposed for tree pattern mining.

The goal of frequent tree mining is the discovery of all the frequent subtrees in an unique large tree T ,

or in a large database of trees D, also referred to as forest.

Let δT (S) be the occurrence count of a subtree S in a tree T and dT a variable such that dT (S) = 0 if

δT (S) = 0 and dT (S) = 1 if δT (S) > 0. We define the support of a subtree as σ(S) =
∑

T∈D
dT (S),

i.e, the number of trees in D that include at least one occurrence of the subtree S. Analogously, the

weighted support of a subtree is defined as σw(S) =
∑

T∈D
δT (S), i.e., the total number of occurrences

of S within all the trees in D.

We say that a subtree S is frequent if its support is greater than or equal to a predefined minimum

support threshold. We define Fk as the set of all frequent subtrees of size k.

A frequent tree T is maximal (also called maximal agreement subtree [41]) if T is not a subtree of

another frequent tree in D, while T is closed if it is not a subtree of another frequent tree with exactly

the same support in D.

3.1. Pattern mining strategies

Many frequent tree pattern mining algorithms have been proposed in the literature. These algorithms

are usually derived from one of the following two frequent pattern mining algorithms: Apriori [3] or

FP-Growth [14]. These well-known algorithms are commonly used to identify frequent patterns in

transactional databases and they have been extended to mine frequent substructures in tree databases.

Most tree pattern mining algorithms follow the Apriori iterative pattern mining strategy [3], where

each iteration is broken up into two distinct phases:

– Candidate Generation: Potentially frequent subtree candidates are generated from the frequent

patterns discovered in the previous iteration. Most Apriori-like algorithms generate candidates of

size k + 1 by merging two trees of size k having k − 1 elements in common.
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Fig. 7. Candidates generated by the rightmost expansion method when the label alphabet is {A,B}.

– Support Counting: Given the set of potentially frequent candidates, this phase consist of determining

their actual support in D and keeping only those candidates that are actually frequent (a subset of

the candidates generated in the previous phase).

Other algorithms follow the FP-Growth [14] pattern growth approach and they do not explicitly

generate candidates. For instance, the PathJoin algorithm [35] uses compacted structures called FP-

Trees to encode input data, while Chopper and XSpanner [34] use a sequential codification for trees and

they extract frequent subtrees by discovering frequent subsequences.

Sincemost algorithms follow theApriori approach, wewill first review several strategies that have been

proposed for candidate subtree generation and support counting. Later, we delve into the implementation

details of particular tree mining algorithms.

3.2. Candidate generation

The first step in all Apriori-based pattern mining algorithms consists of generating a set of potentially

frequent patterns. This set of candidate patterns is complete if it is a superset of the actual frequent

pattern set. Several candidate generation strategies have been proposed for trees and all of the strategies

we discuss in this paper are complete. They are also valid for all kinds of trees since they rely on the

canonical tree representation schemes discussed in Section 2.2.

We describe some candidate generation strategies in the following paragraphs:

– Rightmost expansion

The rightmost expansion strategy generates subtrees of size k+ 1 from frequent subtrees of size k

by adding nodes only to the rightmost branch of the tree.

Figure 7 illustrates candidate generation using rightmost expansion. It should be noted that, even

though this candidate generation technique generates all potentially frequent patterns, it can also

generate some duplicate patterns. For example, patterns t3 and t4 in Fig. 7 correspond to the same
tree. Likewise, t1 and t2 also represent the same pattern.
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Fig. 8. Two examples of trees with (left) and without (right) a prefix node.

The rightmost expansion candidate generation technique was used by some of the earlier tree mining

algorithms, such as FreqT [1]. A specialization of this technique for candidate generation, which

avoids the generation of duplicate candidates, is known as Tree-Model-Guided (TMG) candidate

enumeration [13,26–28].

The TMG enumeration method uses embedded lists to represent the database trees. These lists

contain, for each node of the tree, its descendants in a preorder enumeration. TMG enumeration

uses references to the embedded lists of the trees in which a pattern appears, called occurrence

coordinates, in order to represent each occurrence of the pattern in a tree. TGM uses the embedded

lists and the occurrence coordinates to extend a candidate subtree by adding one node at the time

starting from the last node of its rightmost path up to its root [27].

Another variant of the rightmost expansion technique using depth-sequence-based codification

scheme was proposed in [4].

– Rightmost expansion with depth sequences

This method was designed to identify patterns in unordered trees. It generates candidates that are

always in canonical form to avoid the generation of duplicate candidates.

As we explained in the previous section, when we use a depth sequence-based-codification a tree is

represented with a sequence of pairs. When a new pair (d, l) is appended to the end of a canonical
depth sequence, we are in fact connecting a new node to the rightmost path of the tree. It can be

shown that the prefix of a canonical depth sequence is also a canonical depth sequence [4]. Therefore,

if we only allow extensions to the canonical depth sequences representing frequent patterns that also

lead to canonical depth sequences, we can avoid the generation of duplicate candidates.

The depth sequence of a tree node is defined as the segment of the canonical sequence that matches

with the bottom-up subtree rooted at the node. We say that a node is a prefix node when it is in

the rightmost path of the tree and its depth sequence is a prefix of his left sibling’s depth sequence.

The prefix node in the lowest level of the tree is called the lowest prefix node (not all trees have a

lowest prefix node). When the tree has a lowest prefix node, the next prefix node is the descendant of

the lowest prefix node’s left sibling that appears in the (i + 1)-th position of the left sibling’s depth
sequence, being i the length of the depth sequence of the lowest prefix node.

As shown in [8] based on the demonstration by [4], a pair (d, l) can be concatenated to the end of a
canonical depth sequence S if and only if:

∗ d 6 d′ or (d=d′ and l > l′) where (d′, l′) corresponds to the next prefix node when the tree has a
lowest prefix node, and

∗ l > l′ if the rightmost path has a node at depth d with label l′.
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Fig. 9. Valid and invalid equivalence class-based extensions.

Figure 8 (a) shows a tree with two prefix nodes. The node number 9 is a prefix node because
the bottom-up subtree rooted at this node has the codification (2,A), which is a prefix of its left
sibling’s codification (node 7), i.e., (2,A) (3,B). The second prefix node in this tree is node 6, whose
bottom-up subtree is (1,B) (2,A) (3,B) (2,A), which is a prefix of the bottom-up subtree rooted at its
left sibling (node 1): (1,B) (2,A) (3,B) (2,A) (2,A). Node 6 is the lowest prefix node because it is at
a lower level than node 9 in the tree, while node 5 is the next prefix node. Unlike the tree in Fig. 8
(a), the tree shown in Fig. 8 (b) does not have a lowest prefix node.
The rightmost expansion candidate generation technique based on depth sequences has been used
by Unot [4], uFreqt [21], Gaston [22], and TRIPS [29].

– Equivalence class-based extension

The equivalence class-based extension technique is based on the depth-first canonical representation
of trees and it was proposed by Zaki in [40].
Two trees of size k are in the same equivalence class if they share a (k− 1)-prefix in their depth-first
canonical codification. Zaki’s candidate generation strategy generates a candidate (k + 1)-subtree
by joining two frequent k-subtrees with (k− 1) nodes in common provided that they are in the same
equivalence class.
Let us consider the equivalence class whose prefix is ABA ↑↑ C. Figure 9 shows which extensions
lead to elements belonging to this class and which ones do not. Adding a child node to node 0 (ABA
↑↑ C ↑ X) or node 3 (ABA ↑↑ C X) will lead to trees that belong to this equivalence class, while
adding a child to node 1 (ABA ↑ X ↑↑ C) or node 2 (ABA X ↑↑↑ C) would lead to trees that do not
belong to this class because they would not share the class prefix.
Thismethod avoids the generation of duplicates candidates. Zaki used this candidate generation tech-
nique in his TreeMiner [38] and SLEUTH [37] algorithms. Its derivatives, such as POTMiner [16],
RETRO [7], or Phylominer [41], also employ this class-based extension method.

– Right-and-left tree join

The right-and-left tree join method was proposed in conjunction with the AMIOT algorithm [15]. In
its candidate generation phase, this algorithm takes the rightmost and leftmost leaves of two trees of
size k sharing the rest of their nodes in order to generate a candidate of size k + 1. Even though the
naive implementation of this candidate generation strategy might easily lead to duplicate patterns,
AMIOT interleaves its operations so that no duplicates are generated.
Figure 10 shows the right-and-left tree join of a left tree L and a right tree R that only differ in one
node: the leftmost leaf in L and the rightmost leaf in R. This join operation leads to a new tree that
has the all nodes L and R share plus the two leaves that they do not have in common.
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Fig. 10. Right and left tree join.

Fig. 11. Extension and join candidate generation [11]: Union of two sibling trees (top) and extension of the ABE ↑↑ C tree
with a new node F (bottom).

– Extension and join

The extension and join technique is based on the breadth-first codification of trees and it defines

two operations to generate candidates: an extension mechanism to increase the tree depth and a

join operation that expands the tree ‘width’ by joining two trees of size k that share k − 1 nodes to
generate a new candidate of size k + 1.
Figure 11 shows an example of the two operations required by the extension and join candidate
generation procedure. It should be noted that the extension mechanism is needed because the join

operation always produces trees that have the same height as their parents.
This candidate generation method is used by HybridTreeMiner [11].

3.3. Support counting

Once we have generated the candidates it is necessary to check if they are actually frequent.

Testing whether a given pattern is a subtree of a tree in the database is one of the most time-consuming
operations in tree pattern mining algorithms. Therefore, it comes as no surprise that several techniques

have been devised to make this test as efficient as possible.
Many of the different proposals that can be found in the literature just use occurrence lists to represent

the trees, following the approach already proposed by AprioriTID in 1994 [3]. These ancillary lists

represent all the occurrences of each pattern X in the database (i.e. the tree database in vertical format)
and they are designed so that you it is not necessary to perform tests on trees once these lists have been

built. This occurrences are usually represented by the mapping between the pattern and the tree, i.e., the
positions of the nodes in the database tree that match those of the pattern.
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Fig. 12. Two trees (t1 and t2) and a pattern that is embedded in both trees.

Figure 12 shows two trees and a pattern that is a embedded subtree of both trees. The mappings of the

pattern to the trees t1 and t2 are (0,2,5) and (0,1,3), respectively.
Some of the different kinds of occurrence lists that have been proposed in the literature are the

following:

– Standard occurrence lists [11] preserve the identifiers of the trees as well as the matching between

the pattern nodes and the database tree nodes using a breadth-first codification scheme. Each element

of the occurrence list for pattern X has the form (tid, i1 . . . ik), where tid is the tree identifier and

i1 . . . ik represent the mapping between the nodes in the pattern X and those in the database tree.

– Rightmost occurrence lists [1] only need to store the rightmost occurrence of X in each database

tree, since rightmost expansion techniques do not have to take into account other occurrences of

the pattern in the tree database (let us remember that these candidate generation strategies only had

to append new nodes to the rightmost branch of a tree). Rightmost occurrence lists, also known

as RMO-lists, are stored with each candidate and contain (tid, n) pairs, where n is the position of

each tree node in the database tree tid that matches with the rightmost leaf of the candidate pattern.

These lists are only useful for mining induced subtrees since they only preserve one node for each

occurrence representing the whole subtree. Update operations can be performed on these lists as in

AprioriTID [3] so that the RMO-list of a new k-pattern can be obtained from the RMO-lists of the
k − 1 patterns it is generated from.

– Scope-lists [38]: The previous occurrence lists can be used regardless of the candidate generation

method used. However, scope-list are typically used with the equivalence class-based candidate

generation technique because they are specially designed for it. These lists are composed of triplets

(tid,m, s), where tid is the tree identifier, m is the mapping of the k − 1 prefix of the pattern X to

the database tree, and s is the scope of the last node inX. The scope of a node n delimits the subtree

rooted at n. Formally, the scope of a node is a pair [a, b] where a is the position of the node in the

depth-first enumeration of the tree and b is the depth-first position of its rightmost descendant.

– Vertical occurrence lists [13,28] group the occurrence coordinates of each subtree, as employed by

the Tree Model Guide candidate generation method [27], which is a specialization of the rightmost

extension technique we described in Section 3.2.

Occurrence lists are usually sufficient for the efficient implementation of the support counting phase of

Apriori-based tree pattern mining algorithms. However, other algorithms have resorted to more complex

data structures. uFreqt [21] uses bipartite graphs to deal with the isomorphisms that might appear when

working with unordered trees. Algorithms that follow the FP-Growth approach and those algorithms
that have been devised for mining closed and maximal tree patterns also use special data structures, such

as the FST-Forest structures employed by PathJoin [35].

This section has surveyed the main strategies used by the existing tree pattern mining algorithms. Tree

pattern mining algorithms usually derive from Apriori [3] or FP-Growth [14]. Apriori-based algorithms
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Table 1
Frequent tree mining algorithms

Input trees Identified patterns

Algorithm Ordered Partially Unordered Free Induced Embedded Incorporated Maximal
trees -ordered trees trees subtrees subtrees /Subsumed /Closed

FreqT [1] • •
AMIOT [15] • •
uFreqT [21] • •
HybridTreeMiner [11] • • •
Unot [4] • •
FreeTreeMiner [10] • • •
FreeTreeMiner’ [25] • • •
GASTON [22] • • •
X3Miner [26] • •
MB3Miner [27] • •
IMB3Miner [28] • •
TreeMiner [38] • •
TreeMinerD [38] • •
RETRO [7] • • • •
Chopper [34] • •
XSpanner [34] • •
Uni3 [13] • •
Phylominer [41] • •
SLEUTH [37] • •
POTMiner [16] • • • • •
TRIPS [29] • • • •
TIDES [29] • • • •
CMTreeMiner [9] • • • •
PathJoin [35] • • •
DRYADE [31] • • •
TreeFinder [30] • • •

proceed in two phases: candidate generation and support counting. Several strategies have been proposed
for the candidate generation phase: the rightmost extension strategy ensures that all the candidates are
generated but it can also generate some duplicates, while the equivalence class-based extension, the
right-and-left tree join, and the extension and join methods avoid the generation of duplicate patterns.
Occurrence lists are often employed during the support counting phase to improve the performance
of tree pattern mining algorithms. In particular, rightmost occurrence lists can be used for counting
the occurrences of induced tree patterns, while scope-lists are usually employed in conjunction with
the equivalence class-based candidate generation method to count the support of both induced and
embedded tree patterns.

4. Tree mining algorithms

In the previous section, we have described the main techniques behind most tree pattern mining
algorithms. We now proceed to survey some of the particular frequent tree mining algorithms that have
been proposed in the literature.
Table 1 provides a bird’s-eye view of frequent tree mining algorithms. This table classifies pattern

mining algorithms according to the kinds of input trees they can be applied to (ordered, partially-ordered,
unordered, or free) and the kinds of subtrees they are able to identify within their input trees (induced,
embedded, incorporated, or subsumed). This table also points out which of those algorithms have been
specially devised for discovering closed and/or maximal tree patterns.
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In the following paragraphs we will provide a brief overview of the algorithms collected in Table 1.

For that, we will group these algorithms with respect to the kind of patterns they identify.

4.1. Identifying bottom-up subtrees

There are not many tree mining algorithms specially designed to identify bottom-up subtrees because
they can be represented as strings and sequence indexation techniques can be applied to mine them [24,

33]. Luccio et al. [19], for instance, create a sorted array with the canonical representation of each

database tree and use binary search to determine if a pattern is a bottom-up subtree of the tree.

4.2. Identifying induced subtrees

In this section, we focus our attention on the algorithms that identify induced subtrees and classify
them according to the kinds of trees they can work with.

4.2.1. Induced subtrees in ordered trees
FreqT [1] uses the rightmost expansion strategy to generate candidate trees. In the support counting

phase, it resorts to rightmost occurrence lists (RMO-lists).

AMIOT [15], which stands for Apriori-based Mining of Induced Ordered Trees, is based on the right-
and-left tree join candidate generation strategy. As in FreqT, the support counting phase is performed

with the help of RMO-lists.

AMIOT uses ancillary lists (JL and JR lists) for each candidate to avoid the generation of duplicate

candidates. This strategy has been shown to be more efficient than the rightmost expansion used by

FreqT.

4.2.2. Induced subtrees in unordered trees

The uFreqT [21] algorithm uses depth sequences to represent unordered trees in canonical form and it
performs rightmost expansions to generate candidates.

During the support counting phase for unordered trees, the main problem is to determine all the

possible combinations of the children of a node v in the pattern that can match with the children of a

node w in a database tree. These potential mappings can be efficiently represented by a bipartite graph

G(v,w), for which a bipartite matching can be computed that maps each child of v to a different child
of w.
uFreqT uses an ancillary data structure that stores exactly those mappings that are included in some

solvable bipartite graphG(v,w) for each node v in the rightmost path along with pointers to the database

tree nodes in order to facilitate the support counting phase for unordered patterns.

HybridTreeMiner [11] uses the breadth-first canonical codification of trees and the extension and join

method for candidate generation. Occurrence lists are used for speeding up the support counting phase

and the experiments performed show that HybridTreeMiner is faster than uFreqT.
The Unot [4] algorithm uses depth sequences to canonically represent unordered trees. Rightmost

expansion with depth sequences is used to generate frequent candidates. In order to speed up the support

counting phase, Unot uses occurrence lists that are similar to HybridTreeMiner’s occurrence lists [11].

4.2.3. Induced subtrees in free trees

HybridTreeMiner can also be adapted to work with free trees by using a canonical representation of

such trees and modifying the standard extension-and-join candidate generation method.
HybridTreeMiner’s join procedure does not need to be modified for free trees. However, as we

explained in section 2.2.4, free trees can be centered or bicentered. The extension mechanism must be
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applied only to centered trees in order to generate all the needed candidate patterns, since bicentered

trees do not have to be extended.

FreeTreeMiner [10] is an earlier Apriori-based frequent pattern mining algorithm for free trees.

Candidates of size k+1 are generated by combining pairs of frequent trees of size k sharing k−1 vertices,
using the standard Apriori algorithm. Indexing techniques based on B+ trees and hash tables are used to

speed up the support counting phase on trees. Experiments in [11] also show that HybridTreeMiner is

more efficient than FreeTreeMiner.

Another algorithm, which was also called FreeTreeMiner, was proposed in [25] and is shown as

FreeTreeMiner’ in Table 1. This algorithm generates potentially frequent candidates by extending the

leaves with maximum height in the tree (which are called extension points) and checks the support

of each candidate by scanning the database (and saving the potential extensions in an extension table).

While HybridTreeMiner is a descendant of Apriori, this algorithm is closer to gSpan [36], a graph mining

algorithm.

Finally, an algorithm to extracts induced pattern in free trees using paths of maximal length is proposed

in the same paper that introduces GASTON [22], an efficient graph mining algorithm.

4.3. Identifying embedded subtrees

Once we have described the algorithms that identify induced subtrees, we introduce those algorithms

that help us to identify embedded subtrees.

4.3.1. Embedded subtrees in ordered trees

Zaki’s TreeMiner [38] uses the depth-first codification of trees together with the class-based extension

method to generate candidates. Zaki describes how you can prune the candidate generation phase in

order to avoid the generation of duplicate candidates using his method, as we discussed in section 3.2.

Scope-lists are used by TreeMiner to determine the support of each pattern. These scope-lists can be

built by joining the scope-lists of the subtrees involved in the candidate generation, thus eliminating the

need to access to the tree database once the initial scope-list have been built.

TreeMinerD [38] is a variant of TreeMiner that is more efficient than TreeMiner in case we are

interested in obtaining the patterns support instead of their weighted support (see Section 2).

Chopper [34] is an FP-Growth-based algorithm to identify embedded subtrees in ordered trees that

employs a depth-sequence-based codification. This algorithm has two main phases: first, it applies an

algorithm to mine frequent sequences and then, using these sequences, it determines which sequences

correspond to frequents subtrees in the original database.

XSpanner [34] is a variant of Chopper that integrates Chopper’s two phases in order to improve its

efficiency.

Chopper and XSpanner are reported to be more efficient than TreeMiner. XSpanner and Chopper can

save time and space cost by avoiding false candidate generation, while the performance of XSpanner is

more stable than that of Chopper [34].

Finally, X3Miner [26], MB3-Miner [27] and IMB3-Miner [28] are algorithms that generate candidates

by using the Tree Model Guided (TMG) enumeration, a specialization of the rightmost path extension

method that avoids the generation of duplicate candidates. Vertical occurrence lists are used to aid in

the support counting phase. MB3 variants ensure that only valid candidates are generated, while the join

approach used in TreeMiner can generate many false subtrees, which degrades its performance [28].
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4.3.2. Embedded subtrees in unordered trees

SLEUTH [37] is Zaki’s proposal for mining unordered trees. As in TreeMiner, Zaki resorts to the

depth-first canonical codification for representing unordered trees and scope-lists for the support counting

phase. In order to generate all the candidates, however, it is sometimes necessary to use non-canonical

trees to build a canonical one. Hence, Zaki proposes two alternative techniques to generate candidates:

– Using the class-based extension mechanism, but checking if each subtree is canonical before ex-

tending it with the elements of its equivalence class.

– Using the canonical extension which extends trees with the elements that belong to the same class

and also with those belonging to the subtree classes of size 2 that share the node that is going to be

extended, but only if the result is in canonical form.

Canonical extension generates non-redundant candidates, but many of them may not be frequent. On

the other hand, class-based extension generates redundant candidates, but considers a smaller number

of potential frequent candidate extensions. The experiments in [37] demonstrate that the class-based

extension method is more efficient that the canonical extension.

Phylominer [41] is a special-purpose algorithm devised to identify embedded subtrees in Phylogenetic

trees, which can be defined as rooted leaf-labeled unordered trees where all internal nodes have no labels,

being the fan-out of each internal node (i.e. its number of children) at least 2.

The Uni3 [13] algorithm is yet another variant of IMB3Miner [28] to identify patterns in unordered

trees using the TMG candidate generation technique.

4.3.3. Embedded subtrees in both ordered and unordered trees

TRIPS and TIDES [29] are two algorithms designed to identify embedded subtrees in ordered or

unordered trees. They use embedded lists to generate candidates and an ancillary hash table, dubbed

support structure, to aid in the support counting phase. The difference between these two algorithms

is their canonical representation: TRIPS uses a post-order traversal representation (numbered Prüfer

sequences [12]) while TIDES employs depth sequences.

POTMiner [16] is a variant of the TreeMiner/SLEUTH tandem that can be used to mine induced and

embedded subtrees in ordered, unordered, and partially-ordered trees. As its predecessors, POTMiner

uses Zaki’s class-based extension method to generate candidates and scope-lists during the support

counting phase.

4.4. Identifying incorporated and subsumed subtrees

RETRO [7] is yet another variant of TreeMiner. In this case, this algorithm can be used to identify

incorporated and subsumed subtrees, as well as the more usual induced and embedded tree patterns.

The TreeFinder algorithm [30] uses the Apriori-based candidate generation technique based on

ancestor-descendent relationships in order to discover subsumed subtrees. We will return to this al-

gorithm in the following section.

4.5. Closed and maximal subtrees

This final section deals with those algorithms that identify closed and maximal subtrees. Again, we

can further classify them depending on the kind of subtrees they identify (induced or embedded).
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4.5.1. Closed and maximal induced subtrees

In CMTreeMiner [9], an enumeration DAG (directed acyclic graph) is a lattice-like data structure

that represents all frequent subtrees. Enumeration trees, which are sometimes used for frequent itemset

mining, are just spanning trees of these enumeration DAGs.

An enumeration DAG joins each frequent k-subtree t with the (k − 1)-subtrees that can be extended
to obtain t, as well as with the (k + 1)-subtrees that can be obtained by extending t.

This DAG can then be used to prune the set of frequent patterns and generate only those patterns that

are maximal. Pruning techniques have been devised in CMTreeMiner for improving the efficiency of

closed and maximal subtree mining in ordered and unordered trees.

PathJoin [35] discovers maximal frequent induced subtrees from a database of unordered labeled trees.

It employs a specialized data structure, a Frequent-Subtree Forest or FST-Forest, that is used to represent

frequent trees in a compact form and improve the efficiency of the support counting phase.

4.5.2. Closed and maximal embedded subtrees

As mentioned above, the TreeFinder algorithm [30] uses the plain Apriori-based candidate generation

technique, albeit it applies this technique directly to ancestor-descendent relationships instead of the other

candidate generation strategies we have discussed in this paper. This direct use of ancestor-descendent

relationships lets TreeFinder discover subsumed subtrees (see Section 2).

Once frequent relationships are clustered by their support count, it is very easy to determine whether a

particular candidate is frequent. However, it should be noted that this method is not complete: TreeFinder

is an approximate miner. In the general case, it is only guaranteed to find a subset of the actual frequent

trees.

DRYADE [31], on its hand, searches for closed patterns in tree databases (recall that closed patterns

are not necessarily maximal). Discovering the closed frequent patterns of depth 1 is the basic mechanism

behind DRYADE. Then, they are hooked together in order to build higher-depth closed frequent patterns

in a level-wise fashion. DRYADE reformulates search operations in a propositional language. This way,

DRYADE can benefit from any progress made in the field of closed itemset mining algorithms, since it

just delegates on a standard closed itemset mining algorithm.

DryadeParent is a variant of the original DRYADE algorithm that outperforms CMTreeMiner by

several orders of magnitude on datasets where the frequent patterns have a high branching factor [32].

In this section, we have reviewed the better-known tree mining algorithms that have been proposed

in the literature. We have classified them according to the kind of patterns they can identify and also

according to the kind of trees they can deal with (see Table 1). AMIOT [15] has been shown to be more

efficient than FREQT [1] for induced subtrees in ordered trees, while HybridTreeMiner [11] and Unot [4]

obtain better results for unordered trees. HybridTreeMiner [11] can also used for mining free trees, as

well as both FreeTreeMiners [10,25] and GASTON [22]. Finally, TreeMiner [38] and SLEUTH [37]

are two well-known Apriori-based algorithms for mining embedded subtrees, whereas Chopper and

XSpanner [34] are FP-Growth based algorithms that have been reported to be more efficient for ordered

trees.

5. Conclusions

In this paper, we have studied existing tree mining algorithms. First, we introduced some basic

terminology and definitions. Later, we discussed the usual strategies frequent tree mining algorithms
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Table 2
Main features of the different frequent tree mining algorithms analyzed in this survey

Algorithm Tree representation Candidate generation approach Implementation details

FreqT [1] − Rightmost expansion RMO occurrence lists
AMIOT [15] − Right and left union RMO occurrence lists
uFreqT [21] Depth sequences Rightmost expansion with depth

sequences
Bipartite graphs

HybridTreeMiner [11] Breadth-first codification Union-extension method Occurrence lists
FreeTreeMiner [10] Depth-first codification Apriori itemset generation Indexation techniques
FreeTreeMiner’ [25] Depth-first codification Maximal-depth extension
TreeMiner [38] Depth-first codification Equivalence classes Scope lists
TreeMinerD [38] Depth-first codification Equivalence classes Scope lists for non-weighted

support
RETRO [7] Relational representation Equivalence classes Scope lists
Chopper [34] Depth sequences N/A Frequent subsequences (Pre-

fixSpan [23])
X3Miner [26] Depth-first codification Rightmost expansion – TMG

enumeration
Vertical occurrence lists

MB3Miner [27] Depth-first codification Rightmost expansion – TMG
enumeration

Vertical occurrence lists

IMB3Miner [28] Depth-first codification Rightmost expansion – TMG
enumeration

Vertical occurrence lists

XSpanner [34] Depth sequences N/A Frequent subsequences (Pre-
fixSpan [23])

SLEUTH [37] Depth-first codification Equivalence classes Scope lists
Unot [4] Depth sequences Rightmost expansion with depth

sequences
Occurrence lists

Phylominer [41] Depth-first codification Equivalence classes No labels in internal nodes
Uni3 [13] Depth-first codification Rightmost expansion – TMG

enumeration
Vertical occurrence lists

GASTON [22] Depth sequences Rightmost expansion with depth
sequences

TRIPS [29] Post-order codification Embedding lists Support Structure (hash table)
TIDES [29] Depth sequences Rightmost expansion with depth

sequences
Support Structure (hash table)

POTMiner [16] Depth-first codification Equivalence classes Scope lists
CMTreeMiner [9] Depth-first codification N/A DAG enumeration graph
TreeFinder [30] Relational representation Apriori itemset generation Clustering techniques
PathJoin [35] FST-Forest structure N/A
DRYADE [31] Propositional language − External closed itemset miner

employ in order to create a consistent framework that lets us easily understand the details behind the

implementation of particular frequent tree mining algorithms.

We have classified existing algorithms according to the kind of trees each algorithm is designed to

work with (ordered, unordered, partially-ordered, and free trees) as well as the kind of patterns they are

able to identify (induced, embedded, incorporated, subsumed, closed, and maximal).

Table 2 summarizes the main features of the tree mining algorithms described in this paper: their

underlying tree representation mechanism, their candidate generation strategy (where applicable), and

some relevant implementation details that are needed for their efficient implementation.

Table 2 shows that most tree mining algorithms follow the well-known Apriori approach [3], while

only a few employ the FP-Growth [14] pattern growth strategy. Within the Apriori-based algorithms we

have surveyed, most of them resort to the right-most expansion method or employ Zaki’s class-based

extension technique for candidate generation. Vertical, RMO, or plain occurrence lists are typically used

with the former, while scope-lists are used with the latter in order to speed up the support counting phase.
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Abstract Non-linear data structures are becoming more and more common in data mining
problems. Trees, in particular, are amenable to efficient mining techniques. In this paper, we
introduce a scalable and parallelizable algorithm to mine partially-ordered trees. Our algo-
rithm, POTMiner, is able to identify both induced and embedded subtrees in such trees. As
special cases, it can also handle both completely ordered and completely unordered trees.

Keywords Data mining · Frequent patterns · Partially-ordered trees ·
Induced and embedded subtrees

1 Introduction

Some data mining problems are best represented with non-linear data structures like trees.
Trees appear in many different problem domains, ranging from the Web and XML documents
to bioinformatics and computer networks.

The aim of this paper is to introduce a new algorithm, POTMiner, that is able to identify
frequent patterns in partially-ordered trees, a particular kind of tree that appears in several
problems domains. However, existing tree mining algorithms cannot be directly applied to
this important kind of tree because they work either with completely-ordered or with com-
pletely-unordered trees.
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For instance, POTMiner can be applied to XML documents, whose hierarchical structure
can be viewed as a tree. Furthermore, XML schemata define the structure of XML documents
and they determine which sets of nodes in the trees correspond to ordered data and which
ones correspond to unordered data.

As another example, POTMiner can also be used in software mining when we represent
the structure of a software program as a hierarchy. In such hierarchies, program segments can
be represented as nodes within trees. Existing dependences between program segments can
be made explicit as order relationships among tree nodes. The resulting trees are, therefore,
partially-ordered trees.

In a more typical data mining scenario, POTMiner can be used to improve existing multi-
relational techniques. We can build a tree from each tuple in a particular relation by following
foreign keys in order to collect all the data that are related to the original tuple, even when
they are stored in different relations.

This paper is organized as follows. We introduce the idea of partially-ordered trees as well
as some standard terms in Sect. 2. Our algorithm is presented in Sect. 3. In Sects. 4 and 5 we
explain the details of the two main phases of our algorithm, candidate generation and support
counting, respectively. Section 6 shows, by means of a particular example, how POTMiner
deals with partially-ordered trees. We discuss some implementation issues that are particu-
larly relevant in practice and how we have dealt with them in Sect. 7, while we analyze the
experimental results we have obtained in Sect. 8. Finally, we present some conclusions and
provide pointers to future work in Sect. 9.

2 Background

We will first review some basic concepts related to labeled trees before we formally define
the tree pattern mining problem we address in this paper.

2.1 Trees

A tree is a connected and acyclic graph. A tree is rooted if its edges are directed and a special
node, called root, can then be identified. The root is the node from which it is possible to
reach all the other nodes in the tree. In contrast, a tree is said to be free if its edges have no
direction, that is, when it is an undirected graph. A free tree, therefore, has no predefined root.

Rooted trees can be classified as ordered trees, when there is a predefined order within
each set of sibling nodes in the tree, or unordered trees, when there is no such a predefined
order among sibling nodes in the tree.

In this paper, we consider partially-ordered trees, which contain both ordered and unor-
dered sets of sibling nodes in the same tree. They can be useful when the order within some
sets of siblings is important but it is not necessary to establish an order relationship within
all the sets of sibling nodes.

Figure 1 shows an example with different kinds of rooted trees. In this figure, ordered
sibling nodes are joined by an arc, while unordered sets of sibling nodes do not share such
arc.

2.2 Tree representation

A canonical tree representation is an unique way of representing a labeled tree. This canonical
representation makes the problems of tree comparison and subtree enumeration easier. We
now proceed to describe the most common canonical tree representation schemes.
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Fig. 1 Different kinds of rooted trees (from left to right): a completely-ordered tree, b, c partially-ordered
trees, d completely-unordered tree

Three alternatives have been proposed in the literature [9,12] to represent trees as strings:

• Depth-first codification: The string representing the tree is built by adding the label of
each tree node in a depth-first order. A special symbol ↑, which is not in the label alphabet,
is used when the sequence comes back from a child to its parent.

• Breadth-first codification: Using this codification scheme, the string is obtained by tra-
versing the tree in a breadth-first order, i.e., level by level. Again, we need an additional
symbol $, which is not in the label alphabet, in order to separate sibling families.

• Depth-sequence-based codification: This codification scheme is also based on a depth-
first traversal of the tree, but it explicitly stores the depth of each node within the tree.
The resulting string, known as depth sequence, is built with (d, l) pairs where the first
element, d, is the depth of the node in the tree and the second one, l, is the node label.

In our algorithm, we resort to a depth-first codification to represent the trees. For instance,
the depth-first codification of the ordered tree shown in Fig. 1a is AC B↑A↑↑B↑. The par-
tially-ordered tree in Fig. 1b, however, could be represented as either C B↑AB↑C↑↑ or
C B↑AC↑B↑↑. This example shows that, when a tree contains unordered sets of sibling
nodes, different representation strings are possible. The smallest string according to the lexi-
cographical order is chosen as the canonical representation of the tree, where ↑ is considered
to be larger than all the symbols in the label alphabet. Therefore, C B↑AB↑C↑↑ is chosen
as the canonical representation of the tree in Fig. 1b. Likewise, AB↑CC↑A↑↑ is the canon-
ical representation of partially-ordered tree in Fig. 1c and C A↑B A↑C↑↑ is the canonical
representation of the unordered tree in Fig. 1d.

2.3 Tree patterns

A subtree is a subgraph of a tree. Different kinds of subtrees can be defined depending on
the way we define the matching function between the subgraph and the tree it derives from:

• A bottom-up subtree T ′ of T (with root v) can be obtained by taking one vertex v from
T with all its descendants and their corresponding edges.

• An induced subtree T ′ can be obtained from a tree T by repeatedly removing leaf nodes
from a bottom-up subtree of T .

• An embedded subtree T ′ can be obtained from a tree T by repeatedly removing nodes,
provided that ancestor relationships among the vertices of T are not broken.

Figure 2 shows a tree (a) wherein we have identified a bottom-up subtree (b), an induced
subtree (c) and an embedded subtree (d).

123



202 A. Jiménez et al.

A

B

A C B

C

B

C

B A

A

B C

A

A C B

(a) (b) (c) (d)

C

A A

Fig. 2 Different kinds of subtrees (from left to right): a original tree, b bottom-up subtree, c induced subtree,
d embedded subtree

2.4 The tree pattern mining problem

The goal of frequent tree pattern mining is the discovery of all the frequent subtrees in a large
database of trees D, also referred to as forest, or in a unique large tree.

Let δT (S) be the occurrence count of a subtree S in a tree T and dT a variable such
that dT (S) = 0 if δT (S) = 0 and dT (S) = 1 if δT (S) > 0. We define the support of a
subtree as σ(S) = ∑

T ∈D dT (S), i.e, the number of trees in D that include at least one
occurrence of the subtree S. Analogously, the weighted support of a subtree is defined as
σw(S) = ∑

T ∈D δT (S), i.e., the total number of occurrences of S within all the trees in D.
We say that a subtree S is frequent if its support is greater than or equal to a predefined
minimum support threshold. We define Lk as the set of all frequent k-subtrees (i.e., subtrees
of size k).

2.5 Tree mining algorithms

Several frequent tree pattern mining algorithms have been proposed in the literature. Tables 1
and 2 summarize some of them. Table 1 indicates the kinds of input trees they can be applied
to (ordered, unordered, or free), while Table 2 shows the kinds of subtrees they are able to
identify (induced or embedded).

These algorithms are mainly derived from two well-known frequent pattern mining algo-
rithms: Apriori [4] and FP-Growth [16].

Most of the algorithms in Tables 1 and 2 follow the Apriori iterative pattern mining strategy
[4], where each iteration is broken up into two distinct phases:

• Candidate generation: A candidate is a potentially frequent subtree. In Apriori-like algo-
rithms, candidates are generated from the frequent patterns discovered in the previous
iteration. Most algorithms generate candidates of size k + 1 by merging two patterns of
size k having k − 1 elements in common. The most common strategies to generate such
candidates are the following:

• Rightmost expansion generates subtrees of size k + 1 from frequent subtrees of size
k by adding nodes only to the rightmost branch of the tree. This technique is used in
algorithms like FREQT [1], uFreqt [19], and UNOT [5].

• The equivalence class-based extension technique generates a candidate (k + 1)-sub-
tree by joining two frequent k-subtrees with (k − 1) nodes in common and that share
a (k − 1)-prefix in their string codification. This extension mechanism is used, for
instance, in Zaki’s TreeMiner [36] and SLEUTH [35] algorithms.
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Table 1 Some frequent tree mining algorithms classified by the kind of input trees they can be applied to

Algorithm Ordered Unordered Free
trees trees trees

FreqT [1] •
AMIOT [17] •
uFreqT [19] •
HybridTreeMiner [11] • •
FreeTreeMiner [12] • •
FreeTreeMiner’ [22] • •
X3Miner [25] •
MB3Miner [26] •
IMB3Miner [27] •
TreeMiner [36] •
TreeMinerD [36] •
RETRO [7] •
Chopper [31] •
XSpanner [31] •
Uni3 [15] •
Unot [5] •
GASTON [20] •
Phylominer [37] •
SLEUTH [35] •
TRIPS [28] • •
TIDES [28] • •
CMTreeMiner [10] • •
PathJoin [32] •
DRYADE [30] •
TreeFinder [29] •

• The right-and-left tree join method, which was proposed with the AMIOT algorithm
[17], considers both the rightmost and the leftmost leaves of a tree in the generation
of candidates.

• Finally, the extension and join technique defines two extension mechanisms and a join
operation to generate candidates. This method is used by HybridTreeMiner [11].

• Support counting: Given the set of potentially frequent candidates, this phase consists
of determining their actual support and keeping only those candidates whose support is
above the predefined minimum support threshold (i.e., those candidates that are actually
frequent).

Some of the proposed algorithms have instead been derived from the FP-Growth algo-
rithm [16]. Within this category, the PathJoin algorithm [32] uses compact structures called
FP-Trees to encode input data, while CHOPPER and XSpanner [31] use a sequence-based
codification for trees to identify frequent subtrees using frequent sequences.
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Table 2 Some frequent tree mining algorithms and the kind of patterns they can identify

Algorithm Induced Embedded Maximal
subtrees subtrees /closed

FreqT [1] •
AMIOT [17] •
uFreqT [19] •
HybridTreeMiner [11] •
FreeTreeMiner [12] •
FreeTreeMiner’ [22] •
X3Miner [25] •
MB3Miner [26] •
IMB3Miner [27] •
TreeMiner [36] •
TreeMinerD [36] •
RETRO [7] • •
Chopper [31] •
XSpanner [31] •
Uni3 [15] •
Unot [5] •
GASTON [20] •
Phylominer [37] •
SLEUTH [35] •
TRIPS [28] •
TIDES [28] •
CMTreeMiner [10] • •
PathJoin [32] • •
DRYADE [30] •
TreeFinder [29] •

3 Mining partially-ordered trees

The algorithms referred to in the previous section extract frequent patterns from trees that are
completely ordered or completely unordered, but none of them works with partially-ordered
trees.

However, partially-ordered trees appear in different application domains. For example,
Fig. 3 shows an XML document and its representation as a partially-ordered tree. This doc-
ument represents the purchase history of a particular customer. In market basket analysis, it
is important to preserve the order between the different orders placed by the customer, but
the order between the items in the same order is not relevant.

We have extended Zaki’s TreeMiner [36] and SLEUTH [35] algorithms to mine par-
tially-ordered trees. The algorithm we have devised is able to identify frequent subtrees, both
induced and embedded, in ordered, unordered, and partially-ordered trees. Hence its name,
POTMiner, which stands for Partially-ordered tree miner.

Our algorithm is based on Apriori [4], just like TreeMiner and SLEUTH. Therefore, it
follows an iterative pattern mining strategy. The kth iteration of the algorithm mines the
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<customer>
   <order>
      <item>milk</item>
      <item>bread</item>
   </order>
   <order>
      <item>beer</item>
      <item>diapers</item>
   </order>
</customer>

C

O O

Be DiMi Br

Fig. 3 An XML document and its partially-ordered tree representation

Fig. 4 The POTMiner algorithm

frequent subtrees of size k starting from the frequent subtrees of size k − 1 discovered in
the previous iteration. Each iteration is subdivided in two phases, candidate generation and
support counting, as we mentioned in Sect. 2.5 when we discussed existing tree mining
algorithms derived from Apriori.

Our algorithm employs Zaki’s class-based extension technique to generate candidates.
Candidates are grouped into equivalence classes, each class containing all the trees that share
the same prefix in their codification string.

The following example illustrates the approach we follow for candidate generation. Let us
suppose that the AA and AB trees are both frequent. These two trees belong to the same class,
denoted by [A], because they share the same prefix, i.e., A. When the AA tree of the class [A]
is extended, the resulting trees will have three nodes and all of them will belong to the class
[AA]. When we generate candidates of size three derived from AA, we must combine AA of
with all the frequent patterns of size two belonging to the same class than AA, i.e., [A]. If AA
and AB are the only elements in [A], the class-based extension technique will consider AAA,
AAB, AA↑A, and AA↑B as potential members of the [AA] class. Similarly, the extension
of the AB tree will produce the trees AB A, AB B, AB↑A, and AB↑B as candidate patterns
belonging to the class [AB]. Next, our algorithm will check which candidates are actually
frequent.

The pseudocode of the resulting algorithm is shown in Fig. 4. The details of the candidate
generation and support counting phases will be described in the following sections.

4 Candidate generation for partially-ordered trees

We use Zaki’s equivalence class-based extension method to generate candidates. This method
generates (k + 1)-subtree candidates by joining two frequent k-subtrees with k − 1 elements
in common.
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Fig. 5 Equivalence class with
two elements, AC A and AC↑B,
that share the prefix AC

A

C

Elements :
 (A,1) (B,0)

A

C

A

B

Two k-subtrees are in the same equivalence class [P] if they share the same codification
string until their (k −1)th node. Each element of the class can then be represented by a single
pair (x, p) where x is the kth node label and p specifies the depth-first position of its parent.

In Fig. 5, we represent an equivalence class with two elements, AC A and AC↑B. The
part of the tree that the class elements share is within the rectangle. Each node outside the
rectangle corresponds to a different element in the equivalence class. This way, AC A is
represented by (A, 1) in the class [AC], while AC↑B is represented by (B, 0).

TreeMiner [36] and SLEUTH [35] use the class-based extension method to mine ordered
and unordered embedded subtrees, respectively. The main difference between TreeMiner
and SLEUTH is that only those extensions that produce canonical subtrees are allowed in
SLEUTH, which works with unordered trees. This constraint avoids the duplicate genera-
tion of candidates corresponding to different representations of the same unordered trees.
However, since we must handle both ordered and unordered sets of sibling nodes in partially-
ordered trees, all extensions must be allowed in POTMiner, as happened in TreeMiner.

Elements in the same equivalence class are joined to generate new candidates. This join
procedure must consider two scenarios [35]: cousin extension and child extension. The fol-
lowing paragraphs describe these two mechanisms as employed by POTMiner.

4.1 Cousin extension

Let (x, i) and (y, j) denote two elements in the same class [P], and [Pi
x ] be the set of

candidate trees derived from the tree that is obtained by adding the element (x, i) to P .
Cousin extension is performed when the father of (y, j) precedes (or is) the father of the

element (x, i) in preorder, where the father of (y, j) is the node in position j and the father
of (x, i) is in position i . Formally,

if j ≤ i and |P| = k − 1 ≥ 1, then (y, j) ∈ [Pi
x ].

The first condition checks that only nodes on the rightmost branch of P are extended. The
second one makes cousin extension possible only when patterns have more than one node.

Figure 6 shows the elements generated by the cousin extension procedure from the ele-
ments in the class [AC] in Fig. 5.

We have extended the pattern AC with the element (A, 1) to generate the class [P1
A] whose

codification is AC A. This class contains two elements that can be obtained by the cousin
extension mechanism: first, the element (A, 1) in the class [P1

A] is the result of the union of
the element (A, 1) from [P] with itself; second, the element (B, 0) in the class [P1

A] is the
result of the union of the elements (A, 1) and (B, 0) from [P].

Cousin extension can also be applied to the pattern P using the element (B, 0), which
generates the class [P0

B] whose codification is AC↑B. This class contains the element (B, 0),
which can be obtained by the union of (B, 0) from [P] with itself. The union between (B, 0)
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Fig. 6 Cousin extension applied to the elements of the class in Fig. 5
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Elements :
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Fig. 7 Child extension applied to the elements of the class in Fig. 5

and (A, 1) in [P0
B] is not possible since the father or (A, 1) (i.e, the node in position 1), does

not precede the father of (B, 0) in [P] (i.e, the node in position 0).

4.2 Child extension

As above, let (x, i) and (y, j) denote two elements in the same class [P], and [Pi
x ] be the set

of candidate trees derived from the tree that is obtained by adding the element (x, i) to P .
When (y, j) is a sibling node of (x, i), the child extension mechanism lets us add y as a

child of the rightmost leaf of the tree. The formal definition of child extension is:

if j = i then (y, k − 1) ∈ [Pi
x ].

Child extension is used to make tree patterns grow in depth, while cousin extension lets
them grow in width.

Figure 7 shows the elements generated by the child extension method from the elements
in the class AC shown in Fig. 5.

The extension of the pattern AC with the element (A, 1) generates the elements of the
class [P1

A]. This class, apart from the two elements generated by the cousin extension mech-
anism, also contains a new element, (A, 2), which is obtained by the union of the element
(A, 1) in [P] with itself. The union of (A, 1) with (B, 0) does not generate a new element
because (B, 0) is not a sibling of (A, 1) in [P].

The extension of pattern AC with the element (B, 0) results in the class [P0
B]. This class

contains the element (B, 0), generated by the cousin extension mechanism above, and the
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element (B, 2), resulting from the child extension of (B, 0) in [P] with itself. As above, the
element (B, 0) cannot be joined with (A, 1) because (B, 0) is not a sibling of (A, 1) in [P].

5 Support counting for induced and embedded subtrees

Once POTMiner has generated the potentially frequent candidates, it is necessary to deter-
mine which ones are actually frequent.

The support counting phase in POTMiner follows the strategy of AprioriTID [4]. Instead
of checking if each candidate is present in each database tree, which is a costly operation, spe-
cial lists are used to preserve the occurrences of each pattern in the database, thus facilitating
the support counting phase.

Several kinds of occurrence lists have been proposed in the tree mining literature:

• Standard occurrence lists [11] preserve the identifiers of the trees as well as the matching
between the pattern nodes and the database tree nodes using a breadth-first codification
scheme. Each element of the occurrence list for pattern X has the form (tid, i1 . . . ik),
where tid is the tree identifier and i1 . . . ik represent the mapping between the nodes in
the pattern X and those in the database tree.

• Rightmost occurrence lists [1] only need to store the occurrences of the rightmost leaf of
X in each database tree. Rightmost occurrence lists, also known as RMO-lists, are stored
with each candidate and contain (tid, n) pairs, where n is the position of each tree node in
the database tree tid that matches with the rightmost leaf of the candidate pattern. These
lists are only useful for mining induced subtrees, since they only preserve one node for
each occurrence representing the whole subtree. Update operations can be performed on
these lists as in AprioriTID [4] so that the RMO-list of a new k-pattern can be obtained
from the RMO-lists of the k − 1 patterns it was generated from.

• Vertical occurrence lists [15,27] group the occurrence coordinates of each subtree, as
employed by the Tree Model Guide candidate generation method [26], which is a spe-
cialization of the rightmost extension technique we mentioned in Sect. 2.5.

• Scope lists [35] preserve each occurrence of a pattern X in the database using a tuple (t,
m, s) where t is the tree identifier, m stores which nodes of the tree match those of the
(k − 1) prefix of the pattern X in depth-first order, and s is the scope of the last node in
the pattern X . The scope of a node is defined as a pair [l,u] where l is the position of the
node in depth-first order and u is the position of its rightmost descendant. The scope list
of a pattern X is the list of all the tuples (t, m, s) representing the occurrences of X in the
tree database.

In POTMiner, we use scope lists to preserve the occurrences of a pattern in the tree data-
base. The main difference between our scope lists and the ones proposed by Zaki in TreeMiner
[36] and SLEUTH [35] is that we must add two new elements to the tuples in the scope lists,
d and �, in order to deal with induced subtrees and partially-ordered trees, respectively.

Our scope lists, then, contain tuples (t, m, s, d, �) where t is the tree identifier, m stores
which nodes of the tree match those of the (k − 1) prefix of the pattern X in depth-first order,
s=[l,u] is the scope of the last node in the pattern X , d is a depth-based parameter used for
mining induced subtrees (it is not needed when mining embedded subtrees), and � indicates
whether the last node of the pattern is ordered (� =o) or unordered (� =u) in the database
tree.

When building the scope lists for patterns of size 1, m is empty and the element d is
initialized with the depth of the pattern only node in the original database tree.

123



POTMiner: mining ordered, unordered, and partially-ordered trees 209

Fig. 8 Class with two elements,
(A, 1) and (B, 0), and their scope
lists

A

C

Elements :
 (A,1) (B,0)

A

C

A

B

(A,1)

{1,02,[3,4],1,u}
{1,02,[4,4],2,o}
{2,01,[2,2],1,u}

(B,0)

{1,02,[1,1],1,u}
{2,01,[3,5],1,u}
{2,01,[4,4],2,o}

We obtain the scope list for a new candidate of size k by joining the scope lists of the two
subtrees of size k − 1 that were involved in the generation of the candidate. Let (tx , mx , sx ,
dx , �x ) and (ty , my , sy , dy , �y) be the scope lists of the subtrees involved in the generation
of the candidate. The scope list for this candidate is built by a join operation that depends on
the candidate extension method used to generate the candidate, i.e., whether the candidate
was generated by cousin extension or by child extension.

Figure 8 shows the class from Fig. 5 including the scope lists of its elements, which we
will use to illustrate how scope lists are joined.

5.1 In-scope join

The in-scope join, which is used in conjunction with the child extension mechanism, pro-
ceeds as follows:
if

1. tx = ty = t and
2. mx = my = m and
3. dx = 1 when we are looking for induced patterns, and
4. sy ⊂ sx (i.e., lx < ly and ux ≥ uy),

then add [t, m
⋃

{lx }, sy , dy − dx , �y] to the scope list of the generated candidate.
The third constraint is needed when we are interested in obtaining only the induced sub-

trees that are present in the tree database. This constraint is not used when mining embedded
subtrees.

Figure 9 shows the candidates obtained using child extension from the elements in the
class shown in Fig. 8. Let us suppose that we are identifying embedded patterns, i.e., the
value of dx is not taken into account.

AC AA was generated from the union of (A, 1) with itself using child extension. There-
fore, we perform the in-scope join of the elements in the scope list of (A, 1) with themselves.
The only pair that matches is (1,02,[3,4],1,u) and (1,02,[4,4],2,o), hence the scope list of
AC AA contains a single tuple, which is (1,023,[4,4],1,o).

AC↑B B results from the child extension of (B, 0) with itself. In this case, it is only
possible to join (2,01,[3,5],1,u) and (2,01,[4,4],2,o), generating a scope list containing just
(2,013,[4,4],1,o).

123



210 A. Jiménez et al.

A

BC

A

C

A

Elements :
 (A,2) 

A

C

A

A

BC

Elements :
 (B,2)

A
B

(A,2)

{1,023,[4,4],1,o}
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{2,013,[4,4],1,o}

Fig. 9 Child extension of the elements in the class shown in Fig. 8 and the scope lists resulting from the
in-scope join
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 (A,1) (B,0)
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C

A
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 (B,0)

(A,1)

No elements
in the list

(B,0)

{1,023,[1,1],1,u}
{2,012,[3,5],1,u}

(B,0)

No elements in the list

Fig. 10 Cousin extension of the elements in the class shown in Fig. 8 and the scope lists resulting from the
out-scope join

5.2 Out-scope join

The out-scope join is used in conjunction with the cousin extension mechanism. It works as
follows:
if

1. tx = ty = t and
2. mx = my = m and
3. if the node is ordered and sx < sy (i.e., ux < ly) or the node is unordered and either

sx < sy or sy < sx (i.e., either ux < ly or uy < lx ),

then add [t, m
⋃

{lx }, sy , dy , �y] to the scope list of the generated candidate.
Figure 10 shows the candidates obtained by the cousin extension method from the elements

in the class shown in Fig. 8.
Two elements are generated by cousin extension from the pattern AC A. The element

(A, 1) in [AC A] is generated by the union of (A, 1) in [AC] with itself. Its scope list has no
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Fig. 11 Sample dataset containing two partially-ordered trees

elements because no pair of tuples satisfy the three conditions required by the out-scope join.
The element (B, 0) in [AC A] is generated by the union of (A, 1) with (B, 0) in [AC]. We
can join the first element of each list, (1,02,[3,4],1,u) and (1,02,[1,1],1,u), in order to generate
(1,023,[1,1],1,u). The join of the third element in the scope list of (A, 1), (2,01,[2,2],1,u),
with the second element of the list of (B, 0), (2,01,[3,5],1,u), results in (2,012,[3,5],1,u).

The cousin extension of the pattern AC↑B results in the element (B, 0). In this case,
the out-scope join does not generate any elements, and, therefore, the scope list of (B, 0) in
[AC↑B] is empty.

5.3 Counting the support of a pattern

Checking if a pattern is frequent consists of counting the elements in its scope list. The
counting procedure is different depending on whether we consider the weighted support σw

or not.

• If we count occurrences using the weighted support, all the tuples in the scope lists must
be taken into account.

• If we are not using the weighted support, the support of a pattern is the number of different
tree identifiers within the tuples in the scope list of the pattern.

This procedure is valid for counting embedded patterns. When counting induced patterns,
we consider only the elements in the scope lists whose d parameter equals 1. It should be
noted that d represents the distance between the last node in the pattern and its prefix m,
hence d = 1 indicates the presence of an induced pattern provided that the scope lists were
generated using the join operations discussed above.

6 Example

In this section, we present an example to illustrate how POTMiner works with partially-
ordered trees. The dataset in Fig. 11 will be used as we identify all the induced subtrees that
appear in both trees (i.e., the minimum support is 100%).

Figure 12 shows the vertical representation of the trees in Fig. 11, where each node is
represented by its scope list. For example, the list corresponding to the node A contains six
elements because A appears six times in the dataset. Each element in the scope lists has all
the information corresponding to a single occurrence of a pattern as described in Sect. 5 (tree
identifier, prefix, scope, depth parameter, order).

Since the three nodes are frequent, we build the classes shown in Fig. 13. These classes
are built by child extension (Sect. 4.2) and the resulting scope lists are obtained using the
in-scope join operation (Sect. 5.1).
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A

{1,_,[0,6],0,_}
{1,_,[2,2],2,u}
{1,_,[6,6],2,o}
{2,_,[2,2],2,o}
{2,_,[1,7],1,u}
{2,_,[6,6],2,u}

B

{1,_,[1,3],1,_}
{1,_,[5,5],2,o}
{2_,[0,7],0,_}
{2,_,[3,3],2,o}
{2,_,[7,7],2,u}

C

{1,_,[4,6],1,o}
{1,_,[3,3],2,u}
{2,_,[1,3],1,u}
{2,_,[5,5],2,u}

Fig. 12 Vertical representation of the trees in Fig. 11

Fig. 13 Classes derived from the
patterns of size 1 in Fig. 11
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C

A

C

B

C

C

All the elements in the first class, which are derived from the node A, are frequent because
there is at least one occurrence of each pattern in each tree. The other two classes contain
two frequent patterns and an infrequent one. In class B, the pattern B B appears twice in the

123



POTMiner: mining ordered, unordered, and partially-ordered trees 213

A

B

A

B C

{1,01,[4,6],1,o}
{2,47,[5,5],1,u}

 Frequent elements:
 (C,0)

Infrequent elements :
 (A,0)(A,1)(B,0)(B,1)(C,1)

A

C

 Infrequent elements:
(A,0)(A,1)(B,0)(B,1)(C,0)(C,1)

B

A

B

A C

{1,12,[3,3],1,u}
{2,04,[1,3],1,u}

 Infrequent elements:
 (A,0)(A,1)(B,0)(B,1)(C,1)

 Frequent elements:
 (C,0)

B

C

B

C A

{1,13,[3,3],1,u}
{2,01,[4,7],1,u}

Infrequent elements:
 (A,0)(A,1)(B,0)(B,1)(C,1)

 Frequent elements:
 (A,0)

C

A

C

B

 Infrequent elements:
(A,0)(A,1)(B,0)(B,1)(C,0)(C,1)

 Infrequent elements:
(A,0)(A,1)(B,0)(B,1)(C,0)(C,1)

Fig. 14 Classes derived from the frequent patterns of size 2 in Fig. 13

second tree but it has no occurrences in the first tree. In class C , the pattern CC does not
appear in any of the trees.

Since we are looking for induced patterns, it is necessary to check if the discovered patterns
are actually frequent as induced patterns before we proceed with additional extensions. In
this case, the first element of class A, i.e. AA, is not a frequent induced pattern because all its
occurrences are embedded (their depth parameter is greater than 1). This element, therefore,
will not be extended and it will not be returned as a frequent induced pattern. However, it
must be taken into account for the extension of the other elements in the same class (i.e., AB
and AC). These elements are frequent-induced patterns since, although there are elements
with d = 2 in their scope lists, there is at least one occurrence of each pattern with d = 1 in
each database tree. Likewise, patterns B A, BC , C A, and C B are frequent.

Figure 14 shows the result of the extension of the six frequent induced patterns of size
2 obtained in the previous iteration. Since we are working with partially-ordered trees, we
have to address three different situations:

• o–o (ordered-ordered): The union of C A and C B does not produce any frequent pattern
because both C A↑B and C B↑A appear only in one of the database trees. These patterns
are built by cousin extension (Sect. 4.1) and the corresponding out-scope join operation
(Sect. 5.2) detects that C A↑B is not in the first tree and C B↑A is not in the second one.
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• u–u (unordered-unordered): The patterns B A↑C , BC↑↑A are both frequent. The reason
is that they have been generated by the union of unordered elements and the union can
be done in both directions.

• u–o (unordered-ordered): The pattern AB↑C is frequent, but the pattern obtained by
changing the order of its sibling nodes, AC↑B, is not frequent. AB↑C is an unordered
subtree in the second tree of the dataset but it only appears as an ordered subtree in the
first tree. Hence, both AC↑B and AB↑C occur in the first tree, but only AB↑C is in the
second one.

The classes derived from the frequent patterns of size 3 contain no frequent elements.
Therefore, no frequent patterns of size 4 are found in our tree dataset.

7 Implementation issues

In this section, we analyze the complexity of our algorithm and we discuss some imple-
mentation details that have important consequences in practice. In particular, we address the
parallelization of our algorithm in order to reduce its running time and we also propose an
alternative method to build scope lists in order to make POTMiner less memory consuming.

7.1 POTMiner complexity

POTMiner starts by computing the frequent patterns of size 1. This step is performed by
obtaining the vertical representation of the tree database, i.e., the individual nodes that appear
in the trees with their occurrences represented as scope lists. This representation is obtained
in linear time with respect to the number of trees in the database by scanning it and building
the scope lists for patterns of size 1. We then discard the patterns of size 1 that are not frequent.
This results in L scope lists corresponding to the L frequent labels in the tree database and
each frequent label leads to a candidate class of size 1.

Let c(k) be the number of classes of size k, which equals the number of frequent patterns
of size k, and e(k) the number of elements that might belong to a particular class of size k
(i.e., the number of patterns of size k + 1 that might be included in the class corresponding
to a given pattern of size k).

In POTMiner, each tree pattern grows only by adding a node as a child to a node in its
rightmost path. In the worst case, when the tree is just a sequence of size k, the number of
different trees of size k + 1 that can be obtained by the extension of the tree of size k is L ∗ k.
Hence, the number of elements in a particular class, e(k), is O(L ∗ k).

The number of classes of size 1 equals L , the number of frequent labels, i.e., c(1) = L .
The classes of size k + 1 are derived from the frequent elements in classes of size k. In the
worst case, when all the e(k) elements are frequent, c(k + 1) = c(k) ∗ e(k). Solving the
recurrence, we obtain c(k + 1) = c(k) ∗ e(k) = O(Lk+1 ∗ k!), which can also be expressed
as c(k) = O(Lk ∗ (k − 1)!).

For each pattern considered of size k + 1, POTMiner must perform a join operation to
obtain its scope list from the scope lists of the two patterns of size k that led to it.

The size of the scope list for a pattern of size k is O(t ∗ e) while the cost of a scope-list
join is O(t ∗ e2) , where t is the number of trees in the database and e is the average number
of embeddings of the pattern in each tree [35].

In the worst case, when we are looking for embedded subtrees, the number of embeddings
of a pattern of size k − 1 in a tree of size n equals the number of subtrees of size k − 1 within
the tree of size n. This number, s(k − 1), is bounded by

( n
k−1

) ≤ nk/(k − 1)!.
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Hence, the cost of the join operation needed for obtaining the scope list of a pattern of
size k, is j (k) = O(t ∗ s(k − 1)2) = O(t ∗ (nk/(k − 1)!)2).

The cost of obtaining all the frequent patterns of size k will be, therefore, O(c(k)∗ j (k)) =
O(Lk ∗ (k − 1)! ∗ t ∗ (nk/(k − 1)!)2) = O(Lk ∗ t ∗ n2k/(k − 1)!) = O(t ∗ (Ln2)k/(k − 1)!).

The total cost of executing the POTMiner algorithm to obtain all the frequent patterns up
to k = MaxSize is

∑
k=1...MaxSize(t ∗ (Ln2)k/(k − 1)!). Since the running time of our algo-

rithm is dominated by the time needed to discover the largest patterns (i.e., k = MaxSize),
POTMiner is O(t ∗ (Ln2)MaxSize/(MaxSize − 1)!).

Therefore, our algorithm is linear with respect to the number of trees in the tree database
and its execution time is also proportional to the number of patterns considered.

7.2 Parallelization: making POTMiner faster

Parallelism can be used to improve the performance of data mining algorithms. The parallel
implementation of these algorithms lets us exploit the architecture of modern multi-core pro-
cessors and multiprocessors. In fact, different parallel and distributed association rule mining
algorithms have been proposed in the literature, for instance [2,3,8,21,23,24].

POTMiner can also be parallelized. We have followed a candidate distribution approach
[3]. In POTMiner, generating candidates in parallel simply involves partitioning the set of
all candidate classes to be extended among the available processors.

The main idea behind the parallel version of POTMiner is that, in each step of the algo-
rithm, the extension of each candidate class and the corresponding scope list join operations
can be performed in parallel. Since these operations are independent from each other, each
one can be assigned to a different processor without incurring into significant coordination
costs.

The parallel version of POTMiner independently processes each class of size k to obtain
candidates of size k +1 and, at the end of each iteration, the results of the independently-pro-
cessed classes are combined to return all the candidate classes of size k + 1. The pseudocode
of the parallel version of POTMiner is shown in Fig. 15.

7.3 On-demand scope lists: reducing memory consumption

The candidate generation process is very memory consuming due to the huge amount of
scope lists that have to be maintained. Moreover, the size of each scope lists is proportional
to the number of embedded occurrences of each pattern, which can also be huge in large
databases.

We have devised a variant of our algorithm, called LightPOTMiner, which computes scope
lists on demand instead of storing all the scope lists in memory.

Fig. 15 Paralellization of the POTMiner algorithm
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Fig. 16 On-demand recursive
construction of scope lists in
LightPOTMiner

POTMiner builds the scope lists of a new candidate by joining the scope lists of the
patterns involved in its generation. LightPOTMiner recursively computes such scope lists
directly from the scope lists of the frequent nodes, i.e., the tree patterns of size 1.

The key idea of these recursive process is that it is always possible to know if a given
pattern was obtained by cousin extension or by child extension. Hence, we can infer which
subtrees were used to generate the tree pattern and which join operation to perform on the
corresponding scope lists, i.e., in-scope or out-scope join. The recursive algorithm employed
by LightPOTMiner is shown in Fig. 16.

In LightPOTMiner, scope lists are calculated on-demand. The scope list for a pattern of
size k is obtained by joining two scope lists of patterns of size k −1. Formally, the number of
join operations needed to obtain a scope list for a pattern of size k is given by the following
expression: join(k) = 1 + 2 ∗ join(k − 1) = 2k . The cost of computing a scope list in
LightPOTMiner is jlight(k) = 2k ∗ j (k) = O(2k ∗ t ∗ (nk/(k − 1)!)2).

The cost of obtaining all the frequent patterns of size k in LightPOTMiner will be, therefore,
O(c(k)∗ jlight(k)) = O(Lk ∗(k−1)!∗2k ∗t ∗(nk/(k−1)!)2) = O((2L)k ∗t ∗n2k/(k−1)!) =
O(t ∗ (2Ln2)k/(k − 1)!).

The total cost of executing the LightPOTMiner algorithm to obtain all the frequent patterns
up to k = MaxSize is

∑
k=1...MaxSize(t∗(2Ln2)k/(k−1)!). Since the running time of our algo-

rithm is dominated by the time needed to discover the largest patterns (i.e., k = MaxSize),
LightPOTMiner is O(t ∗ (2Ln2)MaxSize/(MaxSize − 1)!).

In other words, we introduce a 2MaxSize factor in the execution time of LightPOTMiner to
reduce memory consumption. LightPOTMiner just needs to store L scope lists corresponding
to the frequent patterns of size 1, while POTMiner had to store all the scope lists in memory,
up to c(MaxSize − 1), the number of frequent patterns of size MaxSize − 1 we might obtain,
which is LMaxSize−1 ∗ (MaxSize − 2)! in the worst case.

8 Experimental results

We have performed two series of experiments to evaluate POTMiner. First, we have per-
formed some experiments with synthetic datasets in order to compare POTMiner with existing
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Fig. 17 POTMiner and TreeMiner execution times when identifying induced patterns (left) and embedded
patterns (right) in completely-ordered trees

algorithms. Second, we have devised some experiments with the aim of analyzing POTMiner
performance with real datasets.

8.1 POTMiner versus TreeMiner/SLEUTH

All the experiments described in this section have been performed on a 2 GHz Intel T7200
Dual Core processor with 2 GB of main memory running on Windows Vista. POTMiner
has been implemented in Java using Sun Microsystems JDK 5, while Zaki’s TreeMiner and
SLEUTH C++ implementations were obtained from http://www.cs.rpi.edu/~zaki/.

The experiments were performed with five synthetic datasets generated by the tree gener-
ator available at http://www.cs.rpi.edu/~zaki/software/TreeGen.tgz. The datasets were obt-
ained using the generator default values and varying the number of trees from 10 to 100,000.
The labeled trees in these datasets contain 10 different labels, their maximum depth is 5, and
their nodes maximum fanout is also 5.

8.1.1 Ordered trees

In our first experiments, we compare POTMiner to TreeMiner [36]. Since TreeMiner works
on ordered trees, we consider that the trees in our synthetic datasets are completely-ordered.

Figure 17 shows POTMiner and TreeMiner execution times using a minimum support
threshold of 20% to identify both induced and embedded patterns in our datasets.

POTMiner, when dealing with completely-ordered trees, works as TreeMiner. Therefore,
the patterns identified by POTMiner and TreeMiner are exactly the same.

It should be noted that the charts in Fig. 17 use a logarithmic scale. The results show
that both POTMiner and TreeMiner are efficient, scalable algorithms for mining induced and
embedded subtrees in ordered trees.

For small datasets, POTMiner execution times are slightly higher than TreeMiner exe-
cution times. However, this difference disappears in larger datasets and POTMiner is even
faster than TreeMiner. The observed differences are probably due to the different program-
ming platforms used in the implementation of the two algorithms (Java for POTMiner, C++
for TreeMiner). The Java Virtual Machine used by our implementation of POTMiner intro-
duces some start-up overhead with respect to the native C++ implementation of TreeMiner.
This additional overhead is noticeable when dealing with small datasets, but quickly disap-
pears on larger datasets. In larger datasets, POTMiner outperforms TreeMiner due to a more
careful dynamic memory management.
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Fig. 18 POTMiner and SLEUTH execution times when identifying induced patterns (left) and embedded
patterns (right) in completely-unordered trees

8.1.2 Unordered trees

In this series of experiments, we compare the performance of POTMiner with the algorithm
proposed by Zaki for the identification of frequent patterns in unordered trees: SLEUTH [35].
The datasets we have used for these experiments contain the same trees we used to compare
POTMiner and TreeMiner, but this time we regard them as completely-unordered trees.

The patterns obtained by POTMiner, which was designed to deal with partially-ordered
trees, are always ordered. For unordered patterns, POTMiner returns all the frequent pat-
terns obtained with different permutations for the unordered sibling nodes. In the case of
completely-unordered trees, all such permutations will be frequent. Since SLEUTH only
returns the canonical representation of each frequent pattern, the number of patterns that
POTMiner returns is larger than the number of patterns returned by SLEUTH, even though
both algorithms identify exactly the same unordered tree patterns.

Figure 18 shows the results we have obtained when comparing POTMiner and SLEUTH.
POTMiner and SLEUTH are similar in efficiency and scalability. The differences that can be
observed are, again, due to their different execution platforms and implementation details.

8.1.3 Partially-ordered trees

We have also performed some experiments with partially-ordered trees. Since TreeMiner
[36] and SLEUTH [35] cannot be applied to partially-ordered trees, we have studied the
behavior of POTMiner when dealing with this kind of trees.

Starting from the same datasets used in the previous experiments, we have randomly
considered tree nodes as ordered or unordered. Figure 19 shows POTMiner execution times
and the number of patterns discovered when varying the percentage of ordered nodes in our
synthetic datasets.

It should be noted that the number of discovered patterns decrease when the number of
trees increase. This is due to the fact that the minimum support threshold is a relative value
(20% in our experiments) and the trees were randomly generated. Therefore, the probability
of a given pattern reaching the minimum support threshold decreases as the number of trees
is increased.

As we had expected, we found that execution times slightly decrease when the percentage
of ordered nodes is increased, since ordered trees are easier to mine than unordered trees and
the number of frequent patterns is smaller in ordered trees than in unordered ones.
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# Trees Time Patterns Time Patterns Time Patterns Time Patterns Time Patterns
10 59.2 35 94.5 32 43.0 31 44.1 30 57.0 28

100 47.8 18 103.0 18 79.8 17 62.7 17 44.2 16
1000 120.1 8 109.5 8 98.7 8 105.1 8 103.2 7

10000 383.0 7 447.8 7 452.6 7 410.1 7 373.5 6
100000 2608.5 7 2812.5 7 2774.0 6 2832.2 6 2557.0 6

# Trees Time Patterns Time Patterns Time Patterns Time Patterns Time Patterns
10 53.2 53 74.5 48 54.1 46 58.9 43 87.1 41

100 53.3 19 95.4 19 55.7 18 64.2 18 76.2 17
1000 117.1 11 104.6 10 110.4 10 126.1 10 104.2 9

10000 378.9 7 405.5 7 497.4 7 412.7 7 374.4 6
100000 2572.7 7 2804.5 7 2747.7 6 2794.5 6 2530.4 6

Embedded subtrees
0% ordered nodes 25% ordered nodes 50% ordered nodes 75% ordered nodes 100% ordered nodes

50% ordered nodes 75% ordered nodes 100% ordered nodes
Induced subtrees

0% ordered nodes 25% ordered nodes

Fig. 19 POTMiner execution times and number of discovered patterns when varying the percentage of ordered
nodes in partially-ordered trees

We have performed experiments to identify both induced and embedded subtrees in the
five datasets of varying size we used in our prior series of experiments. For these randomly-
generated datasets, no important differences have been observed between the time required
for the identification of induced patterns and the time needed for the discovery of embedded
patterns.

8.2 POTMiner on real datasets

We have also performed some experiments to study POTMiner behavior on real datasets. The
datasets used in these experiments come from the Mutagenesis database. This multirelational
database is frequently used as an ILP benchmark.

The Mutagenesis database contains four relations. We can derive a tree database from
it by building a tree from each tuple in its target relation. The links from one relation to
another within the database (i.e., the foreign keys in relational database terms) let us grow
the different tree branches. This procedure has been used to obtain two different tree datasets:

• The first dataset, called Muta2, is built by following two links between Mutagenesis rela-
tions (mole–molatm and moleatm–atom). This dataset contains 188 trees with 138 nodes
per tree (a total of 25,969 nodes).

• The second dataset, called Muta3, is built by following three links between Mutagenesis
relations (mole–molatm, moleatm–atom, and atom–bond). This dataset contains 188 trees
with 435 nodes per tree (81,898 nodes overall).

We have performed several experiments on these datasets to identify embedded subtrees of
different sizes using several support thresholds. These experiments have been performed on
an Intel 2.66 GHz Q6700 4-core processor with 4GB of main memory running on Windows
Vista.

8.2.1 Discovered patterns

Figure 20 displays the number of patterns identified by POTMiner in the Muta2 and Muta3
datasets when varying the minimum support threshold and the maximum pattern size.

We have used three different minimum support thresholds in our experiments (5, 10, and
20%) to obtain all the frequent embedded patterns of size 2 (L2), size 3 (L3), and size 4 (L4)
in the Muta2 and Muta3 datasets.
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Muta2 Muta3

20% 10% 5% 20% 10% 5%
L2 82 112 183 L2 115 145 216
L3 857 1245 2438 L3 1922 2593 4618
L4 9136 14993 31241 L4 40571 58106 111446

Minimum Support Minimum Support
MaxSize MaxSize

Fig. 20 Number of patterns identified by POTMiner in the Muta2 and Muta3 datasets
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CPU Time(%)
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Fig. 21 Additional CPU time required by LightPOTMiner on the Muta2 (left) and Muta3 (right) datasets
with respect to POTMiner

8.2.2 LightPOTMiner

LightPOTMiner is the variant of POTMiner that builds scope lists on demand, as described
in Sect. 7.3, in order to avoid the need to store all the scope lists in memory.

LightPOTMiner trades space for time. Memory consumption is reduced at the cost of
the additional CPU time required to build the scope lists as needed. Figure 21 displays the
execution time overhead introduced by LightPOTMiner when identifying embedded patterns
in the Muta2 and Muta3 datasets using a 20% minimum support threshold. In Muta2, Light-
POTMiner is three times slower than POTMiner while, in Muta3, the overhead is lower than
two times, a reasonable cost if we take into account the huge memory savings we obtain:
POTMiner, as TreeMiner or SLEUTH, would need to store tens of thousands of long scope
lists, while LightPOTMiner just requires a few dozens, for the frequent items in the database.

8.2.3 Parallel implementation of POTMiner and LightPOTMiner

We have also performed some experiments to evaluate the speed-up obtained by the par-
allel versions of POTMiner and LightPOTMiner. We have parallelized these algorithms as
described in Sect. 7.2.

Figure 22 shows the actual running times (in s) required by the parallel implementation
of POTMiner using four cores in a quad core processor. These results correspond to the time
required by POTMiner to identify embedded subtrees in the Muta2 and Muta3 datasets for
different minimum support thresholds and pattern sizes.

Muta2 Muta3

20% 10% 5% 20% 10% 5%
L2 1,62 1,62 1,62 L2 41,67 41,76 42,29
L3 1,98 2,11 2,22 L3 44,55 44,90 45,61
L4 17,19 20,69 26,83 L4 408,94 435,00 493,43

Minimum Support Minimum Support
MaxSize MaxSize

Fig. 22 Parallel POTMiner execution time (s) on the Muta2 and Muta3 datasets using four processors
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Fig. 23 Parallel POTMiner execution speedup on the Muta2 (left) and Muta3 (right) datasets
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Fig. 24 Parallel LightPOTMiner speedup on the Muta2 (left) and Muta3 (right) datasets
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Fig. 25 Parallel LightPOTMiner versus parallel POTMiner for different minimum support thresholds on the
Muta2 (left) and Muta3 (right) datasets

Figure 23 shows the performance improvement we have obtained with the parallel version
of POTMiner. Using just two threads of control, the parallel POTMiner is 1.6 times faster
than the sequential POTMiner in Muta2 and 1.7 times faster in Muta3. Using four processors,
we obtain a 2.1× and 2.4× improvement on Muta2 and Muta3, respectively. That means that
over 80% of POTMiner execution time is effectively parallelized.

LightPOTMiner is more CPU-bound than POTMiner, while POTMiner is more I/O-bound
than LightPOTMiner. The parallel implementation of LightPOTMiner obtains similar results
with respect its sequential implementation. The performance speed-up obtained by the par-
allel implementation of LightPOTMiner is shown in Fig. 24.

Finally, Fig. 25 compares the parallel implementations of POTMiner and LightPOTMiner
using four processors in parallel. As in their sequential implementations, LightPOTMiner
requires the additional CPU time introduced by the 2MaxSize factor analyzed in Sect. 7.3.
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9 Conclusions and future work

There are many different tree mining algorithms that work either on ordered or unordered
trees, but none of them, to our knowledge, works with partially-ordered trees, that is, trees
that have both ordered and unordered sets of sibling nodes. We have devised a new algorithm
to address this situation that is as efficient and scalable as existing algorithms that exclusively
work on either ordered or unordered trees.

Partially-ordered trees are important because they appear in different application domains.
In the future, we expect to apply our tree mining algorithm to some of these domains. In
particular, we believe that our algorithm for identifying frequent subtrees in partially-ordered
trees can be useful in different applications:

• XML documents [18], due to their hierarchical structure, are directly amenable to tree
mining techniques. Since XML documents can contain both ordered and unordered sets
of nodes, partially-ordered trees provide a better representation model for them and POT-
Miner is, therefore, better suited for mining them than previous tree mining techniques.

• In Software Engineering, it is usually acknowledged that mining the wealth of informa-
tion stored in software repositories can “support the maintenance of software systems,
improve software design/reuse, and empirically validate novel ideas and techniques”
[14]. For instance, there are hierarchical program representations, such as dependence
higraphs [6], that can be viewed as partially-ordered trees, hence the potential of tree
mining techniques in software mining.

• Multi-relational data mining [13] is another emerging research area where tree mining
techniques can be useful. Algorithms such as POTMiner can help improve existing multi-
relational classification [33] and clustering [34] algorithms.

We also plan to extend POTMiner to deal with partial or approximate tree matching, a
feature that would be invaluable in many real-world problems, from entity resolution in XML
documents to program element matching in software mining.
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• A. Jiménez, F. Berzal, and JC Cubero, Mining Frequent Patterns from
XML Data: Efficient Algorithms and Design Trade-Offs. Submitted
to Expert Systems with Applications.

– Status: Submitted.

– Impact Factor (JCR 2009): 2.908.

– Subject Category:

∗ Computer Science, Artificial Intelligence. Ranking 15 / 103.
∗ Engineering, electrical & electronic. Ranking 16 / 246.
∗ Operations research & management science. Ranking 3 / 73.





                             Elsevier Editorial System(tm) for Expert Systems With Applications 
                                  Manuscript Draft 
 
 
Manuscript Number:  
 
Title: Mining Frequent Patterns from XML Data: Efficient Algorithms and Design Trade-Offs  
 
Article Type: Full Length Article 
 
Keywords: XML documents; data mining; frequent patterns;  
partially-ordered trees; induced and embedded subtrees 
 
Corresponding Author: Dr. Fernando Berzal, Ph.D. 
 
Corresponding Author's Institution: University of Granada 
 
First Author: Aida Jimenez 
 
Order of Authors: Aida Jimenez; Fernando Berzal, Ph.D.; Juan Carlos Cubero, Ph.D. 
 
 
 
 
 
 



Mining Frequent Patterns from XML Data:
Efficient Algorithms and Design Trade-Offs
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Abstract

XML documents are now ubiquitous and their current applications are countless,
from representing semi-structured documents to being the de facto standard for
exchanging information. Viewed as partially-ordered trees, XML documents
are amenable to efficient data mining techniques. In this paper, we describe
how scalable algorithms can be used to mine frequent patterns from partially-
ordered trees and discuss the trade-offs that are involved in the design of such
algorithms.

Keywords: XML documents; data mining; frequent patterns;
partially-ordered trees; induced and embedded subtrees;

1. Introduction

XML has become a popular format for the storage and exchange of data due
to its flexible semi-structured nature, which allows the representation of a wide
variety of databases as XML documents. XML data thus forms an important
data mining domain [1].

Since XML documents are also text documents, a natural solution for XML
data mining problems is the use of standard information retrieval techniques.
Another approach for dealing with XML documents consists of just flattening
their structure into a set, which allows the application of standard data mining
algorithms. However, those approaches ignore a significant amount of structural
information in the XML documents.

Structural XML data mining is a challenging problem. In the past few
years, however, some novel techniques have been proposed for dealing with XML
documents and their structure. Frequent discriminatory substructures within
XML documents have been used to perform rule-based classification of XML
data in XRules[1], an approach that outperforms standard associative classifiers.
Substructures in XML documents have also been used in effective clustering
algorithms for XML data [2]. In this case, the similarity within a cluster is
defined in terms of the containment of particular frequent substructures which
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occur frequently in that particular segment of the data. These substructures
are analogous to the projected dimensions used in subspace clustering.

In this paper, we will discuss the key problem of discovering the frequent
patterns that later can be used to solve other problems in structural XML data
mining. Apart from being at the heart of many interesting and challenging data
mining problems, the discovery of frequent XML patterns is also useful in many
other situations. For instance, the discovery of frequent XML query patterns in
the history log of XML queries can be used to expedite XML query processing,
as the answers to these queries can be cached and reused when the future queries
“hit” such frequent patterns [3].

Discovering frequent tree patterns over tree-structured data has indeed be-
come an important problem in data mining and many different tree pattern
mining algorithms have been proposed [4]. In our paper, we will focus our
discussion on POTMiner [5], an efficient parallel algorithm for mining partially-
ordered trees. Such trees provide a general model for representing the structural
information in XML documents. We will also analyze some design trade-offs
that must be made in practice to deal with real-world data sets.

This paper is organized as follows. We introduce partially-ordered trees as
well as some standard terms in Section 2. POTMiner is described in Section
3. Its parallelization is described in Section 4, while some trade-offs related
to memory consumption are discussed in Section 5. Finally, we present some
experimental results in Section 6 and our conclusions in Section 7.

2. Background

A tree is a connected and acyclic graph. A tree is rooted if its edges are
directed and a special node, called root, can then be identified. The root is
the node from which it is possible to reach all the other nodes in the tree. In
contrast, a tree is said to be free if its edges have no direction, that is, when it
is an undirected graph. A free tree, therefore, has no predefined root.

Rooted trees can be classified as ordered trees, when there is a predefined
order within each set of sibling nodes in the tree, or unordered trees, when
there is not such a predefined order among sibling nodes in the tree. Partially-
ordered trees contain both ordered and unordered sets of sibling nodes within
the same tree. Figure 1 depicts ordered, unordered, and partially-ordered trees
(ordered sibling nodes are joined by an arc, while unordered sets of sibling nodes
do not share such arc).

Figure 2 shows an XML document representing the purchase history of a par-
ticular customer and its corresponding partially-ordered tree. Partially-ordered
trees are useful when the order within some sets of siblings is important but it
is not necessary to establish an order relationship within all the sets of sibling
nodes. In this case, taken from a typical scenario in market basket analysis,
it is important to preserve the order among the different orders placed by the
same customer, while the order among the items in the same order is irrelevant.
In practice, XML schemata define the structure of XML documents and they
determine which sets of sibling nodes are ordered and which ones are unordered.
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Figure 1: Different kinds of rooted trees (from left to right): (a) completely-ordered tree; (b)
and (c), partially-ordered trees; (d) completely-unordered tree.

<customer>

   <order>

      <item>milk</item>

      <item>bread</item>

   </order>

   <order>

      <item>beer</item>

      <item>diapers</item>

   </order>

</customer>

C

O O

Be DiMi Br

Figure 2: A simple XML document and its partially-ordered tree representation.

A subtree is a tree subgraph. Different kinds of subtrees can be defined
depending on the way we define the matching function between the particular
subgraph and the tree it derives from. A bottom-up subtree T ′ of T (with
root v) can be obtained by taking one vertex v from T with all its descendants
and their corresponding edges. An induced subtree T ′ can be obtained from
a tree T by repeatedly removing leaf nodes from a bottom-up subtree of T .
Finally, an embedded subtree T ′ can be obtained from a tree T by repeatedly
removing nodes, provided that ancestor relationships among the vertices of T
are not broken. Figure 3 shows a tree (a) wherein we have identified a bottom-up
subtree (b), an induced subtree (c) and an embedded subtree (d).

3. Mining Partially-Ordered Trees

Tree mining algorithms cannot be directly applied to partially-ordered trees
because they typically work either on completely-ordered or on completely-
unordered trees. We have extended Zaki’s TreeMiner [6] and SLEUTH [7] al-
gorithms to mine partially-ordered trees. The algorithm we have devised is

A
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Figure 3: Different kinds of subtrees (from left to right): (a) original tree, (b) bottom-up
subtree, (c) induced subtree, (d) embedded subtree.
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algorithm POTMiner

Obtain frequent nodes (frequent patterns of size 1)
Build candidate classes C1 from the frequent nodes
for k=2 to MaxSize

for each class P ∈ Ck−1

for each element p ∈ P .
Compute the frequency of p
if p is frequent
then

Create a new class P ′ from p.
Add P ′ to Ck

Figure 4: POTMiner algorithm pseudocode.

able to identify frequent subtrees, both induced and embedded, in ordered, un-
ordered, and partially-ordered trees. Hence its name, POTMiner, which stands
for Partially-Ordered Tree Miner [5].

Our algorithm is based on Apriori [8], just like TreeMiner and SLEUTH.
Therefore, it follows an iterative pattern mining strategy. The k-th iteration of
the algorithm mines the frequent subtrees of size k starting from the frequent
subtrees of size k − 1 discovered in the previous iteration. Each iteration, as in
Apriori, is subdivided in two phases, candidate generation and support counting.

The pseudocode of the resulting algorithm is shown in Figure 4. The details
of the candidate generation and support counting phases will be described in
the following sections.

3.1. Candidate Generation for Partially-Ordered Trees
POTMiner employs Zaki’s class-based extension method to generate can-

didates, one of the available strategies for enumerating candidate trees in tree
pattern mining algorithms [4]. This method generates (k+1)-subtree candidates
by joining two frequent k-subtrees with k− 1 elements in common. Candidates
are grouped into equivalence classes, each class containing all the trees that
share the same prefix in their codification string.

Two k-subtrees are in the same equivalence class [P ] if they share the same
codification string until their (k − 1)th node. Each element of the class can
then be represented by a single pair (x, p) where x is the k-th node label and p
specifies the depth-first position of its parent.

TreeMiner [6] and SLEUTH [7] use the class-based extension method to mine
ordered and unordered embedded subtrees, respectively. The main difference
between TreeMiner and SLEUTH is that only those extensions that produce
canonical subtrees are allowed in SLEUTH, which works with unordered trees.
This constraint avoids the duplicate generation of candidates corresponding to
different representations of the same unordered trees. However, since we must
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handle both ordered and unordered sets of sibling nodes in partially-ordered
trees, all extensions must be allowed in POTMiner, as in TreeMiner.

Let (x, i) and (y, j) denote two elements in the same class [P ], and [P i
x]

be the set of candidate trees derived from the tree that is obtained by adding
the element (x, i) to P . Elements in the same equivalence class are joined to
generate new candidates. This join procedure must consider two scenarios [7]:
cousin extension and child extension.

3.1.1. Cousin extension
Cousin extension is performed when the father of (y, j) precedes (or is) the

father of the element (x, i) in preorder, where the father of (y, j) is the node
in position j and the father of (x, i) is in position i. Formally, if j ≤ i and
|P | = k − 1 ≥ 1, then (y, j) ∈ [P i

x]. The first condition checks that only
nodes on the rightmost branch of P are extended. The second one makes cousin
extension possible only when patterns have more than one node.

3.1.2. Child extension
When (y, j) is a sibling node of (x, i), the child extension mechanism lets us

add y as a child of the rightmost leaf of the tree. The formal definition of child
extension is: if j = i then (y, k − 1) ∈ [P i

x].
Child extension is used to make tree patterns grow in depth, while cousin

extension lets them grow in width.

3.2. Support Counting for Induced and Embedded Subtrees
Once POTMiner has generated the potentially frequent candidates, it is nec-

essary to determine which ones are actually frequent by counting the support of
the potentially frequent candidates. The support counting phase in POTMiner
follows the strategy of AprioriTID [8]. Instead of checking if each candidate is
present in each database tree, which is a costly operation when dealing with
trees, occurrence lists are used to preserve the occurrences of each pattern in
the database, thus facilitating the support counting phase. Checking whether a
pattern is frequent, therefore, consists of counting the elements in its occurrence
list.

Several kinds of occurrence lists have been proposed in the tree mining lit-
erature: Standard occurrence lists [9] preserve the identifiers of the trees as well
as the matching between the pattern nodes and the database tree nodes using
a breadth-first codification scheme. Rightmost occurrence lists [10] only need
to store the occurrences of the rightmost leaf of X in each database tree. Scope
lists [7] preserve each occurrence of a pattern X in the database using a tuple
which contains the scope of the last node of the pattern. The scope of a node
is defined as a pair [l,u] where l is the position of the node in depth-first order
and u is the position of its rightmost descendant.

POTMiner employs scope lists to preserve the occurrences of a pattern in
the tree database. The main difference between our scope lists and the ones
proposed by Zaki in TreeMiner [6] and SLEUTH [7] is that we must add two
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In-scope join procedure:
if

1. tx = ty = t and
2. mx = my = m and
3. dx = 1 when we are looking for induced patterns, and
4. sy ⊂ sx (i.e., lx < ly and ux ≥ uy),

then add [t, m
⋃ {lx}, sy, dy − dx, Θy] to the scope list of the generated

candidate.

Out-scope join procedure:
if

1. tx = ty = t and
2. mx = my = m and
3. if the node is ordered and sx < sy (i.e. ux < ly) or the node is unordered

and either sx < sy or sy < sx (i.e. either ux < ly or uy < lx),

then add [t, m
⋃ {lx}, sy ,dy,Θy] to the scope list of the generated candidate.

Figure 5: Scope list join procedures in POTMiner.

new elements to the tuples in the scope lists, d and Θ, in order to deal with
induced subtrees and partially-ordered trees, respectively.

Our scope lists, therefore, contain tuples (t, m, s, d, Θ) where t is the tree
identifier, m stores which nodes of the tree match those of the (k-1) prefix of
the pattern X in depth-first order, s=[l,u] is the scope of the last node in the
pattern X, d is a depth-based parameter used for mining induced subtrees (not
needed when mining embedded subtrees), and Θ indicates whether the last node
of the pattern is ordered (Θ=o) or unordered (Θ=u) in the database tree.

When building the scope lists for patterns of size 1, m is empty and the
element d is initialized with the depth of the pattern only node in the original
database tree.

We obtain the scope list for a new candidate of size k by joining the scope
lists of the two subtrees of size k − 1 that were involved in the generation of
the candidate. Let (tx, mx, sx, dx, Θx) and (ty, my, sy, dy, Θy) be the scope
lists of the subtrees involved in the generation of the candidate. The scope list
for this candidate is built by a join operation that depends on the candidate
extension method used to generate the candidate. The in-scope join procedure
is used in conjunction with the child extension mechanism, while the out-scope
join procedure is used in conjunction with the cousin extension mechanism (see
Figure 5). Further details can be found in [5].

3.3. POTMiner Complexity
POTMiner starts by computing the frequent patterns of size 1. This step is

performed by obtaining the vertical representation of the tree database, i.e., the
individual nodes that appear in the trees with their occurrences represented as
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scope lists. This representation is obtained in linear time with respect to the
number of trees in the database by scanning it and building the scope lists for
patterns of size 1. We then discard the patterns of size 1 that are not frequent.
This results in L scope lists corresponding to the L frequent labels in the tree
database and each frequent label leads to a candidate class of size 1.

Let c(k) be the number of classes of size k, which equals the number of
frequent patterns of size k, and e(k) the number of elements that might belong
to a particular class of size k (i.e., the number of patterns of size k + 1 that
might be included in the class corresponding to a given pattern of size k).

In POTMiner, each tree pattern grows only by adding a node as a child to a
node in its rightmost path. In the worst case, when the tree is just a sequence
of size k, the number of different trees of size k + 1 that can be obtained by
the extension of the tree of size k is L ∗ k. Hence, the number of elements in a
particular class, e(k), is O(L ∗ k).

The number of classes of size 1 equals L, the number of frequent labels, i.e.
c(1) = L. The classes of size k + 1 are derived from the frequent elements in
classes of size k. In the worst case, when all the e(k) elements are frequent,
c(k +1) = c(k)∗e(k). Solving the recurrence, we obtain c(k +1) = c(k)∗e(k) =
O(Lk+1 ∗ k!), which can also be expressed as c(k) = O(Lk ∗ (k − 1)!).

For each pattern considered of size k + 1, POTMiner must perform a join
operation to obtain its scope list from the scope lists of the two patterns of size
k that led to it.

The size of the scope list for a pattern of size k is O(t ∗ e) while the cost of
a scope-list join is O(t ∗ e2) , where t is the number of trees in the database and
e is the average number of embeddings of the pattern in each tree [7].

In the worst case, when we are looking for embedded subtrees, the number
of embeddings of a pattern of size k − 1 in a tree of size n equals the number
of subtrees of size k − 1 within the tree of size n. This number, s(k − 1), is
bounded by

(
n

k−1

) ≤ nk/(k − 1)!.
Hence, the cost of the join operation needed for obtaining the scope list of

a pattern of size k, is j(k) = O(t ∗ s(k − 1)2) = O(t ∗ (nk/(k − 1)!)2).
The cost of obtaining all the frequent patterns of size k will be, therefore,

O(c(k) ∗ j(k)) = O(t ∗ (Ln2)k/(k − 1)!).
The total cost of executing the POTMiner algorithm to obtain all the fre-

quent patterns up to k=MaxSize is
∑

k=1...MaxSize(t∗(Ln2)k/(k−1)!). Since the
running time of our algorithm is dominated by the time needed to discover the
largest patterns (i.e. when k=MaxSize), POTMiner is O(t∗(Ln2)MaxSize/(MaxSize−
1)!).

Therefore, our algorithm is linear with respect to the number of trees in
the tree database and its execution time is also proportional to the number of
patterns considered.

4. Making POTMiner faster: Parallelization

Parallelism can be used to improve the performance of data mining algo-
rithms. The parallel implementation of POTMiner lets us exploit the archi-
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algorithm ParallelPOTMiner

Obtain frequent nodes (frequent patterns of size 1)
Build candidate classes C1 from the frequent nodes
for k=2 to MaxSize

for each class P ∈ Ck−1

Extend P in parallel to obtain Pextended

for each class P ∈ Ck−1

Ck = Ck

⋃
Pextended

Figure 6: POTMiner algorithm parallelization.

tecture of modern multi-core processors and multiprocessors. In fact, many
different parallel and distributed frequent pattern mining algorithms have been
proposed in the association rule mining literature, e.g. [11] [12] [13] [14] [15].

POTMiner can also be parallelized using a candidate distribution approach
[11]. The idea behind the parallel version of POTMiner is that, in each step
of the algorithm, the extension of each candidate class and the corresponding
scope list join operations can be performed in parallel. Since these operations
are independent from each other, each one can be assigned to a different proces-
sor without incurring into significant coordination costs. Therefore, the parallel
generation of candidate patterns simply involves partitioning the set of all can-
didate classes to be extended among the available processors.

The parallel version of POTMiner independently processes each class of size
k to obtain candidates of size k +1 and, at the end of each iteration, the results
of the independently-processed classes are combined to return all the candidate
classes of size k + 1. The pseudocode of this parallel version of POTMiner is
shown in Figure 6.

5. Making POTMiner leaner: On-demand scope lists

The candidate generation process is very memory consuming due to the
huge amount of scope lists that have to be maintained. Moreover, the size of
each scope lists is proportional to the number of embedded occurrences of each
pattern, which can also be huge in large databases.

We have devised two variants of the POTMiner algorithm that make different
memory/CPU-time trade-offs to compute scope lists on demand, instead of
keeping all of them in memory, which is impractical in many situations.

5.1. POTMiner Light
POTMiner builds the scope lists of a new candidate by joining the scope

lists of the patterns involved in its generation. POTMiner Light recursively
computes such scope lists directly from the scope lists of the frequent nodes,
i.e., the tree patterns of size 1.
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algorithm scopeList (Tree t): s
// t : n1, n2..nk−1, nk

if k = 1
then

s = scope list of node nk

else
t1 = t− nk

t2 = t− nk−1

s1 = scopeList(t1)
s2 = scopeList(t2)
if nk.parent = nk−1

then // t was obtained by child extension
s = in-scope-join (s1, s2)

else // t was obtained by cousin extension
s = out-scope-join (s1, s2)

Figure 7: Recursive construction of scope lists in POTMiner Light.

The key idea of these recursive process is that it is always possible to know if
a given pattern was obtained by cousin extension or by child extension. Hence,
we can infer which subtrees were used to generate the tree pattern and which
join operation to perform on the corresponding scope lists, i.e. in-scope or out-
scope join. The recursive algorithm employed by POTMiner Light is shown in
Figure 7.

In POTMiner Light, therefore, scope lists are calculated on demand. The
scope list for a pattern of size k is obtained by joining two scope lists of patterns
of size k − 1. Formally, the number of join operations needed to obtain a scope
list for a pattern of size k is given by the following expression: join(k) =
1 + 2 ∗ join(k − 1). Given that join(2) = 1, then join(k) = 2k−1 − 1. The
cost of computing a scope list in POTMiner Light is, therefore, jlight(k) =
(2k−1 − 1) ∗ j(k) ∈ O(2k ∗ t ∗ (nk/(k − 1)!)2).

The cost of obtaining all the frequent patterns of size k in POTMiner Light
will be proportional to O(c(k)∗jlight(k)) = O(Lk ∗(k−1)!∗2k ∗t∗(nk/(k−1)!)2)
= O((2L)k ∗ t ∗ n2k/(k − 1)!) = O(t ∗ (2Ln2)k/(k − 1)!).

The total cost of executing the POTMiner Light algorithm to obtain all
the frequent patterns up to k = MaxSize is

∑
k=1...MaxSize(t ∗ (2Ln2)k/(k −

1)!). Since the running time of our algorithm is dominated by the time needed
to discover the largest patterns (i.e. k=MaxSize), POTMiner Light is O(t ∗
(2Ln2)MaxSize / (MaxSize− 1)!).

In other words, we introduce a 2MaxSize−1−1 factor in the execution time of
POTMiner Light to reduce memory consumption. POTMiner Light just needs
to store L scope lists corresponding to the frequent patterns of size 1, while
POTMiner had to store all the scope lists in memory, up to c(MaxSize − 1),
the number of frequent patterns of size MaxSize− 1 we might obtain, which is

10
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Figure 8: Recursive scope-list generation in POTMiner Light.

LMaxSize−1 ∗ (MaxSize− 2)! in the worst case.

5.2. POTMiner DP
The recursive on-demand computation of scope-lists in POTMiner Light

repeats the generation of some of these scope-list. For patterns of size k = 5,
the scope list of a candidate of size 3 is computed twice and the scope list of a
candidate of size 2 is computed four times. Figure 8 shows an example of this
time-consuming generation process. In general, for patterns of size k, there is a
pattern of size k− s (with s ≥ 2) whose scope list is computed 2s−1 times using
POTMiner Light recursive algorithm.

We can use dynamic programming in order to avoid the repeated computa-
tion of the same scope lists, which leads us to a new variant of our tree pattern
mining algorithm: POTMiner DP. Our dynamic programming algorithms uses
a bottom-up strategy to build scope lists and, by memoizing the scope lists that
are recomputed by POTMiner Light, it trades CPU time for memory space (the
space needed to store the scope lists that will be reused). The leftmost trees in
Figure 8 are the ones whose scope lists are recomputed by POTMiner Light and
they are the trees whose scope lists we will be kept in memory by POTMiner
DP.

It should be noted, however, that we cannot know whether we should perform
an in-scope or an out-scope join when building the scope lists bottom-up (that
is, if we employed dynamic programming directly). For this reason, we have
to decompose the candidate pattern in its constituent subpatterns before we
compute its scope list. By keeping these subpatterns in memory, we can check

11



algorithm scopeListDP (Tree t): s
// t : n1, n2..nk−1, nk

for i=1 to k
list[i] = scope list of node ni

for j=1 to i-1
if j=1
then // pattern of size 2

list[i] = in-scope-join (list[j], list[i])
else

s = subtree[j+1][i] // s : s1, s2..sj , sj+1

if sj+1.parent = sj

then
list[i] = in-scope-join(list[j], list[i])

else
list[i] = out-scope-join (list[j], list[i])

return list[k]

Figure 9: Scope list generation in POTMiner DP.

whether the candidate grew by cousin extension or by child extension in O(1),
which is the information we need to decide between in-scope and out-scope join.

Therefore, the scope list computation for each pattern P in POTMiner DP
will consist of the following two steps:

• Top-down subtree decomposition: The tree pattern is decomposed into its
constituent subtrees, which are saved into a matrix that stores the subtree
of size k whose last node is the n-th node in the P tree in subtree[k][n].

• Bottom-up scope-list generation using dynamic programming: The scope
list of a given pattern of size k is iteratively computed by reusing the scope
lists of its leftmost subtrees, as shown in Figure 9.

Figure 10 shows the order in which operations are performed by POTMiner
DP to build the scope list of a pattern of size 5 (the same pattern that was
used in Figure 8 to illustrate the redundant computations in POTMiner Light).
During the subtree generation step, subtree are generated from right to left
and top-down following the hollow arrows. During the scope-list generation
step, scope lists are generated from left to right and bottom-up following the
solid arrows. It should be taken into account that only the scope lists of the
patterns in the top row must be kept in memory while computing the scope list
corresponding to the 5-node tree pattern shown at the top right corner.

In POTMiner DP, the number of join operations needed to obtain a scope list
for a pattern of size k is given by the following expression: join(k) = k∗(k−1)/2.
The cost of computing a scope list in POTMiner PD is jDP (k) = (k∗(k−1)/2)∗
j(k) = O(k2 ∗ t ∗ (nk/(k − 1)!)2).
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Figure 10: POTMiner DP computation of scope lists.

The cost of obtaining all the frequent patterns of size k in POTMiner DP
will be, therefore, O(c(k) ∗ jDP (k)) = O(t ∗ k2 ∗ (Ln2)k/(k − 1)!).

The total cost of executing the POTMiner DP algorithm to obtain all the
frequent patterns up to k = MaxSize is

∑
k=1...MaxSize(t∗k2∗(Ln2)k/(k−1)!).

Since the running time of our algorithm is dominated by the time needed to
discover the largest patterns (i.e. k = MaxSize), POTMiner DP is O(t ∗
MaxSize2 ∗ (Ln2)k/(k − 1)!).

In other words, we introduce a (MaxSize ∗ (MaxSize − 1)/2) factor in
the execution time of our original POTMiner algorithm. It should be noted
that this factor is much lower than the factor introduced by POTMiner Light
(2MaxSize−1 − 1), specially for large values of MaxSize. On the other hand,
POTMiner DP needs to store L scope lists corresponding to the frequent pat-
terns of size 1, as POTMiner Light, plus k − 1 ancillary list to speed up scope
list computation using the dynamic programming algorithm described above.

6. Experimental results

We have performed two series of experiments to evaluate the different ver-
sions of POTMiner. First, we have tested our algorithms using a synthetic
dataset to study their scalability. Second, we have devised some experiments
with a real-world dataset in to test their behavior in practice.

All the experiments described in this section have been performed on an
Intel 2.66GHz Q6700 4-core processor with 4GB of main memory running on

13



Table 1: Number of frequent induced patterns found in the synthetic dataset using a 5%
minimum support threshold.

Pattern size 2 3 4 5 6 7
Number of patterns 24 65 123 174 201 209
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Figure 11: Comparison of POTMiner, POTMiner Light, and POTMiner DP execution times
on the synthetic dataset for different pattern sizes.

Windows Vista. The three variants of POTMiner have been implemented in
Java using Sun Microsystems JDK 6.

6.1. Experiments using a synthetic dataset
The experiments in this section were performed with a synthetic dataset

generated by the tree generator available at http://www.cs.rpi.edu/∼zaki/www-
new/pmwiki.php/Software/Software#trees. The 10000-tree dataset was obtained
using the generator default values. The labeled trees in this dataset contain 10
different labels, their maximum depth is 5, and their nodes maximum fanout
is also 5. The trees of this dataset have are 54686 nodes in total. Table 1
shows the numbers of frequent induced patterns that can be identified within
this synthetic dataset using a 5% support threshold.

Figure 11 shows the performance of the different POTMiner variants on the
synthetic dataset when identifying patterns from size 2 to 7 using a parallel
implementation of the three variants that makes use of 4 parallel threads to
take advantage of the 4-core processor the experiments have been performed on.
Obviously, POTMiner is much faster that its memory-efficient variants, while
POTMiner DP performance is better than its POTMiner Light counterpart.

6.2. Experiments using a real-world database
We have also performed some experiments to study the three POTMiner

variants in a real-world scenario. The dataset we used in these experiments was
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Table 2: Number of frequent induced patterns found in the Mutagenesis dataset using a 20%
minimum support threshold.

Pattern size 2 3 4 5
Number of patters 82 857 9136 74922

obtained come from the Mutagenesis database, a multirelational database that
is frequently used as an ILP benchmark.

The Mutagenesis database contains four connected relations that we can use
to build a tree database. A tree is obtained from each tuple in its target relation.
Next, the links from one relation to another within the multirelational database
(i.e. the foreign keys in relational database parlance) let us grow the different
tree branches.

The dataset used in our experiments was built by following 2 links between
the Mutagenesis relations (mole-molatm and moleatm-atom). The resulting
dataset contains 188 trees with 138 nodes per tree on average (i.e. a total
of 25969 nodes). Table 2 shows the number of frequent patterns that were
identified within the Mutagenesis dataset using a 20% of minimum support
threshold for different pattern sizes. As can be seen in Table 2, the number of
frequent patterns in a real-world database pattern is typically much larger than
the number of frequent patterns in synthetic datasets (Table 1).

The large number of patterns makes POTMiner impractical, since memory
is exhausted before all frequent itemsets are identified. In our experiments,
POTMiner ran out of memory when discovering patterns of size 4 within the
Mutagenesis database. While requiring more CPU time, both POTMiner Light
and POTMiner DP are able to mine this database without problems.

Figure 12 shows the execution time corresponding to the different POTMiner
variants when identifying frequent induced patterns within the Mutagenesis
dataset. POTMiner DP execution time is slightly better than POTMiner Light
execution time, and this difference is expected to grow for larger patterns. The
original version of POTMiner is just unable to discover patterns of size 4 and 5
in this dataset because it quickly ran out of memory.

7. Conclusions

XML documents are amenable to efficient data mining when viewed as
partially-ordered labeled trees. Many tree pattern mining algorithms have been
proposed in the literature, but not all of them are useful in practice. Even
though they might be scalable from a theoretical point of view and they work
when dealing with synthetic datasets, their huge memory requirements when
applied in more realistic settings make them impractical.

This paper has described how an efficient, scalable, and parallelizable tree
pattern mining algorithm can be adjusted to reduce its memory requirements.
The variants described here trade memory space for CPU time in order to sur-
pass the limitations of a memory-bound algorithm such as POTMiner. The
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Figure 12: POTMiner (top), POTMiner Light (middle), and POTMiner DP (bottom) execu-
tion times on the Mutagenesis dataset for different pattern sizes.

recursive computation of occurrence lists in POTMiner Light provides an al-
ternative to keeping all those lists in memory, while the dynamic programming
approach provided by POTMiner DP renders another solution to the same prob-
lem that is asymptotically better when we are interested in discovering large
frequent patterns in a tree database such as a set of XML documents.

In the future, we intend to apply our pattern mining algorithm on partially-
ordered trees in different application domain, which will probably require us
to push constraints into the tree pattern mining process in order to make the
solution of real-world problems feasible.
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Abstract.

The study of association rules within groups of individuals in a database is inter-
esting to analyze the characteristics and the behavior of such groups. In this paper, we
define group association rules and we study interestingness measures for them. These
interestingness measures can be used to rank, not only groups of individuals, but also
rules within each group. We also compare the rankings provided by those different in-
terestingness measures in order to determine which one provides a better alternative
depending on the kind of situations we wish to highlight within large databases with
many different (and overlapping) groups of individuals.

Keywords: Group association rules; interestingness measures.

1. Introduction

The approach we propose in this paper intends to solve the second-order data
mining problem that often arises in practice. Researchers in the data mining field
have traditionally focused their efforts on obtaining fast and scalable algorithms
in order to deal with huge amounts of data. When dealing with association rules,
for instance, he overwhelming number of discovered rules, usually in the order
of thousands or even millions, makes them of limited use in practice. The mere
volume of these sets of rules causes the aforementioned second-order data mining
problem (Berzal & Cubero, 2007).

Databases can naturally contain groups of individuals that share some char-
acteristics (Plasse, et al., 2007). For example, within a census database, we can
find many different groups of individuals (e.g. according to their sex, their mar-
ital status, whether they have children, or just by combining several of such
features). Our proposal consists of automatically identifying potentially useful
groups of related association rules and ranking the resulting group association
rules so that expert users can more easily sift through vast amounts of association
rules.

Association rules have been used to analyze co-occurrence relationships among
frequent itemsets in transactional and relational databases. Let I = {I1, I2, ..., Im}

Manuscript
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be a set of items. Let D be a set of database transactions where each transaction
T is a set of items such that T ⊆ I. Let S be a set of items. A transaction T is
said to contain S if and only if S ⊆ T (Han & Kamber, 2005). An association
rule is an implication of the form A ⇒ C, where A ⊆ I, C ⊆ I, and A ∩C = ∅.

In this paper, we describe how association rules can be defined to study
the features that individuals within a given group have in common. We define
a group as a set of items G = {G1, G2, ..., Gn} such that G ⊆ I. A group
association rule G : A ⇒ C is an association rule A ⇒ C defined over the
group G. In other words, a group association rule G : A ⇒ C is equivalent to
the classical association rule GA ⇒ C.

In this paper, we also adapt some of the interestingness measures that have
been defined for association rules (Geng & Hamilton, 2006) (Berzal, et al., 2002)
to group association rules and analyze how these tailored measures will help us
rank the different groups in a database in order to highlight the most interesting
ones. We also compare the group rankings obtained by different interestingness
measures in order to study their differences.

Our paper is organized as follows. In Section 2, we describe some rule inter-
estingness measures as proposed in the literature. Section 3 introduces interest-
ingness measures for group association rules. In Section 4, we explain how to
rank groups and group association rules within each group. Section 5 introduces
criteria to compare alternative rankings. We analyze the experimental results we
have obtained in Section 6. Finally, we end our paper with some conclusions in
Section 7.

2. Interestingness measures for standard association rules

The classical measures used to characterize an association rule are its support
and its confidence (Agrawal & Srikant, 1994)(Han & Kamber, 2005).

Definition 1. The support of an itemset X in the database D is defined as the
percentage of transactions that contain X , i.e.,

supp(X) = P (X).

Definition 2. The rule A ⇒ C holds in the transaction set D with support
supp(A ⇒ C), where supp(A ⇒ C) is the percentage of transactions in D that
contain A ∪ C, i.e.,

supp(A ⇒ C) = supp(A ∪ C) = P (A ∪ C).

Definition 3. The rule A ⇒ C has confidence conf(A ⇒ C) in the transac-
tion set D, where conf(A ⇒ C) is the percentage of transactions in D containing
A that also contain C, i.e.,

conf(A ⇒ C) = P (C|A) = supp(A⇒C)
supp(A)

Confidence has some drawbacks, as we can see in the example shown in Figure
1, where we graphically represent two rules, A ⇒ B and A ⇒ C. For the A ⇒ B
rule, we have the following support values for the intervening itemsets: supp(A)=
28%, supp(B)=38%, and supp(A ∪ B) = 21%. Therefore, the confidence of the
A ⇒ B rule is 75%. For the A ⇒ C rule, even though the support of the
consequent changes (supp(C)=85%), the confidence value of the A ⇒ C rule is
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Fig. 1. Graphical depiction of two rules, A ⇒ B and A ⇒ C, both with the same confidence
but different consequent support.

still the same, 75%. In the first case, B was present in 38% of the transactions
in the database and its presence increases to 75% in transactions where A is
also present. In the second case, the presence of A reduces the presence of C,
from 85% to 75%. However, the confidence measure does not let us distinguish
between these two different situations.

In short, the confidence measure does not take into account the support of
the rule consequent, hence it is not able to detect negative dependencies be-
tween items. Several measures have been proposed in the literature as alterna-
tive interestingness measures in order to avoid the limitations of the traditional
support/confidence framework (Geng & Hamilton, 2006). In the following para-
graphs, we describe some of them:

Definition 4. The lift of the rule A ⇒ C, also known as interest, is defined as
(Brin, et al., 1997a):

lift(A ⇒ C) = supp(A⇒C)
supp(A)supp(C)

The lift measure indicates how many times more often A andB occur together
than expected if they where statistically independent. Values above 1 indicate
positive dependence, while those below 1 indicate negative dependence. The lift
values of the A ⇒ B and A ⇒ C rules in the the aforementioned example are
lift(A ⇒ B)=4.2 and lift(A ⇒ C)=0.91. Here, lift(A ⇒ B) > lift(A ⇒ C),
which corresponds to our intuition that A ⇒ B is more interesting than A ⇒ C.

Lift measures the degree of dependence between the itemsets. However, it only
measures co-occurrence, but not the implication direction, since it is a symmetric
measure, i.e., lift(A ⇒ C)=lift(C ⇒ A).

Definition 5. The conviction of the rule A ⇒ C is defined as (Brin, et al.,
1997b):

conv(A ⇒ C) = supp(A)supp(¬C)
supp(A∪¬C)

The advantage of conviction with respect to the confidence measure is that
it takes into account both the support of the antecedent and the support of the
consequent of the rule. Conviction values in the (0,1) interval mean negative
dependence, values above 1 mean positive dependence, and a value of 1 means
independence, as happened with the lift measure. Unlike lift, conviction is not a
symmetric measure, i.e. it measures the implication direction.

In the example from Figure 1, supp(¬B)=0.62 and supp(A ∪ ¬B) = 0.07.
Therefore, the conviction of the A ⇒ B rule is 2.48. For the A ⇒ C rule,
supp(¬C)=0.15 and supp(A∪¬C) = 0.07. Therefore, conv(A ⇒ C)=0.6, which
means negative dependence.

The main drawback of the conviction measure is that, as happened with lift,
it is not bounded, i.e., its range is [0,∞). Therefore, it is difficult to establish a
convenient conviction threshold in practice.
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0 1 0 1

Supp(B) Supp(C)

Fig. 2. Graphical examples illustrating the gain (and the certainty factor) of the rules derived
from the scenarios represented in Figure 1: A ⇒ B (left) and A ⇒ C (right).

Let us now define an ancillary measure that will be useful in our discussion
below: the gain of a rule as the difference between its confidence and the support
of its consequent. Formally,

Definition 6. The gain of a rule A ⇒ C is defined as:

gain(A ⇒ C) = conf(A ⇒ C)− supp(C).

The gain values for the rules in Figure 1 are gain (A ⇒ B)=0.75-0.38=0.37
and gain (A ⇒ C)=0.75-0.85=-0.10. Figure 2 graphically shows these values.
The lengths of the arrows represent the gain of the rules, i.e., the increase
(A ⇒ B) or decrease (A ⇒ C) in the presence of the consequent given that
the antecedent is present.

Definition 7. The certainty factor of a rule A ⇒ C is defined as (Shortliffe &
Buchanan, 1975):

CF (A ⇒ C) = gain(A⇒C)
1−supp(C) if gain(A ⇒ C) ≥ 0, and

CF (A ⇒ C) = gain(A⇒C)
supp(C) if gain(A ⇒ C) < 0.

The certainty factor is, therefore, the gain value normalized into the [-1,1]
interval. The certainty factor can be interpreted as a measure of the variation
of the probability that the consequent is in a transaction when we consider only
those transactions where the antecedent occurs. More specifically, a positive CF
measures the increase of the probability that the consequent is in a transaction,
given that the antecedent is.

In the example from Figure 1, the CF of the A ⇒ B rule is 0.37/(1-0.38)=0.60
while the CF for the A ⇒ C rule is -0.10/0.85=-0.12.

3. Interestingness measures for group association rules

In the following paragraphs, we explain how to adapt the measures described in
Section 2 to group association rules, as well as how these new measures can be
useful for evaluating the interestingness of group association rules.

3.1. Group support

Definition 8. The support of an itemset X in the group G is the percentage
of transactions in G that contain X , i.e.,

suppG(X) = P (XG)
P (G) .
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G

GA

Fig. 3. Graphical representation of a group, G.

Figure 3 shows the representation of a group G within an example dataset.
The support of circles (•) in the group G is suppG(•)= 6/15=0.4.

Property 1. The support of an itemset X in a group G is the confidence of the
rule (G ⇒ X), i.e.,

suppG(X) = conf(G ⇒ X)

Proof. By Definition 8, suppG(X) = P (XG)
P (G) . By Definition 3, conf(G ⇒ X) =

P (X |G) = P (XG)
P (G) . Therefore, suppG(X)=conf(G ⇒ X)

Definition 9. The support of the group association rule G : A ⇒ C is defined
as:

suppG(A ⇒ C) = suppG(A ∪C) = P (GAC)
P (G)

In the previous example, the support of the group association rule G : A ⇒ •
is suppG(A ⇒ •) = 5/15 = 0.33.

Property 2. The support of the rule A ⇒ C in a group G is the confidence of
the rule G ⇒ AC, i.e.,

suppG(A ⇒ C)=conf(G ⇒ AC)

Proof. By Definition 9, suppG(A ⇒ C)=P (GAC)
P (G) . By Definition 3, conf(G ⇒

AC) = P (AC|G) = P (GAC)
P (G) . Therefore, suppG(A ⇒ C)=conf(G ⇒ AC)

3.2. Group confidence

Definition 10. The confidence of the group association rule G : A ⇒ C is
defined as:

confG(A ⇒ C) = suppG(A⇒C)
suppG(A) .

The confidence of the rule G : A ⇒ • in Figure 3 is confG(A ⇒ •) = (5/15)
/ (10/15) = 0.5.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



6 Aı́da Jiménez, Fernando Berzal and Juan-Carlos Cubero

Property 3. The confidence of a rule A ⇒ C in the group G is the confidence
of the rule GA ⇒ C in the database, i.e.,

confG(A ⇒ C)=conf(GA ⇒ C)

Proof. By Definition 10, confG(A ⇒ C) = suppG(A⇒C)
suppG(C) =P (GAC)

P (G) · P (G)
P (GA) =

P (GAC)
P (GA) .

By Definition 3, conf(GA ⇒ C)=P (GAC)
P (GA) . Therefore, confG(A ⇒ C) = conf(GA ⇒

C).

3.3. Group gain

Definition 11. The gain of the group association rule G : A ⇒ C is defined
as:

gainG(A ⇒ C) = confG(A ⇒ C)− suppG(C)

The gain represents the difference between the confidence in the presence of
the consequent when we know that the antecedent appears in the group, minus
the support of the consequent within the group.

In Figure 3, the support of the circles in the group G is suppG(•) = 6/15 =
0.4 and the confidence of the G : A ⇒ • rule is confG(A ⇒ •) = 0.5. Then, the
gain of the rule is gainG(A ⇒ •) = 0.5-0.4 = 0.1. That means that, within the
group G, finding a circle is 10% more likely when A holds.

Rules with high positive gain values help us describe subgroups (circles in
the previous example) within the group G. On the other side, rules with high
negative gain values help us find characteristics that are less frequent within
the subgroup than in the overall group. For example, if the rule A ⇒ • had a
negative gain value, that would mean that it would be more difficult to find a
circle among those elements in GA than in G.

Property 4. The gain of the rule G : A ⇒ C is the difference between the
confidence of the GA ⇒ C rule and the confidence of the G ⇒ C rule , i.e.,

gainG(A ⇒ C) = conf(GA ⇒ C)− conf(G ⇒ C)

Proof. By Definition 11, gainG(A ⇒ C)=confG(A ⇒ C) - suppG(C). By Prop-
erties 2 and 3, suppG(A ⇒ C)=conf(G ⇒ AC) and confG(A ⇒ C) = conf(GA ⇒
C). Therefore, gainG(A ⇒ C) = conf(GA ⇒ C)− conf(G ⇒ C)

Property 5. The gain of the G : A ⇒ C rule is the difference between the gain
of the GA ⇒ C rule and the gain of the G ⇒ C rule , i.e.,

gainG(A ⇒ C) = gain(GA ⇒ C)− gain(G ⇒ C)

Proof. By Definition 6, gain(G ⇒ C) = conf(G ⇒ C)− supp(C). Then, we can
solve for conf(G ⇒ C) as conf(G ⇒ C) = gain(G ⇒ C)+supp(C). If we replace
the conf(G ⇒ C) in Property 4, we obtain gainG(A ⇒ C)=conf(GA ⇒ C) −
conf(G ⇒ C) = conf(GA ⇒ C)−supp(C)−gain(G⇒ C). Finally, by Definition
6, conf(GA ⇒ C) − supp(C) = gain(GA ⇒ C). Therefore, gainG(A ⇒ C)
=gain(GA ⇒ C)− gain(G ⇒ C).

Theorem 1. Gain pseudo-commutativity. The difference between the gain
of the G : A ⇒ C rule in the G group and the gain of the A ⇒ C rule in the
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database equals the gain of the rule A : G ⇒ C in the group A minus the gain
of the G ⇒ C rule in the database , i.e.,

gainG(A ⇒ C)− gain(A ⇒ C) = gainA(G ⇒ C)− gain(G ⇒ C).

Proof. By Definition 6, gain(G ⇒ C) = conf(G ⇒ C)− supp(C).
We can isolate conf(G ⇒ C) = gain(G ⇒ C) + supp(C) and replace it

in gainG(A ⇒ C) = conf(GA ⇒ C) − conf(G ⇒ C) = conf(GA ⇒ C) −
(gain(G ⇒ C) + supp(C)).

If we isolate supp(C) from Definition 6 and replace it in the previous expres-
sion, we obtain: gainG(A ⇒ C) = conf(GA ⇒ C)−(gain(G ⇒ C)+supp(C)) =
conf(GA ⇒ C)−gain(G ⇒ C)−(conf(A ⇒ C)−gain(A ⇒ C)) = conf(GA ⇒
C)− (conf(A ⇒ C)− gain(G ⇒ C) + gain(A ⇒ C)).

By Definition 11, the first term can be expressed as conf(GA ⇒ C) −
conf(A ⇒ C) = gainA(G ⇒ C). Then, we have gainG(A ⇒ C) = gainA(G ⇒
C)− gain(G ⇒ C) + gain(A ⇒ C)).

Therefore, gainG(A ⇒ C)−gain(A ⇒ C) = gainA(G ⇒ C)−gain(G ⇒ C).

3.4. Group gain normalization

The range of the gain measure for group association rules is [−suppG(C), 1 −
suppG(C)]. In the following paragraphs, we propose several ways to normalize
the group gain depending on the kind of information the user might be more
interested in.

3.4.1. Group gain factor

We can normalize the gain into the [−1, 1] interval to obtain a gain factor measure
that corresponds to the certainty factor in the general association rule framework:

Definition 12. The gain factor of the group association rule G : A ⇒ C is
defined as:

GFG (A ⇒ C) = gainG(A⇒C)
1−suppG(C) if gainG(A ⇒ C) ≥ 0, and

GFG (A ⇒ C)= gainG(A⇒C)
suppG(C) if gainG(A ⇒ C) < 0.

In our example, the gain factor of the rule G : A ⇒ • is GFG(A ⇒ •)=
0.1/(1-0.4) =0.17.

This measure is proportional to the group gain. When it is positive, it is also
inversely proportional to the value [1 − suppG(C)]. Therefore, all other things
being equal, GF will be larger for subgroups of elements that were more common
in the group G (i.e., those having a higher suppG(C)). When GF is negative, it
is inversely proportional to suppG(C): it will have a larger absolute value when
the subgroup is less frequent in G, i.e. for small values of suppG(C).

3.4.2. Group variation

The group variation measure always normalizes the gain using the suppG(C)
value, in order to highlight those consequents that are less frequent in our
database.
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8 Aı́da Jiménez, Fernando Berzal and Juan-Carlos Cubero

Definition 13. The variation of a group association rule G : A ⇒ C is defined
as:

δG(A ⇒ C) = gainG(A⇒C)
suppG(C) = confG(A⇒C)−suppG(C)

suppG(C)

In contrast to the GF, variation is inversely proportional to suppG(C) when
it is positive. It will have a higher value the less frequent C is in G. It should be
noted that the variation equals the gain factor when the gain is negative. The
variation of the rule G : A ⇒ • in Figure 3 is δG(A ⇒ •)= 0.1/(0.4)=0.25.

3.5. Group impact

In this section we present two new interestingness measures that are also based
on the group gain. In these measures, we take into account the support of the
group corresponding to the antecedent of the rule.

3.5.1. Impact

Definition 14. The impact of the group association rule G : A ⇒ C is defined
as:

impactG(A ⇒ C) = supp(GA) ∗ gainG(A ⇒ C)

The impact of a group association rule represents the number of individuals
that are affected by the rule, i.e., the number of individuals that we did not
expect to find in the transactions within the group G that contain A given what
we knew about G in general.

The impact is proportional to gainG(A ⇒ C) and supp(GA). It will be higher
for those rules with a high gain and a frequent antecedent in the G group.

In our example from Figure 3, impactG(A ⇒ •) = (10)*0.1=1. That impact
means that there is one circle that we did not expect to find in GA when we
only knew the support of circles in G. Since suppG(•)=0.4, we did expect four
circles in GA but found five of them.

3.5.2. Impact ratio

The impact measure represents the number of individuals that are affected by
the rule. However, in most cases, groups have different numbers of individuals
and an absolute impact value might be misleading. The impact ratio might be
useful in such situations, since it represents the ratio between the number of
individual affected by the rule and the number of individuals within the group.

Definition 15. The impact ratio of the group association rule G : A ⇒ C is
defined as:

IRG(A ⇒ C) = impactG(A⇒C)
supp(G)

The impact ratio of a group association rule represents the proportion of the
impact of the rule within the group G with respect to the size of the group. The
impact ratio is IRG(A ⇒ •)= 1/15=0.07 in the example from Figure 3.
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G

GB
GA

Fig. 4. Graphical representation of a group, G, and two rules within that group, (A ⇒ •) and
(B ⇒ �).

4. Ranking groups and group association rules

All the different groups that can be identified in the database, as well as the
rules within them, can be obtained in an unsupervised manner. However, the
amount of rules and groups obtained in the rule mining process can be huge. As
a consequence, a second-order data mining problem arises: it may be too difficult
to extract useful information from so many rules and groups.

In this section, we explain how to rank the groups (and the rules within the
groups) according to their potential interestingness. We will use the measures
we described in previous sections to highlight those rules and groups that might
be relevant to the user according to different criteria.

4.1. Ranking rules within a particular group

The use of each different interestingness measure provides us a different ordering
relationship among the discovered association rules. In this section, we analyze
how two rules within a group will have a different relative order within that
group depending on the interestingness measure we use to evaluate them.

Figure 4 shows a group, G, within an example dataset. In this group, we
have identified two rules, A ⇒ • and B ⇒ �, whose values for the different
interestingness measures we described in the previous sections are summarized
in Table 1.

4.1.1. Characterizing subgroups within a group

If we are interested in obtaining those rules that characterize subgroups within
a group (i.e., rules sharing their consequent), we should use the gain measure
because a high gain increases our confidence in the presence of the consequent
when we know that the antecedent holds.

In our example from Figure 4, the gain of both rules is 10 %, i.e., the confi-

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



10 Aı́da Jiménez, Fernando Berzal and Juan-Carlos Cubero

A ⇒ • B ⇒ �

suppG(Y ) 4/20 = 0.20 14/20 = 0.70

suppG(X ⇒ Y ) 3/20 = 0.15 4/20 = 0.20

confG(X ⇒ Y ) 3/10 = 0.30 4/5 = 0.80

gainG(X ⇒ Y ) 0.3− 0.2 = 0.10 0.8− 0.7 = 0.10

GFG(X ⇒ Y ) 0.1/0.8 = 0.125 0.1/0.3 = 0.33

δG(X ⇒ Y ) 0.1/0.2 = 0.50 0.1/0.7 = 0.14

impactG(X ⇒ Y ) 0.1 ∗ 10 = 10 0.1 ∗ 5 = 0.50

IRG(X ⇒ Y ) 1/20 = 0.05 0.5/20 = 0.025

Table 1. Values of the different interestingness measures for the (A ⇒ •) and (B ⇒ �) rules
in Figure 4.

dence on the presence of • increases if also A holds, while the confidence on the
presence of the � increases, in the same amount, when B is true.

Both are important rules within the group G but they give us different in-
formation as squares are more frequent in G than circles. Therefore, we should
use other measures for distinguishing between them:

– If we want to highlight the most frequent subgroups, the gain factor, as
inversely proportional to the interval [1− suppG(C)], should be used.
In our example, the GFG value is higher for the B ⇒ � rule because squares
where more frequent in G than circles.

– If we want to highlight anomalies, the variation measure is a better choice
since, in contrast to the gain factor, it overweighs those subgroups that have
a low support in the group. That is the case of the circles in G: the A ⇒ •
rule has a larger value of δG.

4.1.2. Characterizing subgroups using frequent features

If we are interested, not only in the subgroups themselves, but also in discovering
features that make them distinct in our database, we should use an interesting-
ness measure that takes into account the frequency of the rule antecedent, e.g.,
the impact measure.

In our example, the impact of the A ⇒ • rule in G is larger than the impact
of the B ⇒ � rule because the support of A is larger than the support of B.

This measure has the advantage that it can be easily interpreted: the number
of individuals in G that are directly affected by the A ⇒ C rule, i.e., those
individuals that are not expected to be in GA given the overall support of C in
the group.

In our example, the impact of the A ⇒ • rule is 1 because, given a 20%
support for circles in G and 10 elements in the GA subgroup, we expected 2
circles in GA but found 3 of them.

It should be noted that the impact ratio measure gives us the same relative
ordering among rules within the same group than the impact measure, since it
takes into account the size of the group G, which is the same for all the rules
within the same group.
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4.2. Ranking groups within the database

Apart from ordering rules within a group, we can establish an order relationship
among the groups in our database to highlight those groups that host the most
interesting rules.

Given that groups can be described by many different association rules, if we
intend to rank groups rather than individual rules, we must somehow compute
an aggregate value that represents the overall interestingness of the group. We
should average the impact of the n rules within a given group to indicate the
overall interestingness of that group. However, as we have explained in Section
4.1, some rules are more interesting than others, hence they should not have the
same importance when computing the overall group score.

Impact seems to be a good candidate for estimating the potential interesting-
ness of the group, since it takes into account the number of individuals that are
affected by each rule within the group. We can then define the weighted impact
for the rules within a group using different interestingness measures. Formally,
we define the weighted impact as:

Weighted impact(G) =
∑

n

i=1
IG(A⇒C)·impactG(A⇒C)

∑
n

i=1
IG(A⇒C)

where IG(A ⇒ C) represents the value of any of the interestingness measures
described in Section 3 and analyzed in Section 4.1, for each A ⇒ C rule in the
G group.

Large groups tend to have higher impact values for their rules because their
impact depends on the support of their antecedent within the group and it is
usually larger in large groups. Therefore, small groups are penalized in the over-
all group ranking if we use the impact measure to average the interestingness of
the rules within the group. When we want to take into account the relative size
of the groups, we should use the impact ratio measure instead, which gives us a
more balanced ranking for groups of disparate size. Thus, we can also define a
weighted impact ratio measure to rank groups within the database:

Weighted IR(G) =
∑

n

i=1
IG(A⇒C)·IRG(A⇒C)
∑

n

i=1
IG(A⇒C)

5. Comparing alternative ranking criteria

Once we have proposed different interestingness measures that can be used to
rank groups and group association rules, we are interested in comparing the
rankings obtained by each measure in order to analyzed how similar (or different)
they are.

Several measures have been proposed in the literature in order to compare
two permutations σ1 and σ2 whose elements are in D. Two well-known measures
are (Fagin, et al., 2003):

– Kendall’s tau: For each pair i, j ∈ P of distinct members of D, if i and j are
in the same order in σ1 and σ2, then let Ki,j(σ1,σ2) = 0; and if i and j are in
the opposite order, then Ki,j(σ1,σ2) = 1. Kendall’s tau is given by K(σ1,σ2)
=

∑
{i,j}∈P Ki,j(σ1,σ2). The maximum value of K(σ1,σ2) is n(n−1)/2, which

occurs when σ1 is the reverse of σ2 (that is, when σ1(i) + σ2(i) = n + 1 for
each i). Kendall’s tau turns out to be equal to the number of exchanges needed
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in a bubble sort to convert one permutation into the other. Kendall’s tau can
be computed in O(nlogn) using a divide-and-conquer algorithm (Kleinberg &
Tardos, 2005).

– Spearman’s footrule is defined by F (σ1,σ2) =
∑n

i=1 |σ1(i) − σ2(i)|. The
maximum value of F (σ1,σ2) is n

2/2 when n is even, and (n+1)(n−1)/2 when
n is odd. As with Kendall’s tau, the maximum occurs when σ1 is the reverse
of σ2. This measure can be easily computed in O(n) given an inverse index for
both rankings.

These measures let us compare two complete rankings. However, in many
cases, the top K elements in the rankings are more important than others that
appear at less prominent positions (think of a Web search engine, for instance).
(Fagin et al., 2003) proposed an adaptation of the aforementioned measures to
compare two top-K lists, τ1 and τ2:

– Kendall’s tau for top-K lists: We have to consider 4 possible scenarios
taking into account that not all the elements in the top K list τ1 may be
present in the top K list τ2 and vice versa. For each pair i, j ∈ Dτ1 ∪Dτ2 :

· Case 1: i, j are both present in τ1 and τ2. Then, if they are in the same
order in both list, Ki,j(τ1,τ2) = 0 while, if they are in the opposite order,
Ki,j(τ1,τ2) = 1.

· Case 2: i, j are both present in τ1 but only i is present in τ2. Then, if i is
ahead of j in τ1, Ki,j(τ1,τ2) = 0. Otherwise, Ki,j(τ1,τ2) = 1.

· Case 3: i is only present in τ1 and j is only present in τ2. Then, Ki,j(τ1,τ2)
= 1.

· Case 4: i, j are both present in one top k list (say τ1) but neither i nor j
appear in the other top k list (say τ2). Then, we do not have information
about the order of i and j in τ2. Therefore, Ki,j(τ1,τ2) = p, where the value
of p is usually 0.5 to be neutral.

– The Spearman’s footrule for top-K lists is computed as F l(τ1,τ2) =∑
i∈Dτ1

∪Dτ2

|τ ′1 − τ ′2|, where τ ′x(i) = τx(i) for i ∈ Dτx , otherwise τ ′x(i) = l. A

natural choice for l is k + 1.

6. Experimental results

In order to study the performance of the proposed interestingness measures, we
have performed a series of experiments using the loan multirelational database.
The loan database was used in the PKDD CUP’09. Figure 5 shows the schema
of this database.

The database contains eight relations with 75,982 tuples in total, while the
relation we are going to use as target relation (account) contains 4500 tuples.
This database was adapted by Yin et al. for their experiments with CrossMine
(Yin, et al., 2004) and can be downloaded from: http://research.microsoft.com/en-

us/people/xyin/.
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Loan

PK loan_id

FK1 account_id
date
annount
duration
payment
class label

Account

PK account_id

FK1 district_id
frequency
date

Order

PK order_id

to_bank
to_account
ammount
type

FK1 account_id

Transaction

PK trans_id

FK1 account_id
date
type
operation
ammount
balance
symbol

Card

PK card_id

FK1 disp_id
type
issue_date

Disposition

PK disp_id

client_id
type

FK1 account_id

Cient

PK client_id

birthday
gender

FK1 district_id

District

PK district_id

name
region
#people
#it-500
#it-2000
#it-10000
#gt-10000
#city
ratio-urban
avg-salary
unemploy-95
unemploy-96
den-enter
#crime95
#crime96

Fig. 5. Loan database schema.

6.1. Using trees to mine multirelational databases

A common approach to mine multirelational databases consists of joining all
the relations in the database in order to obtain a single relation, usually called
universal relation (Fagin, et al., 1982) (Maier & Ullman, 1983) (Maier, et al.,
1984). Then, classical data mining techniques can be applied to this universal
relation. However, join-based techniques such as the aforementioned one present
a serious disadvantage: they do not preserve the proper support counts.

We have proposed two alternative representation schemes for multirelational
databases. Our representation schemes are based on trees, so that we can apply
existing tree mining techniques to identify frequent patterns in multirelational
databases (Jiménez, et al., 2009).

The main idea behind our two representation schemes is building a tree from
each tuple in the target relation and following the links between relations (i.e.
foreign keys) to collect all the information related to each tuple in the target
relation.

The key-based tree representation scheme is inspired by the concept of iden-
tity in the relational model while the object-based one is based on the concept
of identity in object-oriented models. Relational databases rely on primary keys
to ensure that each table row can be univocally referenced. Any unique field, or
combination of fields, can be used as the primary key. In the object model, how-
ever, each object is already unique, and no specific key is needed. In an object
database, each object is automatically assigned an unique ID. This does mean
that you can create objects that have identical field values but are still different
objects (Paterson, et al., 2006).

In our experiments, we have considered the account relation as our target
relation in the loan database and we have built trees by collecting information
from the loan, disposition, order, and district relations.
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Fig. 6. Number of identified groups within the loan database, using patterns with varying
size (from 4 to 6) and two different support thresholds (10% and 5%).

The tree database obtained from the loan multirelational database contains
4500 trees. Trees have an average of 34 nodes using the key-based representation
scheme (153,102 nodes in total) and an average of 37 nodes using the object-
based one (169,842 nodes in total).

6.2. Extracting group association rules from multirelational
databases

We have transformed the loan database into two sets of trees (using both the
key-based and object-based tree representation schemes). This way, tree min-
ing algorithms can be used to extract patterns from this kind of databases, as
described above. We can also define two different kinds of patterns to be identi-
fied within the trees: induced and embedded patterns. Therefore, four different
kinds of patterns can be mined from a multirelational database using our ap-
proach, i.e., induced key-based patterns, embedded key-based patterns, induced
object-based patterns, and embedded object-based patterns.

We have used the POTMiner tree pattern mining algorithm (Jimenez, et al.,
2010) to identify these four different kinds of patterns within the loan database.
Once we have identified the frequent tree patterns derived from the multirela-
tional database, we have extracted association rules from them, using techniques
that are analogous to the ones employed in a more traditional setting. Group
association rules can then be derived from the discovered association rules just
by clustering rules sharing parts of their antecedents.

Figure 6 shows the number of identified groups within the loan database
for the four different kinds of patterns (induced key-based patterns, embedded
key-based patterns, induced object-based patterns, and embedded object-based
patterns) and two different minimum support thresholds (10% and 5%). As ex-
pected, the number of identified groups increases when the size of the patterns
also increases, and also when the minimum support threshold decreases, since the
more patterns are identified, the more group association rules can be extracted.

Figure 7 shows the execution time required by our algorithm to obtain all the
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Fig. 7. POTMiner execution time required to extract groups from the loan multirelational
database from frequent patterns of increasing size.

existing groups in the multirelational database, where time is displayed in seconds
on a logarithmic scale. It should be noted that execution time includes the whole
process required for identifying group association rules: the time required to
identify the patterns, the time required to identify the association rules, and the
time required to group the association rules into sets of group association rules.
The identification of key-induced patterns is the fastest because there is a lower
number of this kind of patterns. On the other hand, mining object-embedded
patterns is the most costly alternative because more patterns are involved.

6.3. Ranking groups

In this section, we compare the group rankings provided by different interesting-
ness measures in order to check how many groups are highlighted as the most
interesting ones and analyze potential differences among them.

In these series of experiments, we have used the groups and rules obtained
from the loan multirelational database, using embedded object-based patterns
up to size 6 (i.e. maxsize=6) and a 10% minimum support threshold. Using these
parameters, we obtained 2,924 groups and 7,394,860 group association rules.

We have ranked the resulting groups using the weighted impact and the
weighted impact ratio measures. In order to weight those measures, we have
tested five different interestingness measures: gain, gain factor, impact, impact
ratio, and variation. Therefore, we have obtained 10 alternative rankings for the
groups in our database. We have also included two additional rankings using
the average impact and the average impact ratio measures, just to check that
weighted measures give us different results than their plain averages (i.e., just to
corroborate that taking rule interestingness into account is preferred over just
aggregating rule impacts without taking that information into account).

Figures 8 a) and b) show the values of the weighted impact and the weighted
impact ratio measures, respectively, for every group within the loan multirela-
tional database (sorting the groups according to their weighted evaluation mea-
sure).
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16 Aı́da Jiménez, Fernando Berzal and Juan-Carlos Cubero

���

���

���

���

���

���

�	
��
�	
�
�	�
�	��
�	��������

�

���

���

���

���

���

���
�

��
�

��
�

��
�

��
�

�	
�

��
�

��
�

�

��

��
��

��
��

�	

�

��
��

��
��

��
��

��
��

�

	�

��
��

��

�

�	
��

��
��

��
��

��
��

�	
��
�	
�
�	�
�	��
�	��������
�	���

a)Weighted impact values.
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b)Weighted impact ratio values.

Fig. 8. Weighted impact and weighted impact ratio values for the 2924 groups identified within
the loan multirelational database using six different interestingness measures.

As it can be seen in Figure 8 a), the weighted impact measures highlight
about 130 of groups in the database. It should be noted that the weighted im-
pact provides similar results for every different interestingness measure, i.e. the
rankings provided by the different interestingness measures, used as weights in
the weighted impact formula, are quite similar. The average values are lower, as
expected, since less interesting rules contribute less to diminish the overall group
score when using the weighted measure. The similarities among the particular
rankings provided by different interestingness measures will be discussed later.

Figure 8 b) shows that the weighted impact ratio measures highlight about
400 of the groups in the database, more than the weighted impact measures.
The weighted impact tends to highlight only large groups, since the impact
of the rules depends on the absolute support of the antecedent in the group
association rules and that support is typically larger in large groups. Using the
weighted impact ratio, however, group size does not influence the final group
score because impact ratio is a relative measure. Hence the larger number of
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Fig. 9. Similarity matrices using Kendall’s (top) and the Spearman’s (bottom) measures to
compare the rankings.

highlighted groups when using the weighted impact ratio: smaller groups are
still highlighted when interesting rules affect a significant portion of them.

As happened with the impact measures, the results using different interest-
ingness measures as weights for the weighted impact ratio are similar and raw
averages provide lower scores. In the following section, we analyze the particular
rankings provided by each alternative evaluation criterion.
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6.4. Comparing rankings provided by different interestingness
measures

In the previous section, we obtained twelve different rankings of the 2,924 groups
within the loan database. In this section, we use the Kendall’s and Spearman’s
measures we described in Section 5 to compare these rankings in order to discover
their similarities.

We have compared every pair of rankings using both similarity measures.
Figure 9 shows the resulting similarity matrices using Kendall’s (top) and the
Spearman’s (bottom) measures. Black cells indicate that the rankings are al-
most indistinguishable, while white cells correspond the most dissimilar pairs of
rankings within the matrix.

As it can be seen in Figure 9, we can easily observe two clearly-defined groups
of different rankings, which correspond to those obtained using the weighted
impact measures (upper left quadrant) and the ones obtained using the weighted
impact ratio measures (lower right quadrant). When interpreting the results, it
is important to recall that Kendall’s measure is an order-based measure while
Spearman’s measure is a distance-based one.

In Figure 9, we are comparing the rankings for all the 2,924 groups within our
database, hence there are some differences in the comparison between different
variants of the same kind, a fact that is clearly visible for the weighted impact
ratio results (lower right quadrant), especially for Kendall’s order-based measure.
Spearman’s distance-based measure highlights some differences when using the
gain factor as interestingness measure for individual rules within a group, as well
as a surprising similarity between the average impact and the average impact
ratio rankings.

However, it should be noted that apparent differences do not have the same
importance if they happen at the top of the rankings or at their bottom, since
end users will not usually delve into the complete list of 2,924 groups. Therefore,
a more realistic scenario consists of comparing the top elements in each ranking.

We have compared the top 100 and the top 10 groups in the rankings provided
by each ranking criterion in order to obtain a more realistic comparison of ranking
results.

The matrices shown in Figure 10 show the values for Kendall’s and Spear-
man’s measures when comparing the top 100 groups in each of the rankings. In
this case, the matrices we have obtained using both Kendall’s order-based and
Spearman’s distance-based similarity measures are remarkably similar. As hap-
pened when comparing the whole rankings, two groups are clearly visible: the
ones corresponding to the weighted impact and those resulting from using the
weighted impact ratio.

The different variants of weighted impact are almost undistinguishable, while
some differences exist among the different rankings provided by the weighted
impact ratio. Within the latter, using the impact (IR-I) and the impact ratio
(IR-IR) as weights provide very similar results. Likewise, gain (IR-Gain) and
variation (IR-V) are also similar. However, there are differences between gain
factor (IR-GF) and variation (IR-V). Gain factor equals variation, but only for
negative gain values. Here, we are considering the 100 most interesting groups,
which typically contain many rules with positive gain values (it should be recalled
that both impact and impact ratio are proportional to gain values).

Finally, we have compared the top 10 groups in the rankings as shown in Fig-
ure 11. For our particular database, we can again identify two clusters around
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Fig. 10. Similarity matrices using Kendall’s (top) and Spearman’s (bottom) measures to
compare the top 100 groups in each ranking.

weighted impact and weighted impact ratio measures. There are still some differ-
ences between the weighted measures and their plain averages, as well as between
the variation variant of the weighted impact (I-V) and the rest of its variants
(I-Gain, I-GF, I-I, I-IR). In this case, the I-V results are more similar to the
I-Gain and the I-GF results (whose interestingness measures are closer to varia-
tion, which is just a method for normalizing rule gain, as the gain factor) than
they are to the impact-related measures (I-I and I-IR).

When using the average impact of the rules within each group (I-Avg), large
groups are favored. Almost all the groups in the top 10 have a 100% support
and most of them are trivial and not really interesting. The average impact ratio
(IR-Avg) is not so biased towards large groups.
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Using the weighted impact measure (I-Gain, I-GF, I-I, I-IR, and I-V) provides
a more balanced ranking. Albeit the support of the groups in their top 10 is still
high (around 75%), end users can find some interesting groups, such as “accounts
that have a monthly frequency of issuance of statements and an owner-type
disposition”.

The weighted impact ratio measure (IR-Gain, IR-GF, IR-I, IR-IR, IR-V)
provides more interesting results. In this case, the support of the groups in the
top 10 is around 25% and much more specific groups are highlighted, such as
those “accounts that have a monthly frequency of issuance of statements, and a
house-type permanent order, and are located in a district with one municipality
with more than 10000 inhabitants”.

In summary, weighted impact is biased towards large groups and it should
be used when looking for the characterization of very large clusters within a
database of individuals. However, users should resort to the weighted impact
ratio if they are willing to discover smaller groups of potentially more interest-
ing individuals (i.e. those who are not so common in the database but exhibit
consistently different peculiar behaviors).

7. Conclusions

Databases naturally contain groups of individuals that share some of their fea-
tures and some aspects of their behavior. In this paper, we have proposed group
association rules, which are association rules that can be discovered within these
groups of individuals.

We have adapted some of the standard interestingness measures for associa-
tion rules to group association rules. We have also proposed new interestingness
measures to evaluate this particular kind of association rules and we have studied
some of the formal properties of these new measures.

Finally, we have proposed an approach to rank groups within a database (and
the rules within each group). Alternative rankings can be provided by employing
alternative (and often complementary interestingness measures). Depending on
their particular goals, users should choose which measure to employ in order
to highlight the most potentially interesting groups. Our experiments on a real-
world database corroborated our intuitions on the behavior of different ranking
criteria and demonstrated that our approach can be useful in practice for amelio-
rating the second-order data mining problem that users must face when dealing
with the huge amount of association rules that can be derived from real-world
databases (more than seven million in our case study).
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2.2 Group association rules

The journal paper associated to this part of the dissertation is:

• A. Jiménez, F. Berzal, and JC Cubero, Interestingness measures for
association rules within groups. Submitted to Knowledge and
Information Systems.

– Status: Submitted.
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– Subject Category:

∗ Computer Science, Artificial Intelligence. Ranking 27 / 103.
∗ Computer Science, Information Systems. Ranking 24 / 116.





                             Editorial Manager(tm) for Data Mining and Knowledge Discovery 
                                  Manuscript Draft 
 
 
Manuscript Number: DAMI1080R2 
 
Title: Using trees to mine multirelational databases 
 
Article Type: Manuscript 
 
Keywords: Mutirelational databases; Frequent itemset mining;  
Association rules; Tree pattern mining 
 
Corresponding Author: Aida Jimenez 
 
Corresponding Author's Institution:  
 
First Author: Aida Jimenez 
 
Order of Authors: Aida Jimenez;Fernando Berzal;Juan-Carlos Cubero 
 
Abstract: This paper proposes a new approach to mine multirelational databases. Our approach is 
based on the representation of multirelational databases as sets of trees, for which we propose two 
alternative representation schemes. Tree mining techniques can thus be applied as the basis for 
multirelational data mining techniques, such as multirelational classification or multirelational 
clustering. In this paper, we discuss the differences between identifying induced and embedded tree 
patterns in the proposed tree-based representation schemes and we study the relationships among the 
sets of tree patterns that can be discovered in each case. This paper also describes how these frequent 
patterns can be used, for instance, to mine association rules in multirelational databases. 
 
 
 
 



Data Mining and Knowledge Discovery manuscript No.
(will be inserted by the editor)

Using trees to mine multirelational databases
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id date customer zipcode
1 Thursday Anna 60608
2 Saturday Peter 60607
3 Thursday John 60611

basket product qty price
1 toner 2 75
1 printer 1 199
1 netbook 1 299
2 toner 3 75
3 toner 3 75
3 printer 2 199

basket

item

Fig. 1 Simple multirelational database example.

1 Introduction

Data mining techniques have been developed to extract potentially useful in-
formation from databases. Classification, clustering, and association rules have
been widely used. However, many existing techniques usually require all the
interesting data to be in a single table.

Several techniques have been proposed in the literature to handle several
tuples at once. Some algorithms explore tuples that are somehow related, al-
beit still in the same table (Tung et al, 2003) (Lee and Wang, 2007). Other
algorithms, however, are able to extract information from multirelational da-
tabases, i.e., they take into account not just a single table, but all the tables
that are connected to it (Džeroski, 2003). For instance, these algorithms have
been used for multirelational classification (Yin et al, 2004) and multirelational
clustering (Yin et al, 2005).

In this paper, we propose two alternative representation schemes for mul-
tirelational databases. Our representation schemes are based on trees, so that
we can apply existing tree mining techniques to identify frequent patterns
in multirelational databases. We also compare the proposed representation
schemes to determine which one should be used depending on the information
we would like to obtain from the database.

Figure 1 shows an instance of the prototypical multirelational database
with two relations: basket and item. Our approach consists of transforming
this database into a set of trees, using one tree for representing each tuple
in a particular relation from the multirelational database. The result of this
transformation, starting from the basket relation, is shown in Figure 2.

A typical solution to multirelational database mining problems consists of
joining all the relations of our interest into a single relation, usually called
universal relation (Fagin et al, 1982) (Maier and Ullman, 1983) (Maier et al,
1984) (Ullman, 1990). Then, classical data mining techniques can be applied
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date=Thursday

basket

id=1 name=Ana zipcode=60607 item

qty=2

id=1

product=toner

price=75

item

qty=1

id=1

product=printer

price=199

item

qty=1

id=1

product=netbook

price=299

date=Saturday

basket

id=2 name=Peter zipcode=60607 item

qty=3id=2 product=toner price=75

date=Thursday

basket

id=3 name=John zipcode=60611 item

qty=3id=3 product=toner price=75

item

qty=2id=3 product=printer price=199

Fig. 2 Tree representation of the multirelational database in Figure 1.

basket product qty price date customer zipcode
1 toner 2 75 Thursday Anna 60608
1 printer 1 199 Thursday Anna 60608
1 netbook 1 299 Thursday Anna 60608
2 toner 3 75 Saturday Peter 60607
3 toner 3 75 Thursday John 60611
3 printer 2 199 Thursday John 60611

item ��������basket 

Fig. 3 Joined ‘universal’ relation from the multirelational database in Figure 1.

to this universal relation. However, join-based techniques suffer from a serious
disadvantage: they do not preserve the proper support counts. Figure 3 shows
the result of joining the basket and item relations. In the resulting relation,
the support of Thursday is 83% and the support of the 60608 zip code is 50%,
whereas, if we look at the original basket relation, we can see that the actual
support of Thursday is 66% and the actual support of the 60608 zip code is
33%. Using our tree-based proposal, we do not introduce such distortions in
our support counts and we always preserve their original values.
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Our paper is organized as follows. We introduce some standard terms and
related work in Section 2. Section 3 describes two different schemes for repre-
senting multirelational databases as sets of trees. Some implementation issues
when deriving trees from actual multirelational databases are addressed in
Section 4. Section 5 studies the kinds of patterns that can be identified from
such trees, while Section 6 explains how association rules we can extract asso-
ciation rules defined over the trees obtained from a multirelational database,
as well as the constraints that can be used to improve the performance of the
association rule mining process. Finally, we present some experimental results
in Section 7 and we end our paper with some conclusions in Section 8.

2 Background

In this section, we introduce some basic concepts and published results on tree
pattern mining and multirelational data mining.

2.1 Tree pattern mining

A labeled tree is a connected acyclic graph that consists of a vertex set V , an
edge set E ⊆ V × V , an alphabet Σ for vertex and edge labels, and a labeling
function L : V ∪E → Σ ∪ ε, where ε stands for the empty label. The size of a
tree is defined as the number of nodes it contains. Optionally, a tree can also
have a predefined root, v0, and a binary ordering relationship ≤ defined over
its nodes (i.e. ‘≤’ ⊆ V × V ).

A canonical tree representation is an unique way of representing a la-
beled tree. This canonical representation makes the problems of tree compar-
ison and subtree enumeration easier. Several alternatives have been proposed
in the literature to represent trees as strings (Chi et al, 2003). In this paper,
we will use a depth-first-based codification. In a depth-first codification, the
string representing a tree is built by adding the label of each tree node in a
depth-first order. A special symbol ↑, which is not in the label alphabet, is
used when the sequence comes back from a child to its parent.

Many frequent tree pattern mining algorithms have been proposed in the
literature (Jimenez et al, 2010a). These algorithms are usually derived from ei-
ther Apriori (Agrawal and Srikant, 1994) or FP-Growth (Han et al, 2004). Most
tree pattern mining algorithms follow the Apriori iterative pattern mining
strategy, where each iteration is broken up into two distinct phases: candidate
generation and support counting. Some of these algorithms are FreqT (Abe
et al, 2002), TreeMiner (Zaki, 2005b), SLEUTH (Zaki, 2005a), and POT-
Miner (Jimenez et al, 2010b). Other algorithms follow the FP-Growth pattern
growth approach and they do not explicitly generate candidates. For instance,
the PathJoin algorithm (Xiao et al, 2003) uses compacted structures called
FP-Trees to encode input data, while Chopper and XSpanner (Wang et al,
2004) codify trees as sequences and identify frequent subtrees by discovering
frequent subsequences.
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1..*                 0..1

1..1

0..*

Residence

-id
-type
-location
-city

Person

-id
-name
-nacionality

Car

-plate
-make
-type

owns

lives at

Fig. 4 Multirelational database schema in UML notation.

id name nationality houseID

1 Peter US 5

… … …

id type location city

5 apartment suburb London

… … …

plate make type ownerID

1234BCD Toyota SUV 1

5678JKL Chevrolet sedan 1

… … …

Car

Person

Residence

Fig. 5 Multirelational representation of the database schema in Figure 4.

2.2 Multirelational data mining

Multirelational data mining techniques look for patterns that involve multiple
relations (tables) in a relational database. In a relational database, a relation
can be defined as r = (Ar , Kr, FKr) where Ar = {Ar

1, . . . , A
r
n} is a set of

attributes, Kr ⊆ Ar represents the primary key of the relation and FKr =
{FKr

1 , . . . , FKr
m} is the set of foreign keys in r. Each foreign key can be defined

as FKr
i = (F r

i , si) where F r
i ⊆ Ar and si is the relation whose primary key

Ksi is referenced by FKr
i .

Figure 4 depicts the conceptual schema of a multirelational database using
the UML notation (Booch et al, 2005). Given such a conceptual schema, we
can derive the suitable logical data model for a relational database (Garcia-
Molina et al, 2008) (Silberschatz et al, 2001). The relations obtained from the
conceptual model in Figure 4 are shown in Figure 5 with some example tuples.

Many different techniques have been proposed in the literature to deal with
multirelational databases in a machine learning context. We have classified the
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proposed techniques into three broad categories: inductive logic programming,
tuple ID propagation, and tree-based algorithms.

– Many multirelational data mining algorithms come from the field of In-

ductive Logic Programming (Džeroski, 2003).
RELAGGS is a database-oriented approach based on aggregations that
collects data from adjacent tables (Krogel and Wrobel, 2003). ACORA
(Perlich and Provost, 2006) also employs aggregations to obtain a single
table for classification problems.
Another relevant proposal that deals with multirelational structures is
WARMR (King et al, 2001). WARMR employs Datalog, a logic program-
ming language (Ullman, 1988), and it is a level-wise algorithm like Apriori
(Agrawal and Srikant, 1994). It has been used to discover frequent patterns
in chemical compounds.
Caraxterix (Turmeaux et al, 2003) was proposed to mine characteristic
rules, where characterization consists of discovering properties that char-
acterize objects by taking into account their properties and also properties
of the objects linked to them.

– Tuple ID propagation is an efficient approach for virtually joining rela-
tions, as well as searching and propagating information among them. This
technique propagates the IDs of target tuples to other relations, together
with their associated class labels where appropriate. A classifier, dubbed
CrossMiner (Yin et al, 2004), and a clustering algorithm, called CrossClus
(Yin et al, 2005), have been proposed using this technique.

– Tree-based algorithms have also been used for multirelational data min-
ing. FAT-miner (De Knijf, 2007), for instance, is a frequent tree pattern
mining algorithm that seems to implicitly employ a representation similar
to our object-based representation scheme, albeit the particular algorithm
employed to derive the trees from a multirelational database is not explic-
itly described in (De Knijf, 2007) nor (De Knijf, 2006).

Trees have been used in many other data mining areas, although, to the
best of our knowledge, our use of trees in this paper has not been formally
addressed elsewhere. Decision trees, for example, have been applied for clas-
sification and clustering. TILDE (Blockeel and Raedt, 1998) is an ILP-based
decision tree inducer. Another algorithm, MRDTL (Leiva et al, 2002), applies
decision trees to multirelational databases. In the field of statistical learning,
we can also find many other examples, such as probability trees (Neville et al,
2003) and spatiotemporal relational probability trees (McGovern et al, 2008).
The former, as our proposal, uses foreign keys to mine multirelational data-
bases for classification purposes.

3 Multirelational database tree representation

In this section, we describe how we can obtain a set of trees from a given
multirelational database using two different representation schemes.
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The analysis of multirelational databases typically starts from a particular
relation. This relation, which we will call target relation (or target table), is
selected by the end user according to her specific goals.

We introduce two different schemes for representing multirelational data-
bases as sets of trees. The key-based tree representation scheme draws from
the concept of identity in the relational model while the object-based repre-
sentation scheme is based on the concept of identity in object-oriented models.
Relational databases rely on primary keys to ensure that each tuple can be
univocally referenced within a given relation. In the object model, however,
each object is already unique and no specific key is needed. In object data-
bases, each object is automatically assigned an unique ID, which means that
you can create objects that have identical field values but are still different
objects (Paterson et al, 2006).

The main idea behind our two representation schemes is building a tree
from each tuple in the target table and following the links between tables (i.e.
the foreign keys) to collect all the information related to each particular tuple
in the target table. In both representation schemes, we will use the name of
the target table as the label at the root of the trees.

From a database point of view, data can be classified into two types: atomic
and compound. Atomic data cannot be decomposed into smaller pieces by the
database management system (DBMS). Compound data, consisting of struc-
tured combinations of atomic data, can be decomposed by the DBMS (Codd,
1990). We will represent the value ai of an atomic attribute Ai as Ai = ai in
a tree node and, for compound attributes, as (A1, . . . , An)= (a1, . . . , an). In
the following sections, with the aim of clarifying the notation, we will suppose
that all the attributes are atomic, assuming that, if they were compound, the
notation (A1, . . . , An)= (a1, . . . , an) should be used instead.

3.1 Key-based tree representation

The key-based tree representation scheme is based on the concept of identity in
the relational model, i.e., each tuple is identified by its primary key. Therefore,
the root node of the key-based tree representing a tuple in the target relation
r will have, as its unique child, the value of the primary key of the tuple
in the target relation that is represented by the tree. The children of this
primary key node will be the remaining attribute values from the tuple in the
target relation. The rest of the tree is then built by exploring the foreign keys
that connect the target relation to other relations in the database. From a
conceptual point of view, we have two different scenarios:

– When we have a one-to-one or many-to-one relationship between two rela-
tions, we will have a foreign key in the target table r pointing to another
relation s. That results in a subtree with the data from the tuple in s.

– When we have a one-to-many relationship, we will have a foreign key in
the table s that refers to the primary key of table r. In this case, many
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tuples in s may point to the same tuple in r. A different subtree results
from the data for each tuple in s that points to the target tuple in r.

Formally, the algorithm needed to build a key-based tree starting from each
tuple in the target relation r = (Ar, Kr, FKr) is the following:

– Build the root node, whose label is the name of the target relation, i.e. r.
– Add a child node to the root corresponding to the primary key of the tuple

in the target relation using the notation r.Kr = kr.
– For each attribute Ar

i ∈ Ar, add a child node to the primary key node
using the notation r.Ar

i = ari
– For each foreign key FKr = (F r, s) pointing to another relation, s, create

a key-based tree representation for the tuple in s that is referenced by the
tuple in r, i.e.:

– Add a child node to the primary key node using the notation r.F r = f r.
– For each attribute As

i ∈ As from the s relation, add a child node to the
r.F r = f r node using the notation r.F r.As

i = asi .

– For each foreign key FKs = (F s, r) in another relation, s, pointing to our
target relation, r, create a key-based tree representation for each tuple in
s that points to our tuple in r:

– Add a child node to the primary key node with the name of the two
relations, the foreign key, and the primary key of s using the notation:
r.s[F s].Ks = ks.

– For each attribute As
i ∈ As in the s relation, add a child node to

r.s[F s].Ks = ks using the notation r.s[F s].As
i = asi .

– This algorithm is recursively applied, taking into account the foreign keys
in s that point to other relations in the database, as well as the foreign
keys pointing to s from other relations in the multirelational database.

Let us suppose that, in the multirelational database of Figure 4, our target
table is person, its primary key is id, and its only attributes are as shown in
Figure 5. If we have the tuple {1, Peter, US, 5}, its key-based tree represen-
tation will be the one we see in Figure 6 a). In textual form (see Section 2.1),
this tree can be represented as follows:

person
person.id=1

person.name=Peter ↑
person.email=US ↑
person.houseID=5 ↑↑

When we consider the links (foreign keys) between tables in our example
database, we find the two situations we have described above:

– The relationship between person and residence is one-to-one. Therefore,
we have a foreign key in the person table that refers to the house of each
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person

person.id =1

person.name =Peter person.nationality=US person.idhouse =5

a) Key-based tree representation of a tuple from the target relation.

person

person.id=1

person.name=Peter

person.nacionality=US

person.car[ownerID].plate=1234BCD person.car[ownerID].plate=5678JKL

person.car[ownerID].make=Toyota

person.car[ownerID].type=SUV

person.car[ownerID].make=Chevrolet
person.car[ownerID].ownerID=1

person.car[ownerID].ownerID=1 person.car[ownerID].type=sedan

person.houseID.type=apartment

person.houseID=5

person.houseID.city=London

person.houseID.location=suburb

b) Key-based tree representation of data from different relations.

Fig. 6 Key-based tree representation of the multirelational database shown in Figure 5.

person. This relationship leads to the subtree in Figure 6 b) whose nodes
are depicted with vertical lines in their background.

– The relationship between person and car is one-to-many. Therefore, the
car table includes a foreign key that refers to the car owner. The key-based
tree representation of this relationship is shown by the nodes shaded with
horizontal lines in Figure 6 b).

3.2 Object-based tree representation

The object-based tree representation scheme is based on the concept of object
identity in an object-oriented model. In this representation scheme, we will
use intermediate nodes as roots of the subtrees representing each tuple in the
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multirelational database. All the attribute values within the tuple, including
the primary key attributes, will be children of the root node representing the
tuple in the tree.

As in the previous section, the tree is built by exploring the relationships
between the target relation and other relations in the multirelational database:

– The case of one-to-one and many-to-one relationships between two rela-
tions, r and s, where r has a foreign key pointing to s, is now addressed
by adding the attributes of s as children of the intermediate node labeled
with the names of the foreign key attributes.

– When the relationship is one-to-many, i.e. when the relation s has a foreign
key that refers to the target relation r, a new subtree is built for each tuple
in s that points to the same tuple in r. These subtrees will have root nodes
labeled with the name of both tables and the foreign key involved in the
relation, while their children will contain all the attribute values from the
tuples in s.

Formally, the algorithm to build a object-based tree starting from each
tuple of the target relation r = (Ar , Kr, F r) is:

– Build the root node, whose label is the name of the target relation, i.e. r.
– For each attribute Ar

i ∈ Ar, including the primary key attributes, add a
child node to the root using the notation r.Ar

i = ari .
– For each foreign key FKr = (F r, s) pointing to another relation, s, create

a subtree with the data from the tuple in s that is referenced by the tuple
in r:

– Add a child node to the root using the notation r.F r.
– For each attribute As

i ∈ As in the s relation, including primary key
attributes, add a child node to the intermediate node we have just
created using the notation r.F r.As

i = asi .

– For each foreign key FKs = (F s, r) in another relation, s, pointing to our
target relation, r, create a subtree for each tuple in s that points to the
target tuple in r:

– Add a child node to the root with the name of both relations and the
foreign key attribute names using the notation: r.s[F s].

– For each attribute As
i ∈ As in the s relation, including the primary key

attributes in Ks, add a child node to the r.s[F s] node that we have just
created using the notation r.s[F s].As

i = asi .

– This procedure is recursively applied, taking into account the foreign keys
in s that point to other relations in the database, as well as the foreign
keys pointing to s from other relations in the multirelational database.

The example from Figure 6 is now displayed in Figure 7 using the object-
based representation scheme. The nodes decorated with vertical lines in Fig-
ure 7 b) illustrate the many-to-one relationship between person and residence,
while the one-to-many relationship between person and car is depicted by the
nodes with horizontal lines in their background.
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person

person.name =Peter person.nacionality=USperson.id =5 person.houseID=5

a) Object-based tree representation of a tuple from the target relation.

person.nacionality=US

person.car[ownerID]

person.car[ownerID]

person

person.car[ownerID].make=Toyota

person.car[ownerID].type=SUV

person.car[ownerID].make=Chevrolet

person.car[ownerID].ownerID=5

person.car[ownerID].ownerID=5

person.car[idOwner].type=sedan

person.id=5
person.name=Peter

person.car[ownerID].plate=1234BCD

person.car[ownerID].plate=5678JKL

person.houseID 

person.houseID.type=apartment

person.idhouse.city=London
person.houseID.id=5

person.idhouse.location=suburb

b) Object-based tree representation of data from different relations.

Fig. 7 Object-based tree representation of the multirelational database shown in Figure 5.

The main difference between the object-based tree representation scheme
and the key-based one is that, in the object-based representation scheme,
primary key attribute values and non-prime attribute values appear at the
tree level. Using the key-based representation scheme, however, non-prime
attribute values within each tuple appear as children of the node representing
the primary key.

It should also be noted that the object-based tree representation scheme
generates trees with more nodes than the key-based one, since it introduces
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ancillary intermediate nodes, i.e., those nodes that do not contain values and
just represent the start of a new tuple within the tree.

However, tree depth is typically lower in the object-based tree represen-
tation scheme than in the key-based one. When representing tuples from the
target relation, no key nodes are needed in the object-based representation
(i.e., the depth of the resulting tree is 2, as in Figure 6 a)). In the key-based
representation, however, the primary-key node adds a new level to the tree
(i.e., the depth of the resulting tree is 3, as shown in Figure 7 a)).

Section 5 will show how the use of these two different tree-based represen-
tation schemes will be useful to identify different kinds of patterns, but first
we should address some implementation issues that arise in practice.

4 Deriving trees from a multirelational database

In this section, we discuss how we can traverse the foreign keys that connect
individual relations in a multirelational database.

4.1 Exploration depth

The connections between relations in a given multirelational database can be
represented as a graph whose nodes are relations and whose edges represent
foreign keys connecting pairs of relations. Starting from the target relation,
we can traverse such a graph. The tree resulting from this traversal will grow
each time we visit a new graph node (relation) or revisit an already-discovered
one. From the multirelational database perspective, the size and depth of the
resulting tree depends on the number of links that we follow, starting from
the target relation.

When the multirelational database is complex, the relations that are far
away from the target relation might not always be interesting for us. Therefore,
in practice, we should select the relations we want to represent in the resulting
trees or, at the very least, bound the resulting tree depth.

We can define the exploration depth for the tree-based representation
of multirelational databases as the length of the longest paths from the target
relation to the other relations represented within the trees.

For example, in Figures 6 a) and 7 a), exploration depth is 0, since only
the target relation is represented in those trees. In Figures 6 b) and 7 b),
however, exploration depth is 1 because we have followed all the foreign keys
that connect our target relation to other relations in our database.

4.2 Relationship traversal

When we are building the trees corresponding to each tuple in our target
relation, all the foreign keys between the relations represented in the tree are
traversed forward starting from the target relation. Apart from this, we must
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car

car.make=Toyota

car.type=SUV
car.plate=1234BCD

car.ownerID.car[onwerID].make=Toyota

car.ownerID.car[ownerID].type=SUV

car.ownerID.car[ownerID].plate=1234BCD

car.ownerID.name=Peter

car.ownerID.nacionality=US
car.ownerID.car[ownerID]

car.ownerID.car[ownerID]]

car.ownerID

car.ownerID.car[ownerID].make=Chevrolet

car.ownerID.car[ownerID].type=Sedan

car.ownerID.car[ownerID].plate=5678JKL

car.ownerID.id=5

Fig. 8 Object-based tree derived from the multirelational database in Figure 5 using car

as the target relation.

consider whether it is interesting to go back through a foreign key that is
already represented in the tree, i.e. whether to traverse it backwards or not.

To solve this problem, we focus on the relationships in our (high-level)
conceptual database schema rather than on the (low-level) foreign keys that
appear in our relational data model. When relationships are one-to-one or
one-to-many, it is not necessary to traverse them backwards because we would
just obtain the same data that we have already have included in the tree.
However, if a relation is many-to-one or many-to-many, we should traverse
that relationship backwards to obtain all the tuples that are connected to the
tuple in our target relation that we are representing in tree format.

For example, consider the object-based tree in Figure 7 b). When we reach
the node labeled person.car[ownerID].ownerID = 5, we have represented the
information about Peter and his cars. Therefore, it is not necessary to go back
through the person-car relationship because we would obtain the information
about Peter that we already have in the tree. However, if the target table were
car, as shown in Figure 8, we would first represent the information of the
Toyota car. Next, we would traverse the car-person relationship to obtain
the information about the owner of the car (Peter). Finally, we should go back
through the person-car relationship to represent all the cars that Peter owns,
not just the Toyota we started with.
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person

person.id =5 person.houseID

person.houseID.type=apartament

person

person.nacionality=US

person.houseID.location=suburb

person.idhouse.city=London

Fig. 9 An induced subtree (left) and an embedded subtree (right) from the tree shown in
Figure 7 (b) .

5 Identifying frequent patterns in multirelational databases

The use of tree-based representation schemes for multirelational databases lets
us apply tree mining techniques to identify frequent patterns in multirelational
databases. Many algorithms have been proposed in the literature to identify
frequent tree patterns, including TreeMiner (Zaki, 2005b), SLEUTH (Zaki,
2005a), and POTMiner (Jimenez et al, 2010b). Using these algorithms on the
tree-based representation schemes we have introduced in Section 3, we will be
able to discover different kinds of patterns. In this section, we will analyze
them and we will study the relationships among the sets of patterns that can
be discovered from a multirelational database.

5.1 Identifying different kinds of patterns

When working with tree pattern mining algorithms, different kinds of subtrees
can be defined depending on the way we define the matching function between
the pattern and the tree it derives from (Chi et al, 2005) (Jimenez et al, 2010a):

– A bottom-up subtree T ′ of T , with root v, can be obtained by taking
one vertex v from T with all its descendants and their corresponding edges.

– An induced subtree T ′ can be obtained from a tree T by repeatedly
removing leaf nodes from a bottom-up subtree of T .

– An embedded subtree T ′ can be obtained from a tree T by repeatedly
removing nodes, provided that ancestor relationships among the vertices
of T are not broken.

Bottom-up subtrees are a special case of induced subtrees. Likewise, in-
duced subtrees are a special case of embedded subtrees. Frequent tree pattern
mining algorithms usually focus on identifying induced or embedded subtrees
as the ones shown in Figure 9. In the following subsections, we will exam-
ine the induced and embedded patterns we can discover when using both the
key-based and the object-based tree representation schemes.
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5.1.1 Induced key-based patterns

The key-based representation scheme uses primary keys as root nodes for the
different subtrees that represent each tuple in the tree. Since those primary
key nodes are not frequent in the tree database resulting from the multirela-
tional database and induced patterns preserve all the nodes as in their original
trees, no induced patterns starting at, or including, a primary key node will
be identified using this representation scheme. However, it is certainly possi-
ble that we can identify induced patterns starting at foreign keys, since they
might be frequent in the tree database. It should be noted, however, that all
the information they contain will usually be from the same relation in our
multirelational database.

For example, the person.id=1 node in Figure 6 b) will not be frequent,
since person.id is the primary key of the target table and it appears in
just one database tree. Hence, no induced patterns starting at this node will
be identified. It is possible, however, that induced patterns starting at node
person.houseID=5 may be frequent if there were more people sharing the
same residence.

5.1.2 Embedded key-based patterns

If we are interested in obtaining patterns involving data from different relations
in the key-based representation scheme, we will have to resort to embedded
patterns. These patterns will miss some intermediate nodes, such as the pri-
mary key nodes, but they will be able to combine information from different
relations in our original multirelational database.

For example, we could obtain the pattern in Figure 10 from the tree in
Figure 6 b). This pattern represents that people living in suburbs and owning
a sedan car are frequent in our database.

person

person.car[ownerID].type =sedan person.houseID.location=suburb

Fig. 10 Embedded subtree obtained from the key-based tree in Figure 6 b).

5.1.3 Induced object-based patterns

The object-based representation scheme uses intermediate nodes to represent
references to the different tuples represented within the trees. Using this repre-
sentation scheme, it is possible to identify larger induced patterns than before:
Induced object-based patterns can contain information from different relations,
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something that was not possible when we used the key-based representation
scheme.

When appearing as part of frequent patterns, the intermediate nodes pro-
vide additional information. They tell us how many tuples in one relation are
related to a given tuple in our target relation. For example, the tree pattern
in Figure 11 a) shows that people living in suburbs and owning (at least) two
cars are frequent in our database, without considering car details. It should
be noted that this kind of patterns cannot be identified using the key-based
representation scheme.

5.1.4 Embedded object-based patterns

When mining embedded patterns using the object-based representation scheme,
we will obtain all the patterns that were identified when we used the key-based
representation scheme, as well as those patterns that contain intermediate
nodes.

As happened with induced object-based patterns, the use of intermediate
nodes will let us identify patterns that were not discoverable using the key-
based representation scheme, such as the one shown in Figure 11 b), which is
extracted from the tree in Figure 7 b).

However, it should be noted that number of patterns including intermediate
nodes could be high because these nodes are typically frequent in the trees
representing the multirelational database. Hence, their discovery comes at a
price that we will analyze in our experiments in Section 7.

5.2 Induced vs. embedded patterns

Induced and embedded patterns provide us different information about the
multirelational database.

In some sense, induced patterns describe the database in fine detail. In-
duced patterns preserve the structure of the original trees in the database
by maintaining the relationships among all their nodes as they appear in the
tree-based representation of the multirelational database. This causes that,
in order to obtain useful information from the multirelational database, the
identification of large patterns is often necessary. Unfortunately, this need to
unveil large patterns might involve a large computational effort.

Embedded patterns are typically smaller than the induced patterns re-
quired to represent the same kind of information. However, if we use embedded
patterns, some of the relationships among the nodes in the original trees are
not preserved. In other words, we might not be able to rebuild the original
tree structure from an embedded tree pattern.

For example, Figure 12 shows some patterns obtained from the object-
based tree representation scheme of the multirelational database in Figure 4.
The induced pattern shown on the left tells us that some people in our database
have a Toyota and a sedan car, while the induced pattern on the right tells
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person.car[ownerID]person.car[ownerID]

person

person.houseID 

person.idhouse.location=suburb

a) Induced object-based subtree.

person.car[ownerID]person.car[ownerID]

person

person.idhouse.location=suburb

b) Embedded object-based subtree.

Fig. 11 Subtrees from the object-based tree in Figure 7 b).

us that people in our database have a Toyota that is also a sedan car. The
embedded pattern shown in the same figure illustrates that some people have a
Toyota car and a sedan car, but we do not know if it is the same car (a Toyota
sedan) or they own two cars (a Toyota and a sedan car, which is different from
the Toyota). We cannot be sure of the original tree that led to the discovered
embedded pattern. In other words, embedded patterns can introduce some
ambiguity in their interpretation.

5.3 Key-based vs. object-based patterns

The key-based and the object-based tree representation schemes also provide
us different information about the multirelational database.

When we use the key-based representation scheme, no induced patterns
with information about the target table can be identified. Induced patterns
might contain, however, information about tuples in other tables, those that
are frequently related to the tuples in the target table.

When we use the object-based representation scheme, induced patterns
with information about the target table can now be obtained. Therefore, the
object-based representation scheme is our only choice if we are interested in
induced patterns, which preserve the original structure of the trees in the
database.

On the other hand, using the object-based representation scheme to dis-
cover embedded patterns is useful only if we are interested in patterns that
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person.car[idOwner]person.car[idOwner]

person

person.car[idOwner].make=Toyota person.car[idOwner].type=sedan

person.car[idOwner]

person

person.car[idOwner].make=Toyota person.car[idOwner].type=sedan

Induced patterns.

person

person.car[idOwner].make=Toyota person.car[idOwner].type=sedan

Embedded pattern.

Fig. 12 Embedded and induced patterns from the object-based tree representation of the
multirelational database in Figure 5.

show that a particular object in a given relation is related to at least n objects
in another relation. An example of this kind of pattern is shown in Figure 11
b). That pattern indicates that people living in suburbs with two cars (n = 2
in this example) are frequent in our database, without any references to partic-
ular car features. This kind of pattern cannot be identified using the key-based
representation scheme, since all the nodes in a key-based tree necessarily in-
volve attribute values.

In the object-based representation scheme, however, the presence of inter-
mediate nodes increases the number of identified patterns and, therefore, the
computational effort needed to discover them. Hence, we should only resort
to the object-based representation scheme when we are interested in patterns
similar to the one in Figure 11 b). Otherwise, the key-based representation
scheme provides faster results in the discovery of embedded patterns.

5.4 Relationships between kinds of patterns

Once we have discussed the kind of patterns we can obtain using each repre-
sentation scheme, we will study the relationships between the different sets of
patterns that we can identify within a multirelational database.

First of all, we will define an equivalence relationship between key-based
trees and object based-trees when they represent the same information from
a logical point of view. Let prefix be a substring t1 . . . tm of the string repre-
senting the label of a node t1 . . . tn where m ≤ n.
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Definition 1 Equivalence between key-based and object-based trees.
We consider two scenarios to define the equivalence relationship between

key-based and object-based trees:
a) When the relation r contains a foreign key that points to the relation s,

which might correspond to a one-to-many or a many-to-one relationship, we
will say that a key-based tree T1 =

prefix.F r = Ks

prefix.F r.As
1 = as1 ↑

prefix.F r.As
2 = as2 ↑ . . .

prefix.F r.As
n = asn ↑↑

is equivalent (=eq) to the object-based tree T3=

prefix.F r

prefix.F r.Ks = ks ↑
prefix.F r.As

1 = as1 ↑
prefix.F r.As

2 = as2 ↑ . . .
prefix.F r.As

n = asn ↑↑

b) When a foreign key in s points to r, we will say that a key-based tree
T2 =

prefix.s[F s].Ks = ks

prefix.s[F s].As
1 = as1 ↑

prefix.s[F s].As
2 = as2 ↑ . . .

prefix.s[F s].As
n = asn ↑↑

is equivalent (=eq) to the object-based tree T4=

prefix.s[F s]
prefix.s[F s].Ks = ks ↑
prefix.s[F s].As

1 = as1 ↑
prefix.s[F s].As

2 = as2 ↑ . . .
prefix.s[F s].As

n = asn ↑↑

Definition 2 Equivalence inclusion for sets of tree patterns.
We say that A ⊆eq B if and only if, for each element a ∈ A, there exists

an element b ∈ B such that a =eq b.

As we have seen before, we can identify four different sets of patterns using
either induced or embedded subtrees with both representation schemes: in-
duced key-based patterns (IK), embedded key-based patterns (EK), induced
object-based patterns (IO), and embedded object-based patterns (EO). We
can identify some relationships among those four sets of patterns by using the
following list of properties, whose proofs can be found in the Appendix:
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1. All induced key-based patterns are embedded key-based patterns, i.e.,
Induced key-based patterns ⊆ Embedded key-based patterns.

2. All induced object-based patterns belong to the set of embedded object-
based pattern, i.e.,
Induced object-based patterns ⊆ Embedded object-based patterns.

3. Every induced key-based pattern is equivalent to one pattern that belongs
to the set of induced object-based patterns, i.e.,
Induced key-based patterns ⊂eq Induced object-based patterns.

4. Every embedded key-based pattern is equivalent to one pattern that be-
longs to the set of induced object-based patterns, i.e.,
Embedded key-based patterns ⊂eq Induced object-based patterns.

5. Every embedded key-based pattern is equivalent to one pattern that be-
longs to the set of embedded object-based patterns., i.e.,
Embedded key-based patterns ⊂eq Embedded object-based patterns.

6. Every induced key-based pattern is equivalent to one pattern that belongs
to the set of embedded object-based patterns, i.e.,
Induced key-based patterns ⊂eq Embedded object-based patterns.

In short, we can summarize the relationships among induced key-based,
embedded key-based, induced object-based, and embedded object-based pat-
terns as:

IK ⊆ EK ⊂eq IO ⊆ EO

6 Extracting association rules from tree patterns

An association rule is defined as follows for transactional databases: Let I =
i1,i2,. . ., im be a set of literals, called items. Let D be a set of transactions,
where each transaction T is a set of items such that T ⊆ I. We say that a
transaction T contains X , a set of some items in I, if X ⊆ T . An association
rule is an implication of the formX ⇒ Y , where X ⊂ I, Y ⊂ I, andX∩Y = ∅.
The rule X ⇒ Y holds in the transaction set D with confidence c if c%
of transactions in D that contain X also contain Y . The rule X ⇒ Y has
support s in the transaction set D if s% of transactions in D contain X ∪ Y
(Agrawal and Srikant, 1994).

In multirelational databases, we define D as a set of trees. We say that a
tree contains X when X is a subtree of T . Let P be a frequent pattern in D.
An association rule in a multirelational database is an implication of the form
X ⇒ P , where X is a subtree of P .

6.1 Tree rules

In this section, we explain how to obtain association rules from frequent tree
patterns. The kind of rules we obtain (and, therefore, the knowledge they
provide us) will depend on the kind of patterns we mine and the tree-based
representation scheme we choose, as we analyzed in Sections 5.2 and 5.3.
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In association rule mining, once all frequent itemsets are identified, we
iterate through all their subitemsets in order to enumerate all potentially-
interesting association rules. For each subitemset S of a frequent itemset I of
size n, a rule S ⇒ I − S can be obtained.

When dealing with tree patterns, we have to enumerate all the subtrees of
each frequent tree pattern:

– If we are working with embedded patterns, its embedded subtrees can be
obtained by repeatedly removing nodes from the original pattern (all but
the root node because, if we removed the root node, we would break the
tree).

– In the case of induced patterns, only leaf nodes can be removed in the
process, since we must guarantee that the resulting subtree is also induced.

It should be noted that, when working with tree patterns, we cannot rep-
resent rules as in transactional databases (S ⇒ I − S) because:

– I−S may not be a tree (for example, when S includes the root node), and
– we may not know how to match the S subtree with the I − S subtree (in

a similar vein to our discussion on matching trees in Figure 12 a)).

Therefore, we will represent the whole pattern I in the consequent of the
association rule, albeit its meaning is still analogous to I−S in the traditional
sense, since the presence of the pattern I involves the presence of the pattern
I−S. This way, we obtain rules where both the antecedent and the consequent
are trees. Figure 13 shows an example rule that can be obtained from the
second induced pattern in Figure 12.

person.car[ownerID]

person

person.car[onwerID].type=sedan

person.car[ownerID]

person.car[ownerID].make=Toyota

person.car[ownerID].make=Toyota

Fig. 13 Rule obtained from the second induced pattern in Figure 12.

6.2 Rule mining constraints

The number of rules that can be obtained from a multirelational database can
be huge and most of those rules might not be useful for the end user. In this
section, we study how to apply constraints (Pei and Han, 2002) to tree rules
in order to reduce the number of rules to be considered.
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6.2.1 Rule-specific constraints

Rule-specific constraints (Bayardo, 2004) are based on the measures employed
to determine the interestingness of an association rule, like confidence, lift, or
certainty factor (Berzal et al, 2002).

A threshold can be established for one or several of these interestingness
measures to reduce the number of resulting rules. This constraint lets us re-
ject those rules that do not reach the established thresholds during the rule
generation process. Accepting only those rules with confidence above 0.7 (i.e.
70%) is a typical example of this kind of constraint.

6.2.2 Item constraints

An item constraint specifies which groups of items must be present (or not) in
the patterns we are looking for. They are typically used to prune the rules so
that we obtain only those rules that have a predefined attribute (or attribute
value) in their consequent. The use of these constraints in conjunction with
length constraints, for instance, is common in associative classification models
(Berzal et al, 2004).

Item constraints can also be employed to prune the set of candidate pat-
terns in Apriori-based pattern mining algorithms. When we know which items
must be present in every pattern, we can discard the patterns that do not
contain the required items (Srikant et al, 1997).

When we apply item constraints at the end of the rule mining process, we
can also reduce the number of rules by specifying the items to be present in
the antecedent or the consequent of the rules. For example, in order to obtain
rules involving the make of a car from the multirelational database in Figure
4, we could prune the rule set by considering only those rules that have the
attribute person[ownerID].car.make in their consequent.

A special case of item constraints does not only consider one item but
rather its relationships to other items: model-based constraints. These special
constraints guide our search for patterns that are sub or super-patterns of
some given patterns. For instance, in the database from Figure 5, we could
look for frequent patterns related to Toyota sedan cars.

6.2.3 Length constraints

A length constraint specifies the number of items in the patterns. It can also
be applied, in a more restrictive way, by specifying the number of elements
in the consequent of the resulting rules. Length constraints can be useful, for
instance, when association rules are used for building classification models,
where they should have a single element in their consequent.

Maximum length constraints can be applied during the pattern mining
phase to reduce the number of generated patterns. Antecedent or consequent
maximum length constraints, however, can only be applied during the rule
generation process.
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7 Experimental results

In this section, we present some experimental results that we have obtained
using both the key-based and the object-based tree representations schemes. In
these experiments, we have used both synthetic and actual datasets to study
the feasibility and performance of our approach to multirelational database
mining.

The synthetic datasets have been created using the database generator
provided by Yin at his web page: http://research.microsoft.com/en-us/people/xyin/.

The parameters of his generator are the number of relations in the database (r),
the expected number of tuples in each relation (t), and the expected number of
foreign keys in each relation (f). Given particular values for those parameters,
the generator produces a relation schema of r relations, one of them being the
target relation. The number of attributes in each relation obeys an exponential
distribution whose expectation is 5, with a minimum of 2 attributes. The
number of different values for each attribute obeys an exponential distribution
whose expectation is 10, with a minimum of 2 different attribute values. The
number of foreign keys in each relation also obeys an exponential distribution,
with expectation f . Finally, the target relation has exactly t tuples and the
number of tuples in each nontarget relation obeys an exponential distribution
with expectation t and a minimum of 50 tuples (Yin et al, 2004).

For the experiments with actual datasets, we have used three multirela-
tional databases: mutagenesis, loan, and genes. Figures 14 and 15 depict
their schemata.

mole

PK mid

ind1
inda
lumo
logp
label

moleatm

PK moleatmid

FK1 mid
FK2 aid

atom

PK aid

elem
type
chargue

bond

FK1 batm1
FK2 batm2

btype

genes

PK geneID

essential
chromosome

composition

PK compID

FK1 geneID
class
complex
phenotype
motif
function
localization

Interaction

PK interactionID

FK2 geneID1
FK1 geneID2

type
expr_corr

Fig. 14 Schemata of the mutagenesis (left) and genes (right) databases.

The mutagenesis database (Srinivasan et al, 1994) is a frequently-used ILP
benchmark. It contains four relations and 15,218 tuples. The target relation
(mole) contains 188 tuples.

The loan database was used in the PKDD CUP’09. The database contains
eight relations with 75,982 tuples in total. The target relation (loan) contains
400 tuples.
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Loan

PK loan_id

FK1 account_id
date
annount
duration
payment
class label

Account

PK account_id

FK1 district_id
frequency
date

Order

PK order_id

to_bank
to_account
ammount
type

FK1 account_id

Transaction

PK trans_id

FK1 account_id
date
type
operation
ammount
balance
symbol

Card

PK card_id

FK1 disp_id
type
issue_date

Disposition

PK disp_id

client_id
type

FK1 account_id

Cient

PK client_id

birthday
gender

FK1 district_id

District

PK district_id

name
region
#people
#it-500
#it-2000
#it-10000
#gt-10000
#city
ratio-urban
avg-salary
unemploy-95
unemploy-96
den-enter
#crime95
#crime96

Fig. 15 Schema of the loan database.

The mutagenesis and loan databases were adapted by Yin et al. for their
experiments with CrossMine (Yin et al, 2004) and can be downloaded from:
http://research.microsoft.com/en-us/people/xyin/

The genes database was proposed in the KDD CUP’01. This database can be used
to predict the function of genes, thus we have chosen function as its class label for our
experiments. The target table in the genes database is composition, which includes 4,636
tuples.

The original genes database contained only two relations called genes and interaction,
but the genes relation was not normalized, i.e., the table contained 862 different genes but
there were several rows in the table for some genes. The normalization of the database
was achieved, as proposed by Leiva et al. (Leiva et al, 2002), by creating two tables as
follows: attributes in the genes-relation table that did not have unique values for each
gene were placed in the composition table and the rest of the attributes were placed in the
gene table. The gene id attribute is the primary key in the gene table and a foreign key
in the composition table. The interaction relation has not changed with respect to the
original one. The difference between our normalization and the one proposed by Leiva et
al. is that we found that the attribute localization has two different values for the gene
with gene id=G239017. Therefore, we have placed this attribute in the composition table
instead of keeping it in the genes table.

Using the proposed tree-based representation schemes for multirelational databases, tree
databases can be obtained from each multirelational database. When the exploration depth
is 2, we obtain the following tree databases from the original multirelational databases:

– The mutagenesis tree database contains 188 trees. Trees have an average of 163 nodes
using the key-based representation scheme (30,674 nodes in total) and an average of 189
nodes per tree using the object-based one (35,567 nodes in total).
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Fig. 16 Number of identified patterns (left) and POTMiner execution time (right) when
varying the number of relations in the synthetic database.

– The tree database obtained from the loan database contains 400 trees. Trees have an
average of 166 nodes using the key-based representation scheme (66,466 nodes in total)
and an average of 186 nodes using the object-based one (75,785 nodes in total).

– The tree database obtained from the genes database contains 4,636 trees. Trees have
an average of 113 nodes using the key-based representation scheme (491,315 nodes in
total) and an average of 127 nodes using the object-based one (555,192 nodes in total).

7.1 Identifying induced and embedded patterns

In this section, we present the experiments we have performed to identify frequent patterns
in both synthetic and actual databases. We have used the POTMiner tree patterm mining
algorithm (Jimenez et al, 2010b) to discover induced and embedded subtrees from the tree-
based representation of multirelational databases.

7.1.1 Identifying induced and embedded patterns in synthetic databases

In order to test the performance and scalability of our algorithm, we have performed some
series of experiments by varying the parameters of our algorithm (exploration depth, min-
imum support, and maximum pattern size), as well as the parameters of the synthetic
multirelational databases themselves (i.e., number of relations, number of tuples, and num-
ber of foreign keys). We have used the following base configuration: #relations=5, #tu-
ples=200, #foreign keys=1, exploration depth=2, support=10%, and maxsize (maximum
pattern size)=4.

For each experiment series, we graphically depict the number of identified patterns (up
to maxsize), both induced (I) and embedded (E), for each representation scheme, i.e. key-
based (K) and object-based (O). We also indicate POTMiner execution time for each case.
It should be noted that a logarithmic scale has been used for the Y -axis in all the figures
within this section.

First, we have performed some experiments by varying the number of relations: four
databases were created with 3, 5, 7, and 10 relations, respectively. Figure 16 shows the
results obtained in these experiments. As it can be seen, the number of identified patterns,
as well as POTMiner execution time, is more or less independent of the number of relations.
The variation in the number of relations does not affect POTMiner execution time because
we are not changing the number of trees, which is constant, nor their average size.

We have also performed some experiments by varying the number of tuples in each
relation: four databases were created with 100, 200, 300, and 400 tuples, respectively. As we
increase the number of tuples, while keeping the number of attribute values constant, the
number of frequent patterns exponentially increases as shown in Figure 17. It should also
be noted that the number of trees depends on the number of tuples in the target relation
of the multirelational database and POTMiner execution time is asymptotically linear with
respect to the number of trees in the tree database (Jimenez et al, 2010b).
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Fig. 17 Number of identified patterns (left) and POTMiner execution time (right) when
varying the number of tuples in the relations of the synthetic database.
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Fig. 18 Number of identified patterns (left) and POTMiner execution time (right) when
varying the number of foreign keys in the relations of the synthetic database.
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Fig. 19 Number of identified patterns (left) and POTMiner execution time (right) when
varying the exploration depth in the synthetic database.

In our experiments varying the number of foreign keys in each relation, shown in Figure
18, three databases were created with 1, 2, and 3 expected foreign keys for each relation.
When increasing the number of foreign keys in each relation, tree size increases and more
patterns are identified. Then, as in a more traditional frequent pattern mining setting,
POTMiner time is proportional to the number of identified patterns.

With respect to the parameters of our algorithm, we first vary the exploration depth
(see Section 4.1). We have generated four databases with exploration depths 1, 2, 3, and 4.
As shown in Figure 19, the number of identified patterns increases exponentially when we
increase the exploration depth because the size of the trees is also increased (we are including
information about more relations within them). As in the previous experiment involving the
number of foreign keys, POTMiner execution time is proportional to the number of examined
patterns (and, hence, exponential with respect to the exploration depth, since the number
of patterns exponentially grows with respect to the exploration depth).

The results of our experiments varying the minimum support of frequent patterns are
shown in Figure 20. We have extracted patterns using 20%, 10%, and 5% minimum sup-
port thresholds. As expected, the number of identified patterns increases when the support
decreases and POTMiner execution time is proportional to the increase in the number of
identified patterns.
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Fig. 20 Number of identified patterns (left) and POTMiner execution time (right) when
varying the minimum support threshold for the frequent patterns in the synthetic database.
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Fig. 21 Number of identified patterns (left) and POTMiner execution time (right) when
varying the maximum size of the identified patterns within the synthetic database.

Finally, we have performed a series of experiments by varying the maximum size of the
identified patterns. Figure 21 shows the results of these experiments including the number
of patterns up to maxsize, which goes from 3 to 6. It should be noted that, in the case
of induced key-based patterns, no patterns of size greater than 1 were identified. In the
remaining cases, the number of identified patterns and, consequently, POTMiner execution
time exponentially increases with the pattern size.

POTMiner execution time is linear with respect to the number of trees in the database
and also proportional to the number of identified patterns (Jimenez et al, 2010b). In the
case of multirelational databases, the number of tuples in the target relation determines
the number of trees in the database, hence POTMiner is linear with respect to the num-
ber of tuples in the target relation. Therefore, our algorithm is asymptotically optimal for
the problem of mining frequent patterns from multirelational databases using tree-based
representation schemes.

However, as in the classical frequent pattern mining problem, the number of identified
patterns within a multirelational database can be exponential. The number of foreign keys,
the exploration depth, the minimum support threshold, and the maximum pattern size can
generate a combinatorial explosion in the number of frequent patterns. Since POTMiner ex-
ecution time is proportional to the number of identified patterns (Jimenez et al, 2010b), our
algorithm execution time can be exponential with respect to the aforementioned parame-
ters. Care should be taken while setting the right values for those parameters in a real-world
situation.

7.1.2 Identifying induced and embedded patterns in actual databases

In our experiments with three actual databases (mutagenesis, loan, and genes), we have
identified induced and embedded patterns including up to six nodes, i.e., maxsize = 6 in
POTMiner.

Figure 22 shows the number of induced patterns discovered using different minimum
support thresholds for the three datasets, each one obtained with exploration depths 1,
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Fig. 22 Number of induced patterns using the key-based (top) and the object-based (bot-
tom) representation schemes for the muta (M), loan (L), and genes (G) databases.

2, and 3, for both the key-based (top) and the object-based (bottom) tree representation
schemes.

It should be noted that the number of key-based induced patterns is low and, in most
cases, only patterns of size 1 are identified. This is due to the use of primary keys as internal
nodes within the trees, which are rarely frequent, as we mentioned in Section 5.3.

The number of embedded frequent patterns in the three databases is shown in Figure
23. The number of discovered patterns using the object-based tree representation scheme
is larger than the number of identified patterns using the key-based representation scheme.
This is mainly due to the use of intermediate nodes to represent each tuple from the database
and the fact that these intermediate nodes are usually frequent.
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Fig. 23 Number of embedded patterns using the key-based (top) and the object-based
(bottom) representation schemes for the muta (M), loan (L), and genes (G) databases.

Figure 24 shows two patterns that have been identified in those databases. The in-
duced object-based pattern at the top is from the genes database: 21% of the genes in this
database are considered to be Non-Essential yet they are involved in Physical interactions.
The embedded object-based pattern at the bottom of Figure 24 is from the mutagenesis

database: 47% of the molecules in this database include, at least, three oxygen atoms (in
this particular database, all chemical compounds include at least two).

Figure 25 compares the time required to identify induced and embedded patterns using
the object-based representation scheme. As we explained in the previous section, POTMiner
execution time is proportional to the number of patterns that are examined (Jimenez et al,
2010b). The discovery of induced patterns is faster than the discovery of embedded patterns
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Fig. 24 Patterns identified in the genes (top) and mutagenesis (bottom) databases.
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Fig. 25 POTMiner execution time for identifying induced (left) and embedded (right)
patterns using the object-based representation scheme for the muta (M), loan (L), and
genes (G) databases.

because there is a lower number of them. Likewise, mining object-based patterns requires
more execution time because a greater number of patterns is considered, as we analyzed in
Section 5.2.

7.2 Extracting rules from frequent tree patterns

In these series of experiments, we have identified induced and embedded frequent patterns
of size 4 using both the key-based and the object-based representation schemes, exploration
depths from 1 to 3, and a 10% minimum support threshold. We have then used those frequent
patterns to extract association rules by varying the minimum confidence threshold (using
0.7, 0.8, and 0.9 as threshold values).

7.2.1 Extracting rules from frequent tree patterns in synthetic databases

In these experiments, we have used the patterns identified in the synthetic database using
the base configuration described in the previous section.

Figure 26 shows the number of discovered rules and highlights the rules involving the
class attribute in the target relation. We compare the number of rules that include the
class attribute in their consequent with respect to the total number of discovered rules.
The only class value shows the number of rules that have the class attribute as their
unique consequent with respect to the number of rules that include the status attribute in
their consequent but not necessarily alone. These constraints, as we explained in Section
6.2, are useful when we use association rules to build classification models.

The number of rules obtained from induced patterns in the object-based representation
is similar for all the exploration depths in the synthetic datasets. Since induced patterns
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Fig. 26 Number of association rules from the synthetic database using induced object-based
patterns (left) and embedded key-based patterns (right) with different minimum confidence
thresholds.

preserve the original structure of the database trees, the discovered patterns of size 4 are
more or less the same regardless of the chosen exploration depth and, therefore, the resulting
rules are also similar. No rules were obtained from induced key-based patterns because all of
them were of size 1. More rules were obtained from embedded patterns than from induced
patterns, since embedded patterns are a superset of induced patterns.

Albeit not shown in the figures, it should be noted that, once the frequent patterns are
identified, the process of extracting rules from them is very fast, just a few seconds for a
complete multirelational database.

7.2.2 Extracting rules from frequent tree patterns in actual databases

In our experiments with actual datasets, we have extracted rules from the mutagenesis,
loan, and genes databases. We have considered label, status, and function, respectively,
as their class attribute.

Figure 27 shows the number of rules resulting from the induced object-based patterns
and the embedded key-based patterns derived from the actual databases. Albeit not shown
in the figure, as happened with the synthetic datasets, no rules were obtained from the
induced key-based patterns for the mutagenesis and genes databases because no pattern of
size greater than 1 was obtained (see Section 7.1). Only a few rules, which did not contain
the class attribute, were obtained from the induced key-based representation of the loan

database.
Figure 28 a) depicts one rule obtained from induced object-based patterns in the loan

database. This rule, with 65% support and 82% confidence, can be interpreted as: “If we
have a loan whose associated account has a monthly frequency of issuance of statements,
then the loan usually has no problems (i.e. status=1)”. In other words, of all the loans
in our database that have an associated account with a monthly frequency of issuance of
statements, 82% of them have no problems.

Rules derived from embedded patterns provide information that cannot be obtained
from the induced patterns. For instance, Figure 28 b) shows a rule from the embedded
key-based patterns in the loan database. This rule, with 20% support and 82% confidence,
states that “if we have a loan whose account has a permanent order of house type and its
district has one municipality with more than 10000 inhabitants (num gt 10000 = 1), then
the loan usually has no problems (status=1)”. Hence, it is less frequent in our database
to find loans without problems associated to accounts in a district with more than 10000
inhabitants with a permanent order of house type than loans without problems that have
an associated account with monthly frequency. However, our confidence about not having
problems with those loans is the same in both situations.

The number of association rules from object-based patterns is 3 to 10 times higher
than the number of rules derived from key-based patterns. Since, every embedded key-based
pattern has an equivalent embedded object-based pattern, as discussed in Section 5.4), all
embedded key-based rules have their counterpart in the set of embedded object-based rules.
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Fig. 27 Number of association rules from the mutagenesis, loan, and genes databases us-
ing induced object-based patterns (top) and embedded key-based patterns (bottom) with
different minimum confidence thresholds.

Therefore, a rule equivalent to the rule in Figure 28 b) will be found in the set of embedded
object-based rules.

Object-based rules will be specially useful if we are interested in the kind of knowledge
we described with the example in Figure 11 from Section 5.1.3. In our experiments, we have
obtained a similar rule from the loan database, as shown in Figure 28 c): “Within the set of
accounts with an associated loan and two orders, 83% of them have a monthly frequency

of issuance of statements” (support=67%, confidence=83%).

8 Conclusions

This paper proposes a new approach to mine multirelational databases. Our approach is
based on representing multirelational databases as sets of trees.

We have designed two alternative tree representation schemes for multirelational data-
bases. The main idea behind both of them is building a tree representing each tuple in the
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loan.account_id

loan

loan.status=1loan.account_id

loan.account_id.frequency=monthly

loan

loan.account_id.frequency=monthly

a) Rule obtained from an induced object-based pattern.
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b) Rule obtained from an embedded key-based pattern.
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c) Rule obtained from an embedded object-based pattern.

Fig. 28 Some rules obtained during our experiments.

target table (i.e., the most interesting table for the user) by following the foreign keys that
connect tables in the relational databases.

The key-based representation scheme uses primary keys at the roots of the subtrees
representing each tuple. In contrast, the object-based representation scheme uses generic
intermediate nodes to include new tuples in the trees.

We have identified frequent patterns in the trees derived from multirelational databases
and we have studied the differences that arise from identifying induced or embedded patterns
in both the key-based and the object-based representation schemes. As we explain in Section
5.4 and prove in the appendix, every key-based pattern is equivalent to a pattern that belongs
to the set of object-based patterns.

We have also described how tree patterns can be employed to discover association rules
from multirelational databases. The performance of this rule mining process can be improved
by the use of constraints, which are also useful for reducing the number of rules that are
returned to the user.

Our experiments with synthetic and actual datasets show that our approach is feasible
in practice, since it can rest on our previous tree pattern mining algorithm, POTMiner,
which is linear with respect to the number of trees in the database and whose execution
time is proportional to the number of examined patterns, an asymptotically optimal solution
for the frequent tree pattern mining problem.

The discovery of induced patterns combined with the object-based representation scheme
is often enough to mine multirelational databases. Embedded patterns, when used with the
key-based representation scheme, let us reach data that is farther from the target relation,
although such patterns do not always preserve the structure of the original database trees
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and can introduce some ambiguities in their interpretation. Embedded object-based pat-
terns, the most general case we have studied, can discover situations where the number of
related tuples is important, regardless of their particular attribute values.
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Appendix: Relationships between kinds of patterns

Property 1 All induced key-based patterns are embedded key-based patterns, i.e.,
Induced key-based patterns ⊆ Embedded key-based patterns.

Proof a) ∀p ∈ IK ⇒ p ∈ EK. By definition, an induced pattern is an embedded pattern
where all the parent-children relationships are preserved. Therefore, ∀p ∈ IK, p ∈ EK, i.e.,
IK ⊆ EK .

b) For patterns of size ≤ 2, EK = IK. All key-based patterns of size ≤ 2 have to preserve
their only parent-children relationship, when it exists. Therefore ∀q ∈ EK of size(q) ≤ 2,
q ∈ IK, i.e., EK = IK.

c) For patterns of size > 2, EK 6⊂ IK. Let q ∈ EK be an embedded key-based pattern
that does not preserve all the parent-children relationships. Then, q ∈ EK but q 6∈ IK.
Therefore, q ∈ EK 6⇒ q ∈ IK.. Hence, EK 6⊂ IK.

Therefore, IK ⊆ EK.

Property 2 All induced object-based patterns belong to the set of embedded object-based
pattern, i.e.,

Induced object-based patterns ⊆ Embedded object-based patterns.

Proof Analogous to the proof of Property 1. Therefore, IO ⊆ EO.

Property 3 Every induced key-based pattern is equivalent to one pattern that belongs to
the set of induced object-based patterns, i.e.,

Induced key-based patterns ⊂eq Induced object-based patterns.

Proof
a) IK ⊂ IO: ∀p ∈ IK ⇒ ∃p′ ∈ IO, p =eq p′.

By induction on the number of foreign keys in the tree:

1. Suppose that the pattern p does not contain any foreign keys, i.e., #FK(p) = 0. Then,
p ∈ IK is of the form

r
r.Kr = kr

r.Ar
1
= ar

1
↑ . . .

r.Ar
n = arn ↑↑↑ . . .

and p′ ∈ IO is of the form

r
r.Kr = kr ↑

r.Ar
1
= ar

1
↑ . . .

r.Ar
n = arn ↑↑ . . .

Therefore, by Definition 1, p =eq p′.
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2. Suppose that q ∈ IK contains k foreign keys, i.e., #FK(q) = k, and ∃q′ ∈ IO, q =eq q′.
Let q be a subtree of p, which contains k+ 1 foreign keys; i.e., #FK(p) = k+ 1. Then,
we have to consider two scenarios depending on the kind of foreign key added to q in
order to obtain the pattern p.

(a) If the foreign key is in the relation r pointing to another relation s, then a subtree of
the form T1 will be added to a node with label prefix in q in order to generate the
pattern p. Let p′ ∈ IO be a pattern generated by adding a subtree with the form of
T3 to the pattern q′ at the node with label prefix. As T1 =eq T3, q =eq q′, and T1

is attached to q at the same node where T3 is attached to q′, we have p =eq p′.
(b) If the foreign key is in the relation s pointing to our relation, then a tree of the form

T2 will be added to a node with label prefix in q in order to generate the pattern
p. Let p′ ∈ IO be a pattern generated by adding a subtree with the form of T4 to
the pattern q′ at the node with label prefix. As T2 =eq T4, q =eq q′, and T2 is
attached to q at the same node where T4 is attached to q’, we have p =eq p′.

Therefore, ∀p ∈ IK, ∃p′ ∈ IO, p =eq p′. Hence, IK ⊂ IO.

b) IO 6⊂eq IK. As a counterexample, the special object-based patterns that let us know
how many tuples are related to a given one cannot be identified using the key-based repre-
sentation (as the example shown in Figure 11 a)). Hence, IO 6⊂eq IK.

Therefore, IK ⊂eq IO.

Property 4

Every embedded key-based pattern is equivalent to one pattern that belongs to the set of
induced object-based patterns, i.e.,

Embedded key-based patterns ⊂eq Induced object-based patterns.

Proof
a) EK ⊂ IO: ∀p ∈ EK ⇒ ∃p′ ∈ IO, p =eq p′.

By induction on the number of foreign keys in the tree:

1. Suppose that the pattern p does not contain any foreign keys, i.e., #FK(p) = 0. Then,
p ∈ EK is of the form

r
r.Kr = kr

r.Ar
1
= ar

1
↑ . . .

r.Ar
n = arn ↑↑↑ . . .

and p′ ∈ IO is of the form

r
r.Kr = kr ↑

r.Ar
1
= ar

1
↑ . . .

r.Ar
n = arn ↑↑↑ . . .

Therefore, by Definition 1, p =eq p′.
2. Suppose that q ∈ EK contains k foreign keys, i.e., #FK(q) = k, and ∃q′ ∈ IO, q =eq q′.

Let q be a subtree of p, which contains k+ 1 foreign keys, i.e., #FK(p) = k+ 1. Then,
we have to consider two scenarios depending on the kind of foreign key added to q in
order to obtain the pattern p. Furthermore, as p is an embedded pattern, we have to
consider whether the subtree f corresponding to the foreign key conserves its root node
or note.

– If the foreign key is in the relation r pointing to another relation s.

(a) When the subtree f conserves its root node in p (i.e., the node
prefix.AFK = ks), then f is of the form T1 and it will be added to a node
with label prefix in q to generate the pattern p. Let p′ ∈ IO be a pattern
generated by adding a subtree with the form of T3 to the pattern q′ at the
node with the label prefix. As T1 =eq T3, q =eq q′, and T1 is attached to q at
the same node that T3 is attached to q′, then p =eq p′.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



36

(b) When the subtree f has no root node in p (i.e., we add only some leaf nodes
with their attribute values), then:

prefix.F r.As
1
= as

1
↑

prefix.F r.As
2
= as

2
↑ . . .

prefix.F r.As
n = asn ↑↑

are the nodes that have been added as children to the node with the label
prefix in q to form p. Then, if we add the same leaf nodes as children to the
node with label prefix in q′, we will obtain a pattern p′ ∈ IO. Therefore,
p =eq p′.

– If the foreign key is in the relation s pointing to the relation r:

(a) When the subtree f conserves its root node in p (i.e., the node
prefix.s[F s].Ks = ks), then f is of the form T2 and it will be added to a node
with label prefix in q to generate the pattern p. Let p′ ∈ IO be a pattern
generated by adding a subtree with the form of T4 to the pattern q′ at the
node with the label prefix. As T2 =eq T4, q =eq q′, and T2 is attached to q at
the same node that T4 is attached to q′, then p =eq p′.

(b) When the subtree f has no root node in p (i.e., we add only some leaf nodes
with their attribute values), then:

prefix.s[F s].As
1
= as

1
↑

prefix.s[F s].As
2
= as

2
↑ . . .

prefix.s[F s].As
n = asn ↑↑

are the nodes that have been added as children to the node with the label
prefix in q to form p. Then, if we add the same leaf nodes as children to the
node with the label prefix in q’, we will obtain a pattern p′ ∈ IO. Therefore,
p =eq p′.

Hence, ∀p ∈ EK, ∃p′ ∈ IO, p =eq p′. Therefore, EK ⊂ IO.

b) IO 6⊂eq EK: As a counterexample, the induced object-based patterns that let us know
how many tuples are related to a given one cannot be identified using the key-based repre-
sentation (as the example shown in Figure 11 a) ) . Hence, IO 6⊂eq EK.

Therefore, EK ⊂eq IO.

Property 5 Every embedded key-based pattern is equivalent to one pattern that belongs to
the set of embedded object-based patterns., i.e.,

Embedded key-based patterns ⊂eq Embedded object-based patterns.

Proof
a) EK ⊂eq EO: We have proved that EK ⊂eq IO in Property 4 and that IO ⊆ EO in
Property 2. Therefore, EK ⊂eq IO ⊆ EO. By transitivity, EK ⊂eq EO.
b) EO 6⊂eq EK: As a counterexample, the embedded object-based patterns that let us
know how many tuples are related to a given one cannot be identified using the key-based
representation (as the example shown in Figure 11 b) ). Hence, EO 6⊂eq EK.

Therefore, EK ⊂eq EO.

Property 6 Every induced key-based pattern is equivalent to one pattern that belongs to
the set of embedded object-based patterns, i.e.,

Induced key-based patterns ⊂eq Embedded object-based patterns.

Proof
a) IK ⊂eq EO: We have proved that IO ⊆ EO in Property 2 and also that IK ⊂eq IO in
Property 3. Therefore, IK ⊂eq IO ⊆ EO. By transitivity, IK ⊂eq EO.
b) EO 6⊂eq IK: As a counterexample, the embedded object-based patterns that let us know
how many tuples are related to a given one cannot be identified using the key-based repre-
sentation (as the example shown in Figure 11 b) ). Hence, EO 6⊂eq IK.

Therefore, IK ⊂eq EO.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



37

References

Abe K, Kawasoe S, Asai T, Arimura H, Arikawa S (2002) Efficient substructure discovery
from large semi-structured data. In: Proceedings of the 2nd SIAM International Confer-
ence on Data Mining, pp 158–174

Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large data-
bases. In: Proceedings of the 20th International Conference on Very Large Data Bases,
September 12-15, pp 487–499

Bayardo RJ (2004) The hows, whys, and whens of constraints in itemset and rule discov-
ery. In: Constraint-Based Mining and Inductive Databases, Lecture Notes in Artificial
Intelligence, pp 1–13

Berzal F, Blanco I, Sánchez D, Vila MA (2002) Measuring the accuracy and interest of
association rules: A new framework. Intelligent Data Analysis 6(3):221–235

Berzal F, Cubero JC, Sánchez D, Serrano JM (2004) ART: A hybrid classification model.
Machine Learning 54(1):67–92

Blockeel H, Raedt LD (1998) Top-down induction of first-order logical decision trees. Arti-
fifcial Intelligence 101(1-2):285–297

Booch G, Rumbaugh J, Jacobson I (2005) The Unified Modeling Language User Guide (2nd
Edition). Addison-Wesley Professional

Chi Y, Yang Y, Muntz RR (2003) Indexing and mining free trees. In: Proceedings of the
3rd IEEE International Conference on Data Mining, pp 509–512

Chi Y, Muntz RR, Nijssen S, Kok JN (2005) Frequent subtree mining - an overview. Fun-
damenta Informaticae 66(1-2):161–198

Codd EF (1990) The Relational Model for Database Management, Version 2. Addison-
Wesley

De Knijf J (2006) FAT-miner: Mining frequent attribute trees. Tech. Rep. UU-CS-2006-053,
Department of Information and Computing Sciences, Utrecht University

De Knijf J (2007) FAT-miner: Mining frequent attribute trees. In: Proceedings of the 2007
ACM Symposium on Applied Computing, ACM, New York, NY, USA, pp 417–422
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Abstract The discovery of frequent musical patterns (motifs) is a relevant problem
in musicology. This paper introduces an unsupervised algorithm to address this
problem in symbolically-represented musical melodies. Our algorithm is able to
identify transposed patterns including exact matchings, i.e., null transpositions. We
have tested our algorithm on a corpus of songs and the results suggest that our
approach is promising, specially when dealing with songs that include non-exact
repetitions.

Keywords Musical mining · Motifs · Frequent pattern mining

1 Introduction

The discovery of frequent musical patterns (motifs) is a relevant problem in musi-
cology. In music, we can find several entities that can be repeated such as notes,
intervals, rhythms, and harmonic progressions. In other words, music can be seen
as a string of musical entities such as notes or chords on which pattern recognition
techniques can be applied.

We can define a music motif as the smallest meaningful melody element. As a rule,
motifs are groups of notes no longer than one measure. In human speech, a motif
is a word. In the same way that sentences consist of words, motifs form musical
phrases. A melody is formed by several main motifs, which are repeated, developed,
and opposed one against another within the melody evolution.
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When analyzing a music work, musicians carry out a deep analysis of the musical
material. This analysis includes motif extraction as a basic task. Musician studies
include contextual information (such as the author, the aim, or the period) but also
morphological data from the music itself. Looking for the motifs that build the whole
work is the first step that a musician takes when faced with a music sheet.

Audio-thumbnailing (i.e., summarizing or abstracting) is another interesting ap-
plication in the musical domain that is related to motif extraction. It provides the
user with a brief excerpt of a song that (ideally) contains the main features of the
work. Before hearing or purchasing a whole song, it would be useful to hear a
representative thumbnail of the whole work. This technique is also important for
indexing large datasets of songs, which can be browsed more quickly and searched
more efficiently if indexed by those small patterns instead of being indexed by the
whole song.

One of the most fundamental ways to classify MIR methods is to divide them
into those that process audio signals using signal processing methods and those
that process symbolic representations. We have decided to work with a symbolic
representation instead of an audio one because it is closer to the original sheet
of music. In other words, the main difficulty with audio representation is that the
transformation from audio signals to symbolic data is far from being accurate. This
fact makes the pattern recognition problem much more difficult and it requires
completely new techniques to deal with signals.

Using the algorithm we present in this paper, we are able to find frequent melodic
and rhythmical patterns in music starting from the MusicXML representation of
the song (www.wikifonia.org). We first transform this symbolic representation into
a sequence of notes. These notes are defined at their lowest level (i.e., pitch and
duration) and in an absolute, not relative, way.

According to the above considerations, we have developed a TreeMiner-based
(Zaki 2005b) algorithm to discover frequent subsequences in music files. Our algo-
rithm is able to identify sequences even when they are transposed. It can be used to
find common motifs in several songs and also find repetitions within a song. In this
paper, we present its application to the discovery of long motifs that are repeated
within a single song. Our hypothesis is that those patterns probably correspond to
the chorus or the more significant part of the song.

Our paper is an extended version of a paper presented at the ISMIS’09 conference
(Berzal et al. 2009) and is organized as follows. In Section 2, we provide some
background on musical data mining and introduce some relevant terms. Section 3
formally defines our sequence pattern mining problem and describes the algorithm
we have devised to solve it. In Section 4, we explain the way our algorithm works by
means of a particular example. Some experimental results are presented in Section 5,
whereas in Section 6 we draw some conclusions.

2 Background

Although it is almost impossible to be exhaustive in analyzing the state of the art
in musical pattern identification, we survey the most relevant works in this field in
Section 2.1. As our approach is based on sequences, we introduce some standard
terms and review some sequence mining algorithms proposed in the literature in
Section 2.2.
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2.1 Data mining in music

Pattern processing techniques have been applied to musical strings. A complete
overview can be found, for instance, in the paper by Cambouropoulos et al. (2001).
Those algorithms can be divided into those that deal with audio signals (using signal
processing methods) and those that use symbolic representations.

2.1.1 Dealing with audio signals

There are several researchers that have addressed the problem of pattern induction
in an acoustic signal. For instance, Aucouturier and Sandler (2002) proposed an
algorithm to find repeated patterns in an acoustic signal by focusing on timbre;
whereas Chu and Logan (2002) proposed a method to find the most representative
pattern in a song using Mel-spectral features.

Recently, some works have gone further in this direction by trying to identify the
sectional form of a musical piece from an acoustic signal. For example, Paulus and
Klapuri (2009) address this task using a probabilistic fitness measure based on three
acoustic features; whereas Levy and Sandler (2008) use clustering methods to extract
this sectional structure.

Solving the problem of identifying the structure of a musical piece is key for audio-
thumbnailing (i.e., finding a short and representative sample of a song). Zhang and
Samadani (2007) addressed this problem by detecting paragraphs in the song with
repeated melody in a first step and then identifying vocal portions in the song. With
such information, the structure of the song is derived. Another approach, by Bartsch
and Wakefield (2005), developed a chroma-based system that searches for structural
redundancy within a given song with the aim of identifying something like a chorus
or refrain.

2.1.2 Using symbolic representations

There are certain similarities in the use of text and musical data which also allow the
application of text mining methods to process musical data. Both have a hierarchical
structure and the relative order among the elements is of importance. For that
reason, researchers have proposed many different meaningful ways of representing
a piece of music as a string, but all of them use either event strings (where each
symbol represents an event) or interval strings (where each symbol represents the
transformation between events).

Most of the proposed techniques start from a symbolic transcription of music.
For example, Hsu et al. (1998) used a dynamic programming technique to find
repeating factors in strings representing monophonic melodies; whereas Rolland
(1998) recursively computed the distances between large patterns from the distances
between smaller patterns. Meredith et al. (2002) proposed a geometric approach to
repetition discovery in which the music is represented as a multidimensional dataset.
Pienimäki (2002) introduced a text mining based indexing method for symbolic
representation of musical data that extracts maximal frequent phrases from musical
data and sorts them by their length, frequency and personality.

Finally, the paper by Grachten et al. (2004) is of particular relevance because it
represents melodies at a higher level than notes but lower enough to capture the
essence of the melody. This level is the ‘Narmour patterns’ level, based on Narmour’s
I/R model (1992), which is well-known in musicology.

Author's personal copy



102 J Intell Inf Syst (2011) 36:99–115

Our algorithm is also based in a symbolic representation of the song: MusicXML.

2.2 Sequence mining

In our approach for musical motif extraction, we first transform a song into a
sequence of notes. There is a rich variety of sequence types, ranging from simple
sequences of letters to complex sequences of relations.

A sequence over an element type τ is an ordered list S = s1...sm, where:

– each si (which can also be written as S[i]) is a member of τ , and is called an
element of S;

– m is referred to as the length of S and is denoted by |S|;
– each number between 1 and |S| is a position in S.

T = t1....tn is called a subsequence of the sequence S = s1...sm if there exist integers
1 < j1 < j2 < ... < jn < m such that t1 = s j1 , t2 = s j2 , and in general, tn = s jn .

Sequences have been used to solve different problems in the literature (Dong and
Pei 2007; Han and Kamber 2005):

– String matching problems: Several sequence mining techniques have been used,
for instance, in Bioinformatics to find some structures in a DNA sequence
(Böckenhauer and Bongartz 2007):

– Exact string matching: Given two strings, finding the occurrence of one as a
substring of the other one.

– Substring search: Finding all the sequences in a sequence database that
contain a particular string as a subsequence.

– Longest common substring: Finding the substring with maximum length that
is common to all the sequences in a given set.

– String repetition: Finding substrings that appear at least twice in a sequence.

– Periodic pattern discovery: A traditional periodic pattern consists of a tuple of
k components, each of which is either a literal or ‘*’, where k is the period of
the pattern and ‘*’ can be substituted for any literal and is used to enable the
representation of partial periodicity (Wang et al. 2001; Yang et al. 2001).

– Sequence motifs: A motif is essentially a short distinctive sequential pattern
shared by a number of related sequences. There are four main problems in
this area (Dong and Pei 2007): motif representation (i.e., designing the proper
motif representation for the different applications), motif finding (i.e., finding
the motifs shared by several sequences), sequence scoring (i.e., computing the
probability of a sequence to be generated by a motif—using Markov models,
for example), and sequence explanation (i.e., given a sequence and a motif with
hidden states, providing the most likely state path that produced that sequence).

– Sequential pattern mining in transactional databases: Sequential patterns have
been used for predicting the behavior of individual customers. Each customer
is typically modeled by a sequence of transactions containing the set of items he
has bought. Several algorithms address this kind of problems, the most common
being AprioriAll (Agrawal and Srikant 1994), SPADE (Zaki 2001) GSP (Srikant
and Agrawal 1996), and PrefixSpan (Pei et al 2001).
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– Sequential pattern mining in sequence databases: Some algorithms, such as the
one developed by Jiang and Hamilton (2003), look for subsequences that have
a larger frequency (or number of repetitions) than an user-defined threshold,
which is established beforehand. Jiang’s algorithm, for example, uses a tree-
based structure called trie, that preserves the number of times a subsequence is
present in the sequence. Three different versions of his algorithm can be devised:

– A breadth-first search algorithm passes K times through the data sequence,
counting the sequences of size i in its i-th iteration. At the end of each
iteration, infrequent subsequences are pruned.

– A depth-first search algorithm passes just one time through the data using a
window of size K which is moved one position at a time. The sequence in the
window is preserved in the trie structure as well as its prefix. The way this trie
structure is completely built is very memory consuming without pruning.

– A heuristic-first search algorithm is a variation of the depth-first algorithm.
The number of occurrences of the prefixes of a subsequence is compared to
the threshold before inserting the subsequence in the trie. If any prefix of the
subsequence has not yet been shown to be frequent, then occurrences of the
subsequence itself are not counted. This algorithm is more efficient in time
and space but it is not able to find all the frequent subsequences.

Our problem of motif extraction in a piece of music could be seen as a particular
case of the ‘sequential pattern mining in sequence databases’ problem. However,
the algorithms proposed by Jiang et al. have the drawback that they are limited by
the size of the alphabet (i.e., the element type τ according to our notation). This
value can be very high in our particular domain, provided that we take different note
pitches and durations into account.

Furthermore, we consider the presence of similar sequences (transposed motifs in
our problem) that should be counted as if they were exact repetitions. In our case, it
is also interesting to know where these repetitions appear in the sequence, specially
when considering these similar repetitions. This information would not be given by
Jiang’s algorithms, as they only count the number of repetitions.

In the following section, we propose a novel TreeMiner-based algorithm to find
motifs in a sequence in order to solve the problem of motif extraction in a piece
of music. It should be noted, however, that our algorithm can be applied to several
sequences at a time, as well as to different kinds of sequence databases (not just
musical ones).

3 Our sequence pattern mining algorithm

The goal of frequent sequence pattern mining is the discovery of all the frequent
subsequences in a large database of sequences D or in an unique large sequence.

Let δT(S) be the occurrence count of a subsequence S in a sequence T and dT a
variable such that dT(S) = 0 if δT(S) = 0 and dT(S) = 1 if δT(S) > 0. We define the
support of a subsequence as σ(S) = ∑

T∈D dT(S), i.e., the number of sequences in D
that include at least one occurrence of the subsequence S. Analogously, the weighted
support of a subsequence is defined as σw(S) = ∑

T∈D δT(S), i.e., the total number of
occurrences of S within all the sequences in D.
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We also consider the occurrences of a pattern that approximately match (i.e., those
occurrences that are very similar but are not exactly the same). We define the exact
support of a subsequence as the number of occurrences that are exactly equal to the
pattern, whereas the transposed support includes both exact and similar occurrences.

We say that a subsequence S is frequent if its support is greater than or equal to
a predefined minimum support threshold. We define Lk as the set of all frequent
k-subsequences (i.e., subsequences of size k).

3.1 SSMiner

Our algorithm, called SSMiner (Similar Sequence Miner), is based on the POTMiner
(Jimenez et al. 2009) frequent tree pattern mining algorithm, a TreeMiner-like
algorithm for discovering frequent patterns in trees (Zaki 2005b). POTMiner and its
antecessor follow the Apriori (Agrawal and Srikant 1994) iterative pattern mining
strategy, where each iteration is broken up into two distinct phases:

– Candidate Generation: A candidate is a potentially frequent subsequence. In
Apriori-like algorithms, candidates are generated from the frequent patterns
discovered in the previous iteration. Most Apriori-like algorithms, including
ours, generate candidates of size k + 1 by merging two patterns of size k having
k − 1 elements in common.

– Support Counting: Given the set of potentially frequent candidates, this phase
consists of determining their actual support and keeping only those candidates
whose support is above the predefined minimum support threshold (i.e., those
candidates that are actually frequent).

The pseudo-code of our algorithm is shown in Fig. 1 and its implementation details
will be discussed in Sections 3.2 through 3.4.

The sequence of a song is scanned twice by our algorithm, in the process of
obtaining the frequent elements of size 1. The first scan is needed to save the
occurrences of each note and the second one is employed to detect the transposed
occurrences of each note. Then, the infrequent notes are pruned and we are ready
to apply the two phases of the SSMiner algorithm without checking the original
sequence any more.

Fig. 1 SSMiner: our sequence
mining algorithm

algorithm
Obtain frequent elements (frequent patterns of size 1)
Build candidate classes C1 from the frequent elements
for k=2 to MaxSize

for each class P ∈ Ck −1

for each element p ∈ P.
Compute the frequency of p
if p is frequent
then

Create a new class P′ 

′

from p.
Add P to Ck
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3.2 Candidate generation

We use an equivalence class-based extension method to generate candidates (Zaki
2005a). This method generates (k + 1)-subsequence candidates by joining two fre-
quent k-subsequences with k − 1 elements in common.

Two k-subsequences are in the same equivalence class [P] if they share the same
prefix string until their (k − 1)th element. Each element of the class can then be
represented as x, where x is the k-th element label.

Elements in the same equivalence class are joined to generate new candidates.
This join procedure, called extension in the literature, works as follows. Let (x) and
(y) denote two elements in the same class [P], and [Px] be the set of candidate
sequences derived from the sequence that is obtained by adding the element (x) to
P. The join procedure results in attaching the element (y) to the sequence generated
by adding the element (x) to P, i.e, (y) ∈ [Px]. Likewise, (x) ∈ [Py]

3.3 Occurrence lists

Once we have generated the potentially frequent candidates, it is necessary to
determine which ones are actually frequent.

The support counting phase in our algorithm follows the strategy of AprioriTID
(Agrawal and Srikant 1994). Instead of checking the presence of each candidate
in the sequence (which would entail O(|S|) operations), special lists are used to
preserve the occurrences of each pattern in the database, thus facilitating the support
counting phase.

Each occurrence list contains tuples (t, m, p, d, �) where t is the sequence
identifier, m stores the elements of the sequence which match those of the (k − 1)

prefix of the pattern X, p is the position of the last element in the pattern X, d
is a position-based parameter used for guaranteeing that elements in the pattern
are contiguous within the sequence and � indicates the similarity between the
occurrence and the original pattern.

When building the scope lists for patterns of size 1, m is empty and the element
d is initialized with the position of the pattern only element in the original database
sequence. In the first pass through the sequence, exact patterns of size 1 are collected,
being its � parameter initialized as “=”. When similar pattern occurrences are
collected in the second pass through the sequence, the parameter � is initialized
with a value that indicates the similarity between the original pattern and the actual
occurrence.

We obtain the occurrence list for a new candidate of size k by joining the lists
of the two subsequences of size k − 1 that were involved in the generation of the
candidate. Let (tx, mx, px, dx, �x) and (ty, my, py, dy, �y) be two tuples to be joined.
The join operation proceeds as follows:

if

1. tx = ty = t and
2. mx = my = m and
3. dx = 1 (only if k �= 2) and
4. px < py and
5. �x=�y
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then add [t, m
⋃

{px}, py, dy − dx, �y] to the occurrence list of the generated
candidate.

3.4 Support counting

Checking if a pattern is frequent consists of counting the elements in its occurrence
list. The counting procedure is different depending on whether the weighted support
σw is considered or not.

– If we count occurrences using the weighted support, all the tuples in the lists must
be taken into account.

– If we are not using the weighted support, the support of a pattern is the number
of different sequence identifiers within the tuples in the occurrence list of the
pattern.

It should be noted that d represents the distance between the last node in the
pattern and its prefix m. Therefore, we only have to consider the elements in the
scope lists whose d parameter equals 1 for guaranteeing that elements in the pattern
are contiguous within the sequence. It is important to remark that the remaining
elements in the lists cannot be eliminated because they are needed to build the
occurrence lists of larger patterns.

3.5 Representative patterns

Our algorithm returns all the frequent patterns of the maximum size indicated by
the user (or smaller ones if there are no patterns of such size). As musical motifs
are generally no longer than a measure, a value of ten is typically used by default.
Nevertheless, this limit can be easily modified since our algorithm can return all the
frequent patterns that exist in the song regardless of their size. The resulting output
will be the set of frequent patterns that represent the song. The algorithm also returns
the positions of the different occurrences of the patterns within the song (including
transposed occurrences if needed).

3.6 SSMiner complexity

SSMiner starts by computing the frequent patterns of size 1. This step is performed
by obtaining the vertical representation of the sequence database, i.e., the individual
notes that appear in the sequences with their occurrences represented as scope
lists. This representation is obtained in linear time with respect to the number of
sequences in the database just by scanning it and building the scope lists for patterns
of size 1. We then discard the patterns of size 1 that are not frequent. This results
in L scope lists corresponding to the L frequent notes in the sequence database and
each frequent label leads to a candidate class of size 1.

Let c(k) be the number of classes of size k, which equals the number of frequent
patterns of size k, and e(k) the number of elements that might belong to a particular
class of size k (i.e., the number of patterns of size k + 1 that might be included in the
class corresponding to a given pattern of size k).
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In SSMiner, each sequence pattern grows only by adding an element at the end
of the sequence pattern. The number of different sequences of size k + 1 that can
be obtained by the extension of a sequence of size k is L · k. Hence, the number of
elements in a particular class, e(k), is O(L).

The number of classes of size 1 equals L, the number of frequent labels, so that
c(1) = L. The classes of size k + 1 are derived from the frequent elements in classes
of size k. In the worst case, when all the e(k) elements are frequent, c(k + 1) = c(k) · e(k).
Solving the recurrence, we obtain c(k + 1) = c(k) · L = O(Lk).

For each considered pattern of size k + 1, SSMiner must perform a join operation
to obtain its scope list from the scope lists of the two patterns of size k that led to it.

The size of the scope list for a pattern of size k is O(t · e) while the computational
cost of a scope-list join operation is O(t · e2), where t is the number of sequences
in the database and e is the average number of embeddings of the pattern in each
sequence (Zaki 2005a).

In the worst case, the number of embeddings s(k − 1) of a pattern of size k − 1
in a sequence of size S equals the number of subsequences of size k − 1 within the
sequence of size S. This number is bounded by S − k + 1.

Hence, the cost of the join operation needed for obtaining the scope list of a
pattern of size k, is j(k) = O(t · s(k − 1)2) = O(t · (S − k + 1)2).

The cost of obtaining all the frequent patterns of size k will be, therefore,
O(c(k) · j(k)) = O(Lk · t · (S − k + 1)2)

The total cost of executing the SSMiner algorithm to obtain all the frequent
patterns up to k = MaxSize is

∑
k=1...MaxSize(Lk · t · (S − k + 1)2). Since the running

time of our algorithm is dominated by the time needed to discover the largest
patterns (i.e., k = MaxSize), SSMiner is O(LMaxSize · t · (S − MaxSize + 1)2).

Therefore, our algorithm execution time is proportional to the number of se-
quences in the sequence database (t = 1 in our motifs identification problem), and
to the number of patterns than can be identified (Lk). Finally, its execution time is
quadratic with respect to the size of the sequences (S).

4 An example

In this section, we present an example to help the reader understand the way our
algorithm identifies frequent subsequences in a sequence. In order to facilitate
the understanding of the procedure, we are not considering the duration of notes.
Furthermore, we only take into account those transpositions of fifth.

We will use in this paper the scientific pitch notation which combines a letter-
name, accidentals (if any) and a number identifying the pitch’s octave. This notation
is the most common in English written texts.

Let’s suppose we have the following piece of a song: G4 A4 G4 E4 D5 E5 D5 B4
G4 A4 G4 E4 A4 G4 B4 G4 A4 G4 E4 (see Fig. 2), and we want to extract those
subsequences that appear at least four times in it.

The first step of our algorithm is scanning the sequence to obtain all the occur-
rences of each note. Then, the occurrence lists of each note are built as indicated in
Section 3.3. Results are shown in Fig. 3.
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Fig. 2 Sample piece: G4 A4 G4 E4 D5 E5 D5 B4 G4 A4 G4 E4 A4 G4 B4 G4 A4 G4 E4

The first element is 1 in all the tuples because we only have one sequence (i.e.,
only one song) in our example. The second one is the prefix of the substring (empty
in patterns of size 1). The third element indicates the position of the last element
of the pattern in the sequence. The fourth element is the distance between the last
element of the pattern and its prefix (or the position of the element when there is
no prefix, as this is the case). Finally, the last element indicates if the occurrence is
exactly equal to the pattern (‘=’) or if it is transposed.

In this example, only those transpositions of up one fifth are being taken into
account, so that ‘+5’ is the only alternative for this element in our example. It should
be noted, however, that all possible transpositions—distances between two notes—
could be taken into account. In any case, we need only to compare notes in one
direction, as we will always find at least a version of the pattern that summarizes all
its transpositions.

Going back to our example, the note G4 is transposed up one fifth as D5.
Therefore, there are 9 tuples in the occurrence list of G4: 7 as itself, 2 as D5.

The next step is checking if all the notes are frequent. In this case, only G4, A4,
and E4 have at least four occurrences. Therefore, only these patterns will be kept.

Figure 4 shows the extension of the element G4. This element is extended with
all the frequent patterns of size 1 including itself, and the occurrence lists of each
candidate pattern of size 2 are obtained by joining the lists of the elements that
generated it, as explained in Section 3.3.

Figure 4 shows, with bold letters, the tuples where d = 1. That means that these
are contiguous occurrences of the pattern. In our example, only the patterns G4
A4 and G4 E4 appear as contiguous subsequences in our song. Furthermore, they
have at least four occurrences—our minimum support threshold—and they will be
extended to generate candidates of size 3. It should be noted that the pattern G4 G4

G4

{1,_,1,1,=}
{1,_,3,3,=}
{1,_,9,9,=}
{1,_,11,11,=}
{1,_,14,14,=}
{1,_,16,16,=}
{1,_,18,18,=}
{1,_,5,5,+5}
{1,_,7,7,+5}

A4

{1,_,2,2,=}
{1,_,10,10,=}
{1,_,13,13,=}
{1,_,17,17,=}
{1,_,6,6,+5}

E4

{1,_,4,4,=}
{1,_,12,12,=}
{1,_,19,19,=}
{1,_,8,8,+5}
{1,_,15,15,+5}

D5

{1,_,5,5,=}
{1,_,7,7,=}

E5

{1,_,6,6,=}

B4

{1,_,8,8,=}
{1,_,15,15,=}

Fig. 3 Occurrence lists of the elements of the following sequence: G4 A4 G4 E4 D5 E5 D5 B4 G4
A4 G4 E4 A4 G4 B4 G4 A4 G4 E4
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G4 G4 G4 A4

{1,1,2,1,=} {1,1,10,9,=}
{1,1,13,12,=}  {1,1,17,16,=}
{1,3,10,7,=}    {1,3,13,10,=}
{1,3,17,14,=} {1,9,10,1,=}
{1,9,13,4,=}   {1,9,17,8,=}
{1,11,13,2,=}  {1,11,17,6,=}
{1,14,17,3,=} {1,16,17,1,=}
{1,5,6,1,+5}

G4 E4

{1,1,4,3,=}      {1,1,12,11,=}
{1,1,19,18,=} {1,3,4,1,=}
{1,3,12,9,=}    {1,3,19,16,=}
{1,9,12,3,=}    {1,9,19,10,=}
{1,11,12,1,=} {1,11,19,8,=}
{1,14,19,5,=}  {1,16,19,3,=}
{1,18,19,1,=} {1,5,8,3,+5}
{1,5,15,10,+5} {1,7,8,1,+5}
{1,7,15,8,+5}

{1,1,3,2,=}          {1,1,9,8,=}
{1,1,11,10,=}      {1,1,14,13,=}
{1,1,16,15,=}      {1,1,18,17,=}
{1,3,9,6,=}          {1,3,11,8,=}
{1,3,14,11,=}      {1,3,16,13,=}
{1,3,18,15,=}      {1,9,11,2,=}
{1,9,14,5,=}    {1,9,16,7,=}
{1,9,18,9,=}    {1,11,14,3,=}
{1,11,16,5,=}    {1,11,18,7=}
{1,14,16,2,=}   {1,14,18,4,=}
{1,16,18,2,=}    {1,5,7,2,+5}

Prefix: G4

Fig. 4 Extension of the element G4 in Fig. 3

is not contiguous and will not be extended. However, it is preserved to perform the
extension of G4 A4 with G4 E4.

After two more extensions, which are done in the same way, we obtain the pattern
G4 A4 G4 E4 with a support of 4 and an exact support of 3. This is be the pattern we
would use to characterize our example song.

5 Experiments

We have tested our algorithm using a corpus of 44 songs. This set includes songs from
a wide variety of authors. The first column in Table 1 shows the songs used in our
experiments.

We have performed 4 experiments with different constraints:

– Exact pitch and duration (pitch-duration)
– Exact pitch and any rhythm (pitch)
– Transpositions but exact duration (transposition-duration)
– Transpositions and any duration (transposition)

Pitch-duration is the most restrictive one, whereas transposition is the experiment
with a lower number of constraints. All these configurations are representative when
looking for musical motifs, as they can be modified in tempo or in pitch. Unlike the
example in the former section, all the possible transpositions are taken into account
in these experiments.

Table 1 summarizes the results of our experiments. Each row corresponds to one
of the songs in the corpus. The second column (‘notes’) indicates the number of notes
in each song.

The ‘Max Size’ column indicates the size of the longest pattern(s) found in each
song. Patterns of this size are the only ones that are finally returned to the user.
As our aim in this paper is searching for repeating motifs, and not whole repeating
sections, we have to introduce an upper limit to the size of the patterns. Preliminary
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tests with our song corpus have shown that a value of ten is adequate for this
parameter providing that musical motifs are generally no longer than a measure.

The ‘Patterns’ column indicates the number of patterns our algorithm finds. The
first number is the amount of patterns of maximum size (i.e. the size indicated on
the previous column); whereas the second number is the total amount of patterns,
regardless of their size. As the reader can see, the total amount of patterns is pretty
high. However, many of these patterns are not musically relevant since they are part
of bigger ones. Even more, patterns of size 1 and 2, which can hardly be considered
as motifs, are also included in this set.

The ‘exact support’ column is the exact support of the returned patterns. Intervals
appear in some cases due to the fact that not all the returned patterns necessarily
appear the same number of times.

Finally, ‘transposed support’ indicates the support of patterns including transpo-
sitions. This column is only relevant for the experiments transposition-duration and
transposition, when transpositions are taken into account. As expected, values in this
column are always equal or greater than those in the corresponding ‘exact support’
column.

For us, the minimum support required for a pattern to be considered frequent is
four. Any pattern with a lower number of repetitions will be deleted. This value has
been manually set regarding the size of the evaluating songs and some preliminary
tests. However, it can be easily adjusted when new datasets require it.

The reader can also notice that, in some cases (namely, when transpositions are
taken into account), patterns with exact support lower than four can be found. Those
patterns do not have enough exact repetitions as themselves, but they are frequent
when transpositions are taken into account. Hence, transpositions are important
because, without considering them, some patterns would have not been discovered,
as they do not reach the minimum support threshold just by exact repetitions. That
happens, for instance, with the ‘Crazy’ and ‘Hero’ songs.

Regarding the length of the excerpts that have been tested, three notes can hardly
represent any meaningful motif. However, almost anyone could identify Beethoven’s
Fifth Symphony by just four notes. Hence, a minimum length of four seems adequate.

It should be noted that, in some situations, there is another transposition of the
pattern that has greater exact support than the one returned by our algorithm as
described in Section 3. As we mentioned earlier, our algorithm looks for transposed
motives only in one direction and this suffices to guarantee that it will find all the
relevant occurrences; however, the returned patterns are not necessarily the most
frequent exact ones. Given that our algorithm keeps track of the occurrences of a
given pattern and all of its transpositions, it is trivial to obtain the most frequent exact
pattern just by looking at the corresponding scope list. This pattern will correspond
to the most common � in the scope list.

Table 2 Percentage of songs that include at least one identified pattern within their chorus

Pitch-duration Pitch Transposition-duration Transposition

%Yes 63.64 68.18 63.64 72.73
%No 29.55 25.00 29.55 20.45
%Without chorus 6.82 6.82 6.82 6.82

Author's personal copy



J Intell Inf Syst (2011) 36:99–115 113

Fig. 5 SSMiner execution time
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It should also be observed that, in some songs, the number of patterns of MaxSize
elements is pretty high (e.g. ‘Ballade pour Adeline’ or Beethoven’s ‘Für Elise’). This
is due to the fact that many of those are still subpatterns of bigger ones. For instance,
a pattern of size 15 includes six sequential subpatterns of size 10 (starting from the
1st, 2nd, 3rd, 4th, 5th and 6th note, respectively).

In order to evaluate the goodness of our method, we have checked whether
or not the discovered frequent patterns belong to the chorus of the song—in our
experiments, 6.82% of the songs do not have a clear chorus. Table 2 shows the
percentage of songs which have at least one identified pattern within their chorus. As
can be seen, above 60% of the songs fulfill this requirement. Also, it is remarkable
that not considering the rhythm results in more patterns belonging to the chorus
of the songs. This fact indicates that patterns are not always exactly repeated as
themselves, but slightly modified. Although the chorus-belonging criterion appears
to be a valid and obvious one, it should be noted that some songs are better identified
by patterns which do not belong to the chorus.

Regarding SSMiner computation time, Fig. 5 shows the time consumed in each
experiment with respect to the number of notes in the melody. The chart groups the
songs into five groups according to their lengths and displays the average execution
time for each subset of melodies. These execution times are quadratic with respect
to the number of notes in the melodies, as explained in Section 3.6.

6 Conclusions

We have presented the application of frequent pattern mining to the discovery of
musical motifs in a piece of music. MusicXML files, which can be easily collected,
are transformed into sequences of notes, defined at their lower level. Our algorithm,
SSMiner, is able to efficiently identify frequent subsequences in a sequence.

The matching between the patterns does not need to be exact. Our algorithm is
able to identify transposed patterns including exact matchings, i.e., null transposi-
tions. Our experiments suggest that our approach performs well in a set of randomly-
selected songs.
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In the future, we intend to employ interval strings to represent notes rather than
the absolute pitches we have used in the experiments reported in this paper. We will
also consider more abstract representations of melodies, such as the one proposed by
Narmour. Finally, we plan to study the parallelization of our algorithm implementa-
tion in order to improve its execution time, which is already asymptotically optimal.
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