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Chapter 1

General Introduction

The work presented in this thesis involves the study of patterns and morphologies ap-
pearing in nature. There are many spatial images that most people would identify as
patterns, like for example the repeating designs of wallpaper or carpets, but there is
always an element of subjectivity when perceiving patterns and forms. When scientists
speak of pattern formation, they usually refer to the visible, ordered formations that are
a consequence of self-organization.

Sometimes we find similar patterns appearing in totally independent systems. Sand
ripples formed in the desert by the blowing wind can resemble the colored stripes on
some animals. Dendritic crystal growth can also form patterns similar to those of tree
branches. These similarities are not a coincidence, they are the consequence of common
physical principles being applied at the local interactions between the component parts
of these systems.

We can find pattern formation almost everywhere in nature. Animal markings such
as the leopard’s spots or the zebra’s stripes are formed during the development of the
embryo. Alan Turing explained that the symmetry breaking of the embryo that pro-
duces the color pattern is induced through a reaction-diffusion process of two different
compounds, an activator and an inhibitor, each with different diffusion rates [3]. These
compounds are chemical morphogens that will later be read by the melanocytes in the
epidermis, which will accordingly secrete the pigments that color the hair and ultimately
produce the stripes or spots on the animals fur. In a similar way, the patterns formed
on the exterior of mollusk shells can also be explained by an activator-inhibitor process
that controls the deposition of pigment in the calcifying cells at the shell’s growing edge
[4]. Each cell secretes pigments according to the activating or inhibiting activity of its
neighboring pigment cells. The cell band leaves the colored pattern on the shell as it
grows slowly.

9



1. General Introduction 10

Patterns formed in the growth of bacterial colonies have been extensively studied exper-
imentally (see Fig. 1.1). The resulting morphologies depend on the growth conditions
and their complexity increases with the hardening of the medium or the lack of nutri-
ents. Some of the patterns produced are well known from reaction-diffusion systems
in chemistry, such as Turing patterns or those produced by the Belousov-Zhabotinsky
reaction. They can be easily modeled using cellular automata, which has proved useful
at identifying the most relevant mechanisms for the different morphologies.

FIGURE 1.1: Patterns formed by bacterial colony growth Bacillus: concentric ring
pattern (left), dense branched morphology pattern (middle) and diffusion limited ag-

gregation pattern (right) [5].

Vegetation growing in arid areas can often produce a large variety of distinctive and
repetitive patterns that are developed during its expansion. In this case the patterns are
usually a consequence of the resource distribution, which may be limited or unevenly
concentrated. Sometimes they are produced by an external factor, such as strong direc-
tional wind or a sloped landscape. Some examples of patterned vegetation include fir
waves and tiger bush (see Fig. 1.2).

Dendritic patterns are quite common in crystallography, paleontology or metallurgy.
They are recognizable by a branching morphology that resembles that of a tree. Even
the word dendrite derives from the Greek dendros, which means tree. Dendritic crys-
tal growth is typically exemplified by the snowflake formations, where the microscopic
hexagonal lattice symmetry is extended to a macroscopic scale. But not all mineral
dendrites preserve their crystallographic symmetry. In fact in order for there to be
dendritic crystal growth the process must be out of equilibrium and rich in defects.
Regular, faceted crystals grow by accretion of impinging particles that rearrange them-
selves along the crystal surface forming flat layers. This kind of rearrangement takes
place at the surface of a crystal that is growing slowly, since the atoms at the surface
can generally pass back into solution again, or move across the surface, until the lowest
energy configuration is achieved. In this way a crystal finds its way to a regular stacked
network of atoms. But if the particle deposition is too fast to allow enough time for
this rearrangement to occur, or if the particles do not have enough energy to relocate
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FIGURE 1.2: Fir wave pattern, caused when a row of trees blocks the wind from sub-
sequent rows (left); tiger bush vegetation pattern, caused as a consequence of limited

moisture distribution in the ground (right) [6, 7].

(as at low temperature), the particles will just stick together upon contact. In these con-
ditions, particles simply diffuse randomly through the medium until they find a cluster
or surface to stick to. So there is no preferred crystallographic direction and growth
rate is defined by the rate of diffusion of the particles. This growth regime is known
as diffusion-limited aggregation (DLA) and was first described by Witten and Sandler
[8]. Once the regular faceted crystal growth is disturbed, any bump or protrusion in the
surface will be a preferential deposition spot, as it sticks out into the medium and is
more likely to catch diffusing particles. In this way a bump will become a finger that
will grow faster than the rest of the crystal surface. As its growth progresses, it will ac-
quire surface irregularities of its own that will produce further branching and the whole
system will develop a fractal morphology.

FIGURE 1.3: Sand ripples formed by the desert wind (left) and zebra stripes formed
by the presence or absence of melanin [9, 10].
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Sand ripples and dunes are patterns commonly appearing in deserts as a consequence
of the interaction between the wind and the sand grains. These formations are not mo-
tionless topographic features, but instead travel and flow as water ripples do on the
sea’s surface. It is well known that granular media can sometimes behave as liquids, a
property known as liquefaction. The formation process of sand ripples was described in
detail by Bagnold [11] as an example of a growth instability. When a steady wind con-
tinuously sweeps a sandy plain, it picks up surface grains and carries them elsewhere.
If there is a random bump on the plain surface, the deposition rate of sand grains is
increased at this spot. As more sand is deposited, the barrier becomes larger, in turn
favoring more deposition on its windward side, but at the same time it inhibits the depo-
sition at the downwind side by depleting the amount of sand grains carried in the wind.
In this way the first ripple is formed, which in turn triggers by its presence the appear-
ance of another ripple downwind. In fact, the whole process can also be regarded as
an activator-inhibitor process, just as the formation of stripped patterns on animal skin.
The process continues and develops into a ripple field with a characteristic wavelength
that will depend on the wind speed, angle and grain size. Sand ripples typically are a
few centimeters high with wavelength between centimeters and a few meters. Dunes
are generated in the same way but at a larger scale, with wavelengths from ten to several
hundred meters.

One last example worth mentioning are those patterns that, while being of inorganic
nature, give us the appearance of having a biological origin. We have learned to in-
stinctively identify living organisms by their shape. They have a complex form with
some sort of regularity (bilateral symmetry of bodies, branching in trees...) but not the
geometric symmetry of crystals. We must, however, be aware that shape alone is not
enough to discriminate the organic from the inorganic, an assumption that has led to
several mistakes in the recent history of science. In mineralogy and paleontology, den-
dritic mineral crystals are often mistaken for fossils. These crystals are formed when
naturally occurring fissures in the rock are filled by percolating mineral solutions. Water
rich in manganese and iron flows along fractures in the rock and deposits dendritic crys-
tals as the solution flows through. Another possible example are the rock formations
known as stromalites. They are found in ancient reef environment around the world and
their origin is still been disputed. Their morphology has led scientists to believe that
they are the fossil remains of mat-like structures created by marine microorganisms
such as cyanobacteria. If this was true, they would be some of the oldest evidence for
life on Earth, dating back to more than three billion years. However, it has also been
proved that the typical stromalite morphology can also be generated by simple physical
processes of sedimentation and precipitation of minerals from the overlying water [12].

This precaution is specially relevant for astrobiologists looking for evidence of life on
other planets and moons. In 1984 a four billion year old meteorite of Martian origin
was found in Allan Hills, Antarctica. Upon further studies, scientists from NASA an-
nounced in 1996 that they had found microscopic worm-like features on the meteorite
and suggested that they might be fossilized remains of bacteria [13]. There is still an
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ongoing debate over whether this should be considered the first true evidence of ex-
traterrestrial life or just a collection of patterns formed through inorganic processes.

The works presented in this thesis study several examples of morphologies, self-organized
structures, pattern formation and synchronization appearing in earth sciences. We use a
non-linear dynamics approach and focus our interest on the basic physical and chemical
interactions that are responsible for each described phenomenon.

Our research about ice was triggered by the possibility of finding a morphological
change between amorphous ices of different densities, and some very interesting mor-
phology patterns were found. This work was part of a project of the Spanish Research
Council (CSIC), where 5 research Institutes of Spain were involved in different aspects
of the Ice Science from a multidisciplinary focus. In our work in nacre we tried to find a
simple mathematical model based on liquid crystal bi-dimensional growth to explain the
nacre surface patterns found on bivalve shells. We managed to reproduce said patterns
using few mathematical rules on a cellular automata model. Our chemical garden stud-
ies started when NASA and Bioserve Space Technologies from University of Colorado
(USA) gave us the chance to perform these classic experiments in microgravity con-
ditions on the International Space Station. The morphologies of these self-organized
systems are biomimetic and cannot be controlled yet. We have found some explana-
tions for the formation of these morphologies. In our work on tidal synchronization we
have tried to approach tidal forces and their effects on satellite orbits using a dynamical
system that reduces the problem to its simplest physical principles.

In our research into these diverse topics, rather than seeking out arcane details, we
looked into the fundamental science underlying each of these processes, always keeping
a critical mind and trying to separate the essentials from the expendable. Therefore, in
this work very different phenomena of self-organized pattern formation are treated in
the macrophysical process of tidal synchronization, in the nanophysical process of ice
formation, in the chemical physical process of chemical garden formation, and in the
more complex biophysical process of nacre formation.





Part I

Tidal Synchronization
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Chapter 2

Tidal Synchronization:
Introduction

Tidal forces arise from the differential gravitational pull exerted from a primary body,
for example a star or a planet, upon the different parts of an orbiting secondary body,
a satellite. The gravitational force will be stronger on the side of the secondary that
is closer to the primary body and will be weaker on the opposite side, producing a
pair of forces that can affect not only the state of the secondary but its orbit as well.
This effect works both ways, so the secondary will also produce tidal forces on the
primary, although of a smaller magnitude because the secondary body is by definition
always lighter than the primary [14]. In this work we study the effects of tidal forces
on orbit synchronization and their influence on orbital parameters. We use a dynamical
systems approach, reducing the system to its most fundamental principles and trying to
reproduce the effects of tidal forces seen in our Solar System with computer simulations
based on a very simple model.

Effects of tidal forces

If we consider astronomical bodies to be elastic spheres, which is reasonable for bodies
bigger than a minimum size where gravity makes them spherical, the effect of a tidal
force is to distort the shape of the body without changing its volume. The sphere be-
comes an ellipsoid, with two bulges, pointing towards and away from the other body.
Figure 2.1 shows the differential force of gravity on a spherical body exerted by another.
This is what happens to the Earth’s oceans under the influence of the Moon’s gravity
and is the reason why in general we have two high and low tides every 24 hours. But
the planet or satellite that is subjected to gravity does not need to have a liquid surface
to show the effects of tidal forces. In a general sense, the strains caused by tidal forces

17
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on both bodies can deform them and, in extreme cases, disintegrate them. The Roche
limit is the closest distance an object can come to another object without being pulled
apart by tidal forces supposing its cohesion comes only from gravity, so a large moon
orbiting inside the Roche limit of a planet will be destroyed. It was first described by
Edouard Roche in 1848[15].

FIGURE 2.1: Differential tidal forces produced by gravity.

If a body is rotating while being subjected to tidal forces, internal friction results in
gradual dissipation of its rotational kinetic energy as heat. If the body is close enough
to its primary, this can slow down the rotation speed until it becomes similar to the
orbiting speed. Then we say that the satellite is tidally locked or has a synchronous
rotation and always shows the same side to its primary, as in the case of the Earth’s
Moon. Tidal heating can also produce earthquakes and volcanic activity, as in the case
of Jupiter’s moon Io.

Tidal forces can also contribute to ocean currents, which moderate global temperatures
by transporting heat to the poles. It has been suggested that they may have an influence
in climate change [16]

Tidal acceleration

Tidal acceleration is an effect of tidal forces between an orbiting satellite and the pri-
mary planet that it orbits. The acceleration is usually negative, as it causes a gradual
slowing and recession of the satellite in a prograde orbit away from the primary, and
a corresponding slowdown of the primary’s rotation. The process eventually leads to
tidal locking of first the secondary, in a synchronous rotation, and then the primary, pro-
ducing a synchronous orbit in which both bodies always show each other the same side.
The similar process of tidal deceleration occurs for satellites that have an orbital period
that is shorter that the primary’s rotation period or that orbit in a retrograde direction.
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The best example of this effect is the Earth-Moon case. The mass of the Moon is
sufficiently large, and it is sufficiently close to raise appreciable tides in the matter of
the Earth. In particular, the water of the oceans bulges along both ends of an axis
passing through the centers of the Earth and the Moon. The average tidal bulge closely
follows the Moon in its orbit, and the Earth rotates under this tidal bulge in just over
a day. However, the rotation drags the position of the tidal bulge ahead of the position
directly under the Moon. As a consequence, there is a substantial amount of mass in
the bulge that is offset from the line through the centers of mass of both bodies. The
differential gravitational pull from these offset bulges produces a torque between the
Earth and the Moon which tends to boost the Moon in its orbit and decelerate the Earth
in its rotation.

The conclusion is that the length of the Earth’s day is becoming longer, approximately
at a rate of 2 ms every 100 years[17]. If there were no other effects involved, this
acceleration would continue until the rotational period of the Earth matched the orbital
period of the Moon. If that were to happen, the Moon would only be visible from half of
the Earth’s surface. However, the Earth-Moon system will not reach that state because
the Sun’s radiation will vaporize the water masses on Earth long before, which will
remove the bulk of the tidal friction and acceleration.

The second consequence of the gravitational torque between the Moon and the tidal
bulge of the Earth is the promotion of the Moon to a higher orbit. We can explain this
effect through the conservation of energy and angular momentum. Energy and angular
momentum are transferred from the rotation of the Earth to the orbit of the Moon. The
Moon stores this energy by moving farther away from the the Earth, so its potential
energy in the Earth’s gravity well increases. It stays in orbit and from Kepler’s 3rd law
it follows that its velocity actually decreases, so the tidal action on the Moon actually
causes a deceleration of its motion across the celestial sphere.

Tidal locking

We say a satellite is tidally locked to a primary when its rotation and orbit periods are
similar, so the same side of the satellite always faces the primary. This is the most stable
configuration for any binary system. Usually it is the satellite which becomes tidally
locked to the primary because it is lighter, but if the difference of mass between the two
bodies and their physical separation is small, they both may become tidally locked to
the other, as in the case of Pluto and its moon Charon.

The change in rotation rate necessary to tidally lock a body B to a larger body A is
caused by the torque applied by A’s gravity on the bulges it has induced on B by tidal
forces. The angular momentum of the whole A-B system is conserved in this process,
so that when B slows down and loses rotational angular momentum, its orbital angular
momentum is boosted by increasing the orbital radius. The opposite situation happens
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when B has an initial rotational angular velocity slower than its orbital angular velocity.
In that case tidal locking would speed up its rotation and lower its orbit. In some cases
where the orbit is eccentric and the tidal effect is relatively weak, the smaller body may
end up in an orbital resonance instead of tidally locked. This state is achieved when
the rotational period and the orbital period of the secondary have a relation of integer
numbers, p:q, different from 1:1. The best studied case is the orbit of Mercury around
the Sun, which is locked in a 3:2 resonance.

A similar effect is experienced by the larger body A, but at a slower rate because B’s
gravitational field is weaker due to B’s smaller mass. For example, the Earth’s rotation
is gradually slowing down because the Moon’s gravity. This increases the duration of
our days by an amount that can be measured over geological time in some fossils.

Most significant moons in the Solar System are tidally locked with their primaries,
since they orbit very closely and tidal force increases rapidly with decreasing distance.
Notable exceptions are the irregular outer satellites of the gas giant planets, which orbit
much farther away than the large well-known moons. Pluto and Charon are an extreme
example of tidal lock. Charon is a relatively large moon in comparison to its primary
and also has a very close orbit. This has made Pluto also tidally locked to Charon.
Close binary stars throughout the universe are also expected to be tidally locked with
each other.

Tidal heating

Tidal heating occurs through the tidal friction processes explained above: orbital and
rotational energy are dissipated as heat in the crust of the moons and planets involved.
The most extreme example is Io, one of Jupiter’s moons, which is the closest orbiting
‘big’ moon found in our solar system. It is the most volcanically active body in the
solar system and has no surviving impact craters on its surface. The reason why Io is
subjected to greater tidal forces than other moons resides in its eccentric orbit combined
with Jupiter’s large mass and the proximity of its orbit. Io’s tidal bulges can vary in
height by 100 meters over the course of an orbit, which produces a large amount of
friction that heats up the interior of the moon.

A similar process, although weaker, is thought to have melted the lower layers of the
ice surrounding the rocky mantle of Jupiter’s next large moon, Europa. Saturn’s moon
Enceladus is similarly thought to have a liquid water ocean beneath its icy crust (see
Figure 2.2). The water geysers which eject from its surface are thought to be powered
by friction generated by tidal forces.

In this work we have tried to approach tidal forces and their effects on satellite orbits
using a dynamical system that reduces the problem to its simplest physical principles.
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FIGURE 2.2: Saturn’s moon Enceladus is thought to have a liquid water ocean be-
neath its icy crust. The water geysers which eject from its surface are thought to be

powered by friction generated by tidal forces. [18]

Despite its simplicity, our model reproduces most of the effects of tidal forces observed
in our solar system.





Chapter 3

Dynamics of tidal synchronization
and orbit circularization of celestial
bodies

3.1 Introduction

What is the dynamical origin of the fact that the Moon presents the same hemisphere
facing perpetually towards the Earth? The other large moons of the solar system also
have their rotations synchronized with their orbits, and Pluto and Charon are mutu-
ally locked in this way. All of these celestial bodies are in 1:1 spin–orbit resonance.
The rotation of one planet, Mercury, is also synchronized with its orbit around the
Sun, but it performs three rotations every two orbits, and thus, unlike the former in-
stances, is locked not in 1:1, but instead in 3:2 resonance [14]. Similar synchronization
phenomena are thought to occur too in solar systems with so-called ‘hot Jupiters’ or
short-period planets [19], and in systems of binary stars [20], whose orbits also evolve
to become circular. All these instances are clearly a consequence of a spin–orbit inter-
action brought about by the gravitational torque exerted by the larger primary body on
the smaller secondary body elastically deformed by the differential gravity combined
with the corresponding tidal friction induced in the secondary. The phenomenon has
long been studied [21, 22], but existing models [23–27] are designed for quantitative
analysis of a specific instance or a particular part of the problem, and are correspond-
ingly complicated; the details obscure the basic mathematical structure of the dynamical
system.

Here we take the opposite course: we study the simplest possible system that displays
tidal synchronization and orbit circularization with a minimal model that takes into

23
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account only the essential ingredients of tidal deformation and dissipation in the sec-
ondary body. In our qualitative dynamical-systems approach, without including the full
panoply of details, we treat in a self-consistent way the temporal evolution of the ec-
centricity and the energy flow from orbital to rotational motion; important ingredients
to understand the long-term evolution of the orbit. Despite its simplicity, our model
can account for both synchronization into the 1:1 spin-orbit resonance and the circu-
larization of the orbit as the only true asymptotic attractors, together with the existence
of relatively long-lived metastable orbits with the secondary in p:q (coprime integers)
synchronous rotation.

From the point of view of dynamical-systems theory, this phenomenon of synchroniza-
tion is of even broader interest than its application to celestial dynamics, because it
belongs to a relatively little studied class of dissipative systems that contain an em-
bedded submanifold of conservative motion. Other examples, unrelated in physical
origin but with this same mathematics, are the dynamics of neutrally buoyant particles
in incompressible fluid flows [28], the bailout embedding of volume-preserving and
Hamiltonian dynamics [29] and strategies to control Hamiltonian systems [30].

3.2 Experimental methods

We model an extended secondary body of mass m by two point masses of mass m/2
connected with a damped spring; see Figure 3.1a. This composite body moves in the
gravitational field of a primary of mass M� m located at the origin. In this simplest
case oscillation and rotation of the secondary are assumed to take place in the plane
of the Keplerian orbit. We use polar coordinates r,β for the center of mass of the
secondary, with l as the instantaneous length of the spring and φ the rotational angle
characterizing the orientation of the secondary. Both angles β and φ are measured
from the x-axis in an inertial reference frame. The spring is characterized by its spring
constant D and rest length L0. The gravitational interactions of both point masses with
the primary are taken into account, but that between the point masses is neglected. To
describe the conservative part of the dynamics we construct a dimensionless Lagrangian
in terms of the generalized coordinates ~q = (r,β , l,φ ):

L =
ṙ2

2
+

r2β̇ 2

2
+

l̇2

8
+

l2φ̇ 2

8
+

1
2r1

+
1

2r2
− ω2

8
(l− l0)2, (3.1)

where ri =
(
r2 + l2/4+(−1)irl cos(φ −β )

)1/2 is the distance of the ith component of
the secondary to the primary. L is measured in units of (mL2)/(T 2), where the unit
of length L is chosen to be the major semiaxis a0 of the initial Keplerian orbit, and
the unit of time T = (a3

0/ f M)1/2 is 1/(2π) times the period of the Keplerian orbit.
The dimensionless vibrational frequency and natural spring length are ω =

√
4D/mT

and l0 = L0/a0. The damping of the spring is introduced via a dimensionless Rayleigh
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dissipation function, F (l̇) = 1
4 γ l̇2, where γ is the dimensionless damping constant. The

equations of motion are then given by the modified Euler–Lagrange equations [31]

d
dt

∂L

∂ q̇k
− ∂L

∂qk
=−∂F

∂ q̇k
, k = 1, . . . ,4; (3.2)

the set of dimensionless parameters is γ , l0, ω , and the eccentricity of the initial Keple-
rian orbit, ε0. We take the initial conditions at apapsis, the greatest distance of the center
of mass of the secondary from the primary on the initial Keplerian ellipse: r(0) = 1+ε0,
ṙ(0) = 0, β (0) = 0. This condition, along with the value of the eccentricity ε0, deter-
mines β̇ (0). φ̇(0) was chosen in the range (0,5) with φ(0) typically zero and l̇(0) = 0,
and l(0) was specified as the value corresponding to a steady rotation with angular ve-
locity φ̇(0) in the absence of any gravitational force. The numerical solution of the
equations of motion was carried out with a fourth-order Runge-Kutta method at fixed
step size ∆t = 2π/1000.

FIGURE 3.1: (a) Instantaneous configuration of the system given by the generalized
coordinates r,β , l,φ . The relative angle α = φ −β is indicated. (b) Two conservative
synchronized configurations on a circular orbit of radius r∗. That of the black circles,
corresponding to a solution of Eqs (3.3) with the spring stretched (l∗ > l0), is stable.

The other of white circles and the spring relaxed is unstable.

Owing to the damping, the only energy-conserving trajectories of the system are those
that maintain the distance between the two point masses making up the secondary con-
stant. These trajectories can only be circular and just two configurations for such orbits
are possible: either the two bodies travel along the same circular orbit at a constant
distance r∗ from the primary or they occupy the same radial line while traveling around
two different concentric circular orbits; see Figure 3.1b. In the latter case the radii
of the two orbits r∗1 < r∗2 must satisfy the balance between the centrifugal, elastic and
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gravitational components of the force,(a0

r∗

)3
r∗i =

1
r∗i

2 +(−1)i ω2

2
(r∗2− r∗1− l0) (3.3)

where (a0/r∗)3/2 is the dimensionless orbital angular velocity along the asymptotic cir-
cular orbit of radius r∗. It is intuitively clear and readily verifiable by solving Eqs (3.3)
that the equilibrium size l∗ = r∗2− r∗1 is greater than l0, so that the composite secondary
body is stretched in this state.
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FIGURE 3.2: (a) Angle α versus time t. (b) Angular velocity φ̇ versus time. The
decay of the mechanical energy E (thin line) is also shown. Different subregimes are
separated by dashed vertical lines; note that the energy decay differs between them.
(c) Energy of the different subsystems (shifted by constants) versus time. Smooth
line: total energy E ′ = E + 1/2, lower curve: center-of-mass energy E ′ = Ec + 1/2,
upper curve: rotational and vibrational energy E ′ = Er +Ev +3.5 ·10−8 (cf. Eq. (3.4)).

ε0 = 0.1, γ = 1.0, l0 = 10−4; the initial condition is φ(0) = 0, φ̇(0) = 5.
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3.3 Results

Figure 3.2 shows a numerical computation of the angle α and angular velocity φ̇ of
the secondary as a function of time; the behavior seen is typical for all the parameters
investigated for initially rapidly rotating secondaries. A strong initial decay is followed
by irregular (transiently chaotic) rotation of the secondary. This may be interrupted by
trapping into different resonant states in which the ratio of the rotational and orbital pe-
riods is a rational number. Although the use of the term ‘resonant’ is typically applied
to Hamitonian problems, we use it here in the context of a weakly dissipative system
since these states appear as attractors or metastable attractors. Eventually, a roughly ex-
ponential decay sets in towards a steady state. Two qualitatively different regimes can
be observed in the time dependence of the angle α in Figure 3.2a: regimes of rotation
and of libration, the details of which are exemplified in two insets. The first regime
consists of four different subregimes which can best be distinguished on an angular ve-
locity versus time plot. These subregimes are separated by dashed lines in Figure 3.2b.
After an initial deceleration phase the angle dynamics is trapped into resonance; a 5:2
resonance in this case. This is followed by an irregular rotation which ends by a further
approach to a resonant state; the same one as before in this particular example. The
escape from this state occurs in the form of damped oscillations. Figure 3.2c displays
how the energy of the different subsystems changes with time. The total dimensionless
energy E is split into a center-of-mass energy, a rotational energy, and a vibrational
energy E = Ec +Er +Ev as

Ec =
1
2

(
ṙ2 + r2

β̇
2
)
− 1

r
,

Er =
1
8

l2
φ̇

2− 1
2r1
− 1

2r2
+

1
r
, (3.4)

Ev =
1
8
(
l̇2−ω

2(l− l0)2) .
Figure 3.2c demonstrates that in spite of the overall initial decay of energy, the center-
of-mass energy increases, i.e., rotation and vibration pump energy into the Keplerian
orbit. In the chaotic stage, the subsystem energies Ec, Er, and Ev all change irregularly,
while the total energy decays smoothly, and slower than originally. Around resonances
the center-of-mass motion pumps energy into the rotational and vibrational degrees
of freedom: a regular center-of-mass motion is an efficient driving of the secondary’s
internal dynamics. This accumulated vibrational energy quickly dissipates in the last
phase. Since the total energy is dominated by the center-of-mass motion, the total
decrease of the major semiaxis can be estimated via the Keplerian rule E∗/E0 = a0/r∗,
where E0 and E∗ denote the initial and asymptotic total energy.

On intermediate time scales metastable attractors may appear. In particular, the 3:2
resonance may be present for a long period of time. It is, however, asymptotically
unstable, and the 1:1 state finally sets in. We see in Figure 3.3, which shows the average
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FIGURE 3.3: Average angular velocity φ̇ versus time for ε0 = 0.2, γ = ω = 10, l0 =
10−4 shows the crossover from 3:2 to 1:1 resonance. The initial condition is φ(0) =
1.2, φ̇(0) = 1.0. The insets show the metastable 3:2 and asymptotic 1:1 attractors
on the Poincaré map φ̇ ,α taken at apapsis. Time is measured in units of T . The
transition shown occurs after the system has spent a long time, t = 3.73522 · 107, in
the 3:2 resonance, and is very abrupt, lasting 300, or about 50 periods. The average
angular velocity on the first plateau is somewhat larger than 1.5 because the semiaxis

has decreased by a few percent by this time.

angular velocity between two successive apapses, that the crossover between the two
resonances is rather abrupt, without any long-lasting transients. A change in the the
parameters or the initial conditions can also lead to a decay direct to 1:1 resonance
without an appearance of the metastable 3:2 attractor. Other resonant states can also
appear as metastable attractors. Figure 3.4 presents a case with a 9:4 resonance. Here
the transients are very long, with pronounced chaos. Figure 3.4a shows angle α at
apapsis versus time; its appearance is that of a bifurcation diagram. A large period-four
window appears in the middle of the chaotic regime, and a more detailed investigation
reveals further windows. The metastable chaotic and period-four attractors are shown
in the insets. Figure 3.4b presents the periapsis precession — the change ∆β of the
angle between apsidal points — as a function of time. There is a sudden decrease of
this quantity in the periodic windows, but the arrival at the asymptotic 1:1 attractor is
marked by a sudden jump upwards followed by a slow decrease towards zero.

The long-term dynamics always leads to the 1:1 resonance and the energy approaches
a constant value; cf. Figure 3.2c. This implies that the full dissipative dynamics con-
verges to a conservative asymptotic state in which the secondary no longer vibrates but
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FIGURE 3.4: Long chaotic transients before arrival at 1:1 resonance: (a) Angle α

taken at apapsis points versus time and energy E versus time (dashed line) for ε0 = 0.4,
γ = 20 and initial condition φ(0) = 0, φ̇(0) = 3.5. The insets show the chaotic and
periodic quasiattractors on a Poincaré map. (b) Periapsis precession ∆β versus time.

Note the sudden changes in the periodic windows.

behaves as a rigid body orbiting in a circular Keplerian orbit. In order to characterize
the approach to this state, we may follow the eccentricity as a function of time. The
decay is exponential, but the decay rate varies dramatically with the parameters. The
different decay curves however follow the same long-term exponential form when plot-
ted as a function of a rescaled dimensionless time t ′. In the range ω > 10, the scaled
time is t ′ = tγl2

0ω−4. Figure 3.5 shows the collapse of a large number of data onto a
master curve in this representation. The characteristic relaxation time τ is thus found to
scale for ω > 10 as τ ∼ ω4/(γl2

0) in the original dimensionless time. The asymptotic
state of ε = 0 is approached to a good approximation after some 2–3 τ . For γ = 1,
l0 = 10−4, and ω = 10, for example, the relaxation time is on the order of 1010. The
scaling relation in dimensional form reads:

τdim ∼
1

γdim

42D2

m2
a6

0
f 2M2

a2
0

L2
0

=
1

γdim

(
Torb

Tosc

)4(a0

L0

)2

,

where Tosc is the period of oscillation and Torb the orbital period of the secondary. For
a given material composition of the secondary, γdim and the speed of the elastic waves
c ∼ L0/Tosc are constants, and the despinning time depends strongly on the size of the
secondary and its distance to the primary, which is why large moons are locked to their
planets but most planets are not locked to the Sun. This scaling illustrates a interest-
ing feature of the tidal problem: the relaxation time γ

−1
dim of the isolated oscillator is

increased by several orders of magnitude owing to the broad separation of length scales
and frequencies. In order to be dissipated by the damping, the energy must be trans-
ferred from the orbital and rotational Hamiltonian degrees of freedom to the vibrational
one, and this transfer, mediated by the tidal forces, is rather inefficient if the secondary
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is small. This inefficiency suggests the interesting idea of modeling the secondary in
an increasingly complex way as an ensemble of masses linked with conservative —
perhaps nonlinear — springs. This might allow for the spontaneous appearance of tidal
dissipation as the energy injected by the orbit into the secondary as internal energy ther-
malizes faster than the time it takes to be fed back into the orbit, and could allow for
tidal synchronization and circularization even when no damping at all is present in the
secondary if the number of internal degrees of freedom were large enough.

FIGURE 3.5: Master curve of the logarithm of eccentricity ε versus rescaled time
t ′ = tγl2

0ω−4 for initial eccentricity ε0 = 0.2, and ω = 10, 20, 30, l0 = 10−n, n =
1,2,3,4 and γ = 5, 10, 20 on a log–linear scale. The initial condition is in all cases

φ(0) = 0, φ̇(0) = 4.

3.4 Discussion

We have introduced here a minimal model that displays the physics of tidal synchro-
nization and orbit circularization without the complexity of an extended body. Although
the model does not contain many realistic aspects of real satellites (e.g. that they dis-
tort along the satellite-planet line, and not along a principal axis), it faithfully describes
the basic aspects of tidal synchronization and orbit circularization. Extensions of the
model could eventually include the addition of a nonzero obliquity of the spin axis of
the secondary; a more complex secondary; and quasiperiodic or chaotic forcing, as in
the three-body problem. We shall develop these ideas in future work.



Chapter 4

A minimal dynamical model for
tidal synchronization and orbit
circularization

4.1 Introduction

Ever since Darwin [32] models have been constructed of the tidal synchronization of
the Moon and other celestial bodies [19–27, 33]. These models have become more
quantitatively accurate, but at the same time more complex, so that it is not particularly
clear what are the essential features of the problem. Here we take the opposite approach:
we strip the problem of tidal synchronization to its bare bones with a minimal model
that captures just the qualitative dynamical aspects of the problem. In previous work
we introduced the model [34]; here we investigate in depth the complex dynamics that
can arise from this simplest model of tidal synchronization and orbit circularization.

To our knowledge there are only two approaches modeling the tidal interaction as a
few-body problem. Hut [35] investigated a close binary system where the primary is
modeled by three gravitationally interacting point masses (the secondary is point like).
Equilibrium tides are described, and the effect of weak friction is taken into account
by means of the introduction of a constant time lag. In the approach of Hurford et al
[36] the primary is modeled as a sphere coupled to two small point masses via damped
springs which do not keep their straight shape but can become curved. The point-like
secondary can move along a spherical orbit only and the primary is assumed to spin
uniformly.

Although our model consists of two point masses only bound with a damped spring
(as the secondary), no specific restrictions are applied. We can thus study dynamical
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tides, the nonuniform rotation of the secondary, resonances between rotation and orbital
motion, and the effect of circularization. This simple model fundamentally differs from
others where the secondary is described as a spatially extended object. The two-point-
mass feature is nevertheless similar in spirit to restricting those models to the l = 2
normal mode, as done e.g. in Mardling [20], [37] and Witte et al [38]. It is perhaps due
to this feature that we find chaotic dynamics as Mardling [20] did although, owing to
the presence of dissipation, in our case chaos is unavoidably of a transient character.

Our elementary model also enables us to investigate the nature of resonances in detail.
We introduce a new definition of resonant states based on a resonance function which
distinguishes resonances p : p and 1 : 1, and clearly characterizes the different types of
temporal behavior. A necessary condition for the existence of a resonance is formu-
lated: the energy of the secondary should be constant on average. The response of the
dynamics of the secondary to the temporal change of orbital elements can be monitored.

The model is well-defined and easy-to-treat numerically in its original form [34]. Nev-
ertheless, we carry out a large distance Taylor expansion (l� r) over the exact equations
of motion. The approximate equations enable us to identify and isolate the different ef-
fects of tidal interactions.

Special attention is paid to chaotic cases where the applicability of the expansion method
is nontrivial. Our finding is, that the exact and approximate equations might lead to dif-
ferent resonances (quasi-attractors) owing to sensitivity to the initial conditions, but if
the two solutions reach the same asymptotic state, even the second-order approximation
provides a rather accurate description of the dynamics over long times. We can also ob-
tain insight into apapsis precession and the temporal change of orbital elements via the
approximate equations.

4.2 The model

As in the previous chapter, we model an extended secondary body of mass m by two
point masses of mass m/2 connected with a damped spring; see Fig. 4.1(a). The spring
and damper or dashpot are in parallel in a Kelvin–Voigt configuration [39].

The composite body moves in the gravitational field of a primary of mass M � m
located at the origin. In this simplest case oscillation and rotation of the secondary are
assumed to take place in the plane of the Keplerian orbit. We use polar coordinates
r,β for the center of mass of the secondary, with l as the instantaneous length of the
spring and φ as the rotational angle characterizing the orientation of the secondary.
Both angles β and φ are measured from the x-axis in an inertial reference frame. The
gravitational interactions of both point masses with the primary are taken into account,
but that between the point masses is neglected.
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w

apapsisβ

β

FIGURE 4.1: (a) Instantaneous configuration of the system given by the generalized
coordinates r,β , l,φ . The relative angle α = φ−β is indicated. (b) Schematic diagram

illustrating βapapsis(t)

To describe the conservative part of the dynamics we use the same dimensionless La-
grangian as in the last chapter, with the initial semi-major axis as the unit of length
and the corresponding Keplerian period as the unit of time, in terms of the generalized
coordinates ~q = (r,β , l,φ ):

L =
ṙ2

2
+

r2β̇ 2

2
+

l̇2

8
+

l2φ̇ 2

8
+

1
2r1

+
1

2r2
− ω2

8
(l− l0)2, (4.1)

where ri =
(
r2 + l2/4+(−1)i+1rl cos(φ −β )

)1/2, i = 1,2, is the distance of the ith
component of the secondary to the primary and ω is the vibrational frequency of the
spring. After including dissipation proportional to l̇ the equations of motion are

r̈ = rβ̇
2− 1

2
rR+−

1
4

lR− cos(φ −β ), (4.2)

β̈ = −2
ṙβ̇

r
− 1

4
l
r

R− sin(φ −β ), (4.3)

l̈ = lφ̇ 2−ω
2(l− l0)−2γ l̇− 1

2
lR+− rR− cos(φ −β ), (4.4)

φ̈ = −2
l̇φ̇
l

+
r
l
R− sin(φ −β ), (4.5)

where γ is the dissipation constant and the shorthand notation

R± =
1
r3

1
± 1

r3
2

(4.6)

has been used.

The set of generalized coordinates can be split into two parts. The first subsystem is
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related to the orbital motion (r, β ) and the second subsystem describes the internal
dynamics (rotation, vibration) of the secondary (l, φ ).

In order to understand the temporal evolution of the full system we can study the energy
and angular momentum transfer between the degrees of freedom and subsystems. The
angular momenta of the first and second subsystems are defined as

N1 = r2
β̇ and N2 =

1
4

l2
φ̇ , (4.7)

respectively. The angular momentum is transferred between the two subsystems but
the sum is conserved as we only have central forces (N1 +N2 = N0 = const.). Because
l� r, in practice N1 ≈ N0 = const. The total energy (E) is split into a center-of-mass
energy Ec (energy of the 1st subsystem), a vibrational energy Evibr and a rotational
energy Erot , defined as in the previous chapter:

Ec =
1
2
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ṙ2 +(rβ̇ )2

)
− 1

r
, (4.8)
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1
8
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1
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)
+

1
r
. (4.10)

With the above equations we can monitor how the energy is transferred from the center-
of-mass orbit to vibration and rotation and how the total energy decreases through dis-
sipation. We also define the energy of the secondary as

Esec = Evibr +Erot . (4.11)

The instantaneous angular momentum and the energy transfer are given by the time
derivatives of these quantities (Ė, Ṅ).

In order to follow the orbital elements in continuous time, we recall some formulae
from the Keplerian problem. The instantaneous dimensionless semi-major axis and the
eccentricity can be expressed as

a(t) =− 1
2Ec(t)

, ε(t) =
√

1+2Ec(t)N2
1 (t) =

√
1−

N2
1 (t)

a(t)
. (4.12)

respectively. According to (4.12) the change of Ec plays an important role in the change
of the semi-major axis and eccentricity. The angle w between the vector pointing to the
center of mass of the secondary and the semi-major axis of the orbit can be obtained
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from the Keplerian form r = p/(1− ε cosw) as

w(t) = arccos
1−N2

1 (t)/r(t)
ε(t)

(4.13)

because p = N2
1 . So the angle of apapsis — see Fig. 4.1(b) — is

βapapsis(t) = β (t)−w(t). (4.14)

In this chapter ti denote the instants when the secondary is at the apapsis (apapsis pas-
sages). If a quantity ( f ) is followed over such a long time that the change of the orbital
elements is significant, we plot the quantity only at the instants ti. In such cases we
use the notation f (ti). To study the long term behavior of f , we use the time average
of the time derivative of f over a suitable time period. The choice of the suitable time
period depends on the state of the secondary. Generally, it is one period (q = 1) but if
the system is in a p : q resonance, the average is taken over q periods.

< ḟ >q=
1

ti+q− ti

ti+q∫
ti

ḟ (t)dt. (4.15)

4.3 Resonant and chaotic states

In dissipative cases (γ > 0) there is only one attractor, the 1:1 resonance, and a cir-
cular orbit [34]. The approach towards the attractor typically occurs through a series
of resonances. Because of the change of orbital elements we introduce the following
resonance functions

ρ(i)≡ R(ti) =
1

2π

ti+1∫
ti

α̇ dt +1, i = 1,2,3 . . . . (4.16)

The integral term yields the overall rotational angle of the secondary between times ti
and ti+1 relative to the r axis in units of 2π; see Fig. 4.1(a). The unit term expresses
the fact that the radius has carried out approximately one rotation. Because of the
small apapsis precession, R or ρ differ slightly from the entire rotational angle of the
secondary (in units of 2π). The resonance function is thus a characteristic of the rotation
after eliminating the apapsis precession. If the system is in a p : q resonance, function
ρ is periodic in i, its period is q and

q

∑
i=1

ρ(i) = p. (4.17)



4. A minimal dynamical model for tidal synchronization and orbit circularization 36

The reason for the definition of the functions R is that they are more convenient to
plot than ρ(i). In the presence of constant apapsis precession, R would be periodic.
Because of the time dependence of the orbital elements in our problem, R is not strictly
periodic but is almost so. In a p:q resonance, during q orbital periods the rotation of
the secondary relative to the r axis is p− q and the average of the relative rotation is
(p− q)/q. According to Eq. (4.16) the relative rotation during one period is R− 1.
Generally, the relative rotation is not exactly equal to the average of the relative rotation
but almost so: R− 1 ≈ (p− q)/q. The average of R is therefore p/q and it typically
takes on q different values around the average.
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FIGURE 4.2: (a) Resonance function R(ti) (dots), ε(ti) (dashed line). Parameters and
initial conditions: ω = 10, γ = 1, l0 = 10−3; ε0 = 0.4, φ(0) = 0, φ̇(0) = 5. The series
of resonances is 5:1, 4:2, 4:1, 2:2. (b) Resonance function R(ti) (dots and horizontal
continuous lines), Ec(ti) (dashed line). Parameters and initial conditions: ω = 10,
γ = 5, l0 = 10−3; ε0 = 0.4, φ(0) = 0, φ̇(0) = 5. The series of resonances is 2:1, 1:1,

2:2, 1:1.

To understand better the features of R, consider two examples. In a 3:2 resonance,
during two orbital periods the relative rotation of the secondary is one. During one
of the periods the relative rotation is a little smaller than 1/2 and during the other it
is a little larger than 1/2. Thus in the first case R < 0.5 + 1 = 1.5 and in the second
case R > 1.5. When plotting R versus ti, if the points are quite dense, we can see two
lines near to the value 1.5. The other example is a 2:2 resonant state (see right side of
Fig. 4.2(a) and the mid part of Fig. 4.2(b)), which is different from 1:1 resonance. In the
former during two orbital periods the relative rotation of the secondary is two. During
one of the periods the relative rotation is a little less than 0 (negative) and during the
other the relative rotation is a little greater than 0 (positive). Thus in the first period
R < 1 and in the second R > 1. In a 1:1 resonance R = 1. Although the average of R is
the same in both cases (R̄ = 1), in a 1:1 resonance the position and the angular velocity
relative to the r axis are always the same at apapsis. The 1:1 resonant state and the 2:2
should thus be distinguished from each other because they have quite different features;
for example, the amplitude of the libration is larger and the changes of orbital elements
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are faster in a 2:2 resonance. In this chapter the term p : q resonant state will be used
for resonances different from 1 : 1 only.

Fig. 4.2(a) shows an example of the time-dependent resonance function where we also
plot the temporal change of eccentricity. It is easy to separate the different regimes in
the figure. During the first regime (t=0-300000) the rotation of the secondary is chaotic.
The orbital motion drives the secondary. Depending on the orbital elements the driving
can cause chaotic rotation. The orbital elements are changing and the type of rotation
caused by the driving is also changing. By t ≈ 300000 the driving cannot cause chaotic
rotation and the chaotic regime ends.

The second regime is a resonance. If the system is in a p : q resonance the temporal
behavior of the secondary is periodic, thus the average of its energy and the dissipation
are constants: < Ėsec >q= 0 and

< Ėtotal >q=
1

ti+q− ti

ti+q∫
ti

(
−1

2
γ l̇2
)

dt = Cp:q = const < 0. (4.18)

A constant energy of the secondary can only be maintained if the system pumps the
dissipated energy from the orbit to the secondary which means

< Ėc >q=< Ė >q= Cp:q. (4.19)

This is an energy condition for the existence of a p : q resonant state. The subscript p : q
expresses that the value of C is determined mainly by the type of the resonant state. Of
course C also depends on the parameters - e.g., on l0 - and the orbital elements. The
resonant state ends - because of the change of orbital elements - when the system cannot
pump enough energy to the secondary. If the energy condition (4.19) is not valid, the
resonant state loses its stability. The third regime (near t ≈ 750000) is quite short. At
the beginning of this regime a couple of stable resonant states are present. According
to our simulations they behave as quasi-attractors with fractal basin boundaries. If the
state of the secondary is close to a boundary between the basins of quasi-attractors, the
orbit can exhibit long-time chaos.

The fourth regime is also a resonance. This time the mechanism of the disappearance
of the resonance is not the same as in the second regime. The simple quasi-attractor
changes into a strange (chaotic) quasi-attractor as a consequence of the change of the
orbital elements.

Since all quasi-attractor are simple resonances, any type of chaos present in such dissi-
pative systems can only be of transient type. As is known from the theory of transient
chaos [40], [41] the chaotic set is in such cases a non-attracting set, called a chaotic
saddle. Orbits initiated close to the stable manifold of the saddle converge towards the
chaotic set, stay a long time around it, and will be led eventually to a quasi-attractor
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FIGURE 4.3: Lifetime distribution over a piece of the φ , φ̇ plane with l̇ = 0. The
initial value of l is chosen as l = l0/(ω2 − φ̇ 2). Parameters are ω = 10, γ = 10,
l0 = 10−4, ε = 0.1 (The secondary is at the apapsis). Lifetimes are given in units of

orbital periods. The filamentary structure is a manifestation of transient chaos.

along the unstable manifold of the saddle. The presence of a chaotic saddle can be
demonstrated by plotting a lifetime distribution over the set of initial conditions. This
is done in Fig. 4.3 where a clear fractal filamentation of the long-lived regions can be
seen. Although this set of points is similar in appearance to a chaotic attractor, which
is an unstable manifold, we emphasize that what we see here is the stable manifold of a
chaotic saddle.

We have to distinguish two types of transient chaotic regimes. The first (second) type
ends without (with) a change of the orbital elements. In Fig. 4.2(a) the second and
fourth chaotic regimes (the short ones) are of the first type and the first and the third
chaotic regimes (the longer ones) are of the second type.

The typical behavior of the eccentricity is a decrease toward zero. In every regime
but the 1 : 1 resonance the function of eccentricity is piece-wise concave. The semi-
major axis also decreases and approaches a given value, a∞, determined by the initial
conditions. The further evolution of the system in this case is that it falls into 1 : 1
resonance around t ≈ 1.1×107, and the eccentricity tends to zero exponentially as the
orbit circularizes (see inset of Fig. 4.2(a)).

Fig. 4.2(b) shows another example illustrating that the 1 : 1 resonance can lose stability
if the eccentricity is not so small. The figure also shows the center-of-mass energy Ec;
our numerical experience is that the change of Ec is exponential only in a 1:1 reso-
nance. In other resonant states the temporal change in Ec is approximately linear (for
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an explanation see the next section). Another important feature illustrated in Fig. 4.2(b)
is that the decrease of the center-of-mass energy is, in general, more intense in higher
resonances than in 1 : 1 resonance.

-0.506

-0.504

-0.502

-0.5

-0.498

-0.496

-0.494

 0  200  400  600  800  1000
-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0.006

Ec Er+Ev

t

Ec
Er+Ev

-0.50004

-0.50003

-0.50002

-0.50001

-0.5

-0.49999

-0.49998

-0.49997

 0  20000  40000  60000  80000  100000
-4e-005

-3e-005

-2e-005

-1e-005

 0

 1e-005

 2e-005

 3e-005

Ec Er+Ev

t

Ec
Er+Ev

 0

 1

 2

 3

 4

 0  10000  20000  30000  40000

R

t

 0

 1

 2

 3

 4

 0  10000  20000  30000  40000

R

t

FIGURE 4.4: (a) Energy transfer from the orbit (center-of-mass kinetic energy, red
line) to the secondary (rotation and vibration, green line). After some orbits the energy
is transferred back to the center-of-mass motion. Longer runs show that this behavior
is periodic. (i) ε0 = 0.50, γ = 0.0, l0 = 1.0−2, ω = 10. (ii) ε0 = 0.30, γ = 0.0,
l0 = 1.0−2, ω = 10. (b) Function R(t) for elastic secondary with no dissipation, with
(i) ω = 5 and (ii) ω = 10. Weaker springs show more resonant states and these remain

stable for a longer time.

In conservative cases (γ = 0), we do not have any attractor, but the system can still
synchronize in several metastable resonances. The spring alone is enough for the sec-
ondary to interact with its orbit and temporarily store energy in the form of rotation and
vibration. Eventually the energy will go back to the orbit and the system will return
close to its initial state. In Fig. 4.4(a) we show how the energy is transferred from orbit
to rotation and back. Stronger springs (higher ω) behave more like rigid bodies and
hence produce fewer resonances. Weaker springs show a wide variety of synchroniza-
tions that can last from a few orbital periods to thousands of orbital periods. A very
elastic secondary can easily synchronize in rarer resonances. For instance, we can have
resonances with rotation velocity slower than the orbital velocity, or retrograde rotation:
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with rotation in the opposite sense to the orbit. Fig. 4.4(b) compares the different res-
onances that are produced with different springs using R(t) defined in Eq. (4.16). We
can note how a more elastic secondary is more often synchronized and its resonances
remain stable for longer times.

4.4 Approximate equations of motion

To calculate the approximate equations of motion we Taylor-expand the Lagrangian up
to 4th order in l/(2r):

L =
1
2

[
ṙ2 + r2

β̇
2 +

l̇2

4
+

l2

4
φ̇

2
]
− 1

8
ω

2(l− l0)2

+
1
r

[
1+
(

l
2r

)2

P2 (cosα)+
(

l
2r

)4

P4 (cosα)

]
.

The Taylor-expanded equations of motion can be written as ~̈q = ~̈q(0) +~̈q(1) +~̈q(2) + . . .
where ~̈q = (r̈, β̈ , l̈, φ̈) and

~̈q(0) =



rβ̇ 2− 1
r2

−2
ṙβ̇

r
lφ̇ 2−ω2(l− l0)−2γ l̇

−2
l̇φ̇
l


, (4.20)

~̈q(1) =


0
0

− l
r3

(
1−3cos2

α
)

−3
2

1
r3 sin2α

 , ~̈q(2) =


3
8

l2

r4

(
1−3cos2

α
)

3
8

l2

r5 sin2α

0
0

 , . . . (4.21)

Another form of the Taylor-expanded equations of motion is
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0th order 1st order 2nd order

r̈ =rβ̇ 2− 1
r2 +

3
8

l2

r4

(
1−3cos2

α
)

β̈ =−2
ṙβ̇

r
+

3
8

l2

r5 sin2α

l̈ =lφ̇ 2−ω2(l− l0)−2γ l̇ − l
r3

(
1−3cos2

α
)

φ̈ =−2
l̇φ̇
l

−3
2

1
r3 sin2α

In general, the nth order approximation contains the nth power of l/r in the equations
of r̈, rβ̈ , l̈ and lφ̈ (accelerations).

In the 0th order approximation (~̈q = ~̈q(0)) the system of equations splits into two parts.
The first pair of equations (r̈, β̈ ) form the equations of motion of the pure Keplerian
problem and the second pair (l̈, φ̈ ) describes the problem of two rotating point masses
connected by a frictional spring.

It is worth emphasizing that in the 1st-order approximation (~̈q = ~̈q(0) +~̈q(1)) the sec-
ondary has no feedback on the center-of-mass motion at all. That is why the first order
approximation has important qualitative differences from the exact model: (i) The or-
bital elements are not changing; there is no circularization. (ii) It is a driven nonlinear
system in which the drive is not changing in time. Depending on the orbital elements
the attractor(s) can be simple or strange ones. Of course in the case of a strange at-
tractor the dynamics of the secondary is permanently chaotic and in the case of simple
attractors the dynamics can be either regular or transiently chaotic depending on the
initial conditions. (iii) The orbit pumps energy into the secondary but the orbital energy
remains constant. (iv) The total angular momentum is not constant. (v) The dimension
of the phase space of this problem is only 5. In spite of these differences, it is important
to consider this approximation because a couple of its features are reflected in the exact
model.

We can also define approximations 1a and 2a. Approximation 1a is the 1st-order ap-
proximation without the term −l/r3

(
1−3cos2 α

)
, i.e., an equation corresponding to

rigid-body rotation of the secondary, provided l = const. In this approximation the
action of the primary on the spring is neglected. Approximation 2a is the 2nd-order
approximation without the term 3/8l2/r5 sin2α in the equation of β̈ . The term kept in
the equation of r̈ describes a central force perturbation proportional to 1/r4 provided l
and α are constant. The force is then 3/8l2/r4

(
1−3cos2 α

)
and an analytic expression

(Eq. (4.32)) exists for the apapsis precession.
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In general, the trajectories calculated by the approximate and exact equations deviate
from each other because of the chaoticity of the dynamics; in such cases we expect only
the statistical behavior to be the same. On the other hand, if the motion is regular — as
in a resonance — then the approximate equations are expected to be rather accurate.

4.5 The consequences of the energy condition

In this section, we show the typical response of the secondary to a change of orbital
elements in resonant states.

The resonance we use for illustrative purposes is a 5 : 2 resonance and the initial eccen-
tricity is 0.1. By using the second-order approximate equations, the time average of the
change of the center-of-mass energy can be written as

< Ėc >q=
1

ti+q− ti

ti+q∫
ti

(ṙq(2)
1 + r2

β̇q(2)
2 )dt =

1
ti+q− ti

3
8

ti+q∫
ti

(
ṙ
r4

[
l2 (1−3cos2

α
)]

+
β̇

r3

[
l2 sin2α

])
dt (4.22)
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FIGURE 4.5: (a) Temporal change of the factors of the first term in the integral
(4.22) over two orbital periods at different eccentricities. The secondary is at apapsis
at t = 0. The colors correspond to the eccentricities: 0.9 (red), 0.8 (green), 0.7 (blue),
0.65 (purple) and 0.63 (orange). (b) Temporal change of the factors of the second

term in the integral (4.22).

Fig. 4.5(a) [(b)] shows the first (the fraction) and the second (expression in square
bracket) factors of the first [second] term in the integral over two orbital periods at dif-
ferent eccentricities. The amplitudes of the two first factors are directly proportional to
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FIGURE 4.6: The shift of function α(t) with eccentricity. The colors mark the
eccentricity values as in Fig. 4.5.

the eccentricity because the eccentricity and the change of the semi-major axis are rela-
tively small. Because of the energy condition, the integral has to be constant. Therefore
function α(t) has to change. Fig. 4.6 shows this α(t) function at ε = 0.9, 0.8, 0.7, 0.65,
and 0.63. As the figure shows, the response of the secondary is a shift of function α(t).
The shift becomes faster as the end of the resonance is approaching.

4.6 Temporal evolution of the orbital elements in the 1:1 res-
onant state

In order to obtain a continuous-time estimate of the orbital elements we give equations
for

ε̇ =
1
ε
(ĖcN2

1 +2EcN1Ṅ1), (4.23)

ȧ =
1
2

1
E2

c
Ėc = 2a2Ėc. (4.24)

These equations appear in several models which treat the secondary as a spatially ex-
tended object, see e.g. [38]. The point is that Ėc and Ṅ1 cannot be expressed by ε and
a only, and the set of equations is thus not closed. The authors typically use special
approximate formulas for Ėc and Ṅ1 obtain a closure. We are not forced to do so since
the numerical values of these quantities easily follow from (4.2)-(4.5) and (4.7), (4.8).
In fact we consider (4.23), (4.24) only as diagnostic equations investigated along with
the numerical solution of our model.

For later purposes we also write down an equation for βapapsis, used in the same diag-
nostic sense. By taking the time derivative of (4.14), (4.13) and using (4.7) and (4.12)
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we find:

β̇apapsis = β̇ +
ε

(
3r2ṙβ̇ 2 +2r3β̇ β̈

)
+ ε̇

(
1− r3β̇ 2

)
ṙε
√

a(1− ε2)
. (4.25)

The leading order behavior of these quantities follows from the second-order approxi-
mate equations. Substituting

Ṅ1 = 2rṙβ̇ + r2
β̈ ≈ r2q(2)

2 , (4.26)

Ėc = ṙ
(

r̈ +
1
r2

)
+ rṙβ̇

2 + r2
β̇ β̈ ≈ ṙq(2)

1 + r2
β̇q(2)

2 , (4.27)

into (4.23) and (4.24), we obtain

ε̇ =
1
ε

[(
ṙq(2)

1 + rβ̇
2q(2)

2

)
N2

1 +2EcN1r2q(2)
2

]
, (4.28)

ȧ = 2a2(ṙq(2)
1 + r2

β̇q(2)
2 ). (4.29)

In a similar way, one finds from (4.25)

β̇apapsis =
2r3β̇ εq(2)

2 −
(

r3β̇ 2−1
)

ε̇

ṙε
√

a(1− ε2)
. (4.30)

4.6.1 Apapsis precession

The apapsis precession ∆β is obtained by multiplying β̇apapsis by the instantaneous
period T (t) = 2πa(t)3/2:

∆β (t) = 2π

√
a3(t)β̇apapsis(t). (4.31)

This equation provides the instantaneous tendency for producing a given apapsis pre-
cession. This can, in certain phases of the motion, be of opposite sign than after a full
period , i.e., than the average of ∆β (t) over a period. A well-known result [42] for ∆β

in the presence of a dimensionless perturbative force of the type −κ/r4, κ � 1 yields

∆βpert(t) = 2π
κ(t)

N4
1 (t)

(4.32)

where κ(t) = 3
8 l2(t)

(
1−3cos2 α(t)

)
, under the assumption that κ(t) changes slowly.



4. A minimal dynamical model for tidal synchronization and orbit circularization 45

4

5

6

7

 6280  6290

∆β
(2

nd
 o

rd
er

)

t

x10-6

-4

0

4

8

 6280  6290

∆β
(c

om
p)

t

x10-5

FIGURE 4.7: (a) Comparison of the different methods for the calculation of the apap-
sis precession in the case of a 1:1 resonance in approximation 2a: numerically mea-
sured ∆β (red), average of ∆β (t) from Eq. (4.31) (green), ∆βpert(t) from Eq. (4.32)
(blue), average of ∆βpert(t) (violet), ∆βnaive from Eq. (4.33) (black). Parameters and
initial conditions: ω = 10, γ = 1, l0 = 10−3, ε0 = 0.1, φ(0) = 0, φ̇(0) = 5. (b)
Comparison of the apapsis precession obtained by means of the different approximate
equations. The red (measured exact) and the dark blue dashed (exact ∆β (t) averaged)
line segments are covered by the purple one (measured ∆β in 2nd order), the green
(exact ∆β (t)) is covered by the light blue one (2nd order ∆β (t)). Parameters and

initial conditions: ω = 10, γ = 1, l0 = 10−3, ε0 = 0.1, φ(0) = 0, φ̇(0) = 5.

In a time independent naı̈ve approximation when κ(t) is considered to be constant with
α ≈ 0 and l = l0, N1 = N

∆βnaive =
3π

2
l2
0

N4 . (4.33)

In order to test the accuracy of the naı̈ve and the perturbative approximations of the
apapsis precession we compare the numerical results in the case of the simplest, 1:1
resonance. Fig. 4.7(a) shows ∆βnaive from Eq. (4.33), the measured ∆β (measurement
has been made after a period but the value is represented by a continuous line), ∆βpert(t)
from Eq. (4.32), its average, and the time average of ∆β (t) from Eq. (4.31) all evaluated
in approximation 2a. Our conclusion is that the naı̈ve and the perturbative approxima-
tions can only estimate the magnitude of the apapsis precession; they are not suitable
to give the exact value. The value of the time-averaged ∆β (t) is practically the same as
that of the measured ∆β . The difference between the averages of ∆β (t) and ∆βpert(t)
may be due to the fact that κ is also oscillating with an amplitude which is about one
fifth of its average value. Therefore, the perturbative result based on the slow variation
of κ is an educated guess only.

Fig. 4.7(b) shows that the apapsis precession, Eq. (4.31), evaluated with the 2nd order
approximation and the exact equations coincide. This means that the equations of the
2nd order approximation are sufficient for calculating the apapsis precession to high
accuracy. The figure also shows the function ∆β (t) and the numerically measured
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apapsis precession in approximation 2a. The result is about one half of the measured
apapsis precession of the 2nd order approximation and of the exact simulation. This
implies that the contribution of the perturbation 3/8 l2/r4 sin2α in the equation of β̈

to the apapsis precession is practically as important as the well known central force
contribution, Eq. (4.32), of approximation 2a.

Here we have concentrated on the case of the 1:1 resonance on time scales when the
system is still far away from the circularized attractor. Since the interesting time de-
pendencies all die out in the long-time limit, the approximate equations are expected
to work even better for later times. The behavior of the approximation scheme around
other resonances is also similar. Altogether, the 2nd-order approximate equations seem
to provide a rather accurate description of the entire dynamics, provided that the reso-
nant state under investigation is the same as that predicted by the exact equation. The
observation that the approximate equations lead in some cases to different resonances
or ‘transient attractors’ on intermediate time scales appears to be a consequence of the
fact that the dynamics between resonances is chaotic and the errors attributable to using
a perturbation expansion become drastically amplified.

We can study the influence that the different parameters – γ,ω, l0,ε – have on the apap-
sis precession - ∆βapapsis. Looking at Eq. (4.30), we can see that ∆βapapsis does not
depend on γ directly. Numerical results indicate that an indirect dependence cannot be
found either for a wide range of γ (γ < 2). β̇apapsis (4.30) depends on q(2)

1 (through ε̇)
and q(2)

2 , and the l-dependence of both terms is quadratic, so β̇apapsis ∼ l2. Using the
approximation l− l0 << l we expect that the l0 and ω dependencies can be written as

∆βapapsis = c1

(
l0

1− c2/ω2

)2

, (4.34)

where c1 and c2 are fitting parameters. Numerical fits confirm this conjecture. The
l0-dependence is perfectly quadratic and Fig. 4.8(a) shows that expression (4.34) as a
function of ω is perfectly consistent with the measured data. Fig. 4.8(b) shows that the
eccentricity dependence is basically also quadratic, but as ε→ 0, the apapsis precession
seems to converge to a nonzero value.

4.7 Comparison of approximations in chaotic cases

To produce Fig. 4.9(a), the exact equations of motion have been integrated with 35
different initial conditions and the time averages of the angular velocity have been cal-
culated in every period. The initial eccentricities of all 35 integrations were the same
(ε = 0.1). Fig. 4.9(a) shows the average of the angular velocities versus time. There
is a plateau at the end of the curve, since all 35 cases are in resonance. The height
of the plateau is 1 implying that all the cases are in a 1:1 resonance. We integrated
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FIGURE 4.8: Numerical data (dots) and fits (lines) for the apapsis precession as
a function of spring frequency (a) and eccentricity (b). (a) Parameters are γ = 1,
l0 = 10−3; ε0 = 0.05, and the fitted parameters of (4.34) are c1 = 9.85, c2 = 8.11. (b)
Parameters are ω = 10, γ = 1, l0 = 10−3. The form of the fitted function is aε2 + b.

The result of the fit is a = 3.78 ·10−5, b = 1.13 ·10−5

1.00

1.25

1.50

1.75

 0  500  1000  1500  2000  2500  3000

<Φ>

t

.

-1

 0

 1

 2

 3

 4

 5

 0  100  200  300  400  500  600

Φ

t

...

FIGURE 4.9: (a) Average angular velocity with the exact equations. Initial con-
ditions: ε0 = 0.1 and (φ0, φ̇0) is an element of the grid determined by the values
φ0 ∈ {0,1,2,3,4,5,6}, φ̇0 ∈ {4.98,4.99,5.0,5.01,5.02}. We used this set of initial
conditions for every averaged plot in this chapter. In the chaotic case the only reliable
information is related to averages. (b) φ̇(t) in the 2th order approximation (red) and
with the exact (green) equations of motion. Parameters and initial conditions: ω = 10,

γ = 1, l0 = 10−3; ε0 = 0.1, φ(0) = 0, φ̇(0) = 5.
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the exact and the 2nd-order equations of motion with the same initial conditions. An-
gular velocity φ̇ versus time can be seen in Fig. 4.9(b). Here and even in the case of
the highest-order approximation the trajectories deviate from each other in the transient
chaotic regime (t > 300). Based on a study of a couple of similar cases we conclude that
the 2nd-order (and higher-order) approximations have the same characteristic features
as the exact equations of motion.
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FIGURE 4.10: Comparison of the average behavior of the different approximate
equations. Initial eccentricity is (a) ε0 = 0.1; (b) ε0 = 0.2; (c) ε0 = 0.3.

We have also studied the statistical behavior of the different approximations. The
same type of plot as Fig. 4.9(a) has been made to all orders of the approximations
in Fig. 4.10(a). We conclude that any approximations other than 1a exhibit the same
statistical behavior as the exact case. From the graphs the characteristic time, τ1, needed
to reach a 1:1 resonance can be estimated. This state is not yet the circularized attractor
since ε ≈ ε0 after such short period of time. It takes typically a much longer time —
denoted by τ in [34] — for the attractor, where ε = 0, to be reached; in this example
τ1 ≈ 2000 and τ ≈ 106. The plateau of the green, 4th-order curve is slightly higher
than 1. The reason is that one of the 4th-order cases is in a 5:2 resonance and not in
1:1. Among the 1st-order simulations there were two in a 5:2 resonance, which is why
the yellow curve is higher than the green one. It is hardly observable but the dark blue,
3rd-order curve is also higher than 1; this is owing to the presence of a 5:4 resonance.
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Fig. 4.10(b) and (c) show a comparison of the exact and the approximate cases with dif-
ferent initial eccentricities. Based on these, we conclude that the higher the eccentricity
the greater the time τ1. In Fig. 4.10(c) the asymptotic value is not 1, which suggests
that a 1:1 resonance has not yet been reached by the end of the integration; the curve is
not smooth because most of the trajectories are not in resonance.

Fig. 4.11 shows the time dependence of the eccentricity ε(t) in the different approxi-
mate equations. In all cases a 1:1 resonance has been reached by t ≈ 3000. In the first
order approximation there is no feedback of the secondary on the Keplerian problem,
therefore ε(t) = ε0 = const. The asymptotic slope of the other curves show the rate
of decrease of eccentricity. These rates are the same in all cases with the exception
of approximation 2a which indicates that the contribution of the term 3/8 l2/r5 sin2α

missing from the equation for β̈ is important.
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FIGURE 4.11: (a) Comparison of eccentricities with the different approximate equa-
tions. Parameters and initial conditions: ω = 10, γ = 1, l0 = 10−3; ε0 = 0.1, φ(0) = 0,
φ̇(0) = 5. (b) Comparison of the averaged eccentricities with the different approxi-
mate equations. Parameters and initial conditions: ω = 10, γ = 1, l0 = 10−3; ε0 = 0.1.

Fig. 4.11(b) shows the eccentricity averaged over 35 different initial conditions in the
different approximate equations. It is a general observation that in resonances different
from 1:1 the eccentricity decays much faster. This is the reason why in cases in which
there are also other resonances than 1:1 in the ensemble (the 3rd and 4th order) the
averaged eccentricities decrease faster. If we average only the 1:1 resonance cases
then we get the light and the dark blue curves. As expected, the curves of the 2nd
and 3rd order are close to each other, and close to the curves of the 4th order and
to the exact numerical solution which practically coincide. Fig. 4.11(b) indicates that
in exceptional cases even the 4th-order approximation can lead to a resonance — a
‘transient attractor’ — different from the exact one. The good agreement between the
approximate and exact equations only holds under the condition that the same resonance
has been reached.
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4.8 Discussion

Spin-orbit resonances between a large primary body and a smaller secondary body are
generally studied using models designed for quantitative analysis of a specific instance
or a particular part of the problem [19, 20, 23–27, 33]. The complexity of these mod-
els tends to obscure the fundamental physical principles involved in this interaction.
We have instead taken a qualitative dynamical-systems approach, using a minimalistic
model that takes into account only the essential ingredients of tidal deformation and dis-
sipation in the secondary body. Despite its simplicity, the model can account for both
synchronization into the 1:1 spin-orbit resonance and the circularization of the orbit as
the only true asymptotic attractors. Apart from its applicability to tidal synchronization
and orbit circularization of celestial bodies, our model is also relevant to the problem
of the dynamics of tethered satellites, which has recently provoked much interest and a
number of space missions [43].

One interesting open question is whether a pseudo-energy — or energy-like — ap-
proach would provide new insight into the problem. In this case we have completely
defined the gravitational and mechanical energies — the center of mass plus rotation
and vibration of the secondary — and thus the dissipated energy can be obtained sim-
ply by subtraction from the initial energy; the same is true for the evolution between
two arbitrary states. As the dissipation is strictly passive the total energy is necessary
a decaying function, reaching a constant value only in a situation in which the dissipa-
tion term vanishes along the trajectory. In the approach of Sarasola et al. [44], energy
dissipation is associated with a local change in phase space volume and on this basis
they define a partial differential equation that an energy-like function must satisfy. The
same depends on a part of the decomposition of the vector velocity field; the divergence
free or rotational part in contrast with the part that carries the whole divergence. Once
H is obtained we can calculate the energy derivative along a trajectory of the system
which is due to the part carrying the divergence of the vector field. Probably this is
the unique new information that can be obtained in our case: an analytical expression
instead of the indirect calculation by subtraction of the mechanical plus gravitational
energy. Nonetheless the pseudo-energy approach is of interest and we intend to pursue
it in future work.

The main conclusions that may be drawn from the present investigations are: The 1:1
resonance is the only stable attractor. Dissipation drives the system towards this syn-
chronization and circularizes the orbit. All other resonances are metastable, or transient
attractors, and dissipate energy at a faster pace, and the approach towards the circular
orbit is also faster. Conservative satellites can also produce resonances, although in this
case there is no stable attractor and all resonances are relatively short. Isolating the
dominant interactions between the degrees of freedom in terms of a Taylor expansion
allows us to to study them separately. In general, the second-order approximation is
sufficient to reproduce the typical behavior of the complete model, as long as we are in
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the 1:1 resonance. This has been studied for apapsis precession, chaotic regimes and
eccentricity evolution.

Finally, we summarize features of our model which are expected to remain valid in
more general cases as well. Even if the expression of < Ė >q can, in general, be
quite complex, the energy condition (4.19) for resonant states holds in any case. The
mechanism of the response of the secondary to the change of the orbital elements should
remain similar as in our model. Of course, we have to use the general formula (4.22)
where q(2)

1 and q(2)
2 can be rather complicated.
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Chapter 5

Ice: Introduction

Ice is one of the most abundant and most studied solid crystalline material. It is of
interest to geophysicists and glaciologists, concerned with the large ice masses on the
surface of the Earth. There are meteorologists and cloud physicists concerned with the
role of ice in our weather. There are chemists who see ice as the simplest example
of a hydrogen-bonded solid. There are crystallographers concerned with the structural
disorder that is specially characteristic of ice, and who are also concerned with the many
different phases into which H2O molecules can crystallize. There are also physicists
concerned with electrical properties, lattice defects, lattice vibrations and the unusual
properties of the surface.

The very existence of life on the planet Earth and the temperature stability of its at-
mosphere depend on the fact that the three phases of water (ice, liquid and vapor) are
present in abundance. Most of the surface of the Earth is covered with water and, de-
pending on the time of the year, some 5% of that water might be in liquid of solid
state. The ice hence acts as a temperature balancing mechanism that helps to maintain
the equlibirium between the radiation received from the Sun and that reflected or re-
radiated from the Earth. The resulting global average temperature is highly sensitive to
the amount of snow, ice and cloud cover. Our environment is thus critically dependent
on the properties of ice both in the meteorology of clouds and in the rheology of ice
sheets. At earlier times in geological history ice has covered up to 30% of the land area
and its motion has carved many features of the global landscape.

Water has always awakened scientific curiosity through its unususal properties. It is the
only chemical compound that can be found naturally on Earth in the solid, liquid and
vapor phases. When water is cooled below 4 oC it expands and becomes more com-
pressible, the contratry situation to what happens to most liquids. Its dielectric constant
in the normal liquid range is unusually large, and its melting and boiling temperatures
are uncommonly high for a non-metallic hydride. In the crystalline state, water has
fourteen known polymorphs, of which ten (ices II, III, V, VI, VII, VIII, X, XI, XIV and
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ordinary hexagonal ice, Ih) are stable over a certain range of temperature and pressure,
and four are metastable (ices IV, IX, XII and cubic ice, Ic). In 2009, ice XV was found
at extremely high pressures and -143 oC [45]. When liquid water is cooled below the
freezing point without crystallizing, we say it is in a ’supercooled’ state. In that situa-
tion the unusual physical properties of water are more pronounced, and it becomes clear
that the anomalies of liquid water are remnants of its low-temperature properties. It is
therefore useful to study water in the supercooled range in order to fully understand its
properties in ambient conditions.

Amorphous ice in its different forms has been the subject of intense research in the
recent years. When cooled fast enough to avoid crystallization, water, like other liq-
uids, vitrifies. Unlike most other substances, though, glassy water can apparently exist
in at least two distinct forms, which may be separated by a first-order phase transition
[46]. One of the most important ideas of the past two decades in this field is the real-
ization that supercooled and glassy water are intimately related, and that fundamental
understanding of metastable water must encompass both its liquid and vitreous states
[47].

Our interest in ice came from the possibility to study the mesoscale morphology of
amorphous ice using Environmental Scanning Electron Microscopy (ESEM). We were
interested in studying the dynamics involved in the morphology of ice in extreme con-
ditions and the appearance of self-organized patterns.

The Crystalline Phases

The phase diagram of water is complex, having a number of triple points and one or
possibly two critical points. At ambient temperature and pressure (marked x on Figure
5.1) water is liquid, but it becomes solid (ice) if its temperature is lowered below 273 K
and gaseous (vapor) if its temperature is raised above 373 K, at the same pressure.

The solid phase of water found on Earth can present itself in a variety of forms, from
snowflakes to icebergs, with very different bulk properties, but at the microscopic level
they are all composed of the same polymorph, hexagonal ice (ice Ih, see Figure 5.2)
which is the stable phase at the temperatures and pressures of our biosphere. However,
beyond the range of natural terrestrial conditions, ice can crystallize as many other
polymorphs, and all of these are referred to as forms of ‘ice’. Most of these phases
are produced by the application of high pressures, which result in denser packing of
molecules than in ice Ih.

The first high-pressure phases were discovered almost a century ago by Tammann
(1900) in a program to study the pressure-volume-temperature relationships of vari-
ous materials, and he named these phases ‘ice II’ and ‘ice III’. The rest of the phases
were labeled with the Roman numerals in the approximate order in which they were
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FIGURE 5.1: The phase diagram of water [1].

produced experimentally, with the result that the numbers indicate nothing about the
structures or the relations of the phases to one another.

All the crystalline phases of ice involve the water molecules being hydrogen bonded to
four neighboring water molecules. In all cases the two hydrogen atoms are equivalent,
with water molecules retaining their symmetry, and they all obey the ‘ice’ rules: two
hydrogen atoms near each oxygen, one hydrogen atom on each O–O bond (see Figure
5.2). The H-O-H angle in the ice phases is expected to be a little less than the tetrahedral
angle (109.47 ◦), at about 107 ◦.

Crystalline Morphologies

As mentioned above, the same crystalline structure can lead to many different ice mor-
phologies. For this reason the formation of ice crystals from water vapor is an excellent
case to study crystal growth dynamics and pattern formation during solidification. It
has awakened a great curiosity and has been a source of inspiration for many scientific
studies, specially in the case of snow crystals (snowflakes) [48–50].
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FIGURE 5.2: The hexagonal lattice of ice Ih [2].

The apparently infinite variety of snow crystals found in nature prompted the physicist
Nakaya to perform the first thorough laboratory study of snow crystal growth in the
1930s [51]. Nakaya observed the different growth morphologies that appeared at dif-
ferent temperatures and supersaturations and combined these observations into what is
called a snow crystal morphology diagram, shown in Figure 5.3. This diagram refers to
snow crystals growing in air at a pressure near 1 atm, so applies to natural snow crystals.
His observations reveal a surprisingly complex dependence of crystal morphology on
temperature and supersaturation. Just below freezing, at temperatures near T = −2◦C,
the growth is plate-like, with thick plates at lower supersaturations, thinner plates at in-
termediate supersaturations, and plate-like dendritic structures at high supersaturations.
For temperatures near T = −5◦C, the growth is columnar, with stout columns at the
lower supersaturations, more slender, often hollow columns at intermediate supersat-
urations, and clusters of thin, needle-like crystals at higher supersaturations. Colder
still, near T = −15◦C, the growth again becomes plate-like, and again one sees increas-
ing structure with increasing supersaturation. Finally, at the lowest temperatures the
growth becomes a mixture of thick plates at low supersaturations and columns at higher
supersaturations.

The physical explanation for this phenomenon is rather complex and some aspects are
not yet understood at a qualitative level. Its dynamics are dominated by attachment
kinetics in combination with two transport effects: particle diffusion, which carries
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molecules to the growing crystal, and heat diffusion, which removes latent heat gener-
ated by solidification. The result is a competition between faceted and branched growth.
When the growth is not very strongly limited by particle diffusion (low supersaturation
and small crystal size), the morphology of the crystal will be an hexagonal prism. When
the supersaturation is high or the crystal has become large enough, particle diffusion be-
gins to dominate the growth dynamics and at some point branching occurs. When the
crystal morphology exhibits numerous branches and side-branches, then we say the
growth is dendritic, which literally means ‘tree-like’.

However, no information has been found about the morphology of ice at very low tem-
peratures and pressures. One of the aims of this work is to explore this point.

FIGURE 5.3: The snow crystal morphology diagram, showing different types of snow
crystals that grow in air at atmospheric pressure, as a function of temperature and

water vapor supersaturation [52].
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The Amorphous Phases

Water, like any other liquid, can be vitrified when cooled sufficiently fast as to avoid
crystallization. Unlike other substances, however, water can apparently form at least
two distinct forms of glass, known as low-density and high-density amorphous ice
(LDA and HDA, respectively). The properties of LDA and HDA, and the nature of the
transition between them, are key to understanding the thermodynamics of supercooled
and stable liquid water [53]. Recently, very-high-density amorphous ice (VHDA) has
been proposed as a third distinct form of glassy water [54].

Low-density amorphous ice (LDA)

The direct vitrification of liquid water was first achieved by Brüggeller and Mayer [55]
by ejecting a pressurized emulsion of µm-size water droplets in n-heptane onto liquid
ethane at 90 K. These authors subsequently vitrified pure (non-emulsified) water by
projecting a high-speed thin jet into liquid propane at 80 K [56]. Using rapid cooling of
small aerosol water droplets (3 µm ≤ d ≤ 25 µm) onto a metal cryoplate (15 K ≤ T ≤
77 K), Mayer was able to vitrify liquid water without resorting to a liquid cryomedium.
Vitrification of water by rapid cooling of the liquid is referred to as hyper-quenching,
since it requires cooling rates of about 106 K s−1; the resulting material is called hyper-
quenched glassy water (HGW).

But as well as production from the liquid or solid phases, amorphous ice can also be
obtained from condensation of the gas phase. In fact, amorphous ice was first found in
vapor deposition experiments. In 1935 Burton and Oliver [57] found that an amorphous
solid was formed when water vapor at low pressure was deposited on a sufficiently cold
substrate. This ice was later termed amorphous solid water (ASW). A large body of
experimental work has since confirmed this observation [58]. Typically, thin films of
vapor-deposited ASW are grown on single-crystal substrates (e.g., Au(111), Ru(001),
Pt(111)) at deposition rates between 0.1 and 7 µm h−1 and temperatures between 10
and 130 K, using molecular beams [59].

High-density amorphous ice (HDA)

As first shown by Mishima and co-workers in 1984, application of pressure to ice Ih at
low temperature leads to the formation of an amorphous solid, which has come to be
known as high-density amorphous ice (HDA) [61]. The idea behind the original exper-
iment was to cross the metastable extrapolation of the hexagonal ice melting curve. Be-
cause this locus has negative slope in the (P, T) plane, it (or its metastable extrapolation)
will be crossed upon compression of the stable solid phase. By choosing a temperature,
77 K, low enough to thwart kinetically the transformation into stable ice IX, and also



5. Ice: Introduction 61

FIGURE 5.4: Transition between the amorphous phases of ice. High Density Amor-
phous HDA (left) and Low Density Amorphous LDA (right) at ambient pressure [60].

such that any liquid phase would be below its glass transition, Mishima succeeded in
amorphizing ice Ih through a process that started at 10 kbar and was completed by 15
kbar.

Upon decompression to atmospheric pressure, HDA at 77 K remains a dense solid
(1.17 g cm−3 [62]), which transforms irreversibly to LDA upon heating to about 120 K
(Figure 5.4). Upon compressing LDA at 77 K, Mishima observed an abrupt transition
to HDA, accompanied by a 22% volume decrease, at 6 kbar. The structure of HDA
decompressed to ambient pressure has been studied by means of X-ray diffraction [63]
and neutron scattering [64–67].

HDA can also be produced by vapor deposition. It has been shown that ASW differs
when deposited at higher or lower temperatures. For surface temperatures below 30 K,
a higher density ice is formed, while at higher temperatures (∼30–130 K) a low density
amorphous ice is deposited [46, 68]. These ices are similar to the high- and low-density
amorphous ices produced in solid and liquid state transformations, and are considered
by some to be LDA and HDA [68, 69], while others see essential differences [70].

The transition between LDA and HDA

In 1985 Mishima and co-workers compressed LDA (formed by heating decompressed
HDA at atmospheric pressure above 130 K, and then rapidly cooling to 77 K) and
observed a sharp transition at 6± 0.5 kbar [62]. The transition entailed an about 22%
volume decrease, and did not reverse when the pressure was decreased. By increasing
the temperature to about 135 K, Mishima showed that the transition can be reversed
[71]. The sharpness and reversibility of the transformation are consistent with a first-
order transition between LDA and HDA.
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FIGURE 5.5: Transitions producing amorphous ices.

The progress of the LDA–HDA transition has been followed visually [72], as well as
by Raman spectroscopy [73] and using neutron diffraction [74]. The observation of a
well-defined propagating phase boundary [73] supports the notion of a first-order phase
transition. In contrast, a recent neutron and X-ray diffraction investigation (at atmo-
spheric pressure) of structural changes in recovered HDA upon annealing has been in-
terpreted as implying that the transition to LDA proceeds through a series of metastable
intermediates [75]. However, the temperatures in that study (95, 100, 105 and 110 K)
were all below 135 K, the thermal level required for the transition to be reversible and
hence the observations are instead fully consistent with incomplete structural relaxation
upon annealing.

Very-high-density amorphous ice (VHDA)

Recently Loerting et al. [76] reported that an apparently distinct form of high-density
amorphous ice can be recovered at 77 K and atmospheric pressure, following isobaric
heating of HDA under pressure. They called this material very-high-density amorphous
ice (VHDA). Specifically, they heated HDA at 11 kbar from 77 K up to 165 K, and at 19
kbar from 77 K to 177 K. The resulting material relaxed at atmospheric pressure and 77
K to the same structure, as characterized by X-ray diffraction and Raman spectroscopy,
and had a density of 1.25 g cm−3, that is to say ∼9% higher than recovered HDA. Both
the Raman spectrum and the x-ray diffraction pattern of VHDA differ from those of
HDA.

The detailed structure of VHDA has been determined by Finney et al. via neutron
diffraction with isotope substitution [77], with site-site radial distribution functions and
spatial density distributions calculated by the empirical potential structure refinement
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Monte Carlo procedure. The OH and HH radial distribution functions of recovered
VHDA were found to be very similar to those of HDA, but significant differences were
found in the respective OO distributions. The first OH coordination number for VHDA
is 2, indicating that each water molecule participates in two hydrogen bonds, and hence
that VHDA is a fully coordinated hydrogen bond network. Integration of the area under
the OO first peak out to the first minimum in HDA neuron diffraction reveals that the
nearest neighbors increases from 5 in HDA to 6 in VHDA [77]. Despite these differ-
ences, Klotz et al. [78] noted that the structure of recovered VHDA is very similar to
that of HDA at about 7 kbar.

Loerting et al. [76] found that the volume decreased continuously during isobaric heat-
ing of HDA. However, the recovered samples at 77 K and 1 bar showed just one distinct
structure. They interpreted this observation as implying that pressurized amorphous ice
with a continuum of densities relaxes upon depressurization to a new form of amor-
phous water, VHDA. Whether this recovered state is indeed a new form of amorphous
water, or just a kinetically trapped structure, is not known at present.

Amorphous ice morphology

The physical properties of amorphous ice have been studied using many experimental
methods ever since Burton and Oliver first identified amorphous solid water by means
of X-ray diffraction [57]. It has been found that the morphology and physical properties
of ASW films depend sensitively on the growth angle, thermal history of the film and
substrate characteristics [79–82].

However, the microscopic morphology of amorphous ices has not been studied thor-
oughly owing to the intrinsic limitations of the experimental conditions in which such
ices are produced. In 1987 Laufer et al. presented optical microscopy images of an
ice film grown by ballistic water deposition onto a cold surface somewhere between
20–100 K [83]. The resulting morphology was described as smooth ice needles with no
side branches, as opposed to the dendritic structure of hexagonal ice (see Fig. 5.6).

In 1991 Mishima et al.[72] reported a reversible transition between LDA and HDA
under high pressure at ∼130–150 K. The transition at the LDA-HDA boundary could
be followed through optical microscopy and the different phases were confirmed using
Raman spectroscopy.

The development of Environmental Scanning Electron Microscopy (ESEM) during the
1990s opened new possibilities to the study of the microscopic morphology of ice.
Conventional SEM required samples to be imaged under high vacuum, which meant
samples that produced a significant amount of vapor, e.g. biological samples, needed to
be either dried or cryogenically frozen. This meant that processes involving transitions
to or from liquids or gases in general could not be observed. On the other hand, ESEM
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FIGURE 5.6: Optical microscopy of ice needles as photographed by Laufer et al.[83].
Both images are magnified 15 times. Needles are about 0.1 mm long.

allows the examination of specimens surrounded by a low-pressure gaseous environ-
ment (e.g. 1–50 Torr) and high humidity (up to 100%). Even liquids can be viewed
in the microscope. In addition, it allows samples to be observed as they are grown by
vapor deposition on a cold substrate, as is the case of ASW.



Chapter 6

The mesoscale morphologies of ice
films

6.1 Introduction

Dust grains in interstellar space are typically covered with an icy film formed at the
very low temperature (3–90 K) of the interstellar medium [84]; it has been estimated
that most of the ice in the universe is to be found on these particles [68]. Larger icy
bodies are supposed to have formed through the accretion and reprocessing of this ma-
terial [85, 86]; icy films are found in the interstellar medium, in the Oort cloud, in
planetesimals, asteroids, comets, and Kuiper-belt objects, on the surfaces of icy planets
and moons, and in planetary ring systems and atmospheres, and much astrochemistry
is presumed to take place on these icy surfaces. A fundamental question, on which
hinge these astrophysical and astrochemical processes, is: in what forms — with what
morphologies — may such ice films be deposited? An apparently unrelated area of
science holds the key to answering this query. The deposition of films of ceramics,
semiconductors, and metals is an extremely active field. Experimental results have
been collated in an empirical structure zone model, which predicts the film morphology
on the mesoscale depending on the substrate temperature and the gas pressure [87, 88].
To connect the two bodies of knowledge of film deposition and ice physics we under-
took experiments in which we deposited films of ice at low pressure at 6–220 K. Our
premise was to discover whether the structure zone model applies to ice, chemically
very different to those materials from which it was derived. On one hand, our experi-
ments were aimed at discovering the mesoscale morphologies of ice films with regard
to bulk properties of astrophysical interest, such as porosity, which arise not only from
the molecular scale but also from morphology at the mesoscale. On the other, this work
furthers the understanding of the fundamental physics involved in the production of film
morphologies, which as yet is only just beginning to be unraveled.
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6.2 Ice films

6.2.1 Molecular structures

Although there are myriad forms of the solid phase of H2O — ice — found on the
Earth’s surface [89], with very different morphologies and bulk properties, at the micro-
scopic level they are all, from snowflakes to icebergs, composed of the same crystalline
polymorph, hexagonal ice — ice Ih — which is the stable structure at the temperatures
and pressures in our biosphere. Beyond these bounds, however, ice exhibits an exten-
sive range of crystalline solid phases, or polymorphs, distinguished from one another by
the arrangement of water molecules in the crystal lattice. The physical properties of the
polymorph, such as density, conductivity, vapor pressure and sublimation rate, are dic-
tated by its crystalline structure. There exist at least fifteen ice polymorphs [90]. Most
are thermodynamically stable under some range of pressure–temperature conditions
and many of the high-pressure polymorphs may be found in nature within icy moons
and planets [91]. However, at the lowest temperatures and pressures, water freezes not
in a crystalline phase, but as amorphous ice [90, 92]. In laboratory vapor-deposition
experiments hexagonal crystalline ice (Ih) is formed above ∼ 150 K, while between
∼ 130–150 K there appears another crystalline phase: cubic ice (Ic). Below ∼ 130 K,
the ice produced by vapor deposition is amorphous; this ice is frequently termed amor-
phous solid water (ASW). ASW differs when deposited at lower and higher tempera-
tures. At . 30 K, a higher density amorphous form is obtained, while at ∼ 30–130 K
a lower density amorphous form is deposited [46, 68]. There is a great deal of debate
as to whether different amorphous ice structures represent frozen versions of different
liquid polymorphs of water with an associated phase transition [92, 93]. High-density
amorphous ice constitutes the frost on interstellar dust grains, while the low-density
form is present on comets and Kuiper-belt objects. Cubic and hexagonal crystalline
ice is found at higher temperatures: on icy planets, moons and asteroids, in planetary
atmospheres and ring systems, on comets that have undergone solar heating, and in the
Kuiper belt [91].

The preceding summary has set out ice-film structure at the molecular scale, where the
hydrogen bonds are responsible of all previous polymorphs. However, just as ice on the
Earth’s surface is all ice Ih at the microscale, but has different mesoscale and macroscale
morphologies from snowflakes to icebergs, beyond their molecular structure, films of
ice may have different morphologies at the mesoscale with a concomitant impact on
their bulk properties.

6.2.2 Mesoscale morphologies

In another realm of science, for many years solid films of numerous different materials
have been deposited onto substrates from the vapor phase [87, 88]. The field is driven
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by a huge number of technological applications, but also has much scientific interest.
One of the key differences between films and bulk materials is in their morphologies.
While the very thinnest films of, say, less than twenty monolayers thickness, are epi-
taxial — that is, influenced by their substrate — this influence diminishes with film
thickness, and it is found empirically with ceramics, semiconductors, and metals that
once a growing film passes some hundred or so monolayers in thickness it begins to
show characteristic morphologies independent of its substrate. From the 1960s on ef-
forts have been made to construct an empirical classification of the morphology of a
film depending on the conditions of its deposition. This has culminated in the structure
zone model, which gives the distinct film morphologies obtained as a function of vari-
ables involved in the film deposition; in recent versions of the model, these variables
are often the renormalized substrate temperature T/TM, where TM is the melting point
of the material being deposited, and the ion energy, which is inversely related to the
decrease of gas pressure in the sputtering techniques used in physical vapor deposition
experiments [88, 94]. We portray a version of the model in Fig. 6.1. The structure zone
model, it should be stressed, is simply a collection of empirical observations, which de-
scribes well the trends seen in experiments with ceramics, semiconductors, and metals.

The question we wished to answer is whether these same morphologies are found
in films of ice, despite the very different chemical bonding in ice — which has an
extensive network of directional hydrogen bonds — compared to the materials from
which the structure zone model was devised. Our interest was principally to study
sub-micrometer- to millimeter-thickness ice films at a range of low temperatures and
pressures corresponding to a variety of astrophysical environments, in which condi-
tions range from the lowest temperatures and pressures, to others in which, although
still at low pressure, ice growth is subject to radiation (infrared, optical, ultraviolet,
X-ray) and particle bombardment (electrons, protons, ions).

6.3 Experimental setup

In our experiments we used a FEI Quanta 200 environmental scanning electron micro-
scope (ESEM) equipped with a liquid helium cold stage to grow ice films in situ at
low pressures and at temperatures of 6–220 K. As well as a high-vacuum mode as in
a conventional scanning electron microscope, an ESEM has further operating modes
in which the chamber can function in the presence of water vapor and/or an auxiliary
gas at pressures of up to 4000 Pa, and observations can be made without the need to
metal coat the sample. The combination of the ESEM with a liquid helium cold stage
makes it possible to grow and image ice films in situ within the instrument. We began
by evacuating the chamber in the high-vacuum mode of the microscope (target pressure
6× 10−4 Pa) and lowering the substrate to the working temperature. The microscope
was set up so that the helium cold finger, together with a thermostat, was directly be-
neath the substrate on which we grew the ice film. We employed several substrates
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FIGURE 6.1: A version of the structure zone model of film deposition with axes
T/Tm, where T is the substrate temperature and Tm is the melting point of the material
being deposited, and E/Es where E is the admolecule energy and Es is the sputter-
ing threshold of the material being deposited : zone 1 (Fig. 6.2), porous morphol-
ogy consisting of tapered columns separated by voids; zone T (Fig. 6.3), transition
morphology with no long-range structure beyond the nanoscale; zone S (Fig. 6.4),
spongelike morphology characterized by a three-dimensional open network; zone M
(Fig. 6.5), matchstick morphology consisting of parallel columns with domed tops;
zone 2, columnar crystalline grain structure; and zone 3, recrystallized crystalline

grain structure.

(brass, carbon, copper, platinum, and titanium in flat samples that were smooth at the
micrometer resolution of the microscope and were thermally coupled as well as possi-
ble to the cold stage beneath them); we did not detect differences in film morphology
between them. To grow an ice film we switched the microscope to low-vacuum mode,
in which we could inject water vapor into the chamber for a given length of time and
at a determined target pressure. We either used demineralized water alone, or else bub-
bled helium through the water prior to injection to provide an inert auxiliary gas in the
chamber and to reduce the water vapor pressure. The ice film was then deposited on
the substrate, which was the coldest point within the microscope. We switched again to
high-vacuum mode to image the results.
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After each experiment we heated the substrate to remove the ice film. As we took ad-
vantage of an existing ESEM setup for our experiments, rather than having to construct
the experimental apparatus from scratch, which would have been prohibitively expen-
sive, there were certain limitations around which we had to work. We did not have the
means to measure the ice film thickness, except when the film peeled away from the
substrate (see Fig. 6.3(a)), and the temperature measurement was at the base of the ice
film, not at its surface. The microscope chamber walls were not thermally isolated from
the room, so radiative heating of the sample altered the ice surface over a period of tens
of minutes to an hour, even though the substrate was maintained at the programmed
temperature.

The target pressure to which the ESEM controller was set would be the pressure present
in the system if it were at equilibrium, but our experiments took place far from equi-
librium; as soon as water vapor entered the experimental chamber it was sequestered
by deposition on the substrate. The target pressure and injection time thus regulated
the amount of water vapor allowed to enter the experimental chamber. After the entry
of a controlled amount of vapor, the system was set back to high-vacuum mode. The
pressure at the ice surface during injection is a dynamical variable dependent on the
injection time and on the presence or absence of helium as an auxiliary gas, and the
system tends to equilibrium at the vapor pressure of ice at the working temperature,
given by the Clausius–Clapeyron equation p = ae−b/T . For temperatures below around
150 K this implies that the pressure equilibrates to a value orders of magnitude lower
than the high-vacuum mode target pressure 6×10−4 Pa. We are not aware of any direct
measurements of ice vapor pressure performed at these temperatures — it does not seem
to be a trivial task — and values sometimes quoted in the literature are from formula-
tions based on theoretical studies (the Clausius–Clapeyron equation with higher order
corrections), with the numerical values of the terms (a, and b in the Clausius–Clapeyron
equation, etc) determined by fitting at higher temperatures. In general, then, the surface
pressures involved in these experiments vary enormously from extremely low pressures
in the lowest-temperature zones of the structure zone model, up to a few Pascals in the
higher-temperature zones.

6.4 Results

6.4.1 Lowest temperature zones

The region of lowest substrate temperature in the structure zone model is occupied by
zone 1. Zone 1, or cauliflower morphology, has been found in other materials to consist
of competing void-separated tapered columns whose diameters expand with the film
depth according to a power-law, so the film surface resembles a cauliflower, showing
self-similarity over a range of scales. We produced an ice film of this morphology in
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the example in Fig. 6.2 using water vapor accompanied by helium as an auxiliary gas
in the chamber deposited on a substrate at 6 K. We injected water bubbled through
with helium with a target pressure of 10 Pa for 6 s, then reset the microscope to target
pressure 6×10−4 Pa, and the film was deposited on a titanium substrate maintained at
6 K. We show in Fig. 6.2 two images of cauliflower surface morphology from varying
perspectives, an oblique view and a plan view; they are taken at different scales to
illustrate the self-similarity.

By depositing the ice film at the same substrate temperature, but at a higher target
pressure for a shorter time without an auxiliary gas, we obtained, in the example shown
in Fig. 6.3, zone T, or transition morphology, in which there is no long-range structure
above the nanoscale. We injected water with a target pressure of 133 Pa for 1 s, then
reset the microscope to target pressure 6× 10−4 Pa, and the film was deposited on a
copper substrate at 6 K. The general view seen in Fig. 6.3(a) shows the featureless
surface characteristic of zone T; the film in this experiment had poor adhesion to the
substrate and peeled away in places, enabling us to measure its depth as approximately
2 µm. Successively closer views in Figs 6.3(b) and (c) allow us to see the boundaries of
the individual densely-packed grains making up the surface, which were made visible
as electronic charge accumulated on the grain boundaries of the poorly conducting ice
surface during imaging.

In qualitative terms, the morphology of zone 1 is driven by a competitive process of
growth of clusters at all scales, leading to a fractal geometry, while greater mobility
of admolecules in zone T than in zone 1 smooths out the surface. As they form at
the lowest temperatures, both zone 1 and zone T morphologies can be presumed to
be composed of high-density amorphous ice. We heated the substrate to remove the
ice film on concluding the experiment, and we noted that at close to 30 K the water
vapor pressure in the chamber increased sharply, which we attribute to sublimation
during the transition from high- to low-density amorphous ice. We did not however see
any mesoscale structural change associated with this transformation at the molecular
scale. These experiments at the lowest temperatures correspond to the conditions under
which ices that have never been heated above 30 K should exist: in cold regions of the
interstellar medium and the Oort cloud.

6.4.2 Intermediate temperature zones

At substrate temperatures above those of the transition morphology of zone T, a sponge-
like morphology has been described for metallic films [95]. We were able to reproduce
this morphology, zone S, with an ice film, by injecting water vapor for a longer time
than for zone T. The two images of the morphology we present in Fig. 6.4 were taken
at different stages during a long injection process. We used a copper substrate in this
experiment. Fig. 6.4(a) was after 83 s of injection of water with a target pressure of
10 Pa, then reset to target pressure 6× 10−4 Pa, with the substrate at 6 K, and (b)
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FIGURE 6.2: Zone 1, cauliflower morphology, film produced with water bubbled
through with helium injected with a target pressure of 10 Pa for 6 s, then reset to

target pressure 6×10−4 Pa, deposited on a titanium substrate at 6 K.

Fig. 6.4 was following a further 55 s of injection at target pressure of 10 Pa, during
which the substrate temperature rose transiently to 80 K, followed by a reset to target
pressure 6× 10−4 Pa. As shown in Fig. 6.4, this morphology is characterized by a
three-dimensional open network of material like a sponge.

On the other hand at substrate temperatures above those corresponding to zone 1 cauliflower
morphology, and for relatively high admolecule mobility there appears the final zone
in the low-temperature region of the structure zone model: zone M, or matchstick mor-
phology. In the examples of this morphology we reproduce in Fig. 6.5 we see very
large columns tens of micrometers in diameter resulting from ice deposition over sev-
eral minutes using helium as an auxiliary gas in the chamber. We injected water bubbled
through with helium for 6 minutes with a target pressure of 133 Pa, then reset the micro-
scope to target pressure 6×10−4 Pa, and the film was deposited on a platinum substrate
at 6 K. The columns display the domed tips characteristic of matchstick morphology,
and also show interesting substructures; they are segmented both on the tip and along
their length, giving them a biomimetic shape, like an icy worm. These large match-
sticks may have been the morphology seen in experiments by Laufer et al. [83], who
described an ice film grown at somewhere between 20–100 K as looking like “a shaggy
woolen carpet”.

The ice structures in zones S and M should appear in astrophysical contexts at low
pressures and temperatures around the range∼ 30–130 K typical of the Kuiper belt and
colder icy moons; they should thence typically be composed of low-density amorphous
ice.
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FIGURE 6.3: Zone T, transition morphology, film produced with water injected with
a target pressure of 133 Pa for 1 s, then reset to target pressure 6×10−4 Pa, deposited

on a copper substrate at 6 K.

6.4.3 Morphologies at higher temperatures

The zones in the structure zone model are not all disjunct; in Fig. 6.6(a) we present an
example of a morphology intermediate between zones 1 and M. We injected water with
a target pressure of 133 Pa for 13 minutes, then reset the microscope to target pressure
6× 10−4 Pa, and the film was deposited on a brass substrate at 6 K. Although there
is as yet no quantitative physical model for the transition from zone 1 to zone M, it
can be viewed qualitatively in terms of competitive growth that produces a fractal mor-
phology giving way to noncompetitive growth that leads to a columnar morphology;
the existence of an intermediate morphology intimates that this is not a nonequilibrium
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FIGURE 6.4: Zone S, spongelike morphology, film deposited on a copper substrate.
Left: After 83 s of injection of water with a target pressure of 10 Pa, then reset to
target pressure 6×10−4 Pa, with the substrate at 6 K. Right: Following a further 55 s
of injection at target pressure of 10 Pa, during which the substrate temperature rose

transiently to 80 K, followed by a reset to target pressure 6×10−4 Pa.

phase transition. Upon heating the substrate in this experiment we induced the transient
growth of whiskers on top of this film at a substrate temperature of 220 K, as we see
in the sequence of Figs 6.6(b)–(d). These whiskers are therefore almost certainly of
hexagonal crystalline ice, whose propensity to form complex dendritic structures is fa-
miliar from snowflakes. This knowledge should forewarn us that the morphologies we
should encounter in zones 2 and 3 of the structure zone model, at high substrate temper-
atures corresponding to the deposition of crystalline ice, would reflect this complexity.
Nonetheless we were taken aback by the beauty of the structures we obtained in these
conditions, seen in Fig. 6.7. The hexagonal crystalline nature of this ice is reflected in
the 60o angles of growth of the branches, shown most clearly in Fig. 6.7(c). Although
these forms are consistent with the tendency of ice to dendritic growth, seen, for exam-
ple, in snowflakes [96], here the environment is significantly different. This fascinating
palmlike morphology of branched whiskers is intermediate between dendritic growth
and the whiskers of Figs 6.6(c)–(d). To obtain these structures we injected water with
a target pressure of 10 Pa for 15 minutes, then reset the microscope to target pressure
6× 10−4 Pa, and the film was deposited on a carbon substrate at 6 K; the growing ice
surface became progressively more thermally insulated from the substrate as the film
depth increased and the morphology changed correspondingly. In our experiments the
microscope chamber is evacuated but not thermally isolated from its surroundings, so
the walls are at room temperature and radiate accordingly, and the film surface tem-
perature reflects this. The temperature of the upper surface in this experiment can be
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FIGURE 6.5: Zone M, matchstick morphology, film produced with water bubbled
through with helium injected for 6 minutes with a target pressure of 133 Pa, then reset

to target pressure 6×10−4 Pa, deposited on a platinum substrate at 6 K.

estimated to be close to 200 K, taking into account the low thermal conductivity of
the ice and the substrate and the radiation received. At this temperature there is high
admolecule mobility, resulting in surface diffusion, both of molecules and of heat, and
sublimation; this dynamic equilibrium of fluxes along and perpendicular to the surface
is presumably the basic physics involved in producing this skeleton of palmlike struc-
tures formed by highly ordered branched whiskers.

These whiskerlike and palmlike crystalline ice structures could be present under astro-
physical environments in which the ice surface has been heated above 130 K, such as
comets, Saturn’s rings, or the surfaces of some icy moons and planets.
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FIGURE 6.6: (a) Morphology intermediate between zones 1 and M produced with
water injected with a target pressure of 133 Pa for 13 minutes, then reset to target
pressure 6×10−4 Pa, deposited on a brass substrate at 6 K. (b, c, and d) Whiskers of
ice form on top of this morphology during heating of the substrate as the temperature

reaches 220 K.
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FIGURE 6.7: Dendritic morphology resembling a palm tree produced with water
injected with a target pressure of 10 Pa for 15 minutes, then reset to target pressure

6×10−4 Pa, deposited on a carbon substrate at 6 K.

6.5 Discussion

As we have seen, structure zone model morphologies do appear in ice films. Can this
knowledge contribute to understanding the fundamental physics of the structure zone
model? And can such an understanding in turn allow us to comprehend better the
astrophysics?

The two axes of the structure zone model commonly shown in work on ceramics, semi-
conductors or metals are the renormalized substrate temperature and the ion energy,
which is inversely proportional to the gas pressure in sputtering experiments used in
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that work [88, 94]. On the other hand the deposition technique employed in these exper-
iments is evaporation, involving thermal energies (3/2kT < 1 eV) for the admolecules.
However, the energy required to sputter a water molecule is ∼ 0.2 eV [97], much lower
than the 10–30 eV sputtering threshold for ceramics, semiconductors or metals [88]. To
generalize the structure zone model we may renormalize the scale of the second axis by
the sputtering threshold, in the same way as the substrate temperature is renormalized
by the melting point for the first axis. This we have done in Fig. 6.1. It becomes appar-
ent then that the physical basis for the two axes is admolecule mobility induced in one
case by the temperature of the film itself, and in the other by the impinging admolecules
from the vapor. The latter mechanism is related in these experiments to the presence
or absence of helium as an auxiliary gas in the chamber that will thermalize with the
chamber walls. For sputtered films material leaves the sputter source with relatively
high energies (several electron volts). As the gas pressure is increased more scattering
occurs and the arrival energy of the sputtered material decreases. For evaporated films,
on the other hand, the arrival energies are low; if gas assist is added then the energy per
admolecule increases. That the different effects of the two sources for admolecule mo-
bility lead to more or less compact structures we can comprehend by noting that, unlike
thermal mobility, admolecule movement induced by bombardment is highly directional.
This directionality is an avenue to explore in moving towards a physical understanding
of the structure zone model as a consequence of the competition between the spatially
disordered deposition of particles on the growing film surface and the ordering effect of
activated particle mobility processes.

The basic structure zone model is the result of normal deposition, and of deposition
when the vapor flux has a spread of angles about the normal; this is our case, and is
the most likely case in a natural setting. When the vapor flux is collimated and its
angle is controlled, the columnar morphologies grow following the incident beam, and
so-called sculptured thin films can be produced [88]. In columnar morphologies, the
column spacing increases as the angle of beam and of the growing columns is further
from the normal. It is probable that such sculptured thin films of ice were formed in
experiments of Kimmel and coworkers, in which beams of water vapor were deposited
at a variety of growth angles on a surface at low temperature, and the amorphous films
grown at more oblique angles were found to be more porous [80, 98].

It has been noted in both experiments and simulations of film deposition that there is
an equivalence in terms of the mesoscale morphology produced between the substrate
temperature and the deposition rate [87, 99]. This we can comprehend in molecular
terms as a competition between the timescale of the surface kinetics, and the mean time
between admolecule arrival at the surface. As long as the latter is longer than the former
— i.e., below a certain threshold deposition rate — the deposition rate is not significant
in terms of morphology and alters only the time scale of the film growth. It should
be stressed that the field of solid film growth is largely empirical, that experiments
are generally undertaken on materials with industrial applications in mind, and that
although there are complex simulations using molecular modeling techniques, there
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is not yet a full understanding of the theoretical basis of why materials show these
structures on the mesoscale; the latter question is being tackled in parallel with these
experiments [99].

Knowledge of the existence and morphologies of these mesoscale structures ought
to aid understanding fundamental physical and chemical processes involving surfaces
coated with icy films. In the very thinnest films epitaxial growth upon the substrate is
clearly determinant, as can be seen in work on very thin films of ice [100]. As the film
thickness increases, the substrate ceases to play a role in the film morphology and the
mesoscale morphologies of the structure zone model appear. Consistent with this de-
velopment of mesoscale morphologies, ice-film experiments by Hornekaer et al. [101]
show increasing porosity as the film thickness increases. Icy mantles of nanometer
thickness form on dust particles in interstellar clouds, through condensation from the
gas phase or by reactions on the grain surfaces. As dense cores within interstellar
clouds collapse, icy grains are incorporated in the coldest regions of the disk. Closer
to the protostar, icy mantles are evaporated and reform as the disk cools. Over a few
million years, the icy dust aggregates, forming small planetesimals, and subsequently
planets and moons. The remaining planetesimals form the Oort cloud and Kuiper belt,
asteroids and comets made up of regolith and ices. The bulk properties of these ice mor-
phologies are important for understanding physical and chemical processes involving
the surfaces of these bodies. On Earth, once such porous materials aggregate beyond
the micrometer scale their weight compacts them. This will not occur in low-gravity
environments, so the mesoscale porosity materials we have obtained in our experiments
can only occur in thin films on Earth, but may be much more widespread as aggre-
gates in lower-gravity conditions. The agglomeration of particles during planetismal
formation should certainly be affected by the porosity of the icy film, which should aid
aggregation and prevent fragmentation; the case of cometary dust aggregates is similar.
Cometary ices are undoubtedly porous; our work imparts an understanding of how such
porosity arises at the mesoscale and so provides a counterpoint to work on producing
laboratory analogues of cometary ices [102], in which the effects of porosity are noted
but the morphology is unknown. On the other hand, in the context of energetic pro-
cessing of ice films, it has been suggested that, owing to cosmic ray bombardment, ice
on interstellar grain mantles should be compact in structure, and it has been shown by
infrared absorption spectroscopy that ice porosity decreases after ion irradiation [103];
in our terms this would correspond to the passage from zone 1 to zone T. A reconsid-
eration in terms of the structure zone model morphologies of what is at present often
placed under the catch-all label of porosity is one of the basic proposals we wish to put
forward.

Our experiments have been performed with water alone, while astrophysical ice is gen-
erally mixed with other volatile solids such as carbon monoxide, carbon dioxide, am-
monia, methanol, and methane [85, 86]. We can view the effect of these impurities in
terms of the structure zone model by noting that as they have different melting points
and sputtering thresholds to water, we may expect them to alter the position of the
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deposited material on the structure zone model diagram. Depending on how far the
position on the diagram changes, a structure zone boundary may be crossed, in which
case the material could possess a different morphology to pure ice deposited at the same
temperature and pressure.

An intriguing aspect of this work is the finding that ice on its own can form biomimetic
structures under astrophysical conditions. Knowledge of this phenomenon is important
for astrobiologists searching for life in similar extreme conditions in space, and is a
timely reminder that biomorphic forms, especially at small scales, are not in themselves
evidence of life.





Part III

Chemical Gardens
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Chapter 7

Chemical Gardens: Introduction

There is a wide variety of mechanisms in nature that produce tubular structures through
self-organizing and templating processes. We can find many examples with and without
the influence of biological entities, but they are always a consequence of physical and
chemical interactions. Examples in biology include mollusk shells, tubular algae, coral
exoskeletons, tube worms... The range of geological processes that produce tubular
growth is even wider. The most common cases are the speleothem formations found
in limestone caves, including stalactites, stalagmites, soda straws and helictites [104].
They are all grown by precipitation of carbonate dissolved in water drops flowing along
the cave rocks. But the most spectacular formations are undoubtedly the hydrothermal
vents found on the seabed near volcanically active regions, the so-called black smokers
[105]. The precipitation in this case occurs at the interface where the hot mineral-rich
fluid flowing from the seabed encounters the colder surrounding seawater. In order to
study tube formation in a laboratory we use “silicate gardens” or “chemical gardens”.
These are tree-like tubular formations that are grown when a metallic salt is immersed
in a sodium silicate solution [106].

Our interest in this field was triggered by the opportunity to grow chemical gardens
in microgravity on the International Space Station. We have studied the formation,
structure and composition of gardens grown from different metal salts and in different
conditions in order to better understand the physics and chemistry involved.

Speleothems

Speleothems are cave formations that grow by mineral deposition, usually in limestone
caves. As water seeps through the cracks in the cave’s bedrock it dissolves and carries
certain compounds, like calcium carbonate and calcium sulfate. The solubility of these
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compounds is increased by carbon dioxide dissolved in the water. When this solution
reaches an opening in the cave, it releases the carbon dioxide and the solutes precipitate.
Accumulation of these precipitates over the years gives rise to to a variety of different
morphologies: stalactites, stalagmites, columns, straws, draperies... There are many
factors that influence the shape of the speleothem. Mainly the rate of flowing water,
the amount of acid in this water, the temperature and humidity of the cave, and the
strength and direction of wind currents. The internal structure and composition of the
speleothem can be used, like ice cores, as a way to measure the past climate changes
[107].

Stalactites are conical formations that grow from the ceilings of limestone caves (see
Figure 7.1a). They are formed by the precipitation of calcium carbonate that is left
behind by every drop of water that drips off the cave ceiling. The growth rate can be
as fast as a few millimeters per year, depending on the flow of water and its richness
in concentration of carbonates and carbon dioxide, and they can grow to a length of
several meters. Where the dripping water hits the cave floor, further precipitation of
carbonate initiates the growth of a stalagmite (see Figure 7.1b). If a stalactite and a
stalagmite grow long enough, they can meet and fuse forming a column.

Soda straws are the precursors of stalactites. They are hollow tubes grown from the
ceiling by dripping of mineralized water (see Figure 7.1c). If the hole at the bottom of
the straw is blocked, or if the water begins flowing along the outer surface of the tube,
the soda straw will become a stalactite.

Helictites are the most delicate of cave formations. They are thin needles of calcium
carbonate that shift their growth direction over time. The result is a curved morphology
that looks as if they were grown in zero gravity (see Figure 7.1d). The cause of this
curving is most likely capillary forces. If the water flows through a very thin central
cavity in the helictite, like it happens with straws, capillary forces would be strong
enough to transport the mineralized water against gravity.

Biological examples

Many living organisms develop or grow external tubular structures, sometimes tem-
plated by their own body. These structures can cover a range of different functions for
the organism. Usually they provide protection or shelter from predators, as in the case
of shells or exoskeletons, but they can also provide structural stability that enables the
organism to out-grow its competitors and reach out for food.

Some bacteria grow a polysaccharide sheath that attracts and bonds metal cations, pro-
ducing a tubular structure templated by the organism’s body [109]. Tubular fossilized
structures found on sedimentary layers of banded iron formations have been attributed
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FIGURE 7.1: Typical speleothems: a) stalactite, b) stalagmite, c) soda straw, d) he-
lictites [108]. Stalactite and stalagmite in these pictures are about 1 meter long; soda

straw and helictites are a a few centimeters long.

to be of biological origin [110]. Mollusk and gastropod shells are grown by the precip-
itation of calcium carbonate secreted by the animal’s mantle [111].

Corals are a particularly interesting example. They were initially believed to be plants,
due to their branched morphology (see Figure 7.2a). It wasn’t until the 18th century
that their cell membranes could be analyzed and they were established to be animals.
Corals are colonies of thousands of genetically identical individuals called polyps. Each
polyp is only a few millimeters in diameter. They attach to rocks at the bottom of
shallow waters and feed on plankton and small fish. The formation of the calcareous
exoskeleton involves deposition of the mineral aragonite by the polyps from calcium
and carbonate ions they acquire from seawater. Its function is to protect the organism
from predators and the elements. The rate of deposition varies greatly across species
and environmental conditions, but it takes many generations for polyps to build the
coral reefs that are found in tropical oceans and that provide shelter for some of the
richest ecosystems found on Earth [112, 113].

Other examples of templated tubular growth in biology are the different species of tube-
building annelid worms (see Figure 7.2b). Some of them, like the serpulid family,
secrete tubes of calcium carbonate and have an operculum that blocks the entrance of
their tubes when they withdraw inside. But the most spectacular of them is undoubtedly
the giant tube worm that lives near deep sea hydrothermal vents. These worms attach
themselves to the sea floor and start growing a cylindrical shelter around their body.
They have a highly vascularized, red plume at the tip of their free end which is an organ
for exchanging compounds such as oxygen, carbon dioxide, and hydrogen sulphide
with the seawater. Although the worms have no eyes, they can sense movement and
vibrations and will retreat into their protective tubes when threatened. These worms
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FIGURE 7.2: Examples of biological tubular structures: a) coral reef, each polyp is a
few millimeters in diameter; b) giant tube worms, the tubes are 2–3 cm in diameter.

[114]

exhibit a surprising growth rate (as fast as 85 centimeters per year) and reach over 2
meters in length [115]. Tubes are white, flexible and tough. They are mostly made of
chitin that is secreted from the so-called pyriform glands and is added at the open end
of the tube. The tubes are visibly sectorized, indicating a possible seasoning in their
growth rate.

Hydrothermal vents

Hydrothermal vents are fissures on the planet’s surface from which geothermally heated
water flows. This water is rich in dissolved minerals from the crust, most commonly
sulfides. They are found in areas where tectonic plates overlap or move apart. When
this happens under the sea, the encounter between the superheated mineral-rich water
expelled from the vent and the cold high-pressure water at the sea bottom causes iron
sulfides to precipitate around the flow, growing chimney-like structures called “black
smokers” (see Figure 7.3a). They are named after the dark hue of the particles they emit,
mostly sulfur-bearing minerals, or sulfides. The term “white smokers” refers to vents
that emit lighter hued minerals, such as those containing barium, calcium or silicon.
These vents also have lower temperature plumes (see Figure 7.3b).
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FIGURE 7.3: Examples of deep sea hydrothermal vents: a) black smokers, b) white
smokers [116].

The water that flows from the sea-floor hydrothermal vents consists mostly of sea water
drawn under the earth through faults and porous sediments, along with some magmatic
water released by the upwelling magma. This emerging water can be at a temperature
of up to 400oC [117], but does not boil because the water pressure at that depth (about
300 atm) exceeds the vapor pressure of the aqueous solution. It is also extremely acidic,
having a pH value as low as 2.8. The initial stages of the chimney formation begin with
the deposition of the mineral anhydrite, followed by precipitation of sulfides of copper,
iron and zinc, filling in the chimney’s gaps and making it denser over the course of
time. Some of these chimney structures can grow at a rate of 30 centimeters per day
and reach heights of 60 meters [118, 119], but they do not usually remain active for a
long period of time.

The first of these underwater chimneys was found in 1977 along the Galapagos Rift.
A whole chemosynthetic ecosystem was discovered growing around these deep-sea hy-
drothermal vents [105]. The biological density of this ecosystem is surprising when
compared to the rest of the sea floor, specially considering the absence of photosyn-
thetic activity at this depth. All previously known life forms were dependent on the
Sun’s energy and organisms living in deep oceanic waters were assumed to be feeding
on detritus sinking from upper levels of the ocean. However, this could not account for
the number of organisms found living around hydrothermal vents. These large com-
munities are able to sustain such vast amounts of life by feeding on chemosynthetic
bacteria. These bacteria can convert methane and hydrogen sulfide (which are toxic
for most other known life forms) provided by the black smokers into organic material
through the process of chemosynthesis. The whole ecosystem relies on the continued
existence of the hydrothermal vent as a source of energy.

The chemosynthetic bacteria grow into a thick mat that covers the outer surface of the
chimney. Soon, tiny animals such as amphipods and copepods come to feed on the
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bacteria. These are followed by snails, shrimp, crabs, tube worms, fish and octopuses.
In their most advanced stages vents are home to mussels, a variety of worms, anemones
and a large population of crabs, as well as many of the earlier colonists. The variety of
species forms a food chain with grazers, predators and scavengers that will self-sustain
as long as the vent remains active.

Over 300 new species of animals have been discovered at vents. Many are found
nowhere else on earth and could not exist outside those physical conditions. This emer-
gence of life has driven the proposal of new biological and bio-atmospheric theories,
including a possible hydrothermal origin of life based on sulfur metabolism [120, 121].
The convergent evolution of similar species found around geographically distant vents
is also a major support for the theory of evolution and a perfect example of natural se-
lection at work in a fairly confined habitat. There is strong evidence that a liquid ocean
exists below the icy surface of Jupiter’s moon Europa. If this ocean contains hydrother-
mal vents as well, which could be a consequence of tidal heating, scientists speculate
they could be wellsprings of alien life.

Chemical gardens and the origin of life

Chemical gardens are tree-like tubular formations that are grown when we immerse a
solid metal salt into an aqueous solution of sodium silicate (otherwise known as water-
glass) [106]. The chemical garden reaction was first observed and described by Johann
Rudolf Glauber in 1646 [122] when he introduced ferrous chloride crystals into a solu-
tion of potassium silicate. When the salt begins to dissolve, it develops a metal silicate
coating around itself. This coating acts as a semipermeable membrane which, forced
by osmotic pressure, intakes water from the silicate that will continue to dissolve the
salt. In this way the membrane increases in volume while isolating the silicate solu-
tion outside from the metal solution inside. At some point the membrane will breach
and eject a plume of metallic solution. The outer silicate solution lowers the pH of the
ejecting fluid and causes it to precipitate, forming a tubular structure composed of metal
oxides and silicates. The color will depend on the metal salt used, just as the color of
glass depends on the metal added. The material formed from this experiment will grow
upwards, since the density of the ejected metal solution is lighter than the water glass,
therefore forcing the tubes to grow upwards. The resulting morphology resembles that
of a plant or a tree. Hence the name “chemical gardens”.

The reaction has historically been a matter of great research interest. Apparently Isaac
Newton developed an interest in chemical gardens during his work on the obsolete
field of alchemy. He created “magic gardens in oil of sand” (waterglass), the organic
appearance of the structures seemed to confirm the alchemical idea that metals had a
life of their own and could vegetate.
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In 1911 Stéphane Leduc wrote The Mechanism of Life [123]. He was convinced that
the morphological similarities between chemical gardens and many organic formations
were not a coincidence and that osmotic processes played an important role in the origin
of life. He thoroughly experimented with different salts and solutions. He was able to
reproduce the morphology of many plants, fungi and even seashells (see Figure 7.4).

FIGURE 7.4: Leduc’s osmotic plants [123].

The rise of genetics discredited Leduc’s ideas and brought a whole new set of theories
on the origin of life. Chemical gardens were then regarded as a scientific curiosity
and relegated to children’s chemistry sets (see Figure 7.5a). In 1985 four high-school
students won a competition organized by the U.S. space shuttle program and adapted
this experiment to be performed in Space. The absence of gravity produced chemical
gardens that grew out in random directions, tending to be twisted and in some cases
forming spiral shapes [124].

The discovery in December 2000 [125] of the Lost City (hydrothermal field) brought
new scientific interest on chemical gardens. The vents found in the hydrothermal field
differ significantly from the black smoker vents found in the late 1970s. Black smokers
are very acidic, with very high temperatures and chemically composed of iron, man-
ganese and sulfur compounds. Fluid coming out of the Lost City vents on the other
hand is alkaline (pH 9–11), has a much lower temperature (28–90oC) and precipitates
carbonate. The vents pump out water that has been drawn down into cracks in the ocean
floor and heated to about 200oC. As the fluids return to the cold ocean, calcium carbon-
ate precipitates from the water. This process has been active for 30 000 years, building
underwater towers as high as 60 meters that somehow resemble giant chemical gardens.
In 2007 oceanographers reported finding abiotically produced organic compounds, in-
cluding methane, in the water flowing from the vent [126]. All these conditions together
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(alkaline water, not too hot, organic compounds) fit perfectly with current theories re-
garding the origin of life on our planet [127] and gives astrobiologists new information
as to where life could emerge on other planets.

FIGURE 7.5: a)“Magic garden” grown from ferric chloride (brown) and nickel sul-
phate (green) as published in 1946 by a divulgative magazine [128]. The length of
the tubes is ∼10 cm. b) Carbonate towers found in the Lost City hydrothermal field

[116]. These are about 1 meter tall.



Chapter 8

Chemical gardens from silicates
and cations of group II

8.1 Introduction

As mentioned above, chemical gardens are the plantlike structures produced by a variety
of different metallic salts when immersed in a solution of one of a number of anions,
the most investigated of which is silicate [129]. When the crystal of the salt begins
to dissolve in the silicate it reacts and forms a gel around itself. This gel acts as a
semipermeable membrane, inhibiting the outflow of ions from the salt but permitting
water from the silicate solution to flow in towards the salt crystal driven by osmotic
pressure. As the water flows and the crystal continues to dissolve the pressure inside
the membrane rises. At some point, in general, the membrane ruptures and there forms
a small hole through which the metal solution inside flows out. This metal solution
reacts with the silicate outside; a tube around the flow growing by precipitation. The
tube morphology is a product of forced convection driven by osmotic pressure owing
to the semipermeable membrane and free convection from buoyancy, since the ejected
solution is generally lighter than the external silicate. The final result is a combination
of tubes of different sizes and shapes, resembling a tree or a garden.

Although chemical gardens are by no means a newly discovered phenomenon [122],
this complex system combining different physical processes with chemical reactions of
dissolution, precipitation, nucleation, crystallization and polymerization is not yet well-
characterized in terms of understanding the physical and chemical parameters in order
to be able to control the morphology, composition and microstructure of these tubes.

The main interest in the chemical-garden system has been for chemical demonstrations
— which is somewhat ironic when the phenomenon is not fully understood — but it also

91
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has relevance to processes of industrial importance that involve precipitation across a
colloidal gel membrane separating two different aqueous solutions, for example the
hydration of Portland cement [130] and the corrosion of metals [131]. It has also been
proposed that the membranes of chemical gardens produced in submarine vents may be
an ideal site for the origin of life [132].

While recent research has focused on controlling the tube growth itself [133], there is
not much work that includes a thorough study of their morphology, chemical composi-
tion and microstructure. Traube [134] hypothesized the formation of the semipermeable
membrane, which was later experimentally confirmed by Pfeffer [135]; Coatman et al.
[106] studied the morphologies and rate of growth at different silicate concentrations;
Collins et al. studied in detail the composition and structure of gardens grown from
aluminum nitrate [136] and copper salts [137]; and Balköse et al. [138] used a wide
variety of techniques to analyze the composition of gardens seeded with several metal
salts. The formation mechanism and its relationship with microstructure and chemical
composition is not yet well understood.

Thouvenel-Romans et al. [139] identified three different regimes of tube growth when
injecting a copper sulfate solution into sodium silicate. At low concentrations of cop-
per sulfate they obtained thin silica tubes growing steadily, which regime they called
jetting. At intermediate concentrations the tubes grew wider and in a characteristic
pulsating manner in which a droplet periodically forms and detaches at the tip of the
tube, a regime they called popping. At higher concentrations they found a third regime,
budding, in which the inflating droplet does not detach but instead bursts and nucleates
a new droplet at the tube’s end. The resulting morphology is of wider, globular and
twisted tubes.

The purpose of this article is to study the morphology and composition of tubes grown
with alkaline salts using different sodium silicate concentrations. For a more systematic
investigation, we center the work on some cations of group II, Ca2+, Sr2+, and Ba2+,
which are especially interesting in the study of mineral formation and in the cement
industry. The morphologies and microstructures were studied using ESEM and the
compositional analysis was performed with energy dispersive X-ray analysis (EDX)
and XRD.

8.2 Materials and Methods

To avoid initial conditions of different shapes, crystals of CaCl2, BaCl2 and SrCl2 at
analytical purity were generally homogenized with an agate mortar and pressed into
200 mg wafers of 1 cm diameter using a cell at a pressure of 10 bar during 10 minutes.
This procedure permits a more uniform shape and a better control of the quantity and re-
activity for these salts. In addition, in some cases indicated below, irregular grains were
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also used. Sodium silicate solutions were prepared from a commercial concentrated
solution composed of 27% SiO2 and 15% NaOH. They were diluted using bi-distilled
water to several concentrations between 6 M and 0.1 M. The growth process at room
temperature was followed for at least 24 hours, or as long as necessary for the salt
to completely dissolve. The experiments were recorded using standard photographic
equipment. Afterwards, the tubes were removed from the solution and were dried in
air at 25oC. Micro-graphs of the samples were obtained using a FEI Quanta 400 Envi-
ronmental Scanning Electron Microscope (ESEM) operating at high vacuum and room
temperature. Chemical analysis of the micromorphology observed with ESEM was per-
formed in-situ in the microscope using EDX analysis. Powder X-ray Diffraction (XRD)
analyses were performed in a PANalytical X’Pert PRO diffractometer. The identifica-
tion of crystallographic phases in the diffractograms was performed with the Xpowder
program [140].

8.3 Results and discussion

8.3.1 Calcium Chloride

Initially we studied the growth process of silicate gardens from calcium chloride in dif-
ferent conditions with sodium silicate solutions at several concentrations from 6 M to
0.1 M. The reactivity and the behavior are dependent on the concentration of the silicate
solution and the structure of the solid salt. After a short induction period, four kinds of
behavior of the CaCl2 salt can be distinguished: i) the formation of a transparent bubble
as osmosis occurs, which we name an osmotic envelope; ii) the growth of wide trans-
parent tubes with irregular globular forms from the osmotic envelope; iii) the growth
of narrow white tubes from the osmotic envelope or from transparent tubes; and iv) the
formation of a spongy mass.

The reactivity is much higher for salts in an irregular and porous grain form than in
a compressed wafer. Obviously in the former the reactive surface is much larger; the
higher porosity increases the dissolution rate in the grain compared to that in the wafer.

In Figure 8.1 we see the effect of different silicate concentrations on grains of CaCl2.
At high silicate concentrations (6 M and 3 M, with densities ρ = 1.39 g/cm3 and ρ =
1.20 g/cm3 respectively[141]), a large transparent osmotic envelope is formed during
the dissolution of the salt. The internal pressure coming from the osmotic flow pro-
duces the expansion of the spherical osmotic envelope by a self-renewal process of the
membrane under the stress of the internal pressure. When the osmotic envelope growth
is almost finished, some closed-ended fingers grow in all directions (Figure 8.1a). This
growth regime seems to be a diffusion-controlled one dominated by plastic deformation
and elasticity of the membrane. The fingers are not more likely to grow upwards and
the osmotic forces are more important than the buoyancy ones, fingers developing from
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FIGURE 8.1: Chemical gardens from calcium chloride grown at 6 M (a and b), 2 M
(c), 1 M (d) and 0.3 M (e) sodium silicate solutions. All pictures are in solution except

b, which is without solvent. Picture size is approximately 2cm wide.

a Laplacian instability [142]. These fingers, about 1-2 mm in diameter, are easily ob-
servable when we remove the solvent (Figure 8.1b). When occasionally an air bubble
appears on the tip of one finger, the buoyancy force of this air bubble facilitates the up-
wards growth of this finger in a 1 mm wide transparent tube in a popping growth regime
[143] (see the central tube in Figure 8.1a). The strength and elasticity of the membrane
inhibits the rupture of the osmotic envelope and sometimes when the salt is completely
dissolved and the osmotic envelope is accidentally detached from the reactor bottom,
the buoyancy forces push up the whole osmotic envelope to the top. We can estimate a
concentration of calcium chloride of about 12% in the internal solution corresponding
to a density of 1.10 g/cm3[144], which is lower than the density of the external solution
(ρ = 1.39 g/cm3[141]). The transparency of the osmotic envelope, these fingers and its
tubes, as well as its flexibility and elasticity, may be due to its extreme thinness and
colloidal nature.

With a lower concentration of silicate, around 1 M (ρ = 1.06 g/cm3[141]), the salts grow
a collection of white narrow tubes (Figure 8.1d). No expansion of a spherical envelope
is observed. Possibly the osmotic membrane, formed with lower silicate concentration,
might be thinner so that it will break in many places by the buoyancy forces. The in-
ner solution is expelled in a jetting growth regime, precipitating rapidly the silicate and
forming the white tubes. Some intermediate behaviors are observed with silicate con-
centrations in the range 1–3 M where the reactivity seems to reach a maximum, with
shorter induction times and longer lengths of tubes than with higher and lower silicate
concentrations. In the example in Figure 8.1c, with 2 M silicate, a central wide trans-
parent tube is formed initially and subsequently many white tubes grow out breaching
the membrane around it. At silicate concentrations below 1 M, the salt dissolves form-
ing a spongy mass in which no spherical membrane is distinguished. Many white tubes
grow out very slowly and lean against the container wall, as seen in Figure 8.1e.

When using pressed wafers the reactivity is drastically lower, but the experiments be-
come more systematic and reproducible. Use of the wafer also helps to avoid salt
hydration during handling at ambient humidity. The general behavior starts with the
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FIGURE 8.2: Chemical gardens grown from calcium chloride wafers in 3 M (a-c) and
1 M (d) sodium silicate. Gardens a) and b) were grown in cylindrical flasks, producing
transparent tubes first and white tubes later. The experiment in figure c) was grown
in a Hele-Shaw cell of width 5 mm. Picture size is approximately 2 cm wide by 5 cm

tall.

formation of a gel membrane around the wafer, which then becomes the transparent
osmotic envelope with 3 M silicate seen in Figure 8.2a–c. As the envelope inflates, it
may trigger transparent fingers, wide transparent twisted tubes or narrow white tubes.
Usually the wider tubes grow first in periodic pulses at about 3 cm/min following a
budding growth regime, often changing direction with every burst. The narrow, white
tubes do not appear until the wider tubes have stopped growing or when some external
excitation (vibrations, shaking) occurs and the membrane breaks.

We propose that the formation mechanism of the transparent tubes is different to that
of the white ones. The transparent tubes are not produced by a rapid rupture of the
membrane, but by an elongation of the same membrane forming a finger and growing
upwards owing to a combination of osmotic and buoyancy forces. This explains also
the same transparency of the tube walls and bubble. The width of these tubes helps a
slow and regular formation of the tube walls. When the osmotic and buoyancy forces
are strong enough, the membrane of finger tip stretches and breaks concurrently with
the formation of a new extension of the membrane with the flow of the inner solution.
This extension of the walls increases the volume and the internal pressure is released.
This produces a cessation of the flow closing the tip of the tube. Again the osmotic flow
increases the inner pressure and the freshly formed membrane will be broken following
a random direction and forming another segment of the membrane wall as explained
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FIGURE 8.3: Calcium chloride wafer immersed in 3 M sodium silicate inside a Hele-
Shaw cell of width 5 mm. Buoyancy forces produced by the different solution densi-
ties cause the wafer to dissolve from the top. Picture size is approximately 2 cm x 2

cm.

above. The budding growth tends to be periodic yielding bulging but unbranched, hol-
low tubes. These tubes will be more or less vertical depending the strength of the
buoyancy forces.

The white narrow tubes can grow directly from the bubble or from the endings of wider
tubes (Figure 8.2b) and always in a rather vertical manner indicating a greater influence
of buoyancy forces, as opposed to the forced convection that produced the transparent
tubes. After the formation of the spheroidal envelope and the transparent tubes, the
concentration of calcium will be lower than in the initial solution owing to the entrance
of water and the quantity of calcium used in the membrane wall formation. Hence the
density difference between the internal and external solutions will be larger than in the
initial situation and so the buoyant forces will be larger. These forces will try to break
the colloidal membrane in any instability and the inner solution will exit forming the
relatively more straight white tubes of about 0.2 mm in diameter in a jetting growth
regime [145]. The color difference between the two types of growth may be explained
by their different thickness, and also by the different interstitial water content or col-
loidal state [142], which would also explain the flexibility of transparent tubes versus
the fragility and stiffness of white ones.

The influence of gravity can be observed in the sequence shown in Figure 8.3. In that
case a calcium chloride wafer is immersed in 3 M silicate in a 5 mm wide Hele-Shaw
cell. The salt does not develop a spherical bubble because of the restriction imposed
by the walls, but it still forms a transparent membrane that permits us to see how the
salt dissolves from top to bottom. The presence of gravity produces buoyancy forces
between the different solutions and the salt wafer, which is still solid inside its osmotic
envelope. The water that flows through the membrane is lighter than the inner metal
solution which makes it accumulate above, dissolving the wafer from the top.

With 1 M silicate solution and wafers, the osmotic envelope size is much smaller than
with 3 M and only white narrow tubes are formed (Figure 8.2d). As seen above, the
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FIGURE 8.4: ESEM micrographs of the calcium chemical gardens grown from vari-
ous experiments in 3 M sodium silicate. a) and b) are typical wide transparent tubes;
c) shows undissolved calcium chloride crystals on the inner surface of a tube; d) clus-
ter of disordered white tubes; e) the multilayer microstructure of a narrow white tube.

membrane formed with 1 M silicate breaks in many places and many jets of inner
solution go upwards forming the white tubes. These tubes do not grow alone, but
rather as a cluster of many microtubes. Probably the membrane is broken in many
sites close to each other and this facilitates the formation of the disordered cluster of
tubes. However, the origin of the different morphology of these white tubes with respect
with the transparent ones is not well understood yet. Further experiments are necessary
to understand properly this phenomenon.

In Figure 8.4a,b we show ESEM images of a typical transparent tube after it has been
dried. We see how the surface textures are clearly different for the internal and the
external sides of the tubes, smooth on the outside and rough on the inside. The elasticity
is highly dependent on the water content, which is lost during drying producing many
cracks on the surface (Figure 8.4b). EDX analysis indicates that the outer surface is
mainly non-crystalline polymerized silica with calcium sodium silicate. The rough
inner surface is composed mainly of calcium oxide with presence of CaCl2 nano-grains
in the lower growth zone (Figure 8.4c) and NaCl in the upper. The narrow, white tubes
are forming clusters of nanotubes (Figure 8.4d), with multilayer walls (Figure 8.4e)
and thicker external walls (>10 µm after drying) than the former transparent tubes (<1
µm after drying). Their composition is mainly calcium silicate on the outside, shifting
towards calcium oxide in the inside. In some cases after long reaction times, some
amount of calcium carbonate is detected particularly in the upper segments, probably
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due to a small amount of carbonate in the medium from atmospheric CO2 and owing to
the low solubility of this carbonate at the high pH of the solution.

8.3.2 Strontium and Barium Chloride

The Sr2+ and Ba2+ salts were studied exclusively using wafers. In both cases the reac-
tivity is lower than in the Ca2+ case at similar conditions, both in the induction time and
in the formation of the osmotic envelope and tubes. While with calcium chloride the
tubes grew steadily to a length of several centimeters, with strontium or barium salts
the tubes grow to less than 1 cm. For strontium chloride with 1 M silicate solution
the growth of the osmotic membrane is almost negligible and many short narrow white
tubes form (Figure 8.5b). With 3 M silicate, a large transparent bubble is formed and
a few wide transparent fingers slowly appear. After the growth of the fingers ceases,
the membrane breaks and some white narrow tubes grow from the top surface of the
osmotic transparent bubble (Figure 8.5a). When the inner pressure in the bubble de-
creases, the growth of the white tubes stops by closure of the tube-tops and new white
tubes grow when the pressure has recovered in the osmotic envelope. In some essays,
the cluster of white tubes can be so large that the osmotic envelope collapses by the
weight of the cluster.

Barium chloride reacts more slowly in the formation of the osmotic envelope with 3 M
silicate and has a longer induction time than the strontium salt. However, the verticality
of the white tubes of Ba2+ grown with 1 M silicate is greater than in the strontium
cases (Figure 8.5b,d). With 3 M silicate a cluster of short white tubes grows on the
top-surface of the bubble, similarly to in the strontium case.

In the case of the white strontium tubes, their micromorphology shows a rough external
surface covered by amorphous silicate aggregates and a smooth internal surface (Fig-
ure 8.6a). This is completely different than that found in the transparent tubes of the
calcium case. EDX chemical analysis of the inner surface shows that it is composed of
strontium oxide, while the outer surface is made of strontium silicate. In the course of
this particular experiment we removed the osmotic envelope from the silicate while it
still contained some undissolved salt inside. Analyzing the remains of the wafer (Figure
8.6b) by EDX and backscattering detector, the brightest regions are the original SrCl2,
but the darker ones are made of NaCl, proving the sodium cation may cross the semiper-
meable membrane. We also separated a piece of osmotic envelope and imaged it using
a backscattered electron solid state detector (Figure 8.6c). EDX analysis of the outer
surface of this membrane shows that it is formed mainly of strontium silicate (darkest
areas), whereas the inner surface corresponds to the initial strontium chloride (brightest
areas). Many nanospheres of silicate are observed in the inner surface of the envelope
(Figure 8.7d,e). This microstructure is different to that of the external surfaces.
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FIGURE 8.5: Chemical gardens of SrCl2 and BaCl2, at the indicated sodium silicate
concentrations. Picture size is approximately 2 cm wide.

FIGURE 8.6: ESEM micrographs of a SrCl2 garden grown in 1 M sodium silicate: (a)
tube opening, showing the different morphology in the inner and outer sides; (b) piece
of undissolved SrCl2 wafer; (c) outer side of the osmotic membrane; inner surface of
bubble in (d) SrCl2 and (e) BaCl2. The b and c pictures were taken by a backscattering

solid state detector.

8.3.3 X-ray Analysis

In order to perform X-ray powder diffraction of the chemical garden, the tubes were
separated from the rest of the sample to explore differences in the crystallinity and
chemical composition between the various morphologies of different parts of the chem-
ical garden. Calcium tubes did not show a high crystallinity except for NaCl crystals
whose reflection peaks were the most intense and the only ones clearly observed at
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FIGURE 8.7: X-ray powder diffraction patterns of tubes grown from CaCl2, BaCl2
and SrCl2. The different spectra were shifted up by 300 counts of intensity for clarity.

27.8o, 31.8o, 45.4o and 56.5o (2θ values) (Figure 8.7). Barium and strontium tubes,
however, showed clear reflection peaks belonging to carbonates (Figure 8.7). In the
barium spectrum, the peaks at 24.06o, 34.18o, 42.17o, and 44.86o (2θ values) belong
to BaCO3, there being observed also reflection peaks of NaCl. In the strontium spec-
trum, the peaks at 29.68o, 36.46o, and 47.71o belong to SrCO3, while those at 12.90o,
22.38o, 25.23o, 33.91o and 40.97o belong to undissolved SrCl2·6H2O, and peaks of
NaCl are also observed.

This indicates that the only highly crystalline phases in these silicate gardens are NaCl
and carbonates. The main phases are mostly silica and silicates in an amorphous or
disordered state, which is well known in the formation of calcium silicate in Portland
cements [130]. The formation of NaCl occurs mainly in the inner surface of the mem-
brane and tubes and it is clear evidence that the Na+ cations cross the osmotic mem-
brane and form halite crystals with the chloride anion of the seed. The crystallization of
carbonates is owing to their low solubility at the basic pH of the silicate solutions and to
the presence of CO2 in the atmosphere absorbed in the silicate solutions. The formation
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FIGURE 8.8: ESEM micrographs showing the formation of carbonate crystals on
the surface of chemical gardens of (a) calcium and (b) barium. The clear spots are

composed of carbonates and the darker zones are silicates.

of carbonates is more likely to be observed in the strontium and barium cases owing to
their lower solubility. Some small needles of carbonates are observed by ESEM-EDX
in the outer surface of the upper part of some white tubes in the calcium (Figure 8.8a)
and barium (Figure 8.8b) cases.

8.4 Conclusions

We found CaCl2 to be more reactive than the other salts of group II in terms of tube
length, diameter and growth speed. Calcium tends to produce long, wide and flexible
tubes, while strontium and barium produce short, narrow tubes that sometimes grow as
clusters. The strontium salt is slightly more reactive than the barium one. This is consis-
tent with the sequence of the relative solubility of these salts: CaCl2 > SrCl2 > BaCl2.
The optimal concentration for the sodium silicate solution in chemical garden growth
with these salts is around 3 M, in good agreement with the findings of Coatman et
al. [106]; higher and lower concentrations reduced the reactivity. The concentration of
the solution affects the shape and rate of the formation of the tubes, in part presumably
through its viscosity. With a higher viscosity (higher silicate concentration) the reac-
tion is slower and the viscosity of the external solution allows only a few slow-growing
tubes to emerge. At the other extreme, very dilute concentrations fail to produce a
coherent colloidal membrane and the precipitated material forms a spongy mass. The
reason is that at higher concentrations the thickness and elasticity of the membrane is
great enough to allow it to expand and inflate without breaking. On the other hand,
at lower concentrations with less silicate in the solution, the membrane formed bursts
sooner ejecting the internal solution promptly and forming multiple white tubes instead
of maintaining or expanding the transparent membrane.
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Electron microscope imaging shows that tube walls are not homogeneous across their
section. There is both a morphological and a compositional difference between the
inner and outer surfaces. The different morphologies indicate that the tubes are formed
by two separate layers, metal oxide on the inside and metal silicate on the outside.
However, the separation between the layers is not clear and EDX analysis does not
have enough resolution to verify this discontinuity. Probably the kinetics in the fast
precipitation in the tube wall formation does not allow the formation of a clear interface,
especially in the formation of white narrow tubes.

X-ray diffraction shows the tubes have low crystallinity and the amorphous components
hide the highly ordered phases, nevertheless the highest crystallinity phase comes from
the formation of NaCl. The presence of NaCl crystals in the inner surface of the tubes
indicates that the Na+ ions can cross the semipermeable membrane.

In some cases, we observe pulsating growth of wide transparent tubes producing ir-
regular morphologies which are clearly influenced by the thickness and mechanical
properties of the membrane. When the membrane first breaks, a jet of the internal
solution flows out. The contact of this flow with the external solution produces the
precipitation of the silicate of the group II cation, forming the walls of the tube. As
the flow of metal solution loses its initial injection pressure the precipitation of sili-
cate will close the tip of the tube, interrupting its growth. The osmotic membrane will
then need some time to regain enough pressure to reopen the closed tube and con-
tinue its growth. In this way we have a relaxation-oscillation process, as described
by Thouvenel-Romans et al.[139], with random changes of orientations at the top of
the tube developing the twisted, globular shapes seen in the experiments. When the
strength and elasticity of the membrane is sufficient, it does not break rapidly but it
becomes deformed and the tubes can be considered as elongations of the own mem-
brane preserving the same transparency. This behavior is only seen in the wider tubes
formed with higher silicate concentrations, where we have stronger membranes that can
accumulate higher pressures before bursting and hence produce greater flows of metal-
lic solution. Thouvenel-Romans et al.[146] proved that there is a relation between the
injection rate and the radius of the tubes, which explains why we do not see the wider
pulsating tubes at silicate concentrations below 1 M.

Fine control of the fluid dynamics, the relative densities between the different solu-
tions and the osmotic pressure could provide tools to engineer microtubes with desired
morphology and thickness.



Chapter 9

Effect of the nature of the cations

9.1 Introduction

The purpose of this chapter is to study the formation, morphology and composition of
tubes grown with various metallic salts (CaCl2, MnCl2, CoCl2 and NiSO4) using differ-
ent sodium silicate concentrations. The morphologies were studied using SEM imaging
and the compositional analysis was performed with EDX and XRD. An interesting dif-
ference in the behavior between the cations of the salts is noted. A better understanding
of the physics and chemistry of these processes can improve the control of the relative
solution densities, osmosis, and diffusion to obtain tubes with a desired morphology.

9.2 Materials and Methods

Crystals of CaCl2, MnCl2·4H2O, CoCl2·6H2O and NiSO4·7H2O at analytical purity
and homogenized with an agate mortar were used for our experiments. They were
pressed into 200 mg wafers of 1 cm diameter using a cell at 10 bars pressure during 10
minutes. The use of the wafer permits more systematic and reproducible experiments,
avoiding different shape initial conditions and, in the case of CaCl2, it helps to inhibit
salt hydration during handling at ambient humidity. Nevertheless, irregular grains of
these salts were also used in some cases. The sodium silicate solutions were prepared
from a commercial concentrated solution composed of 27% SiO2 and 15% NaOH. They
were diluted using bi-distilled water to several concentrations between 6 M and 0.3 M.
The growth process was followed for at least 24 hours at room temperature, or as long
as necessary for the salt to completely dissolve. The experiments were recorded using
standard photographic equipment. After that, the tubes were removed from the solution
and were dried in air at 25◦C.

103
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The micrographs of the samples were obtained using a FEI Quanta 400 environmental
scanning electron microscope (ESEM) at high vacuum and room temperature and a
LEO GEMINI-1530 field emission scanning electron microscope (FESEM). Chemical
analysis of the solids was performed in-situ in the microscope using EDX analysis.
Powder X-ray diffraction (XRD) analyses were performed in a PANalytical X’Pert PRO
diffractometer with a wavelength of 1.5418 Å. Single crystal X-ray diffraction analyses
were performed in a SIEMENS P4 diffractometer with a wavelength of 0.7107 Å. In
order to perform X-ray powder diffraction, the tubes were separated from the rest of the
garden to avoid the amorphous pattern given by the remains of the osmotic membrane.
The identification of crystallographic phases in the diffractograms was performed with
the Xpowder code [140]. The treatment of data from single crystal XRD was performed
with XRD2DScan code [147].

9.3 Results

We studied the growth process for all four salts at different silicate concentrations. In
this series we explore cations with different electronic properties. All these cations
belong to the same period of the periodic table: one of the group II and several transition
cations with different electron population in the valence shell following the sequence:
Ca < Mn < Co < Ni. We found a similar tendency but different behavior for the four
salts with respect to the change of silicate concentration. At high concentrations, higher
than 2 M and 3 M, just one or two tubes grow. Depending on the seeding salts, these
tubes may grow steadily or in a pulsating manner to a length of several centimeters.
At lower concentrations, around 1 M, the salts grew a collection of multiple narrower
tubes. We also found lower reactivity at these low concentrations, so the tubes showed
a longer induction time to start growing and did not grow for so long. This difference
could be due to the mechanical properties of the silicate membrane formed around
the crystal salt in the first place: more concentrated silicate solutions produce more
resistant membranes, and so they hold more water inside and at higher pressures before
rupturing.

Calcium Chloride

Gardens grown from calcium chloride show two very distinct growth regimes at high
and low silicate concentrations. The general behavior starts with the formation of a gel
membrane around the wafer, which then becomes the transparent osmotic envelope. At
highest concentrations of silicate (6 M), the high density of the outer solution produces
a weak osmotic pressure and a low reactivity, so usually only one transparent wide
tube grows out of the membrane. With 3 M silicate, the salt grain is more reactive and
the transparent membrane inflates by intaking water from the silicate under osmotic
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pressure until it becomes a transparent elastic spherical envelope. The envelope’s walls
can be as thick as 1 µm and it may take from 5 to 15 minutes to burst open and for
the first tube to grow. As the envelope inflates, it may trigger the growth of transparent
fingers, wide transparent twisted tubes or narrow white tubes. Usually the wider tubes
grow first, with a diameter of 1 to 3 mm. They grow in periodic pulses induced by the
pressure oscillations in the osmotic envelope, with a period that can range from under
one second up to one minute, following what Thouvenal-Romans et al. designate the
budding regime [146], often changing direction with every pulse. This regime only
allows one or two tubes to grow, the tubes being the widest of all salts studied here
and growing rather fast, around 3 mm per minute. When the growth of these tubes
is finished, narrow white tubes start growing from these transparent tubes (Fig. 9.1a).
In general, all transparent forms turn white after one day or more; probably layers of
silicate are depositing slowly during the aging time. At lower concentrations, around
1 M, the seeding salt fails to develop an observable osmotic envelope as it does at higher
concentrations. Instead, multiple narrow tubes grow straight out from the initial salt.
These tubes are all narrower than 1 mm and grow together by the hundreds in a tightly
bound opaque cluster. As the silicate is more diluted, the growth rate of these narrow
tubes is much slower, about 1 mm per minute. The fact that these tubes appear white
– instead of transparent – may be a consequence of their narrow diameter, thicker wall
and multiple clustering of tubes. There is no compositional difference with those from
more concentrated silicate, as we shall see below (Fig. 9.1b).

We used electron microscopy at low vacuum to analyze the morphological differences
between the regimes of jetting and budding. In the case of 3 M silicate, we measured
diameters from 500 µm to 1 mm, with wall thicknesses from 1 to 10 µm (Fig. 9.1a) for
the transparent budding tubes. The appearance of the external surface under SEM mi-
croscopy presented evidence of the tube flexibility during growth. The surface textures
were clearly different for the internal and the external sides of the tube, being smooth
on the outside and rough on the inside (Fig. 9.1d). EDX analysis on both sides shows a
much higher proportion of oxygen on the inside, indicating the presence of CaO along
with CaSiO3. Analysis of the external side shows more Si, indicating that the external
wall-surface is composed mainly of CaSiO3. We also found crystals of NaCl (∼ 1µm),
especially on the inside surface of the tube walls, which implies that Na+ ions can also
cross the osmotic membrane. We detected the presence of small crystals of NaSiO3 on
the external surface arising from the evaporation of the external solution (Fig. 9.2a) and
the presence of SiO2 attached to the external surface of the tubes after aging (Fig. 9.2b).

X-ray diffraction analysis of calcium tubes did not show any significant crystallinity
except for NaCl reflections, indicating according to our previous work [148] that the
microstructure is mainly disordered.
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400 μm 20 μm(c) (d)

(a) (b)

FIGURE 9.1: Growth of calcium chloride gardens with (a) 3 M and (b) 1 M silicate.
Pictures are approximately 3 cm wide. c) SEM image of a CaCl2 tube grown in 3 M
sodium silicate, with a wide section and thin flexible walls. d) External (smooth) and
internal (rough) surfaces of the tube wall; NaCl crystals are observed at the internal

surface.
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FIGURE 9.2: SEM images of external surface of CaCl2 tubes grown in 3 M silicate.
The external surface sometimes presents crystal flakes of sodium silicate (a) grown
during the drying process or some SiO2 particles (b) attached during the aging time.

Manganese Chloride

Manganese chloride has generally a slightly greater reactivity than calcium chloride
with some differences. With 6 M silicate the reactivity is much lower than in the calcium
case. Nevertheless, the presence of an air bubble enhances this reactivity. The buoyancy
forces push up the air bubble and the surface tension of the water facilitates the contact
of the membrane with the air bubble. Hence a wide translucent straight tube is formed
following the trajectory of the air bubble through the high-viscosity silicate solution.
With 3 M silicate only one or two wide tubes are formed following a budding regime
[146]. In this case, the osmotic envelope is very small, the wide tubes are translucent
with an ivory color instead of transparent and they are less wide than in the calcium
case. When the growth of these budding tubes is interrupted (Fig. 9.3a,b) the osmotic
envelope continues growing and later new narrow opaque tubes begin growing from
the previous ones. Some fingers growing directly from the osmotic envelope were also
observed (Fig. 9.3c,d).

With 2 M silicate, wide budding tubes also grow and the reactivity is higher than in the
above case (Fig. 9.3e). When immersed in 1 M silicate, the reactivity is the highest
for the Mn series and narrow opaque tubes grow grouped in clusters (Fig. 9.3f). They
grow more vertically than the above budding tubes and with a faster rate, approximately
5-6 mm per minute. No osmotic envelope is observed, though the wafer seems to swell
slightly and the wafer is empty inside at the end of reaction. This enhancement of
reactivity is also observed when the wafer contacts with the reactor walls and a group
of tubes grow faster attached to the reactor wall. With 0.6 M silicate, the morphology
is similar to that at 1 M but with a lower reactivity.
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(a)(a)

(a) (b) (c)

(d) (e) (f)

FIGURE 9.3: Manganese chloride gardens growth in sodium 3 M (a–d), 2 M (e) and
1 M (f) silicate concentrations. Pictures are approximately 3 cm wide.

In all manganese series, the initial pale-rose color of the wafer turns to a white-ivory
color in the osmotic envelope and the tubes and after one day these solids turn brown.
At the end of the garden formation the interior of the wafer is dissolved, the wafer
becomes empty and only the external surface is maintained. For both salts, calcium and
manganese, the budding regime of tube growth is observed with high concentration of
silicate dissolution (>2 M) and the narrow opaque tubes grow with more dilute silicate.
However, the behavior is different for each salt. The highest reactivity is in 3 M silicate
for calcium whereas it is in 1 M silicate for manganese. The osmotic envelope is larger
for calcium than for manganese with concentrated silicate (>2 M) with more water
entering the inner solution. On the contrary, the mechanical stability of the gardens is
higher for manganese than for calcium with dilute silicate (<1 M).

In figure 9.4a we show the micromorphology of the budding tubes grown in 3 M silicate.
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Like in the calcium case, the outer texture of the budding tubes is smooth showing ev-
idence of their flexibility when fresh whereas the inner surface is rough. EDX analysis
indicates the presence of manganese silicate on the outer side and manganese oxide-
hydroxide on the inner. In the inner surface of the tubes which are close to the bottom
near the osmotic envelope a significant amount of manganese chloride is detected. Typ-
ical tube diameter is ∼1 mm, with wall thickness of ∼10 µm. The micromorphology
and chemical composition is similar for the budding tubes grown in 2 M silicate. In
figure 9.4b we can observe the irregular morphology of a budding tube, which presents
a rough inner surface and a smooth outer surface. The texture of the narrow opaque
white tubes grown in 0.6 M is different to the previous budding translucent tubes. The
walls of the isolated opaque narrow tubes are thicker (40–60 µm) than the budding ones
(Fig. 9.4c,d). In these opaque narrow tubes the interfaces between layers with different
chemical composition are sharper than in the tubes with a budding regime. By means
of a backscattering detector, we can distinguish the brighter zones of manganese oxide-
hydroxide and the external dark zone of silicate (sodium and manganese) and silica
(Fig. 9.4c). These layers are not chemically joined to one other and they separate from
each other after drying (Fig. 9.4d). The wall thickness is greater in the tube clusters
than in the isolated tubes. EDX chemical analysis indicates that the interstitial zone
between tubes in the clusters is formed mainly by sodium silicate.

The manganese series produces higher crystallinity than the calcium gardens. We iden-
tified manganese hydroxide crystals in most experiments (Fig. 9.5). In the budding
tubes the main crystalline component is MnO · H2O with peaks at 18.7o (001), 31.1o

(100), 36.6o (101), 49.9o (102), 55.4o (110) and 58.9o (111) (2θ units) (Fig. 9.5a),
whereas in the opaque clusters of narrow tubes we detected crystals of NaCl (reflections
at 31.8o (200), 45.6o (220), 56.4o (222) and 66.3o (400), hydrated MnCl2 (reflections
at 15.5o (011), 16.5o (110), 30.1o (112), 32.1o (031), 37.6o (040), 51.4o (223), 54.2o

(114)) (Fig. 9.5b,c) and a small proportion of MnO·H2O (Fig. 9.5b).

In order to explore the crystallinity and ordering of the crystals in the tubes, we analysed
an opaque cluster of tubes with a length of 3 cm directly by single-crystal-XRD. Two
zones were analyzed, the center and the border of the cluster. The two-dimensional
patterns of both zones show uniform distribution of the reflections indicating the small
size and random orientation of the crystals. In the border of the cluster, some big bright
spots are observed indicating the existence of bigger crystals in this zone. The analyses
of both zones show similar composition being mainly manganese oxide-hydroxide and
MnCl(OH)n (Fig. 9.6).

Cobalt Chloride

Cobalt chloride shows a similar dependence with silicate concentrations: wide tubes at
high silicate concentrations and narrow tubes at lower silicate concentration. In general,
the cobalt salt is much more reactive than the calcium and manganese ones.
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100 μm 20 μm(c) (d)

(a) (b)200 μm 500 μm

FIGURE 9.4: Budding tube grown from MnCl2 in 3 M (a) and 2 M (b) sodium silicate.
Straight narrow tube grown from MnCl2 in 0.6 M sodium silicate. Pictures (c) and (d)

were taken using a backscattering solid state detector.

In Fig. 9.7 we follow in detail the growth sequence of one particular cobalt tube in 3 M
silicate. We cannot observe the formation of a clear osmotic envelope around the wafer
at the beginning, although at the end the wafer is hollow. The presence of an air bubble
facilitates the generation of a straight wide tube at a rate of 1 cm/min since buoyancy
forces are important [143]. The wafer and the initial part of the tube is purple but the
top of the tube becomes green. After a while the air bubble disappears, the growth
stops and later the tube continues growing with a blue color. The growth stops again
and a small envelope is formed on the top of the tube, from which clusters of narrow
blue tubes grow together. As the cluster continues growing, the accumulated weight
bends the original tube until it leans against the flask. When this fiber reaches the top
surface, small green budding tubes grow along the top surface of the wafer and a plume
of clusters of blue narrow tubes starts growing from these budding tubes and from the
rim of the wafer.
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a

b

c

FIGURE 9.5: X-ray powder diffraction patterns of tubes grown from MnCl2. Budding
tubes (a), cluster of straight narrow tubes (b) in 2 M silicate. Tubes grown from wafers

in 3 M (c).
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FIGURE 9.6: X-ray diffraction of one tube grown from MnCl2 in 2 M silicate. Two-
dimensional XRD pattern in the center (a) and in the border (b) of the tube. 2-θ scan

integrated from the 2D pattern of the center of the tube (c). (λ (Mo) = 0.7107 Å)

3 min. 4 min. 6 min. 8 min. 10 min. 25 min. 40 min.

FIGURE 9.7: CoCl2 garden grown in 3 M sodium silicate. Pictures are approximately
3 cm wide.
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In all wafers the tubes start growing at the rim of the wafer, where probably the insta-
bilities are more frequent. Starting from irregular grains, the reactivity is higher than
with the pressed wafers. At high concentrations of silicate (6 M and 3 M) the growth
of tubes with budding regime is observed at the first stage of the reaction. At lower
concentrations of silicate (1 M and 0.6 M), clusters of narrow tubes are formed. Notice
that with very diluted silicate solution (0.3 M), the reactivity is lower and individual
narrow tubes are formed with a budding regime (see Fig. 9.8).

(a) (b) (c)

FIGURE 9.8: Comparison of different growths of CoCl2 gardens in 6 M (a), 3 M (b),
and 0.3 M (c) silicate. Pictures are approximately 3 cm wide.

In Fig. 9.9a we can see SEM imaging for the cluster of tubes explained above. It is
composed mainly of dozens of tubes with individual diameters under 100 µm. In figure
9.9b we observe tubes growing from spheres formed on the top of the wafer surface
at the first stage of growth forming a cluster of many tubes growing up. The tubes
grow along the surface of the neighboring tubes, probably capillarity favors this kind of
growth instead of the formation of isolated tubes. The texture is different in the outer
and inner part of the tubes, being smooth outside and rough in the inner surface (Fig.
9.9c). The chemical composition is different being mainly cobalt silicate in the outer
layer and cobalt oxide-hydroxide in the rough inner layer. In this inner surface many
spheroidal rosettes of crystals are observed being formed of cobalt oxide-hydroxide and
chloride (Fig. 9.9d). This morphology has been also detected in other cobalt oxides
[149].

X-ray diffraction showed that these tubes are mostly disordered in their microstructure.
Only in some cases we found cobalt hydroxide crystals (Fig. 9.10); with reflections at
19.0o (001), 32.4o (100), 37.9o (101), 38.6o, 51.3o, 57.8o (110), 61.4o, 69.4o, and 71.2o
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20 μm 5 μm(c) (d)

(a) (b)200 μm 400 μm

FIGURE 9.9: Cluster of narrow tubes grown from CoCl2 in 3 M sodium silicate (a).
Tubes growing from spheres on the wafer surface in 3 M silicate in a starting stage
(b). Tube wall grown from CoCl2 in 1 M silicate (c) and a detail of the inner surface

of tube (d).

(2 θ units) (Fig. 9.10b). In some tubes, crystals of NaCl can be detected with reflections
at 27.5o, 31.8o, 45.4o (Fig. 9.10a). This band is not observed in the other salts.

Infrared analysis of cobalt tubes grown in 1 M silicate shows an intense narrow peak at
3551 cm−1 characteristic of ν(OH) of CoOH groups [150] indicating the presence of
Co(OH)2 (Fig. 9.11).

Nickel Sulfate

Nickel sulfate displays the lowest reactivity of all the studied salts, but produces the
most robust tubes with the thickest walls. The behavior does not vary much with sil-
icate concentrations. With highly concentrated silicate, narrow isolated straight tubes
grow vertically upwards. Some of these tubes show a capsule at the top, probably cov-
ering an air bubble that facilitates the growth (Fig. 9.12a). With 3 M silicate, these
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FIGURE 9.10: XRD analysis of cobalt tubes grown in 1 M (a) and 0.6 M (b) silicate.
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FIGURE 9.11: Infrared spectrum of cobalt tubes grown in 1 M silicate.

narrow isolated tubes grow but forming a curve starting upwards and later bending to a
horizontal direction; probably the buoyancy forces are not strong enough for a vertical
up-growing (Fig. 9.12b). With more dilute silicate (<2 M), these isolated tubes are
not formed, but instead an irregular cluster of tubes (Fig. 9.12c). As in the previous
series, pressed wafers are less reactive than irregular grains of the salt. In wafers, we
observe that the borders are more reactive than the other zones of the wafer. The os-
motic envelope is not observed and the increase in volume of the wafer is smaller than
in the previous series. Initially a short and relatively wide budding tube grows with
light-green color that later continues growing as a possible jetting regime forming an
isolated tube that does not grow vertically but curves probably because the buoyancy
forces are not strong enough (maybe owing to a lower density difference) for straight
vertical growth. Later some wide tubes grow along the surface of the wafer from the
borders to the center from where a wide cluster of tubes grows straight upwards. Cap-
illary forces facilitate the growth of tubes attached to the external wafer surface. When
the amount of water increases in the inner solution, the density of this inner solution
will be lower and the buoyancy forces will be enough for the up-growth of the tubes
attached to each other by capillary forces. When this tube reaches the top surface of
dissolution, additional similar tubes start growing from the wafer.

In highly concentrated silicate, small budding tubes are formed in the initial state, whose
micromorphology shows that they are highly twisted (Fig. 9.13a). The narrow isolated
tubes grown at 6–3 M silicate can be of 200 µm diameter and show a smooth outer
surface (Fig. 9.13b). In figure 9.13c we can see the remains of the osmotic membrane.
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(a) (b) (c)

FIGURE 9.12: Nickel sulfate gardens growing in 6 M silicate (a), 3 M silicate (b) and
1 M silicate (c). Picture size is approximately 3 cm wide.

It is ∼50 µm thick and is still covered with a layer of silica on the outside. Its inner
surface is scattered with hollow spheres of 20–120 µm diameter and thin walls (approx.
1–5 µm) that can be broken during the drying process or under the high vacuum of the
microscope. These hollow microspheres appear also on the inner surface of some tubes
(Fig. 9.13d) and are composed of nickel silicate with a high content of nickel that we
can associate with nickel hydrosilicate, like Ni3Si2O5(OH)4, according to other hollow
microspheres obtained with nickel [151]. These spheres were not detected in the other
salts.

In figure 9.14a we see a fiber grown from NiSO4 in 1 M sodium silicate. This is a highly
disordered cluster of microtubes that can be observed in a section of these tubes (Fig.
9.14b) where the thickness of the wall is about 100 µm. We can see that the thickness
of its walls are the highest among all studied salts. This morphology is completely
different to that seen in all other salts. EDX analysis on the walls shows higher silicon
content towards the exterior and higher nickel and oxygen content towards the interior,
indicating NiSiO3 outside and nickel oxide-hydroxide inside. Pictures taken with the
backscattering detector show zones with different brightness in this tube section. A dark
external layer of sodium silicate, a bright zone of nickel silicate and the internal zone
with medium brightness with a higher amount of nickel oxide (Fig. 9.14b). Crystals
of sodium sulfate in form of flakes are observed on the inner surface of the osmotic
envelope and the lower part of tubes (Fig. 9.14c), indicating that sodium ions can also
cross the osmotic membrane.

The better crystallized phases found in chemical gardens grown from nickel were sodium
sulfates with reflections at 18.9o, 23.1o, 28.1o, 29.0o, 32.0o, 33.9o, 38.5o, 40.7o, 48.8o,
54.5o, 55.1o and 59.5o (in 2θ units), which again proves that sodium ions do cross the
osmotic membrane and participate in the building of the tube walls (Fig. 9.15). Poorly
crystallized hydrated nickel hydroxide can be identified according to previous XRD
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100 μm (c) (d)

(a) (b)200 μm 200 μm

20 μm

FIGURE 9.13: a) Nickel budding tube grown from grains in 6 M silicate. b) Nickel
tube grown from grains in 3 M silicate. The white stains are remains of sodium
silicate. c) Section of the osmotic envelope of a nickel tube grown from grains in 1 M
silicate. The internal surface is covered with spheres. d) Microsphere formed on the

inner surface of a tube.

studies [151]. However, the reflections at 9.5o, 34o, 35.6o and 60.9o (2θ units) can be
assigned to nickel hydrosilicate, Ni3Si2O5(OH)4 [152]. A similar composition was de-
tected in gardens grown with 3 M and 1 M silicate and in gardens grown from grains
and from pressed wafers.

9.4 Conclusions

We found different growth regimes in different sodium silicate solutions. Lower con-
centrations produce clusters of narrow tubes, while higher concentrations produce sin-
gle tubes. This is a general behavior for all studied salts, but with some differences.
Calcium chloride has the highest reactivity, growing wider tubes with flexible thin walls
at a fast rate. Nickel sulfate on the other hand has the lowest reactivity, with slow growth
rate, producing very robust tubes with the thickest walls of all studied salts, probably
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50 μm 100 μm(c) (d)

(a) (b)1 mm 200 μm

FIGURE 9.14: SEM pictures of nickel sulphate gardens in 1 M sodium silicate. a)
External shape of a cluster of tubes. The irregular shape and texture is probably related
with the slow growth rate. b) Section of another tube visualized by backscattering
solid state detector. We can see how the internal space is highly compartmented,
forming a network of conducts within the main tube. c) Crystals of Na sulphate
grown on the external surface of a nickel garden tube. d) Several microspheres with

different sizes formed in the inner surface of a tube.

owing to a lower solubility of the nickel species. Manganese and cobalt chloride have
an intermediate behavior.

The swelling of the initial osmotic envelope decreases following the sequence: Ca >
Mn > Co > Ni. The permeability of these membranes could be related with the d(M-O)
bond length that follows the same sequence: Ca > Mn > Co > Ni.

Electron microscope imaging showed that tube walls are not homogeneous across their
section. There is both a morphological and a compositional difference between the
inner and outer surfaces. The different morphologies indicate that the tubes are formed
by two layers, metal oxide on the inside and metal silicate on the outside. EDX analysis,
however, does not have enough resolution to verify this discontinuity.

X-ray diffraction shows the tubes are mostly amorphous, but there are some crystals
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FIGURE 9.15: XRD analysis of nickel tubes grown in 1 M silicate.

present. In the case of calcium tubes we only found sodium chloride crystals, prov-
ing that sodium cations can also cross the osmotic membrane. In some manganese,
cobalt and nickel experiments we found traces of metal hydroxides, which are known
to participate in the wall structure.



Chapter 10

Chemical gardens in microgravity

10.1 Introduction

Buoyancy forces giving rise to convection are proportional to gravity. When chemical
gardens are grown in microgravity the buoyancy effect is diminished correspondingly
and the tubes, driven by forced convection alone, would be expected to grow in arbitrary
directions. A unique experiment on chemical-garden growth in microgravity has been
reported by Jones and Walter [142], which flew aboard the shuttle mission STS-55 in
1993.

There was an earlier experiment than Jones and Walter’s flown on STS-47 in 1992, but
inexplicably the researchers reported only on the details of the hardware flown, and not
on the experimental results they obtained, although they mentioned twisted tube growth
in random directions and in some cases ’spiral growth’ [124].

Subsequent to Jones and Walter, the experimental setup reported on here was first flown
aboard STS-107 in 2003. That experiment was lost when the shuttle Columbia broke
up on reentry, as we recall in the dedication of this article to the astronauts who lost
their lives.

Jones and Walter showed some unexpected results like reduced reactivity and plastic
growth. However, questions remain on the physical aspects of this phenomenon.

In this work we present experiments, conducted on the International Space Station, with
some differences compared to the experimental set up of Jones and Walter [142] and a
different range of salts and silicate solution concentrations with two main aims: i) to
explore further the effect of microgravity on reactivity and morphology, and ii) to setup
an approach for teaching high school and university students multidisciplinary science
combining space science, engineering technology, chemistry and fluid dynamics.
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10.2 Materials and Methods

The experimental apparatus, the Silicate Garden Habitat or SGHab (figure 10.1), was
developed by BioServe Space Technologies and flown to the International Space Sta-
tion (ISS) on the space shuttle Endeavour. Two SGHabs were flown on separate mis-
sions, one in August 2007 (STS-118, ISS mission 13A.1) and a second in March 2008
(STS-123, ISS mission 1J/A). The SGHab was configured with eight chambers (four
chambers per side) with transparent polycarbonate walls pre-filled with a given sodium
silicate solution. Individual chambers were cuboidal in shape (2.2cm x 5.9cm x 1.8cm
deep) each with a total volume of 23 ml. During installation on the ISS, the experiment
was assembled such that the four chambers on Side A could be viewed by the automated
imaging system.

FIGURE 10.1: The experimental apparatus, the Silicate Garden Habitat (SGHab).
Developed by BioServe Space Technologies and flown to the International Space Sta-
tion (ISS) on the space shuttle Endeavour. Dimensions are approximately 10cm width

and 20cm height.
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Approximately 1g of each of the different metal salts (0.5–0.75 mm individual crystals)
were mixed with a small amount of epoxy glue and molded into a cylinder of about 5
mm in radius and 5 mm in height. The molded salts were attached to stainless steel
rods and held in place separated from the silicate solution chamber. When the reactor
was activated the rods pushed the salts through a foil burst disk and a duckbill valve
into the silicate chamber. An automated camera and frame capture system recorded the
evolution of the reaction for several days and sent the resulting images back to Earth
for analysis.

The silicate concentrations were chosen to maximize the reaction velocity. Solutions
were prepared from a commercial concentrated solution composed of 27% SiO2 and
15% NaOH by dilution with ultrapure water to concentrations varying from 0.625 M
to 6.25 M. The studied salts were CaCl2, CoCl2, MnCl2 and NiSO4. Table 10.1 sum-
marizes all the performed experiments. The salt-epoxy mixture was chosen instead of
pure crystals to avoid anisotropy and to fix strongly the salt to the insertion rod.

TABLE 10.1: Summary of all experiments performed on ground and microgravity at
the specified silicate concentrations

Seed salt Ground Microgravity
CaCl2 0.6 M, 2 M, 3 M, 6 M 0.6 M, 2 M, 3 M, 6 M
CoCl2 0.6 M, 1 M, 2 M, 6 M 0.6 M, 1 M, 2 M, 6 M
MnCl2 0.6 M, 2 M, 6 M 0.6 M, 2 M, 3 M, 6 M
NiSO4 0.6 M, 1 M, 2 M, 6 M 1 M, 2 M, 6 M

The SGHabs were returned on the space shuttle and the silicate garden structures were
recovered from the reaction chambers. Samples were extracted from the chambers
and dried in air at 25oC. Morphology was studied using a FEI Quanta 400 environ-
mental scanning electron microscope (ESEM) at high vacuum and room temperature.
Chemical analysis of the different sections of the samples was performed in situ in the
microscope using EDAX spectroscopy.

10.3 Results

10.3.1 Buoyant Plume vs. Forced Convection

When chemical gardens are grown on Earth, a semipermeable membrane is formed en-
veloping the seed salt as soon as it is immersed in the silicate solution. This membrane
is inflated with water from the silicate solution forced into the interior of the membrane
by osmotic pressure. As the membrane increases in volume its walls become thinner,
until a hole is formed through which a jet of metal salt solution is expelled. The mem-
brane may initially burst in any part of its surface, so the initial jet and the resulting
tubes may start growing in any given direction. Since the ejected metallic solution is
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lighter than the surrounding silicate, after the initial jet of fluid loses some pressure,
buoyancy forces become predominant and the tubes will turn and grow towards the
surface. The combination of both growth regimes is a complex one.

When we repeated the same experiments in space — in microgravity — we were re-
moving gravitational force from the equation and hence eliminating buoyancy. Under
this condition, the reaction proceeded with forced convection driven by osmotic pres-
sure alone and in general tubes were observed to grow out of the membrane in straight,
random directions. In figure 10.2 we compare results from experiments performed on
Earth and in microgravity with the four studied salts: CaCl2, MnCl2, CoCl2 and NiSO4.
Silicate concentrations were selected to maximize the reactivity, based on the report by
Jones & Walter that silicate garden reactions in space would be much slower than on
Earth [142].

In experiments performed with 2 M silicate, we could clearly see the difference in
growth directions, being always vertical in the presence of gravity and random in its
absence (Fig. 10.2). This same behavior also applies to the case of microscopic tubes,
as we see in SEM imaging of calcium gardens grown in 3 M silicate (figure 10.3). In
the case of CaCl2 in 2M silicate, we also observed how the main tube in the flight
experiment turned at a point where the growth stopped and then resumed in a different
direction, probably due to a decrease in the metal salt solution flow after the initial jet
was extinguished. The same salt immersed in 0.6 M silicate in space did not grow any
tubes after 5 days, whereas it took less than 8 hours for the tubes to reach the top of
the chamber in the ground experiment. This lack of tube formation was observed in
every experiment with lower silicate concentrations for all of the studied salts and is
discussed in Section 10.3.2.

In our experience MnCl2 is the most reactive salt for growing chemical gardens. When
manganese gardens are grown on Earth, they usually develop the thick, twisted tubes
that we can see in the 2 M example in figure 10.2. We did not observe this type of tube
formation in microgravity, but did find signs of a higher reactivity for this particular
salt. In the 2 M experiment, the manganese salt started to dissolve as soon as it was in-
troduced into the chamber, producing microscopic tubes growing in all directions (Fig.
10.2). The main tube grew faster than in the case of the other salts, at approximately 1
cm per minute, even after bouncing off the chamber wall. Tubes failed to grow initially
in the 0.6 M silicate solution, as was the case with other salts, but after 4 days a very
thin tube appeared growing at approximately 0.5 mm per hour (Fig. 10.2).

As expected, CoCl2 and NiSO4 gardens exhibited lower growth velocities than the other
salts (0.3 and 0.1 cm per minute respectively). In the case of nickel almost no growth
was observed in microgravity, but it also displays little growth on Earth.

Figure 10.4 shows the beginning of tube growth on the surface of the osmotic bubble
for an experiment with CoCl2 in 2 M silicate in microgravity. We can see that direction
of those tubes is random instead growing only upwards.
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Ground Flight

CaCl2

2 M 0.6 M 2 M 0.6 M

MnCl2

2 M 0.6 M 2 M 0.6 M

CoCl2

2 M 0.6 M 2 M 0.6 M

NiSO4

2 M 1 M 2 M 1 M

FIGURE 10.2: Comparison of similar experiments performed with and without grav-
ity, at different sodium silicate concentrations. In ground experiments tubes grow up-
wards regardless of the location where the semipermeable membrane initially bursts.
Flight experiments exhibit tubes that grow in straight, random directions. Images
from the Earth controls were taken after 8 hours of growth, when the metal salts were
completely depleted. Images from the flight experiments were obtained 5 days after
initiation, after which the SGHab had to be removed from the imaging unit owing to

time limitations on the International Space Station. The lines are 2 mm apart.
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FIGURE 10.3: Micrographs of calcium tubes grown in 3 M sodium silicate on Earth
(left) and in space (right). In the presence of gravity all tubes grow upwards driven by
buoyancy. In the absence of gravity we see tubes growing at angles from each other.

FIGURE 10.4: Micrograph of CoCl2 growing in 2 M silicate in microgravity. The
beginning of several tubes from the osmotic envelope follow random directions.
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Other experiments not shown here did not produce positive results due to several appa-
ratus failures, like having air bubbles trapped in the reactor chamber or the jamming of
the pushing rods. Some experiments did not have enough time to complete due to time
limitations in the International Space Station and the lowered reactivity in microgravity.

Besides the different growth orientation behavior, the most evident difference between
the two sets of experiments was the reactivity, it taking several days to accomplish in
space what it only takes an hour to do on Earth.

10.3.2 Growth Rate

Chemical gardens grow by precipitation of silica on the outer side of the tube and metal
oxide on the inner side [106]. The precipitation involves depletion of reactive molecules
around the growth area, creating a concentration gradient. In the presence of gravity
this gradient is automatically and rapidly reduced by convection. In space however, the
depletion of reactants reduces the growth rate, reaction becoming diffusion-limited. In
this manner, a reaction that takes a few minutes to complete in Earth gravity, can last
for several days in space. In the calcium chloride example shown in figure 10.2, the
Earth experiment grew at 20 mm per second, while the space tubes grew at less than a
millimeter per hour. Other salts exhibited similarly large differences in growth rates. In
some extreme cases, where the silicate concentration was not optimized for reactivity,
no tubes at all appeared. Instead, the initial salt would inflate absorbing the silicate
solution up to several times the initial volume, but never bursting nor growing any
tubes. Upon examination of these inflated salts, we found no discernible morphology
differences across their section and the chemical composition was essentially metal
silicate, with increasing metal concentration toward the interior of the sphere. Metal
oxide predominantly made up the composition of the interior of tubes (see figure 10.5).

10.3.3 Plastic Deformation

The low reactivity in the absence of gravity also accounted for a different type of growth
that Jones and Walter named “plastic deformation” [142], as opposed to “open–ended
tubes”. The shortage of precipitant reactants due to the absence of density-driven con-
vection resulted in the initial semipermeable membrane remaining fluid for a relatively
long time. Any excess of pressure in some region of the membrane would be expected
to make it bulge outwards, forming a hump on the membrane surface. We have an ex-
ample of just this situation in a manganese garden grown in 6 M silicate (figure 10.6a),
where the surface of the membrane has bulged by inner pressure without bursting. The
brighter region is rich in MnO and the darker in MnSiO3. The cracks on the surface
appeared during the drying of the sample. As the membrane continued to push out-
wards, its walls would become thinner and more flexible, presenting less resistance to
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FIGURE 10.5: (a) Photograph of CaCl2 experiment performed in space with the less
reactive 0.6 M sodium silicate. Instead of forming a membrane and tubes, the initially
cylinder–shaped salt inflated into a sphere. (b) Examination with SEM and EDX

showed that the whole sphere was composed of calcium silicate.

the pressure inside and forming an elongated shape like a plastic finger. This can be
described as a Laplacian growth instability, as was noted by Mullins and Sekerka [153].
We can see examples in a nickel garden grown in 2 M silicate, shown in figures 10.6b,c.
Eventually, silicate precipitates from the outside and metal oxide from the inside, hard-
ening and preserving the structure. This is a growth mechanism not observed in Earth
experiments, which produce very irregular shapes, not always straight and not always
cylindrical in cross section.

In figure 10.7 we show an SEM image of a MnCl2 garden grown in 2 M sodium silicate
in microgravity. This particular experiment has instances of the classic, chemical garden
tubular growth and the microgravity exclusive plastic growth.

10.3.4 Oscillatory Growth

Chemical gardens on Earth have been reported to grow by pulses due to relaxation os-
cillations of the silicate membrane [139, 143, 146]. The resulting tubes look sectorized
or periodically strangulated. This growth regime can be provoked by injecting the metal
salt already dissolved at a specific concentration and pressure. Thouvenel-Romans et al.
[139] found that tubes could switch from steady to pulsating growth modes by chang-
ing the concentration of the the injected metal salt solution. The same research group
proved that tube growth can be templated by buoyant gas bubbles [143] at the tip of the
growing tubes and, in these cases, that the external surface of the tubes is patterned with
silicate rings, a phenomenon that we have also observed even in the absence of gravity.
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FIGURE 10.6: Examples of plastic deformation in microgravity: a) MnCl2 in 6
M silicate. The surface of the membrane has bulged by inner pressure but without
bursting. This image was taken with backscattered electrons, the brighter region is
rich in MnO and the darker in MnSiO3. The cracks on the surface appeared during
the drying of the sample; b) NiSO4 in 2 M silicate. Several twisted fingers grown by
plastic deformation; c) NiSO4 in 2 M silicate. The surface of this finger has peeled
off revealing the hardened NiO interior. d) NiSO4 in 1 M silicate grown on Earth. In
the presence of gravity we did not see plastic deformation, but we found other rare

morphologies like those we display here.
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FIGURE 10.7: General view of a garden grown from MnCl2 in 2 M sodium silicate in
microgravity. In this image we see different shapes and textures corresponding to the
different growth modes. Most of the longer tubes were broken during transportation.

Insets show close-ups on plastic and branched growth.
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The bubble at the tube tip dictates the tube’s radius and also influences the growth rate
by volume conservation of the injected solution. We observed this oscillatory form of
tube both on Earth and in space, but in microgravity the effect seemed to be more accen-
tuated and more frequent. The reason for this increased frequency is unclear but may
be related to the lower reactivity in space producing lower pressures inside the osmotic
pump. In figure 10.8 we show examples of oscillatory growth of a cobalt garden in 2 M
silicate on Earth (a,b) and in space (c,d).

FIGURE 10.8: Examples of oscillatory growth for similar experiments performed on
Earth (first row) and microgravity (second row). The experimental conditions were

CoCl2 in 2 M silicate.
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10.4 Conclusions

The purpose of these experiments was to remove the influence of buoyancy during
the formation of chemical gardens to focus on the forced convection part of the phe-
nomenon. We expected to obtain straight tubes emanating from the initial salts and,
indeed, in some cases such tubes were observed. When the silicate membrane does
break, it does so in any given direction and forms a tube that will grow along that initial
direction until the metal solution is depleted or until it reaches the chamber wall, where
it may even reflect off the wall and continue to grow in a new direction.

We did not however expect that the reduced reactivity would have such a strong influ-
ence, something reported as well by Jones and Walter in their space experiments [142].
The absence of gravity means there is no convection due to buoyancy. A diffusive zone
of reagent depletion becomes then an important factor, slowing down the reaction from
hours to days and establishing a diffusion-limited environment. The duration of this
lengthened process was not adequately taken into account in scheduling the experiment
on the International Space Station.

The reduced reactivity also had an apparent secondary effect, the appearance of a to-
tally different growth regime. Plastic deformation by the swelling of the membrane
produces morphologies that are not seen on Earth, introducing new questions about the
malleability of these materials and their hardening process. We also found a remark-
able abundance of pulsating or strangulated tubes, which was surprising but may be
attributed to the diffusion limited convection, that reduces the flow of the metal salt
solution.

The chemical composition analysis of silicate gardens grown in space did not differ
from those grown under gravity. We still found metal oxides on the inside of tubes
and metal silicates on the outside. Powder diffraction did not show any effects on
crystallizing in space either. Only a few crystalline phases could be identified, similar
to what other studies on Earth have demonstrated.
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Nacre
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Chapter 11

Nacre: Introduction

Nacre is the iridescent layer that composes the inner layer of some molluscs shells. It
is exclusively present in gastropods, bivalves and cephalopods. It is also the material
of which pearls are made of, grown by multilayering coating of a foreign body when
it is trapped inside a bivalve shell [154]. It is a composite biomaterial formed mainly
of crystalline calcium carbonate in the aragonite polymorph (95%), the polysaccharide
chitin and proteins (5%). It is an interesting material not only for its aesthetic qualities,
but also for its mechanical properties, much stronger and resilient than its separate
components by themselves [155]. It is also a biocompatible material, which makes it a
perfect candidate to apply in medicine as a substitute for bone tissue.

There is still much to be known about the formation mechanisms and about the mi-
crostructure of nacre. Cartwright and Checa have proposed a model based on liquid
crystal self-organization of chitin in the interlamellar layers [156]. A better under-
standing of nacre’s formation could allow the possibility of growing artificial nacre and
would open a great diversity of applications. This problem is a clear example of self-
organized pattern formation in bio-mineralization.

Structure

Nacre is composed of hexagonal tablets of aragonite, 5–10 µm wide and 0.5 µm thick,
arranged by layers in the case of bivalves and forming towers in the case of gastropods,
with the crystallographic c-axis perpendicular to the shell[157] (see Figure 11.1). Be-
tween each layer of tablets there are sheets of an organic matrix of elastic biopolymers,
called the interlamellar membrane. If we look at the nanoscale, we see that each tablet
incorporates organic fibers within the aragonite mineral, while the interlamellar mem-
brane is composed of chitin crystals embedded in a protein matrix. The mixture of
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brittle aragonite platelets and the layers of elastic polymers is what makes nacre so
strong and resilient, with a Young modulus of 70 GPa [155].

FIGURE 11.1: Growth models for gastropods (towered growth) and bivalves (terraced
growth).

The iridescent appearance of nacre is also a consequence of its structure. The thickness
of the aragonite tablets is close to the wavelength of visible light, producing construc-
tive and destructive interferences that reflect the different colors of light with different
angles.

Formation sequence

The formation of nacre is a self-assembly process in which all the chemical compounds
are secreted together into the extrapallial space, a liquid filled cavity between the mol-
lusc’s body and its shell, where they are organized exclusively through chemical and
physical mechanisms without any cellular intervention.

The sequence begins with the secretion of the polysaccharide chitin from the mollusc’s
mantle into the extrapallial space. Chitin is one of nature’s most abundant biopolymers.
The α-Chitin polymorph, with an orthorhombic crystal structure and anti-parallel poly-
mer chains, is the most commonly found and is part of the exoskeleton of insects and
crustacei. But molluscs produce the rarer β polymorph instead [158], with a mono-
clinic crystal structure and parallel polymer chains. β -chitin polymer chains are ex-
truded from the cellular membrane and immediately crystallize by hydrogen bonding
into long thin crystallites [159].

These crystallites, 20–30 nm in diameter and hundreds of nanometers in length, are
suspended in the extrapallial space in the form of a liquid crystal, as proposed by
Cartwright and Checa [156]. In this state, the particles possess a certain amount of
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order, as in a crystal, but still have some freedom to move, as in a liquid. Given
enough time, these crystallites would self-organize forming a cholesteric liquid crys-
talline phase [160], in which the crystallites are parallel to the plane of the layers but
are twisted with respect to those in the neighboring layers. But molluscs lay a fresh
layer of nacre every 24 hours [161], so the chitin crystallites do not have enough time to
achieve this configuration and the liquid-crystalline ordering is only partial. The crys-
tallites are organized in parallel layers but are disordered within each layer, forming a
felt-like mesh (see Figure 11.2). The liquid-crystal layer of chitin crystallites does not
have great stability by itself, and it is covered by a coating of proteins that are present in
the extrapallial fluid. It is this coating that binds together and stabilizes the crystallites,
forming a strong composite material that composes the interlamellar membrane. The
separation between two consecutive layers of liquid-crystal is determined at first by the
physical interactions between the crystallites, resulting in approximately 60–120 nm
separation. However, after the protein coating, this distance can increase to about 500
nm between interlamellar membranes [162].

FIGURE 11.2: Sketch and micrograph of the interlamellar membrane.

In the case of bivalves, the chitin crystallites self-organize to form a fresh layer of in-
terlamellar membrane, which aligns itself with the membranes laid down earlier. In
gastropods, there is another membrane that separates the mantle of the animal from the
growing surface of nacre. It is termed the surface membrane and was discovered by
Nakahara in 1991 [163]. Its function is probably to protect the growing nacre from the
exterior seawater when the animal retracts into its shell, which would not be necessary
for bivalves as the growing surface never comes in contact with the exterior. The sur-
face membrane appears to have a dynamic structure, with new material continuously
being added at the mantle side and fresh interlamellar membranes being periodically
detached at the shell side. The surface membrane also appears to serve as a template for
the crystal growth, which explains why there are fewer defects in gastropods than in bi-
valves. The two different growth processes produce totally different surface patterns on
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the nacre surface of bivalves and gastropods at the microscopic scale: bivalves exhibit
a terraced surface growth, in contrast with the towered growth found in gastropods, as
can be seen in Figure 11.3.

FIGURE 11.3: Surface morphology of bivalve nacre (upper row, arrows indicate ter-
race growth directions) and gastropod nacre (lower row).

So far we have described how chitin and proteins assemble to form interlamellar mem-
branes. Even if this constitutes only 5% of nacre’s final mass, it defines the structure
and the surface morphology. Now it only remains to fill in the spaces with the min-
eral aragonite, which will give the final product its unique mechanical properties. The
mineralization process of nacre proceeds with calcium carbonate occupying the space
between the interlamellar membranes. Calcium carbonate may crystallize in various
different polymorphs (i.e. calcite), but it is only the less thermodynamically stable
aragonite polymorph that is found in nacre. Thus, there must be some control from
the system to select what polymorph is deposited. Belcher et al.[164] found that certain
proteins present in nacre may cause calcium carbonate to crystallize as aragonite instead
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of calcite, which is a weaker material. The mineralization may take place simultane-
ously in several adjacent membranes, with the calcium carbonate being secreted by the
mantle and filtered through pores in the membranes. In this way, aragonite hexagonal
tablets continue to grow in between the spaces left by the membranes, starting at the
membrane pores and expanding until they meet the neighboring tablets. In gastropods,
tablets on upper layers are aligned with those in lower layers because the surface mem-
brane templates the pore distribution[165]. This produces a columnar morphology that
resembles a stack of coins. On the other hand, membrane pores in bivalves are ran-
domly distributed, the tablets of a fresh layer will begin to grow at the edges of tablets
in the layer below, like in a brick wall.

Pattern formation

When the surface of gastropod nacre is examined at the microscale, we find it formed
by stacks of aragonite tablets piled like a pile of coins. This is a consequence of 2D
nucleation and growth templated by the gastropod’s surface membrane. It is this mem-
brane that will start the growth of a new layer always at the same spot, nucleating a
new island only when the surface below is flat enough, otherwise the precipitating ma-
terial will only attach to the edges of said islands. It is a process where the growth
rate is determined by the supersaturation of precipitating materials in the solution and
the nucleation probability depends on surface diffusion. The gastropod surface mem-
brane avoids the formation of defects, so only some edge dislocations may be found in
gastropod nacre.

Bivalve nacre follows the same principles but lacks the templating effect of a surface
membrane. In this case the surface morphology is usually governed by spiral patterns,
which are a consequence of screw dislocations. In any two-dimensional crystal, when
two growth fronts collide, there are three possible outcomes: they may annihilate each
other ending the growth; they may overlap so one of them continues growing over the
other; or just partially overlap, so part of one front continues its growth over the other,
revolving around the dislocation center. In this last case we have a screw dislocation,
which will continue growing developing a spiral pattern (see Figure 11.4).

In this work we have developed a simple mathematical model, based on the most basic
physical interactions between chitin crystallites, to reproduce the patterns forming on
the nacre surface and to investigate how such patterns may be templated by the inter-
lamellar membranes.



11. Nacre: Introduction 140

FIGURE 11.4: Target pattern in bivalves (left) as a consequence of templated 2D
nucleation and growth. Spiral pattern in bivalves (right) as a consequence of screw

dislocations in terraced growth.
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Spiral and target patterns in
bivalve nacre

12.1 Introduction

The splendor of a pearl extends even to under a microscope; with magnification one can
see that the nacreous surfaces of bivalve molluscs — clams, mussels, oysters, scallops,
and so on — are made up of a striking arrangement of spiral, target and labyrinthine
patterns [166]; see Figure 12.1. Nacre, or mother of pearl, is the iridescent material
that forms an inner layer of the shells of numerous species of molluscs, as well as the
pearls that many of those same species produce. The structure of nacre is often likened
to a brick wall, and indeed it is composed of bricks of aragonite tablets (approximately
95%) and mortar of organic so-called interlamellar membranes (polysaccharide and
protein, ∼5%), but it is a brick wall built in a peculiar fashion, as first the mortar is put
in place, and then the bricks grow within it. (See Figure 12.2 for a sketch of bivalve
molluscan anatomy and nacre structure.) From an examination of the extrapallial space
of the bivalve mollusc, the narrow liquid-filled cavity between the soft tissues and the
shell of the organism, it is seen that the first visible feature in nacre growth is the for-
mation of a new interlamellar membrane in the fluid [156, 162, 163]. In Figure 12.3A
we show this process occurring in a transmission electron micrograph section through
the growth front of bivalve nacre that displays the hard shell below, and the soft body
of the organism, the mantle, above the liquid-filled extrapallial space. The membrane
in its moment of formation is spaced some 100 nm above an earlier-formed one below
it; there is not space between the membrane and the microvilli of the mantle cells above
for any additional membrane to form. We must follow it back some 20 µm to find the
front where the process of mineralization is seen to commence, and by this stage its
spacing from the membrane beneath has increased to approximately 500 nm. The core
of these membranes is composed of rod-shaped crystallites of the polysaccharide chitin
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in its β polymorph [158]. This must be secreted into the extrapallial liquid together
with the mineral and protein components of nacre; it is thought — although not yet
confirmed — that similar mechanisms are responsible for chitin as for cellulose crys-
tallite formation, wherein rosette structures in the cellular membrane extrude polymer
chains from closely packed pores, whence they immediately crystallize by interchain
hydrogen bonding into long thin needle crystallites [159]. In the case of nacre these
crystallites of β chitin are known to be some 20–30 nm in diameter and up to hundreds
of nanometers in length, consisting of hundreds of chitin polymers [167].

50 µm

D 50 µm

B

E F

20 µm

E

5 µm

C

100 µm100 µm

A

FIGURE 12.1: Scanning electron micrographs of the growth surface of bivalve nacre:
(A) General view of labyrinthine patterning; (B) Target patterns; (C) Colliding growth
fronts and spiral; (D, E) Paired spirals; (F) The aragonite tablet at the center of a
spiral follows its structure. (A–D) are Pteria avicula, (E, F) Pteria hirundo. In all
these images we see only the mineralized portion of the nacre, consisting of aragonite
tablets. The interlamellar membranes atop the uppermost mineral layer are generally
lost as the soft tissue is removed, unless the sample is especially prepared to preserve

soft tissue as well as biomineral, as in Figure 12.3A.

Interlamellar membrane formation is then necessarily a process of self-assembly within
the extrapallial fluid; to use our brick-wall analogy, it is as if one empties clay, lime,
sand and water into a tub, and finds that sheets of mortar form spontaneously within
it. What prompts chitin crystallites to self-assemble into sheets? α-chitin crystallites
of similar dimensions to the β -chitin crystallites of molluscs have been studied in vitro.
When dispersed in a colloidal aqueous suspension they form a so-called cholesteric
liquid-crystalline phase, in which the crystallites are parallel to the plane of the layers,
and the crystallites in each layer are twisted with respect to those in the neighboring
layers, with an interlayer spacing of 60–120 nm [160], comparable with the 100 nm
seen here. Similar preparations using β -chitin crystallites from a cephalopod mollusc
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(Todarodes pacificus squid pen) [168] and from a vestimentiferan tube worm (Riftia
pachyptila tubes) [169] indicate that these too form a liquid-crystal phase in aqueous
suspension. Birefringence was observed at rest between cross polarizers for dispersions
of more than 0.1% β chitin and at 0.3% consistency they formed hard gels [168]. (Note
that we are concerned not with a molecular liquid crystal of chitin polymers, but with
a colloidal or supramolecular one of chitin crystallites.) In laboratory experiments, the
liquid crystalline structure is allowed to come to equilibrium by waiting from a few days
up to a year [160]. In the mollusc in vivo, on the other hand, a fresh layer of nacre is
laid down every 1–24 hours, so the system does not have time to arrive at equilibrium,
and the liquid-crystalline ordering of β -chitin is only partial. It comprises a lamellar
structure, but within the layers there is disorder, with the crystallites forming a feltlike
mesh, like a logjam on a lake, as seen in the plan view of Figure 12.3B. Simulations
of the dynamics of the formation of a cholesteric phase of a liquid crystal confirm that
there is an initial orientation of the material into layers followed by its alignment within
and between layers [170]. The evidence leads us to conclude that in Figure 12.3 we
are observing the rod-shaped crystallites of β -chitin, being compelled by their mutual
interactions, self-organizing in the extrapallial space into a liquid crystal.

Artificial liquid crystals are formed by altering a global variable — be it temperature,
concentration, electric field, etc — that causes the whole of a domain to crystallize,
forming many layers at once. We perceive from Figure 12.3 that molluscs, on the
other hand, perform liquid crystallization in quite a different manner: layer by layer.
The narrowness of the molluscan extrapallial space implies that as chitin crystallites
are secreted into the extrapallial fluid they can only self-assemble through their mutual
interactions into one new liquid-crystal layer. The continual secretion of material from
the mantle cells maintains the extrapallial space approximately constant in depth, so
that at any time one fresh layer of the liquid crystal is being deposited, and in this
way in time the mollusc builds a liquid crystal within an expanding domain. This
is concurrently transformed with the addition of proteins and aragonite into the solid
biocomposite that is nacre; a process that we analyze in depth elsewhere [156]. Here
we concentrate on understanding the mode of liquid-crystal construction employed by
the mollusc, in which it is built up layer by layer. This method is novel in terms of
artificial liquid crystals, but is the manner in which solid crystals generally grow, and
this connection allows us to comprehend the spiral and target patterns on the surface of
nacre.

12.2 A liquid-crystal layer growth model of nacre

Layer or tangential growth of a solid crystal, analyzed by Burton, Cabrera, and Frank
[171], involves two processes: on one hand the addition of material at the edges of two-
dimensional islands on the surface of the crystal together with the occasional nucleation
of a fresh island atop an earlier one, and on the other the continual accretion of material
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FIGURE 12.2: Sketch of bivalve mollusc anatomy indicates the position of the liquid-
filled interlamellar space between the mineralized shell and the mantle part of the soft
body of the organism, and illustrates with successive amplifications the brick and
mortar structure of nacre. The growth surface, on which the patterns in Figure 12.1

are observed, is between the mantle and the shell; i.e., into the page.

at the edges of a helical ramp on the surface of the crystal, termed a screw dislocation
[172]. (Tangential growth as a whole was examined by Burton, Cabrera, and Frank
[171]; Frank’s contribution was the analysis of screw dislocations [173]). These two
processes produce characteristic target and spiral patterns seen at the molecular scale in
solid crystals [174]. These same patterns are visible in the conspicuous features of the
surface of nacre at the mesoscale in Figure 12.1. In that figure the patterns are arrange-
ments of aragonite tablets in mineralized nacre. However, as we see in Figure 12.3A,
in growing nacre interlamellar membranes extend ahead of these mineralization fronts;
the latter follow the geometry laid down by the former. This is evidenced by the forms
of tablets that grow at the centers of the screw dislocations in the membranes, which
mould themselves to the spiral, as shown in Figure 12.1F. Thus the spirals and target
patterns are in fact laid down in the interlamellar membranes, and we must establish
that growth of an interlamellar membrane as a liquid crystal layer by layer can give rise
to this geometry of spirals and target patterns.

We formulate a minimal model containing the fundamental physics of the liquid crys-
tallization. Growth proceeds by the incorporation of individual growth units, which are
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the chitin crystallites that compose the liquid crystal. As this is an essentially discrete
process we employ a discrete coupled map lattice, or lattice Boltzmann model, with a
square lattice of discrete space and time but continuous state variables, that puts nu-
cleation and growth on an equal footing. The surface is divided up into a randomized
grid of cells, as introduced by Markus & Hess [175], to avoid anisotropic growth. Each
cell has a growth height H(i, j), initially zero, updated at the end of each iteration of
the growth. The surface is scanned on each iteration and in each cell there may occur
either nucleation, growth, or neither, as a function of the relative height of the nearest
neighbors. The neighbors to each cell are assigned by proximity, defining a circle of
radius R around the cell.

The essential physics we wish to capture in our model is that a fresh growth unit is
incorporated into the growing surface most probably at a site where it is more strongly
bound by virtue of having most neighbors. Such sites are so-called kinks: concavities
at the base of steps on the surface. Thus there is no probability of a growth unit settling
above a step, as it will slide down to occupy a more favorable site below; there is a rather
low probability of a growth unit settling on a flat surface; and a very high probability
of it occupying a site at the base of a step. This physics we can model by setting a low
probability of addition of material, which is termed nucleation, at any point over the
surface that is not elevated above its neighbors, together with a certainty of the addition
of material, which is termed growth, at the kinks of steps.

The condition for nucleation is that the cell should not stick out far above its neighbors;
that the surface be sufficiently smooth. The cell in question should have height com-
parable to that of its neighbors with a difference not more than ∆hN . If so, there is a
small probability PN of nucleating a fresh growth surface. Nucleation is a fundamen-
tally stochastic process, and this is reflected in the model. If nucleation takes place, and
a new growth unit is incorporated, the growth surface increases in height by one plus or
minus a small random factor α:

H(i, j)→ H(i, j)+1±α.

The condition for growth is that the cell must be at the edge of a growth front; i.e., must
have neighbors higher by at least ∆hG. If so a growth unit is incorporated: the growth
height is increased by the mean of the higher neighbors plus or minus α , and a growth
front extends:

H(i, j)→ H(i, j)+ ∑
(k,l)

H(k, l)−H(i, j)
n

±α,

where (k, l) are the coordinates for each higher neighbor and n is the total number of
higher neighbors, which depends on R. This part of the model is deterministic but for
the parameter α , which adds a certain amount of noise so that the growth surfaces are
not completely flat and defect-free.
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In this way, as a growth front grows out its height may vary and if it encounters an-
other front of different height, following the rules above, defects may be spontaneously
incorporated into the growth. Two growth fronts that meet may join seamlessly with
each other, terminating growth; they may completely overlap each other, forming an
edge dislocation; or they may overlap along part of the edge and join along the rest,
nucleating a spiral defect as growth continues. All of these behaviors are comparable
in the model — Figure 12.4 — with nacre itself, Figure 12.1.

In our model the set of parameters comprises:

α Stochastic term, typically ±0.05 to 0.1, that varies the height of the growth cell
on nucleation and growth, otherwise renormalized to be unity. This term is re-
sponsible for defects. Physically this growth-height variation is related to the fact
that the growth units in the case of nacre are non-identical; they are rods of dif-
fering lengths. An additional factor in the appearance of height variations leading
to defects in all layer growth is the presence of impurities.

∆hN Threshold of elevation with respect to the neighbors below which a cell’s neigh-
borhood is considered sufficiently flat for nucleation of a fresh layer to occur. A
larger value of ∆hN implies that more nucleation will take place. Typically set
similar in magnitude to α .

PN Probability of nucleation occurring in a given cell in which according to ∆hN it
may occur; typical value 10−3 to 10−6. PN in combination with ∆hN together
determine the frequency of nucleation. If PN is zero, screw dislocations leading
to spiral growth are the only growth mechanism; if PN is large, the surface is
rough.

∆hG Threshold of difference in height with the neighbors for there to be an active
neighbor. There must be at least one active neighbor for a site to be a kink and
so to have growth in a cell. Physically, this parameter in combination with α

determines the frequency of screw dislocations. Typical values to produce spiral
growth are 0.4 to 0.8. If ∆hG is large, spiral growth is suppressed and growth
proceeds by layers. If ∆hG is small, growth fronts that encounter one another
cross to produce edge dislocations.

R Radius of the circle of neighbors, typically set to between 3 and 10. The model
begins with a randomized grid [175]: A point is set at random within each cell
at the beginning of the simulation. Subsequently the neighbors of the cell are
sought by tracing a circle of radius R about this point. Owing to the initial random
positioning of the center of the circle, this procedure produces a varying number
of neighbors per cell. As with α , the randomization introduced with the grid here
is related to the non-identical nature of the chitin crystallites which are the growth
units for the nacre. A larger radius R implies wider terraces between growth steps.
This is physically related to the surface diffusion of the growth units. If we look
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at nacre from different species, we indeed find that some have steeper, narrower
terraces, and others shallower, wider ones.

500 nm

B

~500 nm

~150 nm

2 µm

500 nm

= adoral boundary of the mineralization front
= adoral boundary of the interlamellar membrane

~100 nm

growth directionA

FIGURE 12.3: (A) Transmission electron micrographs show the interlamellar mem-
branes being laid down prior to mineralization in Pinctada radiata; the orientation of
the sample is as in Figure 12.2. The blowups provide more detail of the membranes
and show that the initial spacing of∼100 nm when a fresh layer is laid down gradually
increases to ∼500 nm in mineralized nacre over a distance of some 20 µm. We have
surmised elsewhere that this increase in layer spacing accompanies the coating of the
chitin liquid-crystal layers with proteins prior to mineralization and is likely caused
by an additional repulsion term in the force balance between membranes introduced
by the electrostatic charges on the amphiphilic structure of the mature membrane.
This change in the force balance from the original cholesteric liquid crystal to the
mature membrane covered with protein would serve to repel the membrane from its
neighboring interlamellar membrane [156]. (B) Scanning electron micrograph of the
interlamellar membrane of Anodonta cygnea shows its logjam structure when viewed
from above. When interpreting this image one must bear in mind various points. This
is a completed interlamellar membrane seen in plan view; we are not just looking at
chitin, but at the result of a later stage of nacre formation in which the chitin has be-
come coated with protein. This stabilizes the layer, which is why we are able to see
it in this micrograph, for which the sample has inevitably been subjected to drying,

which must disintegrate the uncoated initial state of the chitin layer.
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In Figure 12.4 we display the evolution in time of three different scenarios in our model,
to be compared to the various phenomena in nacre of Figure 12.1. In each case the sim-
ulation began at time zero with a flat surface of zero height. In Figure 12.4A we show
the evolution of target patterns; we see the system after 87 and 93 iterations respectively.
Each terrace expands laterally and once the uppermost terrace has expanded sufficiently
a fresh terrace nucleates on it. This is similar to what is seen in Figure 12.1B in nacre
and corresponds to island growth, the first process of Burton–Cabrera–Frank. In Fig-
ure 12.4B we show after 300 and 310 iterations colliding growth fronts and an evolving
spiral similar to those seen in nacre in Figure 12.1C. As the spiral rotates and grows out
it meets other growth fronts coming from top right. The fronts of the same height anni-
hilate each other by joining seamlessly as they meet. Lastly in Figure 12.4C we show
after 230 and 250 iterations paired spirals similar to those in the nacre of Figs 12.1D
and E. Figures 12.4B and C correspond to spiral growth;, which is the second process
of Burton–Cabrera–Frank. Those in B are single screw dislocations, while the paired
spirals in C are Frank–Read sources.

These time evolutions can be seen in nacre samples by looking down through the nacre
layers, as the third dimension of space — into the material — is equivalent to time.
But although that procedure takes us back in time, it does not indicates which events
are coeval, as the model does. From our model we can see that Wada was correct in
noting the parallel between nacre growth and the Burton–Cabrera–Frank dynamics (in
fact Wada [166] singled out the spiral growth mechanism that was Frank’s contribution
[173]) of layer growth, albeit for a liquid crystal rather than the solid crystal he had
envisaged.

12.3 Discussion

From our model of layer growth we can comprehend why these spiral and target pat-
terns, familiar from such diverse instances as the Belousov-Zhabotinsky reaction in
chemistry and ventricular fibrillation of the heart in biology, appear in nacre: All of
these systems are describable in physical terms as excitable media [176]. Excitable me-
dia form a rather general class of systems in which there are elements that are quiescent
until excited into an active state by some stimulus, after which they are unresponsive to
further stimuli during some refractory period before returning to their initial quiescent,
excitable state. This very simple physics is sufficient to produce complex spatiotempo-
ral patterns of targets and spirals, which is why these patterns are observed so generally
in many different fields. Here, the excitable paradigm holds too, and we can describe
the growth of nacre as an excitable medium: A point on the surface of the last-formed
layer is quiescent, but receptive to the nucleation of a new layer above it given a large
enough perturbation, that is to say a fluctuation that concentrates sufficient material
nearby to nucleate a new surface. The edges of layers, the kinks of steps, where new
material is incorporated, are active, while just after a new layer has formed there is a
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refractory period in which another new layer cannot be formed at that point, because
material is preferentially incorporated at the growing edge of the layer nearby. Thus the
growth dynamics of our model of the formation of interlamellar membranes of nacre
corresponds to an excitable medium.

A B C

ii ii

 i

ii

 i i

FIGURE 12.4: Our model of liquid-crystal layer growth reproduces the features seen
in micrographs of nacre growth and shows — what cannot be seen in nacre samples
— how they evolve in time: (A) Target patterns — cf. Fig. 12.1B — after (i) 87 and
(ii) 93 iterations; parameters α = 0.08, ∆hN = 0.1, PN = 10−3, ∆hG = 0.8, R = 10.
(B) Colliding growth fronts and spiral — cf. Fig. 12.1C — after (i) 300 and (ii)
310 iterations; parameters α = 0.06, ∆hN = 0.06, PN = 5×10−6, ∆hG = 0.6, R = 4.
(C) Paired spirals — cf. Figs. 12.1D & E — after (i) 230 and (ii) 250 iterations;
parameters α = 0.08, ∆hN = 0.09, PN = 10−4, ∆hG = 0.8, R = 5. The color scheme
is shown alongside each subfigure; lighter is higher. Movies of these three cases can

be found in the supplementary information.

The growth model we put forward here is for the formation of a liquid crystal of chitin
that is the first component of nacre to be laid down. But nacre — by which we mean
the completed product: mother of pearl, or a pearl itself — is no longer a liquid crystal
but a complex solid. The problem of supramolecular assembly in biology — how does
an organism assemble itself: after the cells make the molecules that are to form part
of the structure, how do they form into tissue; flesh and bone? — is as yet in gen-
eral unsolved. Nacre is of particular interest and is by far the most intensively studied
non-human organo-mineral biocomposite. It lies at the intersection of two groups of
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supramolecular biological structures: fibrous composites and biominerals. It is of in-
terest not just because it is beautiful, but also because it is strong: with just five percent
polysaccharide and protein, its work of fracture is up to 3 000 times higher than that
of inorganic aragonite [155]. The importance of fluid dynamics in the organization of
supramolecular biological structures, both in transporting materials and in their self-
assembly, is beginning to be recognized [177]. Such is the case with biomineralization
processes such as bone and fish otolith formation, and it is likely that further exam-
ples will come to light as our knowledge of the so-called ‘soft chemistry’ involved in
biological mineral deposition improves. The extrapallial liquid is fundamental in the
formation of nacre and it is probable that we shall in future find that there are active
fluid dynamical processes involved in the transport of chitin crystallites, proteins and
mineral to produce nacre.

Nacre is secreted by some species of four classes in the phylum Mollusca: Bivalvia,
Gastropoda, Cephalopoda, and, to a minor extent, Tryblidiida. Although the material
has many points in common between the classes — hence its general classification
as nacre — at the level of details there are important differences. In the present case
we have concentrated on bivalve nacre. The other large class of nacre secreting mol-
luscs, the gastropods, possesses an additional feature not present in bivalves, the surface
membrane, interposed between the mantle and the shell. This organizes the mineraliza-
tion of gastropod nacre so that it grows in towers, rather than in the fronts of bivalve
nacre [178]. Nonetheless gastropod interlamellar membranes have a similar geometry
to those in the bivalves, and screw and edge dislocations are noted in gastropod nacre
[156]; they are simply not so clearly visible at the growth surface as in bivalves, on
account of gastropod mineralization being in towers rather than fronts that follow the
leading edges of the membranes as in bivalves. It seems likely that our liquid-crystal
growth model, possibly with some variations, should be applicable in gastropods too.

Today layer-by-layer growth of materials is of great technological interest; but the syn-
thetic process employed is often a rather primitive one consisting of building up layers
by dipping the material into first one component then another to produce a correspond-
ing layering of so-called artificial nacre [179]. Nature, on the other hand, is more so-
phisticated in using a self-organized system of liquid crystallization to assemble nacre
layer by layer. Liquid crystals have long been surmised to play an important role in
the organization of biological tissues [180–182], yet without a model for their forma-
tion a key section of the argument that biological systems make use of liquid crystals
for the self-organization of supramolecular structure has been lacking [183]. Here we
have shown how such a biological liquid crystal may be constructed, and that this self-
assembly is occurring through a novel process — novel, that is, to humans, as molluscs
have been using it since the Cambrian — of liquid crystallization layer by layer. It may
be of advantage in many technological applications to follow nature’s way.
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Chapter 13

Summary and Conclusions

This thesis presents several works related to non-linear dynamics pattern formation and
morphology in nature. Due to the multidisciplinarity of the issues, I have separated the
thesis in four independent parts. The link between them is non-linear dynamics, and
the order chosen is from simplest to most complex.

The first part describes the synchronization effects generated by tidal interactions be-
tween planets and satellites as a phenomenon of non-linear dynamics. I study the syn-
chronization between rotation and planetary orbit and its influence on the orbital pa-
rameters. I use a dynamic system, reducing the problem to their most basic physical
principles and trying to reproduce the effects of tidal forces with numerical simulations
based on a simplistic model.

Despite its simplicity, our model can reproduce most of the tidal effects present in our
solar system without resorting to continuous bodies, which greatly simplifies the equa-
tions and makes them more intuitive. Thus, I can reproduce the spin-orbit synchroniza-
tion between Earth and Moon as well as other known phenomena, such as the circu-
larization of the orbits, the apasis precession and the synchronization into metastable
orbits. Extensions of the model could eventually include more complexity in the sec-
ondary body or the tilt of its axis of rotation, which could have other synchronization
effects not considered in this work.

The second part describes our experiments aimed at investigating the different mor-
phologies in ice films at the mesoscopic scale. These experiments are relevant for the
study of the astrophysical properties of ice, as porosity, which are a consequence of
not only the interactions at the molecular level but also of the morphology at a meso-
scopic level. More generally, this study examines the understanding of the fundamen-
tal physics involved in pattern formation in thin layers following non-linear dynamics.
Originally our interest in this field came from the ability to grow and study amorphous
ice films in an environmental scanning electron microscope. I are interested in studying
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the dynamics involved in the formation of ice at extreme conditions and in finding evi-
dence of the disputed phase transition between amorphous ice of low and high density.

As a result of our work I showed that the morphology of ice films grown by vapor
deposition varies strongly with the surface temperature and vapor pressure. I apply the
structure zone model to water ice, a material very different from those that inspired
the model, confirming that this model is independent of the chemical nature of the
compound. I obtained the first electron microscopy images of amorphous ice. The
phase transition between amorphous ice low and high density did not show the expected
change of morphology, but I did detect a large increase in pressure within the chamber
at the proposed transition temperature. Finally, I found that the ice can form biomimetic
structures in extreme conditions, which may be an important warning for astrobiologists
looking for life in space under similar conditions.

In the third part of the thesis I extend the study of phenomena of nonlinear dynamics
to more complex systems that combine physical and chemical processes, as is the case
of chemical gardens. Despite these curiosities of science are not a recent phenomenon
and usually are relegated to divulgative demonstrations, the complexity of the system
combines various physical processes and chemical reactions of dissolution, precipita-
tion and nucleation, which complicates their understanding globally. Our interest in this
field came when I were presented with the opportunity of growing chemical gardens in
microgravity aboard the International Space Station. To better understand the physical
and chemical processes responsible for the morphology of these biomimetic patterns, I
studied the formation, structure and composition of chemical gardens grown from dif-
ferent metal salts in different growing conditions and using a variety of experimental
techniques.

Among the conclusions reached, it is noteworthy that the relationship between osmosis
and buoyancy depends strongly on the salt used as seed and the concentration of the
silicate solution, which defines the patterns and morphologies formed during growth.
The mechanical properties of the osmotic membrane also depend heavily on the chem-
ical composition. The viscosity of the solution affects the shape and growth rate of the
tubes. Higher viscosity means less reaction time, but too dilute solutions produce weak
membranes and unstable tubes. The reactivity and morphology change in micrograv-
ity, but not the osmotic pressure. Better control of fluid dynamics, relative densities
between the solutions and osmotic pressure could lead to the production of microtube
design with controlled morphology and thickness.

In the last part of the thesis I present our work on pattern formation in the surface of
nacre as a process of non-linear dynamics. Much remains to be understood in terms
of the mechanisms involved in the formation of the microstructure of nacre. A better
understanding of this process could allow the possibility of artificial nacre growth with a
wide range of applications. The problem arises as a clear example of pattern formation
in self-organized bio-mineralization.
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This work proposes and validates a model of growth of liquid crystals in two dimen-
sions by self-organization. Using cellular automata, I developed a simple mathematical
model based on the most basic physical interactions between chitin crystals. The model
can reproduce the patterns formed on the surface of nacre and helps to demonstrate that
such patterns can be defined by the interlamellar membranes. Among other things, I
found that the laminar organization of the membranes can be explained as a process of
deposition of a cholesteric liquid crystal phase without enough time to reach its equi-
librium. I also showed that the patterns observed in bivalve nacre are similar to those
found in solid crystals in two dimensions, and that they can be explained using the
theories of Burton-Cabrera-Frank.





Chapter 14

Resumen y Conclusiones

En esta tesis se presentan varios trabajos relacionados con la dinámica no-lineal en la
formación de patrones y morfologı́as en la naturaleza. Debido a la multidisciplinariedad
de los temas tratados, hemos separado la tesis en cuatro partes independientes. El nexo
de unión entre ellos es la dinámica no-lineal y el orden elegido es de más sencillo a más
complejo.

La primera parte describe los efectos de sincronización generados por interacciones
mareales entre planetas y satélites como fenómeno de dinámica no-lineal. Estudiamos
la sincronización entre rotación y órbita planetaria y su influencia en los parámetros
orbitales. Para ello utilizamos un sistema dinámico, reduciendo el problema a sus más
básicos principios fı́sicos e intentando reproducir los efectos de las fuerzas mareales
con simulaciones numéricas basadas en un modelo simplista.

A pesar de su sencillez, nuestro modelo consigue reproducir la mayor parte de los efec-
tos mareales presentes en nuestro sistema solar sin recurrir a cuerpos continuos, lo
cual simplifica mucho las ecuaciones y las hace más intuitivas. De este modo, con-
seguimos reproducir la sincronización spin-órbita entre la Tierra y la Luna, ası́ como
otros fenómenos conocidos, como por ejemplo la circularización de las órbitas, la pre-
cesión del apáside o la sincronización en órbitas metaestables. Extensiones del modelo
eventualmente podrı́an incluir mayor complejidad en el cuerpo secundario o la incli-
nación de su eje de rotación, lo cual podrı́a presentar otros efectos de sincronización no
considerados en este trabajo.

La segunda parte describe nuestros experimentos dirigidos a investigar las distintas mor-
fologı́as en láminas de hielo a escala mesoscópica. Estos experimentos son relevantes
para estudiar las propiedades astrofı́sicas del hielo, como la porosidad, que es conse-
cuencia no sólo de las interacciones a nivel molecular sino también de la morfologı́a a
nivel mesoscópico. De manera más general, este trabajo profundiza en el entendimiento
de la fı́sica fundamental involucrada en la formación de patrones en láminas delgadas
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siguiendo una dinámica no-lineal. Originalmente nuestro interés en este campo surgió
de la posibilidad de crecer y estudiar láminas de hielo amorfo dentro de un microsco-
pio electrónico ambiental. Estabamos interesados en estudiar la dinámica involucrada
en la formación de hielo en condiciones extremas y en encontrar una evidencia de la
discutida transición de fase entre el hielo amorfo de alta y de baja densidad.

Como resultado de nuestro trabajo demostramos que la morfologı́a de pelı́culas de hielo
crecidas por deposición de vapor varı́a fuertemente con la temperatura de la superficie
y la presión del vapor depositado. Aplicamos el modelo de zonas de estructura por
primera vez al hielo, un material muy diferente de aquellos que inspiraron el modelo,
corroborando que dicho modelo es independiente de la naturaleza quı́mica del com-
puesto. Obtuvimos las primeras primeras imágenes de microscopı́a electrónica del hielo
amorfo. La transición de fase entre el hielo amorfo de baja y alta densidad no mostró
el cambio de morfologı́a esperado, pero sı́ se observó un gran incremento de la presión
dentro de la cámara a la temperatura de la transición. Por último, encontramos que el
hielo puede formar estructuras biomiméticas en condiciones extremas, lo cual puede
ser un aviso importante para astrobiólogos buscando vida en el espacio en condiciones
similares.

En la tercera parte de la tesis extendemos el estudio de fenómenos de dinámica no-lineal
en sistemas más complejos donde se combinan procesos quı́micos y fı́sicos, como es el
caso de los jardines quı́micos. A pesar de que estas curiosidades de la ciencia no son un
fenómeno reciente y normalmente quedan relegadas a las demostraciones divulgativas,
la complejidad del sistema combina diferentes procesos fı́sicos y reacciones quı́micas
de disolución, precipitación y nucleación, lo cual complica su entendimiento de forma
global. Nuestro interés en este campo surgió cuando se nos presentó la oportunidad de
realizar experimentos de crecimiento de jardines quı́micos en microgravedad a bordo de
la Estación Espacial Internacional. Para mejor entender los procesos fı́sicos y quı́micos
responsables de la morfologı́a de estos patrones biomiméticos, hemos estudiado el pro-
ceso de formación, la estructura y la composición de jardines quı́micos crecidos a partir
de diferentes sales metálicas, en diferentes condiciones de crecimiento y utilizando una
gran variedad de técnicas experimentales.

Entre las conclusiones alcanzadas, cabe destacar que la relación entre ósmosis y flota-
bilidad depende fuertemente de la sal utilizada como semilla y de la concentración de
la disolución de silicato, lo cual define los patrones y morfologı́as formadas durante el
crecimiento. Las propiedades mecánicas de la membrana osmótica también dependen
en gran medida de la composicón quı́mica. La viscosidad de la disolución afecta a la
forma y velocidad de crecimiento de los tubos. Mayor viscosidad implica menor veloci-
dad de reacción, pero disoluciones demasiado diluı́das producen membranas débiles y
tubos inestables. La reactividad y la morfologı́a cambian en microgravedad, aunque
no la presión osmótica. Un mejor control de la dinámica de fluı́dos, de las densidades
relativas entre las disoluciones y de la presión osmótica podrı́an llevar a la producción
de microtubos de diseño, con morfologı́a y grosor controlados.
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En la última parte de la tesis presentamos nuestro trabajo sobre la formación de patrones
en el nácar dentro de un proceso de dinámica no-lineal. Este último caso es más com-
plejo que los anteriores porque involucra la quı́mica, fı́sica y biologı́a de los procesos de
biomineralización. Todavı́a queda mucho por entender en cuanto a los mecanismos que
intervienen en la formación de la microestructura del nácar. Un mejor entendimiento
de este proceso podrı́a permitir la posibilidad de crecer nácar artificial con una gran di-
versidad de aplicaciones. El problema se plantea como un claro ejemplo de formación
de patrones auto-organizados en biomineralización.

En este trabajo se propone y valida un modelo de crecimiento de cristales lı́quidos en
dos dimensiones por auto-organización. Usando autómatas celulares, desarrollamos
un simple modelo matemático basado en las interacciones fı́sicas más básicas entre
cristales de quitina. El modelo consigue reproducir los patrones formados en la super-
ficie del nácar y ayuda a demostrar que dichos patrones pueden ser definidos por las
membranas interlamelares. Entre otras cosas, encontramos que la organización lami-
nar de las membranas se puede explicar como un proceso de deposición de una fase
colestérica de cristal lı́quido que no tiene tiempo para alcanzar el equilibrio. También
demostramos que los patrones observados en el nácar de bivalvos son semejantes a los
encontrados en cristales sólidos en dos dimensiones, y que se pueden explicar utilizando
las teorı́as de Burton-Cabrera-Frank.
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