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Chapter 1

Introduction

This thesis work has been developed in the framework of granted projects P05-FQM-
09900 and P08-FQM-03834 of Consejería de Innovación, Ciencia y Empresa, Junta de
Andalucía, and MTM2009-13250 of Ministerio de Ciencia e Innovación, Spain. The title of
the thesis, "Statistical Analysis of Extreme Values in Spatio-Temporal Processes", makes
reference to a broad context, of increasing relevance in current statistical and modeling
research, in which various aspects of interest have been investigated. Specifically, the
following topics are the main object of this research:

- Analysis of geometrical characteristics of spatial threshold exceedance sets. Effect
of deformation and blurring transformations.

- Application of (marked) point process techniques to the analysis of distribution
patterns in spatial threshold exceedance sets.

- Wavelet analysis of temporal intermittency and the effect of time deformation.

- Block thresholding techniques based on entropy criteria for spatial correlated
shrinkage.

- Extended formulation of blur-generated space-time models involving dynamical
deformation.

In particular, differential aspects in relation to underlying model properties such
as local variability and dependence ranges, as well as to threshold specifications, are
explored.
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Extremal events constitute a natural manifestation inherent to most real phenomena.
Their intrinsic rareness and complexity, jointly with the fact that, in many cases, they
lead to important consequences in terms of human or economical costs, has attracted
the interest of many scientists with the aim to explain their genesis, structural charac-
teristics and possible predictability. The analysis of extremal events has a long history in
statistical literature, and has lead to properly recognized theories from various perspec-
tives, including the (Generalized) Extreme Value Theory (GEVT), the Theory of Large
Deviations, among others.

Risk indicators used in practical studies are commonly formulated in relation to the
possibility of occurrence of extremal events defined by exceedance over a given threshold,
with such a threshold representing a certain critical level for the magnitude of interest.
Part of the GEVT is then devoted to the probabilistic and statistical study of thresh-
old exceedances. Parallelly, in the context of stochastic processes (or random fields), the
structural characteristics of excursion sets defined by threshold exceedances (hereafter
referred to as threshold exceedance sets), defined by the coordinates where the realiza-
tions or sample paths exceed a given threshold, are intrinsically related to the generating
process properties. In particular, different scenarios of local variability and dependence
ranges, jointly with the threshold considered, are expected to provide different configu-
rations of the critical episodes or areas at risk. Such information is useful for estimation
of certain risk probabilities and pattern-related indicators (e.g. recurrence, persistence,
etc.). In this thesis work, we have considered two main approaches of analysis in this
context. The first one addresses the geometrical analysis of threshold exceedance sets;
in particular, the Euler characteristic and the hypervolume (two special cases of the in-
trinsic volumes) can be related, respectively, to the probability of having at least one
point in a critical state and with the extent (in time and/or space) of a critical event.
The second one is based on (marked) point process techniques, applied to the study of
the temporal/spatial distribution of the isolated connected components within a critical
episode represented by a threshold exceedance set. Specific aspects investigated under
both approaches are described below.

As mentioned above, one of the key aspects in this context is to analyze in which
form certain properties of the underlying process of interest are inherited by threshold
exceedance sets in terms of their structural characteristics. In the last decades, there has
been an increasing interest and active research in random field modeling; in particular, es-
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pecially in the recent years, in the spatio-temporal context. The main aim is to formulate
flexible model families, suitable to represent features observed in real phenomena, whose
behavior is commonly subject to complex dynamics. This area of research has lead to
advanced developments in relation to ranges of dependence, local variability, multiscale
properties, spatio-temporal interaction, and heterogeneities, among other aspects.

The contributions derived in this research are described next, with reference to the
original motivation and aspects investigated. A synthetic view, as well as some related
problems and lines for continuing research, are given in the final chapter.

Transformations such as deformation and blurring are meaningful in many applica-
tions, mainly from two points of view. First, in many cases the process dynamics or its
observation physically involves such type of transformations, which can be explained in
various forms; for instance, deformation can be related to unstability of the medium, or to
the effect of some covariates on an expected regular behavior; blurring can be associated
to diffusivity; both, deformation and blurring, can account for technical characteristics
of observation devices, etc. Second, in some cases deformation, by inversion, can be used
as a means to approximate heterogeneously behaved processes in terms of simpler ho-
mogeneous models, in warping techniques, etc.; blurring may be used to smooth out
local variation energy not useful for certain study purposes, etc. In Chapter 3, we study
the effect of deformation and blurring transformation on geometrical characteristics —
namely, the Euler characteristic and the hypervolume— of threshold exceedance sets. In
particular, we analyze through simulation differential effects in relation to dependence
ranges and local variability, as well as to increasing values of the threshold. For deforma-
tion, two distinct cases are considered: ‘level’ variables, where deformation only implies
coordinate translations, and ‘flow’ variables, in which aggregation leads to local change
of the variable states.

In Chapter 4, we make a complementary analysis on pattern characteristics of thresh-
old exceedance sets, using (marked) point process techniques. The fragmented nature of
threshold exceedance sets, particularly for high thresholds, makes this approach par-
ticularly useful to study certain characteristics related to the spatial and/or temporal
distribution of the isolated connected components within. As mentioned before, certain
risk indicators can be formulated in terms of such characteristics. Given a random field
model and a certain subregion in its domain, a family of point processes can be defined
by the centroids of the connected components of threshold exceedance sets, each one
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associated to a fixed threshold, with various possible marks such as size, orientation, etc.
The study has been addressed to evaluation of distribution patterns, including aggrega-
tion/inhibition effects, degree of homogeneity, and possible anisotropy, depending on the
underlying model properties and the threshold considered.

A feature of interest in risk analysis is intermittency. The concept of intermittency
has different interpretations in the literature, the most common and closer being the
pseudoperiodic occurrence of high level or variation episodes in the realization of a pro-
cess, but in other contexts it refers directly to a multifractal scaling behavior. In Chapter
5, based on the Continuous Wavelet Transform applied to a temporal signal, we first ana-
lyze the effect of inter- and intra-scale transfer of energy derived from time deformation,
according to its local contraction/dilation properties. Then, we study the aggregated
effect through a specific scale-dependent intermittency indicator, for different types of
real and random process generated signals.

A variety of thresholding techniques based on the Discrete Wavelet Transform have
been introduced for filtering signals affected by additive observation random noise. In
this context, the exceedance of wavelet coefficients over a conveniently specified threshold
is interpreted as evidence of the presence of signal energy, with respect to pure noise.
Most of these techniques have been developed for deterministic signals. In Chapter 6,
we propose a correlated nonlinear shrinkage estimation methodology for spatial random
signals, where block hard thresholding is performed based on mutual information criteria.
Specifically, a scale-dependent hard thresholding rule for selection of the most informative
wavelet blocks is defined based on the cumulative empirical distribution of the mutual
information ratios at each resolution level.

The above mentioned aspects treated in this research establish various methodolog-
ical approaches which constitute the basis for continuing work, in particular, in the
spatio-temporal context. In Chapter 7, based on a well-known discrete-time continuous-
space blur-generated spatio-temporal non-separable homogeneous model, we introduce
an extended formulation involving a dynamical deformation of the spatial domain. Such
an extended model formulation provides much higher flexibility to incorporate certain
dynamical heterogeneities observed in real phenomena which can be interpreted, for in-
stance, in terms of unstability if the medium, or to account for the effect of certain
covariates. Self-consistency conditions for an underlying continuous-time model are in-
vestigated in terms of the existence of an infinitesimal generator for the deformation
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field.
Computational and graphical work developed in this thesis has been carried out using

different software environments. Most procedures have been implemented creating our
own font code in MATLAB language, especially appropriate for matrix manipulation,
function and data representation, as well as algorithm implementation. Random field
realizations have been generated using the R library RandomFields written by Martin
Schlather. Computations related to the analysis of spatial point processes have been
also performed in R, using the Spatstat library written by Adrian Baddeley and Rolf
Turner, as well as adapted font codes designed by Jorge Mateu, which occasionally call
some FORTRAN subroutines to save computing time. The main font codes originally
developed in this thesis are included in the Appendix.
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Capítulo 1

Introducción

Este trabajo de tesis ha sido desarrollado en el marco de los proyectos P05-FQM-09900 y
P08-FQM-03834 de la Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía,
y MTM2009-13250 del Ministerio de Ciencia e Innovación. El título de la tesis, "Análisis
Estadístico de Valores Extremos en Procesos Espacio-Temporales", hace referencia a
un contexto amplio, de relevancia creciente en la investigación actual en estadística y
modelización, en el que se han investigado varios aspectos de interés. Específicamente,
los siguientes temas constituyen el objeto principal de esta investigación:

- Análisis de características geométricas de conjuntos de excedencias de umbrales
espaciales. Efecto de transformaciones de deformación y borrosidad.

- Aplicación de técnicas de procesos puntuales (marcados) al análisis de patrones de
distribución espacial en conjuntos de excedencias de umbrales espaciales.

- Análisis mediante wavelets de intermitencia temporal y efecto de la deformación
del tiempo.

- Técnicas block thresholding basadas en criterios de entropía para shrinkage corre-
lado espacial.

- Formulación extendida de modelos en espacio-tiempo generados mediante borrosi-
dad involucrando deformación.

En particular, se exploran aspectos diferenciales en relación con propiedades del mo-
delo subyacente tales como variabilidad local y rangos de dependencia, así como con

7
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especificaciones del umbral. Sucesos extremos constituyen una manifestación natural in-
herente a la mayor parte de los fenómenos reales. Su rareza y complejidad intrínsecas,
junto al hecho de que, en muchos casos, conducen a importantes consecuencias en tér-
minos de costes humanos o económicos, ha atraído el interés de muchos científicos con
el propósito de explicar su génesis, características estructurales y posible predecibilidad.
El análisis de sucesos extremos tiene una larga historia en la literatura estadística, y ha
dado lugar a teorías propiamente reconocidas desde varias perspectivas, incluyendo la
Teoría de Valores Extremos (Generalizada) (TVEG), la Teoría de Grandes Desviaciones,
entre otras.

Indicadores de riesgo usados en estudios prácticos se formulan comúnmente en
relación con la posibilidad de ocurrencia de sucesos extremos definidos por excedencias
sobre un umbral dado, representando tal umbral un cierto nivel crítico para la magnitud
de interés. Parte de la TVEG se dedica entonces al estudio probabilístico y estadístico
de excedencias de umbrales. Paralelamente, en el contexto de procesos estocásticos (o
campos aleatorios), las características estructurales de conjuntos de excursión definidos
por excedencias de umbrales (a partir de ahora referidos como conjuntos de exceden-
cias de umbrales), definidos por las coordenadas donde las realizaciones o trayectorias
exceden un umbral dado, están intrínsecamente relacionados con las propiedades del
proceso generador. En particular, se espera que diferentes escenarios de variabilidad lo-
cal y rangos de dependencia, junto con el umbral considerado, proporcionen diferentes
configuraciones de los episodios críticos o áreas en riesgo. Tal información es útil para
la estimación de ciertas probabilidades de riesgo e indicadores relativos a patrones (e.g.
recurrencia, persistencia, etc.). En este trabajo de tesis, hemos considerado dos enfoques
principales en este contexto. El primero está dirigido al análisis geométrico de conjuntos
de excedencias de umbrales; en particular, la característica de Euler y el hipervolumen
(dos casos especiales de los volúmenes intrísecos) pueden relacionarse, respectivamente,
con la probabilidad de tener al menos un punto en un estado crítico y con la extensión
(en tiempo y/o espacio) de un suceso crítico. El segundo se basa en técnicas de procesos
puntuales (marcados), aplicadas al estudio de la distribución temporal/espacial de las
componentes conexas aisladas, dentro de un episodio crítico representado por un con-
junto de excedencias de umbral. Más abajo se describen aspectos específicos investigados
bajo ambos enfoques.



9

Como se ha mencionado más arriba, uno de los aspectos clave en este contexto con-
siste en analizar en qué forma ciertas propiedades del proceso de interés subyacente son
heredadas por conjuntos de excedencias de umbrales en términos de sus características
estructurales. En las últimas décadas, ha habido un interés creciente y una investigación
activa en modelización de campos aleatorios; en particular, especialmente en los años
recientes, en el contexto espacio-temporal. El principal propósito es formular familias
flexibles de modelos, adecuadas para representar rasgos observados en fenómenos natu-
rales, cuyo comportamiento está comúnmente sujeto a dinámicas complejas. Este área
de la investigación ha dado lugar a desarrollos avanzados en relación con rangos de de-
pendencia, variabilidad local, propiedades multiescalares, interación espacio-temporal y
heterogeneidades, entre otros aspectos.

A continuación se describen las contribuciones derivadas de esta investigación, con
referencia a la motivación original y aspectos tratados. Una visión sintética, así como
algunos problemas relacionados y líneas de continuación de la investigación, se dan en el
capítulo final.

Transformaciones tales como deformación y borrosidad son significativas en muchas
aplicaciones, principalmente desde dos puntos de vista. Primero, en muchos casos la
dinámica del proceso o su observación involucran físicamente tal tipo de transforma-
ciones, que pueden explicarse de varias formas; por ejemplo, la deformación puede rela-
cionarse con inestabilidad del medio, o con el efecto de algunas covariables sobre un
comportamiento regular esperado; la borrosidad puede asociarse a difusividad; ambas,
deformación y borrosidad, pueden justificarse por características técnicas de dispositivos
de observación, etc. Segundo, en algunos casos la deformación, por inversión, puede usarse
como un medio de aproximar procesos con comportamiento heterogéneo en términos de
modelos más simples homogéneos, en técnicas warping, etc.; la borrosidad puede usarse
para eliminar por suavizado energía de variación local no útil para ciertos propósitos de
estudio, etc. En el Capítulo 3, estudiamos el efecto de transformaciones de borrosidad y
deformación sobre características geométricas —concretamente, la característica de Euler
y el hipervolumen— de conjuntos de excedencias de umbrales. En particular, analiza-
mos a través de simulación efectos diferenciales en relación con rangos de dependencia
y variabilidad local, así como con valores crecientes del umbral. Para la deformación,
se consideran dos casos distintos: variables ‘nivel’, en la cuales la deformación sólo im-
plica traslaciones de coordenadas, y variables ‘flujo’, en las que la agregación conduce al
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cambio local de los estados de la variable.

En el Capítulo 4, realizamos un análisis complementario sobre características de pa-
trones en conjuntos de excedencias de umbrales, usando técnicas de procesos puntuales
(marcados). La naturaleza fragmentada de los conjuntos de excedencias de umbrales,
particularmente para umbrales altos, hace este enfoque particularmente útil para es-
tudiar ciertas características relativas a la distribución espacial y/o temporal de las
componentes conexas aisladas incluídas. Como se mencionó antes, ciertos indicadores
de riesgo pueden formularse en términos de tales características. Dado un modelo de
campo aleatorio y una cierta subregión de su dominio, puede definirse una familia de
procesos puntuales mediante los centroides de las componentes conexas de los conjuntos
de excursión, cada uno asociado a un umbral fijado, con varias marcas posibles tales
como tamaño, orientación, etc. El estudio ha sido dirigido a la evaluación de patrones
de distribución, incluyendo efectos de agregación/inhibición, grado de homogeneidad, y
posible anisotropía, dependiendo de las propiedades del modelo subyacente y del umbral
considerado.

Un rasgo de interés en análisis de riesgos es la intermitencia. El concepto de intermi-
tencia tiene diferentes interpretaciones en la literatura, siendo la más común y próxima
la ocurrencia pseudoperiódica de episodios de alto nivel o variabilidad en la realización
de un proceso, pero en otros contextos se refiere directamente a un comportamiento de
escalamiento multifractal. En el Capítulo 5, basándonos en la Transformada Wavelet
Continua aplicada a una señal temporal, primero analizamos el efecto de transferencia
inter- e intra-escalar de energía derivado de la deformación del tiempo, de acuerdo con
sus propiedades locales de contracción/dilatación. Entonces, estudiamos el efecto agre-
gado a través de un indicador específico de intermitencia dependiente de la escala, para
diferentes tipos de señales reales o generadas mediante procesos aleatorios.

Una variedad de técnicas basadas en la Transformada Wavelet Discreta han sido in-
troducidas para el filtrado de señales afectadas por ruido aleatorio aditivo de observación.
En este contexto, la excedencia de un coeficiente wavelet sobre un umbral especificado
se interpreta como evidencia de la presencia de energía de la señal, con respecto a ruido
puro. La mayor parte de esas técnicas han sido desarrolladas para señales determinísticas.
En el Capítulo 6, proponemos una metodología de estimación no lineal correlada shrink-
age para señales aleatorias espaciales, donde se realiza block hard thresholding basado en
criterios de información mutua. Específicamente, se define una regla hard thresholding
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dependiente de la escala para la selección de los bloques de coeficientes wavelets más in-
formativos, basada en la distribución empírica acumulativa de las razones de información
mutua en cada nivel de resolución.

Los aspectos mencionados más arriba tratados en esta investigación establecen varios
enfoques metodológicos que constituyen la base para la continuación de la investigación,
en particular, en el contexto espacio-temporal. En el Capítulo 7, basándonos en un cono-
cido modelo espacio-temporal, en tiempo discreto y espacio continuo, homogéneo y no
separable, generado mediante borrosidad, introducimos una formulación extendida in-
volucrando una deformación dinámica del dominio espacial. Tal formulación extendida
del modelo proporciona una flexibilidad mucho mayor para incorporar ciertas heteroge-
neidades dinámicas observadas en fenómenos reales que pueden interpretarse, por ejem-
plo, en términos de inestabilidad del medio, o explicando el efecto de ciertas covariables.
Se investigan condiciones de auto-consistencia para un modelo subyacente en tiempo
continuo, en términos de la existencia de un generador infinitesimal para el campo de
deformación.

El trabajo computacional y gráfico desarrollado en esta tesis ha sido llevado a cabo
usando diferentes entornos de software. La mayor parte de los procedimientos han sido im-
plementados creando código fuente propio en lenguaje MATLAB, especialmente apro-
piado para manipulación de matrices, representación de funciones y de datos, así como
implementación de algoritmos. Realizaciones de campos aleatorios han sido generadas
usando la librería RandomFields escrita en R por Martin Schlather. Cálculos relaciona-
dos con el análisis de procesos puntuales espaciales han sido también realizados en R,
usando la librería Spatstat escrita por Adrian Baddeley y Rolf Turner, así como adapta-
ciones de códigos fuente diseñados por Jorge Mateu, que ocasionalmente llaman a algunas
subrutinas FORTRAN para ahorrar tiempo de cálculo. Se incluyen en el Apéndice los
principales códigos fuente originales desarrollados en esta tesis.
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Chapter 2

Preliminaries

In this chapter we introduce the main basic elements and techniques which are used
through this thesis. To define properly each context, and for the sake of completeness,
the contents are presented in a relatively larger extent than strictly needed for the de-
velopments in the following chapters.

The chapter is organized as follows. Given that the fundamental topics dealt in this
thesis are related with extreme events, in Section 2.1 we present the classical Extreme
Value Theory, with reference to the main approaches developed. Section 2.2 is devoted to
random fields; in particular, the models considered in the different chapters are specified.
Section 2.3 introduces spatial point processes, an approach based on which is considered
in Chapter 4. Section 2.4 presents different wavelet elements and tools, which are used
in Chapters 5 and 6. Finally, in Section 2.5 we define some entropy measures, which are
involved in criteria formulations given in Chapter 6.

2.1 Extreme values

The classical Extreme Value Theory is well recognized as an established scientific dis-
cipline. This section gives an introduction about its fundamental developments, with
specific reference to the three main existing approaches.

13
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2.1.1 Introduction

Extremal analysis is mainly concerned with the formal study of the abnormal behavior
observed in real (natural or derived from human activity) phenomena, quantified in
terms of large deviations for appropriate indicators. The extreme value theory plays
an important role in many areas, mainly in relation to risk analysis, as, for instance,
Geophysics, Environmental Sciences, Engineering, Astrophysics, Finance or Insurance.

Historically, the first work on the extreme value problems was presented by Nicolas
Bernouilli in 1709. In that work he discussed the mean largest distance from the origin
given n points lying at random on a straight line of a fixed length t. However, the con-
cept of distribution of largest value was not introduced until 1922, when von Bortkiewicz
(1922)28 dealt with the distribution of range in random samples from a normal distri-
bution. Fréchet (1927)48 found one possible limiting distribution for the largest order
statistic and Fisher and Tippet (1928)47 proved that there are only three types of lim-
iting distributions. Afterwards, these distributions were unified by a reparametrization
given by von Mises (1954)90 and Jenkisson (1955)67, leading to the generalized extreme
value distributions. In the meantime, Gnedenko (1943)52 introduced a rigorous basis for
the extreme value theory giving necessary and sufficient conditions for the weak conver-
gence of the extreme order statistics. Gumbel (1958)60 was the first to pay the attention
to possible applications of the formal extreme value theory from the statistical point of
view, his book being still relevant today.

An extension of the previous theory, in which only the maxima are considered, consists
of using several of the largest order statistics. This was proposed as a statistical procedure
by Weissman (1978)121 and developed further by Gomes (1981)57, Smith(1986)107 and
Tawn (1988)112, although in this model the probabilistic foundations are based on the
work of Leadbetter et al. (1983)76.

‘Peaks over threshold’ (named POT) constitutes an alternative approach to the classi-
cal extreme value theory, that looks to study exceedances over high thresholds. Todorovic
and Zelenhasic (1970)114 and Todorovic and Rouselle (1971)115 gave the first systematic
development, although the key result is the theorem of Balkema-Hans-Pickands (Balkema
and Hans 197424; Pickands 197595) which states a distribution for a wide class of distri-
bution losses which exceed high enough thresholds.

Therefore, the extreme values theory pays attention to higher values of the distribu-
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tion instead of the average, that is, the interest is in the events associated with the tail
of the distribution. The way of identifying such events determines the three existing ap-
proaches. The first approach considers the maximum that one variable takes in successive
periods. These selected observations constitute the extremal events, called block maxima.
The second approach deals with several of the largest order statistics. Finally, the third
approach focuses on the realizations which exceed a given high threshold. The funda-
mental theoretical results underlying the three approaches are presented next, although
this thesis has been focused in the context of threshold exceedances.

2.1.2 Classical Extreme Value Theory

Assume that the given data yi are maxima, that is,

yi = max{xi,1, ..., xi,n}, i = 1, ...,m, (2.1)

where the xi,j may not be observable. If the xi,j in (2.1) can be observed, then a possibility
to extract upper extreme values from a set of data is to get maxima out blocks. This
method is called annual maxima, blocks or Gumbel method.

For independent random variables X1, ..., Xn having a common distribution function
F , the distribution of maxima, Mn = max{X1, ..., Xn}, can be computed as

P{Mn ≤ z} = P{X1 ≤ z, ..., Xn ≤ z} =
n∏
i=1

P{Xi ≤ z} = [F (z)]n.

Thus, the yi’s in (2.1) are governed by F n if the xi,j’s are governed by F . The problem is
that, in practice, the distribution function F is usually unknown. A common approach
is to look for approximate families of models for F n which can be estimated on the
basis of the extreme data only. However, for any z less than the upper end-point of F ,
z+ = inf{z : F (z) = 1}, the distribution of Mn degenerates to a point mass on z+, that
is,

lim
n→∞

F n(z) =

{
0, z < z+,

1, z ≥ z+.
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To avoid this difficulty, a linear renormalization of the variable Mn is used:

M∗
n =

Mn − bn
an

,

where {an > 0} and {bn} are appropriate sequences of constants which stabilize the
location and scale of M∗

n as n increases and avoid the degeneration of M∗
n,

P{M∗
n ≤ z} = P

{
Mn − bn
an

≤ z

}
= P{Mn ≤ anz + bn}

= F n(anz + bn) −−−→
n→∞

G(z).

Definition 2.1.1. Let F (z) and G(z) be two non-degenerate distribution functions.
F (z) is said to be max-stable or to belong to the maximal domain of attraction of G(z),
F ∈ D(G), if

lim
n→∞

F n(anz + bn) = G(z), ∀z, (2.2)

for a suitable choice of constants {an > 0} and {bn}.

Theorem 2.1.1. The only non-degenerate families of max-stable distributions are:

I: G(z) = exp
{
− exp

{
−
(
z−b
a

)}}
, −∞ < z <∞;

II: G(z) =

{
0, z ≤ b,

exp
{
−
(
z−b
a

)−α}
, z > b;

III: G(z) =

{
exp

{
−
[
−
(
z−b
a

)α]}
, z < b,

1, z ≥ b;

for parameters a > 0, b and, in the cases II and III, α > 0.

Theorem 2.1.1 implies that if there are two sequences of constants {an > 0} and
{bn} such that F n(anz + bn) converges to a non-degenerate distribution G(z), then the
only possible limiting distributions for the rescaled maxima, M∗

n = (Mn− bn)/an, belong
to one of the families labeled I, II and III, which are designated jointly ‘extreme value
distributions’ (EVD), with types I, II and III corresponding to Gumbel, Fréchet and
Weibull families, respectively. Each family has a location and a scale parameter, b and
a, respectively; additionally, the Fréchet and Weibull families have a shape parameter
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α. However, although the three types of EVD have a different behavior, the Fréchet
and Weibull distributions attain the shape of a Gumbel distributions when the shape
parameter goes to infinity and minus infinity, respectively.

Von Mises (1954)90 and Jenkinson (1955)67 showed, separately, that taking the repa-
rameterization ξ = 1/α of EVD and employing appropriate values for the location and
scale parameters, a continuous and unified model termed ‘generalized extreme value’
(GEV) family of distributions can be obtained, which is given by

G(z) = exp

{
−
[
1 + ξ

(
z − µ
σ

)]−1/ξ
}
, (2.3)

defined on the set {z : 1 + ξ(z − µ)/σ > 0}, where −∞ < µ < ∞, σ > 0 and
−∞ < ξ < ∞ are the location, scale, and shape parameters, respectively. The type II
and type III classes of EVD respectively correspond to the cases ξ > 0 and ξ < 0 in this
reparameterization. The subset of GEV family with ξ = 0 is interpreted as the limiting
of (2.3) as ξ → 0, leading to the Gumbel family. In applications, the model unification
has the advantage of avoiding to have to choose which model of three families is most
appropriate for the data.

The previous results can be formally re-stated in the next theorem (see Coles, 200137).

Theorem 2.1.2. Let X1, X2, ..., Xn be a sequence of independent and identically dis-
tributed random variables and let Mn = max{X1, ..., Xn}. If there exist sequences of
constants {an > 0} and {bn} such that

P

{
Mn − bn
an

≤ z

}
→ G(z), as n→∞,

for a non-degenerate distribution function G, then G is a member of the GEV family

G(z) = exp

{
−
[
1 + ξ

(
z − µ
σ

)]−1/ξ
}
, (2.4)

defined on {z : 1 + ξ(z − µ)/σ > 0}, where the parameters satisfy −∞ < µ <∞, σ > 0

and −∞ < ξ <∞.
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In some cases, as for instance in problems of system failure models, the interest is in
the minima rather than maxima observation. Results for minima can be deduced by an
analogous argument as applied above for maxima, or observing that

mn = min{X1, ..., Xn} = −max{−X1, ...,−Xn} = −Mn.

Then, for large n,

P{mn ≤ z} = P{−Mn ≤ z} = P{Mn ≥ −z} = 1− P{Mn ≤ −z}

≈ 1− exp

{
−
[
1 + ξ

(
−z − µ
σ

)]−1/ξ
}

= 1− exp

{
−
[
1− ξ

(
z − µ̃
σ

)]−1/ξ
}

on {z : 1− ξ(x− µ̃)/σ > 0}, where µ̃ = µ.

2.1.3 The r largest order statistic model

Suppose that X1, X2, ..., Xn is a sequence of independent and identically distributed
random variables with distribution F and let X(1) ≤ X(2) ≤ ... ≤ X(n) be an arrangement
in an increasing order. The previous result can be extended to other extreme order
statistics, by defining

M (k)
n = X(n−k) = k-th largest element of {X1, ...Xn}

and identifying the limiting behavior of this variable, for fixed k, as n goes to infinity.

Theorem 2.1.3. If there exist sequences of constants {an > 0} and {bn} such that

P

{
Mn − bn
an

≤ z

}
→ G(z), as n→∞,

then, for fixed k,

P

{
M

(k)
n − bn
an

≤ z

}
→ Gk(z),
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as n→∞, on {z : 1 + ξ(z − µ)σ > 0}, where

Gk(z) = exp {τ(z)}
k−1∑
s=0

τ(z)s

s!
, (2.5)

with

τ(z) =

[
1 + ξ

(
z − µ
σ

)]−1/ξ

.

This theorem states that, if the k-th largest order statistic in a block is normalized
in exactly the same way as the maximum, then its limiting distribution is of the form
given by (2.5), the parameters of which correspond to the parameters of the limiting
GEV distribution of the block maximum.

Frequently, in applications, it is necessary to use the joint distribution of several order
statistics. This distribution is given by the following theorem.

Theorem 2.1.4. If there exist sequences of constants {an > 0} and {bn} such that

lim
n→∞

F n(anz + bn) = G(z), ∀z,

then, for fixed r, the limiting distribution as n→∞ of

M̃(r)
n =

(
M

(1)
n − bn
an

, ...,
M

(r)
n − bn
an

)

falls within the family having joint probability density function

f(z(1), ..., z(r)) = exp

{
−
[
1 + ξ

(
z(r) − µ

σ

)]−1/ξ
}

×
r∏

k=1

σ−1

[
1 + ξ

(
z(k) − µ

σ

)]−1/ξ−1

,

where −∞ < µ < ∞, σ > 0, −∞ < ξ < ∞, z(r) ≤ z(r−1) ≤ ... ≤ z(1), and z(k) :

1 + ξ(z(k) − µ/σ > 0), for k = 1, ..., r.

If r = 1, then the annual maximum is modeled and the limiting distribution coincides
with GEV distributions.
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2.1.4 Threshold models

Another method to extract upper extremes from a set of data x1, ..., xn is to take the
exceedances over a predetermined, high threshold u. Thus, threshold model methods are
much more flexible than methods based on maxima, given that much more data are
used. Exceedances over a fixed high threshold u are those xi with xi > u. Label these
exceedances by x(1), ..., x(k), and define threshold excesses by yj = x(j)−u, for i = 1, ..., k.

Denoting an arbitrary term in the Xi sequence by X, it follows that a description of
the stochastic behavior of extreme events is given by the conditional probability

P{X > u+ y|X > u} =
1− F (u+ y)

1− F (u)
, y > 0.

Usually, the distribution F is unknown and therefore, to obtain the distribution of
threshold exceedances, it is necessary to seek approximations, as in the case of the distri-
bution of maxima. The following theorem gives the asymptotic model for the exceedances
over a large enough threshold.

Theorem 2.1.5. Let X1, X2, ... be a sequence of independent and identically distributed
random variables, and let Mn = max{X1, ..., Xn}. Denote an arbitrary term in the se-
quence by X, and suppose that F satisfies theorem 2.1.2, so that for large n,

P{Mn ≤ z} ≈ G(z),

where

G(z) = exp

{
−
[
1 + ξ

(
z − µ
σ

)]−1/ξ
}
,

for some µ, σ > 0 and ξ. Then, for large enough u, the distribution function of (X − u),
conditional on X > u, is approximately

H(y) = 1−
[
1 +

ξy

σ̃

]−1/ξ

, (2.6)

defined on {y : y > 0 and (1 + ξy/σ̃) > 0}, where

σ̃ = σ + ξ(u− µ).
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A precise proof of theorem 2.1.5 is given in Leadbetter et al. (1983)76. This theorem
states that the distribution of threshold excesses belongs to the family defined by (2.6),
termed ‘generalized Pareto’ (GP) family, if the distribution of block maxima belongs to
the GEV family. In that case, the parameters of the GP distribution of threshold excesses
are uniquely determined by those of the associated GEV distribution of block maxima. In
(2.6) the case ξ = 0 is interpreted as the limit as ξ → 0, i.e., the exponential distribution
with mean σ. The case ξ > 0 is just a reparameterization of one of several forms of the
usual Pareto distributions, and the extension to ξ ≤ 0 was given by Pickands (1975)95.

2.2 Random fields

The literature on spatial, temporal and spatio-temporal random field is very vast. Here we
mention some well-known references of particular interest, such as Chilès and Delfiner
(1999)31, Christakos (199233, 200034), Cressie (1993)38, Stein (1999)108, Wackernagel
(1998)120, Yaglom (1987)124, among others. In this section we introduce some basic no-
tions, formulate some specific models used in the following chapters, and define some
geometrical characteristics of interest in relation to the structure of extremal events.

2.2.1 Basic definitions

Definition 2.2.1. Let D ⊂ Rd, generally d ≥ 2, be a domain with a positive volume,
and (Ω,A, P ) be a probability space. A random field (RF), also called random function
or random process, is a set of variables {X(s, ω) : s ∈ D,ω ∈ Ω} such that for each
s ∈ D the section X(s, ·) is a random variable on (Ω,A, P ). Each of the functions
X(·, ω) defined on D as the section of the RF at ω ∈ Ω is a realization of the RF. For
short the RF is simply denoted by X(s).

Thus a RF on D can be viewed as a family of random variables indexed by the
elements of D, defined on a common probability space. If the set D is finite then X(s)

can be regarded as a single multidimensional random variable and it is specified by
its multidimensional distribution. However, if the set D is infinite, then the RF X(s) is
described by the multidimensional distributions corresponding to all finite configurations
of random variables of the RF. Let s1, s2, ..., sn be n points of D. The finite-dimensional
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distributions of the field X(s) are defined as

Fs1,s2,...,sn(x1, x2, ..., xn) = P{X(s1) ≤ x1, X(s2) ≤ x2, ..., X(sn) ≤ xn}. (2.7)

These functions must satisfy Kolmogorov’s conditions of symmetry and compatibility
(Yaglom 1987124):

a) Symmetry condition:

Fsi1 ,si2 ,...,sin
(xi1 , xi2 , ..., xin) = Fs1,s2,...,sn(x1, x2, ..., xn),

where i1, i2, ..., in is any permutation of the index 1, 2, ..., n.

b) Compatibility condition:

Fs1,s2,...,sm,sm+1,...,sn(x1, x2, ..., xm,∞, ...,∞) = Fs1,s2,...,sm(x1, x2, ..., xm),

for any value of m.

Also, it is usual to assume the existence of density functions corresponding to (2.7),

fs1,s2,...,sn(x1, x2, ..., xn) =
δn

δx1...δxn
Fs1,s2,...,sn(x1, x2, ..., xn).

An independent RF, so called white noise RF, is completely characterized by the
univariate density functions fs(x), since in this case

fs1,s2,...,sn(x1, x2, ..., xn) =
n∏
i=1

fsi(xi).

Definition 2.2.2. The mean of the RF is the expected value of the random variable
X(s) at the point s,

µ(s) = E[X(s)].

Definition 2.2.3. A RF X(s) on D is said to be of second-order if E[X(s)2] < ∞ for
all s ∈ D.

Definition 2.2.4. The covariance of the random variables X(si) and X(sj) is defined
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as
Cov[X(si), X(sj)] = E[X(si)− µ(si)][X(sj)− µ(sj)].

This function describes the structural component of the RF, that is, the second-order
dependence between the variables of the RF.

Consider that X(s) indicates the value taken for the RF in a spatial location s ∈ Rd;
then, X(s) will be denominated spatial RF. In other cases, we can consider positions of
the form s = (s1, ..., sd, t) ∈ Rd × R; then, the RF will be denominated spatio-temporal
RF. As it is indicated by Gneiting et al. (2002)53, physically there is a distinction between
the spatial and temporal dimensions, and a statistical study should take this fact into
account. However, from the mathematical viewpoint, in which Rd×R = Rd+1, there are
no differences between the coordinates, and hence all definitions and results given for
spatial RFs are applicable to the spatio-temporal case too. In many cases, to emphasize
the spatio-temporal nature, the following notation is used:

{X(s, t) : (s, t) ∈ Rd × R}.

Moreover, some specific definitions have been established for the spatio-temporal context,
as, for example, the concepts of separability, full symmetry, or compact support.

Definition 2.2.5. A spatio-temporal RF X(s, t) on Rd × R is said to have separable
covariance function if there exist purely spatial and purely temporal covariance functions
CovS and CovT , respectively, such that

Cov[X(s1, t1), X(s2, t2)] = CovS[s1, s2]CovT [t1, t2]

for all space-time coordinates (s1, t1) and (s2, t2) in Rd × R.

Definition 2.2.6. A spatio-temporal RF is said to have fully symmetric covariance
function if

Cov[X(s1, t1), X(s2, t2)] = Cov[X(s1, t2), X(s2, t1)]

for all (s1, t1) and (s2, t2) in Rd × R.

Definition 2.2.7. A spatio-temporal RF is said to have compactly supported covariance
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function if Cov[X(s1, t1), X(s2, t2)] = 0 whenever ‖s1−s2‖ and/or |t1−t2| are sufficiently
large.

Properties 2.2.1. 1. A covariance function is positive definite. That is, for all ai ∈ R
and for all si ∈ D, i = 1, ..., n,

n∑
i,j=1

aiajCov[X(si), X(sj)] ≥ 0.

2. Cov[si, sj] = Cov[sj, si].

The positive definiteness property is a relevant condition to characterize functions of
RFs as covariance or autocovariance functions (defined below). The following properties
are satisfied by positive definite functions:

1. If F1 and F2 are positive definite, then a1F1 + a2F2 is positive definite, for all
non-negative a1 and a2.

2. If F1, F2, ... are positive definite and limn→∞ Fn(s) = F (s), for all s ∈ Rd, then F
is positive definite.

3. If F1 and F2 are positive definite, then F1F2 is positive definite

Stationarity

A common simplifying assumption to restrict the class of RFs is that the probabilistic
structure in some sense looks similar in different parts of D.

Definition 2.2.8. A RF is strictly stationary if for all finite n, and s1, ..., sn ∈ D,

Fs1,...,sn(x1, ..., xn) = Fs1+h,,...,sn+h(x1, ..., xn), ∀h ∈ Rd.

Thus stationarity can be thought of as an invariance property under an arbitrary trans-
lation of the points by a vector. A less restrictive type of stationarity is defined in terms
of the first two moments of X(s).

Definition 2.2.9. A secon-order RF X(s) is second-order or weakly stationary if it
satisfies:
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1. X(s) = µ, for all s ∈ D,

2. Cov[X(s+ h), X(s)] = C(h), for all s ∈ D.

The function C(·) is called autocovariance1 or covariogram.

Strict stationarity of a second-order RF implies second-order stationarity, while
the reverse is not true. The second-order stationarity is the type of stationarity most
frequently assumed, and hence commonly a second-order stationary RF is called simply
stationary RF (SRF).

Properties 2.2.2. 1. If X(s) is a SRF with autocovariance C(·) then

a) C(0) = V ar(X(s)) ≥ 0.

b) C(s) = C(−s) (symmetry).

c) |C(s)| ≤ C(0).

2. C(·) is the autocovariance function of a SRF if and only if it is symmetric and
positive definite.

Given that a Gaussian distribution is completely defined by its first two moments,
knowledge of the mean and the covariance function suffices to determine the distribution
of a Gaussian RF. Therefore, for a Gaussian RF second-order stationarity is equivalent
to strict stationarity.

Definition 2.2.10. A RF is Gaussian if all its finite dimensional distributions are mul-
tivariate Gaussian.

Gaussian RFs play a central role in modeling data, since they have a rich, detailed and
very well understood theory.

In the spatio-temporal context a covariance is said to be ‘spatially stationary ’ if
Cov[X(s1, t1), X(s2, t2)] depends on the observation locations s1 and s2 only through the
spatial separation vector, s1 − s2. Analogously, it is said to be ‘temporally stationary ’ if

1In the literature the terms covariance (for example, Chilès and Delfiner 199931) and autocovariance
(Stein 1999108) are used equivalently.
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the covariance depends on the observation times t1 and t2 only through the temporal lag,
t1− t2. If a spatio-temporal RF has both spatially and temporally stationary covariance,
it is said to have ‘stationary covariance’, and then there exists a function C such that

Cov[X(s1, t1), X(s2, t2)] = C(s1 − s2, t1 − t2)

for all (s1, t1) and (s2, t2) in Rd × R. This function is called ‘autocovariance’ of the RF,
as in spatial case, and its restrictions C(·, 0) and C(0, ·) are purely spatial and purely
temporal covariance functions, respectively. Mitchell et al. (2005)91 give a condition
for a stationary spatio-temporal RF to be separable, and Gneiting (2002)53 to be fully
symmetric.

Proposition 2.2.3. A stationary space-time autocovariance function is separable if there
exist stationary, purely spatial and purely temporal autocovariance functions CS and CT ,
respectively, such that C(h, u) = CS(h)CT (u) for all (h, u) ∈ Rd × R, or equivalently if
the space-time covariance function can be factorized as

C(h, u) =
C(h, 0) · C(0, u)

C(0, 0)

for all (h, u) ∈ Rd × R.

Proposition 2.2.4. A stationary space-time autocovariance function is fully symmetric
if

C(h, u) = C(h,−u) = C(−h, u) = C(−h,−u) (2.8)

for all (h, u) ∈ Rd × R.

Gneiting et al. (2007)54 summarize the relationships between separable, fully symmet-
ric, stationary and compactly supported covariance functions of RFs as given in Figure
2.1.

Isotropy

We have already mentioned that stationarity can be seen as an invariance property
under translation. It is also possible to define another condition about the invariance
under rotations and reflections.
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Figure 2.1: Schematic illustration of the relationships between separable, fully symmetric,
stationary and compactly supported covariance functions within the general class of
(stationary or non-stationary) space-time covariance functions (taken from Gneiting et
al. 200754).

Definition 2.2.11. A RF X(s) on Rd is strictly isotropic if its finite dimensional joint
distributions are invariant under all rigid motions. That is, for any orthogonal d × d

matrix H and any s ∈ Rd,

P{X(Hs1 + s) ≤ x1, ..., X(Hsn + s) ≤ xn} = P{X(s1) ≤ x1, ..., X(sn) ≤ xn},

for all finite n, s1, ..., sn ∈ Rd and x1, ..., xn ∈ R.

As in the case of stationarity, this condition is very hard to check, and another type
of isotropy is defined.

Definition 2.2.12. A RF X(s) on Rd is weakly isotropic if there exist a constant m and
a function K on [0,∞) such that

1. m(s) = m and

2. Cov[X(s), X(s′)] = K(|s−s′|) for all s, s′ ∈ Rd, where | · | indicates the Euclidean
distance.

This type of isotropy is the most commonly assumed and when a RF satisfies this
condition is simply called isotropic RF.
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Definition 2.2.13. A RF X(s) is called homogeneous if it is intrinsically stationary and
isotropic.

Continuity and differentiability

Continuity and differentiability are significant characteristics of RFs since they give in-
formation about the structure and regularity of the RF. Assume that the RF is of the
second-order with null mean.

Definition 2.2.14. A RF X(s) on Rd is mean-square continuous at s0 if and only if

lim
s→s0

E[X(s)−X(s0)]2 = 0.

For a SRF X(s) with autocovariance function C, E[X(s), X(s0)]2 = 2(C(0)−C(s−
s0)), hence X(s) will be mean-square continuous if and only if C is continuous at the
origin (Stein 1999108).

Definition 2.2.15. A RF X(s) is almost surely continuous at s0 if and only if

X(s)→ X(s0) a.s., as s→ s0.

If the RF is almost surely continuous for every s0 ∈ D, then the RF is said to have
continuous realizations.

Definition 2.2.16. A RF X(t) on R is mean-square differentiable if there exists a RF
X ′(t) such that

lim
δ→0

E[Xδ(t)−X ′(t)]2 = 0,

where
Xδ(t) =

X(t+ δ)−X(t)

δ
.

It can be shown that the SRF Xδ(t) has an autocovariance Cδ(h) such that
limh→0Cδ(h) = −C ′′(h) provided that C(h) is twice differentiable. This also shows that
−C ′′(h) is positive definite. Stein (1999)108 proves that X(t) is m-times mean-square
differentiable if it is (m−1)-times mean-square differentiable and X(m−1) is mean-square
differentiable. That is, there is a strong relation between the mean square differentiability
of a RF and the derivative of its autocovariance function.
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Spectral and convolution representation

The Fourier transform is a powerful tool to study RFs. In this context, it is usual to
consider complex-valued RFs instead of real-valued ones, which are a particular type
of the first. It is known that a complex-valued SRF X(s) can be written as X(s) =

U(s) + iV (s), where U y V are real-valued RFs jointly weakly stationary. Following
Yaglom (1987)124 and Stein (1999)108, a spectral representation, in the continuous case,
can be obtained as follows:

X(s) =

∫
Rd
eiω

T sdY (ω)

where Y (ω) is a RF with orthogonal increments, called ‘random measure’ corresponding
to X(s). It has the following properties:

- E[Y (A)] = 0 for every measurable set A.

- E[Y (A,B)] = 0 for disjoint measurable sets A and B.

- Y (A ∪B) = Y (A) + Y (B) for disjoint measurable sets A and B.

If E[|X(A)|2] = F (A) for some positive finite measure F , then this is called ‘spectral
measure’ of X(s) and the autocovariance function associated with X(s) can be expressed
as

C(h) =

∫
Rd
eiω

ThdF (ω). (2.9)

It is easy to prove that this function is positive definite for any positive measure F :

n∑
j,k=1

cjckC(hj,hk) =
n∑

j,k=1

cjck

∫
Rd
eiω

T (hj−hk)dF (ω)

=

∫
Rd

∣∣∣∣∣
n∑
j=1

cje
iωT (hj−hk)

∣∣∣∣∣
2

dF (ω) ≥ 0

Therefore, all continuous positive positive definite complex-valued functions are of
the form (2.9) with F being a positive measure of finite mass. This result is formalized
in the following theorem given by Bochner (1955)26.

Theorem 2.2.5. (Bochner’s Theorem) A complex-valued function C(·) on Rd is the
autocovariance function for a mean-square continuous SRF on Rd if and only if it can be
represented as in (2.9), where F is a positive finite measure.
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If the spectral measure has a density with respect to Lebesgue measure, this density
is the spectral density f , defined as the Fourier transform of the autocovariance function:

f(ω) =
1

(2π)d

∫
Rd
e−iω

ThC(h)dh.

Inference on the frequency domain pass through estimation of the spectral density.
The following theorem, given in Gneiting et al. (2007)54, specializes Bochner’s theorem
for fully symmetric covariances.

Theorem 2.2.6. Suppose that C is a continuous function on Rd × R. Then C is a
stationary, fully symmetric autocovariance if and only if it is of the form

C(h, u) =

∫ ∫
cos(h′ω) cos(uτ)dF (ω, τ), (h, u) ∈ Rd × R,

where F is a finite, non-negative measure on Rd × R.

If C is fully symmetric and the spectral density f exists, then f is fully symmetric
too, that is,

f(ω, τ) = f(ω,−τ) = f(−ω, τ) = f(−ω,−τ),

for all (ω, τ) ∈ Rd × R.
Another useful representation is the convolution representation. To generate or rep-

resent a SRF X(s) over D ⊂ Rd, we can consider a white noise process ε(s) such that
E[ε(s)] = µ, V ar[ε(s)] = σ2 and Cov[ε(s), ε(s + h)] = 0. Then it is possible to describe
a Gaussian stationary RF by convolving ε(s) with a square-integrable smoothing kernel
function k(s),

X(s) =

∫
Rd
k(u− s)ε(u)du.

This representation is useful since the autocovariance associated depends only on the
kernel.

2.2.2 Some random field models

Here we present some RF models which will be used in the following chapters of this
thesis.
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Cauchy class

Stationary Gaussian fields with generalized Cauchy covariance have been introduced by
Gneiting and Schlather (2004)55; its anisotropic counterpart has been studied by Lim
and Teo (2008)77. This class of RFs is widely used in modeling of physical and geological
phenomena since it is particularly useful to characterize the local variability and the
dependence range properties separately. For this reason, we will consider RFs belonging
to Cauchy class several times throughout this thesis, especially in Chapters 3 and 4.

Definition 2.2.17. A RF X(s) on Rd is called a Gaussian field with generalized Cauchy
covariance if it is a stationary Gaussian field with zero mean and autocovariance given
by

C(h) = σ2(1 + |h|α)−β/α, (2.10)

where α ∈ (0, 2] and β > 0.

We will refer to these RFs as the Cauchy class; the special case where α = 2 and
β = 0.2 is known as the ‘Cauchy model ’. As justified below, parameter α is related with
the local variability and parameter β determines the dependence range.

Fractal dimension, D, is a property that measures the local variability, while long-
memory dependence is a global characteristic often referred to as Hurst effect, H. Both
notions, fractal dimension and Hurst coefficient, are frequently linked in scientific liter-
ature although they are independent of each other. Long-memory dependence, or per-
sistence, is associated with the case H ∈ (1/2, 1) and linked to surfaces with low fractal
dimensions. Rougher surfaces with higher fractal dimensions occur for antipersistent
processes with H ∈ (0, 1/2).

The following proposition is useful to compute separately the fractal dimension and
Hurst coefficient for the Cauchy class (see Gneiting and Schlater 200455, and references
therein).

Proposition 2.2.7. Let X(s) be a stationary Gaussian RF on Rd with autocovariance
function C. Then,

- If 1−C(h) ∼| h |α as | h |→ 0 for some α ∈ (0, 2], then the realizations of the RF
have fractal dimension D = d+ 1− α

2
.
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- If C(h) ∼| h |−β as | h |→ ∞ for some β ∈ (0, 1), then the process is said to have
long-memory with Hurst coefficient H = 1− β

2
.

Figure 2.2: Simulated realizations of Cauchy class with α = 0.1, 1, 2 (from left to right)
and β = 0.1, 0.5, 1 (from top to bottom).

Figure 2.2 displays nine simulated realizations on the square [0, 400]2 ∈ R2 of a
Gaussian RF of Cauchy class (using the same pseudorandom numbers) based on crossed
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combinations of parameters values α = 0.1, 1, 2 (from left to right) and β = 0.1, 0.5,
1 (from top to bottom), with common σ2 = 0.1. The images show clear differences
regarding local variation and larger scale structuration. By row, the Hurst coefficient is
constant but fractal dimension decreases, and this is reflected in the roughness of the
images, that is, the images with lower fractality are smoother. By column, the fractal
dimension is fixed and we can observe the effect of a reduction in the dependence range,
that is, the process fluctuates more and more rapidly becoming more homogeneous.

Linnik model

The Linnik covariance function, for a zero-mean spatial process X, is given by

C(s, s+ h) = E[X(s)X(s+ h)] =
1

1 + ‖h‖α
, 0 < α < d, s ∈ D ⊂ Rd,

where α provides information on the local singularity of the model, i.e., α/2 represents the
second-order Hölder exponent of the model, since its spectral density has the following
asymptotic behavior for high frequencies:

fX(λ) = c1|λ|−d−α(1 + o(1)), |λ| −→ ∞,

for a certain positive constant c1 (see, for example, Ivanov and Leonenko 200466). On
the other hand, the asymptotic behavior of f in the zero frequency is given by

fX(λ) = c(α)|λ|α−d(1− θ(λ)), |λ| −→ 0,

where θ(λ) −→ 0 as |λ| −→ 0. Here,

c(α) =
1

2Γ(α) cos(απ/2)
.

Thus, parameter α is also involved in the specification of the heavy-tailed behavior of the
covariance model, since the spectral density fX presents a singularity of order 2 − α at
the zero frequency. Hence, when α increases the local singularity of the model decreases,
and the covariance tails are slighter, i.e., small values of α correspond to a higher level
of local singularity and long-range dependence. Covariances of this type will be used in
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Function Parameters
ϕ(t) = exp(−ctγ) c > 0, 0 < γ ≤ 1
ϕ(t) = (2ν−1Γ(ν))−1(ct1/2)νKν(ct

1/2) c > 0, ν > 0
ϕ(t) = (1 + ctγ)−ν c > 0, 0 < γ ≤ 1, ν > 0
ϕ(t) = 2ν(exp(ct1/2 + exp(−ct1/2))−ν c > 0, ν > 0

Function Parameters
ψ(t) = (atα + 1)β a > 0, 0 < α ≤ 1, 0 ≤ β ≤ 1
ψ(t) = ln(atα + b)/ ln(b) a > 0, b > 1, 0 < α ≤ 1
ψ(t) = (atα + b)/(b(atα + 1)) a > 0, 0 < b ≤ 1, 0 < α ≤ 1

Table 2.1: Some possible choices for ϕ and ψ in equation (2.11) given by Gneiting
(2002)53.

Chapter 6.

Some non-separable space-time autocovariances

The first models used in spatio-temporal applications have been separable models built
using (2.8). They have computational gains since the matrix associated to this kind of
autocovariance can be factorized in the Kronecker product of the two matrices asso-
ciated to the spatial and temporal autocovariances. However, a disadvantage of these
models is their limitation to describe the space-time interaction. Gneiting (2002)53 gives
the following expression to construct a class of non-separable space-time autocovariance
models:

C(h, u) =
σ2

(ψ(|u|2))d/2
ϕ

(
‖h‖2

ψ(|u|2)

)
, (2.11)

where ϕ is a completely monotone function, ψ a positive function with a completely
monotone derivative, σ2 the variance, and d denotes the dimension of the spatial domain.
This class of autocovariances is particularly important, as it constitutes one of the main
contributions to stationary non-separable autocovariances for space-time data. Table 2.1
shows the proposal functions given by Gneiting (2002)53 for the previous expression.

In Chapter 7, we consider a spatio-temporal RF, X(s, t) on R2×R, with autocovari-
ance function given by

C(h, u) = 0.1(1 + u2)−1.25

(
1 +

h2

(1 + u2)0.1

)−0.1

. (2.12)
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The expression (2.12) is a well defined non-separable autocovariance function on R25×R
since it is obtained choosing the functions ϕ(t) = (1 + t2)−0.1, ψ(t) = (t2 + 1)0.05 and
substituting in (2.11), with σ2 = 0.1. Therefore, it is also a valid autocovariance function
when we consider it restricted to R2 ×R. Figure 2.3 shows nine simulated spatial cross-
sections of this RF on the spatial domain defined by the square D = [0, 400]2 ⊂ R2, with
a sampling time interval ∆ = 1/5 to see more clearly the space-time interaction effect.

2.2.3 Geometrical characteristics

Threshold exceedances of RFs define a special case of excursion sets, the basis of theo-
retical study on the geometrical properties of RF sample paths. A relevant reference is
the text by Adler and Taylor (2007)4; this reviews the recent technical advances in the
theory of random field geometry, in relation to probabilistic aspects. A synthesis and an
overview of various applications can be found in Adler (2008)3.

Definition 2.2.18. Let X(s) be a RF on D ⊂ Rd and let S be a measurable subset of
D. Then, for each threshold u ∈ R,

Au(X,S) = {s ∈ S : X(s) ≥ u}

is called the ‘excursion set of X(s) in S over the level u’.

Figure 3.1, plot (a), represents a simulated realization of a Gaussian RF of Cauchy
model on the square [0, 400]2 ∈ R2; the corresponding excursion set for threshold u = 0.3

is shown in plot (b).
The geometry of excursion sets has been studied through numerical quantifiers includ-

ing intrinsic volumes or Lipschitz-Killing curvatures and Minkowski functionals, which
provide useful information about variational and structural properties. Since the differ-
ences between these quantifies are only of ordering and scaling, we shall consider the
first. There are a number of ways to define them, one of which is by means of a basic
result of integral geometry known as Steiner’s formula. This says that for a convex subset
A of Rd the volume in Rd of a tube of radius ρ around A has a finite expansion in powers
of ρ.

Definition 2.2.19. Consider a convex subset A ⊂ Rd and ρ > 0. The tube of radius ρ
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Figure 2.3: Spatial cross-sections of a spatio-temporal random field with covariance func-
tion given by 2.12 (see from left to right and from top to bottom).
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(a) (b)

Figure 2.4: (a) Simulated spatial realization of Cauchy random field; (b) excursion set
for u = 0.3.

or ρ-tube around A is defined by

Tube(A, ρ) =

{
x ∈ Rd : d(x,A) := inf

y∈A
|x− y| ≤ ρ

}
.

Proposition 2.2.8. Denoting the Lebesgue measure in Rd by λd, Steiner’s formula states
that

λd(Tube(A, ρ)) =
d∑
j=1

ωd−jρ
d−jLj(A),

where

ωj = λj(B(0, 1)) =
πj/2

Γ( j
2

+ 1)

is the volume of the unit ball in Rj.

The quantifies Lj(A), known as ‘intrinsic volumes ’ or ‘Lipschitz-Killing curvatures ’,
satisfy the scaling property Lj(δA) = δjLj(A), for δ > 0, and hence can be understood,
in a certain sense, as related to the j-dimensional measure of A, for each j. If the
ambient space is R2, then L2 measures area, L1 measures boundary length, while L0

gives the Euler characteristic. In R3, L3 measures volume, L2 measures surface area,
L1 is a measure of cross-sectional diameter and L0 is again the Euler characteristic.
In higher dimensions, Ld and Ld−1 measure hypervolume and hypersurface area, while
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L0(A) is always the Euler characteristic which measures structural connectivity. In
particular, for d = 2, L0(A) is the number of connected components minus the number
of ‘holes’ in A; and for d = 3, it is the number of connected components minus the
number of ‘handles’ plus the number of ‘holes’.

The hypervolume (λd(A) := Ld) and the Euler characteristic (ϕ(A) := L0(A)) have
a special interest for us since through them we can compute or approximate some key
probabilities in the risk analysis context, and thus, they can be used to define certain risk
indicators (see Chapters 3 and 7). Specifically, the hypervolume λd(Au(X,S)) directly
reflects the total size of the regions in a critical state within S. Hence, the expected
proportion (λd(S))−1E[λd(Au(X,S))] gives the (average) probability that a generic point
within S enters into a critical state, which also gives a global risk indicator for S. On
the other hand, for a large threshold u, the expected value of the Euler characteristic
for the excursion set Au(X,S) of a smooth RF provides a good approximation of the
level crossing probability P {sups∈S X(s) ≥ u}. Therefore, there is a strong relationship
between the probabilistic and geometric characteristics of RFs.

The idea for approximating the level crossing probability by the expected value of
the Euler characteristic is based on the structure of a excursion set. Specifically,

sup
s∈D

X(s) ≥ u⇔ Au(X,D) 6= ∅

⇔ the number of connected components of Au ≥ 1,

and when u is sufficiently large, the structure of the excursion set Au becomes simple,
containing only simply connected components, likely to be a "nice ball-like" and, so will
have Euler characteristic equal to one. Therefore, the excursion set Au over a high level
u, if non-empty, is very likely to have Euler characteristic equal to 1. In particular,

E[ϕ(A)] = E[ϕ(A)1(Au 6= ∅)] ≈ P{Au 6= ∅} = P{sup
s∈D

X(s) > u}

The previous heuristic explanation and the rigorous result for constant variance Gaus-
sian fields, which we show below, is given in Taylor et al. (2005)113.

Proposition 2.2.9. Let D be a ‘nice’ manifold, and let {X(s); s ∈ D} be a smooth
zero mean constant variance σ2 Gaussian random field on D. Then, there is a number
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a > 0 such that, for u > 0 large enough,∣∣∣∣P {sup
s∈D

X(s) > u

}
− E[ϕ(Au)]

∣∣∣∣ ≤ e−
(1+a)u2

2σ2 .

2.3 Spatial point processes

An approach based on marked point processes to analyze structural properties of thresh-
old exceedance sets is considered in Chapter 4. Here we give a characterization of such
processes and introduce some fundamental first- and second-order characteristics, as well
as tools to analyze possible anisotropy effects.

2.3.1 Characterization of spatial point processes

Informally speaking, a point pattern is defined as an unordered finite set of points or
events {si} observed inside a bounded region W , called the observation window. More
formally, a ‘point process ’ is a stochastic model governing the locations of events {si}. Al-
thoughW could be any locally compact Hausdorff space whose topology has a countable
basis (Cressie 199338), we here consider W to be a subset of Rd, since we work with spa-
tial point processes or, in the case in which the events contain associated measurements
or marks z ∈ F, W will be the product space D × F with D ⊂ Rd, being then these
refereed as ‘marked point processes ’. Another extension is to consider spatio-temporal
point processes, which can be viewed as a family of spatial point processes indexed by
time or directly as a dynamic spatial point process withW defined as a subset of Rd×R,
possibly with associated marks in F .

There are two ways of characterizing a point process: through the spatial locations
of events {si}, or defining a counting measure φ on W . Both characterizations are given
in Cressie (1993)38. Here we follow the characterization through a counting measure
for a marked point process given also in Mateu (2000)88; the unmarked case is similar,
conveniently adapting the component elements related to the marks. Let χ be the Borel
sets of D and let B be the Borel sets of F . Then, for a counting measure φ, φ(A × B)

is defined as the number of events in A whose marks belong to B, where A ∈ χ and
B ∈ B. Let (Ω,Λ, P ) be a probability space and let Φ be a collection of locally finite
counting measures on D × F . On Φ define N as the smallest σ- algebra generated by
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sets of the form {φ ∈ Φ : φ(A × B) = n}, A ∈ χ, B ∈ B and all n ∈ {0, 1, 2, ...}.
Then, a marked point process N is a measurable mapping of (Ω,Λ, P ) into (Φ,N ). A
marked point process defined over (Ω,Λ, P ) induces a probability measure ΠN(Y ) =

P (N ∈ Y ) on (Φ,N ) for all Y ∈ N . The marked point process will be denoted by
N = [s, Z(s)] = {[s1, Z1], [s2, Z2], ...[sn, Zn]} and the corresponding unmarked process
by N = [s] = {[s1], [s2], ...[sn]}.

Two important concepts in the context of point processes are stationarity and
isotropy. A point process is said to be ‘stationary ’ if it is invariant under translations,
that is, ΠN(A) = ΠNh(A), for all A ∈ χ and all h ∈ Rd, with Nh = [s+ h, Z(s+ h)]. A
stationary point process is ‘isotropic’ if it is invariant under rotations. If the process is
stationary and isotropic then it is ‘rigid-motion invariant ’.

In the following subsections, we refer to spatial point processes on the plane, that is,
with d = 2. The contents can be conveniently extended for higher dimensions.

2.3.2 Complete spatial randomness

Definition 2.3.1. A spatial point process is said to be complete spatial random if it
satisfies:

1. the number of events in any planar region A follows a Poisson distribution with
mean λv(A), where v(·) represents the Lebesgue measure, and

2. given n events si in a region A, the si are an independent random sample from the
uniform distribution on A.

Condition 1 means that the expected number of points per unit area is constant, that
is, it does not vary over the plane. Condition 2 implies that there is no interaction amongst
the events. Cressie (1993)38 states that ‘complete spatial randomness’ is the ‘white noise’
of spatial point processes since it characterizes the absence of structure in the data. For
several reasons, according to Diggle (1983)41, an analysis of point processes should begin
with a test of complete spatial randomness. A test to look for evidence against complete
spatial randomness can be carried out by nonparametric techniques such as ‘quadrat
counting ’. In this technique, the window is divided into subregions (‘quadrats’) of equal
area. Then, the numbers of points falling into each quadrat is counted. Obviously, there
are several types of alternatives to complete spatial randomness; for example, there can
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exist a mechanism inherent to the process favoring or inhibiting the presence of other
events near an existing event. These types of processes are known as cluster Poisson
processes and hard-core processes, respectively.

2.3.3 First- and second-order characteristics

Definition 2.3.2. Let N(A) be the number of points of a spatial point process N in the
Borel set A ⊂ D. The first-moment measure or mean measure on (D,χ) is given by

µ(A) = E[N(A)] =

∫
Φ

φ(A)Π(dφ).

Definition 2.3.3. The second-moment measure of N is defined by

µ(2)(A1 × A2) = E[N(A1)N(A2)] =

∫
Φ

φ(A1)φ(A2)Π(dφ),

where A1, A2 ∈ χ.

Note that µ(2) is a measure on (D2, χ2), with χ2 being the smallest σ-algebra con-
taining the product sets A1 × A2.

Definition 2.3.4. The covariance measure of a spatial point process N is given by

C(A1 × A2) = µ(2)(A1 × A2)− µ(A1)µ(A2),

where A1, A2 ∈ χ.

Now, let us consider the behavior of the moment measures as A ↓ {s}, where s ∈ D.
Let ds and dt be small regions located at s and t, respectively.

Definition 2.3.5. The first-order intensity function is defined as

λ(s) = lim
v(ds)→0

µ(ds)

v(ds)
,

provided that the limit exists.

Definition 2.3.6. A spatial point process is said to be homogeneous if its intensity
function is constant, otherwise it is said to be inhomogeneous.
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A homogeneous Poisson process is a complete spatial random point process. The non-
homogeneous Poisson process provides a more general description of randomly occurring
points in a subset of the space.

Definition 2.3.7. A spatial point process N is said to be a non-homogeneous Poisson
process with intensity λ(·) if it satisfies:

1. The number of events in any planar region A follows a Poisson distribution with
mean Λ(A), where Λ(A) =

∫
A
λ(x)dx.

2. Given n events si in a region A, the si are an independent random sample from
the uniform distribution on A.

Definition 2.3.8. The second-order intensity is defined as

λ2(s, t) = lim
v(ds)→0v(dt)→0

µ(2)(ds× dt)
v(ds)v(dt)

,

provided the limit exists (Ripley 197798).

Definition 2.3.9. The covariance density of a spatial point process is given by

β(s, t) = λ2(s, t)− λ(s)λ(t),

where s, t ∈ D.

Ordinary moment measures of point processes are often unsatisfactory because the
Ais in the product space are not necessarily disjoint. This means that the events of
the process can occur in two or more Ais causing a possible redundancy of information
and singularity of the moment measures. Factorial moment measures of simple point
processes (that is, point processes in which no more than one event can occur at each
location) do not suffer from this problem, since they exclude the cases where two or more
points belong to the same set.
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Definition 2.3.10. The second factorial measure of N is defined by

α(2)(A1 × A2) =

∫
Φ

∑
s1 6=s2∈φ

I(s1 ∈ A1)I(s2 ∈ A2)Π(dφ)

= E

[ ∑
s1 6=s2∈φ

I(s1 ∈ A1)I(s2 ∈ A2)

]
,

where A1, A2 ∈ χ, with I(·) being the indicator function.

The term ‘factorial moment measure’ comes from the fact that for an arbitrary k,
α(k) = E[N(A)(N(A)− 1)...(N(A)− k + 1)].

Definition 2.3.11. The second-order product density, `(2), is (assuming continuity) the
density function of α(2), that is,

α(2)(A1 × A2) =

∫
A1

∫
A2

`(2)(s, t)dsdt.

For infinitesimal ds and dt, `(2)(s, t)dsdt can be interpreted as the probability that
there is one point of the point process in each of two specified infinitesimal sets with areas
ds and dt, respectively. If the point process is homogeneous, then the product density
depends only on the (undirected) difference h = t − s. If we use polar coordinates, h
is given by h = (r, ϕ), with r ≥ 0 and 0 ≤ ϕ ≤ π, and then, in the homogeneous case,
`(2)(s, t) = `(2)(h) = `(2)(r, ϕ). Moreover, if the point process is isotropic, the product
density only depends on the distance r between the points s and t. This argument will
be applied to other characteristics below.

Definition 2.3.12. The pair correlation function is defined by the second-order product
density normalized by the square of the first-order intensity, that is,

g(s, t) =
`(2)(s, t)

λ2
.

For a complete spatial random point process the pair correlation function takes the
value 1. In the isotropic case, values of g(r) larger than 1 show that point pairs of distance
r are relatively more frequent compared to those in a complete spatial random process,
which is typical of an aggregation process, and conversely, values of g(r) smaller than
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1 indicate that the corresponding distances are rare and this is typical of an inhibition
process. In the anisotropic case, it is sufficient to consider only values of ϕ between 0 and
π, as g(r, ϕ) = g(r, ϕ+ π) for 0 ≤ ϕ ≤ π. The form of g(r, ϕ) for different ϕ reflects the
form of the anisotropy, and those ϕ values for which the differences are greater should
be found.

An alternative characterization of the second-order properties of a stationary and
isotropic point process is through the reduced second-order moment measure (Ripley
197798; Diggle 198341).

Definition 2.3.13. The reduced second-order moment measure or Ripley’s K-function
of a stationary and isotropic point process N is defined as

K(r)=
E[number of further events within distance r of an arbitrary event]

λ
. (2.13)

Stoyan and Stoyan (1994)111 show the following link between K(r) and g(r):

g(r) =
1

2πr

d

dr
K(r), r ≥ 0.

Thus, for a complete spatial random process, K(r) = πr2.

Definition 2.3.14. The L-function is the transformation of the K-function given by

L(r) =

√
K(r)

π
. (2.14)

This function transforms the Poisson K-function to the straight line L(r) = r,
making visual assessment of the graph much easier. In addition, the square root
transformation stabilizes the variance of the estimator. In spatial statistics, usually the
pair correlation function is used for exploratory analysis of data, whilst the K-function
and L-function are used for hypothesis testing.

A generalization of the K-function for inhomogeneous second-order stationary pro-
cesses has been introduced by Baddeley et al. (2000)23.

Definition 2.3.15. Let N be a second-order stationary spatial point process. The in-
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homogeneous K-function of N is given by

Kinhom(r) =
1

|A|
E

 ∑
si∈N

⋂
A

∑
sj∈A\si

I(||si − sj|| ≤ r)

λ(si)λ(sj)

 , r ≥ 0, (2.15)

for any A ∈ χ with |A| > 0, where |A| denotes the area (Lebesgue measure) of A, and
we take t/0 = 0 for t ≥ 0.

This expression is a generalization of the usual K-function, since a stationary (or at
least first-order stationary) point process has λ(s) ≡ λ and in this case the right-hand
side of (2.15) reduces to the definition of K(r) in Ripley (1977)98. Similarly to the
stationary case, here L = (K/π)1/2, and for an inhomogeneous Poisson processes,
L(r) = r.

In addition to all previous characteristics, there are some other specific ones which
take into account the marks of the point processes in order to describe the correlations
between them. Let f(zi, zj) be a non-negative test function depending on the marks
zi = Z(si) and zj = Z(sj) of two points si and sj. The test function has to be chosen
according to the problem and the type of mark. We will use the next functions:

- f(zi, zj) = zizj, when the marks are the sizes of objects represented by the marked
points;

- f(zi, zj) = d(zi, zj) = min{|zi − zj|, π − |zi − zj|}, when the marks are orientations
of such objects between 0◦ and 180◦.

Definition 2.3.16. The second-factorial moment measure with respect to the mark-sum
measure is given by

α
(2)
f (A1 × A2) = E

[ ∑
s1 6=s2∈φ

f(Z(s1), Z(s2))I(s1 ∈ A1)I(s2 ∈ A2)

]
.

Definition 2.3.17. The f -second-order product density, `(2)
f , is (assuming continuity)

the density function of α(2)
f , that is,

α
(2)
f (A1 × A2) =

∫
A1

∫
A2

`
(2)
f (s, t)dsdt.
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Definition 2.3.18. The mark correlation function (Stoyan and Stoyan 1994111) is given
by the quotient

κf (s, t) =
`

(2)
f (s, t)

`(2)(s, t)
. (2.16)

The latter can be interpreted as the mean of f(zi, zj) given that there is a pair
of points of N at both locations si and sj with marks zi and zj, respectively. If
f(zi, zj) = d(zi, zj), we write κd(s, t) instead of κf (s, t) and it is called orientation
correlation function since it can be interpreted as the mean of the difference of directions
corresponding to the orientations marks of two points.

When the process is homogeneous and isotropic, then κf (s, t) = κf (h), and using
polar coordinates κf (r, ϕ) = κf (r), with r being the distance between s and t. In order
to get still more of the character of a correlation function, the normalized version

~̂f (r) =
κf (r)

κf (∞)
, r ≥ 0, (2.17)

is commonly used, with κf (∞) being calculated by means of the mark distribution,M,
as follows. Assuming that for large distances the marks are independent,

κf (∞) =

∫ ∫
f(z1, z2)M(dz1)M(dz2).

Large values of ~̂f (r) compared to the value 1 suggest positive correlation between
the marks at distance r. Conversely, values of ~̂f (r) smaller than 1 suggest negative
correlation at such a distance. In the case where the mark variable is uncorrelated,
~̂f (r) = 1.

2.3.4 Anisotropy characteristics

Many homogeneous points fields are anisotropic. There is a wide variety of forms of
anisotropy; for instance, they include:

- anisotropic arrangement of the points;

- anisotropic behavior of marks if they describe orientations;
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- combination of anisotropic point distribution and anisotropic mark behavior.

Two of the characteristics introduced in the previous section, the pair correlation
function and the mark correlation function in their anisotropic versions, can be used as a
tool for analyzing anisotropy, depending of the point process being unmarked or marked,
respectively. Here, we introduce some further characteristics to describe the anisotropic
behavior of a point process.

Let N be a marked point process in which each event has a pair of marks: one of size
and another one of orientation; then every event is described by the triplet

[s = location, Z(s) = {l = size mark, α = orientation mark}] = [s, l, α].

The sequence of triplets [si, li, αi], i = 1, 2, ..., n is interpreted as a sample of a ho-
mogeneous marked point process. An associated segment process can be considered as
a point process with realization defined by segments with the centers si, lengths li and
directions θi, for i = 1, ..., n.

Definition 2.3.19. The rose of directions of a marked point process (Stoyan et al.
1987110) is the length-weighted orientation distribution of the segments of unit length
centred at the points and having directions given by the angle marks. The corresponding
distribution function gives the fraction of the length elements with an orientation between
0 and β, 0 ≤ β ≤ π and is given by

R(β) =
1

l̄

∫ ∫
I[0,β](θ)lM(dl, dθ), (2.18)

where l̄ is the mean length andM is the joint mark distribution.

2.4 Wavelets

Wavelet-based techniques, which allow to analyze and describe location-scale related
features of deterministic or random signals, are used in the developments presented in
Chapters 5 and 6.
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2.4.1 Introduction

The first mention of wavelets can be found in an appendix of the thesis of Alfred Haar,
in the early twentieth century. Later, he discovered an orthonormal system of functions
such that, for any continuous functions f(x), the series

∞∑
j=0

2j−1∑
k=0

a2j+kw(2jx− k), for 0 ≤ x < 1,

converges to f(x) uniformly over the interval 0 ≤ x < 1. The main drawback of Haar
basis functions is that they are inefficient in modeling smooth signals because of theirs
discontinuous nature. In spite of this fact, Paul Lévy showed that the Haar basis function
was more appropriate than Fourier basis functions to study small complicated details
when he analyzed Brownian motion.

Gabor (1946)49 introduced the first time-frequency wavelet. His idea consisted in
splitting a wavelet into segments, in such a way that each of which was well defined in
frequency and time, to analyze the individual segments of the wavelets. Shortly later,
other approaches and transformations appeared. The first synthesis of these theories
are attributed to Grossmann and Morlet(1984)58 and Morlet (1982)92, introducing the
concept of using wavelets to analyze non-stationary signals in the eighties. A wavelet was
defined, in the Fourier domain, as an L2(R) function for which the Fourier transform2

Ψ(ω) satisfies ∫ ∞
0

|Ψ(tω)|2dt
t

= 1, for almost all ω.

Vidakovic (1998a)118 affirms that the previous definition is quite broad and over time
the meaning of the term wavelet became narrower; currently, the term wavelet is usually
associated with a function ψ ∈ L2(R) such that the translations and dyadic dilations of
ψ,

ψjk(x) = 2j/2ψ(2jx− k), j, k ∈ Z,

constitute an orthonormal basis of L2(R).
2The Fourier transformation of a function f ∈ L1(R) is defined by

f̂(ω) = 〈f(x), eiωx〉 =
∫

R
f(x)eiωxdx =

∫
R
f(x)e−iωxdx.
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2.4.2 Continuous Wavelet Transform

Definition 2.4.1. Wavelets are functions generated from translation and re-scaling of
a single function called mother wavelet, ψ ∈ L2(R), defined as

ψa,b(x) =
1√
|a|
ψ

(
x− b
a

)
,

where a and b are the scale and translation factors.

Definition 2.4.2. The continuous wavelet transform (CWT ) at the scale a and time
localization b of any function f(x) ∈ L2(R) is defined by correlating f with a wavelet,

CWT f (a, b) = 〈f, ψab〉 =

∫
R
f(x)ψab(x)dx. (2.19)

By varying a and b, the original wavelet is compressed or dilated and translated,
respectively, and, in this way, low and high frequencies can be selectively analyzed.

To guarantee that a wavelet transform is invertible, it is necessary that the mother
wavelet satisfies the admissibility condition

Cψ =

∫
R

|Ψ(ω)|2

|ω|
dω <∞,

where Ψ(ω) is the Fourier transform of ψ(x). Then, the reconstruction formula is

f(x) =
1

Cψ

∫
R2

∫
R
CWT f (a, b)ψab(x)

dadb

a2
. (2.20)

Mallat (1998)85 shows that the CWT can be a valuable tool for detecting irregularities
and analyzing fractals. Suppose that ψ is real. Since ψ has a zero average, a wavelet
coefficient CWT f (a, b) measures the variation of f in a neighborhood of b. Thus, following
across scales the local maxima of the wavelet transform, the singularities are detected.
If at location b the value of CWT f (a, b) increases for small scales, a short range of
singularity can be expected, such as noise. Large values at coarse scales indicate a long
range singularity, typically an important signal feature.
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2.4.3 Discrete Wavelet Transform and multiresolution analysis

The CWT is a highly redundant representation, whose redundancy is characterized by
a reproducing kernel equation. Inserting the reconstruction formula (2.20) into the defi-
nition of the wavelet transform (2.19) yields

CWT f (a0, b0) =

∫
R

(
1

Cψ

∫
R2

∫
R
CWT f (a, b)ψab(x)da

db

b2

)
ψa0b0(x)dx.

Interchanging these integrals gives

CWT f (a0, b0) =
1

Cψ

∫
K(a, a0, b, b0)CWT f (a, b)da

db

b2
,

with
K(a, a0, b, b0) = 〈ψab, ψa0b0〉.

The ‘reproducing kernel ’ K(a, a0, b, b0) measures the correlation of two wavelets ψab and
ψa0b0 . Given the redundancy of CWT it is advisable to select discrete values of a and b
which minimize the transformation and allow that it continues being invertible.

Definition 2.4.3. A discrete wavelet transform (DWT ) can be obtained by choosing a
and b according to a rule known as the critical sampling where a = 2−j and b = k2−j,
for j, k ∈ Z.

Other discretization schemes are possible; see Vidakovic 1998a118.
Under mild conditions on the wavelet function ψ, such a sampling strategy produces

an orthogonal basis of L2(R) called ‘wavelet basis ’,

{ψjk = 2j/2ψ(2jx− k), j, k ∈ Z},

where j and k represent the set of discrete dilations and translations, respectively.
Orthogonal wavelets dilated by 2j carry signal variations at the resolution 2−j. For
f ∈ L2(R), the partial sum of wavelet coefficient

∑
k∈Z〈f, ψjk〉ψjk can be interpreted

as the difference between two approximations of f at the resolutions 2−j+1 and 2−j. The
approximation of a function at resolution 2−j is defined as an orthogonal projection on
a space Vj ⊂ L2(R) which regroups all possible approximations at the resolution 2−j.
Mallat (1989)84 and Meyer (1992)87 introduced the definition of multiresolution spaces.
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Definition 2.4.4. A multiresolution analysis (MRA) is a sequence of closed subspaces
{Vj, j ∈ Z} in L2(R) satisfying the following properties:

i) ∀j ∈ Z, Vj ⊂ Vj+1;

ii) ∪jVj = L2(R);

iii)
⋂
j Vj = {0};

iv) ∀j ∈ Z, f(2jx) ∈ Vj ⇔ f(x) ∈ V0;

v) There exists a scaling function φ ∈ V0, called father wavelet, whose integer-translates
span the space V0,

V0 =

{
f ∈ L2(R)|f(x) =

∑
k∈Z

ckφ(x− k)

}
, (2.21)

for which the set {φ(· − k), k ∈ Z} is an orthonormal basis of V0.

Condition (i) means that the signal to be analyzed at the given resolution contains
all the information of the signal at coarser resolutions. Condition (ii) means that
any signal can be approximated with arbitrary precision. Condition (iii) indicates
that the function 0 is the only object common to all spaces Vj. Condition (iv) shows
that there is only one space, e.g. V0, all the other spaces being scaled versions of the
prototype V0. The orthogonality requirement of Condition (v) can be relaxed, it is suf-
ficient to assume that the system of functions {φ(·−k), k ∈ Z} constitutes a Riesz basis3.

Since Vj ⊂ Vj+1, the space Vj+1 is generated by the basis of the coarser scale Vj
plus other basis functions which generate a space Wj of detail functions. Therefore, all

3A Riesz basis of a Hilbert space H is a basis satisfying:

i) there exist constants C ′ > C > 0 such that, for every sequence of scalars {cm : m ∈ N},

C
∑
m

|cm|2 ≤

∥∥∥∥∥∑
m

cmφm

∥∥∥∥∥
2

H

≤ C ′
∑
m

|m|2, and (2.22)

ii) the vector space of finite sums
∑

m cmφm (on which (2.22) is tested) is dense in H.
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functions in Vj+1 can be represented in terms of the union of the basis of Vj and the basis
of Wj:

Vj+1 = Vj ⊕Wj.

This complementary space Wj is generated by translations of one mother wavelet ψ,
stretched to meet the current scale j, and thus it has a similar structure to Vj.

Scaling and wavelet equation and filter banks

Condition (i) of MRA states that V0 ⊂ V1, therefore the scaling function can be repre-
sented as a linear combination of functions from V1 leading to the scaling equation

φ(x) =
∑
k∈Z

hk
√

2φ(2x− k), (2.23)

where hk =
∫

R φ(x)φ1k(x)dx = 〈φ(x),
√

2φ(2x− k)〉; these are called ‘high pass filters ’.
An analogous argument about the mother wavelet gives the wavelet equation

ψ(x) =
∑
k∈Z

gk
√

2φ(2x− k), (2.24)

where gk =
∫

R ψ(x)φ1k(x)dx = 〈ψ(x),
√

2φ(2x− k)〉; these are called low pass filters.
Wavelets can be obtained by iteration of filters with rescaling. The DWT is computed

by successive low pass and high pass filtering of the discrete time-domain function. At
each level, the high pass filter produces detail information, while the low pass filter
associated with the scaling function produces coarse approximations. The resolution of
the function is determined by the filtering operations, and the scale is determined by
upsampling and downsampling (subsampling) operations.

2.4.4 Two-dimensional wavelet transforms

In some applications, as in Chapter 6, it is necessary a two dimensional transform.
This can be obtained through a generalization of the theory of MRA introduced in
the previous section. Here we consider a separable two-dimensional wavelet transform
which can be directly designed from their one-dimensional counterparts. Then a two-
dimensional scaling function is a product of two one-dimensional functions, φ(x, y) =
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φ(x)φ(y), and the scaling equation takes the form

φ(x, y) = φ(x)φ(y) = 2
∑
k∈Z

∑
l∈Z

hklφ(2x− k, 2y − l).

In a similar way, we can construct the wavelets. However, we have now three wavelet
functions: ψH(x, y) = φ(x)ψ(y), ψV (x, y) = ψ(x)φ(y) and ψD(x, y) = ψ(x)ψ(y), the
corresponding wavelet equations being

ψH(x, y) = 2
∑
k∈Z

∑
l∈Z

hkglφ(2x− k, 2y − l),

ψV (x, y) = 2
∑
k∈Z

∑
l∈Z

gkhlφ(2x− k, 2y − l),

ψD(x, y) = 2
∑
k∈Z

∑
l∈Z

gkglφ(2x− k, 2y − l).

The superscripts ’H’, ’V’ and ’D’ indicate that these finctions extract, respectively, hor-
izontal, vertical and diagonal details of the two-dimensional signal.

2.4.5 Shrinkage estimators

Let f ∈ L2(Rd) be a deterministic signal. Assume that f admits the wavelet representa-
tion ∑

j∈Z

∑
k∈Zn

fjkψjk(·),

where {ψjk : j ∈ Z,k ∈ Zn} denotes a wavelet basis of L2(Rd), and {fjk : j ∈ Z,k ∈ Zn}
its wavelets coefficients, that is, fjk = 〈f, ψjk〉L2(Rd).

In the white-noise setting, the observed process Y is defined as

Yσ(dz) = f(z)dz + σW (dz),

where W is a Brownian motion, and σ denotes the noise level, for 0 < σ.

The purpose of shrinkage estimators is to recover the unknown signal from the ob-
served process; more specifically, an estimate of f is obtained which minimizes the mean
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squared error (MSE). The shrinkage estimator family is then defined as

F =

{
f̂(·) =

∑
j∈Z

∑
k∈Zn

γjkYjkψjk(·) : γjk ∈ [0, 1]

}
,

where Yjk are the empirical (observed) wavelet coefficients, that is, the wavelet coefficients
of process Yσ, and {γjk : j ∈ Z,k ∈ Zn} are the weights defining the shrinkage function,
i.e., the estimator f̂ of the signal of interest f .

The simplest wavelet non-linear shrinkage technique is named ‘thresholding ’. This
technique consists of comparing the wavelet coefficients with a threshold λ and decid-
ing which ones are significant. The two most common policies are hard and soft; their
analytical expression are, respectively,

δhλ(f̂jk, λ) =

{
0 if |f̂jk| ≤ λ

f̂jk if |f̂jk| > λ

and

δsλ(f̂jk, λ) =

{
0 if |f̂jk| ≤ λ

f̂jk − sgn(f̂jk)λ if |f̂jk| > λ.

In Chapter 6 we use hard thresholding, although other techniques could be considered.
The choice of λ is a key aspect in thresholding procedures. A small threshold yields a
result close to the input but this result may contain noise. On the other hand, a large
threshold produces a signal with a large amount of zero wavelet coefficients, which may
remove some of the signal singularities. Many methods have been developed to look for
a threshold which minimizes the error of the result as compared with the noise-free data,
but since these data are unknown, the error cannot be computed or minimized exactly.

Minimax and maxiset approaches

Two main approaches have been adopted in the definition of optimality of shrinkage
estimators: The minimax and the maxiset approaches. Specifically, an estimator f̂ ∗ is
said to be ‘minimax ’ in the class F(M) of functions in the normed space F having
norms bounded above by a fixed constantM if (see, for instance, Donoho and Johnstone
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1994a42, 1994b43, 199544 and Donoho, Johnstone, 199845)

sup
f∈F(M)

Rn(f̂ ∗n, f) = inf
f̂

sup
f∈F(M)

Rn(f̂n, f),

where Rn(ĝn, g) = E‖ĝn − g‖F denotes the risk in the F−norm, and ĝn denotes, in our
case, a wavelet shrinkage estimator. Thus, for a given class F(M) of deterministic signals,
the optimality is measured in terms of the best convergence rate achieved.

In the maxiset approach, the quality of the estimators is measured in terms of the
largest space where a given convergence rate is achieved (see Kerkyacharian and Picard
200070, 200271; Vidakovic 1998a118). Thus, the ‘maxiset ’ is defined as

MS(f̂n, ρ, αn)(T ) =

{
θ ∈ Θ : sup

n
En
θ ρ(f̂n, f(θ))(αn)−1 ≤ T

}
,

for a fixed constant T, a loss function ρ, a convergence rate αn, and a sequence of
estimators f̂n. Here, Mn = {P n

θ : θ ∈ Θ} defines the underlying sequence of models,
with {P n

θ : n ∈ N, θ ∈ Θ} being probability distributions on {Ωn, : n ∈ N} , and Θ the
parameter space (see also Autin 200822, on µ−thresholding rules, under the maxiset
approach).

2.5 Entropy measures

Entropy and related information measures are useful to quantify uncertainty and depen-
dence. In Chapter 6, we develop a shrinkage estimation methodology based on mutual
information criteria for scale-adaptive selection of the threshold.

2.5.1 Introduction

Entropy was defined first in the context of thermodynamics and statistical mechanics.
However, we refer here to the concept of entropy introduced by Shannon (1948)106 in
the context of Information Theory. Assuming a set of possible events whose probabilities
of occurrence are p1, p2, ..., pn, the aim is to define a measure of how much ‘choice’ is
involved in the selection of the event, or how uncertain is the outcome. Such a measure,
denoted H(p1, p2, ..., pn), should satisfy three requirements:
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i) H is continuous in the pis;

ii) if all the pi are equally probable, pi = 1/n, then H is a monotonically increasing
function of n;

iii) H is additive.

Shannon proved that the only H satisfying these three assumptions is of the form

H(p1, p2, ..., pn) = −K
n∑
i=1

pi ln pi,

where K is a constant which depends on a unit of measure and on the base of the
logarithm chosen.

2.5.2 Shannon’s entropy and related measures for discrete ran-

dom variables

Definition 2.5.1. The Shannon entropy of a discrete random variable X with alphabet
χ and probability mass function p(x) = P{X = x}, x ∈ χ, is defined as

H(X) = −
∑
x∈χ

p(x) log p(x).

The log can be considered in any base and, depending on the base, the entropy is
expressed in different units. In the information-theoretical context of entropy, typical
units of measure are bits and the base of the logarithm is 2. Commonly, the convention
0 log 0 = 0 is used, which is easily justified by continuity since x log x→ 0 as x→ 0.

Note that the entropy of X can be interpreted as the expected value of the random
variable log 1

p(X)
, where X is drawn according to the probability mass function p(x).

Thus,

H(X) = Ep

[
log

1

p(X)

]
.

Properties 2.5.1. 1. H(X) is a function only of the probabilities p(xi)s, independent
of their ordering or labeling.
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2. H(X) ≥ 0, with equality if and only if all except one of the pis are 0, i.e., p(x) is
a point mass at some x0 ∈ χ.

3. H(X) ≤ log |χ|, with equality if and only if pi = p2 = ... = pn, i.e., p(x) is uniform.

4. H is a strictly concave function of X, i.e., for 0 ≤ λ ≤ 1 and random variables X
and Y ,

H(λX + (1− λ)Y ) ≥ λH(X) + (1− λ)H(Y ),

with equality if and only if λ = 0, or λ = 1, or X = Y .

Considering two or more random variables as a single vector-valued random variable,
the previous definition can be extended to define the joint entropy, and then the entropy
of a random variable given another.

Definition 2.5.2. Let (X, Y ) be a pair of discrete random variables with a joint distri-
bution p(x, y). The joint entropy is defined as

H(X, Y ) = −
∑
x,y

p(x, y) log p(x, y) = −Ep[log p(x, y)].

Proposition 2.5.2. H(X + Y ) ≤ H(X) +H(Y ), with equality if and only if X and Y
are independent.

Definition 2.5.3. Let (X, Y ) be a pair of discrete random variables with a joint distri-
bution p(x, y). The conditional entropy is defined as

H(X|Y ) = −
∑
x,y

p(x, y) log p(x|y) = −Ep[log p(x|y)].

Theorem 2.5.3. (Entropy Chain Rule)

H(X1, X2, ..., Xn) = H(X1) +
n∑
i=1

H(Xn|X1, ..., Xn−1).

Kullback and Leibler (1951)73 introduced an information measure similar to Shan-
non’s entropy to measure the distance between two distributions (although not a distance
in the true metric sense since it is not symmetric and does not satisfy the triangle in-
equality).
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Definition 2.5.4. The relative entropy or Kullback-Leibler divergence between two prob-
ability mass functions p(x) and q(x) is defined as

D(p, q) =
∑
x∈χ

p(x) log
p(x)

q(x)
= Ep

[
log

p(x)

q(x)

]
,

where the conventions 0 log 0
0

= 0, 0 log 0
q
and p log p

0
=∞ are used.

The Kullback-Leibler divergence is a measure of inefficiency of assuming the distribution
q(x) when the true distribution is p(x).

Proposition 2.5.4. Let p(x) and q(x) be two probability mass functions. Then,

D(p, q) ≥ 0,

with equality if and only if p(x) = q(x) for all x.

The next measure quantifies the mutual dependence of two variables and gives the
amount of information that one variable contains about another.

Definition 2.5.5. Let (X, Y ) be a pair of discrete random variables with a joint distri-
bution p(x, y). The mutual information between X and Y is defined as

I(X;Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

= D(p(x, y), p(x)p(y))

= Ep(x,y)

[
log

p(x, y)

p(x)p(y

]
,

(2.25)

with p(x) and p(y) being the marginal probability mass functions of X and Y , respec-
tively.

Equivalent expressions for the mutual information are:

I(X;Y ) = H(X) +H(Y )−H(X, Y )

= H(X)−H(X|Y )

= H(Y )−H(Y |X) = I(Y ;X).

(2.26)
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Therefore, we can see the mutual information from two different points of view, as is
showed in Whittaker (1990)122. On the one hand, seeing (2.25), the mutual information
measures the divergence between the joint distribution of X and Y and the ‘independent’
distribution given by the product of the marginal probability mass functions of X and
Y . In this sense it quantifies the departure from independence. On the other hand, seeing
(2.26), the mutual information is closely related to the problem of predicting the value of
one variable from the value of another. That is, it is a natural measure of the information
held by one random variable about another.

Definition 2.5.6. The conditional mutual information of random variables X, Y given
Z is defined as

I(X;Y |Z) = H(X|Z)−H(X|Y, Z)

= Ep(x,y,z)

[
log

p(x, y|z)

p(x|z)p(y|z)

]
.

Theorem 2.5.5. (Chain Rule for mutual information)

I(X1, X2, ..., Xn;Y ) =
n∑
i=1

I(Xi;Y |Xi−1, Xi−2, ..., Xi).

2.5.3 Shannon’s entropy and related measures for continuous

random variables

For continuous random variables, an analogous measure to the entropy has been defined,
this is called ‘differential entropy’. Although, in a first view, it can be seen as an extension
of the first, there are some important differences between them. We use a lowercase h to
indicate that this is the differential entropy rather than discrete entropy H.

Definition 2.5.7. The differential entropy of a continuous random variable X with
density function f(x) is defined as

h = −
∫
S

f(x) log f(x)dx = −Ef [log f(x)],

where S is the support of X.

Properties 2.5.6. 1. h(X + c) = h(X), for all c ∈ R,
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2. h(aX) = h(X) + log |a|, for all a ∈ R.

An important difference with respect to the entropy of a discrete random variable
is that the differential entropy of a continuous random variable can take values less than 0.

Related measures, as defined previously in the discrete case, can be formulated for
continuous random variables, replacing sums with integrals.

Definition 2.5.8. Let (X, Y ) be a pair of variables with a joint density function f(x, y).
The joint differential entropy is defined as

h(X, Y ) = −
∫
f(x, y) log f(x, y)dxdy = −Ef [log f(x, y)].

Definition 2.5.9. Let (X, Y ) be a pair of random variables with a joint density function
f(x, y). The conditional differential entropy is defined as

h(X|Y ) = −
∫
x,y

f(x, y) log f(x|y) = −Ef [log f(x|y)].

In general, f(x|y) = f(x, y)/f(y), hence we can write

h(X|Y ) = h(X, Y )− h(Y ),

assuming that both terms in the right-hand side are not equal to infinity simultaneously.

Theorem 2.5.7. (Entropy of a multivariate normal distribution) Let X1, X2, ..., Xn have
a multivariate normal distribution with mean ν and covariance matrix Σ. Then,

h(X1, X2, ..., Xn) =
1

2
log(2πe)n|Σ|,

where |Σ| denotes the determinant of Σ.

Definition 2.5.10. The relative entropy or Kullback-Leibler divergence between two
density functions f(x) and g(x) is defined as

D(f, g) =

∫
f(x) log

f(x)

g(x)
dx = Ef

[
log

f(x)

g(x)

]
.
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Definition 2.5.11. The mutual information between two random variables X and Y

with joint density function f(x, y) is defined as

I(X;Y ) =

∫
f(x, y) log

f(x, y)

f(x)f(y)
dxdy

= Ef(x,y)

[
log

f(x, y)

f(x)f(y

]
,

with marginal probability density functions f(x) and f(y).

Similarly to the discrete case, other ways to express the mutual information of con-
tinuous random variables are:

I(X;Y ) = D(f(x, y), f(x)f(y))

= h(X) + h(Y )− h(X, Y )

= h(X)− h(X|Y ) = I(Y ;X),

2.5.4 Some extensions of Shannon’s entropy

Extensions of Shannon’s work have resulted in many alternative measures of information
or entropy. Here we refer to two widely known families.

Renyi (1960)97, relaxing the requirement of additivity, extends the Shannon’s entropy
to a continuous family of entropies parameterized by a continuous parameter q, defined
by

Hq(X) =
1

1− q
log

n∑
i=1

pqi , q ≥ 0.

Some particular cases of interest are:

- H0(X), which is the logarithm of the cardinality of X, named ‘Hartley entropy ’.

- q → 1, since for any probability distribution X we have Hq(X) → H(X), that is,
it converges to the Shannon entropy.

- H2(X), which is the negative logarithm of the likelihood of two independent random
variables with the same probability distribution to have the same value. This is
called ‘collision entropy ’, or just ‘Rényi entropy ’.
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- H∞(X), which is a function only of the highest probability, called ‘min-entropy ’.

Tsallis (1998)116 introduced the unique non-extensive entropy as

Hq(X) =
1−

∑n
i=1 p

q
i

q − 1
, q ∈ R,

where q is the entropic index that characterizes the degree of non-extensivity, since given
two random variables X and Y ,

Hq(X + Y ) = Hq(X) +Hq(Y ) + (1− q)Hq(X)Hq(Y ).

Note that, for q = 1, the Tsallis entropy coincides with the Shannon entropy.



Chapter 3

Structural Analysis of Spatial
Threshold Exceedances

Due both to the complexity of real systems and to the technical difficulties inherent to
extremal analysis, the statistics of extremes in spatio-temporal processes has become one
of the most challenging research areas in relation to the increasingly demanding interest
on risk assessment tools in many fields of application. Recent advances in spatio-temporal
statistical analysis are focused, in particular, on the formulation and study of new model
families, flexible to represent such real complexities and, at the same time, suitable for
technical treatment and interpretation, as well as on related system dynamics problems.

In this chapter, significant characteristics of threshold exceedances with reference to
structural properties of the processes generating such events, particularly in the context
of input/output systems, are analyzed. Specifically, the effect of spatial deformation and
blurring transformations on the second-order structure and the geometrical properties of
excursion sets is studied and illustrated through some simulated cases.

3.1 Introduction

During the last two decades, there has been an important effort in formulating and
studying sophisticated models for spatio-temporal processes suitable to represent, in an
appropriate form, structural characteristics of interest such as local variability orders,
memory ranges, spatio-temporal interaction, heterogeneities, multiscale properties, etc.
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Among the increasing number of contributions, in some cases giving a synthetic view of
different approaches in this context, we shall mention Brown et al. (2000)29, Christakos
(2000)34, Cressie and Huang (1999)39, De Iaco et al. (2002)64, Gneiting (2002)53, Gneit-
ing and Schlather (2004)55, Kolovos et al. (2004)72, Kyriakidis and Journel (1999)74, Ma
(2003)79, (2008)80, Porcu et al. (2008)96 and Stein (2005)109. The theory of generalized
random fields provides a suitable framework to formulate and study model families which
incorporate some of the mentioned structural characteristics in terms of appropriate test
function spaces (see, for instance, Ruiz-Medina et al. 2008104).

The problems of detection and prediction of extremal events in input/output systems
randomly evolving in space and time brings us necessarily to very primary questions on
how such occurrences are generated, which are their effects, then to the analysis of
their characteristics in terms of the system structural properties, namely local regular-
ity/singularity orders, ranges of memory, heterogeneities, multiscale properties, spatio-
temporal interaction, among others. The first question has long been a matter of interest
particularly in engineering oriented research (see, for example, Aldous 19895; Vanmarcke
2010117), but also in environmental applications. For instance, abnormal persistence or,
what we can call, concentration of ‘energy’ in input variables, even under critical point
levels, can eventually lead to and explain observed output extremal episodes. Conversely,
extremal input deviations may originate abnormal behavior in an output variable, or just
be absorbed by the system with no significant effect, either observed or in terms of risk.
Relatedly, public health policies are often based, sometimes with no well-founded justi-
fication, on alert indicators involving a combination of smoothing operations (e.g. aver-
aging, thresholding) which damp and hide small space or time scale exceptional events
(see, for instance, Le and Zidek 200675).

Among other significant transformations eventually involved in a system, and hence
affecting its structural properties, we here refer to deformation and blurring, meaningful
for a variety of problems and applications. In particular, Angulo and Mardia (1998)18,
and Mardia et al. (2006)86, propose an entropy-based approach for evaluation of the
structural distortion effects from spatial deformation. Goitía et al. (2004)56 develop a
functional approach, in a generalized random field framework, to estimate deformation
and blurring in a system, based on entropy criteria.

We analyze the implications of transformations of this type in relation to the proper-
ties of threshold exceedances in input/output systems (see Angulo and Madrid 200811,
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2009a12, 2009b13 and 2010a15). Regarding spatial deformation, even for one-to-one
smooth transformations, the difference between the cases where deformation affects the
whole system or intervenes only at the input level is critical in relation to the genesis and
effects of extremal behavior. In the first case, the underlying input-output correspondence
remains invariant, except for the point displacements and the change in the space-time
local measure. However, properties of threshold exceedances based on natural temporal
and geographical coordinates, such as structural patterns and related characteristics, as
well as those derived for local (in space and/or time) averages, etc., are consequently
affected by the system deformation. Spatial heterogeneity characteristics are also mod-
ified, which has been used, in particular, to generate or approximate non-homogeneous
models based on deformation of homogeneous random fields (among others, see Sampson
and Guttorp 1992105; Anderes and Stein 20088; and the references therein). Further in-
terest, from structural point of view, has the second case, since deformation at the input
level actually involves a transformation of the system filter, hence affecting the output
probabilistic structure and, in particular, the genesis of eventual output threshold ex-
ceedances from the altered spatio-temporal distribution of the input ‘energy’. A similar
analysis is performed as to blurring transformations. Here, the main interest lies in the
change of local variability orders, multiscale characteristics and space-time interaction
(see, for example, Ruiz-Medina and Angulo 2007103), again with significant consequences
in relation to the genesis and effects of threshold exceedances in input/output systems.

In Section 3.2 we define ‘deformed’ and ‘blurred’ random fields, deriving some formal
implications of the transformations involved. Section 3.3 illustrates through simulated
examples the effect of spatial deformation and blurring on the second-order structure
of a random field and on some of the geometrical characteristics of its excursion sets,
namely the Euler characteristic and the hypervolume.

3.2 Spatial deformation and blurring

Spatial deformation has had two main significant applications in the random field context.
First, in image warping, where a template image is used as a reference for exact or
approximate correspondence with related observed images based on a deformation of the
spatial domain, generally subject to suitable regularity conditions; different approaches
to define such deformations include landmark-based thin-plate splines (see, for example,
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Glasbey and Mardia 199850, 200151; Mardia et al. 200686), viscoelastic fluid kinematics
SPDE models (see, for instance, Amit et al. 19917; Christensen et al. 199635), etc. Second,
spatial deformation has been used to fit homogeneous, possibly isotropic random field
models to spatial data which exhibit a certain lack of homogeneity which can be explained
or corrected in terms of such type of transformations (see Sampson and Guttorp 1992105;
Perrin and Senoussi 199994; Clerc and Mallat 200336; Anderes and Stein 20088, among
others). The latter can be seen as an approach to definition of flexible classes of non-
homogeneous random fields from homogeneous ones. Angulo and Mardia (1998)18, and
Mardia et al. (2006)86, propose an entropy-based approach for evaluation of the structural
distortion effects from spatial deformation.

Formally, let X be a random field on D ⊆ Rd. Let Φ : D → D′ ⊆ Rd be a spatial
deformation, such that Φ is a C1−diffeomorphism with positive Jacobian, |JΦ| > 0. By
X[Φ] we denote the ‘deformed’ random field, defined by

X[Φ](s) = X(Φ−1(s)), ∀s ∈ D′. (3.1)

This common interpretation of a random field deformation means that the state values
remain as original, but reallocated. Hence, for a second-order random field, the point
displacement and derived local change of measure induce a distortion effect on the ran-
dom field second-order structure. However, variances remain as originally in displaced
points. Regarding the effects of spatial deformation on excursion set characteristics, it is
evident that shapes are deformed and hypervolumes change also because of local change
of measure; since regularity of Φ preserves the connectivity properties of excursion sets,
Euler characteristic remains invariant in the transformed space, but obviously changes
as referred to the original domain.

The situation is substantially different if deformation should be interpreted as acting
at the stage of generation of a ‘flow’ random field from purely random inputs. In this
case, the effect of deformation of the base space on the aggregation of the input energy
leads to the following state representation of the deformed random field, X[Φ̃]:

X[Φ̃](s) = X(Φ−1(s))|JΦ(Φ−1(s))|−1 = X(Φ−1(s))|JΦ−1(s)|, ∀s ∈ D′. (3.2)

As a consequence, in this case, the distortion effect on the second-order structure reflects
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a local change of the state-scale (hence, of the variances) derived from the Jacobian
factor. More interesting, excursion sets display related geometrical variations, not just
in terms of shape deformation, but also in structure due to the locally heterogeneous
modification of the level scales. Thus, for u > 0, a value of |JΦ(Φ−1(s))| < 1, which
means local contraction, induces a possible extension in Au[Φ̃] with respect to Au[Φ],
and conversely, for |JΦ(Φ−1(s))| > 1, which means local dilation, there will be a possible
reduction in Au[Φ̃].

(a) (b)

Figure 3.1: (a) Simulated spatial realization of Cauchy random field; (b) excursion set
for u = 0.4793.

To illustrate graphically these effects we consider a simulated realization on the square
[−200, 200]2 ∈ R2 of Cauchy random field model (see Section 2.2.2) with σ2 = 0.1,
displayed in plot (a) of Figure 3.1; plot (b) shows the excursion set corresponding to
the threshold u = 0.4793. This specific value for the threshold u was simply selected,
from a dense set of points partitioning the range of variation of the realization of X, to
illustrate an intermediate level where the corresponding excursion set is structured with
a high number of connected components.

Based on this realization, in Figures 3.2 and 3.3 we depict the effect of two different
spatial deformations, named D1 and D2. These are defined in terms of landmark-based
thin-plate splines (Bookstein 198927), to have different contraction and dilation proper-
ties, particularly at the central area of the square domain considered. In each of both
cases, sixteen landmark points are considered, sharing a subset of eight boundary an-
chor points (that is, points forced to remain fixed under the deformation), consisting
of the four corners and the four edge middle points, to prevent significant distortion of
the square borderlines. For D1, the eight interior points (0,−100), (0, 100), (−100, 0),
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Deformation D1: (a) Effect on a regular mesh; (b) Jacobian determinant
values; (c)-(d) effect on simulated realization of Cauchy random field, considered as a
‘level’ or as a ‘flow’ variable, resp.; (e)-(f) corresponding excursion sets for u = 0.4793.

(100, 0), (−50,−50), (50, 50), (−50, 50), and (50,−50) are forced to move half distance
towards the square central point, i.e. the origin (0,0); that is, they are respectively trans-
formed into the points (0,−50), (0, 50), (−50, 0), (50, 0), (−25,−25), (25, 25), (−25, 25),
(25,−25). On the other hand, D2 is based on the reciprocal assignments. Visualization



3.2. Spatial deformation and blurring 69

(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Deformation D2: (a) Effect on a regular mesh; (b) Jacobian determinant
values; (c)-(d) effect on simulated realization of Cauchy random field, considered as a
‘level’ or as a ‘flow’ variable, resp.; (e)-(f) corresponding excursion sets for u = 0.4793.

of contraction and dilation effects is helped by applying both deformations on a regular
mesh template, in plot (a), and by displaying the corresponding Jacobian determinant
values, in plot (b), for each figure. The random field is considered either as a ‘level’ or
as a ‘flow’ variable (see, respectively, plots (c) and (d) of each figure). Plots (e) and (f)
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of both figures show the excursion sets based on the threshold u = 0.4793 corresponding
to the transformed realizations displayed in the respective plots (c) and (d). The local
change of scale due to the Jacobian determinant factor becomes evident in the ‘flow’
case, with significant structural effects on the excursion sets.

Another case of random field transformation important for modeling and applications
is blurring, which can be properly formalized in terms of convolution operators. Blurring
can be directly related to physical effects derived, for example, from the way input
signals are collected and registered by technical devices. But it has been also used as a
mathematical means for model generation; in particular, as a local smoothing operation
and, in the spatio-temporal context, to represent the diffusive transmission of information
between different times (see, for instance, the approach by Brown et al. 200029, later
referred in Chapter 7).

For simplicity, here we assume that random field X is defined on the whole space
Rd (otherwise, specifications would be required for convolution in relation to the domain
boundary). Let h : Rd × Rd → R be a kernel such that h ≥ 0 and

∫
Rd h(s, s′)ds′ = 1,

∀s ∈ Rd. The ‘blurred’ random field X[h] is defined by

X[h](s) = h ∗X(s) =

∫
Rd
h(s, s′)X(s′)ds′.

In many cases, blurring can be considered to occur homogeneously in space, that is,
kernel h depends on the difference vector (or, even, isotropically on the distance), being
then defined as h : Rd → R, with h ≥ 0 and

∫
Rd h(s)ds = 1. In this case, the ‘blurred’

random field is formulated as

X[h](s) = h ∗X(s) =

∫
Rd
h(s− s′)X(s′)ds′.

The smoothing effect of blurring on the random field second-order structure is better
understood in the isotropic case, leading to variance reduction, increased dependence
ranges, and increased local regularity of the field. As for the geometrical properties of
excursion sets, we will expect smoother shapes and boundaries, and reduced expected
Euler characteristic and hypervolume, among other consequences.

In Figure 3.4, a Gaussian kernel, h, with three different variance values (σ2
h1

= 10,
σ2
h2

= 100, and σ2
h3

= 1000), is used to generate blurred images based on the simulated
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(a) (b)

(c) (d)

Figure 3.4: Gaussian blurring on simulated realization of Cauchy random field: (a) Orig-
inal field; (b)-(c)-(d) blurred field for σ2

h1
= 10, σ2

h2
= 100, and σ2

h3
= 1000, resp.

realization of Cauchy random field model previously considered. Threshold exceedance
sets for u = 0.374 shown in Figure 3.5 illustrate the above mentioned structural dif-
ferences. Again, selection of this specific value for threshold u was intentional just for
visualization of significant contrasting features.

In some applications, a combination of both blurring and deformation transformations
may be present in the model; see, for example, Goitía et al. 200456, where a functional
approach is developed, in a generalized random field framework, to estimate deformation
and blurring in a system, based on entropy criteria. Taking, for simplicity, D = D′ = Rd,
the deformed and (then) blurred random field X[Φ;h] is defined by

X[Φ;h](s) = h ∗X[Φ](s) =

∫
Rd
h(s, s′)X(Φ−1(s′))ds′, ∀s ∈ Rd.
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(a) (b)

(c) (d)

Figure 3.5: Threshold exceedance sets for u = 0.374 based on original and blurred simu-
lated realization of Cauchy random field (see Figure 3.4).

Equivalently, X[Φ;h] = X[hΦ], with

hΦ(s,v′) = h(s,Φ(v′))|JΦ(v′)|.

Similarly, in the ‘flow’ random field case,

X[Φ̃;h](s) = h ∗X[Φ̃](s) =

∫
Rd
h(s, s′)X(Φ−1(s′))|JΦ−1(s′)|ds′, ∀s ∈ Rd,

also defined as X[Φ̃;h] = X[hΦ̃], with

hΦ̃(s,v′) = h(s,Φ(v′)).

It is important to note that, according to the order in which both transformations are
applied here, blurring has a certain ‘hiding’ effect on deformation, which raises an in-
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teresting problem of identifiability in applications. The joint effect of deformation and
blurring is considered in Chapter 7 as the basis for a spatio-temporal model formulation
which extends the blur-generated model introduced in Brown et al. (2000)29 (see also
Angulo and Madrid 2009b13 and 2010a15).

3.3 Evaluation of geometrical characteristics

To have more insight into several significant effects of deformation and blurring on the
structure of spatial threshold exceedance sets, we calculate average values of the Euler
characteristic and the hypervolume (i.e., the area, in this case) for a dense sequence
of thresholds u, based on 300 simulated independent replicates of Cauchy random field
on R2, with σ2 = 0.1, α = 2, and β = 0.2. The study is restricted to the subdomain
S = [−25, 25]2, a central area within the square [−200, 200]2. The results are drawn and
compared in a series of curves displayed in Figure 3.6, for deformation, and Figure 3.7,
for blurring. In both cases, we use the example transformations previously introduced.

In plot (a) of Figure 3.6 we can see, for both the ‘level’ (Φ) and the ‘flow’ (Φ̃) cases,
the increase or reduction effect on the degree of disgregation of threshold exceedance sets,
measured in terms of the Euler characteristic, caused by spatial deformation, depending
on whether this transformation acts as a local contraction or dilation, respectively. This
effect is clearly affected by extra local change of scale in the ‘flow’ case. As commented in
Section 2.2.3, for large u the different rates of decay towards 0 of the Euler characteristic
can be interpreted, by approximation, in terms of the probability

P{sup
s∈D

X(s) ≥ u} (3.3)

of the system entering into alert on some location in S; for instance, in the ‘flow’ case
and for a contracting deformation, such a probability becomes significantly higher. As
for hypervolumes, plot (b), there is no significant effect of deformation in the ‘level’
case (note that the homogeneity of the random field considered is also reflected in the
average proportion of areas above and below threshold u; such a proportion hence remains
invariant in expectation by a ‘level’ deformation). However, in the ‘flow’ case, the change
of scale due to the Jacobian determinant factor modifies, as before, the probabilities of
a generic point in S entering into a critical state.
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(a) (b)

Figure 3.6: Curves of (a) Euler characteristic, and (b) hypervolume for: (black) original
field; deformed field under D1, (red) ‘level’ case, (dashed red) ‘flow’ case; deformed field
under D2, (blue) ‘level’ case, (dashed blue) ‘flow’ case.

(a) (b)

Figure 3.7: Curves of (a) Euler characteristic, and (b) hypervolume for: (black) original
field; blurred field with kernel (red) h1, (blue) h2, and (green) h3.

The smoothing effect of blurring (for usual ‘well-behaved’ kernels) is translated into
a reduction in structural complexity of threshold exceedance sets, particularly in the
degree of disgregation, as shown in Figure 3.7, plot (a), for the three Gaussian kernels
previously considered. Again, for large u, the probability (3.3) is progressively reduced
as the blurring kernel variance σ2

h increases. Similarly, the range of u values where the
average proportion of points in a critical state significantly changes from 1 to 0, as u
increases, gets reduced by the blurring transformation of the field.

Although the main features of these effects are a consequence of the nature of both
types of transformations considered, and hence would be expected to be similar for
general random fields, it is interesting to analyze differences derived from certain spe-
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(a) (b)

Figure 3.8: Curves of Euler characteristic: plot (a), for fixed α = 2 and varying β =0.1
(red), 0.2 (blue), 0.9 (green); plot (b), for fixed β = 0.2 and varying α =0.5 (red), 1
(blue), 2 (green).

(a) (b)

Figure 3.9: Effect of deformation on Euler characteristic curves: plot (a), for α = 0.5
and β = 0.9; plot (b), for α = 2 and β = 0.1. In each plot, curves correspond to:
(black) original field; deformed field under D1, (red) ‘level’ case, (dashed red) ‘flow’ case;
deformed field under D2, (blue) ‘level’ case, (dashed blue) ‘flow’ case.

cific characteristics of the model, namely in relation to local variability and dependence
ranges. We consider the Cauchy class, particularly useful for this purpose considering dif-
ferent combinations of parameter values (see Section 2.2.2). Here, we restrict the study
to the Euler characteristic. Figure 3.8 displays average values of the Euler characteris-
tic from 300 replicates, calculated for a dense set of u thresholds, for fixed α = 2 and
varying β = 0.1, 0.2 and 0.9, in plot (a), and for fixed β = 0.2 and varying α = 0.5, 1

and 2, in plot (b). We observe that higher Hurst coefficient values correspond to more
homogeneous structuring. The opposite happens when the fractal dimension increases,
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which leads to larger variability in the Euler characteristic.

(a) (b)

(c) (d)

(e) (f)

Figure 3.10: Effect of blurring on Euler characteristic curves, for fixed α = 1 and vary-
ing β =0.1 (plots (a)-(b)), 0.2 (plots (c)-(d)), and 0.9 (plots (e)-(f)); plots (b)-(d)-(f)
are just plots (a)-(c)-(e) rescaled without the curve for the original process for clearer
visualization. In each plot, curves correspond to: (black) original field; blurred field with
kernel (red) h1, (blue) h2, and (green) h3.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11: Effect of blurring on Euler characteristic curves, for fixed β = 0.9 and
varying α =0.5 (plots (a)-(b)), 1 (plots (c)-(d)), and 2 (plots (e)-(f)); plots (b)-(d)-(f)
are just plots (a)-(c)-(e) rescaled without the curve for the original process for clearer
visualization. In each plot, curves correspond to: (black) original field; blurred field with
kernel (red) h1, (blue) h2, and (green) h3.
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The deformation and blurring transformations previously considered have been
applied in all cases, and average results for the Euler characteristic have been calculated.
Significant differential effects observed in relation to the parameter specifications
considered are shown, for some selected cases, in Figure 3.9 for deformation, and
in Figures 3.10 and 3.11 for blurring. Plots (a) and (b) of Figure 3.9, respectively
corresponding to the cases (α, β) = (0.5, 0.9) and (α, β) = (2, 0.1), show notably
different magnitudes of relative increase and decrease of the Euler characteristic,
more evident in the middle range of u thresholds where maxima and minima of
the curves are attained. Particularly meaningful interpretations are derived for the
blurring case. On one hand, structural differences associated with the larger scales of
dependence observed for fixed α and varying β result in significantly different behavior
between such cases in the Euler characteristic curves after blurring, as shown in Figure
3.10, in particular, for α = 1 and β = 0.1, 0.2 and 0.9; here, plots (a), (c) and (e)
include the corresponding curves for the original process, whilst plots (b), (d) and
(f) represent only the curves after blurring transformation for clearer visualization in
a more appropriate scale. In contrast, for fixed β the resulting curves of the Euler
characteristic do not show significant differences in shape and scale when varying α

(note, however, the scale differences in the curves for each original field), which is
consistent with the fact that, for the regular type of kernel considered, blurring has
a stronger smoothing effect at smaller scales, taking also into account the kernel vari-
ance values used. This is shown in Figure 3.11 for the cases β = 0.9 and α = 0.5, 1 and 2.

Briefly, in this chapter we investigate significant aspects related to extremal analy-
sis in relation to systemic structural characteristics in spatial modeling (see Chapter 7
for spatio-temporal case). In particular, the effect of common transformations such as
spatial deformation and blurring, meaningful in many environmental applications, on ge-
ometrical properties of threshold exceedance sets —specifically, the Euler characteristic
and the hypervolume— which have useful probabilistic interpretations in the context of
risk assessment, is analyzed and illustrated through simulated examples. The study per-
formed includes the evaluation of some differential aspects in relation to local variability
and larger scale dependence properties of the processes subject to transformations.



Chapter 4

Spatial Threshold Exceedance Analysis
Through Marked Point Processes

Indicators of recurrence, persistence, and in general, distribution patterns of extremal
events defined by random field threshold exceedances provide relevant information on
critical phenomena for risk assessment. Such indicators are directly related to geomet-
rical properties describing the structure of the corresponding excursion sets. Given the
intrinsic nature of the latter, marked point processes provide a natural approach to an-
alyze distribution patterns of such extremal events in relation to specific characteristics
of interest.

Here, based on simulations from a flexible model separating memory and fractality ef-
fects, we analyze the structure of threshold exceedances in terms of various second-order
characteristics. In particular, we focus on the variations in size and distance hetero-
geneities in the components of excursion sets, as well as in clustering/inhibition patterns,
depending on both the underlying model parameters and the threshold specifications.

4.1 Introduction and motivation

Analysis of environmental phenomena for risk assessment usually involves the construc-
tion of indicators related to structural characteristics of extremal events defined by ex-
ceedances over critical thresholds. Recurrence and persistence, among others, are exam-
ples of such characteristics, which provide information about the distribution patterns of
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extremal events. Formally, these concepts are intimately related to the geometrical char-
acteristics of the excursion sets defined by threshold exceedances over a given (bounded)
domain. In particular, as mentioned in Section 2.2.3, useful mathematical descriptions
can be given in terms of the Lipschitz-Killing curvatures or, equivalently, the intrinsic
volumes of such sets (see Adler and Taylor 20074). In Chapter 3, the effect of blurring
and deformation transformations on the structure of a random field is studied in terms
of the modifications implied on the Euler characteristic and hypervolume of threshold
exceedance sets, depending on fractality and long-range dependence parameters, as well
as on the threshold considered (see also Angulo and Madrid 200811, 2009a12, 2009b13

and 2010a15). As introduced in Section 2.2.3 and mentioned later in Section 3.3, under
suitable conditions, the expected value of the Euler characteristic approximates, for high
thresholds, the probability of exceedance in at least one point of the domain considered
(Adler and Taylor 20074), whilst the hypervolume provides an estimate of the probability
of having an exceedance in a generic point of such a domain.

Given the fragmented nature of threshold exceedance sets, depending on the variation
properties inherited by sample paths from the probabilistic structure of a random field
and the threshold considered, marked point processes provide a powerful framework for
the analysis of their structural properties. In fact, this approach can be exploited to help
establishing the bridge between the construction and interpretation of risk indicators and
the properties of the underlying random field generating critical events. More specifically,
connected components of a threshold exceedance set can be treated as single, isolated
events, with some geometrical properties such as size, contour length, relative intensity
of dominant orientation, etc., being considered as possible marks of interest for comple-
mentary analysis of diverse forms of heterogeneity and anisotropy. Hence, a variety of
marked point process characteristics can be used to describe some features of interest,
in particular for risk assessment purposes (see Madrid et al. 2010b82, and 2010c83).

The chapter is organized as follows. Section 4.2 is devoted to the development of the
methodology to construct a family of point processes from the excursion sets of a random
field and to study related properties. Then, in Section 4.3 we illustrate and discuss, based
on simulation, the main characteristics of the observed point patterns obtained from the
realizations of a Cauchy random field.
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4.2 Methodology

LetX be a random field on Rd. Considering any fixed bounded subdomainD and different
thresholds u we can define a family of excursion sets Au. The fragmented nature of the
threshold exceedances allows to see the connected components as isolated events which
can be depicted by a representative point. Thus, to each excursion set Au we can associate
a set of points {s1, s2, ..., sn} which define a spatial point process. In this way, associated
to X on D we have a family of spatial point processes, indexed by the threshold u. Here,
we propose to represent each connected component by its centroid; if additionally the
size li and orientation angle θi of each component are associated to its centroid as marks,
marked point processes are considered. As mentioned before, the objective is to study
the properties of such spatial point processes in relation to the structural characteristics
of the original random field X.

Let {s1, s2, ..., sn} be n points observed in a window D ⊂ Rd, as described. In general,
the first task in analyzing a point process is to find evidence against complete spatial
randomness (CSR) by examining the intensity. We estimate the intensity function or
intensity measure by the ‘quadrat count’ technique consisting of dividing the observation
window in subregions (‘quadrats’) of equal area and counting the number of points falling
into each quadrat. Based on this technique, a χ2 test is carried out: Under the null
hypothesis of CSR, the numbers of events within the subregions come from independent
identically distributed Poisson random variables with the same expected value.

Then, second-order characteristics are computed. One widely used is the K-function
(2.13), since for a stationary point process λK(r) defines the expected number of other
points of the process within a distance r of a typical point of the process. Here we prefer
using the L-function (2.14), given that this is a transformation of K that approximately
stabilizes the variance of the estimator and provides an easier visual assessment of the

graph. The L-function is estimated from the K-function as L̂(r) =

√
K̂(r)/π. In the

homogeneous and isotropic case,

K̂(r) =
1

λ̂2|D|

n∑
i=1

n∑
j 6=i=1

I(‖sj − si‖ ≤ r)

ν(Dsj ∩Dsi)
,

where λ̂ = n
|D| is the estimate of the intensity, whereas when the homogeneity hypothesis
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is rejected,

K̂ ′ =
1

|D|

n∑
i

n∑
j 6=i

I(‖si − sj‖ ≤ r)

λ̂(si)λ̂(sj)ν(Dsj ∩Dsi)
,

where the intensity function is estimated now by λ̂(u) =
∑n

i=1
kε(u−si)

ν(Dsj∩Dsi )
. We use the

Epanechnikov kernel given by

kε(h) =

{
(1− h2/ε2) 3

4ε
, −ε ≤ h ≤ ε,

0, otherwise.

It is known that the key aspect in kernel-based estimation is the choice of the bandwidth
parameter, rather than the type of the kernel function used (see Stoyan and Stoyan
1994111). Here, we use the quantiles of the empirical distribution of the distances be-
tween points as a criterion for bandwidth selection. In both cases, 1/ν(Dsj ∩Dsi) is the
translational edge correction with Dsj meaning the window D translated by sj and, if
D is a rectangle of sides a and b, then ν(Dsj ∩Dsi) = |a− |xi − xj|| · |b− |yi − yj|| (see
Illian et al. 200865). Other edge corrections have been introduced, but different choices
do not produce significant differences.

Although the L-function is primarily intended for exploratory purposes, it is also
possible to use it as a basis for statistical inference. In the context of hypothesis testing,
the null hypothesis is that the data point pattern is a realization of CSR. The alternative
hypothesis is that the data pattern is a realization of another, unspecified point process.
Then, a Monte Carlo test is run based on simulations from the null hypothesis and
envelopes are generated from the simulations.

To get information on anisotropy and use the appropriate estimator for the char-
acteristics of marked point processes it is necessary to test the hypothesis of isotropy.
However, here we consider a stronger test, for independence plus uniformity, proposed
by Mateu (2000)88, since as there it is commented, the possible spatial correlation makes
it difficult to perform the first one. This test states that the orientations θi are inde-
pendent for different components and uniformly distributed. The test uses a cumulative
counterpart of κf (r) (see (2.16) and (2.17)) defined through

Kf (r) =

∫ r

0

kf (u)g(u)2πudu =

∫ r

0

`
(2)
f (u)

λ2
0

2πudu, r > 0,
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and its scaled version given by

Lf (r) =
√
Kf (r)/(πkf (∞)), r > 0.

The procedure consists of the following steps:

1. Fix the locations si, i = 1, ..., n, of the given sample in the window D.

2. Generate new orientation marks by simulation independently and uniformly on
[0, π].

3. Repeat this procedure M times leading to M new marked point patterns of size n
in D.

(a) For each of them, calculate the estimators of Kd(r) and Ld(r) through

K̂d(r) =
1

λ̂2
0

∑
0<‖si−sj‖≤r

min{|θi − θj|, π − |θi − θj|}
ν(Dsj ∩Dsi)

, (4.1)

where λ̂2 = n(n− 1)/|D|2 and

L̂d(r) =

√
K̂d(r)
π π

4

. (4.2)

(b) Determine
L̂ud(r) = maxi=1,...,M L̂d,i(r),

L̂ld(r) = mini=1,...,M L̂d,i(r).

4. If the empirical L̂d(r) for the originally given pattern is not completely inside the
band given by L̂ud(r) and L̂ld(r), the hypothesis is rejected.

If additionally we want to take into account information about length marks, li, then
the test can be slightly modified to state also that the pairs (li, θi) are independent for
different components and, for each pair, li is independent of θi. To check this, in the step
2 new size marks are taken in addition from the empirical distribution of the size marks
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of the sample. Then, in step 3, instead of (4.1) and (4.2), the next estimators are used:

K̂ld(r) =
1

λ̂2

∑
0<‖si−sj‖≤r

min{|θi − θj|, π − |θi − θj|}lilj
ν(Dsj ∩Dsi)

and

L̂ld(r) =

√√√√K̂ld(r)
π π

4
l
2 ,

where l =
∑n

i=1 li/n.
As we just commented, this test is stronger than the one for anisotropy, and then

when the empirical curves are outside the band curves we assume that there is anisotropy.
For simplicity, in the following we refer to this test simply as the anisotropy test.

Considering the results of the test, the mark correlation function is used to detect
spatial dependencies between the marks using the following non-negative test functions:

- f(zi, zj) = lilj if the marks are sizes, and

- f(zi, zj) = d(θi, θj) = min{|θi − θj|, π − |θi − θj|)} if the marks are angles of
orientation

Then, in the isotropic case, the normalized mark correlation function (2.17) is esti-
mated by

~̂f (r) =
κ̂f (r)

κ̂f (∞)
=
̂̀(2)
f (r)/̂̀(2)(r)

κ̂f (∞)
, (4.3)

where ̂̀(2)(r) =
1

2πr

n∑
i=1

n∑
i 6=j=1

kε(r − ‖si − sj‖)
ν(Dsj ∩Dsi)

(4.4)

is an estimate of the second-order product density (from which dividing by the square
of intensity an estimation of the pair correlation function is obtained),

̂̀(2)
f (r) =

1

2πr

n∑
i=1

n∑
i 6=j=1

f(zi, zj)kε(r − ‖si − sj‖)
ν(Dsj ∩Dsi)

(4.5)

is an estimate of the f -product density, and κ̂f (∞) is estimated by means of the mark
distribution.
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Then, substituting (4.4) and (4.5) in (4.3), an estimator of the normalized mark
correlation function is expressed as

~̂f (r) =

∑n
i=1

∑n
i 6=j=1

f(zi, zj)kε(r − ‖si − sj‖)
ν(Dsj ∩Dsi)

κ̂f (∞)
∑n

i=1

∑n
i 6=j=1

kε(r − ‖si − sj‖)
ν(Dsj ∩Dsi)

.

In the anisotropic case, the non-normalized version (2.16) is used. For (r, ϕ) being a point
given in polar coordinates (r ≥ 0; 0 ≤ ϕ < π),

κ̂f (r, ϕ) =
̂̀(2)
f (r, ϕ)̂̀(2)(r, ϕ)

,

with the estimator of the anisotropic second-order product density being formulated as

̂̀(2)(r, ϕ) =
1

2

n∑
i=1

n∑
j 6=i=1

K(sj − si, (r, ϕ)) + K(sj − si, (r, ϕ+ π))

ν(Dsj ∩Dsi)
;

in a similar way, an estimation of the anisotropic f -product density is given by

̂̀(2)
f (r, ϕ) =

n∑
i=1

n∑
i 6=j=1

K(sj − si, (r, ϕ))f(zi, zj)

ν(Dsj ∩Dsi)
,

where in both expressions

K(sj − si, (r, ϕ)) =
1

r
kεr(‖si − sj‖ − r)kεϕ(α(si, sj)− ϕ),

with kεr(.) and kεϕ(.) being two Epanechnikov kernels with suitable bandwidths, α(si, sj)

denoting the angle between the line from si to sj and the x-axis, and 0 ≤ ϕ ≤ π. Here,
the bandwidths are respectively selected from the empirical distribution corresponding
to the distances and the angles.

Finally, when the processes are anisotropic, the main objective is the estimation of the
directional distribution, i.e., the length-weighted orientation distribution of the segments,
or rose of directions, which usually differs from the uniform distribution on [0◦, 180◦]. The
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rose of directions (2.18) of the associated segment process is estimated by

R̂(β) =

∑n
i=1 I(0 ≤ θi ≤ β)li∑n

i=1 li
, 0 ≤ β < π.

4.3 Spatial structure analysis of exceedance patterns

Here, we again consider the Cauchy class with covariance function defined by C(h) =

σ2(1 + hα)−β/α, α ∈ (0, 2] and β > 0, with the same parameter values as in the previous
chapter, that is, α = 0.5, 1, and 2, and β = 0.1, 0.2, and 0.9, to guarantee long-range
dependence (recall that for this it is necessary that 0 < β < 1, see Section 2.2.2).
Figure 4.1 shows simulated realizations on the square [−100, 100] ∈ R2 (using the same
pseudo-random numbers) based on crossed combinations of such parameter values, with
σ2 = 0.1.

To analyze the effects of the parameters regarding the structural characteristics of
the excursion sets, since the different values of the parameters define random fields with
different ranges of variation, we determine the thresholds from the empirical distribu-
tion functions of the simulated realizations. Specifically, we consider several extreme
percentiles (80th, 90th, 97th) which define the different thresholds. This practice is com-
monly applied in areas such as Ecology, Geophysics and Environmental Sciences, and it
means that the size of the area at risk is fixed.

Some significant characteristics observed in the realizations in relation to the proper-
ties of fractality and dependence ranges shown in Figure 4.1, commented in Section 2.2.2,
continue being visible when we consider the exceedances over high thresholds. In Figure
4.2 we display, based on the simulated realizations shown in Figure 4.1, the excursion
sets for the thresholds corresponding to the 90th percentile, indicating by points the
centroids of separate connected components, from which the point processes are defined.
By row, from left to right, we can observe that the number of connected components
decreases, increasing their sizes since the lower fractality leads to less fragmentation. By
rows, from top to bottom, the ranges of dependence are reduced, increasing the levels of
disaggregation and hence the number of components.

The cases corresponding to the combinations of the values of parameter (α, β) equal
to (0.5, 0.1), (2, 0.1), (0.5, 0.9) and (2, 0.9) are particularly interesting, as it can be seen
in the plots located at the corners of Figure 4.2 (also of Figure 4.1). The top-right (2, 0.1)
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Figure 4.1: Simulated realizations of Cauchy class with α = 0.5, 1, 2 (from left to right)
and β = 0.1, 0.2, 0.9 (from top to bottom).

and bottom-left (0.5, 0.9) corners correspond to the more distant cases in number of con-
nected components, as well as their structuring in sizes and inter-distances. On the other
hand, the opposite corners, (0.5, 0.1) and (2, 0.9), have a similar number of connected
components since there is a trade off between fractality and Hurst effect, but there are
significant differences in the structuring. Considering higher thresholds, the number and
the size of the components diminish but the structuring behavior is similar, as it can be
observed in Table 4.1, which contains the number of connected components for different
crossed combinations of parameter values and specifications of the thresholds; see also
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Figure 4.2: Excursion sets for threshold corresponding to 90th percentile, based on real-
izations of Figure 4.1. Black dots represent centroids of connected components.

Figures 4.3 and 4.4, which display the empirical cumulative distribution functions for the
size mark of the point processes corresponding to connected components of the threshold
exceedance sets for the 80th and 97th percentiles, respectively, for these four cases.

In Figures 4.5 and 4.6 we illustrate the distributions of events by quadrats for the
mentioned cases and thresholds corresponding to the 80th and 97th percentiles, respec-
tively. Table 4.2 collects the results of χ2 homogeneity tests based in quadrat counting
for the excursion sets corresponding to different thresholds, emphasizing in bold when
there is no evidence to reject the null hypothesis at 5% of significance. We observe that
increasing the threshold, as well as the range of dependence, both produce a rupture of
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80th Percentile
Parameters α = 0.5 (D = 2.75) α = 1 (D = 2.5) α = 2 (D = 2)

β = 0.1 (H = 0.95) 850 548 343
β = 0.2 (H = 0.9) 949 614 385
β = 0.9 (H = 0.55) 1628 1204 833

90th Percentile
Parameters α = 0.5 (D = 2.75) α = 1 (D = 2.5) α = 2 (D = 2)

β = 0.1 (H = 0.95) 693 417 233
β = 0.2 (H = 0.9) 785 489 318
β = 0.9 (H = 0.55) 1437 1080 744

97th Percentile
Parameters α = 0.5 (D = 2.75) α = 1 (D = 2.5) α = 2 (D = 2)

β = 0.1 (H = 0.95) 384 228 142
β = 0.2 (H = 0.9) 396 277 181
β = 0.9 (H = 0.55) 759 579 3M

Table 4.1: Number of connected components for different crossed combinations of pa-
rameter values and threshold specifications.

80th Percentile
Parameters α = 0.5 (D = 2.75) α = 1 (D = 2.5) α = 2 (D = 2)

β = 0.1 (H = 0.95) 0.01203 0.01886 0.00347
β = 0.2 (H = 0.9) 0.02520 0.09130 0.09134
β = 0.9 (H = 0.55) 0.56094 0.63398 0.88333

90th Percentile
Parameters α = 0.5 (D = 2.75) α = 1 (D = 2.5) α = 2 (D = 2)

β = 0.1 (H = 0.95) 1.85e−23 3.11e−23 1.06e−15

β = 0.2 (H = 0.9) 2.23e−14 5.73e−14 2.27e−11

β = 0.9 (H = 0.55) 0.27894 0.18329 0.1305

97th Percentile
Parameters α = 0.5 (D = 2.75) α = 1 (D = 2.5) α = 2 (D = 2)

β = 0.1 (H = 0.95) 2.14e−56 3.54e−38 1.71e−22

β = 0.2 (H = 0.9) 1.24e−53 4.46e−38 1.90e−24

β = 0.9 (H = 0.55) 4.71e−14 3.98e−15 1.31e−7

Table 4.2: Results of Pearson’s χ2 test based on quadrat counts for the excursion sets
corresponding to different thresholds.
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Figure 4.3: Empirical cumulative distribution function for the size mark of the point
processes defined by centroids of connected components of the threshold exceedance sets
corresponding to 80th percentile and parameter values α = 0.5, 2 (from left to right) and
β = 0.1, 0.9 (from top to bottom).

Figure 4.4: Empirical cumulative distribution function for the size mark of the point
processes defined by centroids of connected components of the threshold exceedance sets
corresponding to 97th percentile and parameter values α = 0.5, 2 (from left to right) and
β = 0.1, 0.9 (from top to bottom).
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Figure 4.5: Distribution of events by quadrats for the excursion sets corresponding to
80th percentile and parameter values α = 0.5, 2 (from left to right) and β = 0.1, 0.9
(from top to bottom).

Figure 4.6: Distribution of events by quadrats for the excursion sets corresponding to
97th percentile and parameter values α = 0.5, 2 (from left to right) and β = 0.1, 0.9
(from top to bottom).
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the homogeneity.

Figure 4.7: L(r) − r function for the point processes defined by centroids of connected
components, for the excursion sets corresponding to percentiles 80th (red), 90th (green)
and 97th (blue), based on the realizations of Cauchy class with parameter values α =
0.5, 2 (from left to right) and β = 0.1, 0.9 (from top to bottom).

Taking into account the possible homogeneity or inhomogeneity, the L-function is
computed for the different point processes. In Figure 4.7 we display the values L(r)− r,
to make easier a visual assessment comparing with respect to the theoretical value 0.
The observed common pattern in the different curves shows an inhibition behavior at
short distances which can be explained by the construction of the processes: We are
considering points defined by the centroids of connected components, and the distances
are measured between them (not between the edges of components), thus the minimum
inter-point distance will be r0 = 2 (in pixel units) and it will increase with the sizes of
the components. Comparing now the curves, we can see that considering more restrictive
thresholds the levels of aggregation or inhibition both increase; a similar effect occurs
when we consider values of β corresponding to stronger ranges of dependence.

The next step has been to carry out the test of anisotropy. When we only consider
the orientation mark, there is no evidence, in any of the cases studied, to reject the null
hypothesis, see Figures 4.8 and 4.9. That is, we can assume that the orientations are
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Figure 4.8: Anisotropy test using orientation mark for the point processes defined by
centroids of connected components of the threshold exceedance sets corresponding to
80th percentile and parameter values α = 0.5, 2 (from left to right) and β = 0.1, 0.9
(from top to bottom).

independent of the locations and that they are uniformly distributed. This agrees with
Figures 4.10 and 4.11, which show the empirical cumulative distribution functions for
the orientation mark. Note that, except for certain jumps, the curves suggest a uniform
distribution. The occurrence of such jumps is explained by the fact that two pixels are
considered to be connected it they have a common side or a common corner; hence, in
particular, the angles 0◦, 45◦, 90◦ and 135◦ are more likely to occur due to the high relative
number of two-pixel size components, which is reflected by the empirical distribution.
The isotropic correlation functions for the 80th and 90th percentiles are represented in
Figures 4.12 and 4.13, these showing that there is no significant correlation between the
orientation marks in any case and independently of the distance, since the curves are
very close to the value 1 in all cases.

When additionally we consider information of the size mark, the null hypothesis of
isotropy is rejected in some cases, see Figures 4.14 and 4.15. In the cases corresponding to
lower thresholds the empirical curves are outside the bands, whilst for higher thresholds
the results depend on the parameter values, with those corresponding to long-range
dependence being the most significant. This seems to indicate that, from an isotropic
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Figure 4.9: Anisotropy test using orientation mark for the point processes defined by
centroids of connected components of the threshold exceedance sets corresponding to
97th percentile and parameter values α = 0.5, 2 (from left to right) and β = 0.1, 0.9
(from top to bottom).

realization, by gradually increasing the threshold we can get anisotropic point patterns,
and finally obtain isotropic point patterns again. The parameter values influence the
magnitude of the threshold at which the changes of behavior occur. In spite of the
fact that in some cases the tests suggest isotropy in almost all distances, we choose to
represent the anisotropic version in all cases. Comparing Figures 4.14 and 4.16, for a
threshold corresponding to the 80th percentile, we can observe that similarities between
the plots in the first one are also present in those included in the second one. Furthermore,
the peaks within the range 150◦ - 180◦ in the cases with β = 0.1 for the anisotropic
mark correlation indicate that there is significant correlation between the sizes for such
orientations, which can be related to the presence of anisotropy according to the test.
Now, comparing Figures 4.15 and 4.17, derived for the 97th percentile, we observe that
the plots at the top-right corner, corresponding to α = 2 and β = 0.1, are particularly
significant since the test indicate isotropy except for short distances. This is reflected in
the representation of the anisotropic mark correlation, which is flat except for the peak
appearing at distances less than 20 and orientations close to zero.

Given that we have supposed that the point processes are anisotropic only when the
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Figure 4.10: Empirical cumulative distribution function for the orientation mark of the
point processes defined by centroids of connected components of the threshold exceedance
sets corresponding to 80th percentile and parameter values α = 0.5, 2 (from left to right)
and β = 0.1, 0.9 (from top to bottom).

Figure 4.11: Empirical cumulative distribution function for the orientation mark of the
point processes defined by centroids of connected components of the threshold exceedance
sets corresponding to 97th percentile and parameter values α = 0.5, 2 (from left to right)
and β = 0.1, 0.9 (from top to bottom).
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Figure 4.12: Orientation correlation function for the point processes defined by centroids
of connected components of the threshold exceedance sets corresponding to 80th per-
centile and parameter values α = 0.5, 2 (from left to right) and β = 0.1, 0.9 (from top to
bottom).

size and orientation marks are considered, we compute the length-weighted orientation
distributions of the segments, that is, the rose of directions with weights the sizes. Figures
4.18 and 4.19 show the rose of directions corresponding to the 80th and 97th percentiles,
respectively. We observe that in the cases corresponding to the 80th percentile and
β = 0.1 (top, left and right), there is a predominant angle around 100◦ − 110◦, whilst
in the remaining cases the curves are very similar to the uniform distribution. This is
not surprising since in these cases the empirical curves of the anisotropy test are very
near the bands, but we should remind that this test is stronger than the one specifi-
cally addressed to assess anisotropy, then these point processes may actually be isotropic.

In summary, we have focused on the analysis of structural changes in marked point
processes based on excursion sets corresponding to different thresholds, depending on
fractality and long-range dependence properties of the generating random field. Specifi-
cally, for thresholds corresponding to various high percentiles in the empirical distribu-
tion of sample-path values, we analyze size heterogeneities of isolated events defined by
connected components, distance ranges where the spatial distribution of the centroids
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Figure 4.13: Orientation correlation function for the point processes defined by centroids
of connected components of the threshold exceedance sets corresponding to 97th per-
centile and parameter values α = 0.5, 2 (from left to right) and β = 0.1, 0.9 (from top to
bottom).

representing such components display clustering/inhibition patterns, as well as the level
of anisotropy. The results show significant differences, depending on the scenario deter-
mined by the model parameters, which have interesting interpretations related to the
underlying random field probabilistic structure as well as in terms of risk indicators. It
is shown that both an increase in the threshold and a decrease in the dependence range
make the pattern inhomogeneous with more variability in the sizes and distances among
components. In addition, the degree of clustering or inhibition is notoriously increased.
Finally, we have seen that increasing the threshold yields a variation in the degree of local
anisotropy of the point patterns associated to the corresponding threshold exceedance
sets.



98 4. Spatial Threshold Exceedance Analysis Through Marked Point Processes

Figure 4.14: Anisotropy test using orientation and size marks for the point processes
defined by centroids of connected components of the threshold exceedance sets corre-
sponding to 80th percentile and parameter values α = 0.5, 2 (from left to right) and
β = 0.1, 0.9 (from top to bottom).

Figure 4.15: Anisotropy test using orientation and size marks for the point processes
defined by centroids of connected components of the threshold exceedance sets corre-
sponding to 97th percentile and parameter values α = 0.5, 2 (from left to right) and
β = 0.1, 0.9 (from top to bottom).
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Figure 4.16: Anisotropic mark correlation function for the point processes defined by
centroids of connected components of the threshold exceedance sets corresponding to
80th percentile and parameter values α = 0.5, 2 (from left to right) and β = 0.1, 0.9
(from top to bottom).

Figure 4.17: Anisotropy mark correlation function for the point processes defined by
centroids of connected components of the threshold exceedance sets corresponding to
80th percentile and parameter values α = 0.5, 2 (from left to right) and β = 0.1, 0.9
(from top to bottom).
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Figure 4.18: Rose of directions for the point processes defined by centroids of connected
components of the threshold exceedance sets corresponding to 80th percentile and pa-
rameter values α = 0.5, 2 (from left to right) and β = 0.1, 0.9 (from top to bottom).

Figure 4.19: Rose of directions for the point processes defined by centroids of connected
components of the threshold exceedance sets corresponding to 97th percentile and pa-
rameter values α = 0.5, 2 (from left to right) and β = 0.1, 0.9 (from top to bottom).



Chapter 5

Wavelet-Based Multiscale
Intermittency Analysis

Essential aspects intrinsic to the concept of intermittency such as ‘scales of variation’
and ‘localization’, and related interactive dynamics, have led to the use of wavelets
as a suitable functional tool for technical analysis. Here the study is focused on the
analysis of significant aspects related to random field deformations, meaningful both from
physical considerations and for methodological purposes, and structural implications of
such transformations on intermittency, as well as concerning wavelet-related methods.

5.1 Introduction

Intermittency, generally understood as pseudo-periodic occurrence of high level or varia-
tion episodes within a certain regular behavior, is considered a phenomenon of interest in
very diverse fields of applications (e.g. Seismology, Turbulence, Hydrology, Astronomy,
Finance, Insurance, Epidemiology, etc.), related to which a variety of specific formaliza-
tions and measures have been derived. Structural characteristics associated with such
effect, in relation to the underlying generating process, often constitute a primary ob-
jective in environmental studies, as they provide relevant information for detection and
prediction of critical events and for risk assessment.

There are different manifestations of intermittency, which have lead to various in-
terpretations and formal definitions of this concept. Essentially, they are related to the

101
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genesis and, as a consequence, the nature of its effects, as a certain form of heteroge-
neous behavior. Depending on the domain where such heterogeneities occur, it is usual
to distinguish between ‘isolated’ type of intermittency, for heterogeneities in the spa-
tial/temporal domain, and ‘non-isolated’ type of intermittency, associated to heteroge-
neous scaling, closer to the concept of multifractality (see, for example, Nicolleau and
Vassilicos, 199993).

A common feature, then, to these approaches is the heterogeneity in the energy
distribution of a signal over space/time and/or scales. This fact justifies the use of wavelet
functions and related tools to analyze intermittency. In particular, we here use, for the
analysis of the effect of deformation and the structure of intermittency, a scale-dependent
indicator of heterogeneity introduced in Farge et al. (1990)46.

Figure 5.1: Signal registered in Granada of L’Aquila earthquake (April 6, 2009).

For illustration, we consider the following examples of real and simulated signals.
Figure 5.1 shows the registered signal in Granada corresponding to the earthquake hap-
pened on the day April 6, 2009, with epicenter near L’Aquila (Italy), with magnitude
of 6.3 on the Ritcher scale. Figure 5.2 displays four subperiods with different behaviors:
plot (a) a regular period, and plots (b), (c) and (d) three activity periods. Note that
each period is separated in the time from the other ones, however there is a significant
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(a) (b)

(c) (d)

Figure 5.2: A regular phase and three activity periods of L’Aquila earthquake showed in
Figure 5.1, beginning at: (a) 01:29:00 (b) 03:31:10 (c) 09:00:18 (d) 11:24:03.

similarity between the plots (c) and (d). In Figure 5.3, two time series corresponding to
different locations, generated from a certain multifractal spatio-temporal model are plot-
ted. Finally, a simulated realization of an ARMA(1,1) model with Cauchy white noise,
which exhibits isolated-type of intermittent behavior, is shown in Figure 5.4.

5.2 Intermittency analysis: wavelet approaches

Wavelet-based techniques constitute a powerful tool for studying intermittencies in sig-
nals, and have been applied in many studies, in particular in relation to environmental
areas. An interesting related insight was given, for example, by Farge et al. (1990)46.
Let x(t) be a signal. As we saw in Section 2.4.2, the Continuous Wavelet Transform is
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(a) (b)

Figure 5.3: Two time series generated at different locations from a heterogeneous space-
time model.

Figure 5.4: Simulated realization of ARMA(1,1) model, with φ = 0.7, θ = 0.9, and
Cauchy white noise.

obtained through convolution between x(t) and all the possible versions, scaled and trans-
lated, of a basic wavelet function ψ. Using the terms in Meneveau (1991)89, a wavelet
transform coefficient W (a, b) can then be seen as a measure of the ‘correlation’ between
the signal x(t) and the wavelet function ψ(t) at scale a and position translation b. The
total energy of x(t) can be decomposed in terms of the wavelet coefficient energies, as
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Ex =

∫ ∞
−∞

x(t)2dt =

∫ ∞
0

Ew(λ)dλ =

∫ ∞
0

(
1

2πC2
ψ

∫ ∞
−∞
|Wx(a(λ), b)|2db

)
dλ

= 2π

∫ ∞
0

Ew(a)

a2
da =

1

Cψ

∫ ∞
0

∫ ∞
−∞

|Wx(a, b)|2

a2
dbda,

where λ = 2π/a. That is, a density for the scale-time distribution of the energy density of
the signal x(t), through scales a and locations b, is obtained from the square of Wx(a, b),
named ‘scalogram’. Taking into account that intermittency occurs when the energy is
not evenly distributed, Farge et al. (1990)46 introduced the so-called ‘local intermittency
measure’ (LIM), defined by normalization of the scalogram with respect to the average
local energy observed within each scale:

LIMx(a, b) =
|Wx(a, b)|2

Aveb [|Wx(a, b)|2]
. (5.1)

If LIMx(a, b) = 1 for all a and b, then the energy of the function is equally distributed
in time within each scale and the signal does not exhibit intermittent behavior. On the
contrary, a coefficient LIMx(a, b) > 1 indicates that this given scale-location pair (a, b)

contributes significantly, in relative terms, to the average. Therefore, the LIMx(a, b)

map can be seen as the fundamental analysis of energy information which can be further
explored and processed to look for certain patterns or characteristics related to the con-
cept of intermittency (inter-scale coherence, recurrence, persistence, event distribution
patterns, etc.).

An immediate indicator of intermittency is represented by the temporal average of
LIM2

x(a, b), which defines the flatness Fx(a) of the wavelet coefficients within each scale
a (see Meneveau 199189):

Fx(a) = Aveb
[
LIM2

x(a, b)
]

=
Aveb [|Wx(a, b)|4]

(Aveb [|Wx(a, b)|2])2 .

The flatness is then a scale dependent measure of the kurtosis of the input signal. A
relatively ‘high’ Fx(a) value is taken as a possible indication of intermittency at scale
a. Locally, the condition LIM2

x(a, b) > 3 can be used as a basic criterion to identify
those events contributing to departure from Gaussianity in the distribution of wavelet
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coefficients. Nicolleau and Vassilicos (1999)93 explain that often a signal is interpreted as
intermittent when Fx(·) increases for decreasing a since an intermittent signal displays
activity over only a fraction of time, and this portion decreases with the scale a under
consideration. A disadvantage of Fx(·) is that it does not discriminate intermittencies of
isolated from non-isolated type.

A key question in the analysis through wavelets is the choice of the mother wavelet,
since the main task of this type of study is to retain certain characteristics of interest of a
signal. Therefore, the wavelet function should be selected depending on the features to be
detected. For example, it is known that Haar wavelet is appropriate to detect a sustained
change in signal level, while Morlet wavelet is more appropriate to seek concentration in
time-frequency of signal energy (see Guilliam et al. 200059).

Figure 5.5 illustrates, for the seismic segment displayed in Figure 5.2 (b), the analysis
of intermittency using the above quantifiers based on Morlet wavelet. Specifically, plots
(b) and (c) represent the corresponding scalogram and LIMx maps; plot (d) shows the
Fx curve, indicating significantly high values at the lower scales, and a clear decay within
that range, which can be interpreted as the presence of intermittency. Finally, plots (e)
and (f) emphasize the exceedances of LIM2

x(a, b) values over the base threshold 3 and
a higher threshold, showing the structure of energy concentrations over time and the
degree of coherence between different scales.

The results of a similar analysis using Haar wavelet are displayed in Figure 5.6. In this
case, the Fx curve (plot (d)) has significantly high values and a global decay for almost
the whole range of scales considered. Threshold exceedances for LIM2

X values show
clearly different structure with respect to the previous case, indicating more frequent
concentrations of energy, but during shorter time periods, and a higher degree of inter-
scale coherence.

Finally, the same study using Morlet wavelet is performed for the simulated time
series based on the ARMA(1, 1) model with Cauchy white noise represented in Figure
5.4. The choice of this wavelet function is justified by the presence of a heterogeneous
distribution of variation, with no significant level changes. Here, a global intermittency
behavior is clear from the Fx curve, and a well defined inter-scale coherence of energy
concentrations over time can be observed (see Figure 5.2).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: (a) Seismic signal (seismic segment 2), (b) scalogramW 2
x (a, b), (c) LIMx map,

(d) Fx curve, (e) threshold exceedance set for LIM2
x(a, b) > 3, (f) threshold exceedance

set for LIM2
x(a, b) > 16, using Morlet wavelet.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: (a) Seismic signal (seismic segment 2), (b) scalogramW 2
x (a, b), (c) LIMx map,

(d) Fx curve, (e) threshold exceedance set for LIM2
x(a, b) > 3, (f) threshold exceedance

set for LIM2
x(a, b) > 16, using Haar wavelet.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: (a) Simulated realization of ARMA(1,1) model, with φ = 0.7, θ = 0.9, and
Cauchy white noise, (b) scalogram W 2

x (a, b), (c) LIMx map, (d) Fx curve, (e) threshold
exceedance set for LIM2

x(a, b) > 3, (f) threshold exceedance set for LIM2
x(a, b) > 16,

using Morlet wavelet.
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5.3 Deformation and intermittency

Let x be a signal on [0, T ]. In order to explain induced heterogeneity and intermittency
changes derived from deformation we consider a simple linear transformation Φ : [0, T ]→
[0, T ′], defined by Φ(t) = ct, with c > 0 a real constant, and T ′ = cT . Hence, Φ(t) has a
contraction effect for c < 1 and a dilation effect for c > 1.

We distinguish the cases where x represents either a ‘level’ or a ‘flow’ magnitude,
that is, depending on whether the states represent values intrinsic to specific time points
or accumulated during successive periods. In correspondence, the deformed signals x[Φ]

and x[Φ̃] are defined on [0, T ′], respectively by

x[Φ](t′) = x(Φ−1(t′)) = x

(
t′

c

)
and

x[Φ̃](t′) = x(Φ−1(t′))(Φ′)−1 = x

(
t′

c

)
1

c
,

with t′ ∈ [0, T ′] (see Section 3.2).

In Section 5.3.1, we analyze how the deformation of a signal produces a transfer of
energy between different scales. The effect of both types of deformation on the flatness
coefficient is studied in Section 5.3.2.

5.3.1 Inter- and intra-scale transfer of energy

Recall that the wavelet coefficients are given by the convolution of the signal with a given
rescaled and translated wavelet function, that is,

Wx(a, b) = 〈x(t), ψab(t)〉 =
1

a1/2

∫ T

0

x(t)ψ

(
t− b
a

)
dt.
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Then, the wavelet coefficients of the deformed signal x[Φ] (level case) are obtained sub-
stituting x[Φ](u) for x(t) in the previous expression:

Wx[Φ](a, b)=〈x[Φ](u), ψab(u)〉 =
1

a1/2

∫ cT

0

x[Φ](u)ψ

(
u− b
a

)
du

=
1

a1/2

∫ cT

0

x
(u
c

)
ψ

(
u− b
a

)
du=

1

a1/2

∫ T

0

x(t)ψ

(
ct− b
a

)
cdt

=
c

a1/2

∫ T

0

x(t)ψ

(
t−b/c
a/c

)
dt=

c1/2

(a/c)1/2

∫ T

0

x(t)ψ

(
t−b/c
a/c

)
dt

= c1/2Wx

(
a

c
,
b

c

)
,

(5.2)

where we have used the change of variable t = u/c in the fourth equality. This relationship
between the wavelet coefficients of the original and deformed signals indicates that,
without considering the change of domain, there is a transfer of energy from scale a to
scale ca. In fact, averaging the squared wavelet coefficients over b, using the change of
variable b′ = b/c and then renaming b′ → b, we get

Aveb
[
W 2
x[Φ](a, b)

]
=

1

cT

∫ cT

0

W 2
x[Φ](a, b)db =

1

cT

∫ cT

0

(c1/2)2W 2
x

(
a

c
,
b

c

)
db

=
1

T

∫ T

0

W 2
x

(a
c
, b′
)
cdb′ =

c

T

∫ T

0

W 2
x

(a
c
, b
)
db

= cAveb
[
W 2
x

(a
c
, b
)]
.

(5.3)

Substituting the expressions (5.2) and (5.3) in (5.1), the LIM of the deformed signal
is computed as

LIMx[Φ](a, b) =
W 2
x[Φ](a, b)

Aveb
[
W 2
x[Φ](a, b)

] =
cW 2

x

(
a
c
, b
c

)
cAveb

[
W 2
x

(
a
c
, b
)]=LIMx

(
a

c
,
b

c

)
. (5.4)

Hence, we can say that if the deformation has a local effect of dilation (c > 1), then
the relative energy value of scale a/c at localization b/c is transferred to the higher scale
a > a/c at localization b. On the other hand, if the deformation has a local effect of
contraction (c < 1), there is a transfer of relative energy from scale a/c at localization
b/c to the lower scale a < a/c at localization b. Note that, due to the change of measure
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between the original and transformed physical spaces, the total energy is expanded or
shortened by deformation depending on the properties of dilation or contraction, as it
can be seen using the changes of variables a′ = a/c and b′ = b/c:

Ex[Φ] =
1

Cψ

∫ ∞
0

∫ ∞
−∞

|Wx[Φ](a,b)|2

a2
dadb=

1

Cψ

∫ ∞
0

∫ ∞
−∞

c|Wx

(
a
c
, b
c

)
|2

a2
dadb

=
c

Cψ

∫ ∞
0

∫ ∞
−∞

|Wx(a
′,b′)|2

(ca′)2
cda′cdb′=

c

Cψ

∫ ∞
0

∫ ∞
−∞

|Wx(a
′,b′)|2

a′2
da′db′

= cEx.

(5.5)

For a general deformation Φ, depending on where we have local contraction or dilation
effects, there will be transfer of energy between scales in different directions.

A similar analysis can be developed for x representing a flow signal. In this case, we
obtain the following expressions:

WX[Φ̃](a, b) = 〈x[Φ̃](u), ψab(u)〉 =
1

c
Wx[Φ](a, b) =

1

c1/2
Wx

(
a

c
,
b

c

)
,

Aveb
[
W 2
x[Φ̃]

(a, b)
]

= Aveb

[
1

c2
W 2
x[Φ](a, b)

]
=

1

c
Aveb

[
W 2
x

(a
c
, b
)]
,

LIMx[Φ̃](a, b)=
|Wx[Φ̃](a, b)|2

Aveb
[
|Wx[Φ̃](a, b)|2

]=
1
c
W 2
x

(
a
c
, b
c

)
1
c
Aveb

[
W 2
x

(
a
c
, b
)]=LIMx

(
a

c
,
b

c

)
. (5.6)

Comparing (5.4) and (5.6), we can see that the LIM values coincide in both cases.
However, as it is shown below, using the same changes of variables as before, now the
total energy change is

Ex[Φ̃] =
1

Cψ

∫ ∞
0

∫ ∞
−∞

|Wx[Φ̃](a, b)|2

a2
dadb =

1

Cψ

∫ ∞
0

∫ ∞
−∞

|Wx

(
a
c
, b
c

)
|2

ca2
dadb

=
1

Cψ

∫ ∞
0

∫ ∞
−∞

|Wx(a
′, b′)|2

c(ca′)2
cda′cdb′=

1

Cψ

∫ ∞
0

∫ ∞
−∞

|Wx(a
′, b′)|2

ca′2
da′db′=

Ex
c
.

Hence, when the signal is of flow type the energy is reduced where the deformation
has local dilation properties (c > 1), and enhanced where the deformation has local
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contraction properties (c < 1). Note that in the case of a level signal, just the opposite
effect was proved (see (5.5)).

5.3.2 Further effects on intermittency characteristics

As introduced in Section 5.2, a global multiscale quantification of intermittency is given
in terms of the flatness coefficient F , which averages squared values of the local intermit-
tency measures (LIM) obtained within each single scale. In the case of a level signal x,
and for the deformation that we are considering, Φ(t) = ct, using the results in Section
5.3.1, we have

Fx[Φ](a) = Aveb
[
LIM2

x[Φ] (a, b)
]

=
1

cT

∫ cT

0

LIM2
x[Φ] (a, b) db

=
1

cT

∫ cT

0

LIM2
x

(
a

c
,
b

c

)
db =

1

cT

∫ T

0

LIM2
x

(a
c
, b′
)
cdb′

=
1

T

∫ T

0

LIM2
x

(a
c
, b
)
db = Fx

(a
c

)
.

This shows that the shape of the flatness curve is preserved, but on different scales.

For a flow signal x, since the LIM values coincides with those obtained in the level
case, the flatness coefficient values coincide too,

Fx[Φ̃](a) = Aveb
[
LIM2

x[Φ̃]
(a, b)

]
= Aveb

[
LIM2

x[Φ] (a, b)
]

= Fx

(a
c

)
.

5.4 Illustrative cases

In this section we study the effect of deformation of the time domain (both ‘level’ and
‘flow’ cases are considered) on the distribution of energy concentrations over time at
different scales, measured in terms of the quantifiers introduced in Section 5.2.

Signals analyzed are considered to be observed at times t = 1, 2, ..., 1024. For sim-
plicity, we apply a smooth deformation with increasing contraction and dilation effects
respectively towards the left and right ends of the time interval, but preserving the
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domain. Formally, Φ is defined by its inverse, as

Φ−1(t′) =
0.7× 1024

π
sin
( π

1024
t′
)

+ t′, for u ∈ [0, 1024]

(see Figure 5.8).

Figure 5.8: Deformation Φ.

First, we compare the effect of deformation (‘level’ and ‘flow’ cases) on the seismic
segments 1 and 3 (Figure 5.2 (a) and (c)), which respectively correspond to a regular
phase and an activity period. Figure 5.9 shows both original signals and their transforma-
tions after deformation. Using Morlet wavelet, the corresponding scalograms, LIM maps
and F curves are displayed in Figures 5.10, 5.11 and 5.12, respectively. In particular,
looking at the F curves the seismic segment 1, which originally shows lightly significant
values only for some lower scales, increases intermittency levels under deformation in the
flow case. A similar effect can be observed for the seismic segment 3, though in this case
with the original signal showing highly significant values at lower scales.

Secondly, the different effects of deformation with respect to variation and level
change properties of the signal are analyzed comparing the results obtained using
Morlet and Haar wavelets applied to the simulated signal displayed in Figure 5.3 (b).
For both wavelets, a clear increase of intermittency levels is obtained after deforma-
tion, particularly in the flow case, as it can be seen comparing Figures 5.13, 5.14 and 5.15.
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Figure 5.9: From top to bottom: Original signal x, deformed signal of level type x[Φ],
and deformed signal of flow type x[Φ̃] ; for seismic segment 1 (left), seismic segment 3
(right).
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Figure 5.10: From top to bottom: Original signal x, scalogram W 2
x , scalogram W 2

x[Φ],
and scalogram W 2

x[Φ̃]
; for seismic segment 1 (left), seismic segment 3 (right).
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Figure 5.11: From top to bottom: Original signal x, LIMx map, LIMx[Φ] map, and
LIMx[Φ̃] map; for seismic segment 1 (left), seismic segment 3 (right).
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Figure 5.12: From top to bottom: Original signal x, Fx curve, Fx[Φ] curve, and Fx[Φ̃] curve;
for seismic segment 1 (left), seismic segment 3 (right).
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Figure 5.13: From top to bottom: time series x generated at a fixed location from a
heterogeneous space-time model x, scalogramW 2

x , LIMx map, and Fx curve; using Morlet
wavelet (left), Haar wavelet (right).
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Figure 5.14: From top to bottom: level type deformed signal x[Φ] based on signal x shown
in Figure 5.13, scalogram W 2

x[Φ], LIMx[Φ] map, and Fx[Φ] curve; using Morlet wavelet
(left), Haar wavelet (right).
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Figure 5.15: From top to bottom: flow type deformed signal x[Φ̃] based on signal x shown
in Figure 5.13, scalogram W 2

x[Φ̃]
, LIMx[Φ̃] map, and Fx[Φ̃] curve; using Morlet wavelet

(left), Haar wavelet (right).
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Briefly, in this chapter, we study some measures based on the continuous wavelet
transform useful to detect heterogeneous energy concentrations in a signal, which can
be interpreted as intermittency in a certain sense. In particular, we examine the effect
of a time deformation on the energy distribution of a signal. It is shown that such a
deformation induces generally higher intermittency intensities as well as structural space-
scale changes in the intermittency regimes. In this way, some forms of intermittency
behavior can be explained in terms of physical space and state deformation.



Chapter 6

Entropy-Based Correlated Shrinkage of
Spatial Random Processes

Shrinkage estimation constitutes an active area of research in signal processing. This
estimation methodology has usually been designed in the wavelet domain in terms of
thresholding rules, providing a powerful tool in the discrimination between signal and
noise energy. In the last and a half decade, an extensive literature has been developed in
the context of correlated shrinkage, rising the possibility of incorporation of the depen-
dence structural properties between wavelet coefficients.

This framework is adopted in the present chapter, considering the entropy-based
design of block-thresholding rules in a first local correlated stage of the estimation al-
gorithm proposed. The thresholding design is adaptive to each resolution level, since it
depends on the empirical distribution function of the mutual information ratios between
empirical wavelet blocks and the random variables of interest, at each scale. In a second
stage, the global correlation structure of the selected wavelet coefficients is incorporated
in the filter defining the final estimation of the original random signal. The resulting
double correlated shrinkage procedure also allows the detection of high local variability
episodes, since local singularity properties of the original random signal are preserved,
in the first stage, and then introduced as input information for global reconstruction of
micro-scale signal properties, in the second stage. A simulation study is developed, in
the Gaussian context, to analyze the sensitivity, measured by empirical stochastic or-
dering, of the entropy-based block hard thresholding stage in relation to the parameters

123
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characterizing local variability (fractality) and dependence range of the spatial process
of interest, the noise level, and the design of the region of interest.

6.1 Introduction

The wavelet transform is usually considered as a whitening filter for optimal processing
of random signals. Shrinkage estimation techniques have often been developed under the
assumption of independence of the wavelet coefficients. For example, Bayes shrinkage
is commonly developed under the consideration of independent a-priori distributions
for the wavelet coefficients (see, for example, Abramovich et al. 19981; Chipman et al.
199732; Johnstone et al. 200568; Vidakovic 1998b119, among others). However, wavelet
coefficients of natural environmental phenomena display significant dependencies (see,
for example, Anh et al. 199821). The performance of wavelet-based filtering algorithms is
then improved when such inter- and/or intra-scale dependencies are incorporated to the
design of shrinkage functions. Tree-based, e.g. hidden Markov models (see, for example,
Crouse et al. 199840; Romberg et al. 200199), and covariance-based approaches (see,
for instance, Amiri et al. 20076) constitute the main alternatives in correlated shrinkage.
Liu and Moulin (2001)78 use mutual information to measure dependence between wavelet
coefficients.

This chapter provides a new formulation of correlated non-linear shrinkage estima-
tion, based on entropy, for spatial random processes affected by additive noise (see also
Angulo et al. 2007a16, 2010b17 and 2007b20). Since the pioneering work by Donoho
and Johnstone (1994a)42, the classical approach of shrinkage estimation considers that
the signal of interest to be estimated is deterministic. In the shrinkage approach pre-
sented here, the signal of interest to be approximated is considered to be random. As
we commented in Section 2.4.5, two main approaches have been adopted for assessing
the optimality of shrinkage estimators: The minimax approach (see Donoho and John-
stone 1994a42, 1994b43, 199544), and the maxiset approach (see Kerkyacharian and Pi-
card 200070, 200271; Vidakovic 1998a118). The optimality of the entropy-based correlated
shrinkage method presented here is assessed in terms of the loss of information caused
after applying the block hard thresholding rule, in the first stage, as well as in terms of
the mean quadratic error of the reconstruction obtained in the second stage. Since the
local variation (fractality) and the spatial dependence range parameters involved in the
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definition of the structure of the process of interest, as well as the parameters related to
the noise level of the data and the design of the region of interest, will affect the quality
of the shrinkage estimation, a simulation study, in the Gaussian context, is performed
for testing in terms of stochastic ordering criteria the influence of such parameters.

In the context of spatial and spatio-temporal sampling design in the wavelet domain,
the shrinkage estimation provides a suitable methodology for selecting the most signifi-
cant observed wavelet coefficients (or wavelet blocks) in the approximation of the values
of interest of the underlying spatial process, which here is assumed to be corrupted by
additive noise. It is well known that the problem of optimal selection of spatial locations
where to collect observations related to the natural process of interest constitutes one of
the most important research issues in the Environmental Sciences. Different formulations
have been adopted in the literature, generally in terms of characteristics associated to the
geostatistical/geophysical problem, as well as in terms of the specifications given by the
spatial or spatio-temporal statistical model representing the environmental phenomenon
of interest (see Christakos 200034; Cressie and Huang 199939; Gneiting 200253; De Iaco
et al. 200163, 200264; Kiriakidis and Journel 199974; Ruiz-Medina and Angulo 2002102,
2007103 ; Ruiz-Medina et al. 2003101; Ruiz-Medina et al. 2008104; Stein 2005109; Wikle
and Cressie 1999123, among others). In this chapter we refer to the entropy-based ap-
proach, where the optimality criterion is defined as to maximize the mutual information
between the variables of interest (at the region of interest) and the observable variables to
be selected from a set of candidates (see, for instance, Angulo and Bueso 20019; Angulo
et al. 200010, 200519; Bueso et al. 199830; Guttorp et al. 199361; Le and Zidek 200675).

In Section 6.2 the two fundamental stages of the correlated shrinkage methodology
proposed are described. Some numerical examples are studied in Section 6.3, illustrating
the influence of the model and noise parameters, and the configuration of the region of
interest, on the entropy-based block hard thresholding design.

6.2 Shrinkage methodology

The shrinkage methodology proposed in this chapter consists of two main steps: Stage I
performs a local correlated entropy-based shrinkage. Stage II provides a global correlated
shrinkage. Specifically, the main steps of stage I are described as follows:
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• The set of candidates in the spatial sampling design problem is defined in terms of
the discrete wavelet transform of the observable process, with the wavelet coeffi-
cients being grouped into blocks. In this step, different block designs can be consid-
ered (e.g. nearest-neighbor blocks, tree blocks, square blocks by scales, mixed detail
blocks, etc.), according to the local correlation structure of the wavelet coefficients,
as well as to the geometrical configuration of the region of interest in relation to
the set of candidates.

• The mutual information between wavelet blocks and the variables of interest is then
computed. Related intra-scale, cumulated-scale and global information ratios are
obtained. The empirical cumulative distribution function of the mutual information
ratios is obtained for each scale.

• The hard thresholding rule for selection of the most informative wavelet blocks
is defined in terms of the percentiles of the empirical cumulative distribution of
the mutual information ratios at each resolution level. The threshold design then
depends on the quality (noise level) of the observed wavelet blocks, measured in
terms of the magnitude of the information ratio they provide with respect to the
variable of interest. Thus, an increasing noise level in the data will provide a de-
creasing stochastic ordering of the corresponding mutual information ratio random
variables.

After suitable selection of the most informative wavelet blocks, stage II is defined as
follows:

• A filter defined in terms of the conditional expectation of the values of interest to
the values estimated in stage I is applied. In the Gaussian case, the normalized
version of such a filter leads to its definition in terms of the inverted global correla-
tion function between selected empirical wavelet blocks, and the cross-correlation
function between the values of the process of interest and the selected empirical
wavelet blocks. This filter is applied to the selected empirical wavelet coefficients
to estimate the values of the process of interest.

The entropy sampling design of wavelets blocks is given in Section 6.2.1. Section 6.2.2
introduces the approximation of the values of the spatial process of interest.
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6.2.1 Entropy-based block hard thresholding rule

The first stage solves the problem of entropy-based spatial sampling design in the wavelet
domain.

Let
{
X(s) : s ∈ D ⊆ Rd

}
be the spatial random process of interest. Assume that the

observed process is defined as

Y (s) = X(s) + ε(s), s ∈ D,

where ε represents additive observation noise uncorrelated with X. We are focused on
the approximation of the values of X on a region of interest Λ.

We start from the discrete wavelet transform of Y , given by

{Yk : k ∈ Γ0} ∪
{
Yj,k : k ∈ Γ̃j, j ∈ N

}
,

where

Yk =

∫
D

Y (s)φk(s)ds, k ∈ Γ0,

Yj,k =

∫
D

Y (s)ψj,k(s)ds, k ∈ Γ̃j, j ∈ N, (6.1)

with {φk : k ∈ Γ0} representing the system of compactly supported scaling functions
generating the space V0, and

{
ψj,k, : k ∈ Γ̃j

}
, j ∈ N, representing the compactly sup-

ported wavelet bases generating the spaces Wj, j ∈ N. Note that, as commented before,
we have assumed that Y satisfies the necessary conditions to ensure that the integrals
in equation (6.1) are well defined in some stochastic sense. For example, in the Gaussian
case, the integrals are defined in the mean-square sense. In other cases, the integrals
are usually defined in the sample-path sense. In practice, the wavelet transform of Y is
approximated by the wavelet transform of the data on a region of candidate observation
sites Π.

The scaling coefficients {Yk : k ∈ Γ0}, and the wavelet coefficients{
Yj,k : k ∈ Γ̃j, j ∈ N

}
are respectively grouped into blocks B1, . . . ,BM0 , and

Bj1, . . . ,B
j
Mj
, j ∈ N. The design of the blocks depends on the local spatial corre-

lation properties of the wavelet coefficients (homogeneous vs. heterogeneous, isotropic
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vs. anisotropic models), and on the configuration of the locations defining the set Λ. For
example, a regular network design can be considered, consisting of defining blocks with
the same support size and geometrical form for each resolution level j ∈ N, covering the
region Λ, and defining a regular block network (each block is constituted by wavelet
coefficients corresponding to averaged information in adjacent supports). Such a design
is suitable for the case where the spatial locations defining the region Λ configure a
regular grid. Mixed detail blocks constituted by vertical, horizontal and diagonal details
are considered for covering anisotropic local correlated wavelet coefficients, providing
homogeneous information on the variables of interest. Tree block designs are considered
when localized averaged information referred to each point of interest must be kept
within each block, etc.

In the first stage, the approximation on the values of interest of X is given by the
formula

X̃(s) =
∑
k∈Γ0

γkYkφk(s) +
∑
j∈N

∑
k∈Γ̃j

γj,kYj,kψj,k(s), (6.2)

where the weights γk, k ∈ Γ0, and γj,k, k ∈ Γ̃j, j ∈ N, are defined as follows:

γk =


1 if Yk ∈ Bl for some l ∈ {1, . . . ,M0} with I(XΛ,Bl) > λ0

0 otherwise,

γj,k =


1 if Yj,k ∈ Bjl for some l ∈ {1, . . . ,Mj} with I(XΛ,Bjl ) > λ̃j

0 otherwise,
(6.3)

with I(XΛ,Bl) (respectively I(XΛ,Bjl )) denoting the mutual information between the
random variables of interest, located at region Λ, and the random variables defining
the wavelet coefficients that constitute the blocks Bl, for l ∈ {1, . . . ,M0} (respectively
Bjl , for l ∈ {1, . . . ,Mj}). To select the magnitude of the thresholds λ0, λ̃j, j ∈ N, the
empirical cumulative distribution of the information ratios at each scale is fitted. Thus,
an increasing stochastic ordering of the information ratio variables, for a fixed scale,
means an increasing quality of the data at such a scale (regarding information provided
on the variable of interest). This fact obviously leads to an increasing magnitude of
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the percentiles of the corresponding empirical cumulative distributions. Therefore larger
values of the threshold are allowed leading to a more selective thresholding design, and
then to a more effective dimension reduction approach. On the other hand, in the opposite
case of decreasing stochastic ordering of the information ratio variables (i.e., decreasing
quality of the data), discrimination between significant wavelet blocks is harder than
in the previous case, and the concentration of the corresponding empirical cumulative
distributions with respect to small values leads to a smaller magnitude of the percentiles,
i.e., of the thresholds selected at each resolution level, λ0, λ̃j, j ∈ N. In the spatial
sampling design problem, both situations correspond to the sound strategy of decreasing
or increasing the number of spatial locations selected, according to the increasing or
decreasing quality of the data.

As it can be interpreted from equation (6.3), an adaptative threshold design through
scales is adopted, since the thresholds λ0, λ̃j, j ∈ N, depend on the resolution level. Note
that the proposed threshold design is more sensitive at lower scales (i.e., coarse resolution
levels) when macro-scale properties are studied (e.g. dependence range in the Gaussian
case, dispersion of spatial locations in the region Λ, etc.). Conversely, the threshold
design is more sensitive at higher scales (i.e., finest resolution levels) when micro-scale
properties are studied (e.g. local variability properties, intensity of the observation noise,
etc.). This is highlighted in the simulation study developed in Section 6.3.3.

6.2.2 Global correlated shrinkage

We now briefly introduce the second stage of the shrinkage methodology proposed. Specif-
ically, the following estimates are defined, for each s ∈ Λ:

X̂(s) = E[X(s) | {X̃(y), y ∈ Λ}], (6.4)

where, for each y ∈ Λ, X̃(y) is computed as in equation (6.2) in stage I.

Note that, in the case where the spatial process of interest X is also defined in the
wavelet domain, denoting by {Xk : k ∈ Γ0} and

{
Xj,k : k ∈ Γ̃j, j ∈ N

}
the wavelet

coefficients involved in the definition of its wavelet transform, the following estimates
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can be computed in stage II:

X̂k = E[Xk | {γkYk : k ∈ Γ0; γj,kYj,k : k ∈ Γ̃j, j ∈ N}], k ∈ Γ0,

X̂j,k = E[Xj,k | {γkYk : k ∈ Γ0; γj,kYj,k : k ∈ Γ̃j, j ∈ N}], k ∈ Γ̃j, j ∈ N.(6.5)

The next scheme describes in synthesis our entropy-based correlated shrinkage algo-
rithm:

X

ε

]
−−−−→ Y

W−−−−→ {Yk : k ∈ Γ0; Yj,k : k ∈ Γ̃j, j ∈ N}

Stage 1 ↓

{X̃(s), s ∈ Λ}

Stage 2 ↓

{X̂(s), s ∈ Λ},

where W denotes the wavelet transform.

6.3 Numerical examples

A Gaussian scenario is considered in the numerical examples analyzed in this section,
under which the second stage of our shrinkage methodology becomes linear. Two spatial
dependence structures for the process of interest are analyzed: The exponential covariance
model, and the Linnik-type covariance model. In the exponential case, the influence of
the dependence range, the design of the region of interest, and the noise intensity is
analyzed in relation to the entropy-based block hard thresholding design. In the Linnik
model, the influence of the local singularity of the model, measured in terms of a fractality
parameter, as well as of the noise intensity is studied in relation to the design of the first
stage of the methodology proposed. In both cases, we are assuming that the variance of
the process is equal to 1.
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The exponential covariance function, for a zero-mean spatial process X, is defined as

C(s, s+ h) = E[X(s)X(s+ h)] = exp

{
−3‖h‖

a

}
, a > 0, s ∈ D ⊂ R2,

where the parameter a represents the dependence range.

The Linnik covariance function is given by

BX(s, s+ h) = E[X(s)X(s+ h)] =
1

1 + ‖h‖α
, 0 < α < 2, s ∈ D ⊂ R2,

where α provides information on the local singularity of the model (see Section 2.2.2).

The observation model is defined as

Y (s) = X(s) + ε(s), s ∈ Π ⊆ D ⊂ R2,

where ε represents additive observation noise, which is assumed to be Gaussian white
noise with intensity σ2, uncorrelated with the process of interest X. Here, Π defines the
region of candidate locations for observation, which can be discrete or continuous. The
region of interest Λ is constituted by the spatial locations where we are interested in the
knowledge of X (i.e., the spatial region on which the thematic map is constructed).

In the examples, we consider the case where the region of candidates Π is defined
in terms of a discrete finite set of spatial locations, given by a regular 26 × 26 grid.
We then apply to the potentially observable random variables, located on Π, the two-
dimensional Discrete Wavelet Transform (DWT), based on the tensorial product of the
Haar wavelet basis, with 6 resolution levels (hereafter named ‘scales’). From scale 2, the
wavelet coefficients are grouped into three-term blocks, each consisting of related vertical,
horizontal and diagonal details.

Regarding the block hard threshold design in stage I, its dependence on the covariance
range is illustrated in Section 6.3.1, for the exponential covariance model. Dependence
on the distribution of the spatial locations of region Λ is also shown in this section. The
effect of the local singularity order of the process of interest on the thresholding design
of stage I is illustrated in Section 6.3.2, under the Linnik covariance model. Section 6.3.3
provides the approximation of the values of the process of interest from stage II for the
latter case.
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6.3.1 Exponential model

Sensitivity of the entropy-based block hard thresholding design in relation to the depen-
dence range parameter a is first established considering the scale 3, since the wavelet
blocks provide information on the large-scale properties of the variables of interest at
such a scale. The empirical cumulative distribution function of the information ratios
associated with the wavelet blocks is computed. The percentiles of this distribution then
define different options in the threshold design. Information ratios are represented vs.
empirical percentiles and thresholds, as well as empirical percentiles vs. thresholds, for
the dependence ranges a = 1/6, 1/3, and 1/2, in Figure 6.1, and for a = 5, 10, and
15, in Figure 6.2, in all cases considering σ2 = 0.1, and a uniformly distributed spatial
configuration of Λ with 64 locations of interest. Significant differences are observed in the
threshold design for the values a = 1/6, 1/3, and 1/2, but not for a = 5, 10, and 15 due
to redundancy, since the latter values are too large in relation to the relative distance be-
tween the spatial locations in regions Λ and Π. Within the range of values a = 1/6, 1/3,
and 1/2, a higher amount of information is provided by the largest dependence range,
a = 1/2, where more concentration on higher information ratio values can be seen in the
empirical cumulative distribution function. This fact is reflected in Figure 6.1 (top right,
information ratios vs. thresholds), where the information ratio variable associated with
a = 1/2 is the largest variable, i.e., the dominant variable (maximum quality of observed
blocks in terms of mutual information), in terms of the usual stochastic ordering that
can be established between the three variables displayed, associated with the empirical
cumulative distributions corresponding to the cases a = 1/6, 1/3, and 1/2.

To study the influence of the noise intensity parameter σ2, we consider the values
σ2 = 0.1, 0.25, and 0.50, for a fixed dependence range a = 15, and a uniformly distributed
configuration of region Λ. In this case, the threshold design is studied at scales 4 and 5,

where the codified information is related to the local variability properties of the observed
process Y. We show here the results corresponding to scale 4 (results are qualitatively
similar for scale 5). Figure 6.3 displays the information ratios vs. empirical percentiles and
corresponding thresholds, as well as the relationship between percentiles and threshold
values at scale 4. Increasing the intensity of the noise, a higher concentration on small
values of the empirical cumulative distribution is obtained, and smaller information ratios
are provided by each of the wavelet blocks on the variable of interest. Hence, lower
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Figure 6.1: Exponential model. Region Λ with 64 locations, uniformly distributed; scale
3; σ2 = 0.1; a = 1/6 (black), a = 1/3 (red), a = 1/2 (blue). Information ratios vs. em-
pirical percentiles (top left), information ratios vs. thresholds (top right), and empirical
percentiles vs. thresholds (bottom).

Figure 6.2: Exponential model. Region Λ with 64 locations, uniformly distributed; scale
3; σ2 = 0.1; a = 5 (black), a = 10 (red), a = 15 (blue). Information ratios vs. em-
pirical percentiles (top left), information ratios vs. thresholds (top right), and empirical
percentiles vs. thresholds (bottom).
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Figure 6.3: Exponential model. Region Λ with 64 locations, uniformly distributed; scale
4; a = 15; σ2 = 0.1 (black), σ2 = 0.25 (red), σ2 = 0.5 (blue). Information ratios
vs. empirical percentiles (top left), information ratios vs. thresholds (top right), and
empirical percentiles vs. thresholds (bottom).

Figure 6.4: Exponential model. Region Λ with 64 locations, uniformly distributed (black)
and normally distributed (red); scale 4; a = 5; σ2 = 0.1; . Information ratios vs. em-
pirical percentiles (top left), information ratios vs. thresholds (top right), and empirical
percentiles vs. thresholds (bottom).
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thresholds should be considered in the design. Equivalently, a larger number of blocks is
needed to obtain a fixed amount of information when the intensity of the noise increases.
Again, the stochastic ordering of the three corresponding mutual information variables
is reflected in Figure 6.3 (top right), where the most informative case σ2 = 0.1 provides
the dominant or largest empirical mutual information variable.

Finally, the influence of the spatial configuration of region Λ is studied considering
the uniform and normal distributions to generate 50 spatial locations for region Λ. The
threshold design is analyzed at scales 4 and 5 for a = 5 and σ2 = 0.1 (see Figure 6.4).
Information ratios associated with the wavelet blocks are more concentrated on small
values in the case of the uniformly distributed region of interest. Hence, smaller thresholds
than in the normal case must be considered to provide a fixed amount of information on
the variable of interest. The normal design of region Λ is then more informative than the
uniform one, as it can be seen in Figure 6.4 (top right), where the dominant or largest
empirical mutual information ratio variable, in the stochastic ordering sense, is given by
the normal case.

6.3.2 Linnik model

In this section, we consider the Linnik-type spatial dependence model and study the effect
of the fractality and long-range dependence parameter α on the block hard thresholding
design in stage I. In the analysis, the empirical cumulative distribution functions of the
information ratios associated with wavelet blocks at scale 6 are considered under different
scenarios. Specifically, 64 spatial locations are generated from the uniform distribution
to define Λ, and different levels of fractality and long-range dependence are analyzed,
corresponding to the values α = 0.25, 0.5, and 0.75. In Figure 6.5, the information
ratios vs. empirical percentiles, the information ratios vs. thresholds and the empirical
percentiles vs. thresholds are displayed for scale 6. In the three cases considered, the
noise level is given by σ2 = 0.1. We observe that when α increases the observed wavelet
blocks are more informative when thresholds approximately less than 0.5 × 10−3 are
established. The stochastic ordering of the three cases considered, α = 0.25, 0.5, and
0.75, does not completely reflect the most informative case, corresponding to the lowest
order of local singularity α = 0.75. The reason is that large values of α also provide
short-range dependence, which corresponds to a less informative case as we observed in
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the exponential model. This can be interpreted as a disadvantage of considering a model
with information on local singularity and dependence range determined by a unique
parameter.

Figure 6.5: Linnik model. Region Λ with 64 locations, uniformly distributed; scale 6;
σ2 = 0.1; α = 0.25 (black), α = 0.5 (red), α = 0.75 (blue). Information ratios vs. em-
pirical percentiles (top left), information ratios vs. thresholds (top right), and empirical
percentiles vs. thresholds (bottom).

In Figures 6.6-6.8, the influence of the noise level of data in the wavelet block hard
thresholding design, is analyzed. Specifically, as it can be seen in the top-right plots of
these figures, a perfect stochastic ordering can be observed from the least (σ2 = 0.5)
to the most (σ2 = 0.1) informative case. This differences in the stochastic ordering are
stronger in the smoothest case (α = 0.75), where local variability in the observation
model is essentially introduced by the observation noise.

6.3.3 Shrinkage estimation

The shrinkage estimation resulting from stage II of the proposed methodology is now
illustrated for the Linnik-type spatial dependence model. Specifically, the performance
of the correlated shrinkage estimation procedure formulated is shown, starting from the
entropy-block hard thresholding stage computed in the previous section. The mutual



6.3. Numerical examples 137

Figure 6.6: Linnik model. Region Λ with 64 locations, uniformly distributed; scale 6;
α = 0.25; σ2 = 0.1 (black), σ2 = 0.25 (red), σ2 = 0.5; (blue). Information ratios vs. em-
pirical percentiles (top left), information ratios vs. thresholds (top right), and empirical
percentiles vs. thresholds (bottom).

Figure 6.7: Linnik model. Region Λ with 64 locations, uniformly distributed; scale 6;
α = 0.5; σ2 = 0.1 (black), σ2 = 0.25 (red), σ2 = 0.5; (blue). Information ratios vs. em-
pirical percentiles (top left), information ratios vs. thresholds (top right), and empirical
percentiles vs. thresholds (bottom).
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Figure 6.8: Linnik model. Region Λ with 64 locations, uniformly distributed; scale 6;
α = 0.75; σ2 = 0.1 (black), σ2 = 0.25 (red), σ2 = 0.5; (blue). Information ratios vs. em-
pirical percentiles (top left), information ratios vs. thresholds (top right), and empirical
percentiles vs. thresholds (bottom).

information ratio empirical percentile is selected according to the signal-to-noise ratio.
This choice provides the corresponding threshold via the empirical cumulative distri-
bution function. The influence of the local singularity of the model of interest on the
quality of the estimates (discrimination between signal and noise energy in the wavelet
coefficients) is also analyzed under a strong-dependence model (α = 0.15) for the process
of interest, displaying high local singularity behavior.

The two upper plots of Figures 6.9 and 6.10 represent the values of the process of
interest, generated with α = 0.15, at 64 uniformly distributed locations of interest, and
the corresponding entropy-based shrinkage estimates obtained from observed values in
the cases where the intensity of the noise is σ2 = 0.1 and σ2 = 0.5, respectively. The
thresholds selected from the empirical distribution of the information ratios at scale 6,
in the two cases considered, are the values corresponding to: the empirical percentile
0.05 for σ2 = 0.1, and the empirical percentile 0.4 for σ2 = 0.5. The plots at the bottom
of the two figures represent local mean-square error estimates based on 100 independent
realizations of the interest-observation model in each case.
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Figure 6.9: Linnik model. Region Λ with 64 locations, uniformly distributed; scale 6;
α = 0.15, and σ2 = 0.1. Original values of the process of interest (top left), and entropy-
based shrinkage estimates (top right); local mean-square error estimates based on 100
independent replicates (bottom).

Figure 6.10: Linnik model. Region Λ with 64 locations, uniformly distributed; scale 6;
α = 0.15, and σ2 = 0.5. Original values of the process of interest (top left), and entropy-
based shrinkage estimates (top right); local mean-square error estimates based on 100
independent replicates (bottom).
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To summarize, in this chapter, a two stage correlated non-linear shrinkage estimation
methodology is proposed. The first stage consists of a locally correlated entropy-based
block hard thresholding rule. In the second stage, a global correlated shrinkage function is
considered. The main contribution lies on the design of the first stage, based on comput-
ing mutual information quantities, since random spatial signals can be filtered with this
methodology, in contrast with the deterministic character of the process of interest in the
classical formulation of shrinkage rules. The first stage can be interpreted in the context
of spatial sampling design based on entropy, with the region of candidates being given
in terms of blocks defined from the two-dimensional wavelet transform of the observed
random variables. Macro- and micro-scale properties of the variables of interest can then
be analyzed separately, in terms of the respective low and high resolution levels. Finally,
the numerical examples computed illustrate the performance of the estimation method-
ology formulated, depending on the parameter values of the spatial dependence model
of interest, the noise level of the observation and the design of the region of interest.



Chapter 7

A Deformation/Blurring-Based
Spatio-Temporal Model

In Chapters 3 and 5, the effect of space or time deformation on the structure of threshold
exceedance sets has been investigated in relation to different aspects and under differ-
ent methodological perspectives. In the spatio-temporal context, where one of the key
objectives, as mentioned before, consists of providing an appropriate representation of
complexity in interactive spatio-temporal dynamics inherent to real phenomena, spatial
deformation and its propagated effect through time provides a meaningful way to de-
scribe certain heterogeneous dynamics; in particular, in relation to unstable media or to
account for the possible effect of covariates, to mention some significant interpretations.

In this chapter, a spatio-temporal model, in continuous space and discrete time, based
on spatial deformation and blurring, which provides a suitable representation for a vari-
ety of environmental applications, is formulated. Some significant aspects regarding the
temporal structure of threshold exceedance sets under different scenarios are explored
and discussed based on simulation. Formal consistency of the model towards an underly-
ing continuous time representation, from which the discrete-time version derives in terms
of interval sampling, is investigated.

141
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7.1 Model formulation

In the last years, there has been an increasing interest and effort to formulate and study
new families of space-time statistical models suitable to represent a variety of features
encountered in real phenomena. A first stage in these developments was to consider
second-order models with non-separable space-time covariance, then involving a proper
spatio-temporal interaction dynamics. Most proposals were restricted to the stationary
case (jointly in space and time); see, for instance Brown et al. (2000)29, Christakos
(2000)34, Cressie and Huang (1999)39, De Iaco et al. (2002)64, Gneiting (2002)53, Gneit-
ing and Schlather (2004)55, Kyriakidis and Journel (1999)74, Ma (2003)79, Porcu et al.
(2008)96 and Stein (2005)109; see also Kolovos et al. (2004)72 and Ma (2008)80 for a
synthetic review and discussion on different approaches adopted in this context. More
recently, in a second stage, the interest has been focused on providing new generalized
versions and methods with the aim to represent heterogeneities in different forms, hence
giving a more sophisticated representation for real complexity. This generally involves a
higher analytical and statistical complexity, as well as a parallelly higher computational
cost derived from more demanding implementation.

In this chapter, we propose an approach for extended spatio-temporal dynamics mod-
eling based on continuous spatial deformation affecting the evolution of the process. This
has several possible interpretations. On one hand, it can be viewed as a means to rep-
resent the spatio-temporal dynamics of processes evolving in unstable media, subject to
deformation over time. On the other hand, it can be used, in a statistical model setting,
to account for the effect of certain covariables on the regular behavior of the process of
interest. In both cases, the common idea is to introduce in the model heterogeneities
which can be explained under a mechanics perspective: the progressive transformation
of coordinate points, producing distortion on the regular structure of the process, or,
in a dual sense, departure of the dependence structure from a reference simpler regu-
lar model, which can be explained in terms of a certain transformation of coordinates.
Essentially, in our extended formulation, deformation affects the transfer of information
between successive times.

In our study, we start from the blur-generated non-separable space-time model in-
troduced by Brown et al. (2000)29, noting that the same methodology can be applied
to other formulations. This model was defined, first, as a continuous-space discrete-time
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process following the state equation

Y (s, t) = aY [h](s, t− 1) + Z(s, t), (7.1)

with Y (s, 0) = Y0 being a spatial random field on Rd, Z a spatio-temporal random field
on Rd × R, h a blurring kernel, and a a constant such that 0 < a < 1.

As mentioned by the authors, a physical interpretation is that the model represents
a diffusive dynamics given by the blurring effect in the time first-order autoregression,
leading to non-separability. The model formulation proposed by Brown et al. (2000)29

was restricted to the stationary case, generated, among other assumptions mentioned
above, by the consideration of a homogeneous blurring kernel h.

A natural way, from our point of view, to extend this model to represent possible
heterogenous dynamics would be to consider a non-homogeneous kernel h in model (7.1)
(see Angulo and Madrid 200811, 2009a12, 2009b13 and 2010a15). However, to make the
model analytically tractable and physically interpretable, the specification on h must
be subject to appropriate conditions. Here, we remind that in Chapter 3 we saw how
the iteration of spatial deformation and blurring with a homogeneous kernel can be
interpreted as a certain form of non-homogeneous blurring, with a high flexibility in the
resulting transformation in relation to the potential choices of deformation. Our proposal
here, then, consists of generalizing the formulation of model (7.1) in the following way.
For a spatial deformation Φ, and depending on whether Y represents a ‘level’ or a ‘flow’
magnitude, our deformation/blurring-based space-time model is formulated as

Y (s, t) = aY [Φ;h](s, t− 1) + Z(s, t), (7.2)

or
Y (s, t) = aY [Φ̃;h](s, t− 1) + Z(s, t), (7.3)

respectively, where all the elements involved, besides Φ and Φ̃, are interpreted as be-
fore. The differences between both the level and flow cases regarding the spatio-temporal
dynamics and, as a consequence, the geometrical characteristics of excursion sets are
particularly noticeable due to cumulative propagation effects under the autoregressive
model scheme. Now, the physical interpretation given by Brown et al. (2000)29 is ex-
tended in the sense that the evolution mechanism of the process involves a movement
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of coordinates during each time interval which can be either associated to unstability of
the medium or, alternatively, to properly heterogeneous diffusion, possibly derived from
the effect of certain covariates on the system. In fact, Brown et al. (2000)29 suggested
a simple extension of their model considering a non-centered homogeneous kernel, with
the constant mean vector accounting, for example, for the effect of wind with a con-
stant speed and direction. Our model clearly gives a more flexible and realistic way to
implement such a type of effect.

A somehow related model was proposed by Huang and Hsu (2004)62, which incorpo-
rates the magnitude and direction of wind as covariates using an "ad hoc" parametric
setup, but maintaining the expression of the blurring operator in the original coordi-
nates. In our case, we act directly on Yt−1 in terms of deformation, which is equivalent to
making a change of spatial coordinates (deformation), jointly with a rescaling of states,
in terms of the deformation Jacobian, in the case of ‘flow’ type variables.

In the following sections, we explore and study different aspects related to the analyti-
cal properties of model (7.2), and to the behavior of sample path in the sense described in
Chapter 3. Specifically, in Section 7.2 we show by simulation how model (7.2) can lead to
heterogeneity in the geometrical characteristics associated to threshold exceedance sets,
under different scenarios. In particular, how spatial deformation induces locally hetero-
geneous temporal dynamics in terms of the threshold exceedance patterns. In Section
7.3, we study some analytical aspects, particularly in relation to possible self-consistency
of the model in terms of an underlying continuous-time interpretation, leading to the
concept of infinitely divisible deformation with an infinitesimal generator.

7.2 An exploration on geometrical characteristics un-

der different scenarios

The following examples based on simulated realizations under model (7.2) illustrate
various significant aspects of geometrical characteristics in relation to the information
transfer in input-output systems. We consider two types of input random fields. In the
first type, Z [1] is assumed to be a zero-mean Gaussian spatio-temporal random field, with
second-order structure defined in terms of Gneiting model (see Section 2.2.2), specifically
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as

C(r, τ) = 0.1(1 + τ 2)−1.25

(
1 +

r2

(1 + τ 2)0.1

)−0.1

. (7.4)

The marginal time cross-sections of model (7.4) (i.e. for each fixed t) correspond to
Cauchy spatial model. The difference with the second type is that now Z [2] is uncorrelated
in time. The spatial domain is restricted to the squareD = [0, 400]2 ⊂ R2. Deformation Φ

(Φ̃ when the Jacobian changes the state scale) is defined by a nonhomogeneous clockwise
rotational movement with a certain attraction towards the central point of the square,
(200, 200); specifically, through homothetic transformation of D onto the unit square
[−1/2,−1/2]2, the deformation is given by the following change of polar coordinates:

θ′ = θ − γ(1− 2r)β,

r′ = r(1− δ(1− 2r)α),

restricted to the circle B((0, 0), 1/2). Here, we take γ = 0.1, β = 2, δ = 0.25, and α = 5.
We can see the clear contraction effect in the central area observing Figure 7.1, which
shows the Jacobian determinant values of this deformation.

A Gaussian kernel h with different variances is used to produce blurring. For con-
venience, the time unit considered is 1/5. Starting from a zero field, the model is run
through 300 times.

Figure 7.1: Jacobian determinant values, |JΦ(Φ−1(s))|.

Figure 7.2 shows four spatial cross-sections of the output Y corresponding to times
t = 100, 103, 106, and 116, using a Gaussian kernel with σ2

h = 0.625×10−4; a = 1−10−6,
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(a) (b)

(c) (d)

Figure 7.2: Four spatial cross-sections of a simulated realization of the spatio-temporal
random field Y , for: (a) t = 15, (b) t = 18, (c) t = 21, and (d) t = 30, with Z [1],
σ2
h = 0.625× 10−4 and a = 1− 10−6.

close to 1, to produce a smooth transition between subsequent times; the input random
field is Z [1]. The first three times give an impression of the inertial spatial changes over
time; the fourth is included for further vision of their cumulative effect. In Figure 7.3 we
represent four spatial cross-sections of the output Y , again corresponding to same times
and parameter values but now with the input random field being Z [2]. Comparing both
figures, we can see that the effect of deformation is clear in all plots, but the spatial
cross-sections corresponding to Z [1] as input suggest a slower movement over time, and
lower local variability is observed in this case due to the more inertial behavior of the
input random field.

To explore differences in the recurrence and duration patterns of the spatio-temporal
threshold exceedance sets in relation to the model components, we calculate the Euler
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(a) (b)

(c) (d)

Figure 7.3: Four spatial cross-sections of a simulated realization of the spatio-temporal
random field Y , for: (a) t = 15, (b) t = 18, (c) t = 21, and (d) t = 30, with Z [2],
σ2
h = 0.625× 10−4 and a = 1− 10−6.

characteristic and the hypervolume (i.e., area) for the 300 spatial cross-sections on the
central subdomain S = [176, 225]2 (see Figure 7.1). Since the input and output random
fields evolve with different scales of variation, we take for comparison thresholds related
to the sample standard error σ̂ based on the set of data for the corresponding random
field. The results obtained for random field Z [1] and for random field Y with input Z [1],
σ2
h = 0.625 × 10−4 and a = 1 − 10−6, are displayed in Figure 7.4. Apart from Z [1]

showing a generally higher structural complexity than Y in the corresponding threshold
exceedance sets (see scales in plot (a)), we can observe stronger inertial behavior in Y
reflected in the occurrence of more persistent critical episodes, compared to the number
of critical episodes with shorter duration in Z [1], as well as a certain temporal delay in
the input-output transfer in this context (better noticed in plot (b)).
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(a) (b)

Figure 7.4: Sequences of (a) Euler characteristic and (b) hypervolume values for spatial
cross-sections over time and threshold u = 1.5σ̂, for processes Z [1] (dotted blue), and
corresponding output Y (red) with σ2

h = 0.625× 10−4 and a = 1− 10−6.

(a) (b)

Figure 7.5: Sequences of (a) Euler characteristic and (b) hypervolume values for spatial
cross-sections over time and threshold u = 1.5σ̂, for process Y , with Z [2], σ2

h = 0.625 ×
10−4 and a = 1− 10−1 (dotted blue), a = 1− 10−6 (red).

In Figure 7.5 we compare the results for Y based on the input Z [2], with σ2
h = 0.625×

10−4 and a = 1 − 10−6, to the results obtained for the same model using a = 1 − 10−1

and the same remaining parameter values and realization of Z [2]. The latter case implies
a lesser inertial behavior of Y over time, and a higher influence of the contemporaneous
value of the input Z [2] at every time. Although the differences in the structural complexity
of threshold exceedance sets (see scales in plot (a)) are not as clear as in the previous
study, the recurrence pattern for critical episodes of the output Y gets closer to that
of the input Z, still with a certain delay, in the latter case, which makes evident the
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significance of the system parameter a in this respect.
Now we study the deformation effects depending on the type of magnitude (‘level’

and ‘flow’ cases). On the one hand, when a ‘flow’ magnitude is considered, since the de-
formation has properties of contraction on the subregion S, the Jacobian factor enhances
higher-state values (see Section 3.2), thus contributing to the occurrence of events above
a certain threshold. On the other hand, given the autoregressive nature of the model, we
expect that the influence of the past times be translated into a larger persistence of such
events with a stronger structuring. These properties are visible at the plots of Figure
7.6, where we represent the Euler characteristic (plot a)) and hypervolume (plot b)) for
the model using both types of magnitudes. In addition, since the Jacobian increases the
possibly of higher values, the events over higher thresholds are more probable in the flow
than in the level case (see Figure 7.7). That is, the excess and hypervolume in risk tend
to be larger in the case of a ‘flow’ magnitude.

(a) (b)

Figure 7.6: Sequences of (a) Euler characteristic and (b) hypervolume values for spatial
cross-sections over time and threshold u = 1.5σ̂, for process Y , with Z [2], σ2

h = 0.625 ×
10−4, a = 1− 10−6, using Φ̃ (red), and Φ (dotted blue).

To analyze the influence of the blurring operator we consider two kernels with different
variances. The blurring acts on the output variable by transferring spatially averaged
past information. If the average is computed taking into account locations in a larger
neighborhood, with a higher smoothing effect, then the possible past extreme events lose
influence through the time transfer and the current input variable has a higher direct
effect on the output. This means that processes with more disperse kernels will have a
lower structuring, in the sense of more variability in the value of Euler characteristic and
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(a) (b)

Figure 7.7: Sequences of (a) Euler characteristic and (b) hypervolume values for spatial
cross-sections over time and threshold u = 2.5σ̂, for process Y , with Z [2], σ2

h = 0.625 ×
10−4, a = 1− 10−6, using Φ̃ (red), and Φ (dotted blue).

area at risk due to the randomness of Z. These effects can be emphasized if, in addition,
a ‘flow’ type magnitude is considered (see figure 7.8).

(a) (b)

Figure 7.8: Sequences of (a) Euler characteristic and (b) hypervolume values for spatial
cross-sections over time and threshold u = 1.5σ̂, for process Y , with Z [2], a = 1− 10−6,
and σ2

h = 0.625× 10−4 (red), and σ2
h = 0.625× 10−3 (dotted blue).

Finally, in Figures 7.9 and 7.10 we study the behavior of model Y in two subregions
where the deformation has different contraction/dilation properties: the central square
[176, 225]× [176, 225] considered above, and the square [176, 225]× [111, 160] (see Figure
7.1). If the magnitude is of ‘level’ type and deformation has local contraction properties,
the blurring operator will have stronger smoothing effect, because of spatial accumu-
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lation of past state values in the average. Therefore, in Figure 7.9 we can see a lower
complexity in the structuring, and reduced areas at risk in central region compared to
the corresponding in the alternative region. On the other hand, if the magnitude is of
‘flow’ type, the Jacobian effect leads to amplification/reduction of the extreme state
according to the local contraction/dilation properties of the deformation. Thus, in the
region where the deformation has contraction properties, there is a higher probability of
observing events over the threshold (see Figure 7.10).

(a) (b)

Figure 7.9: Sequences of (a) Euler characteristic and (b) hypervolume values for spatial
cross-sections over time and threshold u = 1.5σ̂, for process Y , with Z [2], a = 1− 10−6,
and σ2

h = 0.625× 10−4 in central region (dotted blue), and in alternative region (red).

(a) (b)

Figure 7.10: Sequences of (a) Euler characteristic and (b) hypervolume values for spatial
cross-sections over time and threshold u = 1.5σ̂, for process Y , with Z [2], a = 1− 10−6,
and σ2

h = 0.625× 10−4 in central region (dotted blue), and in alternative region (red).
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7.3 Self-consistency for a continuous-time generating

process

Model (7.2), as formulated, is well defined in the sense that, starting from an initial
random field Y0, the autoregressive scheme leads to specification of the states Yt for
successive times t ∈ N. Although the model can be used in this form for statistical fitting,
the idea of having an underlying continuous-time process generating this type of recursion
for discrete-time sampling has interest in relation to possible physical interpretations. In
this respect, the key point, commonly adopted in simulation algorithms, is to establish
conditions under which the discrete-time recursive scheme is reproducible under proper
sampling refinements. Such an approach is adopted in Brown et al. (2000)29 for model
7.1, with the conclusion that, in order to have self-consistency, kernel h must be infinitely
divisible, that is, it must rescale preserving its form under convolution of any order.

In this section, we study self-consistency of model (7.2) according to the same idea of
reproducibility, and show that an extra condition of infinite divisibility (in the sense of
iterated composition) is required for the deformation Φ, which is satisfied under existence
of an infinitesimal generator field for such a transformation (see also Angulo and Madrid
2009b13). For simplicity, we here restrict technical details to the case of a ‘level’ type
magnitude. A similar development can be derived for a ‘flow’ type variable, involving
the iterated product of Jacobian terms.

Let model (7.2) be written for any non-necessarily unit discrete-time sampling interval
∆ in the following form:

Y (s, t) = a∆Y [Φ∆;h∆](s, t−∆) + Z∆(s, t). (7.5)

Now, taking δ = ∆/n as the new, refined sampling interval, iteration leads to

Y (s, t) = aδY [Φδ;hδ](s, t− δ) + Zδ(s, t)

= aδhδ ∗ Y (Φ−1
δ (s), t− δ) + Zδ(s, t)

= aδhδ ∗
[
aδhδ ∗ Y (Φ−1

δ (Φ−1
δ (s)), t− 2δ) + Zδ(Φ

−1
δ (s), t− δ)

]
+ Zδ(s, t)

= a2
δh

2∗
δ ∗ Y (Φ−1

δ ∗ Φ−1
δ (s), t− 2δ) + aδhδ ∗ Zδ(Φ−1

δ (s), t− δ) + Zδ(s, t)

= ...
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Iterating substitution n− 1 times, and imposing preservation of the model structure,
we must have:

i) a∆ = anδ .

ii) h∆ = hn∗δ .

iii) Φ∆ = Φδ ◦ Φδ ◦ . . .n) ◦ Φδ.

iv) Z∆(s, t) =
∑n−1

k=1 a
k
δh

k∗
δ ∗Z(Φ

k[−1]
δ (s), t−kδ) +Zδ(s, t), where Φ

k[−1]
δ stands for Φ−1

δ ◦
Φ−1
δ . . .k) ◦ Φ−1

δ .

Note that conditions (i), (ii), and (iv) coincide with those given in Brown et al.
(2000)29, with the exception that (iv) now involves the inverse deformation. The inter-
esting point comes from condition (iii), which means that Φ must be infinitely divisible
by iterated composition (or, shortly, infinitely decomposable). Following the introduction
of vector fields from particle displacement given in Rossmann (2002, Ch. 1)100, in our
case, we can define a vector field X : R2 → R as a function which assigns to each point
u ∈ R2 the velocity vector X(u) which represents the infinitesimal change of coordinates
at u by deformation, that is,

X(u) =
dΦδ

dδ
(u).

This can be viewed as the "current of the flow" (Rossmann 2002100); in particular, since
Φ does not depend on the time, it corresponds to the case of a steady flow (see Joseph
199069). Hence, X can be interpreted as an infinitesimal generator of deformation, with
the equation

Φ∆(u0) =

∫ ∆

0

X(Φδ(u0))dδ + u0,

giving the change of coordinates from u0 provided by effect of Φ over a time interval ∆.
Hence, any transformation Φ having an associated velocity field X (in the above sense)
satisfies the infinitely decomposibility condition (iii), and can lead to a self-consistent
deformation/blurring-based model formulation (7.2).

In summary, in this chapter a deformation/blurring-based spatio-temporal model,
suitable, for instance, for applications involving dynamical effects derived from unsta-
bility of the medium and possible covariates, is formulated, giving, in particular, an
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extension of the blur-generated model introduced by Brown et al. (2000)29. Certain as-
pects related to the geometrical properties of threshold exceedance sets are explored
in this context; in particular, the influence of systemic input-output parameters on the
transfer of recurrence and duration patterns of critical episodes. Analytical conditions on
the deformation to possibilitate a consistent underlying continuous-time representation
are investigated.



Chapter 8

Conclusions and Future Research Lines

In this thesis work, we have addressed various aspects related to the analysis of threshold
exceedance sets for spatial/temporal processes.

Specifically, in Chapter 3 we define ‘deformed’ and ‘blurred’ random fields, analyze
some formal implications of the transformations involved, and illustrate the effects of such
transformations on the second-order structure and on some geometrical characteristics
of the threshold exceedance sets. Among possible extensions of this study, we first look
at the implementation of stochastic deformations, a fundamental step to incorporate
statistical information related to random media and from random covariates in many
applications, as well as consideration of time adaptive thresholds, or thresholds defined
in relation to certain functionals of interest.

In Chapter 4, we design a methodology based on associating a family of spatial
(marked) point processes to the excursion sets for different thresholds, considering the
fragmentation of such sets into connected components. Then, we apply (marked) point
process techniques to analyze certain significant characteristic of threshold exceedance
sets. Here we have taken as marks the sizes and orientations of the corresponding con-
nected components. This study can be immediately extended considering new marks of
interest, as well as random fields in higher dimensions. A main aspect for continuing
work is the application of this methodology to study further the effects of deformation
and blurring transformations, as well as considering more general thresholds.

In both of the previous approaches, we have focused on the exploration of differ-
ent aspects in relation to the underlying model properties such as local variability and
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dependence ranges, and we show that many of the observed features in the threshold
exceedance sets are inherited from the random field from which they are generated. For
this purpose, in Chapters 3 and 4 we use random fields belonging to the Cauchy class.
Other more general models can be considered. For instance, given that we have seen that
from a realization of an isotropic random field, by gradually increasing the threshold,
the degree of local anisotropy of threshold exceedance sets is modified, consideration
of properly anisotropic models can be of particular interest. A main line for extend-
ing this study is the consideration of more complex forms of heterogeneity, jointly with
generalized thresholds.

In Chapter 5 we consider quantifiers based on the Continuous Wavelet Transform
for detecting heterogeneous concentrations of energy in a signal at different scales, which
may indicate a certain degree of intermittency. Through these quantifiers, we examine the
effects of time deformation, according to its local contraction/dilation properties, on the
distribution of energy at different scales. In fact, certain forms of intermittent behavior
can be expected to be approximately explained in terms of deformations based on more
regular reference models. In this context, further research towards inverse estimation
methods for such deformations constitutes one of the main aspects of interest. Also,
during the development of this chapter, we have considered the potencial design of new
measures which reflect, in a more precise way, the presence of intermittency; for instance,
taking into account the possible coherence among the energy distributions at different
scales. In this respect, we are studying the use of generalized entropies, as normalized
Tsallis entropy, applied to the Discrete Wavelet Transform coefficients.

In Chapter 6, we have developed a correlated non-linear shrinkage estimation method-
ology appropriate for filtering random spatial signals. The procedure uses in a first stage
a scale-dependent block hard thresholding rule, based on mutual information criteria,
which allows to analyze, separately, macro- and micro-scale properties of the variable
of interest, considering low and high resolutions levels, respectively. The second stage
considers a global correlated shrinkage function. Some research lines remain open, par-
ticularly in relation to the asymptotic properties of the class of estimators proposed. In
this respect, the Gaussian case can be easily addressed, since the second stage becomes
linear, and numerical projection methods in terms of suitable bases can be applied.

Finally, in Chapter 7, we study the dynamical joint effect of deformation and blurring
transformations on the threshold exceedance sets in a spatio-temporal context, continuing
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the work initiated in Chapter 3, and providing an extension of the blur-generated non-
separable space-time model introduced by Brown et al. (2000)29. Some formal aspects
in relation to the properties the input process must satisfy for self-consistency and a
possible continuous-time representation still remain open for continuing research. Other
important extensions include, as before, the consideration of time-varying and stochastic
deformations, dynamical inverse estimation, as well as application of this approach for
incorporation of deformation to other existing space-time model formulations.

The above mentioned contents of this research are presented here in thematic separate
chapters. However, they have clear interconnections according to various aspects; namely,
the effect of deformation, analysis of structural characteristics, influence of threshold
specifications, effect of model parameters, among others. In this sense, the extensions
proposed chapter by chapter should be viewed from a synthetic point of view, in a more
general framework, particularly aimed at various generalizations concerning deformations
and thresholds, as well as extensions in the spatio-temporal context and exploitation in
applications in relation to risk indicators.
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Capítulo 8

Conclusiones y Futuras Líneas de
Investigación

En este trabajo de tesis, hemos abordado varios aspectos relativos al análisis de conjuntos
de excedencias de umbrales para procesos espaciales/temporales.

Específicamente, en el Capítulo 3 definimos campos aleatorios afectados por deforma-
ción y borrosidad, analizamos algunas implicaciones formales de dichas transformaciones
e ilustramos los efectos de las mismas sobre la estructura de segundo orden y sobre al-
gunas características geométricas de los conjuntos de excedencias de umbrales. Entre las
posibles extensiones de este estudio, contemplamos en primer lugar la implementación de
deformaciones estocásticas, un paso fundamental para la incorporación de información
estadística relacionada con medios aleatorios y de covariables en muchas aplicaciones,
así como la consideración de umbrales adaptativos en el tiempo, o de umbrales definidos
en relación con ciertos funcionales de interés.

En el Capítulo 4, diseñamos una metodología basada en asociar una familia de pro-
cesos puntuales (marcados) a los conjuntos de excursión para diferentes umbrales, con-
siderando la fragmentación de tales conjuntos en componentes conexas. Entonces, apli-
camos técnicas de procesos puntuales (marcados) al análisis de ciertas características
significativas de los conjuntos de excedencias de umbrales. Aquí hemos tomado como
marcas los tamaños y las orientaciones de las correspondientes componentes conexas.
Este estudio puede extenderse de forma inmediata considerando nuevas marcas de in-
terés, así como campos aleatorios en dimensiones más altas. Un aspecto principal para la
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continuación de esta línea es la aplicación de esta metodología también al estudio de los
efectos de transformaciones de deformación y borrosidad, así como bajo la consideración
de umbrales más generales.

En ambos planteamientos previos, hemos enfocado el trabajo a la exploración de di-
ferentes aspectos en relación con propiedades del modelo subyacente tales como variabil-
idad local y rangos de dependencia, y mostramos cómo muchos de los rasgos observados
en los conjuntos de excedencias de umbrales son heredados del campo aleatorio a partir
del cual son generados. Con ese propósito, en los Capítulos 3 y 4 utilizamos campos
aleatorios pertenecientes a la clase de Cauchy. Otros modelos más generales podrían
considerarse. Por ejemplo, dado que hemos comprobado que a partir de una realización
de un campo isotrópico, incrementando gradualmente el umbral, se modifica el grado
de anisotropía local de los conjuntos de excedencias de umbrales, la consideración de
modelos propiamente anisotrópicos puede ser de particular interés. Una línea principal
para la extensión de este estudio consiste en la consideración de formas más complejas
de heterogeneidad, junto con umbrales generalizados.

En el Capítulo 5 consideramos ciertos cuantificadores basados en la Transformada
Wavelet Continua para la detección de concentraciones heterogéneas de energía en una
señal a diferentes escalas, lo que puede indicar un cierto grado de intermitencia. A
través de dichos cuantificadores, examinamos los efectos de la deformación del tiempo,
de acuerdo con sus propiedades locales de contracción/dilatación, sobre la distribución
de la energía a diferentes escalas. De hecho, es esperable que ciertos comportamientos
de intermitencia puedan explicarse de forma aproximada en términos de deformación
basándose en modelos de referencia más regulares. En este contexto, la investigación de
métodos de estimación inversa para tales deformaciones constituye uno de los principales
aspectos de interés. Asimismo, durante el desarrollo de este capítulo, hemos considerado
el diseño potencial de nuevas medidas que reflejen, de una forma más precisa, la presen-
cia de intermitencia; por ejemplo, teniendo en cuenta las posibles coherencias entre las
distribuciones de la energía a diferentes escalas. A este respecto, estamos estudiando el
uso de entropías generalizadas, como la entropía de Tsallis, aplicadas a los coeficientes
de la Transformada Wavelet Discreta.

En el Capítulo 6, hemos desarrollado una metodología de estimación no lineal co-
rrelada shrinkage apropiada para el filtrado de señales espaciales aleatorias. El proce-
dimiento usa en una primera fase una regla block hard thresholding dependiente de la
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escala, basada en criterios de información mutua, que permite analizar, de forma sepa-
rada, propiedades a macro- y micro-escala de la variable de interés, considerando niveles
de resolución bajos y altos, respectivamente. En la segunda fase, se considera una fun-
ción shrinkage correlada global. Permanecen abiertas algunas líneas, particularmente en
relación con las propiedades asintóticas de la clase de estimadores propuesta. En este con-
texto, el caso gaussiano puede abordarse de forma sencilla, puesto que la segunda fase se
convierte en lineal y pueden aplicarse métodos de proyección numérica en términos de
bases apropiadas.

Finalmente, en el Capítulo 7 estudiamos el efecto dinámico conjunto de transfor-
maciones de deformación y borrosidad sobre los conjuntos de excedencias de umbrales
en un contexto espacio-temporal, continuando el trabajo iniciado en el Capítulo 3, y
proporcionando una extensión del modelo espacio-temporal no separable generado me-
diante borrosidad introducido por Brown et al. (2000)29. Algunos aspectos formales en
relación con las propiedades que debe satisfacer el proceso input para auto-consistencia
del modelo y una posible representación en tiempo continuo aún permanecen abiertos
para la continuación de la investigación. Otras extensiones importantes incluyen, como
anteriormente, la consideración de deformaciones variables en el tiempo y estocásticas,
estimación inversa dinámica, así como aplicaciones de este enfoque para la incorporación
de la deformación a otras formulaciones existentes de modelos en el espacio-tiempo.

Los contenidos antes mencionados de esta investigación son presentados en esta
memoria en capítulos temáticos separados. Sin embargo, éstos tienen claras interconex-
iones atendiendo a varios aspectos; concretamente, el efecto de la deformación, el análisis
de características estructurales, la influencia de especificaciones del umbral, el efecto de
los parámetros del modelo, entre otros. En este sentido, las extensiones propuestas capí-
tulo por capítulo deben verse desde un punto de vista sintético, en un marco más gen-
eral, particularmente dirigidas a varias generalizaciones concernientes a deformaciones y
umbrales, así como a extensiones en el contexto espacio-temporal y a la explotación y
aplicaciones en relación con indicadores de riesgo.
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Appendix

This appendix collects a selection of the most relevant MATLAB codes developed for
the elaboration of the thesis.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Program to apply a deformation with/without Jacobian %

% to several realizations of a spatial RF using landmarks %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all

clc

%%%% Definition of arrays and parameters %%%%

cd C:\variables

load Z % realizations

dim=size(Z);

dim_x=dim(1);

dim_y=dim(2);

n=dim(3); % number of realizations

% interest domain D=[DXA,DXB]x[DYA,DYB]

DXA=0;

DXB=1;

DYA=0;

DYB=1;
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cd C:\MATLAB6p5\work

% landmarks

marcas=[0,0;1,1;0,1;1,0; 0,0.5; 0.5,1; 1,0.5; 0.5,0;3/8,3/8;1/4,1/2;...

3/8,5/8;5/8,3/8;3/4,1/2;5/8,5/8;1/2,1/4;1/2,3/4];

save marcas marcas

% transformed landmarks

marcas_trans=[0,0;1,1;0,1;1,0; 0,0.5; 0.5,1; 1,0.5; 0.5,0; 7/16, 7/16;...

3/8,1/2; 7/16,9/16; 9/16,7/16; 5/8,1/2; 9/16,9/16; 1/2,3/8; 1/2,5/8];

save marcas_trans marcas_trans

minimo=0;

% parameters for Newton-Raphson’s algorithm

delta=10^(-6);

eps=10^(-6);

ite_max=500;

% matrix of coefficients for the system (inv(L)*Y)

coef=coefgamma(marcas,marcas_trans);

save coef coef

% deformation of first realization

for i=1:dim_x

for j=1:dim_y

u = [(DXB-DXA)*(i-0.5)/dim_x,(DYB-DYA)*(j-0.5)/dim_y];

save u u

[u,it,er_abs]=raphson(’tgamma’,’j_gamma’,u,delta,eps,ite_max);

V1(i,j)=fix((dim_x*u(1)/(DXB-DXA))+1);

V2(i,j)=fix((dim_y*u(2)/(DYB-DYA))+1);

jacobian(i,j)=det(j_gamma([u(1),u(2)]));
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if V1(i,j)<1 | V2(i,j)<1 | V1(i,j)>dim_x| V2(i,j)>dim_y

Y_def(i,j,1)=minimo;

Y_def_jac(i,j,1)=minimo;

else

Y_def(i,j,1)=Z(V1(i,j),V2(i,j),1);

Y_def_jac(i,j,1)=Z(V1(i,j),V2(i,j),1)*(jacobian(i,j))^(-1);

end

end

end

% deformations of remaining realizations

for r=2:n

for i=1:dim_x

for j=1:dim_y

if V1(i,j)<1 | V2(i,j)<1 | V1(i,j)>dim_y | V2(i,j)>dim_y

Y_def(i,j,r)=minimo;

Y_def_jac(i,j,r)=minimo;

else

Y_def(i,j,r)=Z(V1(i,j),V2(i,j),r);

Y_def_jac(i,j,r)=Z(V1(i,j),V2(i,j),r)*(jacobian(i,j))^(-1);

end

end

end

end

cd C:\variables

save Y_def Y_def

save Y_def_jac Y_def_jac
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Program to apply blurring to several realizations of spatial RF %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all

clc

%%%% Definition of arrays and parameters %%%%

cd C:\metma4\conexos\variables

load Y % realizations

%%% Dimension of spatial domain

dim=size(Y);

dim_x=dim(1);

dim_y=dim(2);

n=dim(3);

cd C:\MATLAB6p5\work

% Blurring kernel

M=[401,401];

S1=eye(2)*10;

u=10^(-6);

[H1,cola1]=H_restringida(M,S1,u);

for i=1:n

% unfolding edges

Ydesd(:,:)=[flipud(fliplr(Y(1:100,1:100,i))),flipud(Y(1:100,1:400,i)),...

flipud(fliplr(Y(1:100,301:400,i)));fliplr(Y(1:400,1:100,i)),Y(:,:,i),...

fliplr(Y(1:400,301:400,i));flipud(fliplr(Y(301:400,1:100,i))),...

flipud(Y(301:400,1:400,i)),flipud(fliplr(Y(301:400,301:400,i)))];

%convolution-blurring

Y_aux(:,:)=conv2(Ydesd(:,:),H1,’same’);
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%reduction

Y_conv(:,:,i)=Y_aux(101:500,101:500);

end

cd C:\variables

save Y_conv Y_conv
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Function to define a restricted matrix %

% from a bivariate Gaussian density %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [HR]=H_restringida(M1,S1,u)

% M1: mean

% S1: covariance

% u: threshold

% HR: Restricted Gaussian matrix

for k=1:M1(1)*2-1

for l=1:M1(2)*2-1

H(k,l)=mvnpdf([k,l],M1,S1);

end

end

H=ismenor(H,u,0);

aux=H(M1(1),1:M1(1));

aux2=aux;

borrar=find(aux==0);

aux2(borrar)=[];

minimo=min(aux2);

indice1=find(aux==minimo);

aux3=H(1:M1(2),M1(2));

aux4=aux3;

borrar=find(aux3==0);

aux4(borrar)=[];

minimo=min(aux4);
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indice2=find(aux3==minimo);

HR=H(indice2:M1(1)*2-1-indice2+1,indice1:M1(2)*2-1-indice1+1);

suma=sumamatriz(HR);

HR=HR/suma;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Function to determine the connected components %

% above a threshold in a matrix %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [num, ind, etiq]=conexas(A,u)

%’connected-component’: pixels with common sides and/or corners

% A: matrix

% u: threshold

% num: number of connected components

% ind: index of element above the threshold

% etiq: label of corresponding component

dim=size(A);

ind=find(A>u);

if length(ind)<1

num=0;

else

et=1;

etiq(1)=et;

for i=2:length(ind)

if (length(find(ind==ind(i)-(dim(1)+1)))==1 & ...

mod(ind(i)-1,dim(1))~=0&...

length(find(ind==ind(i)-(dim(1)-1)))==0)|...

(length(find(ind==ind(i)-(dim(1)+1)))==1 & ...

mod(ind(i)-1,dim(1))~=0&...

mod(ind(i)+1,dim(1))==1)
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etiq(i)=etiq(find(ind==ind(i)-(dim(1)+1)));

else if length(find(ind==ind(i)-(dim(1)+1)))==1 & ...

mod(ind(i)-1,dim(1))~=0&...

length(find(ind==ind(i)-(dim(1)-1)))==1&...

mod(ind(i)-dim(1),dim(1))~=0

w=find(ind==ind(i)-(dim(1)+1));

z=find(ind==ind(i)-(dim(1)-1));

if etiq(w)<etiq(z)

etiq(i)=etiq(w);

etiq(find(etiq==etiq(z)))=etiq(w);

else

etiq(i)=etiq(z);

etiq(find(etiq==etiq(w)))=etiq(z);

end

clear z w

else if length(find(ind==ind(i)-dim(1)))==1

etiq(i)=etiq(find(ind==ind(i)-dim(1)));

else if (length(find(ind==ind(i)-(dim(1)-1)))==1 & ...

mod(ind(i),dim(1))~=0 & length(find(ind==ind(i)-1))==0)|...

(length(find(ind==ind(i)-(dim(1)-1)))==1 & ...

mod(ind(i),dim(1))==1)

etiq(i)=etiq(find(ind==ind(i)-(dim(1)-1)));

else if length(find(ind==ind(i)-(dim(1)-1)))==1 & ...

mod(ind(i),dim(1))~=0 &...

length(find(ind==ind(i)-1))==1&...

mod((ind(i)-1),dim(1))~=0

w=find(ind==ind(i)-(dim(1)-1));

z=find(ind==ind(i)-1);

if etiq(w)<etiq(z);

etiq(i)=etiq(w);

etiq(find(etiq==etiq(z)))=etiq(w);



182 Appendix

else

etiq(i)=etiq(z);

etiq(find(etiq==etiq(w)))=etiq(z);

end

clear z w

else if length(find(ind==ind(i)-1))==1 &...

mod((ind(i)-1),dim(1))~=0

etiq(i)=etiq(find(ind==ind(i)-1));

else

et=et+1;

etiq(i)=et;

end

end

end

end

end

end

end

restar=0;

for i=1:et

if length(find(etiq==i))==0

restar=restar+1;

borrar(restar)=i;

end

end

num=et-restar;

if exist(’borrar’)~=0

n_fic=length(borrar);

if n_fic>0

borradas=0;

for i=n_fic:-1:1

empezar=borrar(i)+1;
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ultima=et-borradas;

for k=etiq(find(etiq==empezar)):etiq(find(etiq==ultima))

etiq(find(etiq==k))=k-1;

end

borradas=borradas+1;

end

end

end

etiq=etiq’;

end

end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Function to determine the hole components above a threshold in a matrix %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [num]=anulares(A,u)

% A: matrix

% u: threshold

% num: number of ‘hole’ components

dim=size(A);

frontera=sort([2:dim(1)-1,...

dim(1)*dim(2)-dim(1)+1:dim(1)*dim(2),...

1:dim(1):dim(1)*dim(2)-dim(1),...

dim(1):dim(1):dim(1)*dim(2)-1]);

x=find(A<u);

if length(x)<1

num=0;

else

et=1;

y(1)=et;

for i=2:length(x)

if length(find(x==x(i)-dim(1)))==1

y(i)=y(find(x==x(i)-dim(1)));

else if length(find(x==x(i)-1))==1 & mod((x(i)-1),dim(1))~=0

y(i)=y(find(x==x(i)-1));

else

et=et+1;

y(i)=et;

end

end
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end

for i=length(x):-1:1

if length(find(x==x(i)-1))==1 & mod((x(i)-1),dim(1))~=0 & i-1>0

y(i-1)=y(i);

end

end

for j=1:length(x)

if length(find(frontera==x(j)))==1

z=find(y==y(j));

y(z)=0;

end

end

restar=0;

for i=1:et

if length(find(y==i))==0

restar=restar+1;

end

end

num=et-restar;

end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Program to compute the Euler characteristic and hypervolume %

% of several realizations of a spatial random field %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all

clc

cd C:\variables

load Y

cd C:\funciones

dim=size(Y);

sum=0;

for t=1:dim(3)

for j=1:dim(2)

for i=1:dim(1)

sum=sum+Y(i,j,t)^2;

end

end

end

varianza=sum/(dim(1)*dim(2)*dim(3));

sigma=varianza^(1/2);

umbral=1.5*sigma;

tam=dim(1)*dim(2);

for r=1:dim(3)

for i=1:length(umbral)

x=find(Y(:,:,r)>=umbral(i));

area(r,i)=length(x)/tam;

sum=0;

Aux=Y(:,:,r);

for j=1:length(x)
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sum=sum+Aux(x(j))-umbral(i);

end

volumen(r,i)=sum/tam;

[num_com]=conexas(Aux,umbral(i));

cconexas(r,i)=num_com;

[num_anu]=anulares(Aux,umbral(i));

aanulares(r,i)=num_anu; % number of holes

euler(r,i)=cconexas(r,i)-aanulares(r,i);

end

end

cd C:\variables

save area area

save volumen volumen

save cconexas cconexas

save aanulares aanulares

save euler euler

save umbral umbral

save varianza varianza
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Program to apply a deformation with/without Jacobian and blurring %

% to several realizations of a spatial RF using landmarks %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

cd C:\variables

load Z1

cd C:\MATLAB6p5\work

dim=size(Z1);

dim_x=dim(1);

dim_y=dim(2);

M=[401,401];

S=eye(2)*10;

u=10^(-6);

[HR,cola]=H_restringida(M,S,u);

a=0.9;

b=1;

DXA=0;

DXB=1;

DYA=0;

DYB=1;

delta=10^(-6);

eps=10^(-6);

ite_max=500;

Y1(:,:,1)=Z1(:,:,1);

Y1_jac(:,:,1)=Z1(:,:,1);

for i=1:dim_x

for j=1:dim_y

u = [(DXB-DXA)*(i-0.5)/dim_x,(DYB-DYA)*(j-0.5)/dim_y];

u=u-[1/2,1/2];

[v,w]=cart2pol(u(1),u(2));

coor_pol=[v,w];
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save coor_pol coor_pol

jacobiano(i,j)=1;

if coor_pol(2)<1/2

[coor_pol,it,er_abs]=raphson(’tcircular’,’j_circular’,...

coor_pol,delta,eps,ite_max);

jacobiano(i,j)=det(j_circular(coor_pol));

end

[r,s]=pol2cart(coor_pol(1),coor_pol(2));

coor_cart=[r,s]+[1/2,1/2];

V1(i,j)=fix( dim_x*coor_cart(1)/(DXB-DXA) +1);

V2(i,j)=fix( dim_y*coor_cart(2)/(DYB-DYA) +1);

if V1(i,j)<1 | V2(i,j)<1 | V1(i,j)>dim_x | V2(i,j)>dim_y

Ydef(i,j)=minimo;

Ydef_jac(i,j)=minimo;

else

Ydef(i,j)=Y1(V1(i,j),V2(i,j),1);

Ydef_jac(i,j)=Y1_jac(V1(i,j),V2(i,j),1)*(jacobiano(i,j))^(-1);

end

end

end

clear u v w coor_pol r s coor_cart

Yd(:,:)=[flipud(fliplr(Ydef(1:100,1:100))),flipud(Ydef(1:100,1:400)),...

flipud(fliplr(Ydef(1:100,301:400)));fliplr(Ydef(1:400,1:100))...

, Ydef(:,:),fliplr(Ydef(1:400,301:400));...

flipud(fliplr(Ydef(301:400,1:100))),flipud(Ydef...

301:400,1:400)),flipud(fliplr(Ydef(301:400,301:400)))];

Yc(:,:)=conv2(Yd(:,:),HR,’same’);

Y1(:,:,2)=a*Yc(101:500,101:500) + b*Z1(:,:,2);

clear Ydef Yd Yc

Yd_jac(:,:)=[flipud(fliplr(Ydef_jac(1:100,1:100))),flipud(Ydef_jac...
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(1:100,1:400)),flipud(fliplr(Ydef_jac(1:100,301:400)));...

fliplr(Ydef_jac(1:400,1:100)), Ydef_jac(:,:),fliplr(Ydef_jac...

(1:400,301:400));flipud(fliplr(Ydef_jac(301:400,1:100))),...

flipud(Ydef_jac(301:400,1:400)),flipud(fliplr(...

Ydef_jac(301:400,301:400)))];

Yc_jac(:,:)=conv2(Yd_jac(:,:),HR,’same’);

Y1_jac(:,:,2)=a*Yc_jac(101:500,101:500) + b*Z1(:,:,2);

clear Ydef_jac Yd_jac Yc_jac

for t=3:100

for i=1:dim_x

for j=1:dim_y

if V1(i,j)<1 | V2(i,j)<1 | V1(i,j)>dim_x | V2(i,j)>dim_y

Ydef(i,j)=minimo;

Ydef_jac(i,j)=minimo;

else

Ydef(i,j)=Y1(V1(i,j),V2(i,j),t-1);

Ydef_jac(i,j)=Y1_jac(V1(i,j),V2(i,j),t-1)*...

(jacobiano(i,j))^(-1);

end

end

end

Yd(:,:)=[flipud(fliplr(Ydef(1:100,1:100))),flipud(Ydef(1:100,1:400))...

,flipud(fliplr(Ydef(1:100,301:400)));fliplr(Ydef(1:400,1:100))...

, Ydef(:,:),fliplr(Ydef(1:400,301:400));flipud(fliplr(...

Ydef(301:400,1:100))),flipud(Ydef(301:400,1:400)),flipud...

(fliplr(Ydef(301:400,301:400)))];

Yc(:,:)=conv2(Yd(:,:),HR,’same’);

Y1(:,:,t)=a*Yc(101:500,101:500) + b*Z1(:,:,t);

clear Yd Ydef Yc

Yd_jac(:,:)=[flipud(fliplr(Ydef_jac(1:100,1:100))),flipud(Ydef_jac...
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(1:100,1:400)),flipud(fliplr(Ydef_jac(1:100,301:400)));...

fliplr(Ydef_jac(1:400,1:100)), Ydef_jac(:,:),fliplr(Ydef_jac...

(1:400,301:400));flipud(fliplr(Ydef_jac(301:400,1:100))),...

flipud(Ydef_jac(301:400,1:400)),flipud(fliplr...

(Ydef_jac(301:400,301:400)))];

Yc_jac(:,:)=conv2(Yd_jac(:,:),HR,’same’);

Y1_jac(:,:,t)=a*Yc_jac(101:500,101:500) + b*Z1(:,:,t);

clear Yd_jac Ydef_jac Yc_jac

end

clear Z1

cd C:\variables

save Y1 Y1

save Y1_jac Y1_jac

save jacobiano jacobiano
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Function to generate a Linnik model covariance %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [CRI,CovXTW2,CIOG,infG]=covarianzas(niveles,sep,TI2,alpha,lambda)

% niveles= number of scales

% sep= noise intensity

% alpha= Linnik model parameter

% TI2 = number of locations in interest region

% CRI= covariance values on interest region

% CovXTW2= 2DTW2 of first component of the covariance on candidates region

% CIOG= Cross-covariance between interest and candidate regions

% infG= Information of candidate region on interest variable

N=2^niveles;

N2=N^2;

for I=1:N

P(I)=I/N;

end

for K=1:TI2

COORG(K,:)=lambda(K,:);

end

H=TI2+1;

M=TI2+1;

for L=1:N

for K=1:N

COORG(H,1)=L/N;

COORG(M,2)=K/N;
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H=H+1;

M=M+1;

end

end

% Covariance values on candidate region

for K=1:TI2

for I=1:TI2

z1=(lambda(K,1)-lambda(I,1));

z2=(lambda(K,2)-lambda(I,2));

z=(z1^2+z2^2);

CRI(K,I)= 1/(1+sqrt(z)^alpha);

end

end

for K=1:N

for L=1:N

for I=1:N

for J=1:N

z1=(P(K)-P(I));

z2=(P(L)-P(J));

z=(z1^2+z2^2);

CRC4(K,L,I,J)= 1/(1+sqrt(z)^alpha);

end

end

end

end

for I=1:TI2

for K=1:N

for L=1:N

z1=(COORG(I,1)-P(K));

z2=(COORG(I,2)-P(L));



194 Appendix

z=(z1^2+z2^2);

CRC3(I,K,L)= 1/(1+sqrt(z)^alpha);

end

end

end

for L=1:TI2

for I=1:N

for J=1:N

CIC1D(I,J)=CRC3(L,I,J);

end

end

[C,S]=wavedec2(CIC1D,niveles,’haar’);

for I=1:N2

TWDCIC(L,I)=C(1,I);

end

end

clear CIC1D CIC C S

for K=1:N

for L=1:N

for I=1:N

for J=1:N

CovX1(I,J)=CRC4(K,L,I,J);

end

end

[C,S]=wavedec2(CovX1,niveles,’haar’);

for I=1:N2

CovX1TW(K,L,I)=C(1,I);

end

end

end
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clear CovX1 CI4 C S

for K=1:N2

for I=1:N

for J=1:N

CovX1(I,J)=CovX1TW(I,J,K);

end

end

[C,S]=wavedec2(CovX1,niveles,’haar’);

for I=1:N2

CovXTW2(K,I)=C(1,I);

end

end

clear CovX1 COVX1TW C S

COG=CovXTW2+sep*eye(N2);

CIOG=TWDCIC;

CCG=CRI-CIOG*inv(COG)*CIOG’;

infG=1/2*log(det(CRI))-1/2*log(det(CCG));
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Function to compute different information ratios %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [RBG,RIE,RBE,infe]=razones(niveles,sep,TI2,CI,CovXTW2,CIOG,infG)

% niveles: number of scales

% sep: noise intensity

% TI2: number of locations of candidate region

% CI:covariance values on interest region

% CovXTW2: TW2 of first component of the covariance on candidates region

% CIOG:Cross-covariance between interest and candidate regions

% infG: Information of candidate region on interest variable

% RBG= Information ratios wavelet blocks-global

% RIE= Information ratios scales-global

% RBE= Information ratios wavelet blocks-scales

N=2^niveles;

N2=N^2;

for M=1:niveles

if M==1

TB(M)=4;

NB(M)=1;

TE(M)=NB(M)*TB(M);

else

TB(M)=3;

end

NB(M)=2^(2*M-2);

TE(M)=NB(M)*TB(M);

end
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for M=1:niveles

if M==1

J=1;

H=1;

for F=1:TI2

for I=1:4

CIO(F,H,J,M)=CIOG(F,I);

H=H+1;

end

H=1;

end

for P=1:4

for Q=1:4

CBTW2(P,Q,J,M)=CovXTW2(P,Q);

COB(P,Q,J,M)=CBTW2(P,Q,J,M);

if P==Q

COB(P,Q,J,M)=CBTW2(P,Q,J,M)+sep;

end

end

end

CCBI(:,:,J,M)=CI-CIO(:,:,J,M)*inv(COB(:,:,J,M))*CIO(:,:,J,M)’;

entcb(J,M)=TI2/2*(1+log(2*pi))+1/2*log(det(CCBI(:,:,J,M)));

infcb(J,M)=1/2*log(det(CI))-1/2*log(det(CCBI(:,:,J,M)));

RBG(J,M)=infcb(J,M)/infG;

Sum=4;

Sum1=4;

Sum2=4;

else

H=1;

for J=1:NB(M)

for F=1:TI2

for I=1:NB(M):TE(M)

CCIO(F,H,J,M)=CIOG(F,Sum+I+J-1);
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H=H+1;

end

H=1;

end

H=1;

end

Sum=Sum+TE(M);

P=1;

Q=1;

for J=1:NB(M)

for K=1:NB(M):TE(M)

for I=1:NB(M):TE(M)

CCOB(P,Q,J,M)=CovXTW2(Sum2+J-1+K,Sum1+J-1+I);

if P==Q

CCOB(P,Q,J,M)=CovXTW2(Sum2+J-1+K,Sum1+J-1+I)+sep;

end

Q=Q+1;

end

Q=1;

P=P+1;

end

P=1;

Q=1;

CCBI(:,:,J,M)=CI-CCIO(:,:,J,M)*inv(CCOB(:,:,J,M))*CCIO(:,:,J,M)’;

entcb(J,M)=TI2/2*(1+log(2*pi))+1/2*log(det(CCBI(:,:,J,M)));

infcb(J,M)=1/2*log(det(CI))-1/2*log(det(CCBI(:,:,J,M)));

RBG(J,M)=infcb(J,M)/infG;

end

Sum1=Sum1+TE(M);

Sum2=Sum2+TE(M);

end

end
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for M=1:niveles

if M==1

Sum=0;

H=1;

for F=1:TI2

for I=1:4

CIOE(F,H)=CIOG(F,I);

H=H+1;

end

H=1;

end

H=1;

L=1;

for K=1:4

for I=1:4

COBE(L,H)= CovXTW2(K,I);

if I==K

COBE(L,H)=CovXTW2(K,I)+sep;

end

H=H+1;

end

H=1;

L=L+1;

end

H=1;

L=1;

CCE=CI-CIOE*inv(COBE)*CIOE’;

entce(M)=TI2/2*(1+log(2*pi))+1/2*log(det(CCE));

infe(M)=1/2*log(det(CI))-1/2*log(det(CCE));

RIE(M)= infe(M)/infG;

Sum=4;
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Sum1=4;

Sum2=4;

else

for F=1:TI2

for I=1:TE(M)

CIOE(F,H)=CIOG(F,Sum+I);

H=H+1;

end

H=1;

end

Sum=Sum+TE(M);

H=1;

L=1;

for K=1:TE(M)

for I=1:TE(M)

COBE(L,H)=CovXTW2(Sum2+K,Sum1+I);

if I==K

COBE(L,H)=CovXTW2(Sum2+K,Sum1+I)+sep;

end

H=H+1;

end

H=1;

L=L+1;

end

H=1;

L=1;

Sum1=Sum1+TE(M);

Sum2=Sum2+TE(M);

CCE=CI-CIOE*inv(COBE)*CIOE’;

entce(M)=TI2/2*(1+log(2*pi))+1/2*log(det(CCE));
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infe(M)=1/2*log(det(CI))-1/2*log(det(CCE));

RIE(M)= infe(M)/infG;

end

end

for M=1: niveles

for J=1:NB(M)

RBE(J,M)=infcb(J,M)/infe(M);

end

end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Function to select blocks from the cumulative %

% distribution of information ratios %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [percentil, umbral, cont_emp, bloq_selec]=umbrales(RBG,probabilidad)

%RBG:Information ratios wavelet blocks-global

%probabilidad: probabilities for percentiles

%percentil: value of percentile

%umbral: threshold

%cont_emp-> cont_emp(c,d,e): number of wavelet blocks > threshold

%bloq_selec->bloq_selec(c,d,e):c-th block > d-th threshold for scale e

dim=size(RBG);

niveles=dim(2);

for n=1:niveles

if n==1

NB(n)=1;

else

NB(n)=2^(2*n-2);

end

end

cont_emp=zeros(niveles,length(probabilidad));

for n=1:niveles

r=RBG(:,n);

r(NB(n)+1:1:NB(niveles))=[];

[g,y]=ecdf(r);

y(1)=0;
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for p=1:length(probabilidad)

for i=1:size(g)

if g(i)>=probabilidad(p)

percentil(n,p)=g(i);

umbral(n,p)=y(i);

break

end

end

end

for j=1:NB(n)

for k=1:length(umbral)

if r(j)>umbral(n,k)

cont_emp(n,k)=cont_emp(n,k)+1;

bloq_selec(cont_emp(n,k),k,n)=j;

else

break

end

end

end

end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Function to compute the information provided by selected blocks %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [infbse]=informacion_umbrales_escalas(sep,umbral,cont_emp,...

bloq_selec,CIOG,CI,CovXTW2)

% sep: noise intensity

% umbral: threshold

% cont_emp:cont_emp(c,d,e): number of wavelet blocks > threshold

% bloq_selec:->bloq_selec(c,d,e): block c for threshold d in scale e

% CIOG:Cross-covariance between interest and candidate regions

% CI:covariance values on interest region

% CovXTW2: 2D-TW of first component of the covariance on candidate region

% infbse:information of selected wavelet blocks of interest variable

dim=size(umbral);

niveles=dim(1);

n_umbrales=dim(2);

for M=1:niveles

NB(M)=2^(2*M-2);

if M==1

TB(M)=4; %

NB(M)=1;

ucn(M)=NB(M)*TB(M);

else

TB(M)=3;

ucn(M)=ucn(M-1)+NB(M)*TB(M);

end

end
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for n=3:niveles

for p=1:n_umbrales

selec=[];

for j=1:cont_emp(n,p)

k=bloq_selec(j,p,n);

if n==1&k==1

selec=[1,2,3,4];

end

if n>1

selec=[selec, k+ucn(n-1), k+ucn(n-1)*2, k+ucn(n-1)*3];

end

end

selec=sort(selec);

noselec=1:ucn(niveles);

noselec(selec)=[];

CCIBS=CIOG;

CCIBS(:,noselec)=[];

CBSTW2=CovXTW2;

CBSTW2(noselec,:)=[];

CBSTW2(:,noselec)=[];

COBS=CBSTW2+sep*eye(size(CBSTW2));

CCBS=CI-CCIBS*inv(COBS)*CCIBS’;

infbse(n,p)=1/2*log(det(CI))-1/2*log(det(CCBS));

clear CCIBS CBSTW2 COBS CCBS

end

end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Function to compute the information obtained after reconstruction %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [infbse,CCIBS,COBS,CCBS]=informacion_reconstruccion(sep,n_th,...

umbral,percentil,u,bloq_selec,CIOG,CI,CovXTW2)

% sep: noise intensity

% n_th: level to thresholding

% umbral: threshold

% percentil: value of percentile

% u: threshold

% bloq_selec:->bloq_selec(c,d,e): block c for threshold d in scale e

% CIOG:Cross-covariance between interest and candidate regions

% CI:covariance values on interest region

% CovXTW2: 2D-TW of first component of the covariance on candidate region

% infbse: information

% CCIBS: cross-covariance between interest and candidate regions

% COBS: observation matrix of selected blocks

% CCBS: conditional cross covariance interest to selected block

dim=size(umbral);

niveles=dim(1);

n_umbrales=dim(2);

for M=1:niveles

NB(M)=2^(2*M-2);

if M==1

TB(M)=4;

NB(M)=1;

ucn(M)=NB(M)*TB(M);

else
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TB(M)=3;

ucn(M)=ucn(M-1)+NB(M)*TB(M);

end

end

bloques=bloq_selec(:,u,n_th);

r=find(bloques==0);

bloques(r)=[];

selec=1:ucn(n_th-1);

for j=1:length(bloques)

k=bloques(j);

if n_th>1

selec=[selec, k+ucn(n_th-1), k+ucn(n_th-1)*2, k+ucn(n_th-1)*3];

end

if n_th<niveles

selec2=ucn(n_th)+1:ucn(niveles);

selec=[selec,selec2];

end

end

selec=sort(selec);

noselec=1:ucn(niveles);

noselec(selec)=[];

CCIBS=CIOG;

CCIBS(:,noselec)=[];

CBSTW2=CovXTW2;

CBSTW2(noselec,:)=[];

CBSTW2(:,noselec)=[];
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COBS=CBSTW2+sep*eye(size(CBSTW2));

CCBS=CI-CCIBS*inv(COBS)*CCIBS’;

infbse=1/2*log(det(CI))-1/2*log(det(CCBS));
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